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Abstract: Blood pressure measurement is a key indicator of vascular health and a routine part
of medical examinations. Given the ability of photoplethysmography (PPG) signals to provide
insights into the microvascular bed and their compatibility with wearable devices, significant research
has focused on using PPG signals for blood pressure estimation. This study aimed to identify
specific clinical PPG features that vary with different blood pressure levels. Through a literature
review of 297 publications, we selected 16 relevant studies and identified key time-dependent PPG
features associated with blood pressure prediction. Our analysis highlighted the second derivative
of PPG signals, particularly the b/a and d/a ratios, as the most frequently reported and significant
predictors of systolic blood pressure. Additionally, features from the velocity and acceleration
photoplethysmograms were also notable. In total, 29 features were analyzed, revealing novel temporal
domain features that show promise for further research and application in blood pressure estimation.

Keywords: blood pressure estimation; PPG; vascular health; PPG features; systolic blood pressure
prediction; second derivative of PPG; velocity photoplethysmogram; acceleration photoplethysmogram;
temporal PPG features; wearable devices

1. Introduction

Globally, about 1.28 billion adults between the ages of 30 and 79 suffer from hyperten-
sion [1]. Alarmingly, a majority of them, nearly two-thirds, reside in low- to middle-income
countries [1]. Adding to the concern is the fact that approximately 46% of these individuals
are unaware of their hypertensive condition. Due to the insidious nature of symptom
development, blood pressure measurement is essential to observe hypertension [1].

Blood pressure is an important parameter that reflects vascular health and provides
insights into cardiac function and the condition of the circulatory system. Abnormal blood
pressure and variations in blood pressure levels are indicators of potential vascular health
risks and play essential roles in the prevention and diagnosis of many cardiovascular
diseases. Different blood pressure ranges define a spectrum of health conditions, each
carrying specific associations with well-being, ranging from normotension, which reveals
normal cardiovascular function, to hypertension and hypotension, which demand medical
attention, indicating overall medical health [2]. Stroke and cardiovasular diseases are
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associated with hypertension and are the leading causes of death in the United States, with
691,095 deaths in 2021, whereas hypertension was a main cause or a co-factor [3]. Continu-
ous and cuffless blood pressure monitoring surpasses the limitations of traditional blood
pressure measurement. Cuffless-based methods enable the tracking of blood pressure over
extended periods. By using PPG signals and advanced algorithms, especially machine learn-
ing, cuffless monitoring provides real-time insights into blood pressure trends and blood
pressure ranges. Representative works in the domain include studies by Gupta et al. [4],
Yao et al. [5], Ali et al. [6], El Hajj et al. [7], Chen et al. [8], and Maqsood et al. [9].

Photoplethysmography (PPG) signals are noninvasive, optical-based signals that
provide information about the change in blood volume in a small vascular bed [10]. PPG
waveforms are relatively easily acquired by placing a sensor on the skin of, for example,
the fingertip, wrist, or earlobe. Furthermore, the device is lightweight and portable, which
makes it easily integratable in portable devices such as smartwatches. PPG can be applied
to a wide range of physiological parameters, including heart rate and vascular compliance.
Its adaptability makes it a useful tool for assessing various aspects of cardiovascular
health [11–13].

The relationship between PPG waveforms and blood pressure is still not fully under-
stood, but various signal processing techniques such as time domain analysis, frequency
domain analysis [14], and machine learning algorithms have been used to extract features
from PPG waveforms and correlate them with blood pressure [15]. These studies have
demonstrated promising results, suggesting the potential of estimating continuous blood
pressure monitoring using PPG signals. However, the PPG features relevant to predict
blood pressure remain unclear, as many features have been suggested, but the importance
of specific features has not been evaluated. Two examples for such a case were given in the
publications by Chowdhury et al. [14] and Duan et al. [15].

As described, the importance of finding characteristic features that could play a crucial
role in promoting the classification of patients into specific blood pressure categories
becomes apparent. In order to identify such features, we have conducted a review of a
range of publications that analyzed the significance of diverse attributes within varying
blood pressure classifications.

2. Methods

To comprehensively gather relevant scientific literature on the relationship between
PPG signal features and blood pressure, a systematic search strategy was employed across
multiple databases. The aim was to identify studies discussing time-dependent PPG
features associated with blood pressure variation, such as hypertension and hypotension.

2.1. Search Strategy

We conducted searches in three major electronic databases: PubMed, IEEE Xplore,
and Embase, and we supplemented these with manual searches from other sources. To en-
sure a comprehensive capture of relevant studies, we constructed three distinct search
queries using logical operators (AND, OR) to target publications discussing PPG features
in relation to blood pressure estimation.

The three search terms were as follows:

• First search query: (Photoplethysmogram) AND (hypertension OR hypotension) AND
(features OR second derivative).

• Second search query: (Photoplethysmogram) AND (hypertension OR hypotension OR
blood pressure) AND (SDPTG OR d/a ratio).

• Third search query: (Photoplethysmogram OR photoplethysmography) AND (hypertension
OR hypotension) AND (features OR derivative).

This approach was designed to maximize the capture of relevant research by covering
a wide range of terminology and focusing on key aspects of PPG features used for blood
pressure analysis.
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2.2. Screening Process

After the search was conducted, we removed duplicate records and proceeded to
screen the remaining articles based on their titles and abstracts. During this phase, we
evaluated studies based on their relevance to the topic of PPG signal features and blood
pressure estimation. The main criteria for this stage were the inclusion of time-dependent
PPG features and a focus on hypertension or hypotension.

2.3. Full-Text Assessment

Studies that passed the initial screening were further assessed through full-text review
to ensure they met all predefined eligibility criteria. This detailed review focused on:

• The inclusion of clinically relevant PPG signal features,
• Defined relationships between PPG features and blood pressure (e.g., systolic, diastolic),
• Appropriate methodologies related to feature extraction and analysis.

Studies that did not meet these criteria were excluded from further analysis. This step
ensured that only high-quality, relevant research was included for the final evaluation.

2.4. Data Extraction

For the eligible studies, key information was extracted, focusing on the PPG features
analyzed, the methods used for feature extraction, and the significance of the findings in
relation to blood pressure estimation. The extracted data were then synthesized to provide
a comprehensive overview of the current state of research on the use of PPG for blood
pressure monitoring.

3. Results

Following the implementation of the specified three search terms delineated within the
methodology section, a total of 43 articles were identified on PubMed, 29 on IEEE, and 39 on
Embase with the first search term. Subsequently, with the application of the second search
term, we ascertained 19 research publications on PubMed, 1 on IEEE Xplore, and another
15 on Embase. Finally, the third search term yielded 159 papers from PubMed, 96 from
IEEE Xplore, and 133 from Embase. During the review of relevant literature, an additional
publication by Otsuka et al. [16] was identified. After the elimination of 238 duplicate
entries from the dataset, a remaining set of 297 distinct and nonredundant research papers
was obtained, of which 9 were not accessible with our institutional login, and 1 was not
written in English. This resulted in a total of 287 eligible records. Further analysis of the
remaining publications revealed a substantial portion of papers irrelevant to the specific
research objectives. Consequently, these nonrelevant papers were effectively filtered out
from the final selection. The filtration process primarily centered around papers lacking
defined features, particularly those that used machine learning models for blood pressure
estimation based on extracted features or publications that did not extract time-dependent
PPG features (n = 187). The second most prevalent reason for the exclusion of papers from
the final selection was that a relationship between PPG features and blood pressure was
not established in these studies (n = 71). Thirteen papers defined the features used but did
not report the significance of a specific feature. After the rigorous filtering process based
on undefined features, lack of relevance to blood pressure and PPG features, and other
exclusion criteria, a total of 271 publications were excluded from the final selection, which
finally led to the inclusion of 16 papers in this study. Figure 1 summarizes the results of the
literature review.

In the following sections, the most significant findings of the literature search are
discussed. The analysis will be centered on the examination of the most critical columns
in Table 1, which represent the key findings from the selected publications. We tried to be
as specific as possible, but because the publications were not uniform in the notations, we
used the term “N/R”, denoting “not reported”, where the precise definition was not given
in a study.
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Records identified through different databases
PubMed: n = 221

IEEE: n = 126
Embase: n = 187

Other sources: n = 1

Total records: n = 535

Records screened: n = 297

Full texts assessed for eligibility: n = 287

16 studies included

238 duplicates

9 records not accessible
1 record not in English

Not related to BP and PPG features: n = 71
Not time dependent features used 
or features not defined: n = 187

Other: n = 13
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Figure 1. Workflow of the study. Identification, screening, eligibility, and inclusion of articles.

3.1. Publication Year and Measurement Site

The broad year range spanning from 1998 to 2023 observed in the retrieved publica-
tions indicates that the significance of specific PPG features in relation to blood pressure
has been a topic of enduring interest over time. As anticipated, the finger, particularly
the left index finger, appears to be the most commonly utilized measurement site in the
assessed publications. The choice of the finger as the measurement site can be ascribed to
its accessibility and ease of application. Furthermore, the index finger is less susceptible to
motion artifacts, which leads to reliable PPG signals.

3.2. Number of Participants and Ages

The total number of participants in a study is indicated as “n”. In instances where
hypertensive, normotensive, or hypotensive patients were included and a detailed number
regarding the distribution of participants based on their blood pressure status is given,
the specifics are also recorded. We indicated cases where patients with different blood
pressure ranges were involved but the specific number was not defined as N/R. In papers
where only the variable “n” was reported without additional context, it is not clear if the
study included hypertensive and hypotensive subjects. The sample size ranged from a
minimum of n = 5 to a maximum of n = 4374 individuals. This wide-ranging distribution
of participant numbers reflects the diversity and variability in sample sizes across the
reviewed publications.



Diagnostics 2024, 14, 2309 5 of 16

The age distribution in most studies was presented as the mean ± standard deviation.
These studies predominantly examined adults and elderly individuals. One publication by
Liang et al. [17] did not report the age of the study population. Tendentiously, the age of
the hypertensive groups was higher than that of the normotensive groups. This tendency
aligns with the medical knowledge that identifies age as a risk factor of hypertension.

3.3. Environment and Measurement Time

Most studies were conducted in a clinical environment, which is indicative of the
controlled and standardized conditions under which the research was undertaken. More-
over, in certain publications, details regarding the room temperature during data collection
were explicitly outlined. Only one study was not conducted in a clinical environment
but rather in a company during a medical checkup [18].The measurement times ranged
from a few seconds to 10 min. The study by Liang et al. involved the extraction and
analysis of three waveform measurements, each lasting 2.1 s [19]. Conversely, in the study
by Otsuka et al. [18], multiple waveforms, each of a 5 s’ duration, were collected and
averaged. The study by Feng et al. [20] included the acquisition of three separate mea-
surements for every subject, each lasting 5 min, which were averaged for analysis. In the
study, Liang et al. [17] collected 120 PPG signals, each lasting 1 s, for each patient, and they
effectively collected 120-s PPG signals for each participant. Meanwhile, Chen et al. [21]
used a collection methodology involving two to three instances of 1-min-long signals for
each individual. In the residual publications, the signals with the specified measurement
time were collected. Afterward, features were extracted from the acquired signals.

3.4. Systolic and Diastolic Blood Pressures

In this section, systolic (SBP) and diastolic blood pressures (DBP) are defined in
millimeters of mercury (mmHg). Three studies by Kohjitani et al. [22], Tabara et al. [23],
and Otsuka et al. [16,18] defined the mean value but did not specify the blood pressure
of the hypertensive and normotensive groups. The mean blood pressure in the study by
Otsuka et al. [18] was within the normotensive range, which can be explained by the higher
proportion of normotensive patients than hypertensive patients in the study. Similarly,
in the study by Kohjitani et al. [22], where the number of normotensive patients was not
clearly defined, we can infer that the normotensive group outweighed the hypertensive
group, resulting in the reported healthy blood pressure. The nearly equal proportion of
hypertensive and normotensive patients in the publication by Tabara et al. [23] contributes
to the slightly increased average blood pressure reported in the study. The elevated blood
pressure in the study by Otsuka et al. [16] can be explained by the same principle, even
though specific numbers of hypertensive and normotensive subjects were not provided.
The study by Feng et al. [20] analyzed PPG waveforms obtained from pregnant women
with and without preeclampsia. Thus, it is not surprising that the blood pressures in
the healthy group were lower than those in the preeclampsia group. In three studies by
Liang et al. [19], Echeverría et al. [24], and Chen et al. [21], the blood pressure values were
not explicitly reported; instead, the ranges corresponding to the different blood pressure
classifications were defined. Two studies did not define the blood pressure [17,25]. In
summary, while detailed classification data may not have been clarified, in the studies
analyzed, careful interpretations of patient proportions in each group and blood pressure
can be made.

3.5. Population Comparison

The calculated p value is an optimal indicator of the statistical significance of spe-
cific features in relation to blood pressure. To calculate the p values in six analyzed
studies [18,20–22,26,27], different PPG time-dependent features were extracted from hy-
pertensive and normotensive patients and compared. Furthermore, in the study by
Liang et al. [17], data from prehypertensive subjects were analyzed. This additional focus
on prehypertension provides valuable insights into the potential early markers of blood



Diagnostics 2024, 14, 2309 6 of 16

pressure changes. The publication by Echeverría et al. [24] is the only reviewed paper that
evaluated data from hypotensive patients and compared these to hypertensive and nor-
motensive datasets. In some publications [16,17,23,28,29], the significance of the correlation
of blood pressure and PPG signals was investigated. The study by Takazawa et al. [25]
focused on the relationships between PPG features before and after the administration of
vasoactive drugs. These drugs, namely angiotensin and nitroglycerin, increase blood pres-
sure via vasoconstriction and decrease blood pressure via vasodilation. In contrast to other
studies, one study by Jeong et al. [30] did not compare PPG data from groups with different
blood pressures. Instead, a novel perspective was used by analyzing data collected before
and after two levels of cycling exercises. Zhang et al. [31] compared PPG signals from
untreated hypertensive subjects with PPG data from healthy subjects. First, they calculated
the p value between the two groups before conducting a cardiopulmonary exercise test
(CPET). An additional comparison was conducted subsequent to the completion of the
CPET by both groups. Finally, as already mentioned, a study by Feng et al. [20] compared
PPG signals from a preeclampsia group with those from a non-preeclampsia group.

3.6. SBP and DBP Results

The predominantly reported feature of SBP, which appeared 14 times, is the d wave-
to-a wave ratio (d/a), followed by the b wave-to-a wave (b/a) with seven counts and
(b − c − d)/a with six counts. Moreover, (b − c − d − e)/a, (S+1 + c−1)

2/(O+1 + O′
+1)

2,
(b−2 − d−2)/bd, Sc−2, c−2/S, c−1/w, and (S − c−2)/Sc−2 were reported four times, and the
time span from the onset to the systolic peak (AT), Sd−2, d, and the systolic amplitude
(S) was reported three times. The ratios of c wave to a wave (c/a) and e wave to a wave
(e/a) were both identified as significant features twice. Several features, while described
only once, exhibited distinct characteristics or calculations, such as (S+1 + c−1)

2, (b − e)/a,
(c + d − b)/a, b−2/S, and (S+1 + w)2/(O+1 + O′

+1)
2. Other better-known features such as

t, db, DT, −d/a, and (b − d − e)/a were reported only once. In the study by Park et al. [29],
the p values for the (b − c − d)/a and d/a ratios were calculated using age as a covariant.
The area difference ratio (ADR) is a novel feature, introduced by Feng et al. [20], and it
describes the difference between two areas: the area of the triangle defined by the points S,
O, and O′, and the area under the curve, traced by these same points. Another interesting
feature was suggested by Echeverría et al. [24], where they used the position of the dicrotic
notch (D) in relation to the systolic peak as an indicator of blood pressure.

Most of the reviewed studies focused on investigating features in relation to SBP.
In contrast, the evaluation of features connected with DBP was relatively less prevalent in
these studies. However, analogous to the findings for SBP, the d/a ratio also appeared as
the most frequently reported feature for DBP, with 6 instances, followed by the b/a ratio,
which was mentioned twice. Other features, such as (b − c − d − e)/a and db, were only
mentioned once. Figure 2 explains the features, and Figure 3 summarizes the results for
SBP in a bar chart.
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Table 1. Overview of the reviewed papers. Abbreviations: SBP: systolic blood pressure, DBP: diastolic blood pressure, BP: blood pressure, PE: preeclampsia, NPE:
non preeclampsia, APG: acceleration photoplethysmogram, N/R: not reported.

Publica-
tion Year

Measure-
ment Site

Number
of Partici-

pants
Age Environ-

ment

Measure-
ment
Time

SBP (mmHg) DBP
(mmHg)

Population
Comparison

Optimal Feature SBP
(Significance)

Optimal
Feature

DBP (Sig-
nificance)

Reference

2023 Index
finger n = 26 62 ± 16 Clinical 1–10 min

Hypertension
(SBP > 140

mmHg),
normotension

(SBP = 90 mmHg–
140 mmHg) and

hypotension
(SBP < 90 mmHg)

N/R

Hypertension vs
normotension

and hypotension
vs. normotension
(during surgery)

Hypertension vs.
normotension: S (p < 0.0001),
dicrotic notch placed > 50%

of S (p < 0.0001),
hypotension vs.

normotension: S (p = 0.021),
dicrotic notch < 20% of S

(p < 0.0001)

N/R [24]

2021 N/R

n = 128
(nor-

moten-
sive:

45 prehy-
perten-
sive: 45

hyperten-
sive: 38)

Normo-
tensive:
44.5 ±
16.3,

hyperten-
sion: 61.6

± 13.2

Clinical 2–3 s

Normotensive:
105.9 ± 8.9,

hypertensive:
139.5 ± 15.4

Normo-
tensive:

64.5 ± 7.3,
hyperten-
sive 76.3 ±

10.6

Hypertensive vs.
normotensive

S (p = 0.016), AT (p = 0.002),
c−1/w (p = 5.02 × 10−4),

b/a (p = 1.77 × 10−4), d/a
(p = 7.71 × 10−8),
(b − c − d − e)/a

(p = 1.40 × 10−5), (b − e)/a
(p = 0.031), (b − c − d)/a

(p = 3.11 × 10−6),
(c + d − b)/a

(p = 3.11 × 10−6), −d/a
(p = 7.71 × 10−8)

N/R [27]

2019
Index

finger of
left hand

n = 262 38.57 ±
11.64 Clinical 90 s 116.35 ± 12.49 71.24 ±

8.23
Correlation of BP
and APG features

(Age as a covariant) d/a
(p = 0.001), (b − c − d)/a

(p = 0.041)

(Age as a
covariant)

d/a
(p < 0.001)

[29]
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Table 1. Cont.

Publica-
tion Year

Measure-
ment Site

Number
of Partici-

pants
Age Environ-

ment

Measure-
ment
Time

SBP (mmHg) DBP
(mmHg)

Population
Comparison

Optimal Feature SBP
(Significance)

Optimal
Feature

DBP (Sig-
nificance)

Reference

2019
Index

finger of
left hand

n = 124
(hyperten-

sive: 35,
prehyper-
tensive:

41,
normoten-
sive: 48)

55 ± 16
(hyperten-

sive,
normoten-
sive and

prehyper-
tensive
N/R)

Clinical 2.1 s

Hypertensive
(SBP ≥ 140

mmHg or DBP
≥ 90 mmHg),

prehypertensive
group (SBP:

120–140 mmHg or
DBP:

80–90 mmHg),
and normotensive
group (SBP < 120

and DBP < 80)

N/R
Correlation

between BP and
APG features

(b − c − d)/a (p = 0.0001),
(b−2 − d−2)/db (p = 0.0009),
(S − c−2)/Sc−2 (p = 0.0013),

AT (p = 0.0017), c−2/S
(p = 0.0425), Sc−2

(p = 0.00003),
(S+1 + c−1)

2/(O+1 + O′
+1)

2

(p = 0.0058), (S+1 + c−1)2

(p = 0.0443), b−2/S
(p = 0.0004),

(S+1 + w)2/(O+1 + O′
+1)

2

(p = 0.0079)

N/R [19]

2018 Finger

n = 30 (15
untreated
hyperten-

sive
subjects,
15 nor-

motensive
subjects)

Hypertensive:
48 ± 11.5,
healthy:
44 ± 11.8

Clinical,
between
20 and
22 °C

N/R

Hypertensive:
142.8 ± 7.5,

healthy: 112.8 ±
6.5

Hyperten-
sive: 90.2

± 11.0,
healthy:

78.2 ± 11.3

Hypertensive vs.
healthy,

hypertensive after
CPET vs. healthy

after CPET

Before CPET: e/a (p = 0.007),
after CPET: b/a (p = 0.03),

(b − c − d − e)/a (p = 0.011),
d/a (p = 0.024), c/a

(p = 0.004)

N/R [31]

2018
Index

finger of
left hand

n = 121
(normten-
sion: 46,

prehyper-
tension:

41, hyper-
tension:

34)

N/R Clinical 120 s N/R N/R

Hypertensive vs.
normotensive,

normotensive vs.
prehypertension,
prehypertension
vs. hypertension

p < 0.001:
(S+1 + c−1)

2/(O+1 + O′
+1)

2,
(b−2 − d−2)/db, Sc−2,

c−2/S, Sd−2, (b − c − d)/a,
d, c−1/w, d/a,
(S − c−2)/Sc−2

N/R [17]
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Table 1. Cont.

Publica-
tion Year

Measure-
ment Site

Number
of Partici-

pants
Age Environ-

ment

Measure-
ment
Time

SBP (mmHg) DBP
(mmHg)

Population
Comparison

Optimal Feature SBP
(Significance)

Optimal
Feature

DBP (Sig-
nificance)

Reference

2018 Index
finger

n = 72
(36 PE,

36 healthy
pregnant
women)

NPE: 30.0
± 3.6, PE:
31.3 ± 3.9

Clinical,
24 °C 5 min NPE: 115.8 ± 9.2,

PE: 152.6 ± 14.8

NPE: 69.6
± 7.6, PE:
99.3±3.0

PE vs. NPE ADE (p < 0.01) N/R [20]

2017
Index

finger of
right hand

n = 4373 68.1 ± 6.6 Clinical,
24 ± 26 °C N/R 130.8 ± 17.2 75.6 ± 9.9

Correlation
between BP and

APG features
d/a (p < 0.001) d/a

(p < 0.001) [28]

2016 Wrist

n = 30 (10
normoten-

sive 20
hyperten-

sive)

35 to 73 Clinical,
20 °C 1 min

Normotension
(SBP <

140 mmHg)

Normoten-
sion (DBP

<
90 mmHg)

Hypertensive vs.
normotensive

DT (p = 0.001), AT
(p = 0.025), t (p = 0.001) N/R [21]

2016 Finger

n = 1613
(hyperten-
sion: 829,
normoten-
sion: 784)

65.3 ± 9.6
(nor-

motensive
and

hyperten-
sive N/R)

Clinical 20 s

134 ± 19
(normotensive

and hypertensive
N/R)

76 ± 11
(nor-

motensive
and

hyperten-
sive N/R)

Correlation
between BP and

APG features

b/a (p < 0.001), d/a
(p < 0.001), (b − c − d − e)/a

(p < 0.001), (b − d − e)/a
(p < 0.001)

N/R [23]

2014
Index

finger of
left hand

n = 168
(hyperten-

sive: 41,
normoten-

sive:
N/R)

44.4 ± 18.8
(nor-

motensive
and

hyperten-
sive N/R)

Clinical 90 s

115.2 ± 15.3
(hypertension

and
normotension

N/R)

69.8 ± 12.0
(hyperten-
sion and

normoten-
sion N/R)

Hypertensive
(24.4% of

participants) vs.
normotensive

b/a (p = 0.0412), c/a
(p = 0.0110), d/a (p < 0.001)

d/a
(p < 0.0001) [22]
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Table 1. Cont.

Publica-
tion Year

Measure-
ment Site

Number
of Partici-

pants
Age Environ-

ment

Measure-
ment
Time

SBP (mmHg) DBP
(mmHg)

Population
Comparison

Optimal Feature SBP
(Significance)

Optimal
Feature

DBP (Sig-
nificance)

Reference

2013 Index
finger n = 5 26 to 50 Clinical 30 s 127.67 ± 17.063 71.04 ±

7.33

Comparison
before and after

2 levels of cycling
exercises

d/a (p < 0.01), e/a (p < 0.01),
db (p < 0.01)

db
(p < 0.01) [30]

2007
Index

finger of
left hand

n = 973
(hyperten-
sive: 110,

normoten-
sion: 863)

44 ± 6
(nor-

motensive
and

hyperten-
sive N/R)

Medical
checkup

at a
company
22 ± 2 °C

5 s

119 ± 13
(normotensive

and hypertensive
N/R)

76 ± 10
(nor-

motensive
and

hyperten-
sive N/R)

Normotensive vs
hypertensive

b/a (p = 0.003), d/a
(p < 0.001)

b/a
(p = 0.004),

d/a
(p < 0.001)

[18]

2006
Index

finger of
left hand

n = 211
(nor-

motensive
and

hyperten-
sive N/R)

63 ± 15
(nor-

motensive
and

hyperten-
sive N/R)

Clinical N/R

130 ± 18
(normotensive

and hypertensive
N/R)

76 ± 12
(nor-

motensive
and

hyperten-
sive N/R)

Correlation
between BP and

APG features

b/a (p < 0.001), d/a
(p < 0.001)

d/a
(p < 0.01) [16]

2005
Index

finger of
left hand

n = 848
(nor-

moten-
sive: 544,
hyperten-
sive: 304)

Normoten-
sive: 59.0

± 11.8,
hyperten-
sive: 63.9

± 9.3

Clinical N/R

Normotensive:
122.5 ± 11.1,

hypertensive:
154.1 ± 13.8

Normoten-
sive: 69.5

± 8.5,
hyperten-
sive: 83.3

± 10.5

544 normotensive
vs. 304

hypertenisive

b/a (p < 0.001), d/a
(p < 0.001), (b − c − d − e)/a

(p < 0.001)

b/a
(p < 0.001),

d/a
(p < 0.001),
(b − c −
d − e)/a

(p < 0.001)

[26]

1998
Index

finger of
left hand

n = 39 54 ± 11 Clinical N/R N/R N/R
Before/after

vasoactive agents
applied

d/a (p < 0.01) N/R [25]
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3.7. Feature Descriptions

In this study, 29 distinct features were extracted from PPG, VPG, and APG signals for
their correlation with blood pressure. The following are the key features analyzed:

• d/a: Ratio of the dicrotic notch (d) amplitude to the systolic peak (a).
• b/a: Ratio of the first inflection point (b) to the systolic peak (a).
• (b − c − d)/a: Combined difference of the b, c, and d amplitudes, normalized by the

systolic peak (a).
• (b − c − d − e)/a: Combined difference of the b, c, d, and e amplitudes, normalized by

the systolic peak (a).
• (S+1 + c−1)

2/(O+1 + O′
+1)

2: Complex ratio involving the sum of peaks and baseline
oscillations.

• (b−2 − d−2)/bd: Difference between secondary inflections, normalized by the systolic
and diastolic time difference.

• Sc−2: Amplitude of the second derivative of the systolic peak.
• c−2/S: Ratio of the secondary inflection of the systolic peak to the systolic amplitude.
• c−1/w: Ratio of the first inflection amplitude to the waveform width.
• (S − c−2)/Sc−2: Difference between the systolic peak and the second derivative of the

inflection point, normalized by the second derivative amplitude.
• Augmentation Time (AT): Time from the onset of the PPG waveform to the systolic peak.
• Deceleration Time (DT): Time from the systolic peak to the end of the dicrotic notch.
• db: Time between the dicrotic notch and the minimum amplitude in the APG waveform.
• t: Total time duration of the PPG waveform.
• Area Difference Ratio (ADR): A novel feature introduced by Feng et al. representing

the difference between two areas formed by the PPG waveform.
• Dicrotic Notch Position (DN): Location of the dicrotic notch relative to the systolic peak.
• (b − e)/a: Ratio between the b and e amplitudes, normalized by the systolic peak (a).
• (c + d − b)/a: Difference between c, d, and b, normalized by the systolic peak (a).
• (S+1 + c−1)

2: Square of the sum of S+1 and c−1.
• b−2/S: Ratio of b−2 to the systolic peak (S).
• (S + w)2/(O+1 + O′

+1)
2: Complex ratio involving S and baseline oscillations.

• (S − c−2)/Sc−2: Difference between the systolic peak and c−2, normalized by the
second derivative of the systolic peak.

• DN (S > 50%): Marks the position of the dicrotic notch relative to the systolic peak
(S) when S is greater than 50%.

• DN (S < 20%): Marks the position of the dicrotic notch when S is less than 20%.

These features provide insight into blood pressure fluctuations by leveraging time-
based and amplitude-based characteristics of the waveform. Detailed information on the
naming conventions for most of the features discussed can be found in [32]. Figure 2
illustrates these features visually, summarizing their clinical relevance and potential for
blood pressure estimation.
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Figure 2. Visual representation of the 29 features extracted from PPG, VPG, and APG waveforms that
correlate with blood pressure. The features include amplitude-based and time-based measurements,
such as the dicrotic notch, systolic peak, and augmentation time. The detailed descriptions of each
feature are provided in the main text. Abbreviations: PPG: photoplethysmogram, VPG: velocity
photoplethysmogram, APG: acceleration photoplethysmogram.

Figure 3 illustrates the frequency with which various features were used in studies
related to systolic blood pressure. The most reported feature is the d/a ratio, appearing in
seven studies, followed by the b/a ratio with six counts. Other features, such as (b − c −
d − e)/a, (b−2 − d−2)/bd, and (S − c−2)/Sc−2, were each used in three studies. In contrast,
several features, including S, d, e/a, and c−1/w, were only utilized once. These least used
features are grouped and highlighted in a blue box at the bottom of the chart, while the
most used feature, d/a, is emphasized at the top in red.
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Figure 3. Frequency of features used in systolic and diastolic blood pressure estimation. The most
frequently used feature, d/a, is highlighted in red at the top, appearing in 7 studies, followed by
b/a with 6 counts. Other features, such as (b − c − d − e)/a, (b−2 − d−2)/bd, and (S − c−2)/Sc−2,
were each used in 3 studies. The least used features, including S, d, e/a, and c−1/w, are grouped and
highlighted in a blue box at the bottom of the chart.

4. Discussion

The ratios d/a and b/a are clearly the most-reviewed significant features, whereas
the other ratios in the second derivative (c/a and e/a) appeared to be not as important in
relation to blood pressure staging. Indeed, c/a and e/a were mentioned as not significant
six and five times, respectively. This leads to the conclusion that these features are quite
well investigated, whereas d/a and b/a play significant roles in blood pressure. The ob-
served significance of the ratios can be attributed to their physiological relevance. The a
and b waves reflect early systolic ejection, a phenomenon linked to arterial stiffness and
compliance, both of which play an important role in influencing blood pressure dynamics.
Moreover, research has described a negative correlation between the |b/a| ratio and age,
further highlighting the potential of the |b/a| ratio as an informative marker [33]. On the
other hand, the d wave corresponds to the late systolic phase, while the d/a ratio provides
information about vascular resistance and correlates with blood augmentation [16,26].
The physiological meaning of the c/a and e/a ratios is still not very well understood [22].
The (b − c − d)/a and (b − c − d − e)/a are both markers of vascular aging and, unsurpris-
ingly, correlate with blood pressure [26,29].

Blood pressure estimation via PPG signals has seen a proliferation of features con-
tributing to accurate readings. While established features are often the focal point of
research, several developing ones, such as AT, have garnered attention, albeit in limited
studies. Their precise roles and significance in relation to blood pressure remain a topic of
exploration and could unlock pivotal insights for the field.

Modern medicine is leaning heavily into the capabilities of machine learning, with a
specific emphasis on its potential to gauge blood pressure via PPG signals. A common
concern, however, is that many machine learning methodologies tend to operate as ‘black
boxes’, making them opaque and challenging to interpret in a medical context. In contrast,
PPG parameters, grounded in human physiology, offer tangible, explainable results. This
study aims to bridge the knowledge gap, emphasizing the significance of particular features
and their correlation with blood pressure.

Our review encompasses 29 features, yet the field of PPG signal analysis offers more.
Various studies introduce features, often embedded in machine learning models for blood
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pressure estimation, without explicit definitions or significance testing. For instance, several
studies highlight pulse arrival time computation, necessitating both PPG and electrocar-
diogram signals [34–36]. Given our focus on PPG signals exclusively, electrocardiography
was outside our purview. This disparity underscores the existence of a plethora of PPG
features awaiting systematic examination concerning blood pressure. Additionally, the in-
consistent feature descriptions across studies pose challenges in comparative analysis
and interpretation.

Solà et al. [37] made a notable contribution, demonstrating the feasibility of blood pres-
sure estimation using pulse transit time measurements derived from chest-mounted sensors.
However, it is crucial to address some exclusions, such as the study by Iketani et al. [38].
While it delved into the interplay between blood pressure and PPG features, its focus on a
younger, healthy demographic with non-significant outcomes made it less relevant for our
present review.

This review underscores several novel findings in the context of PPG-based blood pres-
sure estimation. Most notably, the identification of underutilized temporal domain features,
such as (b − c − d)/a and (b − c − d − e)/a, (S+1 + c−1)

2/(O+1 + O′
+1)

2 demonstrates
their potential in improving classification accuracy for blood pressure levels. Additionally,
our comprehensive analysis reveals that features derived from the second derivative of
PPG, such as the d/a and b/a ratios, remain the most significant in the current literature.
These findings could pave the way for future investigations aiming to standardize feature
selection in machine learning models for blood pressure monitoring.

It is important to recognize that while the b/a and d/a ratios are well established,
novel features such as the ADR offer promising opportunities for further research. Our
review emphasizes the need for standardized definitions of PPG features across studies to
enable better comparisons and interpretation.

One limitation in PPG-based blood pressure estimation is the accuracy of feature
selection, which often requires calibration with established techniques, such as sphygmo-
manometers, to ensure reliability. In line with recent recommendations [39], it is crucial to
standardize feature selection and evaluation criteria to enhance accuracy. This is particu-
larly relevant for novel features like ADR, which require robust calibration to ensure clinical
reliability. Addressing limitations in current datasets, including demographic diversity, is
essential for improving model generalizability.

Future studies should prioritize validating PPG-based methods through comparison
with mature techniques to enhance their accuracy and clinical applicability. Additionally,
the process of feature calibration warrants further investigation.

Despite advancements, PPG-based blood pressure estimation still faces challenges.
Current studies often lack validation across diverse populations, and many machine learn-
ing models remain ’black boxes,’ limiting their clinical interpretability. Future research
should focus on refining feature extraction techniques, validating models in larger, more
diverse cohorts, and developing explainable AI tools that align with clinical needs.

5. Conclusions

Among the 29 analyzed features, the b/a and d/a ratios were the most frequently
reported as significant for blood pressure estimation. Features derived from the second
derivative, involving the a, b, c, d, and e waves, show strong potential for estimating blood
pressure across different ranges. Although promising new features emerged, they were
excluded due to insufficient statistical validation. Most studies reviewed focused on hyper-
tensive and normotensive ranges, highlighting the need for research on prehypertensive
and hypotensive ranges. While PPG features are increasingly used for blood pressure
interpretation, further investigation into the physiological mechanisms behind them is
needed. Our findings support the potential for PPG signals in cuffless, continuous blood
pressure monitoring.



Diagnostics 2024, 14, 2309 15 of 16

Author Contributions: M.E. designed and led the study. E.J., M.E., A.A., R.R.F., H.B., U.E. and C.M.
conceived the study. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Khalifa University (grant number RC2-2018-022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors declare that all data supporting the findings of this study
are available within the paper.

Conflicts of Interest: The authors declare no competing financial or non-financial interests.

References
1. World Health Organization. Fact Sheets-Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/

hypertension (accessed on 16 March 2023).
2. Ji, J.; Dong, M.; Lin, Q.; Tan, K.C. Noninvasive cuffless blood pressure estimation with dendritic neural regression. IEEE Trans.

Cybern. 2023, 53, 4162–4174. [CrossRef]
3. Centers for Disease Control and Prevention. Facts about Hypertension. Available online: https://www.cdc.gov/bloodpressure/

facts.htm (accessed on 6 July 2023).
4. Gupta, S.; Singh, A.; Sharma, A. Dynamic large artery stiffness index for cuffless blood pressure estimation. IEEE Sens. Lett. 2022,

6, 1–4. [CrossRef]
5. Yao, P.; Xue, N.; Yin, S.; You, C.; Guo, Y.; Shi, Y. Multi-dimensional feature combination method for continuous blood pressure

measurement based on wrist ppg sensor. IEEE J. Biomed. Health Inform. 2022, 26, 3708–3719. [CrossRef]
6. Ali, N.F.; Atef, M. Lstm multi-stage transfer learning for blood pressure estimation using photoplethysmography. Electronics

2022, 11, 3749. [CrossRef]
7. El Hajj, C.; Kyriacou, P.A. Recurrent neural network models for blood pressure monitoring using ppg morphological features. In

Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Virtual, 1–5 November 2021; pp. 1865–1868. [CrossRef]

8. Chen, J.-W.; Huang, H.-K.; Fang, Y.-T.; Lin, Y.-T.; Li, S.-Z.; Chen, B.-W.; Lo, Y.-C.; Chen, P.-C.; Wang, C.-F.; Chen, Y.-Y. A data-driven
model with feedback calibration embedded blood pressure estimator using reflective photoplethysmography. Sensors 2022, 22,
1873. [CrossRef]

9. Maqsood, S.; Xu, S.; Springer, M.; Mohawesh, R. A benchmark study of machine learning for analysis of signal feature extraction
techniques for blood pressure estimation using photoplethysmography (ppg). IEEE Access 2021, 9, 138817–138833. [CrossRef]

10. Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [CrossRef]
11. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [CrossRef]
12. Elgendi, M. PPG Signal Analysis: An Introduction Using MATLAB®; CRC Press: Boca Raton, FL, USA, 2020.
13. Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K. The use of photoplethysmography for assessing

hypertension. NPJ Digit. Med. 2019, 2, 60. [CrossRef]
14. Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.H.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating

blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors 2020,
20, 3127. [CrossRef]

15. Duan, K.; Qian, Z.; Atef, M.; Wang, G. A feature exploration methodology for learning based cuffless blood pressure measurement
using photoplethysmography. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 6385–6388. [CrossRef]

16. Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C. Utility of second derivative of the finger photoplethysmogram for the estimation
of the risk of coronary heart disease in the general population. Circ. J. 2006, 70, 304–310. [CrossRef]

17. Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Hypertension assessment via ecg and ppg signals: An evaluation using mimic database.
Diagnostics 2018, 8, 65. [CrossRef]

18. Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C.; Kusama, Y. Independent determinants of second derivative of the finger
photoplethysmogram among various cardiovascular risk factors in middle-aged men. Hypertens. Res. 2007, 30, 1211–1218.
[CrossRef]

19. Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Hypertension assessment using photoplethysmography: A risk stratification approach.
J. Clin. Med. 2019, 8, 12. [CrossRef]

20. Feng, Y.; Drzymalski, D.; Zhao, B.; Wang, X.; Chen, X. Measurement of area difference ratio of photoplethysmographic pulse
wave in patients with pre-eclampsia. BMC Pregnancy Childbirth 2018, 18, 280. [CrossRef]

21. Chen, Y.; Zhu, Y.; Ma, H.T.; Huang, H. A study of photoplethysmography intensity ratio in hypertension. In Proceedings of the
2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016;
pp. 317–320. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.who.int/news-room/fact-sheets/detail/hypertension
http://doi.org/10.1109/TCYB.2022.3141380
https://www.cdc.gov/bloodpressure/facts.htm
https://www.cdc.gov/bloodpressure/facts.htm
http://dx.doi.org/10.1109/LSENS.2022.3157060
http://dx.doi.org/10.1109/JBHI.2022.3167059
http://dx.doi.org/10.3390/electronics11223749
http://dx.doi.org/10.1109/EMBC46164.2021.9630319
http://dx.doi.org/10.3390/s22051873
http://dx.doi.org/10.1109/ACCESS.2021.3117969
http://dx.doi.org/10.2174/157340312801215782
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://dx.doi.org/10.1038/s41746-019-0136-7
http://dx.doi.org/10.3390/s20113127
http://dx.doi.org/10.1109/EMBC.2016.7592189
http://dx.doi.org/10.1253/circj.70.304
http://dx.doi.org/10.3390/diagnostics8030065
http://dx.doi.org/10.1291/hypres.30.1211
http://dx.doi.org/10.3390/jcm8010012
http://dx.doi.org/10.1186/s12884-018-1914-y
http://dx.doi.org/10.1109/RCAR.2016.7784046


Diagnostics 2024, 14, 2309 16 of 16

22. Kohjitani, A.; Miyata, M.; Iwase, Y.; Ohno, S.; Tohya, A.; Manabe, Y.; Hashiguchi, T.; Sugiyama, K. Associations between the
autonomic nervous system and the second derivative of the finger photoplethysmogram indices. J. Atheroscler. Thromb. 2014, 21,
501–508. [CrossRef]

23. Tabara, Y.; Igase, M.; Okada, Y.; Nagai, T.; Miki, T.; Ohyagi, Y.; Matsuda, F. Usefulness of the second derivative of the finger
photoplethysmogram for assessment of end-organ damage: The j-shipp study. Hypertens. Res. 2016, 39, 552–556. [CrossRef]

24. Echeverría, N.I.; Scandurra, A.G.; Acosta, C.M.; Meschino, G.J.; Sipmann, F.S.; Tusman, G. Photoplethysmography waveform
analysis for classification of vascular tone and arterial blood pressure: Study based on neural networks. Rev. Esp. Anestesiol.
Reanim. (Engl. Ed.) 2023, 70, 209–217. [CrossRef]

25. Takazawa, K.; Tanaka, N.; Fujita, M.; Matsuoka, O.; Saiki, T.; Aikawa, M.; Tamura, S.; Ibukiyama, C. Assessment of vasoactive
agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 1998, 32, 365–370. [CrossRef]

26. Hashimoto, J.; Watabe, D.; Kimura, A.; Takahashi, H.; Ohkubo, T.; Totsune, K.; Imai, Y. Determinants of the second derivative of
the finger photoplethysmogram and brachial-ankle pulse-wave velocity: The Ohasama study. Am. J. Hypertens. 2005, 18, 477–485.
[CrossRef]

27. Yao, L.-P.; Liu, W.-Z. Hypertension assessment based on feature extraction using a photoplethysmography signal and its
derivatives. Physiol. Meas. 2021, 42, 065001. [CrossRef]

28. Inoue, N.; Kawakami, H.; Yamamoto, H.; Ito, C.; Fujiwara, S.; Sasaki, H.; Kihara, Y. Second derivative of the finger photo-
plethysmogram and cardiovascular mortality in middle-aged and elderly japanese women. Hypertens. Res. 2017, 40, 207–211.
[CrossRef]

29. Park, Y.-J.; Lee, J.-M.; Kwon, S.-H. Association of the second derivative of photoplethysmogram with age, hemodynamic,
autonomic, adiposity, and emotional factors. Medicine 2019, 98, e18091. [CrossRef]

30. Jeong, I.; Finkelstein, J. Applicability of the second derivative photoplethysmogram for non-invasive blood pressure estimation
during exercise. In Proceedings of the 2013 Pan American Health Care Exchanges (PAHCE), Medellin, Colombia, 29 April–4 May
2013; pp. 1–5. [CrossRef]

31. Zhang, Y.; Jiang, Z.; Qi, L.; Xu, L.; Sun, X.; Chu, X.; Liu, Y.; Zhang, T.; Greenwald, S.E. Evaluation of cardiorespiratory function
during cardiopulmonary exercise testing in untreated hypertensive and healthy subjects. Front. Physiol. 2018, 9, 1590. [CrossRef]

32. Elgendi, M.; Liang, Y.; Ward, R. Toward generating more diagnostic features from photoplethysmogram waveforms. Diseases
2018, 6, 20. [CrossRef]

33. Imanaga, I.; Hara, H.; Koyanagi, S.; Tanaka, K. Correlation between wave components of the second derivative of plethysmogram
and arterial distensibility. Jpn. Heart J. 1998, 39, 775–784. [CrossRef]

34. Freithaler, M.; Chandrasekhar, A.; Dhamotharan, V.; Landry, C.; Shroff, S.G.; Mukkamala, R. Smartphone-based blood pressure
monitoring via the oscillometric finger pressing method: Analysis of oscillation width variations can improve diastolic pressure
computation. IEEE Trans. Biomed. Eng. 2023, 70, 3052–3063. [CrossRef]

35. Hsu, Y.-C.; Li, Y.-H.; Chang, C.-C.; Harfiya, L.N. Generalized deep neural network model for cuffless blood pressure estimation
with photoplethysmogram signal only. Sensors 2020, 20, 5668. [CrossRef]

36. Dave, T.; Pandya, U.; Joshi, M. Cuff-less blood pressure measurement from wireless ecg and ppg signals. In Proceedings of
the 2021 IEEE International Symposium on Smart Electronic Systems (iSES), Jaipur, India, 18–22 December 2021; pp. 33–37.
[CrossRef]

37. Solà, J.; Proença, M.; Ferrario, D.; Porchet, J.-A.; Falhi, A.; Grossenbacher, O. Noninvasive and nonocclusive blood pressure
estimation via a chest sensor. IEEE Trans. Biomed. Eng. 2013, 60, 3505–3513. [CrossRef]

38. Iketani, Y.; Iketani, T.; Takazawa, K.; Murata, M. Second derivative of photoplethysmogram in children and young people. Jpn.
Circ. J. 2000, 64, 110–116. [CrossRef]

39. Elgendi, M.; Haugg, F.; Fletcher, R.R.; Allen, J.; Shin, H.; Alian, A.; Menon, C. Recommendations for evaluating
photoplethysmography-based algorithms for blood pressure assessment. Commun. Med. 2024, 4, 140. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5551/jat.19877
http://dx.doi.org/10.1038/hr.2016.18
http://dx.doi.org/10.1016/j.redar.2022.01.011
http://dx.doi.org/10.1161/01.HYP.32.2.365
http://dx.doi.org/10.1016/j.amjhyper.2004.11.009
http://dx.doi.org/10.1088/1361-6579/aba537
http://dx.doi.org/10.1038/hr.2016.123
http://dx.doi.org/10.1097/MD.0000000000018091
http://dx.doi.org/10.1109/PAHCE.2013.6568322
http://dx.doi.org/10.3389/fphys.2018.01590
http://dx.doi.org/10.3390/diseases6010020
http://dx.doi.org/10.1536/ihj.39.775
http://dx.doi.org/10.1109/TBME.2023.3275031
http://dx.doi.org/10.3390/s20195668
http://dx.doi.org/10.1109/iSES52644.2021.00020
http://dx.doi.org/10.1109/TBME.2013.2272699
http://dx.doi.org/10.1253/jcj.64.110
http://dx.doi.org/10.1038/s43856-024-00555-2

	Introduction
	Methods
	Search Strategy
	Screening Process
	Full-Text Assessment
	Data Extraction

	Results
	Publication Year and Measurement Site
	Number of Participants and Ages
	Environment and Measurement Time
	Systolic and Diastolic Blood Pressures
	Population Comparison
	SBP and DBP Results
	Feature Descriptions

	Discussion
	Conclusions
	References

