MAGNETO-OPTICAL STUDIES IN In,_  Ga AsyP-I _y

1-%
SEMICONDUCTING ALLOYS

BY

KAMBIZ ALAVI

-

S.B., Massachusetts Institute of Technology
(1972)

S.M., Massachusetts Institute of Technology
(1977)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
' DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1981

(:) Massachusetts Inst1tute of Technology

‘Slgnature redacted )

Signature of Author///

Dep)ftment of Physics, April 29, 1981

¢Signature redactedf

(7€

Certified by v
Thesis Supervisor

@gnature redacted

G Chairman, Déﬁ_?tmentComm1ttee

ARCHIVES
MASSACHUSETTS INS nT‘ TE
OF TI:CHNOLO{‘V

JUN 1 8 1981

LIBRARIES

Accepted by




MAGNETO-OPTICAL STUDIES IN In-| xGaxASyPT -y
SEMICONDUCTING ALLOYS

BY
KAMBIZ ALAVI

Submitted to the Department of Physics on

April 29, 1981 in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy
in Physics.

ABSTRACT

Interband magneto-optical absorption in the Voigt and the
Faraday configuration has been studied near 1iquid-helium temperature
in samples of In]-xeaxAsyPI-y grown by liquid-phase epitaxy on InP
substrates and are reported here in two samples with (x=0.25, y=0.52)
and (x=0.47, y=1). The magnetotransmission spectra were analyzed using
the quasi-Ge model with exciton corrections. It is found that such
measurements determine Eg, 1/u+E(LhC+1/m£h), and l/u_s(l/mc+1/mhh),
and therefore me and Mo within a narrow range (mhh>>mC and mgh). The
anisotropy factor Y37Y is-also determined within a narrow range when
measurements are performed with H oriented along two different crystal
axes. Using a minimization routine the following quasi-Ge parameters
were obtained. For (x=0.25, y=0.52): g=1065+1 meV, m/u_=18.8+0.5,
m/v,=29.5:0.5. Assuming(mhh/m)loao 45+¢0.05, A=0.24+0.01 eV, and Ep
between 17.5 and 25.8 eV (F=0 to -3.5) we obtain m /m—O 0602+0.001
mlh/m=0.07810.001, gc=—0.06to -1.25. Ty 72—0 35 or 0.7 gave the same
values, within the error bars, for the above parameters. (0n1y H||[100]
data were taken). With ys-y,=0.7, v;=7.5:0.3, ¥5=2.4£0.1, v5=3.120.1,
KL=1.5tO.1. For (x=0.47, y=1): Eg=813+1 meV, m/u_=26.1+0.5, m/u, =43.4+1.0.
Y3- Y2=0 8+0.2. with(mhh/nﬂlooo 45+0.05, 4=0.35+0.01 eV, and E between
21 and 27 eV (F=0 to -3.5) we obta1ned m /m-O 0415+0.0015, m h/m =0.0515+0.0015,

g.=-3 to -5, y3-v,=0.80.05, ¥5=10.620. 2, Y§-4 0£0.1, y§-4 8:0.1, &=3.30.1.




Ep could not be precisely determined even when the nonparabolicity of

the conduction band was examined. A precise measurement of Ep

requires precise measurements of I
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CHAPTER 1

INTRODUCTION

In this thesis we report on the interband magnetoabsorption
measurements carried out in two members of the family of semiconducting

ITI-V alloys In1_XGaxAsyP]_y which are grown by liquid phase epitaxy

Tattice matched to InP substrates.

One of the motivating factors for this investigation is that

the In GaxAs quaternary alloys have recently become technolog-

P
y 1-y
ically important semiconductor materials for optoelectronic devices

1-x

because of (1) wide variation of the bandgap between 0.36 and

2.2 eV by varying the composition parameters x and y, and (2)
lattice-matched epitaxial growth on GaAs or InP substrates. These
materials have been used successfully for the fabrication of a number

of important devices such as light emitting diodes,h2 photocathodes,

4

3

photodiodes,  Gunn osci11ators,5 and double heterojunction 1asers.6’7

An important application of the In GaxAs quaternary

y 1=y
expitaxial films is in the field of fiber-optics communications,

1-x

since using these materials it is possible to fabricate lasers and
detectors which operate in the wavelength region corresponding to
the region of minimum loss and minimun dispersion of optical fibers.
Until recently, this has been the 1.2 um region,8’9 corresponding

to 1.0 eV. More recently, however, fipers have been developed whose

optimal operation region Ties in the Tonger wavelength region
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corresponding to alloy compositions closer to the In0 53Ga0 47As

end of the family.!©

Another aspect of these quaternary materials which is
interesting from the point of view of device application as well as
physics of III-V semiconductors is the fact that in addition to the
band gap, other electronic band parameters for these materials can be

varied by varying the alloy composition.

A potentially interesting application of these materials
from both device and physics paint of view is to the fabrication of
super-lattices. The evidence for the growth of interest in these
materials comes from the increase in the number of contributions in
the literature in recent years dealing with this alloy fam11y.11
The first systematic measurements of the relationship between x and
y and the laser emission photon energies at temperatures of 300K and
80 K for the quaternaries lattice matched to InP were obtained by

12 Nahory et a1]3 used photoluminescence spectra to measure

Hsieh.
energy gaps, as well as the lattice matching condition. The lattice

matching condition is generally taken to be y=2.2x or x=0.47y.

The first measurement of the effective mass in a member
of this alloy family was reported by Restorff et al'’ who deduced a
value of m =0.060 m (where m is the free electron mass) from the
temperature dependence of the amplitude of weakly resolved Shubnikov-
de Haas measurements in a quaternary sample with composition

parameters x=0.10, y=0.22.
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At very. nearly the same time that we reported our first
interband magnetoabsorption measurements of these materials (x=0.25,

15 Portal et a1]6 reported measurements of the effective

y=0.52),
masses of four members of the alloy family using magnetophonon
resonance, Shubnikov-de Haas oscillations, and cyclotron resonance.
Our effective mass value of mc=0.061 m and those of Ref. 16.

suggested very strongly a linear variation of me with y for
InT-xGaxAsyP1-y alloys lattice matched to InP. 1In fact, Nicholas

et 3117 suggested the empirical relationship mc(y)=(0.080 - 0.039y) m.

It was noted 16,17

that the value of Me for samples with x=0.12 and
y=0.23 reported in Ref. 16 was 0.072, 20% higher than the value
reported earlier in Ref. 14 for x=0.10, y=0.22. Furthermore, the

18 from electro-

value of mc=0.038 m estimated by Nishino et al
reflectance studies of an alloy with x=0.21, y=0.54 fell well below
our value of 0.06Imfor x=0.25, y=0.52. In a more recent publication
by Brendecke et a119 cyclotron resonance results were reported and
effective masses were deduced giving values between 20% and 30%
below the linear interpolation. Shubnikov-de Haas measurements
reported by Perea et a120 were closer to the linear interpolation
with a small cownvard bowing which was about 9% at the most.  The

more recent Shubnikov-de Haas measurements of Restorff et a121 were
also in better aagreement with the Tinear interpolation compared to
the previously reported results of Ref. 14. In a very recent
article, Nicholas et a122 have reported cyclotron resonance and
magnetrophonon resonance measurements of the effective mass m. for

several members of the alloy family over the whole range y=0.23 to

y=1 for lattice matched samples. These results agree very well with
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the linear interpolation for m_ mentioned above and as pointed out

c
in Ref.22, our msuh‘.]5 is in agreement with theirs. Furthermore,
in Ref. 22, the authors show evidence that the Tow masses deduced
by Ref. 19 result from an observation of an impurity transition

which is dominant for lattice temperatures below 30K. In summary,

our results and those of Refs. 16, 17 and 22, are in excellent agree-

ment with the linear interpolation for m..

Interband magneto-optics has played an important role in
providing a quantitative understanding of important energy bands in
semiconductors. The interband magneto-optical effects have been the
subject of extensive experimental and theoretical investigations.
Extensive references to these important contributions can be found
in the review articles by Lax and Mavroides,23 and Aggarwa1.24
One feature of magneto-optics is the richness of the spectra as a
result of optical transitons between the at(n'), bi(n'), a>%(n"),
and b°%(n') series of the heavy (-), Tight (+), and the spin-orbit
split-off (so) valence band magnetic sublevels to the conduction
band a®(n) and b%(n) magnetic sublevels. This enables one to
extract a lot of information about these bands by examining interband
magneto-optical spectra as a function of 1light polarization and
crystal axis orientation with respect to the magnetic field, provided
the sampes are of high enough quality to allow some of these features
to be resolved. Therefore, one aspect of our intial objective was
to determine whether these alloy semiconductors can indeed be

amenable to magneto-optical studies and whether they could provide
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magneto-optical spectra with enougﬁ structure to enable us to obtain
some of the band parameters. This thesis reports on such studies
and indicates that there is a great potential for applying the rich
method of interband magneto-optics to this alloy family. We bring to
attention the results for one of our quaternary samp1es15 and those

25,26 which are described in

for a ternary In0 53GaO 47As sample,
this thesis. We have also obtained room temperature electro-
reflectance spectra for a number of quaternary samples using the

27 which we present in Appendix A.

electrolyte method of Cardona et al
The signal to noise ratio and the presence of the onset of Franz-
Keldysh osci11ation528 point. to the high quality of samples avail-
able to us (for example compare spectra in Appendix A with those
reported in the literature). These studies of electroreflectance,
although preliminary, are encouraging and suggest that magneto-

29,30 for both the fundamental edge

electroreflectance measurements
and the split-off edge would be possible in these alloys. Stress
modulated magnetoreflection measurements may also turn out to be

possib]e.31

Interband magneto-optical measurements, as mentioned before,
have been extensively used to determine band parameters of semi-
conductors. The model which is most applicable for the analysis
of these spectra is the "Quasi-Ge" coupled band model of Pidgeon

8 with the improvements incorporated by wei1er.33

and Brown,
The band parameters we shall refer to are those which appear in Ref.33

for example. In Chapter II of this thesis a review of the "quasi-Ge"
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model, based on Ref. 33, will be given. In Chapter III, we present
our magnetoabsorption experiments in two members of the alloy family.
In Chapter IV, we present analysis of our magnetoabsorption experi-
ments based on the quasi-Ge model. The presentation in this thesis
would be similar to those in Refs. 31 and 33. In addition, we

include a discussion of the effect of higher bands on our measurements.
In Chapter V, we give a summary of the results and suggestions for
future work. In Appendix A, electroreflectance spectra for a few
quaternary samples will be presented. The remaining Appendices,

will be dealing with some of the details of Chapter IV and the

nonparabolicity of the conduction band.

Briefly, the band parameters which are readily obtained
(within a few per cent or less) from interband magneto-optical
measurements (in the absence of well resolved spectra from the
spin-orbit split-off band to the conduction band transitions) are
the following: the energy gap Eg, the reduced effective masses
(I/ui)=(1/mc)+(1/mt) for the conduction and heavy (-) or light (+)
hole bands, and the anisotropy factor Y37Yp - Since m_ is quite
large compared to m_ (by a factor of ~10) 1/u_ determines m,

within a marrow range, thus the value of m, is also determined

within a narrow range.

Another important parameter is Ep, the interband transition
energy, which is proportional to the square of momentum matrix

element between valence and conduction bands. Since the effect of
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higher bands is quite small on 9> the conduction band g-factor,33’34

the measured value of g, can be used to obtain Ep provided the
g-factor values are measured to a good degree of precision and the
spin-orbit splitting energy 4 and the energy gap Eg measurements are
available. On the other hand, since the effect of high bands on

the curvature (effective mass) of the conduction band could be as

large as 20% of that due to the valence bands, m_ cannot precisely

c
determine Ep. However, magneto-optical measurements can determine
Ep to within about 20%. We have found that a linear interpolation
of the values of Ep from the binaries InAs, GaAs, and InP can give
good fits to our data. Ignoring the effect of higher bands, which

would predict a smaller Ep, can also give good fits.

Recently, Hermann et a135’36

have applied the technique
of optical pumping for the measurements of valence band spin-

Ga_As P over the range

orbit splitting in several samples of 1”1_x Xy 1=y

y=0 to 1 and their values for mes m+(1ightho1e effective mass), and

1 (3/U+) * ('I/U_)
3 7,y = (7))

are in excellent agreement with the values we have obtained for our
quaternary and ternary samples. For g, @ preliminary value of
(-4.2+25%) has been obtained>® for the ternary Ing gi6a, 47As, again

in very good agreement based on interpolated value of Eg which we
had used for the ternary, however, work is being done to reduce

the error-bars on gc.36
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CHAPTER TII

THEORETICAL BACKGROUND

A. Introduction

The effect of a magnetic field on the energy bands of a
semiconductor particularly as it affects the interaction of
electromagnetic radiation with these materials has been the subject
of a great deal of theoretical and experimental studies. The
impetus for the vast amount of research in this area was the early

intraband cyclotron rsonance experiment first carried out at micro-
3,4

]

wave fr‘equencies,1 and later at infrared wavelengths. In

this thesis we are interested in optical transitions (in the infrared
reaion) from the valence bands' magnetic sublevels to the conduc-
tion band's magnetic sublevels, corresponding to the fundamental

gap of a semiconductor in the presence of an external magnetic

field. This is in general referred to as interband magneto-optics.
The interband magneto-optical effects have been the subject of
extensive experimental and theoretical investigations. Extensive

references to these important contributions can be found in the

review articles by Lax and Mavroides5 and Aggarwa].6

Specifically, we are interested in a theory which enables
us to calculate the energies of the above mentioned magnetic
sublevels for a direct gap III-V semiconductor of the zinc-blende

type (point group symmetry Td) with the fundamental gap occurring
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at the Brillouin zone center (k=0)

The theory we shall use to interpret our magnetoabsorption
experiments is the coupled-band quasi-Ge model based on the ﬁ-ﬁ
perturbation theory carried out by Pidgeon and Brown7 and later

modified by wei1er8 and coworkers.9

In Section B we give a brief review of K-B theory for

zinc-blende semiconductors leading to the quasi-Ge model Hamiltonian
of P.B. modified by Weiler. 1In Section C we give some of the results
of the quasi-Ge model. In Section D the selection rules for

optical transitions will be given.

-

B. Effective-Mass Theory and the Magnetic Field -- f-p Theory
For Zinc-Blende Semiconductors

A principal approach to describing the motion of charged
carriers in a perturbed periodic potential is the effective-mass
theory.- In this method, the effect of the periodic potential on
the dynamics of the charged carrier is replaced by terms which
appear in the equation of motion much in the same way that mass
appears in the case of free electron. In the simplest case these
constants take the form of a mass tensor. In the case of degenerate
or nearly degenerate bands, the effective-mass constants appear
in a more complicated form. In the effective-mass method of

Luttinger and Kohn (L.K.)10

the motion of an electron in a
perturbed periodic potential (e.g., electron in a semiconductor

in the presence of an external magnetic field) was considered
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and effective-mass Hamiltonian was obtained, including the ?-E

and spin-orbit terms.

B. 1. A Brief Review

Before we give the formalism of the coupled band
quasi-Ge model we review some of the work which led to that of
P.B. and Weiler for the case of zinc-blende type semiconductors.
In the case of InSb, with band extrema at the fundamental gap
at the Brillouin zone center, in the absence of an external magnetic

field, Kane'l

did the following. He considered the Schrodinger
equations for the cell periodic functions, including the kK-p and
the spin-orbit interaction terms. For k=0 he used the single-group
basis functions of the Td group. He explicitly considered basis
states Ty (S for conduction band) and P4(X,Y,Z for valence bands)
for k=0 at the fundamental edge. Including up and down spin
wave functions he obtained two degenerate sets of four basis
functions and for the ?-3 Hamiltonian obtained two 4x4 matrices.
In these matrices he considered all possible matrix elements of
the E-$ as well as the spin-orbit term between these Ty and Ty
functions (S,X,Y,Z) of the fundamental edge up to second order
in K. The first-order matrix elements coupled different

members of the (S,X,Y,Z) set. The second-order terms included
not only these four functions, but also the higher bands as

intermediate states. For the case of these higher bands spin-

orbit splitting was ignored and single-group basis functions FH,
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ré, rd, and Fé appeared in Kane's treatment (prime indicates higher
bands). The effect of these higher bands appeared as band
parameters in the 4x4 Hamiltoniansof Kane and the effect of spin-
orbit splitting was included only in the conduction and valence
bands of the fundamental gap. The effect of higher bands

appeared only as coefficients multiplying k2 terms in the 4x4
Hamiltonian matrices. (For Kane band parameters see Appendix B.)

The Hamiltonian was then expressed in terms of linear combinations
of X,Y,Z and the spin-functions + and 4, which diagonalized the

spin-orbit interaction.

A second approach was chosen by Luttinger,12 who used
group theory with the double-group representation of Td to obtain
all of the allowed matrix elements of k and kxk among the four-
fold degenerate valence band states transforming as the I double-
group representation of Td' The intermediate states (which included
the T¢ conduction band) were also taken in the double-group
representation. His results involved band parameters which were
linear combinations of those of Kane, but in addition included a
parameter q, which is nonzero only in the presence of spin-orbit
splitting of the intermediate states. Since he considered
coupling only among I'g valance band state, Luttinger obtained a
4x4 matrix. Roth, Lax, and Zwerdling (R.L.ZJ13 improved the
treatment by including also the spin orbit split-off band Iy but

still leaving the Te conduction band as an intermediate state
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(getting a 6x6 Hamiltonian). Pidgeon and Brown7 included the T
conduction band in their analysis (8x8 Hamiltonian). However,

they ignored the spin-orbit splitting of the intermediate states.
Thus, P.B. combined Kane's method of calculating bands for H=0

with R.L.Z.'s method of treating the magnetic field in the coupled-
band scheme. Thus, P.B. included the coupling between the
conduction and valence bands exactly, and the effect of higher bands
to order k2. In this manner the effects of nonparabolic

conduction and light-hole bands, warping of the conduction and
valence bands, and the quantum effects of 1ight- and heavy-hole
valence bands were included. Their 8x8 Hamiltonian does

not include q and higher term corrections to the conduction band
g-factor, i.e., N1. The 8x8 Hamiltonian can, under certain

approximation, be broken into two 4x4 block diagonal Hamiltonians;

the so-called quasi-Ge model Hamiltonians.

In Weiler'sS>? treatment (unlike in P.B.) the spin-
orbit intereation as regards to its effect on the symmetrics of
the intermediate states was not ignored. In this treatment, the
double-group basis states Te (for the conduction band), g (for
the heavy and 1ight hole valence bands) and ry (for the spin-orbit
split-off valence band) were used, both for the fundamental
edge bands and the intermediate bands. Thus an 8x8 matrix was
obtained with rg, r;, and F; as its basis (c refers to conduc-
tion band and v to valence band, see Figure II-1). These basis
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functions are given in Table II-1,

To obtain the 8x8 Hamiltonian group theoretical analysis
was used utilizing tables of Koster, Dimmok, Wheeler, and Statz,

)14 to find all of the allowed matrix elements of k and

(K.D.W.S.
kxk among the Tg+ T and g basis states of the double-group
representation of Tq and a complete set of independent parameters
were obtained (see Table II-2). These include, in addition to
the P.B. parameters and q, three additional small parameters

Nys Ny, and Ng where Ny is the contribution of the higher bands
to the conduction band g-factor 9¢ and is nonzero only in the
presence of spin-orbit splitting of the higher bands, and N2 and
N3 are two inversion assymmetry parameters. In the rest of
Section B we give a brief account of the formalism of the k-p
theory in a zinc-blende type semiconductor (point group

symmetry Td) in the vicinity of the zone center (k=0) near the
fundamental gap, in the presence of an external magnetic field

H, up to second order in k and first order in H, as presented

in Weiler's thesis. We also compare the two 4x4 quasi-Ge
Hamiltonians for the a- and b- sets obtained from the 8x8 Hamil-
tonian under certain approximations with those given by P.B. who
neglect terms involving N1 and q. For the purpose of analyzing
our experiments we have used Weiler's quasi-Ge model Hamiltonians

which include N1 and g, although it turns out that for the

physically reasonable range of N] and q, our experimental data
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are insensitive to these two parameters. This will be discussed

further in Chapter IV and Appendix B.

B. 2. The Effective-Mass Hamiltonian

The envelope functions fj(r) are the solutions of the

effective-mass Hamiltonian. This is given below up to second-

order in k and first-order in H, according to the L.I(.10 method
as given in P.B.7
2 aB A a > >
A- D.. k + — 7., + «0) g,
§.{ i1 Kok * m Tigr Ko+ ug(Healy; (2-1)
fi &> > > > >
+ “ sia PR 2 VGt fat =E.f.
W [(O’XVV) p].],] EJ (SJJ }.] (T‘) EJ J(Y‘)
where
& B
Mae Ma sy
p*f = 1 o 4] _Ji 13"
jj' em dd e ; Esi-By (2-2)
174,3"
and
% e -> f >, > - 3
m -EJ u, () [p- — (WWxo)] u,. (r) d7r
A unit cell *° dmc R (2-3)

The functions fj(?) are envelope functions and the total zeroth

order wave function is

v(¥) = Z fj(?) ujo(?) (2-4)
J
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The functions ujo(?) are the Bloch functions at k=0 and include

both space and spin variables. The symbols used above are:

a, B = X,y,z are the indices in a right-handed
coordinate system (x,y,z) along the principal
cubic axes.

T = (rx, ry, rz) is the position vector in the
(x,y,z) system.

o . . >

H = The external static magnetic field = VxA.

A = The vector potential, will be taken in the
Landau gage.

3 = Pauli spin matrices, e.g., o, = 1.0 ’

z 0 -1

ug = %%b = Bohr magneton.

m = Free electron mass.

e = Absolute value of electron charge.

c = Speed of 1ight in vacuum.

A = h/2w, where h is Planck's constant.

v = V(¥) is the periodic crystal potential.

E = -ifV = -1h(33 2 33 & 33 ) is the momentum

. X y z
matrix element.

?22. = Modified momentum matrix element between bands
2 and 2' at k=0, including spin-orbit inter-
action.

u m(‘r‘) = The Bloch function at k=0 for the £'th band.

It has the periodicity of V(¥). These
functions include the electron spin variable
as well.
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Indices which run over the two conduction
bands (qf) the four valence bands (Fg) and

1

j and j'

the two split-off bands (Fy) of the fundamental

gap.
E. = The energy of state j at k=0.

—1e
1

The index which runs over all higher bands,
clearly i#j,J'.

m
1

spin-orbit interaction.

The terms involving subscript jj' are understood to be matrix

elements between ujo(?) and uj.o(?). Equation (2-1) is actually

a set of eight equations since j refers to eight different bands.

The energy of the ith state at E=O, including

The sum over j' in Eq.(2-1) extends over the eight bands represented

by j and j'. In the presence of a magnetic field, the operators

E(ka; a=X,y,z) which appear in Eq.(2-1) are defined as

k %—[3 + (%) ]

Equation (2-2) defines the effective-mass tensor, the summation

here is over i, all the intermediated (so-called higher) bands

outside of the eight bands q;, Q;, and R;, corresponding to the

fundamental gap. The energy Ej. in the denomenator is usually
replaced by an average energy E . Equation (2-3) defines the

modified momentum matrix element ?2 The T6’ r7, and F8 are

L'
double-group representations of Td.

(2-5)
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FIGURE II-1 Schematic diagram of the band structure near k=0

in a direct gap zinc-blende type semiconductor at the
fundamental gap Eg, at zero magnetic field. The bands
which are explicitly treated by the 8x8 W-E Hamiltonian
are Fg conduction band (2-fold spin degenerate) the

Fg valence band (4-fold decenerate at k=0) and the

rg split-off band (2 fold spin degenerate). The r? and

rg bands shown above are the closest higher bands.

For K#0 the ﬁ-ﬁ interaction reduces the 4-?01d degenerate
of Fg into two 2-fold spin degenerate heavy (-) and ligth
(+) hole valence bands. In the presence of a magnetic
field, the spin degeneracies are removed. In the single-
group representation the valence bands belong to P4(in the
notation of Ref. 14, this is called FS).
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In P.B. treatment, the second term in Tog! is

ignored. Also the intermediate states uzo(?), where %#j are
those corresponding to the unperturbed Hamiltonian without spin-
orbit interaction, that is, they have the symmetry of the single-

8,9 on the other

group representations of the Td aroup. Weiler
hand considers uzo(?) belonging to the double-group representation
of the Td group and as a result she obtains additional parameters
NI’ NZ’ N3 and q, where q is the parameter found earlier by
Luttinger.12 For ?ig.she also disregards the second term for 2,
%' outside the 8 bands under consideration. However, note that

>

Big. and Tog! have the same symmetry properties. From here on

we give a brief account of her method and follow her results.

In Section B.3 the (effective-mass or so-called kB
Hamiltonian of Eq.(2-1) is retained to second order in k and
first order in H and obtained as an 8x8 matrix coupling the
qE(J=1/2) conduction band, the q¥(d=3/2) 1ight and heavy hole bands,
and the r;(J=1/2) spin-orbit split-off valance band (see
Figure II-1 for band diagram). The effect of other bands appears
as coefficients in the 8x8 Hamiltonian matrix. In Section B.4,
we give the simplified version of the Hamiltoniaanwhich is decoupled
in two block-diagonal 4x4 matrices for the so-called a-set and b-set
This is the so-called quasi-Ge model Hamiltonian which affords us
the ability to calculate numberically the energies of the valance

and conduction bands in a magnetic field. The quasi-Ge model is
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obtained from the full 8x8 Hamiltonian by neglecting a number of
small terms which are proportional to the warping and asymmetry

8,8 has shown that when those terms are

parameters. Weiler
included they are responsible for cyclotron harmonic transitions

which have been observed in InSb.

B. 3. The 8x8 Hamiltonian Matrix Using Double-Group Representa-
tion of T,

The basis functions ujo(F) used by wei1er8’9 in the

effective-mass Hamiltonian of Eq.(2-1) is given below in Table II-1.

TABLE I1-1
a-set
. - -
1> = ¢1/2’1/2 = St
8 i .
13> = ¥3/p,370 = = 7 (X + 1)

3
15> = ¥3 /5. 12 Lx - 08+ 224]

17> = 41,5 172 = - ;gf{(x V)4 - 74]

b-set

|2 = Sy

_ 6
=S Vg, T
|6> = ¢§/2’ 12 % - ;%F{(X + 1Y)+ - 27+]

1

_ .8 i :
|4> = 1,)3/2’_3/2 = ‘/_?H(X = .|Y)\}
_ 7 _ i ;
|8> = w]/2,1/2 8 ;Ef{(x + iY)y + Z4]
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In Table II-1 spatial functions X, Y, Z and the spin
functions + and ¥ are those used by Kane,11 for the zero magnetic
field case. The superscript on ¥ indicates which double-group
representation of Td ¥ belongs to, and the subscripts give J
and My, the quantum numbers for the total angular momentum

and its z component, respectively.

As mentioned in B.1 of this Chapter Wei1er8’9 considers
all of the matrix elements of k and kxk among Fg, Fg, and Fg
(Figure II-1). Some of these couplings involve only these
subset of bands, and some involve higher bands with Tg, Tgs and Ty
symmetry as intermediate states. Table II-2 summarizes all of
the real independent parameters in this manner (same as Table II-2 of
Ref. 8 and Table I of Ref. 9). The Xl parameters yi, Yps Y3 ¥
and q are defined in Ref. 12. The [,XTg parameters are independent
of the T8xr8 parameters, but are expected to be very close to
them. Explicit expressions for these band parameters will be
given in Appendix B. Table II-3 of Ref. 8, (same as Table II of
Ref. 9) gives the 8x8 K-p Hamiltonian to second order in k and

first order in H and will not be reproduced here.

B. 4. Quasi-Ge Model in a Magnetic Field

For a magnetic field H in the direction defined by the
spherical polar angles 6 and ¢, with respect to the principal

symmetry axes (x,y,z), a coordinate transformation is performed
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i

TABLE II-2 Parameters of the f-p Hamiltonian among the Tg» Ty

and Ty band-edge states. (After Ref. 8).

Ky . tkysk, b ilky k]
£(%) k 15 27X ok ilk. k]
y 5 2 2P % p Al
K BlTR) K ik ]
z X,y X’y
<Pg|f(?)|rg> F N,
gl f(®) [rg> ¢ Y Yo T3 €50
<P;|F(?)[T;> e k'
<rg|F(R)|rg> p N, G Ny
<rg| (k)| 13> p'- G'
<F¥[ 'F(TZ) IF\8,> cH Yl v' el
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so that in the new-coordinate system (1,2,3). the magnetic field
would be along the 3-axis. The corresponding rotation of the
basis states results in a transformation of the ﬁ-ﬁ Hamiltonian

according tofﬂz(e,¢)=U?ﬁﬂU with U given in Table II-4 of Ref. 8.

Note that with H along the 3-axis, i.e., ﬁQH(O,O,1),
Acan be chosen such that K=%H(JF2,?1,0) (Landau gauge). Then,
. H
since h?=[$+(e/c)i], we have k1=(1/ﬁ)[p]-(%20r2], and
k2=(1/ﬁ)[p2-(%%Jr}]. Since [ry,p l=ifis , it is recognized that
if one defines az;%r(k1-ik2) and a+53%?{k1+1k2) with AE(ﬁC/EH)]/Z

then one obtains
[a,a’] =1 (2-6)

a+ and a are thus recognized as the raising and Towering operators
for the harmonic oscillator wave functions with a+¢n=¢n+1 ¢n+1’

+
a¢ =Vn ¢ 1, and a aé =né . The operators ki and k, can then be

expressed as

=1 B )
K l/ﬁ_(a+a ), (2-7a)
ky = A—"z (a-a’) (2-7b)
k3EkH (2-7c)

in the 8x8 Hamiltonian of Refs. 8 and 9.
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Next in the transformedHami1tonian£%§(e,¢) if one
neglects terms proportional to kH, q,C,G,N2 and Nq and most terms
proportional to the warping parameter uE%{Y3-Y2) one gets the
8x8 Hamiltonian separated into two block diagonal 4x4 Hamiltonians

corresponding to the a-set and the b-set, i.e.,

Ay (0,0) = (2-8)
0 G

(8x8)

wheref}fﬁa andf?%é are called the quasi-Ge model Hamiltonians

given here in Table II-3 where

V' = s+ (rpmvg) F(640) (2-92)
W1 2 1
Y =3 vp * 3v3 * glgra)f(e.e) e-3b)

with

2 2
f(o,¢) = (§—59%——ﬁ'1) + %—cos2 26 sin4 ) (2-9¢)

For ¢=45°, i.e., H in the (110) plane gy ans d, are given as:



TABLE II-3 The Quasi-Ge Model Hamiltonian

|]>

Eg+23H[F(2a+a+1)

+N1+(a+a+1)]

(BHEP)”2 a

1 1/2 _+
—(gﬂHEp) a

2 1/2 _+
(g BHEp) a

|2>

E +26H[F(2a a+l)
-N1+a *a]

1 1/2
(g‘BHEp) a

‘(SHEP)T/Z a+

1/2
(g‘ BHEp) a

|3>

(BHEP)1/2 a+

~6H[ (v, +y') (2a"a+1)
+3K+a]]

2V3 y" gH “aa

-2/6 v"gH 5

|6>

(3 BHE )1/2 o+

-BHHY1-Y')(2a+a+1)
+K'as]

2V3 y" gH a+2

-/Z gH[y'(2ata+1)
+c+1]

-(*BHE JIZ

2V/3 v"gH a2

-BH[(?] v'X2a'a+1)
'K+q5]

V28H[y ' (2ata+1)
' -k=1]

|4>

(BHE )]/2

2V3 y" BH a®
-BH (y;+v') (2a"a+1)

-3K-ﬁ1]

2v6 y" gH a®

17>

1/2
2 a
(gﬁHEp)

_2/6 v"gH a2

/Z3H[y' (22 a+1)
-k=1]

-A-BH[Y1(2a+a+1)
-2¢-1]

8>

(3 BHE )1/2 +

/7 gHly'(2a a+1)
+r+1]

2/6v" gH at?

-A -BH[Y1(2a+a+1)
+2K+1]

.

>

3>

8>

8t
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q(3 cos48-2c0528+8)

0
—
1
Blw

- 1

q(27cos*6-18c0s%6-10).

el

+ i
The operators a and a are given by

-1/2
_ (2et -
= G (grika)
-1/2
at = (B8 (K Hiky)
and B = ug= (efi/2mc) = Bohr magneton
E s 2mp? /42

(2-10a)

(2-10b)

(2-11a)
(2-11b)

(2-11c)

(2-12)

The Hamiltonians in Table II-3 are equivalent to those of

7

P.B." with the following corrections:

1) The parameter N1, which gives the effect of intermediate states

on the g-factor of the conduction band, as well as diagonal terms

proportional to g, are included here.

2) In Eq.(10) of Ref. 7, for the (3,7) and (7,3) matrix elements

v' should be replaced by -y".

3) In Eq.(11) of Ref. 7, for the (4,8) and (8,4) matrix elements

v' should be replaced by v".

In the quasi-Ge model one then has to solve these two

Schrodinger equations for the a-set and the b-set.

., 12
Y o>

1]

Ea|a>

Eb|b>

(2-13a)
(2-13b)
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The: solutions are of the following form.

e -
4 ¢n b2 ¢n
n n
33 9p.1 b6 %n-1 (2-142)
-l " |b> = n
5 04 by O+
n n
27 a1 Pg ¢n.1] (2-14b)

where n is an interger and n > -1.

Here n is the harmonic oscillator wave function so that

a+¢n=/ﬁ¢1 647 and a¢n=/ﬁ ) The coefficients a: and bg are

n-1° J
zero for those values of n which make the subscript of ¢ negative:

_ _0_-1_,0_,-1_-1_,0_
a1—a3—a3—bz—b6—b6—b8—b8—0

For each integer n > 1 the two 4x4 Hamiltonians give
eight independent solutions: |a%(n)>, |bc(n)>, la”(n)>, |b"(n)>,
lat(n)>, Ib¥(n)>, [a%°(n)>, |b°°(n)>, where "c" refers to the
conduction band, "-" and "+" to the heavy and light hole valence
bands respectively, and "so" to the spin-orbit split-off band. In

2

fact with eigen-vectors of the form in Egs.(2-14) the a, a+, a,

and a+2 operators in matrices of Table II-3 can be replaced by



47

; : ; E o 2 +2
expressions involving n, more explicitly: a and a = are

replaced by [n(n+1)]]/2, and

(n) in (1,1), (2,2)
a'a > (n-1) in (3,3), (6,6), (8,8), (6,8), (8,6)
(n+1) in (5,5), (7,7), (5,7), (7,5), (4,4)

(n+1)/2 50 (1,5), (1,7), (2,4)
o, 172 .

(n) in (3,1), (6,2), (8,2)
. ()% a0 (5,0), (7,0), (4,2)
a >

mV2  in (1,3), (2,6), (2,8)

giving the two 4x4 quasi-Ge model Hamiltonian matrices in terms of
n. One can then use a computer to determine eigenvalues for
Eqs.(2-13) as well as eigen-vectors (i.e., values for a, and bn's),

for a given set of band parameters and aribtrary n.

C. Some Results of the Quasi-Ge Model

Reference 6 gives explicit expressions for the deter-
minantal equations for the eigenvalue problem of Egs.(2-13);
this is given in Eq.(83), where the terms involved are defined
in Eqs.(81) and (82) for the a-set and the b-set respectively.
In Eq.(81) one should read F=-[6n(n+1)]1/zy”. In this treatment

N; and q are ignored. The eigenvalues (E, and E, in our
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notation) are expanded in a power series in s(s=2g H) and expres-
sions are obtained for the eigen-energies up to second-order in

H.

C. 1. Energies Up to First Order in H

The conduction band energies to first order in H are

E[a“(n)]| 1 1
. = Eg + (n+?JﬁmCi?gCBH
E[b"(n)]

where Wes the cyclotron frequency, m, the effective mass, and 9.
the g-factor, are for the conduction band and they are given as

follows:

m 1 2 1
— =1+ xE (&—+ ) + 2F
m. 3°p Eg E_+A
2 1
9. =2 - FE (- pp) 4
g g
=2[]_EE -i].;zm
3Eg Eg+A 1

which include the higher band contributions F and N]. These

15 and more

contribution have been considered earlier by Groves
recently by Hermann and Neisbuch16 (see Appendix B). The valence
band energies to first order are8 (+ for 1light hole, - for heavy

hole;n>1 for heavy holes and nz-1 for light holes).

(2-15)

(2-16)

(2-17)

(2-18)

(2-18a)
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* 1, L L,11L 5
E =-28H{ -y f
[a”(n)J=-28H{(n+5)yy - v'~ + 5 + (g+f)q T
Aty bt Al + 3n(ne) (1)
E[b*(n) 1=-28H{ (n+p)vs +'"- 3" -(3+F)a
(2-20)
b+ (n])y Tt 1 - Fal3n(n+1) (D)%)

12

L, etc. are the Luttinger = parameters:

where f = f(6,4) and y%, y'

= HEJED + (2-21a)
- %{Ep/Eg) +y (2-21b)
= %ﬁEp/Eg) +y" (2-21c)

L _1

-2 REE) * x (2-21d)

For n=-1 and 0, and assuming gq=0

ELa*(-1)] = -gHly -y bt (2-22a)
E[a*(0)] - -eH[3y%-3Y'L-KL] | (2-22b)
ELbY(-1)] = -gHly+y'-3¢"] (2-22¢)
E[bT(0)] = -gHI3yi+3yt-3c1) (2-22d)

For large n, Egs. (2-19) and (2-20) give
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E[a”(n)]-Ea"(n+1)] = (3) -2gH>0 (2-23)

My
and similarly for the b-set. Here the effective masses for the

heavy (-) and the light (+) hole bands are given by

1/2

LB I (S L (O (2-24)
+

For Ep/Eg >> y', y" this gives
m g_E_E+ +]_( '+3 u)
m, 3 Eq VY T (2-25a)
m ||
—”-]-- 2—(y +3y") (2-25b)

which shows that the 1ight hole band is nearly the mirror image of

the conduction band, and the heavy hole mass has a large effective

-1
mass -y

For the spin-orbit split-off band, to first order in H

ELa® (n)]=-a(n+3) T +7g. 128H,with n=-1,0,1,... (2-26a)
SO '

E[bSO(n)i=-t(n-3) T -7q_ J2eH, with n=1,2,3... (2-26b)
SO '

m L Eppl 1

Mgy T M §E{E—‘ £l (2-27a)

g
=nt TL)3 E,+E Lt
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and
- Ly o Ep o ’
9gp = -2L2c+1 - 3f 'E"iﬂ_] (2-28)
g g
which gives
9c t 950 = -4(K"-N1) (2-29)

It turns out that N.I is very small (Appendix B, and Ch.IV),

therefore,

L
g, + 9o = bk (2-30)

C. 2. Energies Up to Second Order in H

We now consider the corrections to the energies, second-
order in H. For this purpose, we could follow the procedure of
Ref.6 and use Eq.(102). From this equation one can find correction

to the conduction band energy. For simplicity one can ignore the

11

effect of higher bands and obtain Kane's formula, namely set F=0,

Y]=-1, Y2=y3=0, K=-%-. Then for the average conduction band a

and b series energies in the units of (ZBH)2 Ref.6 finds the

following second-order correction.

2
172 2[35 +40+20°JE ] T

C 1 m g
ég = (n+zJ (— -1) T
3E +
2 Me Eg A Eg 2A

[See Eq.(110) of Ref. 6 for example]. Note that in this formula
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%— is given by Eq.(2-17) but with F=0. This result is in agreement

c Vi

with Vrehen. He started with Kane's determinantal equation, i.e.,

E'[(E'-Eg)(E)(E'+2) - K2p2(E'+58)] = 0 (2-32)
where "
= E(k) - B (2-33)
and from Eq.(2-1§)
p? = T (2-38)

= ?ﬁ'Ep

For the conduction band, keeping only terms up to k4, Vrehen

obtained, again with F=0,

2
2.2 2 3E_+4A+2A°/E
o m oy A%k m 2 Ak g y
Ec 'Eg+(mc) 2m (mc -1 2m ) (Eg+A513Eg+ZA) (2-35)

One can then make the following substitution

2,2
Rk > () (28H) (2-36)

to obtain the expression for the average energy of the conduction band

a and b series in aareement with Eq.(2-31).

Johnson,18 starts with Eq.(2-32) and rearranges terms

to obtain

E +§ﬁ

2
E'(E' E)—k P (e

(2-37)
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This yields

2.2

g B2
2.2 f(E")
e ol HE 4D 1

¢c =2t am * ?Eg[”“ch Sl (2-38)

where

f'l(E') = _9_2, ' E""A \ (2-39)

Comparing this with Eqs.(41) and (51) of Ref. 18, one see that
in Ref. 18, f1(EC) is used instead of f](E'). Again when one

- keeps terms up to k4, one can recover (2-35). In all of the
above treatments the higher band contributions including F is
jgnored. We would Tike to keep F nonzero. We start from Kane's

determinantal Equat'ion,'|1

this time including F, the higher-
bands contribution to the conduction band effective mass. Kane's

determinantal equation becomes:

1 " n 1 k 1 2 =
E [(E 'Eg)(E )(E +A) < om EP(E +“3-£‘A):| =0 (2-40)
Here
2.2
n - 1 ﬁ k
E" = E' - 5 ] 2F (2-41a)
2 2
B »E = Dk (2-41b)
m
For the conduction band let us expand E up to k4, , - T
2:2 2.2 2
_ h=k 7k
E = Eg+(X+1) o + ¥( o ) (2-42)
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we then have to find X and Y. Let us define

K (2-43)

We now substitute (2-42) in (2-40) using (2-41). This gives the

following equation, correct to AZ:

A[(X-ZF)+YA][E9+XA + YAZJ[(Eg+A)+XA + sz]

2 -
-2 Ep[(Eg+3ﬂ) + X1 +YA"] =0

For this to hold for arbitrary k (and for terms up to k4) we

2 4

require the coefficients of k= and k', i.e., coefficients of A and

Az to be identically zero: this gives

2
- + - -+ — L
(X-2F)E (Eg+a) - E (Egtga) = 0 (2-44)
- + + - = =
(X 2F)[Eg X X(Eg+A)] +Y Eg(Eg A) EpX 0 (2-45)
Equation (2-44) gives:
Ep(Eg+%ﬂ)
X-2F = W (2-46)
or
T RPY. (2-47)
3 E _+A
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We immediately recognize that the coefficient multiplying k2 in

Eq.(2-42) is

(x+1) = %— (2-48)
C

Where %—- is given by Eq.(2-17), and this is not
c

surprizing. As for Y, Eq.(2-45) gives

(X-2F)(2Eg+A)-I;p

[ e W (JETY i)
g g
Using Eq.(2-46) this yields:
E (3E.+20)  (3E +4a +20°/E
V=X e (€ +0)(3E_720) (2-50)
g g g g )
Using Eqs. (2-48) and (2-17) and this gives
3 2
o n { E +4A +2A /Eg]
L "(ﬁg"1)(ﬁe ~1-2F} (Eg+A)(3Eg+2A) (2-51)
Thus
2.2 2.2 2
hk m m Ak
E.o=E +(M)L 2 - (T -1) (5 -1 -2F) (55—)
e g 'm. 2m me me 2m
[35 +4 +232/Eg] (2-52)
(e FarteE 7]
Eg A 3Eg 2A

In a magnetic field, the average energy of a and b series isobtained
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below, using the substitution (2-36) in Eq.(2-52)

1
B, = By # (”*?)(m_c)(z‘%“)

2
1.2 m 0 3E_+4A+207 /E 2
-(n+5) ﬁ'”(ﬂ'] - 2F) [‘(€:+M(3Eg+2§) (28H)°  (2-53)

In Eqs.(2-52) and (2-53), %E-is given by Eq.(2-17) which includes F.
Here me is the effective mass at the bottom of the conduction band.
For F=0, our result is in agreement with that of Refs. 6, 17 and

18. However, Eqgs.(2-52) and (2-53) bring out a feature hidden

in the above references where F=0 is assumed. Note that in the

nonparabolic term, proportional to k4 or H2, %— -1-2F) is proportional
c
to E.. Therefore presumably although different values of E_and F

p p
can be adjusted to give the same value for m. for the parabolic

term (proportional to k? or H), the nonparabolic term is different

for different values of F. lould this help narrow down the range

of acceptable values for F2 To answer this, the effect of vq;,vp,v5, and
« should also be included (see Appendix C). In Chaper IV this question
will be considered in some detail.

D. Magneto-optical Transitions: Selection Rules

Magneto-optical transitons come about from the coupling among
the eigenstates of Egs.(2-13) which have the form given in Eqgs.(2-14),
/

via the optical field Hami1tonian2ﬂ}(w), at circular frequency w.

The strongest allowed one photon optical transitions among

these eigenstates are those transitions which are proportional to the
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interband matrix element P. For these transitions, the matrix elements
containing terms of the type ¥P in the full 8x8 ?-E Hamiltonian of

Refs. 8 and 9 are replaced as follows:
Ep, kP » [Re(e/hc)A'IP (2-54)

where P is given by Eq.(2-34) in terms of Ep, and A' is the vector
potential of the radiation field in the radiation gauge. In the

8x8 K-E Hamiltonian (Table II of Ref. 9) there are two types of

terms proportional to P (and P' with P'~P). The first type couples
the states of the a-set to those in the a-set; or the states in the
b-set to those in the b-set. The second type couples the states

of the a-set to those of the b-set. The Tatter type of terms

appear in the following matrix elements: (1,6), (1,8), (2,5), (2,7),
(6,1), (8,1), (5,2) and (7,2). These terms are proportional to PK,
(or P'Kss P'=P). For the quasi-Ge model, we recall that C, G, N,, Ns,
and most terms proportional to (Ys-yz) as well as kj=k, were set

equal to zero. However, in the presence of the radiation field accord-
ing to Eq.(2-54) k3+k3+(e/ﬁc)A'3, and hence even with k3=0,(e/hc)A'3
survives. As a result, the presence of radiation field can cause

coupling between the a-set and the b-set states as well.

The matrix elements for the optical transitions ar98

an)| %o (W) aln)> =

Ep.1/2¢. '
£ o) (/3 4]

(2-55a)

n_.n',/mn nyq- 1
ay-ay (ag-/Z az)le_ Sn.,n+1+[n++n le

+5n2n—1
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!

s NHD () bn)> =
(2-55b)

1/2
ek 5 n' n's.n n'. nq- o
——-[ G%‘] [[(bﬁ +/2 bg )by = /3by byle 8,1 ppqtlnemntle,s

()| H0 (w)]aln)> =

_EE.[%% T/Z [bg'(/? a2+a;)+(/? bg -bg )a?];3 n'.n+l (2-55¢)

Here E is the optical electric field, and é+5(§11122)/¢§'. The unit

polarization vectors e, and % correspond respectively to right and

+
Teft circular polarization (RCP, LCP) transverse to H and ;3 is the
unit polization vector parallel to H(E||H, or e polarization). The

one photon optical selection rules are then

( UL(LCP) a(n) - a(n+1) and b(n) = b(n+1)

L op(RCP)  a(n) + a(n-1) and b(n) -+ b(n-1) (2-56)

>~ [ «(E||H) a(n) = b(n+1) and b(n) » a(n-1)

KA > > a(n+] )
U s e e

Intuitively, if one recalls that generally speaking "a" is
associated with spin up and "b" with spin down electron, and n with
the orbital angular momentum of the electron, then the selection rules
above could be considered as a statement of conservation of angular

momentum for the "light and electron" system.

Figure II-2 shows schematically the Landau levels for the

n',n-1
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conduction band a-set and b-set as well as the light-hole (+) and the
heavy hole (-) a-set and b-set. The lowest-energy allowed interband
magneto-optical transitions for the Voigt E||H and for the Faraday
(RCP and LCP) configurations are shown by arrows. It is seen from
the selection rules that the first two transitions in the LCP

originate from the 1ight-hole bands.
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FIGURE II-2 The Landau levels for the conduction band and the
light-hole and heavy-hole valence bands. The value of
the Landau quantum number for each level is shown.

The Towest-energy allowed interband transitions for
the Faraday configuration (RCP and LCP) and for the
Voigt configuration are indicated by the arrows.

e is the same as E_ in our notation. (After

a g
Reine et a1.19)
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CHAPTER IIT

MAGNETOABSORPTION EXPERIMENTS

In this chapter, we describe the details of our experiments

on In GaXAsyP1_y, describing the samples in Section A and the

1-x
experimental setup and data acquisition system in Section B. 1In
Section C we present some magnetotransmission spectra T(H)/T(0) vs.
photon energy, where T(H) is the signal from transmitted light in the
presence of the magnetic field and T(0) is that in the absence of the

magnetic field. In this section, we also describe how the spectra

were obtained.

In Chapter IV, we give plots indicating position of minima
in the spectra in a photon energy vs. magnetic field plot. Included
in these plots will be calculated 1ines (fan charts) based on

5> >

quasi-Ge coupled band k-p analysis with exciton correction described

in Chapter IV.

A. Samples

The In,_,Ga As samples used in this investigation

x"SyP1oy
were grown by liquid-phase epitaxy on InP substrates of (100)
orientation at Lincoln LaboratoryJ The InP substrates were Fe-doped
to make them semi-insulating. We started our preliminary studies in

quaternary sample 09-6 which yielded only 2-3 minima in the trans-

mission spectrum. The next samole used was Q3-14A with an original
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quaternary layer thickness of about 5um. It turned out that this
sample had to be etched a few times to reduce the quaternary thickness
until magnetotransmission spectra with four minima were obtained.
Finally, a much superior quaternary sample was grown (09-18) which
yielded 7 to 8 minima in the magnetotransmission spectra. We made

the most extensive studies on this sample and on a ternary sample
In0'53Ga0_47As (T9-50) and we shall concentrate on these two samples.
Another ternary sample investigated was T9-45A, with somewhat Tower
electron mobility ﬁe than T9-50, with no difference in position of
minima in the spectra. Table III-T1 summarizes some of the

characteristics of the two samples studied in detail.

The net impurity concentration ND-NA was measured by the
Hall effect, here ND and NA are the donor and acceptor concentrations,
respectively. The quaternary sample has a slight Tattice mismatch
of |aal/a = 1.4x10"2 where na is the difference between the lattice
constant of the alloy and the substrate, and a is the Tattice constant

of the InP substrate.

B. Experimental Setup and Data Acquisition

The experimental setup for magnetoabsorption is depicted

schematically in Figure III-T.

In most of the experiments, the optical setup was enclosed
in a dry box flushed with dry air to suppress water vapor absorption.
A hole was provided in the box directly under the magnet bore to

allow the 1ight beam to propagate unobstructed to the sampe and back
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to the detection side of the optical setup.

B. 1. The Light Box

This included holders for various 1ight sources. One
was for the tungsten lamp which constituted the 1ight source for our
experiments. The current through this lamp was set at 9 Amperes
using a reculated power supply. Another Tampholder was for spectral
lamps for the calibration of the grating monochromator. We used the

following Tamps:
Hg(1.1A); K, Cs, Ne(1.5A).

The 1ight from the lamp was focused on the entrance slit of the

grating monochromator by means of a spherical mirror.

B. 2. Chopper

A 510 Hz, 50% duty-cycle chopper was used to chop the
1ight before entering the monochromator. A square pulse generated
by the chopper was used as a reference signal to the PAR 5101 Tock-in

amplifier.

B. 3. Grating Monochromator

In most of the experiments the grating monochromator used
was a Perkin-Elmer model 99G double-pass grating monochromator. We
used Bausch and Lomb gratings with the following specifications,
variously: one ruled with 640 lines/mm (blazed for 1.4um), two ruled

with 600 1ines/mm (one blazed for 1.6um and another for 1.0um).
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The calibration of the monochromator was performed using the spectral
Jamps mentioned above. The spectral lines and their wavelengtls and
energies were jdentified using the extensive compilation of spectral
lines reported in Lincoln Laboratory Report 84G-0012 (1960)2

for those spectral lamps. It was found out that our calibration was
reproducible within 0.1 meV for calibrations done at various times.
Also different magnetoabsorption spectra taken on different dates

for the same magnet current yielded minima reproducible within

1 meV or less. In the spectral range between 1-1.4 eV with slit
width of 0.8 mm using a 600 lines/mm grating resolution of the double
pass was 2.5 meV. It was further noted that the resolution scaled linearly
with the s1it width as large as 1.2 mm and as small as 0.2 mm.
Spectra at various slit widths in the above range were taken for the

same field values for comparison and to get optimal spectra.

B.4. Filters and Polarizers

Filters were used to cutoff higher energy 1ight passing
through the monochromator via second or higher order reflection
from the grating. Polaroid linear polarizers were used for the
Voight configuration where k, the wave vector of the incident light
propagating through the sample is perpendicular to the applied
magnetic field H. In this configuration, we chose f{|ﬁ or E j_ﬁE

here E is the oscillatory electric field of the incident Tight.

For the Faraday configuration (K||H), circular polarizers

appropriate to the wavelength range of interest were used. For a
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given circular polarizer (made out of a Tinear polarizer and a quarter-
wave plate) the sense of circular polarization of Tight with respect

to the magnetic field could be reversed by reversing the direction

of the app