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THE PRODUCTION AND ANALYSIS OF MICKOCELLULAR FOAM
Dy
JANE ELLEN MARTINI

Abstract

A method for producing microcellular thermoplastic foam (cell
diameter 2 to 10 p) is described. The material produced exhibits tensile
strengths superior to those of conventional foam. Unfortunately, the
cycle times are too long for commercial application. To gain insight into
the design ouf a more feasible process, the formation and growth of foam
was analyzed theoretically. The nucleation rate was predicted by class-
ical nucleation theory applied to a matrix supersaturated with gas.

Growth of the cells by diffusion ana matrix relaxation was estimated and
the size of the cells determined as a function of time.
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NOMENCLATURE

half length of unit cube in Appendix B

expansion coefficients for series solution to diffusion
equation

initial concentration of gas in the matrix
energy stored in elastic deformation
diffusion rate

dynamic modulus

énergy stored in the system

internal energy of sclution + elastic deformational energy
+ surface energy

distribution of nucleii sizes

Gibb's free energy

change in Gibb's free energy

Gibb's free energy of the gas in the cell
Gibb's free energy of the polymer-gas solution
rate of cell nucleation

solubility of gas in matrix

mean jump length between equilibrium positions for gas
molecules

number of moles of gas in bubble
number of moles of ith component
pressure

parchor value

pressure in the bubble

quantity of heat
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differential quantity of heat

radius of the bubble at any time

universal gas constant

radius of the region depleted of gas during nucleation
surface energy

entropy

surface area of a cell

temperature

time

internal energy

volume

velume of matrix which supplies gas for nucleation
volume of bubble

work

Zeldovich factor

rate at which gas molecules strike a unit surface
surface energy coefficient

rate at which gas molecules are emitted from a unit surface

th th

strain along the i~ face of control cube in j~ direction

size of a cluster of gas molecules

eigenvalues for characteristic diffusion equation
chemical potential

chemical potential at reference temperature
chemical potential of the pure component

chemical potential of gas
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th component

relative density (of tensile specimen)

density of matrix

stress along the ith

concentration of gas

face of control cube in j

th

direction
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FiGure I-1 MicroGRAPH OF MICROCELLULAR FoaM



FIGURE I-1 MICROGRAPH OF MICROCELLULAR FoAM
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I. INTRODUCTION

As the price of petroleum rises, so does the price of plastic.
Currently, for high volume plastic pai'ls, the material accounts for about
60% of the total cost (Hardenbuirg, 1980). In an effort to reduce the
plastic required for a part, a novel foaming method has been developed.
The process will be discussed in greater detail later. Basically, thermo-
plastic sheet is supersaturated with gas, then heéted above its glass
transition temperature (Tg). Once the pliz*ic has softened sufficiently,
it will foam. The resulting material is microcellular (with cells about
2 to 10 u in diameter) and exhibits tensile strengths superior to those
of conventional foams. Whereas the strength of conventional foam drops
to about 1/5 that of the parent material (Throne, 1979), the <trength of
this foam does not drop more than its reduction in density. At 90% of
the parent density, this foam still exhibits 90% of the parent strength,

more than four times that of conventional foam.

The microcellular foam shows some other ‘nteresting qualities. The
cells are locally uniform, a]fhough those in the center are generally
1arger than the ones near the surface. The surface itself is composed
of a thin unfoamed skin. This skin probably results from the gas
diffusing out through the surface rather than forming bubbles. Because
of the skin, the foam has excellent surface characteristics. 1In fact,

by pressing it against a polished plate just after foaming (while it is
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still near Tg), the surface can be made to shine. Since it is not porous,
the surface can be printed and decorated by most of the same techniques
that are used on the parent material.

In this work, only impact polystyrene was foamed and tested quali-

tatively. However, crystal grade polystyrene and polycarbonate have also

been foamed by this method using N2 gas. As long as the solubility of the
gas in the chosen plastic is high enough, all thermoplastics should be
amenable to this process. Whether or not the foam produced will be micro-
cellular depends on many factors.

Adequate strength and lower cost make microcellular foam attractive
for many items from calculator housings to tape dispensers. The material
is well suited for many packaging applications. Its reduced density may
make it ugefui for airplane or automobile interiors, and perhaps even
boat hulls. Measurements have not yet been made of the insulating capa-
bilities of this foam, but it may also have potential as a novel building
material. Since this foam is attractive for commercial applications, an
obvious question to ask is "Can parts be manufactured from it readily?"
The answer to this is "Not yet."

Unfortunately, the current methods of manufacturing foam parts are
not ideal. Cycle times are long, and expansion of the foam is often
limited by the mold, which results in large cell sizes.

Foamed thermoplastic has existed since the 1940's (Benning, 1969).
Most of it is mada either from pellets copolymerized with a volitile gas
or with chemical or physical blowing agents. Excellent reviews of non-

proprietary processes are available (Benning, 1969), (Moiseyev, 1960),
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(Throne, 1979), (Hansen, 1962), (Frischand Sauders, 1973). There has
been quite a bit of work done to minimize cell size and make it uniform.
Generally, this invclves the use ¢f nucleating agents, of which there
are several categories:

(a) Fine-sized materials insoluble in the reins.

(b) Chemical agents that react exothermically to produce
"hot spots".

(c) Chemical reactants which release gas.

(d) Additives that partially destroy the cohesive forces
between the molecules (Benning, 1969).

Reported cell sizes, however, rarely fall below 0.001 in diameter. One
exception is an open-celled polyolefin with u diameter cells (Accural,
produced by Armezk, Inc.) reported by Worthy (1978).

There are three factors particular to foam which profoundly affect

its manufacturability:

(1) Foam is not thermally stable. Once an article has been
foamed, it cannot be raised far above its glass transition
temperature without affecting foam morphology. Thus, making
major structural changes to the part once it had been foamed
can pose difficulties, The temperature sensitivity may have
assets, however, since the material can be returned to its
unfoamed state by placing it under high temperature when it is
above Tg. Under these conditions, gas is reabsorbed into
the polymer.

(2) When an article is foamed, it expands. It is difficult to




maintain critical d%hggsfons through a free expansion process.
However, if foam growth is limited. pressure is exerted on the
melt which, in turn, causes the gas supersaturation to de-
-.crease. As will be shown later, the amount of supersatura-
tion strongly influences cell size.

(3) Heat transfer into and out of the foam is slow. If any
process demands large changes in termperature, the cycle times
will be long. For the same reason, the surface can be heated
quickly without changing the temperature of the core. Thus,
surface modifications may be made without distorting the
part.

These characteristics are not peculiar to microcellular foam; they are
common to foams in general. The manufacturing methods used for conven-
tionally foamed parts must cope with these factors. To avoid making
major structural changes in a foamed part, the material is often foamed
directly into the final shape. Proper dimensions are usually insured

by 1imiting foam growth. For exampie, foamed parts can be injection
molded by expanding ("cracking") the mold to allcw for foam growth. The
dimensions of the part can be controlled by 1imiting the mold expansion.
Polystyrene foam cups are often made from -pentane-filled beads. The beads
are poured into a mcld and heated. They expand until the mold is
filled.

Many of these problems may arise because process designs have

adhered to the traditional notions of using molds to form parts. The
MIT-Industry Polymer Processing Program is currently developing a

method for forming parts sequentially, much as sheet metal is formed.
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This method may be ideally suited for production of parts made from foam,
since it can accommodate all three requirements. The gross aspects of
the part may be formed before or as the part is foamed. The part may be
allowed to foam freely, without regard to dimensional accurazy. The
final dimensions may be brought within tolerance by surface modifications.

Regretfully, the sequential forming of microcellular parts is not
yet a reality. The current foaming method still poses a severe handi-
cap. The gas is introduced into the plastic by diffusion at room temper-
ature, causing cycle times of about one day. Even raising the temperature
during diffusion only reduces the cycle time to hours, which is im-
practical for commercial applications. It appears that gas must be in-
troduced by a different method.

To make inteiligent guesses about how to modify the process to
shorten the cycle time, but still produce acceptable foam, it is
necessary to understand which aspects of the current process are responsi-
bie for the observed morphology. The remainder of the efforts presented
here are aimed at that goal. First, tests were made on the effects of
changing various process parameters on tensile strength. From this data,
the mos. favorable morphology could be determined. Then the theory of
foam nucleation and growth was examined to determine the phenomena re-
sponsible for creating such foam. Finally, recommendations are made for
modifications to the foaming process. Before launching into these dis-
cussions, however, the process itself will be presented in greater de-
tail, and descriptions will be made of other experimental procedures

used in this investigation.
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IT. EXPERIMENTAL PROCEDURES

The following procedures were used to make and test microcellular

foam.

A. Foaming Process

Precision extruded, 50 mil thick, impact grade polystyrene
sheet (Monsanto, high impact, Kodak Roll #684-1, REX #3222) was placed
in a pressure chamber at room temperature. After the plastic had resided
in the chamber for the desired length of time, it was removed and heated
above Tg in an oven. To keep the delay constant, 6 minutes was allowed
between removal from the pressure chamber and insertion in the oven.

The pressure chamber was 3-1/2 in (3" id) cylindrical tube of
stainless steel which was capped at both ends. To allow access to ihe
inside of the chamber, one of the caps was sealed with an 0-ring and
threaded tightening collar. The chamber was fitted with a gas-release
valve (needle *ype), and iniet hose. The inlet hose was steel mesh
shrouded and rated for 1000 psi. The chamber was also equipped with a
700 psi burst disk. Gas was supplied to the chamber from a cylinder
through a high pressure two-stage regulator (Harris #IC3 with Matheson
gauges P/N 63-3143 and PN 63-3133). Sincz there was no gas flow once the
system was sealed, it was assumed that the pressure within the chamber
was the same as that set on the regulator. Different gases could be
used by changing the cylinder and adapting the regulator.

' The oven was constructed of two horizental 1/4" thick aluminum
plates, 14" wide by 22" long. They were held apart 1/4" by rectangular

aluminum stock inserted between them along the sides. The oven was
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closed by an aluminum flange on the back side, but the front was left
open s¢ the plastic sheet could be inserted. This construction avoided
the large temperature drops which can occur in conventional ovens when
the door is opened. Since the oven chamber was only 1/4" high and since
the other three sides were closed, the temperature was not lowered
significantly by having the front open. Heat was suppliied to the oven
by a Chromalex barrel heater (PHD 10S, 120 V, 1000 W, R47), which was
wrapped around the outsides of the plates (see FiéﬁremII-Za). To prevént
edge effects, insulation was installed between the heater and the edge
of the plates. A West time proportioning temperature controller (Model
802) was used with an iron-constantan thermocouple to regulate the
temperature. With this arrangement, a constant temperature was main-
tained within 1.5°F in the 12" X 6" region shown in Figure II-2h.

For the variable temperature tests which will be discussad later,
the barrel heater was removed, and strip heaters placed on the *tnp and
bottom plates at either side. These were set at different temperatures
and controlled separately. A series of 5 thermocouples instalied be-
tween the two heaters showed that the temperature varied linearly with
distance. The oven plates were uninsulated for the constant tempera-
ture tests (to prevent damage to the barrel heater) and insulated with
fiberglass wool for the variable temperature tests. To facilitate
moving the plastic in and out of the oven, the samples were placed
between two .02 in highly polished aluminum sheets. These could slide
easily in and out of the oven. Mold release (4 Release Agent, Contour

Chemical Co., Woburn, Mass.) was sprayed on the sheets to prevent the
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plastic from sticking and buckling as it expanded.

B. Variation of Process Parameters

To gain insight into éhe phenomena involved in the formation of
foam observations were made of the effects of changing various process
parameters on the morphology and strength of the foam produced.

a) Foaming at Differing Temperatures

Ten samples 3.8 cm X 30.5 cm (1-1/2" X 12") were put together in
the pressure chamber with (350 psi) N, gas for 24 hours. Then, after 6
minutes delay, they were placed side by side in the variable temperature
oven described earlier for 7.5 minutes. The oven temperature varied
linearly from 88°C (190°F) to 116°C (240°C). The foaming temperature
was considered to be the average across any given sample.

b) Foaming for Varying Lengths of Time

Ten 7.6 cm X 15.2 cm (3" X 6") samples were placed in the pressure

chambeyr with NZ gas at 350 psi. They were removed after 24 hours and,

after 6 minutes delay, placed in the oven at 104°C (220-fF). Two
samples were removed after each: 3 min; 5 min; 7.5 min; 10 mins and
15 mins.

c) Varying Durations of Pressurization and Gas Type

Two 7.6 cm X 15.2 cm (3" X 6") samples were placed in the pressure
chamber with.N2 gas for 3 hrs at (350 psi). They were removed and |
after a 6 min delay, put in the oven at 105°C {220°F) for 7.5 mins. .The
process was repeated for various chamber residence times up to 116 hrs

and with NZ’ CO2 and the gas.
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Ficure I1-3 MeasureMeNT oF CeLL DIAMETER
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C. Characterization of Foam Morphology

The foams were characterized by their cell size distribution and
density.

a) Cell Size Distribution

A scanning electron microscopy was used to determine cell size
distribution. The foam was fractured by bending it sharply. It was
- mounted on end in a holder (beéswax seemed to be a successful mounting
medium), and sputtered with gold to form a conductive surface. The
sample was then observed with an electron microscope.
Micrographs were made of regions of the mid-thickness of the sampie. The
cell size distributions were found by measuring the diameter of each cell
in the lower right quadrant of the micrograph, then plotting the number
of cells in each size range. If the cells were not Sperica], the measure-
'ment was made 45" to the major and minor axies, as shown in Figure II-3.
It was assumed that the material fractured through the center of the cells.

b) Density Measuraments

Since some of the foams were quite light, it was difficult to
use the available density measurement system based on fluids. However,
the tensije test specimens were all machined from the same template, so
relative density could be found with reasonable reliability by weighing
the test specimens and dividing by their thickness. Call this quantity
p. Changes in thickness across the sample were generally negligible and
even in extreme cases less than 2%. The actual density can be found by

multiplying the density of the parent material by the ratio of p foam
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to p unfoamed.

p foam

p feamed = p unfoamed AETEE?EEEEH

D. Determination of Tensile Strength

Tensile tests were made in accordance with ASTM specification D 638
(1979, Part 35). The tests were done on Type IV (4.5 in long) specimens.
See Figure II.4 for dimensions. They were pulled on an Instron (model
1125) fitted with a D-cell at a rate of .2in/min at room temperature.

The thickness of the samples were measured with a 1 in micrometer before

they were pulled.
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ITI. STRENGTH OF FOAMS

To determine which factors contribute to the strength of micro-
cellular foams, tensiie strength§ have been measured for foams produced
under a variety of processing conditions. Due to limitations in the
amount of material available, each experiment was done once, and was not
repeated. The results are shown here to give an indication of the trends
exhibited. They should be repeated several times to estimate and im-

prove accuracy.

A. The Effect of Changing Gas Concentration

To attain variation in the gas concentration in the polymer, the
material was left in the pressure chamber for various lengths of time
(see Chapter II for a description of the process and the exgarimental
procedures). Cell size is plotted against concentration (or time in the
pressure chamber) in Figure III-1, and the strength/density ratio is plotted
against time in the pressuré'chémﬁér iﬁ ?igure II1-2. Figure III-3
suggests that larger celled foams are weaker. The primary recommendation
for further improvement in foam strength, therefore, is to reduce the
cell size even more. As concentration increases, density decreases
(Figure III-4). The strength/density ratio is affected by a trade-off
of density with cell size. Although a trend between the ratio and con-
centration is not apparent from the data shown in Figure III-5 it should
be noted that the ratio is greater than that for the parent material.

Here, especially, the experiments should be repeated to clarify this
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data since it will point to an ideal concentration.

B. The Effect of Changing Foaming Temperature

As the temperature at which the foaming takes place increases, the
density decreases (Figure III—65, the cell size increases (Figdre I11-7)
and the strength decreases (Figure III-8). Discussion of the reasons for

this are found in Chapter V, Section A.

C. The Effect of Changing Foaming Time

The data, shown in Figure III-9, has so much scatter that trends of
cell size versus cven time are not distinguishable. From work described
later (Chapter IV, Section C), the cells should be expected to grow about
3% over the period from 3 to 15 minutes (calculated from the graph
IV-21). The strength of the plastic, however, does decrease with the
length of time the plastic is left in the oven \see Figures III-10 and
I1I-11). It is believed that this reduction in strength reflects the
loss of orientation imposed around the cell by nucleation and diffusional

growth.



00—

(®]
(o]
o

|

4
@
o

]

Fraction of parent density

o070

{NnL T R

90 95 100 105 MO 15
Foaming oven temperature (°C)

Ficure I11-6 Density Vs, Foamine Oven Temp




- 36 -~

&
o

ol N
5 & B
n l l

Cell diameter (p)

™
(&)
|

S
WY

Ly WS NN (RN NN N E |

85 90 95 100 05 N0 15
'Fpoming oven temparature (°C)

Ficure 1II-7 CeLL Size Vs. Foamina Oven TeMp

120



- 37 -~

080

£

o

B

®

§ 0.70
5

k]

k5

S |
E

w 060

"

A B ] | | |

90 95 100 105 O S
Foaming oven temperature (°C) |

Ficure 111-8 STRENGTH Vs. Foaming Oven Temp



Cell diameter (i)

- 38 -

] ] | | ] | | !

2 4 ) 8 10 2 4 6
Time in foeming oven (minutes)

Ficure 111-9 CeLL Size Vs, TiMe 1n Foaming OVEN



- 39 -

IO

04—

.02

LOOp—

o
W
o)
|

Strength/density
(normalized: with parent sirength/density=1)
7
T

&
1

T 1 \ L L1

o
R

2 4 6 8 i0 12 4 16
Time in oven(minutes)

Ficure 111-10 STrReEneTH/DENsITY Vs, TimMe In Foaming OVen




- 40 -

1.00

0.95}-

o
©
o
F

Fraction of parent density

2 4 6 8 10 12 14 16
Time in oven(minutes)

Ficure III-11 Density Vs. TIME IN Foaming Oven



- 4] -

IV. THERMODYNAMICS GF FOAM FORMATION

Introduction

The formation of a foam cell occurs in two stages: nucleation and
growth. During the nucleation stage, the bubble embryo grows from a region
of high gas concentration to a stable cell having distinct boundaries. The
cell then grows by diffusion of the gas from the surrounding supersaturated
matrix, and finally by relaxation of the matrix.

To enable a cell to form, the decrease of supersaturation must supply

the energy needed to form the cell and effect the accompanying entropy rise.

Obeying the second law of thermodynamics, the entropy of an isolated system
at constant temperature must increase above {2 dQ/T during an irreversible
process. The excess energy contributed to entropy is a criterion for de-
termining the spontaneity of the process; the areater the energy excess,
the more readily the reaction can take place. Classical nucleation theory

is based on this concept. Under highly irreversible conditions, when large

amounts of excess energy are usurped by entropy, bubbles form quite rapidly.

If the process is reversible, bubbles will be nucleated at a rate of zero
(i.e., they will collapse as quickly as they are formed). If not enough
energy is available to produce the necessary entropy rise, bubbles will not

. form unless energy is added to the system.

A. Determination of Gibb's Free Energy

The amount of excess energy contributed to entropy can be calculated

by combining firsi and second laws of thermodynamics.
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TAS - AE - AW = excess entropic energy > 0 ' (Iv-1)

For a system at constant temperature and pressure, and for which there is
no shaft work (so AW = PAV, pressure times the change in volume), the

excess entropic energy just described is the negative of the change in

Gibb's free energy (G).

B+ PAV - TAS = A6); | (1v-2)
o’ o .

G is defined by
G=U+PV-TS ' (1v-3)

Thus, for a reaction to occur without additional energy input, AG must be
negative. For it to occur rapidly, AG must be large and negative.

The conditions on which AG depends are the concentration of the
gas (X), the solubility of the gas in the matrix (K), the surface energy
coefficient (y), the dynamic modulus (E) of the matrix material, tempera-
ture (T) and the radius of the bubble (R) after nucleation is complete.

Dimensional analysis yields units of energy from the following combinations

of those parameters:

X+ T-RR
KTRYR?

KTRER
YR
ER
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Where R is the universal gas coefficient. Thus, for large bubble radii,
contributions from concentration, solubility and dynamic modu]ué are ex-
pected to dominate the expression for AG. For small bubb]e radii, the
surface energy caefficient and solubility will be more important.

AG will be calculated to understand the contributions of each of
these factors more explicitly. The system tc be used for this calculation
is a volume of solution (Vo) and the gas it contains. The system is as-
sumed both adiabatic and isolated from gas transfer. The volume, Vo, is
such that it supplies all of the gas that bubble needs, but is not larger
than necessary to do this. It is assumed that the system will change
quasistatically from an unfoamed state (state 1) to a state containing one
gas bubble with distinct surface boundaries (state 2). The following
assumptions will also be made:

In state 1:

A) The solution is uniform and ideal (i.e., it follows Henry's
law).

B) The temperature and pressure are uniform throughout the
system.

In state 2:

A) Even though gas has left the solution matrix, the matrix
is incompressible, so the volume of state 2 is Vo plus Vb,
where Vb is the volume of the bubble.

B) The gas contained in the bubble is ideal. The matrix sur-
rounding the bubble is still a uniform, ideal solution (al-
beit with a Tower concentration of gas).

C) The system is adiabatic and temperature change is negligible
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(temperature is therefore still uniform).
D) Pressure is uniform in the solution surrounding the bubble.

One final assumption bears some discussion. It was assumed that the
nucelation process takes place so rapidly that no gas diffuses to the
nucleation site. Such an assumption means that nucleation consists only
of forcing the matrix material from the region which will ultimately be the
bubble, leaving behind the gas which will fiil the bubble. Thus, the
volume of polymer forced from the bubble region héd to contain enough
gas to fill the bubble (plus any residual gas which was ushered out with
the polymer). This means that the initial vclume of the system, chosen to
be only that plastic which supplies gas to the bubble, is that of the
final bubble size. The final volume, V2, of the system is therefore twice
that of the bubble size, or 8/3 nRa. Note that the assumption that no
diffusion takes place means that no concentration gradier.c develops in the
exiting plastic.

The minimum concentration necessary for bubbl2 nucleation is

'y . Wb
xm =7t xR (1v-4)
Where Nb is the number of moles of gas molecules in the bubble, and XR is
the residual gas concentration. Since the gas was assumed ideal,

Pb " Vb
Nb = “RT i (IV—S)

By Henry's law, XR = PbK, where K is a constant determined in Appendix E.
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P
- _b - 1
Xm = gt PbK = Pb (ﬁT-+ K) (1v-6)

Henry's law has been experimentally shown to be a good approximation-for
the polymer-gas systems considered in this work (Frisch, 1965).

The change in Gibb's free energy for the process is the difference
between the free energy of the final and initial states. Calculating the
Gibb's free energy for the first state is fairly straightforward. The
energy stored in the system, E, is simply the internal energy, U. For an

ideal solution of two components,

m
{]
[and
]
nepo

p.n. - PV + TS (1v-7)
1 1T =
where 1, is the chemical potential of the ith component and n; is the
number of molecules of that component (Denbigh, 1968; Hatsopoulos aﬁd
Keenan, 1965). Since the PV and TS erms cancel when this i$ substituted
into the definition of Gibb's free energy,

2
i=1

For the second state, the Gibb's free energy is most easily calcu-
lated by realizing that it is the sum of two parts, the free energy of the
solution (including the surface of the bubble), Gs’ and the free energy of

h s G_.
the gas g
The energy, gs, stored in the solution is the internal energy of

the solution plus the energy stored in the elastic deformation (D) plus

the surface energy (S). So
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2
= 2

Eg Mng - PV + TS+ D+ (1v-9)

i=1

Thus, the Gibb's free energy accommodated in the solution is

o
n
[ e I AV

: 1.11.2n1.2 +D+S (1v-10)

Where the subscript 2 denotes state 2.

The energy contained in the gas in the bubble is the same as that of

a mixture with one component.

E = ugny - PV+TS (1v-11)

where ny is the number of gas molecules in the bubble, and “g is the
chemical potential of the gas. For an ideal gas, the chemical potential
is the potential at a reference pressure (uo) pius the potential arising
from the difference between the actual pressure and the reference pressure

(RT1np),

Mg = U+ RTInp | (1v-12)
Thus, combining equations 11 and 12, the Gibb's free energy for the gas %n

the bubble is,

_ .0
Gg = ung 4+ anT1npb
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The total Gibb's free energy for the system at the second state is

theretore,

[{Ear il gV

62 = GS + Gg = Wng + My n +D+S+n

RT1np
1 1272 b b

(IV-13)

The change in G for the process is the difference between G] and GZ:

AG = G

[ LI g B S ]

- 0 .
- G] = nb + anT1npb + i

1
13 o B AN

uy Ny (IV-14)

T 17

Since the solutions follow Henry's law. it is possible to substitute
more meaningful expressions for the chemical potential, namely, express
u in terms of concentration.

First, the summation terms can be simplifiad by making the assump-
tion that the gas concentration {is low. Thus, as the gas leaves, the con-
centration of polystyrene does not change significantly. Since the numbe:

of polystyrene molecules wremains constant, n is the same for state one

ps'ps
and state two. Those terms carcel, l2aving

0 . \
G = + +D+S - + n RT1 1v-15
A Wony ugzng2 D+S ug]n91 n RTinp, (1v-15)

For any component of an ideal solution, the chemical potential is the

potential of that component alone plus ths potential gained due to mixing.
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B = u* + RTInX

where X is the concentration of the gas, and u* is the chemical potential

of the pure component. So,

r = 4,0 _ *
AG unp + anT1npb + ngz(u* + RT]nXZ) ng p* + RTInX, + D+ S

] 1

(IV-16)
This can be mad2 simpler still. Since the solution is ideal, there
is no interaction between the gas and the plastic. The gas will behave
as though it were in a mixture of ideal gases, and its chemical potential
can be expressed as that of one component of an ideal gas mixture.

w o= 1%+ RTInp,

(where P; is the partial pressure of the gas). Therefore, AG can also

be expressed as
A6 = o0 + nRTInp,. + n_ (u® + RTInp,) - n_ (u° + RTInp,)
b b b 9, b 9, 1

+D+S (1v-17)

T. Note that RTInX is negative since X < 1, so the chemical potential
actually decreases when substances are mixed. This is because entropy
must increase.
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where P is the partial pressure of the gas at state 1.

Since ng = n_ +n

1 9 b’

AG ng]RT(lnpb - lnp]) +D+S

ng]RT1n(pb/p,) +D+S (Iv-18)
Henry's law equates p with KX, so

AG = ng].RTln(XZ/X]) +D+ S | (1v-19)

Only those conditions which force this expression to be negative will
allow nucleation to occur. Many of the quantities in the above expression
depend upon the final radius of the nucleated cell. Are there certain
radii which will not be nucleated?

In order to answer this question, it is necessary to express the de-
pendent variab]es in terms of R. A1l of the quantities except T, K, R,
and X, depend upon R. T is assumed in variant. K is a material property
R is the universal gas constant, and X]is an initial condition.

The dependency of Ny s ngz, ng, and X2 can be determined using three
conditions:

1. The number of gas molecules in the system remains fixed.

2. Henry's law applies to the system.

3. The work done by the bubble to the surrounding solution is

fpbdv.
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From condition 1, the number of gas molecules in bubble, ny is the
difference between the number of molecules residing in the final and
initial solutions, ng and n These quantities, n_. and n_ are re-

2 9 9 9
Tated to the concentrations, X] and X2 by,

X.i = n_JV (1v-20a)
X2 = n_/V (Iv-20b)
where V0 is the volume of the polymer solution which supplies gas to the

bubble (an assumption is made that the concentration is uniform through-

out this volume). Since the solution was assumed ideal,
x2 = pb/K (1v-21)

Where Po is the pressure inside the bubble. Thus, expressions for

s Ng s ng , and X2 in terms of R are as follows:

927 9

X2 = pb/K (Iv-22a)
"g] = Vo . X] (1v-22b)
ngz = Vo pb/K f1v-22c)
n, = Vo(pb/K - X]) _ (1v-22d)
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To calculate Pp» consider the work done by the gas in moving the
boundary of the bubble. This work, fpde, goes into deformation plus
surface energy:

Yy
J pdv = D+ (1v-23)
0

where Vb is the volume of the bubble. fpde can be expressed in terms of

R since V = g-ﬂR3.

R’ 2.,
[ P, - 4R°R = D+ (1v-24)
Q
Now, differentiating with respect to R], and realizing that S = 4szy,
%%-= 8mRy
1 dD , 2y
p. = - + (1v-25)
b 4nR2 dR R
dD

To calculate the change of the energy of deformation with R, aR °

use the standard formula,

3
_ z
dD'Ii-]i

v |

11w

Continuity and the assumed incompressibility of the pl=stic will be used
to determine strain as a function of R. The plastic will be modeled as
a Maxwell s0lid to determine stresses from the expressions for strain.
These expressions will be substituted into the above formula so it can

be evaluated.
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The plastic is above Tg so it should be modeled as a visco-elastic
1
plastic solid. The mechanical analog of one example of such a solid is

depicted

3

\friction element

However, for simplicity, the material will be modeled as a Maxwell

solid, -

|| |

In this model, at the instant of loading, the energy is stored elastically,
then is dissipated through viscous deformation. Thus, the work done can

be approximated by just considering the elastic part of the model (the
spring). Although the pressure within the bubble will decrease as the
strained plastic surrounding the bubble relaxes, the approximation will

be reasonable if the inflation takes place rapidly. So, the str..ses will
be approximated by those of an elastic solid using a dynamic modulus, E,
which is assumed to depend only upon temperature. So,

N

The generalized expressions for strain in spherical coordinates

are



e = 2:r,e¢¢ - -}i—:ﬁ + :—" (1V-28a)
€gg = rs:ne §§Q-+ ;£-+ ;9-c0t¢ (1v-28b)
€0 ]7 [rslnq) g:,. * ::e - ;9] (1V-28c)
erp = 5 ;_;9 - ;91 ¥ ‘Fgfi] (1v-28d)
€40 " —;— []?;;Q - ;—e— cosd + rsl’nq) ;j’-] (1v-28e)

As the bubble expands, however, the only movement is in the radial direc-

tion, so.uq> = Uy = 0, and the above expressions reduce to

aur ur
Cr = 3 2S¢ C ¥ " oo (Iv-29a, b)
€0 = fpo - So0 - 0 (1v-29c)

Substituting these expressions back into that for dD,

db = I ;;E Ece v + J ;ﬁ EdegqdV + j ;E-Ed€¢¢dv (1v-30)
v
The strains can be evaluated in terms of R by invoking continuity
and the assumption that the plastic is incompressible. The volume of
plastic which was contained in the bubble must move outward. That volume

must cross a control sphere drawn at any radius, r. From the geometry



shown in Figure IV-1, the volume séan" be expressed as
r+u 2

Vv, = J " 4mrtdr (1v-31a)
r
or
%‘nR3 = %n[(r + ur)3 - r‘3] (1V-31b)

(Note that R is the final bubble radius whereas r is the radial coordinant,

a variable.) The resulting equation,

- 2 2 3 3
0 = 3urr +3urr+(ur--R)

can be solved for U, by using the cubic formula. After the ensuing

algebra, and discarding the imaginary terms,

a = (BB,

From this result, the strains are

R3 -2/3
{] + —3—] -1 (1v-32a)
r-

m
|

rr

(1v-32b)

3)3 2
= - R 1 R & (1¥-32¢)
derr‘ 2 1>+. :5 >
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Fi6ure IV-1 GeoMETRY FOR CALCULATING STRAIN IMPOSED
Bv SPHERICAL GROWTH
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- - R R
de¢¢ = degy = {1 - ___] =3 dr (1v-32d)

These can be substituted into the expression for dD.

23 -2/3 23 -5/3 .
= {1+—§] Al E -2 1+ R L
r r v
v
> (1v-33)
-2/3
3,1/3 3 2
+ 2 [1+B-3—] -15[1-‘*—} R 1dR
3 3
r i r r

Integrating by numerical methods (the program is shown in Appendix F),

1o

dD 12R"Edr (1v-34)

The pressure inside the bubble can therefore be evaluated as

=4 (1v-35)

Substituting this to obtain XZ’ n_, and Nyo

92
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_ 3E . 2y

XZ = K + RK (1v-36a)
- 3E 2%
_ 3E . 2%

nb = Vo[;’ﬁ(' + RK ~ X-l] (IV-36C)

Recall that V0 was defined as the volume of the polymer solution which

supplies gas to the bubble. Since it was assumed that no gas diffuses to

the bubble embryo during nucleation, this volume is %—NRB. So,
= 403
ng] = z 7R X] (1v=-37a)
_ 3 8m 2 -
ngz = 4 ER/K + K YR (IV-37b)
_ 3 8r 2 4 .3 (1v-37¢)
n, = 4 ERV/K + §K'YR - §-nR X1

The two other quantities which depend on R, the surface energy, S,
and the deformational energy, D, have been evaluated during the course

of this discussion.
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S = 47rR2Y (1v-38)
D= PR = 4R’ (1v-39)

A11 of these values can now be substituted into the éxpression for AG to
obtain an expression which depends on R.

3, 2y
4 +

3y 4 3
86 = 3 TRX, RT 1n lf-w-(—]ﬂ— + JER + 4rR%y (1V-40)

The values, X, K, y and E, which do not depend on R are 111 controlled by
the foaming conditions. To determine under what conditions fcam can be
produced, AG was evaluated for incremental values of R and various values
of X], K] y and E. The calculation was made in APL on the MULTICS
systems at MIT. (The program is called PROG and is in Appendix D.)
Typical AG versus R curves are shown in Figure IV-3. For 2 moles/cm3
AG becomes negative at 1.45X 0% (5.7 X 1079 in). In order to
satisfy the energy balance without obtaining energy from external sources,
the cells must nucleate to this raduis. However, AG goes through a
metastable equilibrium point at i.05% 1074 u (4.13)(10’9 in). If
a cluster of gas molecules shouild occur with a raduis greater than this,
say 1.1X 10"4u(even if it had to gain energy from the environment to

reach this configuration), they will be stable and continue to grow.
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Thus, 2.16 X 1073

p is the minimum cell size attainable from these con-
ditions; all smaller embrycs will decrease in size until they are com-
pletely reabsorbed.

What happens if the conditions change? In Figure IV-3, the AG
versus R curves have been plotted for increasing gas concentrations.
Since the energy content of the gas per mole increases as the concentra-
tion increases, the amount of gas needed to overcome the surface ten-
sion decreases. Consequently, the critical radius decreases with in-
creasing concentration. This is plotted in Figure IV-4. Since the
energy released by the gas is a volunetric quantity, roughly propor-
tional to R3 (this is only approximate since the final concentration is
a function 6f R), and the surface energy is proportional to R2, the
curve is a hyperbola. This is shown more clearly on the log-log plot
in Figure IV-5.

Also involved in “he energy balance (and hence the expression for
AG) is the deformational energy. This is aiso a volumetric term, as
shown by the dimensional analysis discussed eariier. This term sub-
tracts from the energy gained by reducing the gas concentration, and the
resulting quantity must overcome the increase in surface energy. If

3, oR? and SR?

CR™, DR are the energies associated with concentration charge,

deformation, and surface formation, respectively, then
(C - DJR® - SR® > 0 (1v-41)

In the piot of critical radius versus concentration, only C was allowed
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to change. If C is held constant, instead,and D is increased, then the
energy gained per mole of gas evolved decreases. Thus, the critical

radius must grow larger and larger until finally, D equals C, and foam
can no longer be produced. A plot of this is in Figure IV-6. This is

why cells do not form untii the supersaturated plastic is heated.

B. “Production of Cell Size Distributions

During the preceeding discussion, it was shown that nucleated
cells must be larger than some minimum size. This size was determined
for various conditions. Of more interest however, is the size to which
these cells grow after they have been nucleated and the distribution the
sizes will follow.

Bubbles may be nucleated so long as the appropriate conditions
prevail. If the conditions prevail for five minutes, then the bubbles
formed initially will have five minutes more diffusion than those formed
at the end of the time. To determine the cell size distribution, there-
fore, it is necessary to determine the rate of nucleation and how much
gas diffuses to}the cells per unit time (their growth rate).

a) The Rate of Nucleation

In order to determine the nucleation rate, one must rely on
statistical mechanics. Homogeneous nucleation theory was first estab-
lished for condensation of droplets from the vapor phase, and then ex-
tended to other systems. The original theory was developed by Voimer
(1939), Farkas (1922), Becker and Doring (1935) and Zeldovich {1943).

They based their work on Gibb's realization that the spontaneity of a
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process is proportional to exp (-AG/kT). Excellent reviews of the

developient of nucleation theory have been made by Zettlemoyer (1969),

Blander and Katz (1975), Cole (1974), Reid (1978), and Russell (1980).
The crucial question in determining the rate of nucleation is

"how often does a cluster of gas molecules grow large enough to exceed

the critical radius?" Following the derivation of Zeldovich (1949) to

determine this, one must look at the rate nucleii grow as a function

of size. The net rate at which bubble embryos one molecule smaller than

the critical size gain that last molecule is the nucleation rate. The

embryo growth rate can be expressed as the difference between the rate

molecules join the cluster and the rate they leave. If the joining

rate per unit surface is B, and the Tleaving rate y, f is the distribution

of nuclei sizes,and n is the size of a critical cell, the rate of cell

nucleation, J, equals

J = f(n-1) 8(n-1) S(n-1) - f(n) y(n) S(n) (T7-42)

where S(n) is the surface area of a cell of size n.
For a dilute substance dissolved in a 1iquid, Reiss (1950) has

shownvthat

where D is the diffusion rate and [2| is the mean jump length, and can

be approximated by the distance between equilibrium positions in the
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liquid lattice. In the case of a polymer, this would be the mean dis-

tance between adjacent molecules (see Figure IV-7). Assuming that the

styrene units are uniformly distributed throughout the volume, each

polystyrene unit has 1.23 X 10722

ml associated with it. If they are
uniformly packed, each unit is in the center of a sphere, and the dis-
tance between units is 6.9 X 1070 cm. This will be slightly lower
than the distance between polymer chains since the units will be
packed more tightly along the molecular axis. Howéver; the bulkiness
of the unit was not taken into consideration. Neither B, Sc, No nor

Z need to be known with great accuracy since the exponential factor

will dominate the equation. Bc is therefore approximately

)
6.91 X 1078 cm

w0
i
roj W

. X (IV743)

D is the diftusion coefficient and is discussed in Appendix F. X is
the concentration of the gas in the polymer and is a variable.

The rate at which gas molecules leave the embryo can be determined
for equilibrium conditions when the nucleus does not grow. It is as-
sumed that this rate remains the same independent of whether an equili-
brium number df bubbles exists or not. Still following the derivation

of Zeldovich (1949), at equilbrium,
J = 0 = N(n-1) B(n-1) S(n-1) - N(n) v(n) S(n) (1v-44)

where N(n) is the equilibrium number of nucleii of size n. Thus,
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y(n) = ”(”",‘ﬂ’ms‘gg,‘)g B(n-1) (1V-45)

Using this value for non-equilibrium situations,

Ca
1}

F(n-1) B(n-1) S(n-1) - (n) N(”']&(ig“;z%)s(”") S(n) (IV-45a)

= N(n-1) B(n-1) 5(n-1) ,ﬂ—((%f}—)y - ,ﬁ—é—%} (I1V-46h)
i
If r >> 1, this may be regarded as a derivitive.
_ d (f
Jo= NGBS, dn [N] (1V-47)

c

where the subscript ¢ indicates that the quantity be that at the critical
radius.

As equiiibrium, the number of nuclii of critical size is given

by
N(n) = N, exp (19%431) {1v-48)

where No is the number density of the available nucleation sites in the
Tiquid.

Writing in a more explicit form, one obtains a differential

equation
-AG 3 d
J = -No exp AK-§-n)]. 7 D X. SC a‘n— '—f—_'—f (IV~49)
J [2] N, exp £r=

c
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N,» K, T, D and |2| are all constants. &G, and S_ depend upon

X, and were calculated already during the determination of the critical

radius.

Equation 47 can be solved by integration over all embryo sizes

from 0 to infinity. At very small sizes, f is very close to equilibrium,

so £/N = 1. At large sizes, f is small compared to N, so f/N = 0. The

integration of Equation IV-47 is therefore

@ 0
dn  _ 1T ,(f} .1
J b - . f j‘d{'N'] 1 (1V-50) .

0 1 (IV-51)

Assuming that the rate of nucTeation is independent from the similarity
of the actual cell distribution to the equilibrium distribution,

[co
Jo
however, by approximatioa using a Taylor's expansion for AG.

ﬁ%ﬁ' can be solved numerically. More insight will be gained,

Since
the integrand, 'I/BSN0 exp [k?a » has a narrow peak centered around Ne

(i.e., around R), an expansion about Ne is satisfactory.

. a2ag) (M ¢ )?
AG = AGC+[ } 5 (1V-52)

r
(The E%%% term is zero since AG is maximum at the critical point).
' c

Likewise, B and S can be approximated by their critical values. Moving

what is constant in front of thas integral sign,

A5 .
¥l - tmmvacm— 9
. ©xp [ KT } 3°46,) (n - nc)2
I exp :
0

N gné KT dn . (IV-53)
c’co
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2
Because AG is a maximum at the critical point, 9—%9} is nega-
o

an
tive. The integral therefore involves a gamma function:

® 2,2
-at 1 1, _ 1
f e dt = 23 T (50 = ?E'/ ™ (Iv-54)
0
where
a/[ﬁg@] N
2RT
anc
and t = n - .-
So the nucleation rate is
4G, ///- 324
J = chScNo exp B - g;ﬁ-c / 2kRTm . (Iv-55)

As stated before, B is the rate gas molecules strike the bubble

surface,

=
w

D
6.91 X 1078 cm

g = 3 Ly -3 X (1v-56)

N

SC is the surface area of a critical bubble, or 3/4 « Rz N0 is the.
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density of locations (potential sites for bubble nucleation. A potential
site is any free volume {(i.e., volume unoccupied by polymer) in the
matrix which is large enough to contain a gas molecule. The number of
such sites can be estimated by assuming that their size follows a
Gaussian distribution, and that the sum of the volume of all such sites
equals the total free volume of the material (this assumes that the
total volume of sites smaller than one gas molecule is negligible).
Using nitrogen in polystyrene as a typical example, the volume of one
N2 molecule is 6.59 X ]0'2"4 ml and the_vo]ume of one mer of poly-

styrene, 1.32 X 10-23 ml. Since the dehsjty of polystyrene is about

21

one gm/ml, the total number of sites, No’ is approximately 7 X 10" sites/

cm3. This compares favorably with the value of 4 X 102]

cavities/ml
for hydrogen in polyethylene found by Frisch (1965).

Unfortunately, when the program is run with the values typical of
those which produce foam in the laboratory, the rate of nucleation pre-
dicted is negligible. For nucleation to be appreciable, the change
in Gibb's free energy between the initial state and the state with a
cell of critical radius must not be greater than about 60 RT. This was
shown by the program results and mentioned by Russell {1980). 1In the
laboratory, polystyrene was foamed at 117°C (390°K) after having been

exposed to 2.4 X 107

dynes/cm2 (350 psi) N, gas for 24 hrs. The con-
centration_of gas in the polystyrene is not greater than 0.0306 mglgg/cm3
(0.00187 mglgg/ing) which is the saturation concentration at 2.4 X 107
gxggg/cmz. The dynamic modulus of the material at 393°C is 158 psi

(Waldman, 1980 ) (Tested on the same run of extruded material as was
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used for the expariments reported in this work). According to experimen-
tal and theoretical work by Wu (1970), the surface epergy co-

efficient for polystyrene is 33 dynes/cm (1.9 X 1074 1b/in). However,
looking at the program results, nucleation is predicted insignificant

for concentrations equal to or less than 4.3 X 10'5 moles/cm3, even with

a modulus of 0 and surface tension as low as 7 dynes/cm (one-fifth of that
of polystyrene). The presence of rubber particies lowers the surface
energy. Rubber, itself, has a surface tension of 25 dynes/cm (calculated by
the parachor method in Appendix A), so the interfacial tension is 8
dynes/cm. The energy stored in this interface contributes to the forma-
tion of cells forming there. In the extreme, if the cell could form

its surface entirely from interfacial surface, the value for surface
tension which should be used in the calculation is 17 dynes/cm

(8.46 X 1073 1b/in) which is still more than twice as high as the
value predicted acceptable.

Since the prediction is so far ia error, it suggests a flaw in
the theory. It may be that the classical nurieation theory does not
apply to this case. Larger radii are associated with slower nucleation
rates, but even for rates so slow that nucleation is not appreciab1e
(the change of Gibb's free energy > 60 kT), the critical radii are
smaller than 25 K (1 X 1077 in). A lower bound to the average distance
between polymer chains was estimated to be about 7 R (see page 65).
Since the size ot the voids in between the polymer molecules follows a
random distribution, it is conceivable that voids exist which are the

size uf the critical radius. The actual distribution of cavities
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as a function of size should be determined to see if this argument is
~plausible. Since this requires extensive study of the conformational
stetistics of polymer chains, it is beyond the scope of this work. It
is also questionable whether the concept of surface energy can still
be empluyed, or whether Gibb's free znergy must likewise be calculated
from statistical considerations.

b) Growth by Diffusion

Once they are nucleated, cells grow by diffusion from the matrix.
It was assumed that each cell is surrounded by a diffusion zone across
which no gas flows, that all diffusion zones are the same size, and that
they are arranged in a close-packed configuration. The size of the zones
is determined only by cell density.

This mode has several limitations which restrict it to short
diffusion times. First of ail, it does not take into account the fact
that larger cells have lower internal pressures and thus higher potential
for diffusion (Hobbs, 1975). Also, it does not account for the move-
ment of gas not in a diffusion zone, and it makes The assumption that
the cells are regularly spaced.

The concentration distribution is found by applying the diffusion
equation to the diffusion zone. Since the region was spherical and
uniform, advantage can be taken of the symettry to drop the angular

terms, leaving

Q
>

(1v-57)
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The boundary conditions for the zone are that the concentration at the
edge of the cell is the solubility, K, times the pressure in the cell.
The restriction that no gas can cross the outside boundary of the zone
imposes the condition that the concentration gradient be zero at that
boundary. The initial condition is the concentration gradient shown in
Figure IV-9. The concentration has the initial value, Co, everywhere
except in the depleted region, as shown.

This was solved with a series solution (Hildebrandt, 1964). The
particular solutions were of the form:

2.t

Ae")\v
X(re) = 2—— |-tan(AR)cos(Ar) + sin(ir) (1v-58)

and orthogonal in the region of interest. ) was found from the character-

istic equation

tan(}r]) - Ar]
XFitan(ary) F 1 (1v-59)

tanAR

The coefficients, AA’ were found from

" )

Co I r drkk(r)

. R
AA = = (1v-60)
L 2
r drRA(r)
R

where
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The average of all " <+ 's" is |&]|, the mean jump length.

Ficure IV-7 Mean Jump LENGTH
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_=tan(AR)cosAr + sinir
RA = r —- (IV-€1)

For typical values, the first four terms at t = 0 are shown in
Ficure IV-1C.

c) A Computer Model

A model was developed which combines nucleation rate with diffu-
sional growth to determine the celi size distribution. It was programmed
on the MULTICS system at MIT in APL.

For successive time increments, the program catculates the
number of cells nucleated and the diffusional growth which occurs during
each increment. Since the cells first nucleatedwill grow largest (and
since the amount of diffusion depends on the radius of the cell), the
amount of growth is calculated separately for each time increment, the gas
concentration is adjusted to account for the nucleation and growth. The
program and a detailed discussion of it are found in Appendix C.

The program uses search routines to determine the A's in the dif-
fusion equation. Unfortunately, after the program was completed in APL,
it was found that the number of A's needed toc obtain sufficiently accurate
concentration profiles was higr (at least'12). Since the search routines
arelengthy (~ 3 hours), obtaining the cell siza distribution for one set
of conditions would take the batter part of a weekend. Neither the time
nor the computer funds were available for a complete set of data points
calculated this way. Although the work could be reprogrammed in a more
efficient language, enough had been learned about the calculation to

enable making some additional assumptions and doing part of the caicula-
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tion by hand. The assumptions and calculation methods will be desribed,
followed by a description of the results.

Before delving into that topic, however, it is important to realize
that there are three stages during foam formation and growth: nucleation,
diffusional growth, and matrix relaxation. Nucleation is the transforma-
tion of small clusters of gas molecules to energetically stable pockets
of molecules with distinct cell walls. The second stage is that of dif-
fusional growth. During this period the bulk of the gas moves out of the
matrix and into the cells until equilibrium exists between the concentra-
tion of gas in the matrix and the internal pressure in the cells. The
third stage is growth by relaxation of the matrix. Relaxational growth
allows the material around the cells to lose its orientation, whereas
rucleation and deformational growth both impose orientation.

The program follows foam formation through the first two periods.
It determines the number of cells nucleated, then calculates the amount
of gas which diffuses to each cell. It is important to gain an accurate
estimate of the total number of cells nucieated to be able to predict
their final size.

The program uses classical nucieation theory to predict the cell
nucleation rate from concentration and cther system parameters {(-ee
Section IV.B.aY. That theory shows that the ultimate cell density is
limited by the gas concentration in the matrix. Only when the concentra-
tion exceeds a certain minimum value will nucleation occur. It was as-
sumed that nucleation does occur, even when the concentration exceeds the

Timit only locally. Nucieated cells deplete the local region of gas and
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attract gas by diffusion. Between the cells, the concentration will
drop with time. Thus, the ultimate cell density depends heavily on both
‘the Gibb's free energy barrier and the rate of diffusion of the Jas
through the matrix.

ihree regimes of foaming behavior can be established by comparing
the nucleation rate with the rate of diffusian. When the nucieation rate

12 ce]ls/ingu)+hefew cells which nucleate are

is slow (Iess than 2 X 10
widespread, and it takes a long time for diffusion to bring the system
into equilibrium. By the time equilibrium is reached, relaxation of
the matrix is already significant. Such low nucleation rates produce
foars of poor quality with large, widely spaced cells. 1If fhe nucleation
rate is high, cells will develop sofast that the diffusion length
( /"Dt where t is the duration of nucleation) is less than the thick-
ness of the depleted region. In this case, nucleation is halted when
depleted regions interfere with each othar, For intermediate nucleation
rates (greater than 2 X 109 and less than 2 % 1016 ce11s/in3 sec for
the nolystyrene - N2 system studied) diffusion is of the same order as
the rate of nucleation. The diffusicn process is well underway by the
time nucleation stops. In fact, nucleation halts because diffusion
significantly lowers the gas concentration in the matrix.

The program is most successful in the middle regime. For high or
Tow rates of nucleation, simplifying assumptions make the computer pro-

gram inapplicable.

Since the program does not make a detailed analysis of the concen-
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tration distribution in the depleted region, its estimate of the final
cell density in quickly nucleated foams is dictated by an arbitrary choice
of concentration distribution. A simrler and more consicstant method for
calculating the ultimate cell densities in these foams is to assume that
nucieationhalts once the depleted regions interfere with one another.
This can be calculated easily by hand.

The total number of cells nucleated can be estimated by assuming
a close packed configuration of spheres the size of the depleted region.
Using the argument as proposed in Appendix B to calculate the distance

between closepacked cells,

1

p cell = -————————7;— (1v-62)
4 vy 2 r4

where here, rqs is the radius of the depleted region. For one unit
volume of completely nucleated foam, the gaseous volume is

3

7R (1v-63)

w]e

p cell --

where R is the cell radius. The remaining volume is the matrix, so

3

P 1 -pcell - %-wR

1 - 4R’

12 szm .rg

(1v-64)
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Recalling that the depleted volume is the same as the bubble volume,
rq =R V2 (1v-65)
and

I R o (1V-66)

1 ;o1 | s.aa0

Y 3
87 2 n 6/ 2 w} T4

cells (1v-67)

per original unit volume of pclymer. A typical nucleation radius for the
fast regime is 5.08 X 10'4 n (2 X 1078 in). In this case, the cell
density will be 4.15 X 102 cells/cm® sec (6.8 X 1023 cells/in3 sec).

For low nucleation rates, the computer model does not take relaxa-
tion of the plastic into account, and therefore will over estimate the
cell density. This matter could be corrected by incorporating a
modulus which changes with time. For these systems, however, cell
growth is such a major factor that it would also be necessary to keep
track of cell "pirating." This is the phenomena in which large cells
draw gas from smaller cnes by diffusion. Since the larger cells have

Tower internal pressures, a concentration gradient is set up between



- 84 -
them and the smaller cells. To account for this, it is necessary to

abandon the assumption that all cells have identically sized diffusion
zones and allow the size of the diffusion zone to varj with cell size and
the Tocal configuration of cells (each having a different diameter). This
introduces a great deal of complication into the program. Making an
intelligent assumption of a "typical" local cell configuration can

be tricky. Once it has been established, the size of the diffusion zones
can be obtained from the condition that the boundary concentrations of
adjacent regions must match. Hopefully, it would be possibie to conceive
of a packing configuration so that the diffusion regions could be assumed
spherical, otherwise the calculation would become even miore hopelessly
complicated.

‘Since the foams resulting from the slow nucleation regime will have
large cell sizes and consequently poor quality, a detailed accounting of
them was not consideréd worth the effort. Instead, the conditions for
which this regime occurs have been mapped in Figure IV-11 and IV-12.

The computer programs is useful for predicting the qualities of
foam in the intermediate nucleation regime. The program is described in
full in Appendix C. Because of the extensive calculation time already
mentioned, the rates of nucleation for various conditions and diffusion
rates were calculated independently, then were cooruinated by hand.

The subroutine (or function) which finds the nucleation rate is
PROG. In accordance with the classical nucleation theory discussed
earlier, the change of Gibb's free energy (AG) for bubbles of different
sizes is detarmined. The maximum AG is the activation energy which

must be overcome to produce a stable bubble nucleus. The rate of nuclea-
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To read Figures IV-11to IV-13.

The nuciéation regime is determined by four variables. To de-
termine if a state is in the fast nuc1eétion regime, pick the graph in
accordance with the system's temperature, then find the point correspond-
ing to the surface tension and modulus. The concentration must be above
that of the equi-concentration 1ine running through that point. Use
the same procedure for slow nucleation, except the concentration must be

below that of the equi-concentration line running through that point.
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tion follows an Arrehenius relationship. The cell size for which AG

is a maximum is called the critical radius, and it is assumed that newly
hucleated cells are this size. The rate of nucleatiun depends upon the
size of the diffusion zone, the size of the cell (actually the pressure
within it), and, of course, the diffusion coefficient. The size of the
diffusion zone is calculated from the cell density by assuming that the
zones are all the same size and closepacked. A method to calculate the
size of the zone is shown in Appendix B. As mentioned before, using dif-
fusion zones which are.all the same size predicts cells of only one size.
This is acceptable, however, since in this regime, variations in

nucleus size are less than 5%. As discussed in Section IV.B.b, the
diffusion equation was solved for the conditions that the radial derivi-
tive of the radial derivitive c¢f the concentration distribution at the
outside boundary is zero, and that the concentration at the edge of the

bubble is

co - pressureKin bubble (1v-68)

For the initial condition, the concentration profile shown in Figure IV-9
was used. The sloped region (r = R to ro) represents the region depleted
during nucleation. As an easy and crude approximation, it was assumed to
be 1/10 of the outside radius of the depleted zone. Actually, its thick-
ness is .288 X R.

Once tables of diffusion and nucleation rates were obtained, itera-

tions to calculate the final cell density were made by hand. An initial
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time step was chosen so that at least 1% of the final number of cells

would be produced in subsequent time steps. The later time steps were
generally somewhat shorter to gain an accurate estimate of the cell
density. The number of ce]]s‘produced per unit volume during each time
step was added until the increase was insignificant. As long as the

above procedure was followed, variations in time step did not significantly
alter the results.

Graphs of cell density versus critical parameters for this nuclea-
tion regimeare shown in Figure 1v-14, IV-15, ivV-16, and IV-17.

Once an estimate has been made of the number of cells nucleated,
diffusional and relaxational growth can be predicted.

Diffusional growth stops once pressure equilibrium is attained
between the cells and the gas in the surrounding matrix. The size of the
cells at this point can be calculated by determining the excess of gas
between the initial concentration and the final equilibrium, then divid-
ing by the number of cells per unit volume. If the concentration is in
moles, this can be converted to cell volume (or radius) by the ideal gas
law. However, because the pressure of the cell (and hence the equilibrium
pressure) is dependent on the cell size, the expression for R is a quartic
equation:

C
1 = 0 1 -%-T—-‘-?’—~ (1V-69)

1
2y . E K| R74"- mp
R T.7 14.T c

This was solved by computer (the program is in Appendix D). The resulting
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cell sizes are shown in Figures IV-18 to IV-20.

The above expression can be used to calculate the relaxational growth
as well, simply by allowing the modulus to change with time. Graphs of
cell size versus time {or modulus) are in Figure IV-22 to Figure IV-25.

This model, as every other, has its limitations. These must be
recognized and understood before the model can be used with confidence.

One of the most important limitations has already been discussed
at length. For the polymer system described, the critical radius pre-
dicted by classical nucleation theory has sub-atcmic dimensions. This
indicates that a non-classical theory of nucleation must be employed and
that perhaps even.the concept of nucleation rate is questionable.

‘ If the program is considered despite this flaw or applied to systems
whose critical cell size does not fall within this regime, there are

other limitations to be realized. One important assumption is that.the
reaction occurs isothermally. Because of the speed of both nucleation and
diffusion, the gas is rapidly decompressed. Since the gas must be re-
heated, and since the material around the edge of the cell may be cooled
(thereby experiencing an increase in modulus), the energy required to

foam the plastic is underestimated by the model. Also, the rapid ex-
pansion sheds doubt on the expression for Gibb's free energy used in the
nucleation theory. The expression does not account for momentum effects,
or the energy needed to overcome increases in modulus due to high strain
rates. Again, the prediction of the energy needed for nucleation is

too Tow.

In addition to the shortcomings of the nucleation theory, the
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theory describing the diffusional growth deviates from nature by not ac-

counting for the change of bubble pressure as the bubble grows. To take
this. into account would result in a differential equation different from

| that of Fourier, and one more difficult to solve. The approximation used

gives a lower estimate of the size of the cell, since as the bubble grows,

the pressure in the cell decreases, allowing more gas to be driven into

the cell. Also, diffusion would occur at a faster rate than predicted.

The discrepancies .just described are those between the theoretical
bases of the model and nature. In addition to these, there are also
simplifications introduced to be able to express the theory in a computer
program.

As already discussed, the program assumes that the cells reorganize
themselves into a close packed configuration. In addition, the mode]
assumes that there are always enough sites toc sustain nucleation at the
classically predicted rate. As with the quasi-steady assumptions, this
will also predict a value of Gibb's free energy that is too low, and

thus over estimate the cell density.
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V. RESULTS

Temperature, modulus, concentration, solubility, surface energy
and diffusion coefficient: all of these play major roles in ithe growth
of cellular foam. To design successful foaming processes, it is important

to understand the role of each.

A. Temperature and Modulus

a) Nucleation

Since the energy of mixing is proportional to RT 1In X/Xz, high
temperatures during nucleation yield a high energy of gas supersaturation.
This leads to high densities of small cells, as shown in Figure IV-15.
Sinze the modulus is low when temperature is nhigh, 1ittle energy is spent
deforming the matrix, and the trend of increasing densities of smaller
cells with higher temperatures is intensified (cell density versus
modulus for constant temperature is shown in Figure IV-16, for moduli
which depend upon temperature, see Figure V-1). It should be noted, how-
ever, that increasing temperature also causes an increase in the diffu-
sion coefficient. For the slow and intermediate nucleation rate regimes,
higher diffusion rates will hasten cell growth and thus lower density.
For foams produced in the laboratory, all of the material was heated from

room temperature to above T Thus, the temperature of the matrix is

g
increasing during nucleation and growth. Since the gas concentration
and material characteristics remained unchanged while the oven tempera-

ture was varied, modulus and surface tension each dependecd onrly on
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temperature. Thus, nucleation should have begun at the same critical
temperature for each sample, regardless of the final temperature. Since
nucleation is completed in such a short time, the oven temperature is
expected to influence foam formation most during the relaxational growth
regime. Inspection of Figure III-7 substantiates this suggestion; the
size of the cells increases with oven temperature. Since growth was
halted in these systems at 7.5 minutes, the modulus was not zero, but
varied with emperature (see Figure V-3). This would lead to cell sizes
which increase with higher temperafures. For the intermediate systems
analyzed by computer, increasing the diffusion coefficient by half gave
increases in cell density of only 10%. Here the effect of the increase
of moduius with temperature is much more dramatic.

b) Diffusional Growth

During diffusional growth, temperature plays its predominant role
in changing the diffusion coefficient. High temperature, and thus rapid
diffusion is responsible for shorter diffusional growth time. 1In slowly
nucleated systems which have non-uniform cell sizes, high temperature.
causes larger spread in cell size distribution. In these cases, high
temperatures are not desirable during diffusional growth since they .lead
to larger maximum cell size.

c) Relaxational Growth

In this realm, high temperatures, by causing the modulus to be
low, allow bubbles to grow faster and larger. Orientation is destroyed
more readily. For foams in the fast and intermediate nucleation regimes,

the effects of temperature and modulus during nucleation outweigh their
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effect during relaxational growth (see Figure V-2).

B. Initial Concentration

a) Nucleation

Concentration plays its most important role during nucleation.
With higher supersaturation of gas in the matrix, more energy is avail-
able for forming cells and more cells form. Since the residual super-
saturation of gas remaining after nucleation is divided among them, a
higher cell density means smaller cells. Since the amount of residual
gas has little to do with the initial concentration, realizing the initial
gas concentration increases the cell density, decreases cell size, and
improves material properties.

b} Diffusional and relaxational growth

The inérease in cell size during the diffusional growth is baéed
on the excess of gas and the cell density. Since the nucleation rate
depends quite steeply upon conceniration, increasing the initial gas
concentration decreases cell size, as shown in Figure 1v-21. The de-

pendence of cell size on concentration in laboratory produced foam is

‘shown in Figure III-1,

C. Surface Energy

a) Nucleation
Energy must be invested in new surface when cells are formed.
Thus, the number of cells increases as the surface energy coefficient

decreases, while their size decreases. See Figure IV-17.
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b) Diffusional Growth

The surface tension resists growth of the cell and maintains a
pressure difference between the interior and exterior of the cell.
Smaller cells have higher internal pressures than larger ones. In the
sTow regime, which has large bubble size variations, this effect causes
the larger ones to attract gas from the smalier cells. Higher surface
energy coefficients make this undesirable effect more pronounced.

c¢) Relaxational Growth

Since the surface tension resists cell growth, it aids the mechani-
cal properties during this period. However, as cells grow larger, the
effects of surface energy become less and less significant when com-

pared to volumetric quantities, such as modulus.
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VI. CONCLUSIONS

Through the course of this work, the following conclusions have

been reached:

(1)

(2)

A method for producing microcellular foam has been demonstrated.
The material produced has tensile strength which is superior
to that of conventional foam, and which improves as cell size
decreases. However, the method requires long cycie times
which eliminate its usefulness as a commercial process.
Classical nucleation theory was applied to a system consisting
of a polymer matrix supersaturated with a specified amount of
gas to determine the rate of nucleation and ultimate cell
density. The amount of gas diffusing to each cell was esti-
mated, and finally the growth of the cell due to the relaxation
of the matrix was determined. Although applying classical
nucleation theory io polystyrene foams may not be valid, the
theory predicts that high nucleation rates result from large
drops in free energy during foaming. Initial and final condi-
tions which enhaﬁce the free energy drop are favorable for the
production of microcellular foam. These are:

* Increasing initial gas concentration.

*  Decreasing surface tension.

*  Increasing the temperature of the process.

*  Decreasing the modulus of the material.

(3) Foam has three stages of development: nucleation, diffusional
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growth and growth due to matrix relaxation. Since nucleation
will halt once the level of gas supersaturation falls below a
critical value, the type of foam produced depends upon the com-
petition between nucleation and diffusion for available gas.
When nucleation occurs so rapidly that gas diffusion is insig-
ﬁfficant, the cell density will be very high and the amount

of gas which can be absorbed by each cell will be small.

If diffusion and nucleation have similar time constants,
diffusion will reduce the gas concentration between the cells
and ultimately stop nucleation. The foams have intermediate
cell densities and larger cells,. but the distribution of cell
sizes is expected to be fairly narrow.
| If nucleation is extremely slow, relaxational growth will
occur while nucleation and diffusion are taking place. ‘These
foams should have comparatively poor qualities, with low cell
densities, large cells, and a wide distribution of cell sizes.

The number of cells nucleated should be as high as
possible. To achieve this, nucleation should be completed as
quickly as possible. If nucleation is triggered during less
favorable conditions, it does not matter if more favorable
conditions ensue; large cells have already been nucleated and
are growina.

Future Work

There is still much to Tearn. In addition to developing a commer-

cially feasible process for producing microcellular foam, other future
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endeavors are suggested by this work.

The classical theory of homogeneous nucleation theory does not ap-
pear to apply to the -systems studied. The critical nucleii are predicted
to be so small that they are comparable to free volume voids existing in
the polymer. Nucleation should be examined with a more detailed under-
sta~ding of the fluctuations and movements of the polymer chains. Also,
the event occurs so rapidly that the equilibrium assumptions should be
questioned. The model should account for the drop in the temperature of
the material due to the decompression of the gas.

More data is reeded to gain a better quantitative knowledge of the
effects of various process parameters on the morphology and the strength
of the foam produced. Waldman {1980) has already begun work on measuring
the impact strength of the foam. Fracture of foam should be studied, pro-
bably using the concept of J-integrals. Also, it would be instructive to
model the amount of orientation imposed during the formation of a bubble,
how much of it is lost before the foam is cooled, and the effects of such
orientation on strength.

Finally, this foaming method should be tried with other combina-

tions of polymer and gas and adopted for thermo- and chemosets.

By understanding polymer foams more clearly, they may become im-
portant engineering materials, offering improved materials properties and

lower densities.
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Appendix A
SURFACE TENSION OF POLYBUTADIENE AT 120°C

The parachor, P, is a quantity which relates surface tension to

molecular volume, V (or, in this case, mer volume) by

1/4
] (Ap. A.1)

e
v

Values for the parachor can be found by adding contributions from each
atomic group in the mer. A Tist of the contributions of various groups

of atoms have been published (Reid, 1977). For polybutadiene, the

3 1/4
parachor is 145 G%%E; X fﬁ%—} .

is 60.87 cm3/m01e, and the thermal expansion coefficient, 22 X 10~

The molar volume of 25°C

5 /°C.
for a 95°C temparature rise, the mclecular volume increases to a value of
64.77 ca3/mo1e. Using the above formula, the surface tension of 120°C is

25.12 dynes/cm (1.43 X 10—4 1b/in).
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Appendix B
DETERMINATION OF T4 (OUTR)

It was assumed that each bubble is surrounded by a spherical
"diffusion region" (a control volume which gas neither enters nor
leaves), and that all the regions are the same size, regardless of the
size of the cell within. It was also assumed that the regions formed
a close-packed configuration. For a standard unit cube of a close-packed
matrix, there is a sphere (radius rd) at each ccrner and the center of

each face, so

4r§ a .2 (Ap. B.1)

(Ap. B.2)

il
<Y

/7,

Since there are 4 cells per cube (which has side-length 2a), the cell

density is

p cell = —£§-= —13- (Ap. B.3)

Substituting A for a,
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o cell = 1 . -] (Ap. B.4)
2[/ 2‘] rg 4/ 2 rg
_
5.657 ri

In the program, rqe is called OUTR.
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Appendix C

COMPUTER CALCULATION OF CELL SIZE DISTRIBUTION

This appendix describes the computer program designed to calculate
the cell size distribution corresponding to specified processing or
material parameters (modulus, temperature, surface tension, initial aas
concentration, diffusion coefficient, solubility, etc.). The main pro-
gram is described first, followed by the subroutines. The subroutine
scheme is shown in Figure A-C-1, and the program is listed starting

on page 134 The program was written in APL on the MIT MULTICS system,

A. Main Program - CELDIST

1.  Input Section

The first section of the program simply establishes the input
parameters, and pre-sets certain incrementing values. The conditions are
pfinted before the distribution caiculation is made. Ther version shown
increments through modulus and temperature, calculating the cell size
distribution for each set of parameters.

2. Nucleation Section

The purpose of the second section is to determine the humber of
cells nucleated during each time increment. First, however, it determines
the concentration at which the concentration at which the rate of nuclea-
would be negligible (CRITCON: found by the subroutine CUTCONC), so that
a test can be made to see if nucleation will occur (line 45). Secondly,

it chooses a time step of a fraction the time it would take to double



- 124 -

Subrcutine Scheme

Main Program 1st Sublevel 2nd Sublevel 3rd Sublevel
CELDIST ~ CUTONC CRITRAD
GIBBS
RATE
PROG CRITRAD
GIBBS
RATE
DIFF LAMDA
GASIN
T S
NEWSIZE
DONELY GASIN
NEWSIZE

CONCEN
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the volume of the matrix. (This is chosen because of the gas-volume
condition described previously.) Finally, the number of cells nucleated
during that time step is determined. PROG is the function which finds
the nucleation rate as well as the critical radius, R and the change of
Gibb's free energy, G. The number of cells nucleated is found by multi-
plying the rate by the length of the time increment (lire 84). A count
is made (line 75) to be able to keep track of the nucleation groups.
(This will be used later to index a matrix containing the pertinent
information about each group.)

3. Diffusional Growth Section

The growth of the cells by diffusion is calculated using the
solution determined in Chapter IV, Section B.

To determine the growth of the cells by diffusion, each cell was
assumed to be in a spherical region across which no gas flows. These
regions are assumed to be close-packed, and their radius is calculated
by lines 93 and 94. TOTCEL is the total number of cells per cubic thou.
From the arguments in Appendix B, the radius of the diffusion sphere,
OUTR, is (1/4 v 2~ ToTCEL)'/3 . The solution found to the diffusion
equation is the sum of a series of partial solutions, each having a
different separation constant xn, and summing coefficients Akn. The
details of finding the A's and the Ax's and incorporating them all into
a summed solution of the flow of gas (M) into the cell is all included
in the function (subroutine) DIFF (1ine 110), which depends on the number

of the group and the size of the cell. The codes between lines 93 and 110

establish the concentration gradient surrounding newly nucleated cells.
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This gradient is shown in Figure IV-9. It is divided into 10 segments;
those in the depleted region are attributed a zero CONC (1ine 105)
(PRESS/K,'the actual concentration at the boundary of the cell will be
added to the final solution.) The segment containing the boundary of
the depleted zone is slanted between 0 and the initial concentration (so
its slope is initial CONC/segment Tength. 3egment lengtn is called CHRI
in the praoram (see line 96). The remaining segments are at the initial
concentration. This scheme is facilitated by initially assigning the
jnitial concentration to all of the points in CONSSAVE (the values in
CONSAVE represent the concentrations at the end points of each segment

- this would make 11. The twelfth vaiué js simply used as a place to
store the segment length, CHRI, since it will be needed for later
reference. CONSAVE [12] is reassigned in line 101. The loop (LOUP)
assigns 0 to points in CONSAVE from the cell radius out until the
numbers of segments exceeds that which fit into the depleted region
(1ine 104 and 98).

Once DIFF has established the flux of gas into the cell, NEWSIZE
determines the cell size after all this gas has been added. The first
part of the section (1lines 91 to 117} calculates the diffusional growth
of newly nucleated cells, and lines 120 to 132 calculate the growth
of previously nucleated cells. For diffusion into groups of cells which
are not newly nucleated, DIFF is also used, but this time, the initial
concentration is that established during the previous time increment.
The LOOP which evaluates growth of these cells extends from lines 120

to 132. The concentration used for calculating the next nucleation rate
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i< that at the outside edge of the diffusion boundary of the first group
of cells. When these calculations are completed a new time is assigned
(1ine 121) and the concentration is re-evaluated. Once nucleation’is

complete, cell growth is determined by DONELY.

B. Subrgutines

1. PROG

PROG unites the three functions: CRITRAD, GIBBS and RATE, to
establish the rate of nucleation, critical radius, and the change of
Gibb's free energy during nucleation. If CRITRAD does not find &
critical radius {R = 0), then the computer returns to the main program
(where it is aborted again).

2. CUTCONC

CUTCONC also unites CRITRAD, GIBBS and RATE, but this fime incre-
ments DOCON from the initial concentration to determine the concentration
at which nucleation will become negligible

3. DIFF

DIFF calculates the flow of gas into the cell (in moles per cell)
by calling three other functions, LAMDA, EQCOEF and GASIN. As already
mentioned, the flux of gas into the cell is calculated by solving diffu-
sion equation for a spherical region surrounding the cell with insulated
boundary conditions, then applying Fourier's equation at the cell
boundary. The basis for the insular condition is the assumption that
gas will diffuse only to the closest cell, and therefore, there are

boundaries between the cells across which flow will not occur. The pro-



- 128 -

gram assumes that this boundary is midway between any two cells, although
fhis is not true for cells of widely varying radius, where the boundary
is much closer to the smaller cell. If the discrepancy is large enough,
gas will actually leave the smaller cell and go to the larger one.
This is discussed in Chapter V. The subroutine calculates the first 8
values of A (1line 1), then the values of A (1ine 9 and 10) determines
the flux of gas into the cell (Tine i3) and the new cell size (line 14).
Finally, it sores the values of X and A in AAUGH and EQMAT, and the re-
sulting concentration by calling SAVECONC.

4. NEWSIZE

NEWSIZE uses the ideal gas law to approximate the amount of gas
already residing in a cell. To that amount is added the gas which has
flowed into the cell during the last time increment. Finally, the ideal
gas law is used again to determine the final size of the cell.

5. CONCEN

CONCEN determines the concentration at any radius in the diffusant
region. - It does this by getting the values of A and A from EQMAT for
the particular cell group in question, and plugging them into the solu-
tion for concentration. Again, the solution is a series solution, so the
program loops until four terms have been summed.

6. DONELY

DONELY calculates the growth of the cells after nucleation has
ceased. It takes the values of A and A established during the previous
time increment and determines the growth of each group of cells as time

progresses by taking gas in. This procedure leaves the concentration
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distributions intact from one time increment to the next.

7. CRITRAD

CRITRAD searches for the radius at which the change of Gibb's free
energy is maximum, called the critical radius. First, it finds the
order of magnitude by rising an exponential search, then it changes to
a decimal search. To find the order of magnitude, it creates the vector
TRYR. Consisting of a list of exponentially increasing numbers (line 2).
It then determines the derivitive of the Gibb's free energy change with
respect to R at each of the radii Tisted in TRYR. Lire 11 establishes
a vector (HOLD) the same lenyth as TRYR, but having a 1 if the derivitive
is negative, and a 0 if it is positive (line 11). Line 12 takes the
successive sum of the components in HOLD. (01010]1]1]1) + (00012 3).
IND is assigned a vector having a 1 only where the vector has a 1 (and
0 elsewhere), line 13. By multiplying IND with TRYR, the radius R is
found which is an over approximation to the critical radius. Now, TRYR
is reassigned a new vector, this time a 1ist of numbers increasing
decimally up to the value R. For the exponential search, this is done
by assigning log R to START. Then multiplying a list of numbers from
1 to 10 by 10 raised to (START-1), line 17. (The first term in 17 s
0 Lecause cou~t is 1, and 10 raised to START is R. See Gilman and Rose
(1976) for a PL calculation SYNTAX; it caliculates from right to left
without regard for the type of operation). NUMB is increased by 1 and the
calculation is repeated starting from LUPE on 1ine 4. Now, when line 14
is calculated, R is multidigital. Its exponent is stored in START (by

rounding up the logarithm), and now the first term in line 17 decreases
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the last digit in R by 1, then adds to it an array of numbers from 1 to
10 in the next smallest digit. This is repeated 8 times for accuracy.

8. GIBBS

GIBBS simply calculates the change of Gibb's free energy once the
critical radius is determined. There are three terms D3, D4 and D5; the
deformational energy, the surface energy, and the mixing energy which
are added together.

9. RATE

RATE is a straightforward calculation of the rate at which cells
form. The rate equation was discussed earlier, and it was shown that the

rate of nucleation,
J = BcScNoZ exp (-AG/KT)

wher?> Bc is the frequency at which gas molecules strike a surface, Sc is

the surface area (calculated in lines 1 and 2), N0 is the number of

2 Sites/ind) and Z is the Zeldonich

possible nucleation sites (6.55 X 102
factor (calculated as line 11). AG is the change in Gibb's free energy
for a cell of critical size and was calculated by GIBBS. K is Boltzman's
constant, and T the temperature.

10. LAMDA

LAMDA determines the separation coefficients of the diffusion equa-
tion. Although there are an infinite number of these constants, only

15 are determined by this calculation. The order of magnitude of

the first A is established by letting TRYL equal a 1ist of 1000 numbers
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_between 0 and 1/1og OUTR. This choice of TRYL insures that two roots
do not appear in the list, that the root does not occur between O and the
first value in the list (1/1000 . log OUTR). and that the root is de-
termined with sufficient accuracy. The characteristic equation that A
must satisfy is evaluated by Tine 15. ONEL must be 1 if the equation is
satisfied. To search for ), ONEL is compared with a vector RONEL (which
is ONEL rotated by one element). A1l intervals over which ONEL changes
from less than one to greater than one are tested for slope to see if they
are zeros or poles. The zeros are recorded as values for A. The calcula-
tion is repeated for higher values of TRYL (the second set of values from
1/(10og QUTR) to 2/{1log OUTR) until 15 A's are obtained.

Due to the extensive search routines and the time inefficiencies
of APL, this sub-routine cften takes three hours to run on the MIT
MULTICS system.

11. NEWEQCO

Only the first part of NEWEQCO, which determines the denomenator
of A, is used. The numerator is determined by AN (which must be run
after NEWEQCO and wfites over many of the values found by the later part
of NEWEQCO). It is a fairly straight forward - albeit long - expression
of the integration stated for A in Chapter IV, Section B. Lines 7 and 8
are concerned with the possibility that the diffusion zone may be
smaller in this. time increment than the last. In this event, the CONC
distribution is cut off cn the outside,

12. GASIN

GASIN plugs the values for A and A into the expression for the
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derivitive of the concentration at the cell boundary. Multiplying this
by the diffusion coefficient and by 41rR2 determines the amount of gas
which flows into the cell.

13. AN

AN is another long computation, but this program calls on sub-
routines SLOPE and STRATE to keep things simpler. The program sums the
contribution of the rectangular and triangular parts of the CONC distribu-
tion.

14. SAVECONC

This program simply loops to recalculate the concentrations stored
in CONSAVE. (This could be done with a matrix approach as opposed to
a loop.) The function determining the new concentration is CONCEN

(1ine 6).
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attow, CHOOSE A TIME S5TEF, LET IT FELEFEMNDEMT OM THE RATE
A SO THAT OMHE TEHTH OF THE CELLS ARE ij!UCL.EQTEl'." DURIMG
a EASCH STEF ,

TTHE TIME STERF L4!¢

4 (F=0Q)./CcOn

TIME(1+(4,188x(FxJ)I)IX(0,0001x1ET9+(FRXR))

2 (TIME)])/TSTOF

TTME LTTMEVIE



£S541
L9317
L5611
a713
£581
(I
L6017
611
L6621
K631
L4641
L4521
Lé61
L4713
£681
L6217
£L701
C711]
£L721
£731
£741
£753
£761
£771
£781
L7921
£801
£811
£821
£831]
£L84]
[8sl
£8s61
£&871
£881
£L8%1
£?01
L2111
£?21
L9331
L9241
£L935]
£?261
£271
£o81
L9291
£1001
£1011
1023
£103]
£1041
r1035]
L1061
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EACK ! TIME

FUMT IME T IME

AFIHALLT, CALCULATE THE CELLS MUCLEATEX DURING THAT TINE STEF
COUNT&O

TOTCEL&(

MATEM&2 4 FO

B ettt START MUCLEOTIOM— e e i

EQMATED 2 8 FO
AGIAMY !

] 1

VTIMES !

FUMTIME

LCOMOC=

core

FROG

TEQUIL. COMC=!

EQCOMCFRESS[1 1=K

EQCONC

COUMT«COUMTH]

[} 1

ITHE CRITICAL RALUIUS I5!

F

'THE CHAMGE OF GIEES FREE EMERGTY (IM IH-LE) IS!
G

I THE RATE OF RUCLEATIOM IN CELLS/CU,THOU/SEC IS!
J

' THE MUMEEFR OF CELLS MNUCLEATED FER CU,THOU IS
MO&JX TIME

HO

FRESSHFRIESS[ 1]

A

AXRKARRREXNAXKRKAXAKAK XXX XK ADIFFUSION SECTIOMAXAAARKARARA KA ARX

A
[

ACALCULATE THE DIFFUSIOHAL GROWTH,
TUTCEL&TOTCEL+HO
OUTRe(((2%x,5)+10TCEL) % (1+3))X1E™3
2 (COUNT#] ) /CHEAT

DEFReRX]1,259921

CHR{ & (OUTR~R)+10

3 (OUTR(F) /OUTDONE

DEFHeT (REFR-CHRY )

COMOT&COHC— (FRESS:K )
COMSAVE[COUNT; JeCOMOT
COMBAVE[COUNT§ 12 ]« CHR]

THIEO

LOUF 3 THI G ITHDM 4]

5 ( THIC ) DEFH ) /GOOH
COMSAVE[ COURT § THDX 140

4L OUF



L1071
L1041
L10Y 3
L1104
1114
L1123
L1131
L1141
L1151
L1161
L1171
L1181
L11vl
L1201
ri1211
1221
£1231
£1241
£1251
L1261
£1271
£1281
L1291
£1301
L1311
L1323
£1331
C1341]
r+3si
L1361
£1371
L1381
£1321]
L1401
C1411
£1421
£1431

L1447

£1451]
L1461
L1471
£1481
L1471
L1004
LLLd
LLADSI

v
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GOOH ! ' COMNSAVE::"
CUHSAVE[LCOURT ]
Q((TIME+(0UTﬁkg))<1E4)/NDDIF1
MeLULRtL MLEE R

S (MQ) /MODU

FROCEED] $

SITE¢«TIME MEWSIZIE K

"

VECTORERUMNTIME,,HO,SIZE, R
MATRMEMATRM, [1JVECTOR

4 (COUNT=1) /HEWTIME

]

GROUF 0

HEWG § GROUF+GROUF+]

3 (GROUF YCOUNT) /HEWT IME
EeGROUF 42 .
HOEMATRXLE} 2]

FeMATRM[ES 3]

5 ((TIME:(OUTRX2)) ¢(1E4)/HODIF]
MeGROUF DIFF K

H(MCO) /MOTU

FROCEEDD

SITE«TIME MEU'SIEZF K
MATRM[E;3]eSIZE
QUTDONME § 3 (COUMT=] ) /DOVEE
SHEWG

DONMLT ¢ DOMELT EQMAT

+MODU

HEWTIME { RUNT IMERUNT IME+TIME
MATR:
COMC«CONSAVEL 1§11 1+EQRCONT

' HEW COMCEMTRATIOM='

couce
RELCRTCONCRITCOMLERCONT

4 (COMC (CRITCOM) /DONLY
SAGIAN :
TSTOP{STF&]

TIME«,1

3EACK

MODIF] {MeO

+FROCEED]

MODIFD M0 -

AFROCEED?

CHEAT { COMSAVE[ COUNT} J¢CONSAVELLj
S UUM

puvER] 1 AME STEF TOO LARGE,!

1



I
£21
31
r4l
£51
£61
£73
81
Lol

v

v

YSAVECOMC[[]V

SAVECOHC GROUF
RiHO«0
CHR&(OUTRmR)+10
CHAMGR R

EMHCORIE  FHOeRMO4]

S(FMDY11) /GO

COMSAVE[ GROUF § FHO T CHOMGE CONCER GROUF
CHAMGE ¢ CHAMGR 4 CHE

HENCORE

GO CONSAVE[GROUF § 12T &CHE



[
21
31
£41
S
Lé1
L7131
81
£L91
£101
L1113
£121
L1331
£141
L1353
L1461
£171
K181
L1913
L2031

£113
r21
31
£437
£51
£&631

A\
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PCRITRADI] G

F&ECOMC CRITRAD FAFAM

5e0

TRTECIETID 1ETLL 1E710 1E79 1E™G 1E™7 1E74 1E™5 1874 1E™3
MUME:]

LUFEIFRESS¢ 14,7+ (SURFTYX (2+TRTRE) )+ (MOD:3, 14159)
DNEFCOMCEFRESS..K
Giﬁ(g,7182812@(DEPCONC+COHC))xTEMPx73,61xCONCx(TRTR*Q)xlz,Sééé
DCOMCETAXSURFTY ({TRTRx2) xK)
GQ@DCONCx(CONC+DEPCOHC)xTEMPx73‘61x(TR?R*S)x4,1888
63&(5URFTxTRTRX25.132741)+(14.7+M0D+3.14159)X((TRTR*E)X4.1888)
DOIEERSE+QR] +Q2+Q3
HOLD-DGIEBERS (O
HOL D+ \HOL. X
ITHIEHOLD=
Bt/ (IHDXTRTR)

(F=0)/0

START&[ (1 0O®BF)

TRTRe(R-10a (START ~HUME-]1) )+ (110) X (10% (START—IUME) )
HUME & MUME4

TESeHUMEC]Q

SLUFEXTES

IEESCO]Y
GeCOMNC GIRES R
CDHCDEPL@(14,7+(2xSURFT+R)+(MDn+3,14159))+K
TOTGAS@(R*3)xCONCx4,1888
DI ((Rr3IIX(51,757+1.,333xM00) )
Dhe (Fx2)XSURFTX12,5666
L5 (@ (COMNCDEFL-COMNO) )XTEMFX73,41XTOTGAS
G&DZ+D4+D5



£13
C2]
£31
£41
£53
L6
£L73
£8l
£l
£101
£i11
K121
£131
C143

C15T

1
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TRATEL[]]w

J&COMHC EATE R

STRIKE¢S,QRERIX (CUOMDIMEFACE ) XDIFCOX] ,5

AREACLD ,5664X% (Fx2)

DCORCET I X(RXSURFT) - ((RA2)XK)
DOCOMCEAXSURFT-((FRa2)xK)
wgea(CONCDEPL+COHC)xTEMPx73,61xCDNCxRxQS,133
w3+73,61xDCDHCx(CONC+COHCDEPL)X(Rﬂg)x25,133
w4e(~4,1888)x((DCONC+COHCDEPL)*2)xCDHCxTEMPx73,é1x(R*g)
WELDDCORCX (COMCE-COMNCIEFL ) XTEMFX73,61%(Fx3)%x4,1888
Whe (SURFTX25, 1333) +Fx25, 1333x ((MOD+3,14159)+14.7)
IDGIRESWI+WI+WA+WE WS

216 ((-POGIEES) = (TEMFX],2218E722))%.5
4(G>100x1,2218ET22XTEMF) /0
2((6+(1,2218ETR22xTEHF))>85)/0

TZer (-G (1, 2218ET22XTEMF) )

JETIXTLRE L HHFER2XAREAXSTRIKEX1ETQX2



£1l
21
C31
(N
£sS3
-

v
£11
C21
C31
41
CS1
-
£713
L83
£91
£101
C111
£121
£i3l
£141
L1517
K161
C171
£181
L1913
£201
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CFROG[ 1]
Fie-COMC CRITREAD Fafam

© S (F=0)/0

G&COHE GIRES R

A ( (G (1,2218E722xTEMF ) ) > 85 ) /HEW
JeCOMC RATE R

9

QLIFFLL]

MeGROUF DIFF R
LAME+OUTR LAMDA R
AVEC«()

LAMMO&(Q

STG+(
SUM ! LAMMNO&LAMHO+]

3 (LAMMO8) /GO
F(((LAD2HIXDIFFCOXTIME))>»80) /GO
LeL.AMETLAMIO]
AHEWERCD

LY ]

A

AVECAVEC,A

MR GASIM TIME
SIGEMASIEG

3SUM

GDJAVECe] $AVED
AAUGHELAME,; [, 51AVECD
EQMATERMAT ,, [ {1 JAAUGH
SAVECOHMC GROUF
MeSI0
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CLAMDAT OIS
VO LAMEEDUTER QMOS8
11 QUTE:
[2]1 FREF&10x ([ (10WOUTRE))
31 TRETLS(Q0 . 0001 +FEEF ) X1 1 500
£47 HOL. D& TR TL.
£51  LAME&Q
[4] HOMHEIVR2LTRTLXOUTR
£73 VIeZa(TRTLXR)
£81 V4e((36YV2)-V2)-((V2Xx(30V2))+1)
L9 OHEL Y 4=V3
£101 FOMEL 1 pOMEL
£111 FOLES(OHELXFROMEL))>™1000
£12] LINDG((FOMELY])A(ROMELL]))v((OMELI])A(ROHELY 1)) )AFOLES
131 LINDL100071¢0
£14]1 FICKe(TRETLLYLIMND]x (LINDIYLIMNDT))
L1551 STOF&FICKLQ ,
[16] LAMECLAME, ((STOF-1)AFICK)
L1731 4 ((pLAME))>15) /LOUT
L181 TRTLe(TRTLL10001)+HOLDL
191 +HOME
201 LOUT}! ' =l.AMDA
[21] LAMEE]JLOME
L3221 LAME1SALAME
L2371 LAME
\v4

CGASIM Y
v MeR GASIH T
K113 Slelo(l-xk)
21 Cle2o(LxER)
£l TEFMES ]~ ((3a(LxF))xC]1)
£43 TERMD¢C1+((30(LxR))X5]1)

31 TFARTEAX (XA (-(LX2)XDIFFCOXT))
L6 Me12, 566X (Fx2)XADIFFCOXTFARTX (TERMS: (~LX (Fx2) ) )+ (TERMR:R)
v
AN
Y A
C13 L1+ (1+CHE) X ((BLOFE (CHFR4FR) )~ (SLOFE F))
271 SLR2C(FRCHR ) ((STRATE (CHF &) )= (STRATE K))

£31 SLAHT&SL] -51.7
41 STRAIT¢((STRATE OUTH)~(STRATE (CHF4R)))
C53 At (SLANT-STRAIT) ~DEMHOM



m11
£23
31
[47
5
[&61
L71
L83
Lol
£101
[111
1213
K131
L1141
£181
141
01721
0181
2191
2201
L2113
221
S231]
£241
251
£261
L2713
281
291
L3017
£31]
321
.331
L3471
391
L3461
£371
381
391
£401
411
L4217
431
£44]
£451]
L4671
471
L4812
-491
2501
LS
LH21
-531
I547]

PHEWERCO Jal11v

4 MHEWEQECO

GUNMEQ

HEWSLOPESO

TOAHT &)

HAVEMUME(Q

R0 ()

QUTE

MESSE| (LOUTHE-F) QOS] 2])
AFQUTR ¢ (HISHXCOMNG[ 127])+F
'ARPREOMIMATION OF OUTR:=!
AFOUTR

S1e1e(LxF)
S2¢10(LXAFAUTE )
Cle20(LXR)
CR¢20(LXAFOUTE )
Tie3o(LxF)

TERM]+ (AFOUTR~FK )2
TERM2&((C2XB2)~(C1x81) )+ (2xL)
TEL+(T1k2)X(TERM] +TERMD)
TR (TERM]~TERMD)
TIeTLIx((S2%2)—(S1Lx2))+=(LX2)
T3¢T3Ix2
DEMOME(TEL+TR2-TI)+ (Lx2)
VDEMHOMe !

DEMHOM

CHFR«CONMS[12]

CHAMGR¢R

IMTEG { REMHO&REMOS]

A (RMO>HISS) /0N

S (RMO>11) /0N

CR ] (CHRX (RMHO-]1))+FR

QRO (CHRXRMO) +F

CCeRa(LxCrR])

8 ¢10(-xCR1)

CR&20 (I.XCRD)

SRe1O(LXCRD) :

SLF1AE(—( (CRL+L) 22)XCC)+ (((2XCR1)+(Lk3F)IXSCI+ (((2+(L-x4))XCC))
SLEQAE(((CRI+L)A2)XSC)+ (((R2XCRL)+(LxX%)IXCC)~((2+(L-x4))XSC)
SLF1BE (= ((CR2:L) A2)XCR) 4+ (((2XCRR2) +(LAF) ) XBF)+ (((2+(l-x4) )XCR))
SLFREE(((CR2Z+L) X2)XSR)+(((2XOR2)+(L&3) ) XCR) —((2+(Lx4) ) xSR)
SLOFEFTE¢(1<-CHRE) X (SLF1A-((T1XxSILF2A8)))
SLLOFEFT26(1+CHR) X (SLF1E~((T1XSLF2E)))
SLOFEPTE(SLOFEFTR-SLOFEFT] )X (CONS[RMO41 ]-COMNSLRMOT)
STR1e((CR+L)XCR)~(((1+L)%x2) XSF)

STRRe ((CR2+L ) xSR)+(((1+L)A2) XCR)

STREZ¢ ((CRL+L)XCT)=(((1+L)x2)X (10 (LX ((CHRX (RMNO-1))+R))))
STRAC((CRL-L)XSC)4+ ({((1+L) kDI XCT)
STRATGHTE(1+L)X((~(STRI+TLXSTR2) )+ (STRI+TLIX5TRY))

S (RNOCD) JEGE

TOGTTOSTHETRALGHT

EGG}

MM ( BLOFEFTHCOMELRMNOIXSTRAL GHT ) ~DEMNOM
SUMMASUMMEMHUM

CHAMGR+CHAMNGR $CHER

SIHMTEG



L1
C21]
£33
r41
£S3

K13
K21
£31
£43
£S5
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CSTRATE[L[IIV

STRAIGHT«STRATE RVAL .
SRe]O(FRVYALXL)

CRe20 (VAL XIL)
STR]«((RVAL+L)xCR)m(((1+L)ﬂ2)x5ﬁ)
STRQ«((RVAL+L)xSR)+(((1+L)k2)xCR)
STRAIGHT ¢ ( 1+l )X (STRL+T1IXSTRD)

YSLOFE[[]V

SLOFEFT&SLOFE RVAL

SRé¢10(LxRVAL)

CRe20(XREVAL)

SLF1e(—( (RVAL LY xD)YOR)+ (((2XFVALY+ (Lx3))XxSR)+((2+(Lx4) ) xCR)
SLEDe( ((RVALEL)Y kD) XSF) 4+ ( ((2XFVAL )= (Lx3) )XCR)~((2+(Lx4) ) xSK)
SLOFEFTESLF - (TLIXSLFD)
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PHENGSTIEY
v SITEE+T MEWSTXE F

13 MeMyT
[21 MO&(PRESBXQ.lBQSX(RﬂB))+(73.61xTEMP)
£31] MOLEG&MO4-M
k4] HEWVOL ¢ (MOLEGX73, 61 X TEMF ) +FRESS
[5]  SIZEe(HEWVOL:4,1888)%,3333333
v

DOMELTY[L{]]
v NOMELT EQMAT

11 FUMHSTEF¢]+( (Lx2)XDIFFCO)

e KOUMT ¢

[37] FREFEATRUMTIMERUNTIME4+RUNSTER
C41 MATE:

CLS1] v

L6 ' TIMES

£71 KOUNMT ¢ KOUMT+1

81 RUNT IME

L?1 2 (KOUNT»85)/0

L1011 S ((FRURTIMEX(Lx2)XDIFFCO)1>85)/0
Ci11 GFROUF&D

[12] FOWL!GROUF&«GROUF+1

131 < (GFROUF)COUNT) /REFEAT

L1431 LAMHO&O

[15] Ee&GROUF42 ]

L1611 FReMATRMIE;3]

L1711 MeO

£18] LAMILAMMHOELAMMHOL]

L1931 < (LaMM0,g) /GRR

£20]1 L&ERMATLE;]jLAMNMD]

[21] AEQRMAT[LE;2;LAMNO]

C22] 2 ((RUNTIMEX(LxQ2)xDIFFC0)>85)/0
[R23] SAReR GASIM RUMTIME
£247] MeSAQREM

251 alAM

CD4] GRF (a3 (MQ) /FOWL

L2731 MATRMH[E;31¢FUMSTEF MHEWSIIE F
L2871 HROWL

v
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YCOMHCEM[I[]TY

¢ MHEWCOMECHOSER COMCEN GROUF
£13 ALQ
el HEWCOM&(

fgj SOLJADEAD:]
£41 S (ADIDY/0

L51 EeGROAUF 4D

£s1 LeEQMATIES] ;A0
£71 ACEQMATLE; D5 AD]
81 HEWCETIME C CHOSEFR
91 HEWCOMEHEWCOMNEHEWD
101 -SOL

v
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Appendix D

CELL SIZE AS A FUNCTION OF MODULUS
(FINAL)

This program calculates cell size as a function of modulus (or

as a function of time as the material relates).

eFIHALLO]Y
v FIMAL :
£ci11 MOD+400
[2] FETE}MODeMOD-100
£33 2 (MO0 ¢0) /0
£43] TRRESET8+(TRX11000)
£51 UFFERe73,41XTEMF=(4,1888xTOTCELX (TRRx3) )
L61 LOWER ¢ (COMC= ( (SURFTXR+TRR )+ (MOD:3,14159)+14.7))-(1+187000)
C71 SCANCLOWERXUFFERX]1E™9
81 EReSCAMC]
£97 DOeERY 1
[10] MOD,TRRLDO]
[11] <FETE
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Appendix E
DIFFUSION AND SOLUBILITY COEFFICIENTS
FOR N, GAS IN POLYSTYRENE

The diffusion of gas into the plastic was measured by weighing
samples of blastic before and after they had resided in the pressure
chamber with 2.4 X 107 dynes/cm2 N2 gas for varying lengths of time. A
Mettler analytic balance (Model H I35 ) was used. The change of
weight due to abéorption of the gas was measurabie with at least two
significant digits (the smallest change was 0.0078 gms for a piece which
originally weigh .ed 9.6529 gms [after 6 hours N2 at 2.4 X 107
.esults of this are shown in Figure Ap. E.1. Both the solubility of

the N2 in polystyrene and the diffusion coefficient can be calculated

from this data.

A. Solubility

Assuming Henry's law holds,

‘- 0.0016 gms N2 ) 1

gm PS 2.4 X 10’ dynes/cm?

(Ap. E.1T)

91 9ms N '
6.67 X 10711 m—%/ dynes/cm?

B. Diffusion

For a sheet of polymer suddenly immersed in a penetrant vapor at a

higher pressure, the amount of penetrant entering the sheet after short
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time perjods is M(t), where

M(t) _ 4 /Dt _
Mt C < = (Dudek, 1979) (Ap. E.2)

M() is the amount of penetrant which enters the sheet at t = =, D is
the diffusion coefficient, and a suitably short time step is one for

which

(Ap. E.3)

/ot
L

|-

This expression is based on the as-
sumption that the sheet was at equilibrium before immersion, that the
diffusion coefficient is not dependent upon concentration, and that
equilibrium is reached instantly at the surfaces of the sheet.

The diffusion coefficient is thus calculated from the data in

10

Figure A-E-1 to be 3.6F X10 - cm?/sze.
/
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Appendix F

PRODUCTION OF MICROCELLULAR FOAM BY EXTRUSION

The number of cells nucleated should be as high as possible. To
achieve this, nucleation should be completed as quickly as possible. If
nucleation is triggered during less favorable conditions, it does not
matter if more favorable conditions ensue; large cells have already been
nucleated and are growing.

F.N. Cogswell (1972) has evaluated the pressure drop which occurs
across a die for making extruded rod. He assumed that the drop from the
reservoir behind the die to the atmosphere could be evaluated by summing
three components: the pressure reduction due to shear in the die, the
drop due to extensional flow through the die, and the drop incurred by
the material exiting the reservoir. If a die is assumed which has
lands of zero length, then the first two components are zero, and the
pressure can be calculated as the material exits the reservoir. This is
a function of the distance from the die opening. Tp find
out whether or not microcellular foam can be produced by extrusion, it
is imporfant to know how quickly the pressure drops. In Appendix 111
of his paper, Cogswell sums over an infinite series of control volumes
to find the net drop from T =« to T = 0. The ratio of the drop across

one differential element to the total drop can be evaluated as

‘p '
d 1) (1 - 1-w + 1)




- 150 -

where P is pressure, P is the total pressure drop, ¥ = melt, index (usually
denoted as n), and w = &ﬁ§¥%17}3. The flow of the material moving from
the rese oir has a coni-cyclindrical geometry, and @ is the radius of the
- involved flow (it is a function of T). By requiring that the pressure
drop be a minimum, Cogswell was able to calculate the shape of the region
to be
2
2 = a (.}H]sw“ (Ap. F.2)

where 90 is the radius of the die, and

1/2 Q V2
T 0

where 1 and v are apparent viscosities (usually termed A and n, re-
spectively).
If the flow were Newtonian (which occurs for polystyrene melts at

shear rates below 10'5/sec),‘Eq. (Ap. F. 1) reduces to

Substituting for w,

de

//Z‘r +Q,
— = ]

3
P,
¢ /%(T+d'1‘)+90

(Ap. F.4)
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If the pressure drop is to occur in less than 10'3 sec, and if the
material is moving toward the die at 0.05 in/sec, then this equation must

predict that the pressure drop be negligible 5 X 1072

in before the die.
Using an of 0.025 in and setting dH = 1 X 1072 in (using a dH of

5X 10'6 in only affects the 3rd significant digit), integration (done
on a TI 59 programmable calculator) shows that the pressure has already
dropped 99.5%. Thus, pre-nucleation has occurred. The distance ovef
which the drop is significant is of the same order as the die radius.

5 is unfeasible. To make the orifice

Reducing the die cpening to 5 X 10
a useful size, the melt velocity must be higher. For instance, an orifice
with a 0.01 in radius requires a melt velocity of 10 in/sec. This is con-
ceivable, but larger die openinygs demand prohibitive extrudate speeds.

If the fluid is not assumed to be Newtonian, examination of
Eq. (Ap. F.1) shows that the only way to make %E-decrease rapidly with

increasing T is to make x increase rapidly with T. This depends upon

the behavior of the function

Figure (Ap. F.2) shows that I' should be small as possible. But

dT

I'='§-q)—:1—

so ¥ should be as large as possible. For most viscoelastic polymers,
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however ¥ is less than 1. Thus, the Newtonian fluid already analyzed
js the best case. That analysis showed that it would be difficult to
extrude all but very narrow profiles of microcellular foam. The only
hope for larger shapes is to find a polymer-gas combination which has
a very low diffusion coefficient, even at extrusion temperatures. In

3

this way, the 1imit of 107~ sec might be extended.
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Appendix G
INTEGRATION TO FIND VISCOUS ENERGY TERM

QIMNTEGRATE[LQIY
v IMTEGRATE

£13 Ferv1000

€217 FeFx,001

[3]  CUEEL+((1+FR)*x3)
£41 Ae(CUEBER (T2+3) -1
1051 e (CUKEy ( T5:3) §+F
Lol  TERMLIeAXEZEXx3,14159
73 Ce-(CUBRER(1+3))-1
el De (CUBEX (T2+3) ) +F
Lol TERM2+CxDx8x3,14159

101 SUM&(+/TERML)+{+/TERMD)
£11] 3UMesUMX,001




