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ABSTRACT

Magnetooptical studies have been made of two small-gap semiconductors,

Flg1-xCoy Te and InSb. For InSb we have made a group- theoretical determination
of the allowed band parameters, including three not previously defined. We show

that the harmonics of cyclotron resonance observed experimentally are induced

by the warping and inversion asymmetry effects usually neglected in the quasi
Ge model for this material.

We have performed magnetoreflection experiments on a series of single-

crystal specimens of the Hg},Cd, Te alloy system, for alloy compositions
0.175 &lt;x &lt; 0.269 in the small-gap semiconductor region. These experiments

have been interpreted to yield the parameters of the quasi Ge model:

Y, =2.5+ 0.4, vy =-0.3+0.2, v3 =0.5+0.1, K=-1,2+0.1 and
F=-0.7+0.3, using A=1 eV, with E_, and E, determined from a two-

parameter fit to each set of data giving Ey, = 17, 9+ 0.2 eV and values of the
energy gap which fit reasonably well to E_(x, T) = -0.31 + 1.88x
+ (1-2x) 5x 107% T(K) eV at temperatures® T = 24K and 91K.
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{. INTRODUCTION

This thesis investigation has been concerned with two materials,

Hg, Cd, Te and InSb, which belong to the class of materials known as the

small- gap semiconductors. Such materials are of technological interest

because the conduction electrons have very small effective masses and large

g-factors and, consequently, have large mobilities and, among other interesting

properties, large cross sections for spin-flip Raman scattering. The semi-

conductors in this class which crystallize in the zincblende structure, as do

Hg, Cd Te and InSb, are of interest for detector applications because of their

direct energy gaps, at the center of the Brillouin zone, and because of the high

purity with which they can be grown.

A InSb

InSb is a compound III-V semiconductor which has for some time been a

prototype of both small-gap and zincblende semiconductors. It is available in

samples of extremely high quality. It is used for the detection of infaredand

far infrared radiation, 1 and is the material most used for the spin-flip Raman

laser. 2 It is perhaps the most-studied semiconductor (with the exception of Ge),

starting with the early cyclotron resonance experiments, &gt; and culminating with

the work of Pidgeon andBrown? and Pidgeon and Groves. 5 ‘They developed a

theoretical model for the energies of the conduction and valence bands in an

applied magnetic field in terms of a number of adjustable parameters. They

ased the results of their interband magnetoabsorption, magnetoreflection and

Faraday rotation experiments to determine these parameters. Although there

are discrepancies between the values of the parameters obtained from these

interband measurements and those obtained from intra- conduc tion-fand™ 7



and intra-valence-band® cyclotron resonance experiments, the validity of the

model is generally accepted.

An important exception has been the observation in InSb of a number of

harmonics ofthe conduction band cyclotron resonance transition, most recently

by Favrot, Aggarwal and Lax. 9 Although in principle these could have been

understood in terms of the so-called warping effects first studied inGe, 10 and

the inversion asymmetry effects which are important for zincblende materials, 11,12

the only calculation of the selection rules for these transitions 43 was restricted

to one orientation of magnetic field with respect to the crystal axes and did not

agree with the earlier experiments in unspecified orientations. 14 These effects

were shown by Pidgeon and Groves® to induce extra interband transitions, pri-

marily in the [111] orientation, which they used to determine the small warping

and inversion asymmetry parameters. The anisotropy of the cyclotron harmonic

transitions was finally emphasized by the experiments of Favrot et al., 2 in the

three orientations [001], [110] and [111].

The objective of our study of InSb was a theoretical determination of the

selection rules for these cyclotron harmonic transitions, with the ultimate ob-

jective being a determination of the parameters of the warping and inversion

asymmetry effects from a comparison of the theoretical and experimental

intensities. Our investigation has demonstrated that these harmonic transitions

are, indeed, induced by the warping and inversion asymmetry effects, with

absorption strengths of the correct order of magnitude. The selection rules

agree with the experiments of Favrot et al. 9 except for one unpredicted experi-

mental transition. Because of this exception, we have not attempted a detailed

determination of the warping and inversion asymmetry parameters. This must

await an understanding of this extra transition, and would be facilitated by more
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careful studies of the absorption strengths.

In the course of our investigation we found that the model of Pidgeon and

Brown’ was incomplete; we have made a group- theoretical analysis including the

full effects of electron spin, and have found three new parameters, including

two inversion asymmetry parameters. Thus our investigation has laid the

groundwork for further refinements of our understanding of the zincblende semi-

conductors.

3. Hg, Cd, Te

Hg, _,Cd,Te denotes a system of ternary alloys of the II-VI materials HgTe

and CdTe. These all form single crystals in the zincblende structure, with a

lattice parameter which varies slightly, and nearly linearly, from 6.46 k at

x=0 (HgTe) to 6.48 at x = 1 (CdTe). These alloys are of particular interest

because the energy gap varies with alloy composition as illustrated in F ig. I-1.

For x 20.17 (depending on the temperature) the bands have the normal structure

of a zinchblende semiconductor such as InSb, with a Tg conduction band, a

degenerate Tg valence band and a Ty split-off band; CdTe has a rather large

energy gap E,~ 1.6 eV. For x&lt; 0.16 the I'¢ band is submerged below the

Tg band which now becomes both the conduction and valences bands which are

degenerate at k=0. This band structure was established for HgTe by Groves,

Brown and Pidgeon, 15 with an energy "gap" E, = ET) - Ey) ~=-0.3 eV.

For x 20.16 Hg, Cd, Te forms a truly "small-gap" semiconductor, with

arbitrarily small gap and band-edge effective mass. For a given application, one

can select the best material, for example, for detectors with a given response

curve, 16, 17 by growing material with the appropriate alloy composition.

Another important application for this variable gap is the spin-flip Raman laser 7
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The cross section for electronic Raman scattering is resonant when the laser

pump photon energy is near the band gap energy, 18,19 and since the Co, laser

is a powerful source of infrared radiation, Hg, Cd,Te chosen with a gap at

about 10 um, in a spin-flip Raman laser, may prove to be an extremely intense

source of tunable infrared radiation, 2"

The fundamental properties of Hg,. «Cd, Te alloys were reviewed by Har-

man. 2! More recently, the energy gap was shown to vary almost linearly with x

and with temperature by Schmit and Stelzer!’ from detector cutoff wavelengths.

However, their data show deviations from their fitted curves for sample tempera-

tures below 100K and for energy gaps below 100 meV. Magnetooptical studies

have been made for a few values of alloy composition: interband magnetoreflection

for x S 0. 1622 and 0.17, 28 and intra-conduction-band cyclotron and combined

resonance for x = 0.20324 and 0.204,2° Values of the energy gap deduced from

these experiments tended to be somewhat lower than those found by Schmit and

Stelzer, 17 and values of the interband coupling energy E, ranged from about

17 to 20 eV. A knowledge of these parameters is necessary to predict the

electronic properties of these alloys for a given application. Until the recent

work of Guldner et al., 26 no attempt had been made to determine other para-

meters, such as the higher-band effective mass parameters, for this material.

The objective of our study of the Hg, ,Cd Te system was to make a

systematic determination of the band — especially the energy gap,

over a range of alloy compositions spanning the small-gap semiconductor region

which is of technological interest. We have carried out interband magneto-

reflection measurements on ten specimens of Hg, ,Cd,Te, with 0.175 &lt;x&lt;0.269,

at both liquid helium (24 K) and liquid nitrogen (91K) temperatures. We have

obtained band parameters by fitting transition energies calculated using the
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theoretical model developed for InSb, to the positions of our magnetoreflectivity

peaks. Our results include more accurate and systematic values for E, and Es

as well as improved values for most of the higher-band parameters. | |

During the course of our investigation we became aware of similar work by

Guldner et al. 28 who carried out magnetoabsorption experiments for

0&lt;x&lt;0.3. They deine quite different values for E, and the valence band

parameters. They do not give their results as a function of alloy composition,

only of Eg» and most of their results are for the semimetallic region (Eg &lt; 0).

We will give a detailed comparison of our results with those of Guldner et a1, 20

We were unable to observe any extra transitions induced by warping and

inversion asymmetry, such as were used by Pidgeon andGroves’ to determine

these parameters for InSb. The accuracy of our results was limited by the

inhomogeneity of the alloy composition of our samples, which caused our reflec-

tivity lines to be broad. More accurate results must await improvements in the

techniques for growing this material.

This thesis is divided into six Chapters. In Chapter II we give the basic

theory for zincblende semiconductors, developing the quasi Ge model which we

will use for both InSb and Hg, Cd,Te. In Chapter III we present our results

for InSb, using the terms usually neglected in the quasi Ge model as perturbations

which induce the cyclotron harmonic transitions. In Chapter IV we describe

our experiments on Hg, x C4, Te, which we analyze in terms of the quasi Ge model

in Chapter V. Chapter VI includes a summary of our results and suggestions

for future work.
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II. K.P THEORY FOR ZINCBLENDE SEMICONDUCTORS

In this Chapter we develop a method for calculating the conduction and

valence band energies for the small-gap zincblende semiconductors. The Kp

Hamiltonian is obtained in Sec. A to second order in k and to first order in the

applied magnetic field H, as a matrix coupling the Te g=1/2) conduction band,

the Tg =3/2) light and heavy hole bands, and the L, (=1/2) spin-orbit split-

off valence band. This is developed in Sec. B into the quasi Ge model which

enables one to make numerical calculations for the energies of the conduction

and valence band Landau levels in a magnetic field. These energies will be

compared in Chapt. V with the results of ite magnetoreflection experiments

on Hg, Cd Te . This model is obtained by neglecting a number of small terms,

proportional to the so-called warping and inversion asymmetry parameters,

which are shown in Chapt. III to induce the cyclotron harmonic transitions which

have been observed in InSb.

Zincblende Hamiltonian to Second Order in k

In order to obtain the K-p matrix Hamiltonian for a zincblende semi-

conductor, that is for the set of coupled bands illustrated inFig. II-1, there

have been two different approaches based on group- theoretical techniques.

In the first approach!’ 2 one finds interband matrix elements p“8 of the Kp

perturbation Hamiltonian hk-p_/m ’ and also of the spin-orbit Hamiltonian,

For the case ofInSb, Kane? enumerated all possible combinations of these

matrix elements to second order in K among the single-group basis states

transforming as I (conduction band S) and I (valence bands X, Y and Z)

of the Ty group. The first order matrix elements Pog » and second-order

combinations involving intermediate states belonging to different representations
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ofthe Td single group, were adjustable parameters of the pertubation

Hamiltonian. This Hamiltonian was expressed in terms of linear combinations

of the functions X, Y, and Z and of the spin-functions t and {, which

diagonalize the spin-orbit interaction. This Hamiltonian involves matrix

elements coupling the various basis states including adjustable parameters

multiplying functions to second order in kK. A second approachio obtaining

this Hamiltonian was made by Luttinger, 5 who used a group- theoretical

analysis to find all allowed matrix elements of K and kK x Kkamong the valence

band states transforming as the Ig representation of the double group. His

result involved adjustable parameters which were linear combinations of those

of Kane, 2 but included an additional parameter, q, which is non-zero only in

the presence of spin-orbit splittings of the intermediate states. Luttinger's

results were extended by Roth etal. to include the I, split-off band. Pidgeon

andBrown’ included the Te conduction band in their analysis, combining the

results of Kane and of Roth et al. The use ofthis model in the analysis of

magnetooptical investigations was reviewed in detail by Aggarwal.’ |

In this Chapter we use the second approach to obtain a complete set of

parameters for the coupled Te &gt; ry, and Tg bands and find three new parameters

in addition to those of Refs. 2 and 4, which have the same origin as Luttinger's

parameter q 3 Our group theoretical treatment makes use of the Koster,

Dimmock, Wheeler and Statz (KDWS) tables of coupling coefficients. 7 Although

their basis functions are not stated explicitly, we find these by comparing our

resulting matrix with those of Refs. 2 and 4. This set of basis functions is

given below, in terms of the basis functions used by Kane. 2
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In Table II-1 this set is compared to those used in previous work. The states

13), |4), |5) and |6) are the same, except for an overall factor of (-i), as

those used by Pidgeon and Groves. These four states form a representation

of the J = 3/ 2(Tg) valence band, and, as stated by Pidgeon and Groves, the

4x4 K.P matrices involving these states agree with those given by Luttinger. 3

The valence band states are equal to those of Eqs. (23) and (A-3) of Roth, Lax

and Zwerdling? except for an overall factor of (-i) and an additional factor of (-1)

in states |4) and |6) , so that our a-set matrices for the valence band (states

13), |5) and |7)) will agree with the equations in the Appendix of Ref. 4, but

the b-set matrix will have opposite signs in the off-diagonal elements of the last
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row and column. The states |1) through |8) are identical with a set used by

Groves, Pidgeon, Ewald and Wagner, 9 except for a factor of (-1) in state 16) .

Thus the J=3/2 subset of Ref. 9 does not give the same matrices as those

in Ref. 3. B

Finally, the states |1) through |8) are related to those of Pidgeon and

Brown’ and of Aggarwal® as indicated in the last two columns of Table II-1.

Our results for the 8x8 k-p Hamiltonian will be related to those of Ref. 5 by

a unitary transformation. This transformation is nearly the same as the one

given by Aggarwal® from work by Reine. 10 The resulting 4x4 matrices for

the a and b sets are real. Apart from overall factors, our states differ from

those of Ref. 6 by a factor of (-1) for the states |4) and |S), which gives a

factor of (-1) in the off-diagonal elements in the third row and third column

of each 4x4 matrix.

As can be seen from the above discussion, our basis states are not

identical to those of any of the important papers on the quasi Ge model.

However, it is also clear that this previous work involves several inconsistent

basis sets. The considerations involved in choosing our set were: (1) to

make the 4x4 matrices for the a and b sets real; (2) to agree with the widely-

available KDWS tables;’ (3) to agree with the most extensive previous work

in the quasi Ge model (a) Luttinger, (b) Roth, Lax and Zwerdling, 4 (c) Pidgeon

and Brown, 3 and (d) Aggarwal. ® Our set satisfies (1), (2) and (3a); it differs

slightly from (3b) to satisfy (2), from (3c) to satisfy (1), and from (3d) to

satisfy (3a).

The character tables for the T4 group are given by Dresselhaus, 11

and by KDWS’ on p. 88. It should be pointed out that the definition of I, and I

are reversed and that the column S 4 in Ref. 17 and IXC, in Ref. 11 should
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have the same character, which means that the definitions of T¢ and T', are also

reversed. The spin-1/2 basis set belongs to the KDWS yy or Dresselhaus Tg

representation. We will use the Dresselhaus notation. Using the KDWS tables

of coupling coefficients for the Ty group, we find the matrices involving terms

to second order in k among these basis functions. For example, two terms in

kxE are F = 2k? - K2- K; and Fi = 3 2- Kk) which belong to the two-fold

Lg representation. The matrix elements of these functions among the Te ’ Tr,

and Te states areproportional to the complex conjugates of the table entries

on p. 91 of KDWS. The resulting matrices must be Hermitian and be invariant

under time reversal. These conditions require certain parameters to be either

zero or else purely real orimaginary. |

All the real, independent parameters found in this manner are listed

in Table 1-2. We find matrices for all the previously-defined parameters.

The TgxTg parameters Yi» Yo» Ygo K and q were defined by Luttinger.

Yi» Yor Y3 and K were shown by Roth, Lax and Zwerdling” also to involve

the split-off band Tr, when one starts with single-group representations. In

the full double-group picture the L,xTy, and I xg parameters are independent

of the Tg xg ones and are denoted by Y; Yq ‘, Yq° ,K’ and K*°. The

conduction band Te) effective mass parameter F, the "linear-k'" parameter C

for Tg and the Te xg parameters P and G were defined by Dresselhaus, 11

Kane? and Dresselhaus, Kip and Kittel! in terms of single-group basis states;

the Tg xT’; and T,xT'g parameters are denoted by C*, P* and G°. We also

obtain three new parameters, Ny» N, and Ng . N, contributes to the conduction

band g-factor, similar to K in the valence bands; N, and Nj represent

additional couplingsbetween the Te conduction band and the 19 valence bands.

In Appendix A we show that these new parameters, like q, arise from the
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TABLE II-2. Parameters of the K.p Hamiltonian among the T's , IT

and Tq band-edge states.
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spin-orbit splitting of higher bands.

The parameters q and u = (Y3 - Y,)/2 are the so-called Ge warping

parameters because, if these were zero, in a material like Ge with inversion

symmetry, ‘the energy bands would be isotropic or independent of the direction

of K. The parameters C, G, N, and Ng are the so-called inversion asymmetry

parameters because they are zero in materials like Ge with inversion symmetry

but nonzero in the zincblende materials.

The complete 8 x8 matrix J for the parameters listed in Table II-2 is

given in Table 1I-3, which also includes the band-edge energies E ” and A

relative to the Ig valence band, and the parts of the free electron terms not

included in the definitions of y 1 and k.3 Other terms used in Table II-3 are:

 =k +2 +2, Ek tik
vz x

1_ 2 2 2 o2_ ma? .2
Fy=2k2-K2-kK,Fj = J/3 (= K2)

F. = {k,Kk) = (k KE + Kk) ’ Fr = {kek}

2,
-
“Ta bE

}

H, = ilk,k1,H=[Kk

For simplicity, Table II-3 is given in atomic units h=m = 1.

B. Quasi Ge Model in a Magnetic Field

For a magnetic field H in an arbitrary direction defined by the spherical

polar angles 6 and g, we perform the following coordinate transformation

illustrated in Fig. 1-2:
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TABLE II-3. kp Hamiltonian for a zincblende semiconductor. The

terms used are defined in Eqs. (II-1,2). The upper triangle is the Hermitian

conjugate of the lower triangle.
#
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Fig. 11-2. Coordinate transformation in a magnetic fieldH; X,Y, 2)
are the cubic crystal axes, and (1, 2,3) are the new axes with H| 3.
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k, = cos 6 cos ¢@ k, - sing k, + cos¢g sin ky

k, = cos 0 sin¢k.+cosgk,+ sing sin 6 ky

K_ sin © k, + cos 9 &lt;

(=cy

A similar transformation was given by Luttinger for the case ¢ = 45° which

confines the magnetic field to the (110) crystal plane. ‘The new coordinate

axes (1, 2,3) are shown in Fig. II-2, where the magnetic field is along the

3-axis. The corresponding rotation of the basis states results in a trans-

formation of the K.p Hamiltonian according to 3 (6,9) = u'xu where U

is given in Table II-4. We then set

i
A

AT
-(a +a"), k, = —(a-a'), ky = ky

1/2
(I. 9)

where A = tc/enyY 2 is the Landau radius, c is the velocity of light, hk,

is the component of the momentum along the direction of the applied magnetic

field, and a*, a are raising and lowering operators for harmonic oscillator

functions ¢

atg
n

- n +1 ¢@
n +1° 2n

= nW NEY
n-1

(I
-

¢ J)

= ng= a’agNg, =

and

[a,a’] = aa*-a*a = 1 (II-%}
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TABLE 11-4. Rotation matrix U for the coordinate transformation in

Fig. 11-2, with S=sin 6/2, C= cos 6/2 and a = exp (18/2).
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The resulting X (8) separates into two 4X 4 matrices for the a and b sets

1* 9) a

i Xa 0

 i=
~

|

(0%

if one neglects terms proportional to ki q, C, G, N, and Ng and most

terms proportional to the warping parameter [= A - Yq). One can include

some warping by way of two valence-band effective mass parameters

wicze

J Nt (Y= Yg) £8,

#
od

= 5V, + 2Yy + 5p" YP HO9)

i 2 3 2... 4
3cos 6-1 Scos“2¢sin” 0£6, 9) E 2 ) + 4

 7

J)

(1I-".2)

These parameters were defined previously, &gt; for the case @ = 45° = 1/4,

corresponding to the magnetic field H in the (110) plane, which makes the

second term in Eq. (II- 9) equal to zero. The average of this term over all

angles 6 and ¢ is 1/5, which is equal to that of the first term, so that

©,9)=2/5.

The 4x4 matrices i and x, in Eq. (II-7) are displayed in Table II-5,

where the terms involving v,, vy’, and Y** in the fourth rows and columns

are included in the single-group approximation P°=P, Y 1 f= Y;» etc.

Also in Table II-5, P is included using the interband energy E, = ampZ/m?,

and B = eh/2mc is the Bohr magneton. Table II-S is now in ordinary energy
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TABLE II-5. The quasi Ge model Hamiltonians.
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units since Eg» a, E, and BH have the dimensions of energy and F, K, N,

and the Y's are dimensionless.

The Hamiltonians of Table II-5 are equivalent’? to those of Pidgeon and

Brown’ [their Eqs. (10) and (11)] when account is taken of the different basis

sets as indicated in Table II-1. Table II-5 is also equivalent to Eqs. (B-9) and

(B-10) of Roth, Lax and Zwerdling? for the Tg and Ty band energies except,

as indicated in Table II-1, for a sign change in the matrix elements involving

th&amp; Trws b= set sta te

The solutions to the Schr¥edinger equations

Kla) = E_|a)
({]-1 7)

3G, |b) = E,|b)

are of the form

] a(n)) =

"

n

8,8,

n

24 fhe 1

n

asP, 1

n

a78n+1

| b(n) =

—
n

bg,

b

n

bg 8,- 1

n

b, 6. 1

n
bg 8 1

 iL

(fi 11)

 el _-1_-1_0_.-1_0_,-1_,0_
with n 2 -1 and with a, =b, =a" =ag=bg = bg = bg =bg=0. For nz1

there are eight independent solutions |a(n)), |b(n)) for each n, which are

denoted, in order of decreasing energy, conduction band [|am)), |bS())1,

heavy hole [|a”(n)), |b” (n))], light hole [|a*(n)), |b*(n)}] and split-off band

[la®m)), |b%(n))]. These states are illustrated in Fig, 11-1. Although a number
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of authors’ 4,13, 14 have given approximate analytical solutions for the states

|a(n)) , | b(n)) and the corresponding energies E[a(n)], E[b(n)], the numerical

solutions obtained by Pidgeon andBrown" were necessary to given an accurate

fit to their interband magneto-optical experiments in InSb.

Aggarwal’ has given approximate solutions for the conduction and valence

band energies from Eqs. (I-10), which are useful for understanding the effects

of the various parameters. We have extended these to include some terms

proportional to N, and also to q (see next Chapter). The conduction band

energies are, to first order in H,

Cc a 1 i
Ela" (n)] Eg + (+ 3)ho, + 58.PH

%
“I- BB)

E c[b"(m)] =~ E,Ltt5 Jw “aCc 58.8 H

where w_=eH/m A and

 mn _ 1. f 2 1

wc l+t2F+3E (g—+ F357)
= g g

1 1
g, =2+4N -4E [(z—- +—%

c 1 E E +A° g 8 )

The valence band energies are, for n=1

(11-13)

ka (n)] &gt;= -28H ford) - yl + ok + (3+ fq

~L ‘ 9yor: - yh - kl - 25 12 + 3n(+1)(y “2 |

(II- 14)

E[b"(n)] &gt;= -28H Jia rr + yl - SK - (3+ fq

0a)? + 3n@+1)(y “19 |
 VIVE + meget - kb :

7 ’
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where f = £(8,4)and vy , y , etc., are the parameters originally defined

by Luttinger"
y 1 E

1 .

EIEN
E

g

»L _1 P a“

"FE E,"
&gt; al

‘a] 3)

E
Llp,

K "TE + K

For large n, the energy differences in Eqs. (II-14) are approximately equal to

E=-28Hm/m where the effective masses for the light and heavy hole bands

are given by

2

| : Ll _Pyv”)  ar-16)Ep. i ‘] +31= ov)mde Jer) ofm, 3 E, g

For
’ P,P . . es

&gt;&gt; vy', YO this givBE S E, ’

m 2 Eo 1 , ,

Ws 17)
&gt;

i

m a 1 ’ ”

mo Yi 5 (Y + 3y

Thus for large Ey/ E, ‘the light hole band is nearly the mirror image of the

conduction band (equal but opposite curvature or mass), and the heavy hole

band has a large effective mass (~v;h) which is sensitive to the warping

effects contained in Y* and vy“. The conduction band effective mass and

g-factor in Eqs. (II-13) contain the higher-band contributions F and N.
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which also were considered by Johnson and Dickey. Le

The strongest allowed optical transitions among the states of Egs. (I-11)

are those proportional to the interband matrix element P; that is, we find

the optical perturbation x by replacing k by K+so- in the matrix for P,

where A is the light vector potential in the radiation gauge. The resulting

transition matrix elements are

(a(n)

E [4 &amp;

gan = EY imal st od 2

Ce A

Sn ner t [none 6. {

Cap ¢E of © n’ n‘’.n_ m= .n°n

(base Ibm) = == Yam YI +4/Zbg )by = ./3b; by

(11-18)
A Coq A

2.6.7 ntl + [ne n’] 50, wf

(b(n) [3¢ *| a(n)) _ - Ey Cp ph” 73 i] aw )) = w m 2 ( as a4)

h

n° n°’ nja

/2bg - bg 141 | Str,

where E is the optical electric field. € + and €_ are the unit polarization vectors

(6 i €)/2 for, respectively, right andleft circular polarization Op Op

HanevIrEs to the magnetic field |H, and €; is a unit polarization vector parallel

to H usually referred to as the T or E I H polarization. Thus the selection

rules for both inter- and intra-band transitions (before renumbering of the

valence bands) are



35

Le BH” antl ’ by = bpiy

Tn

—

q
-

 =~

Reel ’ b, - B..

ah” Brit ’ b, = ape

[I= a)

The selection rules for interband transitions given by Roth etal. and by Pidgeon

andBrown" were, for op and Op » An =0 and -2 rather than +1 and -1

respectively. This is because they renumbered all valence band states n -» n+1

so that the state numbers n correspond to the harmonic oscillator number of

one of the larger terms (the coefficient of state |5) or |4) in Egs. (II-11)).

We do not rember the valence band states, so that each set of states n are

coupled in the quasi Ge model. 9

For the intra-conduction-band transitions illustrated in Fig. II-3, the op

transition occurs at the cyclotron frequency w== Ww,» and the mT transition at the

"combined resonance" frequency w= w, + Ws 16 where w, is the spin-flip

frequency given by ho, = g.BH. The interband transitions illustrated in

Fig. 1I-4 occur as series of oscillations corresponding to transitions from the

light- and heavy-hole ladders to the conduction band ladders,
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[II., SELECTION RULES FOR WARPING AND INVERSION ASYMMETRY

{INDUCED CYCLOTRON-HARMONIC TRANSITIONS IN InSb

As the result of many magnetooptical investigations, most electronic

properties of InSb are reasonably well understood in terms of the

quasi Ge model presented in the preceding Chapter. An important exception has

been a number of observations in n-type InSb of the second and third harmonics

of cyclotron resonance, denoted by 2u, and 3u, ’ 1-6 as well as the spin-shifted

harmonic denoted by 2uct og 5 These transitions have been observed along with

the allowed combined resonance w, +o transition, 1 and the L.O-phonon-assisted

resonances w, +; qs 2wtoo etc. 2r3 The latter have been explained by

the theoretical work of Enck, Saleh and Fan, 2 and of Bass and Levinson. Zz Bell

and Rogers’ obtained selection rules for warping and inversion-asymmetry

Inducedharmonic transitions, for an applied magnetic field H parallel © a

[001] crystal axis. Favrot, Aggarwal and Lax? recently reported that the

intensity of these transitions exhibits marked anisotropy with respect to the

crystal orientation relative tothe applied magnetic field, in addition to its

dependence on the optical polarization, In this Chapter we obtain the selection

rules for cyclotron harmonic transitions induced by warping and inversion

asymmetry for the magnetic field applied along the crystal axes [001], [110]

and [111.° These selection rules are consistent with the experimental results

with one important exception. Favrotetal.’ observed a strong 2w,, absorption

for the light polarization vector E 1 H with H|| [001]. This is not predicted

either by us orby Bell and Rogers, 8 or by the recent work of Zawadzki and

Wlasak!® for this orientation.

The malin effect of the small terms neglected in the quasi Ge model of
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Chapter II is to allow extra weak optical transitions. For ky, = 0 the warping

terms pu and q allow third-harmonic transitions a(n) = a(n+3) denoted by du.

as observed for the heavy holes in Ge. 11 The inversion-asymmetry parameters

Cc, G, N, and N, allow the second-harmonic transitions a(n) -» a(n+2) denoted

by 2w, and a(n) =» b(n+2) denoted by 2w, tw S* For ky #0 the warping terms

also induce second-harmonic transitions, 3 and the inversion SREY terms

induce third-harmonic transitions. The optical polarizations in which these extra

transitions occur depend on the orientation of the crystal axes relative to the

applied magnetic field. Similar effects were shown by Pidgeon and Groves’?

to induce extra interband transitions, primarily for H || [111].

The mechanism for the warping-induced du, transition is illustrated in

Fig. 11-3, in addition to the allowed transitions w, and o_+w_ . For certain

orientations of the crystal relative to the applied magnetic field, a term

proportional to the warping parameter | couples the a(4) level to the a(0)

ground state in the conduction band, giving the a(0) level an admixture of the

a(4) wave function. Then the optical matrix element a(4) —» a(3)for E 1 H also

gives a weaker transition a(0)-a(3), denoted by 3 w., as illustrated.

The strength of these extra transitions is found by calculating the optical

matrix elements among the levels of the quasi Ge model, including the warping

and inversion asymmetry perturbations as first-order corrections to the

wavefunctions. In Sec. A below we obtain expressions for the warping and

inversion asymmetry perturbations, and in Sec. B we calculate the transition

matrix elements from these perturbations, and the resulting selection rules

for intraband transitions for the magnetic field in the three principal directions

[001], [110] and [111]. ‘These selection rules are compared with the experimental

results in Sec. C. Our results are summarized in Sec. D.
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A. Warping and Inversion Asymmetry Perturbations, for H in the (110) Plane

The terms not included in the quasi Ge Hamiltonian of Table II-5 divide

into three categories: (i) terms proportional to ky, and KZ ; (ii) the warping

terms propor tional to u = 3 (V3 - Y,) and q; and (iii) the inversion asymmetry

terms proportional to C, G, and the new parameters N, and N, . All of these

extra terms, from applying the unitary transformation ofTable II-4 to the

Hamiltonian matrix of Table II-3, are given in Table IlI-1. The terms involving

ST are proportional to the effective mass parameters F, vy 1’ and v°, and to

JP 2. 1. 2

3Yy t3Y3 = 3(Yy ~ Y9) EO, D
 a

E

 -— 1)

For consideration of the other terms in Table III-1, we now consider only

the case @ = 45°, which corresponds to H in the (1T0) crystal plane, including

the three principal directions [001], [110], and [111] which were studied by

Favrot et a1.® (see Fig. II-2). The warping terms are proportional to

r —

3.8 H@c2- 1) |e” + a*2) -2./2 schk (a+a)

da

oJ ~

= 3E Wu BH 232 -1)2N+ 12x2wu)" 2 -3 )@32-1)2

2./2 schky [(5-3c%)a - 3c2- 1)a*] |I = . 2)
Toa

. - J3u8H fsctae® nans1- 242) - 5-3cha’+3c? nar?

+22 s@c- Dik a

where c=cos 6, s=sin8, and to



43

TABLE IlI-1. Perturbation Hamiltonian neglected in the quasi Ge model.
The terms used are defined in Eqs. (III-1 - 7). The upper triangle is the

Hermitian conjugate of the lower triangle.
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q, = = a8 HEc -2c%+8)

dq g - 3:8 gens?act-1

dq 348 qBHsc(3c&gt;- 1)

= _3 Cn 2

q, = - 2 dBHsc@c -9)

= - dqpHErct-18¢%-10)  (u-3)

J

Jd. ZqBHsc(3z 1)

The terms from Egs. (11-2) and (II-3) in the TgxTg portions of Table III-1

(involving states |3) - [6)) are identical to those given by Luttinger, 23 but

with the opposite signs throughout since Luttinger's equations involved hole

energies. Table III-1 includes additional couplings proportional to u between

the Tg and I bands.

The inversion asymmetry terms are proportional to

~
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g,=SBE [-s@c?-neN+1- 24d ra?) - 3s(1+cDrat
5

5.3 s%chk,a + 2/3 c@c- hk at]

{1..-5)

2 208M [35%cant1 - 252) - c@Be?-1@? + at?)
14

2/Zs(3c?-hk(a+a*)]

12s

2
Ld ¥ £N,BH[-s(3c&gt;- 1)(2N+ 1-222 +327) +3s(1+c?)at2- 12/2 s%chk a]

Zn + JAN BHIc@3c2- yaa") +./Zs@c?- Dk, (a-a*)] (111-6)

2. NBH[c@c?-)@N+1-202k)) - 6s%cat? + 3.2s(l+c) kp

3 4 2 5B a

J

, = N,BHs@3c?-1)

Fy -3./3 N..8Hs%c (111-7)

f, = -N,BHc(3c- 1)

The portions of the matrix in Table III-1 for couplings within the Tg band

proportional to C [Eqgs. (III-4)] for these three orientations, and for ks =0, are
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the same as those given by Pidgeon and Groves'? with an overall sign change since

they, like Luttinger, 13 consider hole energies. Similarly, their result for q

for H| [111] is identical to ours [Eqs. (III-3)] with the sign reversed. However,

our result for yu [Eqs. (IlI-2)] for H|[[111] is identical to that of Pidgeon and

Groves with no sign change, so that their results for the u matrix differ in sign

from that of Luttinger. Our results, as indicated above, agree with that of

Luttinger with an overall sign change.

In Tables III-2 through III-4 we list the matrices for G, N,, and N;, for

k=0 and for the three principal orientations. The matrices proportional

to the other parameters have been given elsewhere. 12-14

3. Selection Rules for Cyclotron-Harmonic Transitions

Bell andRogers’ calculated transitions strengths for intraband optical

transitions, for H||[001] only, by diagonalizing the Hamiltonian of Table II-3

in the single group basis set, without the parameter q and the new parameters

N 1’ N, and Nj . Because this Hamiltonian couples an infinitely large number

of oseillaics funrtions @ n’ they obtained numerical solutions by diagonalizing

two 120x 120 truncated matrices. In addition to the fundamental cyclotron

resonance ow, for the op polarization and the combined resonance w to

for the T polarization, they found that the following intra-conduction-band

optical transitions were weakly allowed:
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TABLE III-2. Matrices for the inversion asymmetry parameter G.
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TABLE III-3. Matrices for the inversion asymmetry parameter N, ‘
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TABLE III-4. “Matrices for the inversion asymmetry parameter Ng ’
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They showed that these were the result of warping and inversion asymmetry

effects. We use a perturbation treatment to find the intraband selection rules

for H| [110] and [111] and well as [001], as outlined below.

Using the Hamiltonian 3 * in Table III-1 as a perturbation in the basis

states of Eq. (I-11), we find new states

la  nn) = lam) + &gt; &gt;
n’ j=a,b

(jc * | am) Ha ;
srs | (0 -(II-

E[j(n*)] - E[a(n)]

And similarly for Ib’ (n)), where we consider only conduction band states a=a®

and b=b® and coupled states j=aF, be. Since the couplings of Eq. (III-9) are all

very small compared to the energy differences, it was not necessary to include

the energy corrections. The actual expressions for these couplings are very

lengthy. As illustration, we given, for H[|[001] and k, =0
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with a similar expression for {j(n’)|X " | b(n)y. All such couplings, proportional

to the warping and inversion asymmetry parameters, are summarized in

Table III-S.

Using these coupled states, the allowed optical transitions originating

in the state a(n) are proportional to the square of the matrix element

(£°(n")be | a ‘(n)} which becomes

\ 4 J ) x la’m) = (fase |am)

n”  j=a,b

Em x lim) Gms “| am)

1  E[@”) - Ela@] |

(fm A313") Gale lam)

Elf )] - EGi@")]
(

an 11)

with a similar expression for transitions originating in the state b(n). The

summation runs over all intermediate states in the conduction band. The first

term in Eq. IlI-11 represents an "allowed" transition. The matrix elements of

Xo proportional to P are given in Eqs. (II-18), and all matrix elements are

calculated using the approximate numerical solutions Eqs. (II-11) to Eqs. (II-10).

Xo also includes terms proportional to the warping and inversion asymmetry

parameters.

Equations (III-10) and (III-11) illustrate the difference between the intra-

band transitions considered in detail in the next section, and the interband

transitions considered by Pidgeon and Groves. 12 For conduction band states,

the coefficients a) and bey in Eqs. (II-11) are large, and the others small, but
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TABLE III-5. Couplings among the quasi Ge states, proportional to

the warping and inversion asymmetry parameters, for ky = 0 and extra

couplings for ky #0.
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for valence band states ag and a, or b, and be » are large, particularly

for heavy-hole states, and a and b, are small. Thus, if a(n) and the

coupled state j(n’) in Eq. (III-10) are hole states as is the case for the

transitions observed by Pidgeon and Groves, then the coefficients of G, N,

and Ng in this equation are smaller, roughly by an order of magnitude, than

that of C, so that their analysis did not need to include effects of G, N, and

Ng . For conduction-band matrix elements, ‘on the other hand, the coefficients

of G, N, and N, become comparable to that of C, so that all four parameters

must be considered.

The intra-conduction band transitions allowed in Eq. (III-11) by the

couplings in Table III-5 are listed in Table 111-6. We use the notation of

Eq. (III-8): a transition from a to a_ ri) is denoted by mo; from a to

bm by mo, + o_, andfrom b oa by me -w, . We would like to

point out that, in fact, the conduction band Landau levels are not equally

spaced, so that the transitions are not precisely harmonic transitions; we

use the mw, notation for convenience. In Table III-6 we have grouped

together the transitions induced by warping (4 and q) and by inversion

asymmetry (GC, G,N, y Nj) and have included the allowed transitions as well.

For H| [001] and k;; = 0 our results are consistent with those of Bell and

Rogers, 5 summarized ia Eq. (111-8).

A calculation of selection rules for the cyclotron harmonic transitions

has recently been made for the HI [001] orientation by Zawadzki and Wlasak. 1

Their analysis includes transitions proportional to the parameters i, C, and

G, but not q, N, or N,. Their perturbation treatment is similar to ours, but

includes some additional weaker transitions allowed to second order in the

warping, inversion asymmetry and k,, # effects. Zawadzki and Wlasak obtain
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TABLE III-6. Intra-conduction-band transitions in InSb, for ki;=10

and extra transitions for ky # 0, for optical polarizations oj , Og, and T,

both allowed (A) and induced by warping (W) and inversion asymmetry (I).
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for H||[001] the transitions we list in Table III-6, and, in addition, other

transitions: 6 m, do, + wg and 8w_ + w © and oR) allowed by a combi-

nation of yu and C effects, and also dw, (m, 2w, + wg and bw, + wg © and Op)

allowed by yu and ke, #0. We expect these transitions, which arise only in a

third-order perturbation treatment, to be considerably weaker than those in

Table III-6.

Our quantum-mechanical calculation confirms the results of Zeiger, Lax

and Dexter, 11 who obtained the intensities of the harmonics of heavy-hole

cyclotron resonance in Ge and Si from a semiclassical Boltzman treatment.

They found that the third-harmonic intensity should be zero for E , H || [111]

and for BE I H || [001] and [110], and the second-harmonic intensity, allowed

for ky, #0, should be zero for E , H]/[001] and [110] and for E || H || [001]

and [111]; these selection rules are consistent with Table III-6, where BE 1 H

induces both or and On transitions.

[ad

ad Comparison with Experiments

Experimentally, only the lowest-energy harmonic transitions 2u, ’

20, +g ‘and dw, , from the ground state a®(0) , have been identified. 1-6

The experimental results of Favrot et 41.8 are compared in Table III-7 with

the results in Table III-6 for ke, = 0. As can be seen, the predicted selection

rules for these transitions are confirmed experimentally, with one important

exception. Favrot et al. observed a strong transition at 2w_ for E , H| [001]

which is not explained by our calculations, even for ky # 0. They also found

very weak absorptions in the E || H polarization, for example, 3u, for H || [110],

and somewhat stronger absorptions at 2w_+w_for Hl [001] and [111] axes,
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TABLE III-7. Comparison of the theoretical selection rules with the

experimental results of Favrot, Aggarwal and Lax.®

H Il [oo1]
THEORY

EYP

THEORY

ELH
—

=

Ri“IR

od 4p +, 3a, Ob
4“a,

Le AW, +Ws ’ 3d, Ue

Li, 9 3d Le+Wg

Hl [e101
re

THEORY

22 we 8, 2 Wp+Us

44- we

HI 1444]
ZAP 2 We, 2 We +W s Ye

Fr



58

which are not yet understood. It is evident from the spectra of Ref. 6 that

population effects (ky # 0) are not important, since the strongest kes # 0 line

predicted in Table III-6, 20, + ug for E 1 H in all orientations, is not observed

for B, H| [110]. The results of Favrot et al.% were recently confirmed over

the wavelength region ~ 7.5 to 18 um by K. Lee, 15 for a [110] and [111]

axes, except that Lee did not observe the weak 2w_+ wg line for of H || [111].

A recent calculation by Miyake © of impurity cyclotron-resonance

harmonics suggests a possible explanation for the 2u_, E 1 H || [001] transition

observed by Favrot et al." If the ground state electron occupies an impurity

state associated with the a®(0) Landau level, the impurity potential acts as

a perturbation which allows the electron to make transitions to all a(n) levels,

nz 1. Miyake's calculations indicate that the strongest harmonic is the second

(n=2 or 20,)s about 10 times stronger than thethird harmonic. Thus the

impurity potential could have a strong effect on the 2w c absorption but have

only a small effect on the 3uw, absorption. It would be useful to repeat the

experiments of Ref. 6 at different carrier concentrations, since for the value

n, = 2 X 1010 cm” used by Favrot et al. 9 a significant number of carriers

should not have frozenl’ into impurity levels at H= 90 kG where they observed

the 20, peak. For higher carrier concentrations the effect of impurity pertur-

bation would be weaker relative to the warping and inversion asymmetry pertur-

bations.

McCombe et al. 1 observed cyclotron resonance absorption at w, as well

as the harmonics 2u, and 3u, in n-type InSb for the "inactive" sense of circular

polarization Op * They interpreted these results in terms of electron-plasmon

interaction. This interpretation was disputed by Blinowski and Mycielski 3

and defended by Quinn et al. 19 A more likely interpretation is that these are
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warping and inversion-asymmetry induced transitions. McCombe et al.” do

not specify the sample orientation; if they had H||[110] one would predict from

Table III-6 for ky = 0, weak transitions for Oy at 2u_, du, , dw and Sw,

and for og at uw., 20, and 3u, . The Op transitions were evidently obscured

by the overabsorbed cyclotron resonance transition, but the Or transitions

follow these selection rules. Thus one does not necessarily have to invoke the

electron-plasmon coupling in order to explain the "inactive-mode" cyclotron

resonance.

D Discussion

To summarize the results of our work on InSb, we have arrived at an

understanding of most of the cyclotron harmonic transitions. It should be

possible, once the 20_, BE, i [001] transition is understood, to use a

comparison of the calculated and observed intensities for the predicted

transitions to determine the six smallperasters Ms, q, C, G, N,, and Ng .

Preliminary calculations using the parameter estimates in App. A give roughly

the same order of magnitude as the observed intensities. Thus, with the

exception of the 2w_, Ef || [001] transition, the cyclotron harmonic

transitions in InSb have been shown to be induced by the warping and inversion

asymmetry effects,
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IV. MAGNETOREFLECTION EXPERIMENTS ON Hg, Cd Te

Our studies of Hg,_ Cd, Te are based on the extensive work of Pidgeon,

Groves and their collaborators on InSb, 1,2 sn, 5 HgTe, * and Hg, ¢,Cdy Te

This work was, in turn, based on experimental and theoretical techniques

developed for studies of Ge.% 7 The large number of interbandtransitions

observed in magnetoabsorption of thin samples, 1,6,7 and magnetoreflection, 5

provided a wealth of information with which to determine the electronic band

parameters of these ——

Magnetoabsorption experiments require extremely thin samples, which

are subject to strain, with the rapid increase in the background absorption above

the band edge limiting the spectral range which can be studied. Magnetoreflection

effects, on the other hand, are much weaker and often difficult to observe.

Therefore a number of differential magnetoreflection techniques have been

developed, which were reviewed by Aggarwal. 8 One of these techniques, stress

modulation, was used byReine’ in his studies of GaSb and GaAs. Fortunately,

we were able to observe extensive magnetoreflection structure for our

Hg, Cd,Te samples, so that modulation techniques were not necessary.

In this Chapter we describe the details of our experiments on Hg, ,Cd,Te ,

describing the samples in Sec. A and the optical apparatus in Sec. B. In Sec. C

we present some typical magnetoreflection spectra, giving in Sec. D our results

for the photon energy and magnetic field positions of the interband transitions

observed for each of our samples. These results will be interpreted in

Chapter V in terms of the quasi Ge model developed in Chapter II.
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A. Samples

The samples of Hg, Cd Te, as received from Cominco, Inc., consisted

of single-crystal slices approximately 12 to 15 mm in diameter and 0.5 mm

thick. Each slice had been annealed to lower its carrier concentration and to

enhance the homogeneity of its alloy composition. Most samples were oriented

with reflecting faces normal to [001] or [111] crystal axes. Upon receipt, each

slice was photographed using the extended-spot Laue technique to check for

grainboundaries, and two slices were found in this way to be polycrystalline.

Thesewere returned to Cominco. The orientation of each slice was determined

by x-ray diffraction.

The characteristics of each sample are given in Table IV-1. The nominal

alloy composition, carrier concentration and Hall mobility were stated by

Cominco. The alloy composition x was also determined either by microprobe

measurements which were kindly performed on I of our samples by Mary

Finn at Lincoln Laboratory, or, for the other samples, using the room-

temperature transmission observed with an infrared spectrophotometer. The

last three columns of Table IV-1 give the orientation and/or the angles 6 and ¢

(corresponding to Fig. II-2) of the reflecting face normal.

The spectrophotometer determination of the alloy composition made

use of the curve shownin Fig. IV-1, which was supplied to us by Cominco,

giving the alloy composition x as a function of the "cut-on" wavelength, The

determination of this wavelength from a spectrophotometer curve is illustrated

in Fig. IV-2, which shows spectra for samples 804 and 805 which had been cut

from nearby positions on the same ingot. The microprobe result x = 0.269

for sample 804 corresponds in Fig. IV-1 to a "cut-on" wavelength of 5.4 un,
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TABLE IV-1. Physical and electrical characteristics of Hg, «Cd, Te
samples. |
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which is indicated by the arrow in the upper curve in Fig. IV-2. The arrow

marking a similar point on the lower curve indicates a cut-on wavelength of

5.6 + 0.3 oii for sample 805, hence from Fig. IV-1 an alloy composition of

0.265 + 0.005. These results differ considerably from the nominal composition

0.30 0.01. The ery values in the microprobe values for x are the

probable errors resulting from point-to-point variations over the sample

surface; the stated uncertainty in the spectrophotometer results are due only

to uncertainty in determining the cut-on wavelength, since we could not measure

such variations.

One face of each slice was chemically polished and etched, and a sample

approximately 6 mm wide was cut from the center portion. The sample was

mounted in a sample holder using Be-Cu spring clips at each end, with a small

piece of lens tissue under each clip to protect the fragile sample surface. The

sample holder was attached to the cold finger of a liquid helium Dewar using

two screws and also vacuum grease to improve the thermal contact. Based on

measurements of the temperature of a piece of InSb held in the same arrangement

in a similar Dewar provided with feed- through connections for thermocouple

leads, we estimate the sample temperature to have been 24 K when the Dewar

was filled with liquid helium, and 91 K using liquid nitrogen. Some early

magnetoreflectivity spectra were taken with the samples mounted with vacuum

grease on thin sapphire plates, with the plates held in the sample holder using

grease. The spectra indicated little, if any, difference in temperature between

these two arrangements, but some samples cracked indicating that the grease

mounting introduced strains.

Magnetoreflection spectra were also taken for two samples of InSb,

purchased from Cominco, with reflecting faces normal to [001] and [111] crystal
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axes. The electronic specifications were Cominco grade 67S, with 77 K carrier

concentration of 0.7 to 1.1 X 104 em™3 and Hall mobility of from 6.0 to

7.2 X 10° cm?/V-sec.

&gt;) Optical Apparatus

The experimental apparatus for magnetoreflection measurements is

depicted schematically in Fig. IV-3. This apparatus has been used in a number

of previous investigations. ? It consists of an enclosed box, flushed with dry

air, containing a Perkin-Elmer Model 99 double-pass grating monochromator

with a globar source, a 500 Hz chopper, and mirrors to reflect and focus the

light onto the sample at near normal incidence, and to collect and focus the

reflected light onto the detector. Our experiments used gratings blazed at

1.5,3, 6, 12 and 22.5 ym, with long wave pass interference filters appropriate

to the wavelength range being used, and the light was circularly polarized

using a wire-grid linear polarizer followed by a Csl Fresnel rhomb. The

detector was either Ge:Cu(4K), Ge:Au(77K) or PbS(300K), depending on the

wavelength range.

The sample, on the cold finger of the Dewar, was held in the center of the

2 in. diameter bore of a Bitter manget, with the magnetic field applied normal

to the reflecting surface. The optical window was eitherBaF, for wavelengths

less than 10 um, or Irtran 4 for longer wavelengths. The magnetic field could

be swept up to approximately 150 kG. The sense of circular polarization of the

light, with respect to the magnetic field direction, was varied by sweeping the

field either "positive" (towards the ceiling) or "negative".

As the magnetic field was swept, the detector signal was amplified by
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a lockin amplifier (most recently a PAR Model 5101), using a reference signal

from the chopper. ‘The amplifier output was fed into a "bucking box" which

expanded the signal by 2 variable factor and subtracted a fixed amount from

this, so that signal changes of only a few percent became large changes with

respect to this "bucked" signal. This signal was recorded on a two-pen chart

recorder; the other pen recorded a signal proportional to the magnet current

as a measure of the applied magnetic field.

The signal reflected from the sample was directly proportional to the

reflectivity R given by

R
(n-1)? + k&gt;
n+1)2 + Kk?

ti\]~I 1)

where n and k are the index of refraction and extinction coefficient, respectively,

determined from the equation

r snd A :

n+ ik)" = €, +ie, Lv
tr 2)

where ¢ 1 and €, are, respectively, the real and imaginary components of the

dielectric constant. R is approximately proportional to € it was shown in the

review article by Aggarwal® that the peaks in €; coincide (within the linewidth)

of the absorption peaks in €y- Some typical curves for AR/R, the fractional

change in reflectivity observed in the vicinity of an interband magnetooptical

transition, are shown in Fig. IV-4, which was calculated using the expressions for

e, (@) and €,(®) given in Ref. 8. The asymmetric line shape is the broadened form

of the density of states of Landau levels in a magnetic field: p(E) ~ &gt; (Et yV/ 2
n

[n the next Section we will compare some of our reflection spectra with these
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curves in order to estimate the scattering time T.

 ~~
hd Magnetoreflection Spectra

Some representative experimental results are given in Figs. IV-S through

[V-11. In each case we plot a portion of the detector signal, proportional to the

reflectivity R, as a function of the applied magnetic field, for both left and

right circularly polarized radiation.

Figure IV-5 gives, as a reference, a spectrum for our [001] InSb

sample, at a photon energy well above the band gap. A ser ies of peaks is

evident, which have been identified as some of the transitions illustrated in

Fig. 11-4, from the valence to the conduction band Landau levels, as calculated

using the quasi Ge model outlined in Chapter II. The numbers above each

peak correspond to the identification scheme given in Chapter V, where we

describe the details of the identification process.

The peaks in Fig. IV-5 have the shape and approximate width of curve a

in Fig. IV-4, corresponding to wT 1000 or a relaxation time T = 2X 10° 12 sec.

We expect these peaks to correspond closely to the peaks observed in magneto-

absorption. In fact, there is a systematic shift to higher magnetic fields

from the absorption peaks observed for E1 H by Pidgeon and Brown, t

corresponding to a shift of about 3 or 4 meV in energy. This is probably due

to strain energy shifts in their 4 to 10 um thick samples.

Figures IV-6 gives a similar spectrum for a sample of Hg, _, Cd, Te,

again taken with a photon energy well above the gap and at liquid He temperature

(~ 24K). The lines are much broader than in Fig. IV-5 for InSb, corresponding

in Fig. IV-4 approximately to curve d for wT &lt; 100 or less, so that the
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equivalent relaxation time T &amp; 2 X 10° 13 , a factor of at least 10 shorter than

tor InSb.

Figure IV-7 gives a spectrum for the same Hg,_,Cd Te sample as in

Fig. IV-6, but at liquid nitrogen temperature (~ 91K). The lines are only

slightly broader and weaker. We attribute the temperature independent

broadening to the inhomogeneity of the alloy composition, such as has been

demonstrated graphically by Vanier et al., 10 and was indicated in the point-

to-point scatter of the microprobe results for our samples. This scatter is

primarily responsible for the uncertainty of these measurements of x as

given in Table IV-1. Comparing Fig. IV-5 for InSb to Figs. IV-6 and IV-7,

it is clear that the large linewidths limit the accuracy of our results for

Hg, Cd,Te and also limit the number of interband transitions we can resolve.

Figures IV-8 through IV-11 give some typical spectra for photon energies

just above the band gap. Figure IV-8, for InSb with H| [001], illustrates

a typical lineshape for the low-energy transitions. We attribute the dips to the

left of the peaks to competition between discrete exciton transitions and the

continuum interband transitions. 1 Figure IV-9 gives the same spectrum for

i I [111] . ‘The lines are broader, possibly because of improper sample

preparation, but they do exhibit the kind of extra structure observed by

Pidgeon and Groves, 2 which they attributed to warping and inversion asymmetry

effects which are most important for the [111] orientation and for these low-

energy transitions.

In Figs. IV-10 and IV-11 we present spectra for two Hg, Cd Te samples

of nearly the same alloy composition, with H| [001] in Fig. IV-10 and

H|| [111] in Fig. IV-11. We see the same exciton lineshape as in Fig. IV-8

and IV-9, but cannot resolve any structure attributable to warping and
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inversion asymmetry effects. These effects may be weaker than in InSb, or

the lines are too broad for such structure to be observed.

0D. Fan harus

The results of our magnetoreflection experiments for the Hg, Cd Te

samples are given in the fan charts in Figs. IV-12a through 12t. We plot,

for each sample studied and at each temperature, the magnetic field and photon

energy positions for each reflectivity peak, for both senses of circular

polarization. The solid and dashed curves are those calculated, as described

in Chapter V, from the best fit to the data, except for two cases, samples 798

and 804 at liquid nitrogen temperature, where the data were not sufficient

to make such a fit. For these two, the curves were calculated using parameters

expected to give an approximate fit © the data.

In Figs. IV-13a and 13b we given fan charts for the InSb samples studied.

[n Fig. Iv- 13a we also plot the magnetoabsorption results of Pidgeon andBrown!

for E 1 H ; as we remarked in the preceding Section, there is a slight shift to

lower energies for our data. The solid and dashed lines in these Figs. were

calculated using the parameters deduced by Pidgeon and Brown from their

data, which were limited to magnetic fields below 100 kG. Clearly the fit could

be improved, especially at higher fields and photon energies. Such a fit would

require that account be taken of inversion asymmetry and warping effects, as

well as cyclotron resonance results for InSb. 12,13

In the next Chapter we describe the fitting procedures used to deduce the

band parameters for Hg, ,Cd Te from the data presented in Figs. IV-12a

through 12t.
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Figs. IV-12a - 12t. Fan charts for Hg,_,Cd, Te samples. The photon

energy and magnetic field positions of the magnetoreflectivity peaks are

given for oy. (diamonds) and or (triangles). The theoretical curves for

OL (solid lines) and Or (dashed lines) are labeled with the transition numbers

given in Table V-1, except that most light-hole transitions are not numbered

since they cross the heavy-hole lines.
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V. BAND PARAMETERS OF Hg,CdTe

In this Chapter we describe the determination, from the interband

magnetoreflection results in Chapter IV, of the K-p band parameters of

Hg, Cd Te in the small-gap semiconductor region. The parameters are

those of the quasi Ge model developed in Chapter II: the energy gap Eg » which

is expected to vary roughly linearly with the alloy composition x;1 the spin-

orbit splitting A of the valence bands, which is expected to be about 1 ev;?

the interband coupling energy E, ; and the small higher -band parameters

F, IE Yor Y3 K, q and Ny» whichare estimated in Appendix A. We

neglect the effects of warping and inversion asymmetry considered in

Chapter III for the case of intraband transitions in InSb, and by Pidgeon and

Groves” for interband transitions in InSb, since 1) these effects are expected

to be even smaller for Hg, _ &lt;4, Te (see App. A); 2) most of our samples were

oriented with fi | [001] where such effects should be negligible; and 3) even for

our H||[111] samples where these effects are maximum, we observed no

structure attributable to them. Our calculations in the quasi Ge model are

made using ky =0, since this corresponds to the peak intensity for interband

transitions. For intra-valence-band transitions, especially for the heavy

holes, ky, # 0 effects can be important.

In Sec. A below we describe the computer techniques developed to cal-

culate and plot the theoretical transitions, identify the experimental peaks

with particular transitions, and perform a least-squares fit for the

parameters. In Sec. B we use the energy differences between a pair of

transitions involving the same conduction band Landau level, to determine
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Estimating q ~ N; »~ 0, and A ~ 1 eV, in Sec. C we carry out a two-

parameter fit to each set of data in order to determine a best value for F

and then to obtain Bg and Ey as a function of temperature and of alloy

composition. In Sec. D we discuss our results and compare them with

yrevious results.

3 Parameter Fitting Techniques

The process of identifying each transition plotted in the fan charts in

Figs. IV-12a through 12t, and finding the band parameters for abest fit

between theory and experiment, involved several steps making use of the

M.I.T. time-sharing computer system (TSO). First, approximate parameters

were chosen for each set of data. Second, these were used to calculate the

expected interband transition energies as a function of magnetic field, by

diagonalizing the Hamiltonians in Table 1-5, and these energies were plotted

on-line on photocopies of the data. The transition intensities calculated from

Eqs. (II-18) were used to estimate which transitions were most likely to be

observed. The plots which gave a reasonable fit to the data were used to

identify most data points with one or, at most, two particular interband

transitions. These were stored in an on-line disc dataset and used as input

to the least-squares fitting routines described below. ‘These routines pro-

vided new parameter sets with which to make new plots and complete the line

identifications. The computer programs used are listed in Appendix C.

The data points were fit to the transitions listed in Table V-1, which

were calculated to be significantly stronger than the other transitions allowed

by the selection rules in Eqs. (II-19), using the matrix elements in Eqs. (II-18)
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TABLE V-1. Interband transitions identified for Hg, Cd Te.

pron.

Ny

jr

\g
——

at(-1) —&gt; a(o) a(t) — ocCe)

b*(=4) — b C0) ECL) — b°Co)

a (1)—a‘@) aly) — a‘)

bo (1) — be) atl) — act

 6% (0) —&gt; 4°(2) bla) — 4)

a~(2)— a3) 5 4(2)&gt;b(3) a3) — a‘)

7 aG)—aH) 5 47(3)=474) b(s) — b2)

9 a (d)=a(s) 2 by) bs) ald) »a’(s) 5 614)-4%3)

7 Cb)—ASR) a’) — ait)

10 ats) —&gt;a¥e) , 475) 46) a-(5s) » ay) 5 b15)&gt;6¥4)

11 a (C)=a’(1) 5 be) 657) a-(o)= GCs) , 416) 65)

12 a (71)-a®) , br) b) a(r)-aG) 5 601) 6)

13 tia) — b°(3) ate) — al)

14 a (§) a) 5 b6)=b%3) a (§)= ar) 5 6)346%7)

15 a(5)=»aCoe), 419)&gt;45) T(5)»a8)5b6GG)~4%2)

16 6Go)=a) 5 Eo) 5b) aio) a2) 5 bUo)+6%5)

17 bz) — 6) arty) — a)

19 a C)=aa) 5» bCm-&gt;6T2) alu) -a&lt;o) &gt; LT)» 6%)



109

involving the solutions in Eqs. (II-11) to the Schr8edinger equations, Egs. (11-10).

The calculated curves in Figs. IV-12a through 12t, and the reflectivity peaks

in Figs. IV-5 through 11 are labeled with the transition numbers listed in

Table V-1.

The least-squares fit calculation was based on a method described by

Reine.’ Given a set of N energy and magnetic field pairs (E, ’ H.) corresponding

to each observed reflectivity peak, and a function E(H) for calculating a

theoretical transition energy for a given magnetic field H., we wish to minimize

the root mean square deviation

N
1/2

1 2

5 &gt; [EG - E]
i=1

‘= )

where the function E(H) der~nds on a set of parameters a; j=l, ..., M.

Reine showed that to minimize 8 to first order in the corrections ba, to the

parameters

2 + 0a, \Ae 2)

sone must solve the MxM system of equations

M N N

N 3E(H) EH) JE(H,)
&gt; &gt; tb le y — LC [BEM] (V-3)
bel 1 %% Say mT Oo

Successive corrections are made to the parameters a, until satisfactory

convergence to a minimum is obtained.

Relne® calculated the derivatives oE(H,)/0%a, in Eq. (V-3) using

approximate expressions for the transition energies to first order in H. This
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was sufficiently accurate for large gap materials such as GaAs and GaSb. Since

the transition energies in small gap materials are strongly nonparabolic, i.e.

depend on higher-order terms in H, we used exact expressions for these

derivatives, obtained by differentiating the fourth-order determinantal equation

for the energy eigenvalues with respect to the parameters a, . The details of

this calculation are given in Appendix B.

The parameters of the quasi Ge model Hamiltonian in Table II-5, including

the diagonal parts of the terms proportional to q in Table III-1, are the energy

gap E zg’ the spin-orbit splitting A, the interband coupling energy Es» the

higher-band effective mass parameters F, Yq , Y, , and Ya » and the g-factor

contributions N, » K, and q. In the absence of a direct experimental determina-

tion of the spin-orbit splitting, we use the estimated value A= 1 ev.? In

Appendix A we show that q and N, are expected to be small for Hg, Cd Te,

so we set these to zero.

Thus we have a possibility of determining seven parameters: Eg» E, F,

Yi» Yo» 3» and k. However we found that the data were not sensitive enough

to fit all these parameters simultaneously. It is shown in Appendix A that the

Luttinger parameters Yy 1’ Yq &gt; Ys and K depend primarily on two Kane para-

meters By and Ck . Therefore we attempted to fit the five parameters Eg»

EF, By and Cys however this still was not possible. In the next Section

we show that we can determine approximate average values for the parameters

By and Cys hence the Luttinger parameters, by examining the energy difference

between transitions from two different heavy-hole levels to the same conduction-

band level, for several sets of data. Withthese parameters fixed for all sets

of data, we have been able to make an approximate determination of the best

value for F. We were then able to make two-parameter fits for each set of data,
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for the energy gap E, and the interband coupling energy E p’

3 Determination of Yi» Yor Yq and ¢

The transitions listed in Table V-1 include two, © 1® and I 6) , from

the heavy-hole levels a (1) and a (3), to the conduction-band level a®(2).

We use the energy difference between these two to determine the Luttinger

parameters Y;» Yo» V3» and K,

The expressions in Eqs. (II-14) give

Elo, (6)] - E[o, (3)] = 48 Hy, {v
 I - 1)

where, to lowest order in H

1 , ,0 3

'q ~ 5 [71v, - 34(Y +3y"") - 6K - 3 6-200] (V=5)

which is of the same order of magnitude as the high-quantum-number inverse

heavy-hole effective mass m/m_ in Eq. (II-16):

m 1 ’ 0.

_ Yq 5 (Y + 3vy {V-6)

where both results are valid only if E/ E g &gt;&gt; Yq» Y’, Y* and kK. The above

result for YH is much less sensitive to the small parameter q than a similar

energy difference

for

[0 (2)]- Elog (D]~ 2B HI- v, + 2(v +3")-6k - 3(9-20a]

1=0 Eq. (V-5) can be rewritten

0,9) = Y(100]) - 32 (¥3 = VEE,6)

(V-7)

V-b)
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We could only measure the energy differences in Eq. (V-4) for those

samples for which we could resolve the [o; @) op 4)] and NORNG) doublets.

Representative spectra for these transitions are shown in Fig. [V-6. The

doublets are clearly resolved, but for other samples the [0 (6), 05(7)] doublet

was only barely resolved. For each sample where the doublets were resolved,

we plotted the magnetic field and photon energy positions of the q 3) and oR(6)

peaks as shown in Fig. V-1 for the same sample whose spectrum is given in

Fig. IV-6. From this plot the energy differences, and hence y,, were

determined; the average YH found for each sample are given in Table V-2.

The first partof the Table gives Yi for just the [001] oriented samples, giving

an average over all these samples of

F (V=9)

where 0.2 is the probable error. Then the second part of Table V-2 give

Y11(6+ 9) for the other samples. Equations (V-8) and (V-9) were used to give

the value for (Y3-Y,) to yield an average value

(V-10)

These results, along with Eq. (V-5) and the expressions in Appendix A for

Yio Yor Y3 and K in terms of the two Kane parameters B., and Cx (with

A..=B.,&gt;0)give
Lo

B.. ww -1.2 £0.5
'N

(v 11)

C.. Te «2.1% 0.2

which then give



113

nkBY
Hg 5787Cd0.213Te

T = 24K
 Fy

77
J

J

S 260
[}

Eg

&gt;=
D
0c
uJ

3 240.

=

O
D
T
a.

20
CI

ging

oR (6):

a= (3)—+a®(2) Va
J

// o (3):

a~(1)—a€(2)
=

~

7

J

w

 ry

/:

200 A
4

“er
60 80 100 120 140

MAGNETIC FIELD (KG)

Fig. V-1. Determination of Ela (1)] - Ela” (3)] from the transitions

7 ©) and oy.) for sample 796.



114

“TABLE V-2. Results for the heavy-hole mass parameter Y; for samples
with H ||[001], and for other orientations 6, ¢.

SAMPLE  ¥,(fo041)

koa

yoy

3.4620.09

A 42 0.09

F058 8.05+0.(0

v03 2.77 £0.09

SAMPLE $Co,@) Iu, 8) ¥a -&amp;,

T1 Ta

" Q%1

J
~,

; J

0.202

a ODO

0.000

led £0.04 LI1d+0.4/

2.1310.08 0.6920.17

2.020.008 0, 7,120.17
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C.

Yo
-—ad -0.3+0.2

Yq
0.5+0.1

¢ Va Zt 0.1

Determination of Ego? E p and F

(V-:2)

Using the valence band parameters from the previous Section for all our

sets of data, we next attempted to fit the three parameters remaining, F, E g

and E p’ simultaneously for each. Again the fits were not successful: the

deviation © was insensitive to small variations in F, so that convergence was

slow and a minimum was found in only a few cases. In these cases the value

of F for the minimum ranged from about -0.4 to -1.0, so we next made two-

parameter fits for just E, and E, for all sets of data, using fixed values

F=-0.1, -0.4, -0.7, -1.0, and -1.3 to span this region of F. For each

value of F we plot in Fig. V-2 the average 5, over all sets of data, of the

r.m.s. deviation 8 [Eq. (V- 1)] and also the average of the absolute energy

differences [AE] between the 24 K and 91 K results for Es . Using the

minimum of both of these as criteria for a best fit, we find from Fig. V-2

the best choice of F is

F =&gt; -07+0.3 (V-13)

The results for E p and Eg» using the value F =-0.7, are given in

Table V-3 for the samples at liquid He temperature, and in Table V-4 for
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TABLE V-3. Results for Hg, ,Cd Te samples at T = 24K.
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TABLE V-4. Results for Hg,_,Cd Te samples at T = 91K.
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the samples at liquid N, temperature. The stated error limits are the varia-

tions due to the limits in Eq. (V-13) on F. The results for E_ give an average

value

7),

on

Discussion

17.9+ 0.2 eV L Af - "4)aq

Using the results in Sec. B for Yq Yo» Yq and K and Eq. (V-6), we find

the heavy-hole effective mass

_ 40.08

m_([001])/m 0.40 "5' 06

N +0. 10
m_([110])/m 0.45 75 07 (V-15)

~ +0.13

m_([111])/m 0.53 -0.09

These results are in excellent agreement with the recent results of Uchida and

Tanaka® ‘m_([001])/m =~ 0.38, m_([110])/m=0.47 and m_([111])/m = 0.50

from their far-infrared magnetooptical studies of HgTe, with their precision

similar to ours. Guldner and his COTOTIIES have used values for m_/m

ranging from 0.4 £ 0.1, 7 in rough agreement with ours, to a value 0.25, 89

to fit magnetoabsorption results for Hg,_ xCd, Te and HgTe. Groves et al. 10

estimated m_([001])/m = 0.28 £ 0.1, for Hg, 34Cdg 16 Te Earlier results

and estimates have ranged from 0.3 to 0.71. 1 The estimate of Lawaetz 2

of m_/m 2 1.0 does not seem to be realistic.

Our result (¥3 - Yo) = 0.8 + 0.3 is identical to that of Uchida and Tanaka, 9

and is not inconsistent with that of Suzuki et al., 13 0.5+ 0.4. Lawaetz

estimated 0.6 for both HgTe and CdTe. 12 This result, and those for m_/m,
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emphasize the importance of anisotropy: the use of an "average" value Y =

Yo A vy’ cannot be justified.

Our result F = -0.7 + 0.3 is consistent with the estimate of -1.2 in

Appendix A. This parameter has not been used in any previous studies of HgTe,

CdTe or Hg, _ Cd, Te . Our values for By and Cx [Eqs. (V-11)] are about the

same as one set of parameters used by Groves et al. 14 for HgTe, based on

earlier results for InSb (see Appendix A) and Ge. Lawaetz!? estimated values

about half of ours. The parameters chosen by Guldner et al.””? result in

values of Cx comparable to ours (-2.1 and -2.4) but much larger values of

By (-2.8, -3.2, and -3.4) and non-zero values for Dy (0.4 and £ 0.1). Again,

we do not regard these parameter choices as realistic.

Our results for E, are plotted in Fig. V-3. The average value E, =

17.9 £ 0.2 eV is comparable to a number of previous results for

Hg, Cd Te!” 15 nd HgTel? and to the results of band calculations (17.2 and

18.0 eV) for the wave functions in Hg gs 4d. 1 46 16 19 as well as the estimate

of Lawaetz1? for HgTe. However, other results have ranged from 16 eV for

HgTe’ 10,13 about 27 eV forHg, 288Cdp. 212 Te" 17 Guldner et al.” used

E p =19.0% 0.1 eV to fit their magnetoabsorption results for semiconducting

Hg, Cd Te alloys (E, &gt; 0), with a systematic shift, for E &lt; 0, towards

18.0 eV at x=0. We find no evidence for such a systematic shift away from

18 eV. The different results for Ey may be partially a — of different

choices for the valence band parameters, but more likely a result of differences

in the interpretation of the exper iments; Uchida and Tanaka® found such a

difference between their results and those of Tuchendler et al. 9 from far-

infrared magnetoabsorption in HgTe.
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In Fig. V-4 we plot our results for E, as a function of x. The filled

circles are for T = 24 K and the open circles for T = 91 K. Figure V-4 also

gives previous results, from the interband magnetoreflection experiments of

Groves et al. 9 at 25K and 90K for x = 0.161 + 0.003, and of Strauss et al. 18

for x = 0.17 at liquid helium temperature, and from fits to the intra-conduction-

band experiments of McCombe et al. 15,19 for x = 0.193 and 0.203, of Kinch

and Buss’ andAntcliffe?! for x = 0.204, and of Kahlert andBauer’ for

x = 0.212, all at liquid helium temperatures. We also include curves which

fit the results of a recent calculation by Chadi and Cohen? for the Hg, Cd,Te

band structure at T=0, including approximately the temperature dependence

of Schmit and Stelzer!

2 (meV) = -310 + 1880x + (1-2x) 0.5 T(K) (V-16)

Guldner etal.’ did not give their results for E, as a function of x.

In Fig. V-4 our results, and those of the interband measurements at

x = 0.16 and 0.17, form a continuous curve which agrees fairly well with

Eq. (V-16). There is considerable deviation from the equation of Schmit and

Stelzer! which was developed for temperatures above 77K.

In Figs. V-5 and V-6 we present our results for the conduction band

band-edge effective mass m, and g-factor g. as a function of x, for the

samples at liquid He temperature. As in Fig. V-4, there is considerable

deviation from our results by those of the intra-conduction-band experi-

ments 18, 19-21 which were obtained by fitting their results to the model of

Bowers and Yafet, 22 yhich omits all the higher-band parameters. Using our

parameters, and values of BE, consistent with our results in Fig. V-4, gives

calculated curves which deviate signifi cantly, by as much as 4 meV or 30 em”!
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from the experimental results of McCombe et al. 15,19 Again, as for

InSb, 23,24 there is a discrepancy between the parameters derived from

interband and intraband experiments; and as for InSb the intraband effective

masses are smaller and the g-factors larger. This is a general problem

which needs further study beyond the scope of this investigation. For example,

the effects of population (k;=0) on both interband and intraband lineshapes

must be carefully evaluated, since they can produce shifts in absorption peaks

and canintroduce extra transitions, especially for intra-valence-band

experiments.

The agreement between our results in Eqs. (V-14) and those of Uchida

and Tanaka® gives confidence in these values for the heavy-hole effective

masses and, more generally, in the valence band parameters in Eqs. (V-12).

Similarly our results for E(x) in Fig. V-4 establish Eq. (V-16) as a good

approximation for the energy gap of Hg, Cd Te asa function of x and

empeEalire, Thus, apart from the discrepancy between interband and intra-

band results, we have presented a comprehensive and systematic model for

the electronics structure of Hg, ,Cd Te alloys in the small-gap semiconductor

region.
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VI. CONCLUSION

In the first part of this investigation we have shown that, with one

exception, the cyclotron harmonic transitions observed in the small-gap

semiconductor InSb are induced by the warping and inversion asymmetry

effects which are neglected in the quasi Ge model for this material. We sug-

gest that careful measurements be made of the intensity of these transitions,

including the 2v_, E, H]|[001] transition which may be due to impurity effects,

as a function of carrier concentration, crystal orientation and optical polariza-

tion. Such measurements, when compared to calculated intensities using the

model we have presented, could allow a determination of the six warping and

inversion asymmetry parameters including the two new parameters we have

defined.

In the latter part of this investigation we have analyzed our magneto-

reflection results for Hg,_ «Cd, Te using the quasi Ge model which neglects

such warping and inversion asymmetry effects, and have determined the para-

meters of this model for alloy compositions x in the small-gap semiconductor

region. Within the accuracy of our results, which is limited primarily by the

sample inhomogeneity, we find that all the parameters except the energy gap

are independent of x and of the sample temperature. Since the higher-band

energies are approximately the same in HgTe and CdTe (see App. A), itis

not surprising that the higher-band parameters are insensitivetox. It would

be useful to extend our experiments to a larger range of x in order to check

these conclusions.

Another useful extension of our studies of Hg, Cd, Te would be intra-

pand experiments on the same (n-type) samples. Our calculations indicate
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that cyclotron and combined resonance, and perhaps harmonics and phonon-

assisted transitions, could be observed using the same optical apparatus with,

in some cases, the use of higher magnetic fields or detectors operating at longer

wavelengths. In view of the general discrepancy between parameters deduced

from inter- and intra-band measurements in the zincblende semiconductors,

such experiments might provide a crucial test of the validity of the quasi Ge

model for these materials. Such a combination of intraband and interband

experiments, using the same apparatus, is possible only for materials like

our Hg,_,Cd, Te samples, with extremely small energy gaps and effective

masses
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APPENDIX A. ESTIMATES OF PARAMETERS

We estimate the parameters of Table II-2 by expressing them in terms

of P matrix elements among the band-edge states belonging to the single-group

representations of the Ty group. We begin with the parameters defined by

Kane, 1 in terms of the conduction and valence band states S, X, Y and Z

and higher band states
—

I
wd

m (sip, IX) A= 1)

\ 1 ) Kp, ITP |p, |
K m _ ,

n Ey - EC)

 1 (X|p, 13 (r5lp, [X)
 "HM La TL_pon

Ty Eg-EC)

_ 1

Ck = 2
rr,

X|py Tp) Tglpy [XO
Ej = EC,)

(A=2)

yd YT (Xp, I) (lp,|%)K m ,
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n12

_ Ly [Sle ITP

T, Eg- ECy)
A=1

5 _ 1 y (slp, |Tg ley 12)
m oN

T, Eg- EM)

where Ej is approximately the band edge energy of the conduction and valence

bands which are not includéd in the summations since the coupling between

these bands is included explicitly in our model.

When the Hamiltonian is expressed in terms of the linear combinations

of X, Y and Z, and the spin functions t and ! [Egs. (II- 1)], which

diagonalize the spin-orbit interaction, the parameters in Eqs. (A-2) re-

combine to form the parameters defined by Luttinger”

-/

1

 2 -

= -3 (Ag +B +2C, +2D,)- 1

t - 3 (A + B,-C, - Dy)

fo)
1 1

- 3 (Ag -3By+Cy Dy)

5 (A -2 +D« K ) -3 14

1

‘A=!7)

The spin-orbit interaction also allows the linear-k parameters defined by

Dresselhaus’
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C= x ) {tlc [TitNrt py 120) (A-6)
PATI

Including the spin-orbit splitting of higher I’, bands TC, ToI3) , we obtain

the other four parameters in Table II-2:

8 ’ , 8

et LY (¥g/lPy Tg 2 (Talpy Ys 0)
= A

tT Eo - EC)

1412) DH (rgle
: LdLdn

(by x_ 1/2 x 6 © V _/&amp;i 2N

LYNy = n

Ty

nye 8

HaloTTalo,13)
Eq = E(Tg)

A= 7)

6 "ors 8

m »

We estimate these last four parameters for one higher band (X YY’, 29).

Carrying out the spin-orbit transformation on both this and the (X,Y, Z)

valence band, we find
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“A

1

"12

3 8° |&lt;s|p, IT, |
N.. = 1 E - = 7

r, [Eo~ Ey

 yee iY nr Cy 12
 oar o [Eq-EC]

4

N

A= 2)

where A” is the spin-orbit splitting of the higher band. This gives

4

J
Lc
g: KX

0

N, ~ 5 =F
1 3 ge

0

N N_ = -

1 A’

3.2 E/’

r~

['S

AA=

where Eq = EC,) - By. This result for q is the same as that given by

Hensel and Suzuki. ?

For InSb, the parameters P, Yio Yoo Y3 and K¥ were obtained from

magnetooptical experiments by Pidgeon andBrown":
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EJ = 2 P%/m &gt; 21.9 ev

(. -

‘a

£ —»

—

|

- 1.2

= 0.1

2.1

(£70)-

neglecting the other parameters F, G, C, q, Ny» N, and Nj. Somewhat

different values were obtained by Pidgeon and Groves, ° who also found

Q -- 30

(A-11)

c= 9.3 x 10° ev-em

The results in Eq. (A-10) imply, from Eq. (A-4)

A p— 1.4

By = -1.1

(A-12)

Cp me «2.5

D._, Say 0.0

The results for q and Ce imply

A’ a 0.05 (A-13)

Eq

which is approximately satisfied using A” &gt; 1 eV and E, =~ 3 eV. However,
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Glosser, Fischer and Seraphin’ have observed electroreflection structure in

n-type InSb at 3.1 and 3.5 eV which they attribute to transitions from the Te

to the spin-split T, band, giving Eq= 3.3eV and A” = 0.4 eV with

A/Eg = 0.12. This value of A’ is about half that calculated by Varea de

Alvarez et al., 8 but agrees with a calculation by Bloom and Bergstresser. $

The ratio A°/Eg implies

]  3
~

(2-14)

rather than 0.39, which is close to the value 0.15 estimated by Lawaetz. 10

Using C,, =-0.25 and ES = 3.3 eV gives, from Eq. (A-2),

(X|p Ip P/m = 8.3 ev (4-9)

This, with the estimate of Lawaetz

i: = 2|¢s|p |x") | %/m &gt; 15eV (L-26)

gives, from Eqs. (A-95)

F == -2.3

‘A= +7)
G| = 2.4

Then Eqs. (A-9) give

N &gt; =),1

IN,| ~ |Ng| =~ 0.09

(-\ 18)
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For the case of Hg,_,Cd,Te, Lawaetz1! estimates, for HgTe and CdTe,

A&gt;~1eV, A= 0.6 eV, and Ey = 5.8 eV. He also estimates By = -0.5 and

Cy =~-1.2, with A, ~D_=~0, and q=0.06, E_=14 eV. These give

c -1.2

|G] =~ 1.4

(' 19)-
”

N. Se -0.4

N,| =~ |Ng| = 0.03

These results for Ns N, and Ng, as well as for q, are even smaller in

comparison to the other parameters, than is the case for InSb. These

estimates are further decreased if we used the recently calculated results

AT =&gt;=0,13, Eq ~6 ev for CdTe or A” =0.26, E&gt; S eV for HgTe. 1



138

REFERENCES

1.

2.

3.

4.

3.

6.

7.

RQ.

)

10.

11.

E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

J.M. Luttinger, Phys. Rev. 102, 1030 (1956).

G. Dresselhaus, Phys. Rev. 100, 580 (1955).

J.C. Hensel and K. Suzuki, Phys. Rev. Letters 22, 838 (1969).

C.R. Pidgeon and R.N. Brown, Phys. Rev. 146, 575 (1966).

C.R. Pidgeon ad S.H. Groves, Phys. Rev. 186, 824 (1969).

R. Glosser, J.E. Fischer and B.O. Seraphin, Phys. Rev. Bl, 1607 (1970).

C. Varea de Alvarez, J.P. Walter, R.W. Boyd and M.L. Cohen,

J. Phys. Chem. Solids 34, 337 (1973).

S. Bloom and T.K. Bergstresser, Sol. State Commun. 6, 465 (1968).

P. Lawaetz, Phys. Rev. B4, 3460 (1971).

D.]. Chadi, J.P. Walter, M.L. Cohen, Y. Petroff and M. Balkanski,

Phys. Rev. BS, 3058 (1972).



139

APPENDIX B. DERIVATIVESOFTRANSITIONENERGIES

The system of equations (V-3) for the corrections Sa, to the set of

parameters o involves the derivatives JE(H)/ oc of the transition energies

E(H) with respect to each parameter. Each transition energy is given by

E(H) = ES(H) - EV(H), where ES(H) and EY(H) are the conduction and valence

band energies in the quasi Ge model Eqs. (II-10). These energies are solutions

of the determinental equation

5 C D EB

~~

aap
=? La, Dh

D La E, G

E F G E,

) (B-")

where, for a-set energies and nz21,

E, = E+ 28H[(20+1)F + N| +n + 1] - E(H)

E, = - BH[(20-1)(v, +Y°) + 3¢] + q.=E(H)

E, = - BH[(2n+3)(y,- Y’) - kK] + qg = E(H)

B="5

E, = - A-BH[@2n+3)y, - 2k - 1] - E(B)

where q, and qs are defined in Eqs. (III-3), and
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C= DB HE,

D  ie

-

J (n+1) BHE_/3

E v2 (n+1B Heb
—

L, = 28 Hy/3n(n+I)vy”

E —-

foe /J J Ena +1) v

G -- v2BH[(2n+3)Y = K=-1]

(B-3)

For the b-set energies, and n&gt; 1,

E, = E_+ 28H[(20+1)F -N, + n] - E(H)

E, = - BH[(20-1)(y,~Y") + €] -qc - E(H)

“1bem4
th

Eq = - BH[@20+3)(v, + Y") - 3k] - q, - E(H)

E, = -A- BH[(2n-1)y, + 2€ + 1] 5(H)

and

C = J/nBHE_/3

D= - J/@+DBHE,

 BE
le

—
_ J/2nBHE /3

La, = 28H.3n(n+1) Y”~

F = J2BH[(2n-1)Y "+k +1) (B-5)

G
——

 _—— 28H./6n(n+1)
-e

=f

Equation (B-1) is

2 2 2 2 2

BE,EqE, - EJE,C E,E,D E, EE EEF E EG

2
EyE,L + 2B FGLy + 2E,DEG + 2B;CEF + 2E,CDL,

2CDFG - 2DEFL, - 2CEGL, + C*G* + DF? + E°L
mite

"—

(B-6)

0
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Taking the derivative of this equation with respect to each parameter as» We

obtain the following expression for the derivatives AE (H)/3a, :

ntee

- D

x 3C Lip 22+...
Lin = Yum) =" £(C) Se, + &amp; Ts
I~

3

— - ay 2 2 I -

} 2 2 _

HE.) = -E,(E4E,-G?) + E,E* + D(E,D- 2EG)

KE.) = -E,(EE,-C%) + E.E% + F(E.F - 2CE)
3 4(EjEp=CY) + Eg .

 E,) = -E,(E.E,-C?) + E,L2 + D(E.D - 2CL,)
4 1(E Eg 113 9 3

(R-7)

 3)=

and

{C) = 2[C(E,E,~G?) - E(E,F-GL,) - D(E,L,-FG)]
3E4 3F-GLg als

{D) = 2[D(E,E,~F%) - E(E,G-FLj) - C(E,L, -FO)]

{(E) = 2[E(E,E4-L3) - D(E,G-FLj) - C(E5F-GLy)]

(F) = 2[F(B,E4-D?) = G(E,L,-CD) - E(E;C-DLy)]

iG) = 2[G(E,E,~C?) - F(E,L,-CD) - E(E,D-CLj)]

(B-9)

(Ly) =2Lq(E, EE?) - F(E,G-DE) - C(E D-EG)]

with
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J

2 ) 2
- (B +E,)(E4E,~G") = (Eg+E(E E)~C) + (E;+EpF

{ (E,+E,)D’ + L,[(E +E,)Lg - 2(CD+FO)]  50)

+ E[(E,+E,)E - 2(CF+DG)]

Takingthe appropriate derivatives OE 1/30; etc. from Eqs. (B-2, 3)

or (B-3,4), and using Eqs. (B-7) through (B- 10), gives the equations used

to calculate the derivatives 3E(H)/ a, in the subroutine DECAL which is in

the listings of computer programs in AppendixC.Thederivatives for the

special cases n = -1 and 0 are computed, along with these energies, in the

soubroutine HCTEDR, which calls DECAL for nz 1.
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APPENDIX C. COMPUTER PROGRAMS

This Appendix includes listings of the computer programs used in this

investigation. These were all used on the TSO time-sharing system. Those

in the first group were used to calculate (GEDIAG) and print (GEPRT) the

energy eigenvalues and eigenvectors in the quasi Ge model for a given set of

parameters and magnetic field values, and also to calculate the energies and

intensities (GEINTEN) of transitions among these levels. The most intense

interband transitions were calculated (HCTTR) and plotted (HCTPL'T) on copies

of our magnetoreflection data for Hg,_,Cd,Te using the next two programs.

The identified magnetoreflection peaks were stored (DATACR) in disc datasets,

which could be edited using the TSO command EDIT. The data points were

fit to the calculated transition energies using variations of the next two pro-

grams, which call the subroutine HCTEDR which computes the transitions

energies and their derivatives with respect to all the parameters (see App. B).

The program HCTMIN was used to attempt to fit all of the parameters

simultaneously, and HCTMBC reduces the fit to 5 parameters or less by

expressing the valence band parameters y 1° Y, » V3 and K in terms of the

Kane parameters By and Cy [Egs. (A-5)].

Each program which requires input from the terminal uses a standard

set of conventions. The LABL input provides an opportunity to label the out-

put with the date, for example, and setting the first character to "s" is the

"stop" signal. The other input uses the TSO READ* or free-format input:

values are delimited by commas, successive commas are used to skip (leave

anchanged) a variable, and a ""/" terminates the input. In our programs the

sample orientation is assumed to be [111] unless cos 6 is reset on input.
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GMYI=G1S=-GDPS

{S=K%S

I1S=01%S3

DES=Q5*S
Y1=(P+5D=-1) *S

1IN=MN1%2D0

M1=M1+=5+S?2

MIA=5D-1%GPL-1,5DN%XKS+01S

¥IR=5DN=-1*GMT~-5N-1%KS-05S

MEA=5D-1%¥KS-1,5D0*GMI+05S
MER=1,SDC*KS~-1,5D0*GPL.-01S
M102=S2-1,5D0*G1S+KS-DFL

1103=5N-1%*5315-S2-KS-DEL

YS5=-RTIXGDD%S

YON=RT2*GPS

1GA= (KS+S-3DO*GPS)/RT?2
MAR= (GPS-KS=-S)/RT2
t=1

N=NMTIN

[F(NMIN.G®_.0) GO TO 1?)

A (1) =MHAA4GNT

A (2) =-MOA-MON

A (2y=M10A+G1S

TALL PIG®S(R,2,IV,D,Z,4,WK,TER)

RN (1,1) =0DN
EN (2,7) =0DO

FN (2 eeN=D (2)

EN(4,1)=D(1)
"N (5,71) =0D0
 TN (6,1) =0DN

EN(7,1) =MAR+5GPL
PN (8, 1)=0D0O
IPF(IV.FQ.N) GO TO 20

DO 10 J=1,4

DO 10 T=1,8

nJ,Y,1Y=0D0
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n(3,3,MN=7%2(1,2)
T(4,3,1="7(2,7)

Me,8,1)=2(1,1)

mes, s,1y=2(2,"
m(3,7,1)Y=100
TF(NMAX.%D.~-1) RY¥TNRN

L=1+1

N=N+1DD

"0 110 1=L,LMAY

RTN1=DSORT (N+1DD)
E(1)=MINXN+M1

R{1VY=A(1)-S
A(U)y=-MUAXRTN1
2 (4) =-M2A%PTN1

A (6) =MAA-N%XGMT

a (f) =MAB-N*GPL

A(7)Y=MT7A%DTN1

A (A) =—-MOA+MONXN

A(10)Y=M10A-G1S*N

TP(N.NE, ODD) GO TO AN

2 (2) =A (4)

 (3) =A (6)
YW) =A (7)

A (5) =A (9)

A (6Y=A (10)

TALL BIGRS(A,3,IV,D,Z,4,WK,IFR)

PN(1,1)=D(3)
EN (2,1) =0D0

"N(3,LY=D(2)

PN (4,1)=D(1)
[F(IV.FO.N) GO TO U0

Te(1,1,LY=2 (1,3)
7(2,1,L)=0D0
71(3,1,L)=2(2,2)
1(8,1,L)=7(3,3)
7(1,2,1)y=000
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1(2,2,LY=0ND0
1(3,2,Ly=2D0
T{4,2,L)y="D0

1(1,3,L)=7 (1,2)
7(2,3,L)=0D0
7(3,3,1Y=71(2,2)
m(e,3,LY=7(3,2)
T(1,4,7)=7(1,1)
mn¢2,4,L)y=0D0
T(3,4,LY=7(2,7)
7(4,4,1)=2(3,1)
R (2) =R (4)
B (3) =R (6) |

CALI RTGRS(B,2,7Vv,D,Z,4,WK,TER)

N(S,L)=D(2)
PN (6,1)=0DN

RN(7,1)=D("
RN (8,1)=0D9

TPF(IV.R0.N) G0 To 1

20 50 J=1,4

DO 5H 1I=5,18

m(J,I,L)=0D0
m(1,5,LY=2 (1,2)

m(3,5,1)=7(2,?)
n¢1,7,LY=2(1,1)
T(,7,L)=2(2,1)
0 70 110

"TN=DSORT (N)

A (2) =RTN*M22

B (2) =RTN*MURA

A (2)=M3IA-N*GPT.

2 (2) =M3IB-N*GMI

A (5) ==RTN*RTNT*MS

B (5) =A(5)
R{7)=RTN*MT7A
A(RY==RT2%RA (5)
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R (8) =MBB-N%XMAN

R (9) ==1 (7)

R(10Y=N10RBR=-N*G1S

CALL %IGRS(A,L,IV,D,2,U4,WK,I%R)
20 80 T=1,4
[I=5-T .

"TN(TT,LY=N(I)
[P(IV.F0.9) GO TO R0

ho Tn J=1,4

 (3, II, =72(J,7)
TONTTINTER

CALL EIGRS(B,4,1,D,Z,4,WK,IER)
po 100 1I=1,4
[T=9=-T7

*N(TI,LY=D(T)
"F(IV.F0.0)Y GO TO 100

20 Aan g=1,4

MI, Ir, Ly=2(3,7)
TONTINTE

N=N+1DO0

TPF(TV.PF0.N) RFTORN

PO 150 L=1,LMAX

nO 150 T=1,4

TP(O0(I,I,L).GE.ODO)GO™0130
nO 120 J=1,U

ne,r,Ly=-0¢(J,1,1)
TP(M({I,I+4,1).GE.ODO)»OTO150
DO 140 J=1,4

T(J, T+, LY ==-TT(J, T+4,1)
CONTINUE

IRTURN
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FILE GEPRT.FCRT

OBTAINS AND TRANSMITS EARAMETERS FOR GEDIAG ROUTINE

PRINTS ENERGY LEVELS AND EIGENVECTORS

USAGE: LCADGO (GEPRT,GEDIAG) FORTLIB LIB (*SYS5.IMSLIB.LOAD')

IMPLICIT RFAL*8(A-2Z)

INTEGFR*2 LABL,BLANK/' */,STOP/'S'/

INTEGER LINE, NMIN,NMAX,LMAX ,IH,IMAX,I,L,N,J
DIMENSION HI(20),LABL(100),EN(8,18),0(4,8,18)
DATA HI/2D1,4D%1,6C1,8C1,1D2,12D1,14D1,16D1/
DATA NMIN,NMAX/-1,4/,IMAX/8/,C111/.5773502692D0/
DATA G1,62,G63,KX,F,0/0CC,0D0,0D00,0D0,0D0,0D0/
pec 20 1=1,100

LABL(I)=BLANK
C=C111
PEINT 500

FORMAT (//* ENTER LABEL/EGM,EP,DEL,G1,G2,G3,K,F,Q/',

*COSINE,NMIN,NMAX,FIELDIMAX,VALUES/'/)
READ 600,LABL |

FORMAT (10021)

IF(LABL(1)«FO.STOP)CALLEXIT
IFAD *,EGM,FP,DEL,G1,G62,G3,K,F,Q

READ *,C,NMIN,NMAX,IMAX,HI
FG=EGM*1D-3

33L=EP/3D0O/EG
31L=G1+G3L

G3L=G3L/2D0
G2L=G2+G3L

KAPL=K+G3L

53L=G3+G3L

GPP= (3DO*C*C-1C0)/2D0
5PP= (G2-G3) *GPP*GPP

GP=G3+GPP
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210

S20

220

Sun

161

GPP=G2/3DN+CG3/1.5DN+GPP/ANY
N5=(1D0=-1,.5DO*C*C)* TIDOXC*C
D1=(05-3D")*0
05=(3ID0*0S5+1,25D0)*0
LMAY=NMAX-NMTIN+1

PRINT 510

"ORMAT (///)
PPINT 520,LRARL

PORMAT(//1X,10001)
FEM=FGX IN?

DELM=DRI*1D3

»PTNT S30,%G%,DELM,BP,F,0,61L,62L,~3L,KAPL,G1,G6G2,63,K,5P,GPP

FORMAT (///7//7° »G=',P8.2,' MEV, DEL=',F8.2,' NEV, EP=',F8.2,
'* PY, P=',¥%6,2,', O=',FE.2///" G1L=*,P7.3,', G21=',F7.3,

', G3L=',P7.,3,', RADL=',F7.3///° G1=¢,F7.23,?*, G2=',F7.3,
¥ ~3=',P7.3,°, ¥KAP=',F7.2///" Gp=*,F7.3,', GPP=',F7.3,
WN)

[H=1

H=HT (TH)
PRINT 520, LABL
[INF=3

CALL GRDIAG(H, NMIN, NMAYX, EG,DFL,¥P,P,G1,GP,GPP,K,01,05,1,EN,T)
PRYNT 540,H

PORMAT (///50%, 'H=",P8,2,' KILOGANSS'///' N',8X,%EA(MEV)",

7Y,v8,8%X,v/2¢ 6X,'-1/21?,7X,1'S-0",10X,* ER (MEV) * TX,
150 _8Y, v1/2',6Y,'-3/2',7Y,'S=-0")

[INE=LINF+7

PO 40 L=1,TMAX

pO 40 I1I=1,8

FN(T,LY=EN(I,L)*1D3
N=NMIN

NO 50 1L=1,T.MAX

TF(LINE.GE.S52) CALL NPAGE(LINF,LABL,H)

PRINT 550,N, (FN(I,L),(7(J,I,L),J=1,4),FN(T+4,L),

(U(J,I+8,L),J=1,4),T=1,4)
FORMAT (//T3,F1f, L4,4P10,.5,FP16.4,4F10 F

)
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50
_ A

1

~~

»

"n

A(/3Y,F16,4,UF10,5,F16.4,4F10,5))
N=N+1 5

ILINE=LTNR+K

TONTINTFE
LINF= (LINR/EF) *46=-LINR+£6

nO 60 L=1,LTNF
PRINT 70

PORMAT()
IP(TH,FO.TMAY)GOTO
"H=T H+ 1

30 TO IN

ND

STTRPONTINE NPAGRE(LINE,LABT,H)
TNTEGF®*2 TARL (10M)
PRAT, *8 H
[INR=6F~-LTNF

PO 10 L=1,LINF

PRINT 20

TOPMAT()
PRINT 3I0,LARL

PORMRT (//1Y, 10081)
PPINT U40,H |

PORMAT (///50Y,'H=*,PR,2,' KILOGAUSS'///%' N',8X,'FA(MRV)",

TY,1SY RY," 20 GY, %-1/2?,T7X,*S-0"',10X,"EB(MEV)*,7X.
 SY AY V1/20 RY, 1-220,,7Y, 15-01)

LINF=19)

EFPTNIRN

ANT

|

.
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®TLF GRINT®N,FORT

ORTRINS AND TPANSMTTS PARAMETERS FOR GEDIAG ROUTINE

PRINTS INTFRRAND ENBRGIRS AND INTENSITIES FOR GE MODEL

1SAGP: LOADGO (GFINTEN,GENTAG) PORTLIB LIB('SYSS.IMSLIB.LOAD')

IMPLICIT RFALXR(A-Z)

"NTFGER*2 LARL (100) ,BLANK/® '/ STOP/'S'/

*NTEGFR ITNF,NMAYX,IMAX,IMAY,LNM1,7,J,L,
11,LL,LL" |

DIMFNSTON HY (8), EN(8,18),7(4,8,18) ,E(8,18,8),ET(2,8)
DTMFNSTON AT (2,2) ,70(4,8,18,8)
DATA HI/2D1,4D1,6D1,8D1,1D2,12D1,14D1,16D1/

DATA TMAX/R/,NEAX/3/,C111/.5772502692D0/

DAT? G1,62,G2,%,¥,0/000,0D0,0D0,0D0,0DO0,0DO0/
c=C111

nO 20 L=1,100

LARL(L)=RLANK
PRINT 500

FOPMAT (//' FNTER 1ABL/FGM,EP,DFL,31,62,G2,KAP,F,0/°,

* COSTNP,NMAY,IHMAX,H-VALUES/"'/)

PEAD 700,LART.

FORMAT (100A 1)

TP(LABL(1).FO.STOP)CALLFYTT
IRAN *, FGM, FP,DEL,G1,62,G2,K,F,0
PG=FGM*1N-3

READ *,C,NMAX,TMAX,HI
3PP= (IDO*C*C-1D0)/2DO
3PP= (G2-G2?) *GPE*GPP
3P=6G 3+GPP
RPP=G2/3DN+G3/1.5D0+GPP/6DO
N5=(1D0-1.5D0*C*C) *,75D0*C*C

J1=(05-3D0) *0

NS=(3DC*0S+1,25D0)*O
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T°NN

52AN

eqn

1

[un

550

7490

[MAX=NMAY+?

PRINT 750,LARIL

TORMA™ (//1Y,100A 1)

DO 0 I=1,IM2rY

H=HAT (T)
~ALL G®DTAG(Y,-1,NMAY,®G,DRL,EP,F,G1,6P,GPP,K,01,05,1,EN,T)
PO 30 LL=1,8

no 20 L=1,T,MAYX

*(LL,1,T)=(FN(LL,L))*1D3
no 20 J=1,U

7o9(¢(J,LL,L,T)=0(J,LL,1L)
PRINT 530, (RT(T) ,I=1,TMAY)
FORMAT (/30Y, *TPANSITION ENERGIES (MPV) /JINTENSITIES'/16X,8F1C.1

)

ITNP=1%

PPTINT 590

PORMAT(' T,+:')

LINF=LINE+1

LM1=LMAX-1

DO 50 L1=1,LM*

[=1LT+1

DO 40 T=1,IMAX

AT (1,TY=(HWA(3,LL,1,L,00,T))**2
\T(2,T)=(H¥B(7,LL,S5,L,07,T))**2
PT(1,IY=E(1,1.,T)-E(3,LL,TI)
&gt; (2,7)=%(5,L,T)-F(7,LL,T)
1=1L-1 |

IP(LINE.GF.SU8) CALL NPAGE(LINE,LABL,TMAX,HI)

PRINT S40,L1,L1, (ET(1,T),I=1,IMAX)

PRINT 710, (AT(1,1I),I=1,IMAX)
PRINT 550,L1,L1, (ET(2,1I),7T=1,TMAY) |

PRINT 710, (AT (2,1) ,I=1,TMAY)
PORMAT (5Y,' A4',T1,% - AC*,T1,3X,RF10.4)

?0RMAT (5X, R4?,T1,' - BC',I1,2X,8F10.4)

FORMAT (17%, 8710, 4)
LINR=Y.INF*4
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210

CONTINME

TP(LINF.G®,.54) CALL NPAGE(LINF,LARL,IMAX,HI)
SPRINT £00

FORMAT(*T=-21)
[INF=LINE+1

DO 70 LL=2,LM1

L=LL+1

D0 £0 I=1,TMAX

ATP (1, Ty= (HWA (2,LL,1,L,M0,T))*k%2
AT(2,1) = (HWR(6,1T,5,1.,11,T))x2
PT (1,Ty=P(1,L,T)-F(2,L1,T) -

PT (2,T)=%(%,L,T)-R(6,LL,T)

L1=LL-1

[F(LINE.G7.S04) CRLL NPAGE (LINE,LABL,TMAX,HI)

PRTNT 560,L1,T1, (FT(1,I),I=1,IMAX)
SPRINT 710, (AT (1,1) ,T=1,IMAY)

PRTNT S570,T1,T1,(RT(2,I),I=1,THAY)|
PRINT 710, (A™(2,T),I=1,IMAX) |

TORMAT™ (5X, R-',T1,' - AC',T1,3X,RP10.4)
"ORMAT (SY, * B-¢,TI1,' - BC',11,2Y,RFP10.4)

LTNF=LINT+U

~ONTINNF

TF(LINR.GF.54) CALL NPAGF(LINE,LABL,TMAX,HI)

PRTNT £10

TORMAT('R-3')
[INP=LINF+1

nO 90 LL=3,LMAX

L=1T.=1

NO RO T=1,TMAY

p(1,I)=(HWA(1,L,2,LL,07,T))*%2
A? (2,IV=(HWB(S,L,6,LL,NN,T))%*2
rp (1,TY=E(1,1,I)-F(2,1L,1)
FT (2,T)=2(5,T,T)-F(6,L1,T)

L1=L=-2

r11=1

TP (LINF.GF.54) CALL NPAGE(LINE,LRRL,TMAX,HT)
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120

380

PRINT €60,LL1,11,(PT(1,T),T=1,TMAX)
PRINT 710, (AT (1,T),I=1,TMAY)

PPINT 570,117,717,(PT(2,1),I=1,TMAY)
PRTNT 710, (AT(2,T),T=1,TMAY)
INE=LINP+4

~ONTTNN® |

TP(LINE.G®.S8) CALL NPAGR(LINF

PRINT £20

FORMAT( R43?)
[TNR=LINF+1

PO 110 LL=3,LMAX

I=LL-1

0 100 I=1,TMAY

AP (1,T)= (9%? (1,1,3,LL,U0,T))x*2
AT (2,T)=(99P(5,L,7,LL,00,T))%*2
rT (1,T)=F(1,1,I)-F(3,1LL,T)

RT (2,IV=R(5,L,I)-F(7,LL,T)
L1=1.-2

LL1=1, |

TP(LINR.GE.54) CALL NPAGE(LINE,LARL,TMAX,HI)

PRINT S40,LL1,L1, (ET(1,I),T=1,TMAY)
PRINT 710, (AT(1,T),I=1,IMAX)

PRTNT 550,LL1,L1, (FT(2,7),T=1,TMAX)
RINT 710, (AT(2,T),I=1,IMAX)
LINP=T.INR+Y
CONTINTE

LIN®=(LINF/66) *RA-LINF+h6

nO 120 L=1,LINF
PRINT 580

TORMAT()
30 TO 10

END

SUBRONUTINF NPAGE (LTNE,LABL,IMAX,HT)

FEAL*8 HI (IMAYX)
INTEGPR*2 T,ABL (100)
[INR= (LINP/6F) *A6-LINF+66
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DO 10 T=1,LINF

SRTNT 20

PORMAT ()

PRINT 30,1ARL
FORMAT (1X, 10011)

PRINT 40, (HI(T),T=1,IMAX)
?ORMAT (///30X, "TPANSITION ENFRGIES (MRV) /JINTENSITIES' /16X,8F10. 1
)

PRINT 20

LINE=7

RETIRN :

END

"INCTION HWZ(T,L,J,M,7,IH)
"MPLICTIT RPAL*R(A-H,0-7)

DATA RT2/1.414213562D0/,RT3/1.732050808D0/, RT6/2.449489743D0/
DIMPNSTON1(4,R,18,8)
AWZ=-(7(1,I,L, IH) * (RT2*0(2,J,M, THY = (4,J,M,IR)) +0 (1,J,M, TH) *

(RT2*1(3,7,L,IH)+0(4,T,L,IH)))/R™3
RETORN |

2NTRY HWA(I,L,J,N,U,IH)

HUA= (TT (1,J,M, THY *(-0(3,T,L,TH)$+3T2%M0[1
*n(1,I,L,IH))/RT6

PRPTIRN

INTRY HWR(TI,L,J,M,0,1H)

AWB=(N(1,T,L,TH)*("(2,J,M,TH)¢+RT2*1(L,I,M,THY)-RT3I*1(1
*11(3,T,L,THY)/RTE

RETURN

PN
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00001520
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00001550

00001560

00001570
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00001610
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00001630

D0001640

00001650
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SURPONTINES HCINIT(®G,DFL,®P,P,G1,5P,GPP,KAP,01,05,N1,FPS)

HC™TR(H,IP,IT,FT)

DTAGONALI7PS R%] GFRMANIOM K.P MATRIX NSING SNRROOUTINES DMHS AND

DMFSD TN SIMATH, FINDS INTERBAND TPANSTTION ENERGY

PAPAMETRRGS» H(KILOGA USS) MAGNETIC FIELD
IP (INTEGFR) 1 POR 1CP, 2 FOR RCP

TT (ITNTEGEPY TRANSITION NUMBER

FG,DFL (EV) PNPPGY GAP AND S-0 SPLITTING
?,G1,GP,GPP,KAPM,01,05,N1 =~ CONDUCTION AND VALENCE

RAND HIGHFR-BAND PARAMETERS

ACCURACY OF PIGENVALUES

RETNMRNS: FT TRANSITION ENPFRGY (FV)

SORRONMTYNR HCINIT(®G,DFL,%P,P,G1,GP,GPP,K,01,05,N1,EPS)
IMPLICIT RPRL®S8 (A-7) |

*NTEGFR 1,,I,IFR,IP,IT,LC,LCP(20,2),LH,LHP(20,2),IC,ICP(20,2),TH.

THP (20,2) ,11,12,IL,IFR
DIMENSION E(2),A(10) ,B(10),D(4),CD(8),R(1),AUX(8)
DATA RT2/1.414213562D0/ |

DATA 1°?*/1,%,1,5,5,9,9,9,5,9,9,9,5,9,9,9,5,9,9,9,
1,%,1,1,5,1,5,9,1,9,9,9,1,9,9,9,1,9,9,9/

PATER THP/3,7,2,6,702,2,2,74242,2,74242,2,7.2,2,2,
2,6,2,3,6,2,6,2,3,2,2,2,3,2,2,2,3,2,2,2/ |

PATA LCP/2,2,4,4,3,5,6,7,4,8,9,10,5,11,12,13,6,14,15,16,

2,2,3,2,3,4,4,5,3,6,7,8,4,9,10,11,5,12,13,14/
DATA v#®/1,1,3,3,2,4,5,6,3,7,8,9,4,10,11,12,5,13,14,15,
2,3,4,3,4,5,5,6,4,7,8,9,5,10,11,12,6,13,14,15/

FMIN=-DFL

PRTOURN -

FNTRPY HCT™™R(H,IP,IT,ET)
5=1,15767578D-5%H

§82=S/2D0

1
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TC=ICP(IT,IP)

TH=THP? (IT, TP)
LC=1CP (IT, TP)
LH=LHP (IT,TP)
TP(LH. GT. LC) GO TO 19

L1=LH

30 TO 20

L2=1H

[1=1C

TPF(IC.F0.5Y GO TO 110

[L=1
DO 1090 1=L1,12

N=1-2

IF(N. GB, 0NDN) GO TO 30

SET N=-1

A (1) = (K=-G1+GDP)XS240Q5%S

A (2y=(GP-R-1DNY) *S/RT?2
A (2) =R%S+ (I1D0-G1) *S2~-DFL

CARLY DMHS(A,2,D,CD,IER)

TALL DMES® (D,CD,2,2,2,7PS,®,AUX,IER)
f(IL)=-R(1)
50 TO 100

in TP(N.GT.0DN)Y GO TO 50

T A=-SET™ N=0

 A (1) = (1D0O+P+N1)%S+7G
1 (2)=-NSORT(EP*S/6D0)

R(3)=(RK-3D0*(G1-GP))¥S2+05%S
A (4) ==A (2) *RT2

A(5)=(GP*3DN-K-1D0)*S/RT2
R(6)=K*S+ (1DO=-3D0*G 1) *S2-NFL

°A1T DMHS(A,3,D,CD,IER)
TF(L.FQ.LC) GO TO 40

“ALL DMESP(D,CD,3,2,2.EPS,R,AUX,IER)
 (TL) =-R (1)
30 0 100

= A=
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00000560
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00000700
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 Jom
 an
0



0 CALI, DMESP(D,CD,2,3,?,FPS,R,ANX,IER)
F(IL)=R (1)
50 TO 100

~ A-CRT ND

30 NP1=N+1D0
N3=N+1.5D0
A (1) =(FP*(2DO*N+1D0) +N1+NF1) *S+FG

A (2) =DSOR™(N*S2%EP)
A (2) == (1.5D0*K+ (G1+GP) * (N=. 5D0) =Q1) *S
A (4) ==-NDSORT(NP1XS*EP/6DN) |

A (5) =DSORT (3IDNXNXND1)*GDPD*S
A (6) =(.SDO*K~(G1-GP)*N3+05)*S
A(7)=-2(4)XRT2
A(R) ==1A (5) *RT2
A (9) = (GP®XNI%S-(K+1D0)*52)*RT2
A (10) = (K+.5DD-G1%*N3)*xS=-DFL

~A11. DMHS (A,4,D,CD,IER)

TF(L.70.LC) GO TO 80

[F(IH.EO.3) GO TO 70

~ALL DMESP(D,CD,4,3,3,FP".R,AUX,IRR)

?(IL)=-R (1)
GO TO 100

CALY. DMBSP(D,CD,4,2,2,FPS,R,AUX,TER)

PTL) ==R(1)
70 TO 100

~ALL DMESP (D,CD,4,4,4,EPS,RAYTPR)
P(ILY=R(1
TL=IL+1

IF (IC.E0.1) GO TO 200

[L=1

po 190 L=L1,12

N=1-2

IP(N.GE. ODD) 60 ™0 120
B-SET N=-1

E(IL)==- (3NN*K-G1-GP) #32+01%S
30 TO 190
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120  IP(N.GT.ODO) GO TO 140

C B-SRET N=0

B(1)=(F-N1) #5473

R{2) ==-DSQORT (FP*S?)
RB (3) =(K-G1-GP) *3D0%*S2-01*S
CALL DMHS(R,2,D,CD,TFR)
TF(L.¥0.1C) GO TO 130

CALL DM®SP(D,CD,2,1,1,EPS,R,AUX,TER)
B(TL)==R (1) |

0 TO 190

TALL DMESP(D,CD,2,2.2.FPS,R,AUY,IER)
FIL)=R(1)
30 TO 190

C BR=SE™ N&gt;0

140  NP1=N+1D0

N3=, 5D0-N

R(1)=(F*(2D0%N+1D0)-N1¢N)*S+FG
 (2) =DSORT (N*S*EF/6D0)
R (3) =((G1=-GP) *N3-05) *S-K*S?

R (4) =-DSORT (NP1%XS*EP/2D0)
R (5) =NSOR™ (3DO*N*NP1)*GPD*S

B(F)=(1.5D0%K~(G1+GP)*(R+1.5D0)-01)*S
B(7)=B(2)*RT?
R (A) = (N3*GP%S-(K+1D0)*S?)*RT?
R{9)=R (5) *rT?

 (10) = (N3*51-K-_5D0)*S=-DEL
"ALL DMHS(B,4,D,CD,TER)
I[P(L.FO.LC) GO TO 170

IF(TH.%0.7) GO TO 160

CALL DMESP(D,CD,4,3,3,FEPS,R,AUX,IER)
ITP(IC.N%.9) 150 TO 165

E(ILY=(E(IL)-R(1)Y)/2D0
30 TO 190 |

CALL DMESP(D,CD,4,2,2,FPS,R,20X,IER)

RP(ILY=-R(1)
"0 TO 19N
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CALL DMESP(D,CD,U4,4,8EPS,R,AUXY,IER)
IP (TIC. N®.,9) GO TO 185

T(IT)=(R(TLY +? (1)) /2DN

30 TO 190

FITLY=R(1)
ITL=TL+"1 ~

PM=F (1) 4 (2)
FFTORN

END
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FIL¥Y HCTPIT, WORT

DRTATNS AND TPANSMITS PARAMETERS FOR HCTTR ROUTINE

PRINTS AND FLOTS INTERBAND TRANSITION ENERGIES FOR HG (1-X)CD(X) TE

TSAGF: LOADGO (HCTPLT,HCTTR,HCTEV) FORTLIR LIB(*SYS55.IMSLIB.LOAD!

‘i, Mu006,PU540,TSP.LOAD)
TMPLICIT °RAL*R(A-7)

INTEGF® LYNE, TMAYX,IT,T,L,IPLT,NML |

"NTEGFR*2 LABI (100) ,BLANK/* '/,STOP/'S'/
YITMRNSTON HI (75),ET(27,795) |

PATA TMAX/18/,C111/.5773502692D9/,%0,%1,H0,H1/5D1,27D1,0D0,15D1/
DATA G1,62,62,%X,7,0/2.5,-3,.5,-1.2,-.7,0D0/
JATY DRL/1DO/,¥PS/1D-5/,N1/0DQ/

no 5 I=1,75

HI(I)=I*2DN
T=C111

DO 15 L=1,100

LARL(L)=RLANK
PPTNT S00

"OPMAT(//' ENTER LABL/FGM,EP,DEL,G1,G62,G3,KAP?,F,0,N1/",

'*COSINFE, TMAX,F0,R1,HO,H1,BPS/*'
READ 6£N0,LABL

PORMAT (100A1)

TF(LARL(1).FO.STOPYCALLFXIT
RAD *,EGHM,EP,DEL,G1,G2,63,K,F,0,N1
FG=RGM*1D-2

READ *,C,TMAX,?0,E1,HN,H1,¥PS

APP=(3INNXC*C-1D0)/2DD
GPP=(G2-G2) *GPE*GPD

3P=G3+GPP

53PP=G2/3D0+G3/1.5D0+GPP/6DO

DS=(1D0-1.5D0*C*C) *,75D0*C*C

01=(05-3DN)*0
75=(3D0*05+1,25D0)*0
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S40

| Nn

5850
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)

"ALL HCINTT™(%®G,DPl,%P,¥,G1,GP,GPP,K,01,05,N1,FPS)
PRINT 510, 13RY
PORMAT(//1X, 100A)

PRINT S30, (HI (1),I=20,70,10)

PORMAT (/20Y, '"TRANSTTION FNFRGIFS(MRFV)?
,' KILORANSS?)

LINF=15

PRINT 540

FORMAT('L:')
LINF=ITNF+1

D0 30 IT=1,TMAX

no 20 I=1,7%

“ALY. HOTTO(HYI(IY,1,IT,F)

?T (IT ,I)=F%x1n3

rP(LINF.G®.57) CALL NPAGE(LINE,LABL,HTY)

DRINT S40,TT,(F™{(IT,T),T=20,70,10)
LINE=LINF+1

POPMAT(2X,T12,6F10.4)
CONTINTR

CALL ETPLOT(ET,®R0,®1,HO,HT)

TF(LIN®R.GF.52) CALYT. NPAGE(LINF,LARL,HT)
PRTNT 550

TORMAT(* R=")

LINF=LINF+U

no 50 TT=1,TMAX

"O 40 T=1,75

"ALL HCTT®(HI(I),2,IT,E)

PT(IT,TY=Px1DN?
[F(LINE.G?,S7) CALL NPAGE (LINE,LABL,HI)

PRINT 540,IT, (FT(IT,I),Y=20,70,10)
ITNE=LINE+1
CONTINUE |

CALL ETPLOT™(RT,EQ0,®1,HO,:
LINE=LINF+3

LINP=6K-1TNF
pO 210 L=1,LINF
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210

SRD

919

S85)

g20

530

PRINT S80

FORMAT()
GO TO 10

FND

SOBRROMTINF NPAGE(LINE,IABL,HT)
TNTEGER%2 LARY (100)

RFAL%*8 HI (7%)

ILINF=66-1TNFE

PO 910 L=1,1INF

PRINT 580

FORMAT()
PRINT 920,1ARL

FORMAT(1X,100A1)
PRINT 530, (HT(1),I=20,70,10)

FORMAT (/20X, *TPANSITYON ENPRGIFS (MEV) * /3X,6P10. 1

vy KILOGAUSS?Y)
PRINT 580

LINF=S

FETURN

END

SUBPOUTINF RTPLOT(¥T,EO,E1,HO,HT)

RFAL*8 ET,E0,F1,HO,H1

DIMENSION ET (20,75) ,HI("S) ,FP(75)
nO 5 1=1,75

RT (IY=T%2,

FOS=F0

F1S=E1

FOS=HO

H1S=H1

NMAX=0

PEAD * NMAY

TP(NMAX.GT.0) GO TO 20

PRINT 10

FORMAT()
EFTURN

CALL SPEED(30)
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no 8H 1=1,75

FO(I)y=ENS
"All TSPLP(75,HI,¥FP,0.,10.,0.,10.,H0S,H1S,ENS,E1%)

NO 40 N=1,NMAY

po 30 1=1,758

TP(ET(N,I).LE.F1) GO m0 2D

[=1-1
30 TO 40

EP(T)=ET(N,T)

CALI TSPLP(TI,HI,®P,0.,10.,0.,10.,HNS, H1S,R0S,F1S)
TALL TTY

PND
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FILF: DATRACR, POP™

DIMPNSION ITS (2,14,20)
TATA HT/SANKN,/
PRINT £00 |

FORMAT (//' ENTE? IPOL,TT,4,FP,IT1/1)
“ONTINUE

PPAD *, IP, TT H, R,ITI

TP(TT.LE.N GO TO 19

TP(IT.5T.20) GC TD 10

TR(TP.LR.0)GO Tn 40

I?(IP. 67.2) G0 TO 10

WRTTR (2,500) TIP,IT,IT1,H,°®

DO 20 ID=1,14

IF(HT(IP,IN,TT).EN.0.)COTO
TONTINTFE

70 TO 10

AT (TP,TN,T™)=H
eT (ID,TDH,TT)=F
TPS(IP,ID,TT)=TT1
rO TO 10

DO 60 IP=1,2

PO 60 IT=1,20

PO S50 ID=1,14

TF(AT(IP,ID,TT).FC.N.) GO TO KO

WRYTE(1,50N0) IP,IT,ITS(IP,ID,I™ ,HT(IP,ID,IT),ET(IP,ID,IT)
CONTTNNE

Tp=0

WRTTE(1,500) TP

WRITE (2,500) TP

PRINT 610

“ORMAT (/* REMEMBER TO DELFTE BACKUP DATASFET')

CALL EYIT

FORMAT (T1,12,T2,2P5.1)
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TO USE DATACR, TYPE FX DATACR 'FILE' WHICH EXECUTES 00000370

THE FOLLOWING CLIST TO CREATE A DATASET FILE.DATA 00000380

DATACR.CLIST 00000390

PROC1NAME 00000400
FREEQ ATTR(FR15) FI (FTC1FO01) DA (ENAM 000€0410
FREEQ DA (BACKUP.DATA) 00000420
DELETE ENAME..DATA : 00000430

DELETE BACKUP.DATA 00000440

ATTRIB FB15 REC(F,F) LRE (15) BLK (2040) 00000450
ALLOC FI(FTC1F001) DA(ENAME..DATA) US(FB15) BLO (2040) SP (6,6) 00000460
ALLOC FI (FTO2F001) DA (BACKUP.DATA) US(FB15) BLO (2040) SE(6,6)00000470
LOAD CATACR FORTIIB 00000480

PREE FI(FTO1F001) 00000490

FREE FI(FTO02F001) 00000500
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SMRPOIUTINRS HCTNTT (FG, DFL, FP, ¥,G1,GP,GPP,RAP,01,05,N1,FPS)

HCTED®(H,IP,IT,RT,DF)

DTAGONALIZ®S R%8 GERMANIUM K.P MATRIX USING SUBRONTINES DMHS AND

DMES® IN SLMATH, FINDS INTFRBAND TRANSITION ENERGY

AND TTS DERIVATIVES WITH RESPEC™ Tn: 1-EG,2-EP,3-G1,4-G2,

5-G2,6-KAP,7-F,3-0,9-N1,10-DFL.

H (KTLOGATSS) MAGNETIC PTELD

IP (TNTEGRR) 1 FOR LCP, 2 FOR RCP

TT (INTEGER) TRANSITTON NUMBER

RG, DEL (EV) FNERGY. GAP AND S-O SPLITTING

v,G1,GP,GPP,KAP,01,05,N1 CONDUCTION AND VALENCE

BAND HIGHER-BAND PARAMETERS

FPS  ACCHRACY OF FIGENVALORS

PPTNPNS: Pm TRANSTTION ENFPRGY (EV)

NR(1,e0ep,10) DERIVATIVES OF PT

STRRQNT INR HTINIT (EG, DEL, EP,F,G1,6P,GPP,K,01,05,N1,BPS)
TMPLICIT RPAL*8 (A-7)

TOMMON CQ1,C05,CGP2 ,CGP3,CGOPP2,CGPP3

TNTFGPR V,I,T7R,TP,IT,LC,VCP{20,2),LH,LAP(20,2),1C,ICP(20,2),1IH,
THP (20,2) ,11,12,1IL,IER |

DTMPNSTON ®(2) ,A (10) ,B(10),D(8),CD(U),R(1),AUX(8),DE(10)
DATA BRT2/1.414213562D0/

DATA I1cC?/1,5,1,5,5,9,9,9,5,9,9,9,5,9,9,9,5,9,9,9,
1,5,1,1,5,1,5,9,1,9,9,9,1,9,9,9,1,9,9,9/

PATA THP/3,7,2,6,72202+2074202,2,7,2,2,2,7,2,2,2,

21602030602,602030202,2,3,2,2,2,%3,2,2,2/
DATA L.CP/?2,?2,4,4,2,5,6,7,4,8,9,10,5,11,12,13,6,14,15,16,

1 2,2,3,2,3,48,4,5,3,6,7,8,4,9,10,11,5,12,13,14/

paT™a 1HP/1,1,3,3,2.4,5,6,%,7,8,9,4,10,11,12,5,13,14,15,

3,3,4,2,4,5,5,6,4,7,8,9,5,10,11,12,6,13,14,15/
FMTN==-DET,
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DRTIRN

PNTRY HCTRDR(H,IP,TT,ET,NR)
t=, 187675 TAD-G*Y

$2=5/2D0

no S T=1,10

DE(T) =7D0

TC=ICP(IT,TP)
TH=THD (I™, TD)

LC=1CP (TT, ID)
[H=THP (IT, TD)
I[P(LH.53T.1LC) GO TO 10

T1=1H4

[2=1C

30 m0 2N

12=LH

[1=1C

"P(TC.FN.5) 70 TO 110
r1=1 |

DO 100 TL=11,1?

N=L-2

TP(N.GE.NDO) G0 TO 30

A-SET  N=-1

A (1) = (R=-G1+GD) XS24+05%S
A (2) = (GD=-K=-1DN) XS/RT2

R(?) =K%S+(1D0-G1) *S2-DEL

DO 25 I=1,3

R(T) =A (T)
CALL DMHS(R,?,D,CD,IER)

Call DMESP(D,CD,2,2,2,EPS,R,AlY,IRR)
R(TLY=-R(1)
RPI=P(1)=A(1)
FU=P (1)-2 (1)

PHO=E3+Fl
[F(DABS(RHO)«LT.1D-15)PHO=1D-15
DE (10) =DF(10) +E3I/RHO

DR (3)=DE(2)+S?
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P1= (RT2%Sk}(2)+#S2%%U)/RHO
NF (U)y=DPR (4) -F* |

NR (A) =DE (AR) +¥71-5

DE(R)=DP(QR)-COS*kS*FU4/RHO
GO TO 100

an TP(N.GT.ODD) GO TO SO
C A-S®»T N=0

A(1)=(IDN+PENT)%xS+70
A (2) =-DSQT (FP*S/6D0O) |

A(2)=(R=2N0% (G1-GP)) XS 24NE*S

A (Uy=-1(2)*pT™?2
A (5) = (GP*2INO-K-1D0) *S/RT2

A (Ff) =K*xS+ (1DN-3D0*G1) *S2-DFL
no 35 I=1,6

B(TY=2(T)

SALTY DMHS (R,3,D,CD,IER)
TP(T..FO0.1C) £0 TO 40

CALY DMPS®(D,CD,3},?,2,EPS,P,RANY,TER)
RC="P (1)
F(I1) =-%"C
SGN=-1D0

tO TO 45

CALI DMRSP(D,CD,3,3,?,EPS,R,A0X,IER)
Fr=R (1)

F(IL)=FC

SGN=1D0

F1=FC=-13 (1)
E£3="C-1 ()
RU=RC-A (F)

FI=FI®EU-A(5S)*2(5)
F2=E1%R3-A(2)*2(2)
FI=E1%E4-7(4)*2(U4)
RHO=(F14F2+F2)*SGN
TP (DARBRS (RHO) .1.T. 1D-15) RHO=1D-15
F1=P1/RHO

DE(1)Y=DE(1)+F1

'1
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F2=F2 /RHQO
DE(I0)=DF(I10)~-F2
NF (2)=DR (2) + (2 (2) * (FU*A (2) +2D0O%A (4) %) (5) ) +A (4) *2 (4) *R3) /JFP/RHO

DE(7)=DE(7)+S*F1
DR (9) =DE (9) +S*F1

F3=FP1%S2*3IDO/PHO
R2=F2%S

MP (3)=DE(?) =F3-1,65N0*¥%?

 I= (RA (5) *RY+A (2) *A (U4) )*S*RT2 /RHO

DF(UY=DNR(LY)+FI+P1%x3IDD
NE(E) =DR(F) +P3I/AIDN-F1+ PF?
NP (RY =DE (8) +F3I*C0S/1.5DN

50 TO 100

~ A=SFET WN&gt;0

RA NP1=N4+1DO

NI=N+1,5DD

A(1Y=(FXR(O2NO%*N+IDDY+N1+NP1)XS+F3
L (2) =DSNR™ (N*SIO% WP) :

B(3) == (1.5D0*K+(G14+5P)XX(N=-_,5DN)-01)*S
 A (U4) ==-DSORT(NP1%S*EP/ANN)
A (SY =DSORPT(INNXRNXNDT)*¥50D%*S

A (A)=(.5D0*K~(G1-GP)XN34+05)*S
A (7)==A(U4)%RT2

A(R)==A(5)%RT2
A (0) = (GP%RNI*S~{K+1D0)*S2)*PT?2

A (10) =(K+,5N0-G1%*N3)*S-NFT
ho 55 T=1,10

B(IY=2(I)

CALL DMHS(B,4,0n,CD,IER)
SA=1D"

"F(L.PO.LCY GO 70 RO

IF (IH. FQ.) GO TO 70

TALI. DMPSP(D,CD,4,2,3,FPPS,R,20X,TTR)
FC=R (1)

R(IL)=-RC
SGN=-1D0
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IF(IT,*D,9) SGN=-2ND0
0 TO 8/%

TALI. DM®ESD(D,CD,U,2,2,EPS,R,ANY,IRR)
"C=R (1)

F(IL)=-%C
SGN=-1D0N

30 TO 8%

“ALL DME3SP(D,CD,4,4,4,FDS©,
FC=R (1)

 {ITY =%C

SGN=1D0)

TP{IC.F0.2) SGN=2DO

TALL DECAL (®¥C,SSN,SA,A,N,S,EP,DE)

TL=TL+1

IP(TIC.R0.7)Y GO TO 200

re=1

po 13H 1=L1,712

N=T,-2

TR(N.GE.ONDNY GO TO 120

RT  N=-1

FUTILY==-(3IDN*K~-G1=-GP) *S2+S%01
DE (3)=NE(3)+S2
NF (UYy=DE(U4)+S?
DE(AY=DE(KA)=IDN*&lt;S?
IF (BY=NE(8)+S*CN1
rN TO 190 :

120 IF(N.GT,.NDNY GO TO 140

~ R-QCRM N=)

RYT) =(P=N1)*S+FG
 2 (2) ==-DSORT (FP*%*S?2)

R{3)=(k-G1-GP) *¥3D0*S2-S%"1
RO 125 I=1,3

A(T) =RB (1)

TALL DMHS(A,2,D,CD,TER)

IP(L.FO.LCY GO TO 110

“ALL DMESP(D,CD,2,1,1,RPS,R,ATUY,IPR)

ll
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140

PC=P {1}

FTL) ==-FC

IGN=-1D0

fO TO 13%

CALYT DM¥SP®(D,CD,?2,2,2,FPS,R,ANY,TER)
RC=P (1
RIT1Y=%C

SGN=1N0

F1==C-8 (1)

FI=wC-RB (2)
PEO= (R1+F?) *¥SGN
fTP(DARS(PHO).1T,1D-15)THO=1D-15
F1=FI/EHO

NE (1)=DE(1)+71
PR (T)=NP(T)+FI1%S

PE (9) =DPF (2) =FT1%g

DR{2)=NE(2) +R (2) *R (2) /FP/RHO

P1=F1*&lt;S2%3IDN/*HO

NR(IH=NE(I)-F"
NP (4)=DF (8) -F1

DE (EY =NE (Ff) +71

NR (RY=DP(R)-CO1*F1/1SDN
20 TO 190

ET NON

NP1=N+1D0

N3=,5D0-N

 (1) =(F*(2D0O%XN+1D0)-N14N)*S+FPG;
R(2)=DSORT (N*¥S*EP/AD])
RA) =((G1-GP)*N3I-Q5) *¥S-K*S2
R(U) ==-NSORT(NPI%S*EP/2DN)

R(5) =DSORT(3NN*kN*NP1)*GPP*k&lt;
RAY =(1.,5DN*R = (G1+GP) * (N+1,5D0)-01)*S

R(7)=R{2) *RTO

R(AR)Y=(N3I*GP%*T=(K+1D0)*S2)*RT2
2 (9) =B (5) *RT2

R(10)=(N3I*G1-X~-,D0)*S-DFL
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138

199

20N

nO 145 T=1,10

A(T) =P (1)

“ALY. DMHS(A,4,D,CD,IFR)
SA=-1D0

TF(L.FO.LTY GO TO 170

IF(TH.R0.7) GO TO 160

CALI. DMPSP(D,CD,4,3,2 EPS,R,ANY, TER)

"C=? (1)

TF(TCLNE,Q) GO TO 16S

T(TIY=(F(T1)=-FC)/2DN
IGN==-2D0

30 TO 18K

“ALL DMESP(D,CD,4,2,2,.EPSX,°AUX,TRP)
PC=T (1)

P(TL)=-FC
IGN=~-1N0

50 TO 18°F

~A1Y NMF&lt;D(D,CD,4,4,4,%DPS,RANY,TPR)
PC=7 (1) |

IP(TC.NF,2)GO Tn 185

FI(TLY=(E(TIL)4+FC)/2N0
SGN=2D0

50 TO 18R |

P(TL)=FC
S5GN=1D9

“ALL DPCAL (®C,SAN,SA,%,N,S,FP,DR)

[T=TL+1

 BRT=F (1) +R (2)
71=DE (U4)

DE (U4) =CGP2*E1+CGPP2%*DF(5)
DE (5) =CGPI*T14+CGPPI%xDE(5)
2EPIRN

END

SURROUTINE DZCAL (RC,SGN,SA,A,N,S,FEP,D¥)
[MPLICTT REAL*R(A-7)

COMMON CO1,C0%
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DIMENSION A (10) ,DE(10)
DATA RT2/1.414213562D0/

E1=EC-1A (1)

E2=EC=-A (3)
E3=EC=-A(6)

E4=EC~-1 (10)
FI=E1*E2-A(2)*A(2)
F2=E3*EU-1A(9)*A(9)
RHO= (F1* (E3+EU) +F2* (E1+E2)-A (U)*A (4) * (E2+E4)-A(8) *A (8) * (E1+E3)

&lt;A (5) * (A (S)*(ET14EU) +2CC0* (A (2) xA (U) ¢A (8) *A(9))) |

&lt;A (7)* (A (7)*(E2¢E3) +2D0* (A (2) *A (8) +A (4) *A (9) ))) *SGN
IP (DABS (RHO) .LT.1D-15) RHO=1D-15 |

P3=(F2*R2-A (5) * (A(5)*E4+2DO*A (8) *A (9) )~A (8) *A (8) *E3) /RHO

DE(1)=DE(1)+F2
DE(7)=DE(7)+(2DO*N+1D0)*S*F3
DE (9) =DE (9) +SA*S*F3

P3=(P1*E3-A(U4)*(A(U4)*E2+2D0*A(2)*2A(5))
DE (10) =DE(1C)-F3
NAS= (N¢SA+,.5D0)*S
DE (3) =DE (3) =F3*NAS

DE (6) =DE (6) +F3%SA*S

F3=E2%E3-A(5)*A(5)
FU=E2*EU4 -A (8) *A (8) |

DE(2)=DE (2) + (A (2)* (A (2) *F2+2DO*A (4) * (A (5) *EU+A (8) *A(9)))
| +A (U4) *A (4) *PU+A (7) &gt; (A(7)*F3+42D0* (A(U) *A (9) *E2+A (2) *A (8) *E3

2 +A (S5)* (A (2) *A (9) +A(U4)*A (8)))))/EP/RHO |
FS= (F2*E1-A (U4) * (A (4) *E4+2D0%A (7) *A (9) )-2 (7) *A (7) *E3) *S/RHO

F6=(FP1*EU4~-A (8) * (A (8) *E1+2D0%A (2) *A (7) ) =A (7) *A (7) *E2) *S/RHO
DE(6)=DE (6) - ((2D0+SA) *F5- (2D0-SA) *F6) =. SLO

[F(SA.GT.0DO0) DE (8) =DE (8) +CQ1*F5+CQ5*F6
IF(SA.LT.0D0) DE (8) =DE (8) -CQ5*F5-CQ1*F6
FS=F5% (N-,.5D0)
P6=F6* (N+1.5D0)
DE (3) =DE (3) -F5-F6
DE (4) =DE (4) - (F5-F6)*SA

PS= ((E1*E3-A (U4) *A (4)) *A (8) + (E1*=A (5) ¢A (2) *A (8) )*A (9)

 ~-A (5) *A (5) *%E1) /RHC
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. + (F2x} (2) +A (U)*2 (SY) *3 (7)) ¥RT2/RHO

Ph=(P1%1 (J) + (TIA (5) +4 (2) *2 (4)) *A (9)

+ (E2%A (UB) +A (2) *¥A (5) ) *A(7)) *RT2/RHO
P= ( (T1REL-B (7) *2 (T)) *A (5) + (P1%4 (8) +A (2) *A (7) ) *A(9)

+ (RY%A (2) +A (TY *A(R)) *A(4)) /RHO
TF(SA.LT.ODOYy GO ™O 11 |

P1=F§

?2=FY-75

FI=FH

30 Tn 20

r1=-P5

P2=FlH+RH

?A=PY

IF (BY) =DF (4) + NAS*2DOXPT

 WP (5) =DP (S) +DSORT ((N+1D0) *N*x12D)) *S*F2

YF (Ff) =DE (F) =S%xF3
ERTIRN

PNT

1
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"Re HMMMTN, FORT

MTNTMTZRS MEAN SONART® DFVTATION WITH RESPECT TO: 1-BG, 2-EP,

1-G1, 4-62, 5-63, £-¥KAP, 7-F, R-0, 9-N1, 10-DFLTA

IMPLICIT RFAL®XQ(RA-7) |

[NTEGFR LINE,IP,IT,IPOL(280),ITRN(280),T,DAT,

J,L,IPRR(8),TS,IF?,NP,IT1(280)
INTPGER*2 LARL (100) ,STOP/'SY/,BRL/Y vy

NTMFNSTON HTEN (2R0),ETRN(289)
DIMENSION X (10),A (10,10) ,R(10),DE(10),DR2(10)
~OMMON CO1,C0%,CGP2,CGP3,CGPP2,CGDPDY

DATE C111/.5773502692N0/

DATA X/10%0ON0/

DATA ®DPS/1D-6/,NP/10/

TDAT=0

"FAD (1,600) TP,I™,J,H,F

SORMAT(T1,T72,72,2F5. 1)
TF(IDP.F0.MN GN TO 20

IDAT=TDAT+1

rPOT. (TDAT)=TP
ITRN(IDATY=IT
"PY (INAT) =T

FT RN (IDAT) =F*1D-2

PTRN (TDAT) =H

TP(TDAT.ED.280) GO ™O

30 TO 10

T=r111

"0 30 T=1,100

[ARI (T) =BL

PRINT S500,IDAT
FORMAT (/1X,I?,"

READ £10, LABRL
PORMAT (100A 1)

ITF(LARL(1).F0.STOP)STOP

PFAD * C, FPS,NP
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PC= ((AINNKCXC-T1DN)/2DO)*%2
~GP2=FC

CGP2=1NN-FC SE

~GPP2= (2DN+FC) /ADN

TGPPI=(4DN-FC)/5NO
DS={1DN=1,SDO*C*C)*,TSDOXC*C
T01=(05-3DM

T05= (IDN*0S+1,2500)
PINT 510,1ARI

POPMAT (//1Y,100141)
LINE=8

PRTNT 5720

*0"MAT (/' ENTER EGM,EP,DFL,G1,G2,G63,¥AP,P,0,N1%)

FAD *,FGM,X(2),Y(10),(X(T),T=2,9)
Y (1) =EGM*1D-3

LINP=TINF+4

TF(¥GM,F0.NDNY 50 TO 90

TP=CGD2XY (U4) 4CGP IXY (5)

RPP=CGPP2%Y(U)+4CGPDPIXY(5)
PPTN™ 530,FGM, X(2),Y (10), (X(I),T=3,9),GP,GPP
POPMAT (//' FG(MTV) FP (FV) DRL(PV)',LX,'G1' ,FX,*'G2',5YX,

"GY ', 57, KD FX,'P! TY,'0',TX,'N1',6X,GP?AX,'GPP'/
FR.3,F8.4,F8.5,0PR,4)

[TNE=TINR+4

DT=CO1RY (2)

DS=COS%Y(/Y
CALL HTINT™ (X(N) ,¥(10),Y (2) ,X(7),X(3),GP,GPP,X(6),
01,0%,X(9),FPS)

DEV=0D0

nO AN J=1,8P

BR (J) =0DO |

DO 60 L=1,ND

 P (J,LY=0D"

DO 80 I=1,IDAT

CALL HCTFDR (HTRN (TV) ,IPOL (I) ,TTRN(T),FCAL,DE)
TP(IT1(T)Y.FO.N) GO TO. 65

;

)
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0)

“ALY, HTTENR(HTON(T) ,IPOL(TY,IT1(T),FC2,DF2)
PCAL=(FCAL+FC2)/2N0

no f4 J=1,ND

NR (I) = (NP (J) +NE2 (J)) /2DO

DPLE=FETRN(Y) -FCAL
DO 70 J=1,NP

2 (.Jy =R (JY +DRLF*DF(J)
no 71 1L=1,NP

A(J,L)=A(J,L)+DE(J)*DE(TL)
NYRV=DFLF*NRLF+NRV
DRMS=NSOR™ (DFV/IDAT) *1D3

T=1

PRINT SuU0,NDRMS
FORMAT (/' DPMS=',1DD10),.°

PEAD *,T

TINP=LTNW+U

IP(T.F0.,C) GO TO a0

CAT. DMPG (A, 10, NP,IPR2,IS,TFR)

ALY, DMSG(A,10,IPFRNP,0,BR,IF)
no ]5 J=1,NP

 (JY =X (J) +R (J)

PGM=X (1) *1D3

EP=CGP2%Y(U4)+CGPIXY(5)
RPP=CGPP2%Y(U4)+CGPPIXY(5)
TP(LINF,GR.SN) CATL NPAGF(LINF,LRRL)
PRINT S30,EBGM,X(2),X (10), (X(T) , 11,9) ,GP,GPP

LINP=T.INF+U

30 TO 50

TF(X(1).E0.NDOY GO TO 95

30=X (2) /3DO/X (1)
3C=Y (1) /(X (1) +X (10)

C=1DN/ ((GC+ODN) *GO+X (7) *2D0+1D0)

3C=((GC=-1N0N)*GN+1DN+2NN%Y(9))*2DD
MP=YX (3) +GN

GN=G0/2D0
T1=DSORT ((GO+X (U4) ) ¥%+INO* (GO+(X (1) +X (5)) /72D0) *%2)
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M2=DNSORT((GN+(XY(LU)+3DO*Y(5))/4UDN)**)
+3ID0* (GO+ (IDNKY (4) +SDOXY (S)) /ADDY *%2)

47=DSOPT ((GO+X (S)) ¥*243ID0* (G+ (X (4) +2DN*X (5)) /3D0) **2)
M1=1DN/(MD-TT)
M2=1D0)/(MP-M2)

M3=1D0/ (MP-M2)
MP=91D0/ (MP+T)
SPINT &amp;40,MC,GC,MP,M1,M2,M3
FORMAT (/! MC,GC,MP(0N1),M=(001),(110),(111)=',1PEN12,.3)
LINF=YTNF4+? |

FTNP=FR-1L TNF
 190 J=1,TTNF
PEINT 370

POTMAT()
30 TO 20

PND

SARROM™ IN? NPARE(TLINE,LABL)

INTEGER%2TARY(100)
LINP=R4~LTNF

pO 10 L=1,LINF

PPTNT 20

FORMAT()
PPYNT 230,LARL

TOPMAT (1X, 1002 1)

dPTNT 20

LINP=D

AR™IRN

ND
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CTY Re HCTMRC, OPT

Ny TINTMT?ZES MFAN SOUAP® DPYIATION WITH RESPECT TO: 1-FG, 2-FP,

1-rK, W-RK, =F, £-0, 7-N1

TMPLTICTT °PATL*2(3-7)

"NTEGFR LTNE,I®, IT,IPOL (280),ITRN(280),I,IDAT,
J,L,TPPE (8) ,TS,TFR,NP,TT1(280) |

TNTEGE2%2 LART (100) ,STOP/'S'/,BL/' '/

PTMENSINN HTPRN (2RN),RTRN(P80)
NTMPNSTON A (10,10) ,B (10) ,DF(19),DE2(1C),DR(7)
~OMMON C01,C05,CGP2,C53P2,CRPP2,CGPDA |

namp mmH,®TH,0TH,0SX/.6666666667D0,1.333333333D0,

.33322323323D0,.1666666667D0/
NA™A C111/.5773502692D0/

DATA BK,CK,%R,0,N1/5%0D0/

"ATA PDS/1N-6/,NP/2/
TDA™=0 _

&gt;FAD (1,60M) IP,IT,J,H,F

FORMAT (I1,T2,T72,2P5.1)
[P(TP.R0.N) GO TO 20

TDAT=TDAT+1

IPOL (IDAT) =1IP
TTRN(TODAT) =I"
rT1(IDAT)=.7
FTRN (INAT) =Fx1DN=-3
HTRN (TDAT) =H

I? (IDA™.FO.2R0)#0™020
50 TO 10

c=C111

DO 30 T=1,100

TABL (I) =RL

PRTNT 590,TDAT

2ORMAT (/1Y,T2,"
&gt;FAD 610,LABL

PORPMAT (100A1)
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500 DATE POINTS, FNTER LARL/DEL,COSINE,EPS,NP/")
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TF(LABL(1) .EN.S™OP) STOP

"RAD *,DFL,C,FPS,NP

PRINT 510, LART

FORMAT (//1Y,10CA 1)
LINE=°

PRINT 520

"ORMAT (/!' FNTFP FGM,RP,CK,RK,P,0,N1Y)
PRAD *,BGM,F?,CK,RY,®0O,N1
[INP=LIN®R+U

TP (RGM.EO.NADNYGO™099
31=-TTHXRE-FPTH*"K-1D0

32=(CK~RK) *NTH
3 3=0SX*BK-0THX*CK

K=0SY*RR4+OTH*CK-0NTH

PC=( (IDO*C*xC=-1D0)/2ND)*%2
3PP= (G2-G3) *PC

3P=5 3460p

RPP=G2/3D0+73/1,5D0+GDPP/ADO

IS=(1DN=-1,5DN*C*C)*_,ISDN*C*C
~01= (05-300)
T0S=(3IN0*05+1,2500)
CGP2=PC

~"GP?I=1D0-PC :

CGPP2=(2DN+FCY/ANO
“GDP 3I= (4DO-FC)/ADD
PRINT 530,FGM,FP,D"L,r1,62,63,k,P,0,N1,G5P,GPP

TORMAT (//' FG (MEV) ED(®RV) DEL (EV)', u4¥,'61' _6¥X,'G2',5YX,
'*'33 ',5X, 'KAPY EX, FP? TX ,'0',7X,*N1!,6X,'GP?,6X,'GPP/
F8.3,7R,4,FR,5,0FR,4)

ITNE=LINF+U

EG=EGM*1D-?

N1=CO1%*0

05=CQ5*0
CALY, HCINIT(®G,DFL,%P,P,G1,GP,GPP,K,01,05,N1,FPS)
DRY=DN

DO 69 J=1,NP

}
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r (J) =0D0

no AN 1L,=1,NP

A (J,Ly=0D0

no 7H T=1,TDNAT

~ATLL HCTEDR (HTRN(I),IPOL(T),ITPN(I),RCAL,DF)

TP(IT(I).FO.M GO TO 65

~ATY], HCTENR(YTRN(I),IPOL(T),IT1(I),EC2,DE2)

ECAL=(RCAL#FRC2)/2D0
no 64 3=1,°

DR (J) = (DF (J) +DE2 (.1}) /2DC

DPLE=FTRN {T)-FCAL

DEV=DELE*DFLE+DEV

DR (1Y=DE (1)
JR (2Y=DF(2)
DR (3) =0SX* (DE (5) +DE (6) )-TTH*DE (3) ~OTH*DE (4)

DB (3) =OTH% (DF (4) -NP (5) +4DP (6) ) -PTH*DE (3)

NR (S)=DE(7)
PR (6) =NE (2)

DR (T)=DR(")

8 (J) =R (J) +DELE*DB(J)

po 70 L=1,NP

A1(J,Ly=A(J,L)+NB(J)*DB(L)
DRMS=NSORT (DEV/INAT) *1D2

I=1

PRTNT 540,CK,BK,DRMS

FORMAT (/' CK, REK=' P8.4,%,',F8.4," DRMS=',1PD10.3,
! MEV: PNTPR0TOSTOP!)

PEAD *,7T
LINF=LTNF+U oo

IP(I.%0.0) GO TO 99

CALYT DMPG(A,1?,NP,IPER,IS,TFPR)

“ALL DMSG (A, 10 ,TPER,NP,0,R,TER)

PG=EG+RB (1)
EP=RP+B (2)

IF(NP.LT.2) GO TO R2

3
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TF(ND,L™,4)R(4)}=0DN
G1=G1-"THXR(4)~PTH*R(2)
G2=R2-NTH*(R(L)=-B(3))
G3I=G3+0OSY*R(U4)-OTH*R(3)
K=K+OSYXB(4)+OTH*R(3)
GPDP= (G2-G3) *FC |

GP=33+GPD

GPP=G2/3IDN+G3/1.5D0+GPD/AND

TF(NP,GRB.5) F=F+R (5)

TF(NP,AF,R) 0O=0+P(6)
 ITP (NO,GR.7Y N1=N1+R(7)
FPGM=F3*1D3

TPF(LINR.GE.S5N) CALL NPAGE(LINE,LARL) |

PRTNT 530,%GM, *P,D¥L,51,G2,63,K,F,0,N1,GP,GPP
LINE=LTNR+4

TF(NP,3F,4)BK=BK+R (Ul)
TF(NP.GF.3) CR=CR+RB (3)
GO TO SN

TP(FG.RD.NANNYGNm095
GO=FP/INN/PG

BC=FG/ (EG+DET)
MC=1D0/ ((GC+2D0) *GO+F*x2D0+1D0)
GC=({GT-1D0) *G0+1D0+2D0*N1) *2DN

MP=G1+430

G0=530/2D0 :

T1=DSORT((GN+G?2)**24+3DN*(GO+(G2+G3)/2D0)*%*2)
M2=DSORT((GO+ (G243NN%G3) /4DN) %%x2

+INDX(GO+ (IDN%G24+5NN*G3) /B8DO) *x%2)
MI=DSORT ((GO+GQ) *¥%x24+2IN0% (GO + (G2+2D0O%*G3) /3IDN) *%2)
M1=1nN/ (MP-T1)
M2=1D0/(MP-M2)
MI=1nN/(MP-MT)
MP=1DN/ (MDP+T1)
PRINT S580,MC,GM,M1,M2,M3
FORMAT (/' MC ,GC,M+#(001) ,M=(00N), (110), (111) =*_1PED12.3)
LINE=LINF+?
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LITNR=AS~LTINFT
po N00 J=1,LINF

PRINT 570

FOIMAT()
30 TO 20

END

IPRPHONTINE NPAGE (LINE, L2RBI)
TNTF3PI%2 TABI (100)
LINF=RA-TINPF

DO 17 L=1,LINF

DPTNT 20

FORIMAT()
PRINT 30,LART

PORMAT(1X,10011)
DPRTNT 20

LTNF=?
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