Design and Analysis of a Memory Hierarchy for a
Very High Performance Multiprocessor Configuration
by

Evan Michael Tick

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREES OF
BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1982

@ Evan Michzel Tick, 1982

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author - — v o
Department of Electrical Engineering and
Computer Science, January 14, 1982
Certified by . ek
Arvind
MIT Thesis Supervisor
Certified by [IAYAR AVm | he BV A A s
o Tilak K. M. Agerwala
IBM_Cempany Supervisor
Accepted by —_— = -

Alan C. Smith
Chairman, Departmental Graduate Committee

rehives
MASSACHUSETTS INSTITUIE
OF TECHNOLOGY

MAY 20 1882

UBRAR\ES

-1-

Design and Analysis of a Memory Hierarchy for a
Very High Performance Multiprocessor Configuration
by

Evan Michael Tick

Submitted to the Department of Electrical Engineering
and Computer Science on January 14, 1982 in partial
fulfillment of the Requirements for the Degree of
Bachelor of Science and Master of Science in
Electrical Engineering

ABSTRACT

A memory hierarchy for a very high performance (one billion instructions per second)
multiprocessor configuration is described. This hierarchy consists of two levels of
private cache per hypothesized 128 MIPS processor, a shared memory and a switching
buffer channel device. Unique problems introduced by the high performance multipro-
cessor environment are solved in the areas of mapping, replacement and consistency.

" A locking protocol and recovery mechanism are described for database system applica-
tions. A functional hardware description of the level two cache is given in HEX. An
MP central-server queueing network model is derived for ‘the system including
processor/process affinity, write-back and both I/O and computation job classes each
with differing block transfer sizes. Model solutions are analyzed.

Thesis Supervisor: Dr. Arvind
Title: Professor of Electrical Engineering

-3-

Acknowledgement

I am grateful to T. K. M. Agerwala for his assistence in helping solve many of the
problems encountered in this work. I am also indebted to J. Cocke for the inception
of the BIP MP system and his useful insights. The modeling effort derives from
discussions with K. S. Trivedi, E. A. MacNair and C. H. Sauer. My understanding of
locking and recovery was furthered by conversations with A. Chang. The Speed
Matching Buffer organization is accredited to M. M. Denneau. I would finally like to
thank D. DeGroot for his careful evaluation of this thesis.

Table of Contents

1.

Introduction
1.1 Statement of Problem
1.2 MOUVAtioNSvitneranersecerasoeeseaoscasannnssanaas

1.2.1 Shared Memory

1.2.2 Fully Associative L2

1.2.3 1/0 Bandwidth
1.3 Literature SUfveyc.iciitirenrincacaaenacanassonss
Modelingciiiiiiniiinineiennnennnnnannnnnancnans
2.1 MP Central Server Model
2.2 Implementation
2.3 Results

.......................................
...

System Architecture

Memory Hicrarchy

Memory Management
41 L1 Mappingcuciiiiniiiniinnraieaernanaannenanssns
4.1.1 Conventional Map
4.1.2 Hierarchical Map
42 L2 Mapping ...ttt ittt i
43 L2 Page Fault Handler
4.3.1 Replaccment
43.11 Algorithmcctttiiiiirnnnnanannenan
4312 Implementionc.ciiiiiiiiiiiiiiiaaaaas

432 Upward Transfero,
4321 Orphansciiiiiiietennensariaanaeananenas
43.2.2 L2 Write-back e e

44 MsMapping iiiiiii ittt i
4.4.1 Conventional Map
442 Proposed Mapcciitienecnnnnennennonnnanns
45 MsPage Fault Handler i,
451 Allocation POiCYiiiviitiiinieieicnnanennans
4.5.2 Replacement Algorithm

......................................

File Managementceoeuiuieeeeeeeonnaanssonnssnsasssnas
5.1 SID Assignmentc.iciiiitrtanaaaaareaaeaeeana
5.2 Pathname to SID Conversionc.ciittiiiniirnnennas
53 VA toBsA Conversionc.cieeeeenersonesnanionnnns

5.3.1 Segment Descriptor Table
5.3.1 Backup Store Address Table
5.3.2 Active Segment Table

...........................
.........................

I/O Management
6.1 Input ittt
6.1.1 Demand Paging

..

...................................

....................................

6.1.2 Explicit Inputttt 128

6.2 Burst Multiplexor Channel Device 128
6.2.1 Forward Path itiiiiiiiiiiiniennnnnns 129
6.2.1.1 Speed Matching Buffer 130

6.21.2 Burst Buffer i, 135

622 Reverse Path ittt iinniniinnnennns 141

7. Additional Pointst i i e e 143
7.1 Shared Memory Designc.ciiiiiiiinniiinnnnannn. 143
72 System BusDesign 0.ttt 146
7.3 File Adaptive Pre-Pagingcccuititiennnncnnnnnnnn 146

Database Considerations

8. Lock Management iiiiiitanenanencnnennns 148
8.1 Locking Protocoliiiiieiiiii it 148
8.2 Implementationiiiiiiiiiitieieaaeaa 151

9. Transaction Managementc.iititrnnceennannnn 155
9.1 Commitc.iiiii ittt e et 155
9.2 ADBOft i et e e e, 157

10. Recovery Management iiiiirininnnnnnnnn 159
10.1 Central Recoveryc.iiieeiieennnrenanennnanan 164
102 Local ReCOVEIyouitiiiiiiiniiiiiineeianennnann. 166
103 System Logtiiiiiinniittetaennonaancaensan 167

11. Conclusions and Future Work iiiinnnn. 170

Appendix A: Technologyt iiii e iineeianeannanans 173

Appendix B: L2 Specification i ittt 176

Appendix C: File Manager Structures el e 200

Referencesttt et e et 204

Biographical Noteii it iiinnienennnnaeennnn, 212

1. Introduction

1.1 Statement of Probiem

The problem presented is the design of a memory system for a very high per-
formance (aggregate billion instructions per second) multiprocessor configuration (BIP

MP). There are five major goals in this design:

e develop a well balanced system, ie. minimize the cost/performance ratio,
aiming for a BIPS performance.

e don't push current disk or semiconductor memory technologies to achieve
performance.

o develop a modular design which can be easily up or downgraded.

e support a multiprogrammed environment for both scientific and database
applications:

» scientific - efficient execution of relatively few jobs, each with large
resource requirements.

o database - efficient execution of many small transactions sharing
very large databases.

- guarantee level-3 consistency (GRAY78).
- provide recovery mechanisms.
¢ develop an inexpensive yet accurate model of the system to assist in the

design and to predict performance.

The BIP MP is comprised of eight hypothetical 128 MIPS processors, each with
private memory, sharing a commmon primary memory (fig. 1.1). A large secondary
memory, assumed to be an array of movable arm disks is required to support the large
architected virtual address space. The I/O bandwidth generated by the attached

processors creates an additional problem: the need for many simultaneously active disk

-9-

-10 -

arms. The large shared memory is introduced to reduce this total 1/0O bandwidth
requirement, ie. to efficiently support the degree of multiprogramming necessary to

achieve high performance.

The assumption of current disk technology implies a gross mismatch between
secondary and primary memory bandwidths, 6 megabytes per second (MBS) and 1
gigabyte per second (GBS) respectively. A high speed channel device is proposed to
make the datapath widths and rates compatible at this interface. There are four
primary design goals for this channel device:

¢ the cost should be minimized to the extent that it is in proper proportion to
the cost,of the disks it services.

e the design must be modular to permit cost effective extension of secondary
memory in reasonable units.

» the design must be fault tolerant to prevent channel hardware failure from
- crashing or bottlenecking the system.

o the design must be reliable and therefore simple.

To avoid a usually large switching penalty, no process ! switch will be taken on a

4
private memory miss, i.e. when the data Object referenced by a processor is not
resident in the associated private memory. This implies that the shared memory

" mapping must be efficient and more fundamentally that the private memories must be

effectively managed.

Each private memory is equal in size to a small conventional main memory which
suggests a similar implementation: a two level hicrarchy. The level one cache, L1, is.
assumed to be a IBM 370/3033-like ‘mche - a relatively small (32 - 64KB) high-speed

set-associative memory which is transparent to the attached processor. The so-calied

1 process, job and transaction are used synonymously in this thesis.

-11 -

level two cache, L2, is a much larger memory (1 - 4MB). There are two primary

design criteria for L2:

e it must be fully associative to effect efficient page fault handling, ie. reduce
the private memory miss ratio by efficient replacement.

e it must be completely hardware controlled, ie. transparent o the processor,
to achieve a low L1 miss penalty.

The hardware design of a fully associative cache of conventional primary memory size

is a unique problem.

Shared memory management is another complex problem that requires both a
localized bardware controller and a dedicated high speed processor, the supervisor. The
hardware controller must queue all shared memory requests from the processors and
control data transfers to/from shared memory. Disk transfers are independently
queued and controlled- by the intelligent channel devices. The supervisor performs
shared memory mapping (in hardware), page replacement (in software with hardware
assist) and initializes all I/O to/from secondary memory (in software). It also
pie-pages sequential files with hardware assist. The software functions are pieces of
the global operating system running on the ';upervisor: tﬁc shared memory page fault

handler and the I/0 manager. Also required are the file manager and recovery manager.

The file manager must deal with the issues of naming, i.e. translating a symbolic
file name into a virtual address into a physical disk address. The large virtual space,
orders of magnitude larger than those of conventional systems, creates uncommon

problems keeping mapping structurcs and algorithms inexpensive in terms of both

space and time.

The lock and recovery managers are additions to the global operating system

forming the basis of 2 BIP MP database system. -The lock manager must perform the

- -12 -

setting and releasing of locks on data objects needed to guarantee consistent file

manipulations. It is assumed in this thesis that the decisions of wher. and what to lock
are made at compile time, leaving the problem of kow to lock up to the manager at
runtime. Again, the high performance goal necessitates developing a streamlined

locking protocol and lock map structure for a very large file space. The complexity of
a multiprogrammed multiprocessor multi-level memory hierarchy creates additional
proolems coucerning' the possible propagation of multiple copies of data objects and
the subsequent inésrrogate problem. This problem is discussed throughout the thesis

because it is infused in every level of the hierarchy.

g

The recovery manager must support deadlock recovery, volatile memory crash
recovery ana transaction failure recovery (non-volatile memory recovery, for instance
from disk head crash, is not dealt with in this thesis). Again, the multiprocessor
environment creates an interesting recovery problem. A local processor crash should
not cause the other processors to crash or impact their performance. Therefore two
types of memory crash recovery are needed: private and shared, corresponding to the

respective memories. Private recovery must be transparent to the other processors.

Throughout the development of the BIP MP, the hierarchical design principle

reappears again and again. The several abstract levels on which the system can he

viewed are all hierarchies:

memory space
file space
memory biaps
lock types
lock granularity
transaction log

-13 -

1.2 Motivations

In this section several motivations for designing specific sections of the BIP
MP are given. Arguments here are based on gross calculations, the purpose of which
is to get a rough estimate of system requirements and bottlenecks in a very high
performance environment. The underlying motivation for designing a memory hier-
archy for the BIP MP is that scaling up the performance of a conventional system by
about 100 (from 10 MIPS to 1 BIPS) scales up the necessary active disk arms by
about a factor of 35 (20 to 700 arms), as will be shown. The hierarchy reduces this

substantially.

1.2.1 Shared Memory

The introduction of the shared memory level between the fast multiprocessor
private memories and slow secondary memory reduces the processor generated I/0O
bandwidth requirement. The reduction is by the factor of the shared memory’s miss
ratio. To justify the inclusion of an additional memory level, large enough to have a

low miss ratio, it must be shown that the previous 1/0 bandwidth is intolerable.

To estimate the I/O bandwidth generated by a single processor, "Amdahl’s
constant” (AMDA70) may be used - assume one bit of I/O per executed instruction.

This implics that a single 128 MIPS processor generates an 1/0 rate, R, of

Ry = ___._1283”’5 = 16 MBS

To calculate the number of simultaneously active disk arms necessary to support this

bandwidth, the effective disk block transfer rate, R, , must be caiculated. R, is the

- -14 -

mean rate at which data is transferred from a single disk arm, taking into account both

seek and latency.

R =
S+

R

act

where b is transfer size, S is the mean disk arm access time (seek plus latency) and R,,

is transfer rate. Assume b = 4KB and R,, = 6MBS (Appendix A). The number of

simultaneous active disk arms per processor is calculated as

RIO
eff

arms =

,

This result is plotted in fig. 1.2. Taking S = 20ms as most realistic, this implies that

the BIP MP requires 82 x 8 = 660 simultaneously active disk arms. It would be

FIGURE 1.2. DISK ARM ACCESS TIME VS. ARMS

SIMULTANEOUSLY ACTIVE DISK ARMS
20

'l - L Il [l 1 L L
o d .

o 5 10 15 20 23
DISK ARM ACCESS TIME (msec)

-15 -

difficult or impossible to build a bus capable of supporting that I/O bandwidth (over

4GBS).

Another way to view the shared memory’s impact on system performance is to
compare its function to those of conventional uniprocessor (UP) system components.
In a conventional UP (fig. 1.3), large multiprogrammed virtual spaces are implemented
by the primary memory demand paging to/from a secondary memory and a paging store.
The secondary memory or backup store, Bs, is a non-volatile medium, usually disk,
permanently housing the sum of the virtual spaces. This is the target of both implicit
and explicit 1/0. Explicit I/O is the loading of virtual data objects into primary
memory through explicit file I/O commands. Implicit I/O is essentially demand
paging to/from Bs, ie. the loading of referenced virtual pages not resident in primary

memory through default and the <write-back of dirty pages. Most demand paging,

disk for
explicit 170

Ms

poging drum
for demand paging

proposed Ms'/

Figure 1.3. Conventional Main Memory :

however, is to/from the paging store, Ps, usually a faster medium than disk, such as
drum. Ps hoids pieces of temporary offloaded working sets ! belonging to switched
out processes (working sets initially get into primary memory via I/0). The paging

store is thus used to lower the switching penaity.

In the proposed system the shared memory is designed large enough (many times
larger than the sum of the processor private memories) to obviate the need for a
paging store. Actually this is not completely true. Implicit I/O will still take place,
but to a lesser degree if all the working sets can fit in the shared memory comfortably.
Of course one can always increase the degree of multiprogramming high enough to
crowd the workiné sets, increasing the miss ratio and subsequently the amount of
demand paging. This is offset against the increase in performance afforded by a large
set of concurrently acﬁQe processes to switch in during a process interrupt. Essentially
this is the same tradeoff faced in a conventional system. An intelligent shared memory
allocation policy must balance the degree of multiprogramming with the miss ratio

(section 4.5.1.1).

1.2.2 Fully Asscciative L2

It was stated that L2 is fully associative to reduce the private memory miss
ratio, essential for attaining the desired performance. A rough calculation is made of
the expected degradation in a single processor’s performance for various miss ratios.
These numbers indicate that the miss ratio afforded by a fully associative memory is'

necessary.

1 The term "working set" is used loosely in this thesis and is only superficially related to the
standard definition (DENGS80). The meaning here is closer to primary memory alioca-
#ion, PMA, discussed in (BAERS0). :

-17 -

Assuming a shared to private memory transfer size of 1KB, the mean shared
riemory access service time, s, is eslimated as

s = latency + transfer

= lus + lus = 2 us.

The transfer time assumes a 1GBS bus. The latency time assumes a 400ns chip access
time, conservatively giving a lus package access time. The mapping time is not

significant (section 4.4.2).

Assume the private memory misses one out of every N instructions executed.

Thus the mean aggregate and single processor infer-fault interval, 1F1, , and IFI,,, are

_ Ninstr _
IFlyp = 1 BIPS

IFT, = N nslr g ns.
w = 128 MIPS

The miss penalty, w, the total time spent waiting for a private memory miss to be

serviced, can be estimated for large N by (DRAK67)

w = s - 2 us - 2N us.
) 1—2us N-2000
IFImp N ns

This queucing formula takes into account contention between the processors for
service. Performance can be measured as the mean rate at which private memory

faults are serviced

I S
perf = IFT ,+w’

The best attainable performance is therefore IF‘I,“,'l because the miss penalty ap-

proaches zero for small service times. Single processor performance degradation,

- . -18 -

equivalent to system degradation, d, where 0 < d < 1, is thus defined

1

IFT ' - ———
4 ad IRI,, +w w

IFI,,? T IRL, + w

It is desirable to keep degradation below a given value, D,,,, thus

w

D .
max > IFT,, + w

Substituting for w and IFI,, and solving for N,

250
P N> 1750 + 222

max

This is also calculated assuming a 4KB transfer size, using

N> 4375 + ggs_.

max

"I'he non-linear relationship between performance degradation and private processor
miss ratio is shown in fig. 1.4. To achieve 16w penalty, N-must be large, i.e. hit ratio
must be high. For conventional fully associative primary memories, a standard value
for N is 10,000 (COCK81). A fuliy associative L2 is proposed to guarantec a low

miss ratio.
1.2.3 1/0 Bandwidth

To get an ustimate for the degree of muitiprogramming and I/0 bandwidth,
three simple application programs are analyzed. Assumed throughout are a disk arm
access time of 20ms, eight processors (nop = 8) and explicit 1/0O capability for 64KB

and 32KB block transfers.

-19 -

FIGURE 1.4. L2 MISS PENALTY

Z %

v X

Z

o -

o ¥

z 2

b - 4KB tronsfer

£ %

5 »

& Bl
x

z§-

- x

a -

3 -

Lo

- o 1 1 t 1 2 [2 L
o 0.05 0.10 .15 020

PERCENT PERFORMANCE DEGRADATION, d

Matrix Multiply

Matrix multiply is an O(N!5) operation where N is the number of elements in
the matrix. A typical inner loop for a ﬂoa;ting point (64 bits per element) matrix

multiply, in 370/Assembler {IBM81), looks like:

Loop LD 0,0(6,4) R4 = ptr to matrix A
(column major order)
RO = single term product
MD 0,0(6,5) R5 = ptr to matrix B
(row major order)
do A(i,j)*B(j,k)

R6 = j
ADR 1,0 . sum over the row
R1 = partial sum
BXLE 6,2,L00P increment j

R2 = 8 (1 DW/entry)
R3 = length of row

- -20-

The following figures are of interest:

N = 1024 x 1024 = 220

total I/0 traffic : S = 3 x 1024 2 1024 x 8 = 24 MB
Reff = 64KB / (20ms + 64KB / 6MBS) = 2.2 MBS
total I/0 time : t;,, =S / R, = 11 sec
total number of instructions : 1 = 4 x N5 = 4.3 x 10°
total processor time : t, = I/ 128 MIPS = 34 sec
degree of multiprogramming : dmp = t,, / t, =1
simultaneously active arms : arm —~ nop x dmp =§

total I/O bandwidth : iob = arm X R, = 18 MBS

The degree of multiprogramming is estimated as the ratio of the I/O time to the
processor tixge because in the asymptotic limit with no switching penalty, processor
and 1I/0 de\;ice operation will completely overlap. Now assume the matrix is only
32KB or 1/256 the size of the above matrix. The matrix must be transferred from
disk with a smaller block size of b = 32KB resulting in a lower R,,. The following

shows the drastic effect the smaller data object size has on I/Q requirements:

N = 64 x 64 212
R, = 32KB / (20ms + 32KB / 6MBS) 1.3 MBS
total 1/O traffic : S = 3 X 64 X 64 X 8 98 KB

total I/0 time : tio =S / R,/ ' = 74 ms

total number of instructions :'1 = 4 x N5 1.0 x 10
total processor time : t, = I / 128 MIPS 8 ms
degree of multiprogramming : dmp = t;5 / ¢, 10
simultaneously active arms : arm = nop x dmp = 80

total I/0 bandwidth : iob = arm X R,” = 104 MBS

Sorting

Radix-exchange sort is an O(NlogN) operation where N is the number of 4
entries in the list (KNUT73). Consider sorting a list of entries consisting of a single

word (4B) key and an information field of M words. A simplified inner loop of the

-21-

sort looks like (the simple mecthod of information field transfer presented here could

be alleviated with pointers):

LooP1 L 5,0(1,3) R3 = ptr to list K
Rl = i (top index)
, R5 = K(1)

SLA 5,BIT(2) BIT(2) = search bit #

BC NEG,SKIP

BXLE 1,6,L00P1 R6 =1
R7 = j {bottom index)

BC UNC,BOT finished partition

Loorz L 5,4%(1+M)(7,3) R5 = K{(j+1)
SLA 5,BIT(2)
BC POS,SWITCH

SKIP BXH 7,0,L00P2 RC = -1
BC UNC,BOT finished partition
SWITCH L 5,4%(1+M)(7,3) first switch keys of
L 4,0{1,3) K(i) and K(j+1)
ST 4,4*(1+M)(7,3)
ST 5,0(1,3)
L 5,4%(2+M)(7,3) first switch keys of
L 4,4(1,3) K(i) and K(j+1)
ST 4,4*(2+M)(7,3)
ST 5,4(1,3)

L 5,4%(1+2*M)(7,3)

L 4,4*M(1,3)

ST 4,4*(1+2*M)(7,3)

ST 5,4™M(1,3)

BXLE 1,6,L00P1 ’
BOT

The following figures are of interest:

N = 220

M =17

R,,, = 64KB / {20ms + 64KB / GMBS) = 2.2 MBS
total 1/0 traffic : S = 2 x 32 x 2% = 64 MB
total I/O time : t;, =S / R, . = 29 sec
total number of instructions : I = 43 x NlogN = 8.0 x 108
total processor time :t, =1/ 128 MIPS = 6.3 sec
degree of multiprogramming : dmp = t;5 / t, =35
simultaneously active arms : arm = nop X dmp = 40

total I/O bandwidth : iob = arm X R_, = 88 MBS

The following shows beneficial effects of reducing data object size.

N = 216

M =1

R, = 64KB / (20ms + 64KB / 6MBS) = 2.2MBS
total 1/0 traffic : S =2 x 8 x 2/¢ = IMB
totalI/Otime'.tio=S/R,f = 450 ms
total number of instructions : I = 38 X NlogN = 4.0 x 107
total processor time : t, =1/ 128 MIPS = 310 ms
degree of multlprogmmmmg dmp =,/ t, =2
simuitaneously active arms : arm = nop x dmp =16

total 1/0 bandwidth : iob = arm x R, = 35MBS

Matrix Addition

Matrix addition is an O(N) operation where N is the number of elements in

the matrix. A simplified inner loop (floating point elements) looks like:

Loor LD 0,0(6,1) Rl = ptr to matrix A
(row major order)
AD 0,0(6,4) R4 = ptr to matrix B

(row major order)
do A(i,j) + B(i,j)

R6 = j
STD 0,0(5,5) R5 = ptr to matrix C
BXLE 6,2,L00P « increment j

R2 = 8 (1 DW/entry)
R3 = length of row

The following numbers show that the operation is 1/0 bound.

N = 1024 x 1024 = 220
total 1/0 traffic : S=2%x1024 x 1024 x 8 = 17 MB
,” = 64KB / (20ms + 64KB / 6MBS) = 2.2 MBS
total 1/0 time : tio =S / R, = 7.7 sec
total number of instructions : I = 4 x N = 4.2 x 10¢
total processor time : t, =1/128 MIPS = 33 ms
degree of muluprogrammmg dmp =5/ t, = 233
simult2neously active arms : arm = nop x dmp = 1860
total I/O bandwidth : iob = arm x R, = 4.1 GBS

-23 -

1.3 Literature Survey

Many of the concepts presented in this thesis stem from a collection of systems.
‘This naturally follows from design goals combining high performance uniprocessors
such as CRAY-1 (SITE78) together in a multiprocessor configuration with a clean and
uscful system architecture, such as MULTICS (DALE68), System R (CHAMSI1) and
System/370 MP (MACK74). Although individual concepts may be commonplace,

their collection in 2 high performance implementation is unique.

Memory Hierarchy

(SMIT78a) outlines current research topics concerning memory hierarchy
design. He sites cache mapping and consistency in an MP environment as two
significant unsolved problems. No mention is made of a level two cache however. An
additional problem outlined is the user view of the hierarchy, ie. the extent to which
the hierarchy must be architected to achieve performance. These issues are addressed

in this thesis.

(KATZ71, PUGH71, MEAD70) present early discussions of memory hierarchy
design issues. Only simple mapping and replacement overviews are presented. Many
papers discuss level one cache organizations and mapping, replacement and update
policies, for instance (LIPT68, POHM?73, KAP73, BELL74, POHM75b, RAO78,
SMIT78b). No evaluations of hash-chain table map organizations are compared. The
“inverted" page table mapping technique used in System/38 (HOUDS1) is perfec.tly.
suited to an arbitrarily large name space and is used in the BIP MP. (AGRA77) uses

simple analysis to evaluate a system similar to the BIP MP without the L2 levcL

(DESA80, TANG76) suggest a level two system cache shared by the multiproces-
sors. This organization is valid, however it is susceptible to system failure when the
shared cache crashes. In additibn, the mapping problems of a large shared cache are
mere difficuit than those encountered in a smaller local second level cache. (SPAR78)
suggests a level two private cache, but stipulates that it be set-associative, store-
through and real addressed. In other words the éche holds a partial image of the
shared memory. The cross-inferrogate problem is still there, although somewhat lessened
by L1 store-in and L2 store-through policy. The syronym problem (section 4.1.1) is

siiil there also. These problems are avoided in the BIP MP.

(LANG7T) suggests that for a uniprocessor, a separate “database buffer" in
faster-than-main-memory technology be used for demand paging in a database envi-
ronment. The results presented there are for small databases and it is doubtful that
performance scales linearly with main memory size. In essence, the proposed shared

memory is large enough to assume this function.

File and 1/0O Subsystems

¥

The BIP MP virtual space is substantially largt;r than those of standard
machine architectures, e.g. System/370 (IBM81). MULTICS, with 64 pages per
segment (BENS72) avoids many of the problems faced here with 8K pages per
segment. Conventional mapping, replacement and file management schemes become

inefficient and intractable in the proposed system.

File manager demands in a high performance environment are summarized for
CRAY-1 DEMOS in (POWE?7). The I/O bandwidths stated there, roughly
10MBS/processor, are equivalent to the BIP MP requirements. Interesting data is

given on expected I/O transfer sizes in a scientific environment. A simplistic A/B

-25-

channel buffering mechanism is described which is not effective in a multiprogrammed
environment (all results presented assumed pure sequential accesses). FElaborate
“preatlocation” and "read-ahead" disk strategies are suggested which are facilitated by
the small virtual space. (SITE78) analyzes the CRAY-1 memory hierarchy indicating

the inefficiencies of the I/O subsystem.

The Eclipse M/600 channel device running at 10MBS for a virtual space of 6GB

(COMP78), is similar to performance capability necessary in the proposed devices.

(TOKUB80) discusses “file adaptive" techniques, in the context of the IDC, a
16MB disk cache of the ACOS system. Sequential files are prefetched and replaced in
a non-LRU manner in the IDC, and temporary files are not transferred back to disk.
These general techniques bave been outiined for shared memory replacement in the
BIP MP. (BRANBS8I1D) suggests various schemes for increasing I/0 performance, such
as multiple data paths among the I/O devices serviced by a single coutroller, a track

buffer per spindle and a full cache servicing several disks.

Database Systems

(GRAY78) describes the general two-phase locking protocol and two-phase
commit for a distributed system in addition to some possible solutions to the comvoy
problem. The general locking protocol in (GRAY78) obeys the rising-falling rule and
requires a large log with both redo and undo records and a complex recovery procedure.
(NAUMT79) mentions a less costly but less general scheme - releasing exclusive locks

at transaction commit. This is the basis of the work presented here.

The commit protocol described in- (GRAY78) is needed to synchronize the
distributed transactions into all committing or all aborting - the “general’s paradox".

This problem is not encountered in the proposed system because transactions are

N -26 -

assigned to one and only one processor. The COMMIT procedure described in this

thesis is termed fwo-phase to distinguish when a transaction becomes recoverable.

An example of a recent database system is System R. (CHAMS8I1) gives an
overview of System R’s success at locking and recovery. Three important results are
noted.

e Level-3 consistency was the only decidedly necessary locking level.

o The disk "shadow page" scheme impacted performance too much.
(HARD79) describe one method of implementing "shadow pages".

o Convoys were avoided by giving running transactions priority for receiving
lIocks on high traific resources.

(RIES77, RIES79, POTI80) use queueing network models to analyze the
effect of lock granularity on lock contention. These models are similar in that
they assume transaction reference targets can be described by a uniform distribu-
tion over the database. (RIES79) suggests a lock hierarchy using large lock
granularity for transactions touching greater than 1% of the database and trans-
actions doing sequential accesses. The basic conclusions reached are that optimal
granularity is application dependent and for a “claim (locks) as needed” policy
with "mixed sized transactions”, a "lock hierarchy with fine granularity" is

suggested. These proposals were considered in the BIP MP design.
Modeling

F~-ly modeling of memory hierarchies began in the context of optimiza-
tion technfques. (RAMA70) presents an early model for cost/performance
minimization of a multiprogrammed general memory hierarchy making the as-
sumption of random reference targets. Integer programming solutions of modular

memory design optimization are also presented. Stack algorithmic analysis,

-27 -

introduced in (GI3CS70), began a series of efforts aimed at reference trace driven
models. The advantage of this modeling method is its speed. A disadvantage is
that most implementable replacement algorithms are only approximations to stacl
algorithms. Another problem is determining “typical' workloads to trace.
(MATT71, LIN72) use stack analysis for evaluating two and three level hierar-
chies. (MACD7S5) presents a stack algorithmic technique for minimizing either
mean access time or cost/performance in a general memory hierarchy. The

scheme assumes pure LRU replacement at each level in the hierarchy, however.

Geometric programming optimization techniques were further developed in
(CHOW74, CHOW76, WELC76). Mean memory access time was minimized at a
given cost constraint for general memory hierarchies. These studies describe
memory performance and cost as power functions and deal with uniprogrammed
UP configurations only. More recently, Lagrangian multiplier optimization has
been used on queueing network models of memory hierarchies (CHANT78,

TRIV80, TRIV81). These studies deal with multiprogrammed UP configurations.

The view taken here is that an accurdte model which is not restricted to
analytic optimization techniques is more useful. Optimization over the model’s
parameter space is facilitated if the model is inexpensive to solve. (GECS74,
POHM753, REGE76) describe early cyclic queueing models of memory hierar-
chies. (GECS74) describes an optimization technique for a multiprogrammed UP
general hierarchy. (POHM?75a, REGE76) use simple queueing models to evaluate
the cost/performance of an electronic (as opposed to magnetic) paging store.
(YENS1) gives exiensive queueing network models of a system similar to the BIP
MP without an L2 level. That study concerned leve! one cache management

policy effectiveness. Other examples of recent queueing network models for

) -28 -

multiprogrammed UP configurations are found in (SAUES81, HEID81, TRIVS1).
The multiprogrammed MP model presented in this thesis is based on these efforts.
Implementation in RESQ2 (SAUES80a, SAUE77) permits innovative modifica-
tions, ﬁamely the accurate modeling of differing bus transfer sizes, write-back,

process/processor aoffinity, and bus contention.

P

-29 -

2. Modeling

A queueing network model of the BIP MP was developed. The model assumes
exponential distributions for memory reference arrivals and both computation and I/0
service times. This model is used to justify and refine the rough calculations made in
section 1.2. It is used primarily as a design aid to accurately measure system bottle-
necks. The moael described is, as are all models, only an approximation of reality, but

it does give confident relative results over its parameter space.
21 MP Central Server Model

Th'e model usgd is a multiprocussor equivalent of the central server model
(ALLESO, SAUESOb, SAUES81). The model (fig. 2.1) is comprised of a single chain
closed network. Job population is simply the degree of multiprogramming of the
system. Jobs are not homogenous. There are two job classes: computation and I/O
jobs. Within each class are m subclasses, one for each work processor. Servers Py -

¥ ;

P, are the 128 MIP work processors, P, is the supervisor processor, D, - D, are I/O

devices (inciuding channel devices) and BUS is the system bus.

One can conceptualize the model by visualizing the jobs as tokens flowing
counterclockwise around the network. Each token is either in service at or waiting for
{enqueued at) a resource. When released from a server (job releases resource), a job
often finds itself faced with more than one possible branch or path to take. Associated
with each branch is a branch probability, either explicitly marked, as in the case of the
shared memory hit/miss ratio, or implicitly uniform over the choices, as in the case of

the I/O devices. Thus a job leaving a processor, after a mean service time equal to

) -30-

+ 2unpisd »

i-

.

0a

ug

u/t

u/i

|9PON J9AISS [DJ3UB) dN “ L ¢ @4nbiyg

ISNGTO] x QM = dwisnq

« 3wyd »

« 3wod »

0d

1SNQTZ1 + 1SNQTOI = dwiisng

2

ISNG~ 27 = awisnqg 4

Y

-31-

IF1,,, will access shared memory and either continue processing if it hits, or perform
1/0 if it misses. A hit in shared memory simply involves a bus transfer to the associ-
ated private memory, hence the inner feedback path. The I/0 taking the outer loop is

modeled in three stages:

e P, - The supervisor writes a channel control program for the job, initiating
the I/0.

¢ D, - The intelligent channel device, once granted the proper disk, executes the
channel program, transferring the requested data object from disk to channel
buffer.

e BUS - The channel device is granted the bus and bursts the data object to the
shared memory.

The job subclasses are introduced to route that portion of the multiprogrammed
set belonging to a processor to that processor only. This models the normal conse-
quence of shared memory references and also process/processor affinity imposed by
consistency issues (section 8.0). The two job classes are introduced to permit differ-
ent block sizes for 1/0 transfers and private memory transfers (different BUS service

times).

Write-back of modified shared memory pages is modeled by creating an additional
"write-back" token for every private and shared memory reference. This child token
travels the same path as its parent, contending for the same resources and finally being
destroyed after it completes its bus transfer. This does not model database applica-
tions accurately because in the database system all write-back is at transaction commit.
If 1he transactions are short lived the current model is a good approximation. Note
the write-back token is always created, modeling worst case; however, the write-back
transfer size is a fraction of the request transfer size. An alternative approach would
be to avoid write-back with a certain probability distribution. (SMIT79) analyzed

applications where the percentage of total replaced pages which required write-back,

- -32-

ie. were dirty, ranged from 20 - 60%. The distribution was irregular and application
dependent. It is felt that the method used in this thesis is realistic or at least pessimis-

tic because of the low probability of a large 64KB page remaining totally clean.

The central server model, as opposed to the cyclic queue m¢ del (SAUES1,
SAUES80b, REGET76), defines each I/0O device with its own queue. This is thought to
be a more accurate description of the intelligent channel device queues than the

multi-server view of I/0O (one queue for all disks).

All jobs are given equal priority when contending for the bus. This is an accurate
description because of the indcjpendent nature of the channel devices. In general, the
intelligent channei devices and processors contend for the bus independently. Other
systems may specify synchronization mechanisms with which to prioritize these bus

requests, that is not the assumption here.

The number of disk arms in the model is actually only half the required number
because of the channel device design (section 6.3). Essentially the channel devices
have an effective blocking ratio of 0.5, i.e. only one of two attached disk arms can be
active at any one time. More cxtensive channel device models were not considered
necessary. The model presented incorporates all the I/O service time factors outlined

in (BRANS1b) except for "missed reconnection delay".

2.2 Implementation

The model was implemented in RESQ2, the IBM Research Queueing Package,
Version 2 (SAUE$0a), using the APILOMB simulation method of solution (SAUE?7).

The original models developed were kept simple to permit analytic solution techniques.

-33-

However several key aspects of the system could not be easily described. The answer
was to use simulation techniques and pay the increased solution cost. The simulation
model was solved on an IBM 370/3033 with 90% confidence limits of less than 10%
mean relative error for resource utilizations. Confidence intervals were generated
using the method of replications. A replication was defined as 33,000 simulation
events or queue arrivals. Regenerative methods (SAUES81) could not be used because
the model was too large. Transient effects of initial conditions were eliminated by
discarding the first 10% of every simulation run. The initial condition was to place an

equal number of jobs in each processor queue.

The job classes and subclasses were implemented in APLOMB using job rariables
and set -odes, present as squares in figure 2.1. Each job’s class and subclass are kept
in two private tags or job variables beélonging to that job. The subclasses are assigned
at the set nodes associated with each processor. Omnce assigned they never change.

The class tags are changed from computation to I/0O class and back again at the SIO

and L2 set nodes, respectively.

¥ R
It was determined that 1.2 to Ms write-back has no first order effects in the model

and so only 1/0 write-back jobs are created, speeding up the simulation. The write-
back tokens are created by a fission node and destroyed at a fusion node, present as
triangles in figure 2.1. These children are conceptually in the same class as their
parents, however they are given different tags at the SIOWB set node. This is done

because the BUS service time is determined by the job class tag:

job class bus service time
1/0 10__BUST + L2_ BUST
I/0O write-back WB x I0__BUST

computation L2__BUST

-34 -

where WB is the expected percentage of dirty lines in a page. The branch probabili-
ties associated with the processors are determined by job subclass. The processors are
modeled with the processor sharing discipline, PS (SAUES81). This essentially grants an

infinitesimal time slice in round-robin fashion to each job enqueued at the processor.

The parameter space of the model was designed to test the limits of the system.
Unfortunately, as is often the case with queueing network models, the space was in
part constrained by the feasibility and cost of solving the model. The model was
embedded in a PL/I control program used to feed it different sets of parameters. All
service time distributions used, except for the BUS which has a fixed service time, are
exponential,fy ie. arrivals are Poisson with unity coefficient of variation. Model
parameters and their ranges are as follows. |
e nop : number of processors

Eight processors are proposed for the BIP MP.
o Pitime : mean processor service lime

A single 128 MIPS processor missing in its private memory once every
N = 10,000 executed instructions, has Pitime = IFL,, = 80us.

e POtime : mean supervisor service time

The supervisor initiates I/0, ie. it executes a conventional Start 1/0
instruction (IBM81), translating into roughly 1000 - 20,000 instruc-
tions (COCK81). Assuming 10,000 instructions and a 128 MIPS
supervisor, POtime = 80us. This figure may be conservative, however
the additional delay may be conceptualized as the effect of higher
priority system jobs contending for the supervisor.

e disktime : mean effective disk transfer time
Assuming a transfer size b, a disk arm access time S, and a rotational
transfer rate R, = 6MBS,
0 b
disktime = S + .
R

acl

Because disk arm access time is highly application dependent, an upper
and lower bound are modeled: S = 20ms and 8ms. (JONES81a) gives
similar delays for the IBM 370/168. The 8ms corresponds to no seek

-35-

and mean latency. The 20ms ccrresponds to either no seek and full
latency - the "missed revolution” effect (JONES8la), or mean seek and
mean latency. This agrees with (BRANS81b) who uses 11.2ms as mean
seek time, assuming 30% of all I/O requests require no seek.

Two block transfer sizes are also modeled: b = 4KB and 64KB.
e L2_ bust : mean bus service time for L2 transfers
Only 4KB transfers are modeled. The system bus is designed for

transfer rates of up to 1GBS; however, this is admittedly optimistic. A
lower bound of 512MBS is also modeled for comparison.

e IO_ bust : mean bus service time for disk transfers
Both 4KB and 64KB disk transfers are modeled for both bus speeds.

e wb : percentage of dirty lines in page
wb = 0.3 was modeled, estimated from an assumed 2:1 load to store
ratio. The write-back factor can be approximated this way because
I/0 transfer size granularity is relatively sm~il - 1KB.

e nod = (64,128,256) : number of disks

e dmp = (70,105,140,210) : degree of multiprogramming

e mr = (0.05,0.075,0.1,0.2) : shared memory miss ratio

The parameter sets are summarized belgw. Sets I and VIII represent upper and

fower bounds on system performance. Set VI is considered to be most realistic.

170 arm bus

set block access speed disktime I0_bust L2 bust
KB msec MBS msec usec usec
I 4 8 1000 8.7 3.8 3.8
II 4 20 1000 21 3.8 3.8
III 4 8 512 8.7 7.6 7.6
v 4 20 512 21 7.6 7.6
v 64 8 1000 18 61 3.8
VI 64 20 1000 30 61 3.8
VII 64 8 512 18 120 7.6
VIII 64 20 512 30 120 7.6

Model measurements of interest are as follows.

-36-

e Pi, : processor utilization
the percentage of time jobs were being serviced by the processors, ie.
the time percentage the system did useful work. System performance
is calculated as

perf = Pi, x 128 MIPS x nop

where nop is the number of processors. Notice this is a batch environ-
ment definition of performance. Job throughput and mean response
time, relevant in a database environment, is not a reliable result be-
cause of the initial assumption of Pitime = 80us = JFL,,. An accurate
measure of IFL,, for a database transaction system is not known.

e PO, : supervisor utilization

e BUS,, : bus utilization

In general bus and supervisor utilizations over 50% indicate potential bottlenecks
(COCKS81). Disk utilizations were not obtained because this measurement is highly

inacturate in a large simulation model.
2.3 Rasuits

An extensive family of plots were generated, revealing samples of which are

included as fig. 2.2 - 2.8.

Fig. 2.2 illustrates the results of parameier set VI. Each of the four plots shows
degree of multiprogramming vs. performance at a constant miss ratio (vertical scales
are different). The family of curves within each plot represent different numbers of
simultaneously active disk arms. In other words, fig. 2.2 is a graph of the
(nod,dmp,mr,performance) four space. Note the curves must all be monotonically
increasing. Erroneously, the shared memory miss ratios modeled are not related to the
I/O transfer size. The “"true" miss ratio caused by a 64KB transfer size may be lower
than the indicated one. Essentially the miss ratios must l_)e interpreted with respect to

the 1/0 transfer size although no analytic relationship is known.

-37-

ONINAVIO0NILINK 40 333030
031 ozt 08

v | A L L] ¥ L

L
14

0Z'0 = MW 'SE9| = SN\ ‘SWOZ = SSIOV °
(S0 ="qM "yIJSNViL 8%P9) dN

ONINNVIOOUJILINA 40 333930
091 ocl 08

L 1} L) L] L L L]

GLO'0 = ¥W 'SEOL = SNQ 'SWOZ = SS3IJOV
{0 = qQ» ‘Y34SNVL B)¥I) dN

OlLVa SSIN 'SA SV XSIQ 2T 24nbyy

(SdIN) 3ONVAN04¥3d

(SdiN) 3ONVANO4Y3d

- ONINHVIOONILINN 40 334030
091 24} 09

L) L ¥ 1 T ¥ L

010 = ¥N ‘'swoZ = SS3IJv

‘'sgo} = snd
(£°0 = Q™ "y3ISNVHL 8XP9) dN

SNIRNVEO0NdILTNW JO J3HO30
091 (743 08

oSy [13 oS

(SdIn) IONVNN04NId

00z

Ll L] T] J ¥ LB

SHYY BZL = o

SNYY Z6L = 8
SNYY 96 = o

S0'0 = ¥’
(€0 =

589} = sna

‘SwEez = SS3J0V

qQn 'MIISNVHL BXY9) dN

74

(1]}

(SdIN) IONVNHO 4 3d

[

00S 00 Q0C 002

-38 -

Ollvd SSIN Olivy SSIN

o0 (1%] [4 1] 800 ¥0'0 [1TAL] 91’0 Zvo 800 00
T T T T T T T T o | T T T T T T o
/ 1 m ﬂ.m . w..m
1.3 183
13 % S
m z - E <
da ™ - W m
8~ ~
= =
-1) -]
w2 u
18
] 18
- N -
0L =,dNQ ‘'SEDL = SN\ 'SwWQZ = SSIJV 8 S0L = dNG ‘SED) = SNG 'SWOZ = SSIJJV
(€0 = QM ‘y3JSNVHL B3%9) dN (€°0 = QM ‘Y3IJISNVAL 8X¥9) dN
OUVY SSIN , OlLvY SSIN
0z0 910 e1'o 800 ¥0°0 oz'o N 9’0 t 4% ¢ 200 00
¥ 1 5 1) L] 1] 1 { © T | L T L {] | 3 L] o
. 18
// T w M q.nqda
P 1 F.)
4 3 o
z 182
82 {1 2
e 5 "
. 1% T
1 d -t
g {g ¢ m,..m
)
OFl = dNQ °SBD} = SN8 ‘SwoZ = SS3JJv) m 01Z = dNQ ‘S89}) = SN8 ‘SWOZ = SS3JIV) m
(£°0 = qQm “Y34SNVAL GXP9) dn : (€0 = QM ‘YIISNVIL 8)3F9) dN

dNQ 'SA SWYY XSIQ €' 34nbi4

-39 .-

ONINKVHOONILTINK JO 334030
002 091 02} 08

4 L 1 L L L)

oS

001
(SdIN) 3ONVANO4NId

(1)

r
L
00T

020 = ¥N ‘SB9l = SN\ 'SWQZ = SSIDIV
(€70 = qm "¥IJSNVNL BXF) oiN

ONINRVIO0YCILTNN 40 334030
002 09t 0Z1 oe

1 L I ¥ L L ¥

001

00g

002
(SdiN) 3ONVWN0J43d

00¥

GLO'0 = N 'SBI| = SNA ‘SWOZ = SSIIIV
(€°0 = g™ "u3JSNVML BNY) dN

OlLVY SSIN "SA SWNYV MSIQ "+°Z 34nbiy

ONIKRVYEOQUdILTINK 40 338930

002 09t (¢4} o8
T T T T T T T A
8
N
g
010 = 3N .mmor = SNg ‘'SwWOZ = $S3JIV
(€0 = QM “YIISNVYL BYF) aA .
. ONINNVHO0HJIATNN 40 33¥930
002 03t 0149 [}
T T T T T T Y 1@

S0'0 = ¥W °S891 = Sng 'swOZ = SSIOIV
(€°0 = Q™ *Y¥IISNVHL 8XF) di

(SdiN) IONVANOINId

(SdIN) 3ONVNNOINId

- 40 -

OlLVY SSIN - OV SSiH

oz0 9210 (4X 800 +0°0 oz'o0 910 [4X¢) 800
T

l O(lJl ! O(l)i.
(SdInN) IONVYANN0443d

1
001

002
(SdIN) 3ONVNYO04u3d

- m '
_ I?
OL = gNQ 'S91L = SNG 'SWOZ = SS300¥ S0t = dQ ‘SBOL = SN\ 'swoZ = SSIDIV
€0 = QM ‘YIJSNVHL XNb) dN (£°0 = Q4 ‘YIISNVIL aNP) dA
olvy SSIN . oIV SSIn
oz0 910 t4Y) 800 $0'0 0z'0 910 [4N ¢] a0 ¥0'0
L} | J 1 | 4] | | 1 ©] 1] L] L} 1 3 T | § 1§ o
v v
n D T m 2
183 3
2 {1 2
1 % z
m 18 m
48 T
v R o
@)
OFl = dNa ‘S@IL = SNA °‘SwoZ = SSIJIV -8 01Z = dNQ ‘SEJL = SN8 'swOZ = SSIIIV)
(€°0 = qm ‘YIISNVAL BXF) dR (€0 = Q& ‘YIISNVAUL BXY) o

dNG "SA SNYV XSIQ 'G'Z @4nbiy

-41 -

OlVY SSIN
oTo 910 Zt0 800 ¥0°0
T T Y T T Y T T o
N
18
B o
e
-
48
01Z = dNQ 'SB9L = SNA ‘swg = SS300V
(£°0 = Q% ‘YIJSNWAHL 8):P9) dN
ONINAYHO0YILINK 40 334930
002z 09t 74% 08 °

L L] ¥ ¥ 1 L]
.

YN ZTO0 =5
YN 1O = o
YN .00 = o
UM SO0 = ®

9SZ = SNV ‘'SBDL = SN@ ‘swg = SSIDIV
(€70 = qm ‘YIISNVIL Bx¥9) dit

00z

0oY

-8

(SdIN) IONVYHYD4H3d

(Sdin) 3ONVNN04H3d

08Z 0¥

" SWYV %SI0 40 ¥IGNNN
002 031 oz o8

LA

¥ L) T ¥ T L L) — L

dAQ G0t = o
dng Ort = »
ang oIz =

S0'0 = MW 'S89L = SNg ‘swg = $S3IOJV
(£°0 = Q% ‘y34SNvdL 8)¥9) dN

ONINNVHOOYILTINN 4Q 334030
091

dNQ 0L = o

14 0oe

A

00¥ 00z

(Sdin) IDNVNHO04H3d

009

L] ¥ p] i |)

‘6891 = SN@ ‘swg = SS3IOIV

SO0 = MW)
QM 'HIISNVHL @NP9) dN

(€0 =

(A 13S) SS300V %SIQ 1SV4 "9'Z 3nbyy

0

00z

ooy

009

(SdIN) 3ONVNNOIN3d

- 42 -

OiLvd SSIN - SKYV XSIO 40 ¥3IBNNN

oco 910 z1'0 200 »00 08Z O»2 002 091t ozlL 08
1) 1 § § ¥ L] 1) |] § o Ll 1] L] | §) 1 . 1 — 1] ©
N
18 4 i) m -
41 3 - 1 5
-)
a O » O
182 T 132
12 } 1 2
(@] (%}
- m m b~ 1 m m
E "%
lg¢ | I
01Z = dNQ 'SE9L = SNA ‘swg = SS3JIV g) S0'0 = ¥N 'SB9| = SNG ‘swg = SS3JIV m
(€°0 = g™ "YIJISNVAL B)F) dN (€0 = am "y3ISNVAL GxF) oW
ONINNVAO0NILINA 40 339930 ~ ONINAVHO0YdIIINK 40 33¥93d
002 09 oci o8 00z 091 o174} [+}
T 1 | 1 §] 1{ o 1 L |] A L] °
i i L 4
N N
8 - I
3 5 . m...
5% 53
3 - 3 2
= =
of 3 z
(] g 2
82 £
mm mm
962 = SWYV ‘SE9L = SNA ‘swg = SS3JIV 8 S0'0 = ¥ 'S8D| = SNg ‘swg = S§300V §

(€70 = Q™ “¥IISNVAL O)F) aN (€0 = qm "y3iSNVHL axy) dA
aNNOA ¥3ddn — | 43S °£'¢ 24nbiy

-43 -

The immediate observation from fig. 2.2 is that for any given miss ratio, many
disk arms and a large degree of multiprogramming are needed for tolerable perform-
ance. The dmp cannot be easily increased. Increasing the size of Ms will permit a
large active transaction set, but how large is unclear. For a given performance, the
required disk arms and dmp can be reduced if the shared memory miss ratio is re-
duced. This is most clearly shown in fig. 2.3 for families of miss ratios. The miss
ratio cannot be easily decreased either. A third solution would be to increase the

numbar of disk arms. This is unappealing because it is too expensive.

Fig. 2.4 and 2.5 illustrate similar results of parameter set IL. The smaller 4KB
transfer alleviates the problems to a certain degree, but does not solve them. The miss

ratios must be interpreted with respect to the 4KB transfer.

An alternative is to push disk technology is produce a lower disk arm access time
(BRANS1b). The results for parameter set V are shown in fig. 2.6. The disk arm and
dmp constraints are lessened to acceptable levels. Note, however, that the miss ratio
must remai: low. This suggests that the shared memory level is essential because a

p

high fault rate between the processors and .s;econdaly memory will degrade performance

drastically no matter what.

Fig. 2.7 illustrates the results for parameter set I - the upper bound on system
performance. The small I/O transfer size is reflected in the high processor utilization.
Note that as few as 140 active transactions and 130 simultaneously active disk arms
can produce near maximum performance when mr = 0.05. However the actual shared
memory miss ratio is relative to the 1/O transfer size. Thus the modeled miss ratio of
0.05 given a. 4KB transfer may be a significantly higher true miss ratio, corresponding

to lower actual performance.

-44 -

Fig. 28 compares resource utilizations resulting from parameter set V and VII,
ie. a 512MBS bus (solid lines) and the 1GBS bus. System performance is approxi-
mately equal for both except at high degrees of multiprogramming. Bus utilizations
are vastly different. The high bus usage of the slow bus canhot be tolerated. Notice

that the fast bus remains below 60% utilization for all parameter values.

e

- 45 -

ONINNVHOONILTNN 4O 334030
00Z 091 o)

G200 = YN ‘Swg = SSIQIV
(€°0 = 9= "yIISNVAL BXF9) dN

ONINNVIOONILTNN 30 33¥030
00T o9t (4]

0 <o

90
NOUVZIILN SNA

oL

L] L] v 1 L4 i

SLO'0 = YN ‘Swg = v
(€70 = qm "HIISNVHL EXYS) dN

002
(Sdin) IINYNNOAH3d

oY

ONINNVHOOUJILINK JO 3030
091 . oZL

S0'0 = YN _‘Swg = SSII
(€0 = qm "¥IISNVML B3¥9) dN

ONINAVEOOUJILTNA 40 334030
> 09t .4}

90 o 0

NOILVZIILN SNE

o

o't

v 1] L] L4 L}

|

SO0 = YN _‘Swg = SSI)
(€0 = am "YIISNVML BAPS) dR

(IA 13S) sSn8 MO1S ‘8¢ @4nbiy

00y
(S4IN) ONVYNNOIMId

- 46 -

3. System Architecture

The hierarchical addresses are summarized in figure 3.1. The assumed virtual
space is 24 B = 16384 GB. This space is partitioned into a maximum of 32K seg-
ments, each a2 maximum size of 8K pages, where virtual page size is 64KB. This allows
a maximum segment of 512MB. The virtual address space is the only one in th~
system, ie. it is shared by all processes, in contrast to conventional multiprogrammed
computers where each process has its own virtual space. The processes here divide the
virtual space among themselves by ecither sharing or exclusively owning the segmexits.
This sharing"and exclusion refers to file protection and is not to be confused with a

lower level sharing/exclusion dealing with consistency. Even protect-shared segments

VA : virtuai oddress = 44 bits + 16384 GB

SID = VA{43:29)
VPA = VA(28:16)

| segment | page | byte |

43 29 28 16 15 0
*

MsA : shared memory address = 30 bits - 1 GB
Iinel

| poge | '|byte |
29

1615 1 [}

L2A : level-2 cache address = 22 bits + 4 MB
line
21 12 9 0O

L1A : level-1 coche address = 16 bits + 64 KB
bte

5 76 0

Figure 3.1. Hierarchicol Addresses

-47 -

can be exclusively "locked" during an inconsistent phase of a transaction (section

8.1). Such a "lock" is not, however, as permanent as a protection "key".

The term file space, as used in this thesis, refers to the in-use virtual space. The
proposed architecture equates a file with a segment. Therefore a user file, defined by
a unique pathname, can be referred to by one and only one virtual segment identifier,
SID. The isgues of machine instruction address to virtual address translation are not

deall with in this thesis.

The following are necessary architected features of the BIP MP system. This is
not a complete set but rather the few important concepts that relate to the memory
hierarchy organization and control. The rest of this section should be skipped over

until referenced in the text.

e Forcing a data object from the private processor memory to the shared
memory is architected with the following machine instructions ~
INTP PID,VPA
INTL PID,VLA
where PID is a processor identifier, VPA is a virtual page address and VLA is
the virtual address of a 4KB data object. Interrogate Page, INTP, causes the
interrogation of processor PID for any copies of the page addressed by VPA.
Inderrogate Line, INTL, is used to interrogate for a virtual 4KB object, ie. an
Ms line possibly occupying L2 page frame(s). Both instructions are imple-
mented by the same hardware in the processor private memory. The only
difference is that INTP will take.16 times longer than INTL, worst case. If
the CPU is currently manipulating part of the object specificd, the interrogate
waits for CPU completion and then prevents further accesses of those data

objects. The data objects in L1 are written- back to 1.2 if they have been

- 48 -

modified. Those L1 lines are then invalidated (_1DIR is updated). The data
objects in L2 are written back to Ms if they have been modified. Those L2
objects are then invali;;lated (L2DLAT and L2DIR are updated). The interro-
gate instructions are necessary to implement the COMMIT, ABORT, recovery

and Ms page fault handler procedures.

Manipulating entries in the L2 map is accomplished by referencing L2HIT
and L2DIR by their virtual addresses. These segments are not accessible in
problem state. This eliminates the need for locking them if the concurrent
operating system procedures which modify the maps do not attempt inconsis~
tent ac@i:ons. There is no problem with L2 references because they are only
made while tﬁe associated processor is halted during local recovery (section

9.2).

The Ms map store is not logically part of the shared memory, although
MsHIT, MsDIR and the <hared memory access counts belong to a single
segment in the virtual space. The existence of the Ms map store is not
transparent to the supervisor, which manjpulaws the map with the following
machine instructions

MLL GPR,LA

MU LA

MSU GPR,LA
where LA is a 16B address relative to the map segment and GPR is a general
purpose register in the CPU. Map Lock and Load, MLL, locks a map entry
by setting its hardware lock bit and then loads the entry directly into a CPU
register. If the entry is already locked, the instruction waits for it to be
unlocked, then locks and Toads it. Map Unlock, MU, is used to unlock an Ms

map entry. Map Store and Unlock, MSU, is used to modify an entry and then

-49 -

. unlock it. These instructions are used to update the Ms map in a consistent
manner. The lock bits prevent the hardware mapping unit, MsC, from making
concurrent updates to the same map entry (section 4.4.2). Access count
entries (64 two bit counts per Ms map store entry) are also manipulated by

the software with these instructions.

Machine instructions must be architected and supported by hardware facilities
for cold starting the system. This involves initializing sections of the memory

raaps and loading areas of shared memory.

Machine instructions must be architected to initiate 1/0 to secondary memo-
ry. Channel control programs are given the MsA of the I/O buffer frame in

shared memory and the physical address of the target data object.

-50-

4. Memory Management

The proposed memory hierarchy is composed of four major levels: level one
cache - L1, level two cache - L2, shared memory - Ms, and secondary memory - Bs
(fig. 4.1). Bs is referred to as the top of the hierarchy. L1 and L2 comprise the
processor private memory. Both the L2-Ms and Bs-Ms interfaces are conmnected by
the same system bus because Ms is a single port memory (section 7.1). Issues con-
cerning tertiary memory and access-gap filler (REGE76, POHM75, LANGT76,
BRADS0) will not be discussed. |

Vaad

64KB poge
LE]
bockup store
Bs
A 4nKBne 1.2,... (10-30ms transfer)
4KB line in
64KB poge | main store
Ms 1 - 2GB
single processor { 1-4KB (2-5ustronsfen
. . ¥ .
l'ég gg;em)Zl levei~2 cache
L2 1 - 4MB

{ 1288 {250ns tronsfer)

128B line | [] level-1 cache
L1 32 - 64MB

A OWweB8 (10na tronsfen)

CPU

Figure 4.1. Memory Hierarchy Overview

-51-

It is assumed a CPU makes two types of memory accesses or references - loads and
stores. References are always for a sir’> word although a double word containing the
target word is delivered to the CPU. The hierarchy is store-in as opposed to sfore-
throsgh. Thus when L1 misses on a store reference, the data word is not permitted to
bypass L1 and be stored directly in 1L2. Instead, the target must be transferred to L1
where the store occurs. This policy implies that each level L; in the hierarchy will
contain a subset of the data objects contained in L;,,, and that the most up-lo-date
copies of data objects are at the lowest levels. Data objects, purposely left as an abstrac-
tion because of this, are not passed down the hierarchy in totality. Each level L; is
comprised of frames (page frames), large enough to hold an i,i page. An L; page is
composed of L; lines. Within the lowest and highest levels, L1 and Bs, the page and

line sizes are equal.

For the intermediate levels, data objects are allocated frames, but transferred in
as a multiple of the line size. For example, a 4MB L2 contains 1024 page frames,
each 4KB in size. Each frame holds four lines, each 1KB in size. A request for a
4KB data object not presently in L2 will eventually cause that target object to be
allocated an 1.2 frame, and either 1, 2, 3 or l:KB will be @ferred If the next line is
accessed, it is loaded from Ms into the same frame if not already present. Frames
therefore have valid and invalid or undefined lines in them. The reasons for this

policy are to both reduce the mapping overhcad by allocation on large thus fewer

frames, and yet to retain low miss time penalties by transferring short lines.

Reducing the map size is the predominant design factor, especially since L2 must
be fully associative and Ms is so large. It is not clear how badly the miss ratio of level
L;., will be affected by the L; policy of line instead of page transfers. This uncertainty

is alleviated in the Bs-Ms transfer by explicit I/O and intelligent demand paging and

-52-

pre-paging mechanisms which issue several line transfers at once. The Ms to L2
transfer is adjustable from 1 - 4KB. The actual implementation retains information

about 1XB lines 1.

Each level L; in a memory hierarchy is characterized as follows (YENS81).

e mapping algorithm

o replacement algorithm

« update policy

o fetch policy

s homogeneity

o size

* page size

o line size

o transfer (bus bandwidth)

As mentioned, the update policy is store-in at each level. Although a store-through
policy avoids the replacement problem, it causes higher traffic between levels.
(SMIT79) claimed that store-in is the better policy if additional staging buffers are
placed between levels. This scheme is described below. Fetch policy is pure demand
paging, ie. fetch any data object that misses and only when it misses. Ms also has a

pre-paging policy for sequential files (section 7.3). Data objects are inhomogenous,

ie. they can contain both programs and data, at each level. Page and line sizes are

discussed above.

A level L; mapping does two things. The mapping first determines if a “target”
data object is resident in L;. If it is, L, Aifs if it is not, L, misses. The second map
function is to determine where the- target is (which line and frame in L,, ie. an L;

address) if the mapping was a hit. In some instances, the map is itself organized as a

! The L2 design is theoretically a secfor buffer organization (RAO78), with many secfors (1.2
pages) and a small number of blocks per sector (L2 lines per page).

-53-

hierarchy. Consider the case of a two level map. The lower map level is implemented
in a faster technology than the upper map to decrease access time and is smaller to
reduce cost. The lower map can hit or miss depending on whether it holds the

information necessary to determine the L; hit/miss. If it misses, the upper level map
must be accessed. The update policy ol a map hierarchy is usually store-through, i.e.
the complete map must always be consistent. The mapping must be resolved before a

hit/miss in the corresponding memory levei can be determined.

A mapping is therefore a translation or transformation of a source address to a
target address. The source address space is the mapping’s domain and the target space
is the mapping’s codomain. The mappings in this system, viewed in this mathewatical

sense, are-not injective, simply a result of the domain being larger than the codomain.

" L; replacement refers to finding a suitable L, page frame to evict from L; if or
Mv”viaen an empty frame is needed. Replacement is invoked to allocate room for target
objects which missed in L. The replacement policy can play a major role in the
control of activated processes, or it can be passive. In general, lower levels in the
hierarchy cannot afford sophisticated replacegnent algorithxps and therefore do not use
working set criteria. Levels higher up, such as Ms, can have complex policies, possibly

implemented in software, because timing is less critical; however because the number

of pages is larger, the cost of implementation may increase.

L; transfer refers to the physical transfers requested by L;, after an L; hit, by L;
itself after an L, miss and by L, , during an interrogate. Conceptually, each level
makes upward mapping and transfer requests and performs both upward and down-
ward transfers (fig. 4.2). Upward transfers are called write-backs and are necessary
only when the data object being replaced or interrogated is "dirty", ie. has been

modified. Both levels involved in a transfer have their memories tied up. In addition,

-54-

transfer

write-back

request

0 i
L i+1 Y
BUFF BUFF i
write-back transfer
request interrogate ' !
STORE
L i L ; ?

P

Vv

transfer interrogate

Figure 4.2. General Memory Level

a downward transfer may require a previous write-back to clear a frame for the
downward transfer’s data object. To avoid this double penalty, buffers are placed
between the memory levels, permitting both upward and downward transfers to
proceed in parallel 1. In theory thesc constitute additional memory levels with simple

characteristic~. In this thesis, buffers are grouped with the memory level below them.

Rough service times are given in fig. 4.1 for a hit in each level of the memory
hierarchy assuming no contention. L1 can deliver one DW in the L1 access time of

10ns. L2 can deliver a 16 DW L1 line in

service = latency + mapping

= 75ns + 170ns = 250 ns

1 The inclusion of buffers makes the transfer pohcy a derivative of Flagged Register Swap,
FRS, described in (POHM7S5).

-55-

assuming a conservative packaged L2 store access time of 75ns (50% increase over
chip access). Ms can deliver one 1KB L2 line in 2us and four L2 lines in Sus (section

1.2.1). Bs can deliver a 4KB Ms line in

service = latency 4 transfer

= 20ms + 700us = 21 ms

assuming I/O initiation (section 6), replacement decision (section 4.5.1.2) and

mapping times (section 5.3) are insignificant.

The relative sizes of the hierarchical levels are difficult design parameters to
pinpoint without a detailed timer. L1 is 32 - 64KB, the size of a conventional high
performance UP @che. L2 is 1 - 4MB, smcller than a conventional primary memory
(32 - 64MB) for two reasons. First, L2 maps must be small enough to facilitate
hardware control. Seéond, Ms is designed rather Jarge to compensate for L2 small-
ness. Ms is 1 - 2GB, designed to hold roughly 1% of the in-use file space which is
approximated as 19 of the virtual space (COCKS81). Comparisons between the
mappings used in the proposed system and in conventional systems are given in fig.

¥ .
4.3. An overview of the memory mappings is given in fig. 4.4.

4.1 L1 Mapping

L1 is mapped much like an IBM 370/3033 cache, except that there is no
non-rejocate or REAL mode wherein a shared memory address, MsA, is mapped to an
L1 address, L1A. Only reiocate or direct address translation, DAT, mode, is supported
wherein a virtual address, VA, is mapped to L1A. Non-relocate addressing, useful in
diagnostics and cold start-up, is performed by special hardware which bypasses the

caches. It is argued here that an efficient mapping 1s not needed for non-relocate

- 56 -

Bs

directory backing store directory
Iookup]ookup
Ms
index into hash into
map in Ms map store
L2 § hash into
- map in L2
2 L1
DIR/DLAT private memory DIR/DLAT
lookup lookup
(synonyms)
CPU
conventional proposed

Figure 4.3. Mapping Comparisons

¥

because this mode of addressing should not be necessary in any systems or applica-
tions program:
e It can cause synonyms.

e Operating systems usually need to find the real frame address of a virtual
address for I/0O purposes, for instance when using a real addressed channel
device. I/0O buffers can alternatively be mapped like all other segments, if

the buffer can be "“frozen” in Ms. This facility is provided in the proposed
system.,

e User programs should never use real addressing. It is bad programming
practice.

@

-57-

Bs

MsC

Ms > Ms hit

VA
L2s L2 hit
L2c >
map S | o L2A
o
)

L1 hit

T~

S L2A tag
3 | L2A tag

L1DIR L2DLAT

L1s / i\

) "

CPU

Figure 4.4, L1, L2 & Ms Mapping Overview

r

e System bootstrapping usually needs to load real frame addresses. An
alternative is to provide a hardware driven bootstrapping method.

Two designs are presented for L1: 4KB and 64KB virtual page size. The impact
of virtual page size on cache design lies in the possibility of aliasing or synonyms.
This problem cannot arise in an architecture with no REAL addressing mode however.
The virtual page size is equal to the Ms page size so that the virtual pages loaded from
disk fit into the memory frames at the highest level of the hierarchy. Thus virtual page

size influences mapping and renlacement algorithms for Ms. It is assumed throughout

-58 -

this discussion that the L2 page size is fixed at 4KB. The proposed system has a

64KB virtual page size for reasons concerning Ms mapping algorithms (section 4.4).

.

4.1.1 Conventional Map

A conventional memory hierarchy has two levels of volatile memory: a level-1
cache, L1, and a2 main store, Ms. The following is a description of one standard

mapping scheme for this simple hierarchy.

Assume L1 is 4-way set associative - the cache and tags are divided into 4 sets
(columns), 64 lines/set. Each row is a congruence class, i.e. the mapping will route
mutually exClusive subsets of the real address space to these classes. Within a class,
however, any of the 4 sets may hold the desired or zarger data object. Thu LI directo-
ry, DIR, holds a mapping entry for each line of each set. This entry contains informa-
tion to determine if 'the line searched for is cached. The map is operated in two
different modes: REAL and DAT. The mapping for REAL mode translates an MsA
to L1A. The DIR is addressed with MsA(12:7) 1. MsA(m:7) is the real 128B line
address and MsA(6:0) is the byte address within a line. The addressing is done with 6

¥
bits, giving one of 64 congruence classes.

Each class holds 4 set entries, so additional information is needed to select among
them. The additional information wsed is the remaining real address bits (sometimes
called the tag or key), MsA(m:13), stored in each entry and compared against the
target real address in parallel to the cache access. If one comparison matches, the
cache hits, i.e. the accessed data is correct. Two or more comparisons cannot match

because cache update policy is to never load multiple copies of the same data object.

! HEX rotation for a binary fieid, e.g. a 1GB Ms is addressed with MsA(m:0) where m = 29
and is the most significant bit of the address (DENN81).

-50 -

DAT mode, the mapping from VA to L1A, is implemented in a similar manner.
However there is no longer an MsA to compare against the DIR tags. That is where

the directory lookaside table, the DLAT, comes in.

The DLAT is a 2-way set associative n.ap between virtual and Ms addresses. It is
used only in DAT mode addressing. The DLAT is addressed by the low order 7 bits
of the virtual page address. That is VA(18:12) for a 4KB page and VA(22:16) for a
G4KB page. The entry requires further information to choose between two sets within
a class (there are 128 congruence classes). Thus VA(n:19) is kept for 4KB page
(VA(n:23) is kept for 64KB page), where n is the most significant bit of the address,
and compared against the target virtual address. This is the complete high order
address, including segment number. If the DLAT entry key matches, then the MsA in
the entry is valid. If the key doesn’t match, the DLAT misses. Thus in DAT mode,
three accesses are performed in parallel: the cache, DIR and DLAT. To determine if
one of the four sets of the cache access is valid, the DLAT must hit and one of the
four DIR sets and the DLAT MsA fields must match. Unfortunately, things get

trickier than this.

A virtual page size of 4KB sets the number of identical address bits in VA and
MsA at 12, ie. VA{11:0) = MsA(11:0). This is because Ms and virtual page sizes are
equal. In other words, data objects within a page are directly addressable, whereas
data objects larger than a page are possibly mapped to several disjoint Ms frames.
Recall that the DIR is addressed with the target MsA in REAL mode. In DAT mode
the DIR must'be addressed with the. VA because the MsA is not known at the time of
access. If the DLAT was mapped before the DIR. then this preblem would be avoid-
ed; however both accesses are performed concurrently for speed. Unfortunately

VA(12) # M5A(12). Thus if it cannot be guaranteed that the line was placed into the

- 60 -

DIR using a unique address (virtual or real), both synomyms, VA(12:7) and -VA(12)
|1 VA(11:7) ! must be used to address the DIR and each resultant class must be
compared, in parallel, to two DLAT classes, accessed with the same synonyms. If

either one matches then the cache hits.

Another way to view this aliasing problem is to assume that the data object was
originally mapped into the cache by its real address, i.e. it was first accessed in REAL
mode. The object may niw be accessed in DAT mode, the user supplying its VA only.
This address contains on!y enough information to pin down the object’s location in
cache to within two classqs (corresponding to one synonym bit). Each location must
be checked”in the normal manner, ie. against a DLAT produced tag. The tag size
lﬁust be increased to MsA(m:12) because both synonyms may have equal MsA(m:13)
tags. Note that the number of synonym classes which must be checked is equal to 2
where N is the number of synonym bits. Therefore whereas one or two sy.rnonym bits

can be tolerated, e.g. IBM 370 Series, more cause intolerable mapping inefficiencies.

Another instance of aliasing is if the architecture permits a data object to be
named with more than one virtual address, &.g. System 370. In this case, the object
could be mapped into the cache using one of its synonyms and then accessed using the
other, both in DAT mode. This type of architected aliasing is not dependent on the

mapping organization and is avoided in the BIP MP (section 3).

If the map never operates in REAL mode (and there is a one to one relation
between data objects and virtual addresses) aliasing cannot arise because data objects
are always placed into the cache in DAT mode, a mapping done on VA(12:7), a

unique identifier for each object. The tag must still be MsA(m:12) because the full

! HEX concatenation operator.

-61 -

Ms 4KB page address is needed when L1 misses. For a 64KB virtual page size, there
is no alising either, but for a different reason: VA(15:0) = MsA(15:0). In this case,

tag size reduces to MsA(m:16).

In general there are two necessary conditions for the creation of synonyms
stemming from map organization and architecture. The map organization problem
arises between any two memory levels, L; and L;,, from two factors: L; set size and
L;;, page size. If the L; set is larger than the L;,, page, the potential for synonyms
exists from the overlapping bits (fig. 4.5). The map architecture problem arises if the

user references a data ooject by more than one unique address.

The MsA was originally needed in an L1 mapping to perform REAL address
translation to L1A. The DLAT was then introduced to hold the MsA for determining
a DIR hit during DAT mode. Now assuming REAL addressing is not required, any
common identifier can be used for the DLAT/DIR tag; however, the MsA is still
needed in the DLAT to access main memory on an L1 miss. This will be an important

consideration when dealing with a multi-level hierarchy.

-

To summarize, if the DLAT hits then there is a good chance the data object is in
cache, however that is not guaranteed. If the DLAT misses then there is small chance
that the data object is in the cache. Therefore when the DLAT misses, it is updated
(from the Ms map, to be discussed later) and the correct MsA is then compared
against the DIR tags. If the DIR now misses, then the cache does not hold the target

object.

Different bits in the virtual address are mapped to the DLAT and DIR, thus these
mappings do not correspond in any intuitive sense, i.e. the map update protocol is not

dependent on the mapping transform. In addition, the DLAT and DIR have different

-62 -

Li.1A (L;.1 poge size = 4KB)

< page{/liine$ byte B
14 11 0
\NO}Hosing
L; set size = 32 lines
< I l

1 6 0

\c:ﬁ}:,ing !
L; set size = 64 lines
2 L]
0

12 6
oligsing !
L, set size = 128 lines
é line/set]byte/lin;]
13 6 0

Figure 4.5. The Synonym Problem

set associativities and thus different replacement policies. The fact that both tables
have 64 x 4 = 128 x 2 = 256 entries is an implementation decision only. The
DILAT is 2-way instead of 4-way to save tag, comparators, with no substantial loss of
performance. Theoretically, the DLAT can be any sizc, independent of the size of the
levei-1 cache. Because of this there are no necessary constraints between the DLAT
hitting and the cache holding the target object; however, with the DLAT large enough,
a sensible replacement policy and no degenerate reference patterns (such as accessing
the Nth page of consequtive segments) a DLAT miss almost always implies a cache

miss 1,

1 A cache hit can be defined as a DLAT and DIR hit, in which case a DLAT miss implies a
cache miss. This is not the definition used in this- thesis.

-63 -

4.1.2 Hierarchical Map

The major difference between the proposed system’s memory hierarchy and a
conventional one is the addition of a second level cache, L2. This cache is the highest
level in the private memory of a processor, ie. it plays the role of a conventional main
store. Thus L2 is the target level of an L1 miss, implying that the DLAT codomain is
the L2 address space and the DLAT tag must be L2A(m:12). The DIR tag will be
compared against the corresponding DLAT tag and therefore must be L2A(m:12) also.
The names of these maps are clarified as the L1DIR and L2DLAT, corresponding to
their targets. Real addressing, ie. user addressing with an MsA, is not implemented in
the BIP MP. REAL mode would require an additional DLAT addressed l?y MsA,
L2DLAT*. L2DLAT cannot be wused because it is addressed by
i’A (22:16) # MsA(22:16), i.e. the entries are not placed properly for real addressing.
L2DLAT returns the L2A of a virtual data obj:ect. L2DLAT* returns the L2A of a
"real" data object, ie. a data object resident in Ms. For real addressing L2DLAT*
would be mapped instead of L2DLAT and used if L1 misses to give the L2A. If L2
misses, the user MsA is used to access the shared memory. Both L2DLAT and
L2DLAT* would have to be updated concurrently on L2 replacement. The cost of
L2DLAT*, in addition to the undesirable design constraints needed to avoid syno-

nyms, are valid reasons to avoid real addressing.

This thesis does not deal with L1 design and therefore nothing more detailed than
simplified L1 interface:s. are given in Appendix B. Note that L2DLAT is considered
part of L1 for historical reasons. L1 design and implementation issues for set-

associative and other organizations are well documented (section 1.3).

-64 -

LIDIR and L2ZDLAT entry definitions are given below.

L1IDIR entry
bits
TAG 10 tag : L2A(21:12)
DL 1 dirty line flag
VE 1 valid entry flag

L2DLAT entry

VK 25 virtual key: VA(43:19), the portion
of VA not used in indexing L2DLAT

TAG 10 tag : L2A(21:12)
PK 2 protection key
VE 1 valid entry flag
VL 4 valid Tine

=

The DL fiag is set on a store into the associated L1 line. This dirty bit indicates
that the line must be written back on replacement. More subtly, it indicates that the
L1 line is the most up-to-date version of that 128B in the entire system. PK holds the
file protection key for the data object. Read-only, R/O, read-write, R/W, and
execute-only, E/O, are considered in this thesis. On the L1 level this field is used to
determine if a reference is legal. The VL bit vector is not necessary for the L1

¥)
mapping, but decreases the L1 miss penalty by indicating if the data object is in L2.

On an L2DIR miss and L2DLAT hit, the L1-L2 transfers can proceed immedintely if

the target line is valid.

4.2 L2 Mapping

The L2 map is implemented as a two level hierarchy. The level one map
resides in the L2DLAT. The level two map, the L2 page directory, L2DIR, resides in

the L2 store itself. Just as with a memory hierarchy, when the L2DLAT misses, the

-65 -

L2DIR is accessed. Entries in the lower level of the map hierarchy contain less
information than entries in the top level in an effort to keep the L2DLAT small, an
implementation decision. Therefore a hit in the L2DLAT does not imply the L2DIR
will not be accessed to complete the L2 mapping. This happens when L2DLAT.VL =
O for the target line, indicating that althoughb the L2A of the target is known, the line

is not in L2. The L2DIR target entry is then accessed for the shared memory address.

The CPU must conceptually perform an L2.mapping (fig. 4.7 ') during each L1
mapping (fig. 4.6) to find the tag matching the L2A tag in the LIDIR. Usually the L2
map hits in the L2DLAT. Less frequently, the L2DIR must be accessed to complete
the L2 mapping. Since the CPU will wait for both L1 and L2 misses to be resolved,
L1 and L2 operations are sequential. The L2DLAT is considered part of the L1
system because it is ﬁhysimlly partitioned with L1 to permit fast access. The hard-
ware saved by keeping the L2DIR in the L2 store is considered worth the time penalty

taken.

After a successful L2 map, L1 can still miss, but then L2DLAT.TAG will hold the
target L2A, so no unnecessary work has been done. If L1 misses, the replacement line
is written back to L2 if it is dirty. L1 also requests an L2 to L1 transfer of the target
line. Both the upward and downward transfers can proceed concurrently if L1 has
two line buffers each 16B wide. The 128B line transfers each entail eight 16B
transfers. The inclusion of the line buffers adds one transfer time to the operation.

The first line delivered to L1 is the target line. The first 16B transferred contains the

! Several algorithms in this thesis are outlined as flowcharts. Control follows directed
branches. A split in a branch represents concurrent operations which must all com-
plete at a merge point before flow continues. Jndependent branches, created at
decision nodes, need not all complete at a merge point for flow to continue.

- 66 -

A \

access L2
L1DIR map
<o
YES

L1 miss NO 7

v

if dirty ¥ES YES
L1-L2 L1 hit
NO

L2
map

%

-

L2 hit > i
/

YES
v 4 L2 hit
DW L2-L1 switch
bypass| |[transfer] tasks
L1DIR
update
v \4
memory hit memory hit memory miss

Figure 4.6. L1 ﬁbpping

referenced double word and is routed to both L1 and the CPU. This is called the L1

DW bypass.

The L2 map can miss at both levels in the map hierarchy indicating that an L2
store miss. In this case, before the L1 mapping can be completed, an Ms mapping
must be performed. L2 requests an Ms mapping and waits for the results. If the Ms
mapping is successful, Ms signals L2 and sends it the target data object. An L2 page

frame is selected for replacement and L1 is interrogated (section 4.3.1). L2 npdaies

- 67 -

if R/W L2DIR
int L1 update

. > Ms hit
\
NO <dirty
lines
YES
L2s » Ms -
Ms=L2s| lout bufl |in buff
\
in' buff
. + L2s
L2DIR L2DLAT
update updcte
T \'
L2 miss L2 hit

Figure 4.7. L2 Mapping

its maps with this information. It then proceeds as with an 1.2 hit. If the Ms map is
unsuccessful, the Ms mapping function signals L2, L1 and the CPU and interrupts the

supervisor. The supervisor will initiate a transaction switch on that processor. 1/0
will be initiated if the target Ms line is not already arriving. The precise details of the

process switch will not be discussed.

L2 is demand paged over the whole L2 space, i.e. all pages, other than special

pages such as map pages, are candidates for replacement. Therefore a running

- 68 -

transaction can theorctically cause all other active transactions’ working sets pages to

be replaced except for those awaiting I/O. I/O pages are marked “arriving" and are

effectively frozen.

The VA to L2A map is implemented with an "inverted" page table (HOUDS81)
because the size of this map is small, whereas the size of a conventionz2! map would be
much larger (because L2 can be viewed as a private main memory, extensive justifica-
tion for the L2 map is given in section 4.4). A source virtual address is translated into
an L2A by hashing it into a target address table (fig. 4.8). Two data structures
needed are the hash index table, L.2HIT, and the page frame directory, L2DIR. Both
these tables are located in dedicated pages in the L2 store, L2s, requiring one and two

pages respectively.

The L2HIT and L2DIR implement a chained hash table (HORO77). The source
virtual page address is hashed to form an index into L2HIT. The hash function is
based on the System/38 concern that sequential segment references should be pre-

vented from affecting the uniformity of the hash (HOUDT79).

¥

hash(VA) = SID(11:0) + RVPA(11:0)

where RVPA is the reverse of the virtual page address. The VPA is reversed because
both the SID and the VPA are likely to contain high order zeros if the virtual space is
under-utilized and most files are smali (POWE77). The hash is predicted to give a
uniform spread of zeros. The L2HIT entry holds a pointer to the head link of the
target hash chain in the L2DIR he.ap. The heap is of fixed size because there are a
fixed number of page frames in L2. The lookup is implicit in tne sense that the index

of any entry in L2DIR is the frame number of the data object corresponding to that

- 69 -

ssw 77

_

e
v

saanporys baddoy 77 cwn 29094

A
N\
P
o.%
T
%m/
/-n_ .
b iz
b XA
o/ Pl drad
© pion
L
vegowAapvl 1] Add | A3 5oy iAH (&
— vioy? §e pee 1903 h
3
Ut vzazy 2LIHTT
al
T i T4
o _ 1 et he LS ¢
_| EVYT _ _ Foved

— L NIV 9IS q WA
FNT -»

-70 -

entry. The entry table is defined to have twice as many entries as the heap for

efficiency reasons. Essentially,

larger L2HIT ~-->

less dense hash structure —>
lower probability of collisions —>
shorter chains —>

faster mean access time.

Let a be the hash density defined as

4 - |L2DIR|
|L2HIT |

Then S, the mean number of accesses per lookup is given by (HORO77)

Sn=1+%.

Therefore if the L2HIT is twice as large as L2DIR, a = 0.5 and S, = 1.25. §_ can be
improved with a lower density, for instance two pages for L2HIT, giving S, = 1.125.
However, cost/performance as a function of{LZHIT size can only be determined once
the system is operational. The hardware mapping algorithm to be described works for

any density with only minor modification in the obvious places.

An L2HIT entry ! holds a pointer to L2DIR heap, PI, and a valid entry flag, VE.
1.2HIT entries not in use have VE = 0. Entries are invalidated when the single link
comprising the hash chain js invalidated and the dota object is possibly forced up the

hierarchy. This occurs during transaction commit and L.2 page replacement.

! Refer to L2HIT and L2DIR entry definitions in the L2¢ CARRIER declarations in
Appendix B. .

-7 -

An L2DIR entry holds a hash key, HK, with which to determine a hit, a valid
entry flag, VE, a foward hash chain pointer (to within L2DIR), FPH, and an end-of-
chain flag, EOC. In addition, the entry holds information concerning the data object
resident in the frame corresponding to the index of the entry. One link pointer is
proposed, as is implemented in System/38 (HOUDS1), to make the map update

procedure efficient.

With a siagle link pointer, removing a chain entry at random, as in the case of
replacement frame selection, involves scanning the complete chain (less the link to be
removed) to reconnect the broken link. If the mean chain length is 1.25 x 2 = 2.5,
plus another i]ink for the hash index table entry, then 2.5 map accesses are needed on
the average to cycle through a chain to the link behind the removed link. An addition-
al access is needed to write that entry back. Thus the single link pointer removal
penalty is 3.5 x 50as = 13Csz. The single link pointer insertion penalty for post-
insertion is simply two pointer updates, entailing 4 x SOns = 200ns (single Iink

pointer insertion penalty for pre-insertion is 6.5 x 50ns = 330ns).

¥ -
For a map with backward and forward link pointers, these average delays are

actually Jonger. The double link pointer removal penalty is two pointer updates
(foward pointer of previous link and backward pointer of next link) or 200ns. The
double link pointer insertion penalty is four pointer updates or 400ns. The advantage

of the scheme is that the delays are constant for any length hash chain.

The difference between single and double link pointer removal plus insertion
penalties 600ns - 180ns = 380ns. This is enough time to cycle through over seven
extra links in the single pointer removal process. Since the probability of a chain of

length 9.5 is very low, the single link pointer scheme is chosen.

-72 -

The information fields in the L2DIR entry are VL, AL, DL, PK and MsA. The
first threc are the valid, arriving and dirty line bit vectors. PK is the protection key
indicating a R/0, R/W or E/O data object. The MsA field holds the shared memory
address of the parent data object. The advantage of the MsA is to obviate the need
for an Ms mapping if the reference is a mear-miss, i.e. if the Ms line is resident in 1.2,
but the referenced L2 line is still invalid. However, if the Ms to L2 transfer size is

4K3B, no near-misses will occur.

The L2 map is kept in the L2 store, which requires a 16B port to produce the
necessary 1GBS bandwidth for bus transfers. Thersfore two L2DIR entrics of 8B
each are produced on each access. If the hash is uniform, the probability of chaining
into a sequential entry is very low and therefore the parallel access serves no advan-
tage. However, thé proposed hardware detects physically sequential links in the same

chain to avoid unnecessary accesses if the hash is non-uniform.

There are three unique attributes of the L2 mapping policy. Most importantly, no
transaction switch is taken on an L2 miss, i.e. the processor must wait for the Ms map
ard transfer. Secondly, an L2 miss immediate}y binds a rep_lacement page to the target
data object and writes back that L2 frame if the choice is dirty. This is done even if
the reference misses in shared memory, causing I/O and a transaction switch. Third,
the Ms mapping occurs concurrently with the L2 map update on an L2 miss. The
update involves inserting the replacement frame L2DIR entry into the target chain and
marking that entry arriving and frozen. Multiple I/O requests for the same object are

thereby avoided. .

The primary concerns in the design of the L2 mapping policy were simplicity,
consistency and efficiency. By consistency it is meant that the actions taken on an L2

hit/miss should be the same for all transactions causing them. Specifically, when L2

<173 -

misses, it immediately binds the current replacement frame choice to the target data
object before the data object is delivered to L2, in fact possibly very much before that
event. This policy does not adversely affect L2 hit ratio by much, considering that
even with a high degree of multiprogramming, say 30 transactions per processor, there
can be at most (30 / 1024) = 3% L2 pages arriving (recall L2 is demand paged
only). This early binding saves overall map processing. Assume a transaction is
switched in by the supervisor when its I/0 completes. The transaction will begin
execution by re-trying the reference which previously caused the I/O. This time,
however, the L2 map will hit with the L2DIR entry marked “arriving”, thus saving
scanning the complete target hash chain (the arriving entry will be close to the head of
the chain) and indicating that no identical I/O requests should be made by transac-
tions sharing that data object. This policy is consistent because the original reference
and retry are interpreted by the same hardware. Thus multiprogramming is transpar-
ent to the memory hierarchy. The mapping is efficient because an update is done
during the initial search, rather than causing another search once the requested data

object arrives.

¥

The mapping and transfer hardware descriptions are given in Appendix B in the
L2c (L2 controller) system, a part of L2. The organizational overview is given in fig.
4.9. The L2c dataflow is given in fig. 4.10. Figure 4.11 illustrates an example of the
L2DIR update algorithm as described in the HEX relink ROUTINE. This figure shows
a typical pointer structure of the replacement and target hash chains in the L2 map
before and after the update triggered by an L2 miss. The update consists of removing
the replacement choice link from the replacement chain and inserting it into the target

chain.

-74 -

4.3 L2 Page Fault Handler

Conventional page fault handlers are implemented in software and executed afrer
a miss occurs. There are three major functions performed by a page fault ﬁandler:
selection of a replacement page, the write-back of a dirty page and the downward
transfer of the target page. The proposed L2 page fault handler is implemented in
hardware and performs its selection function in parallel with the operation of the

associated processor.

to Ms
A
L2c ;
t1 [|
oo [5h] [22e] 4 |
L2s
4MB Store control
fiﬂg‘: unit
L2rs
V replacement
to L1 unit
L2rQ L2r

Figure 4.9. L2 overview ‘

-75 -

WQ<

meppepng 277 9k FN9/4

11

\w;lLLIN.u

| —y— |

N4
|

o e

e B e
1
. L4

J

7

J

Bar-rppo

<g:oxbupn0
a1 g
y
paod dpgysiy yburs
wv> 3wh
SV -h

11 \. <£:0>yurquw
=T

<f£: OVﬂ!.-S

=76 -

traget
chcin

L2HIT L2DIR

VE PI FPH EOC etc.

hash(vA)

S

replacement a
chain /

Sl

/

L2LRU

Figure 4.11a. L2 Map Update Example: Before

L2HIT L2DIR
VE P| FPH EOC etc.
hash(VA) ¥
1 —
o Z_’\‘ o
5
1 ! 0—\'
©

A\

\

®
_\/\ d\‘

JI =

%

Figure 4.71b. L2 Map Update Example: After

-77-

43.1 Replacement

4.3.1.1 Algorithm

1t is assumed in this thesis that the leasf recently used, LRU, criteria (EAST79)
is a sufficient replacement algorithm for L2. Working set algorithms such as Working
Set, WS (DENG78), Damped Working Set, DWS (SMIT76), and Page Fault Frequen-
¢y, PFF (GUPT78) are not considered necessary at the L2 level because the L2 miss
penalty is not as great as in a conventional system. No process switch is taken. Thus

for replacement, L2 is viewed more like a cache than a private main store.

Ina ger{éml memory hierarchy it is not possible to implement a page fault handler
in software for each level. Such a scheme is highly inefficient. A conventional system
usually uses a simple hardware line replacement mechanism for the cache and a
software page replacement mechanism for the main memory. This is because whereas
the time penalty of the main memory fauit handler is insignificant compared to the
1/0 time, that same penalty is much greater than main memory access time. A second
reason for using a software handler for the main memory is that the higher in the

N ;
hierarchy, the more important it is to make the replacement choice intelligently. Al
lower levels, no matter how accurate their replacement algorithms, suffer by mistakes

made higher up.

In the proposed system, L2 replacement must be implemented in hardware
because of performance reasons. If the decision as to which of the L2 pages to
replace is inade after a page fau't occurs the decision process must be on the order of
lus. This is roughly calculated from the assumed IFI,, = 10us. An L2 miss, which
causes the processor to wait, should not impact performance by more than approxi-

mately 5%. Therefore a simple and fast page fault bhandler is necessary.

-78 -

An alternative approach is to select replacement pages concurrently with normal
L2 operation by filling a replacement queue. In this case, the replacement hardware
must fill the queue faster than the queue is emptied by L2 misses or invalidated by L2
accesses of enqueued choices. It is hard to estimate how often a new LRU choice
need be produced, although it must average at least once every IFI,, = 80us. Worst
case would be that each L2 access invalidates an LRU choice presently enqueued.
That implies 2 new choice must be produced on average once every 8 us, to keep the

queue filled in the steady state.

LRU approximation techniques, called bit scanning algorithms, are well document-
ed (BAERS0,HABE76,EAST79). For common fixed space algorithms such as
CLOCK, TRIGGER SWEEP and SCHEDULED SWEEP, LRU accuracy levels off at
only three bits per access count (EAST79). The algorithms presented here are two
derivations of SCHEDULED SWEEP, called MINM and ZERO. Both use two bit

access counts.

MINM ZERO
sweep: all counts <-.0 decr all counts
(periodically)
update: count <- timestamp count <-’'111
(on L2 access)
search: min(count) count = ’Od
(on L2 miss or continually)

where the MINM timestamp is a modulo 4 counter, incremented four times between
sweeps. No use bits are needed because the update directly modifies the access count.

Each of the algorithms has its advantages and disadvantages. It is especially hard to

1 HEX binary notation for 3.

-179 -

compare their complexity because wﬁen using two bit access counts, they are similar.
For short counts, the major delay in finding any zero in a set of counts is prioritizing
the zeros that are found, i.e. hardware has just as must trouble finding any zero as the
first zero. This delay is comparable to the selection delay in finding a minimum count
because an arithmetic comparitor for two short fields requires few logic levels. For
longer counts, ZERO algorithm wins because the prioritization delay is the same for all
count lengths (complexity increases only with number of counts) but the minimization
(and maximization) hardware become rapidly cnmbersome and slow. ZERO is chosen

arbitrarily.

The main idea in concurrent ZERO is to periodically sweep or decrement all the
access counts. The search for a snitable replacement choice, i.e. any frame with a zero
count, is performed continually. The current choice is put in a finite length queue.
When a frame is accessed, its count is set to the maximum value, *11, and if that frame
address is enqueued, that queue entry is invalidated. On a miss, a valid queue entry is
taken as the replacement choice. If all the queue entries are invalid, a sweep and a
search are triggered in order. The probability of tne entire queue being invalid is very

cr
low if the queue size and the sweep rate are compatible. At the opposite extreme, the
sweep must not be performed too often, or the LRU approximation breaks down. A

trade-off must be made concerning the cost of invoking a sweep (no zeros) and the

cost of a poor approximation (too many zeros).

The correct way to calculate the sweep rate and the replacement queue length is
to use a trace driven simulation. The results will of course be related to the applica-
tion on the trace. Because the proposed system will run widely varying applications,
an accurate modelling effort would be time consuming. A worst case simulation was

run assuming random 12 references with a Gaussian arrival time distribution. This

-80 -

showed about 15ms is the highest period not causing triggered sweeps on misses.
Since L2 references with locality will increase the number of zero access counts, the
sweep period can possibly be increased with no penalty. The effect of the finite queue
length is not expected to lessen performance if the sweep period is adjusted according-
ly. Rough calculations suggest that a 4 deep queue and 10ms sweep rate should
trigger very few sweeps for random references. Again, locality of reference lessens

this penalty.

A back-of-the-envelope estimation of the sweep period comes surprisingly close
to the above results. A single processor 12 mean page fauit interval is IFT,, = 80us.
There are 1024 page frames in L2 and therefore the mean page life is
1024 x IF1,, = 80ms. To "synchronize" decrementing the access count with the
page life, the sweep period should be 80ms / 4 = 20ms, because the access count is
only two bits. This method of analysis is used for the estimation of the shared

memory sweep period, implemented in a similar manner.

4.3.1.2 Implementation
¥

The L2 replacement unit, L2r, consists of an access count and flag store, L2rs,
a replacem.nt choice queue, L2rQ, and a controller. The L2r dataflow is given in
figure 4.12 and HEX description in Appendix B. The primary design goal of L2r is to
keep L2rQ at least partially full. L2rQ is a four entry queue, each entry holding an L2
page frame address of a replacement choice, ie. non-frozen frames with zero access
counts. A bit vector, vQe, has a valiq flag for each queue entry. If the flag is set, the
entry holds a valid replacement choice. Causes for invalidation are access of the page

frame after the choice was enqueued and entry use by L2c for actual replacement.

-81 -

“U\l\\»\.o

1uok¥duwu§“

<E:0>p-z7

AZT TR FINI)A

2t7

X

—=—

ol 4

Ol

<g:0>3HA

260

19403
snanl

duﬂu—

}as2a
0041L>
daams
Y? >§Gvu

hq

PEIH B Nws..t.. F

e

-— 0>

sdigs g
57'9 h9xh9

sAT7

Louwary

b

)

-82-

An L2rs entry holds the two bit access count and two flags, as indicated

below.
L2rs entry
bits

AC 2 access count:
00 not ref.
01 ref. once

! 10 ref. twice

11 ref. > two times

NR 1 never replace (permanent)

DR 1 don't replace (temporary)

The two flags must reside in L2rs because they are needed in the replacement deci-
sion. Frames with either flag set cannot be replaced and the controller will not select

them.

L2 will miss on the average once every IF],, = 80us and assuming a 10% miss

ratio, this implies an L2 access every 8us = IRI, , the infer-reference interval. These

up?
constroints indicate that L2-technology memory can be used to implement L2rs. This
is acceptable if several L2rs entries can be manipulated .in parallel. A 16 entry parallel
access L2rs is proposed, requiring 64 accesses to search the entire L2 store for
replacement choices, taking 64 x 50ns = 3.2us. A sweep, invoked approximately
every 10ms requires 128 accesses (read and write), taking 6.4us. This assumes the
logic performing the search and sweep operations are hidden under the access time,
which is the case. L2rs is therefore 64 x 8B = 512B, requiring eight 64 x 8
RAMs, plus parity. The controller and queue is pa:titioned onto three chips. Two
chips contain the necessary logic to perform the update, search and sweep operations
on 16 entries in parallel. Each operates on 8 entries. These chips are I/0 pin limited

at 32 inputs/32 outputs to L2rs and 10 to/from the controller chip. In other words, if

the number of parallel entries was doubled, which is the only cfficient increment in

-83 -

terms of addressing, a singie chip would not be able to handle the I/O. The third chip

is the mesicr conirol chip and holds 1.2rQ, vQe and their corresponding update logic.

L2t operates in three modes corresponding to the phases of the ZERO algorithm:
update, search and sweep. Update mode sets L2rs.AC to ’11 and interrogates L2rQ
when invoked an an L2 access. Update mode is also used to set and reset the flags.
L2c will set L2rs.DR when requesting I/0O for that frame. This is a temporary freeze.
L2c will reset L2rs.DR when the first successful reference to a temporarily frozen

page frame is made. This sequence is illustrated below.

L2DIR.VE VL AL L2rs.NR DR comment

1. 0 XXXX XXXX 0 X pick replacement frame
or 1 XXXX XXXX 0 0

2. 1 0000 0010 0 1 mark target line arriving
mark all 1ines invalid
freeze frame, map into Ms

3. 1 0010 0000 ¢

—y

mark target line valid
and arrived on Ms hit

4, 1 0010 0000 0 0 unfreeze frame on first ref

v

During processor cold start-up L2rs.Nli will be set for page frames holding the L2
map and other special objects and reset for normal page frames. During local recovery
procedures, a hardware mechanism will set L2rs.NR for all frames in a failed module.
If the map itself has failed, the recovery manager will select an L2 area for the map

and set L2rs.NR for those frames.

Search mode is the default or background mode of L2r operation. This means
that the 12rQ is constantly being updated with recent replacement choices. The

sweep mode period should be alterable to dynamically fine-tune the system.

-84 -

4.3.2 Upward Transfer

The second major function of the page fault handling sequence is to force dirty
pages to Ms when they are replaced. There is a problem however if the page selected
for replacement has lines still resident in L1. If the L2 page is replaced, the L1 lines,
if modified, have nowhere to be written back to. This is called the orphan problem.

The upward transfer is therefore split into two operations: L1 interrogate and L2

write-back.

4.3.21 Orphans

The memory hierarchy presented can be characterized by memory levels of
increasing size and page size.

level name page size # pages

1 L1 128B - 256-512
2 12 4KB 1K

3 Ms 64KB 16K

4 . Bs 64KB 256M

Any page with one or more copies resident in lower levels is called a parent. A
copy is called a ciild. L1 lines and 1.2 pages are all children. L2 pages can be also be
parents. By virtue of the store-in policy, a data object must migrate down through all
the memory levels for both load and store references. Each level has independent
mapping and replacement policies. The L1 replacement policy is a poor man’s LRU
among the sets within the target class. L2 replacement is a more sophisticated global
LRU and Ms uses a complex softwarc algorithm. The schemes are independent in the

sense that it is possible for certain levels to replace a parent thus creating orphans in _

lower levels.

Orphans of R/O files are not a problem because replacement policy on each

memory level simply invalidates R/O data objects without write-back. It is the R/W

-85 -

orphans that are trouble. The term orphan used in the remainder of this section refers

to R/W orphans.

L2 parents can orphan their children because L1 is four-way set associative,
causing lines to possibly reside longer than is warranted. Consider the following
example involving a simple uniprogammed environment, The process stores into a
DW, DW*, in a segment as yet unused. Through a sequence of faults, DW* is
delivered to the CPU, leaving a parent, P*, in L2 and its child, L*, in L1. Assuming
L1 is set associative with 64 classes, the mapping domain is also split into 64 mutually
exclusive classes. Domain addresses in the same class share common hashes, i.e. low
order bits. One sufficient condition for the creation of orphans is if no other refer-
ences made by the transaction fall into the DW* class. An example of this is if the
transaction never again accesses the first 128B in all referenced virtual pages, after
initially accessing L*, the first 128B of some page. L* will then never be replaced
from L1, yet P* will eventually be chosen for L2 replacement because L2 is fully

associative. Note that P* has no dirty 1KB lines, yet it is not up-to-date.

A solution is to inferrogate 1.1 on L2 réplacement. The interrogate is performed
using the L1DIR and L2DLAT in the samé manner in which the CPU references L1.
This is possible because the CPU will wait during an L2 page faplt and free up L1.
The interrogate can be done for either all valid 128B lines in a 4KB L2 page or only
those L1 lines known to have been transferred to L1. The second alternative is costly
- a 32 bit multiple copies vector must be added to the L2rs entry, increasing L2rs size
by 800%. The bit corresponding to a 128B line in an L2 page would be set when that
line was transferred to L1. The bit would be reset on write-back. Since clean lines
would never be written back, the multiple copies vector would be a worst case indica-

tor. In fact, if this vector was implemented, a possible solution would be to simply

- 86 -

never replace L2 parents. This would require only a 6 bit multiple copies tally,
increasing L2rs size by only 150%. The tally would be incremented when a line was
transﬁrred to L1 and decremented when a line was written back. A non-zero tally
indicates a potential L2 parent but not who its children are. Even in the absolute
worst case of 512 different L2 pages each having an onl.y child, there would still be
512 1.2 pages without children. Realistically the number of parents would be lower
because of locality of reference. The success of this solution hinges on the fact that
the Jonger an orphan resides in L1, the higher the probability it will be replaced '
shortly. In the time between L2 and Ms faults of the same family, the L1 orphan may
be naturally replaced. Thus work is saved. A disadvantage is that the L2 hit ratio

may be lowered because the replacement set is smaller.

The first alternative of brute force interrogation on each L2 replacement does not
increase the L1 miss penalty by much because the interrogate time is hidden under the
Ms to L2 transfer time, as will be shown. It also involves less hardware than the other

scheme, and is therefore selected for the L2 replacement protocol.

4.3.22 L2 Write-back

To alleviate the predicted contention for Ms one possible scheme is to do
“sneaky writes” attempting to keep all pages in L2 clean. A general problem with
sneuky writes is that they create possibly extra Ms contention because they are not
completely efficient. This inefficiency arises from the chance that the cleaned pages
will be dirtied again before the next page replacement. In the BIP MP, sneaky writes
can also cause performance degradation by contending with the CPU for L1, to do
interrogates. A simple write-back policy is proposed, entailing writing back a replaced

page if it is dirty, once chosen for replacement.

-87-

To reduce the bottleneck caused by the write-back, two buffers assist in the L2 to
Ms transfer. Both in__buf and owt__huf (Appendix B) are 4KB stores implemented in
L2-technology. They are 4-way interleaved to accept 1GBS transfer rates. Each
consists of four 64 x 168 banks, built with 64 x 8 RAMs. out_buf is logically
partitioned into 32 L1 lines and is directly line addressable. OBV(31:0) indicates
whether an out_ buf line is valid. in_ buf is logically partitioned into four 1KB L2
lines. IBV(3:0) indicates whether an in__buf line is valid. There is an in__buf bypass

from the bus for direct Ms to L2 transfer if there is no write-back.

The timing of the L1 miss penalty, a substantial portion of which is contributed
by the L2 page fault handler, is given in fig. 4.13. The rough timing of these opera-

tions are given below.

L2 mapping = (1 4+ 1.25) x 50ns = 100ns

L2 map update = 10 x 50 ns = 500ns

L1 interrogate = (324 2) Xx20ns = 700ns if O orphans
700ps + 8 X 10ns = 0.8us if 1 orphan

700ns + 32 x 80ns = 4.0us if 32 orphans
L2 write-back = Ous if O lines
8 X 130ns = lus ,if 8 lines

32 x 130ns = 4us if 32 lines
Ms mapping = 2.25 x 50ns = 100ns
Ms to in__buff transfer = lus + lus = 2us if 1KB

lus + 4us = Sus if 4KB
in__buff to L2 transfer = lus if 1KB

-

4us if 4KB
L2 map update = 2 x 50ns + 20ns = 120ns
L1 to L2 transfer = 130ns
L2 to L1 transfer = 130ns
L1DIR update = 20ns

- 88 -

N\vx\ 0.\@\ SSIu 17

roge)iam
7.:\ NNA\\J

@ \dw >p dn
vy \\TIﬂ/\ I
\.metﬁ&% /

}7<17 94035 o} \....u&‘;&
\qucG\,\ N\\

1t 320914

A9 27 az

#r1omM Maw
AQLSAD S5
ravsp 2y el
I A W
I /)] e« M&_nu Tlul\.b\::w\.\ g} "
Tll wvmw\r =g2h —m 2355/ S = 9Ak Lurd ,oE N\\.ld
- XT2 1993314M 27 31000 Jow Nq
;“\:{«v@w 7 n: -~
T«l gA| .U&ﬁ OS&V*tg \dbv
_.A||.. Udmv\.ﬁ. = M&T ”~ ;
f— L
_nc.u.)m»oN
b = 2¢
sugg)

—>

-89 -

|<— 0 orphan delay 9'
K__ 16 DW transfer

10ns
—————t——t——t LJ‘ ° o o
L interrogate next interrogate
Ié— 16 DW transfer
OR —————t—t—t——t—t—Ft - -
Linterrogc:te ° next interrogate

I& 16 DW transfer ——->!

. I T |
< oR "ttt

1
L last interrogate

Figure 4.14. L1 Interrogate Timing

The first L2 map update involves inserting tl.2 replacement frame into the target hash
chain. The second L2 map update involves marking the arriving line as valid and

arrived. The first and second terms in this. operation correspond to the L2DIR and
L2DLAT updates respectively. The L1 “interrogate delay for a given number of
modified orphans consists of a transfer delay and a constant mapping delay (fig 4.14).

The transfer delay is the time necessary to transfer the 128B orphan line to the L2
buffer in cight-16B transfers. The mapping delay is taken even if there are no or-
phans. This delay consists primarily of twoe L1DIR accesses for each of 32 lincs

interrogated: one read and one write (to invalidate the entry). The additional four
accesses correspond to loading and then invalidating the L2DLAT with the replace-

ment frame L2A, usually necessary since that page is likely to be unused.

-90 -

The expected frequency of orphan creation in any application will be very low.
Assume that one orphan is created by each L2 replacement and that there is no bus
contention. With write-back of four L2 lines, the upper timing sequence is about Sus.
If the Ms transfer is the maximum 4KB taking Sus, the buffering saves about 4us of
bus usage and the total L2 miss penalty is about 10us. If the Ms transfer is 1KB
taking 2us, the miss penalty is about 6us. The buffering not only saves 4us bus usage,
but also reduces the miss penalty by lus. If the write-back is only 1KB, the upper
sequence is about 2us. Now if the Ms transfer is 4KB, the buffering saves only lus of
bus usage at the cost of an additional 3us in miss penalty. In this case the miss
penalty is 10us instead of 7us without buffering. If the Ms transfer is only 1KB, the
buffering saves lus of bus usage with no increase in miss penalty. 1f there is no
write-back, buffering is bypassed and the miss penalty is about 6us and 3us for 4KB
and 1KB transfers respectively. The CPU, L1 and L2 inter-connections are summa-

rized in figure 4.15.

44 Ms Mapping

¥

This section describes the shared memory mappin'g algorithm and its imple-
mentation. The proposed scheme is an “inverted" page table lookup implemented in
high-speed (L2-techrology) memory. This method is similar to the L2 mapping and
will be justified by consideration of the consequences of a conventional segment/page

table mapping, e.g. MULTICS (BENS72).

The scheme, described in detail in section 4.2, uses an "inverted" page table map
so-called because its size is proportional to the size of the target space, not the source
space. That is the fundamental advantage of using a hash table. A conventional

translation uses a map whose size is roughly proportional to the size of the virtua!

- 91 -

ouT :
L1 L2 BUFFER |

IN
CPU BUFFER BUS
CONNECTICON COMMENT
1. CPU » L1 processor reference
2. L1+ L2 L1-L2 transfers
3. L1 » OUT BUFF L1 interrogate
4. L2 » OUT BUFF L2 write-back
5. BUS + OUT BUFF L2 -+ Ms transfer
6. BUS - IN BUFF - Ms » L2 transfer
7. BUS » CPU Ms map reference
P 8. BUS » L2 buffer bypass
: 9. 12+ CPU DW bypass
10. L2 » IN BUFF Ms = L2 tronsfer

Figure 4.15. Private Memory Connections

address space because the map is indexed with the VA. This was the main motivation
for using hash tables, especially since the virtual address space is large. The 64KB
virtual page size, defined to be equal to the Ms page size, was also chosen to reduce
the size of the shared memory map because Ms frame size is inversely proportional to

number of frames.

441 Conventional Method

A conventional UP, e.g. IBM 370/3033, main memory map is invoked when
the DLAT misses. The map segment is stored in the memory hierarchy and is, in the

simplest case, demand paged like all other segments. To increase translation efficien-

-92- ?

cy, all or pieces of the map are frozen in main memory. The translation is performed
by a hardware mechanism integrated with the CPU which accesses the map, possibly

causing main memory faults, to generate the target address.

The location of the hardware translation mechanism must be decided for an MP
system. Each processor could be capable of VA to MsA translation, either at the CPU
level or at the L2 level (in L2c), of a single translator, attached to the shared memory,
could be supplied. It will be shown that neither design is successful for a conventional

mapping,

The possibility of 32K segments, each 8K pages (64KB per page), might preclude
fitting either the segment table (descriptor segment) or the page table (information
segment) in a sihgie page. The severity of these sizes depends on the amount of
information stored in a table’s entry. As will be shown, the information segment fits
in -a single page, but the descriptor segment does not and therefore a descriptor
segment page table is needed. Assume that three accesses are needed to map a VA to

MsA (fig. 4.16). This mapping is:

MsA(target) <- IS (DS (DSPT ((DBR) + SID’) + SID") + PID) + W

where SID’, SID" and W are fields within the segment identifier and word index of the
VA, respectively. PID is the page index of the VA. DBR is the descriptor base
register, DSPT is the descriptor scgnient page tuble, DS is the descriptor segment and IS
is the information secgment !. SID’ and SID" can be defined only once the DS entry

size has been determined. The DBR is needed to possibly relocate the DSPT in Ms in

case of memory failure.

! Much of the notation used in this section is borrowed from (BENS72).

-93 -

DBR

DSPT DS IS torget page

sip* Sio” PID v

— — [—— target OW

Figure 4.16. Conventional Moin Memory Mapping

7

The map entries for the DSPT, DS and IS are given below. Recall there are

2" page frames in Ms.

bits

DSPT entry: DSP 14 pointer to DS in Ms
VDS 1 0S valid flag
ADS 1 DS arriving flag

DS entry: ISp 14 pointer to IS in Ms
VIS 1 IS valid flag
AIS 1 IS arriving flag
PK 3 protection keys
ST 2 segment type

IS entry: P? 14 pointer to page in Ms
VL 16 valid 4KB 1ine ;
AL 16 arriving 4KB line
DL 64 dirty 1KB line

-94 -

These entries have been formulated to support only information crucial te VA to
MsA translation. All information concerning translation from symbolic file name to
virtual address to physical disk address is kept in another map, called the segment
descriptor table, SDT (section 5.3.1). The VA to MsA mapping misses if either the
DSPT, DS or IS entries indicate that DS, IS or the target page is invalid or arriving.

These misses invoke the Ms page fauit handler.

The sizes of the DSPT, DS and IS maps are calculated as follows, where segno is
the number of in-use segments.
|DS| = 2Yseg x (| DS entry] = 4B) = 128 KB

| DS |

DSPT| = ———
| DSPT| 64KB

x (|DSPT entry| =2B) =4 B

| IS | = segno x 21%pg/seg x (|IS entry| = 16B/pg)

= segno x 128XB

Conventional mapping therefore requires a map proportional in size to the
number of in-use segments. Assume that the degree of multiprogramming is roughly
200 and each active process uses five segmen;s, ie. segno = 1000. This assumption is
compatible with a file space of 1% of the virtual space, although the in-use space has

no bearing on the conventional map size. Therefore

Imap| =1 IS| = segno x 128KB = 128 MB

In an effort to speed up translation, the complete DS is frozen in shared memory,
thereby reducing the number of accesses per translation to two. The DBR then points

to the head of the DS. The new mapping is:
MsA(target) <—~ IS (DS ((DBR) + SID) + PID) + W

-95.

There are two choices for managing the map: demand paging like other segments
or freezing the accessed IS pages for the life of the involved transaction. On transac-
tion commit, the system unfreezes associated IS pages and possibly marks them for
replacement. Although the map is big, for a realistic active file space, the worst case

policy of freezing the map uses only 14% of Ms.

The “inverted” page table mapping uses hash tables of the size (entry definitions
in section 4.4.2):
| map| o< | Ms|

| MsHIT | = 2% x 2 x (| MsHIT entry | = 2B) = 64 KB

¢ |MsDIR | = 2% x (| MsDIR entry | = 22B) = 352 KB

The hash map is over 300 times smaller than the conventional map.

- The major point against the conventional map is thot most segments will not be
8K pages long and thus a great percentage of IS space will be wasted. This degrades
processor performance because 2a significant percentage of the private processor
memories will be filled with IS pages, leavingrlcss room for working sets, increasing the
private memory miss ratio. Another point against IS pages is that they could be kept
in a portion of Ms implemented in L2-technology if they weren’t so numerous. Such a
map store, logically part of Ms, could be accessed by a hardware translation mecha-
nism at the shared memory level. IS pages would never migrate below the shared
memory and the private memory contention problem would be solved. The map store

can, however, be cost effectively implemented for a hash scheme because it uses a

smaller map.

The choice of an "inverted" page table for VA to L2A translation can now be

justified. For L2, the conventional map needed per processor is approximately 16

- 06 -

times bigger than the VA to MsA map because L2 page size is 1/ 16 Ms page size.
o
The hash map size is calculated below.)
[map| o< | L2]
|L2HIT| =219 x 2 x (|L2HIT entry| = 2B) = 4 XB

|L2DIR | = 2'° x (| L2DIR entry| = 8B) = 8 KB

That makes the conventional map over 150,000 times larger than the hash tables used!
Realistically, a slightly more intelligent design could reduce the conventional map size,
for expected file size distributions, to roughly the Ms map size. Lven then, the map is

32 times as large as the L2 store itself.

-97.-

44.2 Proposed Map

The hash entry table, MsHIT, and the Ms page directory, MsDIR, are defined

as follows.

MSHIT entry:

bits
PI 14 pointer to MsDIR heap
VE 1 valid entry flag
MsDIR entry:
HK 17 hash key
FPH 15 hash chain link pointer
EOC 1 end of chain
_PL 14 pool chain pointer
VL 16 valid 4KB line
AL i6 arriving 4KB 1line
DL 64 dirty 1KB line
MC 16 multiple copies
PK 3 protection key
ST : segment type
IOF I/0 buffer frame
SPG shared page

valid MsDIR entry
frame frozen

2
1
1
REF 1 first reference
1
1
1 bad frame (failed memory)

¥
The MsDIR.BAD, DL, VL, AL, REF and MC fields are the only sections of the map
updated by hardware mapping unit, referred to as the shared memory controller, MsC.
The ficlds are updated by the MsC as follows (reference to a bit vector implies the bit
position corresponding to the target line).
« BAD is set by a hard error detection device in MsC.
e DL is set corresponding to the write-back from L2 of a meodified 1KB line.

This vector must be 64 bits to reduce the log granularity (section 10.3) to

1KB.

e VL is set when a line successfully arrives from disk by channel device trans-
fer.

-08 -

o REF is reset when a line successfully arrives from disk by channel device
transfer. REF is set when the next reference to that page is made, i.e. when-
ever REF = 0. REF is used to generate a psuedo-fault interrupt (section
1.3).

e AL is reset when an 1/O buffer line is successfully referenced. A 16 bit AL
vector as opposed to a single bit flag, is needed to avoid requesting the same
1/0.

e MQC is set corresponding to the transfer of a data object frora shared memory
to a private memory. If this transfer is less than 4KB, the MC bit corre-
sponding to the Ms line containing the data object is set. If the data object is
R/O the MC bit is still set because the COMMIT and ABORT procedures
need to invalidate all copies of data objects brought into memory by a trans-
action, even if they have not been modified. A 16 bit MC vector is chosen,
instead of a 5 bit tally, to reduce the interrogate penalty for these procedures.
The processors can be interrogated for 4KB objects using the INTL instruc-
tion because MsDIRMC gives all child addresses. If only a tally was kept,
the INTP instruction would be needed.

There are two reasonable implementations of the algorithm:

map location MsC location
Distributed : Ms and L2 stores L2c
Centrolized : dedicated store Ms level

In the first scheme the Ms map migrates to the processor private memories, but
not beyond the L2 level, where the translatién occurs. In the second scheme the map

is fixed in a high-speed map store at the shared memory level

Justification for keeping the map in an L2-technology store in both schemes is as

follows. The L2 miss service time s, for the Ms map implemented in Ms-technology is

= mapping + latancy + transfer

= 2.25us + 1.0us + 1.0us = 4.25 us

where a shared memory packaged access time of lus and transfer size of 1KB are

assumed. The mapping time is calculated as 2.25 Ms accesses. Additional time is

-99 .

required to select the map entry from the 1KB staged in the Ms output registers. If
the next link in the hash chain is in that 1KB, however, the next access is avoided.
Since there are 256KB in MsDIR, if the hash was uniform then the probability of the
next link landing in the current 1KB is very small. To account for other processors

contending for Ms I,

where k = IFL, , = 10 us. In time w the processor involved could have executed

1 BIPS

3 X 7.4 us = 925 instructions

and since 2 single processor misses once every IFI = 80us, the penaity taken by the
up

processor is

T4 us
_— = 9%,
80 us %

This assumes a hash table density of a=.5, which is costly in that the hash index table
must be twice the size of the heap. If a density of a=1 is used, the expected number

of accesses goes up:

LBIPS 10 us = 1250 instructions

10 us<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>