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ABSTRACT

The intersection of low-dimensionality and strongly correlated electrons in van der Waals
(vdW) materials offers a rich landscape of ordered phases and associated excitations for po-
tential applications in nanoelectronics. The coupling between distinct degrees of freedom in
correlated materials provide routes to realize novel functional properties, which can be further
manipulated by the high tunability intrinsic to vdW materials through, e.g., heterostructures
and doping. However, identifying the mechanism of correlated phases poses a fundamental
challenge due to coexistent and competing orders. This requires detailed knowledge of the
microscopic interactions/excitation spectra, methods to disentangle the individual roles of
coexistent orders, and selective probes of symmetry-breaking within different coupled de-
grees of freedom. In this thesis, we demonstrate the utility and complementarity of resonant
X-ray spectroscopy and symmetry-selective optical probes in combination with appropriate
external tuning parameters (e.g. strain, pressure, ligand substitution, layer number) for
revealing the origin of correlated phases in low-dimensional vdW materials.

We first investigate the triangular lattice antiferromagnet NiI2. Frustrated exchange
interactions result in a helimagnetic ground state and spin-induced ferroelectric order, mak-
ing bulk NiI2 a type-II multiferroic. Using a combination of optical spectroscopic probes,
including Raman, magneto-optics, and second harmonic generation, we demonstrate the per-
sistence of multiferroic order to the single-layer limit. We then aim to resolve the microscopic
magnetic interactions and their interplay with the lattice symmetry to identify the origin of
the magnetic ground state. Towards this goal, we investigate the magnetic ground state and
transition temperature versus hydrostatic pressure and layer number, and directly probe the
evolution of magnetic/structural orders with resonant magnetic X-ray scattering/structural
diffraction, respectively. From these results, we demonstrate the central role of interlayer
exchange interactions and their coupling to the structural symmetry in driving the magnetic
ground state of NiI2.

We next investigate the broader class of triangular lattice nickel dihalides, NiX2 (X =
Cl, Br, I), to identify the origin of sharp optical excitations, i.e. excitons, in nickel-based
vdW magnets. We employ Ni-L3 edge resonant inelastic X-ray scattering (RIXS) to access a

3



q-resolved and site-specific view into the excitation spectra. We identify the sharp excitons
with spin-forbidden intra-configurational multiplets of octahedrally-coordinated Ni2+, which
become renormalized by Ni-X charge transfer. We also observe a finite dispersion of these
excitations, demonstrating a multiplet delocalization that is controlled by the ligand-tuned
charge transfer gap in a process analogous to ground state superexchange. These results
establish the microscopic origin of these excitons and provide a mechanism to explain their
possible coupling to the magnetic order/excitations.

Finally, we study the iron-based superconductor FeSe, which displays a rotational sym-
metry breaking electronic nematic phase in proximity to unconventional superconductivity
without magnetic order. To understand the origin of nematicity, we investigate the ordering
of the orbital degrees of freedom using X-ray linear dichroism with in-situ uniaxial strain
tuning, electronic transport measurements and structural diffraction. We observe a lattice-
independent orbital polarization acting as the primary nematic order parameter. This re-
solves the orbital origin of nematicity in FeSe and suggests that anisotropic spin fluctuations
are the mechanism of unconventional superconductivity.

Thesis supervisor: Riccardo Comin
Title: Professor of Physics
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Chapter 1

Introduction

Van der Waals (vdW) materials are a subset of crystalline solids which have quasi-two-
dimensional (2D) crystal structure, typically defined by 2D (single- or few-atom thick) planar
sheets which are stacked to form a 3D crystal structure. The gap between individual 2D
sheets is large and bonded only by (weak) vdW forces, which allows them to be mechanically
exfoliated and isolated to individual 2D layers. On one hand, this highly anisotropic structure
endows these materials with correspondingly anisotropic transport, optical and magnetic
properties, even in the bulk. On the other hand, the isolation of pure 2D layers of these
materials allows new degrees of freedom for engineering their properties. This includes the
use of interfacial effects induced through composite structures of two vdW materials, termed
heterostructures, or the variation of physical properties through moiré supercells which are
formed between two (or more) layers in proximity along with a lattice mismatch or relative
twist angle between their respective crystallographic axes.

From this perspective, the study of vdW materials has recently become a major focus of
contemporary condensed matter physics. The reasons for the increased interest can be sum-
marized by four unique opportunities: (a) the discovery of new physical properties/ground
states without counterparts in bulk materials; (b) fundamental studies of ground states and
dynamics of low-dimensional systems; (c) high tunability and control of physical properties
through electrostatic doping/heterostructure engineering; and (d) prospects for higher ef-
ficiency electronics architectures through reduced sample volumes in single- and few-layer
nanometric devices. Significant scientific discoveries have been recently achieved, including
the discovery of superconductivity in twisted bilayer graphene [1], correlated insulating states
in moiré heterostructures of graphene [2] and transition-metal dichalcogenides (TMDs) [3–
5], long-range magnetic order in the monolayer limit [6, 7], emergent magnetism in moiré
systems [8–10], and the first observation of the fractional quantum anomalous hall effect [11].
Thus, vdW materials offer many exciting opportunities for realizing new physical phenomena
in quantum materials.
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1.1 2D Magnetism

A major focus of current 2D materials research regards low-dimensional magnetism. The
magnetic and electronic ground states observed in vdW materials are diverse, ranging from
highly insulating to metallic conductivities, and ground states ranging from ferromagnetic,
antiferromagnetic, and non-collinear states [12]. This wide range of physical properties makes
this class of vdW materials attractive candidates for applications in magnetic devices [13,
14]. While the essential physics regarding the origin of magnetism and the magnetic prop-
erties of quasi-2D magnetic materials has been established in the bulk when these materials
were originally grown and characterized, significant opportunities remain for studying these
materials in the true 2D limit. What is of particular interest regards, primarily, two ques-
tions: (a) do the magnetic properties persist down to the single-layer limit? and, (b) can
their magnetic ground states or functional properties (e.g. magneto-electric coupling) be
tuned in a way that is unique to their reduced dimensionality?

These can be exemplified by the first example of 2D magnetic order reported in a single
layer vdW material in the insulating ferromagnet CrI3 [6] [Figure 1.1(a-c)]. In the bulk form,
the chromium trihalides (CrX3, X = Br, I) were interesting materials as being among the
first known examples of electrically insulating ferromagnets, which are generally rare since
the magnetic exchange pathways of insulators are typically antiferromagnetic [15]. The
ferromagnetic order persists to the single-layer limit, along with a layer-dependent magnetic
ground state that alternates between antiferromagnetic (AFM) and ferromagnetic (FM)
order for even/odd layers, respectively [Figure 1.1(c)]. This results from AFM interlayer
coupling between FM vdW layers, in combination with integer layer number (N) thickness
which forbids magnetic compensation for N odd. The survival of magnetic order to the
single-layer limit showed that vdW magnets were viable, overcoming the Mermin-Wagner
theorem which states that long-range magnetic order is absent in the 2D isotropic Heisenberg
model [16]. The reason this theorem does not hold for real materials is due to the presence
of magnetic anisotropy [12].

One also notes that the magnetic state of few-layer CrI3 possesses properties which are
not present in the bulk. First, the interlayer AFM coupling observed in the few-layer samples
is at odds with the bulk FM ground state [18]. This was attributed to the absence of a high
temperature structural transition between rhombohedral and monoclinic crystal structures in
few-layer flakes, which changes the sign of the interlayer exchange [19]. Thus, the interlayer
exchange coupling was known early on to be closely related the stacking symmetry of the vdW
layers, which may be anticipated from the microscopic mechanisms of magnetic exchange
processes in insulators (e.g. Goodenough-Kanamori rules [15]). This change in magnetic
ground state makes few-layer CrI3 highly tunable. For example, a perfectly compensated
AFM bilayer can undergo a metamagnetic transition to the FM state with a modest magnetic
field of 0.6-0.9 T at low temperature [6] [Figure 1.1(c)/(d)]. Additionally, it is experimentally
observed that the magnetic ground state is highly susceptible to external parameters, such
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Figure 1.1: Magnetic properties of atomically-thin CrI3. (a)/(b) Crystal and magnetic struc-
ture of single layer CrI3 with Ising-type ferromagnetic order and local moments parallel to
the c-axis. (c) Layer-dependent Kerr rotation measurements versus magnetic field, showing
FM in the single- and three-layer samples, while bilayer CrI3 is AFM. (d)/(e) Tuning of the
magnetic state through electrostatic doping in 2L CrI3. (f) Double gate device geometry
for the doping dependence in (d)/(e). Panels (a)-(c) are reproduced from Ref. [6]. Panels
(d)-(f) are reproduced from Ref. [17].

as hydrostatic pressure [20] and electrostatic doping [17, 21] [Figure 1.1(d-f)]. Furthermore,
the intrinsically low-symmetry configuration of the AFM bilayer CrI3 leads to an emergent
linear magnetoelectric coupling, related to a breaking of inversion (P ) and time-reversal (T )
symmetry of the AFM configuration [22].

These initial studies highlight the main interests of 2D magnets and particularly their
unique emergent properties and high degree of tunability compared to bulk-like samples
[13]. These studies were performed in parallel with reports of other 2D ferromagnetic semi-
conductors such as CrGeTe3 [7] and metals Fe3GeTe2 [23], as well as the first reports of
antiferromagnetic few-layer materials belonging to the class of transition metal thiophos-
phates MPX3 (M = Mn, Fe, Co, Ni; X = S, Se) [24, 25]. Together, these materials formed
the basis for the renewed field of 2D magnetism in the context of vdW materials.

1.2 Magnetoelectric coupling and multiferroic order

Among the main goals in 2D magnets is establishing the control and readout of magnetic
states through electrical manipulation, which constitutes a major route towards the goals of
antiferromagnetic spintronics [26]. Broadly, these goals may be summarized by non-volatile
reading/writing of antiferromagnetic states, high-frequency operation speeds and insensi-
tivity to stray magnetic fields, overcoming technical limitations of current (ferro)magnetic
based memory (MRAM), for example. Electric-field tunable antiferromagnetic states in the
context of both ultrathin films and vdW materials may be a viable path to realize these
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properties, particularly for devices based on tunneling magnetoresistance (TMR) [13].
Favorable towards these goals is the observation of very large TMR in many vdW mag-

netic layers, including CrX3 materials down to the few-layer limit [27–29]. However, in these
examples, switching the TMR states requires relatively large magnetic fields. Therefore,
electric control of magnetic states, and the realization of important functional properties
such as exchange bias, have been pursued using heterostructure engineering of 2D magnets.
While progress has been made, including the observation of exchange bias in heterostruc-
tures [30], moiré engineering of long-range magnetic order [31, 32] and heterostructure based
artificial multiferroics, these approaches involve significant complexity to achieve the desired
properties at the level of device fabrication. An alternative route is to stabilize intrinsic
multiferroic states in 2D materials, thus realizing direct magnetoelectric coupling within a
single 2D layer without relying on interfacial or proximity effects.

Multiferroics refer to materials possessing two (or more) simultaneous orders within dif-
ferent degrees of freedom, including ferroelectric, ferro/antiferromagnetic, ferroelastic and/or
ferrotoroidal orders [15]. The overarching principle is that materials in which such orders
coexist will possess an intrinsic, microscopic coupling among the different ferroic orders, al-
lowing mutual control through their distinct conjugate fields (e.g. applied magnetic field,
electric field, or stress). For this work, we focus on the subset of multiferroics character-
ized by coexistent ferroelectricity and magnetic order [33], also known as magnetoelectric
multiferroics [34].

Such magnetoelectric multiferroics appear in two main types, called type-I and type-II
[15]. For the case of type-I, the ferroelectric and magnetic order occur through different
mechanisms and with different transition temperatures. For example, the archetypal type-I
multiferroic is BiFeO3 where the ferroelectricity (Tc ≃ 1100 K) is driven by the classic ‘lone
pair’ ferroelectric mechanism on the Bi ions and the antiferromagnetic order on the magnetic
Fe ions occurs independently at the lower temperature TN ≃ 643 K [34, 35]. Even though the
ferroelectric and magnetic orders are independent, it is found that below TN , the magnetism
and the ferroelectricity are mutually coupled leading to pronounced magnetoelectric effects
[35].

In contrast, type-II multiferroics are characterized by a spin order that directly induces
ferroelectric polarization. In these materials, the coupling between the two orders is micro-
scopically direct, leading to stronger magnetoelectric effects compared to type-I multiferroics
[33]. The standard examples are the manganites such as TbMnO3, where a spin spiral order
leads to a concomitant spin-induced ferroelectric order below TN ≃ 27 K which is highly
tunable by external magnetic field [36] [Figure 1.2(a)]. Spin-induced ferroelectricity requires
a non-collinear magnetic order that breaks inversion symmetry and arises as an effect of
spin-orbit coupling at either the transition metal or the ligand site, as formalized in the gen-
eralized Katsura-Nagaosa-Balatsky (gKNB) or spin-current model [39, 40]. Such magnetic
states are typically incommensurate and can be stabilized by frustrated magnetic exchange
interactions [41] (see Chapter 3).

Thus, accessing this route towards magnetoelectricity in 2D materials requires the identi-
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Figure 1.2: Type-II multiferroicity in TbMnO3 and NiBr2. (a) A spin-induced ferroelec-
tric polarization appears within the incommensurate spin-cycloidal phase of TbMnO3 below
TN ≃ 27 K which is strongly tunable by external magnetic fields. (b) R3̄m structure of the
nickel dihalides (NiX2), possessing weakly vdW bonded triangular lattice sheets of magnetic
Ni2+ ions. (c) Incommensurate spin-cycloidal phase of NiBr2 appearing below TN,2 ≃ 22 K,
with magnetic moments shown as blue arrows. (d)/(e) A magnetic-field tunable ferroelectric
polarization appears in the spin cycloidal phase. Panel (a) is reproduced from Ref. [36].
Panel (b) is reproduced from Ref. [37]. Panels (c)-(e) are reproduced from Ref. [38].

fication of candidate 2D materials with non-collinear magnetic structures, and demonstrating
that these non-trivial magnetic states can persist to the single layer limit. This contrasts with
the initial reports of 2D magnetism discussed above, which consist of relatively simple forms
of long-range magnetic order, including Ising-type ferromagnetism (along with interlayer FM
or AFM stacking) and Néel/zig-zag type antiferromagnetic states within the vdW plane [6,
24, 25]. Each of these states are collinear, meaning that the local spin on each site lies along
a unique crystallographic axis in either a parallel (FM) or antiparallel (AFM) configuration.
While such states are certainly of interest, simple collinear magnetic order is usually of high
symmetry, which forbids magnetoelectric effects and spin-induced ferroelectricity.

In this vein, it is known that many examples of type-II multiferroics belong to the
class of triangular lattice antiferromagnets [Figure 1.2(b)]. The triangular lattice geome-
try naturally leads to geometrically frustrated magnetic exchange interactions, and non-
collinear/incommensurate magnetic states are commonly observed as noted already in orig-
inal investigations of their magnetic structures by neutron scattering (e.g. [41–43]). The
simplest examples are the transition-metal dihalides, MX2, where M = Mn, Fe, Co, Ni and
X is a halogen (X = Cl, Br, I). These materials all possess a similar layered crystal struc-
ture, consisting of weakly-bonded 2D triangular lattice layers of edge-sharing, octahedrally
coordinated magnetic transition metal sites [Figure 1.2(b)]. Type-II multiferroicity has been
observed in the bulk form of many of these materials [38, 44, 45], as first demonstrated in
the spin cycloidal phase of NiBr2 below TN ≃ 22 K [38] [Figure 1.2(c-e)]. Additionally, these
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materials are exfoliable and can be isolated to a single triangular-lattice layer. However, the
properties of these materials to the few-layer limit had yet to be studied at the start of the
work presented here.

Therefore, these materials are identified as promising candidates to realize the strong
magnetoelectric coupling inherent to type-II multiferroics in the single layer limit for use
in vdW devices, as highlighted by recent theoretical work showing that this class could be
viable from first-principles calculations [46, 47]. In the first part of this thesis, we thus focus
on the transition-metal dihalide NiI2 and provide the first evidence that the non-collinear
magnetism [42] and the associated type-II multiferroic order [45] can persist to the single-
layer limit (Chapter 5). We then study in detail the magnetic exchange interactions to
understand the microscopic origin of the non-collinear magnetic state, the role of reduced
dimensionality, and their relationship to the multiferroic order (Chapters 6 and 7).

1.3 Excitons and the optical detection/control of mag-
netism

A related goal to the electric control of magnetic order is the detection and manipulation
of magnetic states through optical methods. The optical response of 2D materials carries
particular significance to the field due to the general lack of suitable probes. Given the small
sample volume in the single-layer limit, traditional probes of magnetic order such as mag-
netometry and neutron diffraction are not feasible. Thus, most of the evidence for magnetic
order in 2D materials comes from magneto-optical methods, such as the magneto-optical
Kerr effect (MOKE) [6, 7] or magnetic circular/linear dichroism (MCD/MLD), polarized
photoluminescence (PL) [48], Raman spectroscopy [24, 25] and second harmonic generation
(SHG). This is because a majority of 2D magnets are correlated insulators with large trans-
port gaps [18], and thus electrical transport measurements of, e.g., the anomalous hall effect
[23], are not possible. More generally, detecting antiferromagnetic states with optical probes
is even more critical, as one cannot rely on directly switching the magnetic state with an
external magnetic field as in ferromagnets.

The insulating/semiconducting nature of most 2D magnets does, however, lead to a
rich optical response in the visible/near infrared range (photon energy ∼ 1-4 eV). Besides
standard interband transitions which typically appear as broad, featureless absorption bands,
one also commonly observes various types of excitonic responses near and below the band
edge. Excitons are collective excitations where photoexcited electrons in the conduction
band minimum (CBM) are bound to the photoexcited holes in the valence band maximum
(VBM) through their mutual Coulomb interaction. The resulting attractive e-h interaction
leads to an energetic stability of this bound state, which appears at energies below the band
gap (energy Eg) by an energy equal to the binding energy (Eb). We note that compared to
3D materials, the 2D nature of vdW materials likely increases the exciton binding energy
due to the reduced dielectric screening [49]. The above description of excitons is appropriate
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for the situation where the relevant lowest-energy electronic states are best represented as
highly dispersive, itinerant bands. These types of excitons are termed interband Wannier
excitons [50, 51] and appear as strong peaks in absorption and PL spectra of direct band
gap semiconductors, where the CBM and VBM occur at the same point in momentum space
[Figure 1.3(b)].

These types of excitons are those which dominate the optical response of monolayer
TMDs [51–54] [Figure 1.3(a-b)], which have been utilized in many contexts ranging from
characterization of the electronic structure, the discovery of interlayer and moiré excitons [55],
optically induced ferromagnetism [9] and the first indirect optical evidence of the fractional
quantum anomalous hall effect [11]. Distinct from most 2D magnets, however, the TMDs
are highly covalent systems, and the band description is the most appropriate one for the
electronic structure and the optical response. In strongly correlated systems, such as many
2D magnets, the picture is more complicated due to the highly localized d orbitals from
which the local magnetic moments originate.

eg

t2g
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Figure 1.3: Excitons in two-dimensional semiconductors and insulators. (a) Emerging pho-
toluminescence from a direct band gap Wannier-type exciton in thin layers of the transition-
metal dichalcogenide (TMD) MoS2. (b) Schematic of the conduction band (CB) and valence
band (VB) extrema at the K point in TMDs forming excitons through electron-hole pairs
near the direct band gap. (c) Differential reflectance and photoluminescence of monolayer
CrI3. The lowest energy peak is a dd transition of Cr3+ (4T2) corresponding to an inter-orbital
crystal field excitation (inset). (d) Circular polarization in the 4T2 emission is sensitive to the
magnetization of monolayer CrI3. (e) Sharp excitons appearing below the magnetic phase
transition of the vdW AFM NiPS3 (TN ≃ 155 K) as measured by PL. Panel (a) is reproduced
from Ref. [53]. Panel (b) is reproduced from Ref. [51]. Panels (c)/(d) are adapted from Ref.
[48]. Panel (e) is reproduced from Ref. [56].
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The crossover in the description of the electronic structure can be separated based on
the energy and degree of localization for the excitation. In general, lower energy features
are more localized, while for higher energy excitations near or above the bandgap, a band
description may be more appropriate. For instance, while the chromium trihalides are rel-
atively localized d-electron systems, it is argued that the giant equilibrium magneto-optical
responses in an intermediate energy range (in the visible region just below the band gap ∼
2-3 eV) are dominated by interband Wannier type excitons which couple strongly to the spin
split band structure resulting from the ferromagnetic order [57]. The same mechanism is
suggested in the optical response of the more recently reported vdW antiferromagnet CrSBr
[58]. It has also been demonstrated that circularly polarized optical excitation resonant to
the interband excitons of CrI3 with large MCD contrast can deterministically flip the overall
magnetization [59]. Thus, excitons in the context of magneto-optics possess a dual impor-
tance. On one hand, understanding the coupling of the photoexcited exciton state to the
spin degrees of freedom is an important route to study for the all-optical control of mag-
netism in vdW materials. Secondly, these excitons provide large magneto-optical effects for
the non-destructive readout of the underlying magnetism.

In systems with localized d-orbitals, other types of excitations with a distinct microscopic
interpretation can arise which are related to highly localized transitions between different
spin orbital configurations of the d-orbitals. Such transitions are termed ligand-field or d-d
transitions and are essentially transitions localized to a single transition metal site [60]. The
characteristic spectra depend on the electronic filling (valence), the multielectronic ground
state (high spin/low spin), the crystal field splitting, and the electronic interactions (e.g.
Hund’s coupling), and are well-known in the context of molecular systems in the chemistry
community for transition metal complexes [61, 62]. Ligand-field or d-d transitions are some-
times termed Frenkel excitons. However, it is important to note some key distinctions with
Wannier excitons. In the latter, the energy of the excitation is defined in terms of a binding
energy with respect to the band gap. Ligand-field or Frenkel excitons are rather uncorrelated
(or only weakly related to) the band gap, but instead have an absolute energy related to
a well-defined transition between two localized energy states, thus allowing one to directly
extract key energetic parameters of the system.

Ligand-field transitions are typically weak in condensed matter systems, because of op-
tical dipole selection rules which restrict their intensity [60]. However, they are the most
common lowest-energy excitations appearing below the band gap in correlated materials with
characteristic energies of 1-3 eV, which describes the common situation for correlated vdW
magnetic insulators. This has been highlighted in the case of CrX3 in the older optical liter-
ature [63] as well as in more recent studies [48], where the lowest energy optical absorption
and photoluminescence is interpreted as the primary crystal field transition characteristic of
Cr3+ ions [Figure 1.3(c)]. The polarized PL response of these excitations have been crucial
for identifying the long-range magnetic order in the single layer of both CrBr3 [64] and CrI3
[48] [Figure 1.3(d)].

From this perspective, recent work has reported surprisingly sharp optical excitations
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appearing below the band gap of other correlated magnets, such as NiPS3 and NiI2 [56, 65]
[Figure 1.3(e)]. There is ongoing discussion in the community regarding the origin of these
transitions, but they have nonetheless become an important tool for the characterization of
the magnetic ground state in Ni2+ based vdW magnets [66–69] due to their hypothesized
connection to/activation by long-range magnetic order. It is also observed that these peaks
are linearly polarized in absorption and emission, related to the direction of the local spin
moment on the nickel sites as determined from neutron scattering [66, 70]. Furthermore,
ultrafast optical experiments show that resonant optical excitation can efficiently modulate
the antiferromagnetic order [71, 72]. Thus, understanding the microscopic origin of these
sharp optical excitations, their relationship to the local spin degree of freedom and how they
couple to the long-range magnetic order remain critical open questions. Finally, one needs
to identify routes to tune these excitations and how they may be generalized beyond the
case of Ni2+ systems.

In Chapter 8, we resolve these questions using resonant inelastic X-ray scattering (RIXS)
to study the local electronic structure of the Ni2+ atoms in the vdW magnetic nickel dihalides
(NiX2, X = Cl, Br, I). We establish the microscopic origin of these excitonic states, show how
they may be energetically-tuned by the ligand environment, and use the momentum resolved
character of RIXS to reveal their delocalized nature. These results show how these excitons
may be generalized to other systems, how they may couple to the long-range magnetic
order, and provides a new technique for studying the properties of delocalized excitons in
condensed matter systems. This understanding is critical to engineer the exciton properties
for the detection and manipulation of magnetic order through optical excitation.

1.4 Magnetism, electronic nematicity, and unconventional
superconductivity

Magnetic interactions in correlated (quasi)-2D materials also play an important role in
the mechanisms of high-Tc unconventional superconductivity. Common to many strongly-
correlated electronic phases, the presence of unconventional superconductivity is typically
accompanied by various competing electronic orders, which can be either antagonistic to or
assist superconductivity. The most studied examples are the copper oxide high-Tc supercon-
ductors (‘cuprates’), where the parent phase (e.g. La2CuO4) is an AFM insulator. When
one dopes either holes or electrons to the system, the AFM insulator state is suppressed and
superconductivity emerges near the point where the AFM state is quenched [73]. In addition
to superconductivity, other electronic orderings - such as charge-density waves [74] - may also
emerge, which are typically accompanied by anomalous electronic transport [73]. A central
theme emerging from this thread of research is that understanding the interactions deter-
mining these competing orders (e.g. CDW or magnetic order) and their correlation, or lack
of correlation, with superconductivity are critical towards understanding the unconventional
pairing mechanism.
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From this perspective, the discovery of the iron-based superconductors (IBSCs) pro-
vided a new platform for studying unconventional superconductivity [75, 76]. In contrast to
cuprates, the parent phase of many IBSCs are (bad) metals. The common structural motif
is a square lattice of Fe-atoms, tetrahedrally-coordinated by either a chalcogen (S, Se, Te)
or pnictogen (P, As) [77, 78] [Figure 1.4(a,b,e)]. The lattice and electronic structures are
quasi-2D, with some materials being exfoliable [79]. The prototypical parent compound is
BaFe2As2, with FeAs 2D sheets [75] [Figure 1.4(a)]. Undoped samples show a stripe type
spin-density wave (SDW) ground state (Q = (π, 0)) [Figure 1.4(c,e)], which can be traced
to a Fermi surface instability, although electronic correlations and local moment physics are
also important [78]. The confluence of correlated, localized electrons with well-defined local
moments alongside metallicity and a well defined Fermi surface has led to ongoing debates
regarding which perspective is appropriate for describing these systems [80]. Upon electron
(e.g. Co) or hole (K) doping, the SDW phase is suppressed and superconductivity emerges
near a quantum critical point (QCP) of the SDW order [81] [Figure 1.4(c)]. These observa-
tions demonstrated early on the key interplay between magnetic order and superconductivity
in IBSCs, similar to cuprates.

Distinct from cuprates, the magnetic order observed in many IBSCs (e.g. BaFe2As2)
breaks C4z rotational symmetry in the square Fe-lattice. The magnetic wavevector is stripe-
like, with magnetic moments oriented along a unique Fe-Fe bond direction, with two-fold
(C2z) rotational symmetry [Figure 1.4(e)]. On one hand, this rotational-symmetry-breaking
magnetic order induces a tetragonal-to-orthorhombic structural phase transition in the pla-
nar square lattice [81]. Additionally, this transition is accompanied by an exceptionally large
resistivity anisotropy, where the resistance along the two orthorhombic directions can differ
by over a factor of 2 below the magnetic transition temperature TN [82]. This resistance
anisotropy is also present above TN under applied uniaxial stress, and shows a divergent
susceptibility with respect to the uniaxial stress as TN is approached from above [83]. This
strain-susceptibility follows a Curie-Weiss type divergence, similar to the behavior of the
magnetic susceptibility of an Ising-type ferromagnet. The large anisotropy in comparison
the magnitude of the structural distortion (order of 0.1%), in conjunction with its divergent
behavior, provides strong evidence for an electronic origin. This strongly anisotropic state
is referred to as electronic nematicity.

For the case of BaFe2As2, it is believed that the nematic phase is driven directly by
the magnetic degrees of freedom and the stripe-type SDW phase, called the spin-nematic
model [84]. This is supported by the proximity between the SDW and orthorhombic struc-
tural phases throughout the phase diagram [Figure 1.4(c)]. Importantly, the large nematic
susceptibility remains strong near the SDW QCP [83]. Upon suppression of the long-range
magnetic order, optimal superconductivity is observed, although strong anisotropic spin fluc-
tuations persist in the paramagnetic state down to low temperature. The strength of these
low-energy spin fluctuations decrease below superconducting Tc, along with the nematicity
induced structural orthorhombicity [85, 86]. From these observations, it is thought that
these anisotropic spin fluctuations are the key ingredient for unconventional superconduc-
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Figure 1.4: Iron-based superconductivity and electronic nematicity in BaFe2As2 and FeSe.
Crystal structures of (a) BaFe2As2 (‘122’ compound) and (b) FeSe (‘11’ compound). (c) Elec-
tron doping phase diagram of Ba(Fe1−xCox)2As2. (d) Phase diagram of stoichiometric FeSe
under hydrostatic pressure. (e) Structural and magnetic phases in the nematic state: (left)
high temperature tetragonal (C4z symmetric) square FePn/FeCh lattice (Pn - pnictogen, Ch
- chalcogen) common to BaFe2As2 and FeSe; (center) Orthorhombic phase BaFe2As2 with
stripe-type magnetic order with qm = (π, 0) rlu and C2z symmetry; (right) Non-magnetic or-
thorhombic phase of FeSe displaying orbital order with preferential n(3dxz) > n(3dyz) orbital
occupation. The orthorhombic distortion is exaggerated for clarity. (f) Divergent elastore-
sistance versus temperature in FeSe signaling the electronic nematic phase at TS ∼ 90 K. (g)
Schematic of the momentum-dependent nematic band shift of the 3dxz/3dyz bands and (h)
the corresponding Fermi surface reconstruction in the nematic phase of FeSe. Panels (a)/(b)
are reproduced from Ref. [78]. Panel (c) is reproduced from [86]. Panel (d) is reproduced
from Ref. [327]. Panel (f) is reproduced from Ref. [93]. Panel (g) is reproduced from Ref.
[106]. Panel (h) is reproduced from Ref. [104].

tivity. Importantly, this shows a close association between the physics of the spin-nematic
state and the appearance of superconductivity in the iron-pnictides.

Due to this close association, much of the research has focused on the origin of nematicity
in IBSCs. A key ingredient lies in identifying the primary order leading to the nematic state.
This is fundamentally challenged by several factors. First, the rotational symmetry breaking
is reflected in all degrees of freedom in the ordered phase. In particular, a corresponding
structural transition is observed, and the nematic order appears as anisotropy in the struc-
tural, orbital, spin and charge degrees of freedom. These may be measured by diffraction,
optical spectroscopy [87], electronic Raman scattering [88], angle-resolved photoemission
(ARPES) [89], inelastic neutron scattering (INS)/RIXS [80, 90], nuclear magnetic resonance
(NMR) [91], and electronic transport [83]. Therefore, identifying the leading interaction
based only on the anisotropy in the nematic state with a given probe is not sufficient due to
a microscopic coupling between all degrees of freedom in the ordered phase.
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Furthermore, C4z rotational symmetry breaking leads to the formation of orthorhombic
twin domains in single crystals [82, 92, 93] [Figure 1.4(e)]. Thus, in the absence of a poling
field (applied stress) to detwin these domains, bulk probes will average out the corresponding
anisotropy, restoring a macroscopic C4z rotational symmetry. This requires measurements
with a detwinning stress applied, or sub-micron beam spot sizes to measure the intrinsic
anisotropy from a single-domain. However, applying finite stress to system poses yet another
experimental difficulty by inducing a finite anisotropy above TN , i.e. a finite nematic order is
induced by applied strain due to the divergent nematic susceptibility [83]. This means that
measurements of an order parameter will display a broad cross over across TN with finite
applied stress, rather than a direct measurement of the intrinsic nematic order parameter.
Thus, separating the true nematic order parameter from secondary effects induced by the
highly anisotropic electron state is far from a trivial task, but holds particular importance
for identifying the mechanism of superconductivity in IBSCs.

Challenging the spin-nematic phenomenology of nematicity in IBSCs is the related com-
pound FeSe [78, 94] [Figure 1.4(b)]. In the undoped parent compound, an orthorhombic
structural transition is observed at TS ≃ 90 K without the presence of long-range mag-
netic order [95] [Figure 1.4(d,e)]. Significant spin-fluctuations are nonetheless observed by
multiple techniques including RIXS [96], inelastic neutron scattering (INS) [97, 98], and nu-
clear magnetic resonance (NMR) [99]. Particularly, strong fluctuations at both Q = (π, 0)

and Q = (π, π) wavevectors as observed, with Q = (π, 0) becoming favored below TS [97],
suggesting possible magnetic frustration that becomes partially lifted in the nematic state.
The large resistivity anisotropy characteristic of electronic nematicity is also reported, ap-
proaching 10% along the Fe-Fe directions near TS [93] along with the expected Curie-Weiss
divergence at TS, providing strong evidence for an electronic-origin nematic state [Figure
1.4(f)]. Alongside a well-developed nematic phase, coexistent bulk superconductivity in un-
doped samples is observed at Tc ≃ 9 K [100], which is seemingly unusual in comparison to
Co-doped BaFe2As2. In further contrast to the latter, NMR and INS measurements show a
suppression of spin fluctuations below Tc [19, 99], while the orthorhombic structural distor-
tion is unaffected [101]. Finally, optimal superconductivity is not observed when the nematic
transition is quenched by doping (e.g. isovalent doping with S) [102] or under hydrostatic
pressure [103] [Figure 1.4(d)]. All of these observations indicate that while spin fluctuations
may be important for superconductivity, a distinct nematic state is formed in FeSe compared
to the iron pnictides.

Consistent with this proposal, it has been suggested that orbital order, rather than a
stripe-type SDW, is the leading nematic instability in FeSe [99] [Figure 1.4(e)]. This scenario
was first evidenced by NMR [99] and angle-resolved photoemission spectroscopy (ARPES)
[95]. NMR shows a substantial splitting of the Knight shift which was attributed to a ferro-
orbital ordered state, with a distinct evolution of the spin-fluctuations determined from the
spin-relaxation time which are significantly activated only below TS [99]. In ARPES, the
band structure near EF is spanned by the t2g set of d orbitals, 3dxz/3dyz and 3dxy, with
the former two being degenerate above TS [95, 104, 105] [Figure 1.4(g)]. The bands form
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circular hole-like pockets at the Γ point and elliptical electron-like pockets at the X/Y points
(Q = (π, 0)) [Figure 1.4(h)]. Electronic correlations are observed to be strong on the dxy
orbitals, but weaker for the dxz/dyz states. Large band reconstructions are observed below TS,
including a momentum dependent splitting of the dxz/dyz orbitals with a sign change between
the Γ and zone-boundary [104, 106] [Figure 1.4(g,h)]. From this behavior, it was hypothesized
that orbital-dependent spin fluctuations can explain the momentum-dependent band shifts
and the corresponding distortions of the Fermi surface, which are then the primary degree
of freedom driving nematicity despite the lack of long-range magnetic order [107]. Notably,
a momentum-dependent band shift does not correspond to a trivial orbital ordering of the
dxz/dyz states, which would instead correspond to a momentum-independent (uniform) shift
of the dxz and dyz bands.

While the spin and orbital degrees of freedom are certainly closely intertwined, the above
picture is evidenced from the itinerant electronic states and Fermi surface anisotropy far
below TS. Additional ARPES measurements on S-doped FeSe reveal that the strain-induced
nematic order above TS may possess a distinct band anisotropy [108]. This suggests that
the Fermi surface anisotropy measured below TS may not reflect the true nematic order
parameter. These measurements may instead be complicated by feedback effects between
the Fermi surface reconstruction and the development of anisotropic (π, 0) spin-fluctuations
below TS [97]. Thus, strong evidence exists to support a nematicity driven by both orbital
and spin degrees of freedom in FeSe, although a consensus has yet to be reached. The
above complicating factors require a more direct measurement of the local orbital degrees of
freedom.

To address this problem, we have developed a new technique to identify the origin of ne-
maticity in FeSe. This is achieved through measuring the local 3dxz/3dyz orbital anisotropy
with Fe K-edge X-ray linear dichroism (XLD) spectroscopy as a function of in-situ tunable
uniaxial strain (Chapter 9). This goes beyond the ARPES results, which are sensitive to
the band structure and itinerant states. X-ray spectroscopic measurements instead directly
measure a quantity proportional to the locally-projected orbital polarization. A key advance
is the use of in-situ, tunable strain while simultaneously monitoring the local orbital occupa-
tions (XLD), the anisotropy of the itinerant states (resistance anisotropy/elastoresistance),
and the strain-state/structural anisotropy (X-ray diffraction). From these results, we can
disentangle the anisotropy in each degree of freedom as a function of both strain and tem-
perature across the nematic transition temperature. We conclude that orbital polarization
is the primary order of the nematic phase in FeSe.

1.5 Outline of thesis

This thesis is organized as follows. First, we give an overview of correlated electron systems,
including the origin of electron correlations, crystal field splitting and band gaps of corre-
lated insulators in Chapter 2. Next, we discuss the origin of inter-atomic magnetic exchange
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interactions in insulators, magnetic ground states on the triangular lattice, and mechanisms
of spin-induced ferroelectricity in Chapter 3. In Chapter 4, we discuss the techniques used
in this thesis, including X-ray absorption spectroscopy (XAS), resonant elastic and inelastic
X-ray scattering (REXS/RIXS), and optical techniques including Raman spectroscopy and
magneto-optical spectroscopy. Chapters 5-7 are focused on the magnetic ground state prop-
erties of NiI2, including the optical investigation of NiI2 to the single layer limit (Chapter
5), high-pressure tuning of the ground state in bulk and few-layer NiI2 probed with optical
spectroscopy and structural diffraction (Chapter 6) and finally the direct measurement of
the magnetic order in bulk and mesoscale thickness flakes in NiI2 using REXS in Chapter
7. In Chapter 8, we report RIXS measurements on the nickel dihalides, establishing the
origin of excitons and identifying their ligand mediated delocalization. Finally, we study the
origin of nematicity in the IBSC FeSe in Chapter 9 using X-ray Linear Dichroism (XLD),
X-ray diffraction and transport anisotropy as a function of uniaxial strain. We conclude and
provide a future outlook in Chapter 10.
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Chapter 2

Electronic Structure of Strongly
Correlated Systems

Each material of focus in this thesis may be considered a correlated electron system. Elec-
tronic correlations arise from the localized d-orbitals in transition-metal compounds. On one
hand, strong electronic interactions are crucial to explain the nature of the band gaps and
emergence of local magnetic moments in these systems. Furthermore, the relevant physics
determines the interatomic magnetic exchange interactions leading to long-range magnetic
order. Finally, multielectronic correlations and crystal field interactions are essential to de-
scribe the excited states of these systems which may be observed in optical measurements.
The goal of this section is to give an overview of the main interactions for correlated d elec-
tron systems, including intra-atomic electronic correlations, crystal field, spin orbit coupling,
and the nature of correlated band gaps.

The theory of atomic/molecular physics reviewed here plays a dual role for the content of
this thesis. On one hand, atomic physics is the foundation of core-level X-ray spectroscopy,
a fundamental experimental technique we utilize in the following chapters. Secondly, the
electronic ground states and localized excitations of correlated insulators, e.g. Frenkel-type
excitons, are best described from a local cluster perspective including the full Coulomb
interactions and multielectronic configurations at the transition metal site, for which the
starting point is essentially atomic physics. Several of the examples of this chapter are
tailored toward deriving the multiplet excitations of Ni2+ compounds discussed in following
chapters.

This section is drawn from Ref. [109] for the electronic structure of atoms, Refs. [15, 60,
110] for crystal field and spin-orbit coupling effects, and the treatment in Refs. [15, 111] for
the electronic structure of Mott-Hubbard and charge-transfer insulators.
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2.1 Electron-electron interactions in free atoms

The origin of electronic interactions in free atoms is closely related to the indistinguishability
of electrons and the Pauli exclusion principle. We consider the Hamiltonian of a free atom
neglecting spin orbit coupling,

H = − h̄2

2m

∑
i

∇2
i −

∑
i

e2Z

ri
+ e2

∑
i>j

1

rij
:= H0 + V +Hee (2.1)

For atomic number Z, electron charge |e|, ri = |ri| and rij = |ri − rj|. We consider the
one-electron problem with Hee = 0 solved, with hydrogenic single-particle spin-orbital wave-
function solutions

|n, l,ml, s,ms⟩ = Rn,l(r) Y
ml
l (ϑ, φ) σms

where Rn,l are the radial wavefunctions and Y ml
l are the spherical harmonics. A basis for

multielectron atoms are the product wavefunctions, such as,

Ψ =
∏
i

ψi(ri)

where i represents a given set of full quantum numbers |n, l,ml,ms⟩. However, by Pauli’s
exclusion principle, the overall wavefunction must be antisymmetric with respect to inter-
change of any two electrons. This can be achieved by recasting the product wavefunctions
into Slater determinants, which for two electrons in orthonormalized form is,

Ψ = (2!)−1/2

∣∣∣∣ψ1(r1) ψ1(r2)

ψ2(r1) ψ2(r2)

∣∣∣∣ = 1√
2
(ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)) (2.2)

Thus, if the spin-orbitals ψ1/ψ2 are the same, then the overall wavefunction is zero. An
important consequence of Pauli’s exclusion principle is a partial positional correlation of
electrons with the same spin. Electrons of the same spin on average must occupy different
orbitals and therefore, on average, are positionally anticorrelated compared to electrons of
opposite spin. When accounting for this effect with the electron-electron interaction Hee, this
describes the stability of spin triplet vs. singlet multielectronic configurations (multiplets).

In practice, the spin-orbital wavefunctions are not of the form |n, l,ml,ms⟩ for multi-
electronic systems, but rather one recouples the angular momentum into a total angular
momentum basis before constructing an antisymmetric wavefunction. This gives multi-
electronic states of definite total J or, in the absence of spin orbit coupling, total J/L/S
separately which diagonalize H with Hee included. In the latter situation, called LS or
Russell-Saunders coupling, the recoupled states are labeled by term symbols 2S+1LJ . As an
example, for a simple configuration of inequivalent electrons 1s12s1, one may consider the
multielectronic spin singlet and triplet terms 1S and 3S, respectively.

We first consider the matrix elements with the Coulomb interaction for the 1S and 3S
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states of the 1s12s1 configuration, ⟨1/3S|Hee|1/3S⟩. It can be shown that,

⟨1S|Hee|1S⟩ = ⟨(1s)(2s)|Hee|(1s)(2s)⟩+ ⟨(1s)(2s)|Hee|(2s)(1s)⟩ := F 0(1s, 2s) +G0(1s, 2s)

⟨3S|Hee|3S⟩ = ⟨(1s)(2s)|Hee|(1s)(2s)⟩ − ⟨(1s)(2s)|Hee|(2s)(1s)⟩ := F 0(1s, 2s)−G0(1s, 2s)

where |ij⟩ = |ϕ(r1)ϕ(r2)⟩ are ordered for the spatial variables of the two electrons, as short-
hand. The angular integrals in this case are trivial, while in the general case the radial
integrals require numerical calculation. Namely, the triplet term is relatively stabilized by
−2G0(1s, 2s) which is the (spherically symmetric) Coulomb exchange integral and corre-
sponds to an exchange of the two electrons within the two orbital states 1s/2s. Meanwhile,
F 0(1s, 2s) is the (spherically symmetric) direct integral. For higher momentum states, there
are additional multipolar terms for the exchange interaction termed the direct and exchange
Slater integrals, which are defined from the radial integrals,

F k(i, j) =

∫ ∞

0

∫ ∞

0

2rk<
rk+1
>

∣∣Ri(r1)
∣∣2∣∣Rj(r2)

∣∣2dr1dr2 (2.3)

Gk(i, j) =

∫ ∞

0

∫ ∞

0

2rk<
rk+1
>

R∗
i (r1)R

∗
j (r2)Rj(r1)Ri(r2)dr1dr2 (2.4)

where indices i include quantum numbers ni and li for the appropriate radial functions, and
r> (r<) refers to the greater (lesser) of r1/r2. For equivalent electrons F k(i, j) = Gk(i, j)

by definition. The radial functions and values of the Slater integrals need to be evaluated
numerically, typically with Hartree-Fock methods, but are useful to parameterize the energy
of different multiplets. The maximum order for the Slater integrals for angular momenta
li/lj is k = 0, 2, ..., 2×min(li, lj) for F k and k = |li − lj|, |li − lj|+ 2, ..., li + lj for Gk, which
are restricted by the angular integrals of the corresponding matrix elements with Hee.

Here, we are primarily concerned with equivalent electrons in partially filled shells dN

for 1 ≤ N ≤ 9. We take as a working example the case of d8 which is the most relevant for
the case of Ni2+ ions considered in this thesis (Chapter 8). In the atomic limit, the possible
multielectronic terms range from L = 0, 1, 2, 3, 4 and S = 0, 1, yielding 1S, 3S, 1P , 3P , 1D,
3D, 1F , 3F , 1G, 3G. However, not all of these terms are consistent with Pauli principle and
the requirement for an antisymmetrized wavefunction forbids states with L + S = 2n for
n ∈ Z. Thus, the allowed LS terms for d8 are,

1S, 3P, 1D, 3F, 1G

Wavefunctions for these terms may be derived by construction using Clebsch-Gordon sum-
mations over the two-electron product wavefunctions to transform to a basis |L, S, J,MJ⟩,
which we do not elaborate here. Importantly, the energies of the d8 multiplet terms can be
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easily calculated by the following relation,

⟨ψJ,MJ

L,S |Hee|ψJ,MJ

L,S ⟩ =
∑
k

[
fkF

k(i, j) + gkG
k(i, j)

]
(2.5)

valid for two-electron wavefunctions in LS coupling ψJ,MJ

L,S , where the coefficients fk/gk are
given by,

fk = (−1)L(2li + 1)(2lj + 1)

(
li k li
0 0 0

)(
lj k lj
0 0 0

){
li lj L

lj li k

}
gk = (−1)S(2li + 1)(2lj + 1)

(
li k lj
0 0 0

)2{
li lj L

li lj k

}
where (...)/{...} are the Wigner 3-j/6-j symbols. Substituting li = lj = 0 and S = 0/1 for
the example of 1S/3S splitting reproduces the results from above. For the d8 configuration,
the ground and first excited state configurations and their energies in terms of F k are,

E(3F ) = F 0(dd)− 8

49
F 2(dd)− 1

49
F 4(dd)

E(1D) = F 0(dd)− 3

49
F 2(dd) +

1

441
F 4(dd)

Note that the ground state 3F term is the one predicted from the empirical Hund’s rules.
That is, the ground state is the term of highest spin (S = 1) and among those (3P/3F ), the
one with the highest L is the ground state.

Towards the present discussion, it is also useful to calculate the configuration-average
energy of the d levels, which can be calculated by summing Eq. 2.5 over all possible terms,

Eave(dd) = F 0(dd)− 2

63
F 2(dd)− 2

63
F 4(dd) (2.6)

We note that this is a general relation for d shells (not just d8), and the F k(dd) parameters
will depend on n. Other important configurations are of the type 2p53dN+1, which are
the intermediate states of 2p → 3d core hole excitation by resonant X-rays (Chapter 4).
Therefore, we also report the configuration average energy,

Eave(pd) = F 0(pd)− 1

15
G1(pd)− 1

70
G3(pd) (2.7)

These are important quantities, as they define the central energy of the different respective
configurations, which serve as the definitions for the on-site Coulomb energies Udd = Eave(dd)

and Upd = Eave(pd). These quantities enter into matrices for configuration interactions, as
well as estimates of on-site U values in the ground states.
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Figure 2.1: Real projections of the d orbitals of t2g and eg symmetry for Oh (top) and Td
(bottom) coordinations, with single-particle energy diagrams for each configuration.

2.2 Crystal field

Having discussed the origin of multielectronic interactions and multiplet splitting in the
atomic limit, we now discuss how interactions with other atoms of the crystal effect the
electronic structure.

For this discussion, we will consider a common situation involving a 3d transition metal
forming a crystal with surrounding ligands (e.g. chalcogen, halogen, pnictogen, etc.) which
bond to the 3d states through valence p-orbitals. For the d-orbital set with angular mo-
mentum l = 2, there are total of 5 orbital states. In the free atom, the angular part of
the electronic wavefunctions are typically represented by the spherical harmonics, consistent
with the spherical symmetry of the atomic site, or as Y m

l (ϑ, φ). When atoms form crystals,
the symmetry of the local electric environment is reduced.

The symmetry of the electrostatic environment of the transition metal ion depends on the
local arrangement of atoms to which it is bonded, which is determined by the coordination
number and the point group symmetry of the crystal. The high symmetry configurations
typically encountered are octahedral (point group Oh) and tetrahedral (point group Td), with
ligand coordinations of 6 and 4, respectively, shown in Fig. 2.1. These are the situations
for NiI2 and FeSe, respectively, as discussed in subsequent chapters. The important effect of
these interactions with the ligands is a breaking of degeneracy of the d orbital levels, which
correspondingly changes the many-body ground state.

In Oh and Td symmetry, the d-orbitals are split into two sets named t2g and eg. These
labels refer to rotational symmetry properties in the Oh/Td point groups, as can be looked up
in character tables [112]. They have degeneracy of 3 and 2, respectively. Most commonly, the
eg and t2g orbitals are expressed in terms of cubic harmonics, which are real projections of the
spherical harmonics with the correct rotational symmetry properties for Oh/Td symmetry.
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They are, respectively:

|3d3z2−r2⟩ = Y 0
2 (2.8)

|3dx2−y2⟩ =
1√
2

(
Y 2
2 + Y −2

2

)
(2.9)

|3dxy⟩ =
−i√
2

(
Y 2
2 − Y −2

2

)
(2.10)

|3dxz⟩ =
−1√
2

(
Y 1
2 − Y −1

2

)
(2.11)

|3dyz⟩ =
i√
2

(
Y 1
2 + Y −1

2

)
(2.12)

Within this cubic harmonic representation, the splitting of the single-particle 3d orbitals
in Oh symmetry is intuitive. The eg doublet {|3d3z2−r2⟩, |3dx2−y2⟩} has lobes that point
towards the surrounding ligands, while the t2g triplet {|3dxy⟩, |3dxz⟩, |3dyz⟩} has lobes that
point towards the interstitial regions between the ligands (Fig. 2.1). Thus, the latter ex-
perience less direct ionic repulsion and are lower in energy. In Oh symmetry, the energetic
splitting is defined as E(eg)−E(t2g) := 10Dq > 0, with eg orbitals at higher energy1. 10Dq
is typically around 1-2 eV, depending on the transition-metal and the ligand states. For
tetrahedral coordination, the energetic sequence is reversed with E(t2g) > E(eg), with a
splitting of 6Dq.

Mathematically, these functions diagonalize the crystal field Hamiltonian, HCF. For more
complex symmetry, it is useful to express the crystal field as a potential expanded in spherical
tensors, e.g. functions with the same angular momentum transformation properties of the
spherical harmonics. The orbital wavefunctions in reduced symmetry diagonalizing HCF are
far less intuitive compared to Oh symmetry, and must be determined numerically. One may
expand

HCF =
∑
k,q

Aq
kC

q
k (2.13)

where Aq
k are coefficients and Cq

k =
√

4π
2k+1

Y q
k are renormalized spherical harmonics. The

tensor acts on the orbital part of the wavefunction, and considering a basis of d orbitals
(l = 2), the maximal order is k = 4 for Cq

k . Restrictions on the expansion coefficients are
determined by applying the symmetry elements of the point group P , such that g ◦HCF =

HCF for all g ∈ P . The result for Oh symmetry is

HCF(Oh) = α

[
C0

4 +

√
5

14

(
C4

4 + C−4
4

)]
(2.14)

In general, α should be a function of the radial coordinate, but in practice this is ignored
1This terminology is mainly for historical reasons, based on formulae from early point charge models. In

real materials, point charge models are rarely accurate estimations even for relatively simple materials.
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and α may be treated as an empirical parameter. We can connect this to the energy splitting
(10Dq) of the eg/t2g states by checking the matrix elements, e.g.:

⟨dx2−y2|HCF(Oh)|dx2−y2⟩ =
11α

42
(2.15)

⟨dxy|HCF(Oh)|dxy⟩ =
−3α

14
(2.16)

which are easily calculated from the Wigner-Eckart theorem and from which we may deduce
α = 21

10
∗ 10Dq. The result for D3d symmetry on a basis of d orbitals, relevant for trigonally-

distorted octahedral coordinations is,

HCF(D3d) = αC0
2 + β

(
C3

3 − C−3
3

)
+ γC0

4 + δ
(
C3

4 + C−3
4

)
(2.17)

valid for a quantization axis along the (111) direction with 3-fold rotational symmetry of the
local octahedron, with α, β, γ, δ being independent parameters. This crystal field potential
is relevant for the R3̄m lattice symmetry of NiI2, which we consider in Chapter 8. Such
trigonal crystal field distortions are important for magnetic anisotropy (Chapter 3). Param-
eterizations in terms of orbital energy levels and splittings can be easily built as desired by
considering the analogs to matrix elements for Oh symmetry above, keeping in mind the
definition of the quantization axis used to derive the symmetrized potential (typically, the
axis of highest rotational symmetry).

The successful part of crystal field theory is in modeling the local symmetry of the
potential properly. The crystal field potential has a symmetry that aligns with the site
symmetry point group of the atom of interest. This must be a subgroup of the point group
of the material. It is common to discuss the local atomic structure in terms of “approximate”
octahedral or tetrahedral symmetry as a first-order approximation, however lower-symmetry
distortions are expected if predicted by the site group symmetry, which can be determined
by crystallography. The energy range of these lower-symmetry crystal field contributions can
be on the same order (or larger) than perturbation from spin-orbit coupling in 3d transition
metal compounds.

Many efforts to justify different quantitative interpretations of the coefficients Aq
k and mi-

croscopic origin of the potential HCF have been put forward, including purely electrostatic
and covalency models, but none are fully quantitative. Good estimations for the combina-
tion of these effects can be derived from maximally-localized Wannier functions in DFT,
which capture well the bond covalency [113]. In effect, the expansion coefficients are to be
understood as symmetry-restricted parameters that are fit to experimental data. Through
the systematic study of many transition-metal and rare-earth complexes, empirical trends
in the values of these parameters have been established, referred to as the spectrochemical
series [60].

The most critical part is that adding the crystal field Hamiltonian to the multielectron
Hamiltonian considered in the previous section changes the wavefunction of the many-body
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Figure 2.2: Multiplet splitting in the strong and weak field limit for the d8 configuration in
Oh symmetry crystal field.

ground state. We will consider our working example of d8 configurations and restrict to Oh

symmetry. The symmetry of the orbital wavefunction changes to reflect rotational symmetry
properties of the crystal field. To understand how, one can determine the character of the
angular momentum state in the SO(3) group for the free atom and decompose it into the
irreducible representations of the site-symmetry group of the transition metal in the crystal.
Looking at the ground state term 3F for d8, one finds that the F angular momentum term
splits to T2, T1, A2 irreps. of Oh. Thus, provided that the underlying single-electron momenta
l = 2 have even parity, we will have a splitting of the ground state into three triplets,
3A2g/3T2g/3T1g.

Depending on the strength of the crystal field relative to the multiplet (electron inter-
action) effects, the wavefunctions will interpolate between (i) the weak field limit where LS
coupling holds and crystal fields are a perturbation and (ii) the strong field limit, where the
wavefunctions are better approximated in a basis of orbital occupations (e.g. (t2g)

n(eg)
m).

In practice, one works in an intermediate case and the orbital occupations are non-integral
due to multiplet or spin-orbit coupling effects, which mix different terms. Here we consider
the strong field limit to discuss some key interactions.

The ground and first excited state of a d8 ion in an octahedral crystal field are the 3A2g and
the 3T2g terms, respectively. As we saw, in the weak field limit, these states are derived from
the same 3F ground state term, while in the strong field limit, they are respectively stabilized
from the (t2g)

6(eg)
2 and (t2g)

5(eg)
3 orbital configurations (Fig. 2.2). Thus, intuitively, the

3A2g term is the ground state because it minimizes the crystal field energy by filling the
lower energy t2g state completely, resulting in a half filled eg state. One component of the
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respective wavefunctions written in the orbital basis are,

Ψ(3A2g) = |(x2 − y2)+(3z2 − r2)+|, Ψ(3T2g) = |(xy)+(3z2 − r2)+| (2.18)

where superscripts label ms ∈ {+,−} and | · · · | is shorthand for antisymmetrization in Eq.
2.2. These wavefunctions are checked based on their transformation properties under Oh

symmetry operations and comparison to character tables. The contribution of the crystal
field energy to these terms with respect to the center of the configuration is −12Dq/−2Dq

(each eg hole has energy of −6Dq and each t2g hole has energy of +4Dq). Meanwhile, it can
be shown that the interaction energy for both terms is the same,

⟨Ψ|Hee|Ψ⟩ = F 0(dd)− 8F 2(dd)− 9F 4(dd)

Thus, the energy difference of the two terms is only determined by the octahedral energy
splitting, 10Dq. Excitations of the form 3A2g → 3T2g can be locally excited and measured by
photon probes. Such an excitation is referred to as a (spin-allowed) d→ d, or ligand/crystal
field, transition. The energies of these excitations determine the optical absorption properties
of transition metal complexes and also appear as low-energy excitations of insulating solid
state materials with large band gaps. In our case, we will also refer to this special case of
transition as an inter-configurational multiplet, referring to a transition (either spin allowed
or spin forbidden) between the t62ge2g and t52ge3g configurations.

Additional important multiplets considered here are the intra-configurational multiplets
which preserve the t62ge2g ground state filling. To figure out which terms are allowed, we can
consider the decomposition of two eg holes into irreps. of Oh,

Eg × Eg → A2g + A1g + Eg

While the A2g is a triplet term (the ground state), the Eg/A1g are singlet terms which derive
from the 1D/1G LS coupled terms in the weak field limit, respectively. We may write down
their wavefunctions using the strong field basis as,

Ψ(1A1g) =
1√
2

(
|(3z2 − r2)+(3z2 − r2)−|+ |(x2 − y2)+(x2 − y2)−|

)
(2.19)

Ψ(1Eg) =
1√
2

(
|(3z2 − r2)+(3z2 − r2)−| − |(x2 − y2)+(x2 − y2)−|

)
(2.20)

and compute their energies with the Coulomb interaction Hamiltonian, parameterized by
Slater integrals,

⟨Ψ(1A1g)|Hee|Ψ(1A1g)⟩ = F 0(dd) +
8

49
F 2(dd) +

51

441
F 4(dd)

⟨Ψ(1Eg)|Hee|Ψ(1Eg)⟩ = F 0(dd) +
21

441
F 4(dd)
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Critically, since the electron filling is the same, the 3A2g/1A1g/1Eg multiplets have the same
contribution from the crystal field and are stabilized by a common factor of −12Dq, and the
difference in the energy within this set is given purely by the multiplet effects. Excitations
of the type 3A2g → 1Eg/

1A1g can also occur optically, but they are further reduced in cross
section because they are spin-forbidden (triplet to singlet excitations). We discuss optical
selection rules in Chapter 3 and provide an extended overview of the manifestation of these
spin-forbidden excitations in experiments in Chapter 8.

2.3 Spin-orbit coupling

Spin-orbit coupling (SOC) is critical for rare-earth systems, but is typically a perturbation
for the spectra of light transition metal compounds, which we consider here. This marks
the distinction between LS, or Russell-Saunders, coupling and jj coupling. In the former,
many-body states may be labeled with L,S as good quantum numbers, whereas only total J
remains after including SOC. In the jj coupling scheme, it is more convenient to first couple
each electron in a basis of total j for each electron, then couple the single-electron j into a
multielectron total J state.

The spin-orbit coupling Hamiltonian is,

HSO =
∑
i

ζili · si (2.21)

which describes a coupling between single electron orbital (li) and spin (si) moments, where
ζi is the SOC magnitude. SOC originates as a relativistic effect and it is well known that the
magnitude of SOC scales with atomic number Z (approximately Z4 for a hydrogenic model).
For 3d transition metals, ζi is O(10 meV), and may safely be treated as a perturbation to
LS or crystal-field coupled states. This contribution will split LS terms into substructure
based on total J (e.g. 3P → 3P0/

3P1/
3P2), and can mix components from different LS

terms with the same J . The effect of weak SOC is most important for solids with partially
filled t2g shells and Jahn-Teller active ions, where SOC on this order can compete with lower
symmetry crystal fields and impact the ground state. Higher energy multiplets will acquire
a fine-structure, which impacts the level structure as measured in optical absorption.

One situation of relevance for this thesis where SOC cannot be ignored is the core levels
which form the initial states for resonant X-ray spectroscopy (Chapter 4). These states
are at very large binding energy and experience much larger spin-orbit coupling than the
valence shell, since core-levels experience a higher unscreened effective nuclear charge, have
higher kinetic energy and thus are more relativistic. For specific relevance here, we consider
excitations of the type 2p63dn → 2p53dn+1, which define the principle L2,3 edges. Starting
with n = 9, the final state has a closed d shell and we may consider only a single hole in the
2p levels. This can be treated very simply by coupling the 2p levels into a total J basis. Only
J = 1

2
, 3
2

are possible, leading to a basis 2pmJ

1/2 and 2pmJ

3/2. Looking to the matrix elements
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with HSO, we have2

⟨2p1/2|HSO|2p1/2⟩ = −ζ2p, ⟨2p3/2|HSO|2p3/2⟩ =
ζ2p
2

(2.22)

For 3d transition metals, the value of the core level SOC ζ2p is O(10 eV), which defines the
L2/3 edge splitting, discussed more below.

For the example of n = 9, the states can be effectively treated on a single particle basis.
However, in a more general case, the intermediate state 2p53dn+1 state will not have a closed
d shell. To describe the structure of L2/3 edges, it is critical to include multiplet coupling
between the 2p hole with the valence 3d shell, parametrized by the Slater exchange integrals
G1(pd)/G3(pd). The intermediate state multiplet splitting in the 3d transtion metals is lower
than the core-hole spin orbit coupling, but can be on the same order of magnitude. This
multiplet coupling of the 2p core hole and the valence 3d shell dominates the absorption
structure, leading to a major failure of single-electron descriptions for L2,3-edge absorption
spectra [110].

Finally, we note that SOC is critical for the magnetic anisotropy (single-ion and two-site
anisotropy) and theory of spin-induced ferroelectricity, discussed in Chapter 3, and is thus
critical for the multiferroic properties of NiI2. While SOC of the transition metal site is
an important mechanism for t2g systems (early transition metals), eg orbital systems do no
have a first order effect of SOC. This is because the isolated t2g shell can be mapped to the
properties of an effective l̃ = 1 orbital angular momentum, and the splitting of the d orbital
follows exactly the case of an l = 1 (p shell) as derived above, occurring at first order in ζ.
Meanwhile, the effect of ζ of the eg space occurs only at second order. However, significant
SOC effects can also be introduced through the ligand states, which bond primarily with p

orbitals. In the case of NiI2 and other transition-metal halides, the SOC of the heavy ligand
sites (e.g. Br, I) are the primary origin of SOC-induced phenomena.

2.4 Electronic structure of correlated insulators

We now consider how the effect of correlated d orbitals can be integrated into the description
of the electronic structure of solid state materials. For describing band structure of relatively
localized systems, one typically starts with a tight binding model, considering a local atomic
basis where electrons can hop between different sites i→ j, which can be written as,

Htb = −
∑
i ̸=j,σ

tijc
†
j,σci,σ (2.23)

where tij is the hopping parameter between sites i, j, c†i/ci are the creation/annihilation
operators at site i and σ is the spin index. The hopping parameter is usually defined by the

2Wavefunctions can be easily constructed with a Clebsch-Gordon summation on a basis of l = 1, s = 1/2.

41



distance (e.g. first/second neighbors characteristic of different index pairs ⟨i, j⟩) and is in
general orbital dependent.

It is well known that for an odd number of electrons per site within the tight binding
model, the system is always metallic since there will be a band that is not fully occupied.
For an even number of electrons, uncorrelated materials can be insulators, which are referred
to as band insulators. However, many strongly-correlated materials, regardless of electron
filling, are observed to be insulators. What is missing in the description of the bare tight-
binding model is the tendency of electrons to become localized due to the energetic cost of
electron addition to an occupied site of correlated electronic levels. That is, the processes of
electron transfer between two sites, dni dnj → dn−1

i dn+1
j will carry an energetic cost, which is

defined as U(= Udd). This can be incorporated by including an additional term proportional
to the site occupations,

H = Htb + U
∑
i

ni,↑ni,↓ (2.24)

where n are number operators. This Hamiltonian represents the Hubbard model. For a
half-filled band, there will be a cross-over from metallic to insulating behavior, determined
by the ratio U/t. For U/t ≫ 1, the electrons will be effectively localized to a single site
and double occupancy will be quenched. In the opposite limit, the bandwidth provided by
sufficiently large t is sufficient to overcome this energetic cost and metallicity is restored in
the limit U/t≪ 1. This is the simplest model to describe Mott insulators, which are defined
by insulating conductivity gap directly due to the presence of correlated electrons. The Mott
insulating ground state is characterized by strong antiferromagnetic spin exchange between
neighboring sites, which will be discussed in the next chapter.

Charge delocalization does not only occur by hopping directly between d levels in the
process described above. There also exist ligand atoms, which hybridize with the d levels,
allowing another mechanism for delocalization. The typical situation is (a) correlated, small
bandwidth d levels, (b) itinerant bands of ligand p states and (c) ligand-p to metal-d charge
transfer/hybridization processes. The nature of the lowest energy charge excitations depends
on the relative energy of direct hopping processes of the type dndn → dn−1dn+1, set by a
Hubbard-like U term, and those of the type dnp6 → dn+1p5, which is set by the charge-
transfer energy ∆. Charge transfer between metal and ligand sites are critical to give a proper
account of the effects of covalency, and the lowest energy charge excitations determine the
magnitude and mechanism of the leading-order magnetic exchange interactions, the crystal
field magnitude, and also the energy scale of multiplet effects in the solid state as we discuss
extensively in Chapter 8.

We first detail the definition of the energy gap and the parameters ∆ and Udd. For Udd one
can take average correlation energy between d electrons, which is given by the configuration
average Coulomb energy on the d-shell derived above (F 0 − 2/63(F 2 + F 4)). Note that the
Slater integrals are heavily screened in the solid state compared to bare atomic values, with
the reduction being strongest for the lowest order multipoles (e.g. F 0) and much weaker for
higher multipoles (F 2, F 4) [110, 113]. The average correlation energy for a dn configuration
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Figure 2.3: Molecular orbitals in Oh symmetry for dx2−y2 (left) and dxy (right) orbitals.
Indicated are the hopping integrals tσpd and tπpd. Linear combinations of the four px/y orbitals
constitute the symmetrized ligand orbitals Lx2−y2 and Lxy, respectively.

is (Udd/2)(n)(n − 1). Further, one defines the average single particle energy levels of the d
electrons ϵd and of the ligand states ϵp. In the single particle limit, the charge transfer gap
is exactly what one expects, ∆ = ϵd − ϵp. However, in the general case one has to include
the correlation effects. The interplay of d-shell correlations, charge transfer energy and
on-site (single-particle) energies are defined by the energy between different configurations,
denoted dnLm where L refers to a ligand hole states. By convention, the energy difference
dnL0 → dn+1L1 is ∆, and the next configuration dn+2L2 has an additional excitation energy
of ∆ + Udd. In this case, one can derive that ∆(dn) = ϵd − ϵp + nUdd. Note that it is
important to include full multiplet coupling and configuration interactions within and among
the configurations dn/dnL1/dnL2/etc. The current treatment ignores the possible effects of
correlations on the ligand p orbitals (e.g. F k(Lp, Lp)), instead treating them as essentially
fully covalent single particle bands, as well as the Coulomb interactions between the metal
d and ligand p states (e.g. F k(Lp, 3d)/Gk(Lp, 3d))

The relative energy of Udd and ∆ sets the dominant low-energy delocalization processes.
For simplicity we consider the case where the hopping is small t≪ Udd,∆. In the case that
∆ ≫ Udd, the energy gap is determined in terms of the d→ d hopping, through parameters
tdd and Udd as in the Hubbard model and ligand-to-metal charge transfer is quenched. In
the opposite limit, one may still observe a finite band gap, which is instead proportional
to ∆ with hopping amplitude given by tpd. The former is called Mott-Hubbard insulator,
while the latter is termed a charge transfer insulator. The general classification was first
developed by Zaanen, Sawatsky and Allen and is known as the ZSA scheme [111]. As a
general trend, early transition metal compounds in the common ionic valences are closer to
the Mott-Hubbard regime (Ti3+, V3+, Cr3+) and late transition metal compounds are closer
to charge transfer insulators (Ni2+, Cu2+). The charge transfer gap also depends strongly
on the covalency/electronegativity of the ligands and generally decreases as one goes down
the periodic table.
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Finally, we discuss the magnitude of the hopping terms in charge transfer insulators.
There are two high-symmetry configurations where the two-site overlap integral between
metal d and ligand p orbitals are non-zero. These are depicted in Fig. 2.3 for the case of
the dx2−y2 and dxy orbitals in the xy plane. In the first case, the dx2−y2 will have non-zero
overlap with px/py orbitals on surrounding ligand sites with lobes that point toward each
other, oriented along the nearest neighbor M -L bond (M metal, L, ligand). This type of d-p
overlap is called σ-bonding and is given a hopping integral tσpd. In the other case, the relevant
ligand orbitals with non-zero overlap with the dxy state instead have lobes perpendicular to
the M -L bond, called π-bonding and with transfer integral tπpd. For a fixed M -L distance,
tσpd > tπpd (with a typical ratio tσpd/tπpd ∼ 1.5-2.0). These hopping integrals can be parametrized
by the Slater-Koster parameters.

The eg/t2g orbitals in Oh symmetry are precisely those which hybridize with the ligand p
states through σ/π bonding, respectively. From this, the total basis of surrounding 3×6 = 18

ligand p orbitals derived from the 6 ligand sites constituting the ML6 octahedral clusters can
be restricted only to those linear combinations which match the symmetry of the d orbital
states. Thus, for each d orbital (e.g. x2−y2) there will be a corresponding linear combination
of surrounding p orbitals transforming by the same symmetry (denoted Lx2−y2), along with
a well defined transfer integral between them (tσpd). These linear combinations are known as
molecular orbitals, and are useful for local cluster calculations with full Coulomb interactions,
with the inclusion of configuration interactions of different occupation configurations of metal
d and ligand p orbitals. Such a model is known as charge transfer multiplet theory [110, 113],
which is used extensively in Chapter 8 to describe the excitation spectra of the nickel dihalide
charge transfer insulators. This simplification is crucial because exact diagonalization of the
fully interacting cluster becomes computationally unfeasible for large basis sets.
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Chapter 3

Magnetic Order and Spin-Induced
Ferroelectricity in Triangular-Lattice
Systems

In this chapter, we review the origin of interatomic spin exchange interactions and the re-
sulting magnetic ground states for the case of charge-transfer insulators, with a specific focus
to triangular lattice systems. We also review the mechanisms of spin-induced ferroelectricity
for spin-spiral systems.

3.1 Inter-atomic spin exchange

For correlated insulators, the interaction-driven localization of the d electrons leads to the
presence of local atomic-like orbital states with a spin-orbital ground state determined by
the multiplet coupling for the respective electronic configuration. This is determined by the
intra-atomic Hund’s exchange JH , which can be regarded as an effective (ferromagnetic)
spin-spin interaction for electrons on the same atomic site. Thus, electrons on the same
atomic site with the same spin will have a lower average correlation energy (spherically
averaged Udd − JH) compared to electrons of opposite spin (Udd) [114, 115]. Ground states
with maximal total spin are relatively stabilized by the Hund’s coupling. Note that this
terminology is only an approximation, and the full multiplet coupling with antisymmetrized
wavefunctions needs to be taken into account [109].

In the case of Ni2+ ions in Oh crystal field, we found that the ground state is the 3A2g

term, with S = 1 and no orbital moment. Thus, there is a local spin degree of freedom, but
in the free atom in the absence of external spin interactions or an external magnetic field,
the different spin projections Sz ∈ {−1, 0, 1} remain degenerate. In solids, the degeneracy is
broken by long-range spin exchange interactions with other atoms in the crystal, which we
refer to as inter-atomic spin exchange J . This is typically written in terms of the Heisenberg
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Hamiltonian,
H = −

∑
i,j

JijSi · Sj (3.1)

where here i, j refer to different transition metal sites with interacting pairs of local moments
Si/Sj, respectively. With this sign convention, Jij < 0 corresponds to antiferromagnetic
exchange.

The actual origin of inter-atomic and intra-atomic exchange in solid state materials are
quite different. For the latter, it is directly related to Pauli exclusion and the wavefunction
antisymmetrization, which stabilizes triplet pairing since there is a partial positional anti-
correlation for the required antisymmetric orbital state. This interaction does not directly
involve the spin degree of freedom, but results from the effect that symmetric/antisymmetric
spin coupling has on the associated orbital state, and the interactions themselves are directly
parameterized in the orbital degrees of freedom. In correlated insulators, the origin of inter-
atomic spin exchange is instead due to orbital overlap and spin-dependent, Pauli-restricted
hopping processes connecting the two sites and the spin degree of freedom is involved more
explicitly. In contrast to a Hund’s like exchange interaction, the sign of inter-atomic exchange
of this type can be either ferromagnetic (FM) or anti-ferromagnetic (AFM), depending on
details of the ground state electronic structure and the lattice geometry.

To solve to problem properly, one has to consider antisymmetrized wavefunctions on the
basis of two or three-sites, but general arguments can be made using perturbation theory
[15]. We first consider a situation of direct hopping between two half-filled d orbitals on
neighboring atoms. The transfer integral is given by tdd and in the insulating limit (Udd ≫
tdd) the ground state corresponds to a single electron on each site. We can represent the
minimal basis of ground state wavefunctions as | ↑, ↓⟩/| ↑, ↑⟩ referring to a single-electron spin
on each site, representing AFM and FM coupling, respectively. We consider these excitations
in the absence of hopping (t = 0) to have equal energies of E0 while the double occupied
states | ↑↓, 0⟩/|0, ↑↓⟩ have equal energies E0+Udd. Notably, hopping between the two sites are
permitted for the AFM configuration, but Pauli forbidden for the FM configuration. When
turning on finite coupling between the different sites, the energy of the AFM configuration
is stabilized by a factor of −2t2dd/Udd, as given from a second order perturbation.

This is the origin of an effective AFM exchange of J = −2t2dd/Udd as is the well known
result for the single-orbital Hubbard model. This involves a direct kinetic exchange between
two d orbitals. However, even for Mott-Hubbard insulators, where the lowest energy hopping
processes are of direct dd type, the hopping processes are typically mediated by intermediate
ligand states in a process known as superexchange due to long inter-metal distances [116,
117].1 We highlight some of the main examples of superexchange relevant for the present
cases below, which closely follows the treatment of Ref. [15].

1In 3d transition metals, direct dd exchange is more common for partially filled t2g systems, e.g. early
transition metals or high-spin states of Mn, Fe and Co. For eg systems (late transition metals), these are
closer to the charge-transfer insulator limit and magnetic interactions are almost solely due to superexchange
[15].
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We first consider the most simple case of a single-half filled x2−y2 orbital at neighboring
sites, which share common σ bonds with an intermediate ligand p orbital forming a linear
(180 deg.) bond (Fig. 3.1). In this case, there are two different types of hopping processes
resulting in the interchange of spins, both of which are only allowed with AFM alignment
on the two d orbitals. The first involves a process that transfers the spin of TM-site 1 to
the second TM-site from a two-step process through the common ligand p orbital. This
intermediate state has an energy of Udd, with the ligand interchange processes involving an
energy scale of ∆ and a hopping integral tpd. This leads to the first effective AFM exchange
term, J ∝ −2t4pd/(∆

2Udd). A second process is possible where the spin exchange is mediated
by an intermediate state involving one ligand electron being transferred to each TM-site, thus
having an intermediate state with two-charge transfer processes and a double occupancy of
ligand-holes. This state has energy 2∆ + Upp (where Upp is isotropic correlation energy for
the ligand p states). The overall exchange process through this intermediate state leads to
an effective J ∝ −4t4pd/(∆

2(2∆+Upp)). Note that both processes are only allowed for AFM
aligned TM sites. Thus, the perturbative estimate gives an overall AFM superexchange
interaction for two transition metal sites of,

J(180◦) ≃ −
2t4pd
∆2

(
1

Udd

+
2

2∆ + Upp

)
which is a similar results to the one considering direct dd overlap in the single-orbital Hubbard
model, although the processes mediating this exchange will depend on different energy scales
(e.g. metal-ligand hopping tpd and the charge-transfer energy ∆).

The superexchange model is also useful in describing the interactions for bond angles
different than 180◦. In particular, we show the expected FM exchange for 90◦ M-L-M bonds.
We consider the same situation of two half-filled eg orbitals at the TM sites, which form σ

bonds with separate (orthogonal) p orbitals at the same ligand site [Fig. 3.1]. If the spins at
the TM sites are AFM coupled, then a virtual hopping process can occur with an intermediate
state where both p orbitals are half-filled and with anti-parallel spins, corresponding to
an energy of 2∆ + Upp, as above. This gives a second-order correction of ∆E(AFM) ∼
−t4pd/(∆2(2∆ + Upp)) for the relative AFM alignment of d orbital spins. If the TM spins
are instead FM ordered, the same virtual hopping process occurs but the intermediate state
will have two parallel spins on the same ligand site, which are relatively stabilized by the
(ligand) Hund’s exchange Jp

H . Thus, the intermediate state has energy 2∆ + Upp − Jp
H , and

the energetic corrections for the FM state is ∆E(FM) ∼ −t4pd/(∆2(2∆+Upp − Jp
H)). Thus,

the FM state is more stable in this 90◦ geometry, with an effective total exchange interaction
(expanded for small Jp

H),

J(90◦) ≃
t4pd
∆2

Jp
H

(2∆ + Upp)2

The strength of this FM interaction, being mediated by an additional energy scale of Jp
H , is

typically weaker in magnitude compared to the direct AFM exchange in the linear M-L-M
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Figure 3.1: Common kinetic processes for interatomic spin exchange for a single half-filled
eg orbital.

geometry.
These results for J(180◦) and J(90◦) are two examples of the Goodenough-Kanamori rules

[118, 119], which are a set of semi-empirical rules for determining the sign and approximate
(relative) magnitude of the interatomic spin exchange determined from details of the electron
filling, dominant orbital hopping pathways, and the local bonding geometry. The cases we
have described here are specifically tailored towards the case of the half-filled eg orbitals of
octahedrally coordinated Ni2+ ions (3d8), which are used to discuss the exchange interactions
on the triangular lattice in the next section.

Before this, we discuss longer-range interactions involving two intermediate ligand states.
Such processes are critical for both vdW materials and for long-range exchange interactions in
frustrated magnets, such as the triangular lattice systems [41, 46, 120]. This is particularly
true for interlayer exchange interactions (across the vdW gap) in vdW magnets, as such
processes almost always involve two ligand orbitals. Such processes will be weak unless
there is significant hopping integrals tpd and/or small charge transfer gaps ∆, which is one
reason why the interlayer interactions in highly ionic vdW magnets are weak (beyond the
trivial reason of large interlayer separation). Solving the exchange on the full basis of TM
and ligand states explicitly, while possible, does not lead to simple closed form expressions
since they involve many different potential perturbative corrections at higher order. Instead,
one can note that in charge transfer insulators with small ∆, the electronic states have
contributions from ligand-hole configurations as discussed in Chapter 2. For a given ground
state wavefunction Ψ of an electronic configuration 3dn, one can then write the general
wavefunction as Ψ = α 3dn(Ψ) + β 3dn+1L(Ψ), where the ligand-hole configuration states
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3dn+1L are formed from the corresponding ligand-molecular orbitals.
With this representation, one can then express the superexchange directly from virtual

hopping processes between overlapping ligand orbitals based on the ligand-projected com-
ponent of the wavefunction, e.g. β3dn+1L(Ψ). For a simple linear overlap between the
neighboring ligand orbitals, such as the M-L-L-M linear bond in Fig. 3.1, the resulting
exchange would be the expected AFM with a similar form to the single-orbital Hubbard
model,

J ≃ −β2t2pp/Upp

where the new relevant hopping and correlation scales are tpp and Upp for the ligand-ligand
hopping integral and ligand on-site Coulomb repulsion, respectively. Note that the param-
eters tpd, ∆ and Udd are accounted for implicitly in the configuration mixing calculation
required to determine the coefficient β. As β increases, i.e. the proportion of self-doped
ligand holes L increases, the exchange interaction increases for exchange processes involving
two ligands.

Besides the ground state superexchange interactions, the energy scales and hopping pro-
cesses described here are also relevant for describing the propagation/dispersion of excited
electronic states [121–123]. For instance, if instead of the same ground state (multielectronic)
configuration at each site, photoexcitation could create a local orbital and/or spin excitation
Ψe which then interacts with the background of TM sites in the ground state Ψi. One can
then discuss not only an exchange of spins (related to interchange between sites i↔ j of the
spin projection ms), but also the exchange of the spin-orbital multielectronic configuration.
We discuss such a process leading to the momentum dependence of multiplet excitations in
charge transfer insulators, with a particular emphasis on the role of the ligand states and
the ligand-hole electronic configuration in Chapter 8.

3.2 Magnetic ground states of triangular-lattices

We now apply the above exchange interaction rules to the triangular-lattice geometry which
is relevant for many TM dihalide compounds [46]. The TM dihalides usual adopt either the
CdCl2 or CdI2 lattices with R3̄m or P 3̄m1 space groups, respectively 2. Each structure con-
sists of the same triangular lattice of octahedrally coordinated, edge-sharing transition metal
sites with a different interlayer stacking symmetry. Here, we focus on the R3̄m structure
relevant for the nickel dihalides (NiX2).

We begin by discussing the isotropic Heisenberg-type interactions within the triangular
lattice layer, so-called intralayer exchange interactions. These are depicted in Fig. 3.2. The
first nearest neighbors (NN) (J∥

1 ) correspond to M-L-M bonds of 90◦ due to the edge-sharing
geometry. Thus, eg-eg exchange interactions are dominant FM and J

∥
1 > 0 in the sign

convention of Eq. 3.1. The half-filled eg orbitals do not have significant direct dd overlap,
2Note that the fluorides of many of these compounds, e.g. (Mn, Fe, Co, Ni)F2, instead stabilize in the

three-dimensional rutile structures, while CuBr2 is layered but with a distinct quasi-1D monoclinic structure.
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Figure 3.2: Intralayer superexchange processes on the triangular lattice.

and this contribution is expected to be weak although direct t2g-t2g overlap in early TM
dihalides is expected to be important [15].

These first-NN interactions are the only ones involving a single-ligand state in the presently
considered lattice geometry, while all others proceed by at least two intermediate ligands.
Thus, for ionic systems, the FM intralayer exchange dominates, stabilizing FM order within
the layer. This is the case for NiCl2 [124], where further neighbor interactions are negligibly
weak [47]. The third-NN process involves M-L-L-M superexchange with an M-L-L angle of
approximately 135◦. Thus, σ-bonded np orbitals with the eg states have a strong tσpp overlap.
This leads to a relatively strong AFM exchange, but is scaled significantly by the metal-
ligand covalency and thus becomes significant compared to the single-ligand processes only
for large ligands (e.g. I, Br). Thus, J∥

3 < 0 and is strongly dependent on ligand [125].
To conclude the discussion of the interactions within the triangular lattice layers, we

discuss the second-NN interactions. Initial studies of these materials implicitly considered
that since these interactions have shorter inter-metallic distances compared to the third-
NN that they would be larger and thus more important to describe the ground states [41,
42]. However, many studies find that for d8 nickel compounds, these interactions are rather
weak [47, 125, 126]. This is likely due to competition between two exchange processes of
opposite sign and small magnitude, related to eg-eg (AFM) and t2g-eg (FM) exchange. The
former is small because the intermediate ligands are oriented perpendicular to their bond,
thus involving weaker π-type ligand-ligand overlap. The latter is small due to two effects.
First, the exchange from filled t2g orbitals to half-filled eg orbitals is FM and weak, as it
is an intermediate-state effect mediated by JH on the metal site [15]. Secondly, while the
two-ligand overlap involves significant σ-type overlap, the t2g covalency is smaller than the eg
states (tπpd < tσpd), thus suppressing further the superexchange magnitude. These competing
contributions leads to a net weakly FM interaction, J∥

2 > 0, and with |J∥
2 | ≪ |J∥

1 |, |J
∥
3 | for all

ligands (and at elevated pressures [126]).
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Figure 3.3: Interlayer superexchange processes in the R3̄m phase of transition-metal di-
halides.

Finally, we briefly discuss the interlayer exchange interactions. We consider the case of
R3̄m symmetry. The dominant exchange processes are the interlayer first- and second-NN
exchanges J⊥

1 and J⊥
2 , respectively. These are depicted in Fig. 3.3, where we have isolated a

single neighbor of each type and suppressed others for visual clarity. In the high symmetry
structure, the c/a ratio makes the inter-metal distances approximately the same as the J∥

2

and J
∥
3 interaction. Thus, if long-range intralayer exchanges are important, one expects

interlayer interactions to be on the same order of magnitude based on distance arguments
alone. Similar to these long-range intralayer interactions, these interlayer interactions are
both mediated by two-ligand superexchange processes.

Indeed, the processes determining J⊥
1 and J⊥

2 are nearly identical to those determining J∥
2

and J∥
3 , respectively, as can be seen by comparing Figs. 3.2 and 3.3. Therefore, J⊥

1 is nearly
negligble and weakly FM, while J⊥

2 is the dominant interlayer contribution and is strongly
AFM. One notable difference is the absence of intermediate metal atoms in the interlayer
case. This means that under perturbations like hydrostatic pressure, the c axis distance is
more easily reduced (higher compressibility) compared to the compression of the triangular
lattice layer. Thus, interlayer interactions are more susceptible to modification by pressure
[126] (see Chapter 6). Further, the relative alignment of the intermediate ligands will be
modified differently by local distortions such as a trigonal distortions of the ML6 octahedra.

We now discuss the ground states that are stabilized by these exchange interactions. We
consider only the intralayer exchange, while the effects of interlayer exchange are considered
more explicitly in Chapter 7. The problem has been analyzed in detail in Ref. [41] and
was commonly employed in the initial neutron scattering investigations of triangular lattice
systems [43, 127, 128]. The presence of multiple magnetic exchange interactions with different
signs results in magnetic frustration, in particular for J∥

1 and J∥
3 . These interactions act along
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Figure 3.4: Ground states of the triangular lattice with intralayer exchange.

the same real space direction, with opposite signs and the same order of magnitude. Thus,
for sufficiently large J∥

3/J
∥
1 , simple AFM and FM ground states within the plane are no longer

favored, and instead incommensurate magnetic ground states are stabilized to balance the
exchange energy.

The classical magnetic ground state for isotropic Heisenberg exchange can be determined
by writing the exchange energy versus the magnetic wavevector q [41], that is

Jn(q) =
∑
⟨i,j⟩n

Jne
−iq·rij

where ⟨i, j⟩n correspond to spin pairs separated by rij and interacting through exchange
interaction Jn (explicit forms forms for the main exchanges J∥

n(q) and J⊥
n (q) can be found in

Chapter 7). The wavevector q can then be determined by minimizing E(q) = −
∑

n Jn(q)S
2

and solving the system of equations ∂E(q)/∂qi = 0.
We plot the ground states considering J∥

1 -J
∥
2 -J

∥
3 in Fig. 3.4, where we set a ferromagnetic

J
∥
1 > 0 (relevant for the nickel dihalides). FM is the ground state when J

∥
1 is the dominant

exchange interaction (Fig. 3.4(b)). First looking at the limit of J∥
3 = 0, we find a transition

into an incommensurate spiral state for a critical value J
∥
2/J

∥
1 = −0.33 with wavevector

q = (h, 0) (IV: Spiral 2) in reciprocal lattice units (rlu) (Fig. 3.4(e)). This is the ground state
observed in NiI2 [42, 45], however since J∥

2 ≃ 0 in the nickel dihalides, a different mechanism
is required to justify this phase as we explore in Chapters 6 and 7. The magnitude of the
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incommensurate wavevector for the Spiral 2 state can be solved analytically and is given by

Spiral 2: h =
1

2
− 1

2π
cos−1

(
1

2

J
∥
1 + J

∥
2

J
∥
2 + 2J

∥
3

)

In the other limit for J∥
2 = 0, a transition to a distinct spiral state (II: Spiral 1) is stabilized

with q = (h, h) for J∥
3/J

∥
1 < −0.25. This is the spiral state realized in NiBr2 [38, 128]. One

can also extract an analytical expression for the wavevector,

Spiral 1: h =
1

2π
cos−1

(
1

4

[
1 +

√
1− 2J

∥
1/J

∥
3

])
where we suppress the dependence on J∥

2 for clarity [41, 42]. Finally, at larger values of |J∥
2 |

and |J∥
3 |, two commensurate states are possible. This includes a 120◦ state (III, Fig. 3.4

(d)) and a stripe-type antiferromagnetic state (V, Fig. 3.4(f)). Each of these ground states
have been observed experimentally for different transition metals, although experimentally,
incommensurate spin spiral phases appear to be the most common (see Refs. [129] and [46],
and references therein).

The magnetic states in Fig. 3.4 are shown with moments within the triangular lattice
plane. The isotropic Heisenberg model chooses a specific wavevector q, but does not provide
details on the specific spin texture, e.g. amplitude modulation vs possible spin spiral states
as we show above. The specific rotation plane/spin axis for different materials is determined
by the magnetic anisotropy. This has two primary forms, the single-ion anisotropy and the
two-ion anisotropy. These can be expressed through more general forms of the exchange
interactions, specifically:

H =
∑
i,j

Si · Jij · Sj +
∑
i

AiS
2
i

where Jij is the general exchange tensor and Ai are components of the single-ion anisotropy.
The single ion anisotropy tends to stabilize magnetic order along unique directions of the

local site environment, which is determined by the crystal field and spin-orbit coupling at the
transition-metal site. This defines either a well-defined direction or plane in which the spins
lie. In Fig. 3.4, the displayed spin texture is consistent with XY anisotropy, as observed
in NiBr2, where spins pointing along the trigonal C3z axis are relatively destabilized due to
slight trigonal distortions.

On the other hand, there are 3 primary components to Jij: (i) the isotropic component
(given by the trace) which is equivalent to the isotropic Heisenberg exchange contributions
analyzed above, (ii) the antisymmetric off diagonal components, and (iii) the anisotropic
symmetric components. Antisymmetric exchange is one mechanism to stabilize non-collinear
magnetic states in absence of exchange frustration, known as the Dzyaloshinskii-Moriya
interactions [15]. However, in order for these terms to be allowed, one requires the lack of
crystallographic inversion symmetry on the bond between the two interacting spins. This
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is not the case of the transition metal dihalides, and thus we ignore these terms. The
anisotropic symmetric exchange terms are allowed. These terms stabilize relative orientations
of neighboring spins, also referred to as bond-directional anisotropy. The well-known Kitaev
model is a particular parameterization of anisotropic symmetric exchange [130].

In the end, these terms will energetically favor a local anisotropy axis which depends
on the orientation of the bonds connecting the two sites. Thus, the anisotropy axes will
be different for distinct spin pairs, even if the local crystal field environments (and hence,
single-ion anisotropy axes) are identical. Such Kitaev-like terms naturally emerge from an
edge-sharing geometry [130]. The latter leads to a partial destructive interference between
the symmetric exchange paths, labelled as 1 (blue) and 2 (red) in Fig. 3.2(a), with the result
of a Kitaev-like term creating an anisotropy axis along the local x direction for the depicted
NN spin pair [125]. These terms are crucial to describe the emergence of distinct spin
rotation planes in the nickel dihalides, and may even energetically favor different magnetic
propagation vectors [131]. These interactions are induced by SOC, in this case provided by
the ligands mediating the superexchange interactions3. Thus, these anisotropy terms are
anticipated to be strongest in the heavier ligands (e.g. I [47]).

3.3 Mechanisms of spin-induced ferroelectricity

With an appropriate magnetic anisotropy and exchange frustration, the triangular lattice
systems can thus stabilize incommensurate spin spiral states. A consequence of this type of
magnetic order is a breaking of inversion symmetry, which in turn can induce ferroelectric
order. This leads to type-II multiferroic ground states as discussed in Chapter 1. Indeed,
many triangular lattice systems with such magnetic ground states are found to be multiferroic
[33, 38, 44, 45].

Incommensurate magnetic states without a net magnetization come in three principal
types, spin-density wave (SDW), cycloidal and proper-screw/helical ground states. The first
represents a sinusoidally amplitude-modulated phase, e.g. Si = cos(q · ri) x̂ for q ∥ ẑ

without loss of generality and where i labels a particular magnetic site. This phase does not
break inversion symmetry. A cycloidal phase refers to a spin spiral phase where the spins
rotate in a plane containing the magnetic wavevector q, e.g. Si = (cos(q · ri), 0, sin(q · ri)).
This magnetic texture breaks inversion symmetry but is achiral (preserves the mirror plane
perpendicular to q). Finally, a proper-screw state has a spin rotation plane perpendicular
to q, e.g., Si = (cos(q · ri), sin(q · ri), 0). The proper-screw state also breaks inversion
symmetry, in addition to all mirror planes and is thus chiral. Each of these states in a
simplified 1D model are shown in Fig. 3.5. The breaking of inversion symmetry is closely
related to the presence of a finite spin helicity for the cycloidal and helical states, defined as

3SOC of the transition-metal site can contribute as well, however this likely requires t2g orbital systems
(e.g. early transition metals) where SOC has a direct effect on the 3d states. SOC-effect is quenched at
first-order for eg orbital systems.
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Figure 3.5: Types of incommensurate magnetic states.

h =
∑

i Si × Si+1. The former has finite spin helicity h ⊥ q while the latter has h ∥ q, both
of which reverse sign under the application of inversion (Î).

The theory of spin-induced ferroelectricity was first developed in the context of cycloidal
systems [33]. The model which explains the appearance of finite electric polarization in cy-
cloidal systems is the inverse-Dzyaloshinskii-Moriya (inverse-DM), or spin-current/Katsura-
Nagaosa-Balatsky (KNB) model [39, 132]. This predicts a ferroelectric polarization (P)
defined by,

P =
∑
ij

e⃗ij × Si × Sj

where e⃗ij is the unit vector connecting spin pairs. In the example of a perfect cycloid (Fig.
3.5), the contribution to spin helicity for each spin pair ⟨i, j⟩ is equal and oriented within
the spin rotation plane and perpendicular to q. Thus, each site generates a local Pi oriented
perpendicular to q. Microscopically, one can view this effect from the same mechanism of
the DM interaction. In the direct DM interaction, an inversion-breaking bond induces a
net spin canting given by an anti-symmetric exchange, HDM = Dij · Si × Sj where Dij is
perpendicular to the plane defined by the M-L-M bond (antisymmetric contribution to the
Jij tensor discussed in the previous section). In the inverse DM interaction, a non-collinear
spin structure in an otherwise centrosymmetric lattice leads to a distortion of the bonding
environment that generates a Dij vector in agreement with the observed spin canting [133].
Given a well-defined spin chirality across the entire helix, this leads to a polar distortion of
the lattice, generating a net P [33]. The origin of this polarization is SOC.

The sign of P is directly related to the helicity of the spin structure, and thus switching P

by an electric field induces a change in the cycloid helicity as has been experimentally verified
[134]. We note that distortions from the perfect cycloid (e.g. ellipticity of the spiral) can
additionally lead to finite-momentum (modulated) components of P at multiples of q. Due
to the coupling between the local dipole and the lattice, small polar displacements of either
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the transition-metal or the ligands from their high-symmetry positions lead to a structural
superlattice at finite q, which has been detected with diffraction methods [135].

The KNB model is successful in predicting the direction of spin-induced P for most
cycloidal systems [33]. However, it fails to account for the observation of finite P in proper-
screw systems [136]. Indeed, in a proper-screw helix, one has Si × Sj ∥ e⃗ij ∥ q for all
spin pairs, and thus the KNB model gives precisely P = 0. However, finite polarization is
observed and, more generally, the KNB model does not predict the correct direction of P for
some low symmetry systems that are not perfectly cycloidal or helical [40]. The canonical
example is CuFeO2 which is a triangular lattice of Fe atoms [136].

To explain this discrepancy, an alternative model was proposed termed the spin-dependent
pd hybridization [33, 136, 137]. In effect, this model predicts a spin-induced P that is induced
on the metal-ligand bond, due to a spin-dependent covalency between the metal d and ligand
p states resulting from SOC. Importantly, this model induces a bond-polarization that may
involve both ligand- and transition-metal SOC. Unlike the KNB/inverse-DM model, this
term involves a single spin site, while the former is an intersite contribution generated by
non-collinearity of two neighboring spins. The metal-ligand bond polarization is given by
P

(j)
i = (Si · r⃗ij)r⃗ij where rij is a vector along a given M-L bond. This mechanism is thought

to be the leading contribution to the polarization in triangular lattice systems, including
MnI2 [44], NiBr2 [45] and CuFeO2 [136], and in particular predicts P ⊥ q for proper-helix
systems.

The metal-ligand hybridization term being non-zero requires a combination of both spe-
cific magnetic and lattice symmetries, the latter defined by the metal-ligand bonding en-
vironment. This is a general property of spin-induced P is spin-helix systems [138], where
magnetic order alone is insufficient to yield a unique polar axis. Unlike cycloidal systems
which preserve only a single m′ mirror plane perpendicular to q, thus allowing spin induced
P ⊥ q regardless of the lattice structure, helical systems preserve 2′ axes both parallel and
perpendicular to q. Polar space groups must have at most a single 2-fold rotational axis
(the polar axis), and thus the combination of both magnetic and lattice symmetries are
required to allow a spin-induced P in helical systems. This is precisely what occurs in the
transition-metal dihalides [38, 45].

The two above models are the main ones used to justify the spin-induced P in type-II
multiferroics. They give simple rules and microscopic interpretations for relatively high-
symmetry spin structures. However, they do not encompass all possibilities. In particular,
it is observed in MnI2 that there is magnetic field induced rotation of q from a proper-screw
state along (h, 0) (Spiral 2) to (h, h) (Spiral 1) with P ⊥ q/P ∥ q in each state, respectively
[44]. This situation is not described by either the inverse-DM or the spin-dependent pd
hybridization models. To overcome this, a more generalized model was proposed known as
the generalized KNB (gKNB) model. In this model, one accounts for both the intrasite
polarization Pi(Si) = Pαβ

i Si,αSi,β and the intersite Pij(Si, Sj) = Pαβ
12 Si,αSj,β contributions,

where spin-dependent pd hybridization belongs to the former and the inverse-DM to the latter
[40, 138]. By symmetry, one can show that the intersite polarization term is antisymmetric
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with respect to the spin components, and thus couples as Pα
12 = Mαβ(Si×Sj)β, where α, β ∈

{x, y, z}. This generalized M tensor formalism can be calculated from first principles and
accounts for a more complete description of spin-induced ferroelectric order caused by canted
spin pairs [40, 138]. Therefore, in the general case, a full accounting of all symmetry-allowed
components are required to describe the spin-induced ferroelectric order. This approach is
used to describe multiferroic state of NiI2 in the Chapter 5.

As a final note, it is worth emphasizing that many microscopic models are based on
simplified metal-ligand bonding geometries, most particular a linear M-L-M bond [39, 137,
139], and further considering particular electronic configurations of the metal and ligand ions,
e.g. a partially-filled t2g shell overlapping with a light ligand atom with weak SOC, such as
oxygen. Thus, many of the analytical results have been derived for high-symmetry lattice
geometries or specific electronic configurations which are not generally applicable. Analytical
results found commonly in the literature must therefore be used with caution. Furthermore,
the canted-spin-pair mechanisms, including the the symmetry-based approaches of [40, 138],
consider only the basis of the transition-metal ions without explicit consideration of the
ligand sites beyond their effects on the symmetry. This is problematic because, depending
on the geometry and the details of the ions at each site, the microscopic local electric dipoles
leading to a macroscopic ferroelectric polarization can be either at the transition metal or
the ligand sites.

The location of the charge dipole is closely related to which atomic species contributes the
largest SOC. For instance in oxides, the ligand SOC is weak and ferroelectricity is observed
to be mainly contributed by the SOC of the TM site, such as in CuFeO2 [140] or manganites
[33]. Electronically, these compounds have partially filled t2g shells, and thus SOC effects of
the TM ions can enter at first order. However, for the case of the nickel dihalides discussed
here, the TM ions have fully filled t2g shells and do not contribute significant SOC, which is
instead introduced by heavy ligands (e.g. Br and I).

Therefore, in the nickel dihalides, the local charge dipoles likely reside on the ligand sites
as supported by recent numerical calculations in NiI2 [141] and NiBr2 [142]. The bonding
geometry of the triangular lattice with 90◦ M-L-M bonds from the edge-sharing octahedra
cannot be described by the linear cluster models [39, 137, 139], which do not account for the
correct bonding symmetry, while the phenomenological approaches accounting for the proper
symmetry do not account for the ligand states explicitly. Thus, significant work remains
to gain a full microscopic description of the ferroelectric polarization induced by different
spin spiral structures in low-symmetry lattice environments where SOC is dominated by
the ligand. The microscopic description answering the question: “where is the ferroelectric
polarization?” in these systems remains obscured outside of numerical calculations.

This is particularly important to describe the modulated components of the ferroelec-
tric order and spin-lattice coupling effects leading to incommensurate structural distortions.
Such locally oscillating charge dipoles directly contribute to the ferroelectric order at q = 0

and encode critical information regarding the microscopic mechanisms of the spin-induced
ferroelectricity [33, 135]. Resolving these issues is of particular importance towards evidence
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of multiferroic order in the 2D limit from atomic-resolution scanning probe measurements.
For instance, recent STM [143] measurements in NiI2 have resolved an oscillating charge
at a harmonic of the predicted helimagnetic wavevector. This observation was interpreted
in terms of a continuum model of Ref. [132] whose predictions for the q = 0 ferroelectric
order are not immediately reconcilable with the spatially uniform component predicted by
the generalized KNB model [40]. Thus, reaching a full understanding of this problem will be
critical to gain a full description of the phenomenon of spin-induced ferroelectricity outside
of the canonical examples in transition-metal oxides, and holds particular importance for
building solid evidence of spin-induced ferroelectricity in ultrathin vdW materials.
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Chapter 4

Photon probes of spin/orbital order and
excitations

In this chapter, we review the main techniques used in this thesis to probe spin-orbital
ground states, electronic anisotropy, and collective excitations (magnons, phonons, excitons).
Each technique utilizes photon spectroscopy and scattering, ranging from the optical regime
(Raman scattering and magneto-optical spectroscopy) to the X-ray regime (X-ray absorption
spectroscopy, X-ray linear dichroism, and Resonant elastic/inelastic X-ray scattering).

4.1 Light Matter Interaction

We first describe the fundamental interaction between electromagnetic fields and the elec-
trons in the sample. The treatment here follows similar derivations in Refs. [109, 144–146].
We write the Hamiltonian of the electronic system in terms of the single electron momentum
p, position r, and mass m as,

H0 =
p2

2m
+ V (r)

Meanwhile, each mode k of the electromagnetic field with energy h̄ωk is described as a
harmonic oscillator in second quantized notation as,

Hph =
∑
k

h̄ωk

(
a†kak +

1

2

)

where ak/a†k are annihilation/creation operators for a photon of wavevector k, respectively.
In the quantization of the electromagnetic field, one can express the vector potential A(r, t)

as,
A(r, t) =

∑
k

akϵ⃗ke
i(k·r−ωkt) + a†kϵ⃗

∗
ke

−i(k·r−ωkt)
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where ϵ⃗ represents the photon polarization vector1.
To describe the interaction between the electron and electromagnetic field, in the simplest

approximation, one can perform a gauge shift to the single electron Hamiltonian H0 by
replacing p → p−eA, with electron charge −|e|, and adding a term describing the interaction
between the spin degree of freedom (described by a Pauli vector σ⃗) with the magnetic field
component of the electromagnetic wave ∝ σ⃗ · B = σ⃗ · ∇ × A.2 After performing these
substitutions and utilizing the Coulomb gauge ∇ ·A = 0, one arrives at the following form
of the interaction Hamiltonian Hint,

Hint = − e

m
p ·A+

e2

2m
A ·A− e

m
σ⃗ · (∇×A)

with the overall Hamiltonian for the light-matter system becoming H = H0 +Hph +Hint.
Terms withinHint that are linear in the vector potential A correspond to the absorption or

emission of a photon, along with a corresponding transition of the electronic state. Scattering
processes involve absorption plus subsequent emission, and thus the linear in A terms only
lead to scattering at second-order. Meanwhile the term quadratic in A (second term in Hint)
describes direct scattering processes, e.g. absorption plus emission of photons. This last
term describes normal Thompson scattering. In the context of X-rays, this term describes
the usual (isotropic charge) diffraction and (non-resonant) inelastic X-ray scattering.

What is important for the cross-section of scattering events are the matrix elements of
the light matter interaction Hamiltonian with electronic states in the material. For instance,
for an initial/final electronic state ψi/ψf , one needs to consider matrix elements of the form
Mfi = ⟨ψf |Hint|ψi⟩. The form of the transitions can be determined by multipole expansion
of Hint into powers of r. The standard approach is to expand the plane-wave term of the
vector potential about k · r ≪ 1,

e−ik·r = 1− ik · r− 1/2(k · r)2 + · · ·

The approximation is a good one, since k is set by the photon wavelength (|k| = 2π/λ)
and r is the average radius of the electron (order of Bohr’s radius, ∼ 0.05nm). Thus, the
approximation to leading order is a good one for energy below the hard X-rays E < 5 keV.
If we then take the lowest order term in Hint (ignoring the contribution of the A2 term) we
get

Mfi(E1) = − e

m
⟨ψf |p ·A|ψi⟩ = − e

m
⟨ψf |p · ϵ⃗k|ψi⟩ =

e

ih̄
(Ef − Ei)⟨ψf |⃗ϵk · r|ψi⟩

where we used the relation p = −m
ih̄
[H0, r]. This lowest order term describes a dipole (E1)

1Throughout, we will use ϵ⃗ to denote photon polarization, a vector quantity, and ε or εαβ to denote the
dielectric tensor.

2This simplified version of the light-matter interaction ignores important relativistic corrections terms
which are required to describe non-resonant magnetic scattering and higher order multipoles of the light-
matter interaction tensor [145].
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transition. Since r is odd under parity, such a transition only connects states with opposite
parity. Another important term, derived from the next order k · r term in the plane wave
expansion is

Mfi(E2) ∝ ⟨ψf |(⃗ϵk · r)(k · r)|ψi⟩

and is known as an (electric) quadrupole (E2) transition. With two factors of r, the E2
transition can have finite amplitude between two states of the same parity (⃗ϵk and k are
properties of the photon). Finally, we consider the magnetic dipole (M1) transition, which
can be expressed as

Mfi(M1) ∝ ⟨ψf |(k× ϵ⃗k) · (L+ 2S)|ψi⟩

which is derived from a combination of the second plane-wave expansion term with the p ·A
term of Hint and the lowest-order contribution of the σ⃗ ·B term in Hint. Similar collections
of terms can be derived for higher order multipoles of the light-matter interaction [145].

Each of these transitions are characterized by particular selection rules, or relative values
of the quantum numbers of ψi/ψf so that the transition i → j is non-zero [109]. In the E1
approximation, one can consider the photon as carrying a single unit of angular momentum
ℓ = 1. The dipole transition operator can be re-expressed as a spherical tensor of rank 1, T (q)

k ,
with T

(±1)
1 corresponding to left/right circular polarizations σ+/−. Thus, the E1 transition

operator is of odd-parity and connects electronic states of opposite parity. By combination of
the parity and the effective angular momentum properties of the photon, dipole transitions
(in the absence of spin-orbit coupling (SOC)) only connect transitions related by ∆L = ±1,
e.g. s↔ p, p↔ d, etc. Importantly, the transition operator for E1 involves matrix elements
involving only the position operator of the electronic state, from which the spin component
can be factored in the absence of SOC. In general, this implies that the total spin for a
transition between single or multielectronic states is preserved during dipolar transitions,
i.e. ∆S = 0. Together, the dipole selection rules ∆L = ±1 and ∆S = 0 describe the leading
order selection rules for optical processes, known as the Laporte and spin-selection rules,
respectively [60].

Similar selection rules can be provided for M1 and E2 processes. In the case of M1, one is
directly operating on the spin space through the corresponding light-matter interaction and
spin flip processes are allowed ∆S = ±1, with the key distinction that the M1 operator is of
even parity. For E2 processes, the angular momentum model for the photon states does not
hold in a trivial way. The intrinsic angular momentum states of the photons involved in the
transition still possess a single unit of angular momentum with ±h̄, and the transitions are
single photon events, however one can visualize the spatial dispersion of the electromagnetic
field interacting with the electrons leading to an additional orbital angular momentum in
the light matter interaction (hence, the dependence of E2 transitions on k). Thus, one
has to think not of higher order processes in the photon transitions for additional angular
momentum (e.g. not multi-photon transitions), but one must resort to the full multipolar
expression of the light-matter interaction [145]. The E2 transition operator also has even
parity, satisfies the same ∆S = 0 spin selection rule as E1 processes, but from combined
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angular momentum and parity rules can allow transitions of the type s ↔ d, p ↔ f , etc
with ∆L = 0,±2, in the absence of SOC. In the general case, all first order (E1, M1)
processes allow all transitions of total J permitted by the angular momentum addition rules
∆J = 0,±1 and for second-order (E2) processes, all transitions ∆J = 0,±1,±2 are allowed
[109]. These are best represented from the angular-momentum properties of the transition
operators in a spherical tensor formalism, whereby selection rules can be easily derived from
angular-momentum addition rules and Racah-Wigner algebra (e.g. Chapter 2).

What we are principally interested in here is the measurement of magnetism with pho-
tons, but photons in the dominant dipole-allowed processes do not directly address the spin
degree of freedom. One way is through M1 transitions allowing ∆S ̸= 0, however these are
typically very weak. The remaining possibilities may be summarized as relativistic effects.
This includes the presence of SOC in the initial state (ψi) and/or the final state (ψf ) in the
electronic Hamiltonian. The reason for this is that L and S are no longer good quantum num-
bers and thus transfer of orbital angular momentum from the photon can become sensitive
to the spins, thus relaxing the selection rules. Alternatively, one can consider relativistic cor-
rections to the light-matter interaction Hamiltonian, such as those describing non-resonant
magnetic scattering [145], but again the cross section of such processes is small. Generally, it
may be noted that unless it is explicitly forbidden by symmetry, if a transition can become
dipole-allowed by a symmetry-breaking (e.g. inversion symmetry) or by the inclusion of
SOC, the dipole-allowed process will almost always be the dominant process observed.

4.2 Core-level X-ray spectroscopy

In core-level X-ray spectroscopy, incident photons are tuned in resonance to the binding
energy of a core-level electron of one of the constituent atoms in the material of interest
[110, 146]. The binding energies of these core-levels are specific to the atomic species,
leading to characteristic spectra that provide an energy-dependent selectivity in the cross-
section of scattering/absorption processes to particular atoms in the crystal. This is the first
major advantage of core-level spectroscopy, i.e. elemental sensitivity in the transition matrix
elements.

While the interesting physics of materials occurs in the weakly bound, partly-filled valence
orbitals near the Fermi level, the core electrons are blind to much of the details of the
solid state and form fully filled shells which may be treated as almost pure atomic-like
electronic states [109]. Furthermore, their high binding energies lead to a much larger spin-
orbit coupling (SOC) interaction than the valence electrons. As we mentioned in Chapter 2,
this results in a large SOC splitting of the core shells with L ̸= 0. This forms the second major
advantage of such measurements, which is that the core levels are relatively simple atomic-
like states with well-defined and energetically-separated J manifolds. Thus, well defined
selection rules governing the core-to-valence transitions (selected by the edge resonance, i.e.
incident photon energy) allow one to determine useful (unknown) properties of the spin and
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orbital degrees of freedom of the valence states, utilizing the precise knowledge of the initial
core levels. From this perspective, one can view resonantly tuned X-rays as providing a local
spin-, orbital-, and element-resolved projection of the valence electronic states.

The characteristic resonances are called absorption edges, which are defined by the initial
core state [110]. These edges are defined as K, L1−3, M1−5, etc, which are labels for different
core level manifolds. The letter refers to the shell number n in increasing order (K → 1,
L → 2 and M → 3) and subscripts refer to the different sublevels defined by angular
momentum L/J. K edges are transitions with 1s initial states, the most tightly bound and
thus the highest energy edge of the atom. K-edges of the 3d transition metals (Ti - Cu) lie
in the hard X-ray range (∼ 5− 10 keV, λ ∼ 1− 3Å). The L1 edge is the 2s initial state and
the L2,3 edges are the 2p initial state which has SOC splitting into the 2p1/2 (L2) and 2p3/2
(L3) edges, at higher and lower energy, respectively. The L2,3 edges of 3d transition metals
are in the soft X-rays (∼ 500− 1000 keV, λ ∼ 1− 3 nm), with L2/L3 edge splitting between
(10-50 eV).

4.2.1 X-ray absorption spectroscopy and dichroism

One of the fundamental forms of core-level spectroscopy is X-ray absorption spectroscopy
(XAS), where the fine structure (versus incident energy) of the absorption near a particu-
lar core-level resonance is monitored. The absorption (α(ω)) is defined in a transmission
measurement I(ω) = I0(ω)e

−α(ω)∗ℓ where ℓ is the thickness of the sample and I0 is the in-
cident intensity. However, in practice, one usually monitors secondary processes related to
absorption through the decay mechanisms of the excited photoelectron. Specifically, one can
monitor photoemitted electrons (known as total electron yield (TEY)) or the total emission
of photons emitted on the core-valence recombination (known as total fluorescence yield
(TFY)). TEY measurements are surface sensitive due the limited escape depth of electrons
(known from photoemission spectroscopy), while TFY measurements are more bulk sensitive
but can be heavily distorted by re-absorption of the emitted photons. Defining a transition
operator T⃗ (e.g. E1/E2), and the XAS cross section can be determined by the transition
rate determined through Fermi’s golden rule,

α(ω) ∝
∣∣∣∣⟨ψf |T⃗ |ψi⟩

∣∣∣∣2δ((Ef − Ei)− h̄ω)

The nature of the initial states and final states depend on the core-level, the transition type
(E1/E2), and incident energy across the edge.

3d transition-metal K edges consist of transitions of the type 1s → 4p, with the 4p

states being the lowest energy shell that is accessible by dipole transitions. These levels are
at higher energy than the 3d orbitals and are unfilled. Nonetheless, significant information
about the lattice and local coordination symmetry can be gleaned from the 4p orbitals, which
are highly sensitive to covalency effects and the coordination environment [110, 147–149].
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Figure 4.1: Definition of the K and L2,3 core-level resonances. The typical electronic struc-
ture near the Fermi level for (3d) transition metal compounds with a partially filled 3d shell
and unfilled metal 4p states at higher energy. The K edges result principally from 1s → 4p
transitions through an E1 transition, while weaker E2 transitions of the type 1s → 3d are
generally measurable, appearing as weaker absorption features at the pre-edge. The L2,3

edges are transitions from the SOC-split 2p manifold, with dominant E1 transitions of the
type 2p1/2 → 3d (L2) and 2p3/2 → 3d (L3). E2 transitions are too weak to be observed at
the 3d transition metal L edges due to the lower photon energy (smaller k, E ∼ 500-1000
eV) compared to the K edges (E ∼ 5-10 keV).

The spherically symmetric initial states (1s) result in relatively simple dipole selection rules,
and the full polarization dependence is easily interpretable. For instance, the angular matrix
elements ⟨2p|T⃗ (E1)|1s⟩ are proportional to ϵ⃗ · p⃗ ∝ cos(θ) (for linear polarization) where p⃗
is a unit vector defining the principle axis of the p orbital and θ is the angle between ϵ⃗ and
p⃗. The description of the near edge structure for the K edges can be interpreted in first
approximation in terms of the single-particle density of states ρ(ω) (without considering the
core-hole potential) with α(ω) ∼ |Mij|2ρ(ω). This is because multiplet coupling with the 1s

core hole is low and the final states are highly delocalized.
For TM compounds, of more interest are the 3d orbitals. These states lie energetically

below the 4p states, and their contribution to K edge spectra appears as weaker “pre-edge”
features before the main 1s→ 4p edge [110, 150]. Transitions of the type 1s→ 3d are dipole
forbidden in centrosymmetric crystals, but quadrupole transitions are allowed (∆l = 2).
Thus, for centrosymmetric site symmetry the pre-edge will be weak with an intensity on the
order of 10−4 compared to the dipole-allowed main edge [145].

Of interest to us is in local coordination symmetries which break inversion symmetry
in the site-symmetry group of the transition metal atom. In this case, a local mixing of
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a dipole contribution to the 3d orbitals is allowed, which is related to hybridization effects
with the surrounding ligands. Thus, the metal-centered, antibonding molecular orbitals will
have a local mixing between the 3d and 4p states, e.g. |Ψ⟩ = α|3d⟩+ β|4p⟩. The interaction
mixing terms with different parity is necessarily odd under inversion, and thus such mixing
is forbidden for centrosymmetric site symmetry (e.g. Oh). Note that inversion symmetry
only needs to be broken locally and this process does not imply that inversion is broken
at the level of the crystallographic point group (which is a sufficient, but not a necessary
condition). In this case, dipole transitions are activated into the projected 4p component of
the electronic states near the 3d pre-edge. The resulting dipole transitions quickly dominate
over the weaker, direct 1s→ 3d transitions, leading to much larger intensity (e.g. 10−2−10−1

relative to 1s → 4p) even for relatively weak 3d-4p hybridization [150]. This gives strong,
dipole-allowed access to the 3d orbitals in the hard X-rays with simple polarization selection
rules, which we exploit to study the 3d orbital occupancy mismatch in FeSe in Chapter 9.

Specifically, we utilize the technique of X-ray linear dichroism (XLD). XLD refers to the
difference of the absorption coefficient for different linear polarization states of the incoming
light. In isotropic samples, or crystals with at least 3-fold rotational symmetry around the
incident wavevector k, the absorption coefficient for dipole transitions is also isotropic, e.g.
independent of the incoming linear polarization [151]. A difference in absorption is driven
by a breaking of this rotational symmetry of the local-site environment. For example, with
wavevector k ∥ ẑ axis, transitions of the type ⟨4px|Tx|1s⟩ and ⟨4py|Ty|4s⟩ can become in-
equivalent, where Tx an Ty are the dipole transition operators for x⃗ and y⃗ polarized light.
Such absorption coefficients can become inequivalent through either a difference in occu-
pation of the final state orbitals n(px) ̸= n(py) or, relatedly, a difference in their energies
E(px) ̸= E(py). Thus, finite XLD with proper choice of incident energy can probe the energy
splitting and orbital occupation mismatch of the valence orbitals.

In contrast to the K edges, the TM L2,3 edges are more directly sensitive to the d-orbitals
with direct dipole-allowed transitions of the type 2p1/2/2p3/2 → 3d. The large SOC of the
2p shell means that such transitions are directly sensitive to the spin and orbital moments
of magnetic order, which can be separated by sum rules in circular dichroism (CD) [152,
153]. This has lead to the technique of X-ray magnetic circular dichroism (XMCD) [110],
which has been critical for the characterization of magnetism in e.g., ultrathin films, multi-
sublattice systems, and ferrmimagnets. The sum rules of XMCD elegantly highlight the
advantages of well-defined, energetically-separated J manifolds forming the initial states of
core-level spectroscopy.

Furthermore, the shallower 2p core-level displays much stronger interactions with the
valence electrons. The initial state is of the type 2p63dn and the final state of the absorption
process is 2p53dn+1 and one must consider matrix elements of the form ⟨2p53dn+1|T⃗ |2p63dn⟩
for calculating the XAS spectrum. Uniquely, the strong 2p-3d multiplet coupling means that
the XAS spectral shape at the L2,3 edges is not at all related to the single-particle density
of states of the valence shell. Instead, one must consider the multielectronic configurations
(Chapter 2) of the 2p63dn ≡ 3dn and 2p53dn+1 configurations, with the latter determining
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the XAS spectral shape [110]. Thus, through TM L2,3 edge XAS, one can extract electronic
correlation parameters on the d shell (e.g. Slater parameters F k), in addition to other local
parameters such as the crystal field splitting and the ground state SOC in the d shell. In
addition, one can also measure satellite structures in the XAS profiles related to charge trans-
fer configurations of the type 3dn+mLm, which along with X-ray photoemission spectroscopy
(XPS) allow the characterization of the charge transfer gap ∆ and the metal-ligand hopping
parameters tpd which are critical for understanding the electronic structure [110, 111, 154,
155]. We utilize these properties of TM L2,3 XAS to probe the electronic structure of the
charge-transfer insulator series NiX2 in Chapter 8. As a final note, such experiments infer
ground state properties through the excited state configurations and their spectral weight.
More direct information on the ground state can be inferred from resolving the inelastically
scattered photons through resonant inelastic X-ray scattering (RIXS), discussed below.

4.2.2 Resonant X-ray scattering: elastic and inelastic

While significant information can be gleaned from spectroscopic measurements (e.g. XAS),
the energy range of the core-level transitions in the X-rays means that the incident photons
have sufficient momentum to address the characteristic length scales of condensed matter sys-
tems up to and exceeding a single Brillouin zone. In particular, one can perform diffraction
in resonant conditions, allowing the measurement of long-range order in the spin, orbital
and charge degrees of freedom and providing a unique window into the finite momentum
ground states of correlated systems (Resonant elastic X-ray scattering - REXS). In addition,
one can perform inelastic scattering measurements, allowing the identification of the asso-
ciated collective excitations and ground state electronic structure (Resonant inelastic X-ray
scattering - RIXS).

These processes are fundamentally related to XAS by the same type of core-level tran-
sitions discussed in the previous section. REXS and RIXS are both photon in-photon out
spectroscopies. Incident photons with energy h̄ωi and wavevector ki tuned to a core-level
resonance are incident on the sample in the ground state configuration |i⟩. A dipole matrix
element leads to a core-to-valence transition and the creation of an intermediate state with
a core-hole (c) present, |n⟩, with an intermediate state lifetime of Γn. This first photon
absorption step is identical to the single-step XAS process. Subsequently, a photon with
h̄ωf and wavevector kf is emitted, transitioning the intermediate state to the final state |f⟩
through a valence-to-core transition.

In the dipole approximation with transition operator T⃗ = ϵ⃗i · r, the scattering amplitude
describing such processes depends on both the incoming and outgoing wavevector (ki/f ),
energy (h̄ωi/f ) and polarization (⃗ϵi/f ) and is given in terms of a second-order perturbation
as [145, 146, 156],

I ∝
∑
f

∣∣∣∣∑
n

⟨f |(T⃗ ′)†|n⟩⟨n|T⃗ |i⟩
h̄ωi − (Ef − Ei) + iΓn

∣∣∣∣2δ(h̄ωi − (Ef − Ei)) (4.1)
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where (T⃗ ′)† = (⃗ϵf )
∗ · r∗ corresponds to the outgoing photon variables. This expression

is the Kramers-Heisenberg formula, relevant for resonant processes when the denominator
(h̄ωi − (Ef − Ei) + iΓn) becomes small.

2p3/22p1/2

3d
eg
t2g

3dn2p6 3dn+12p5 3dn2p6

d → d

| i⟩ |n⟩ | f⟩

, ℏωi ki , ℏωf kf

c

Figure 4.2: Schematic of a d → d excitation process through L3 edge resonant scattering.
The initial state |i⟩ consists of a 3dn2p6 configuration. A photon of energy h̄ωi resonant to
the 2p3/2 → 3d transition is incident on the sample, causing a transition to the 3dn+12p5

configuration in the intermediate state |n⟩ with a 2p core hole c present. The core-hole is
recombined through the emission of a photon with energy h̄ωf and a transition to the final
state |f⟩ in the 3dn2p6 configuration. The final state of the 3d shell can be different than
the initial state, corresponding to a d → d excitation - or, more generally, any collective
excitation involving the d orbitals - which is dipole allowed in the two-dipole transition
process. The energy of this excitation is reflected in the energy loss of the emitted photon
∆ω = ωf − ωi which can be monitored as a function of momentum transfer q = kf − ki.

For REXS, the scattering process is elastic with ωi = ωf , with |f⟩ = |g⟩ and with the
momentum transfer kf − ki ≡ q matched to a characteristic periodicity of the system (e.g.
structural/magnetic Bragg peak, or a periodic modulation of charge, magnetic or orbital
order). The term inside the modulus of Eq. 4.1 corresponds to the resonant scattering
amplitude of a single atom f ′. Diffraction from infinite crystals at zero temperature is given
by the structure factor with q ∈ G where G is the reciprocal lattice,

I(q) =

∣∣∣∣∑
n

fne
iq·rn

∣∣∣∣2
where rn are atomic positions within a unit cell of the lattice. In standard (non-resonant) X-
ray diffraction, the atomic form factor fn ≡ fn,0 is a (spherically symmetric) scalar quantity,
related to the total electronic charge of the scattering atom, which is independent of the
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photon polarization. On resonance, the scattering amplitudes given by Eq. 4.1 may be seen
as resonant corrections to the atomic form factor. Thus, the atomic form factor becomes
selective to particular atoms in the unit cell, particular valence orbitals of those atoms defined
by the transition operator and the core level to which the incident photons are resonant, and
also to the spin/orbital degrees of freedom as opposed to just the overall electronic charge.
At the TM L2,3 edges, diffraction from charge [74], orbital [157] and magnetic [158] orders
within the correlated d orbitals have been demonstrated with this technique [159].

A useful practice for describing the resonant contribution to the scattering amplitude is to
separate the terms depending on the electronic states from the photon polarization/wavevector
dependence [145]. This leads to the scattering tensor fαβ, which in the dipole approximation
can be related to the scattering amplitude by fn(ϵ′, ϵ) = (ϵ′)∗β fαβϵα where,

fαβ =
∑
n

⟨f |rα|n⟩⟨n|rβ|i⟩
h̄ωi − (Ef − Ei) + iΓn

One can then describe different contributions to the scattering and their coupling the incom-
ing and outgoing polarization dependence through symmetry restrictions to the matter-only
form factor fαβ. For example, the isotropic (spherically symmetric) charge contribution to
fαβ corresponds to the trace component of the tensor

∑
α fαα, which has a polarization de-

pendence as ϵ′ · ϵ, i.e. the same as expected for Thompson scattering. Of particular interest
to us is the scattering tensor for local magnetic moments. These are described by the anti-
symmetric traceless components of fαβ, and by time-reversal symmetry are complex. For a
local magnetic moment with components m⃗ = (mx,my,mz), the scattering tensor takes the
form,

fαβ ∝

 0 −imz imy

imz 0 −imx

−imy imx 0


where the sensitivity to the local magnetic moments is provided directly by the breaking of
local time-reversal symmetry in the valence states and the large SOC of the core-levels at
the L-edges, thus allowing sensitivity to the spin moment even in the dipole approximation.
The polarization dependence of resonant magnetic scattering in the dipole approximation is
given by the cross product ϵ′ × ϵ [160], and thus magnetic scattering leads to scattering in
the cross-polarized channel. This polarization dependence described through the scattering
tensor allows one to disentangle the microscopic symmetry of the underlying order through
a full polarization dependence of the scattering intensity in experiments. The magnetic
contrast of REXS at the TM L2,3 edges is used to characterize the magnetic order of bulk
and thin layers of NiI2 in Chapter 7.

In contrast to REXS, RIXS describes the process of inelastic scattering with ωi ̸= ωf .
RIXS is two-dimensional spectroscopy, where one tunes both the incident energy across a
core-level resonance ωi and the corresponding energy-loss of the scattered photons ωf are
monitored [110, 156]. According to Eq. 4.1, the incident energy axis is closely related to XAS.
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At the TM L-edges, the intermediate states |n⟩ are given by different terms of the 2p53dn+1

configuration, and different fine structure components can lead to different scattering cross
section between the initial |i⟩ and final |f⟩ states of the ground state 3dn configuration.
Thus, the control of the intermediate electronic states through tuning of the incident energy
across the XAS spectrum can correspondingly tune the cross section of different energy loss
features, providing rich information on the nature of the both the excitations and the ground
state electronic structure.

The energy transfer ∆ω in RIXS corresponds to the energy of excited states of the
system. In the same manner as REXS and XAS, these excitations are sensitive to the
spin, orbital, charge and lattice degrees of freedom for the targeted valence orbitals. The
technique is also momentum resolved, with momentum transfer q approaching the first
Brillouin zone boundary of solid state materials in the soft X-ray range. Thus, one can
measure the collective excitations of the material and monitor their dispersion relations
ω(q). The energy resolution for soft X-ray RIXS (TM L-edges) is currently on the order of
10’s meV for state of the art instrumentation [161] and is therefore within the appropriate
energy-momentum constraints for studying the collective excitations of solid state systems
[156].

In the low-energy regime, RIXS has been demonstrated to measure many forms of bosonic
excitations [156], including phonons, magnons, bi-magnons, charge excitations, plasmons
and excitons. At higher energies, one can measure the local multiplet transitions (e.g. dd
transitions) of the absorbing ion, as discussed in Chap. 2, and charge-transfer transitions
[110]. While these types of excitations can also be observed in optical absorption [60], RIXS
has the advantage of a direct dipole-allowed sensitivity to dd excitations due to the two-step
dipole transition process described by Eq. 4.1. This is depicted in Fig. 4.2 for the case of
a simple a crystal-field (inter-orbital t2g → eg) transition in a single-particle picture for a
3d8 configuration. Additionally, one can also measure spin-state and ∆S ̸= 0 transitions due
to the core-hole SOC, in addition to their finite momentum properties with the q-resolved
probe of RIXS. This has been used to provide evidence for fractionalized excitations (e.g.
orbitons) in low-dimensional spin chains [123] and collective spin state transitions to explain
mechanism of excitonic magnetism in cobaltates [121].

Thus, RIXS allows a full characterization of the multiplet spectra of TM ions, charac-
terizing all of the key parameters of the ground state configuration, as well as revealing
potentially new collective properties to which optical spectroscopy is largely insensitive. For
the former, this provides more direct information on the ground state electronic Hamilto-
nian of the TM ion compared to XAS, since energy loss features reflect multiplets of the
3dn configuration while XAS measures the multiplet spectra of the 3dn+12p5 configuration.
The latter has significant modifications in the intermediate state due to the core-valence
multiplet coupling and the different electronic filling of the d shell. Also XAS is limited by
the lifetime broadening (Γn), which can be on the order eV, while the inelastically scattered
photons in RIXS are limited by the instrumental resolution and intrinsic broadening [110].
We utilize both the direct dipole-sensitivity of RIXS to ∆S ̸= 0 multiplet excitations and
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their q-dependence to study the nature of excitons in the nickel dihalides in Chapter 8.

4.3 Optical spectroscopy

4.3.1 Optical dichroism and birefringence

The modifications in the polarization of light transmitted through or reflected by materials
gives substantial information about the symmetry of the underlying crystal. All such pro-
cesses are related to the dielectric tensor, εαβ, which in turn determine the refraction index
and the reflectivity rαβ. There are two primary effects which are typically probed: dichroism
and birefringence. As mentioned in the case of X-ray absorption above, dichroism refers to
the difference of absorption between two orthogonal polarization states, i.e. linear dichroism
(LD) and circular dichroism (CD). Birefringence is instead a difference of the phase between
two orthogonal light polarizations. Dichroism and birefringence are thus related to differ-
ence in the imaginary (∆k) and real (∆n) parts of the complex refractive index ñ = n+ ik,
respectively, which are related through Kramers-Kronig relations.

These effects can be measured either by directly probing the difference in the reflectance
or transmittance for the two polarization states, or by their effect on incident linear polarized
beams. In general, an incident linear polarized beam will become elliptically polarized with a
rotation of the principle axis upon reflection, referred to as the ellipticity (η) and rotation (θ),
respectively. The ability to perform extremely precise polarimetry measurements of these
quantities in the optical range (down to the nano- to micro-radian level [162, 163]) makes
possible the detection of subtle optical manifestations of symmetry-lowering transitions in
solid state materials.

The presence of finite dichroic/birefringent responses can signal either broken rotational
or time-reversal symmetries, where the former can be either crystallographic or magnetic
in origin. For time-reversal symmetric media, the dielectric tensor is symmetric εαβ = εβα.
For an incident wavevector ki along a principle axis (e.g. a high-symmetry axis), then the
dielectric tensor for the transverse polarized light is isotropic,

ε =

(
εxx 0

0 εxx

)
The system then possesses no dichroism, and incident linear polarization is preserved on
reflection or transmission.

A reduction of rotational symmetry in the plane perpendicular to k results in a difference
of the diagonal components of the dielectric tensor, thus allowing finite linear birefringence
or dichroism. In the principle basis, the dielectric tensor is then

ε =

(
εxx 0

0 εxy

)
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In this case, the reflectivity along the principle axes is given by Rx,y =
∣∣∣√εxx,yy−1
√
εxx,yy+1

∣∣∣2. Incident
linear polarization along the principle axes is preserved, but will become elliptical or rotated
for other directions. Thus, linear dichroism/birefringence leads to finite η/θ which goes to
zero for ϵ⃗ parallel to either of principle axes, allowing one to experimentally identify this
effect.

The origin of εxx ̸= εyy does not need to be structural in origin. Instead, purely magnetic
origins of LD exist, referred to as magnetic linear dichroism/birefringence (MLD/MLB)
or the Voigt effect [164]. These effects are due to contributions to the dielectric tensor
resulting from the interaction between the light polarization and the local spin degree of
freedom. Thus, if the crystal possess a global unique spin axis, a quadratic interaction
of the form εαβ ∝ SαSβ contributes to the dielectric tensor, leading to linear dichroism
[164]. This was previous observed in the collinear rutile antiferromagnets. More recently,
giant LD in collinear vdW antiferromagnets has been observed [69, 70, 165]. As opposed
to the standard MLD which is directly related to the spin direction, these effects were
instead attributed to a magnetically-induced anisotropy in the electronic structure due to the
rotational symmetry breaking magnetic wavevector. ε(ω) is a strong function of frequency,
particularly in semiconductors/insulators across the band gap, and thus the origin of the
dichroism can change depending on the probing wavelength. In particular, strong dichroic
responses are observed on excitonic resonances of either Wannier [57] or Frenkel [69, 70]
character, such as those investigated in Chapter 8.

Finally, although not utilized in this thesis, we mention the detection of magnetic mo-
ments through optical circular dichroism. A global magnetization M ∥ ẑ leads to an anti-
symmetric contribution to εαβ. For an otherwise rotationally symmetric lattice, this leads
to a dielectric tensor for the plane perpendicular to ki ∥ M,

ε(ω) =

(
εxx(ω) iϵxy(ω)

−iϵxy(ω) ϵxx(ω)

)
where ϵxy(ω) is a (frequency-dependent) quantity proportional to M. This leads to circular
dichroism/birefringence, related to imaginary and real parts of ϵxy(ω). It is important to
note that although ϵxy(ω) ∝ M, this is also a strong function of frequency and can be heavily
rescaled if the magnetization couples non-trivially to the electronic structure effecting the
absorption properties near the probing wavelength. Thus, a trivial proportionality between
magneto-optical phenomena and the overall magnetization M must be treated with caution,
particularly across metamagnetic transitions when an external magnetic field changes the
ground state. Practically, circular dichroism leads to ellipticity upon reflection of incident
linear polarized light (Kerr ellipticity, ηk), while circular birefringence leads to the rotation
of the linear polarization angle (Kerr rotation, θk). The key distinction is that these effects
reverse sign under magnetization reversal, and are equal for any incident polarization angle
(in qualitative distinction with MLD/MLB). Optical linear dichroism and its characteristic
angular dependence is used to detect the rotational symmetry breaking of the magnetic
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ground state in NiI2 in Chapters 5-8.

4.3.2 Raman spectroscopy

Raman spectroscopy is an inelastic scattering of photons, typically referring to photon en-
ergies in the optical range (e.g. 1 - 4 eV). The Raman process corresponds to an absorption
and subsequent emission of a photon, usually through dipole transitions, along with the cre-
ation/destruction of an excitation of the system (e.g. phonon). The dominant contribution
to the Raman scattering cross-section is given by the third-order perturbation [166, 167],
with

I ∝
∑
n.m

∣∣∣∣∣ ⟨i|(T⃗ ′)†|m⟩⟨m|He−ph|n⟩⟨n|T⃗ |i⟩
(h̄ωi − (En − Ei))(h̄ωi − (Em − Ei)− h̄ωph)

∣∣∣∣∣
2

δ(ωi − ωs − ωph)

where T⃗ are dipole transition operators, He−ph is the electron-lattice interaction, |i⟩ and
|n⟩/|m⟩ are the initial and (virtual) intermediate electronic states, h̄ωi/h̄ωo is the inci-
dent/scattered photon energy and h̄ωph is the energy of the created phonon. This term
corresponds to a Stokes Raman processes where a phonon excitation is created, correspond-
ing to an energy loss of the scattered photons by which the δ-function enforces energy
conservation. This equation is the dominant process on resonance conditions, but is also
the leading term in off-resonance conditions, describing a process where electron-lattice in-
teractions lead to the creation of a phonon through intermediate virtually-excited electronic
transitions. Raman is typically performed in off-resonance conditions, although resonance
effects are important in heavily studied graphene and TMDs [166, 167].

Raman is principally used to measure optical phonons with q ≃ 0, where the latter is
restricted by the small photon momentum in the optical range. The types of phonons that
can be measured by this technique are restricted by symmetry to be inversion-symmetric
lattice vibrations (in centrosymmetric crystals). These are Γ-point optical phonons whose
lattice displacements Q⃗i belong to parity-even irreducible representations (e.g. Ag, Bg, Eg).
The symmetry of the phonons measured by Raman can be determined through the corre-
sponding Raman tensor, which reflect the underlying point group of the crystal. Similar
to the factorization of the polarization dependence and the matrix elements of the matter
states in the case of resonant X-ray scattering, the form of the Raman tensor is,

I(ϵ′, ϵ) ∝
∣∣(ϵ′)∗µRµνϵν

∣∣2
where Rµν is the (3x3) Raman tensor, depending only on the material, and ϵ′/ϵ are scat-
tered/incident polarization vectors. Symmetry restricted Raman tensors for different irreps
are extensively tabulated and can be determined from group theoretical arguments [167, 168].
For non-resonance Raman scattering from phonons, the Raman tensor is symmetric and real,
in accordance with the symmetry properties of the electronic polarizability [167]. The full
polarization dependence of the Raman-active phonons is a useful tool for the characterization
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of the point group symmetry of the material.
As an example, we can consider the two Raman active modes observed in backscattering

geometry in the CdCl2 structure with R3̄m space group, relevant for the high-temperature
phase of the nickel dihalides [42]. The two Raman active phonons are of Ag and Eg symmetry,
with corresponding Raman tensors,

R(Ag) =

a 0 0

0 a 0

0 0 b

 , R(Eg) =

a 0 0

0 −a b

0 b 0


where a,b are two real constants and the z axis of the tensor is along the C3z axis. One
can measure the Raman tensor by monitoring the scattering intensity with linear polarized
excitation with a variable angle θ with respect to the crystallographic axes. One further
resolves the scattered light with an analyzing polarizer to measure the scattered light either
parallel (‘XX’) or perpendicular (‘XY ’) to the incident light. In backscattering geometry,
these scattering configurations are referred to as the z(xx)z̄ and z(xy)z̄ channels, respec-
tively, where the notation ki(ϵiϵo)ko labels the incident wavevector, incident polarization,
scattered polarization and scattered wavevector. In this case, one has incident polarization
ϵ = (cos(θ), sin(θ), 0) and scattered polarizations ϵ′ = ϵ (XX) and ϵ′ = (− sin(θ), cos(θ), 0)

(XY ), respectively. In this configuration, one finds that the intensity for the Ag phonon
IXX(Ag) = |a|2 and IXY (Ag) = 0, and for the Eg phonon IXX(Eg) = |a|2 cos2(2θ) and
IXY (Eg) = |a|2 sin2(2θ). Thus, the intensity of Ag phonons in R3̄m symmetry are angle-
independent in XX and extinct in XY , while Eg phonons are four-fold in both XX and
XY with an out-of-phase angle-dependence.

The use of circular polarization also provides well defined selection rules in Raman. Circu-
lar polarizations propagating along the z axis are given by σ+/− = (1/

√
2,±i/

√
2, 0). Contin-

uing the above example, one finds Iσ′
+σ+

(Ag) = |a|2 and Iσ′
−σ+

(Ag) = 0, while Iσ′
+σ+

(Eg) = 0

and Iσ′
−σ+

(Eg) = |a|2. Thus, in the R3̄m phase, the Ag phonons only appear in the co-
rotating channels (σ′

+σ+), (σ′
−σ−) and Eg phonons appear only in the counter-rotating

channels (σ′
+σ−),(σ′

−σ+). Relaxation of these selection rules can be a sensitive detection
of reduced point group symmetry. Finally, we note that for symmetric Raman tensors off of
resonance conditions and in the absence of time-reversal symmetry breaking, phonons have
the same intensity for incident σ+/σ− and further obey Iσ′

+σ+
= Iσ′

−σ− and Iσ′
−σ+

= Iσ′
+σ− ;

that is, excitations do not show circular dichroism.
Of more interest for us is the measurement of magnetic excitations with Raman. Early

studies showed that in rutile antiferromagnets (e.g. MnF2, CoF2 and NiF2), single- and
two-magnon excitations could be observed [169], confirmed by direct comparison to neutron
scattering measurements. More recently, the measurement of magnetic excitations, including
spin wave gaps, quasi-elastic magnetic scattering, and two-magnon scattering have been
crucial characterization tools for magnetic order in vdW magnets, including e.g., CrI3 [170],
VI3[171], and NiPS3 [25, 68].
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In the original works, the inelastic scattering by magnons was considered by two mech-
anisms involving either direct M1 transitions or E1 transitions coupled through virtual in-
termediate electronic states with finite L and non-zero SOC [169], with the latter capturing
the correct observed polarization selection rules. Thus, the observation of magnetic exci-
tations is likely related to SOC-assisted dipole transitions. This is similar to RIXS, except
the involved electronic states at the two energies (X-ray vs optical) are quite distinct, with
optical measurements providing weaker overall SOC within the valence shell in contrast to
the strong core-level SOC in L2,3-edge RIXS.

The Raman tensor for q = 0 magnons through the E1 mechanism is antisymmetric (for
orbital singlet ground state configurations) and couples to the cross product ϵ′ × ϵ [169].
The specific Raman tensors can be predicted with knowledge of the magnetic point group
symmetry and the irrep of the magnon excitation at the Γ point. For the simplest case of a
purely anti-symmetric Raman tensor in the backscattering configuration,

R(M) =

(
0 ia

−ia 0

)
the expectation is IXX(M) = 0, IXY (M) = |a|2 for linear polarized light, and Iσ′

+σ+
(M) =

Iσ′
−σ−(M) = |a|2, Iσ′

−σ+
(M) = Iσ′

+σ−(M) = 0. Thus, simple magnon excitations of purely an-
tisymmetric form are extinct in parallel polarization, have an angular independent intensity
in cross-polarization, and appear in the co-rotating channel with circular polarization. The
specific form of the Raman tensor for a magnon requires full consideration of the magnetic
point group symmetry, and are not generally antisymmetric [170, 172].

Further, antisymmetry of the Raman tensor alone is not sufficient to confirm a magnetic
origin of the correspondent excitation, as such tensors are also allowed from time-reversal
even processes on resonance. The time-reversal asymmetric processes (magnetic) can be
confirmed through comparison of Stokes (St, creation) and anti-Stokes (ASt, destruction)
scattering [173]. The complex coefficients of magnetic Raman tensors reflect the fact that
these terms reverse sign under a time-reversal operation. For the ground state, applying
time-reversal corresponds to reversing the local spin moment, |S,ms = S⟩ → |S,ms =

−S⟩. Meanwhile, the magnons can be expressed in terms of the raising/lowering operators
at a given magnetic site i, S+/−

i corresponding to ∆ms = ±1, respectively. From the
expression of the Raman tensor in terms of these effective spin operators, one can observe
a close correspondence between time-reversed states and St/ASt processes. Besides the
usual thermal factor from Bose-Einstein occupation [173], ASt scattering is equivalent to
applying time-reversal in regular St scattering [173]. For real, symmetric Raman tensors
(e.g. phonons) the tensors are the same and the expected St/ASt intensity ratio is given
only by the usual Bose factor. For magnetic excitations, anomalous St/ASt ratios can be
observed [174], related to finite circular dichroism which may become allowed if time-reversal
symmetry is broken. Specifically, one expects opposite dichroic contrast in St/ASt if the
dichroism is of magnetic origin [170]. Raman spectroscopy of the phonons and magnetic
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excitations is used in Chapters 5 and 6 to study the magnetic phase of NiI2 down to the
few-layer limit and at high-pressures, respectively.

75



Chapter 5

Evidence for a single-layer van der Waals
multiferroic

This chapter is adapted from the corresponding paper published in Nature (Ref. [37]) with
modifications, corrections, and additional discussion.

This paper is a co-first author work between Qian Song, Emre Ergeçen, Batyr Ilyas and
the present author (C.A.O.). Q.S. initiated the project, grew the crystals and fabricated the
BPE devices. Q.S. and C.A.O. performed the Raman spectroscopy, LD, and photocurrent
measurements, supervised by Riccardo Comin. E.E. and B.I. performed the SHG measure-
ments and corresponding analysis, supervised by Nuh Gedik. The first principles calcula-
tions were performed by Jesse Kapeghian, Danila Amoroso and Antia Botana. D.A., Paolo
Barone and Silvia Picozzi performed the Monte Carlo calculations. Takashi Taniguchi and
Kenji Watanabe provided and characterized the hBN crystals.

5.1 Introduction

Multiferroic materials have garnered wide interest for their exceptional static [33, 45, 175] and
dynamical [176–178] magnetoelectric properties. In particular, type-II multiferroics exhibit
an inversion-symmetry-breaking magnetic order which directly induces a ferroelectric polar-
ization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii-
Moriya effect [33, 179] (Chapter 3). This intrinsic coupling between the magnetic and
dipolar order parameters results in record-strength magnetoelectric effects [33, 180]. Two-
dimensional materials possessing such intrinsic multiferroic properties have been long sought
for harnessing magnetoelectric coupling in nanoelectronic devices [17, 21, 175]. In this chap-
ter, we report type-II multiferroic order in a single atomic layer of the transition metal-based
van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-
screw spin helix with given handedness, which couples to the charge degrees of freedom to
produce a chirality-controlled electrical polarization. We use circular dichroic Raman mea-
surements to directly probe the chiral magnetic ground state and its electromagnon modes
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originating from dynamic magnetoelectric coupling. Using optical linear birefringence and
second-harmonic generation measurements, we detect an anisotropic ground state break-
ing three-fold rotational and inversion symmetry, supporting polar order. The evolution of
the optical signatures as a function of temperature and layer number reveals an ordered,
magnetic, polar state that persists down to the ultrathin limit of monolayer NiI2. These
observations establish NiI2 and transition metal dihalides as a new platform for studying
emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-
dimensional limit.

The recent discovery of intrinsic magnetic order in atomically-thin van der Waals (vdW)
materials [6, 7] has created new opportunities for the study of collective spin phenomena in
free-standing two-dimensional (2D) systems and nanoscale devices [13, 14]. In past years,
significant efforts have been made to achieve direct electrical control and manipulation of
magnetic properties in 2D [17, 21], but the mechanisms remain elusive. A more promising
avenue towards realizing electrical control of 2D magnetism may be found in vdW materials
with intrinsic type-II multiferroicity. In type-II multiferroics, the direct coupling between
the magnetic and ferroelectric order parameters is enabled by the presence of a spin configu-
ration lacking inversion symmetry [181–183], resulting in a large and robust magnetoelectric
response [33, 36, 180].

Among possible multiferroic vdW materials, several families have been identified [12, 13,
184], most prominently the transition metal dihalides (MH2, M = transition metal, H =
halogen). Of particular promise is the magnetic semiconductor NiI2 [12, 46, 47, 185, 186],
which is host to a rich phase diagram including a type-II multiferroic ground state [45,
187]. NiI2 crystallizes in the rhombohedral R3̄m structure at room temperature, forming
a triangular lattice of Ni2+ ions (3d8, S = 1) which are stacked along the c-axis and held
together by weak interlayer bonding [Fig. 5.1(a)]. The 2D triangular lattice geometrically
frustrates the intralayer magnetic exchange interactions that govern the long-range ordering
of the local Ni spins [46, 47, 188]. This leads to a sequence of magnetic phase transitions in
NiI2, first to an antiferromagnetic (AFM) state at TN,1 ≃ 75 K1, and then to a proper-screw
helimagnetic ground state below TN,2 ≃ 59.5 K. The latter exhibits long wavelength helical
magnetic structure with propagation vector Q = (0.138, 0, 1.457) reciprocal lattice units
(r.l.u.) [42] [Fig. 5.1(b)]. The helimagnetic transition is concomitant with the appearance of
an in-plane electrical polarization perpendicular to the ordering vector [45] as well as crystal
symmetry lowering from rhombohedral to monoclinic [42].

In this study, we investigate the multiferroic states in bulk and few-layer NiI2 crystals
[189]. Due to the complexity of the ground state, which simultaneously breaks mirror,
rotational, and inversion symmetries, we employ a suite of complementary optical techniques
to track the multiple signatures of the polar and magneto-chiral orders, as a function of
temperature and layer number. Optical birefringence is found to originate from a lowering of

1The nature of this antiferromagnetic state between 60 and 75 K has not been elaborated in detail,
although ferroelectric polarization along any axis has not been observed [45]. This intermediate state has
important implications for the leading magnetic interactions in NiI2 and is explored in Chapter 7.
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the lattice symmetry at both the TN,1 and TN,2 transitions, and is consistent with a breaking
of c-axis three-fold rotational symmetry (C3z) and a reduction to a single in-plane two-
fold symmetry operation (C2) [190] (Chapter 4). We further use second harmonic generation
(SHG) as a probe of inversion-symmetry breaking, which, together with lowering of rotational
symmetry to C2, enables us to track the presence of polar order down to the single-layer
limit. To confirm the presence of magnetochiral order in the helimagnetic phase of NiI2,
we perform Raman spectroscopy with circularly polarized light to resolve a coupled spin-
lattice electromagnon excitation with strong optical activity as a signature of spin chirality.
These experimental findings are supported by first-principles and Monte Carlo simulations,
together providing robust evidence for the persistence of type-II multiferroic order down to
single-layer NiI2.

5.2 Results

5.2.1 Optical Characterization of Multiferroic Order in Bulk NiI2
We first performed high-resolution, single-domain linear dichroism measurements on bulk
NiI2 – representing the difference in reflectivity ∆R between two perpendicular, linear po-
larization states – across the two transitions at TN,1 and TN,2 [Fig. 5.1(c)]. The appearance
of optical birefringence indicates the breaking of the three-fold (C3z) rotational symmetry
in the parent 3̄m point group (see Fig. 5.10). The temperature dependence of ∆R bears a
striking resemblance to the magnetic susceptibility (χmag, Fig. 5.1(c)), with a kink at TN,1

and a sharp jump at TN,2. Therefore, the reduction in the lattice rotational symmetry is a
direct proxy for the change in the magnetic ground state. We further record the dependence
of the linear dichroism signal on the angle of linear incident polarization with respect to the
crystallographic axes, ∆R(θ). These results (inset of Fig. 5.1(c) and Fig. 5.10) display a
maximum dichroism of positive sign (blue lobes) for polarization parallel to the crystallo-
graphic a-axis and display the expected two-fold rotational symmetry, confirming that the
low-temperature phase is characterized by a local, unique C2 axis.

To confirm the polar nature of the low-temperature symmetry group, we measured SHG
in bulk NiI2 from a mono-domain region identified through SHG imaging (Fig. 5.1(d) and
Fig. 5.8). Electric-dipole SHG (E1 SHG) is used as a direct probe of inversion-symmetry
breaking [191]. Here, the E1 transition mechanism is ensured by tuning the energy of the
fundamental beam to a wavelength λ = 991 nm that is below the optical band-gap and dd

transitions [190] (for more details, see Chapter 8). This is verified with rotational anisotropy
SHG (RA-SHG) measurements, which agree well with the E1 SHG tensor elements predicted
for the C2 monoclinic point group in the helimagnetic phase (inset of Fig. 5.1(c) and Fig.
5.8 below). For wavelengths in the vicinity of the d-d transitions (λ = 780 and 826 nm),
M1-transition SHG originating purely from spin order, which does not necessitate inversion
symmetry breaking, is also present (see Fig. 5.8). The combined observation of E1 SHG (lat-
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tice inversion-symmetry breaking) and optical birefringence (rotational-symmetry breaking)
directly confirms the presence of a polar phase in NiI2 and an underlying single-Q, helical
magnetic ground state. The resulting electrical polarization induces a bulk photovoltaic
effect which was detected in photocurrent measurements on a thin NiI2 flake (see Fig. 5.4).

To underscore the connection between the optical signatures of polar order and the un-
derlying magnetic state, we have performed Raman measurements (λ = 532 nm) on bulk
NiI2. Above TN,1, the cross-polarized (XY) Raman spectrum of NiI2 displays a single phonon
at 80.2 cm−1 of Eg symmetry [189]. Our measurements reveal a major change in the Raman
response in the magnetically-ordered phase, including the appearance of two new high-energy
modes around 120.8, and 168.8 cm−1 [Fig. 5.1(e)] which exhibit polarization selection rules
corresponding to single magnon excitations [170, 192] [see Fig. 5.5, 5.6] (Chapter 4). At low-
energy transfer, a pronounced quasi-elastic signal (QES) develops on approaching TN,1[189]
[Fig. 5.1(e)]. Below TN,2, this broad excitation hardens into two sharp and distinct modes
[Fig. 5.1(e)/(f)], which display a complex set of polarization selection rules compared to
the higher energy magnon and phonon excitations [see Fig. 5.5, 5.6] suggesting that they
may be electromagnons [33, 176–179]. In support of this interpretation, circular polarized
excitation reveals a large Raman optical activity (ROA) for the electromagnon peaks [Fig.
5.1(f)] that is absent for all other phonon and magnon excitations [Fig. 5.5]. The presence
of large ROA for the electromagnon underscores it as a direct signature of magneto-chiral
order. The reversal of the ROA between Stokes and anti-Stokes scattering [Fig. 5.1(f)] is in
agreement with the optical selection rules observed for Raman-active magnetic excitations
in previous studies [170].

5.2.2 Layer-Dependence of the Multiferroic Transitions

The presenteed optical characterization of bulk samples serves as a blueprint for the explo-
ration of the multiferroic state in few-layer NiI2 samples. Figure 5.2(a) shows an optical
image of 1- and 2-layer NiI2 crystals grown by physical vapor deposition on hBN. The op-
tical anisotropy of NiI2 is directly captured using cross-polarized microscopy, signaling the
presence of birefringent domains on both the 1- and 2-layer regions at T = 5 K [Fig. 5.2(b)].
As temperature is increased, the birefringent domains vanish from the 1-layer region between
T = 15-25 K, and from the 2-layer region between T = 25-35 K [Fig. 5.2(b)]. Crucially,
a reduction of rotational symmetry from three-fold to two-fold is also observed in single-
layer samples, as confirmed by angular dependent linear dichroism (∆R(θ)) measurements
[Fig. 5.2(c)]. Angle dependent linear dichroism traces collected in different domains, de-
termined from the cross-polarized images, show the presence of unique two-fold (C2) axes
(highlighted by dashed lines in Fig. 5.2(c)). The detailed layer dependence of the rota-
tional symmetry breaking transition is obtained through birefringence-induced polarization
rotation measurements (θ(T )) in Fig. 5.2(d), which reveals a monotonic evolution of the
transition temperatures from 1- to 4-layer samples. As discussed in Chapter 4 and below,
birefringence-induced polarization rotation captures the same optical signature, namely ro-
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Figure 5.1: (a), The high-temperature R3̄m structure of NiI2. (b), The helical magnetic
structure of bulk NiI2 below TN,2 = 59.5 K (see text). (c), Temperature-dependent linear
dichroism (∆R(T )) measurements on a mono-domain region of bulk NiI2, overlaid on the
magnetic susceptibility χmag. The inset shows the angular-dependence of ∆R at T = 30 K –
radial lines indicate the crystallographic a axes and the dashed line corresponds to the local
C2 axis. (d), Below band gap (λ = 991 nm) temperature-dependent SHG in bulk NiI2. The
inset shows rotational anisotropy SHG patterns for a mono-domain region in the ∥ and ⊥
polarization channels with the dashed line corresponding to the C2 axis orientation. Vertical
dashed lines in (c),(d) indicate the TN,1 and TN,2 transitions. (e), Temperature-dependent
Raman spectra in the XY polarization channel. (f), Circular-polarized Stokes and Anti-
Stokes Raman spectra of the soft mode excitations for σ+/σ− incident polarization (top)
and the net circular dichroism (σ+ − σ−) (bottom).

tational symmetry breaking, as optical linear dichroism measurements. From these data,
we define the transition temperatures as the values of maximum slope of the polarization
rotation signal (where dθ/dT is minimum), yielding 21 K for single-layer, 30 K for 2-layer,
39 K for 3-layer and 41 K for 4-layer flakes.

Temperature-dependent E1 SHG (λ = 991 nm) measurements from 4-, to 1-layer NiI2
samples [Fig. 5.2(e)] provide complementary information on the breaking of inversion sym-
metry down to the single layer limit. For all samples, the SHG intensity displays a clear drop
near the transition temperatures observed independently from the birefringence data. The
SHG signal from single-layer samples is genuine as demonstrated by temperature-dependent
SHG imaging of multiple monolayer regions (see Fig. 5.9 below). For these SHG spatial
maps, we note a temperature-independent residual SHG contrast from single-layer NiI2 sam-
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ples which likely originates at the NiI2/hBN interface due to surface inversion symmetry
breaking. The breaking of inversion symmetry demonstrated through SHG and the 3-fold
rotational symmetry breaking observed in birefringence measurements [Fig. 5.2(b)] establish
the persistence of a polar ground state in few- and single-layer samples. Concurrently, Ra-
man measurements reveal the persistence of the magnetic soft modes down to the two-layer
limit (see below Fig. 5.7 for PVD samples and Fig. 5.11 for exfoliated chemical vapor trans-
port grown samples). The quantitative agreement of the transition temperatures from these
independent measurements, as well as the smooth trend of these optical signatures as layer
number is reduced from bulk to the monolayer, thus offer strong evidence for the survival of
the polar, helimagnetic phase down to the monolayer limit in NiI2.
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Figure 5.2: (a), Optical image of 1- and 2-layer NiI2 samples grown on hBN with atomic
step height profiles measured by AFM (scale bar: 5 µm). (b), Temperature-dependent
polarized microscopy images on the same region in (a). Dashed lines demarcate the 1-
and 2-layer regions (scale bars: 5 µm). (c), Angular-dependent linear dichroism ∆R(θ)
measurements in monolayer NiI2 on three monodomain regions determined from polarized
microscopy, as in (c). Radial lines indicate the crystallographic a-axes and the dashed
lines indicates the orientation of the local C2 axis, as shown in the schematics at the left.
(d), Temperature-dependent, birefringence-induced polarization rotation θ(T ) measurements
acquired in mono-domain regions of 1- to 4-layer NiI2 samples. (e), Temperature dependent
electric-dipole SHG (λ = 991 nm) intensity for 1- to 4-layer samples. Error bars in the SHG
data are smaller than the size of the data points. Dashed curves in (d) and (e) represent
dθ/dT calculated from layer-dependent θ(T ) data in (d). Data are normalized to the value
at 5 K and offset vertically for clarity.

5.2.3 Theoretical Basis for the Multiferroic phase of few-layer NiI2
The observed reduction of the transition temperature as layer number is decreased is strongly
indicative of the relevant role played by the interlayer exchange interaction, as also reported
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for other 2D magnets [6, 192–196], while the finite transition temperature detected in the
monolayer sample points to a non-negligible magnetic anisotropy.

60

40

20

E
xp. T

C
  [K

]

3

2

1

1 10 100
Layers [N]

(a) (b) (c)

10 20 30 706050400

T C
(N

) / 
T C

1L

0.0 0.1 0.2 0.3 0.4 0.5

3

2

1

experiment

T N
,2

bu
lk

 / 
T C

1L

x

0

40

80

120

0

1

2

3

C
VPX

PZ

PY

|P
i | 

[×
10

-5
 e

 . 
Å

]

bulk

Exp. - I2w(T)
Exp. - θ(T)
MC Sim.

Temperature [K]

Figure 5.3: (a), Evolution of the reduced temperature t as a function of the interlayer
exchange J⊥/J∥, where t = TN,2/T

1−layer
c is the ratio of bulk and 1-layer transition temper-

atures. Circles denote Monte Carlo estimates, the solid line linearly extrapolates t to larger
J⊥. Horizontal dashed line indicates the experimental reduced temperature, t =≃ 2.8, while
the vertical one points to the estimated J⊥ ≃ 0.45J∥. (b), Evolution of the critical tem-
perature as a function of the number of layers (N). Full symbols (open diamonds) denote
the Monte Carlo (experimental) estimates and full lines correspond to the empirical relation
provided in Methods. Dotted horizontal lines represent the bulk transition temperature cor-
responding to the effective interlayer interaction. (c), Electrical polarization components in
units of 10−5eÅ (absolute value, closed square) and specific heat (stars) as a function of
temperature, relative to the proper-screw spiral order represented in the insets (spin texture
– black arrows represent in-plane components of spins, colormap indicates the out-of-plane
spin component, sz=+(-)1 red(blue)- and S(Q), respectively), as obtained via Monte Carlo
simulations.

We performed Monte Carlo (MC) simulations to further investigate the role of the inter-
layer exchange interaction in the helimagnetic transition temperature. Our starting model
is the classical 2D anisotropic Heisenberg model recently introduced for NiI2 monolayer
[47], supplemented by a nearest-neighbor antiferromagnetic interlayer exchange J⊥ in order
to describe the bulk phase. The presence of anisotropic interactions guarantees a finite-
temperature transition to a long-range ordered magnetic phase even in the monolayer [Fig.
5.3(c)]. On the other hand, the transition temperature of the bulk system is found to increase
proportionally to J⊥ [Fig. 5.3(a)]. Experimentally, the helimagnetic transition temperature
of the 1-layer sample is strongly reduced from its bulk value, being TN,2/T

1−layer
c ≃ 2.8. A

linear extrapolation of the MC estimates for transition temperatures as a function of J⊥
allows to estimate a quite large interlayer exchange, J⊥ ∼ 0.45 J∥, where J∥ is the domi-
nant ferromagnetic intralayer interaction. Using J∥ ≃ 7 meV [47], the estimated interlayer
exchange is J⊥ = 3.15 meV; this is in quite good agreement with the value we directly cal-
culated by means of Density Functional Theory (DFT) calculations for 2-layer NiI2, that
is J (DFT )

⊥ ∼ 3 meV. The evolution of transition temperatures as a function of the sample
thickness has also been estimated with MC simulations for different number of layers N
(ranging from 1 to 5) and at fixed J⊥. Remarkably, all MC estimates and the experimental
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data are well described by a simple empirical formula that depends only on the ratio of bulk
and 1-layer transition temperatures with no fitting parameters, as shown in Fig. 5.3(b).

The possible onset of a magnetically induced electric polarization in 1-layer NiI2 has been
further investigated in the framework of the generalized spin-current (or Katsura-Nagaosa-
Balatsky, gKNB) model [40], where an electric dipole may be induced by spin pairs according
to the general expression Pij = M · Si × Sj (Chapter 3). The 3×3 M tensor has been
evaluated from first-principles and used to estimate the polarization of NiI2 monolayer from
MC simulations. As shown in Fig. 5.3(c), a proper-screw spiral propagating along the a

lattice vector stabilizes below Tc ∼ 27 K, in reasonable agreement with the experimental value
of 21 K. The corresponding magnetic point group is the polar 21′ group, with the twofold
rotational axis and the electric polarization coinciding with the spiral propagation vector
and hence with the a axis, in agreement with the optical measurements. Within the gKNB
model, the handedness of the spin spiral uniquely determines if the electric polarization is
parallel or antiparallel to the polar axis. We further notice that when the magnetic helix is
slanted from the basal plane with a propagation vector Q = (0.138,0,1.457), as it occurs in
bulk samples, the purely spin-induced polarization as evaluated from our estimated M-tensor
is always parallel to the crystallographic a axis.

5.3 Discussion

NiI2, down to the 2D limit, is therefore an example of a material with improper electronic
ferroelectricity, where the electric polarization is driven by the emergence of an inversion-
symmetry breaking magnetic order (such as the proper-screw spin helix) in an otherwise
centrosymmetric lattice. The propensity for such spin-spiral ordering in the single-layer
limit can be associated to the significant frustration of the intralayer exchange interactions
on the underlying triangular lattice, along with crucial magnetic anisotropy effects [47]. Fur-
thermore, NiI2 shows superexchange mediated by the extended 5p states of the iodine ligands,
the latter also introducing a significant spin-orbit coupling (SOC). As a result, non-negligible
spin interactions beyond nearest neighbor Ni sites play a relevant role in the stabilization of
the resulting proper-screw spin-helix, the latter giving rise to SOC-induced electric polariza-
tion, as described by the generalized KNB model [40]. In this framework, the observation of
SHG and birefringence in monolayer NiI2 is consistent with the proposed theoretical picture,
providing a direct indication of a non-centrosymmetric polar magnetic texture that develops
below the identified Curie temperature of 21 K. The observed suppression of the multiferroic
transition temperature with reducing layer number further allowed us to clarify the role of
the interlayer exchange interactions, which are known to contribute to the orientation of the
spin-rotation plane and magnetic ordering vector in the bulk [42, 188].

Our results point to the crucial role of SOC and orbital extension of the ligands in mod-
ulating both the long-range magnetic interactions and the exchange anisotropy, ultimately
determining the magnetic ground state among closely lying, competing phases [47]. This
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suggests that changing the ligand could be a powerful tuning knob to realize new exotic
magnetic ground states in 2D, including helices, cycloids and skyrmions with unique topo-
logical and multiferroic properties [46, 47, 197]. In addition, our observations of a complex
magnetic ground state in an atomically-thin vdW crystal introduces new avenues for ex-
ploring multiferroicity which are inherently unique to 2D systems. These include the robust
and direct electrical control of magnetism through electrostatic doping or external fields
and currents, or the realization of new interfacial multiferroic properties in artificial vdW
heterostructures. Moreover, 2D materials with gate-tunable magnetoelectric coupling might
offer a new platform for continuous tuning of multiferroic systems toward quantum critical
behavior [198]. While our optical measurements establish the persistence of multiferroicity in
NiI2 to the monolayer limit, further characterization through piezo-response force microscopy
or high-sensitivity pyroelectric current measurements will be of great importance to confirm
the electrical manifestations of multiferroicity and assess its potential for these future device
applications.

5.4 Methods

Growth and Characterization of Few-Layer NiI2 Crystals Bulk-like NiI2 crystals were
grown on 300 nm SiO2/Si and few-layer crystals were grown on hexagonal boron nitride
(hBN) substrates via physical vapor deposition (PVD) in a horizontal single-zone furnace
equipped with a 0.5 in. diameter quartz tube at ambient pressure. hBN was mechanically
exfoliated and transferred onto 300 nm SiO2/Si substrates, then annealed in vacuum at 700
°C for 1 h prior to the growth. In a typical synthesis, 0.1 g of NiI2 powder (99.5%, anhydrous,
Alfa Aesar) was positioned at the center of the furnace as the source material and the SiO2/Si
substrate was placed downstream at the maximum temperature gradient point. The furnace
was purged by pumping the quartz tube below 0.1 Torr and then refilled with 99.99% Ar
gas three times. When growing bulk-like NiI2 crystals, the furnace was heated to 450◦C in
15 minutes and held at that temperature for 10 minutes. For few-layer NiI2 samples, the
furnace was heated to 380-420◦C in 15 minutes and then the SiO2/Si substrate was taken
out immediately and stored inside a nitrogen-filled glove box (O2 < 0.5 ppm, H2O < 0.5
ppm). The sample thickness was determined by atomic force microscopy (AFMWorkshop
HR), which was performed inside a separate nitrogen-filled glovebox (O2 < 100 ppm, H2O
< 1 ppm), using a silicon probe in tapping mode.

Growth and Characterization of Single Crystal NiI2 Single crystal NiI2 was grown by
chemical vapor transport (CVT), from elemental precursors with molar ratio Ni:I=1:2, at
a temperature gradient 700◦C to 500◦C. The magnetic susceptibility was measured during
field cooling at 0.9 T applied out of plane, using a Magnetic Property Measurement System
(MPMS-3, Quantum Design Inc.). X-ray diffraction of CVT grown crystals was performed
in Bragg geometry using Cu Kα radiation (PANalytical), and the refined unit cell at room
temperature is a = 3.91 Å, c = 19.93 Å.
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Device fabrication for bulk photovoltaic effect measurements. The photocurrent
device was fabricated by depositing two Ti(5nm)/Au(50 nm) electrodes on a sapphire sub-
strate using a 20 µm wide wire mask. A PVD-grown bulk-like NiI2 flake was then picked up
and dropped down across the gap using a polymer-based dry transfer technique. To min-
imize the exposure to moisture, the polymer was dissolved in anhydrous chloroform inside
the glovebox. To ensure a good and uniform electric contact, a carbon copy of the metal
pads was created using the same dry transfer technique and stacked on top of the sample to
provide a vertically symmetric contact. We used a 0.3 mW linearly-polarized 532 nm laser
for the photocurrent measurement. The current was measured using a Keithley 2401 current
meter, and the magnetic field was applied perpendicular to the electric field in plane using a
1 T electromagnet from Montana Instruments. The photocurrent measurements are shown
in Fig. 5.4.

Raman Spectroscopy Measurements Polarized Raman experiments were performed in
a back-scattering geometry using a confocal microscope spectrometer (Horiba LabRAM HR
Evolution) with a 50x objective lens and 532 nm laser excitation at a power of 300µW
(40µW) for bulk (few-layer) samples, respectively. Scattered light was dispersed by a 1800
lines/mm grating and detected with a liquid nitrogen cooled charge-coupled device (CCD)
camera. The spectrometer integration time was 30/60 minutes for bulk/few-layer samples,
and each scan was taken twice and then averaged before analysis. Polarized Raman spectra
were recorded with a linearly polarized incident beam. For angle-resolved polarized Raman
spectroscopy (ARPRS) measurements, an achromatic half-wave plate was placed just before
the objective and rotated in steps of 7.5° from 0° to 180°. An analyzer was placed in front of
the spectrometer entrance and kept vertical/horizontal for parallel (XX)/perpendicular (XY)
configurations, respectively. For circularly polarized measurements, an achromatic quarter-
wave plate was placed in front of the objective with fast axis oriented at +/- 45 degrees
with respect to the incident linear polarization for σ+/σ− circular incident polarization,
respectively. For the reported circularly polarized spectra, no analyzing polarizer is used
unless otherwise specified. Temperature-dependent measurements in the range 5 − 300K
were performed using a Montana Instruments S50 closed-cycle optical cryostat.

Birefringence Measurements A supercontinuum light source (NKT Photonics, Fianium)
monochromatized to λ = 532 nm/550 nm and a bandwidth of approximately 1 nm was used
as excitation for angular-dependent linear dichroism and birefringence-induced polarization
rotation measurements, respectively. All measurements were performed at normal incidence
in a Montana Instruments closed-cycle optical cryostat. Linear dichroism measurements were
performed with a photo-elastic modulator (PEM-100, Hinds Instruments) on the incident
path of the optical setup. The beam incident on the PEM is prepared in linear polarization
making an angle of 45◦ with the respect to the PEM fast axis and amplitude modulated
with a mechanical chopper. The PEM retardance was set to 0.5λ to modulate the incident
polarization between ±45◦ linear polarization states. The light is then focused onto the
sample using a 50x objective lens. The backscattered light is measured by an amplified pho-
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Figure 5.4: (a), Optical image of the BPE device. A PVD grown bulk-like NiI2 flake trans-
ferred across a sapphire gap, bridging two gold pads as electrodes. Electric field is applied
between the electrodes and in a direction nearly parallel to the crystallographic a-axis, while
the magnetic field is applied perpendicular to the electric field in plane. (b), The electric
field dependence of the photocurrent at 30 K, in the multiferroic phase and at 100 K (the
paramagnetic phase), reveals the presence of a polarization-induced internal electric field in
the multiferroic phase. (c), The position dependence of the photocurrent along the dashed
line in (a), under zero bias shows a uniform, bulk contribution to the photocurrent from the
NiI2 between the electrodes. (d), The temperature dependence of the zero-bias photocur-
rent, showing a strong enhancement in the multiferroic phase. (e), The external magnetic
field increased the zero-bias photocurrent by 10-15%, which we ascribe to an increase of the
electric polarization from magnetoelectric coupling. Linearly polarized 532 nm light (0.3
mW power) was used in the BPE measurement.

todiode (ThorLabs PDA100A2), whose output is connected to a lock-in amplifier (Stanford
Instruments SR865A) referenced to the second harmonic of the fundamental PEM frequency
f = 50 kHz. The total reflectance of the sample, used as a normalization, is monitored by a
second lock-in amplifier referenced to the chopping frequency f = 557 Hz.

To perform angular-dependent linear dichroism measurements, the angle of the perpen-
dicular linear polarization states created by the PEM is varied across the crystal using a
zero-order half-wave plate placed just before the objective. In order to ensure the angular-
dependence is recorded from a uniform, mono-domain region of the sample, polarized mi-
croscopy images were first recorded at the base temperature T = 5 K. The sample was held
at this temperature for the duration of the angular-dependent measurements in order to
maintain the same distribution of birefringent domains. Birefringence-induced polarization
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rotation measurements on the few- and single-layer samples were performed with the PEM
on the detection path of the optical setup with a retardance amplitude of 0.486λ, using a
lock-in amplifier at the second harmonic of the fundamental PEM frequency for signal col-
lection. The unrotated incident beam is kept parallel to the PEM fast-axis and analyzed
by a polarizer at 45 deg. before being measured by the photodiode. This setup provided a
sensitivity down to 10 µrad. For higher resolution measurements in the few-layer samples
(Fig. 5.2), the reflected beam polarization was analyzed using a PEM (0.5 λ retardance) on
the detection path, followed by a Wollaston prism at 45◦ and a balanced photodiode. This
setup provided higher sensitivity down to < 1 µrad.

Polarized microscopy was performed with a broadband visible LED light source, a stan-
dard CMOS-based monochrome camera and Glan-Thompson polarizers on both the input
and output light paths in reflection geometry. A detuning of 0.5 (2.0) degrees from a cross-
polarized configuration was used to maximize the contrast from birefringent domains and a
5 (2) second integration time was used for the images of few-layer (bulk) samples. Cross-
polarized contrast images were obtained as a function of temperature by auto-correlating the
images for different temperatures to overlap with a high-temperature (T > TN,1) reference,
and subtracting the low and high temperature images.

Layer-Dependent Second Harmonic Generation Microscopy. In second harmonic
generation (SHG) microscopy, an objective lens (Olympus LMPlanFL-N 50x) focuses an ul-
trashort laser beam onto the sample located in a cryostat (Janis ST-500). For wavelength
dependent SHG experiments, we used an optical parametric amplifier (ORPHEUS, Light
Conversion) seeded with a regenerative amplifier (PHAROS SP-10-600-PP, Light Conver-
sion). These allowed us to tune the output wavelength in a wide spectral range. The
estimated spot size on the sample is ∼ 2µm. The laser fluence incident on the sample was
set to 1 mJ/cm2. No sample damage or degradation was observed during the measurements.
Upon reflection, the second harmonic component of the beam radiated from sample was
selected by a dichroic mirror and a monochromator with 2 nm spectral resolution. The sec-
ond harmonic photons were detected and counted using a photomultiplier tube (Hamamatsu
PMT) and a dual-channel gated photon-counter (Stanford Research SR400). To decrease
the background and dark counts, the photon counter was synchronized and gated with laser
pulses. To perform SHG imaging (Fig. 5.9), we keep the sample location fixed and rotate a
motorized mirror to scan the laser across the sample. The polarization angle of the pulses
were controlled using a wire-grid polarizer and a half-waveplate respectively to obtain the
polarization resolved second harmonic traces.

Spin model and Monte Carlo simulations. To describe the magnetic properties of the
system we adopted the 2D anisotropic Heisenberg model derived for NiI2 monolayer [47]
supplemented by a nearest-neighbour antiferromagnetic interlayer interaction accounting for

87



the exchange between rhombohedral-stacked layers:

H =
1

2

∑
ij

(
S(e)
i · Jij · S(e)

j + S(o)
i · Jij · S(o)

j

)
+
∑
i

Si · Aii · Si + J⊥
∑
<ij>

S(e)
i · S(o)

j (5.1)

Here e and o label respectively even and odd layers perpendicular to the c axis, the first
sum extends to third nearest neighbour within each plane while the last sum is restricted
to nearest-neighbors belonging to different layers. We used the interlayer exchange Jij and
single-site anisotropy Aij tensors evaluated from first principles for NiI2 monolayer [47];
the non-negligible anisotropic terms guarantee a finite-temperature long-range magnetic or-
der, with a triple-Q topological phase competing with single-Q spiral configuration. The
anisotropic part of the exchange tensor has been accordingly rescaled to 60% of the ab initio
estimate, thus favouring the spin-spiral solution, in agreement with the breaking of the three-
fold rotational symmetry experimentally detected. We set the energy scale as J∥ = −J1iso,
the ferromagnetic nearest-neighbour interlayer interaction.

We performed Monte Carlo simulations using a standard Metropolis algorithm on rhom-
bohedral stacked triangular lattices (rhombohedral supercells in hexagonal setting) in slab
geometry to simulate multilayer (bulk) NiI2. We used 105 MC steps for thermalization and
5×105 MC steps for statistical averaging at each simulated temperature. Simulations have
been performed on 24×24 lattices in slab geometry comprising up to 5 layers of triangular
NiI2 (and up to 2880 spins) with two-dimensional periodic boundary conditions (PBC), and
on 8×8×8 hexagonal supercells (comprising 1536 spins) with three-dimensional PBC for bulk
rhombohedral system. The transition temperature is identified by the peak in the specific
heat of the spin model. All MC results for multilayer slabs at different values of interlayer
exchange J⊥ are well described by a simple empirical function:

Tc(N) = T 1−layer
c tanh

(
b lnN +

1

2
ln
t+ 1

t− 1

)
, (5.2)

where t = TN,2/T
1−layer
c is the reduced temperature, N is the number of layers and the

coefficient b = 1.05 has been obtained by fitting only the J⊥ = 0.1 J∥ data points.

Generalised spin-current model for magnetically induced polarization. Within the
generalised spin-current model gKNB [40], the total polarization is given by (Chapter 3):

P =
1

2N

∑
ij

Mij · Si × Sj, (5.3)

where N is the number of magnetic sites, and we restricted the sum to interlayer nearest-
neighbors. The M-tensor has been evaluated from first principles for a spin pair parallel
to the a axis using the four-state method [40] (the tensor of equivalent bonds is readily
obtained by enforcing crystalline symmetries). The dominant tensor components found are
M22 = 348 × 10−5 eÅ and M23 = −520 × 10−5 eÅ, the other components being zero or
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smaller than ∼ 30 eÅ. Assuming a proper-screw spiral with positive/negative handedness
τ = ±1 propagating along the a (x) axis with pitch 2δ, the gKNB model predicts Px ≡
P∥ = 3M22 sin (τδ)/2, in agreement with numerical MC calculations. For the proper-screw
spiral propagating along the Q = (0.138,0,1.457) direction, with the spins rotating in a plane
making an angle θ = 55◦ as observed in bulk NiI2 [42], the electric polarization predicted by
the gKNB model lies in the ab plane and is perpendicular to the in-plane projection of Q,
P⊥ =

√
3[M22 cos θ − 2M23 sin θ] sin (τ0.138)/2. In both cases, handedness τ determines the

sign of P, that is always parallel to the crystallographic axis a.

First-principles calculations. We used Density Functional Theory (DFT) to estimate
the interlayer exchange interaction and the M-tensor of the gKNB model. The interlayer
coupling J⊥ has been estimated from the energy difference between a ferromagnetic (FM)
and antiferromagnetic (AFM) stacking of ferromagnetically ordered NiI2 layers, (∆E = EFM -
EAFM). A rhombohedral-stacked bilayer has been constructed starting from the optimised
NiI2 monolayer, with lattice parameter a ∼ 3.96 Å and an interlayer distance of about
6.54 Å, in agreement with the previously reported bulk value [12]. A vacuum distance of
about 18.45 Å was introduced between periodic copies of the free-standing bilayer along the
c axis. To check the consistency of our results, we performed DFT calculations using both
the projector-augmented wave (PAW) method as implemented in the VASP code [199, 200]
and the all-electron, full potential code WIEN2k [201], based on the augmented plane wave
plus local orbital (APW+lo) basis set. Ni 3p, 3d and 4s, and I 5s and 5p have been treated
as valence states in VASP calculations, with a plane-wave cutoff of 500 eV and a 18× 18× 2

k-points mesh for Brillouin-zone (BZ) integration. In the WIEN2k calculations, a muffin-tin
radius of 2.5 Å was used for both Ni and I atoms, as well as an RKmax of 7.0. A k-mesh of
20× 20× 2 was used for the BZ sampling. For consistency with previous monolayer calcu-
lations [47], we used the Perdew-Burke-Erzenhof (PBE) version of the generalized gradient
approximation as the exchange-correlation functional [202] and further performed PBE+U
calculations [203] employing U = 1.8 eV and J = 0.8 eV on the localized Ni-3d orbitals
within the Liechtenstein approach [114]. The interlayer exchange defined as J⊥ = ∆E

6S(1)S(2)

is ≃ +3.1 meV within VASP and ≃ +2.8 meV within WIEN2k. Similar results were also
obtained by introducing the spin-orbit coupling (SOC) and by employing PBEsol [204] and
optB86 [205] exchange-correlation functionals, that proves robustness of our results. A sim-
ilar procedure applied to NiBr2 bilayer yields a much smaller interlayer AFM coupling of
about ≃ +1.2 meV, suggesting a non-trivial role of extended I-5p orbital states in mediating
spin exchange across layers of NiI2.

The M-tensor has been evaluated following the no-substitution four-state method [40]
performing DFT+U+SOC calculations with VASP on a 5×4×1 supercell of NiI2 monolayer.
We selected a pair of spins (S1 and S2) along the x-axis (parallel to the a lattice vector) and
calculated the Berry-phase polarization arising from different sets of four noncollinear spin
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configurations, defining the M-tensor, in units of 10−5 eÅ, as

M =

(P yz
12 )x (P zx

12 )x (P xy
12 )x

(P yz
12 )y (P zx

12 )y (P xy
12 )y

(P yz
12 )z (P zx

12 )z (P xy
12 )z

 =

20 0 32

0 348 −520

0 25 0

 (5.4)

The accuracy of polarization values has been checked by repeating calculations with a larger
vacuum of about 32 Å and including dipole corrections.

5.5 Additional Data and Discussion

Symmetry analysis of Raman tensors

NiI2 crystallizes in the R3̄m structure at room temperature [189], with the irreducible repre-
sentations of the Raman active phonons being Ag and Eg, with corresponding Raman tensors
shown in Chapter 4. At low temperature, NiI2 transitions into a monoclinic structure (see
Chapter 6 and 7 for details). The Raman tensors of Ag phonon modes and M magnon modes
have the following form:

Ag Ma d 0

d b 0

0 0 c

  0 ie 0

−ie 0 if

0 −if 0


Fig. 5.6 shows the ARPRS of bulk NiI2 at 30 K in monoclinic phase. The ARPRS

pattern of a phonon mode is expected to display a polar plot with four lobes and four nodes
(zero intensity) while the ARPRS of a magnon mode should be a constant. The 79.9 cm−1

and 80.2 cm−1 modes are two closely spaced phonon modes (corresponding to Eg modes at
room temperature) that are out of phase, which is similar to what observed in the ARPRS
plots of CrI3 and CrCl3 in the monoclinic phase [206, 207]. The 120.8 cm−1 and 168.8
cm−1 are magnon modes, and the 120.8 cm−1 mode onsets at TN,1, which indicates that
it is an antiferromagnetic magnon. The 31 cm−1 and 37.5 cm−1 modes appear only in the
multiferroic phase and are not consistent with either pure phonon or pure magnon excitations
from the ARPRS analysis.

The dichroic contrast of the Raman intensity in different circularly polarized channels
supports the previous assignment of each Raman mode via selection rules [Fig. 5.5(c)], as
discussed in Chapter 4. The expected circular selection rules discussed there agree well with
the 79.9 cm−1, 80.2 cm−1, and 128 cm−1 phonon modes [Fig. 5.6(a,b)]. This consideration,
in conjunction with the angular independent ARPRS patterns, also confirms the magnetic
origin of the 120.8 cm−1 and 168.8 cm−1 excitations. The 31 cm−1 and 37.5 cm−1 modes
are more complex. Both excitations appear in σ+/σ− channels with different intensities and
appear only in the multiferroic phase which suggests that they may be phonon/magnon
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Figure 5.5: (a), Raman data in the cross-polarized XY channel from 30 K to 300 K. (b),
Comparison of the cross-polarized (XY) and parallel-polarized (XX) channels at high and
low temperature. (c), Circularly polarized Raman spectra at 30 K on domain I and domain
II regions for σ+/σ− incident polarization (top) and the net circular dichroism (σ+ − σ−)
(bottom).

hybrids, or electromagnons modes [208]. The reversal of their circular dichroism between
Stokes and Antistokes processes are consistent with a component breaking time-reversal
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Figure 5.6: (a,b), The ARPRS polar plots of the 31 cm−1 and 37 cm−1 modes appearing in
the multiferroic phase. (c,d), The 80 cm−1 peak is composed of two phonons below TN,2,
one at 79.9 cm−1 and the other at 80.2 cm−1. These closely-spaced phonon modes display
out-of-phase modulation with respect to the incident linear polarization and both display an
Eg symmetry with respect to the high-temperature R3̄m phase. (e,f), The 120.8 cm−1 and
168.8 cm−1 are magnon modes. Red lines: ARPRS fits to the Raman tensors for different
mode symmetries.

symmetry [173].

Fitting procedure for polarization dependent second har-
monic generation

For NiI2, the second harmonic radiated from the sample can be written as:

S(2ω) = µ0
∂2P

∂t2
+ µ0∇× ∂M

∂t
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Figure 5.7: Temperature dependent Raman Spectroscopy of two- and three-layer NiI2 in
cross-polarized (XY) configuration. The low-energy excitations at around 38 cm−1 in (a), 2-
layer and (b), 3-layer NiI2 samples grown by PVD on hBN substrates, appearing below 25 K
and 35 K, respectively. These temperatures are consistent with the transition temperatures
measured from polarization rotation and SHG.

In the frequency and momentum domain, this expression takes the following form:

S(2ω) = −4ω2µ0P (2ω) + 4ωµ0k ×M(2ω)

where k represents the wavevector along the propagation direction. For normal incidence, k
is along z-axis. The first term in this equation represents the electric dipole (E1) contribution
to SHG, which is only present for non-centrosymmetric systems. On the other hand, the
second term corresponds to magnetic dipole (M1) contribution to SHG, which can be present
in magnetic systems, such as antiferromagnets, even without inversion symmetry breaking.
These two contributions can be decomposed with polarization analysis of SHG signal.

For the M1 contribution, the magnetization at the second harmonic can be written as:

Mi(2ω) = χ
(2)
ijk,magEj(ω)Ek(ω)

where χ(2)
ijk,mag corresponds to the magnetic SHG tensor. For the E1 contribution, the polar-

ization at the second harmonic can be written as:

Pi(2ω) = χ
(2)
ijk,elecEj(ω)Ek(ω)

The non-zero elements of χ(2)
ijk,elec and χ(2)

ijk,mag are determined by crystal symmetries. For the
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Figure 5.8: Wavelength-dependent Second Harmonic Generation of NiI2. Rotational
anisotropy SHG (RA-SHG) fits to nonlinear tensor elements and their temperature depen-
dence on a single domain CVT grown bulk NiI2 using (a-c), 826 nm excitation, and (d-f),
991 nm excitation. The RA-SHG traces obtained with 826 nm can only be fit with a com-
bination of electric dipole (E1) and magnetic dipole (M1) transition contributions, whereas
the RA-SHG traces obtained with 991 nm only exhibit an E1 component. (g,h), RA-SHG
on PVD grown bulk NiI2 samples shows the same signatures as the CVT grown samples. (i)
SHG imaging of the PVD sample at 15 K. The red circle shows the single domain region
where the RA-SHG was taken.

monoclinic C2 symmetry, the non-zero elements of both χ
(2)
ijk,elec and χ

(2)
ijk,mag relevant for a

fundamental field propagating along z-axis are: χ(2)
xxy, χ(2)

xyx, χ(2)
yxx, χ(2)

yyy where y denotes the
normal vector direction perpendicular to the mirror plane.

To extract the E1 and M1 contributions from the SHG signal, we fit our SHG polarization
dependent traces in order to obtain the tensor elements both for electric and magnetic dipole
SHG tensors. The polarization dependent SHG signal is collected as a function of incident
electric field angle rotated along propagation axis (z-axis) and two scattered polarization
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Figure 5.9: (a,b), Optical images of the region where the SHG imaging was performed. (c),
Integrated SHG counts on three single-layer NiI2 crystals show a transition around 20 K,
consistent with LD measurements. (d), Temperature dependent SHG imaging of the region
denoted in (a) using 780 nm excitation. (e), Temperature dependent SHG imaging of the
region in (b) using 991 nm laser. Colorbar: SHG counts.

channels, parallel and perpendicular. The overall emitted second harmonic field can be
represented as S(2ω, θ) where the incident electric field is equal to Einc = E0(cos(θ)x +

sin(θ)y). The SHG intensity in the parallel channel is equal to |(cos(θ)x+sin(θ)y)S(2ω, θ)|2,
whereas the SHG intensity in the parallel channel is equal to |(− sin(θ)x+cos(θ)y)S(2ω, θ)|2.

The fit results for different fundamental wavelengths (991 and 826 nm) are given in Fig.
5.8. NiI2 is transparent for 991 nm (∼ 1.25 eV), whereas 826 nm (∼ 1.5 eV) overlaps with
a d − d transition [190] (Chapter 8). In addition to the changes in values of nonlinear
tensor elements as a function of excitation wavelength, the E1 and M1 contributions can
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change as a function of excitation wavelength. In magnetic systems, the M1 contribution is
enhanced in the vicinity of localized d − d transitions. As shown in the fits for SHG traces
obtained with 826 nm fundamental, both M1 and E1 contributions are required to fit the
polarization dependent SHG data. On the other hand, the SHG traces obtained with 991
nm fundamental can easily be fit with only the E1 contribution, implying that it is only
sensitive to the inversion symmetry breaking ferroelectric order parameter.

Angular-dependent linear dichroism and relation to in-
duced polarization rotation

Angular dependent linear dichroism measurements were performed in backscattering geome-
try. A photoelastic modulator (PEM) set to half-wave retardance amplitude for the incident
532 nm wavelength was used to modulate the incident polarization between two linear,
perpendicular states ϵ∥ and ϵ⊥ at the second harmonic of the PEM modulation frequency,
f ∼ 100 kHz. To control the projection of these polarization states onto the crystallographic
axes, a zero-order half-wave plate was placed just before the objective lens.

In the angular dependent linear dichroism plots shown in Fig. 5.1(c), Fig. 5.2(c) and Fig.
5.10, the reported angle corresponds to the angle of the primary polarization ϵ∥(θ) in the
frame of the crystal axes. The recorded signal in the polar plots is then the reflectance R∥(θ)

along the direction of ϵ∥(θ) minus the reflectance R⊥(θ) along the perpendicular polarization
state ϵ⊥(θ), given by ∆R(θ) := (R∥(θ) − R⊥(θ))/R0 where R0 is the average reflectance.
The difference is monitored directly by the oscillating component of the reflected light at the
polarization modulation frequency f , as measured by a lock-in amplifier, while the average
reflectance R0 is monitored by the DC reflectance as measured by the same photodiode.

In the low-temperature C2 point group, the the dielectric tensor takes on the form,

ϵ =

ϵxx 0 ϵxz
0 ϵyy 0

ϵzx 0 ϵzz


For light incident along the c-axis, the reflectivity tensor is then,

r =

(
rxx 0

0 ryy

)
where the directions x- and y- are the principle axes. In the case of the C2 point group, the
principle-axis directions correspond to the unique C2 axis (y) and the direction perpendicular
to the C2 axis (x). Defining θ = 0 along the x-axis, the linear polarization states for the
angular-dependent linear dichroism measurements are expressed as:

ϵ∥(θ) = (cos(θ), sin(θ), 0) , ϵ⊥(θ) = (− sin(θ), cos(θ), 0)
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Figure 5.10: (a), Polarized microscopy image of PVD bulk NiI2. The positions where the
optical measurements were performed are labelled as Domain I-III. (b), Comparison of the
temperature-dependent birefringence-induced polarization rotation (top) and linear dichro-
ism (bottom) on Domain I. (c), Angular-dependent linear dichroism measurements from the
three distinct domains identified in (a). Radial lines indicate the crystallographic a-axes
determined from the edges of the as-grown PVD sample. (d), Schematics of the domains
as identified from AD-LD measurements in (c), denoting the local C2 axis orientation, the
polar vector P and the in-plane component of the helimagnetic ordering vector Q.

In this case, the angular dependent reflectances for the two polarization states are given
by,

R∥(θ) = r2xx cos
2(θ) + r2yy sin

2(θ), R⊥(θ) = r2xx sin
2(θ) + r2yy cos

2(θ)

while the average reflactance R0 = (r2xx + r2yy)/2. The angular-dependent linear dichroism
signal, as defined above, is then given by,

∆R(θ) =
(r2xx − r2yy)

R0

cos(2θ) := δ cos(2θ)
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where δ is the linear dichroism. We see that the resulting angular dependent dichroism signal
reaches extrema when ϵ∥(θ) lies along one of the principle axes, displaying a positive peak
when along the more reflective axis and a negative peak when along the less reflective axis.

In the case of our measurements, both in the bulk and the single-layer sample, the
registered curves are fit well to the expected ∝ cos(2θ) dependence on polarization angle,
and display maxima oriented along the a-axes of the high-temperature rhombohedral phase.
In the low-temperature phase, three-fold rotational symmetry about the c-axis is broken
and one of the three a-axes becomes the unique C2 axis of the monoclinic phase. Therefore
the angular-dependent linear dichroism measurement directly identifies the three possible
orientations of the local in-plane C2 axis and confirms the principle axis orientation along
the a-axis of the high temperature rhombohedral phase.

For the temperature-dependence of the three-fold rotational symmetry breaking in few-
layer samples, we achieved a higher signal-to-noise ratio by measuring the birefringence-
induced polarization rotation. In this case, a linear incident polarization state at an angle θi
with respect to the crystal axes is reflected off the sample with a different polarization angle
θf , where θ := θi − θf is the birefringence-induced polarization rotation.

For initial polarization,
ϵ = (cos(θi), sin(θi), 0)

the birefringence induced polarization can be expressed in terms of the linear dichroism
above as

θ = cos−1

( √
1 + δ cos2(θi) + sin2(θi)√
(1 + δ) cos2(θi) + sin2(θi)

)
≃ δ

4
sin(2θi)

expanded for small difference in reflectivity δ. Therefore, the dichroism-induced polarization
rotation is zero when the incident polarization is aligned along one of the principle axes, but
has a non-zero value for all other incident polarization states and is directly proportional to
the linear dichroism.

In the case of our measurements on the few-layer samples, temperature-dependence was
recorded on domains such that the incident polarization made an angle of either ±30◦ or
±45◦ with respect to the principle axes. This leads to typical values of the polarization
rotation of 1-2 mrad in the 1L, 3-4 mrad in the 2L and 6-7 mrad in the 4L samples.

Point group analysis of the low-temperature phase

Our observations of birefringence in the a-b plane, the resolution of the principle axes of
the birefringence as well as an electric-dipole allowed second harmonic generation together
provide strong restrictions for the possible point groups in ground state of bulk and few-
layer NiI2. The high-temperature point group symmetry is 3̄m, for which both a-b plane
birefringence and electric-dipole active SHG are symmetry forbidden. The development
of birefringence necessitates the breaking of the 3-fold rotational symmetry about the c-
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axis, while SHG requires the breaking of inversion-symmetry. Among the possible sub-point
groups of the parent phase, there are only three possible crystallographic (non-magnetic)
points groups consistent with our observations of both of these effects: C1 (1), Ci (m), and
C2 (2). All of these possible sub-point groups are polar as shown in the following table.

Point Group Birefringence in the a-b plane: Electric-dipole SHG: Polar?
3̄m (D3d) Forbidden Forbidden No
3̄ (S6) Forbidden Forbidden No

2/m (C2h) Allowed Forbidden No
3m (C3v) Forbidden Allowed Yes
32 (D3) Forbidden Allowed No
3 (C3) Forbidden Allowed Yes
2 (C2) Allowed Allowed Yes
m (Cs) Allowed Allowed Yes
1̄ (Ci) Allowed Forbidden No
1 (C1) Allowed Allowed Yes

In the bulk, the totality of data are consistent with an assignment of the C2 point group
below TN,2 = 60 K. The distinction between the possible points groups is demonstrated by
the SHG rotational anisotropy patterns for laser wavelengths below the band-gap where the
signal is of pure electric-dipole origin (with the absence of magnetic-dipole SHG contribu-
tions). For this case, the SHG-RA patterns are well described by the C2 point group tensor
restrictions (see Fig. 5.8). The SHG-RA patterns also uniquely determine the C2 axis, which
is parallel to the crystallographic a-axis of the 3̄m structure, and forms the unique monoclinic
b-axis in the low-temperature phase. The angular-dependent linear dichroism measurements
further confirm this situation, which demonstrate three domains with principle axes oriented
along the crystallographic a direction and relatively rotated by 120 degrees. These measure-
ments show that the C2 axis is the more highly reflective axis, displaying a strong dichroism
of positive sign between the a axes and the perpendicular b∗ axes.

In the few-layer samples, a consistent behavior is found with the point group symmetry
observed in the bulk. Our results demonstrate that E1 SHG is allowed down to the monolayer
limit in addition to the presence of a strong birefringence. These observations restrict to the
same three possible point groups for the ground state in the atomically-thin limit. The AD-
LD measurements registered on three mono-domain regions of a monolayer sample confirm
an identical behavior to the bulk, showing 3-domains with principle axes relatively oriented
by 120 degrees. Furthermore, the axes with higher reflectivity are in close agreement with
the a-axes (as determined by the as-grown edges of the samples), as opposed to the 30 degree
rotated a∗ axes, the same as found in the bulk. These observations, along with the smooth
trend of these signatures as the layer number is reduced to the monolayer limit, strongly
support the same assignment of the C2 non-magnetic point group for low-temperature phase
of few- and single-layer NiI2.
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5.6 Afterward

Significant additional work has been completed since the original publication of this article
[37]. First, a criticism has been raised [209] to which we have subsequently responded [210].
A summary of the main criticism is that optical evidence alone cannot constitute definitive
proof of the ferroelectric component of the underlying multiferroic state and that both LD
and SHG can become non-zero from the magnetic degrees of freedom.

The LD and SHG measurements presented above evidence a polar magnetic order that
is single-Q and breaks inversion symmetry surviving the monolayer limit. It is worth noting
that in bulk NiI2, switchable ferroelectricity has been observed [45], and that this polariza-
tion emerges directly from the corresponding spin-spiral magnetic state. From the optical
evidence, there are two central questions. First is which degree of freedom is being measured
by each technique and thus where the symmetry breaking being measured is originating.
Second is whether the mechanism of ferroelectricity becomes inoperative in the monolayer
limit.

From the SHG data, we have shown above that the degree of freedom being measured
changes depending on the probing wavelength. The standard (most common) fundamental
wavelength is a Ti:Sapphire oscillator at λ ∼ 780 − 800 nm. In this energy regime, one is
close to resonance with dd transitions and the charge transfer threshold (see Ref. [190] and
also Chapter 8). In this condition, one measures a multicomponent SHG resulting from both
standard E1 and additional M1 mechanisms related to the lattice and the magnetic order,
respectively. The result is an angular dependent pattern without a clear in-plane two fold
axis, which apparently breaks (vertical) mirror symmetry due to the E1 and M1 interference
[211]. With wavelength tuned to a transparency region within the dd transition energy range
(λ ∼ 991 nm), a single component SHG is observed which can be fit to an E1 contribution
originating from the lattice degrees of freedom consistent with the in-plane 2-fold axis in the
C2 structure, thus evidencing a polar crystallographic structure. While established in the
bulk, we utilized the same wavelength for the thin layers. Since the optical excitations in this
energy regime are highly localized and related the local NiI6 octahedral cluster, we do not
anticipate the optical response to change drastically in this energy regime (see Chapter 8),
and thus the (lack of) resonant conditions should be preserved. Thus, the same conclusions of
a polar inversion symmetry breaking in the lattice should hold for the wavelength dependent
SHG in the few-layer limit.

The LD data is also complex. LD can in principle come from the rotational-symmetry-
breaking magnetism, the ferroelectricity, or the structure, which must all have compatible
principle axes of the dichroic tensor since the orders are microscopically coincident and
driven by the same primary order (magnetic) [Fig. 5.10]. The LD we measure is large (up
to several percent) and the bulk spin spiral state does not possess a unique global spin axis,
as in simple collinear antiferromagnets. This almost certainly rules out a direct second-
order magneto-optical effect (e.g. magnetic linear birefringence) which is generally weak and
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related to the angle between the polarization and the local spin direction [164]. However,
as has been noted before in FePS3, one can measure a magnetic-origin LD signal, instead
related to the anisotropic effect of magnetism on the electronic structure [165]. This general
mechanism agrees with our measurements, however in our case, the LD is possibly multi-
component. Evidence for a magnetic contribution without ferroelectric or lattice components
comes from the observation of LD within the intermediate phase (TN,2 < T < TN,1). In this
temperature range, our measurements confirm that there is no observable symmetry breaking
of the lattice (Chapter 7) and ferroelectricity is also not observed [45]. Meanwhile, an
incommensurate single-Q magnetic order is observed, as we report in Chapter 7. Therefore, a
magnetic contribution to LD is likely dominant in the intermediate temperature range, while
both magnetic, structural and ferroelectric orders may contribute below TN,2. Resolving
which order dominates the optical response would require microscopic modeling and direct
comparison between the different order parameters, since each can contribute with the same
symmetry to the dielectric tensor. A dominant structural contribution can likely be ruled
out at TN,2 due to the relatively weak structural anisotropy (order of 0.1% difference in bond
lengths with respect to R3̄m, see Ref. [42] and Chapters 6/7). Meanwhile, the ferroelectric
polarization is weak, leading only to a very subtle (static) dielectric anomaly [45]. Thus, the
LD is most likely primarily measuring the magnetically-induced electronic anisotropy due to
the single-Q magnetic state, similar to reports in the transition metal thiophosphates [165].

In the end, whether from magnetic or lattice degrees of freedom, our optical measurements
provide strong evidence for a type-II multiferroic phase resulting from a polar magnetic
ground state persisting to the few layer limit. This is because the magnetic degrees of freedom
are the primary order parameter which drives the symmetry breaking among all degrees of
freedom (as discussed in Chapters 6 and 7), and other mechanisms including phononic driven
structural or ferroelectric orders have been ruled out. Thus, the structural and ferroelectric
phase transitions must be seen as resulting from the magnetic order, driven respectively by
magneto-structural coupling and spin-charge coupling. Therefore, experimental evidence of
the driving magnetic order with the correct (polar) symmetry constitutes evidence for the
underlying multiferroic state provided that the mechanism of spin-induced ferroelectricity is
unaltered.

Each of the secondary orders (ferroelectric and structural) are observed in the bulk, and
the microscopic mechanism driving the spin-induced ferroelectricity is a nearest-neighbor
effect acting within the triangular lattice layer [37, 143]. Thus, it is unlikely that this
mechanism becomes inoperative in the monolayer limit due to dimensionality arguments
alone. What can change is the symmetry of the magnetic order in the few layer limit
due to the different contribution of the interlayer exchange interactions (see Chapter 7).
However, our optical measurements restrict the magnetic ground state to a polar state which
allows ferroelectricity through the same mechanism in the bulk [Fig. 5.3]. Furthermore, as
observed in other ultrathin ferroelectrics, increased screening of the ferroelectric polarization
could contribute due to depolarization fields. However, this is mainly observed for oxide
ferroelectrics with out of plane polarization. In our case, the electric polarization is in plane
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and has a smaller magnitude, leading to an expected weaker depolarization field as generally
observed for vdW ferroelectrics [212].

In this vein, independent studies provide supporting evidence of a magnetic phase tran-
sition in the monolayer limit through magnetoresistance [213] and scanning tunneling mi-
croscopy measurements [143]. In particular, the STM results show the real space modulation
of the spin-induced local polarization, which oscillates at a period of half the magnetic spi-
ral pitch in agreement with the microscopic theory of spin-induced ferroelectricity [33] (see
Chapter 3). This provides evidence for unscreened charge dipoles in monolayer NiI2 (with
some caveats, discussed towards the end of Chapter 3), supporting the viability of ferro-
electricity and consistent with our conclusions. The magnetoresistance studies also largely
confirm the layer-dependent transition temperatures from optical measurements [Fig. 5.2].
Furthermore, while the bulk magnetic order has an ordering wavevector along the ΓM re-
ciprocal lattice direction ((h, 0) r.l.u.), STM provides evidence for a wavevector along ΓK

((h, h) r.l.u.) which is in agreement with our first-principles calculations above [Fig. 5.3]
and those of Ref. [47]. The difference in magnetic ground state in the bulk/few-layer and
the monolayer limits is explored more thoroughly in Chapters 6/7 and is associated to the
role of the interlayer exchange interactions.

2L 3L 4L 5L Bulk(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.11: (a)-(e) Cross-polarized Raman spectra and (f)-(j) linear dichroism spectra on
mechanically exfoliated CVT single crystal NiI2 on a 285nm SiO2/Si substrate with thick-
nesses of 2L, 3L, 4L, 5L and bulk, respectively. Horizontal dashed lines indicate the estimated
TN,2 transition temperatures, which agree well between the two techniques. Raman excita-
tion wavelength is λ = 532 nm. Details of the linear dichroism spectroscopy measurements
can be found in the Methods section of Chapter 6.

The STM measurements also show that the spin spiral wavevector is consistent with
intralayer Heisenberg exchange parameters J1/J3 that place the system close to a spi-
ral/ferromagnetic phase boundary [41]. This may reconcile the different observations be-
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tween our study (Ref. [37]) and a contemporaneous study of NiI2 (Ref. [186]), which largely
agree in observed layer-dependent Tc except for the notable absence of SHG in the mono-
layer in the latter from which an absence of a magnetic transition was claimed. In the above
paper, we have measured few-layer flakes grown on hBN substrates by physical vapor depo-
sition (PVD). The STM work of Ref. [143] measured flakes grown on graphite substrates by
molecular beam epitaxy (MBE). Meanwhile, the work of Ref. [186] measured mechanically
exfoliated flakes from single crystals grown by chemical vapor transport (CVT). It is possible
that the discrepancies in the transition of monolayer NiI2 is due to a difference in the sam-
ple preparation conditions. Provided the proximity to the spin spiral/FM phase boundary
revealed by Ref. [143], small differences in local strain (easily introduced during mechanical
exfoliation) could push the system out of the spin spiral state. Resolving the dependence on
sample preparation conditions is an important issue to resolve moving forward.

Along these lines, we have performed additional Raman spectroscopy and linear dichroism
spectroscopy measurements on exfoliated CVT samples down to the bilayer limit of NiI2,
shown in Figure 5.11. The observed transition temperatures are in close agreement with the
results we reported above with TN,2 ≃ 30, 40, 45, 47.5, 60±2.5 K for 2L, 3L, 4L, 5L, and bulk,
respectively. Thus, other experimental factors, such as local laser heating or sample quality,
may be required to explain the discrepancy between different works [37, 186]. Importantly,
our additional optical spectroscopy results provide additional evidence that SHG and LD
reported above are intrinsic properties of NiI2, and improve upon our previously reported
Raman evidence of the magnetic phase transitions in few-layer samples grown by PVD
samples on hBN substrates [Fig. 5.7].

In conclusion, evidence is mounting to confirm the measurements presented in this chap-
ter, namely that a spin-spiral magnetic order persists to the monolayer limit of NiI2, which
is accompanied by a spin-induced ferroelectric order as observed in the bulk. There do ex-
ist some conflicting claims which need to be resolved, namely supporting proof from, e.g.
diffraction measurements, to directly interrogate the long-range magnetic order along with a
need for more direct measurements of the ferroelectric order in the ultrathin limit with corre-
spondent proof of switching by electric fields. Furthermore, there remain conflicting reports
on transition temperatures in the ultrathin limit, which may be related to sample quality or
a high-sensitivity of the samples to local perturbations introduced by sample preparation,
such as strain [143] or doping. Significant work therefore remains to reach a consensus on the
multiferroic properties of NiI2 in the monolayer limit, as well as the microscopic physics of
the bulk which we partly address in subsequent chapters. Nonetheless, NiI2 is an intriguing
representative material for studying spin-induced ferroelectricity and chiral magnetic order
in the ultrathin limit.
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Chapter 6

Pressure-enhanced helimagnetic order in
van der Waals multiferroic NiI2

This chapter is adapted from a pre-print posted to arXiv (Ref. [214]) with modifications and
corrections.

This is a co-first author work between the present author (C.A.O.) and Luiz G. P. Martins.
C.A.O. and L.G.P.M. prepared/characterized the samples, performed the high-pressure Ra-
man and LD measurements, with assistance of Qian Song, and performed the high-pressure
diffraction measurements, with assistance of Jesse S. Smith and Joshua J. Sanchez. Q.S.
grew the PVD and CVT NiI2 samples. Experiments were supervised by Jing Kong and
Riccardo Comin. Theoretical support was provided by Jesse Kapeghian, Danila Amoroso,
Paolo Barone, Bertrand Dupé, Matthieu J. Verstraete and Antia S. Botana. A more thor-
ough treatment of the theoretical results is reported separately in Physical Review B in Ref.
[126].

6.1 Introduction

Transition metal dihalides are an emerging class of 2D van der Waals (vdW) materials
presenting non-collinear magnetism and associated type-II multiferroic order [12, 37, 45–47,
186, 189, 213, 215, 216]. Type-II multiferroics exhibit strong magnetoelectric effects and
are therefore of broad interest as constituents in vdW devices [14, 17, 33, 45, 180, 213, 217,
218]. NiI2 is a promising candidate towards these goals, hosting a type-II multiferroic phase
from the bulk to the single-layer limit [37, 45, 186, 213]. The spin-induced ferroelectricity is
closely linked to the symmetry of the magnetic order [33, 45, 219]. Therefore, understanding
the origins of non-collinear magnetism and the magnetic ground state of NiI2 is critical and
remains under active debate [37, 46, 125, 126, 129, 131, 141, 143, 186, 189, 213].

In the bulk, NiI2 undergoes two magnetic transitions, first to an antiferromagnetic (AFM)
state at TN,1 ≃ 75 K and then to a single-Q helimagnetic phase below TN,2 ≃ 60 K [37, 42]
with wavevector Q ≃ (0.138, 0, 1.457) reciprocal lattice units (r.l.u.) [42]. The single-Q

104



helimagnetic phase is accompanied by a rhombohedral to monoclinic structural phase tran-
sition [37, 42, 45, 186] and a magnetic-field-tunable spin-induced ferroelectricity [45]. TN,2

decreases continuously to 20 K in the monolayer which is attributed to a dimensionality-
controlled reduction of the net interlayer exchange [37], as commonly observed in van der
Waals magnets [6]. While this suggests that interlayer exchange promotes long-range he-
limagnetic order in the bulk limit, a comprehensive assessment of the interlayer exchange,
crystallographic symmetry and their coordinated impact on the magnetic ground state is
absent.

From this perspective, significant open questions remain regarding the origin of the he-
limagnetic state in bulk and atomically-thin NiI2. Non-collinear magnetic structures in
triangular lattice magnets are primarily induced by exchange frustration between (isotropic)
ferromagnetic (FM) nearest-neighbor J∥

1 and AFM third-nearest neighbor J∥
3 exchange, but

these interactions alone fail to predict the ground state of bulk NiI2 [42, 131]. Notably, the
frustrated intralayer interactions introduce a near-degeneracy of multiple magnetic states
with different in-plane propagation vectors and spin textures [47, 129]. It was recently sug-
gested that anisotropic, symmetric exchange (e.g. Kitaev interactions) may resolve this
discrepancy [47, 125, 131]. However, recent STM measurements evidence that the ground
state of monolayer NiI2 is Q ∼ (hh) r.l.u. [143], different from the bulk and in agreement
with the prediction from isotropic J∥

1/J
∥
3 exchange frustration and first principles calculations

[37, 47, 125, 129]. These observations suggest a different mechanism, independent from the
interactions within the triangular lattice plane, which stabilizes the unique spin structure of
multilayer NiI2.

Here, we identify the central role of the interlayer exchange interactions and their cou-
pling to the interlayer stacking symmetry for determining the ground state of multilayer
NiI2 using high pressure experiments. Hydrostatic pressure is a powerful tuning parameter
to reveal the coupling among the structural, magnetic and electronic degrees of freedom,
particularly for vdW materials given the large interlayer compressibility [20, 216, 220–225].
We report high-pressure Raman spectroscopy and optical linear dichroism measurements of
bulk and few-layer NiI2, revealing a large enhancement of helimagnetic phase with pressure,
increasing over a factor of 3 up to 10 GPa and down to the 5-layer limit. The combined layer-
and pressure-dependence provides experimental evidence that pressure-enhanced interlayer
exchange interactions are central to this transition temperature enhancement, as supported
by first principles calculations [126]. In addition, high-pressure x-ray diffraction (XRD) mea-
surements reveal that the monoclinic crystallographic phase transition tracks the presence
of helimagnetic order up to 10 GPa and is characterized by a significant interlayer shear and
c-axis compression, demonstrating significant interlayer magneto-structural coupling in the
helimagnetic phase. These results suggest that interlayer exchange interactions provide the
microscopic mechanism energetically favoring the helimagnetic ground state of multilayer
NiI2, thus driving its large enhancement with hydrostatic pressure.
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6.2 Results

6.2.1 Raman spectroscopy and optical linear dichroism of bulk and
few-layer NiI2 at high pressures

We first discuss the pressure- and temperature-dependent optical spectroscopic experiments
on a bulk-like (∼ 100 nm thick) single crystal (Sample 1) grown by physical vapor deposi-
tion (PVD), shown in Fig. 6.1(a) [37, 189]. The sample was loaded into a diamond anvil
cell (DAC, Almax CryoDAC-ST) using 4:1 methanol-ethanol as the pressure transmitting
medium (PTM). Representative cross-polarized (XY) Raman spectra (acquired with λ = 532

nm) at P1 = 0.5 GPa across both the TN,1 and TN,2 transitions are shown in Fig. 6.1(b).
Besides the two Raman-active phonon modes (Eg/Ag), additional features associated to mag-
netism appear: a magnetic quasi-elastic scattering (mQES) above TN,1, which evolves into a
finite-frequency soft mode (SM) below TN,1 and further splits to two distinct modes electro-
magnon modes (EM1/2) below TN,2, which are spectroscopic signatures of multiferroic order
[37, 67]. Higher-energy magnon modes (M1,2) also appear between TN,1 and TN,2 [37, 189].
These spectroscopic features provide a robust signature of the magnetic phase transitions.
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Figure 6.1: (a), Optical image of single-crystal bulk NiI2 (Sample 1) sample inside the DAC
used for the optical measurements. (b), Raman spectra at P1 = 0.5 GPa at 100 K (T > TN,1),
70 K (TN,2 < T < TN,1) and 5 K (T < TN,2). The phonon modes (Eg/Ag) and the modes
associated to magnetic order (mQES, SM, EM1/2, and M1/2) are indicated (see text). Curves
are offset for clarity with zero baselines indicated. (c)-(f), Temperature-dependent Raman
maps for pressures P1-P4. The TN,1/TN,2 transitions are identified with the upper/lower
horizontal dashed lines, respectively, with error bars indicated.

Temperature-dependent XY-polarized Raman maps with increasing pressure between
P1 = 0.5 GPa and P4 = 5.0 GPa are shown in Figs. 6.1(c)-(f). At all measured pressures,
the spectra are qualitatively similar to the results at ambient pressure [37, 189], with a
clear increase of both the TN,1 and TN,2 transition temperatures. The linear evolution of the
Raman mode frequencies up to 5 GPa and their spatial homogeneity across the sample at
5 GPa confirm quasi-hydrostatic pressure conditions without significant deviatoric stresses
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[225]. The transitions are indicated by dashed white lines for each pressure, determined
from the EM and M1/2 modes as discussed more below. From these results, we immediately
observe a clear increase of both the TN,1 and the TN,2 transition temperatures from 75/60 K
at ambient pressure [37] to 155 ± 5/ 132.5 ± 2.5 K at P4 = 5.0 GPa, suggesting that both
the AFM and the helimagnetic/multiferroic states are rendered more stable upon increasing
pressure.
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Figure 6.2: (a), Temperature-dependent LD for P1-P4 for bulk (Sample 1). The TN,2 tran-
sitions are marked by vertical lines, with error bars indicated. Photon energy to record LD
at each pressure is indicated. (b), Optical image of the NiI2 sample containing 5-, 6-, 10-
layer and bulk flakes (Sample 2) before loading into the DAC. (c), Helimagnetic/multiferroic
transition temperature TN,2 as a function of pressure for the flakes from Sample 2.(d)-(g),
LD spectra vs. photon energy at 30 K and 300 K at 5 GPa for 5, 6, 10-layer and bulk, re-
spectively. (h)-(o), Temperature-dependent LD at 5 and 10 GPa for 5-layer [(h),(l)], 6-layer
[(i),(m)], 10-layer [(j),(n)] and bulk [(k),(o)], respectively. Vertical black bars indicate the
TN,2 temperature.

The multiferroic transition is also characterized by significant breaking of lattice sym-
metries, including the loss of both three-fold rotational symmetry and inversion symmetry,
induced by the polar single-Q helical spin order [37, 42, 45, 219]. The former can be detected
through optical linear dichroism [37, 65, 190]. To verify the pressure-induced enhancement of
the helimagnetic order, we performed temperature-dependent LD measurements as a func-
tion of pressure [Fig. 6.2(a)], at the same pressure conditions as the corresponding Raman
data on a separate thermal cycle, using a fixed probing wavelength. At all pressures (P1-
P4), a sharp transition in the LD signal indicates a stabilized TN,2 transition as pressure is
increased [Fig. 6.2(a)], in agreement with the independently determined TN,2 values from
Raman.

We next investigate the effect of dimensionality on the evolution of the HM/MF phase
under compression. To do so, we performed HP LD spectroscopy measurements on a me-
chanically exfoliated NiI2 sample (from chemical vapor transport (CVT) grown single crystal)
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containing 5, 6, 10-layer and bulk flakes (Sample 2) (Fig. 6.2(b)). LD spectroscopy is used
for the the detection of smaller optical signals in thinner samples. Figures 6.2(d)-(g), show
the LD spectra vs. photon energy at T = 30 K and 300 K and P = 5 GPa for each thickness.
We note the clear energy-dependent contrast in the LD spectra of the HM/MF phase (30K)
compared to room temperature (300K). To extract the transition temperature, we calculate
the difference of LD intensity in the spectral regions showing positive and negative contrast
compared to spectra above TN,2 at each temperature . The resultant temperature-dependent
LD is shown in Figs. 6.2(h)-(o) at 5 GPa and 10 GPa for each thickness.

We first note that the LD results are reproduced for exfoliated CVT [Fig. 6.2(k)] and
PVD grown [Fig. 6.2(a)] bulk samples, with TN,2 ≃ 135 K at 5.0 GPa. Similarly to the bulk
case, the appearance of finite LD in the 5-,6-, and 10-layer flakes indicates a phase transition
occurring at increasing temperatures as pressure increases from 5 to 10 GPa. We extract the
corresponding helimagnetic transition temperatures, indicated by the black vertical lines in
Figs. 6.2(h)-(o), and plot their values as a function of pressure for each flake in Fig. 6.2(c).
In general, TN,2 decreases as the thickness decreases; however, this effect is more pronounced
at 10 GPa, as discussed more below. Crucially, a robust signature of pressure-enhancement
of the helimagnetic transition is confirmed down to the 5-layer limit and up to 10 GPa.

6.2.2 Pressure-dependent XRD

Having established the pressure enhancement of helimagnetism in bulk and few-layer samples,
we next aim to understand the interplay of magnetic and crystallographic symmetry across
the helimagnetic transition using high-pressure, temperature dependent XRD on a powder.
XRD measurements were performed at Sector 16-ID-B of the Advanced Photon Source,
Argonne National Laboratory, using an incident energy E = 29.2 keV, neon PTM and high-
quality NiI2 powder grown by CVT. Temperature- and pressure-dependent diffraction was
acquired with monotonically-decreasing temperature sweeps from above the transition to the
base temperature ≃ 40 K at fixed pressure. The pressure was carefully stabilized using an
in-situ double-sided membrane-driven DAC and monitored via ruby fluorescence.

For all pressures up to 10 GPa, the high-temperature structure remains trigonal and can
be indexed to the R3̄m space group [42, 126]. To analyze the low-temperature magneto-
structural transition, we focus on the (2, 0, 8), (0, 0, 12) and (1, 1, 0) reflections ((h, k, l)
in reciprocal lattice units of the high-symmetry R3̄m cell). Figs. 6.3(c)/(d) show the
temperature-dependence of these reflections at representative pressures P = 5.0 GPa and
10.0 GPa, respectively. At all pressures, we observe a sharp change in the (0, 0, 12) 2θ position
which is nearly concomitant with the splitting of the in-plane (2, 0, 8) peak. These structural
distortions respectively correspond to an interlayer compression and a reduction of three-fold
rotational symmetry, consistent with the conclusions of previous ambient pressure diffraction
studies [42] and those reached from optical LD measurements (Fig. 6.2(a),(h)-(o)).

Closer inspection of the XRD data reveals the dominance of interlayer shearing (β >

90◦), rather than distortions of the planar triangular lattice, in the reduction of structural
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Figure 6.3: Side and top view for the (a) high-temperature rhombohedral (R3̄m) and (b)
monoclinic (C2) phases of NiI2, defining the crystal axes and β angle. Interlayer (J⊥) and
intralayer (J∥

i ) exchange paths are indicated. Temperature-dependent XRD of the (0, 0, 12),
(2, 0, 8) and (1, 1, 0) reflections at (c), 5.0 GPa and (d), 10.0 GPa. Dashed black lines are
Gaussian fits. (e)-(j), Temperature-dependence of ∆β (90 − β) (top) and ∆c/c0 (bottom),
where c0 is the high-temperature c-axis length in the trigonal phase, for pressures between
1.0-10.0 GPa. The FWHM of the (2, 0, 8) peak from a single-peak fit is shown as a grey
line overlaid on the ∆β plots. Black dashed lines are order parameter fits of the form
|T/TN,2−1|α, with α = 0.23. The transitions (TN,2) for each pressure are marked by vertical
dashed grey lines.

rotational symmetry. As illustrated in Fig. 6.3(a)-(b), changes in both in-plane lattice
parameters (∆a) and the interlayer stacking (∆β) are allowed in the monoclinic phase.
Which component dominates, if any, can be determined by considering different reflections.
As shown in Fig. 6.3(c)-(d), neither the pure-in plane (1, 1, 0) nor the pure out-of-plane
(0, 0, 12) XRD peaks split upon cooling down, whereas the hybrid in-plane and out-of-plane
(2, 0, 8) peak splits, consistent with a predominant interlayer shearing which becomes more
pronounced at elevated pressures. The observation of interlayer magneto-structural coupling
has also been observed in other vdW magnets (e.g. CrI3 [18–20] and FePS3 [226, 227]), and
reveals a close relationship between the interlayer structural symmetry and helimagnetic
phase of NiI2.

We thus extract the corresponding pressure- and temperature-dependent lattice param-
eters to determine ∆β (Figs. 6.3(e)-(j), top) and the interlayer compression ∆c/c0 (Figs.
6.3(e)-(j), bottom). The onset of these anomalies occurs at higher temperatures with in-
creasing pressure. We estimate the corresponding transition temperatures (TN,2), revealing
a pressure-stabilized magneto-structural transition which tracks the values of TN,2 from op-
tical measurements.
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6.3 Discussion

To summarize, the results of all measurements in the bulk are shown in the magneto-
structural phase diagram in Fig. 6.4(a). In the low pressure regime (≤ 5 GPa), a nearly
linear increase of both the AFM (TN,1) and the multiferroic (TN,2) transitions is observed,
with rates of 15.3 and 14.4 K/GPa, respectively, with strong agreement among all techniques
and among the three measured bulk samples. We also show the relative pressure enhance-
ment as a function of layer number in Fig. 6.4(b), showing that the helimagnetic phase is
stabilized by over a factor of 3 in all studied thicknesses between 0 and 10 GPa.
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Figure 6.4: (a), Experimental phase diagram compiled from Raman, LD and XRD data for
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compared to Monte Carlo calculations of TN,2 vs. pressure for bulk NiI2 from Ref. [126].

To understand the mechanism of these enhancements, we consider the pressure-dependence
of the exchange interactions, which was recently studied from first-principles in Ref. [126].
The helimagnetic phase arises from competition between the intralayer first- (J∥

1 ) and third-
nearest neighbor (J∥

3 ) exchange interactions, and is further stabilized by the interlayer ex-
change (J⊥) [Fig. 6.3(a)]. Calculations show that while J∥

1 is weakly pressure-dependent, J∥
3

and J⊥ are strongly enhanced by pressure. The cooperative effect of these interactions leads
to a significant enhancement in the ordering temperature as determined from Monte Carlo
(MC) calculations, which captures well the relative enhancement of TN,2 in the bulk up to 5
GPa [Fig. 6.4(c)].

While both intralayer and interlayer exchange interactions contribute to this enhance-
ment, we can experimentally confirm a key role of interlayer exchange by considering the
combined effects of pressure and dimensionality in Fig. 6.4(b), where we plot TN,2 vs layer
number at ambient and high pressures. The reduction of TN,2 with reduced layers at 0 GPa
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was attributed to a dimensionality controlled interlayer exchange, determined by the ratio
J⊥/J∥ [37], given that J∥ is hardly modified with decreasing layer number, while J⊥ gets
significantly reduced. We observe a similar reduction in TN,2 with layer number at 10 GPa
[Fig. 6.4(b)], suggesting that the interlayer exchange interaction is the dominant factor for
the stability of the MF phase, both at ambient and high pressures. We also observe a sig-
nificant enhancement of TN,2 for the few-layer samples compared to the bulk, as can be seen
by comparing TN,2/TN,2(P = 0) in Fig. 6.4(b). This relative enhancement likely suggests a
non-negligible role of pressure-enhanced intralayer interactions, as well as a possible role of
different interlayer compressibility and shear energy as thickness is reduced, discussed more
below.

Finally, it is worth noting that the cycloidal phase of isostructural NiBr2 is substantially
destabilized with increasing pressure at a rate of -22.5 K/GPa [228], in contrast to what we
observe in NiI2. The ground state of NiBr2 has a distinct in-plane propagation vector [(h, h)]
[228] to NiI2 [(h, 0)] [42]. Therefore, increased interlayer interactions with either pressure or
chemical tuning may favor the ground state observed in NiI2, supporting our conclusions. It
will be interesting to directly investigate the effects of pressure on the magnetic propagation
vector with neutron scattering. Further, it will be critical for direct measurements of the
ferroelectric polarization to resolve how pressure impacts the multiferroic nature of NiI2.

In conclusion, we report a large enhancement of the helimagnetic/multiferroic phase
in bulk and few-layer NiI2 samples by over a factor of 3 between 0 and 10 GPa. The
layer dependent transition temperatures show that this enhancement is mostly driven by
interlayer exchange. A concomitant structural transition demonstrates a significant coupling
of the interlayer distance and stacking symmetry to the helimagnetic order. These results
identify the central role of the interlayer exchange interactions for the helimagnetic phase of
NiI2, both in the ground state and in the mechanism of its large stabilization under pressure.

6.4 Methods

Sample prepration

For sample 1 (Fig. 6.1) a bulk-like flake (thickness ∼ 100 nm) with dimensions ∼ 40 × 20

µm was grown by physical vapor deposition (PVD). For sample 2 (Fig. 6.2), bulk-like and
few-layer NiI2 flakes were mechanically exfoliated from single-crystals grown by chemical
vapor transport (CVT). The PVD and CVT growth processes are described in Ref. [37].

Few-layer samples were exfoliated on 285 nm SiO2/Si substrates in a high-purity nitrogen-
filled glovebox. Samples of the desired thicknesses were identified with optical contrast and
confirmed by atomic force microscopy (AFM, AFMWorkshop HR) (Fig. 6.5). The few-
layer samples for high pressure measurements were double encapsulated in ∼ 10 nm thick
hexagonal boron nitride (hBN) and placed on an exfoliated graphite substrate.

Since NiI2 crystals are hygroscopic, they were handled with care for minimal air exposure.
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The samples were transferred directly onto the diamond culet using dry-transfer techniques
within a nitrogen-filled glovebox. For the optical measurements we used an Almax CryoDAC-
ST. A Be-Cu (stainless steel) gasket for sample 1 (2) was loaded with a ruby crystal for
pressure-calibration and an anhydrous 4:1 methanol-ethanol mixture for the PTM, which is
well within the quasi-hydrostatic limit in the pressures studied for the optical measurements
[229, 230]. The DAC was closed outside of the glovebox with less than 2 minutes of air
exposure of the NiI2 samples. No degradation of the samples was observed.

For the X-ray measurements (Fig. 6.3), pure NiI2 powder was grown using CVT. The
powder was loaded into a custom double-sided membrane-driven DAC for high pressure XRD
inside an argon-filled glovebox. The DAC was closed with a neon gas PTM with no ambient
exposure of the powder sample. Majority phase of anhydrous NiI2 is confirmed in the XRD
measurements, with a possible small minority of the hydrated phase (NiI2·6H2O) resulting
from air exposure, as characterized below.
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Figure 6.5: (a) Optical image of sample after exfoliation on 285 nm SiO2/Si substrate. (b)
Optical contrast (−∆R/R) with respect to the substrate in the red channel, with thickness
identifications demarcated. (c)/(d), AFM measurements of the same sample in (a)/(b) in
two separate regions. Black lines and numbers 1-5 indicate linecuts extracted for thickness
determination as shown in the profiles of (e)-(i). (j) Final hBN/NiI2/hBN/Graphite stack
transferred onto the diamond of the DAC before pressurization.

Optical measurements

To perform optical measurements, the DAC was loaded into a Montana Instruments S50
closed-cycle optical cryostat. Raman measurements were performed with a Horiba LabRam
HR Evolution spectrometer, using a linearly polarized λ = 532 nm excitation and an 1800
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lines/mm grating. A 50x objective (Olympus SLMPLN-50x) was used to focus the laser
to approximately 2 µm spot. The incident power was around 50 µW and the reported
spectra were acquired over 15 minutes, with each spectrum recorded twice for averaging.
All reported Raman data were acquired in cross-polarized (XY ) configuration, using volume
Bragg grating filters in order to record Raman shifts down to 5 cm−1. Due to depolarization
effects from the DAC, there is a leakage of XX channel into the spectra resulting in a
relatively high intensity of the primary Ag phonon line.

Linear dichroism measurements on sample 1 were recorded using either (a) a HeNe
(λ = 633nm) source (for measurements at P1) or (b) a supercontinuum source (NKT pho-
tonics) monochromatized to 650 nm to a 1 nm bandwidth (for measurements at P2-P4). The
wavelength was changed as it resulted in higher signal-to-noise ratio. An incident power of
10 µW was used for all measurements. For sample 2, we recorded linear dichroism spectra
using the supercontinuum source and a monochromator with bandwidth ∼ 1nm from 450-
1020 nm. In all cases, the incident laser was amplitude-modulated by a mechanical chopper
(ThorLabs) and linearly polarized at 45 degrees, before being sent through a photoelastic
modulator (PEM, Hinds instruments) with fast axis at 0 degrees. The PEM was modulated
at 50 kHz and a retardance of 0.5λ. The light was focused onto the sample using a 50x
objective (Olympus SLMPLN-50x for sample 1, Mitutoyo MY50x-825 for sample 2), and
the back-reflected light was collected by an amplified photodiode (ThorLabs). The signal
was sent to two lock-in amplifiers to measure the linear dichroism signal at the second har-
monic of the PEM frequency and the reflectance measured at the chopper frequency, used
as normalization.

For the optical measurements on sample 1, the sample was first cooled to base tempera-
ture of 5 K. The linear dichroism was then recorded on warming on a slow temperature ramp
(∼ 1 K/min), and the pressure was recorded at the end points. The sample was then cooled
down to base temperature and Raman measurements were recorded on a second warm up
cycle, again measuring the pressure at the end points of the temperature sweep. The sample
was then warmed to room temperature to increase the pressure and the process was repeated.
All finite pressure measurements were acquired by monotonically increasing pressure. The
sample was decompressed after P4 = 5 GPa and an additional temperature dependence was
recorded on the recovered sample at ambient pressure to check for consistency with prior
measurements [37].

For sample 2, the sample was first cooled to a base temperature of 30 K. Linear dichroism
spectra from the bulk, 10L, 6L, 5L, and the graphite substrate reference were recorded at
each stabilized temperature on a single, monotonically increasing temperature sweep. At
5.0 GPa, Raman spectra from the bulk were recorded on a subsequent temperature ramp
to confirm consistency with the results in the PVD grown bulk (sample 1). Attempts to
measure Raman signal from the few layer samples inside the DAC were unsuccessful given
their small signals. The pressure was monitored at the end points of each temperature sweep
using Ruby fluorescence.
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XRD measurements

High-pressure XRD was performed at HPCAT, Advanced Photon Source, Argonne National
Laboratory (Sector 16-ID-B). The DAC was loaded with a neon PTM and mounted into
a cryostat with a base temperature of 40 K for pressure- and temperature-dependent XRD
measurements. At each pressure, the sample was cooled down to approximately 40 K and the
XRD diffractograms were recorded. Then, the DAC was warmed up to room temperature
and the pressure was increased. A double-sided membrane DAC stabilized the pressure in-
situ, such that temperature-variations of the pressure could be corrected. The pressure was
monitored with an in-situ ruby fluorescence system. XRD was recorded with an incident
energy 29.2 keV.

6.5 Additional Data and Discussion

Linear dichroism spectroscopy data

Graphite 5L 6L 10L Bulk

5 GPa

10 GPa

LD [%]

LD [%] LD [%]

LD [%]

LD [%]

LD [%]

LD [%]

LD [%]

LD [%]

LD [%]

(a)

(f)

(b) (c) (d) (e)

(g) (h) (i) (j)

Figure 6.6: Temperature dependent linear dichroism spectra false color maps for, respec-
tively, the graphite substrate, 5L, 6L, 10L and Bulk samples at (a)-(e) 5.0 GPa and (f)-(j)
10.0 GPa. Spectra for each sample at a given temperature and pressure are taken at identical
conditions, on the same stabilized temperature point of the same temperature sweep. The
color maps for Graphite, 5L and 6L are shown in the same color map scale at both pressures.
Horizontal dashed white lines indicate the phase transition temperature TN,2 extracted from
the data.

Here we show the full data set for the pressure-, layer- and temperature-dependent linear
dichroism spectroscopy experiment performed on Sample 2. The full data are presented as
false color maps in Fig. 6.6. For thin flakes, the temperature dependent contrast is extracted
by integrating the spectral weight in the range 1.7-2.0 eV and 2.0-2.4 eV for 5.0 GPa and 1.6-
2.0 eV and 2.0-2.5 eV at 10.0 GPa. For the bulk, integration ranges of 1.4-1.65 eV and 1.65-1.9
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Figure 6.7: Linecuts of the LD spectra at base temperature (30K) and above the helimagnetic
transition (150/220 K) for, respectively, the graphite substrate, 5L, 6L, 10L and bulk samples
at (a)-(e) 5.0 GPa and (f)-(j) 10.0 GPa. Data are the same as those displayed in the false
color maps of Fig. 6.6.

eV for 5.0 GPa and 1.3-1.6 eV and 1.9-2.3 eV at 10.0 GPa were used. The spectra for each
flake at base temperature (30/50 K) and above the transition (150/220 K, for 5.0/10.0 GPa,
respectively) are shown in Fig. 6.7. The noise level for the experiments is approximately
0.02% in units of linear dichroism, which increases for energies above 2.3 eV due to lower
laser power from the supercontinuum laser. We note the appearance of oscillations in the
spectra at 10.0 GPa which are seen in Fig. 6.6/6.7. This is not from intrinsic noise of
the measurement, but are rather interference fringes from the sample and the top diamond
face. The period of the fringes depends on the distance between the diamond culets, which
decreases as pressure is increased from 5.0 to 10.0 GPa.

To ensure that the measured spectra are robust from the thin layers inside the DAC,
we fabricated a second heterostructure to compare LD spectra at ambient conditions and
those collected at high pressures. To do so, we identified another 6L exfoliated NiI2 based
on optical contrast, double encapsulated it in hBN and placed it on a bulk-like graphite
flake as a substrate (see Fig. 6.8). We note that using graphite as a substrate for the
samples was intentionally chosen to reduce the thin film interference effects, which are known
to effect the magneto-optical spectra of 2D materials, particularly on SiO2/Si substrates.
Graphite has a flat reflectivity curve across the full spectral range and is exfoliable, making
it a controllable substrate for registering magneto-optical/dichroic spectra of 2D materials.
We show a comparison between the ambient pressure LD spectra in the 6L sample of Fig.
6.8(a)/(b) with the finite pressure 6L spectra in sample 2 in Fig. 6.8(c). We find both
qualitative and quantitive agreement, with a redshift of the main features near 2.0 eV as
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a function of pressure being observable. This shows that registered temperature dependent
LD spectra are intrinsic to the sample, and not resulting from interference inside the DAC,
or the PTM.

5L

6L

3L

Optical Image

hBN/NiI2/hBN/Graphite

(a)

(b)

(a)
Pressure-dependent 

LD Spectra - 6L

Energy [eV]

Li
ne

ar
 D

ic
hr

oi
sm

 [%
]

30K

30K

2K

(c)

(b)

6L

Figure 6.8: (a) Optical image of an additional exfoliated NiI2 few-layer flake on a 285 nm
SiO2/Si substrate. White dashes outline a 6L flake. (b) The same flake, double encapsulated
in hBN on top of an exfoliated graphite flake and transferred onto a sapphire substrate. (c)
Linear dichroism spectra of 6L samples as a function of pressure. Data from the 6L region
of the sample in (b) is shown in purple, recorded at T = 2 K and ambient pressure P = 0.0
GPa. This is compared to finite pressure data on the 6L region of Sample 2 at 5.0 and 10.0
GPa and base temperature T = 30 K.

Ambient pressure optical data on few-layer samples

In order to determine the ambient pressure transition temperatures of 5L, 6L and 10L flakes,
we performed linear dichroism spectroscopy on an additional exfoliated flake on a 285nm
SiO2/Si substrate. The flakes and optical contrasts are shown in Fig. 6.9(a)/(b). Temper-
ature dependent linear dichroism values, extracted from LD spectroscopy experiments, are
reported in (c), determining the layer-dependent transition temperature at ambient pres-
sure for the thicknesses of relevance to this study. The values determined here are used for
comparison to the layer-dependence of the transition temperatures at finite pressure (Fig.
6.4). To confirm the correspondence between the transition temperature TN,2 as determined
by LD spectroscopy and Raman experiments in few-layer samples, we also performed tem-
perature dependent cross-polarized Raman on the 5L region, the thinnest sample addressed
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in this study. These results are reported in Fig. 6.9(d)/(e). A transition temperature of
TN,2 = 47.5±2.5K is confirmed from both techniques. This confirms that the electromagnon
excitations appear at the same temperature that finite LD arises in the 5L sample, justifying
the use of LD spectroscopy as an optical signature for the helimagnetic phase in few-layer
samples at elevated pressures.

10L

6L

5L

Bulk

(a)

(b)

(c) (d) (e)
Optical Image Layer-dependent TN,2

0.0 GPa

5L Raman - T Dependence

TN,1

5L Raman - T Dependence

TN,2

0.0 GPa 0.0 GPa

10 μm

Figure 6.9: (a) Optical image of a dedicated sample for ambient pressure measurement of
the layer dependent transition temperatures for 5L, 6L, 10L and bulk. (b) Optical contrast
(−∆R/R) of the flake in (a). (c), Layer- and temperature-dependent linear dichroism mea-
surements on 5L, 6L, 10L and bulk at ambient pressure, using the same linear dichroism
spectroscopy method as for the few-layer samples at high pressure. Transition temperatures
are indicated by vertical black lines. (d) Temperature dependent XY polarized Raman spec-
tra for the 5L sample and (e) corresponding color map. The transitions TN,1 and TN,2 are
indicated by horizontal white lines. TN,2 of ∼ 47.5 ± 2.5K is confirmed from both Raman
and LD measurements on the 5L sample at ambient pressure.

High pressure Raman data and analysis procedure

We show the raw Raman spectra versus pressure and temperature in Fig. 6.10. The finite-
pressure data is the same as those displayed in Fig. 6.1. Here, we show the raw line cuts
for clarity. A constant background was subtracted from all spectra determined from the
high-frequency data above 300 cm−1, depicted as red lines in Fig. 6.10. The temperature
dependent constant background results from a broad, featureless fluorescence of the PTM.
We also show corresponding data from the recovered sample at P ′

00 = 0 GPa, acquired
by decompression of the DAC from P04 = 5.0 GPa. All spectra were recorded with XY

polarization conditions and the relative alignment of the incident polarization with respect
to the crystallographic axes were kept the same throughout all experiments. The incident
polarization is vertical (Ei ∥ y ) in the image of the sample loaded in the DAC in Fig. 6.1(a).
XY polarization was used to reduce the elastic line and fluorescence background from the
DAC and PTM, while giving access all salient Raman features with high signal-noise ratio.
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0.5 GPa 2.2 GPa 3.6 GPa 5.0 GPa

(e)

0.0 GPa

Raw Data
Background
Baseline

Figure 6.10: Raman spectra in XY polarization versus pressure and temperature for sample
1. The spectra are shifted vertically by the temperature for clarity. For each spectrum
we show the raw data (dark blue), the baseline (grey) and the constant background from
temperature-dependent PTM fluorescence (red). The ambient pressure data were recorded
from the same sample after decompression, which is consistent with previously reported
ambient pressure spectra [37]. The other spectra were recorded with monotonically increasing
pressure from P01 to P04.

We also provide higher detail of the evolution of the Raman spectra in the vicinity of
the transitions TN,1 and TN,2 to highlight the definitions of the two transitions from Raman
data in Fig. 6.11. We define the transition temperatures based on the evolution of Raman
spectra observed at ambient pressure [37]. Upon warming up from base temperature, TN,2 is
characterized by a clear discontinuity in the energy of the low-energy modes (electromagnon),
indicated by the red arrows imposed on the data in Fig. 6.11. For TN,2 < T < TN,1, the low-
energy mode remains peaked at finite energy (indicated by black arrows), before softening to
zero energy and leaving only the tail of a quasielastic line for T ≥ TN,1. Separately, the M1

mode decreases in intensity above TN,2 before disappearing at TN,1. Together, these features
define the TN,1 transition temperature. TN,1 is less sharply defined than TN,2 and thus we
assign a correspondingly higher error (±5K).

To provide more detail on the temperature dependence of the M1 mode for determination
of TN,2 and TN,1, we extracted the temperature-dependent intensity of the Ag and the M1

modes versus pressure in Fig. 6.12. The latter was shown to be an indicator of the magnetic
phase transition, rising between TN,1 and TN,2 [37] upon cooling down, thus providing a
secondary signature of the phase transition in addition to the soft modes which were used
to estimate the transitions above. While the Ag phonon shows a gradual decrease with
temperature upon warming up, at all pressures, the M1 mode goes to zero in vicinity of

118



(a) (b)

(c) (d)

0.5 GPa 2.2 GPa

3.6 GPa 5.0 GPa

40K

50K

60K

100K

90K

75K

60K

80K

130K

110K

100K

150K

140K

120K

80K

90K

100K

170K

160K

140K

120K

110K

100K

Figure 6.11: Temperature-dependent XY polarized Raman spectra in the vicinity of the
transitions TN,1 and TN,2 for (a) 0.5 GPa, (b) 2.2 GPa, (c) 3.6 GPa, and (d) 5.0 GPa on
sample 1. Red arrow overlaid on spectra indicates the discontinuity in the energy of the low-
energy excitation, defining TN,2 (indicated by red arrow on right hand side of the temperature
axis). Above TN,2, black arrows overlaid on the spectra highlight the finite energy soft mode
and the M1 mode that persist between TN,1 and TN,2. TN,1 is then defined as the temperature
when the soft mode energy goes to zero, leaving just a quasielastic tail centered at zero energy
transfer, and the M1 peak disappears. TN,1 is indicated by a blue arrow on the right hand
side temperature axis.

the transition temperatures determined from the soft modes (shown as vertical lines in Fig.
6.12). This is consistent with the ambient pressure results reported previously [37] and
bolsters our identification of pressure-stabilized magnetic phase transitions from the Raman
data. We note that while the Ag mode can acquire finite XY channel intensity due to
the reduced symmetry across the trigonal-to-monoclinic phase transition, this effect is likely
small as shown in a previous ambient pressure Raman investigation [37] and cannot explain
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the relatively large intensity observed here at all pressures. Instead, we associate the finite
Ag intensity to a depolarization effect from the diamond anvil cell which causes a mixture
of the XX and XY polarization channels.

Ag peak T-dep M1 peak T-dep

P04  = 5.0 GPa

P03  = 3.6 GPa

P02  = 2.2 GPa

P01 = 0.5 GPa

P’00  = 0.0 GPa 
(recovered)

TN,1 TN,2

Figure 6.12: Temperature dependence of the Ag (left, red) and M1 (right, blue) peaks as
a function of pressure and temperature. Values represent the amplitude of single gaussian
peaks fit to the data shown in Fig. 6.10. Vertical dashed lines indicate the transition
temperatures TN,1 and TN,2 independently determined from the soft mode excitations and
linear dichroism.

High pressure XRD data and analysis procedures

All of the raw XRD data used for the temperature- and pressure-dependent structural anal-
ysis are shown in Fig. 6.13. Besides the full range diffractograms, we also show zoom-ins
of the peaks used for specific analysis of peak splitting and the c-axis magnetostriction. For
the former, the (208) peak was used since it is high in 2θ, increasing sensitivity to small
distortions, and for its relative isolation from other peaks. For the c-axis length, we used the
(0012) peak except for P01 where we used the isolated (003) peak since the (0012) overlaps
with the (204̄) at this pressure. We note some limitations of the P01 data which shows sig-
nificant pressure variations and thus a large variation in the lattice parameters as a function
of temperature despite a nominally fixed pressure. For the P01 temperature sweep, we used
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P01  = 1.04 GPa

P02  = 2.17 GPa

P03  = 3.60 GPa

P04 = 5.00 GPa

P05 = 7.68 GPa

P06 = 10.02 GPa
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Figure 6.13: Full temperature and pressure-dependent XRD data from (a), P01 = 1.04 GPa
to (f) P06 = 10.02 GPa. From left to right in each subplot is (i) the full XRD spectra, and
zoom-ins of (ii) the in-plane and (iii) out-of-plane peaks used for analysis of the monoclinic
phase transition and c-axis magnetorestriction. Except for P02, the latter two are the (208)
and (0012) reflections. At P01 it was necessary to use the isolated 003 peak for out-of-plane
analysis due to an overlap of the (0012) and (204̄) peaks at that pressure. Data in each plot
are independently normalized by a constant factor and are shifted vertically proportional to
the temperature for clarity.

a smaller thermalization time between temperature points and we conjecture that this was
insufficient for stabilization of the position and pressure inside the cell to a consistent value
across all temperatures. For P02 → P06 we used a different protocol with significant (≃ 5

min) thermalization time at each temperature which fixed the issue. While this precludes
analysis of the temperature dependent lattice parameters with sufficient accuracy at P01, the
width and spitting of the (208) peak is a robust quantity.

All peaks were fit with Gaussian lineshapes. The c-axis length versus T was directly
determined from single-peak fit of the corresponding (003)/(0012) peak for each pressure.
For the (208) we used a two-step procedure to determine the phase transition temperature.
We began by fitting the (208) to a single Gaussian peak with free parameters of width,
position and amplitude. From these fits, it was found that the width of the peak suddenly
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P (GPa) 1.04 2.17 3.60 5.00 7.68 10.02
a (Å) 3.891 3.863 3.823 3.793 3.745 3.717
c (Å) 19.240 18.881 18.578 18.311 17.951 17.691

Table 6.1: Pressure dependent lattice parameters of NiI2 at T = 200 K.

increases at low temperature and the lineshape is clearly double peaked at base temperature
(Fig. 6.13). We then used a reduced χ2 analysis to fit the spectra to single- and two-Gaussian
peak models, with the model chosen by optimal χ2 per fitting parameter. These determined
the finite peak splitting curves in Fig. 6.3. The width of the single-peak fit model and the
peak-splitting from the two-peak model are directly compared in Fig. 6.3, showing good
agreement and bolstering our assignment of the transition temperature. Error bars for TN,2

were fixed to the temperature step size (10 K) which are larger than the statistical fitting
error bars from the order parameter |T/Tc−1|α fits to the T -dependent peak splitting shown
in Fig. 6.3.

In Fig. 6.14 we show the evolution of the XRD spectra at T = 200 K for pressures
P01 → P06. We report the spectra here as the square root of total counts to highlight smaller
intensity peaks. Note that T = 200 K is above the identified magneto-structural transition
for all considered pressures. The spectra are compared to structure factor calculations for
the R3̄m structure shown as black bar plots below the spectra. We note that most peaks
and their relative intensities are well captured by the predicted pattern for R3̄m symmetry,
which is the same as the high-temperature structure at ambient pressure [42]. The ambient
pressure atomic positions are kept the same for all pressures with pressure-dependent lattice
parameters a/c determined from the (208) and (0012) reflections. The pressure dependent
lattice parameters up to P06 = 10.02 GPa are summarized in Table 6.1. Smaller additional
peaks that are not indexed could be due to small minority phase of degraded sample, dis-
cussed below, while the peak appearing between 11-12 deg. is diffraction from the solidified
Ne PTM above 3.60 GPa. Importantly, the majority phase is R3̄m at all pressures, showing
that the structural symmetry remains trigonal up to at least 10.02 GPa, in agreement with
the Raman results.

Structural analysis of lattice distortion below TN,2

The low temperature space group at ambient pressure has been previously reported by Kuin-
dersma et al. [42]. The authors report a transition from a rhombohedral cell at high temper-
ature, to a centered monoclinic cell below TN,2 as depicted in Fig. 6.3. The low-temperature
monoclinic phase has two important structural distortions: (i) a splitting of the triangular
lattice constants within the plane along the orthonormal monoclinic axes (aM/bM), reduc-
ing the planar rotational symmetry and (ii) an interlayer shearing, deviating the interlayer
stacking order from the high-symmetry rhombohedral configuration. In principle, both dis-
tortions occur in the monoclinic phase. We here parameterize these intra- and inter-layer
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stuctural distortion components as δa/a and β, respectively.
In the high-pressure XRD data, we observe a clear splitting of the (208) reflection (in-

dexed to the high-temperature structure). In principle, this splitting could be due to either
structural distortions of the type δa/a or the interlayer shear β. To quantify these distortions
independently, we consider a pure in-plane peak, (21̄0).

The interlayer shear only splits reflections of the type (hkl), for l > 0, while the intralayer
lattice parameter distortion splits all (hkl) peaks for any l with h or k ̸= 0. We show this
diagramatically in Fig. 6.15(a)-(d) using the (208) and (21̄0) as representatives. We first
consider a monoclinic distortion dominated by the interlayer shearing (β > 0 and δa/a ∼ 0)
and confirm that this results in a (208) splitting while (21̄0) reflections remain degenerate
(Fig. 6.15(a)/(b)). Separately, we consider the opposite scenario with β = 90◦ in the high-
symmetry interlayer stacking and instead consider distortions of the type |δa/a| > 0, showing
the expected splitting of both the (208) and the (21̄0) reflections.

We now consider the data at 10.02 GPa as an example and look at the peak widths of
the (208)/(104)/(21̄0)/(0, 0, 12) reflections as a function of temperature. The raw data are
depicted in Fig. 6.3. We consider the full width half maximum (FWHM) width of these
peaks determined by fits to a single Gaussian function. If the peak displays an observable
splitting, one expects an increase in the FWHM. This is clearly observed for the (208) peak
at all pressures, as shown in Fig. 6.3 and for 10.02 GPa in Fig. 6.15(e). A smaller but
observable increase in the FWHM of the (104) reflection is also observed. Meanwhile, the
(21̄0) and (0, 0, 12) reflections do not display any observable broadening, consistent with an
intralayer structural distortion that is small compared to our experimental Q resolution and
ruling out an inhomogeneous interlayer strain yielding extrinsically broadened diffraction
peaks for l > 0. We note that the expected splitting of the (21̄0) reflection should be greater
than the (208) if intralayer distortions dominated, the latter of which is experimentally ∼ 0.1

degrees, and thus should be easily observable if present. We conclude that the dominant
structural distortion at high pressures, in terms of change in interatomic distances, comes
from the interlayer shear. The change in the stacking configuration naturally explains the
concomitant shrinking of the c-axis parameter. These observations together suggest a key
coupling between both the interlayer distance and stacking symmetry with the helimagnetic
ground state of NiI2.
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P01  = 1.04 GPa

P02  = 2.17 GPa

P03  = 3.60 GPa

P04 = 5.00 GPa

P05 = 7.68 GPa

P06 = 10.02 GPa

Figure 6.14: Pressure dependence of the XRD spectra between P01 = 1.04 GPa (top) and
P06 = 10.02 GPa (bottom) at T = 200 K. Spectra are reported

√
I in counts for clarity.

These are compared to structure factor calculations based on the high-temperature ambient
pressure R3̄m structure with appropriately modified lattice parameters (see text), indicated
by black bars in arbitrary units below the experimental spectra.
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Figure 6.15: Comparison of the splitting behavior of (h0l) and (hk0) type reflections with
different possible lattice distortions in the low temperature monoclinic phase. Splitting
of the (a) (208) and (b) (21̄0) reflections as a function of the interlayer shear parameter
β. Splitting of the (c) (208) and (d) (21̄0) reflections as a function of the in-plane lattice
distortion δa/a. Values are calculated assuming a centered monoclinic cell with parameters
determined for the high symmetry phase at 10.02 GPa. (e) Full width half maximum of the
(208)/(104)/(21̄0)/(0, 0, 12) reflections as a function of temperature at 10.02 GPa.
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Chapter 7

Interlayer-shear driven helimagnetism in
NiI2

The work in this chapter is a co-first author work with Yi Tseng and the present author
(C.A.O.). Y.T. and C.A.O. performed the resonant diffraction measurements with the as-
sistance of Ronny Sutarto, Jiarui Li and Sahaj Patel. Y.T. and C.A.O. performed the struc-
tural diffraction with the assistance of Christie Nelson, Raúl Acevedo-Esteves, and Meghna
Shankar. Qian Song grew the samples. C.A.O. performed the ground state calculations. Ad-
ditional theoretical support was provided by Paolo Barone and Silvia Picozzi. Experiments
were supervised by Riccardo Comin.

7.1 Introduction

In the previous chapter, we showed using a combination of high-pressure and optical tech-
niques including optical linear dichroism, Raman spectroscopy and X-ray diffraction that
(a) there is a large enhancement of the helimagnetic transition temperature with hydrostatic
pressure at a rate of ∼ 14 K/GPa in the bulk and (b) there is a significant coupling between
interlayer stacking symmetry and the single-Q helimagnetic state.

The large enhancement rate is attributed to a pressure-enhancement of the interlayer
exchange interactions, which is demonstrated by the layer-dependence of the transition tem-
perature at different pressures. Specifically, we previously showed that at ambient pressure
the layer-dependent TN,2 value can be fit to an empirical relation related to the ratio J⊥/J∥
where thicker layers display a higher transition temperature due to a dimensionality-tuned
contribution of the net interlayer exchange in the Hamiltonian [37] (Chapter 5). Thus, the
characteristic decreasing trend of TN,2 vs. layer number up to 10 GPa provides an experi-
mental signature that the interlayer interactions are primarily responsible for the enhance-
ment of TN with pressure. This implies that the observed helimagnetic ground state with
Q = (0.138, 0, 1.457) r.l.u. is promoted by increasing the interlayer exchange.

On the other hand, as we increase the interlayer interactions and the transition tem-
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peratures with pressure, we also observe that the rhombohedral-to-monoclinic structural
transition is enhanced alongside the helimagnetic order [42]. This shows that the structural
transition is closely linked to the presence of helimagnetic order, rather than being an inde-
pendent structural distortion driven by, e.g., a non-magnetic lattice instability. Critically, we
showed that the monoclinic distortion is characterized by a change of the stacking symmetry
of different triangular lattice layers, corresponding to an interlayer shear quantified by the
monoclinic crystallographic angle β deviating from the rhombohedral value of 90◦ (Chapter
6). At the same time as the interlayer shear, we also observe a pronounced compression of
the interlayer distance. The close coupling of this structural transition to the magnetism,
and the dominant interlayer nature of the crystallographic distortion, suggest that this is
a magneto-structural transition and that the magnetic ground state is closely linked the
interlayer exchange interactions and the stacking symmetry. This conclusion fits naturally
with the stabilization of this phase with increasing interlayer exchange vs. pressure, as well
as with the role of interlayer interactions for stabilizing the helimagnetism as a function of
layer number at ambient pressure [37].

From these observations, we argue that the observed magnetic ground state with Q =

(0.138, 0, 1.457) r.l.u. in bulk NiI2 is stabilized by the interlayer exchange interactions, break-
ing the degeneracy between other closely lying magnetic wavevectors (Fig. 7.1). As we
showed, the interactions stabilizing the observed bulk ground state have not been clarified
from a theoretical standpoint, with calculations always predicting a phase with in-plane
wavevector Q∥ = (h, h), which is what is observed in isostructural NiBr2 [228] and the ex-
pected result for a Heisenberg exchange-frustration model with FM/AFM J

∥
1/J

∥
3 , respectively

(Fig. 7.1) and negligible J∥
2 (Chapter 3). Furthermore, it is recently reported that monolayer

NiI2 has a wavevector of Q ∥ (h, h) r.l.u. [143], suggesting that interactions stabilizing the
bulk ground state are not originating from within the triangular lattice layers.

Along these lines, we note that there are significant open questions regarding the sequence
of magnetic phase transitions in bulk NiI2 even at ambient pressure. As previously mentioned,
magnetometry results show that there is a two-stage magnetic phase transition in NiI2. With
decreasing temperature, a peak in the susceptibility signals the second-order-like transition
to an AFM type state below TN,1 = 75 K. Secondly, a sharp drop in the susceptibility
at TN,2 ≃ 60 K indicates a first-order-like transition to a second state. Early Mössbauer
results indicate that the ground state below TN,2 is characterized by an average transferred
hyperfine field onto the iodine sites making an angle of ≃ 62◦ (±10◦) with respect to the
c-axis [188]. Data was only recorded at base temperature of 4 K and the Mössbauer results
do not restrict a unique ground state, only the cell averaged relative orientation of the nickel
moments. It was later shown from powder neutron diffraction that the ground state below
TN,2 is consistent with a helical magnetic state with wavevector Q = (0.138, 0, 1.457)[42].
Analysis of the neutron cross section and comparison to the Mössbauer results show that a
consistent magnetic structure is a helical type spin structure (see Chapter 3 and 5) where
the spins rotate within a fixed plane making an angle of ≃ 55◦ ± 10◦ with respect to the
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c-axis, also consistent with the lack of a net magnetization.
As far as the initial studies, this constitutes nearly the totality of information regarding

the magnetic ground state of NiI2. In particular, there is no direct experimental evidence for
the magnetic structure in the intermediate magnetic phase TN,2 < T < TN,1, although it is
hypothesized [45, 46] that it is a simple layered AFM state with Q = (0, 0, 3/2). This is the
magnetic structure observed for NiCl2 below its (single) Néel temperature TN ≃ 45 K [124]
and the intermediate magnetic phase of NiBr2 between 22.5 and 52 K [231] which are directly
confirmed by neutron diffraction measurements. Nonetheless, further characterization of this
intermediate state has received little interest, likely because (a) it is natural to expect an
isostructural phase to NiBr2 and NiCl2, (b) the more interesting magnetic structure is the low
temperature incommensurate phase and (c) later measurements show that the intermediate
phase does not have the same multiferroic properties and spin-induced ferroelectricity [37, 45,
186]. Despite this, resolving the nature of the intermediate phase is critical for determining
the mechanisms of the multiferroic ground state of NiI2 and establishing the proper spin
Hamiltonian.

(d)
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J∥
3 /J∥
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Figure 7.1: (a) Triangular lattice of Ni2+ ions in NiI2 and (b) the reciprocal lattice (Brillouin
zone) defining the principle wavevector directions (h, h) along ΓK and (h, 0) along ΓM .
(c) Calculation of the exchange energy in a single triangular lattice layer with J

∥
3/J

∥
1 =

−0.386, with units normalized to J∥
1 per spin. Indicated are the two closely lying minima

in the exchange energy for q = (0.081, 0.081) (blue) and q = (0.137, 0) (red). (d) Scattering
geometry for the RXD measurements, showing the incident/outgoing wavevectors ki/ko,
respectively, and the incident polarization states πi/σi. Also indicated are the sample axes
in rlu, and the orientation of the magnetic wavevector Q in the diffraction condition.

In this chapter, we investigate the properties of this intermediate phase more directly, as
well as the change of the magnetic structure across the structural transition at TN,2, using
resonant magnetic X-ray scattering (RMXS) at the Ni-L3 edge (Chapter 4). Surprisingly,
we find that the intermediate magnetic phase is not a simple AFM order, but is rather an

128



incommensurate phase with approximately the same magnitude of |Q| as the ground state,
but with a distinct in-plane propagation vector along Q∥ = (h, h). The phase arises at TN,1

before a first order transition at TN,2 where the magnetic wavevector rotates 30◦ in-plane.
Additional crystallography measurements confirm the low temperature monoclinic distor-
tion [42] with a pronounced interlayer shear that occurs concomitantly with the transition
between (h, h) and (h, 0) magnetic states at precisely TN,2 with a first-order-like structural
order parameter. Using a mean-field spin-exchange model for incommensurate magnetic
states including interlayer interactions and their modification through the structural transi-
tion, we confirm that the monoclinic distortion provides an energetic favorability to change
the in-plane propagation vector. Along with the results of hydrostatic pressure in Chap-
ter 6, these results conclusively demonstrate that interlayer interactions and spin-lattice
coupling drive the ground state spin structure of NiI2. Combining information from the
polarization-dependence in RMXS (Chapter 4), symmetry-resolved optical probes (Chapter
5) and previous measurements of the multiferroic properties [45], we conclude the interme-
diate phase of NiI2 between TN,2 < T < TN,1 is likely an amplitude modulated, single-Q
spin-density wave (Chapter 3) which breaks rotational but not inversion symmetry. These
results isolate the key interactions driving the multiferroic ground state in NiI2 and provide
insight into the crossover of the magnetic ground state in the ultrathin limit.

7.2 Results

7.2.1 Resonant magnetic X-ray scattering of helimagnetic order in
bulk NiI2

Resonant diffraction measurements on single-crystal NiI2 grown by chemical vapor deposi-
tion (CVD) grown and intermediate thickness (∼ 15 nm) flakes grown by physical vapor
deposition (PVD) were performed at the REIXS beamline at the Canadian Light Source.
The diffraction geometry is shown in Fig. 7.1 (d), with tunable incident photon energy near
the Ni-L3 edge and controllable polarization perpendicular (σi) and parallel (πi) with respect
to the scattering plane. The outgoing polarization is not resolved and is the sum of σo/πo
contributions.

We begin by discussing the magnetic response below TN,2, at T = 20 K. With photon
energy tuned to the peak of the Ni-L3 edge, an intense incommensurate reflection is ob-
served near h ≃ 0.144 and l ≃ 1.47 rlu (Fig. 7.2 (a)/(b)), along the in-plane (h, 0) direction.
Notably, this is near the wavevector predicted from previous neutron scattering results [42],
with small quantitative discrepancies. To confirm the magnetic origin of the peak and asso-
ciation to the nickel moments, we perform energy scans across the Ni-L3,2 edge while fixing
the momentum transfer Q ≃ (0.144, 0, 1.47) (Fig. 7.2(c)). A clear resonant enhancement is
observed at the Ni edge, which is highlighted by comparison to the XAS spectrum in total
fluorescence yield (TFY) reported in Fig. 7.2(d). The XAS spectrum agrees with previous
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Ni-  TFY-XASL2,3

Q = [H,0,L]
(e) Temperature Dependence

L3

L2

Figure 7.2: Ni L3 edge resonant diffraction in NiI2 at T = 20 K. (a) h and (b) l scans of
the helimagnetic wavevector at T = 20 K with incidence energy tuned to the peak of the Ni
L3 absorption, confirming a Q ≃ (0.144, 0, 1.47) rlu magnetic ground state. (c) Energy scan
at fixed wavevector of the magnetic peak in (a)/(b), showing a resonance behavior at the
Ni L2,3 edges, compared to (d) the Ni L2,3 edge total fluorescence yield (TFY) absorption.
(e) Temperature-dependence of the helimagnetic order, showing that the peak disappears at
TN,2.

results confirming the quality of the samples [155].
We next perform temperature-dependent h scans across TN,2, and observe that the peak

disappears abruptly between 50 and 55 K. There is also a weak temperature-dependence of
the incommensurability factor, decreasing from h ≃ 0.144 at 20 K to ≃ 0.142 at 50 K. Along
with the clear resonance behavior (Fig. 7.2(c)), these results confirm that the observed
reflection is the helimagnetic order. This is already one critical result, as the wavevector
direction was only inferred from calculations in the previous neutron study [42], which only
measured powder samples and is thus only sensitive to |Q|.

Having established the ground state spin order with RMXS, we next aim to study the
magnetic order in the intermediate phase with TN,2 < T < TN,1. We began by checking the
hypothesized Q = (0, 0, 3/2) ordering, corresponding to a layered AFM state with a FM
intralayer order. This ordering wavevector was checked systematically on multiple samples
throughout this study, but no peak was observed at any temperature. However, we do
observe a new peak appearing at 60 K along the (h, h) in-plane direction, with h ≃ 0.086

and l ≃ 1.49 (Fig. 7.3(a)/(b)). This corresponds to a relative rotation of the wavevector
by 30◦ in the triangular lattice plane with respect to the ground state propagation vector.
Notably, the magnitude of the spiral pitch is nearly the same in both cases,

|(0.086, 0.086)| = 0.276 Å−1 → 22.8 Å
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Figure 7.3: Ni L3 edge resonant diffraction in NiI2 in the intermediate phase TN,2 < T < TN,1.
(a) h and (b) l scans of a magnetic peak at T = 60 K with incidence energy tuned to the peak
of the Ni L3 absorption. The observed peak is Q ≃ (0.086, 0.086, 1.49) rlu. (c) Temperature-
dependence of the intermediate phase magnetic order, showing that the peak appears near
TN,1 and suddenly disappears when cooling below TN,2.

|(0.144, 0)| = 0.267 Å−1 → 23.6 Å

which is reminiscent of the nearly degenerate magnetic states along ΓM and ΓK predicted
by the simple J∥

1/J
∥
3 exchange model shown in Fig. 7.1(c), discussed more below.

We further perform temperature-dependent h scans of this reflection (Fig. 7.3(c)). This
peak shows a non-trivial temperature dependence, appearing on cooling between 75 and 70
K (TN,1) and suddenly disappearing below ≃ 58 K. This unique temperature dependence
provides strong evidence that this peak corresponds to the intermediate magnetic phase
observed in magnetometry and optical experiments, while the layered AFM state can be
ruled out. The magnetic phase diagram determined by RMXS is thus summarized in Fig.
7.4. On cooling, the sample transitions first to a magnetic state with Q ∼ (h, h, l) with a
second-order like transition. Then, there is a first-order like transition at TN,2, characterized
by a discontinuous change in the Q vector, rotating 30◦ degrees in plane to Q ∼ (h, 0, l),
with nearly the same magnitude of Q∥ in each case. The first order nature of the crossover
is further confirmed by a continuous temperature scan (solid red line in Fig. 7.4) of the
(h, h, l) order, showing a transition width on the order of 0.1 K. The slight discrepancy of
the onset of the (h, 0, l) peak, appearing near 55 K, could be due to either a different probed
distribution of single-Q domains which can have a complex temperature dependence close
to the transition (see Chapter 5) or due to more complex evolution of the wavevector near
the transition which we do not resolve.

Additional information on the symmetry of the underlying magnetic order at each reflec-
tion can be gleaned from the polarization dependence (Chapter 3). Thus, we investigated
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TN,1TN,2

Figure 7.4: Magnetic phase diagram of NiI2. Below TN,2, the ground state is a helical state
with Q = (h, 0, l), with h ≃ 0.144 rlu and l ≃ 1.47 rlu (blue data points). Between TN,2 and
TN,1, a magnetic order with Q = (h, h, l) with h ≃ 0.086 rlu and l ≃ 1.49 rlu is observed,
with a first order like transition near TN,2 (red data points). Data points are the integrated
intensity from temperature-dependent h scans of the magnetic peaks, and the continuous
red line is a temperature-dependent scan of the (h, h, l) peak at fixed momentum transfer.

the scattering intensity (I) in each channel with incident linear vertical/horizontal (σ/π)
and circular left/right (σ+/σ−) polarizations (Fig. 7.5). Beginning in the high-temperature
phase with Q = (h, h, l) for TN,2 < T < TN,1, we observe that the intensity is much stronger
with incident π compared to σ, while the intensity is approximately equal in σ+/σ− (Fig.
7.5(a)/(b)). The same situation is observed upon reversing the sign of the in-plane compo-
nent at the Q = (−h,−h, l) reflection, besides an overall reduced intensity likely associated
to self-absorption effects [232].

In the low-temperature phase, a different response is observed. While both the Q =

(h, 0, l) and Q = (−h, 0, l) reflections show a similar dependence on linear polarization as
the (h, h, l) reflection, a finite circular dichroism (CD) is observed (Fig. 7.5 (c)/(d)). Notably,
the CD reverses sign upon reversal of Q∥, with I(σ+) > I(σ−) and I(σ−) > I(σ+) for the
(h, 0, l) and (−h, 0, l) reflections, respectively. This behavior is consistent with a finite spin
helicity, as expected from a spin-helical or cycloidal state (Chapter 3), which is known to
be directly reflected in the CD response of RMXS [233]. While more detailed calculations
are ongoing work, these observations provide an important restriction on the intermediate
magnetic state, discussed more below, and are consistent with a spin spiral state with finite
spin helicity in the multiferroic phase below TN,2.
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T = 60 K

T = 62 K T = 20 K

T = 20 KGrazing In

Grazing Out
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Figure 7.5: Polarization dependence of the magnetic scattering in NiI2. Polarization depen-
dent θ-scans at T = 60 K and at the (a) (h, h, l) reflection (grazing out) and (b) (−h,−h, l)
reflection (grazing incidence) for the intermediate magnetic phase TN,2 < T < TN,1. Polar-
ization dependent θ-scans at T = 20 K and at the (c) (h, 0, l) reflection (grazing out) and (d)
(−h, 0, l) reflection (grazing incidence) for the low-temperature magnetic phase T < TN,2.
The respective scattering geometries for grazing out/incidence are shown schematically on
the left, indicating the orientation of incident linear horizontal light (πi) lying within the
scattering plane. Linear polarizations are labelled σ (orange, linear vertical) and π (blue,
linear horizontal) while circular polarizations are labelled σ+ (green, circular left) and σ−

(red, circular right). In all cases, the outgoing polarizations are not resolved.

7.2.2 Characterization of the structural phase transition

The results of the previous section show that the physics of NiI2 is likely distinct from both
NiCl2 and NiBr2, which both display a simple layered AFM state in their respective magnetic
phase diagrams. Furthermore, in NiBr2, the transition to the ground state spiral structure
behaves as a second-order phase transition, while in NiI2 a first-order transition is observed.
As we hypothesized, the change of magnetic ground state is likely mediated by spin-lattice
interactions and the associated magneto-structural transition, which is observed in NiI2 but
not in the other nickel dihalides.

To confirm this scenario, we more closely inspect the monoclinic structural phase tran-
sition which was previously reported [42]. While the transition temperature was observed,
the data quality is poor (using powder samples with a standard Cu Kα source) which pre-
cludes a precise determination of the order parameter and refinement of the crystal structure.
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Figure 7.6: Temperature-dependent structural analysis of single-crystal bulk NiI2 recorded
with incident energy of 8.33 keV. (a) Temperature-dependent θ-2θ scans near the (1, 0, 16)
structural reflection, showing a splitting at TN,2 = 60 K. (b), Temperature-dependence of the
order parameter for the monoclinic structural transition, showing a first-order like transition
at 60 K. θ-2θ scans near the (c), (0, 0, 12), (d), (1, 0, 16) and (e), (1, 1, 15) reflections at T = 95
K (orange) and T = 10 K (blue). Black arrows indicate the observed split components of
these reflections below TN,2.

Thus, we have performed additional high-resolution structural diffraction on CVT-grown sin-
gle crystals of NiI2 at the 4ID-ISR beamline at the National Synchrotron Light Source II,
Brookhaven National Laboratory, using monochromatic X-rays with an incident energy of
E = 8.33 keV (λ = 1.4884 Å).

To determine the crystal structure, we focus on the (0, 0, 12), (1, 0, 16) and (1, 1, 15)

reflections. At T = 95 K, all of the reflections are single peaked and are consistent with
the high-temperature R3̄m cell, with lattice parameters shown in Table 7.1. Meanwhile, at
T = 10 K, the (1, 0, 16) and (1, 1, 15) reflections split into 2 and 3 components, respectively
Fig. 7.6(d)/(e). These splittings can be fit to a centered monoclinic cell with either C2 or
C2/m space group, with lattice parameters shown in Table 7.1. The reported values are
close to those reported in Ref. [42].

To register the structural transition, we focus on the (1, 0, 16) reflection versus tempera-
ture (Fig. 7.6(a)). A clear first-order like transition is observed at precisely TN,2 = 60± 2.5

K. Additionally, no lattice distortion is observed in the intermediate magnetic phase. We
extract the splitting, proportional to the order parameter of the structural transition, which
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T (K) SG a (Å) b(Å) c(Å) α (deg.) β (deg.) γ (deg.)
95 K R3̄m 3.9103 3.9103 19.665 90 90 120
10 K C2(/m) 6.7585 3.9130 19.610 90 90.23 90

Table 7.1: Lattice refinement of NiI2 at T = 10 K and 95 K.

is displayed in Fig. 7.6(b). These results confirm that the structural transition is first-order
like, compatible with the transition between the (h, 0, l) and (h, h, l) magnetic states occur-
ring at the same temperature (Fig. 7.4). This provides strong evidence for a connection
between the change of ground state and the change of the underlying lattice symmetry,
consistent with the conclusions reached from high-pressure experiments in Chapter 6.

7.2.3 Magnetic scattering from nanometer-thickness NiI2 flakes

(a) (1,0,16)
SiO2/Si

Au

NiI2 

10 µm

T = 20 K

(c) (e)
TN,1TN,2

(b) (d) (f)
T = 60 K

Q = [H,0,L] Q = [H, H, L]

[HHL][H0L]

T = 20 K
Q = [H,0,L]

~13.5 nm

75 K (x10) 
60 K (x10) 
  2 K

λ = 633 nm

Figure 7.7: Resonant magnetic scattering in ∼ 15nm thick NiI2. (a), Optical image of a
trapezoidal shaped NiI2 flake grown by PVD and transferred onto a Au contact on SiO2/Si.
Scale bar: 10 µm. (b), (h, 0, l) reciprocal space map (RSM) of the helimagnetic peak at
T = 20 K. (c), Long-range l scan of the helimagnetic peak in log scale, showing the presence
of Laue oscillations resulting from finite flake thickness along the c-axis. (d), RSM of the
(h, h, l) reflection in the intermediate phase at T = 60 K. (e), Temperature-dependence of
the (h, 0, l) and (h, h, l) reflections across TN,1 and TN,2, showing similar behavior as the
bulk. (f) Temperature-dependent linear dichroism in the same 15 nm flake with wavelength
λ = 633 nm. Inset: Angular dependent LD at T = 2 K (blue), 60 K (red) and 75 K (black).
The curves for 60 and 75 K are multiplied by 10.

One of the major advantages of resonant soft x-ray scattering is its sensitivity to magnetic
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order from small samples volumes, down to few atomic layers [74, 158, 159, 234, 235]. Thus,
this technique has great promise for the characterization of long-range magnetic order in
vdW magnets, overcoming the limitations of the weak neutron scattering cross-section. We
demonstrate this here by performing the same RMXS experiments on a thin flake of NiI2
grown by PVD with a thickness of approximately 15 nm. An optical image of the ∼ 10× 20

µm dimension sample is shown in Fig. 7.7(a). The sample is transferred onto the corner of
Au contact deposited on a SiO2/Si substrate, and is spatially isolated from nearby flakes by
around 500 µm. The conditions provide a practical method for identifying the flake position
with the X-ray beam, and ensuring that diffraction is only collected from the sample of
interest. Furthermore, the Au contact is crucial to allow for heat/charge dissipation from
the flake to prevent sample damage.

At T = 20 K, we observe a resonant reflection near the expected (h, 0, l) position, with
h ≃ 0.142 rlu and l ≃ 1.56 rlu, as shown in the 2D reciprocal space map (RSM) in Fig.
7.7(b). This is in general agreement with the results of the bulk reported in Fig. 7.2.
We further performed high-statistics and long-range scans along the l direction, shown in
log scale in Fig. 7.7(c). These measurements show the presence of clear Laue oscillations,
related to the finite thickness along the c-axis. We can estimate the sample thickness from
the periodicity of these fringes (∆l ≃ 0.15 rlu) as ∼ 13.5 nm, in rough agreement with
the thickness determined by optical contrast and AFM measurements. This provides direct
evidence for resonant magnetic scattering from the identified flake in Fig. 7.7(a), rather than
other thicker nearby flakes.

We also characterized the cross-over of the magnetic transition in these flakes. It was
previously suggested from SHG measurements [186] that mesoscale thickness flakes (∼ 10−20

nm) display a rotation of the magnetic wavevector to the (h, h, l) direction in the ground
state. Thus, considering our results in the bulk, we explicitly verify the magnetic phase
diagram within this mesoscale regime. At T = 60 K, we observe a reflection along the
(h, h, l) direction, summarized in the RSM of Fig. 7.7(d), in agreement with intermediate
phase of the bulk. We performed temperature-dependence of both the (h, 0, l) and (h, h, l)

reflections and find a similar phase diagram for the ∼ 15 nm flake as observed in bulk
(Fig. 7.7(e)). This rules out a potential rotation of the ground state wavevector at these
thicknesses. We also note that these results were confirmed down to 10 nm thickness, not
shown here. Extension of these data to the thinner limit should be feasible, and is the process
of ongoing work.

One notable distinction in the bulk and thin limit is that the transition at TN,2 becomes
broader and less well-defined. This is also observed in the temperature-dependence of both
linear dichroism (LD) and second harmonic generation (SHG) [37] (Chapter 5). We directly
compare the magnetic phase diagram determined from RMXS with optical LD measurements
on the same flake in Fig. 7.7(f) (for experimental details see the Methods section of Chapter
5). Optical measurements show a broadened TN,2 transition around 57.5 K, in agreement
with RMXS transition to the (h, 0, l) state. We also note that finite LD signal is observed
in the intermediate phase, but it is much weaker than the LD below TN,2. We also perform
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angular dependent LD in each phase shown as the inset in Fig. 7.7(f), showing that the
principle anisotropy axes of the intermediate state are the same as the ground state. These
observations and their implications for the intermediate phase spin structure are discussed
more below.

7.2.4 Analysis of the ground state and the coupling between inter-
layer shear and exchange interactions

We now build a microscopic model of the exchange Hamiltonian including a minimal set of
interlayer exchange interactions in order to justify the claim that the structural transition
can change the magnetic ground state. For these calculations, we will consider the following
Hamiltonian,

H = −
∑
⟨i,j⟩n

J∥
nSi · Sj −

∑
⟨i,j⟩n

J⊥
n Si · Sj (7.1)

where ⟨i, j⟩n refer to sums over pairs of nth nearest neighbors with intralayer exchange
interactions J∥

n and interlayer exchange interactions J⊥
n , respectively. We will work in a

model considering classical local spin moments Si. In this limit, one can calculate the ground
state magnetic wavevector by minimizing the classical energy of the system with respect to
q by taking the Fourier transform of the exchange integrals (Chapter 3):

Jn(q) =
∑
⟨i,j⟩n

Jne
−iq·rij (7.2)

For the exchange interactions, we use take the leading contributions determined from the-
oretical calculations. In all cases, the triangular lattice geometry for Ni2+ ions consistently
gives ferromagnetic J∥

1 , negligible J∥
2 and antiferromagnetic J∥

3 for the intralayer exchange
[46, 47, 126, 143]. These can be easily justified by the Goodenough Kanamori rules, with
J1 being determined by ≃ 90◦ Ni-I-Ni bonds, while J3 is a Ni-I-I-Ni bond with predominant
direct transfer between the involved iodine orbitals (Chapter 3). We note that the original
isotropic Heisenberg models used to justify the ground state of NiI2 with Q∥ ∼ (h, 0) assumed
a large value of J∥

2 [42]. However, more recent numerical calculations are all consistent in
finding that the magnitude of J∥

2 is too small for this to be the interaction responsible for
the observed ground state.

The interlayer interactions are all of the type Ni-I-I-Ni, mediated by two ligands. Due
to the large spatial extent of the iodine orbitals in the case of NiI2 (as well as the large
metal-ligand hybridization and small metal-ligand charge transfer gap, see Chapter 8), the
interlayer interactions are predicted to be large [37, 126]. The main contributions are the
first- and second-nearest neighbor exchange interactions J⊥

1 , J⊥
2 , which are weak FM and

strong AFM, respectively, as determined by first-principles calculations in bilayers [126] and
as discussed microscopically in Chapter 3.

For a minimal model, we take as non-zero J∥
1 , J

∥
3 and J⊥

2 and consider the classical ground
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states. The expressions for J(q), expressing q in terms of (h, k, l) reciprocal lattice units on
the triangular lattice, are

J
∥
1 (q) = 2J

∥
1 (cos(2πh) + cos(2πk) + cos(2π(h+ k))) (7.3)

J
∥
3 (q) = 2J

∥
3 (cos(4πh) + cos(4πk) + cos(4π(h+ k))) (7.4)

J⊥
2 (q) =2J⊥

2

(
cos

(
2π(2h+ 4k + l)

3

)
+ cos

(
2π(2h− 2k + l)

3

))
+2
(
J⊥
2

)′
cos

(
2π(−4h− 2k + l)

3

) (7.5)

The two terms of J⊥
2 (q) correspond to two sets of bond lengths/exchange paths which become

inequivalent in monoclinic symmetry, discussed below. We first consider the case of the high
symmetry R3̄m structure with J⊥

2 =
(
J⊥
2

)′. To calculate the phase diagram we express
j
∥
3 = J

∥
3/J

∥
1 and j⊥2 = J⊥

2 /J
∥
1 and calculate the ground state versus j∥3 and j⊥2 .

shear direction

Q = (0.138, 0, 1.457)

Q = (0.08, 0.08, 1.5)

(a)

(b)

z = 0 

z = 1/3

Figure 7.8: Magnetic ground state schematics and definition of interlayer J terms.

We plot the classical magnetic ground states for R3̄m symmetry in Fig. 7.9. We consider
separately wavevectors of the type Q = (h, h, l) (Fig. 7.9 (a,b)) and Q = (h, 0, l) (Fig.
7.9 (c/d)), and then determine the overall ground state as the minimum between these two
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Figure 7.9: Classical ground state of R3̄m stacked triangular lattice with second-nearest
neighbor interlayer interactions. All plots expressed versus j∥3 (horizontal) and j⊥2 (vertical).
(a) h and (b) l components of the ground state for Q = (h, h, l). (c) h and (d) l components
for Q = (h, 0, l). (e) h and (f) l for the overall ground state, which in this case is always of
either FM intralayer order or in-plane incommensurate states of the type (h, h, l).

possibilities (Fig. 7.9 (e/f)). First, we note that the overall ground state is always either FM
in plane ((h, k) = (0, 0)), or an incommensurate spiral state with Q = (h, h). Notably, the
(h, 0, l) phase of NiI2 cannot be stabilized simply by including interlayer interactions alone.

A few general features can be noted. First, the sign of the interlayer exchange determines
AFM/FM interlayer stacking (l = 3/2 and l = 0, respectively), as expected. Secondly,
increasing interlayer interactions shifts the phase boundary between the FM and spin spiral
structures, relatively stabilizing the simple intralayer FM state and increasing the critical
value of j∥3 required to stabilize the (h, h) or (h, 0) phases. Finally, we note that while the
Q = (h, 0, l) state is not the ground state, the interlayer interactions uniquely predict that
this state has an incommensurate value of l = 3/2 − δ, while the (h, h, l) phase is always
commensurate out-of-plane with l = 1.5. This is in general agreement with the observations,
since the (h, h, l) state of NiBr2 is commensurate, while NiI2 has a small incommensuration
of δ ≃ 0.05 rlu out-of-plane.
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Finally, we plot the energy difference between Q = (h, h, l) and the (h, 0, l) states in
Fig. 7.10. This shows that while the (h, h, l) state is the overall ground state, the energy
separation is on the order ∆E ≃ 10−2J

∥
1 near the phase spiral/FM boundary. In physical

units, J∥
1 is around 5 meV/Ni atom [46, 47, 125, 126], thus the energy difference between the

states in on the order of ≃ 100µeV/Ni.

 / 
Δ

E
J ∥1

E(HHL) − E(H0L)

Figure 7.10: Energy difference of (h, h, l) and (h, 0, l) states in R3̄m symmetry.

We next move to the case of monoclinic symmetry with (J⊥
2 )

′ ̸= J⊥
2 (Fig. 7.8). We

account for the difference by introducing a symmetric proportional splitting, e.g. j⊥2 =

(1 + ∆)j̄⊥2 and (j⊥2 )
′ = (1 − ∆)j̄⊥2 . We begin by setting a splitting of 2% and calculate

the ground states, which are shown in Fig. 7.11. We observe that near the spiral-FM phase
boundary with ∆ > 0 that the ground state becomes (h, 0, l) before switching back to (h, h, l)

as the spiral state becomes more stabilized by increasing j∥3 or decreasing j⊥2 . This indicates
that a small deviation from rhombohedral symmetry can energetically favor the (h, 0, l) state
observed in NiI2, and that small changes in parameters can change the ground state between
(h, h, l) and (h, 0, l), in principle.

To further demonstrate the cross over in the ground state, we calculate the dependence
on ∆j⊥2 at fixed values of j∥3 = −0.55 and j̄⊥2 = −0.40 in Fig. 7.12. For these parameters, we
observe a continuous change in the energy difference ∆E between the two states before the
ground state changes at ∆j⊥2 ≃ 2.5 %. Furthermore, the ordering wavevectors of each state
show a significant change with increasing ∆. For (h, 0, l), both h and l change significantly,
while for (h, h, l) the value of h is approximately constant but becomes incommensurate
along l for deviations from rhombohedral symmetry. This allows a mechanism through
which the spin-lattice interactions can change the incommensurability factor, and lead to a
temperature-dependence of the wavevector.

Finally, we estimate a reasonable parameter range for the splitting ∆j⊥2 . To do so,
we calculate the change in the interatomic distance between the interlayer second nearest
neighbors across the monoclinic phase transition, using the refined lattice parameters in the
previous section. We then estimate the corresponding change in the exchange parameters
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Figure 7.11: (a) h and (b) l components of the ground state of a monoclinic stacked triangular
lattice with second-nearest neighbor interlayer interactions. The h value for the (h, h, l) state
is multiplied by

√
(3) for direct comparison to (h, 0, l). All plots are expressed versus j∥3

(horizontal) and j⊥2 (vertical). The value of ∆j∥2 = 2%.
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Figure 7.12: Ground state crossover versus ∆j⊥2 in monoclinic symmetry. (a) Energy differ-
ence (∆E) of the (h, h, l) and (h, 0, l) ground states and (b) h and (c) l components of the
wavevector for both (h, h, l) (blue) and (h, 0, l) (orange) states. The vertical line indicates
the value of ∆j⊥2 ≃ 0.025 which leads to a change of ground state. All plots for j∥3 = −0.55
and (average) j⊥2 = −0.40.

using results of first-principles calculations at high-pressures which modifies the exchange
through compressive strain [126]1.

Using the crystallographic parameters in Tab. 7.1, we find that the J⊥
2 bonds have a

length r = 7.93765 Å and the (J⊥
2 )

′ bond is r′ = 7.95469 Å, corresponding to a difference
in bond length ∆r/r ≃ −0.21%. Meanwhile, the value of j⊥2 between 0 and 5 GPa increases
rapidly at a rate ≃ 15.6 (%j⊥2 )/(% strain). Thus, we estimate a maximal splitting of the
exchange parameters from the crystallographic distortion to be around ∆j⊥2 ≃ 3%, which is
in reasonable agreement with the approximate values used in the above analysis.

1The electronic structure, in particular the band gap and Ni-I charge transfer gap, also change with
pressure which we do not expect to be significantly modified by small lattice displacements. Thus, the
comparison to pressure is only meant as an order of magnitude estimate.
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7.3 Discussion

Thus, we have shown that a minimal microscopic model that accounts for an interlayer
shear can effectively drive the observed ground state of bulk NiI2 through the interlayer
interactions. It was noted that the magnetic wavevector of the monolayer observed by STM
places the system close to the spiral-FM phase boundary [143], with a value of j∥3 ≃ −0.263,
close to the critical value in the absence of interlayer interactions j3 = −0.25 for the FM-
spiral state. Meanwhile, including interlayer interactions pushes the system even closer to
this boundary, as we noted before. The proximity to this phase boundary is important
within our analysis, as this is the same region where small ∆j⊥2 can drive the change in
ground state. The further away from this phase boundary, the larger value of ∆j⊥2 would be
required, which is bounded to a few percent because of the small change in the interatomic
distances.

We propose the scenario by which the bulk NiI2 first transitions into an incommensurate
magnetic state with wavevector (h, h, 3/2) with parameters near the spiral-FM phase bound-
ary. Then, a magneto-structural transition occurs simultaneously with the transition to the
(h, 0, 3/2− δ) state, mediated by a spin-lattice interaction whereby the structural distortion
and corresponding change of magnetic ground state can minimize the total energy of the
system. The magnitude of the structural distortion would be counterbalanced by the cost
of elastic energy for the interlayer shear. Quantifying this elastic energy would require more
dedicated studies of the elastic moduli and phonons of NiI2 which is the subject of future
work. Nonetheless, this scenario is fully consistent with our observations and is supported
directly by our minimal microscopic model.

There are several outstanding questions for the nature of this intermediate state. In
particular, inversion symmetry breaking [37, 186] and ferroelectric polarization along any axis
[45] is not observed above 60 K. This immediately gives strong restrictions on the magnetic
state, because the reported SHG measurements are also sensitive to the magnetic order for
the right choice of wavelength [37] (Chapter 5). Thus, an inversion-symmetry breaking single-
Q spiral state in the intermediate phase is unlikely, as otherwise SHG and/or ferroelectric
polarization would almost certainly be observed given the ubiquity in isostructural systems
with the same magnetic wavevector [33, 38, 44]. Meanwhile, there is a clear optical linear
dichroism signal above the TN,2 transition, observed both by us [37] (Chapter 5) and in
older optical literature [190]. This suggests that C3z rotational symmetry is broken while,
crucially, the lattice remains in high-symmetry rhombohedral phase as directly evidenced
from our high-resolution diffraction measurements (Fig. 7.6). This is apparently at odds
with the lack of inversion symmetry breaking, because the breaking of C3z symmetry by the
magnetic order is also compatible with a single-Q state. Finally, the observation of finite
CD in RMXS in the (h, 0) phase, but not the (h, h) phase (Fig. 7.5), evidences that the
intermediate phase magnetic structure may not possess a net spin helicity. This would be
consistent with a non-spiral magnetic state between TN,2 < T < TN,1.
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One possibility is that the intermediate phase is a triple- or double-Q state [47]. The
model we presented here acts as a mechanism to stabilize the single-Q state through the
monoclinic distortion, with the ground state having a propagation vector aligned to the
shear direction which can occur along one of three equivalent axes (Fig. 7.6). Meanwhile,
in the rhombohedral phase, the three different Q states (with Q∥ along ±(h, h), ±(−2h, h),
±(h,−2h)) are degenerate. Thus, single-Q states must be stabilized by different interactions
or chosen by a spontaneous symmetry breaking.

One possible solution consistent with all current experimental evidence and the ground
state analysis presented above is that the intermediate state is an amplitude-modulated SDW
phase (Chapter 3). Such a state can viewed as the addition of two spin spiral phases with
opposite signs of the magnetic wavevector (±Q) and opposite spin helicity [236]. Such a
phase breaks rotational symmetry but not inversion, consistent with the optical data, and
has been observed as a competing phase in several type-II multiferroics above the spiral
transition, including TbMnO3 [237, 238], CuO [239, 240] and AgFeO2 [241]. In particular,
an SDW phase preceding a spiral phase at a lower temperature is commonly observed, as a
single-Q state with definite single helicity requires coupling to the lattice to break the de-
generacy between states of opposite helicity whose wavevectors are selected by the magnetic
exchange. This situation is precisely what we observe in NiI2, and naturally explains why the
structural transition occurs at TN,2 rather than TN,1. Thus, the difference between the in-
plane propagation directions favored by the magnetic exchange ((h, h)), the near degeneracy
of the (h, h) and (h, 0) magnetic states, and the lowest-energy direction of the lattice shear
([210] real space direction) are all critical ingredients to explain how spin-lattice coupling
leads simultaneously to a change in magnetic ground state and the presence of finite spin
helicity (Fig. 7.5).

More generally to the physics of NiI2, one must recall the importance of two-site anisotropy
(or Kitaev terms) [47, 131], which favor specific local spin directions (or spin rotation planes)
which can also energetically affect the propagation vector. Particularly, Ref. [131] argued
that Kitaev interactions are the mechanism driving the (h, 0) state of NiI2. However, this
bond anisotropy term acts within the triangular lattice layer, thus predicting the same ground
state for the monolayer and the bulk, which disagrees with the observations of [143]. There-
fore, Ref. [131] likely overestimates the contribution of Kitaev interactions, but their impor-
tance for determining the spin rotation plane cannot be ignored (Chapter 3). These may
relatively stabilize the single-Q state and corresponding rotation plane, but are not strong
enough on their own to make this the ground state, requiring an additional stabilization
from the interlayer interactions through the mechanism we identified here. We note that the
interlayer shear and Kitaev mechanisms should be cooperative as they both stabilize (h, 0)

order near the spiral-FM phase boundary. This cooperative effect should reduce the required
splitting of the interlayer exchange interactions within our model, supporting the viability
of this mechanism. At these energy scales, it is also crucial to include the smaller exchange
interactions J∥

2 , J⊥
1 , and J⊥

3 [126] as these are on the same order of the energetic difference
between the (h, 0) and (h, h) states, although their inclusion in R3̄m symmetry alone does
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not change the ground state [131].
In conclusion, by directly probing the long-range magnetic order of NiI2 using RMXS, we

have confirmed the ground state spin structure and revealed the nature of the intermediate
magnetic state which was not previously resolved. Through additional analysis of the struc-
tural phase transition and its coupling to the underlying spin Hamiltonian, we have found
that the ground state spin structure is likely driven by the interlayer shear of the triangular
lattice layers. This points to the critical role of the interlayer exchange interactions and the
stacking symmetry for determining the ground state of NiI2. These observations provide
direct experimental evidence for the proper spin Hamiltonian of NiI2 and resolves the debate
surrounding the discrepancy between the ground state of the monolayer and the bulk in
relation to predictions from theoretical calculations [47, 125, 126, 129, 131, 143].

More generally, these results demonstrate that in frustrated layered magnets with long-
range magnetic interactions, the interlayer interactions can not only modify the interlayer
magnetic order [6, 19], but also the intralayer spin texture. The control of complex spin
textures through interlayer exchange engineering could lead to intriguing results in vdW het-
erostructures, particularly through the spatially modulated interlayer interactions in moiré
superlattices [31, 32]. Finally, we have shown the feasibility to use RMXS scattering to probe
the long-range magnetic order of vdW magnets with nanometer thickness. This methodol-
ogy can be extended to the ultrathin limit, possibly permitting the direct confirmation of
long-range magnetic order in the single- and few-layer limit of vdW materials.

144



Chapter 8

Nature of excitons and their
ligand-mediated delocalization in nickel
dihalide charge transfer insulators

This chapter is adapted from a pre-print posted to arXiv (Ref. [242]) with modifications and
corrections.

This paper is a co-first author work between the present author (C.A.O.) and Yi Tseng.
C.A.O. and Y.T. initiated the project in discussion with Jonathan Pelliciari and Riccardo
Comin. C.A.O., Y.T., J.P. and Valentina Bisogni performed the RIXS measurements. Qian
Song grew and characterized the NiBr2 and NiI2 samples. Mark Blei and Seth Ariel Tongay
grew and characterized the NiCl2 samples. The charge transfer multiplet calculations were
performed by C.A.O., with additional theoretical support provided by Hebatalla Elnaggar
and Frank M. F. de Groot. R.C. supervised the project.

8.1 Introduction

The recent demonstration of magnetic order in correlated transition-metal van der Waals
(vdW) materials to the ultrathin limit has led to an increased interest in their excitonic
responses and coupling to magnetism. In contrast to uncorrelated, direct bandgap semi-
conductors exhibiting Wannier-type interband excitons [50], the below bandgap excitations
of strongly correlated transition-metal compounds are typically interpreted in terms of lo-
calized transitions between distinct spin/orbital configurations of the transition-metal ions.
Also known as dd or ligand-field transitions [60], such excitations may be equivalently de-
scribed as Frenkel-type excitons [243]. Of particular interest is the utility of dd excitation
optical responses for measuring and tuning magnetic states, as exemplified by the observa-
tion of helical ligand-field luminescence in ferromagnetic Cr trihalides [48, 64], the linearly
polarized absorption/emission from excitons in the Ni2+ vdW magnets NiI2 [65] and NiPS3

[56, 66, 68, 69, 244], and associated photo-induced magnetic properties [59, 71, 72]. Clari-
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fying the microscopic origin of such excitonic states, particularly their coupling mechanism
to the local spin degree of freedom and long-range magnetism, is essential for continued
progress towards functional applications and for the optical characterization of magnetic
ground states in vdW materials.

Here, we focus on the triangular-lattice nickel dihalide antiferromagnets NiX2 (X = Cl,
Br, I) based on Ni2+ ions (3d8) to study their multiplet spectra versus ligand, temperature
and momentum using Ni-L3 edge resonant inelastic X-ray scattering (RIXS). The ligand-
field spectra of Ni2+ systems have been the subject of intensive study in classical optical
literature [43, 190, 245–249] and more recent studies [9, 56, 65, 66, 68, 69, 71, 72, 244].
Specifically, several recent investigations report the emergence of sharp excitons below the
magnetic transition temperatures of correlated Ni2+ vdW magnets [56, 65, 66, 68, 69, 244]
These excitons were associated to spin-entangled Zhang-Rice triplet-to-singlet excitations
stabilized by long-range magnetic order and magnetic coherence [56, 65]. The Zhang-Rice
mechanism is motivated by the charge-transfer insulator nature of the electronic ground state
in Ni2+ systems [154, 155]. The electronic states are an admixture between local 3d8 and
3d9L configurations, where 3d9L represents self-doped ligand hole electronic configuration
[110, 154, 155]. From this configuration, analogs to Zhang-Rice states may arise as observed
in doped copper oxides [15, 250, 251]. Despite this, the reported excitons bear a strong
resemblance to optically spin-forbidden multiplet transitions previously revealed by optical
spectroscopy [43, 190, 245–249, 252, 253]. Based on this dichotomy, the proposed Zhang-
Rice mechanism for stabilizing these exciton states and the role of long-range magnetic order
requires further scrutiny.

The nickel halides provide a platform to assess each of these aspects directly. First, the
nickel dihalides are vdW magnets exhibiting distinct ligand-tuned magnetic ground states,
ranging from C-type antiferromagnetic (AFM) to non-collinear spin structures [37, 43, 65,
124, 128]. Furthermore, they constitute an archetypal series of charge transfer insulators
with systematically tuned Ni-X covalency and charge-transfer gap, ∆, as previously re-
vealed through both X-ray photoemission and X-ray absorption spectroscopy (XPS/XAS)
[154, 155]. However, the impact that this strongly ligand-tuned ∆ has on the ground state
multiplet excitations has not been investigated in detail. As we show in this work, the si-
multaneous tuning of magnetic order and self-doped ligand holes through the charge-transfer
gap establishes their roles in the emergence of the exciton states, and in their fundamen-
tal parameters (namely dispersion, microscopic nature, and temperature effects). While dd
excitations are nominally dipole forbidden in optics, RIXS provides direct spin- and dipole-
allowed sensitivity to the zero-boson multiplet excitations [110]. Such measurements are
thus crucial to unravel their microscopic nature, and intrinsic evolution with both temper-
ature and momentum to inform a proper interpretation of their manifestation in optical
experiments.

From our RIXS measurements, we observe sharp (nearly resolution-limited) excitonic
peaks in all NiX2 (X = Cl, Br, I) compounds, confirming their universality in Ni2+ charge-
transfer insulators. The ubiquity of these excitons stems from their microscopic nature, which
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we assign as spin-singlet (S = 0) multiplet (dd) excitations of 1A1g/1Eg symmetry 1. These
features are characteristic of Ni2+ ions in octahedral symmetry, and are broadly consistent
with their original identification through optical spectroscopy [43, 190, 245–249, 252, 253].
Crucially, while the energies of these singlet excited states are strongly affected by the lig-
and and their ionic character, the existence of these excitons does not necessitate particular
charge-transfer contributions or long-range magnetic order [110, 257]. Using charge-transfer
multiplet (CTM) theory, we show the strong ligand-dependence results from an effective
screening of the intra-atomic Hund’s exchange interaction (e.g. nephelauxetic effect) [61,
110, 154, 258, 259] due to the increasing contribution of self-doped ligand hole (3d9L) states
at small ∆. This systematically establishes the primary effects of the metal-ligand hybridiza-
tion/covalency, and provides a complete description of the multiplet structure in the highly
ionic (NiCl2) and strongly covalent (NiI2) limits. This evidence resolves key discrepancies in
the peak assignments and their microscopic interpretations found throughout the literature.

Additionally, we uncover a finite momentum dispersion of the spin forbidden 1A1g/
1Eg

multiplets. As the charge-transfer energy is reduced by changing the halogen ligand, their
dispersive bandwidth increases. This dispersion is independent from the magnetic dynamics,
demonstrated through a direct comparison to the spin-excitation dispersions. Furthermore,
the excitons and their dispersive behavior persist far above the magnetic ordering tem-
peratures, demonstrating an exciton delocalization regardless of the presence of long-range
magnetism. To explain this, we propose a simple charge-transfer induced exciton delocaliza-
tion mechanism, determined from the dominant ligand-mediated orbital hopping pathways
on the 2D triangular lattice. This effect can be viewed as a natural consequence of the
increased metal-ligand hybridization in a crystalline environment. Our results demonstrate
that the microscopic interactions stabilizing these excitons are the multielectron interactions
at the nickel site and its local symmetry. This demonstrates how their fundamental energies
and degree of delocalization may be tuned through the charge transfer gap.

8.2 Results

We performed XAS and RIXS measurements on high-quality single crystals of NiX2 com-
pounds grown by chemical vapor transport (see Sec. 8.4). The RIXS and XAS data were
acquired at the 2-ID SIX beamline of the National Synchrotron Light Source II, Brookhaven
National Laboratory [161]. RIXS measurements were performed with an energy resolution
of ∆E = 31 meV at the Ni-L3 edge and XAS was recorded in total fluorescence yield (TFY).
The samples were aligned with the a∗ reciprocal lattice direction aligned in the scattering
plane [Fig. 8.1(a)], with grazing incidence geometry, σ incident polarization, and T = 40

1Throughout the paper, we will use the terms exciton/multiplet/dd-excitation interchangeably. Such
terminology is consistent with the usage of “Frenkel excitons” in reference to multiplet transitions in the
early optical literature [190, 243, 245, 246, 252, 254–256]. However, referring to these states as multiplet
transitions avoids confusion with excitons of distinct microscopic origin (e.g. Wannier excitons) routinely
observed in semiconductors.
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Figure 8.1: (a), The layered rhombohedral (space group R3̄m) structure of NiX2 dihalide
compounds, highlighting the triangular lattice of magnetic Ni2+ ions and the RIXS scattering
geometry at grazing incidence (see text). (b), Ligand-dependent Ni-L3/L2 edge XAS spectra
at T = 40 K. Corresponding XAS fits from charge transfer multiplet calculations are the
dashed grey lines (see text). (c-e), Incident-energy dependent RIXS maps for each compound
across the main and side peaks at the Ni-L3 edge (bottom) with the corresponding TFY XAS
spectra (top). The XAS spectra indicate the main/side peak (MP/SP) XAS resonances with
blue and red arrows, respectively, along with the MP-SP incident energy splitting for each
compound. Red/blue arrows on the right axis of each RIXS map indicate the 1A1g - 1Eg

spin-singlet multiplets, resonant at the XAS SP.

K unless otherwise specified. The temperature was chosen to be below the magnetic phase
transitions for each compound.

8.2.1 Evolution of RIXS/XAS Spectra versus Ligand

We begin by discussing the evolution of the Ni L3-edge RIXS and XAS spectra versus
ligand (X) for NiX2 (X = Cl, Br, I). Figure 8.1(b) shows XAS spectra across the Ni L3/L2

edges for each compound. At the L3 edge, a clear double-peaked structure is observed for
all compounds corresponding to a “main” peak (MP) around 852.7 eV, followed at higher
energy by a “side” peak (SP) at 854.5 eV, 854.0 eV, and 853.1 eV for NiCl2, NiBr2, and
NiI2, respectively [see Fig. 8.1(c-e), top]. We note the pronounced self-absorption effect
in the TFY XAS spectra [155, 260–262], leading to suppression of the main L3 edge peak
intensity. The energy separating the MP and SP increases with the ionic character of the
compound. The latter is directly linked to higher charge-transfer gaps, ∆, as discussed
below. Additionally, several broader peaks are observed at higher energies (Ei ≃ 855− 860
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eV) and associated to charge-transfer satellites [110, 155, 259]. An overall similar qualitative
behavior is observed at the L2 edge.

We subsequently measure RIXS spectra versus incident energy across the MP and SP
resonances at the Ni L3 edge for each compound [Fig. 8.1(c-e)]. For Ni2+ in Oh crystal field,
the ground state electronic configuration is 3A2g with t62ge

2
g orbital occupation and S = 1

arrangement of the half-filled eg states [60, 263]. Around ∆E = 950 meV energy transfer, we
identify a predominant Raman-like excitation which is nearly independent of ligand. This
excitation is connected to the fundamental t2g → eg spin preserving (∆S = 0) crystal field
excitation (3T2g), suggesting a similar Oh crystal field energy scale (10Dq) across the series
[257]. The independence of this energy scale with ligand can be rationalized by the balance
of charge-transfer and metal-ligand hybridization contributions, both of which affect the
covalent crystal field splitting as captured by our CTM calculations and discussed below [15,
264, 265]. At higher-energies (∆E = 1 − 3 eV), rich excitation profiles are resolved with a
strong ligand-dependence. These peaks are linked to the multiplet structure of Ni2+ in Oh

symmetry [60, 110, 257, 266]. We highlight the uniquely sharp excitations around 1.38, 2.04,
and 2.37 eV in I/Br/Cl [red arrows, Fig. 8.1(c-e)], respectively. Remarkably, these peaks are
nearly resolution-limited and resonant near the SP. Additional sharp excitations at the SP
near ∆E = 1.3/1.45 eV in Br/Cl (blue arrows) are also revealed.

The ligand-dependent RIXS spectra at the MP and SP resonances are summarized in
Fig. 8.2(a). The individual dd transitions are assigned with term symbols in Oh symmetry
for NiCl2 (top), based on our CTM calculations. Specifically, the higher/lower energy sharp
peaks resonant at SP are ascribed to the spin flip ∆S = 1 and 1A1g/1Eg multiplet terms,
respectively [257, 266], which preserve the ground state t62ge2g orbital configuration. These
spin-singlet multiplets are equivalent to the previously identified excitons in the optical
regime, appearing at the same energies [43, 56, 65, 190, 245, 252, 253]. The salient features
of the ligand dependence can be summarized by (i) a reduction of the MP-SP splitting
in XAS, (ii) a reduction of multiplet energies that is most pronounced in the spin-singlet
1A1g and 1Eg excitations, and (iii) the resonant behavior of the ∆S = 1 excitations at the
ligand-dependent SP resonance.

8.2.2 NiX6 Cluster Calculations

We next aim to quantitatively describe these ligand-dependent spectroscopic features and
to provide a robust assignment of the electronic ground states and excitations. To do so,
we employ CTM calculations as implemented in Quanty [113, 267, 268]. The model reduces
to a multielectronic calculation of a single NiX6 cluster with Oh symmetry, accounting for
the Ni-3d orbitals and the corresponding symmetrized ligand X-np molecular orbitals [110,
155, 267] (see Sec. 8.4). We restrict the present analysis to octahedral symmetry, while
potential effects of the trigonal distortion are discussed below in Sec. 8.5. Figure 8.2(b)
shows the evolution of low-energy multiplets for the 3d8 + 3d9L+ 3d10L2 configuration as a
function of ∆. The evolution of the 1A1g and the 1Eg excited states as a function of ligand
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Figure 8.2: (a), Ligand-dependent RIXS spectra at the MP (left) and SP (right) resonances.
Intensity for each spectrum has been normalized by the total inelastic signal (0.5 → 5.0 eV).
The peaks are labelled with their corresponding multiplet term symbol in Oh symmetry (see
text). The sharp spin-singlet excitations (1Eg and 1A1g) are indicated for each compound
with blue/red arrows, respectively. Corresponding CTM calculations are shown as dashed
grey lines overlaid with each experimental spectrum. The sharp features in the CTM calcu-
lations for NiI2 above 3 eV are charge-transfer transitions, which are broad and overlap with
fluorescence-like background in experiment (thus not well-resolved). The lower energy 3d8

multiplets in all NiX2 samples are sharp and well-captured by CTM calculations. (b), Energy
level diagram calculated from the CTM model as a function of charge transfer gap ∆ and
Ni-X hybridization V (eg) in Oh symmetry (spin-orbit coupling excluded for simplicity). The
1A1g and 1Eg term energies are highlighted with thick lines, and all calculated excitations
are colored based on the 3d8/3d9L character, as indicated by the color bar. Experimental
energies for the 1A1g/1Eg peaks are shown as red/blue data points with other experimental
multiplets indicated with triangles/squares for triplet/singlet terms, respectively. Optimal
fit values of ∆ for each compound are indicated with vertical dashed lines. (c), Schematic
representation of the low-energy ∆S = 0/∆S = 1 3d8 multiplet terms in Oh symmetry.

charge-transfer are highlighted with thick lines [Fig. 8.2(b)]. These excitations correspond
to a nearly pure spin-flip ∆S = 1 within the |eg⟩ manifold without transfer of orbital weight
between the t2g-eg states. Thus, they are stabilized from the 3A2g ground state by the
intra-atomic Hund’s exchange [60] (see also 2). Their preservation of the t62ge2g ground state
orbital configuration, in conjunction with their low-degeneracy, naturally accounts for their
characteristically sharper linewidths compared to the other inter-configurational multiplets
[61, 245, 254, 255].

We identify the optimal parameters for each compound based on a minimal parameter fit-
ting while keeping the Coulomb interactions at the nickel site fixed (for a detailed description

2We note the distinction between these local spin-state transitions (e.g. S = 1 → S = 0) and the
single-/two-magnon excitations [257, 269, 270]. The former, considered here, are dd excitations stabilized by
Hund’s exchange. The latter are transitions of the spin projection ∆ms = 1 within the triplet ground state,
with characteristic energies determined by the effective spin exchange [60, 110, 266].
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of the model and parameters, see Sec. 8.5). The optimized ligand-dependent CTM parame-
ters ∆ and the metal-ligand hybridization V (eg) are summarized in Table 8.1 and indicated
as vertical dashed lines in Fig. 8.2(b), with the experimental values of multiplet energies
overlaid. The refined parameters are broadly consistent with previous reports from XPS and
XAS [154, 155], while our calculations are further restricted by the multiplet spectra which
more accurately reflect the ground state Hamiltonian. The simulated XAS/RIXS spectra
determined from these parameters are shown as grey lines on top of the experimental data
in Figs. 8.1(c) and 8.2(a). They reveal a good agreement with all salient features of the lig-
and dependence, including the peak energies [Fig. 8.2(b)], their resonance behavior/relative
intensities [Fig. 8.2(a)], as well as the MP-SP and charge transfer satellite structures in the
XAS (Fig. 8.1(b), for calculated RIXS maps to compare to experiments in Fig. 8.1(c-e), see
Sec. 8.5).

Ligand (X) ∆ [eV] V (eg) [eV] βeff Jeff
H [eV]

Cl 3.80 1.99 0.75 0.850
Br 2.30 1.72 0.64 0.722
I 0.40 1.37 0.44 0.496

Table 8.1: Ligand-dependence of ∆ and V (eg) from CTM calculations. Coulomb interac-
tions are fixed to atomic values and ionic contribution to 10Dq = 0.55 eV is fixed for all
ligands. The on-site Coulomb repulsions are fixed to Udd = 5.0 eV and Upd = 7.0 eV from
photoemission experiments [154]. Also shown is the phenomenological, effective ground state
nephelauxetic reduction (βeff) and intra-atomic Hund’s exchange (Jeff

H ) determined from cor-
responding ionic calculations discussed in Sec. 8.5.

A consequence of reduced ∆ is a larger mixing of the 3d9L configuration into the ground
and excited state 3d8 multiplets [56, 65, 110, 120, 155, 257, 259, 271]. The energy level
diagram in Fig. 8.2(b) shows the evolution between 3d8 and 3d9L character resolved to each
excitation. The ligand-hole character is excitation-dependent, with higher-energy excitations
within a given orbital configuration (e.g. t62ge2g vs. t52ge3g) displaying larger ligand character at
a given ∆, with the |3d9L⟩ weight roughly commensurate to the energetic renormalization of
each excitation. A similar situation determines the energy-dependent ligand-hole character
and MP-SP reduction in the XAS intermediate states. Besides this energetic renormalization,
all excitations remain direct analogs of the corresponding 3d8 multiplets as they stem only
from the electronic configuration and point group symmetry.

We conclude that the dominant role of ligand-hole states at the level of a single NiX6

cluster is a renormalization of the intra-atomic Coulomb interactions in both the initial and
final RIXS states. This is induced by delocalization of electronic density onto the ligand
states (e.g. nephelauxetic effect [61, 110, 154, 258, 259]). This screening effect captures the
evolution of the sharp singlet excitations, their resonance behavior, and the MP-SP evolution,
which can be mapped to properties of Ni2+ ions in Oh symmetry without invoking emergent
properties from the 3d9L configuration. From this assessment, the relevance of the recently
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Figure 8.3: Momentum-dependence of the 1A1g peak as a function of ligand at T = 40 K in
panels (a, b, c) for Cl/Br/I respectively along the ΓM direction. Momentum is reported as
Q∥ = [h0] with h expressed in reciprocal lattice units (r.l.u.). Color maps are normalized to
the integrated intensity of the displayed region in (a, b) and to the region 1.35-1.42 eV in
(c). Fitted points for the 1A1g peak are shown as overlaid white data points with error bars
determined as standard errors from the fits. Figures (d-f) are example raw data along ΓM
with h = 0.38, 0.26, and 0.02, respectively, for NiBr2 both in the low-energy transfer (left)
and 1A1g spectral regions (right), highlighting fits to the elastic (grey), single-/two-magnon
(1M/2M, blue/purple, respectively) contributions, and the 1A1g peak (red) and its side band
(SB, grey), with overall fit depicted in purple. Statistical error bars are indicated, which are
smaller than the data points.

proposed Zhang-Rice mechanism for these excitations can be ruled out [68]. Thus, the sharp
1A1g and 1Eg peaks are Ni2+ dd-excitations arising from multielectronic interactions of a 3d8

electronic configuration in Oh crystal field. One may therefore expect such excitations to be
ubiquitous in isoelectronic systems close to the ionic limit [56, 61, 65, 110, 245, 257, 258,
272]. These conclusions are directly supported by calculations restricted to the purely ionic
limit with 3d8 configuration and excluding charge-transfer processes. Indeed, the effect of
ligand holes on the multiplet excitations can be captured by an effective nephelauxetic effect
(βeff), as summarized in Table 8.1.

8.2.3 Exciton Dispersion and Relation to Magnetism

Having established the presence and properties of the exciton peaks in NiX2 as a function of
ligand, as well as their hybridized Ni/halogen nature, we now investigate their dependence on
momentum and temperature to assess their delocalization beyond pure on-site dd excitations
[123, 273, 274] and their connection to the magnetic order.

We first report the dispersion of the 1A1g excitation for each ligand in Fig. 8.3(a-c),
measured at T = 40 K with momentum transfer along the a∗ direction ([h0] in reciprocal
lattice units, r.l.u.) and with incident energy tuned to the SP resonance (Figs. 8.1 and
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8.2). We resolve an electronic dispersion with bandwidth δE ≃ 3.4 ± 1.2 meV in NiCl2,
≃ 8.2 ± 1.3 meV in NiBr2, and ≃ 9.6 ± 3.0 meV in NiI2. Representative fits for spectra at
selected momentum-transfer points for NiBr2 are shown in Fig. 8.3(d-f) showing both the
elastic/magnon and 1A1g spectral regions. Both spectral regions are from the same spectra
at a given Q∥, recorded at the SP resonance where single- and two-magnon contributions
are observed [257, 266, 269, 270]. The spectra are relatively aligned using ∆S = 0 multiplet
excitations, which assumes these excitations are non-dispersive. This assumption can be
justified by their high-multiplicity, significant phonon broadening, and the relatively low
contribution of the 3d9L configuration, leading to the same spectral center of mass (i.e.,
lack of apparent dispersion). The corresponding analysis is discussed further in Sec. 8.5
alongside additional discussion of polarization cross-section/multiplet fine structure effects.
Momentum-dependence for the 1Eg excitation is also resolved in NiCl2 and NiBr2.

To elucidate the microscopic origin of the exciton dispersion and its reciprocal space
structure in more detail, we perform momentum-dependent RIXS measurements across the
magnetic phase transition and along different high-symmetry directions in reciprocal space,
with a focus on NiBr2. In Fig. 8.4(a,b), we plot the fitted energy dispersion for the low-
energy magnon and 1A1g mode in NiBr2, with comparison along the ΓM ([h0] r.l.u.) and
ΓK direction ([hh] r.l.u.). The magnon and 1A1g exciton dispersion along ΓM are further
compared at 40 K and 70 K, representing the layered AFM and paramagnetic phase of
NiBr2, respectively [43, 128, 245]. From these data, we infer marginal differences in the 1A1g

dispersion across the magnetic phase transition [Fig. 8.4(b)], with the primary temperature
effect being an overall broadened linewidth with increasing temperature (as discussed below).
This implies that the exciton dispersion is present regardless of long-range magnetic order,
and therefore is likely not mediated by it.

The magnon dispersions are compared with linear spin-wave (LSW) calculations ([Fig.
8.4(a)]) based on inelastic neutron scattering (INS) in the layered AFM phase [128], showing
good quantitative agreement (for similar comparisons in NiCl2 [124] see Sec. 8.5). Impor-
tantly, the magnon and the 1A1g peaks have qualitatively distinct dispersions along ΓK and
ΓM . From Fig. 8.3(a-c), we also note the qualitatively similar functional form of the 1A1g

dispersion across all compounds, which is independent of the disparate magnetic structures
or spin excitation dispersions (see also Sec. 8.5). These aspects support our assignment of a
genuine dispersion of the 1A1g excitations. To quantify this, we construct a minimal tight-
binding (TB) model based on isotropic hopping parameters tn up to n = 3 nearest-neighbor
(NN) [243, 255, 275, 276]. We find that the 1A1g dispersion is well-described by considering
only the third-NN contribution, with the single parameter (t3) fit for NiBr2 shown in Fig.
8.4(b). We note that the spin-excitations persist above the long-range ordering temperatures
[Fig. 8.4(a)], suggesting the presence of short-range magnetic correlations persisting to high-
temperatures [277–279]. An effect of these short range magnetic correlations for determining
the spin-singlet multiplet dispersion cannot be ruled out directly, although we will argue for
a more natural mechanism as evidenced by the ligand dependence (discussed below).

To further underscore the independence of the ∆S = 1 multiplets from the magnetic
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order, we measure the temperature dependence at fixed momentum transfer across the mag-
netic phase transitions in each compound as reported in Fig. 8.4(c-f). A monotonic linewidth
broadening is revealed for both the 1A1g and 1Eg modes without any significant change of
spectral profiles across the magnetic phase transition temperatures for each NiX2 compound
[Fig. 8.4(d-f)]. For NiBr2 [Fig. 8.4(c)], additional spectral weight at higher energies (∼30-
40 meV) above the 1A1g peak is apparent, which is attributed to two-phonon side bands,
consistent with previous optical experiments [43, 245–249]. Importantly, the linewidth and
intensity of the singlet peaks are independent of the magnetic phase. In addition, we do
not observe any clear correlation between the thermal broadening slope or extrapolated
zero-temperature linewidth with the either the magnetic transition temperatures (as may
be expected for magnetic coherence) or with the |3d9L⟩ character of the excitations [Fig.
8.4(d-f)]. Instead, we attribute the thermally-activated broadening to a Franck-Condon
phonon-coupling effect [245, 263, 280].

Before moving on, we summarize the experimental observations and what they imply re-
garding the role of magnetism for these multiplet states. At the level of localized excitations,
the charge transfer multiplet calculations identify the energy scale stabilizing the 1A1g/1Eg

exciton states as the Hund’s exchange. Therefore, their microscopic origin is independent of
magnetic order but the relationship of these excitations to the local spin degree of freedom at
the nickel site is clarified. At the next level detail, the independence of the fine structure of
these excitations from magnetic order is corroborated by their temperature-dependencies at
fixed momentum, revealing no anomalies in the linewidth or intensity across the long-range
magnetic ordering temperatures. This establishes that the multiplet excitations are inde-
pendent of long-range magnetic order, and sufficient to microscopically describe the excitons
in NiX2.

Separately, we observe a finite dispersion of the 1A1g/1Eg excitations for all ligands, inde-
pendent of the disparate spin structures of the different compounds and qualitatively distinct
from the spin excitation dispersions. In NiBr2, both the spin excitations and multiplet dis-
persions are observed to persist above the long-range ordering temperature. This allows the
possibility for a role of short-range correlations in the multiplet dispersion. However, the
totality of experimental evidence strongly suggests that at leading order, there is no direct
effect of either short- or long-range magnetic order on the bare multiplet states, or in their
dispersive character. This leads us to consider a mechanism of exciton delocalization that is
independent of magnetism, but instead directly connected to increased contributions of the
self-doped ligand holes with reduced ∆. Even if magnetism would enter a more exhaustive
description, our data directly evidence that strong emphasis must be placed on the self-doped
ligand holes.

8.2.4 Origin of Exciton Dispersion

To examine the origin of the finite 1A1g dispersion, we consider the ligand-dependence of the
dispersive bandwidth (t3). This is displayed in Fig. 8.5(a), extracted from the a∗ dispersion
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Figure 8.4: Momentum-dependence of the single-magnon (a), and the 1A1g excitation (b)
in NiBr2 along the ΓM (left) and ΓK (right) momentum-space cuts. Blue squares, T = 40
K and red diamonds, T = 70 K. Experimental single-magnon energies are compared to
LSW theory, accounting for intra-layer exchange up to third nearest neighbor (J3) using
experimentally-determined parameters from Ref. [128]. The 1A1g data is fit along both ΓM
and ΓK with a tight-binding (TB) model considering only third-nearest neighbor hopping
(t3). The LSW and TB curves are shown as solid grey lines in (a, b), respectively. (c),
Representative temperature-dependence of the 1A1g excitation in NiBr2 highlighting the
temperature-dependent linewidth. Gaussian fits to the 1A1g and its side-band (SB, see text)
are the filled grey/blue curves, respectively. Temperature-dependent linewidth of the 1A1g

(red) and 1Eg (blue) peaks for (d) NiCl2, (e) NiBr2 and (f) NiI2. Linear fits (dashed lines)
highlight a linear broadening of each peak with increasing temperature. Horizontal dashed
lines denote the experimental resolution (∆E = 31 meV) for all measurements. Vertical solid
lines indicate the C-type AFM transition temperature TN ≃ 52, 45, and 75 K for Cl/Br/I,
respectively, and dashed lines indicate the non-collinear magnetic phases TN,2 ≃ 22 and 60
K for Br/I, respectively [42, 43, 124].
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in Fig. 8.3(a-c), revealing an increase of the bandwidth with decreasing ∆. The ligand-
dependent bandwidth follows the trend of the projected 3d9L character of the 1A1g state
[|β2| in Fig. 8.5(a)], implicating a ligand-mediated delocalization mechanism. This is also
suggested by the dominance of third-NN interactions evidenced by the functional form of
the dispersion, suggesting long-range interactions beyond direct d→ d overlap. We interpret
these features in analogy to the evolution of magnetic exchange interactions throughout the
dihalide series, which have been analyzed in detail in the literature [37, 42, 47, 124, 128].
The spin exchange is dominated by superexchange [46, 120], with moderate ferromagnetic J1,
negligible J2 and antiferromagnetic J3 parameters restricted to the 2D triangular lattice plane
where Jn is nth Ni-Ni neighbor exchange [47]. While J1 exhibits moderate stoichiometric
dependence, J3 is strongly ligand-dependent and is responsible for the difference in magnetic
ground states across the series, including the non-collinear magnetic states in X = Br, I [37,
41, 47, 128]. Specifically, J3 is mediated by superexchange pathways involving ligand X-np
molecular orbitals with large σ-type overlap [120], as depicted in Fig. 8.5(b).

From this picture, a dominance of the t3 TB component in the 1A1g dispersion can be
explained by the stronger ppσ ligand-ligand transfer integrals between third-NN 3d9L eg-
symmetry molecular orbitals, in conjunction with the lowering of the charge transfer gap
which mediates pd electron transfer and increases the self-doped 3d9L character [110, 120,
154, 271]. While superexchange occurs between Ni atoms in the 3A2g ground state, the
dispersion we observe originates from interactions between an excited 1A1g impurity and a
surrounding bath of 3A2g [254, 255] [Fig. 8.5(b)]. The enhancement of 3d9L character upon
excitation of the effective 1A1g defect compared to the 3A2g ground state [Fig. 8.5(a)] could
contribute to these observations due to selective enhancement of the excited state third-NN
interactions, which are more sensitive to the ligand-hole contribution compared to nearest
neighbor interactions [120].

These considerations are not unique to the 1A1g state, as a finite dispersion was also
resolved for the 1Eg state (see Sec. 8.5). For 1Eg, the dispersion is weaker and with oppo-
site sign relative to the 1A1g but of a similar qualitative (sinusoidal) form with increased
bandwidth from NiCl2 to NiBr2 (see Sec. 8.5). This suggests the sensitivity of the proposed
hopping processes to the relative spin-orbital character of the excited and ground states,
again in analogue to Pauli-restricted virtual hopping processes leading to superexchange
[15, 120, 255]. We note that since the 1Eg and 1A1g states are S = 0 (non-magnetic), this
should be interpreted as a multiplet-dependent effective transfer integral that is independent
of the relative alignment of the surrounding 3A2g ground state spins – that is, independent
of the long-range magnetic order. This scenario is consistent with the insensitivity of the
spin-singlet multiplets and their dispersion to the magnetic transitions (Fig. 8.4).

We stress a distinction between the role of magnetism on the multiplet state and its
dispersion from the effects of dispersive excitons on the surrounding magnetic order. We
have shown that the excitons and their dispersion are independent from magnetic order.
Meanwhile, the dispersion reveals the microscopic pathway mediating non-local interactions
of the locally excited S = 0 magnetic defect with the surrounding magnetic sites. This
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Figure 8.5: (a), Ligand-dependence of the t3 TB parameter from fits to the a∗ dispersion
data presented in Fig. 8.3 (a-c) (left axis, blue), along with the 3d9L character (|β|2) of
the excited state 1A1g (solid) and the ground state 3A2g (dashed) multiplets extracted from
the CTM calculations in Fig. 8.2 (b) (right axis). (b), Schematic of the hopping pathways
in the triangular lattice plane (t1-t3) and the proposed third-neighbor hopping mechanism
between the 3d9L(1A1g) excited state and 3d9L(3A2g) ground state, mediated by ligand p-p
overlapping σ-bonding molecular orbitals.

was previously elaborated for excited state exchange interactions and their relevance to
exciton-magnon absorption sidebands in optical experiments [62, 254–256, 281, 282]. Further
theoretical investigations are required to clarify the essence of this exciton delocalization and
its coupling to electronic degrees of freedom through, e.g., dynamical mean field theory [121].
Nonetheless, the mode-resolved and ∆-dependent dispersive behavior presented here provides
key constraints for reaching a consistent microscopic description of excitonic dispersion in
charge transfer insulators.

8.3 Discussion

Our results reveal the momentum-dependence of spin-singlet dd excitations in NiX2 com-
pounds and we propose a ligand-mediated delocalization mechanism analogous to superex-
change. Specifically, the microscopic interactions that give rise to the 1A1g/1Eg excitations
are rooted in the 3d8 electronic configuration in octahedral symmetry, i.e. dd excitations.
Meanwhile, increasing metal-ligand charge transfer induces two intertwined, but distinct, ef-
fects. First, it renormalizes the intra-atomic Coulomb interactions at the Ni site and induces
a corresponding reduction of the fundamental multiplet energies (Figs. 8.1, 8.2). Second, the
excitations simultaneously develop an increasingly delocalized and propagating nature, in-
dependent of the magnetic phase (Figs. 8.3-8.5). These conclusions provide a self-consistent
and comprehensive picture of the influence of metal-ligand charge transfer on the properties
of multiplet excitations in charge-transfer insulators.

The importance of measuring the exciton dispersion for unraveling its underlying nature
has been stressed in several different contexts, including the alkali halides [283], spin-state
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transitions in cobaltites [121], fractionalization in low-dimensional cuprates [123, 273, 274],
molecular excitons [275, 284–286] and the description of exciton-magnon sidebands in optics
[43, 245, 247–249, 254–256, 281]. For the latter, the momentum-dependence of the exciton
state contributes to the sideband structure and also determines the mechanisms of intersite
exciton-magnon coupling [243, 254, 255], which are of strong relevance for interpreting photo-
induced magnetic responses in transition-metal/vdW materials [57, 59, 69–71, 254, 255, 287–
290]. While the momentum-dependence of spin-flip excitons has been indirectly inferred in
optical experiments, our results provide the first direct evidence of their dispersive behavior.
We note that the observed multiplet dispersion is distinct from the the case of fractionalized
orbital excitations (orbitons) observed in cuprate spin chains [123, 273], which is an emergent
effect from low dimensionality. Instead, we expect the dispersion of the spin-flip excitons
observed here to be a general phenomenon for the electronic excitations of charge-transfer
insulators.

More broadly, our temperature-dependent RIXS results (Fig. 8.4) provide important
context for the observation of these spin-flip dd excitations in the optical regime [43, 56, 65,
68, 190, 246, 252]. These multiplet transitions are optically dipole- and spin-forbidden, and
therefore sensitive to the lowering of symmetry across (magnetic) phase transitions that are
typically inferred from optical side-bands of bosonic origin (e.g. phonon, magnon [245–249]).
The complexity of such rich side-band structure, as well as the large energetic reormalization
of the spin-forbidden peaks as a function of charge-transfer gap, has precluded consistent
peak assignments and interpretations in the optical literature which we conclusively resolve.
One consequence of the coupling to bosons is that the optical response of these exciton side-
bands can be sensitive to the coherence of the magnon excitations [247–249]. The proposed
effects of magnetic coherence are then likely attributed to the (magnetic) 3A2g ground state
rather than the (non-magnetic) 1A1g/1Eg excited states. Conversely, the fundamental spin-
flip multiplets, generally a high cross-section and direct RIXS process at the transition-metal
L-edges, are well-defined and independent of magnetic order with lineshape limited only by
a temperature-dependent Franck-Condon phonon broadening [Fig. 8.4(c-f)].

Finally, we have demonstrated several key design principles for tuning the functional
exciton properties. We note that only the isolated 1A1g peak in NiBr2 has a resolution-
limited behavior at the lowest measured temperature (T = 30 K). This contrasts with the
1A1g excitations of NiCl2 and NiI2 which are broader than the experimental resolution and are
partially/fully overlapped with multiplets. We hypothesize that a spin-orbit coupling induced
hybridization of closely lying multiplets with distinct orbital configurations (e.g. t62ge2g and
t52ge

3
g) may be an important aspect limiting the intrinsic (low-T ) linewidths. Furthermore, for

making these modes optically bright with large oscillator strength, details of multiplet level
sequencing (particularly the lowest excited state) and relative energetic proximity of different
multiplet terms are known to be essential through, e.g., inter-system crossing and intensity
borrowing mechanisms [61]. These are actively employed in the ligand-field engineering
of spin-flip luminescence transitions in molecular systems [61, 272, 291], which are direct
molecular analogs to the spin-flip multiplets elaborated here. In this work, we have shown
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how the fundamental multiplet energies and their sequencing can be tuned by ligand field
engineering and the charge transfer gap in the solid state. These underlying design principles
could be fruitful for bringing on-demand and deterministic optical properties into the field
of vdW materials.

In conclusion, we have extensively investigated the properties of the sharp, spin-singlet
multiplet excitations of the nickel dihalides (NiX2) using RIXS. We demonstrated that nearly
resolution-limited dd excitations are ubiquitous features of octahedrally-coordinated Ni2+,
which can be systematically tuned by the ligand and charge transfer gap. We have further
established the roles of the self-doped ligand hole/charge transfer states and magnetism,
ruling out a Zhang-Rice mechanism and revealing that the fundamental multiplet peaks are
independent from long-range magnetic order. Most importantly, we provide the first direct
experimental evidence demonstrating that these excitations are dispersive. We connected
this behavior to an emergent effect of the increased self-doped ligand hole character of these
excitations upon reduction of the charge transfer gap. Finally, we identified a potential
mechanism for this exciton delocalization that is mediated by the ligand states in analogy
to superexchange. Our RIXS results thus firmly establish the microscopic nature of these
exciton states and provide a fundamentally distinct approach for tailoring collective electronic
excitations in charge transfer insulators through their momentum dispersion.

8.4 Methods

Sample growth and preparation

All samples were prepared using chemical vapor transport (CVT). NiCl2 was synthesized us-
ing stoichiometric ratios of Nickel powder (Sigma Aldrich, 99.9%) and TeCl4 (Sigma Aldrich,
99.8 %), at a temperature gradient of 760 ◦C to 730 ◦C for 72 hours before being cooled
naturally to ambient conditions. The temperature ramp-up time was 72 hrs. Single-crystal
NiBr2 was grown from NiBr2 powder (anhydrous, > 99.9%, Sigma-Aldrich), at a tempera-
ture gradient 650 ◦C to 600 ◦C. Single-crystal NiI2 was grown from elemental precursors with
molar ratio Ni:I = 1:2, at a temperature gradient 700◦C to 500◦C as described previously
[37]. The magnetic susceptibility was measured using a magnetic property measurement sys-
tem (MPMS-3, Quantum Design Inc.) for NiI2/NiBr2 and a physical property measurement
system (PPMS, Quantum Design Inc.) using the vibrating sample magnetometer (VSM)
option for NiCl2. The magnetic susceptibility of the bulk crystals confirm magnetic transi-
tions at TN = 53 K for NiCl2, TN,1 = 45 K and TN,2 = 22 K for NiBr2 and TN,1 = 75 K
and TN,2 = 60 K for NiI2. Magnetic susceptibility data are shown in Sec. 8.5 for NiCl2 and
NiBr2 and in Ref. [37] for the NiI2.

The samples were aligned using a Bruker-GAADS Co-Kα (λ = 1.7902 Å) x-ray diffrac-
tometer to place the a∗ direction in the scattering plane for RIXS experiments. The lattice
parameters were determined to be a = 3.465(12) Å and c = 17.304(46) Å for NiCl2,
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a = 3.648(13) Å and c = 18.412(52) Å for NiBr2 and a = 3.934(15) Å and c = 19.809(61)

Å for NiI2 which were determined by single crystal diffraction from the (006) and (104)
reflections. Samples are aligned in air, cleaved in a high-purity nitrogen-filled glovebox (H2O
and O2 < 0.1 ppm) and stored in vacuum for transport to the X-ray beamline. For NiI2, we
left the as-grown surface uncleaved for XRD alignment, with air exposure of approximately
15 minutes. Cleaving of the as-grown surface inside a nitrogen-filled glovebox after align-
ment revealed protected surfaces without visible degradation. The sharp multiplet features
in agreement with optical spectra [190, 245, 252] and low diffuse scattering of the soft X-ray
beam confirms high-quality samples and flat vdW surfaces for all samples.

X-ray absorption and resonant inelastic X-ray scattering experi-
ments

XAS and RIXS measurements at the Ni L3-edge (852 eV) were carried out at the 2-ID SIX
beamline at the National Synchrotron Light Source II, Brookhaven National Laboratory. σ
polarization was applied for the incident X-rays for all measurements. XAS was recorded
in total fluorescence yield (TFY) using a photodiode inside the soft X-ray chamber. RIXS
spectra were recorded with high-resolution of ∆E = 31 meV for all measurements. The
sample temperature was kept at 40 K unless specified. Laboratory-prepared and sealed
samples were transferred from vacuum into the ultra-high vacuum (UHV) loadlock of the
X-ray chamber with minimal air exposure and kept under UHV conditions for the duration
of X-ray experiments. NiI2 samples are more hygroscopic, and were loaded into the vacuum
chamber within a high-purity nitrogen environment.

Charge-transfer multiplet calculations

We performed charge transfer multiplet (CTM) and crystal field multiplet (CFM) calcula-
tions using the Quanty software [113, 267, 268]. For the CFM calculations, we consider the
Ni-3d orbitals in the basis set with an octahedral crystal field (Oh CF). For CTM calcula-
tions, the symmetrized X = Cl/Br/I molecular orbitals of t2g and eg symmetry are explicitly
included. Core-level spectra for the Ni-L2/3 edges are calculated by considering 2p → 3d

dipole transitions using the Green’s function formalism [113, 267, 268]. All spectra are
calculated in the experimental polarization conditions.

The parameters for the multiplet calculations include the Coulomb interactions at the
Nickel site, parameterized as the direct Slater integrals F 2

dd/F 4
dd in the initial/final RIXS

state (3d8) and by the direct integrals F 2
dd/F 4

dd/F 2
pd and exchange integrals G1

pd/G3
pd in the

intermediate RIXS state (2p53d9). The atomic spin-orbit coupling (SOC) in the 3d and 2p

nickel states are also included. The Slater integrals and SOC parameters for each electronic
configuration are taken from Hartree-Fock values tabulated by Haverkort [292]. For CTM
calculations, all Slater integrals are uniformly scaled to atomic values (80% of HF values).
Additional parameters include the Coulomb repulsion parameters Udd/Upd = 5.0/7.0 eV,
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respectively (taken from photoemission experiments [154, 155]), the charge transfer energy
∆ and the metal-ligand hybridization V (eg)/V (t2g). We use the empirical relation V (t2g) =

3/5× V (eg) and fit the XAS/RIXS spectra using V (eg)/∆.

8.5 Additional Data and Discussion

Sample characterization

Fig. 8.6 shows the magnetic susceptibility data for NiBr2 and NiCl2 of crystals from the
same growth batch used for the RIXS experiments. Data for NiI2 is shown in Ref. [37].
This confirms the expected antiferromagnetic transitions at T = 53 K for NiCl2 [124] and at
T = 22/45 K for NiBr2 [127, 128].

(a) (b)

s1

Figure 8.6: Magnetic susceptibility data for (a) NiBr2 and (b) NiCl2 measured with applied
field parallel/perpendicular to the c axis and with a magnitude of 10/1 kOe for each sam-
ple, respectively. Dashed vertical lines denote the antiferromagnetic transitions previously
reported [124, 127, 128]. NiCl2 data is expressed as molar susceptibility with sample mass
0.6(1) mg. The mass of NiBr2 sample was not able to be precisely measured, and the data
are provided in units of magnetic moment.

Temperature-dependent data for 1Eg and 1A1g multiplets

Here we report the temperature dependence of the 1Eg and 1A1g multiplets for each com-
pound in Fig. 8.7. These are the same measurements analyzed in Fig. 8.4(c-f), where here
we report the raw linecuts and fits for each compound. The measured data were taken at
maximum momentum transfer (grazing-incidence geometry) along the ΓM momentum space
cut, with σ incident polarization and with energy tuned the respective side peak (SP) reso-
nance in the XAS, as reported in Fig. 8.1. The multiplets were fit with a single Gaussian
peak to determine the full width at half maximum (FWHM) as a function of temperature.
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Additional neighboring multiplets and additional spectral weight appearing as side bands
(particularly visible on the higher energy loss side of the 1A1g peak in NiCl2 and NiBr2, dis-
cussed below) were fit with additional Gaussian peaks in addition to a constant background.
The grey dashed lines in the FWHM plots indicate linear fits. Error bars are determined
from the standard error of the fits.

In the case of NiCl2 and NiBr2, the 1Eg has an energy close to the 3T1g multiplet which
appears at higher energy loss in the displayed regions of Fig. 8.7, while the 1Eg peak is not
resolved in NiI2. The additional spectral weight in the higher energy-loss side of the 1A1g

peaks in NiCl2 and NiI2 are associated to the 1T2g and 3T1g multiplets, respectively. These
assignments are supported by our cluster calculations in Fig. 8.2. Meanwhile, additional
spectral weight appearing as a side band at higher energy-loss of the 1A1g peak in NiBr2
cannot be directly accounted for in the localized multiplet excitation spectrum. These are
associated to two-phonon or magnon side bands, consistent with their identification in optics
experiments [245–249].
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Figure 8.7: Raw temperature dependent line cuts and fits for the 1Eg and 1A1g multiplets in
(a) NiCl2, (b) NiBr2, and (c) NiI2. The full width half maximum of each peak as a function
of temperature, determined from Gaussian fits, is shown below each respective plot. The
dashed line indicates the experimental resolution of ∆E = 31 meV for all measurements.
The spectra are all normalized by the counting time.

Additional momentum-dependence data

In Figs. 8.8-8.12, we show additional momentum-dependence on all samples at different
energy regions and temperatures. In particular, we report the dispersion of the 1Eg peak
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and the spin-excitation dispersion in NiBr2 and NiCl2. The multiplet excitations were fit by
single Gaussian functions with amplitude, position and width as free parameters, along with
a constant background contribution and additional Gaussians to account for other nearby
excitations.

For the low-energy spin excitations, we note that the elastic line is relatively weak away
from specular condition, precluding a consistent fitting of the elastic for aligning the zero-
energy loss at each momentum. The zero energy loss for all samples was thus aligned at
different Q by aligning the center of mass of dd excitations, specifically the 3T2g for NiCl2
and NiI2 and the high energy 3T1g peak in NiBr2. With this procedure, we were then
able to fit the specular elastic line near Q∥ ≃ 0 as well as the magnon and elastic lines at
maximum positive/negative Q∥ which showed a consistent alignment at the endpoints. After
this, we fit the low energy spectral weight first by a single Gaussian peak. Already at this
stage, the center of mass and best-fit full width half maximum (FWHM) of the single-peak
model showed good agreement with the expected spin-wave dispersion from inelastic neutron
scattering (INS) [124, 128], suggesting that the single-magnon contribution is the dominant
contribution to this spectral region.

To minimize the number of parameters, we then fit to a three-Gaussian model, includ-
ing an assumed non-dispersive peak fixed to zero energy loss, a dispersive single-magnon
excitation, and an assumed non-dispersive two-magnon excitation. The latter was moti-
vated by the clear non-dispersive spectral weight near 40 meV that is most apparent near
zero momentum transfer, as well as from previous studies which reported that while the
single-magnon contributions are collective (dispersive), the multi-magnon contributions are
non-dispersive [269, 270]. We also note that the presence of a prominent two-magnon peak
may be expected in our case since we measure at the SP resonance of the XAS, which was
previously elucidated in the case of NiO [257]. We thus fixed the energy of the two-magnon
contribution empirically to near twice the maximum Q single-magnon energy. Finally, we
note that near Q∥ = 0, there is significant overlap between the increasing specular elastic
contribution and the low energy single-magnon contribution. Thus, there is a large cross
correlation between the intensities of these quantities. To account for these uncertainties,
we have added a 2 meV error in quadrature with the standard error of the fit value of the
single-magnon energy. We note that (a) the good agreement of fit spin wave dispersions with
previously reported INS data in NiBr2 and NiCl2, (b) the qualitatively distinct functional
forms of the dispersions for the spin excitation, 1Eg and 1A1g peaks and (c) the consistency
of the procedures across different momentum cuts, samples and temperatures all testify to
the robustness of our elastic alignment.
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Figure 8.8: Momentum-dependent RIXS line-cuts near the (a) 1A1g, (b) 1Eg, and (c)
elastic/spin-excitation regions for NiBr2 at T = 40K and Q∥ = [h, h]. Data are normal-
ized by the total inelastic weight (integrated between 0.2 → 3.0 eV). Data points are shown
as blue squares. Statistical (Poisson) error bars are indicated, but smaller than the used
data points. Total fits are shown in red (see text). In (c), fit components for the elastic,
single-magnon and two-magnon excitations are shown as black, blue and green solid lines,
respectively. Zero baselines for each curve are shown as horizontal grey lines. Data are
shifted vertically for clarity, proportionally to the momentum transfer h times an arbitrary
factor.
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Figure 8.9: Momentum-dependent RIXS line-cuts near the (a) 1A1g, (b) 1Eg, and (c)
elastic/spin-excitation regions for NiBr2 at T = 40K and Q∥ = [h, 0]. Data are normal-
ized by the total inelastic weight (integrated between 0.2 → 3.0 eV). Data points are shown
as blue squares. Statistical (Poisson) error bars are indicated, but smaller than the used
data points. Total fits are shown in red (see text). In (c) fit components for the elastic,
single-magnon and two-magnon excitations are shown as black, blue and green solid lines,
respectively. Zero baselines for each curve are shown as horizontal grey lines. Data are
shifted vertically for clarity, proportionally to the momentum transfer h times an arbitrary
factor.
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Figure 8.10: Momentum-dependent RIXS line-cuts near the (a) 1A1g, (b) 1Eg, and (c)
elastic/spin-excitation regions for NiBr2 at T = 70K and Q∥ = [h, 0]. Data are normal-
ized by the total inelastic weight (integrated between 0.2 → 3.0 eV). Data points are shown
as blue squares. Statistical (Poisson) error bars are indicated, but smaller than the used
data points. Total fits are shown in red (see text). In (c) fit components for the elastic,
single-magnon and two-magnon excitations are shown as black, blue and green solid lines,
respectively. Zero baselines for each curve are shown as horizontal grey lines. Data are
shifted vertically for clarity, proportionally to the momentum transfer h times an arbitrary
factor.
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Figure 8.11: Momentum-dependent RIXS line-cuts near the (a) 1A1g, (b) 1Eg, and (c)
elastic/spin-excitation regions for NiCl2 at T = 40K and Q∥ = [h, 0]. Data are normal-
ized by the total inelastic weight (integrated between 0.2 → 3.0 eV). Data points are shown
as blue squares. Statistical (Poisson) error bars are indicated, but smaller than the used
data points. Total fits are shown in red (see text). In (c) fit components for the elastic,
single-magnon and two-magnon excitations are shown as black, blue and green solid lines,
respectively. Zero baselines for each curve are shown as horizontal grey lines. Data are
shifted vertically for clarity, proportionally to the momentum transfer h times an arbitrary
factor.
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Figure 8.12: Momentum-dependent RIXS line-cuts near the 1A1g region for NiI2 at T = 40K
and Q∥ = [h, 0]. Data are normalized by the total inelastic weight (integrated between
0.2 → 3.0 eV). Data points are shown as blue squares. Statistical (Poisson) error bars are
indicated, but smaller than the used data points. Total fits are shown in red (see text).
Dashed blue lines indicate the Gaussian function corresponding to the 1A1g fit component.
Zero baselines for each curve are shown as horizontal grey lines. Data are shifted vertically
for clarity, proportionally to the momentum transfer h times an arbitrary factor.
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Tight-binding analysis for exciton dispersion

To phenomenologically understand the dominant hopping pathways from the qualitative form
of the 1A1g dispersion, and to quantify the ligand-dependence of the dispersive bandwidth,
we employed a standard tight-binding model restricted to the triangular lattice planes up to
the third nearest neighbor. We determined that the dominant hopping pathway evidenced
from the data is the third-nearest neighbor (t3) contribution corroborated by a previous core-
level X-ray spectroscopy study [120], also revealed by the clear two-fold periodicity within
the first Brillouin zone. The single-parameter fit functional form of the dispersion to fit the
data [Fig. 8.4(b)] is,

ω(h, k) = 2t3 [cos(4πh) + cos(4πk) + cos(4π(h+ k)] (8.1)

where h, k are in-plane momenta expressed in reciprocal lattice units (r.l.u.). The high
symmetry momentum points are Γ = (0, 0), M−M̄ = (±1/2, 0) and K−K̄ = (±1/3,±1/3).
This functional form was used to estimate the t3 hopping parameter for the 1A1g peak versus
ligand, reported in units of meV in Fig. 8.5(a). We show additional fits to the 1Eg and 1A1g

peaks to the t3 tight-binding (Eq. 8.1) for NiBr2/NiCl2/NiI2 in Fig. 8.13. We also show
an analogue to Fig. 8.5(a), including the bandwidth and 3d9L character of the 1Eg state
extracted from the multiplet calculations in Fig. 8.13(f).

169



1A1g
1Eg

NiBr   -  T = 40 K  -  2 Q∥ = (h,0)

1Eg

NiBr   -  T = 40 K  -  2 Q∥ = (h, h)

1A1g

1Eg

NiCl   -  T = 40 K  -  2 Q∥ = (h,0)

NiCl   -  T = 40 K  -  2 Q∥ = (h,0)

Nil   -  T = 40 K  -  2 Q∥ = (h,0)(a)

(b)

(c)

(d)

(e)

(f )
1A1g
1Eg

s10

Figure 8.13: Additional fittings of the 1Eg and 1A1g momentum dependencies to the tight-
binding model. In (a-e) experimental data are shown as blue squares with error bars de-
termined from standard errors of the fits (see Figs. 8.9-8.12) and the solid grey lines are
the best fits to the third-nearest neighbor tight binding (TB) function along the appropriate
momentum space cut (see text). (f) Extension of Fig. 8.5(b) to include the t3 TB parameter
for the 1Eg dispersion. Note, the values are reported as absolute value of t3 (left axis) which
is negative for the 1A1g (blue squares) and positive for the 1Eg (red squares) for all ligands.
Also shown are the 3d9L ligand-hole characters (|β|2, see text) for the 3A2g (dashed grey
line), 1A1g (solid blue line) and 1Eg (solid red line) versus charge transfer gap extracted
from charge transfer multiplet (CTM) calculations. An approximate uncertainty range for
the charge transfer gap of ±0.2 eV is given as horizontal error bar [estimated based on the
energy renormalization of the 1Eg − 1A1g states, Fig. 8.2(b)], along with the standard error
of the TB fit as vertical error bar. Note that the 1Eg peak is not resolved in NiI2.
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Linear spin wave calculation of spin excitation dispersion in NiX2

The spin wave dispersions of NiBr2 and NiCl2 have been investigated with inelastic neutron
scattering [124, 127, 128] and interpreted in terms of isotropic exchange interactions in the
triangular lattice plane up to the third nearest neighbor as previously analyzed [41], with
the following Hamiltonian

H = −
∑
i,j

Jij(Si · Sj) +D
∑
i

(Sz
i )

2 (8.2)

where Jij = J1, J2, J3 are isotropic first-, second-, and third-nearest neighbor intralayer ex-
change, respectively, Jij = J ′ is the interlayer exchange, and D is the single-ion anisotropy.
This model results in a satisfactory agreement between the experimental spin-wave disper-
sions and the magnetic ground states of the nickel dihalides [41, 42, 124, 127, 128]. For
comparison to RIXS data, we have reproduced the calculated spin-wave dispersions in the
paramagnetic phase (T < 52 K in NiCl2 and 22 K < T < 45 K in NiBr2), consistent with
the magnetic ground states at the measured temperature of T = 40 K in RIXS experiments.
The parameters determined from INS are summarized in Table 8.2.

Table 8.2: Exchange parameters from Refs. [124, 127] for NiBr2 and NiCl2. All units in meV.
Positive sign J > 0 is ferromagnetic and negative J < 0 is antiferromagnetic interaction.

J1 J2 J3 J ′ D

NiBr2 1.56 -0.02 -0.41 -0.18 0.08
NiCl2 1.87 -0.42 0.00 -0.066 0.035

The spin-wave dispersion is then determined as, from Ref. [41],

ω(q) = 2S

[
J(k0) +

(J(q+ k0) + J(q− k0))

2

]1/2 [
J(q)− J(k0) +D

(
1− 1

2S

)]1/2
(8.3)

For comparison to experiments, we used the magnetic structure with wavevector k0 =

(0, 0, 3/2) corresponding to the layered AFM phases common to both NiCl2 and NiBr2 at the
measurement temperature T = 40 K. These results are used for comparison to the spin wave
dispersion measured by RIXS in NiBr2 in Fig. 8.4(a) along the ΓM and ΓK momentum
space directions. The corresponding comparison for NiCl2 along the ΓM direction is shown
in Fig. 8.14. We find a similar good agreement between the previously published exchange
parameters and the experimental spin-excitation dispersion in RIXS. The spin wave spectra
have not yet been reported for NiI2 and a detailed analysis is beyond the scope of the current
paper.
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Figure 8.14: Comparison between fit spin excitation dispersion along the ΓM direction in
NiCl2 at T = 40 K (blue squares) and linear spin wave (LSW) calculation (grey line) based
on parameters from inelastic neutron scattering (INS) (see text).

Details of charge transfer multiplet calculations

Here we provide additional details of the charge transfer multiplet (CTM), crystal field
multiplet (CFM) calculations, and the ligand-dependent best-fit parameters. The basis set
for the CFM calculations are the Ni-2p orbitals (for calculating Ni-L2/L3 edge core-level
spectra), the Ni-3d orbitals, as well as symmetrized ligand molecular orbitals for the CTM
model.

The atomic Hamiltonian to describe the ground state multiplet structure of the ionic
limit (3d8) electronic configuration includes multipolar Coulomb interactions parameterized
by the direct (F n

dd) Slater integrals, the spin-orbit coupling (SOC) ζ3d in the initial state,
and a phenomenological crystal field splitting (10Dq in octahedral symmetry). Additional
parameters in the intermediate RIXS (3d92p5) state include the direct F n

dd-F n
pd and exchange

Gn
pd Slater integrals, the atomic SOC ζ ′3d in the intermediate slate and the core-level 2p SOC

ζ2p which determines the L3/L2 edge splitting.
The Slater integrals are acquired from Hartree-Fock values, with scaling factors Fk and Gk

for the direct and exchange contributions, respectively. The atomic values are empirically de-
termined to be 80% of the Hartree- Fock (HF) values which have been tabulated by Haverkort
[292]. For CTM calculations, where additional screening is captured by the mixture of ligand
hole states, we leave the Slater integral scaling to atomic values (Fk = Gk = 0.8). The 3d

SOC is always maintained at the Hartree-Fock values and is not rescaled.
The coordination symmetry of the nickel site in the nickel dihalides is a trigonally-

distorted octahedron, with a dominant octahedral (Oh) crystal field (CF) contribution. This
splits the five 3d orbitals into a higher energy eg symmetry doublet and a lower energy t2g
symmetry triplet. In first-order approximation, a small trigonal (D3d) distortion leads to a
further splitting of the Oh-t2g levels into a singlet aπ1g and a doublet eπg level, while the Oh-eg
levels remain degenerate (which we denote as eσg in D3d symmetry). Trigonal symmetry also
allows a mixing term between the eπg and eσg orbitals. For most calculations, we consider only
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Oh CF unless otherwise specified, while the effects of the trigonal distortion are investigated
separately below (Fig. 8.21).

Config. F 2
dd F 4

dd ζ3d F 2
pd G1

pd G3
pd ζ2p

3d82p6 12.233 7.597 0.083 - - - -
3d92p5 13.005 8.084 0.102 7.720 5.783 3.290 11.507

Table 8.3: Hartree-Fock parameters from Ref. [292] in the ground (3d82p6) and intermediate
state (3d92p5) of Ni2+ used for all calculations. Units are in eV.

The description provided so far defines the approximation of CFM calculations, which do
not explicitly include the ligand states or charge transfer processes. Additional parameters
for CTM calculations include the charge transfer energy (∆), the Coulomb parameters in the
initial (Udd) and intermediate (Upd) states as defined in the Zaanen-Sawatsky-Allen scheme
[154, 155], and the hybridization between the ligand molecular orbitals and the Ni-3d states of
eg [V (eg)] and t2g [V (t2g)] symmetry. The charge transfer ∆ and metal-ligand hybridization
V (eg)− V (t2g) are then used as fit parameters to the XAS and RIXS spectra while leaving
the Slater integrals of the nickel site fixed to atomic values (Fk = Gk = 0.8).

For fitting the data in the CTM model, we employed a minimal fitting procedure where
we fix the empirical ratio V (t2g) = 3/5 × V (eg) and scale the hybridization V and charge-
transfer ∆ to match experiment. We take the parameters Upd and Udd from photoemission
experiments which we fix to Udd = 5.0 eV and Upd = 7.0 eV [155]. Furthermore, the bare
Oh-symmetry Ni-3d crystal field splitting (‘ionic’ CF) is fixed to 10Dq = 0.55 eV for all
compounds. It was found that best fit to each ligand is an approximately linear relation
between ∆ and V (eg), given by V = 0.181×∆+1.301, which was used to generate Fig. 8.2(b).
The overall parameters for the ligand dependence are summarized in Table 8.4. The reported
values are in good agreement with previous reports from XPS and XAS measurements [155],
but are further restricted in our case by the RIXS data.

∆ V (eg)

NiCl2 3.80 1.99
NiBr2 2.30 1.72

NiI2 0.40 1.37

Table 8.4: Ligand-dependence of ∆ and V (eg) from CTM calculations. Coulomb screening
parameters are fixed to atomic values Fk = Gk = 0.80 and the ionic Oh CF is fixed to
10Dq = 0.55 eV for all compounds.

Besides these CTM calculations, we also performed CFM calculations to investigate the
role of the ligand-hole states. We fixed the Oh symmetry crystal field to 10Dq = 0.95

eV based on the lowest energy 3T2g multiplet observed in all compounds. We then adjust
the direct Slater integral scaling Fk to find the optimum agreement with all other multipet
excitations in the RIXS spectra. Finally, we fix Fk and vary the exchange integral scaling Gk,
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which is only included in the intermediate state Hamiltonian, to optimize the XAS profile,
in particular the MP-SP splitting in the XAS. The optimized values for each compound are
reported in Table 8.5.

Fk Gk

NiCl2 0.60 0.68
NiBr2 0.51 0.51

NiI2 0.35 0.22

Table 8.5: Ligand-dependence of Coulomb screening parameters from optimized charge trans-
fer multiplets (CTM) calculations. The Oh crystal field (CF) is fixed to 10Dq = 0.95 eV.
Values are percent of Haetree-Fock (HF) values, where Fk = Gk = 0.80 correspond to atomic
values. Uniform scaling of all parameters is used across the initial and intermediate states.

We compare the calculated XAS and ground state energy level diagrams within the CTM
and CFM frameworks in Fig. 8.15. From these comparisons, we conclude that the evolution
of the 1A1g and the 1Eg peaks, as well as the MP-SP evolution, can be effectively mapped
onto an ionic model and result from the intra-atomic Coulomb interactions at the nickel
site. The near resolution-limited behavior of these highlighted 1A1g and 1Eg multiplets
results from their low-degeneracy: the 1A1g is both a spin- and orbital singlet, while the
1Eg is an orbital doublet and spin-singlet state. As both of these spin-orbital excitations
involve a rearrangement of the electronic configuration within the half-filled eg crystal field
states, they are not sensitive to the crystal field distortion, but are rather stabilized from
the 3A2g ground state directly through the intra-atomic Hund’s exchange interactions which
are here parameterized by the Slater integrals F 2

dd − F 4
dd in the initial state. This intra-

configurational excitation nature also results in a smaller coupling to phonons [245, 247–
249], which contributes to the qualitatively smaller linewidths compared to the other inter-
configurational (e.g. t62ge2g → t52ge

3
g) multiplets.

In the CFM model, the screening of the intra-atomic Coulomb interaction, or nepha-
lauxetic effect, is accounted for by a direct reduction of the Slater integrals (e.g. Fk − Gk

scaling factors), while in the CTM calculations an effective reduction of the Coulomb inter-
actions are induced by an enhanced self-doped ligand (3d9L) hole character which naturally
increases as the charge transfer gap is decreased [see Fig. 8.2(c)]. Thus, as electronic density
is transferred to the surrounding ligands, the electronic interactions stabilizing the spin-
singlet multiplets are reduced. Furthermore, the 1A1g and 1Eg multiplet degeneracy is not
sensitive to the inclusion of SOC, lowered (trigonal) CF symmetry or effective spin-exchange
field splitting and they are not endowed with fine-structure broadening, leading to nearly
resolution limited behavior across the entire halide series, independent of the ligand-tuned
covalency and charge transfer state weight. We note that these conclusions are also consistent
with previous observations in NiO [257].

While the essential physics can be accounted from only a 3d8 model, the inclusion of
charge transfer states more accurately captures the excitation-dependent screening of the
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intra-atomic electronic interactions compared to a uniform screening introduced phenomeno-
logically through the CFM model, resulting in an improvement in the description of the
data. Additionally, higher energy charge transfer side bands in the XAS and additional
charge transfer excitations in the RIXS spectra are captured in the CTM model, which are
not included in the CFM approximation. In the CFM model, a separate tuning of the direct
and exchange Coulomb interactions is required to describe the ligand-dependent screening
in both the initial/final (ground, 3d82p6) and the intermediate (excited, 3d92p5) states in
order to accurately describe the ∆S = 1 excitations in the RIXS spectrum and the L3 edge
XAS side-band evolution versus ligand. In contrast, the CTM model allows for a correct
description of both features directly through tuning of the charge transfer energy and the
orbital-dependent hybridization. The source of these effects come from larger hybridization
of higher-energy excitations in both the initial and intermediate RIXS states with the charge
transfer states, leading to a larger effective screening of their Coulomb interactions. For
this reason, the side band multiplet in the intermediate 3d92p5 state reflected in the XAS
profile hybridizes more strongly at a given ∆ than the main band multiplets, as shown in
Fig. 8.16, and similarly for the 1A1g excitation in the ground/final 3d8 state which occurs
at higher energies relative to the 3A2g ground state compared to the 1Eg excitation. This
preferentially large hybridization may lead to the incorrect conclusion that the ligand states
are essential to describe the physics of these excitations — however, larger ligand hole state
weight in these excitations is a consequence of the details of hybridization within this regime
of charge transfer gap, and the dominant effect (as revealed directly through our comparison
of ionic and charge transfer calculations) is that hybridization with ligand states induces
a nephalauxetic effect [110] which describes all salient features of the data excluding the
temperature- and momentum dependence. This is directly proven by our ligand dependent
data and calculations and is in agreement with the known spectrochemical trends for halogen
ligands [60, 110, 190, 245, 252, 253, 258].

From the charge-transfer and crystal-field multiplet models, the XAS and RIXS core-level
spectra at the Ni-L2/L3 edges are calculated with the Green’s function approach as imple-
mented in the software Quanty [113, 267, 268]. We use a core-hole (Lorentzian) broadening
of 500 meV for both XAS and RIXS spectra and a 30 meV Lorentzian broadening on the
energy-transfer axis for RIXS spectra. In addition, we introduce a mode-dependent broad-
ening of specific excitations which do couple (inter-configurational, e.g. 3T2g) and do not
couple (intra-configurational, e.g. 1A1g − 1Eg) to the Oh crystal field by averaging several
calculations calculated with different values of 10Dq with ±50 meV of the best fit value.
This phenomenologically accounts for the distinct linewidths between these types of exci-
tations, related to a differential coupling to phonons which broaden the lineshape of the
10Dq-coupled excitations. Simulated RIXS maps for each compound in the CTM model are
shown in Fig. 8.17(a-c). These show good agreement with the experimental RIXS maps in
Fig. 8.1(c-e). We note in both the calculated/experimental RIXS maps an apparent shift of
the 3T2g peak to higher energies in the XAS post-edge region. This is attributed to inter-
mediate state cross section effects which transfer spectral weight to different fine structure
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components of the 3T2g state. Such fine-structure can be induced by the combined effects of
spin-orbit coupling, effective spin exchange, and the trigonal distortion [266]. We also show a
corresponding RIXS map calculation for the CFM model for optimized NiBr2 parameters in
Fig. 8.17(d). The latter shows that the resonance of the spin-flip multiplets at the side band
is not related to the relative ligand-hole state character in the ground/intermediate state,
but is dictated by a cross-section effect related to the 3d8/3d92p5 ground/intermediate state
multiplet structure and dipole selection rules determined from Ni2+ in Oh symmetry. We
note that this cross-section effect may be related to the ∆ms = 2 (two-magnon) excitations
resonant at the side band in NiO [257], as also suggested in our data on NiCl2 and NiBr2.
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Figure 8.15: Calculations of the multiplet structure within the crystal field (CFM, top row)
and charge transfer (CTM, bottom row) models. (a) 3d8 multiplet structure with 10Dq = 950
meV as a function of the intra-atomic Coulomb screening Fk in the initial RIXS state, where
Fk = 0.80 corresponds to atomic values. (b), The Ni-L3 (left) and Ni-L2 (right) simulated
XAS spectra (offset vertically for clarity) as a function of co-varied direct (Fk) and exchange
(Gk) Slater integrals in the initial and intermediate state. (c), Energy level multiplet diagram
in the charge transfer model as a function of covaried charge transfer gap (∆) and metal-
ligand hybridization [V (eg)] along with (d), the simulated XAS spectra. The covariant values
Fk −Gk and ∆−V (eg) in the CFM and CTM models, respectively, are interpolated linearly
between the best fit values of the NiX2 experimental data (see Tables 8.5 and 8.4). In (a)
and (c) thick red and blue lines highlight the 1A1g and 1Eg excitations, respectively, and the
experimentally observed excitation energies are shown as open red diamonds/blue squares,
respectively for X = I/Br/Cl from left to right. The optimal parameter values are indicated
by dashed vertical lines. In (b) and (d), the corresponding XAS spectra for these optimized
values are shown in red/blue/green for I/Br/Cl, respectively.
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Figure 8.16: Calculated Ni-L3 edge XAS for optimized values in the CTM model for
NiCl2/NiBr2/NiI2 from top to bottom, respectively. The energy axis is with respect to the
center energy of 3d92p5 configuration in the calculation. Individual excitations contributing
to the XAS profile are shown as bar plots over the corresponding spectra, showing the evolu-
tion of each XAS transition between 3d9c/3d10Lc ligand-hole character as ∆ is reduced. The
relative weight of each configuration is indicated by the color bar. See also the analogous
plot for the ground state multiplets in Fig. 8.2(b).
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Figure 8.17: Calculated incident-energy dependent RIXS maps across the Ni-L3 resonance
alongside the calculated XAS in the CTM model for (a), NiCl2 (b), NiBr2 and (c), NiI2, as
well as the corresponding CFM result for NiBr2 in (d). Parameters are described in the text.
Spectra are calculated with Lorentzian broadening of 0.5 eV on the incident energy axis (XAS
and RIXS) and by 0.03 eV on the energy transfer axis. In addition, an empirical, mode-
dependent broadening is introduced by averaging spectra with different values of 10Dq in a
range ±0.05 eV around the central best value. Spectra are all calculated in the experimental
polarization conditions.
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Polarization-dependence and self-absorption

Here we provide an additional assessment of the dependence of the RIXS intensity on incident
polarization, including the effects of self-absorption in the RIXS and XAS profiles as well
as the intrinsic angular dependence of the multiplet excitations as inferred from cluster
calculations. Throughout this section, we will argue that the angular dependencies of the
intrinsic cross-section effects on the sample angle θ and the self-absorption effects cannot
account for the periodicity of the measured multiplet dispersions, thus ruling out cross-
section artifacts to explain the 1Eg and 1A1g dispersions reported here.

From previous XAS studies on the nickel dihalides [154, 155], we observe strong self-
absorption and saturation effects in the total/partial fluorescence yield measurements (TFY
and PFY, respectively), most prominent at the Ni-L3 edge white line/main peak (MP)
resonance [260, 261]. The self-absorption gets more pronounced when going from X = I
to X = Cl. This is evident from the TFY and PFY data compared in Fig. 8.18, where
the white line peak is heavily suppressed. The NiX2 compounds are all highly insulating,
and bulk forms of the crystals did not result in strong total electron yield (TEY) signal,
except for NiBr2 for which a thin single crystal was used (≃ 10 µm). We show a comparison
between the CTM calculation, TEY and TFY signal in NiBr2 in Fig. 8.19, confirming a
large self-absorption on the MP resonance of Ni-L3 edge.

The effects of self-absorption are known to distort the intensity profile of RIXS spectra
when the incident energy is tuned above the main resonance [262, 293]. In our case, all
momentum dependent data were collected on the SP resonance of the XAS which maximizes
the intensity of the 1Eg/

1A1g peaks (see Fig. 8.18, 8.1, 8.2). In this case, the absolute
emitted energy of inelastic (energy loss) peaks may be coincident to the region of maximum
absorption (MP) and will be accordingly suppressed by self-absorption. For incident energy
ωi and scattered energy ωo, it was shown that the appropriate self-absorption correction
factor for RIXS experiments is [293],

C(ω1, ω2) = 1 +
α0 + α(ωi)

α0 + α(ωo)

cos(θi)

cos(θo)
(8.4)

where in θi−θo are the incident/emitted angle with respect to surface normal. Our scattering
geometry is depicted in Fig. 8.20(a), where the scattering angle is fixed to 2θ = 150◦ and
the appropriate angles are θi = θ − 90◦ and θo = θ − 60◦ in terms of the defined angle θ
reported for the measurements.

We first extract the intensity of the total inelastic spectral weight as a function of angle
by integrating the total intensity from 0.2 → 3.0 eV when normalizing the intensity by the
total counting time. These are reported for NiCl2 along [h, 0], NiBr2 along [h, 0] and [h, h],
and NiI2 along [h, 0] at T = 40 K in Fig. 8.20(b). The solid lines show fits to an assumed
emission-energy and emitted-polarization independent self-absorption factor C, showing the
average effect of self-absorption on the RIXS intensity. Importantly, the self-absorption
intensity is monotonically decreasing when going from grazing incidence θ < 75◦ to grazing
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emission θ > 75◦.
For fitting the spectra, we normalized each RIXS spectrum by the total inelastic scattered

intensity as reported in Fig. 8.20(b), corresponding to the normalized spectra shown in Figs.
8.8-8.12. The intensity of the fitted 1A1g and 1Eg peaks along different momentum cuts
are reported in Fig. 8.20(c-f). These are compared to the intrinsic angular dependencies
expected from corresponding CTM calculations (bottom row), using the optimized values
for NiBr2. The angular dependencies can all be described by the functional form:

I(θ) = A cos2(θ − θ0) +B (8.5)

consistent with the expectations from dipolar selection rules. Importantly, these have a
periodicity of 180◦. Along [h, 0], the angle dependent intensity of the 1A1g peak shows good
agreement with the theoretical prediction, as well as along [h, h] for NiBr2 [Fig. 8.20(c,d)].
Meanwhile, the 1Eg peak does not agree well for the measured cases, with the experimental
data showing a monotonically decreasing intensity. We attribute this discrepancy to the
emission-energy dependent self-absorption described by C(ω1, ω2) above.

We assess this in Fig. 8.18, where we indicate the measurement energy for all tempera-
ture and momentum dependent data at the SP (Emeas) as well as the corresponding absolute
emitted photon energies for the 1Eg and 1A1g peaks, shown as vertical blue/red lines, respec-
tively. We observe that in all cases, the 1A1g peak emission energy is in the pre-edge region
of the Ni-L3 edge, while in NiCl2 and NiBr2, the 1Eg emission energy is tuned near the max-
imum of the Ni-L3 white line. Thus, while the self-absorption of the 1A1g peak in each case
may be appropriately accounted by normalizing the average (polarization/emission-energy
independent) self-absorption from the integrated inelastic weight in Fig. 8.20(b), the 1Eg

may be expected to show a higher than average self absorption effect. We argue that this
explains the simultaneous agreement of the 1A1g and the disagreement of the 1Eg angular
dependencies to CTM calculations. Given the lack of consistent TEY and TFY comparison
data due to the insulating nature of NiX2 compounds, as well as the lack of experimental
resolution of the emitted polarization, we leave this description qualitative instead of at-
tempting a full emission-energy dependent self-absorption correction to the data, instead
preferring to report the raw data.

To conclude this section, we note that while self-absorption is shown to have a non-
negligible effect on the emission spectra, we have shown that a monotonically-decreasing
self-absorption effect (with increasing θ) and the intrinsic angular dependence with peri-
odicity of 180◦ cannot explain the observed momentum-dependent energy of the 1A1g/1Eg

multiplets, which instead have a two-fold periodicity within a single Brilluoin zone and an
(approximate) periodicity of 90◦ with respect to θ. Furthermore, we note that the effects of
self-absorption are expected to be most pronounced in NiCl2, which shows the largest self-
absorption distortion of the XAS, while the energetic dispersion is smallest in this sample
throughout the halide series. The good agreement of the angular dependence of the 1A1g

peaks with the theoretical prediction bolsters our multiplet assignments and the accuracy of
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our calculations.

(a) (b) (c)
NiBr2NiCl2 NiI2

Eabs(1A1g)
Eabs(1Eg)

Emeas Eabs(1A1g)
Eabs(1Eg)

Emeas Eabs(1A1g)
Emeas

s15

Figure 8.18: Comparison of total integrated inelastic weight [e.g. partial fluorescence yield
(PFY), green squares] with the TFY absorption profile (black line) for (a), NiCl2 (b), NiBr2
and (c), NiI2. Also shown are the integrated intensity of the 1Eg (blue squares) and 1A1g

(red squares) excitations. Data for the energy-dependent integrated intensities are from the
RIXS maps shown in Fig. 8.1. In addition, we also indicate the incident energy on the side
peak (SP) resonance (Emeas) for measuring the temperature and momentum dependence of
the spin-singlet excitations for each compound (vertical black dashed line), as well as the
absolute emission energies Eabs(

1Eg)−Eabs(
1A1g) excitations with incident energy Emeas for

comparison to the expected emission-energy dependent self-absorption (see text).

182



TFY/TEY Comparison - NiBr2

s16

Figure 8.19: Comparison between the XAS spectra measured in TFY (solid, blue) and
TEY (dashed, blue) in NiBr2, measured at θ = 11◦ and T = 40 K. A linear background
was subtracted from both experimental spectra. These are further compared to the XAS
calculated from CTM calculations using the optimized parameters for NiBr2 (solid, grey)
with a uniform (Lorentzian) core-hole broadening of Γ = 0.5 eV.
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Figure 8.20: (a) Scattering geometry used for all experiments with scattering angle 2θ = 150◦.
(b), Total integrated inelastic weight (∆E = 0.2 → 3.0 eV) normalized to the total counting
time for each NiX2 sample (squares) for all data at T = 40 K. Solid lines are fits to an effective
self-absorption factor C(θ) without explicit consideration of the emission energy dependence
(see text). (c-f) Angle-dependent intensity of the 1A1g and 1Eg multiplets for each compound
(where available, top to bottom: NiCl2/NiBr2/NiI2) from fits shown in Figs. 8.9-8.12 above,
after normalizing to the total integrated inelastic weight shown in panel (b). The bottom row
of (c-f) are the intrinsic angular-dependencies as calculated within the CFM approximation
for optimized parameters of NiBr2 (see text) and with the experimentally utilized polarization
states (incident σ polarization and unresolved emitted polarization). Note that all calculated
intensity profiles can all be described with a functional form ∝ A cos2(θ−ϕ)+B, consistent
with the expected dipole transition selection rules (see text). All plots are reported versus
angle θ with respect to the surface as defined in panel (a).
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Effect of trigonal distortion

We show the effect of trigonally-distorted crystal field on the multiplet spectrum in the case
of Oh symmetry optimized parameters for NiBr2 in the CTM model in Fig. 8.21 below. We
observe that the allowed CF terms when reducing symmetry from Oh → D3d effect neither
the ground state, the 1Eg, nor the 1A1g fine structure. We note that the 1A1g is a spin and
orbital singlet, and thus here is no degeneracy to break with lower symmetry. These results
show that trigonal distortion does not induce additional fine structure splitting due to either
ground state (3A2g) or excited state (1Eg − 1A1g) effects, and thus the observed dispersion of
the 1Eg and 1A1g peaks cannot be attributed to a cross section effect that modulates intensity
between closely lying multiplet excitations in the RIXS profile. This is also corroborated
by the satisfactory agreement between experiment and the intrinsic polarization dependence
predicted in the cluster model, as discussed in the previous section.
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Figure 8.21: (a), Schematic of the local distorted NiX6 octahedron in the nickel dihalides, in-
dicating the three-fold rotation symmetry axis (C3z) which is parallel to the crystallographic
c-axis in the R3̄m space group structure of the NiX2 compounds. The trigonal distortion
corresponds to either compression or elongation along the C3z axis. (b), Orbital energy
diagram for different crystal fields, including Oh symmetry, with eg-t2g splitting 10Dq, and
the trigonal D3d symmetry. Also indicated are the new CF parameters allowed in trigonal
symmetry, including the intra-t2g splitting ∆D3d and a mixing between eπg and eσg states
(Emix). Energy-level diagrams in the CTM model using optimized parameters for NiBr2 (see
text) and an effective spin exchange field of 20 meV, considering the effects on the multiplet
states of (c), ∆D3d and (d), Emix parameters, with (d) calculated with a fixed ∆D3d = 50
meV. The ground state 3A2g and excited state 1Eg/

1A1g singlet multiplets are indicated with
black arrows. While all other multiplets exhibit additional fine structure due to trigonal
distortion, no fine structure in the multiplets of interest is introduced.
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Chapter 9

Spontaneous orbital polarization in the
nematic phase of FeSe

This chapter is adapted from the corresponding paper published in Nature Materials (Ref.
[294]) with modifications and corrections.

This paper is a co-first author work between the present author (C.A.O.) and Joshua J.
Sanchez. This project was conceptualized and initiated by C.A.O., J.J.S., Gilberto Fabbris,
Yongseong Choi, Jong-Woo Kim and Philip J. Ryan. X-ray measurements were performed
by C.A.O., J.J.S., G.F., Y.C. J.-W.K. and P.J.R. C.A.O. and J.J.S. prepared the samples
and performed the optical birefringence experiments. Qian Song grew the FeSe crystals.
Riccardo Comin supervised the project.

An extended introduction to the physics of iron-based superconductors can be found in
Chapter 1.

9.1 Introduction

Symmetry-breaking phase transitions in strongly correlated electron systems are character-
ized by their structural and electronic (spin, charge, and orbital) degrees of freedom [15].
In electronically-ordered phases, these degrees of freedom become intertwined, making an
experimental determination of the leading interaction challenging. One striking example of
this complex interplay is nematicity, an electronically-driven rotational-symmetry breaking
which is widely observed in iron-based superconductors [78]. While static nematic order
is found to compete with superconductivity in iron pnictide materials such as Co-doped
BaFe2As2 [78, 85, 86], it may actually help stabilize it in the chalcogenide FeSe [295]. Thus,
understanding the origin of nematic order in each class is essential for understanding the
nature of superconductivity [296]. Despite sustained efforts, a persistent question is whether
nematicity is driven by the spin or orbital degree of freedom. The answer to this question
has remained elusive largely due to the complexity of the microscopic relationship between
these degrees of freedom and the nematicity-induced structural anisotropy.
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The central difficulty in addressing the orbital degree of freedom arises from its close
association with the lattice symmetry. This problem is important not just to nematicity in
iron-based superconductors, but also to phenomena as diverse as Jahn-Teller distortions in
transition-metal oxides [15, 297] and quadrupolar 4f ordering in heavy fermion materials
[298, 299]. In this work, we introduce a general methodology to distinguish the orbital and
lattice degrees of freedom by combining in situ tunable strain with x-ray linear dichroism
(XLD) and x-ray diffraction (XRD), to directly probe the orbital polarization and strain state
of the lattice, respectively. We use this methodology to provide the most direct evidence
that orbital ordering drives the nematic transition in the iron-based superconductor FeSe.

FeSe displays a nematic transition at Ts = 90 K which results in a small lattice or-
thorhombicity and a large anisotropy in both orbital occupation and spin fluctuations, as
demonstrated by many techniques [95–99, 101, 104, 106, 300–302]. While elastoresistivity
measurements have identified an electronic driver for the nematic transition [93, 95, 102, 303,
304], this technique alone cannot uniquely identify the driving interaction [305, 306]. The
primary role of the orbital degree of freedom in the nematic phase has been suggested by
nuclear magnetic resonance (NMR) [99, 300] and angle-resolved photoemission spectroscopy
(ARPES) [95, 104, 106, 301] measurements that reveal anisotropy between the Fe |3dxz⟩ and
|3dyz⟩ orbitals. Meanwhile, nematicity in the iron pnictide materials is widely thought to
result as a result of antiferromagnetic order [78], and spin-driven nematic fluctuations likely
play a major role in the enhancement of superconductivity. However, this spin-nematic
model for FeSe is fundamentally challenged by the absence of long-range antiferromagnetic
order and by the preservation of nematic order while spin fluctuations are suppressed below
the superconducting transition temperature [99, 101]. Intriguingly, these strong spin fluctu-
ations may nonetheless be key to the enhancement of superconductivity while having only a
minimal or subdominant role in the formation of nematic order [307].

The investigation of nematicity is further challenged by the presence of structural twin
domains, which form below the nematic transition and cause bulk probes to average out the
electronic anisotropy. Several recent works have used fixed applied strain to (partially or
fully) detwin the nematic domains and probe the spin or orbital anisotropy [96, 98, 308].
However, a fixed strain methodology cannot assess the nature of the coupling between the
lattice and electronic degrees of freedom, which is key for understanding what drives the
system into a nematic state. Furthermore, any strain applied above the transition induces
anisotropy when there is none in equilibrium, while within the ordered phase any excess
strain applied beyond full detwinning will increase the anisotropy beyond the equilibrium
value. Thus, it is necessary to observe the behavior of the electronic anisotropy as a function
of both strain and temperature across the nematic transition [108, 309] in order to establish
the microscopic relationship between these two degrees of freedom.

Here, we address this question using strain-dependent XLD at the Fe K pre-edge to
probe the local orbital degree of freedom at the Fe site and determine the Fe 3d orbital
polarization in the nematic state. We use in situ tunable applied stress to detwin the struc-
tural domains and apply further strain to the lattice. These XLD measurements, along with
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supporting XRD measurements to quantify the strain state, allow us to determine a robust
relationship between the orbital and lattice degrees of freedom as a function of strain and
temperature across the nematic phase boundary. A key result of this work is the observation
of a saturating XLD signal beyond full detwinning in the nematic phase. This suggests a
spontaneously-ordered orbital polarization that serves as a primary nematic order param-
eter, analogous to a saturating magnetization in a ferromagnet. Further, both the strain
susceptibility of the orbital polarization (the orbital polarizability) and the simultaneously
measured elastoresistivity diverge on approach to the transition from above, consistent with
local nematic fluctuations driven by the orbital degree of freedom. While these measure-
ments do not address the spin degree of freedom directly, the transport measurements reveal
a secondary source of resistivity anisotropy which we attribute to inelastic scattering from
anisotropic spin fluctuations, which is only activated below Ts and is enhanced with increas-
ing orthorhombicity in a strain regime where the orbital polarization is saturated. These
measurements thus isolate the critical role of the orbital-degree of freedom in the nematic
phase of FeSe and evidence that nematicity is primarily driven by orbital order.

9.2 Results

9.2.1 XAS and XLD Spectra in Detwinned FeSe

We performed measurements on two samples from the same crystal growth batch. The
crystals were cut into rectangular bars with edges parallel to the orthorhombic a/b directions.
The samples were then mounted on a titanium support platform as described in Refs. [303,
310] and fit with transport leads in a four-wire geometry for determining the longitudinal
resistivity ρxx along the applied stress direction (Fig. 9.1(b)). Uniaxial stress was applied to
the platform with a Razorbill CS130 strain cell, with the nominal strain ϵxx determined by
the capacitance strain gauge on the stress device (see Methods).

Sample 1 was initially cooled to T = 25 K under moderate tensile stress (ϵxx ≃ 0.1%)
which partially detwins the structural domains that form below Ts. We define the structural
A domain (B domain) as that with the longer a (shorter b) lattice constant aligned parallel
to the stress axis (Fig. 9.1(a)). The inset to Figure 9.1(c) shows an XRD measurement of the
(114) reflection, revealing a 75% detwinning state, in agreement with the predicted detwin-
ning given the 0.23% orthorhombicity. Figure 9.1(c) shows the Fe K-edge X-ray absorption
spectra (XAS), taken at normal incidence with incident linear polarizations LH/LV (parallel
to a⃗/⃗b in the tensionally detwinned state, respectively) and normalized to the main edge
jump. The near-edge structure shows three features labeled as A/B/C consistent with pre-
vious studies [311–313]. We report the associated in-plane XLD spectrum in Figure 9.1(d),
defined as the difference ILV − ILH .

The Fe K-edge resonance results from dipole-allowed transitions from Fe 1s to Fe 4p

states, with admixed Fe 3d and Se 4p/4d orbital character due to hybridization. Feature
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Figure 9.1: Strain apparatus and XLD spectroscopy in FeSe. (a), The orthorhombic unit
cell of FeSe, defining the a/b orthorhombic axes and the orientation of the |3dxz⟩/|3dyz⟩
orbitals (A domain). (b), Schematic of the strain apparatus and sample, with polarization
states (LH/LV) for normal incidence dichroism measurements. (c), Sample 1, the Fe K-edge
XAS profile at T = 25 K under tension (ϵxx ≃ 0.1%). Inset: XRD of (114) reflection shows
partial detwinning to the A domain. (d), The corresponding XLD spectrum with error bars
determined from the standard deviation of repeated scans.

B is the usual main edge of this transition [311, 312]. Higher incident energies (peak C)
are dominated by non-local effects including multiple scattering and encode Fe 4p/Se 4d

hybridization. Thus, feature C is sensitive to the Fe-Se bond length and long-range structural
distortions [312, 313]. Lower incident energy favors increasingly local electronic states around
the absorbing Fe atom [110, 314] and the pre-edge (peak A) coincides with the unoccupied Fe
3d density of states near the Fermi level. Due to the local tetrahedral symmetry, the |3dxz⟩
(|3dyz⟩) orbital exhibits strong on-site hybridization with |4py⟩ (|4px⟩) states [150, 315–317],
giving access to 3d orbitals through dipole transitions at the pre-edge. In this picture, the
positive pre-edge XLD in the tensionally detwinned state (Fig. 9.1(d)) corresponds to a more
occupied |3dyz⟩ state (Fig. 9.1(a)), in agreement with the Γ-point occupation anisotropy seen
in ARPES [104, 106, 308].

9.2.2 Spontaneous Orbital Polarization

We now discuss the simultaneously recorded XLD, XRD and elastoresistivity data collected
at fixed strain values on a compressive-to-tensile strain sweep in Sample 1 at T = 50 K
(see Methods). Figures 9.2(a)-(d) show the XLD spectra as a function of strain. The XLD
at each XAS feature is strain tunable and reverses sign between compression and tension,
consistent with the detwinning of nematic domains. The integrated XLD intensity of the
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pre-edge peak is plotted versus strain in Figure 9.2(d). The XLD increases rapidly before
saturating at larger strain, with the saturation occurring near ϵxx ≃ 0.14%.

On the same strain loop, we used XRD to measure the strain response of the A domain a⃗
and c⃗ lattice constants from which we determine the unidirectional strains ∆a/a0 and ∆c/c0
shown in Figure 9.2(e)/(f). The lattice constants exhibit a weak response to small strain
before changing rapidly at large tensile strain, indicating a detwinning strain of ϵxx ≃ 0.14%

denoted by red vertical lines in Figure 9.2. Thus, strains below the detwinning point act to
reorient nematic domains with only a negligible effect on the lattice constants of an individual
domain [318]. The crossover in the monodomain lattice response is also concomitant with a
sign change in the slope of the simultaneously measured resistivity (Fig. 9.2(g)), discussed
in more detail below.
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Figure 9.2: Strain-dependent X-ray measurements in the nematic phase. X-ray measure-
ments versus strain on Sample 1 at T = 50 K. (a), The Fe K-edge XAS profile for po-
larizations LH ∥ a⃗ and LV ∥ b⃗, with the integration regions for the features A/B/C de-
noted. (b), In-plane XLD spectra as a function of increasing strain from −0.05% (bottom)
to 0.30% (top). (c), Color map of the strain-dependent in-plane XLD spectra in (b). (d),
The integrated XLD intensity of the pre-edge A (∆n) as a function of applied strain. XRD
measurements of the (e), [110] (parallel to applied strain) and (f), the [001] (out-of-plane)
lattice strains versus nominal linear strain ϵxx. Error bars represent the standard error from
Gaussian fits to XRD peaks. (g), Elastoresistance measurements recorded simultaneously
with XLD and XRD data, showing a sign-reversal at the detwinning point, ϵxx ≃ 0.14%,
denoted by vertical red lines in panels (c)-(g). All measurements reported in (a)-(g) are
taken at identical strain conditions.
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We thus find that the saturation of the pre-edge XLD coincides with the full detwinning
of the sample. In contrast, the higher energy XLD features continue to increase with tension
past the detwinning point (Fig. 9.2(b)/(c)). This suggests that the higher energy XLD
features probe the net lattice anisotropy between the x̂ and ŷ directions which changes
both with detwinning and with strain-enhanced orthorhombicity. Indeed, the structural
contributions to the XLD are linear in the orthorhombicity and well-captured by multiple
scattering calculations [319]. From these considerations, we conclude that the saturating
pre-edge XLD signature (with integrated value ∆n) corresponds to a lattice-independent,
spontaneous polarization of Fe 3d orbitals which is only weakly coupled to further structural
distortion.

To further associate the orbital polarization with the emergence of nematicity, we per-
formed XLD measurements on Sample 2 as a function of strain and at fixed temperatures
above and below the nematic transition. We plot ∆n versus strain in Figure 9.3(c)/(d).
At a given tensile strain value, ∆n clearly increases with decreasing temperature, while at
a given temperature the susceptibility is maximum near zero strain. Using a combination
of XRD and optical birefringence measurements, we identify the approximate detwinning
strain point at each temperature below Ts, which coincides with the inflection point of ∆n.
These data indicate an orbital polarization that develops with decreasing temperature below
Ts with a diminishing strain-susceptibility beyond full detwinning.

Finally, we characterized the orbital polarizability above the nematic transition in Sam-
ple 1. To do so, we measured the temperature dependence of ∆n at a moderate fixed tensile
strain of ϵxx ≃ 0.2% (Figure 9.4(a)). The constant linear strain state is confirmed by XRD
measurements and a fixed orthorhombicity is suggested by the constancy of peak C in the
XLD spectrum between 120 K and 90 K, which encodes the structural orthorhombicity. Over
this same temperature range, the peak A XLD (∆n) increases strongly (over a factor of 2)
before saturating for T < Ts. This is quantified with a Curie-Weiss analysis for T > Ts,
revealing a Curie temperature T ∗ = 62.5±5 K (Figure 9.4(a)), thus identifying a divergence
of ∆n as Ts is approached from above. Since this divergence occurs under fixed lattice con-
ditions, we understand ∆n as originating from a strain alignment of diverging orbital-origin
nematic fluctuations and not as a secondary orbital response to the lattice distortion. Below
Ts, the XLD signal appears to be nearly saturated. This is due to both domain detwinning
and additional strain-induced orbital polarization. These results demonstrate that a fixed-
strain methodology cannot accurately distinguish the equilibrium order parameter from the
diverging strain-susceptibility of induced order above Ts. Such measurements instead require
a fixed-temperature variable-strain approach as in Figs. 9.2/9.3.

The combined strain- and temperature-dependence reveals two distinct pieces of evi-
dence regarding the nature of the measured orbital polarization. On one hand, the strain-
dependent curves as a function of temperature directly show that a lattice-independent
orbital polarization emerges in the nematic phase (Fig. 9.3(e) top). At the same time, the
strain-susceptibility of the orbital polarization shows a divergence under fixed strain con-
ditions above Ts (Fig. 9.3(e) bottom). This behavior is reminiscent of the magnetization
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across a para- to ferromagnetic transition, with the magnetic field being replaced by an
anti-symmetric strain as the poling field. This identifies the orbital polarization with the
primary order parameter of the nematic phase. Therefore, the effect of strain far below the
transition is only to reorient ‘nematic moments’ that are fixed in magnitude and orientation-
ally locked to the underlying structure. Evidence for such a scenario is supported by X-ray
pair distribution function experiments [320], which associate local nematic moments with a
short-range ordered orbital degeneracy lifting that persists far above the nematic transition,
consistent with the temperature- and strain-dependence above Ts in our experiments.
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Figure 9.3: Spontaneous orbital polarization across the nematic transition. Optical birefrin-
gence images of the nematic domains at T = 50 K on Sample 2 at (a), ϵxx = 0% and (b),
ϵxx = 0.22% strain showing the full detwinning. Scale bars are 30 µm. (c), Temperature and
strain-dependent pre-edge XLD (∆n) across the nematic transition in Sample 2. For T < Ts,
the approximate detwinning points are indicated by red arrows, determined from indepen-
dent XRD and optical birefringence measurements. Vertical dashed grey lines indicate the
range of uncertainty in the detwinning point. (d), The same data in (c) plotted together to
highlight the temperature- and strain-dependence. XLD error bars are as defined in Figs.
9.1/9.2. (e), Above the nematic transition (T > Ts, top), the orbital polarization is only
nonzero with applied strain. Far below the nematic transition (T ≪ Ts, bottom), the orbital
polarization is nonzero in equilibrium, fully saturated, and is unchanged with applied strain
beyond full detwinning, indicating it is not driven by the lattice distortion.

9.2.3 Signatures of Orthorhombicity-Coupled Spin Fluctuations

These conclusions are further supported by simultaneous elastoresistivity measurements,
which reveal a close correspondence between the orbital polarization and the resistivity
anisotropy above Ts that breaks down within the nematic phase. In Figure 9.4(b), we show
the temperature-dependent elastoresistance collected simultaneously with the fixed-strain
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XLD measurements (Fig. 9.4(a)). Above Ts, the resistivity anisotropy (∆ρ/ρ0) diverges
with a Curie-Weiss temperature dependence to T ∗ ≃ 61.4± 3.1 K, consistent with previous
elastoresistivity measurements [303, 321] and in close correspondence to the Curie temper-
ature of ∆n (T ∗ = 62.5 ± 5 K). Below Ts, ∆n saturates while ∆ρ/ρ0 decreases rapidly,
implying a breakdown in the correspondence between the orbital and transport anisotropies.

This is highlighted in more detail in Figure 9.4(c), where we plot ∆ρ/ρ0 vs ∆n from
Fig. 9.2(d)/(g) for Sample 1 at T = 50 K. Here, the resistivity increases linearly with the
orbital polarization up to the detwinning point, beyond which it decreases rapidly with in-
creasing strain even while the XLD remains saturated. Equivalent data in Sample 2 show
the same orbital-transport linearity up to full detwinning, with a strongly temperature-
dependent proportionality. In Figure 9.4(c) we plot the slope of ∆ρ/ρ0 vs ∆n from both
samples across temperature and phase, for both fixed-strain temperature sweeps and fixed-
temperature strain sweeps within the detwinning strain regime. We find a positive and
weakly-temperature dependent orbital-transport proportionality above Ts which rapidly di-
minishes below the transition, with a sign change near T = 40 K. Taken together, these
results suggest a second source of elastoresistivity which only becomes dominant below Ts
and at strains beyond full detwinning.

The elastoresistivity encodes information from several distinct but intertwined contribu-
tions. Namely, the orbital polarization primarily creates anisotropy in the Drude weight,
while spin fluctuations primarily create anisotropy in the scattering rate [93, 107, 305, 306,
322, 323]. Thus, orbital and spin contributions to the elastoresistivity can in principle be-
have independently. Our simultaneous XLD and transport measurements enable us to show
that the resistivity has a component which closely corresponds to the orbital polarization,
both above Ts and within the detwinning strain regime below Ts. We propose that the
second component of the elastoresistivity originates from spin scattering. FeSe exhibits the
same stripe-type spin fluctuations as found in iron pnictide materials [96–99, 300], which are
thought to drive the large negative elastoresistivity in the latter. In the non-magnetically
ordered nematic phase of FeSe, a strain-enhanced orthorhombicity is expected to enhance
the anisotropy of the spin fluctuations [304, 324] and their effect on transport anisotropy
[309, 322], reflecting the propensity of the system to undergo a putative stripe-type magnetic
transition. This then can explain both the decreasing magnitude of the elastoresistivity be-
low Ts as well as the distinct proportionality in the detwinning and post-detwinning strain
regimes. A strain-transport study of FeSe using a more direct probe of spin fluctuations with
a tunable strain state would be needed to confirm this scenario.

9.3 Discussion

Due to the intertwined nature of spin and orbital degrees of freedom, two general routes
have been invoked to explain the nematicity in FeSe. In the spin-nematic picture, diver-
gent orbital-selective spin fluctuations drive the nematic ordering and consequently induce
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Figure 9.4: Divergent orbital polarizability and correspondence between orbital and trans-
port anisotropy. (a), ∆n and (b), the simultaneous elastoresistance (red diamonds, left axis)
versus temperature across Ts at a fixed ϵxx ≃ 0.2% for Sample 1. Dashed curves are Curie
Weiss fits to the data at T ≥ Ts = 90 K, indicating CW temperatures of T ∗ ≃ 62.5 ± 5 K
and 61.4±3 K, respectively. Also shown in (b) is the longitudinal elastoresistivity coefficient
about zero strain in Sample 2 (grey circles, right axis) for comparison. (c), Ratio of the
normalized resistivity to the pre-edge XLD versus temperature, taken from the slope of the
linear fit of normalized resistivity at T = 50 K from (c) (inset), additional temperatures in
Sample 1 (red diamonds), equivalent data from Sample 2 (from Fig. 9.3(c), blue squares),
and from the fixed-strain temperature sweep in Sample 1 (Fig. 9.4(a)/(b)) (red bars). Inset:
Normalized resistivity versus XLD in Sample 1 at T = 50 K using data from Fig. 9.2(d)/(g).
Error bars in (a)/(c) are determined from the statistical errors of the XLD signal, and are
the size of the data point where not indicated.

a splitting between |3dxz⟩ and |3dyz⟩ bands. Our observation of (i) a large nematic-phase
spontaneous orbital polarization, (ii) its divergence behavior above Ts and (iii) the direct cor-
respondence between the orbital polarization and the transport anisotropy above Ts overall
suggests that nematicity is instead driven by orbital order.

In this case, the increasing Fermi surface anisotropy below Ts enhances strongly anisotropic
spin fluctuations (as evidenced by elastoresistivity) which can themselves act as a mechanism
for further momentum-dependent evolution of the Fermi surface [105–107]. The change of
the Fermi surface topology and orbital content at the hole and electron pockets observed
by ARPES [104, 106], the associated suppression of B1g charge fluctuations in Raman [302,
325], the increase of the spin-relaxation rate in NMR [99], the abrupt sign-change in the
Hall coefficient [103, 304], and the unusual sign-changing elastoresistivity [95, 102, 304], all
manifesting only below Ts, may be the clearest signs of this effect. This sequence of events,
where orbital-dependent spin fluctuations are triggered below Ts by the onset of nematic-
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ity driven by spontaneous orbital order may reconcile the apparently disparate conclusions
reached by previous studies and is consistent with our experimental observations. Indeed,
inelastic neutron scattering has shown that the spin frustration between Néel order (with C4

rotational symmetry) and stripe-type order (with C2 rotational symmetry) is partially lifted
by the nematic transition and its accompanying orthorhombic structural distortion [326].
Thus, our proposed notion of orthorhombicity-stabilized spin fluctuations is consistent with
the available experimental evidence from more direct probes of the spin degrees of freedom
[96–98, 326]. However, additional data utilizing the tunable strain methodology introduced
here is required to fully assess how spin fluctuations modulate the properties of the orbital
nematic state.

Finally, several observations stand as key indicators that nematicity and superconductiv-
ity are driven by distinct degrees of freedom in FeSe. Below the onset of superconductivity,
spin fluctuations are diminished for both Co-doped BaFe2As2 [86] and FeSe [97, 99], but the
orthorhombicity is only suppressed for the former [85] while being apparently unaffected in
the latter [101]. In addition, optimal superconductivity is not found in the vicinity of the
nematic quantum critical point in FeSe under hydrostatic pressure [327] or S-doping [102,
307], in clear contrast to the observation of iron pnictides. This may be naturally understood
in our interpretation of orbital nematicity, as this regime of the phase diagram does not then
correspond to the critical spin fluctuations thought to drive the unconventional pairing in
the pnictides [78]. Instead, the presence of an orbital nematic state may affect other aspects
of superconductivity in FeSe, including the anisotropy of the superconducting gap and the
orbital dependence of the pairing mechanism [295, 328]. These results disentangle spin fluc-
tuations from nematicity in FeSe, and thus allow a refocusing towards the more relevant part
of phase diagram for optimizing chalcogenide superconductivity.

9.4 Methods

Sample preparation

Single crystals of FeSe with typical dimensions of 2.0 x 2.0 x 0.05 mm were grown using
the KCl-ACl3 flux method as described in Ref. [97]. The resulting samples were cut with
a λ = 1064 nm laser cutter (spot size of 10 µm) into rectangular bars with dimensions of
1.0 x 0.15 mm with the long axis along the tetragonal [110] (orthorhombic a⃗) direction. The
samples were then mounted onto pre-fabricated Titanium platforms (following the specifi-
cations outlined in Refs. [303] and [310]) using Stycast 2850LT epoxy, cured at 80◦ C for 12
hours. After the epoxy was cured, the sample surface was cleaved several times to reduce
the thickness to ≃ 25 µm and 25 µm gold wires were affixed near the ends of the long axis of
the sample in a four-wire geometry using Epotex H20E silver epoxy. The silver epoxy was
cured in a nitrogen-filled glovebox at 120◦ C for 15 minutes for Sample 2 and at 80◦ C in
ambient conditions for 2 hours for Sample 1. The Ti platform with the wired FeSe bars was
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then fastened to a Razorbill CS130 strain cell.

XAS, XLD and XRD Measurements

X-Ray absorption and diffraction measurements were performed at the 4-ID-D endstation of
the Advanced Photon Source, Argonne National Laboratory. The strain cell was mounted
into an Advanced Research Systems Displex closed-cycled cryostat with a base temperature
T ≃ 10 K. The cryostat was mounted in a 6-circle diffractometer to allow sample manip-
ulation for XRD, as well as precise alignment of the incident beam to the surface normal
of the sample for in-plane XLD measurements. XAS spectra were recorded in partial fluo-
rescence yield at the Fe-Kα emission line in a quasi-backscattering geometry with a Hitachi
Vortex detector. The incident energy was varied across the Fe K-edge resonance, and at each
incident energy the polarization was rapidly switched between linear polarization states us-
ing diamond phase plates in the sequence LV/LH/LH/LV in order to determine the linear
dichroism spectrum with high signal-to-noise ratio.

All reported XAS spectra were normalized to the main edge jump using reference XAS/XLD
spectra acquired up to 7.140 keV. The reported XLD is calculated as the direct difference
of the normalized XAS spectra at different polarizations. For the high-statistics near-edge
XLD spectra used for Figure 9.2 and Figure 9.3, 2-3 spectra were acquired back to back and
averaged, in the energy range of 7.107 - 7.121 keV with a step size of 250 meV. The standard
deviation of these subsequent scans is used for the error bars of the XLD data. XRD mea-
surements were performed with an incidence energy above the Fe K-edge resonance, with
an energy of 7.200 keV and 7.400 keV for Sample 1 and Sample 2, respectively. The X-ray
measurements are performed with a beam size of 50 × 50 µm2 and are bulk sensitive, and
thus average over multiple twin domains when present [93] (Fig. 9.3(a)/(b)).

Strain-Temperature Sweep Procedures

All data reported were taken by sweeping the voltage of the piezo stacks of the strain device
continuously from maximum compression to maximum tension. Before changing tempera-
ture, the voltage on the piezo stacks was fixed to zero. This ensured a consistent nominal
zero-strain capacitance reading throughout the experiment. Once at target temperature, the
sample would be initialized by moving to maximum tension and back to maximum compres-
sion before initializing the sweep. This consistent initialization procedure accounts for any
effects of detwinning hysteresis or hysteretic effects of the piezo-actuators/Ti bridge, ensuring
consistent and comparable strain-dependent measurements throughout the experiment.

For the strain sweep data in Figure 9.2, the sample was initialized with the above pro-
cedure at T = 50 K and strain was increased monotonically from maximum compression to
tension. At each strain point, XAS/XLD spectra at normal incidence and XRD measure-
ments of the (114) and (004) were performed at an identical strain condition before moving
to the next increased tensile strain point. The resistivity values were stable at fixed strains
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and the reported resistance values were averaged over the duration of corresponding XLD
measurements.

For the XLD temperature dependence recorded in Sample 2 (Fig. 9.3), the measurements
were completed from the same, single cooldown of the cryostat, starting at low temperature
(10 K) and increasing monotonically to the highest measured temperature (150 K). Reported
resistance measurements were again averaged over the duration of the XLD measurements,
and thus the reported quantities are under identical strain conditions. XRD measurements
were also performed in Sample 2. These were performed on subsequent strain loops at the
same temperature conditions, immediately after the XLD/resistance strain loops. The sam-
ple was consistently initialized, and separate strain sweeps following the same compressive-
to-tensile strain loop as the XLD measurements were repeated for separate measurements of
the (114) and (004) reflections.

Determination of Nominal Strain

All reported data are plotted versus nominal linear strain ϵxx. For XLD measurements,
the nominal zero-strain was determined by the capacitance readout of the strain cell gap
corresponding to the interpolated value for zero XLD signal, signaling a fully twinned sample
below TS, or an unstrained tetragonal phase above. Since XLD is bulk sensitive, this provides
the most consistent measure of the true zero strain value. The conversion of the change in
the strain cell gap distance with respect to this zero, monitored by change in the capacitance
across the gap, was determined by strain transmission data at T = 90 K of the [110] lattice
parameter, calculated from the combined XRD of the (114) and (004) reflections. The
temperature T = 90 K was chosen for strain transmission data since the lack of orthorhombic
domains results in a linear strain transmission, as opposed to the highly non-linear effects
observed within the nematic phase (Fig. 9.2(e)/(f)) due to details of the detwinning process.

Optical Birefringence Measurements

Optical birefringence and additional elastoresistivity data were acquired on Sample 2 with
identical sample preparation conditions. Polarized images were acquired using a monochrome
camera with a broadband LED light source which was passed through a λ = 600 nm long-
pass filter (ThorLabs) in order to increase the birefringence contrast [93]. The incident light
was polarized with a broadband Glan-Thompson polarizer (ThorLabs) along the tetragonal
[100] direction. To resolve the birefringence-induced polarization rotation, another Glan-
Thompson polarizer was placed before the camera and detuned by ≃ 1◦ from the cross-
polarized configuration (with respect to the polarizer) in order to optimize the birefringent
domain contrast. The images were recorded using both 20x and 50x objectives (Olympus).
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9.5 Additional Data and Discussion

Characterization of XLD Signal

Here we provide additional XLD data to corroborate our measurement of XLD purely within
the Fe-Fe rectangular lattice plane. FeSe is tetragonal above the nematic phase, and thus at
all temperatures possesses a large structural anisotropy between the out-of-plane direction
(c axis) and the a-b plane. We report measurements assessing this effect in Figure 9.5,
acquired on Sample 1 at T = 25 K. In order to measure the out-of-plane component, we
rotated the sample about the a⃗ axis so that the incoming beam makes an angle of θ = 50◦

with respect to the surface normal of the sample. In this geometry, LV polarization acquires
a finite projection along the c⃗ axis while LH polarization remains oriented along a⃗. The
resulting XLD spectrum (“out-of-plane” XLD), is shown in Figure 9.5(b), showing a large
dichroism of the order 10−1 which is visually inferred from the direct XAS profiles in LH/LV
polarizations in Fig. 9.5(a). For comparison, we also show the normal incidence XLD
spectrum in a partially detwinned sample with LV/LH parallel to b⃗/a⃗ orthorhombic (Fe-Fe
direction) axes, respectively (“in-plane” XLD spectrum).

While the in-plane XLD is over an order of magnitude weaker, the spectral shape is
distinct from the out-of-plane XLD corroborating a distinct origin, ruling out any small
misorientation of the sample and parasitic contributions from the out-of-plane spectrum into
the in-plane XLD spectra reported here. In the case of our measurement, the surface normal
was aligned to the incoming wavevector to an accuracy exceeding 1◦, using a diffractometer
and the experimentally determined orientation matrix of the sample. XRD was also used to
accurately align the orthorhombic axes to lie parallel to LV/LH polarizations for the in-plane
XLD measurements.

We also acquired in-plane XLD spectra in the fully detwinned state of Sample 1 at T = 50

K in two sample orientations to associate the measured XLD spectra to an intrinsic response
of the sample. We first acquired XLD spectra at an angle ϕ = 0◦ corresponding to LV ∥ b⃗
and LH ∥ a⃗, and then rotated the sample to ϕ = 90◦ in a plane perpendicular to the incom-
ing beam, with the second state corresponding to LV ∥ a⃗ and LH ∥ b⃗. The measurement
procedures and the strain state of the sample were held under identical conditions. The two
spectra are shown in Fig. 9.6. The two spectra are reversed in sign with respect to each
other and quantitatively similar in magnitude and spectral shape. The results of Fig. 9.5
and 9.6 confirm that the in-plane XLD is genuine and is not resulting from an extrinsic effect
related to misorientation or normalization errors in the incoming polarization states. For
the strain-dependent curves in Fig. 9.2(b), this also confirms there is not any constant offset
from the instrumentation in a fixed geometry as was done for all reported data unless explic-
itly specified. For the XLD reported in Fig. 9.2(a)-(d), we also show the strain-dependence
of the XLD spectra resolved into the individual spectral features A/B/C in Fig. 9.7.
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Figure 9.5: A comparison of the pure in-plane and the out-of-plane linear dichroism spectra.
(a) XAS spectra in LH/LV polarizations with the beam incident at an angle θ = 50◦ with
respect to the surface normal within the b⃗-⃗c plane (see text). (b) The out-of-plane XLD
spectrum corresponding to the polarized XAS spectra in (a), compared to (c), the pure in-
plane XLD spectrum with LV ∥ b⃗ and LH ∥ a⃗ with the beam at normal incidence along the
c⃗ crystallographic direction. Note: the out-of-plane XLD spectrum is expressed in units of
10−2 while the in-plane are expressed in units of 10−3.
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Figure 9.6: In-plane XLD signal at normal incidence of the fully-detwinned Sample 1 at
T = 50 K for two different sample orientations rotated around the c⃗ axis by a relative angle
ϕ of 90 degrees. ϕ = 0◦ corresponds to LV/LH parallel to b⃗/a⃗, respectively, and vice versa
for ϕ = 90◦.
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Figure 9.7: Strain-dependent XLD signal from Sample 1 at T = 50 K resolved into the
individual XAS features A/B/C. (a), The pre-edge signal saturates for strains larger than
the detwinning strain, indicated by the dashed vertical red line at ϵxx ≃ 0.14%. (c), The
higher energy peaks show increasing XLD signal past the detwinning point, with peak C
XLD being nearly linear across the whole strain range, while peak B shows a slope change
at the detwinning point, but without complete saturation as observed at the pre-edge.
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FDMNES Calculations

FDMNES calculations were performed using the experimentally determined lattice param-
eters at base temperature (a = 5.331 Å, b = 5.305 Å, c = 5.485 Å) using the Cmma space
group for orthorhombic FeSe [329]. The Se atomic height of z = 0.2673 was used. The Fermi
level was set self-consistently and the convergence with respect to cluster radius was checked
up to 12 Å within the Muffin Tin approximation. Only small changes were found above
7 Å cluster radius in both the simulated XLD and XAS. For the reported calculations, a
cluster radius of 7.3 Å was chosen in order to include the full shell of 11th nearest neighbor Fe
atoms. This value is consistent with previous reports for FDMNES calculations in Fe-based
superconductors [330]. Unless explicitly specified, both quadrupole and dipole transition
intensities are included in the calculations.

We compare the polarized XAS and XLD spectra output from FDMNES to the experi-
mental data in Figure 9.8. For comparison to the experimental data, the Fermi level was set
to an edge energy of E = 7.1124 keV and the energy axes of the calculations were stretched
by 15%, as argued in Ref. [311]. A satisfactory agreement is found for the XAS spectra,
as well as the overall spectral shape and magnitude of both the in-plane and out-of-plane
XLD spectra. The experimental data and the calculated curves are both normalized to the
main edge jump using the same procedure. The in-plane experimental data in Fig. 9.8(b)
corresponds to Sample 1 at T = 50 K and is in the fully detwinned state, while the out-of-
plane data in Fig. 9.8(d) is from Sample 1 at T = 25 K. The out-of-plane XLD spectrum is
purely structural in origin and is well-captured by the calculations, resulting from the large
anisotropy determined from the high-temperature tetragonal structure. The XLD magni-
tude is slightly overestimated by the calculation. The expected structural contributions at
higher energy features (peak B/C) for the in-plane XLD are also well reproduced, although
again overestimated compared to experiment. For the pre-edge peak A, the spectral shape
is not captured well, and the overall intensity is far underestimated. We note that without
the introduction of electronic correlations, the disagreement could be due to an improper
treatment of the 3d orbitals by a single-particle code such as FDMNES [311]; however, gen-
eral agreement has been found between multiple scattering codes and the more strongly
correlated L2,3 XAS spectra in Fe-based superconductors [319, 331, 332]. This suggests a
non-structural mechanism that is not captured by the FDMNES calculations to explain the
pre-edge XLD spectrum, which is attributed to properties of the localized orbitals derived
from Fe 3d, Se 4p and an admixed Fe 4p character, as has been recently suggested [315].

To support this further, we investigate the origin of the pre-edge peak in more detail.
Figure 9.9 shows the same calculation of the in-plane XLD, but resolved into the dipolar
transitions (1s → 4p) and the quadrupolar transitions (1s → 3d). The quadrupolar matrix
elements are calculated for wavevector ki ∥ c as in the normal incidence measurements for the
in-plane XLD configuration executed experimentally. The quadrupole transition intensity is
largest at the pre-edge, which may be anticipated as this corresponds to the region of the
unoccupied Fe 3d states just above the Fermi level. However, even at the pre-edge, the direct
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quadrupolar transition is approximately a factor of 40 weaker than the dipole contribution in
both the XAS and XLD spectra. Thus, the signal measured in experiment is almost purely
dipole in origin as has been concluded previously for the Fe K pre-edge [311–313, 316, 330,
333]. The increase in the dipolar intensity is due to the both local tetrahedral environment
and hybridization with the ligand Se 4p states. In the tetrahedral crystal field, a local on-site
mixing of the Fe 4p orbitals with the Fe 3d states becomes allowed (discussed more below).
This corresponds to an orbital localization effect as suggested in Ref. [315] and is supported
by both experiments [312, 316] and Wannier projection of the 3d orbitals [317].
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Figure 9.8: FDMNES calculations of Fe K-edge polarized XAS in FeSe. (a), XAS and (b),
XLD for the in-plane configuration with ϕ = 0◦ and θ = 0◦ as described in Fig. 9.5. (c),
XAS and (d), XLD in the out-of-plane configuration with ϕ = 0◦ and θ = 50◦. In all panels,
dashed lines correspond to calculations and solid lines are experimental data in Sample 1.
The in-plane data is the fully detwinned data at T = 50 K from Figure 9.2(b). The out-
of-plane data is at T = 25 K reproduced from Figure 9.5. Curves in (a)/(c) are offset for
clarity.

As a final check, we performed calculations as a function of the structural orthorhombicity
δ. In experiment, the orthorhombicity at base temperature is approximately δ = 0.24%. The
in-plane XLD spectra for several δ are shown in Figure 9.10. As can be seen, the predicted
structural XLD is linear in δ at each XAS spectral feature. This is in contrast with the
behavior of the pre-edge found in experiment, both from the strain dependence (Figures
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Figure 9.9: Calculations comparing the transition weights corresponding to dipolar (E1,
1s → 4p) and quadrupolar (E2, 1s → 3d) transitions. (a), XAS and (b), XLD for the in-
plane configuration resolved into the dipole (purple) and quadrupolar (green) contributions.
In both cases, the quadrupolar is multiplied by a factor of 40 for clarity. The dashed line in
(a) is the second derivative for identifying the features A/B/C.

9.2/9.5) and the temperature dependence (Figures 9.3/9.4). As a function of strain below
Ts, only the higher energy features continue to increase beyond the detwinning point as the
structural anisotropy is increased beyond the equilibrium value. Furthermore, when lattice
orthorhombicity is externally imposed by strain above Ts, the relative ratio of the high-
energy (B/C) and the pre-edge (A) features changes with respect to the nematic phase, with
similar magnitudes in the higher energy features but a suppressed intensity at the pre-edge
(see Figure 9.4(a)). These aspects imply an orbital polarization that is independent from
the lattice that arises below Ts.

The overall interpretation of the pre-edge sensitivity to the 3d states is shown in Figure
9.11, provided (a) the dipolar origin of the in-plane XLD signal and (b) the localization
effects beyond single-particle approximations suggested in Ref. [315]. The local tetrahedral
environment around the central Fe atom breaks the local inversion symmetry which allows
an on-site hybridization of Fe 3d and Fe 4p states. This effect has been experimentally
verified [316] and is the reason why the Fe K pre-edge of tetrahedrally coordinated Fe is
more intense, due to the increase of the dipolar 1s → 4p contribution which is forbidden in
higher symmetry (e.g. octahedral) compounds [150]. Even with small mixing, the dipole
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Figure 9.10: Calculations comparing the expected in-plane XLD as a function of the lattice
orthorhombicity (δ). The base temperature orthorhombicity in FeSe is δ = 0.24% as mea-
sured in experiment at T = 10 K in both Sample 1/2. The structural XLD contributions
are all linear in δ.

transition amplitude is several orders of magnitude larger than the quadrupole one, and
therefore quickly becomes dominant. It has been argued recently that this corresponds to an
effective orbital localization of the Fe 3d states by reducing the Fe 3d anti-bonding character
with respect to hybridization with the neighboring Se 4p states [315]. This effect has been
shown to be common in the Fe-based superconductors, but is particularly pronounced in
the chalcogenides as inferred through comparison of the Se K- and the Fe K-edge XAS
polarization dependence [312, 315].

In the case of iron pnictides and chalcogenides, Wannier orbital analysis of the 3d states
near the Fermi level confirms that the Fe states in the t2g sector hybridize most strongly
with orbitals of p character that are oriented perpendicular to the plane of the given 3d

state [334]. This is shown for the case of the |3dyz⟩ orbital in Fig. 9.11(a), which mixes
most strongly with the |4px⟩ orbital leading to a hybrid orbital at the far left where the
3d lobes are deviated towards the nearest neighbor Se atoms (see Fig. 9.11(b)). In this
situation, the dipolar transition at the pre-edge corresponds to a final state of the |4px⟩
component of the hybridized orbital, which may be selected with linear polarized light along
the a⃗ direction (Figure 9.11(b), right). Also shown is the analogous situation for the |3dxz⟩
orbital, which mixes strongest with the |4py⟩ state and may be accessed through dipolar
transitions with linear polarization along b⃗ (Figure 9.11, left). With these assignments, the
positive XLD at the pre-edge (corresponding to ILV − ILH with LV/LH parallel to b⃗/a⃗,
respectively) corresponds to a higher occupation of the |3dyz⟩ orbital. While the mixing of
4p character may be sensitive to the bond-lengths, the saturating XLD signature with strain
past the detwinning point suggests that the change in hybridization is a subdominant effect
compared to the orbital occupation mismatch of the 3d orbitals.
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(a)

(b)

Figure 9.11: Schematic describing the sensitivity of the Fe K pre-edge measurements to the
Fe-3d states. (a), Schematic showing the on-site Fe 3d/Fe 4pmixing induced by hybridization
in the tetrahedral environment. (b), the 3dxz orbital (orange) within the FeSe4 tetrahedral
environment is selected by polarization parallel to the b⃗ axis and (c) the 3dyz orbital (blue)
is selected by polarization parallel to a⃗. The distortions of the orbitals are exaggerated and
for illustration purposes only (for quantitative details, see Refs. [334] and [315]).
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Interpretation of Strain Dependent X-Ray and Transport Data

Here we explain the overall interpretation of the strain-dependent transport and XLD data
utilized in this chapter. In Figure 9.12 (a)-(c), we show a schematic of the strain dependent
orthorhombic domain populations, the net orbital polarization, and longitudinal resistivity,
respectively. In Fig. 9.12(d) we show the orientation of the A and B domains below Ts. In
this figure, positive tensile strain is applied along the x (vertical) direction which increasingly
favors the A domain with the longer a⃗ axis aligned to the strain direction. In this case, a⃗/⃗b
always refer to the longer/shorter microscopic lattice parameters of the orthorhombic unit
cells, while domain A/B refer to the respective orientation of the unit cell within a fixed lab
frame defined as x̂/ŷ.
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Figure 9.12: Schematic of the framework used to interpret the nematic-phase strain-
dependent data throughout this chapter. (a), The relative volume fraction of the A and
B domain populations, with full detwinning strains defined as ±ϵd. (b), The net orbital po-
larization measured in a fixed XLD geometry, with values ±∆ns at ±ϵd and post-detwinning
strain susceptibility d(∆n)/dϵ. (c), The longitudinal resistivity, with values of ρA and ρB at
±ϵd and post-detwinning strain susceptibility dρ/dϵ (i.e. elastoresistivity). (d), Schematic
of the twin domains in relation to a fixed reference frame (x/y) and measurement geometry,
with defined quantities for the orbital polarization ∆ns and resistivity ρA/ρB. (e), Schematic
of the behavior of the longitudinal resistivity versus the net orbital polarization within the
twin domain region, demonstrating the expected linearity and its relation to the resistivity
anisotropy ∆ρs = ρA − ρB and the orbital polarization ∆ns = nx − ny.
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We consider the net orbital polarization as the difference along x̂ and ŷ directions and
the longitudinal resistance measured along the strain axis ρxx as executed experimentally.
With these definitions, we define a positive spontaneous orbital polarization of +∆ns for
the A domain, with the opposite sign for the B domain −∆ns. Similarly for the resistance,
we define ρA/ρB as the resistivity ρxx measured in the perfectly detwinned A/B domain,
along the a⃗/⃗b lattice parameter, respectively. The difference is related to the spontaneous
resistivity anisotropy, defined as ∆ρs = ρA − ρB.

We now consider how these quantities relate to the observed strain dependence of the
measured longitudinal elastoresistance and the XLD probe of orbital polarization. At zero
strain, the domain populations are equal, the net orbital polarization (XLD signal) is zero
and the resistivity is ρ0. As positive (negative) strain is applied the domain populations
evolve linearly in favor of the A (B) domain until the detwinning strain +ϵd (−ϵd) is reached.
Within the “twin domain region” defined as −ϵd < ϵ < ϵd, both the net orbital polarization
and the longitudinal resistivity evolve linearly, interpolating between the spontaneous values
of the B and A domains, with values −∆ns/ρB at −ϵd and +∆ns/ρA at +ϵd. We note
that these observables only hold under the assumption of a linear evolution of the domain
populations and that within the twin domain region, the microscopic lattice parameters
within each domain are unperturbed. These assumptions are directly confirmed in our
experiment (see Figure 9.2). For the resistivity, the linearity would also be affected by the
presence of domain wall scattering in the twin domain region, however our experiments
reveal a consistent linearity in this regime across all temperatures, arguing against such a
contribution.

Past the detwinning points, a monodomain state is formed and the applied strain be-
gins affecting the microscopic lattice parameters. In this regime, a distinct dependence of
the orbital polarization and resistance would be observed (defined as d(∆n)/dϵ and dρ/dϵ)
corresponding to the intrinsic strain-susceptibility in the monodomain. We note that these
quantities are distinct from the spontaneous values which determine the strain dependence in
the twin domain regime. Thus, probing the strain tunability of the resistivity anisotropy in
either the twin domain strain regime or beyond the detwinning strain measures two different
quantities (i.e. ρA/B vs dρ/dϵ), which results in sharp changes in the resistivity behavior
across the detwinning point, as is seen in experiment. The elastoresistance past the detwin-
ning point (dρ/dϵ) was estimated from birefringence imaging experiments in Sample 2 and
the strain-susceptibility of the orbital polarization (d(∆n)/dϵ)) past the detwinning point
was estimated in Sample 2.

Most importantly, we wish to highlight the significance of the slope of the longitudinal
elastoresistance to the orbital polarization within the twin domain regime. This is shown
schematically in Fig. 9.12(e) and is the subject of Figure 9.4(c) and Figure 9.13 from
experimental data. While each quantity is linear when plotted versus strain under the
assumption of a linear evolution of domain populations, when plotting the quantities against
each other the relationship is expected to be linear, independent of the precise details of
the detwinning process or the precise strain state of the sample. The linearity does not

207



necessarily hold post-detwinning, which is seen most clearly in the data of Figure 9.13(f) of
Sample 1 at T = 50 K, and which signals the presence of a lattice-independent, saturating
spontaneous orbital polarization in contrast to a lattice-coupled elastoresistivity.
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Figure 9.13: Elastoresistivity versus XLD data in Samples 1 and 2. (a), XLD and (b),
elastoresistance versus strain and temperature from Sample 2. The XLD data is reproduced
from Fig. 9.3(c)/(d) and the elastoresistance data is collected simultaneously to the XLD
data. (c), The same data in (a)/(b), plotted as elastoresistance versus XLD. Red arrows
denote the approximate detwinning point. The analogous data for Sample 1 at T = 50 K
is shown in panels (d)-(f) which is reproduced from Fig. 9.2(d)/(g) for comparison between
the samples. The slopes of the elastoresistance versus XLD within the detwinning regime
are used for Fig. 9.4(c) summarizing the correspondence between the orbital and transport
anisotropies.

The slope of the resulting line within the detwinning regime provides a direct relationship
between the resistivity anisotropy and the orbital polarization as shown in Fig. 9.13(e) with
a slope of ∆ρs/2∆ns. This is the quantity of interest which is plotted versus temperature
in Figure 9.4(c). We note that this slope is rigorous since both XLD and elastoresistivity
are bulk probes and sensitive to similar sample volumes. Thus, even if regions of the sample
are pinned or otherwise unresponsive to strain, these regions will not contribute to the net
anisotropy probed by either technique and the slope will be the same, with the endpoints
at the detwinning point being scaled by the responsive fraction of the sample volume. This
is clearly seen in experiment as well: while the quantitative values of the bare anisotropies
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as measured by XLD and resistivity measurements have slight quantitative discrepancies,
the slopes extracted relating these two quantities are in excellent quantitative agreement
between both samples (Fig. 9.4(c)). This analysis thus gives a robust assessment of the
relationship between the orbital polarization and the resistivity anisotropy and highlights
the strength of a technique that can directly relate two strain-dependent quantities in situ.

Using the framework presented above, we now present simultaneous measurements of
the integrated pre-edge XLD intensity (∆n) and the normalized resistivity (∆ρ/ρ0) vs the
nominal strain (ϵxx) at fixed temperature for Sample 2 (Fig. 9.13 (a)/(b)) and Sample 1 (Fig.
9.13(d)/(e)). We find that both quantities show a nonlinear dependence on nominal strain
due to the combined effects of domain detwinning (revealing the spontaneous anisotropies
below Ts) and the strain-induced orbital polarization and elastoresistivity (for strains beyond
full detwinning below Ts, and for all strains at and above Ts). However, when plotting ∆ρ/ρ0
against ∆n (Fig. 9.13(c)/(f)) we find that the transport is linear to the orbital polarization
within the detwinning regime. The temperature dependence of this linear proportionality is
shown in Fig. 9.4(c) for both samples.
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Chapter 10

Conclusion

In this thesis, we have shown that intrinsic non-collinear magnetic states can survive down
to the single-layer limit, as demonstrated in the vdW type-II multiferroic NiI2 (Chapter
5). We elaborated the ground state magnetic interactions which stabilize the various in-
commensurate magnetic states observed in this material, as established from experimental
probes including optical and x-ray spectroscopy/scattering and through extreme conditions
of high-pressure (Chapters 6 and 7). These results provide a comprehensive assessment of
the physics of NiI2 in the bulk and how it is modified through reduced dimensionality down
to the monolayer.

Additionally, we have demonstrated the microscopic origin of sharp excitons which ap-
pear below the band gap in Ni2+ magnets (Chapter 8), establishing them as a set of intra-
configurational multiplet excitations of octahedrally-coordinated Ni2+ which get significantly
modified by metal-ligand charge transfer/covalency. We reported the first observation of the
dispersive nature of these excitations using q-resolved RIXS measurements, and showed how
this delocalization occurs through the same ligand-to-metal charge transfer processes under-
lying interatomic superexchange. This provides the foundation for future investigations into
the nature of optical excitons in strongly correlated 2D materials, which is relevant for the
(magneto-)optical response of a majority of insulating/semiconducting 2D magnets.

Finally, we have introduced a new technique using in-situ tunable strain with multi-
modal X-ray absorption spectroscopy, X-ray diffraction, and transport measurements to
characterize the relationship between the orbital, structural and electronic anisotropy in
strongly correlated systems (Chapter 9). We used this technique to resolve the intrinsic 3d

orbital anisotropy of the iron-based superconductor (IBSC) FeSe, which displays electronic
nematicity in proximity to unconventional superconductivity. These measurements provide
strong evidence that the orbital degree of freedom acts as the primary order parameter of the
nematic phase in FeSe. This resolves key outstanding questions regarding the relationship
between spin, structural and orbital anisotropy in FeSe, and their relevance to both nematic
order and superconductivity in IBSCs.

Each of these advancements open significant future opportunities for the fields of vdW
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magnets, excitons and strongly correlated systems, which we outline below.

10.1 Future opportunities

10.1.1 Non-collinear magnetism and frustration in two dimensions

Our report of non-collinear magnetism (NCM) persisting to the single-layer limit opens
many exciting opportunities for the field of vdW materials. First, it significantly broadens
the classes of vdW magnetic materials which can retain long-range magnetic order down to
the single-layer limit beyond the examples of Ising-type FM [6, 7] or (commensurate) Néel-
type AFMs [24, 25]. Additionally, these NCMs are important functional materials because of
their ability to generate spin-induced ferroelectric order, thus allowing large magnetoelectric
effects which could be essential for device applications. Indeed, controlling magnetism at the
nanoscale is a major thrust of the study of vdW magnetic materials. In many realizations
and theoretical proposals, the mutual control of magnetism and electrical properties are
induced through interfacial effects in heterostructures. Instead, intrinsic multiferroic order
in pristine samples, as the case of type-II multiferroics, allows these additional degrees of
freedom (e.g. heterostructure or moiré engineering) to be explored independently, rather
than for the purpose of introducing interfacial magnetoelectric coupling.

In this context, a natural extension of the work presented here is to explore the effect of
moiré heterostructures of NiI2 or NiBr2. Moiré heterostructures of 2D magnets - at leading
order - induce a spatial modulation of the interlayer exchange interactions J⊥(r), which was
recently demonstrated in moiré CrI3 [31]. In this case, NCM may be induced through spatial
modulation of the sign of J⊥ [32], while locally retaining an intralayer Ising-like FM charac-
ter. We elaborated how the interlayer interactions in frustrated triangular lattices can have
a more dramatic effect on the magnetic ground state than simply determining the relative
arrangement of spins in neighboring layers. Instead, these materials have many closely lying
magnetic structures owing to the frustrated exchange interactions and we showed that the
in-plane magnetic wavevector, spin texture, and the presence (or not) of ferroelecticity can
be modified through the effects of interlayer interactions and the crystallographic stacking
symmetry (Chapters 6,7). Thus, moiré heterostructures of, e.g., NiI2 may show highly non-
trivial behavior, with a possible competition between different in-plane spin spiral states
induced by J⊥(r) in the length scale of the moiré unit cell O(10 nm). This could lead to
more complex mesoscale spin textures which do not have direct analogs in bulk materials.
This carries the potential for an associated spatial modulation of the spin-induced ferro-
electric order due to its microscopic connection to the magnetic wavevector (q, Chapter 7).
Finally, by introducing significant frustration between different single-q magnetic states, one
may stabilize a triple-q state to minimize the single- and two-ion anisotropy. This could be
a promising avenue to stabilize spontaneous topological spin structures in 2D systems (e.g.
skyrmions), without the need for an external magnetic field [47]. These finite-momentum or-
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derings may be probed by resonant magnetic X-ray scattering in the ultrathin limit (Chapter
7).

On a more fundamental level, there are significant opportunities to study the nature
of low-dimensional spin systems beyond the case on long-range ordered magnetism. While
much of the field has thus far focused on long-range order, 2D magnets may also realize
idealized spin models, such as quantum spin liquids (QSLs), where instead one wants to
suppress the tendency towards long-range order. This is exemplified by the case of the
2D XY model and associated Berezinskii-Kosterlitz-Thouless (BKT) transition, which was
recently claimed for the case of the honeycomb vdW antiferromagnet NiPS3 in the monolayer
[25, 335]. Another route towards this goal is in frustrated triangular lattice magnets in
the ultra-thin limit. A compound related to the nickel dihalides is layered NiGa2S4 with
NiS2 triangular lattice layers, which has been proposed as a quantum spin liquid candidate
[336] and is (likely) exfoliable [337]. This material is more covalent than NiI2, with longer-
range exchange interactions and increased magnetic frustration [120]. It lacks long-range
magnetic order to the lowest temperature but shows short-range incommensurate correlations
for T < 10 K [336, 338], in agreement with the ground states analyzed in Chapter 3. Besides
the need to minimize sample disorder, it is possible that these short-range correlations could
be suppressed by exfoliation down to the single layer limit through reducing the interlayer
exchange interactions (Chapter 5-7), the latter of which likely favor long-range order. Such
physics have also been recently investigated for the case of the vdW honeycomb Kitaev spin
liquid candidate RuCl3 [339].

Finally, a promising opportunity is to tune the triangular lattice systems towards a quan-
tum phase transition (QPT), either through doping or pressure. QPTs are characterized by
significant zero-temperature fluctuations in the degree of freedom related to the incipient
order. Indeed, above the transition temperature in NiI2, Raman spectroscopy reveals sig-
nificant quasielastic magnetic scattering (Chapter 5), which is likely related to short-range
spin correlations persisting to temperatures far above TN . Realizing a QPT should be pos-
sible in the doping series Ni(Br1−xIx)2 [340] or applying pressure to NiBr2 [228]. As we
discussed (Chapter 7), the magnetic ground states of NiBr2 and NiI2 are different, with the
former having in plane spiral vector of q∥ = [h, h] [128] while the latter has q∥ = [h, 0] in
the bulk [42]. It is observed that under pressure, the [h, h] phase of NiBr2 decreases in its
transition temperature rapidly (−22.5 K/GPa) [228], meaning that the transition should
go to T = 0 K at a relatively low pressure ∼ 1 GPa. The crossover region between the
two stable in-plane wavevectors [h, 0]/[h, h] could result in a disordered ground state with
significant spin fluctuations (or short-range order) persisting to the lowest temperatures.
Characterization of spin disordered states in the 2D limit will require more refined probes of
spin excitations in ultra-thin materials, including thermodynamic probes of quantities like
the magnetic specific heat or the magnetic susceptibility extended to few-layer materials.
These may be addressable by inelastic spectroscopies such as quasielastic Raman scattering,
resonantly-tuned magneto-optics, or RIXS (Chapter 4).
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10.1.2 Tunable excitonic optical properties and determining the na-
ture of excitons through dispersion

Identifying the nature of excitations from optical data alone can be a challenging endeavor.
This is related to ambiguities in the optical selection rules, its q ≃ 0 nature, and intermediate
sensitivity to both localized electronic states (e.g., dd transitions) and itinerant excitations
(e.g., Wannier excitons and interband transitions). We have shown that the use of local
q-resolved probes, such as RIXS, can provide crucial complementary information, which we
used here to identify the microscopic origin of sharp excitons in NiX2.

Our conclusion is that the sharp excitons are essentially spin singlet intra-configurational
multiplets of Ni2+ (Chapter 2), which are stabilized purely through multielectronic effects
(intra-atomic Hund’s coupling). While ligand field theory and dd transitions have been
extensively utilized in the past for describing optical spectra [60, 62], these spin-forbidden
transitions pose a formidable task to quantitative theory. The emerging standard approach
for describing the optical spectra of vdW materials is the Bethe-Salpeter equation (BSE),
employed as a post-density-functional-theory (DFT) calculation of the optical spectra in-
cluding excitonic effects [341]. These have been successful in describing, e.g., the optical
response of the chromium trihalides [57, 342] and more recently the Wannier type excitons
in vdW AFM CrSBr [49, 58, 343]. However, the singlet-to-triplet transitions we observe here
are not accessible in the current BSE formalism, due to the approximation of the input DFT
restricting to a single multielectronic configuration. That is, DFT can account for changes
in ∆ms (spin-polarization), but not ∆S excitations [344].

Therefore, additional studies are needed to capture these types of excitations from the
prevailing theoretical models, wherein work is beginning to be performed in the context
of both chemistry and condensed matter systems [344, 345]. While the cluster models we
presented can predict the energy, and take into account the effects of metal-ligand covalency
at the first order of approximation (at the level of a single octahedral cluster), it is likely
that the hybridization of localized d/f electrons with the band-like states formed by the
ligand orbitals are important for describing the oscillator strengths quantiatively. Any such
model must take into account the electronic correlations of the d levels in an exact way (e.g.
dynamical mean field theory, DMFT), beyond the effective single particle treatment of DFT
+ U.

We note that spin-preserving dd excitations have been claimed to be captured by the
BSE [57, 342, 345]. However, there is a conceptual difference between how such localized
excitations are treated in the approaches of BSE and ligand-field theory. In the former, one
constructs excitonic wavefunctions from a summation of k states in the vicinity of the band
extrema, and the energy of the excitation is expressed as a binding energy with respect to
a (phenomenological) band gap with self-energy effects included. Meanwhile, ligand field
theory predicts a well-defined absolute energy of the excitation built only from localized
electronic parameters. The relationship between these quantities is far from clear, and it
is not clear a priori if pure Frenkel-type excitons will emerge from the BSE picture with a
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quantitative accuracy. As discussed for DFT-input multiplet models, DFT captures well the
effects of covalency (e.g. metal-ligand hybridization and covalent contributions to the crystal
field splitting), but is poor at accounting for the local cluster properties. Reconciling these
two viewpoints will be crucial moving forward.

Beyond these challenges, there are exciting opportunities for utilizing these dd excitations
for controlling the optical response. Optically driving multiplet excitations of triplet-to-
singlet spin character may be an efficient mechanism to optically perturb magnetic order.
The excitation of these multiplets quenches the local spin moment, becoming essentially
a non-magnetic defect. Additionally, the fact that these excitations disperse means that
they have interaction between different sites in the crystal, likely in a process similar to
superexchange. It follows that there may be a coupling between such multiplets and the
long-range magnetic order. There has been some evidence for this possibility shown in the
literature [71, 290], but more work is needed to get a better understanding of the precise
coupling mechanism and to optimize the optical properties of these excitations. Extending
such photomagnetic effects to the equilibrium/metastable regime will be critical for real
applications, as has begun to be demonstrated with all-optical magnetization switching in
ferromagnets [59].

Towards these goals, our work shows how one can tune the energy of these excitons
through the ligand environment and corresponding change in the charge transfer gap. This
ends up being a very efficient tuning knob of the energy of spin-forbidden multiplets by
changing the degree of screening of the Coulomb interactions at the transition metal site. It
also provides hints towards enhancing the cross section of these multiplets, which will also
be critical for applications. Increasing hybridization with the ligand states endows these
excitations with significant ligand-centered character as we have analyzed in a cluster basis
of localized ligand orbitals. In real materials, the ligand p orbitals are highly covalent and
are better approximated by itinerant bands with large band width. Thus, the increasing
metal-ligand hybridization endows the dd-transitions with a significant band component,
which may act as an additional mechanism to relax the selection rules [345], as discussed
above. The use of heavy ligands such as I or Br may help additionally relax the spin selection
rule through significant ligand SOC (Chapter 4).

Significant work also remains regarding the role of magnetism in these multiplets. The
original studies have claimed that these excitons are activated by the long-range magnetic
order [56, 65], however our RIXS measurements show that they are independent of mag-
netic order (Chapter 8). This conclusion is compatible with their microscopic origin. How-
ever, large dichroic responses on these excitons are observed within the magnetically-ordered
phase, which are likely connected to the local spin degree of freedom [65, 70]. This is
also reconcilable within the picture of dd excitations, provided that transitions of the type
3A2g → 1A1g may have selection rules related to the projection Sz of the S = 1 ground
state, which may set the unique axis for the dipole moment of the transition through SOC.
Notably, this mechanism requires a magnetic order with a well defined local spin direction,
but is a purely local process. Despite this, the role of magnetism in the optical cross sec-
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tion, and the sharp linewidths [56], remains unknown quantitatively. Our work shows that
resolving this issue is specific to details of the optical cross section and not the microscopic
origin of the excitations themselves, thus requiring more detailed and systematic optical
measurements. One route to answer these questions is through hydrostatic pressure, which
modifies both the charge transfer gap and the magnetic transition temperature (Chapter 6),
thus allowing one to address their individual roles in the oscillator strength and temperature
dependence across the long-range ordering temperature independent from the characteristic
phonon energy scale resulting in Franck-Condon broadening.

Finally, the observation of the dispersion of these excitons opens new opportunities to
study the properties of excitons in 2D materials more broadly, including their degree of
localization, how they propagate through the lattice, and how they are coupled to long-
range order (e.g. magnetism). These properties are not directly accessible by optical probes,
instead relying on theoretical calculations such as BSE, which can provide the excitonic wave-
functions. It will interesting to extend our work beyond the case of multiplet excitations
to Wannier excitons, particularly those with large binding energies as typically encoun-
tered in low-dimensional vdW materials. Due to the different sensitivity to local/itinerant
electronic states and differences in the excitation processes of RIXS and optical reflectiv-
ity/absorption, it is unclear if such states can be detected. Nonetheless, monitoring the
dispersion and momentum-space structure with RIXS may provide more direct informa-
tion on the atomic/orbital character of the excitonic wavefunctions, as well as their spatial
extent/delocalization, which may be subsequently compared to BSE calculations. Such mea-
surements will thus provide a critical experimental test for identifying the nature of excitons.
Along with the extension to spin-flip multiplets studied in the present work, this will guide
theoretical efforts towards a complete description of the optical responses of correlated ma-
terials.

10.1.3 Disentangling the microscopic nature of the ground state in
strongly correlated materials

Our use of in-situ tunable strain along with multiple independent measurements (XLD, XRD,
transport) introduces a new method to disentangle the relationship between the structural
and orbital degrees of freedom. This method demonstrates that the orbital anisotropy is
independent of the structural distortion in FeSe. Beyond the case of IBSCs, the problem
of such coupled order parameters is a general feature of strongly correlated systems. For
instance, orbital-ordering is always accompanied by a corresponding structural distortion
of the local transition-metal environment, know as Jahn-Teller distortions [15]. Therefore,
the origin of signals attributed to orbital order are under debate in many systems, such as
the manganites [157, 297], particularly whether the orbital order is simply a result of the
structurally-induced anisotropy, or if an orbital order exists independently. Such distinctions
currently require theoretical calculations and quantitative comparison to the magnitudes of
the effects which can be experimentally difficult. As we demonstrated here, a direct and
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independent tuning of the lattice through an appropriate uniaxial strain along with a direct
spectroscopic measurement of the orbital degrees of freedom may be an alternative route to
resolve the interplay of coupled orbital and structural orders in correlated systems.

There are also opportunities for the study of frustrated magnetism, such as the triangular
lattice systems studied throughout this thesis. On one hand, we have shown that spin-lattice
coupling is a critical ingredient for the magnetic ground state of NiI2 (Chapter 6,7). In
particular, this coupling switches the magnetic ground state from a collinear state without
spin-induced ferroelectricity to a single-Q phase with type-II multiferroic properties (Chapter
5). It is therefore possible that a symmetry resolved tuning parameter, such as uniaxial
strain, may be an efficient modulation of the multiferroicity in NiI2, which could lead to
potentially useful properties such as a large effective piezoelectricity. In a practical sense,
this would also allow using strain to detwin the single-Q domains as we utilized in the case of
FeSe in Chapter 9 for studying electronic nematicity. This would allow macroscopic probes
to study the intrinsic properties of monodomain NiI2 without the complex domain dynamics
from magnetoelectric cooling protocols [45] that one encounters in hexagonal/triangular
lattice systems. Thus, in addition to electric and magnetic fields, uniaxial strain can be
added to the suite of external fields towards the realization of functional devices in this class
of multiferroics.

Beyond these possible extensions, there remain significant unresolved questions in both
FeSe and the IBSCs more broadly. In particular, it will be critical to perform tunable
strain experiments, complementary to those we showed in Chapter 9, with a technique
more sensitive to the spin degrees of freedom, such as RIXS [80]. RIXS measurements of
the spin excitation anisotropy have been reported at fixed strain conditions in FeSe [96].
However, a tunable uniaxial strain would establish the relationship of this spin excitation
anisotropy to the structural and orbital degrees of freedom, particularly above Ts where a
strain-induced nematic order parameter is observed and distinct strain-induced Fermi surface
anisotropy is observed compared to the ordered state below Ts [108]. This is critical because
the observation of anisotropy alone without correlating to the other degrees of freedom makes
the interpretation of the current RIXS experiment difficult.

Meanwhile, the role of spin fluctuations in FeSe for nematicity, in particular their devel-
opment across the nematic transition and lattice-coupling below TS, are still not completely
resolved. Our transport measurements suggest that the spin excitation anisotropy could
have a significant development with strain beyond the detwinning point within the nematic
phase, which could be directly monitored by such measurements. For FeSe, it would also be
crucial to extend measurements of both the spin fluctuations and the orbital anisotropy to
below the superconducting transition in order to fully elucidate their respective roles in the
pairing mechanism.

It would also be insightful to perform similar measurements in spin nematic systems,
such as Ba(Fe1−xCox)2As2. Orbital ordering has been reported in the iron pnictides [332],
however these measurements are also under fixed strain conditions. Thus, the details of
the coupling between this orbital order and structure/long-range magnetism are unresolved
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experimentally, and would be important to establish any qualitative distinctions with the
magnetically disordered nematic phase of FeSe. These more detailed measurements as a
function of continuously tunable uniaxial strain would provide a more complete picture to
establish the distinct phenomenology of orbital and spin-driven nematicity, if any.

Finally, materials tuned close to the nematic quantum critical point (QCP) such as
FeSe1−xSx [102], in the absence of magnetism, also pose an interesting region of the phase
diagram. In these systems, one can study the interaction of orbital fluctuations with su-
perconductivity in the absence of a developed nematic phase. This may resolve the nature
of the distinct superconducting gaps on opposite sides of the orbital nematic QCP in the
S-doped systems [295], and could determine whether orbital nematic fluctuations play any
role in the pairing mechanism. Overall, these measurements would establish the role of
the orbital degrees of freedom and their interplay with spin fluctuations in determining the
leading electronic instabilities [84, 104, 107, 300], including superconductivity, in the IBSCs.
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