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ABSTRACT

The epoch of reionization (EoR) signifies a critical phase in the universe’s evolution,
marking the shift from a predominantly neutral intergalactic medium to the ionized state
observed today. A key aspect of studying the EoR involves observing the redshifted 21 cm
line emission with radio telescopes. A significant challenge in this endeavor is isolating the
faint 21 cm signals from bright foreground emissions and systematics. This collection of
works focuses on understanding the impact of instrumental systematic effects on statistical
measurements, such as the one-point statistics and power spectrum, using the Hydrogen
Epoch of Reionization Array (HERA).

First, I investigate one-point statistics measured from image cubes based on HERA
Phase I observations after foreground removal for the first time. I highlight the influence
of systematics on these measurements, by measuring the second and third moments. These
analyses show that, despite efforts to mitigate systematics, the residual systematics still
cause deviations in the measurements from the expected values. In addition, I evaluate
EoR models against observational data, suggesting the second moment measurements likely
reject the cold reionization model characterized by inefficient X-ray heating. The third mo-
ment, which captures non-Gaussianity features of the signals, is significantly diminished by
the instrument response and further reduced by the foreground removal process, making it
challenging to probe non-Gaussianity. However, there remains the potential to detect some
skewness at low redshifts.

One potential systematic for HERA involves calibration errors stemming from per-antenna
perturbations due to feed misalignment. I have simulated these calibration errors by mod-
eling realistic perturbed primary beams for HERA Phase II observations. The chromatic
calibration errors are critical since they can cause foreground emission to contaminate the
region of Fourier space expected to be dominated by cosmological signals. I then present
the work focused on developing a method to mitigate the calibration errors and foreground
leakage, thereby recovering the clean EoR window.

Thesis supervisor: Jacqueline N. Hewitt
Title: Professor of Physics
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Chapter 1

Introduction

The study of 21 cm cosmology is an emerging field that promises to revolutionize our un-
derstanding of the early universe. The 21 cm line, resulting from the hyperfine transition
of neutral hydrogen atoms, offers a unique window into the Cosmic Dawn and the Epoch
of Reionization (EoR). During these pivotal epochs, the first stars, galaxies, and black holes
formed, ionizing the surrounding hydrogen and fundamentally altering the universe’s struc-
ture. Observing the 21 cm signal allows us to trace these changes, providing insight into the
processes that shaped the cosmos.

One of the most significant aspects of 21 cm cosmology is its ability to probe the inter-
galactic medium (IGM) across vast cosmic scales and times. Unlike other forms of radiation,
the 21 cm signal can penetrate the clouds of gas and dust that often obscure other wave-
lengths, giving us a clearer picture of the early universe. By mapping the distribution and
state of neutral hydrogen over time, we can reconstruct the history of cosmic reionization
and understand the interplay between radiation and matter during the universe’s formative
years.

The observational efforts in 21 cm cosmology include several cutting-edge radio tele-
scopes, such as the Hydrogen Epoch of Reionization Array (HERA; DeBoer et al., 2017),
the Square Kilometre Array (SKA; Koopmans et al., 2015), and the Low-Frequency Array
(LOFAR; van Haarlem et al., 2013). These instruments are designed to detect the faint 21 cm
signals from high redshifts, pushing the boundaries of current technology. However, the chal-
lenges are significant, as the 21 cm signal is extremely weak and must be distinguished from
foreground emission that is several orders of magnitude stronger. Advanced data processing
techniques, such as foreground subtraction and statistical analyses, are essential to isolating
the cosmological signal.

In parallel with observational efforts, theoretical modeling and simulations play a crucial

17



role in 21 cm cosmology. Tools like 21cmFAST (Mesinger et al., 2011) provide semi-numerical
simulations of the 21 cm signal, incorporating astrophysical and cosmological parameters to
predict the signal’s characteristics under various scenarios. These simulations help interpret
observational data, refine theoretical models, and guide future observations. By simulating
the large-scale structures and the ionization history of the universe, we can generate three-
dimensional maps of the 21 cm brightness temperature, offering valuable insights into the
distribution of matter and the processes driving reionization.

By studying the 21 cm line, we can uncover the properties of the first stars and galaxies,
the nature of dark matter, and the dynamics of cosmic evolution. This not only sheds light on
the past but also informs our understanding of the present universe. The interplay between
theory, simulation, and observation in 21 cm cosmology highlights the collaborative effort
needed to address one of the most challenging and exciting frontiers in astrophysics.

1.1 Theoretical Overview of the 21 cm Cosmology

In the hydrogen atom, the hyperfine splitting occurs due to the interaction between the
magnetic moment of the proton in the nucleus and the magnetic moment of the electron.
The proton and the electron can have their spins aligned either parallel or antiparallel to
each other. When the spins are parallel, the energy is slightly higher compared to when the
spins are antiparallel. This small energy difference results in two distinct energy states.

The transition between these two hyperfine energy states in the hydrogen atom leads to
the emission or absorption of a photon with a wavelength of approximately 21 cm, corre-
sponding to a frequency of 1420.41 MHz. This is known as the 21 cm line. During the era
of interest, the 21 cm line is redshifted according to ν = ν21/(1+ z) where ν21 is the rest fre-
quency of the 21 cm line and z is the redshift. This places the line within the low-frequency
radio region of the electromagnetic spectrum.

This line is explored by using a spin temperature (TS) that is determined by the ratio of
populations between the two spin states,

n1

n0

= 3 exp

(
− hν21
kBTS

)
(1.1)

where the front factor of 3 indicates the degeneracy ratio of the states, n1 is the number of
atoms in the excited state, n0 is the number of atoms in the ground hyperfine state, h is
Plank’s constant, and kB is Boltzmann’s constant.

The brightness temperature, which is our observable, is determined by the contrast be-
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tween the spin temperature and the background radiation temperature. Specifically, the
brightness temperature of 21 cm signals is given by Furlanetto et al. (2006),

δTb(ν) =
TS − Tγ
1 + z

(
1− e−τ21

)
≈ 27xHI

(1 + δm)

(
H

dv∥/dr +H

)(
1− Tγ

TS

)
×

(
1 + z

10

0.15

ΩMh2

)1/2(
Ωbh

2

0.023

)
mK, (1.2)

where Tγ represents the background radio temperature (e.g., Cosmic Microwave Background
(CMB) temperature), τ21 is the optical depth at the 21 cm frequency, xHI

denotes the neutral
fraction of the hydrogen gas. δm = ρ/ρ̄− 1 describes the matter density fluctuations, where
ρ is the matter density and ρ̄ is its mean. dv∥/dr is the gradient of the peculiar velocity
along the line-of-sight. The detectability of the 21 cm signal primarily depends on the
spin temperature. A signal is only observable if the spin temperature is different from the
background temperature.

The spin temperature is determined by three primary processes:

1. Absorption/Emission of 21 cm Photons: This involves the interaction of 21 cm photons
with the radio background, primarily the CMB. The exchange of photons between
the hydrogen atoms and the background radiation can either raise or lower the spin
temperature depending on the relative temperatures of the two.

2. Collisions: Collisions with other hydrogen atoms and with electrons can transfer energy
and cause spin flips, influencing the spin temperature. The rate of these collisions
and the density of hydrogen atoms and electrons in the medium play crucial roles in
determining the overall spin temperature.

3. Resonant Scattering of Lyα Photons: The scattering of Lyα photons, which are emitted
by early stars and galaxies, can excite hydrogen atoms to an intermediate state, leading
to a spin flip. Because of large cross section of Lyα scattering, this process, known as
the Wouthuysen-Field (WF) effect, can strongly couple the spin temperature to the
kinetic temperature of the gas.

These processes collectively determine the spin temperature. In the limit of equilibrium, the
spin temperature can be summarized as (e.g., Field, 1958),

T−1
S =

T−1
γ + xαT

−1
α + xcT

−1
K

1 + xα + xc
, (1.3)
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where Tα is the color temperature of the Lyα photon, TK is the kinetic temperature of the
gas, xα and xc are the coupling coefficients of the Lyα scattering and atomic collisions,
respectively.

I want to describe a basic picture of the evolution of the signal briefly. After the recom-
bination (z ≈ 1100), the free electrons are coupled to the CMB photons through Compton
scattering, or TK = Tγ. Since the spin temperature is determined by the collisional coupling,
the spin temperature is the same as the photon temperature, resulting in δTb = 0 and no
detectable 21 cm signal. As the density decreases (z ≈ 200), the gas is decoupled from the
CMB photons, leading to adiabatic cooling of gas ∝ (1+z)2 compared to the photon cooling
according to the universe expansion ∝ (1+ z), which indicates the gas is cooling faster than
the photon. Since the gas density is high enough, the spin temperature is coupled to the
kinetic temperature, resulting in TS < Tγ. As the universe expands further, the gas density
drops and the collisional coupling becomes inefficient, and the spin temperature is coupled to
the CMB temperature, TS = Tγ. Once the first starts emerge, they emit Lyα photons, which
couple the spin temperature to the kinetic temperature via the WF effect. They also emit
X-rays that heat the surrounding material, turning into TS > Tγ during the EoR. As ionized
regions grow, the impact of the neutral gas fraction in Equation (1.2) becomes significant.

Current observational 21 cm cosmology is particularly interested in the Cosmic Dawn and
the EoR. For example, the Experiment to Detect the Global Epoch of Reionization Signature
(EDGES; Bowman et al., 2018) reported a detection of an absorption feature in global 21 cm
signal centered around 78 MHz, which corresponds to a redshift of approximately 17. This
signal suggests, if confirmed, that the hydrogen gas was much colder than expected or that
there was an excess radio background during the Cosmic Dawn.

Different radio interferometers have invested substantial efforts in investigating the power
spectrum of 21 cm signals during the EoR, leading to several upper limits. These studies
include the Giant Metre Wave Radio Telescope (GMRT; Paciga et al., 2013), the Murchison
Widefield Array (MWA; Barry et al., 2019, Beardsley et al., 2016, Dillon et al., 2014, Ewall-
Wice et al., 2016a, Tingay et al., 2013, Trott et al., 2020), the Donald C. Backer Precision
Array for Probing the Epoch of Reionization (PAPER; Cheng et al., 2018, Kolopanis et al.,
2019, Parsons et al., 2010), LOFAR (Gehlot et al., 2019, Mertens et al., 2020, Patil et al.,
2017, van Haarlem et al., 2013), and HERA (DeBoer et al., 2017, Dillon and Parsons, 2016).
Recent studies employing HERA (The HERA Collaboration et al., 2022a,b, 2023) have
reported the upper limit of the 21 cm power spectrum, which provide constraints on the X-
ray heating of the IGM and indicate scenarios with inefficient X-ray heating are disfavored
by a redshift of z ∼ 8.

In this thesis, I utilize the HERA interferometer to investigate the impacts of instrumental
effects on statistical measurements of 21 cm signals. The details on the HERA instrument
are described in the following section.
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Figure 1.1: Full array configuration of HERA. The filled and open circles represent the core array
(320 antennas) and outliers (30 antennas), respectively.

1.2 HERA Radio Interferometer

HERA, or the Hydrogen Epoch of Reionization Array (DeBoer et al., 2017), is a radio
telescope interferometric array specifically designed to study the early universe by observing
the 21 cm hydrogen line. HERA is located in the Karoo desert in South Africa, a site
chosen for its radio-quiet environment, which minimizes interference from human-made radio
signals. The primary aim of HERA is to measure the power spectrum of 21 cm fluctuations,
which helps in understanding the timing, duration, and nature of reionization. This includes
studying the first sources of light, such as first stars and galaxies, and their impact on the
IGM.

HERA consists of a dense array of 14-meter parabolic dishes arranged in a hexagonal
grid (Dillon and Parsons, 2016). The design emphasizes sensitivity to large-scale structures,
crucial for detecting the faint 21 cm signal from the early universe. The compact and
redundant array configuration is also optimized for precise calibration. Figure 1.1 depicts the
full configuration of HERA array, composed of the core array (filled circles) and outriggers
(open circles) with 350 antennas in total. The dense core array is crucial for measuring
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the power spectrum, while the outriggers enhance imaging capabilities. HERA employs a
redundant-baseline calibration strategy, which relies on the redundancy of measurements for
a given antenna pair and does not require prior sky information. This approach should,
in principle, yield precise calibration solutions as long as the measurements maintain the
expected redundancy.

HERA utilizes two different systems; Phase I and Phase II. The Phase I system operated
with repurposed PAPER’s sleeved dipoles (Fagnoni et al., 2020), spanning a frequency range
of 100–200MHz or a redshift range of 6–13. The HERA Collaboration et al. (2023) involves
94 night observations with about 40 operational antennas, releasing power spectrum results
based on Phase I observations. In 2018, the instrument transitioned to the Phase II system,
which features a new feed model, the Vivaldi feed (Fagnoni et al., 2021). This new feed
covers a broader range of frequencies or redshifts, covering a redshift range of 5–30. This
extension enables us to explore the Cosmic Dawn as well as EoR.

One important aspect of a radio inteferometer is the “foreground wedge” in Fourier space.
This is the region where foreground emission, such as galactic synchrotron radiation and ex-
tragalactic point sources, dominates the observed signal. The spectrally smooth astrophysi-
cal foreground emission dominates at small k∥ (line-of-sight wavenumbers). Meanwhile, the
21 cm signal, expected to be weak and have a different spectral structure than the fore-
grounds, extends to higher k∥ values, forming the “EoR window”. In this thesis, I focus
on foreground systematics bleeding into the EoR window by investigating their effects on
one-point statistics and the power spectrum.

1.3 Outline of Thesis

Throughout my thesis work, I have studied the impact of systematics on statistical measure-
ments based on HERA observations. The Phase I observational data, with comprehensive
calibration and system mitigation efforts, was thoroughly analyzed using the power spec-
trum. The power spectrum is optimal for studying the properties of underlying Gaussian
random fields. However, highly non-Gaussian features are expected to arise from ionized
bubbles during the EoR. Imaging-based analyses offer an alternative approach to captur-
ing such non-Gaussianity. In Chapter 2, I investigate primary statistical measurements,
such as variance and skewness, in image space and examined the effects of systematics on
the measurements. I also forecast the detectability of non-Gaussianity using future HERA
observations.

In Chapter 3, I focus on a key potential source of systematics: the per-antenna per-
turbation induced by feed misalignment. I extensively simulated radio primary beams by
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perturbing the position of the feeds using an electromagnetic simulator and constructed
mock Phase II HERA observations with the HERA core array (320 antennas). The sim-
ulated data was processed through the HERA calibration pipeline. I examined the effects
of calibration errors caused by feed mispositioning and how these errors propagate into our
power spectrum estimation, thereby contaminating the EoR window with foreground resid-
uals. Chapter 4 addresses strategies for mitigating the calibration errors by employing three
different methods: excluding antenna pairs with long separation during calibration, apply-
ing a temporal filter before the calibration and smoothing the gain solutions. I demonstrate
combining these methods effectively suppresses the systematics, recovering the clean EoR
window. These results set the requirement for feed positioning during HERA operations.
Chapter 5 summarizes the thesis work and novel contributions.

23



24



Chapter 2

Exploring One-point Statistics in HERA
Phase I Data: Effects of Foregrounds
and Systematics on Measuring
One-Point Statistics

This work is in preparation for publication. Author lists include Honggeun Kim, Jacqueline
N. Hewitt, and Nicholas S. Kern.

Abstract
Measuring one-point statistics from redshifted 21 cm intensity maps offers a unique oppor-
tunity to explore non-Gaussian features of the early universe. In this study, we analyze
images from the Hydrogen Epoch of Reionization Array (HERA) radio interferometer, fo-
cusing on one-point statistics after removing strong foreground emission and investigating
the impacts of sysmtematics on the measurements. Using HERA Phase I observations over
94 nights, which are expected to be noise-dominated in the absence of foregrounds, we ex-
amine the the second (m2) and third (m3) moments, indicators of variance and skewness,
respectively. Employing the DAYENU-filtering method, an advanced wedge-filtering technique,
for foreground removal, we find that simulated foreground residuals are reduced to about
10% of the simulated 21 cm signal residuals, which is sufficiently low for probing the 21 cm
intensity maps given the noiseless simulation. This result displays the DAYENU-filtering out-
performs other foreground removal methods such as the standard wedge-masking method
and the foreground subtraction technique based on principal component analysis. The am-
plitudes of one-point statistics measurements, such as m2 and m3, from the cosmological
simulations are significantly reduced by the instrument response and further diminished by
wedge-filtering, with a possible detection of skewness (S3) remaining at low redshifts. Analy-
ses with wedge-filtered observational data, along with expected noise simulations, show that

25



systematics can alter the probability distribution of the map pixels, affecting the m2 and
m3 measurements. A likelihood analysis based on the observational data indicates that the
m2 measurements likely reject the cold reionization model characterized by inefficient X-ray
heating. Small signals in m3 due to the instrument response of the Phase I observation and
wedge-filtering make it challenging to capture non-Gaussian nature of 21 cm models. Future
forecasts with the full HERA core array indicate improved signal-to-noise ratios (S/N) for m2

and m3 with perfect foreground removal, though wedge-filtering reduces S/N significantly.
The wedge-filtering has a large effect on reducing the non-Gaussian signals, and techniques
need to be developed to make it possible to work within the wedge. Despite the low S/N
after the wedge-filtering, one-point statistics from long observation periods can still yield
tight constraints on model parameters using Fisher information matrix, contributing to our
understanding of the distribution and evolution of neutral hydrogen.

2.1 Introduction

The epoch of reionization (EoR) stands as a pivotal phase in the evolution of the universe,
marking the transition from a predominantly neutral intergalactic medium (IGM) to the
ionized IGM that we see today. Studying the details of this cosmic transition provides cru-
cial insights into the formation and evolution of the first luminous sources. One of the key
observables during the EoR is the redshifted 21 cm line emission, emanating from the hyper-
fine splitting of ground-state neutral hydrogen. Radio interferometers, equipped to capture
these faint signals, are expected to play an important role in unraveling the characteristics
of the EoR.

In recent years, various radio interferometers have undertaken extensive efforts to probe
the power spectrum of 21 cm fluctuations during the EoR, leading to several upper limits.
These include the Giant Metre Wave Radio Telescope (GMRT; Paciga et al., 2013), the
Murchison Widefield Array (MWA; Barry et al., 2019, Beardsley et al., 2016, Dillon et al.,
2014, Ewall-Wice et al., 2016a, Tingay et al., 2013, Trott et al., 2020), the Donald C. Backer
Precision Array for Probing the Epoch of Reionization (PAPER; Cheng et al., 2018, Kolopa-
nis et al., 2019, Parsons et al., 2010), the Low Frequency Array (LOFAR; Gehlot et al., 2019,
Mertens et al., 2020, Patil et al., 2017, van Haarlem et al., 2013), and the Hydrogen Epoch
of Reionization Array (HERA; DeBoer et al., 2017, Dillon and Parsons, 2016).

More recently, The HERA Collaboration et al. (2022a, hereafter H22a) followed by The
HERA Collaboration et al. (2023, hereafter H23) have published upper limits on the 21 cm
power spectrum. The HERA Collaboration et al. (2022b, hereafter H22b) and H23 explored
the astrophysical parameter space based on these upper limits, offering constraints on the X-
ray heating of the IGM and disfavoring scenarios with inefficient X-ray heating by a redshift
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of z ∼ 8.

The power spectrum is a sufficient statistic for measuring Gaussian random fields, but
the EoR 21 cm signal is expected to be highly non-Gaussian, particularly in the end stages
of reionization where ionized bubbles dominate the observable signal (Kittiwisit et al., 2017,
2022, Watkinson and Pritchard, 2014, 2015). To explore non-Gaussian aspects, a simple
way is to examine one-point statistics in the image domain, such as variance, skewness, and
kurtosis, during the EoR, which offers a unique lens into the statistical properties of the
observed 21 cm signals.

Theoretical investigations into one-point statistics using redshifted 21 cm signals aim to
understand the relation between various astrophysical models and the evolution of variance
and skewness measurements during reionization. For example, Wyithe and Morales (2007)
examined the dependence of the variance and skewness on the mass of ionizing sources.
Gluscevic and Barkana (2010) proposed that one-point statistics could potentially discern
reionization mechanisms driven by large and small halos. Watkinson and Pritchard (2014)
explored one-point statistics in the context of inside-out and outside-in models. There have
been studies investigating the relationship between the X-ray heating and the variation in
variance and skewness (Shimabukuro et al., 2015, Watkinson and Pritchard, 2015). Those
theoretical efforts support the idea that one-point statistical quantities, serving as comple-
mentary statistics to power spectrum analysis, provide insights into the underlying astro-
physical processes governing the reionization.

Wyithe and Morales (2007) highlighted that an MWA-500, composed of 500 dipoles, has
the capability to detect skewness in 100-1000 hours and an MWA-5000, with approximately
10 times the collecting area of MWA-500, could map skewness in detail over a range of red-
shifts. Watkinson and Pritchard (2014) concluded that SKA observations with 1000 hr can
distinguish their inside-out and outside-in models. Additionally, Kubota et al. (2016) inves-
tigated the detectability of variance and skewness based on MWA and LOFAR observations,
revealing that they can achieve relatively large signal-to-noise (S/N) ratios within the red-
shift range between 7 and 9, assuming 1000 hr observations. These studies were conducted
without accounting for the foreground effect.

Particularly, Kittiwisit et al. (2017) forecasted the measurability of one-point statistics
at the EoR given the sensitivity of HERA instrument for 100-hr observations. They in-
vestigated the variance, skewness, and kurtosis considering various angular resolutions of
the HERA instrument, incorporating a simple Gaussian kernel, and employing frequency
binning. Their findings suggested that the full HERA array could potentially measure the
one-point statistics measurements with high sensitivity assuming perfect foreground removal.

In practice, however, measuring one-point statistics is particularly challenging due to
the presence of various systematic effects, including instrumental artifacts and foreground
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contaminants. Especially, the foreground emissions, significantly brighter than the faint
21 cm signals by four to five orders of magnitude, need to be mitigated down to the 21 cm
signal levels. Subtraction of foregrounds relying on prior knowledge is quite challenging due
to the requirement of precise foreground modeling.

Due to the attributes of foregrounds having smooth frequency spectra, numerous tech-
niques for foreground removal have been devised to isolate 21 cm signals from the foregrounds.
For example, blind foreground subtraction methods based on Principal Component Analy-
sis (PCA) have shown the effectiveness of the foreground subtraction in the image domain
(e.g., Alonso et al., 2014, Cunnington et al., 2022, Spinelli et al., 2021). However, the blind
methods essentially suffer from a signal loss as they remove the principal components shared
by both foregrounds and 21 cm signals. An alternative method using Gaussian Progress
Regression (GPR) is devised as a foreground subtraction technique in the visibility space
(Mertens et al., 2018) and has been further developed with an effort to correct the signal
loss (e.g., Kern and Liu, 2020, Mertens et al., 2020, Soares et al., 2021). Another commonly
used method is a “foreground avoidance” method (e.g., Datta et al., 2010, Liu et al., 2014,
Morales et al., 2012, Parsons et al., 2012, Pober et al., 2014, Thyagarajan et al., 2013, Trott
et al., 2012, Vedantham et al., 2012). This method relies on the frequency Fourier transform
of a smooth foreground spectrum, which is confined within low Fourier modes. By masking
the Fourier modes occupied by foregrounds and extracting 21 cm signals, having fluctuating
spectra, from unmasked Fourier modes, one may effectively filter out the foregrounds.

Under adequate foreground removal, there have been recent studies exploring detectabil-
ity of non-Gaussian features in 21 cm signals. Greig et al. (2023) concluded that the SKA
can detect wavelet scattering amplitudes in 100-degree field with 1000-hr integration with
the foreground avoidance though it degrades the S/N of the detection. Raste et al. (2024)
inferred that the SKA will be able to detect the bispectrum for ∼1000-hr observation at
z ∼ 6 for small k-modes, assuming optimistic foreground removal.

Kittiwisit et al. (2022) examined the impact of the foreground removal on the feasibility
of measuring the one-point statistics based on HERA mock observations. They adopted
a foreground avoidance approach to remove the foreground with various filtering widths.
The results revealed a substantial reduction in the distinctive features of one-point statis-
tics measurements by eliminating unique features related to overdense and ionized regions.
Aggressive filtering results in more washed-out in intensity maps, accompanied by larger
uncertainties. Nevertheless, they observed a degree of preservation in the increasing trends
of skewness and kurtosis towards the end of reionization, especially when accounting for
adequate integration time.

The previous papers that modeled detectability of non-Gaussian signals in the image
domain have assumed that the maps are perfectly deconvolved and have a compact Gaus-
sian restoring beam. In reality, the observed maps are corrupted by instrument response
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or point-spread-function (PSF), forming “dirty maps” and correlated noise properties be-
tween map pixels. The classical image deconvolution algorithm CLEAN (Högbom, 1974)
can be employed for the deconvolution but it only deconvolves the bright point sources.
Multi-resolution CLEAN algorithms were considered to handle the deconvolution of diffuse
emission and unresolved point sources (Cornwell, 2008, Wakker and Schwarz, 1988), but the
deconvolution process can modify map noise properties and introduce artificial faint residual
emission, making the statistics very difficult to interpret. Therefore, we choose instead to
work directly with dirty maps, forward modeling the 21 cm signals and modeling the noise
covariance matrix by propagating the measurement equation and the analysis procedure
from true sky to measured image. This procedure fully takes into account the actual PSF of
an interferometer.

In this study, we extend the work of Kittiwisit et al. (2022) by considering realistic
primary beam models and instrument PSF, an advanced technique for foreground removal,
and robust calculation of thermal noise through an optimal mapping technique. We utilize
the foreground removal method developed by Ewall-Wice et al. (2020) based on Discrete
Prolate Spheroidal Sequences (DPSS; Slepian, 1978) in the context of foreground avoidance,
and show their effectiveness compared to the standard foreground avoidance approach and
the blind PCA foreground subtraction method. We measure one-point statistics on the
HERA Phase I observations after the foreground removal for the first time and examine
the effect of instrument systematics residuals on the non-Gaussianity characteristics in the
data. Furthermore, we evaluate 21 cm models based on one-point statistics measurements.
Ultimately, we investigate the feasibility of measuring one-point statistics measurements for a
fiducial 21 cm model, considering the observational sensitivity of future observations (HERA
Phase II observations).

While higher-order statistics in the Fourier domain, such as the 21 cm bispectrum (e.g.,
Hutter et al., 2019, Kamran et al., 2021, Majumdar et al., 2018, 2020, Mondal et al., 2021,
Raste et al., 2024, Shimabukuro et al., 2016, Watkinson et al., 2018, 2022, Yoshiura et al.,
2015), offer a means to investigate non-Gaussianity, direct exploration of one-point statistics
from tomographic images of the 21 cm signal has a power in its simplicity. We have chosen
for this study to work in the image domain to explore instrumental and residual foreground
effects, which are likely to be more straightforward to interpret in the image domain.

This paper is structured as follows: In Section 2.2, we provide an overview of the op-
timal mapping method utilized for mapmaking. Detailed information on observational and
simulation data is presented in Section 2.3. Sections 2.4.1 outlines the advanced foreground
removal technique and Section 2.4.2 discuss its efficacy in comparison to other methods. The
forward modeling of noise data is discussed in Section 2.6. Section 2.7 provides details about
the construction of data cubes used in our analysis. The discussion on the impact of system-
atics residuals in the observed map post-foreground removal is presented in Section 2.8. In
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Section 2.9, we explore one-point statistics measurements for various 21 cm models in com-
parison with the HERA Phase I observational data. Additionally, Section 2.10.1 forecasts the
feasibility of detecting one-point statistics and the uncertainty of model parameters in future
observations. Finally, Section 2.11 summarizes the key findings of this study. Throughout
the paper, we adhere to the cosmological parameters from Planck Collaboration et al. (2020):
ΩΛ = 0.6844, Ωm = 0.3156, Ωb = 0.04911, and H0 = 67.27 km s−1Mpc−1.

2.2 Mapmaking with Direct Optimal Mapping

In this section, we outline the mathematical formalism employed in mapmaking with the
Direct Optimal Mapping (DOM) technique (Dillon et al., 2014, 2015, Xu et al., 2022). DOM
is considered optimal as it down-weights the impact of data with high noise variance. DOM
offers two notable advantages: a robust calculation of statistical noise for each pixel and the
ability to perform mapping without assuming a flat sky. The algorithm compensates for
the interferometric “w-term” exactly, without the need to perform a w-projection (Cornwell
et al., 2008), and it makes use of the actual (u, v) – spatial frequency – coordinates without
the need to perform gridding and resampling. Nonzero w-terms can arise with wide-field
mapping and with non-coplanar arrays. The HERA dishes deviate from coplanarity at the
level of a few centimeters, and Xu et al. (2022) showed that neglecting such deviations result
in map errors of about 5%.

In contrast to algorithms that work directly with visibility data for power spectrum esti-
mation (Datta et al., 2010, Liu et al., 2014, Morales et al., 2012, Morales et al., 2018, Parsons
et al., 2012, Pober et al., 2014, Thyagarajan et al., 2013, Trott et al., 2012, Vedantham et al.,
2012) and with algorithms that compute a model of the sky in a Fourier basis (“m-modes”;
Eastwood et al., 2018, Shaw et al., 2014), DOM requires a pixelized model of the sky which
is the dominant source of infidelity in the images (assuming perfect calibration). For general
applications of mapping, the direct inversion of DOM is expensive to compute. However,
with HERA we can compute the maps more efficiently, because the instrumental design ma-
trix (the A matrix defined below) does not change with time and can be pre-computed and
stored, somewhat similar to the “Fast" implementation of Fast Holographic Deconvolution
(Sullivan et al., 2012).

More specifically, a discretized version of the interferometric measurement (or visibility)
equation is

Vij(ν, t) =
Nsrc∑
n=1

Bij(ŝn, ν)Iν(ŝn, ν)e
−2πiνbij(t)·ŝn/c∆Ω, (2.1)

where i and j denote an antenna pair, Bij is a peak-normalized primary beam that is the
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multiplication of far-field electric fields of two antennas, Iν is the specific intensity of sky
sources in Jansky per steradian (Jy/sr), ŝn is the position vector of the celestial objects,
and b(t) is the baseline (antenna pair) vector that changes with the Earth rotation. The
exponential term is called the fringe term that represents the phase coming from cross-
correlating signals measured by the antenna pair and associated with a geometric delay.

For a given frequency channel, Equation (2.1) can be equivalently put in a matrix form,

υ = Ax+ n, (2.2)

where x is a vector with Npix elements of the sky flux density, and υ and n are vectors
containing Nvis elements of resultant visibility measurements and associated thermal noise,
respectively. The A matrix includes the primary beam and the fringe term, described in
Equation (2.1), with the shape of Nvis ×Npix.

The mapmaking is a backward process of the interferometric measurement equation, and
the optimal estimator has been studied extensively by Tegmark (1997) (see also Dillon et al.
(2015) for review). The optimal estimator can be expressed as,

x̂ = DA†N−1υ, (2.3)

where x̂ is an optimal estimator, D is a normalization matrix with the shape of Npix ×Npix,
and N−1 is the inverse of a noise matrix N = ⟨nn†⟩ with the shape of Nvis × Nvis. A† is a
conjugate transpose of A. An ensemble average of the estimator is ⟨x̂⟩ = DA†N−1Ax = Px

where P = DA†N−1A. The choice of N−1 is considered, as the weighting matrix makes
the map “optimal" in the sense that it preserves information when estimating parameters
from the images (Tegmark, 1997). Other criteria, such as a weighting that produces lower
sidelobes in the synthesized beam, could be incorporated into the weighting matrix instead.
Since we seek to measure faint cosmological signals, we choose the N−1 weighting.

To estimate the noise matrix N in Equation (2.3), we assume each visibility has un-
correlated thermal noise, which results in a diagonal matrix with the diagonal elements of
σ2
n,

σ2
n =

ViiVjj
∆ν∆t

, (2.4)

where Vii indicates autocorrelation for the baseline i, and ∆ν and ∆t denote the width of
frequency channel and integration time, respectively.

The choice of D matrix depends on what we pursue in mapmaking. For example, the least
square estimator suggests D = [A†N−1A]−1 that deconvolves instrumental effects and recov-
ers the true map. One problem of this approach is that A†N−1A is usually ill-conditioned,
which may cause a direct inverse that can magnify small perturbations in the visibility data
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significantly. Pseudo-inverse can be an alternative but may require a proper regularization
of noises, which is out of scope of this study.

We opt for the normalization scheme adopted by Xu et al. (2022). They defined a diag-
onal matrix D with Dii =

(∑
j |A

†
ij|N−1

jj

)−1
=

(∑
j BijN

−1
jj

)−1 where i and j indicate pixel
and baseline-time indices, respectively. By assuming that the noise variance of visibility does
not change significantly over time, which is approximately true for slowly varying autocor-
relations, the matrix can be simplified to Dii ≈ σ̄2

n/
(∑

tBit

)
where σ̄2

n =
(∑

b 1/σ
2
b

)−1 with
baseline b and Bit is the primary beam at pixel i and time t. This normalization is designed
to preserve the flux density of a source at zenith. For example, the diagonal elements of the
P matrix can be expressed as

Pii =
∑
j

Dii(A
†)ijN

−1
jj Aji (2.5)

= Dii

∑
j

B2
ij

σ2
j

(2.6)

≈ σ̄2
n∑
tBit

∑
tB

2
it

σ̄2
n

=

∑
tB

2
it∑

tBit

. (2.7)

This indicates a PSF-peak normalization at the center of primary beam for the peak-
normalized primary beam. Note that signals in PSF-convolved maps will be attenuated
by the primary beam as they are getting away from the zenith. We choose not to renormal-
ize the map to remove the weighting by the primary beam (the “primary beam correction"
of radio astronomy), because such a correction severely impacts the noise statistics in the
map. For instance, introducing Dii =

(∑
j B

2
ijN

−1
jj

)−1 can result in Pii = 1 when Njj does
not change much over time, but this will diverge the noise variance at the pixel location far
away from the beam center. See Xu et al. (2022) for more details.

An example of the PSF at zenith, which corresponds to a column of P matrix at the
zenith location, is illustrated in Figure 2.1. The left panel is for the PSF of the HERA
dipole interferometer and the right one is a Gaussian beam which is commonly assumed
in other studies for simplicity. Due to the complexity, it is expected that convolving with
the realistic PSF can result in correlation between pixels unlike the simple Gaussian beam.
Hence, we adopt the forward modeling of simulation data, including 21 cm signals and noise
simulations, to account for the effects of the correlations on one-point statistics and to ensure
a fair comparison with the observational data.

The map obtained from Equation (2.3) is expressed in the unit of Jy/beam for the
visibility in Jy. The map is then converted to mK units using the following equation,

κ(ν) =
c2

2kBν2Ωsyn

× 10−23

[
mK

Jy

]
, (2.8)
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Figure 2.1: PSF of the HERA Phase I observation at 161.5 MHz (left) and its Gaussian fit (right).
We forward model the simulated maps using the PSF to consider the correlated properties between
pixels. The PSF in this example is integrated over 1 hour. The full width at half maximum of the
Gaussian fit is 1.11◦ for the semi-major axis and 0.75◦ for the semi-minor axis.

where c is the speed of light, kB is the Boltzmann constant and Ωsyn = Ωant/Nant is the solid
angle of the synthesized beam which is equal to the solid angle of the primary beam divided
by the number of antennas.

HERA observations provide east-east (EE) and north-north (NN) polarized visibili-
ties. Maps are produced for each polarization and combined to form pseudo stokes-I maps,
x̂I = (x̂EE + x̂NN)/2. This could potentially mitigate systematics observed at high delay
modes, which may originate from Faraday-rotated pulsar emissions and uncorrelated sys-
tematics across polarizations (H22a). For simulated mock observations with no systematics,
we simulate EE polarization only, assuming x̂I ≈ x̂EE.

2.3 Data for Phase I Observation

In this section, we describe the observational data and simulations which are used for the
one-point statistics study on the Phase I observations.

2.3.1 Observational Data

HERA is a draft-scanning interferometer located in South Africa. We utilize the calibrated
data for Phase I HERA observations between October 2017 and March 2018 as in H23.
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Figure 2.2: HERA stripe, displaying foreground emission, ranging from 1.5 to 14.5 hours centered
at -30.7◦ in declination. The map is created by connecting sky patches which are made at every
hour of LST with the size of 15×10 square degrees. Emissions at around 3 hr are grating lobes of
Fornax A, which is one of the brightest foreground radio sources.

Based on nightly inspections of the data, 94 nights are chosen to be good quality data.
Each night data is calibrated through the HERA calibration pipeline which uses redundant-
baseline calibration (e.g., Dillon et al., 2020) followed by absolute calibration to solve for
degenerate parameters remaining after the redundant calibration (e.g., Kern et al., 2020a,
Li et al., 2018). Artificial Radio Frequency Interference (RFI) is then removed by excluding
outliers in visibilities and calibration gain solutions. For LST grids with fixed bins of 21.4 s,
all night observations are coherently averaged, which increases the signal-to-radios (S/N)
significantly.

Two major systematics of the Phase I observation are a cable reflection and over-the-air
crosstalk between antennas, which are mitigated through calibration using autocorrelations
and fringe-rate filtering, respectively (Kern et al. 2019, 2020b, H22a, H23). The systematics
correspond to high delay modes, which can appear in delay-filtered maps. Therefore, we
investigate the effect of the systematics in our mapping before and after the mitigation in
Section 2.8.

The final visibility product of the pipeline for power spectrum estimation is coherently
time-averaged over 214 s, but we use data without this time averaging since our mapping
scheme performs an appropriate coherent averaging over time. See H22a and H23 for more
details about data reduction.

Out of 1024 frequency channels over 100–200 MHz, frequency ranges of 117.19–133.11 MHz
and 152.25–167.97 MHz, corresponding to Band 1 and Band 2 of H23, are considered. These
bands were chosen because they were relatively RFI-free. They target the redshift of ∼10.4
for the low band and ∼7.9 for the high band.

The observation was conducted with about 40 antennas, with the actual number varying
at different LSTs based on the availability of antennas at each LST. Specifically, antennas
that exhibit more than 50% good quality data over 94 nights at each LST (see “Unflagged
antennas” in Figure 4 of H23) were included. We exclude baselines with projected east–west
distances less than 14 m because the crosstalk mitigation is not applied to the baselines.
Timestamps with less than 10 samples are removed due to potential large error contributions.
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Instead of mapping the full sky at once, we construct a series of small patches of sky, each
measuring 15×10 square degrees. These patches are centered at each hour of LST, ranging
from 2 to 14 hr. Each patch consists of 66×44 pixels and is integrated over 1.6 hr.

Figure 2.2 shows a stitched map of the sky patches. We split the stitched map into four
different regions for our one-point statistics analysis: Field I (1.5–2.5 hr), Field II (4.5–5.5
hr), Field III (6.5–9.5 hr), and Field IV (9.5–13.5 hr). Each field roughly corresponds to
Field B, C, D, and E which are defined in H23. Field I and II are centered at 2 and 5 hr
respectively, across 15 degrees, which are known to be foreground quiet radio sky. There are
bright foregrounds in the 3-hr region which corresponds to grating lobes of Fornax A, which
is a bright radio galaxy located at (RA, Dec) = (3.4h, -37.2◦). Thus, we do not include
the region. Field III includes the anti-galactic center, centered at ∼8 hr, and its sidelobes.
Field IV is the region between the anti-galactic center and galactic center.

2.3.2 Simulation Data

21 cm Signal Simulations

The brightness temperature of 21 cm signals is given by the contrast between the 21 cm spin
temperature and the background radiation temperature (i.e., CMB temperature), which can
be written as (e.g., Furlanetto et al., 2006),

δTb(ν) =
TS − Tγ
1 + z

(
1− e−τ21

)
≈ 27xHI

(1 + δm)

(
H

dv∥/dr +H

)(
1− Tγ

TS

)
×

(
1 + z

10

0.15

ΩMh2

)1/2(
Ωbh

2

0.023

)
mK, (2.9)

where TS is the gas spin temperature, Tγ is the CMB temperature, τ21 is the optical depth at
the 21 cm frequency, xHI

is the neutral fraction of the hydrogen gas, and δm = ρ/ρ̄− 1 is the
matter density fluctuations where ρ and ρ̄ are the matter density and its mean, respectively.
dv∥/dr is the gradient of the peculiar velocity along the line-of-sight. This equation provides
the baseline for computing the 21 cm brightness temperature.

To generate 21 cm brightness temperature cubes with associated astrophysical properties,
we use a publicly available simulator, 21cmFAST (Mesinger et al., 2011, Murray et al., 2020).
We investigate the non-Gaussian characteristics of neutral hydrogen signals under different
astrophysical conditions, by considering four different EoR scenarios. Those scenarios include
the fiducial model studied by Park et al. (2019), and three derived models suggested by Greig
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Table 2.1: Parameter values for different EoR models from Greig et al. (2022).

Model log10(f∗,10) α∗ log10(fesc,10) αesc t∗ log10(Mturn) log10
LX<2 keV

SFR
E0 αX

(M⊙) (erg s−1M−1
⊙ yr) (keV)

Fiducial -1.30 0.50 -1.00 -0.50 0.50 8.7 40.50 0.50 1.00
Cold reionization -1.30 0.50 -1.00 -0.50 0.50 8.7 38.00 0.50 1.00
Large halos -0.70 0.50 -1.00 -0.50 0.50 9.9 40.50 0.50 1.00
Extended reionization -1.65 0.50 -1.00 -0.50 0.50 8.0 40.50 0.50 1.00

et al. (2022) including cold reionization, large halos, and extended reionization models.

• Fiducial model: a baseline model which is constrained by the observed galaxy UV
luminosity function at high redshift along with mock 21 cm observation (Park et al.,
2019).

• Cold reionization: a model with restricted X-ray heating of IGM with enhanced 21 cm
signal power compared to the fiducial model (Mesinger et al., 2014, Parsons et al.,
2014). This model is disfavored by power spectrum studies (H22b, H23).

• Large halos: a model with a large characteristic (turnover) halo mass for quenching
of star formation in halos. The reionization is mainly driven by bright star-forming
galaxies.

• Extended reionization: a model with less efficient star formation rate which delays the
reionization. The reionization is primarily driven by faint star-forming galaxies.

The key parameters that determine each model are described in Table 2.1 where f∗,10 is a
normalization factor that determines the fraction of the gas in stars, Mturn is the turnover
mass that represents a halo mass for quenching of star formation, and LX<2 keV

SFR
is the luminos-

ity of soft X-ray per star formation rate, responsible for IGM heating. Other key parameters
– including a power index associated with the gas fraction in stars (α∗), the characteris-
tic star-forming timescale (t∗), parameters associated with the escape fraction of ionizing
photons (fesc,10, αesc), the minimum threshold energy of the X-ray spectrum (E0), and the
X-ray spectrum slope (αX)– are fixed for the distinct models as detailed in Table 2.1. In this
study, we do not account for the subgrid model of recombination proposed by Park et al.
(2019) to enable faster simulations. Instead, we fix the mean free path parameter, denoted
as R_BUBBLE_MAX, at 15 Mpc across all simulations.

The models are simulated over a redshift range of 6.5–13.0 with a cube size of 2003

Mpc3 with 128 pixels per side. The coeval cubes are then interpolated to a whole sky map
using Hierarchical Equal Area isoLatitude Pixelization (HEALPix; Gorski et al., 2005) at the
redshift of interest, forming a lightcone data over redshifts. We interpolate the cubes into
nside = 8192 to minimize interpolation artifacts and down-sample it to a computationally
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Figure 2.3: Evolutionary history of m2 (equivalent to S2), m3, S3, and mean ionization fraction
measured from raw simulations for the four distinct 21 cm models. Each line indicates the fiducial
(Fid), cold reionization (CR), large halos (LH), and extended reionization (ER) models. Band 1
and Band 2 are highlighted in orange and blue shaded regions.

feasible nside = 128. The details of this process are described in Appendix A of Kittiwisit
et al. (2017).

A statistical moment is a quantitative measure that provides information about the shape
and characteristics of a distribution of data. The p-th moment is defined as

mp =
1

N

N∑
i=1

(xi − µ)p, (2.10)
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Figure 2.4: Probability distribution of the fiducial model at specific redshifts for raw simulations
(i.e., no instrument effect). The dashed and solid vertical lines indicate the mean and median,
respectively. At z = 12.5, the distribution exhibits an asymmetric shape due to the heating, leading
to a negative m3. As reionization advances, a prominent pileup at the zero bin becomes noticeable.
Simultaneously, heating by star-forming galaxies raises the temperature of the IGM, resulting in a
tail towards positive values and thus a positive m3.

where N denotes the number of data, and µ represents the mean of the dataset.

Specific quantities we are interested in are variance and skewness. The variance measures
the dispersion of the data which is closely related to a power spectrum. The skewness
provides information about the asymmetry of the distribution that potentially captures non-
Gaussianity. Mathematically, they are expressed as

S2 = m2, (2.11)

S3 = m3/(m2)
3/2, (2.12)

where m2 and m3 are the second and third moments, and S2 and S3 represent variance and
skewness, respectively.

Figure 2.3 shows the evolution of the second moment (first), third moment (second),
skewness (third), and mean ionization fraction (last) measured from raw simulations (i.e.,
no instrumental effect) for each model. The large variance of cold reionization model com-
pared to the others arises from the small spin temperature as inferred from Equation (2.9),
which makes the model particularly interesting given our observation limit. The skewness,
indicative of non-Gaussianity, diverges at the high frequency end as the ionization due to
star-forming galaxies becomes significant. The cold reionization model exhibits a distinct
skewness evolution toward negative values because the spin temperature of the model is
relatively smaller than the background radiation temperature. The distinct reionization his-
tories driven by different primary ionizing sources (large halos vs extended reionization) may
be characterized by both variance and skewness measurements.
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Figure 2.5: Probability distribution of the cold reionization model at specific redshifts for raw
simulations (i.e., no instrument effect). The dashed and solid vertical lines indicate the mean
and median, respectively. At z = 12.5, similar to the fiducial model, the cold reionization model
shows a skewed distribution due to heating, resulting in a negative m3. At z = 10.0, although
the distribution centered around TB ∼ −250 mK exhibits negative tails, m3 transitions to positive
values due to the ionized IGM at the zero bin. As reionization progresses further, m3 becomes
negative again as a large fraction of the IGM is ionized, leaving behind some negative IGM regions.

More specifically, the fiducial model undergoes a sign flip in m3 around z ∼ 12. This
behavior can be understood by examining the evolution of the brightness temperature proba-
bility distribution. Figure 2.4 shows the distribution for the fiducial model. At z ∼ 12.5, the
model exhibits an asymmetric distribution with a negative tail, resulting in a negative m3.
As the IGM heats up and becomes ionized, the distribution shifts in the opposite direction,
developing a positive tail with the mean value centered around 0 mK, leading to a positive
m3.

An interesting feature is observed in the cold reionization model, shown in Figure 2.3,
where m3 undergoes two sign flips, unlike the other models. This can also be explained
by the probability distribution at different redshifts. Figure 2.5 illustrates the brightness
temperature distribution for the cold reionization model. Similar to the fiducial model, at
z ∼ 12.5, the model has a skewed distribution with a negative m3. As the universe evolves,
the IGM becomes reionized but remains cold due to inefficient heating. This reionization
increases the height of the zero bin, resulting in a positive m3. However, once a large fraction
of the IGM is ionized, m3 turns negative again due to some remaining negative bins.

The fiducial model is used to test foreground subtraction methods in Section 2.4 and all
four models are employed to compare with observational data in Section 2.9.

The simulated whole sky maps are then transformed into our mock radio observation
using Equation (2.1)1. The mock observations are based on the antenna layout of the HERA

1We utilize a simulator provided by https://github.com/vispb/vispb.
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Table 2.2: Summary of Observational and Simulation Data for mapmaking.

Data Description Field
Observation (Phase I) With Systematics Mitigation I, II, III, IV

Without Systematics Mitigation I, II, III, IV
Simulation (Phase I)

Foreground + 21 cm (fiducial) Foreground Subtraction Validation II
21 cm (four models) EoR Detection Test Model I, II, III, IV

21 cm (cold reionization) Cosmic Variance Estimation I, II, III, IV
Thermal Noise Noise limit & Uncertainty of Mock Observation I, II, III, IV

Simulation (Phase II)
21 cm (fiducial) Forecasting Future Observation 3.5–9.5 hr

21 cm (perturbed) Fisher Matrix Analysis 3.5–9.5 hr
Thermal Noise Sensitivity on Prediction 3.5–9.5 hr

Phase I observation (H23) using a dipole feed beam for the primary beam (Fagnoni et al.,
2020). The simulated EoR signals described above are employed for the intensity of sources.
The visibility simulations cover a frequency range of Band 1 and Band 2, with a spacing
of 97.7 kHz. The mock observations span a 0–16 hr LST window that covers the fields of
interests as described in Section 2.3.1, at a time cadence of 21.4 seconds.

In order to account for the cosmic variance in one-point statistics measurements, we sam-
ple the sky at 30 different locations and construct mock visibilities for the cold reionization
model.

Foreground Simulations

To assess the performance of foreground removal techniques in Section 2.4, we also create
foreground visibilities by using Equation (2.1). We choose the LST of 5 hr field for the test
of foreground removal. For the foreground sources, we include compact radio components
and diffuse sky models. The former is drawn from the GaLactic and Extragalactic All-sky
MWA (GLEAM; Hurley-Walker et al., 2017) survey, and the latter is from a Global Sky
Model (GSM; Zheng et al., 2017).

For the point-source sky model, we incorporate both GLEAM I (Hurley-Walker et al.,
2017) and GLEAM II (Hurley-Walker et al., 2019) catalogs, along with the peeled bright
sources documented in Table 2 of Hurley-Walker et al. (2017) and Fornax A (e.g., Bernardi
et al., 2013). The GLEAM I survey essentially spans the entire southern hemisphere and
achieves 95% completeness at 160 mJy, excluding regions corresponding to the Large and
Small Magellanic Clouds and the galactic plane stripe. The GLEAM II catalog aims to fill
the gap within the diffuse galactic plane. While the second catalog is not entirely complete,
observations at LST = 5 hr are minimally affected by this incompleteness, as the primary
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Figure 2.6: A filter matrix for a 25.3 m baseline in the frequency × frequency dimension (left) and
in the frequency × delay dimension (right). The matrix on the left represents the filter to be applied
to the visibility data. In the right panel, it is illustrated how the filter effectively suppresses input
signals within the specified filter size at each frequency channel.

beam’s main lobe is sufficiently distant from the galactic plane. In addition, we try to fill in
the gap using a GSM described below.

Zheng et al. (2017) provides diffuse GSM maps with the bright compact sources removed
from the sky model. This precaution helps minimize the risk of double-counting bright
point sources when merging the point-source and diffuse sky models. The GSM offers high-
resolution models in HEALPix, pixelized at nside = 1024 for each frequency. The maps are
then downgraded to nside = 256 to ensure computational feasibility. The combination of the
point source survey and GSM equips us adequately to investigate the impact of foregrounds
on our foreground subtraction techniques, when the simulated foreground visibilities are
added to the EoR visibility simulations.

2.4 Foreground Removal

2.4.1 Wedge-filtering using DAYENU

In this section, we discuss a foreground filtering method using DPSS within the context of
wedge-filtering, followed by a comparative analysis of this method with other approaches,
including a standard wedge-masking method based on Fourier basis and foreground subtrac-
tion using PCA in Section 2.4.2.
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Wedge-filtering is a tool to avoid the foreground that occupies low Fourier modes and
to extract cosmological signals located at high delay modes. Specifically, we employ the 2D
power spectrum defined by the Fourier modes k⊥ and k∥, perpendicular and parallel to the
line-of-sight, respectively. The foreground with smooth spectral structure tends to be located
at low k∥ in the 2D power spectrum. The size of the foreground region along the k∥ axis in
the power spectrum increases with k⊥ due to the chromaticity of the interferometer, forming
the foreground wedge. Because the 21 cm signals are expected to have complex spectral
structure, they can exist outside the foreground wedge, called the EoR window (Datta et al.,
2010, Liu et al., 2014, Morales et al., 2012, Morales et al., 2018, Parsons et al., 2012, Pober
et al., 2014, Thyagarajan et al., 2013, Trott et al., 2012, Vedantham et al., 2012). The
wedge-filtering is then selecting k∥ modes in the EoR window, larger than a criterion. The
criterion can be chosen based on the field-of-view (FoV) of an instrument that determines a
maximum k∥ or delay mode occupied by foregrounds,

τmax =
b sin θ

c
, (2.13)

where b is a separation between an antenna pair, θ is the angular extent of a dish, and c is
the speed of light (Liu et al., 2014, Parsons et al., 2012). Note that k∥ ∝ τ .

For HERA 21 cm cosmology measurements, we must consider the FoV to be down to the
horizon of the observer’s frame, and thus the wedge-filtering size is subject to the horizon
limit (τhorizon = b/c). In addition, we may need to apply an extra buffer (τbuffer) above
the horizon limit due to the chromaticity of the primary beam, especially when there is
strong horizon emission convolved with the primary beam (Thyagarajan et al., 2016) as well
as systematics such as calibration errors (Kim et al., 2022, 2023, Orosz et al., 2019). For
instance, τbuffer = 300 ns is considered in H23 for their power spectrum estimation. In this
study, we choose the same buffer size of 300 ns for the wedge-filtering.

More specifically, one way of wedge-filtering uses an inverse covariance matrix which is
defined in the delay (Fourier) space by a top-hat filter as suggested by Ewall-Wice et al.
(2020). They developed a linear foreground filtering method based on the DPSS basis which
has two key characteristics: 1) it diagonalizes the covariance matrix in the frequency domain,
which is in the form of sinc function (i.e., sincx = sinx/x), and 2) it maximizes foreground
powers within the top-hat filtering window in the Fourier space. These attributes contribute
to the effectiveness and successful performance of a filtering process.

We utilize the DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU; Ewall-Wice
et al., 2020) method2 to filter out foregrounds per baseline. The filtering process is governed
by two essential parameters: the filtering size and a suppression factor for foregrounds within
the filtering window. Figure 2.6 represents an example of the filter for a 25.3 m baseline. In

2The python library is publicly available in https://github.com/HERA-Team/uvtools.
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Figure 2.7: Unfiltered and filtered maps of noiseless simulations at 160.0 MHz using the DAYENU
filter. The first panel presents a map of foreground and EoR models at LST of 5-hr field, The field
is dominated by two point sources and it is hard to detect the EoR signal. In the second panel,
wedge-filtered result of the first panel reveals that the amplitude of the map is reduced by a factor
of 105. We found the filtered results for foreground + EoR (second panel) and EoR-only (third
panel) simulations are consistent within ∼10% errors, which demonstrates foreground residuals are
sufficiently suppressed.

the left panel, the filter to be applied to visibility data is depicted, and the right panel shows
effective suppression of signals within the filter size to 10−6 in the Fourier domain. Due to
the sub-optimal performance at the band edges, we exclude the first and last four channels
in our analysis.

The wedge-filtered visibilities are turned into images using Equation (2.3). Figure 2.7
shows maps before and after wedge-filtering using DAYENU for the noiseless simulation data
with foreground and fiducial EoR models at 160.0 MHz. We use the filtering size of τfilter =
τhorizon + 300 ns and the foreground suppression factor ϵ = 10−9. In the first panel, we show
the map before the foreground subtraction, displaying that the dominant signals come from
the foregrounds and the 21 cm signals are barely visible. After wedge-filtering as shown in
the second panel, the foreground sources shown in the first panel are filtered out and the
amplitude of the map is decreased by 4 orders of magnitudes. The third panel presents
a wedge-removed result for the EoR-only simulation, which aligns closely with the second
panel. This indicates that the suppressed foreground residuals are small enough to detect
EoR signals. Given this result, we apply the wedge-filtering to EoR-only simulations in
Sections 2.9 and 2.10.1, assuming the foreground residuals in simulations are sufficiently
suppressed.
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Figure 2.8: Residual waterfalls after the wedge-masking (left) and DAYENU-filtering (right) displayed
as a function of frequency and LST. The original data includes both foregrounds and 21 cm signals
and the residuals are expected to be dominated by filtered EoR signals. DAYENU-filtering results
in a clean residual waterfall, reducing the foreground residuals below the 21 cm signals as seen in
Figure 2.7. Meanwhile, the performance of the wedge-masking method is sub-optimal especially
at the frequency edges due to the influence of the tapering function. Overall, the DAYENU method
outperforms the wedge-masking approach.

2.4.2 Different Foreground Subtraction Approach

In this section, we explore different techniques for foreground subtraction and compare their
performance to the DAYENU-filtering method based on simulation data.

A Standard Wedge-Masking Approach

Another technique for wedge-filtering involves masking low-delay modes containing fore-
grounds with the Fourier basis adopted by other studies (e.g., Kittiwisit et al., 2022, Prelo-
gović et al., 2021). The procedure is as follows:

• Fourier transform visibilities tapered by a window function along the frequency direc-
tion. We use a Blackman-Harris window function. This window function helps reduce
sidelobes of foreground emission in Fourier space that potentially contaminate the EoR
window.

• Mask the data inside a top-hat filter with a filter size of τfilter = τhorizon + 300 ns.

• Inverse transform the masked data to the frequency domain and undo the tapering
function.
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Figure 2.9: Comparison between DAYENU and wedge-masking methods. The first panel represents
a filtered EoR model provided for a reference. The second and third panels show the filtered
results for foreground + EoR models using wedge-masking and DAYENU-filtering methods. We pick
a central frequency channel, 160.0 MHz. The wedge-masking result shows disparity compared to
the reference, which indicates the masked result contains significant foreground residuals.

In Figure 2.8, the waterfall of simulated visibility as a function of frequency and LST
is shown for the wedge-masking (left) and DAYENU-filtering (right) methods, respectively.
We select the sky centered at LST = 5 hr and Band 2. Both results are filtered with the
buffer size of 300 ns for the simulation data containing both foreground and 21 cm signals.
The wedge-masked results exhibit a sub-optimal performance of filtering especially at the
frequency band edges due to the tapering function, which is consistent with the result of
Kittiwisit et al. (2022).

Figure 2.9 shows images for the filtered data at the central frequency channel (160.0 MHz)
created through mapmaking process. The first panel, which is a DAYENU-filtered map for EoR-
only signals, is given for reference. The second and third panels are the filtered results for the
simulation data including both foregrounds and 21 cm signals using the wedge-masking and
DAYENU-filtering methods, respectively. The DAYENU residual recovers the reference image as
expected, while a noticeable disparity is observed in the case of the wedge-masking method
compared to the first panel. This suggests that the DAYENU-filtering method outperforms the
standard wedge-masking approach. In the remaining sections, the DAYENU-filtering method
is chosen for our wedge-filtering technique.

PCA Subtraction Technique

In this section, we contrast the wedge-filtering technique with a foreground subtraction
method based on PCA in the image domain, a widely employed approach in radio astronomy
(e.g., Alonso et al., 2014, Cunnington et al., 2022, Spinelli et al., 2021). The analysis is
performed with simulation data. This PCA method identifies spectrally smooth foreground
components, which are subsequently subtracted from the original data to isolate subtle

45



34

32

30

28

26

D
ec

 (d
eg

)

DAYENU-filtered
(EoR only)

72747678
RA (deg)

34

32

30

28

26

D
ec

 (d
eg

)

PCA-subtracted
(EoR only)

0.10

0.05

0.00

0.05

0.10

T B
 (m

K
)

DAYENU-filtered
(Foreground+EoR)

72747678
RA (deg)

PCA-subtracted
(Foreground+EoR)

0.10

0.05

0.00

0.05

0.10

T B
 (m

K
)

Figure 2.10: Comparison of wedge-filtering and PCA foreground subtraction at 160 MHz. Top and
bottom rows represent DAYENU-filtered and PCA-subtracted results, respectively. The difference
between the first and second panel presents the foreground residual after the foreground removal.
Foreground residuals shown in the bottom right panel indicates the DAYENU-filtering outperforms
the PCA-subraction.

cosmological signals.

The process of performing PCA to create an foreground estimate of x̂FG can be succinctly
summarized by the following steps:

• Centering the Data: subtract the mean of the map at each frequency channel, x̂c(ν) =

x̂(ν)− ⟨x̂(ν)⟩θ where x̂ = x̂FG + x̂EoR and ⟨· · · ⟩θ indicates averaging over pixels.

• Covariance Matrix: compute the covariance matrix of the centered data,

C =
XTX

Nθ − 1
(2.14)

where X is composed of the centered data with Nθ ×Nν and Nθ = NRA ×NDec.

• Eigenvalue and Eigenvector Calculation: calculate the eigenvalues (Λ) and correspond-
ing eigenvectors (U) of the covariance matrix, C = UΛUT. The eigenvectors represent
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Figure 2.11: Comparison of performance of wedge-filtering (blue) and PCA foreground subtraction
(orange) as a function of frequency. The fractional error associated with wedge-filtering is con-
sistently lower than that of PCA subtraction across the frequency range. The mean error across
frequencies suggests that wedge-filtering retains approximately 10% of foreground residuals.

the directions along which the data varies the most, while the eigenvalues represent
the magnitude of the variance in these directions.

• Selecting Principal Components: rank the eigenvectors by their corresponding eigen-
values in decreasing order. These eigenvectors are often called “principal components".
We analyzed the eigenvalue spectrum as a function of the component rank and iden-
tified a suitable PCA component rank, which serves as the transition point between
the sharply decreasing and gradually changing segments in the spectrum. We found
NPCA = 20 is enough to capture most features of foregrounds while minimizing the
signal loss of the EoR, which gives UFG from the columns of U corresponding to
Ncomponent.

• Projecting Data and Foreground Subtraction: The final step involves projecting the
original data onto the selected principal components, x̂FG = UT

FGx̂. Then the residual
is the cosmological signal that we want to extract, x̂EoR = x̂− x̂FG = (I−UT

FG)x̂.

The choice of NPCA = 20 is determined by identifying the component where the eigenvalue
exhibits a sharp cut-off with the principal component and simultaneously ensuring that the
fractional error, defined as the ratio between the PCA-subtracted foreground residuals and
the PCA-subtracted EoR signals, is minimum.

Top and bottom panels of Figure 2.10 present the foreground subtraction results for
DAYENU-filtering and PCA-subtraction, respectively. For the wedge-filtering, we consider
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τbuffer = 300 ns. The first column is the outcomes for the EoR-only simulation, displaying
both wedge-filtering and PCA-subtraction methods yield similar results.

However, the second column, which includes both foregrounds and EoR signals, exhibits
noticeable differences in performance between the methods. The DAYENU-filtered map, even
with the addition of foregrounds, remains consistent with the EoR-only simulation. In con-
trast, the PCA-subtracted map looks noisy, which means the map is significantly contami-
nated by foreground residuals as shown in the bottom right panel.

Fractional errors, defined by the median ratio of the magnitude of foreground residuals
to that of the filtered EoR-only data over pixels, are presented in Figure 2.11 as a function
of frequency. As observed in Figure 2.10, the DAYENU-filtering method, on average, yields
fractional errors of about 10%, whereas the PCA-subtraction method results in the frac-
tional errors larger than 50%, indicating filtered data contaminated by foreground residuals
significantly across all frequencies. The sub-optimal performance of the PCA-subtraction
method may be due to the presence of sidelobes in our dirty maps, which makes the spectral
structure of the foregrounds less smooth in the image space.

While the contamination can be mitigated by assigning more than 20 PCA components
to the foreground, it comes at the cost of a significant reduction in the EoR signal. Conse-
quently, the PCA subtraction method may not be optimal for studying one-point statistics
with our instrument. Based on the results for the DAYENU wedge-filtering method compared
to the wedge-masking and PCA-subtraction methods, we adopt the DAYENU filter as our
filtering method throughout the remaining sections.

2.5 Instrument Effects on One-point Statistics

In Section 2.4.1, I explored the effect of wedge-filtering on the resultant images. In this
section, I examine how the PSF and wedge-filtering affect measuring one-point statistics of
our theory models. Figure 2.12 shows m2 (top), m3 (middle), and S3 (bottom) measurements
for the (thermal) noiseless fiducial model. The dotted lines indicate raw EoR model which
means it is free from the effect of instrument and foregrounds.

The blue lines represent cases where the instrument response or PSF is applied without
accounting for foreground contamination. The solid lines and shaded regions denote the
mean and sample variance measured across a 60 × 10 square degree field over 30 different
sky realizations, respectively. Due to our map normalization scheme, which preserves surface
brightness, the one-point statistics measurements are not conserved after PSF convolution,
leading to a significant reduction in variance by a factor of 104. Although m3 is affected
by large sample variance, there remains a possibility of detecting non-zero m3 signals at
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Figure 2.12: m2 (top), m3 (middle), and S3 (bottom) for the fiducial model as a function of
frequency given Phase I mock observations. The dotted line represents measurements from raw
simulations without instrument effects. The blue solid line and shaded region indicate the mean
and sample variance of each statistic after applying the PSF, assuming no foreground. The red
dashed line and shaded region show the mean and sample variance after applying both the PSF and
wedge-filtering. The PSF significantly reduces the magnitudes of the m2 and m3 measurements.
For m3 in particular, the wedge-filtering further diminishes the m3 signals, making it challenging to
detect non-Gaussian features. Before applying wedge-filtering, the median sample variance (shaded
region) relative to the mean amplitude (solid line) is 19%, 132%, and 110% for m2, m3, and S3,
respectively. After wedge-filtering, these median values turn into 13%, 192%, and 181% for m2,
m3, and S3, respectively. For m3, the scale is linear between −10−6 and 10−6, while outside this
range, it transitions to a logarithmic scale. For S3, the scale is linear between −10−1 and 10−1, and
otherwise it is a logarithmic scale.

higher frequency bands. The reduced sample variance beyond 160 MHz may result from the
increased reionization of neutral hydrogen, causing different sky fields to appear more similar.
Additionally, S3 (bottom panel) suggests that meaningful detection at z > 8 is challenging,
but there is an increasing trend in S3 toward lower redshifts, despite its magnitude being
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Figure 2.13: m2 (top), m3 (middle), and S3 (bottom) for the cold reionization model as a function
of frequency given Phase I mock observations. The format is the same as that of Figure 2.12
but for the cold reionization model. Similar to the fiducial model, the variance is reduced by a
factor of 104 when the PSF is applied, and it is further reduced by two orders of magnitude after
wedge-filtering. As with the fiducial model, detecting non-Gaussianity, whether through m3 or S3,
becomes challenging due to the combined effects of the PSF and wedge-filtering. Before applying
wedge-filtering, the median sample variance (shaded region) relative to the mean amplitude (solid
line) is 20%, 76%, and 60% for m2, m3, and S3, respectively. After applying wedge-filtering, these
median values change to 13%, 238%, and 244% for m2, m3, and S3, respectively. For m3, the scale
is linear between −10−4 and 10−4, transitioning to a logarithmic scale outside this range. For S3,
the scale is linear between −10−1 and 10−1, with a logarithmic scale applied beyond these limits.

reduced by roughly an order of magnitude compared to S3 derived from the raw simulation.

When foregrounds are accounted for and wedge-filtering is applied to mitigate them, the
amplitude of the one-point statistics measurements is further reduced. The dashed red line
in Figure 2.12 shows that m2 decreases by an order of magnitude, and the signal in m3

approaches zero, indicating that most of the non-Gaussianity information is washed out due
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Figure 2.14: m2 (top), m3 (middle), and S3 (bottom) for the fiducial model as a function of frequency
with HERA-320. The format is the same as that of Figure 2.12 but for the HERA-320 configuration.
The PSF effect reduces m2 by a factor of 103 assuming no foreground, with further reduction through
wedge-filtering by an order of magnitude. In the blue curve, m3 exhibits a distinct trend compared
to Figure 2.12, with relatively smaller sample variance. The red line shows that wedge-filtering
decreases m3 signals and increases the sample variance, making it challenging to detect significant
m3 signals at z > 7.5. However, there may still be potential to detect deviations in m3 and S3

measurements from the zero baseline at low redshifts. Before applying wedge-filtering, the median
sample variance (shaded region) relative to the mean amplitude (solid line) is 10%, 29%, and 15%
for m2, m3, and S3, respectively. After applying wedge-filtering, these median values change to
23%, 37%, and 112% for m2, m3, and S3, respectively

to the wedge-filtering. The S3 plot suggests that detecting non-zero skewness in Band 1 and
Band 2 is challenging, although there is a slight increasing trend toward lower redshifts.

Figure 2.13 presents the results for the cold reionization model. Similar to the fiducial
model, m2 decreases by a factor of 104 after the instrument response is applied and is further
reduced by an additional order of magnitude after the wedge-filtering is applied.
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In Section 2.3.2, we discussed the sign flips in m3 observed in the raw simulations of the
cold reionization model, which are revisited by the black dotted line in Figure 2.13. The sign
flips were previously interpreted based on the idea that the skewed shape of the brightness
temperature distribution, combined with the pileup in the zero bin due to reionization,
determines the sign of m3, as illustrated in Figure 2.5. When considering the PSF effect
with no foreground (blue solid line), sign flips still occur but at different locations compared
to the black dotted line, possibly due to additional effects like grating and/or side lobes. The
blue shaded region indicates that the uncertainty in the location of these sign flips spans
140—160 MHz. However, once wedge-filtering is applied, the m3 and S3 signals are mostly
removed.

In addition to the Phase I observation, we explore the predicted one-point statistics for
the HERA-320 array configuration. The PSF of HERA-320 is narrower compared to that of
the Phase I observation, allowing us to probe smaller scales. Figure 2.14 shows the results
for the fiducial model with 320 antennas. The mean and sample variance, represented by
lines and shaded regions respectively, are estimated across a 60×10 square degree field from
30 random independent sky locations. Due to the ability to capture additional signals from
smaller scales, the variance after applying the PSF (blue line) is larger than in Figure 2.12,
though still reduced by a factor of 103 compared to the raw simulations. The wedge-filtering
continues to reduce the variance by an order of magnitude, as indicated by the red curve.

Unlike the Phase I observation, which utilized around 40 antennas, HERA-320 predicts
that non-zero m3 signals (assuming no foregrounds, as shown by the blue line) are detectable
across redshifts, with sign flips being relatively well-identified due to the smaller sample
variance compared to Figure 2.12. However, when wedge-filtering is applied, detecting non-
zero m3 at z > 7.5 becomes challenging because of the large sample variance. Nonetheless,
there remains some potential for detecting non-zero m3 and S3 at lower redshifts in the red
curves. To fully assess detectability for future observations, it is necessary to account for
thermal noise in addition to sample variance. In Section 2.10.1, we explore the detectability
with HERA-320 at low redshifts, considering different observation time.

2.6 Noise Simulations

If the observational data is free from systematics and dominated by thermal noise after
foreground removal, noise simulations provide theoretical expectation of measured one-point
statistics (Sections 2.8 and 2.9). Additionally, noise simulations are used to indicate the
sensitivity of future observations, allowing us to forecast one-point statistics for the full core
array of HERA (Section 2.10.1).
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Specifically, thermal noise in the visibility data per baseline follows

n ∼ 1√
2
N (0, σ2

n) +
i√
2
N (0, σ2

n), (2.15)

where N (0, σ2
n) is a normal distribution with a zero mean and variance specified by Equa-

tion (3.6). We draw samples of the noise visibility based on Equation (2.15) using a Monte-
Carlo simulation and perform forward modeling to form noise images as follows:

x̂N = DA†N−1n. (2.16)

The noise properties in the image domain can be understood through the map noise
covariance matrix, representing the correlated noise between pixels, which can be compute
as follows,

CN = DA†N−1ADT = PDT. (2.17)

The noise variance, diagonal elements of CN, can be explicitly written as,

Cii = PiiDii (2.18)

≈
∑

tB
2
it∑

tBit

σ̄2
n∑
tBit

(2.19)

= σ̄2
n

∑
tB

2
it(∑

tBit

)2 , (2.20)

For a single time integration, the variance of a pixel is equal to σ2
n, which indicates the

noise variance is unaffected by the beam and independent of the pixel’s location. For longer
integration, the noise is attenuated by the primary beam at pixels far away from the zenith.
However, because the signals also experience attenuation at these off-zenith pixel locations
due to the primary beam, S/N ratio may not see improvement at such pixel locations. For
example, a naive estimation of S/N ratio using Equations (2.7) and (2.20) suggest S/N
∝

√∑
tB

2
it, indicating the decrease of S/N at pixel locations distant from the beam center.

Mapmaking processes for noise data of the Phase I observation and future observation
are more detailed in Sections 2.7 and 2.10.1, respectively.
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Figure 2.15: Image cubes for wedge-filtered observational data with comprehensive systematics
removal. The foreground subtraction is performed using the DAYENU-filtering method. The wedge-
filtered data is expected to be noise-limited. Left and right panels represent Band 1 and Band 2
results, respectively. The maps are centered at 2 hr (Field I). Those cubes are employed to measure
statistical quantities at each frequency or redshift. Bright slices, appearing at 131 and 157 MHz,
correspond to systematics residuals discussed in Section 2.8.2.

2.7 Wedge-filtered Data Cube Construction for Phase I
Observation

In this section, we provide a description of the data products used for measuring one-point
statistics for the Phase I observation. As we are interested in measuring one-point statistics
at each redshift, data cubes in the dimension of RA × Dec × frequency are constructed for
observational and simulation data.

As described in Section 2.3.1, we use calibrated observational visibility data for Band 1
and Band 2 for each EE- and NN -polarizations. In order to remove noise biases for variance
measurements (note that skewness is an unbiased measurement), we divide the visibility data
into even and odd time groups by selecting every other timestamp. If thermal noise in the
maps remains uncorrelated across different time groups, it is expected that when cross-
multiplying maps from these time groups, the resulting variance will be free from biases
introduced by noise. We utilize observational data with and without systematics mitigation
to investigate the effect of systematics in measuring one-point statistics in the image domain.

The visibility datasets undergo the DAYENU filtering with the buffer size of 300 ns and the
foreground suppression factor of 10−9. The filtered data are converted into images through
the mapmaking process (Section 2.2) for each frequency channel, polarization, and time
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group (even and odd). Pseudo stokes-I maps are made by averaging two polarization maps.
Image cubes for Band 1 and Band 2 are constructed for each hour of LST, spanning 15×10
square degrees in RA × Dec, which are then stitched together to cover each field as defined
in Section 2.3.1.

An example for the wedge-filtered data cubes of observational data is presented in Fig-
ure 2.15. Left and right panels correspond to the image cube of Band 1 and Band 2, respec-
tively, centered at the 2 hr LST field (Field I) for a 15×10 square degree field. The cubes
are generated from observational data, with comprehensive systematics mitigation, implying
that they should exhibit random Gaussian fields from thermal noise. However, even after the
systematics were subtracted, some systematics residuals may still be present, as indicated by
bright slices appearing at around 131 and 157 MHz. We will discuss statistical measurements
on the image cubes in Section 2.8.2.

HERA observations can achieve higher resolution along the line-of-sight (or frequency)
direction, approximately 2 cMpc, compared to the spatial direction, which is around 60 cMpc
for the entire HERA core array. The finer resolution along the frequency axis than the spatial
direction is illustrated in Figure 2.15.

For the 21 cm simulation data described in Section 2.3.2, we convert the simulated
visibility data into data cubes for each band after the DAYENU filtering with the same buffer
size and the suppression factor as the observational data. Though the 21 cm simulation
is noiseless, we split the visibility data into different time groups to be consistent with the
process of the observational data. All four distinct EoR models undergo the same process.
Mock visibilities to estimate the cosmic variance of the cold reionization model are also
converted to image cubes in the same way, which are used in Section 2.9.

As described in Section 2.6, thermal noise is realized in visibility space using a Monte-
Carlo simulation according to the specification of the Phase I observation. We simulate
1000 sets of random noise visibilities, spanning a LST range of 0–15 hr for EE- and NN -
polarizations. We divide each visibility data into even and odd timestamps. The visibility
data of each time group is then DAYENU-filtered and transformed to pseudo stokes-I maps as
the observational data. The noise image cubes are used for statistical inference of observa-
tional data compared to expected noise levels in Sections 2.8 and 2.9.
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Figure 2.16: Comparison of maps before (first panel) and after systematics mitigation (second panel)
at 126.0 MHz in Field I. The last panel shows the difference between them, which is of a similar order
of magnitude as the mitigated result, indicating the data before mitigation is systematics-limited.

2.8 Effects of Systematics on Measuring One-Point Statis-
tics

2.8.1 Systematics Residual in Wedge-Filtered Data

Major components of systematics that were mitigated in the HERA Phase I observation are
the cable reflection and crosstalk (H22a, H23). The reflection in the coaxial cable may occur
due to an impedance mismatch at the termination of the cable. This reflection results in
duplicates of signals appearing at a certain delay, equivalent to twice the light travel time
along the cable. This systematic effect is addressed through reflection calibration, a process
that involves fitting reflection coefficients using the autocorrelation visibility within a delay
range of 150–1500 ns (Kern et al., 2019, 2020b). This calibration method effectively removes
the reflection terms through a direction-independent calibration process.

Crosstalk represents another significant systematic effect in Phase I observations, poten-
tially manifesting across a wide range of delays. The hypothesis suggests that feed-to-feed
reflections may cause autocorrelation visibilities to be copied into cross-correlations at higher
delays. The autocorrelations typically exhibit a relatively gradual evolution over a primary
beam crossing timescale. With this attribute, in order to mitigate the corruption, a model-
ing technique using Singular Value Decomposition (SVD) is employed for each baseline to
identify time and delay modes that are influenced by the crosstalk. This technique, coupled
with low-pass filtering along the time axis through GPR, aids in suppressing the systematics
significantly (Kern et al., 2019, 2020b). The full systematic mitigation on the observational
data we use was implemented by H23.

Figure 2.16 exhibits the wedge-filtered maps without and with the systematics mitigation
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Figure 2.17: P(D) of wedge-filtered maps for data before the systematics mitigation (left column)
and after the mitigation (right column) for Band 1 (top) and Band 2 (bottom). The 95% confidence
interval of noise simulation distributions is presented as a blue shaded region for reference. The
deviation in P(D) from the reference distribution for the data without systematics mitigation is
reduced after applying the systematics mitigation, although some outliers still remain.

described above. Notably, certain prominent diffuse structures evident in the first panel are
no longer present after the mitigation process (second panel). In the absence of appropriate
mitigation, wedge-filtered maps might retain foregrounds introduced by systematic effects.
The last column, illustrating the difference between the two maps, potentially indicates the
presence of foreground residuals leaking into high delay modes in the absence of systematics
mitigation.

To investigate the effects of systematics on map properties, we employ a P(D) analysis
(Condon, 1974, Scheuer, 1957). P(D) represents a density profile of pixel values in brightness
temperature, where random thermal noise is expected to follow a Gaussian distribution. The
results for Field I are shown in Figure 2.17. The top and bottom panels correspond to Band
1 and Band 2, respectively. Every 10th channel from each band is selected for illustration
purposes. Maps from even and odd time groups are averaged. To examine how systematics
affect the distribution shape, P(D) is measured from maps of the wedge-removed data before
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Figure 2.18: m2, variance measurements, of wedge-filtered observation and noise maps as a function
of frequency at different fields. Gray and orange curves represent the data before and after sys-
tematics mitigation, respectively. The dark and light blue shaded regions, corresponding to 1σ and
2σ confidence, respectively, are defined by the 1000 random noise realizations. Both Band 1 (top
row) and Band 2 (bottom row) results show the variance is significantly reduced with the systematic
mitigation though there are still systematics observed beyond the theoretical noise expectation even
after the systematics mitigation for all LSTs.

(left) and after (right) systematic mitigation. The 95% confidence intervals of 1000 noise
simulations are shown as blue shaded regions for reference.

In the absence of systematics removal, for most frequency channels, noticeable deviations
from a Gaussian profile, such as broadening, asymmetry, and tailedness, are evident in the
P(D), indicative of non-Gaussianity caused by systematics. After systematics subtraction in
the HERA Phase I observation, where the data is expected to be noise-limited, the P(D) for
most channels are aligned with the expected noise profile, but there are still some outliers. We
further investigate the effects of systematics residuals on one-point statistics measurements
quantitatively over a range of frequency in the following section.
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2.8.2 Statistical Measurements for Wedge-removed Observational
Data

As observed in Section 2.8.1, some residual systematics remain in the wedge-filtered map
even after the mitigation efforts. In this section, we examine the systematics effects on one-
point statistics of observational data in comparison to expected theoretical noise across a
range of frequencies.

Variance is a primary quantity in one-point statistics which is related to the power spec-
trum,

σ2 =

∫
d3k

(2π)3
P (k), (2.21)

where P (k) is a power spectrum of signals. If there are systematic residuals in the data,
particularly foreground residuals leaking into the EoR window in the power spectrum, the
variance tends to increase and becomes sensitive to the presence of these systematic residuals.

To eliminate noise bias in variance measurements, we cross-multiply the even and odd
wedge-removed maps and average the product across pixels at each frequency channel for
both observational data and noise simulations for each field.

The variance measurements, or m2, are presented in Figure 2.18 for Band 1 (top) and
Band 2 (bottom) at each field. The y-axis represents the variance after removing the noise
bias. The dashed line represents the mean, while the dark and light blue shaded regions
indicate the 1σ and 2σ confidence intervals, respectively, based on 1000 noise simulations.
The noise simulation fluctuates around a zero mean, as expected. A smaller root-mean-
square (RMS) of the m2 measurements is achieved in Field II, as it is a relatively quiet radio
sky in terms of foreground noise.

In both Band 1 and Band 2, there are substantial excess of variance in the presence of sys-
tematics (gray curve) as expected. The oscillating patterns have a period of approximately
1 MHz, corresponding to 1000 ns, which is a characteristic delay of crosstalk. After imple-
menting systematics mitigation, the excess of variance is reduced, with a more pronounced
effect observed in Band 1. However, the orange curves still show variance excess, indicating
remaining systematics, especially more prominent in Field II with deeper observations. This
excess of variance could arise from systematics residuals of cable reflections, crosstalk, faint
RFIs, and/or chromatic gain errors introducing foreground leakage into high delay modes
(H22a, H23).

The removal of strong and broad RFIs around 137 MHz (associated with ORBCOMM
satellites) and 150 MHz during calibration results in significant discontinuities in the spec-
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Figure 2.19: HERA stripe for wedge-removed observational data. The top and bottom panels display
maps at 160.0 MHz and 156.0 MHz, respectively. The top panel shows a map that is relatively free
of systematics, whereas the bottom panel exhibits a distinct foreground residual feature at 3.3 hr,
which are residuals of the grating lobes of Fornax A.

trum (H22a H23). These gaps may interact with the data reduction process, including sys-
tematics mitigation, inpainting of removed data points, and smoothing of calibration gains.
This interaction might explain unsuccessful removal of systematic residuals including the
observed peaks around 131 MHz and 156 MHz. Although these features are attenuated in
power spectrum estimation due to a tapering function, they can be manifest in our imaging
analysis.

Figure 2.19 illustrates an example of systematics residuals, or foreground residuals, in
image space. Wedge-removed maps at different frequency channel are presented. Each panel
has the same dimension of Figure 2.2. At 160.0 MHz (top panel), the foreground-removed
map displays a relatively clean map with minimal foreground contamination. In contrast, at
156.0 MHz (bottom panel), there are noticeable features of foreground residuals leaking into
the EoR window at 3.3 hr, corresponding to the residuals of grating lobes from Fornax A.
We find the presence of foreground residuals across a range of frequencies, which may explain
the variance excess shown in Figure 2.18. The increasing amplitude of noise at around 14 hr
in both maps is due to the sky approaching the bright galactic center.

To separate the behaviors of m2 and m3, instead of the standardized third moment S3,
we use the m3 as a statistical indicator of non-Gaussianity. As evident in Figure 2.17, some
frequency channels affected by systematics exhibit pronounced non-Gaussian features, even
with the mitigation efforts. In Figure 2.20, we depict the m3 as a function of frequency for
Band 1 and Band 2 in each field. Because m3 is an unbiased measurement, the maps of even
and odd time groups are averaged before we measure the m3. The blue dashed lines represent
the mean, and the dark and light shaded regions denote the 1σ and 2σ confidence intervals
of m3 respectively, as calculated from 1000 noise simulations. As expected the thermal noise
drawn from a random Gaussian distribution has a zero mean skewness.

The results for the data after the mitigation are shown in orange lines. The m3 measure-
ments oscillate around the zero mean, which is largely consistent with the noise simulations.
However, there are peaks surpassing the 2σ boundary across all fields, particularly noticeable
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Figure 2.20: m3 measured from the wedge-filtered observation, along with the noise simulations
denoted as the mean, 1σ, and 2σ confidence intervals, at different fields. Orange curves represent
the data with systematics mitigation. Though there are some outliers observed beyond the 2σ
boundary, m3 measurements for large fraction of frequency channels are confined within the 2σ
range except for Field II.

in Field II as we see in Figure 2.18. Unlike the variance, systematics effects in m3 can be
either positive or negative values. The results from m2 and m3 underscore the significance
of mitigating systematics to a deeper level for exploring one-point statistics of 21 cm signals,
especially in future observations with HERA.

2.9 Comparison with 21 cm Simulations

As detailed in Section 2.3.2, we simulate four distinct EoR models to investigate one-point
statistics measurements to assess their detectability. In this section, we perform a likelihood
analysis for m2 measurements and explore the detectability of m3 measurements based on
Phase I observations compared to the 21 cm model.

Previous studies adopted analytic calculations to estimate the errors associated with the
statistical quantities (e.g., Kittiwisit et al., 2017, Watkinson and Pritchard, 2014). In this
study, rather than relying on an analytic form, we employ 1000 noise Monte Carlo simulations
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Figure 2.21: m2 measurements based on wedge-filtered data in comparison to simulations for each
field and each band. Frequency averaging over 0.5 MHz bin is performed to improve the sensitivity.
Variance is measured from every 2 MHz sliced volume. The 1σ errors computed from noise simula-
tions are indicated by the black dashed lines, providing the theoretical expectation. The m2 values
of the observational data are represented by pink symbols with 2σ error bars, derived from the same
noise simulations, along the y-axis. The x-axis error bar represents the bin width. The lowest upper
limit, considering the 2σ error bar, is 0.047 mK2 at 161 MHz in Field II. Additionally, four 21 cm
models are compared to the observational data points. These simulations do not include thermal
noise. Blue shaded regions correspond to the cosmic variance of the cold reionization model derived
from 20 samples.

with a brute-force approach. This method allows us to estimate the uncertainties of the mean
of statistical quantities and directly calculate the error bars on the observational data. It
accounts for correlations between pixels induced by instrumental effects and correlations
between frequency channels introduced by wedge-filtering.

2.9.1 Statistical Tests on m2

While variance does not measure non-Gaussianity, it is useful for evaluating the likelihood
of an EoR model based on the fluctuations of 21 cm signal of each model relative to ob-
servational data, analogous to the power spectrum analysis. Figure 2.21 presents the m2

measurements for the four 21 cm models in comparison to the observational data points
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in each field. We use the dataset with systematics mitigated. To increase sensitivity in
our observations, we coherently average the intensity maps over every 5 channels, roughly
corresponding to a 0.5 MHz bin size, which improves sensitivity in m2 by about 5 times.
We then bin the image cube into sub-band data volumes using a 2 MHz interval between
117–133 MHz for Band 1 and between 152–168 MHz for Band 2. The variance is measured
in each sub-band volume, further enhancing sensitivity in m2 by about 2 times. As in the
previous section, we cross-multiply image volumes from even and odd time groups to remove
noise bias. The same process is also applied to the maps of wedge-filtered noise and 21 cm
simulations.

We use the noise simulations to estimate the uncertainty of the mean of m2, or RMS of
the noise simulations, represented by black dashed lines in Figure 2.21, which provides the
theoretical expectation when the foreground-removed observational data is noise-dominated.
This corresponds to dark shaded region in Figure 2.18 but with deeper noise level as we av-
erage intensity maps and measure the variance in a volume as described above. Additionally,
the noise simulations are used to estimate the observational error bars for each sub-band,
without accounting for the effects of systematics on these error bars.

We show the m2 measurements for Band 1 (top row) and Band 2 (bottom row) in
Figure 2.21, where the observational data is denoted as pink circles with 2σ error bars from
the noise simulations. The data points with m2 smaller than zero are set to zero and the
upper limit is set by the 2σ error bars from the zero. The data points with positive values
have a upper limit of m2 + 2σ. In addition, we illustrate the m2 measurements for 21 cm
simulation data including fiducial, cold reionization, large halos, and extended reionization
models. Cosmic variance is illustrated as a shaded region for the cold reionization model,
accounting for roughly 15% of the amplitude of m2.

It is apparent that some frequency bins are heavily contaminated by systematics residuals,
leading to a large variance beyond the 2σ error bar compared to the expectation. The
variance excess is more evident across frequency bins than we see in Figure 2.18 because
the thermal noise is integrated down through averaging the images along the frequency
while the systematics may not be integrated down. Morales et al. (2018) studied the effects
of calibration errors on an imaging power spectrum in comparison with a delay-spectrum
power spectrum. They found that the imaging power spectrum is more sensitive to frequency-
independent calibration errors than the delay-spectrum power spectrum because calibration
errors from different baselines introduce spectral structure in the image space. The integral
of the imaging power spectrum corresponds to the variance we measure, which may explain
why our variance measurements are sensitive to systematics.

If the data is free from systematics and aligned with the thermal noise expectation,
Band 2 may be employed to reject the cold reionization, especially in Field II as the data
points are lower than the model. However, in the presence of the systematics residuals, it is
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Figure 2.22: Normalized likelihood for m2, marginalized over systematics defined in Equation (2.23).
We present the normalized likelihood for each field for Band 1 (top) and Band 2 (bottom), using all
observational data points shown in Figure 2.21. The black solid line is the likelihood considering all
data points across all fields. To see the impact of systematics mitigation, we provide the likelihood
without the mitigation, based on all fields (gray dashed line). We assume the variance model of
m2 ∝ ν0. The cold reionization model has m2 about 0.07 mK2 on average in Band 2, which implies
the model is likely to be rejected by the likelihood analysis.

not trivial to make such conclusion. For Band 2, there is one frequency bin in Field II where
the m2 value of the observational data, when considering the 2σ error bar, is lower than
that of the cold reionization model. The upper limits could help constrain certain model
parameters.

To understand the impact of the variance measurements on evaluating 21 cm models, we
employ a likelihood analysis, similar to the approach used in H22b and H23. The likelihood is
a probability of the observed data given different values of the model parameters. Assuming
random Gaussian thermal noise, the likelihood is written as,

L(d|θ,M,u) ∝ exp

(
− 1

2
r(θ,u)TΣ−1r(θ,u)

)
, (2.22)
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where r(θ,u) = d − u − Wm(θ), d is the m2 measurement of observational data, θ are
parameters of a model M, and u is the systematics. W is a window function that maps a
theoretical model to observable. Because we forward model our measurements, our 21 cm
measurements account for the effect of the window function. Σ represents a covariance
matrix of the observational data and models.

Assuming the systematics are positive, which is supported by Figure 2.18, a marginal-
ized likelihood over systematics can be obtained by integrating Equation (2.22) with the
constraint u ≥ 0,

L(d|θ,M) ∝
Nd∏
i

1

2

(
1 + erf

[
ti√
2σi

])
, (2.23)

where erf is the error function, ti is ith element of t = d −Wm, and Nd is the number of
frequency bin. σi is the square root of the quadrature sum of the variance derived from noise
simulations and the cosmic variance corresponding to 15% of the model variance. In this
derivation, we assume each bin is uncorrelated. The details on the derivation are described
in H22b.

In Figure 2.22, we displays the normalized likelihood, computed for all data points of
each field given in Figure 2.21. The “All Fields” result (black solid line) is based on all data
points from all four fields. Top and bottom panels represent Band 1 and Band 2 results,
respectively. We assume the model variance of m2 ∝ ν0 for both bands. The shape of
the normalized likelihood serves as an upper limit to constrain feasible model variance. We
also present the normalized likelihood before systematics mitigation, indicating a significant
improvement after the removal of systematics.

The likelihood for “All Fields” in Band 2 is the most effective in constraining models.
The cold reionization model has about 0.07 mK2 in m2 averaged over the frequency band of
Band 2. The likelihood at m2 ∼ 0.07 mK2 is < 10−5, suggesting that the cold reionization
model is likely to be rejected, consistent with findings from power spectrum analyses in H22b
and H23. To investigate other models, we need an improvement in variance by at least two
orders of magnitude.

2.9.2 Comparison with 21 cm Model based on m3

Investigating EoR models through skewness measurements, considering the sensitivity of the
observational data, instrumental effects, and signal loss due to foreground removal, is quite
challenging. In this section, we show the m3 measurements of the observational data in
comparison with the cold reionization model, which exhibits a larger variance than other
21 cm models.
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Figure 2.23: m3 measurements for wedge-removed observational data (pink circles) in comparison
to simulations for Band 1 (top) and Band 2 (bottom) across all fields. The 1σ errors in m3 derived
from noise simulations are represented by black dashed lines. The observational data is along
with 2σ error bars, which are derived from the same noise simulations. Though there are some
outliers especially in Field II, the observational data is largely consistent with the noise simulations.
Additionally, the noiseless cold reionization model, characterized by larger variance than other 21 cm
models, is depicted with blue lines including the cosmic variance shown in shaded regions. Due to
the instrument resolution and wedge-filtering, the model effectively shows zero m3. A close-up view
of this model is presented in Figure 2.24.

Similar to Section 2.8.2, we make image cubes by averaging maps from even and odd
timestamps. We average the images for 5 channels and bin the frequency-averaged data into
2 MHz sliced volumes to measure the m3 as we do for the m2 measurements.

We show m3 measurements of wedge-filtered observational data, along with the noise
simulations and the noiseless cold reionization model in Figure 2.23. The black dashed
lines are the 1σ error derived from the noise simulations. Unlike the variance, skewness
measurements of 21 cm model can be either positive or negative, and thus we present m3

values of noise simulations in both axes.

The observational data, represented by pink symbols, is closely aligned with the black
dashed lines within the 2σ error bars, which are also derived from the noise simulations.
There are still some frequency bins that are heavily affected by systematics, particularly

66



117.5 120.0 122.5 125.0 127.5 130.0 132.5

10 3

0

10 3

10 2

10 1

100

(B
an

d 
1)

m
3 

(m
K

3 )

wedge-removed
no foreground

152.5 155.0 157.5 160.0 162.5 165.0 167.5
Frequency (MHz)

100

10 1

10 2

10 3

0

10 3

10 2

10 1

100

(B
an

d 
2)

m
3 

(m
K

3 )

Figure 2.24: m3 measurements for the noiseless cold reionization model for each band. The blue
solid lines and shaded regions are the mean m3 and 1σ cosmic variance of wedge-filtered data over
20 samples described in Section 2.3, respectively. The m3 measurements assuming no foreground
are also depicted for comparison.

in Field II of Band 1, but the overall features of m3 are less affected by the systematics
compared to the m2 results shown in Figure 2.21. This could be due to the fact that the
systematics at each frequency channel can be either positive or negative in m3, and as a
result, the effects of these systematics may be smeared out when measuring m3 in 2 MHz
volumes. But as we go deeper in our observation, the systematics will be crucial in evaluating
21 cm models using m3 and the systematics should be mitigated in a deeper level.

The m3 of the cold reionization model after the wedge-filtering becomes close to 0, which
is shown in blue lines in Figure 2.23. Given the amplitude of the signals and the sensitivity

67



of the observation, drawing a meaningful conclusion from this result is challenging. Further-
more, because the systematics can be either positive or negative, the likelihood defined in
Equation (2.23) cannot be used and it is hard to use the likelihood analysis in constraining
the model parameters without any constraints on the systematics.

The reduction of m3 values in 21 cm models is partially because the convolution of
the instrument response (PSF) tends to wash out small-scale features responsible for non-
Gaussianity (Wyithe and Morales, 2007). An additional decrease arises from the wedge-
filtering, expected for the removal of large-scale frequency structures corresponding to small
delay modes (Harker et al., 2009, Kittiwisit et al., 2022), as discussed in Section 2.5. Fig-
ure 2.24 shows a close-up version of the cold reionization shown in Figure 2.23. We use
all fields in measuring the m3 assuming there is no thermal noise. We present two cases
for the m3 measurements: the wedge-filtered data (blue) and no foreground data (green).
Shaded regions represent the cosmic variance measured from 20 samples. The no foreground
case, or perfect foreground-removal scenario, assumes that there is no signal loss of 21 cm
signals when removing the foreground emission. In the top panel, the green line deviates
from the zero baseline (black dashed line), which means we may be able to detect some non-
Gaussianity if the foreground is removed without a signal loss of 21 cm signals and there
is no thermal noise. Meanwhile, the amplitudes of the m3 measurements are significantly
reduced after applying the wedge-filtering method, making it difficult to detect m3 even for
the noiseless simulation. The significant cosmic variance shown in the bottom panel (green
shaded region) might be due to m3 being influenced by the presence of large-scale ionized
bubbles, which emerge during the late stage of reionization. In the next section, we examine
the prediction of m2 and m3 measurements assuming full HERA core array.

2.10 Forecasting Future Observations for One-point Statis-
tics

As we discuss in Section 2.9.2, the relatively poor image resolution of Phase I observations
tends to remove the non-Gaussianity information arising from small-scale structure. We
extend the analysis to forecast m2 and m3 measurements considering a better resolution of
the instrument for future observations using the full HERA core array. The full HERA core
array (HERA-320; Dillon and Parsons, 2016) consists of 320 antennas with approximately
0.4◦ resolution. We simulate mock observations using the array configuration, with the
fiducial 21 cm model described in Section 2.3.2. A Vivaldi feed beam (Fagnoni et al., 2021)
is used for the predicted observation.

We consider 7-hr observation per night, spanning 3–10 hr in LST at a cadence of 30 sec-
onds. The mock observation is simulated across 157.88–169.97 MHz with a frequency channel

68



width of 122.1 kHz, the same width of HERA Phase II observation. The frequency band
covers a redshift range of 7.4–8.0, corresponding to the period when large-scale ionized bub-
bles begin to emerge. The mock visibilities are wedge-filtered and transformed into images
using the same method applied to HERA Phase I observations. For the wedge-filtering,
we consider an optimistic scenario where the foreground is well confined in the foreground
wedge with buffer = 0 ns. In addition, we include the perfect foreground removal case for
comparison. We repeat the processes 10 times by choosing different sky positions to estimate
the cosmic variance in m2 and m3 measurements.

For the noise estimation, we utilize the system temperature, Tsys = Trec + Tsky = 80 +

180
(
ν/180MHz

)−2.6
K. The sky temperature (Tsky) is driven from a relatively quiet zone

on the sky (Haslam et al., 1982) and the receiver temperature (Trec) is adopted from the
mean receiver temperature studied by Razavi-Ghods et al. (2017). The system temperature
is used to construct the noise variance in the visibility space in Jy as follows:

σn =
2kBν

2Ωp

c2
Tsys√
∆ν∆t

, (2.24)

where Ωp is the solid angle of the primary beam. The noise visibilities are created by
using Equation (2.15). Similar to the approach used for Phase I observations, we simulate
30 random noise realizations assuming 300 and 1000 night observations and transform them
into images after applying DAYENU-filtering with the same filtering configuration of the 21 cm
simulation data as described above. To remove the noise bias in m2, we split the visibility
data into even and odd time groups and create the maps separately, as we do for Phase I
observations.

The intensity maps for the 21 cm fiducial model and noise simulations are generated over
a 90×10 square degree area by stitching together maps centered at each hour from 4 to 9
hrs, each map being 15×10 square degrees in size. Since we simulate EE-polarization only,
we convert the noise maps to pseudo stokes-I maps by multiplying 1/

√
2, assuming the effect

of each polarization on noise map is approximately symmetric and each polarization map is
uncorrelated. This enhances the sensitivity of statistical measurements. The 21 cm maps
remain the same, assuming mEE ≈ mNN ≈ mI .

Because our wedge-filtering and mapmaking processes are linear, we simply combine the
21 cm maps and noise maps to create noisy 21 cm maps. The m2 and m3 are measured from
the noisy image cubes that are binned into 2 MHz sliced volume after being averaged over
every 5 frequency channels.
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Figure 2.25: Predictions of S/N for m2 (top) and m3 (bottom) measurements assuming 300 (left)
and 1000 (right) night observations, as forecasted with HERA (HERA-320) using the fiducial EoR
model. We present the S/N considering different foreground removal methods including the perfect
foreground removal and wedge removal, represented by orange and blue lines, respectively. In
addition, we illustrate the case when considering the thermal noise only (solid lines) and the thermal
noise and cosmic variance added in quadrature (dashed lines).

2.10.1 Detectability of One-point Statistics with HERA-320

We investigate the detectability of m2 and m3 for observation periods of 300 and 1000 nights.
For each observation run, we estimate the thermal noise and cosmic variance in m2 and m3

measurements using the noisy 21 cm data cubes. The magnitudes of mean values of m2 and
m3 across different samples and noise realizations are used as our signal values in computing
S/N. Additionally, we estimate the S/N using two different foreground removal strategies:
perfect foreground removal and wedge removal.
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Figure 2.25 illustrates the S/N of m2 (top panels) and m3 (bottom panels) for different
observation time. The perfect foreground removal and wedge removal methods are presented
by orange and blue lines, respectively. In computing the noise, we account for two noise
sources: thermal noise and cosmic variance. The solid lines represent the scenario considering
only thermal noise from the noise simulations. The dashed lines show the results when both
thermal noise and cosmic variance are combined in quadrature.

If the thermal noise is the only noise source, the S/N of m2 measurements reaches around
100 for the 300-night observation, assuming the perfect foreground removal. When the
wedge-filtering is applied, the S/N drops to around 5 for the 300-night observation and to 10
for the 1000-night observation. However, when the cosmic variance is considered in addition
to the thermal noise, the S/N is limited by the cosmic variance, reducing to about 6 even for
the 1000-night observation, regardless of the foreground removal methods. Note that this
S/N can be improved if we take into account a larger sky coverage for mapmaking, which
increases the number of independent samples and reduces the cosmic variance.

The m3 measurements have a lower S/N compared to the m2. With the optimistic case
when considering the perfect foreground removal with the thermal noise only, the S/N can
be around 10 for the 300-night observation. This gets worse when the cosmic variance is
included, decreasing the S/N to about 2. It gets even worse once we apply the wedge-
removal, and the S/N becomes less than one even for the 1000-night observation. This
result is cosmic variance limited. Though the S/N is small, using all information from all
frequency bins of m2 and m3 may provide some insight in constraining model parameters.
In the following section, we examine the uncertainty of model parameters reconstructed
from m2 and m3 measurements based on the uncertainty of observational data using Fisher
information matrices.

2.10.2 Model Confidence Interval with Fisher Information Matrix

The Fisher matrix is a powerful tool in statistical estimation theory to assess the precision
with which model parameters can be estimated from data (Fisher, 1935). The Fisher matrix
is widely used in fields such as cosmology to forecast the performance of an instrument based
on the power spectrum (Ewall-Wice et al., 2016b, Liu and Parsons, 2016, Pober et al., 2014).
It is a square matrix that encapsulates information about how the likelihood function of a set
of parameters behaves around its maximum likelihood (ML) estimate. Assuming the errors
in data are Gaussian, the ln-likelihood is expressed as,

lnL(x,θ) = −
∑
β

1

2σ2
β

(xβ −mβ(θ))
2, (2.25)
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Figure 2.26: The 95% confidence interval derived from the m2 and m3 measurements, assuming the
perfect foreground removal over the 300-night mock observation with the fiducial EoR model.

where β indexes indicate the frequency bins, xβ is the one-point statistics measurement of
observed data, σ2

β is the quadrature sum of the thermal noise and cosmic variance we explore
in the previous section, and mβ is the one-point statistics measurement varying with model
parameters θ.

The elements of the Fisher matrix are defined as the expected value of the second deriva-
tive (the Hessian) of the ln-likelihood function with respect to the parameters. For the simple
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Figure 2.27: Similar to Figure 2.26 but with the wedge-filtered data. Due to the low S/N of m2 and
m3, the parameters are loosely constrained.

Gaussian likelihood in Equation (2.25), the Fisher matrix is given by,

Fij = −
〈
∂2 lnL
∂θi∂θj

〉
(2.26)

=
∑
β

1

σ2
β

∂mβ

∂θi

∂mβ

∂θj
. (2.27)

If the likelihood function is Gaussian, the covariance matrix of the parameters is the inverse
of the Fisher matrix,

Cij = (F−1)ij, (2.28)
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Figure 2.28: Similar to Figure 2.27 but for the 1000-night mock observation with the fiducial EoR
model. With the improved S/N compared to the 300-night observation, we have a better precision
in parameter estimation, suggesting that we are able to discern model parameters of the four models
that are presented in Section 2.9.

which provides confidence intervals of the parameters. To compute the first derivative in
Equation (2.27), we run 21cmFAST by slightly perturbing the model parameters from the
fiducial model, forward model image cubes from visibility simulations for 10 samples at
different sky locations, calculate the mean of m2 and m3 over the samples, and use the mean
values to compute the first derivative. We focus on f∗,10, σ∗, Mturn, and LX<2keV/SFR which
are key parameters that determine the four models discuss in Section 2.9. For the rest of
the parameters, we assume their values are fixed as indicated in Table 2.1.

Assuming the fiducial EoR model is at the ML point, we show the results of covariance
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Table 2.3: The 1σ confidence intervals derived from the Fisher matrix with different types of
observations and measurements. The small difference between 300 and 1000 night observations
for the perfect foreground removal is because the S/N of m2 and m3 measurements is determined
by the cosmic variance rather than the thermal noise. With the sufficient observation time (1000
nights), m2 + m3 measured from the wedge-filtered data is able to constrain the model parameters
enough to distinguish four models given in Table 2.1.

log10(f∗,10) α∗ log10(Mturn) log10
LX<2 keV

SFR

(M⊙) (erg s−1M−1
⊙ yr)

Fiducial model -1.30 0.50 8.70 40.50
Perfect removal (300 nights)
m2 ±0.52 ±1.04 ±0.66 ±0.34
m3 ±0.27 ±0.20 ±0.14 ±0.10
m2 + m3 ±0.17 ±0.18 ±0.10 ±0.09
Perfect removal (1000 nights)
m2 ±0.52 ±1.04 ±0.66 ±0.34
m3 ±0.27 ±0.19 ±0.14 ±0.10
m2 + m3 ±0.16 ±0.16 ±0.09 ±0.08
Wedge removal (300 nights)
m2 ±2.70 ±1.28 ±1.92 ±0.53
m3 ±15.20 ±15.54 ±2.47 ±1.43
m2 + m3 ±0.92 ±0.86 ±0.50 ±0.33
Wedge removal (1000 nights)
m2 ±1.78 ±0.85 ±1.44 ±0.32
m3 ±1.27 ±0.99 ±0.35 ±0.18
m2 + m3 ±0.39 ±0.38 ±0.20 ±0.15

matrix for the perfect foreground removal with the 300-night observation in Figure 2.26.
The contours indicate the 95% percentile confidence intervals. The confidence interval con-
structed from m2 reveals degeneracy between model parameters. The m3 provides tighter
constraints in different directions from the results of m2, which helps break the degeneracy.
The best precision is achieved when considering both m2 and m3 together. The 1σ errors of
the 1D profiles in the diagonal panels are indicated in Table 2.3

In practice, it is difficult to make a perfect foreground removal without a signal loss of
21 signals. Figure 2.27 displays the results with the 300 night observation when the wedge-
filtering is applied. As we see in Figure 2.25, the S/N of m2 and m3 is significantly reduced
with the wedge removal, which make it challenging to constrain the model parameters using
the Fisher matrix. Nevertheless, using both m2 and m3 provides a constraint for Mturn tight
enough to discern the fiducial model from large halos and extended reionization models.

Lastly, we examine the wedge-filtered case with a long observation run (Figure 2.28). For
the 1000-night observation, there is an improvement in the S/N of m2 and m3, although
not substantial. However, the precision of parameter estimation is significantly enhanced
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compared to the 300-night observation. Because m2 and m3 provide orthogonal information
in certain parameter spaces, combining m2 + m3 results in tight confidence intervals, offering
high precision capable of distinguishing between models described in Table 2.1. This indicates
that skewness, along with variance, may serve as a promising measurement for estimating
model parameters with high precision.

2.11 Summary

In this study, we examined the properties of images constructed by the HERA radio inter-
ferometer, after removing bright foreground emissions. Using HERA Phase I observations,
previously employed for power spectrum analyses (H23), we measured one-point statistics.
We forward-modeled the observational data, 21 cm simulations, and noise simulations to
account for pixel correlation effects caused by the instrument response and frequency corre-
lations arising from the foreground removal technique.

The observational data includes 94 nights of observations for Band 1 and Band 2. We
analyzed the data before and after systematics mitigation to study the impact of systematics
on one-point statistics such as the second (m2) and third (m3) moments, corresponding to
variance and skewness, respectively. The radio interferometric images were constructed using
the direct optimal mapping method, which optimally down-weights visibility data with large
noise variance. We mapped four different fields of the sky.

We adopted a foreground avoidance method to remove foregrounds. To evaluate the
efficacy of the foreground avoidance strategy using the DPSS basis, we compared the perfor-
mance of three different foreground removal methods: DAYENU-filtering, the standard wedge-
masking method, and the PCA foreground subtraction method. Based on simulation results,
we found that DAYENU-filtering outperforms the other two methods, resulting in foreground
residuals at about 10% of the 21 cm signal residuals. Consequently, we chose DAYENU-filtering
for our foreground removal method.

In Section 2.5, we discussed the impact of instrument effects on the one-point statistics of
cosmological models. The instrument response or PSF from the Phase I observation filters
out small-scale signals, significantly reducing the amplitude of m2 and m3 measurements.
Further reduction occurs due to wedge-filtering, which removes large-scale fluctuations, leav-
ing near-zero m3 and S3 signals, except at low redshifts where weak non-zero signals might
appear. We also examined the predicted one-point statistics for HERA-320, which utilizes
320 antennas. The results indicate that, by capturing additional small-scale information,
HERA-320 offers a better chance to detect non-Gaussian features in m3 and S3 across red-
shifts, with relatively small sample variance. However, wedge-filtering continues to cause
substantial signal loss, rendering the measurements indistinguishable from the zero baseline
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due to the sample variance. Despite this, S3 shows a distinct rising trend toward lower
redshifts.

By comparing the observational data with and without systematics mitigation, we ob-
served that systematics can introduce non-Gaussianity into the pixel distributions of the
wedge-filtered maps (Section 2.8). The data with systematics mitigation efforts is expected
to be noise-limited if there are no systematics; however, they still contain some systematics
residuals that lead to an excess of variance (m2) compared to the expected noise level. In
Figure 2.19, evident features of foreground residuals are observed, which may arise from
calibration errors or other remaining systematics effects coupled with foreground emissions.
The m3 measurements from the observational data also show outliers beyond the theoretical
expectation drawn from the noise simulations.

In Section 2.9, we present the one-point statistics of observational data compared with
21 cm and noise simulations. The lowest m2 for the noise data is achieved in Field II,
showing significant discrepancies between the observational data and theoretical expectation
for most of the frequency bins due to the systematics contamination. A likelihood analysis
using m2 from the observational data was conducted to evaluate 21 cm models. We found
that the m2 measurements from all fields in Band 2 likely reject the cold reionization model,
characterized by larger variance than other 21 cm models, which is consistent with the power
spectrum results (H22b, H23). Due to the large size of the synthesized beam and the signal
loss caused by wedge-filtering, detecting non-zero m3 measurements of the 21 cm model is
not feasible.

Finally, we forecast future observations with the full HERA core array. The improved ar-
ray configuration provides better image resolution, reducing the wash-out of non-Gaussianity
from small-scale features. We investigated the S/N of m2 and m3 after wedge-filtering com-
pared to perfect foreground removal without 21 cm signal loss. Assuming 300-night observa-
tions, the S/N with the perfect foreground removal scenario achieves 100 form2 and 10 form3

if the mock observation only contains thermal noise. When the cosmic variance is accounted
for, the S/N reduces to 6 for m2 and 2 for m3. This indicates the S/N is restricted by the
cosmic variance than the thermal noise. Wedge-filtering significantly reduces S/N, resulting
in S/N < 1 for m3 measurements even for long observation periods (1000 nights). If we com-
bine all frequency bins, however, Fisher matrix analysis suggests that, with wedge-filtering
applied over 1000-night observations, m3 along with m2 measurements yield sufficiently tight
reconstructed confidence levels of model parameters, allowing for exploration of the param-
eters described in Table 2.1. This may indicate that higher-order statistics, which represent
non-Gaussianity, can be a crucial tool for studying model parameters associated with ionized
bubbles.

Since wedge-filtering makes it challenging to detect non-Gaussian features with a high
S/N, minimizing its effect is crucial. Achieving a smaller foreground wedge size may be
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possible with an image-based power spectrum rather than the delay-based power spectrum
(Morales et al., 2018). There are also efforts to reduce the wedge size by optimizing the array
configuration (Murray and Trott, 2018). A smaller wedge size may improve the detection
of non-Gaussianity in 21 cm signals. Additionally, efforts are underway to minimize 21 cm
signal loss by isolating the signal from the foreground using GPR (Kern and Liu, 2020,
Mertens et al., 2020, Soares et al., 2021). Recently, attempts have been made to recover
21 cm signals within the wedge after foreground removal using machine learning techniques
(e.g., Gagnon-Hartman et al., 2021). With these advanced techniques, future observations
for HERA may lead to more optimistic results.
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Chapter 3

The Impact of Beam Variations on
Power Spectrum Estimation for 21 cm
Cosmology I: Simulations of Foreground
Contamination for HERA

This work is published in The Astrophysical Journal. Author lists include Honggeun Kim,
Bang D. Nhan, Jacqueline N. Hewitt, Nicholas S. Kern, Joshua S. Dillon, Eloy de Lera Acedo,
Scott B. C. Dynes, Nivedita Mahesh, Nicolas Fagnoni, and David R. DeBoer.

Abstract
Detecting cosmological signals from the Epoch of Reionization (EoR) requires high-precision
calibration to isolate the cosmological signals from foreground emission. In radio interfer-
ometery, perturbed primary beams of antenna elements can disrupt the precise calibration,
which results in contaminating the foreground-free region, or the EoR window, in the cylin-
drically averaged power spectrum. For Hydrogen Epoch of Reionization Array (HERA),
we simulate and characterize the perturbed primary beams induced by feed motions such
as axial, lateral, and tilting motions, above the 14-meter dish. To understand the effect
of the perturbed beams, visibility measurements are modeled with two different foreground
components, point sources and diffuse sources, and we find different feed motions present a
different reaction to each type of sky source. HERA’s redundant-baseline calibration in the
presence of non-redundant antenna beams due to feed motions introduces chromatic errors
in gain solutions, which produces foreground power leakage into the EoR window. The ob-
served leakage from vertical feed motions comes predominately from point sources around
zenith. Furthermore, the observed leakage from horizontal and tilting feed motion comes
predominately from the diffuse components near the horizon. Mitigation of chromatic gain
errors will be necessary for robust detection of the EoR signals with minimal foreground
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bias, and this will be discussed in the subsequent paper.

3.1 Introduction

The Epoch of Reionization (EoR), when luminous galaxies formed and interacted with the
surrounding intergalactic medium, is of particular interest for better understanding of the
universe’s history. One promising approach for probing this period is to measure 21-cm
emission originating from the hyperfine transition of neutral hydrogen at high redshift. This
observation is feasible thanks to abundant neutral hydrogen in the early universe and the
transparency of the forbidden transition line (see Furlanetto et al., 2006, Liu and Shaw, 2020,
McQuinn, 2016, for reviews).

Radio interferometric experiments designed to detect such cosmological signals include
the Giant Metre Wave Radio Telescope (GMRT; Paciga et al., 2013), the Murchison Wide-
field Array (MWA; Barry et al., 2019, Beardsley et al., 2016, Dillon et al., 2014, Ewall-Wice
et al., 2016a, Tingay et al., 2013, Trott et al., 2020), the Donald C. Backer Precision Array
for Probing the Epoch of Reionization (PAPER; Cheng et al., 2018, Kolopanis et al., 2019,
Parsons et al., 2010), the Low Frequency Array (LOFAR; Gehlot et al., 2019, Mertens et al.,
2020, Patil et al., 2017, van Haarlem et al., 2013), and the Hydrogen Epoch of Reionization
Array (HERA; DeBoer et al., 2017, Dillon and Parsons, 2016, The HERA Collaboration
et al., 2022a). They have placed upper limits on the power spectrum, but none has yet made
a robust detection of the EoR signal.

In redshifted 21-cm observations for the EoR, the removal of the foreground, which is 4
to 5 orders of magnitude brighter, is crucial. One strategy for separating the cosmological
signal from the foreground is to take advantage of the 2D power spectrum defined by the
baseline length and time delay of an interferometer. A radio interferometer measures the
sky signal by cross-correlating the voltage outputs received by a pair of antennas. Spectral
smoothness of foregrounds confines a frequency Fourier transform of the measurements to
low time delays or line-of-sight cosmological modes k∥. Chromaticity of the interferometer
can introduce spectral structure into the foreground emission, and cause foregrounds to
leak into high k∥ (Datta et al., 2010, Liu et al., 2014, Morales et al., 2012, Morales et al.,
2018, Parsons et al., 2012, Pober et al., 2014, Thyagarajan et al., 2013, Trott et al., 2012,
Vedantham et al., 2012). The maximal k∥ is set by the delay of a source at the horizon
which increases with increasing baseline length. This forms a “foreground wedge” in the 2D
power spectrum and leaves the foreground confined in the wedge. In contrast, fluctuation
in brightness of cosmological signals in the line-of-sight direction or frequency makes the
measurement spread over a wide range of cosmological modes in the Fourier space, allowing
a foreground-free “EoR window” outside the wedge.
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For successful foreground removal, high-precision calibration is essential to prevent fore-
ground contamination from leaking into the EoR window due to chromatic errors from
inaccurate calibration. There are calibration techniques adopted by past and current inter-
ferometric experiments, including sky-based calibration (Pearson and Readhead, 1984, Rau
et al., 2009) and redundant-baseline calibration (Dillon et al., 2020, Liu et al., 2010, Wieringa,
1992). The former relies on precise prior information of the sky, and an inaccurate or in-
complete sky model can cause artificial frequency structure in calibration solutions (Barry
et al., 2016, Ewall-Wice et al., 2017, Gehlot et al., 2021, Mouri Sardarabadi and Koopmans,
2018). The latter is accompanied by a key assumption of redundancy in measurements, and
nonredundancy resulting from non-uniform primary beams can be a source of the chromatic
gain error (Byrne et al., 2019, Choudhuri et al., 2021, Orosz et al., 2019). In addition, redun-
dant calibration cannot solve for all degrees of freedom (dofs) of the direction-independent
gain term, and must be followed by an absolute calibration step, which is also subject to the
biases described above for sky calibration (Byrne et al., 2019, Kern et al., 2020a). In this
study, we focus on the impact of feed motion on redundant-baseline calibration as well as its
absolute calibration step as designed for the HERA instrument.

Orosz et al. (2019) studied the impact of non-uniform primary beams on redundant-
baseline calibration and resulting power spectrum estimate. They simulated interferometric
measurements with the HERA array configuration and an analytic Airy beam by perturbing
the beam pointing angle and width. They found perturbed primary beams can introduce
spectral structure into calibration solutions which are then responsible for the foreground in
the wedge leaking into the EoR window. The actual HERA antennas have more complex
structure in their beams and the result based on the Airy beam is hard to map to the
real system of HERA. In addition, the simulation was performed with about 100 bright
point sources and the effect of a diffuse sky model on the power spectrum analysis was not
addressed. These motivate us to take one step further, by using a physical antenna model
and a more representative sky model. Shaw et al. (2014) also studied the impact of per-
antenna primary beam deviations on foreground removal for low-frequency 21-cm intensity
mapping, finding that per-antenna beam deviations need to be constrained below 10% for
robust signal detection.

In this study, we employ a realistic primary beam obtained from a physical HERA an-
tenna model using the Computer Simulation Technology (CST) electromagnetic simulation
software. In the model, we perturb the positions of the antenna feed relative to the dish
and compute the corresponding primary beam patterns. We focus on the HERA Phase II
system with a new broadband (50–250 MHz) Vivaldi feed that is designed to cover the epoch
of Cosmic Dawn at lower frequencies as well as the EoR (Fagnoni et al., 2021). We choose a
mid frequency band, 160–180 MHz, corresponding to z ∼ 7.4 that is a midpoint of the late
EoR model (Douspis, M. et al., 2015, Greig and Mesinger, 2016, Millea and Bouchet, 2018,
Mitra et al., 2015, Qin et al., 2020) consistent with the constraints on the electron scattering

81



optical depth of the Cosmic Microwave Background observation (Planck Collaboration et al.,
2020). For a representative foreground model, a diffuse sky model as well as point sources are
taken into account. We simulate visibilities with the perturbed primary beams and the sky
model, and pass them through HERA calibration pipelines. The effects of nonredundancy in
the visibilities on the calibration gains and power spectrum estimation are explored. Further
investigations into mitigation of the chromatic gain errors and foreground leakage will be
discussed in the subsequent paper.

This paper is organized as follows. In Section 3.2, we detail the configuration of primary
beam simulations with feed motions and present characteristics of the simulated beams.
In Section 4.2, the visibility measurements are simulated with the perturbed beams, and
nonredundancy of the visibilities are investigated as a function of baseline lengths, feed
motions, and the type of sky model. In Section 3.4, we show results from redundant-baseline
calibration as well as absolute calibration, representing chromatic gain errors. In Section 4.5,
the effects of the feed motions on power spectrum estimation are discussed. Throughout
this study, we adopt the cosmological parameters from Planck Collaboration et al. (2016):
ΩΛ = 0.6844, Ωm = 0.3156, Ωb = 0.04911, and H0 = 67.27 km s−1Mpc−1.

3.2 Antenna Feed Perturbation Simulations

In this section we summarize the CST simulation descriptions and results of the antenna
far-field electric field pattern in the presence of positional offsets between the Vivaldi feed
and the 14-meter parabolic dish. The physical 3D model was derived from that of Fagnoni
et al. (2021). The model consists of all the major components making up a single HERA
antenna, including metal, PVC, and fiberglass components, coaxial cables, an enclosure for
the front-end module (FEM) with its CAT7 connector, a cylindrical ferrite radio frequency
(RF) choke for each coaxial cable, metal mounting hardware, suspension cables, a concrete
hub, and a soil slab1 beneath the dish.

3.2.1 CST Simulation Configuration

Due to the wind load and relaxation in the feed suspension system, the feed alignment can
move away from the desired feed position at the focal point of the dish. Field measurement
of the feed alignment using laser plum bobs on a subset of HERA elements across a time
span of 8 weeks in 2020 determined that the standard deviation of the feed offset could be

1The material is assumed to be sandy dry soil with relative permitivity of ϵr = 2.55 and loss tangent of
tan δ = 0.016.
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as large as several centimeters (Rath et al. HERA Memo #952). Separate observations on
tilts of feeds measured by accelerometers installed in the FEM indicate a root mean square
(rms) of the tip-tilt of a few degrees.

Due to computational limitations, a simplified 3D Vivaldi feed model was derived from
the detailed model developed by Fagnoni et al. (2021). We removed the smaller mechanical
features, such as the screw mounting holes, coaxial cables, suspension cables, and the FEM.
For a subset of the feed motions, we found that the overall far-field beam characteristics for
the simplified model and the detailed model were consistent, so the simplification does not
have a large impact on our study. The primary beam of each antenna element is computed
in an isolated simulation domain bounding box, and we ignore mutual interactions between
antennas, such as the cross-coupling effect in the HERA system. However, we expect that
cross-coupling might degrade calibration solutions (see, for example, Josaitis et al., 2022,
Kern et al., 2020b); calibration procedures that include a model of cross-coupling are under
development. We defer a quantitative study of the interaction of beam imperfections and
cross-coupling to future work.

The antenna dish model consists of 24 faceted parabolic panels, as in the deployed instru-
ment. However, instead of using actual galvanized steel wire mesh panels, the dish model
assumes solid aluminum panels. This simplification circumvents the challenge in properly
simulating the wire mesh and significantly reduce the number of simulation meshcells. Fab-
rication imperfections such as surface smoothness, potential gaps between dish panels, or
structural sagging due to gravity are not considered in this study. Due to the randomness
in nature, those defects may lower the antenna gain due to signal loss but they are expected
to have much less impact on the overall main beam’s characteristics than the feed position
perturbations.

The Vivaldi feed position was perturbed in the lateral xy-plane and along the boresight
direction in the z-axis, separately, in the CST model. We set the range of feed offsets along
the z-axis to be ±7 cm, with increment of 0.5 cm between -2 and 2 cm and of 1 cm otherwise,
relative to the fiducial feed height position of (x, y, z) = (0.0, 0.0, 5.0) m where the z-position
is the distance between the reference point on the feed (see the origin in Figure 2 of Fagnoni
et al., 2021) and the vertex of the dish. The offsets in the xy-plane spanning ±6 cm are
sampled in a regular grid with 0.5 cm interval between -2 and 2 cm and 1 cm interval
otherwise. We include an additional 9 points at the corner and the midpoint of each side of
a 7-cm long square to deal with potential outliers.

The feed can also tilt relative to the dish as the suspending cables relax over time. We
simulated tilts at the fiducial position only, without any additional transverse offset. The
feed is tilted in the range of ±6◦, with increment of 0.5◦ between ±1◦ and of 1◦ otherwise,

2http://reionization.org/science/memos/
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where 0◦ tilt is equivalent to the feed pointing straight down at the dish’s vertex. The
azimuthal motion is equally spaced at 10◦ for each tilt at the fiducial position.

In total, we have three different classes of the feed motions for the CST beam simula-
tions: one set of CST simulations produced 19 perturbed beam patterns for the vertical
displacement, another set produced 209 perturbed beams for all the horizontal offsets in the
xy plane, and the other set produced 295 perturbed beam patterns for all the tilts at the
fiducial position.

Far-field electric fields are simulated by exciting the East-West port over 160–180 MHz,
with a frequency channel width of 0.125 MHz3. This frequency channel width is close to that
of the HERA Phase II observation, and gives the large Nyquist limit needed for quantifying
the amount of contamination in the EoR window at high k∥.

The full-wave far-field simulation results were computed using CST’s transient time solver
based on Finite-Difference Time-Domain (FDTD) solver method, with open boundary con-
ditions4. Benchmark tests suggest that CST’s time solver with GPU acceleration5 is more
efficient for the required large number of beam simulations. A subset of the far-field results
was compared with those of CST’s Finite Element Method frequency solver, which is not
compatible with GPU acceleration. The general beam characteristics due to feed motions
are found to be consistent between the two solvers.

3.2.2 Characteristics of Primary Beams along the Feed Motion

Feeds which move away from their fiducial position produce perturbed far-field electric fields
which are different from those at the fiducial position. This perturbed primary beam pattern
can corrupt interferometric measurements and calibration pipelines. In this section, we
present characteristics of the primary beams as a function of feed positions and frequency.
We examine the shift and full width at half maximum (FWHM) of the main lobe of the
power beam with feed motion along the three Cartesian axes or with tilt. In addition, we
explore the spatial integral of the perturbed beam with respect to the unperturbed one to
capture overall features of the perturbed beams with feed motion and frequency.

3The far-field results were exported with high precision to prevent round-off errors using CST’s far-field
source (FFS) export instead of the normal far-field export macro function. This is essential to achieve a
large dynamic range in power spectrum estimation.

4The perfectly matched layer (PML) boundary conditions were applied at the the boundary interfaces
of the simulation bounding box to emulate an infinite simulation domain for the electromagnetic wave to
propagate outward with negligible reflection at the interfaces.

5Combining with local meshing scheme for small antenna components, the simplified antenna model with
∼ 7.5 × 107 volumetric meshcells took an average of 3–5 hours to simulate and export each beam set on a
computer server equipped with two Tesla V100-PCIE-32GB GPUs.
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Figure 3.1: The fiducial beam pattern (far left) and the difference of the primary beam models (B’)
relative to the fiducial model (B) for feed displacement by +3 cm in the x-direction (center left), by
+3 cm in the z-direction (center right), and tilt by +3◦ in the xz-plane (far right) at 165 MHz. The
difference is normalized by the amplitude of the fiducial model. The different feed motion leads to
the different beam pattern.

The far-field electric fields simulated by CST of a linear feed polarization p are defined
in a basis of unit vectors θ̂ and ϕ̂ in spherical coordinate,

Ep(θ, ϕ, ν) = Ep
θ (θ, ϕ, ν)θ̂ + Ep

ϕ(θ, ϕ, ν)ϕ̂, (3.1)

where θ and ϕ are the zenith angle and the azimuthal angle, respectively. Equation 3.1 can
also be thought of as a row in the antenna Jones matrix (e.g., Equation (5) of Kohn et al.,
2019). The power beams are then calculated by multiplying each component of far-field
electric fields assuming unpolarized sky emissions (Kohn et al., 2019),

Bpp
ij (θ, ϕ, ν) = Ep

i,θE
p
j,θ

∗ + Ep
i,ϕE

p
j,ϕ

∗, (3.2)

where pp is a feed polarization pair, and i and j indicate a pair of antennas. Throughout
this paper, we consider a single feed polarization (“east-oriented”) in our CST and visibility
simulations.

Figure 3.1 displays the fiducial power beam (far left) and the difference between the
perturbed feed and the fiducial one at 165 MHz. The feed moving horizontally (center left)
or tilting (far right) yields a shift of the beam pattern with that from the tilting motion
moving opposite to that from the x-direction motion. The feed moving vertically changes
the beam width, producing relatively isotropic differences (center right).

To quantify the characteristics of the main lobe, we first locate the maximum of the
power beam and fit a one-dimension Gaussian profile to the first null in the xz plane (or in
east-west direction, EW) or in the yz plane (or in north-south direction, NS) at boresight of
the beam to measure the peak location and the beam width of the main lobe.
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Figure 3.2: Behaviors of the main lobe of the power beam in the xz plane or in the EW direction with
different types of feed motions: x-direction (far left), y-direction (center left), z-direction (center
right), and tilting feed motions in the xz plane (far right). The top row shows line profiles of power
beams that are normalized to the peaks at 165 MHz. Based on line profiles, we measured the shift
of maximum of the main lobe (middle row) and the FWHM of the main lobe (bottom row) as a
function of feed motion and frequency. When the feed moves in x-direction or tilts in the xz plane,
the main lobe shifts in the xz plane as expected. The beam width changes relatively more when
the feed moves in the z-direction.

Figure 3.2 shows the behaviors of the main lobe of the primary beam with the feed motion.
In the top row, we show line-cut profiles of main lobes in the xz plane for the x-direction (first
column), y-direction (second column), z-direction (third column), and tilting (last column)
feed motion. If we look at the first panel, the line profile of the power beam shifts in the xz
plane at different feed positions moving along the x-axis. The measured shift of the peak of
the main lobe in the xz plane is presented in the middle row as a function of feed offset and
frequency. In the first panel of the middle row, there are three interesting things to note.
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Figure 3.3: The same format as that of Figure 3.2 but for the behaviors of the primary beam in the
yz plane or in the NS direction. The shift of the peak location in the main lobe is observed for the
y-direction feed motion, while the change to the beam width mainly arises from the vertical motion
or the tilting motion.
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First, the direction of the beam shift is opposite to that of the feed displacement. Second, the
shifts of the peaks are frequency independent. Finally, there is a nearly linear relationship
between the feed offsets and the beam shifts. These characteristics can be understood from
geometrical optics, θ ≈ −∆x/h [rad] = −0.11 (∆x/cm) [deg], where ∆x is the offset of an
object from the fiducial point, and h is the normal distance between the object and a lens.
In the second equality, we consider our feed model where ∆x is the offset of the feed in the
x-direction and h = 500 cm, resulting in the relation consistent with the trend we observe.
When the feed moves along the x-axis, the FWHM of the main lobe is weakly dependent on
the feed motion (far left panel of the bottom row of Figure 3.2) and this may be because of a
defocusing effect when the phase center deviates from the focal point with the feed motion.
If the feed moves in the y-direction (center left panels of Figure 3.2), the profile remains
nearly the same in the xz plane as expected.

The change in the beam shape with the feed offset in the z-axis is different from that with
the lateral feed motion. Unlike the lateral motion, the peak of the main lobe stays unchanged
with the feed motion (the third column of Figure 3.2), because change in the beam shape
is symmetric and thus the beam is still pointing along the z-axis.. Rather, the axial motion
leads to the change of the beam width as shown in the center right of the bottom row. This
may be associated with the relation between the phase center and the focal point. That is,
when the phase center, moving with the feed height, gets farther away from the focal point,
the beam goes through the defocusing effect and its width grows broader (Baars, 2007). The
phase center is frequency-dependent, so this effect is different for different frequencies.

When the feed tilts, the beam is also expected to tilt in the same direction. In the last
column of Figure 3.2, the primary beam shifts in the EW direction when the feed tilts in
the xz plane. Because the main lobe tilts with the feed motion, the beam does not just shift
but its width also changes as a function of tilting angle.

In Figure 3.3, we show the same feed motions but the line-cut profiles in the yz plane.
Feed offsets in the y-direction cause the shifts of the main lobe in the yz plane, while the
feed motions along the x-direction or the tilting motions in the xz plane result in consistent
line profiles regardless of the size of the feed displacement. The peak location of the main
lobe still stays unchanged with the vertical feed motion while there is a clear trend of the
change to the beam width as a function of the feed motion and frequency. The FWHM of
the main lobe becomes slightly broader in the NS direction with the tilting motion.

In general, the amplitudes of the side lobes are a few order of magnitudes smaller than
that of the main lobe. However, integrated properties of the side lobes can be crucial when
a sky model contains diffuse bright sources in the side lobes. To measure the variation of
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side lobes due to feed motion compared to the fiducial model, we define

εSL =

∫∫
Bpert(θ, ϕ) dΩ∫∫
Bunpert(θ, ϕ) dΩ

− 1. (3.3)

Here Bunpert(θ, ϕ) and Bpert(θ, ϕ) are unperturbed and perturbed power beam, respectively.
The integral is over 60◦ ≤ θ < 90◦ and 0◦ ≤ ϕ < 360◦. Anticipating our visibility simulations,
the integral range is chosen so that it includes the region where the galactic plane lies at
a local sidereal time (LST) of interest, 2.25 hours. The result is shown in Figure 3.4. The
largest change in εSL is observed for the tilting motion and there is little change for the
lateral feed motions.

3.3 Visibility Simulations with Perturbed Primary Beams

3.3.1 Foreground Visibility Simulations

A visibility for two antennas is the interferometric response with the amplitude proportional
to the beam power pattern along with the flux density of the sky and the phase depending
on the frequency and the geometric delay. This can be described in a discretized form as

Vij(ν) =
Nsrc∑
n=1

Bij(ŝn, ν)S(ŝn, ν) exp

(
−2πiν

c
bij · ŝn

)
, (3.4)

where Bij is the primary beam in Equation (3.2), S is the flux density of a source, bij is a
baseline vector of two antennas, and ŝn is a pointing vector in the direction of a source.

In this study, we simulate visiblities using 320 antennas which make up the core of
the HERA array (HERA-320; Dillon and Parsons, 2016). The configuration of the array
is shown in Figure 3.5. There are 51,360 baselines in total and 1,502 unique baselines.
This highly redundant-baseline configuration enables us to achieve high precision calibration
with HERA if all antennas have uniform antenna responses. However, the distinct antenna
response among the array elements due to feed displacement invalidates the redundancy
assumption thus compromising the calibration. We account for this by assigning a different
primary beam to each antenna in Equation (3.4) and seeing the effect of non-uniform antenna
responses on the calibration.

In practice, the feed position of each antenna can be perturbed in any direction with
random distances with respect to the fiducial position. As mentioned in Section 3.2.1, the
sizes of feed offsets are expected to be a few centimeters for translation motions and a few
degrees for tilts. For simplicity, we consider random Gaussian feed motions for 320 antennas
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Figure 3.5: Configuration of HERA-320. This highly redundant array configuration is designed to
achieve high-precision calibration and deep sensitivity to the 21-cm power spectrum.

with zero mean and a standard deviation (σfeed) of 1, 2, 3, and 4 cm for lateral and axial
feed motions, respectively, and of 1, 2◦, and 3◦ for tilting motions.

Since the primary beams are simulated at grid points of feed motions described in Sec-
tion 3.2.1, the primary beam patterns used in Equation (3.4) need to be interpolated at the
feed positions drawn from the Gaussian distribution. Interpolating the primary beams along
the feed motion direction can introduce spectral artifacts. We found, however, such an error
is a much smaller effect than the beam variations due to the feed motion. Appendix 3.7.1
describes the interpolation and presents the interpolation error relative to the beam error
driven by the feed motion.

In addition to the interpolation along the feed motion direction, the primary beam needs
to be evaluated at the frequency of interest and angular positions of sources, requiring
additional interpolation. Interpolating the primary beam along frequency at a finer resolution
than the beam resolution may introduce unwanted spectral structure which depends on the
interpolation methods (Lanman et al., 2020). To avoid this effect, the visibility needs to be
simulated with a frequency channel width larger than or equal to the frequency resolution
of the primary beam simulation. Large frequency channel widths, however, will shrink
the size of the observable EoR window which is proportional to 1/(2∆ν) where ∆ν is the
channel width. Based on the result of Orosz et al. (2019), in order to quantify the foreground
contamination in the EoR window, the frequency resolution of our primary beam, 0.125 MHz,
is fine enough to cover a large range of k∥ and thus used for the simulation instead of
interpolation along frequency.

The CST simulated beams are resolved at 1◦ in the spherical coordinate along θ and
ϕ. Based on the sampled grid points, we interpolated far-field electric fields defined in
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Equation (3.1) at angular positions of sky sources using bivariate cubic spline interpolation,
and formed the power beam by following Equation (3.2). It is unclear how the instrument
responds to emission near the horizon. Bassett et al. (2021) have investigated the effect of the
horizon shape on extracting 21cm signals from observation, and found the signal extraction
can be significantly improved when they include accurate information of the topological
horizon such as nearby vegetation, buildings, and mountains. Modeling an accurate horizon
can be crucial, but it is beyond the scope of this study and future work can explore more
details. For simplicity, we applied a sharp cut-off to the observable sky and considered
only sources above the horizon. For more accurate cubic spline interpolation, we allowed a
5-degree buffer below the horizon for the beam interpolation.

In constructing sky source models, we considered two types of foreground sources: galactic
and extragalactic point sources, and diffuse synchrotron emission from our Galaxy. For the
point source model, we adopted the GaLactic and Extragalactic All-sky MWA (GLEAM)
survey which consists of GLEAM I (Hurley-Walker et al., 2017) and GLEAM II (Hurley-
Walker et al., 2019). The former covers about 25,000 square degrees of sky outside the
galactic plane between -90◦ and 30◦ in declination and the latter covers compact sources in
the galactic plane. The main lobe of our primary beam at 160–180 MHz has the FWHM of
about 10◦ centered at the declination of -30.7◦, which means the field of view of the HERA
main beam falls into the coverage of the GLEAM I survey and the sky model is good enough
to provide a representative set of point sources for our analysis. Point sources with spectral
indices derived from single power-law fits provided by the GLEAM catalogs are used for
the simulations, giving about 260,000 point sources. We also restored peeled bright sources
noted in Table 2 of Hurley-Walker et al. (2017) and Fornax A which has two bright radio
lobes (Bernardi et al., 2013).

For the diffuse sky model, the Global Sky Model (GSM) provided by Zheng et al. (2017)
is used with a python package PyGSM. They removed 1% of the highest peak of residual
after fitting maps through their iterative Principal Component Analysis (PCA) algorithm,
which helps to remove some bright point sources from the diffuse map. In this study the
brightness temperature of the diffuse sky map was generated in HEALPix, Hierarchical Equal
Area isoLatitude Pixelization (Gorski et al., 2005), with an Nside of 256 yielding 786,432
pixels, then converted to flux density, assuming that the brightness temperature is constant
in each pixel area. We then treated each pixel area as a point source and fed the sky model to
our visibility calculations. For the frequencies we simulate and the size of the HERA array,
we found that an Nside 256 HEALPix map resulted in enough resolutions for the proper
power spectrum estimation, which is consistent with the results of Lanman et al. (2020).

We chose an LST of 2.25 hr for our single LST simulation, a relatively foreground-free
zone but also good for point source calibration for HERA (Kern et al., 2020a). In addition,
by choosing the LST, the gap of the GLEAM catalog present at RA∼8 hr has a small
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Figure 3.6: Relative σred of auto-correlations for vertical (left), horizontal (middle), and tilting feed
motions (right) with feed offset and frequency.

effect on our visibility calculation as it is outside the main lobe of the primary beam. A
radio interferometer has a different response to the point sources and the diffuse source.
To better understand the role of each sky model on the visibility, we consider the two sky
models separately if necessary. Otherwise, we account for those sky models together as the
combined sky model.

3.3.2 Nonredundancy in Raw Visibility Measurements

When the feed positions are perturbed, redundant baselines are expected to produce different
visibilities because of their different primary beam responses. This effect can be different
depending on the configuration of the baseline (e.g., length and direction) and the type of
the sky model (e.g., point sources or diffuse sources). One metric to evaluate the effect of
the nonredundancy in the primary beams on visibilities is to measure a standard deviation
of visibility measurements with the same baseline separation,

σred,α =

√∑
{i,j}α |Vij(ν)− ⟨Vij(ν)⟩α|2

Nrbl

, (3.5)

where α indicates an index of a redundant-baseline group, Nrbl is the number of baselines in
the redundant-baseline group and ⟨Vij(ν)⟩α is the mean visibility for the redundant baselines.
Here the visibility is raw data for which antenna gains and calibration are not applied. We
employed σred,α for auto- and cross-correlations to examine the nonredundancy in the raw
visibility.

In general, the foreground spectrum is smooth, which means characteristic features in σred
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with frequency are mainly due to the features imprinted in the primary beams. According
to Figure 3.2 and 3.3, while at some frequencies the beam width gets either narrower or
wider as the feed moves upward, at around 170 MHz the beam width is nearly constant with
the feed motion. Similar patterns are observed in σred of the visibility measurements with
the axial feed motion as shown in the first panel of Figure 3.6. The auto-correlation σred
normalized by the averaged visibility amplitude over all antennas shows there is a null at
around 170 MHz and the nonredundancy gets larger as it approaches the band edge. This
value increases with the feed offset but the effect is small.

As we see in Figure 3.2 and 3.3, when the feed is displaced from the fiducial position in
the xy plane, the pointing angle of the main beam also shifts which is proportional to the
feed displacement but frequency-independent. The middle panel of Figure 3.6 shows σred
which is largely consistent with the result of the beam characteristics of lateral feed motions,
showing larger variations in the auto-correlations with larger perturbation in the feed motion
but nearly constant with frequency.

Similarly, as discussed in Section 3.2.2, pointing errors of beams due to the tilting motion
is roughly linear to the tip-tilt of the feed. In addition, unlike the lateral feed motion, tilting
produces non-negligible changes in the beam width. Combining the two effects results in a
slightly different trend (right panel) compared to the middle panel.

The standard deviation computed from cross-correlations is more interesting and impor-
tant in the sense that 1) responses of short and long baselines to point sources and the
diffuse source are different and 2) cross-correlations are involved with redundant-baseline
calibration and power spectrum estimation.

We derived σred,α for each unique baseline using Equation (3.5) which is then averaged
over the frequency band. Figure 3.7 visualizes σred of cross-correlation in the baseline space
with combined (left), GLEAM (middle), and GSM (right) sky models. From top to bottom,
vertical, horizontal, and tilting motions are given. We chose σfeed = 3 cm for axial and lateral
motions and σfeed = 3◦ for the tilting motion. Though the visibility simulation is noiseless,
it is useful to compare σred with the expected thermal noise defined as,

σij =

√
ViiVjj
∆ν∆t

, (3.6)

where Vii is the visibility autocorrelation of antenna i, ∆ν = 0.125 MHz is the frequency
channel width, and ∆t = 10 s is the integration time. The variations of auto-correlations
due to feed motion are of order 1% or less (Figure 3.6), which means the thermal noise levels
derived from Equation (3.6) are similar for all feed motions. For simplicity, we took a single
value from the fiducial model that is σth = ⟨σij⟩ = 2.5 Jy averaged over the frequency band.
σred for the GLEAM and the GSM is also divided by the same value for consistency.
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Figure 3.7: Standard deviation of visibilities within a nominally redundant group of each baseline
vector for the vertical (top row), horizontal (middle row), and tilting feed motion (bottom row).
The first column is the result with the combined sky model which is separated into the GLEAM
(second column) and GSM (third column) sky model. The color scale indicates σred normalized by
the thermal noise of the visibility (σth). The same value for σth which is 2.5 Jy from the fiducial
model averaged over the frequency band is used for all panels. We consider visibilities with σfeed = 3
cm for the feed translation and σfeed = 3◦ for the tilting. We see diffuse emission introduces strong
nonredundancy for particular baseline types, while point sources generate nonredundancy across all
baselines.

The ratio of the nonredundancy in visibilities to the thermal noise is a key quantity to
determine whether the redundant-baseline calibration works properly when there are beam
perturbations. In most panels, the color scale less than 1 indicates the thermal noise is
larger than the nonredundancy error and thus the effect of the nonredundancy on redundant-
baseline calibration seems not significant. However, antenna gains which are solved for by the
calibration come from at least two or more visibility measurements, making the noise levels in
antenna gains smaller compared to those in visibilities and the nonredundancy effect on the
calibrated data visible. Indeed, we show reduced χ2 from the redundant-baseline calibration
including random thermal noises varies with the feed motion in Section 4.3.

In the first column of Figure 3.7, the nonredundancy defined in the baseline space is
different for different feed motion. While the vertical feed motion shows the evidence of
nonredundancy across all baselines, the feature is concentrated at short EW baselines for
the tilting motion. The horizontal motion presents similar patterns to those from the tilting
motion but the overall amplitude is smaller. These different trends of σred can be thought
as the results of different responses of deformed primary beams due to the feed motions to
GLEAM and GSM sky models.

For the GLEAM-only sky model (middle column), σred is uniform across the baselines
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regardless of the feed motion. This is because a point source has a constant visibility am-
plitude for all baselines. One notable thing is σred is largest for the vertical motion and
smallest for the horizontal motion, which is attribute to the different characteristics of the
main lobe of the primary beam for different feed motions as discussed in Section 3.2.2. For
example, when the feed moves along the vertical axis, the main beam widens/shrinks and
collects more/less fluxes from the sky, which results in variation of the overall amplitude of
visibilities and thus large σred. In comparison, when the feed moves in the horizontal plane,
the pointing angle of the main lobe shifts but with the nearly constant beam width. This
shift of the beam makes the instrument observe a different part of sky but the total amount
of received flux stays the same if the sky changes slowly in flux, which keeps σred small. The
change of the main lobe width for the tilting motion is moderate and thus σred is between
those of vertical and horizontal motions.

The diffuse model, however, behaves in a different way. Because the response of the
interferometer to an extended source is strongest at the shortest baseline and declines with
baseline length, σred is expected to be largest at short baselines as shown in the last column
of Figure 3.7 for all three types of the feed motions. At LST = 2.25 hours when the galactic
plane is located at about 80◦ away from zenith, the overwhelming power from the galactic
plane with large solid angles around the horizon makes the emission from diffuse sources
near the horizon even stronger than that along zenith despite considerable attenuation of
the primary beam outside the main lobe (Thyagarajan et al., 2015a,b). This means, unlike
the GLEAM case when σred is largely governed by the properties of main lobes, the features
of side lobes play a role to characterize nonredundancy in visibilities arising from the diffuse
sources. In this context, large σred in the tilting motion shown in the bottom right panel can
be understood based on the large variation of ϵSL defined in Equation (3.3) (Figure 3.4).

Another interesting feature of the GSM-only model is the pattern in σred elongated along
the NS direction which may originate from directional response of the interferometer. The
geometric delay, τg, between two antennas forming a baseline is constant along the direction
normal to the baseline vector on the sky. Therefore, the fringe defined by the geometric delay,
f ∼ exp (−2πiντg), has a constant value along the path orthogonal to the baseline vector.
On the sky we are looking at, the galactic plane is stretched in the EW direction, which
means the constant fringe in the EW direction for the NS baseline helps add up the flux
from the galactic plane constructively and enhance the amplitudes of visibility measurements,
showing the elongated pattern along the NS direction in σred. Because the galactic plane
moves around the sky as the Earth rotates, this effect is LST-dependent. For example, we
found that at LST = 1 hour when the galactic center is located at the South-West corner of
the sky aligned in the North-West direction, the pattern in σred is featured in the North-East
direction as expected.

If we focus on the combined model again, now we can see the uniform trend of σred in
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the vertical feed motion is due to the strong response of the motion to the point source sky
while large σred characterized at short EW baselines in the tilting motion is due to the strong
response of the motion to the diffuse sky. Overall, the nonredundancy for the vertical and
tilting motions is larger than that for the horizontal motion. Orosz et al. (2019) showed that
intrinsic chromaticity on long baselines is in charge of introducing chromatic gain errors when
nonredundancy is present in redundant-baseline calibration. HERA with the compact array
layout has more short baselines than long baselines, which means the large nonredundancy
featured at short baselines resulting from the GSM component may have considerable impact
on the calibration as well.

3.4 Redundant-baseline Calibration

In this section, we describe the antenna gains that are applied to the raw visibility measure-
ments and need to be calibrated out in real observations. We also describe the results of the
calibration in the presence of nonredundancy in the raw visibility.

3.4.1 Model of Input True Antenna Gains

The incident electric field on the feed and the output voltage are related by the system
voltage response, H, defined as

Vout(ν, θ, ϕ) = H(ν, θ, ϕ) · Ein(ν, θ, ϕ). (3.7)

The system, consisting of the antenna, FEM, coaxial cables, and post-amplifier module, has
H expressed as

H(ν, θ, ϕ) =
Zant(ν) + Z0

νZ0

Epat(ν, θ, ϕ)S21(ν), (3.8)

where Zant is the complex impedance of the antenna, Z0 = 100Ω is a termination impedance
which is appropriate for a differential signal, Epat is the electric-field pattern, and S21 is a
scattering parameter (Fagnoni et al., 2020). The S21 scattering parameter, describing the
power transferred from port 1 to port 2 in the receiver, comes from lab measurements, and
Zant and Epat are obtained from CST simulations. This H represents the antenna gain
relating sky signals to instrument measurements, via the antenna and RF chain. Because we
take into account a direction-independent gain in the following analysis, we pick the system
voltage response at boresight where the beam response is strongest, H(ν, 0, 0). The antenna
gain is normalized to the peak for the full band, and the result is presented in Figure 3.8,
with the highlighted frequency band of interest. Detailed derivation of the antenna gain is
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Figure 3.8: The amplitude of the gain derived from Equation (3.8). The response is normalized to
the peak of the full band and has an arbitrary linear unit. The shaded region indicates the frequency
band of 160–180 MHz which we use for visibility simulations. The inset panel shows the spectral
features of the smoothed gain in the band.

addressed in Fagnoni et al. (2020) and Hewitt et al. 2021 (HERA memo #1052).

The S21 measurements were sampled at 1 MHz cadence and thus must be interpolated
to the finer resolution of 0.125 MHz. To prevent unwanted fine-scale spectral artifacts from
the interpolation, the gain amplitudes at 160–180 MHz were smoothed and interpolated by a
Gaussian process regression (GPR) model with a fixed kernel size of 1 MHz after subtracting
a 5th-order polynomial fit. The GPR may smooth out potential frequency structure smaller
than 1 MHz but is found to be effective in suppressing interpolation artifacts. More details
about the smoothing method are described in Lanman et al. (2020). The result of the
smoothed gain is shown in the inset panel of Figure 3.8. Though the Zant(ν), Epat, and S21

vary with the feed displacement, we ignore this effect and model the same gain from the
unperturbed case, regardless of the feed motion for simplicity.

To account for the realistic effect of the amplitude attenuator and the cable delay, we
randomized amplitudes and phases of antenna gains over 320 antennas. We assume the
attenuation ηi for each antenna follows a random Gaussian distribution with zero mean and
a standard deviation of 0.2 and the cable delay τi also follows a random Gaussian distribution
with zero mean and a standard deviation of 20 ns corresponding to 6-m long cable. The
smoothed gain was then multiplied by exp(ηi+2πiτiν) and the final “true” gains were applied
to the raw visibility to derive the measured visibility.
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Figure 3.9: χ2/dof of the redundant-baseline calibration for simulated visibilities with perturbed
primary beams. From left to right, vertical, horizontal, and tilting feed motions are presented. The
fiducial model yields χ2/dof close to 1 as expected, which indicates a perfect calibration. When the
feed is displaced from the fiducial position, χ2/dof also deviates from 1. This effect is largest for
the tilting motion, which is consistent with σred of raw visibilities shown in Figure 3.7. The noisy
features are due to the thermal noise that is included only for the χ2 statistics.

3.4.2 Effects of nonredundancy on Redundant-baseline Calibration

The general relation between the measured visibility V obs
ij and the true visibility V true

ij is
assumed to be associated with antenna gains and thermal noise,

V obs
ij = gig

∗
jV

true
ij + nij, (3.9)

where gi and gj are complex per-antenna gains and nij is the Gaussian thermal noise. The
antenna gain represents direction-independent effects such as amplifiers and the delay offset
due to the light-travel time delay along the path. The antenna-to-antenna variation of pri-
mary beams, which is our interest, is one common source of the direction-dependent effect
(Smirnov, 2011). Equation (3.9), however, does not account for the direction-dependent
correction, which may leave chromatic errors in the antenna gains. To minimize the po-
tential spectral structure from the direction-independent calibration, some techniques such
as smoothing the antenna gains can be employed. More details about mitigation with the
techniques will be addressed in Kim et al. (in prep).

With all identical primary beam models, antenna pairs with the same separation are
supposed to measure the same true visibility. The redundant-baseline calibration uses the
redundancy of the visibility in the redundant baseline group rather than prior information
of the sky to obtain the true visibility. More specifically, the redundant-baseline calibration
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Figure 3.10: The rms of the fractional gain errors for the vertical (left), horizontal (middle), and
tilting (right) feed motions. As expected, larger feed motion perturbations result in larger rms of
the fractional gain errors. Although these gain errors are largely kept to about 1%, when convolved
with bright foregrounds this could easily swamp the intrinsic 21-cm signal, if the gain errors have
sufficient structure.

solves for the unique visibility along with the antenna gains as free parameters,

V obs
ij = gig

∗
jV

sol
i−j, (3.10)

where V sol
i−j is the unique visibility solution of the redundant baseline group with the same

baseline separation. One approach to find the antenna gain and the visibility solution is to
minimize χ2,

χ2 =
∑
i<j

|V obs
ij − gig

∗
jV

sol
i−j|2

σ2
ij

, (3.11)

where σ2
ij is the variance of nij. This is performed per polarization, per frequency, and per

time. More comprehensive discussion about how to minimize Equation (4.2) is presented
in Dillon et al. (2020). The calibration was performed with the publicly available software
library, hera_cal6.

In an ideal case when redundant baselines share the same true visibility, χ2 is expected
to be equal to the degree of freedom (dof). The dof for the redundant-baseline calibration is
dof = Nbl −Nubl −Nant + 2 where Nbl is the total number of baselines, Nubl is the number
of unique baselines, and Nant is the number of antennas (Dillon et al., 2020). Figure 3.9
shows overall χ2/dof as a function of frequency for vertical (left), horizontal (middle) and
tilting (right) feed motions7. The measured visibility is simulated with the combined sky

6https://github.com/HERA-Team/hera_cal
7Even though our simulations are noise-free throughout the rest of our analysis, for appropriate χ2 cal-

culation, visibility measurements to derive Figure 3.9 include thermal noise generated with autocorrelations
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Figure 3.11: Slope of the x-direction phase gradient that is solved for by absolute calibration for
vertical (left), horizontal (middle), and tilting (right) feed motions. ∂νΦx represents the derivative
of the linear phase gradient in the x-direction with respect to frequency. We see the slope is nearly
constant for the fiducial model, while there is high-frequency structure for the perturbed model
which introduces additional chromatic gain errors.

model. As expected, the fiducial model yields χ2/dof close to 1, which indicates a perfect
calibration. When the feeds move away from the fiducial position and angle, χ2/dof deviates
from 1 and the deviation gets larger with the degree of perturbation. For a given σfeed,
vertical feed motions result in a similar level of χ2/dof to horizontal feed motions, but the
former has a slightly larger mean value. Our choice of tilts, however, presents rather larger
χ2/dof compared to the translational motions. This is largely consistent with the results
of σred for raw visibilities, showing the larger nonredundancy error arising from the tilting
motion compared to that from the horizontal motion (Figure 3.7).

Another metric to quantify the effectiveness of the redundant-baseline calibration against
perturbed beams with feed motions is the rms fractional gain errors. The fractional gain
error of an antenna is defined as

fg,i =
|gpert,i| − |gunpert,i|

|gunpert,i|
. (3.12)

Here |gunpert,i| and |gpert,i| indicate the gain amplitudes of the unperturbed and perturbed
beams for antenna i, respectively. The rms of fractional gain errors is then calculated over
all 320 antennas per frequency. In Figure 3.10, the vertical (left) and horizontal (middle)
feed motions show ≲ 1% rms errors, while the tilting motion (right) displays larger errors,
about 1–2 % rms errors, which is consistent with the results of χ2/dof. In other words, larger
chromatic gain errors indeed correlate to larger feed motion perturbations.

using Equation (3.6). We consider ∆ν = 125 kHz and ∆t = 10 seconds.
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Though the highly redundant array configuration of HERA yields enough number of
measurements to solve for the unknown parameters of redundant-baseline calibration, there
are degeneracies between the antenna gains and the visibility solution that keep gig

∗
jV

sol
i−j

unchanged. The four degenerate parameters are the overall amplitude and phase, along with
the EW and NS tip-tilt (Byrne et al., 2019, Dillon et al., 2018, Kern et al., 2020a, Li et al.,
2018, Liu et al., 2010, Zheng et al., 2014). The last two are due to directional phase factors
in x- and y-direction in the antenna gain which can be cancelled by rephasing the unique
visibility solution (e.g., gi → gie

iΦxxi and V sol
i−j → V sol

i−je
−iΦx(xi−xj), where Φx is a linear phase

gradient in the x-direction). The overall phase is the degeneracy between antenna gains
(gi → eiψgi, g∗j → e−iψg∗j ) and is set arbitrarily. The three degeneracies other than the
overall phase are solved for by an additional process referred as absolute calibration using a
sky model.

We implemented absolute calibration with the model visibility simulated using the unper-
turbed primary beam model. As described in Section 3.2.2, the pointing angle of the primary
beam can shift due to feed motion, resulting in shifted field of view of the observed sky rel-
ative to the desired fiducial pointing. Sky-based calibration with an inaccurate sky model is
known to introduce frequency-dependent calibration errors (Barry et al., 2016, Byrne et al.,
2019, Ewall-Wice et al., 2017, Gehlot et al., 2021). In other words, the difference in the sky
observed by unperturbed and perturbed primary beams is an additional potential source
of chromatic gain errors (Barry and Chokshi, 2022, Orosz et al., 2019). Figure 3.11 is an
example showing the linear phase gradient along the x-direction that is solved for by the
absolute calibration step. We calculate the derivative of the phase gradient with respect to
frequency, and present the results as a function of frequency for the vertical (left), horizontal
(middle), and tilting (right) motions. The derivative for the fiducial model is nearly con-
stant. However, the phase gradient for the perturbed case exhibits high-frequency structure,
which contributes to the spectral leakage especially at high delay modes.

Figure 3.12 demonstrates a frequency Fourier transform of the calibrated antenna gains,
after the redundant calibration (dashed lines) and after the full calibration, including the
post absolute calibration (solid lines). The Fourier transform of the gain shows the frequency
structure in the gain that will be mapped to power spectrum estimates. The delay in the
x-axis is a Fourier dual to the frequency. To derive the y-axis, we divide the perturbed gains
by the fiducial one, and multiply them by a 7th-order Blackman-Harris tapering window
function, which helps to suppress the side lobes and achieves a large dynamic range (Lanman
et al., 2020). We then perform the frequency Fourier transform, normalize the results to the
peaks, and average the amplitudes over all antennas.

We found that the Fourier transform of the fiducial gain, with the perfect calibration,
reaches a floor of about 10−9 at high delays, which is consistent with the true gain. This
means the floor above about 10−7 shown in Figure 3.12 may arise from the calibration error
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Figure 3.12: Averaged Fourier transformed antenna gain over all antennas for the axial (left), the
lateral (middle), and the tilting (right) feed motions. The perturbed gain is normalized to the
fiducial one. The dashed and solid lines indicate the results after the redundant-baseline and after
the full calibration including the absolute calibration, respectively. Different colored lines denote
different levels of perturbation in feed motions. Even in the case when the feed is least perturbed
in our choice, a broad wing ≳ 300 ns or 0.17 hMpc−1 (vertical line) is present. This is due to
chromatic gain errors caused by the nonredundancy in visibilities emerging from redundant-baseline
calibration. Existence of the wing is critical since it affects detection of cosmological signals at low
k∥ where high signal-to-ratios are expected. The chromatic gain errors above 2000 ns mainly come
from the absolute calibration.

due to the perturbed beams. In addition, unwanted broad wings start to appear at delay
larger than 300 ns, which are primarily caused by chromatic errors in the gain solutions
from the redundant-baseline calibration as shown in dashed lines. Larger perturbation in
feed motion results in larger nonredundancy errors, and thus larger amplitude of the wing.
In principle, the antenna gain from the perfect calibration that is convolved with smooth
spectrum of foregrounds makes the foreground power isolated in the wedge of a power spec-
trum. When the gain includes chromatic errors, however, convolution of the gain and the
foregrounds can lead to foreground leakage outside the wedge owing to the broad wing in
the Fourier transform. Additional chromatic gain errors at delay larger than ∼2000 ns are
observed mainly due to the absolute calibration step.

3.5 Power Spectrum Estimation with Feed Motion

An infinite frequency Fourier transform of a visibility for spectrally flat foreground emission
from a single source forms a Dirac delta function in the delay domain. Realistic consideration
with smoothly varying foreground and instrumental responses with frequency as well as the
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finite band width turns the Dirac delta function into a broadened delay-spectrum, but the
width remains small as long as the variation is smooth enough. The delay-spectrum is
centered at the geometric delay of the source, τg = |b| sin θ/c where |b| is the norm of the
baseline vector, θ is the angle from zenith to the source, and c is the speed of light. The
frequency Fourier transform of a visibility for all foreground sources is then the superposition
of such delay-spectra across the field-of-view of the sky, and the maximum delay mode is
defined by the largest geometric delay between two antennas forming the visibility. With
a zenith-pointed array, the maximum geometric delay is set by the horizon limit and thus
the delay modes are bound to τ ≲ τhor = |b|/c. The complex-spectrum cosmological signal
due to line-of-sight fluctuations, however, is widely distributed across all delay modes even
beyond the horizon limit, which leaves a room for detecting the cosmological signals at
τ > τhor.

3.5.1 The Power Spectrum for Cosmological Signals

The observable cosmological quantity measured from redshifted 21-cm observation is the
brighteness temperature of the neutral hydrogen that is defined by the spin temperature TS
relative to the background radiation temperature Tγ (e.g., Furlanetto et al., 2006),

δTb(z) =
TS − Tγ(z)

1 + z
(1− e−τν0 ) (3.13)

≈ 27xHI(1 + δm)

(
H(z)

dv∥/dr∥ +H(z)

)(
1− Tγ

TS

)
×

(
1 + z

10

0.15

Ωmh2

) 1
2
(
Ωbh

2

0.023

)
[mK], (3.14)

where τν0 is the optical depth at the rest 21-cm frequency ν0 = 1420 MHz, xHI is the fraction
of the neutral hydrogen, δm is the matter density fluctuation, H(z) is the Hubble parameter,
and dv∥/dr∥ is the gradient of the line-of-sight velocity.

We adopt a cosmological signal from Mesinger et al. (2016) generated with 21cmFAST
(Mesinger et al., 2011) using the Faint Galaxies model that is consistent with Ly α forest
observations. The size of the simulation box is 16003 cMpc3 with 1024 pixels on each side.
We chose the coeval cube at z ∼ 7.4 corresponding to 170 MHz. The cosmological model at
this redshift predicts the ionization fraction of hydrogen gas ≲ 0.5.

Figure 3.13 shows the power spectrum of EoR signals defined in (k⊥, k∥) space where
k⊥ and k∥ are Fourier modes perpendicular to and parallel to the line-of-sight, respectively.
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Figure 3.13: EoR power spectrum estimated at z ∼ 7.4. Spectral structure in the cosmological
signal allow the power spectrum to spread beyond the horizon limit (black dashed line) defined in
Equation (3.20), forming the isotropic power spectrum.

The cosmological power spectrum is estimated with

P̂21(k, z) =
⟨|δT̃b(k, z)|2⟩

V
[mK2 h−3Mpc3], (3.15)

where δT̃b(k, z) is a 3D spatial Fourier transform of δTb(x, z) and V is the simulation volume.
The effective frequency bandwidth with the 7th-order Blackman-Harris tapering function is
about 5.4 MHz or ∆z = 0.27 in which the universe can be regarded as coeval and the light-
cone effect on the power spectrum can be ignored (Datta et al., 2012). As expected, the
EoR signal forms an isotropic power in the 2D power spectrum that is extended to high k∥,
providing a region for detecting the EoR above the horizon limit. This power spectrum will
be used as a reference to quantify the foreground leakage beyond the horizon limit.

3.5.2 The Foreground Leakage due to Non-uniform Primary Beam
Models

In principle, the foregrounds and the cosmological signal are separable in the 2D power
spectrum thanks to the different behaviors of the sources in the Fourier domain. The power
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Figure 3.14: Foreground power spectrum for the fiducial beam model with the combined sky model.
The power spectrum is estimated with the calibrated visibility at LST = 2.25 hours for the 160–
180 MHz band. The black dashed line indicates the geometric horizon limit. The strong emission at
low k∥ is due to the point sources located at zenith while the emission aligned with the horizon limit is
due to the diffuse source near the horizon. The white and orange contours are where the foreground
spillovers are the same as and 10% of the EoR power, respectively. The foreground spillover beyond
the horizon limit is not due to calibration errors but due to the intrinsic chromaticity of the beam in
the far side lobes convolved with the diffuse power originating from the pitchfork effect. Without the
fringe-rate filter, the cosmological information below k∥ ∼ 0.5hMpc−1 is obscured by the foreground
power, even with the perfect calibration.

spectrum can be obtained based on the Fourier transform of a visibility along frequency,

Ṽ (u, τ) =
∫
w(ν)V (u, ν)e2πiντdν. (3.16)

Here, u = b/λ and w(ν) is a tapering function applied along the frequency axis to down-
weight the edge effect of the bandpass. As described in Section 4.3, we chose the 7th-order
Blackman-Harris window function.

We coherently average complex visibilities with the same redundant baselines, which
helps reduce the spectral structure arising from the chromatic gain errors. The coherently
averaged visibilites, Vcoh, are converted to delay spectra and the square of them yields the
power spectrum estimate,

P̂ (k⊥, k∥) =
X2Y

BppΩpp

|Ṽcoh(u, τ)|2, (3.17)
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Figure 3.15: Foreground power spectra for vertical (top row), horizontal (middle row), and tilting
(bottom row) feed motions with the combined sky model. From left, power spectra of σfeed = 1, 2, 3,
and 4 cm for the translation motions and σfeed = 1◦, 2◦, and 3◦ for the tilting motion are presented.
The white and orange solid contours indicate where the foreground is equal to and 10% of the EoR
power, respectively. The white dashed contour representing the fiducial model is shown in all panels
for comparison. As expected, there is contamination when the feed positions are perturbed. We
do not apply any mitigation technique to reduce the chromatic gain errors such as down-weighting
the effect of long baselines in calibration or smoothing the gain solutions along the frequency axis,
which will be discussed in the subsequent paper.

where Bpp is the effective band width defined as Bpp =
∫
|w(ν)|2dν and Ωpp is the spatial

integral of the squared primary beam (Parsons et al., 2014). X and Y are scaling factors
relating |u| and τ to k⊥ and k∥ in cosmological units,

k⊥ =
2π|u|
X

(3.18)

k∥ =
2πτ

Y
, (3.19)

where X = D(z), Y = c(1 + z)2/(ν0H(z)), and D(z) is the comoving distance. The horizon
limit, τhor = |b|/c, is then expressed in cosmological units as

k∥,hor =
H(z)D(z)

c(1 + z)
k⊥. (3.20)
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Figure 3.16: Relative foreground power spectra, PpGSM/PpGLEAM, for vertical (left), horizontal
(middle), and tilting (right) feed motions. PpGSM is from the visibility that is simulated using the
GSM with the perturbed beam and the GLEAM with the fiducial beam. PpGLEAM indicates the
opposite case when the GLEAM is with the perturbed beam and the GSM is with the fiducial beam.
The black dashed line indicates the horizon limit. Base on the analyses with σred in Figure 3.7,
PpGLEAM is expected to have larger foreground leakage than PpGSM for the vertical motion while
PpGSM is in charge of leaking the foreground into the EoR window for the horizontal and tilting
motions.

We utilized hera_pspec8 that is a publicly available software to construct the power spectrum
estimation.

Figure 4.13 presents the estimated power spectrum of the combined sky model for the
fiducial feed position. For the fiducial model, the foreground power is expected to fall off
rapidly with k∥ beyond the horizon limit (black dashed line). However, significant amount of
foreground spillovers are observed beyond the horizon limit despite the perfect calibration.
This is an intrinsic spillover associated with the powerful emission near the horizon known
as the “pitchfork effect” along the black dashed line (Thyagarajan et al., 2015a,b). The
pitchfork effect can be understood as a result of the response of short projected baselines to
strong diffuse sky emissions from the horizon lined up with the horizon limit in the (k⊥, k∥)
space.

At LST ∼ 2 hours which is relatively foreground free in the direction of the zenith-pointed
sky, the diffuse galactic plane lies near the horizon and forms the pitchfork. Because the
galactic plane emanates strong synchrotron emissions, convolving the primary beam response
with the sky emission in the Fourier domain results in an excess of power above the horizon
limit as shown in Figure 4.13. There is a trend that low k⊥ corresponding to short baselines
has more excess of power than high k⊥ and this is because short baselines less resolve out the
diffuse source and thus capture more power on the horizon leading to more power at high
k∥ than long baselines. The overplotted white and orange contours correspond to the power

8https://github.com/HERA-Team/hera_pspec
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level where the foreground power is equal to and 10% of the cosmological signal, respectively.
These contours reveal the foreground spillovers extended above the horizon limit clearly.

This result is somewhat different from the result of Orosz et al. (2019) who showed smaller
spillovers beyond the horizon limit. One major difference between their and our simulations
is that they included point sources only while we consider diffuse sources as well as point
sources. We found if we only consider point sources throughout the analysis, we came into
a similar result to Orosz et al. (2019) with considerably suppressed spillover beyond the
horizon limit. We include the GSM because it represents a more realistic sky model. The
pitchfork effect can be mitigated by filtering out small fringe-rate regions on the sky (Parsons
et al., 2016), and the effects of applying this technique will be addressed in Kim et al. (in
prep).

In Figure 3.15, from left to right, power spectra perturbed by σfeed = 1, 2, 3, and 4
cm for the vertical (top row) and the horizontal (middle row) feed motion and σfeed = 1◦,
2◦, and 3◦ for the tilting motion (bottom row) are shown. Across all feed motions, as
the feed moves away from the fiducial point, the solid contours representing the perturbed
models depart from the dashed contour which is the fiducial one shown in Figure 4.13.
This lift of the foreground leakage is associated with the antenna gains corrupted by the
chromatic errors as discussed in Figure 3.12. At short baselines (i.e., low k⊥) which have a
number of redundant baselines, coherent averaging in the visibility space can reduce high-
frequency structure introduced by the chromatic gain errors. As a result, for σfeed = 1 cm
or σfeed = 1◦ when the feed displacement is relatively small, the averaged visibility yields a
similar foreground power to that of the fiducial model at low k⊥. Longer baselines, however,
have relatively smaller number of redundant baselines and the averaging is not sufficient to
smooth out the high-frequency features imprinted by the chromatic gain errors on top of the
intrinsic spectral structure. This makes the long baselines suffer from unsmoothed frequency
structure, displaying the leakage along k∥ in the power spectrum analogous to the broad wing
of the perturbed gains. For a larger size of perturbation, the effect of the chromatic gain
errors become more significant and the chromatic errors along with the strong foreground
power observed at the short baselines lead to leakage at very low k⊥ modes. This is consistent
with the results of Orosz et al. (2019) in the sense that there is a trend of the foreground
leakage at very low and high k⊥.

The amount of foreground leakage is different for different type of feed motion. For
the vertical and tilting feed motions, the power spectra exhibit stronger evidence of leakage
compared to the horizontal motions. We expect this behavior from the large nonredundancy
error in visibilities of the vertical and tilting motions as discussed in Section 3.3.2. Especially
when σfeed = 4 cm and σfeed = 3◦, we see the low k⊥ modes are heavily contaminated by
the foregrounds and are not usable for EoR detection. For the horizontal feed motion which
shows smaller σred, the contours are least pushed away from the fiducial one but noticeable

108



0.4 0.6 0.8 1.0
k (h Mpc 1)

100

101

102

103

104

P(
k)

 (m
K2

h
3
M

pc
3 )

vertical motion
feed = 1 cm
feed = 2 cm
feed = 3 cm
feed = 4 cm

0.4 0.6 0.8 1.0
k (h Mpc 1)

100

101

102

103

104

horizontal motion
feed = 1 cm
feed = 2 cm
feed = 3 cm
feed = 4 cm

0.4 0.6 0.8 1.0
k (h Mpc 1)

100

101

102

103

104

tilting motion
feed = 1 deg
feed = 2 deg
feed = 3 deg

Figure 3.17: Spherically averaged 1D foreground power spectrum estimates for vertical (left), hor-
izontal (middle), and tilting (right) feed motion. The power spectra are constructed from the 2D
power spectra (Figure 3.15) with k modes satisfying k∥ ≥ k∥,hor + 0.4hMpc−1 to minimize the
intrinsic foreground spillovers due to the spectral structure in the primary beam along with the
pitchfork effect. The black solid curve is the power spectrum estimate of the fiducial model and
colored dashed curves are for the perturbed beams labelled in the legend. The dotted grey curve
denotes the EoR power spectrum with the same cut applied.

contamination is still allowed at high k⊥. The foreground contamination is expected to be
reduced by applying the baseline cut-off in calibration and smooth calibration along with
the fringe-rate filter, and this will be discussed in the subsequent study.

As shown previously in Figure 3.7, the nonredundancy in visibilities depends not only on
the feed motion but also on the sky model. In order to relate the result to the foreground
leakage in the power spectrum, we simulated visibilities by perturbing the beam model for
one sky model but keeping the fiducial beam model for the other. We then fed the visibility
into the calibration pipeline and estimated the power spectrum. The ratio between power
spectra, PpGSM (i.e., fiducial GLEAM + perturbed GSM) and PpGLEAM (i.e., perturbed
GLEAM + fiducial GSM) is shown in Figure 3.16.

We consider σfeed = 3 cm for the vertical (left panel) and horizontal (middle) motions and
σfeed = 3◦ for the tilting motion (right). For the vertical motion, the small PpGSM/PpGLEAM

is predicted because of predominant σred of the GLEAM over σred of the GSM. This may
demonstrate the variation in the width of the main lobe with the vertical feed motion is
the key feature inducing the foreground leaking into the EoR window. On the contrary, the
larger PpGSM/PpGLEAM for the tilting motion can be explained by the fact that σred of GSM
is predominant over σred of GLEAM at short baselines, which may arise from the variation of
the side lobes covering the bright galactic plane. The horizontal motion, which has relatively
small σred for both GLEAM and GSM compared to other motions, reveals the impact of GSM
is greater than that of GLEAM in forming the foreground leakage. This can be understood
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in the context that the beam-weighted flux density of the GSM can be significantly larger
than that of the GLEAM. For example, the flux density of the point sources inside the main
lobe (e.g., inside 20×20 degree sq around zenith) is about 1.4 × 103 Jy, while that of GSM
inside the side lobe (60◦ < zenith angle < 90◦) is about 8 × 105 Jy. For the feed displacement
by 5 cm along the x-axis, the change to the power beam area for the main lobe is about 1.4
× 10−4, whereas that for the side lobe is about 2.6 × 10−5. This means the change to the
beam-weighted flux density due to the feed motion is ∼0.2 Jy for the point sources and is
∼20 Jy for the GSM. This implies the contribution of the GSM with the feed motion would
be 100 times larger than that of the point source and that’s why we see a larger impact of
the GSM for the horizontal motion.

A 1D power spectrum is formed based on the 2D power spectrum shown in Figure 3.15.
We first selected the region least affected by the intrinsic foreground spillovers, even shown
in the fiducial model, arising from the chromatic primary beam convolved with the pitchfork
effect by setting a constant buffer above the horizon limit, k∥ ≥ k∥,hor + k∥,buffer. For a
conservative choice to minimize the effect of the spillovers, k∥,buffer = 0.4hMpc−1 is taken
into account. Though this buffer size is aggressive in terms of removing significant amount
of k modes with relatively stronger EoR signals, it enables us to explore the behavior of the
foreground leakage due to the feed motions.

We then turned the filtered power spectrum into the spherically averaged 1D power
spectrum by averaging cylindrical bins into corresponding spherical bins. Figure 3.17 shows
the results for the vertical (left), horizontal (middle), and tilting (right) feed motions. The
fiducial model (black solid line) crosses the EoR power spectrum (grey dotted line) at k ∼
0.5hMpc−1 where P (k) ∼ 300mK2 h−3Mpc3. Since the EoR power spectrum declines with
k, we focus on 0.5 < k < 1.0hMpc−1 where we can achieve relatively high sensitivity
compared to k > 1.0hMpc−1 if thermal noise is included. For the given EoR model, our
noiseless simulation shows the foreground power spectrum is smaller than the EoR power
spectrum at k ≳ 0.6hMpc−1 for the lateral motions except for σfeed = 4 cm. For the vertical
feed motion, the foreground power spectrum smaller than the EoR power when σfeed = 1 cm
but the EoR power is buried under the foreground power spectrum for other cases. Our
choice of tilts also makes the foreground power spectrum similar to or greater than the EoR
power spectrum for most cases of the perturbation. We expect the foreground power can
be dropped below the EoR level and set a requirement of feed positioning if appropriate
mitigation for the chromatic gain errors is applied, which will be explored in Kim et al. (in
prep).
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3.6 Conclusions

In this study, we have characterized the effects of feed positional perturbations on the elec-
tromagnetic properties of the HERA antenna’s beam pattern by using the CST’s full-wave
electromagnetic time-domain solver. Previous studies have so far been limited to studying
analytic models of per-antenna beam perturbations for HERA. We significantly extend upon
these works by using realistic CST simulations in a full forward-model context, and apply a
realistic calibration pipeline to explore its impact on modern data analysis pipelines.

We separate the feed motions into three classes, including vertical, horizontal, and tilting
motions. The vertical feed motion was found to mainly drive changes to the width of the
main lobe, whereas the horizontal and tilting motions mainly perturb the pointing angle of
the main lobe. Relatively larger perturbation in side lobes is observed for the tilting motion
than the translation motions.

With the perturbed beams for 320 antennas, we simulated visibility measurements us-
ing the GLEAM sky survey and the GSM sky model for point sources and diffuse sky,
respectively. Figure 3.7 shows different feed motions are responsible for different patterns
of nonredundancy in cross-correlation visibilities. The uniform nonredundancy across the
antenna separation shown in the vertical feed motion is primarily caused by the response of
the point sources to variations in the main lobe, while the high nonredundancy concentrated
at short baselines shown in the horizontal and tilting motions arises from the response of the
diffuse source to changes of the side lobes.

The introduction of non-redundancies in the visibility due to per-antenna feed motions
breaks the assumptions of redundant calibration and thus introduces chromatic errors into
the gains. It also imparts gain errors into the absolute calibration step performed after
redundant calibration. Fractional gain errors and χ2 statistics reveal that the chromatic
gain errors increase with the size of perturbation in the feed motion. The Fourier transform
of the gain solutions shows excess power at delay ≳ 300 ns compared to the fiducial case,
which results in foreground leakage outside the wedge in the power spectrum.

In the 2D power spectrum, the chromatic gain errors cause the foreground to leak from
the wedge, which can significantly reduce the accessible size of the EoR window. If the
perturbation is small (σfeed ≲ 1 cm or σfeed ≲ 1◦), we found that the foreground power
can be suppressed to a level similar to the fiducial case at low k⊥ (i.e., short baseline) if
we coherently average visibilities over redundant baselines. Since high k⊥ modes have less
redundant baselines, more foreground leakage is therefore observed relative to low k⊥ for all
cases of the feed motions. When the feed positions are perturbed more than 1 cm in vertical
displacement or 1◦ in tilt, there are considerable foreground contamination at both low and
high k⊥ modes due to the chromatic gain errors.
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Figure 3.16 demonstrates the foreground leakage is mainly caused by GLEAM point
sources in the main lobe of the perturbed beam from the vertical feed motions. We also see
that the diffuse GSM component in the side lobes are the main contributors of the leakage
in the case of horizontal and tilting feed motions, which is corroborated by Figure 3.7.

Based on the spherically averaged 1D power spectrum analysis, σfeed = 1 cm for the
horizontal motion may allow us to retain the EoR window with the least foreground bias.
Unlike the lateral feed motion, the vertical and tilting motions introduce more foreground
power leakage and the EoR signal is barely above the foreground power spectrum when the
feeds are perturbed more than σfeed = 1 cm or σfeed = 1◦. We expect the stringent feed
positioning requirement can be loosened once fine spectral structure in gain solutions can be
suppressed using some of the mitigation techniques proposed below.

So far, we have illustrated that antenna feed position offsets can introduce unwanted
foreground leakage beyond the horizon limit in the power spectrum. The level of the fore-
ground leakage is expected to be minimized with several different mitigation methods. One
major intrinsic foreground spillover, even in the ideal fiducial model, is the pitchfork effect.
This pitchfork power leakage level can be reduced by excluding the sky around the horizon,
which can be accomplished by filtering out small fringe rates (Parsons et al., 2016). Re-
garding the leakage associated with chromatic gain errors, including only certain baselines
in calibration is a potential solution. For example, Ewall-Wice et al. (2017) and Orosz et al.
(2019) found down-weighting long baselines in calibration can reduce the chromatic gain
errors and the leakage of foreground in the power spectrum. Another approach is to smooth
out high-frequency structure in antenna gain solutions (e.g., Kern et al., 2020a). The effects
of these mitigation methods on the power spectrum estimate will be discussed in Kim et al.
(in prep).

Although this study focuses on the middle range of the HERA band, it provides a frame-
work to quantify the instrument configuration requirements and systematic errors. A similar
approach can be extended for the rest of the HERA band in future work.

3.7 Appendix

3.7.1 Beam interpolation along the feed motion direction

The primary beams simulated by CST are sampled at regular grid positions, which means
the beams interpolated at random feed positions of interest may contain errors arising from
the interpolation along the feed motion direction. It is important to evaluate and minimize
the potential errors in the interpolation to study the effect of perturbed beams driven by the
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feed motion.

The interpolation is performed on far-field electric fields expressed in Equation (3.1).
Because the far-field electric field consists of two components, Eθ and Eϕ, and each compo-
nent is complex, the interpolation is carried out 4 times at a given frequency, zenith angle,
and azimuthal angle along the feed motion direction using scipy python package (Virtanen
et al., 2020).

To test the accuracy of the interpolation, we ran CST simulations at randomly chosen
feed positions or tilts as noted in the title of each panel of Figure 3.18 and compare the
CST simulated and interpolated beam. Each pair plot consists of 1D profiles of power
beams for the CST simulated and interpolated beams with zenith angle in the EW direction
(top) and their fractional difference (bottom). For the pairs in the top row representing the
vertical feed offset, the simulated beams and interpolated ones present a good agreement.
The fractional difference indicates the interpolation error is less than 0.05%, which means
the error is insignificant compared to the perturbation in the beams due to feed motions.
For the horizontal feed motion (pairs in the middle row), the error is about 1% or less. The
errors can be as large as 5% for the tilts shown in the pair plots in the bottom row but the
interpolation error is still less significant than the error of the perturbed beam as shown in
Figure 3.1.

Figure 3.19 shows comparison between the CST simulated and interpolated beams with
frequency at the zenith point. From top to bottom, each pair plot indicates the vertical,
horizontal, and tilting feed motions, respectively. Across all panels, the simulated and inter-
polated beams are well lined up and we found the fractional difference is less than 1%. In the
bottom panel of each pair plot, we show the frequency Fourier transform of the interpolated
beam which is consistent with that of the simulated beam, forming the numerical noise floor
at around 10−7. This means there is no additional high-frequency structure introduced by
the interpolation. This leaves us with the conclusion that chromatic gain errors and leakage
in the power spectrum are mainly caused by the beam error induced by the feed motion
rather than the interpolation error.
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Figure 3.18: Comparison of CST simulated beams and interpolated ones at off-grid feed positions
or tilts labeled in the title of each panel at 165 MHz. The title indicates (x, y, z) feed positions for
vertical and horizontal feed offsets, and (ϕ, θ) for tilts. Each pair consists of the line profiles of the
power beams with zenith angle in the EW direction (top) and their fractional difference (bottom).
The top three are for the vertical feed offset, the middle three for the horizontal displacement and
the bottom three for the tilting motion.
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Figure 3.19: Comparison of CST simulated beams and interpolated ones at off-grid feed positions
along frequency. The zenith point is chosen for the validation. From top to bottom, each pair plot
represents the feed offset in the z-axis, in the xy plane, and in tilt. Overall, two power beams in
each panel agree better than ∼1%, and the Fourier transform of the interpolated beam does not
show extra high-frequency structure compared to that of the CST simulated one.
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Chapter 4

The Impact of Beam Variations on
Power Spectrum Estimation for 21 cm
Cosmology II: Mitigation of Foreground
Systematics for HERA

This work is published in The Astrophysical Journal. Author lists include Honggeun Kim,
Nicholas S. Kern, Jacqueline N. Hewitt, Bang D. Nhan, Joshua S. Dillon, Eloy de Lera Acedo,
Scott B. C. Dynes, Nivedita Mahesh, Nicolas Fagnoni, and David R. DeBoer.

Abstract
One key challenge in detecting 21 cm cosmological signal at z > 6 is to separate the cos-
mological signal from foreground emission. This can be studied in a power spectrum space
where the foreground is confined to low delay (or equivalently, k∥) modes whereas the cos-
mological signal can spread out to high delay modes. When there is a calibration error,
however, chromaticity of gain errors propagates to the power spectrum estimate and con-
taminates the modes for cosmological detection. The Hydrogen Epoch of Reionization Array
(HERA) employs a high-precision calibration scheme using redundancy in measurements. In
this study, we focus on the gain errors induced by nonredundancies arising from feed offset
relative to the HERA’s 14-meter parabolic dish element, and investigate how to mitigate
the chromatic gain errors using three different methods: restricting baseline lengths for cal-
ibration, smoothing the antenna gains, and applying a temporal filter prior to calibration.
The combination of the baseline cut and temporal filtering indicates that the spurious gain
feature due to nonredundancies is significantly reduced, and the power spectrum recovers the
clean foreground-free region. We found that the mitigation technique works even for large
feed motions but in order to keep a stable calibration process, the feed positions need to
be constrained to 2 cm for translation motions and 2◦ for tilting offset relative to the dish’s
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vertex.

4.1 Introduction

Understanding the formation of the first stars and galaxies in the universe is key to our
broader picture of structure formation over cosmic time. This era, known as Cosmic Dawn,
and the subsequent Epoch of Reionization (EoR), when these sources injected ionizing pho-
tons into the intergalactic medium (IGM), set the stage for the emergence of modern galaxies
as we see them in the present universe; however, we currently have a poor understanding of
the astrophysics of these eras. A powerful probe of Cosmic Dawn astrophysics is the 21 cm
hyperfine signal emanating from neutral hydrogen in the IGM at redshifts z > 6. With the
efforts to detect the cosmological signal, there are past, current and upcoming instruments
including the Giant Metre Wave Radio Telescope (GMRT; Paciga et al., 2013), the Murchi-
son Widefield Array (MWA; Barry et al., 2019, Beardsley et al., 2016, Dillon et al., 2014,
Ewall-Wice et al., 2016a, Tingay et al., 2013, Trott et al., 2020), the Donald C. Backer Pre-
cision Array for Probing the Epoch of Reionization (PAPER; Cheng et al., 2018, Kolopanis
et al., 2019, Parsons et al., 2010), the Low Frequency Array (LOFAR; Gehlot et al., 2019,
Mertens et al., 2020, Patil et al., 2017, van Haarlem et al., 2013), the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al., 2017, Dillon and Parsons, 2016, The HERA Col-
laboration et al., 2022a,b, 2023), and the Square Kilometre Array (SKA; Koopmans et al.,
2015).

A key challenge in making robust measurements of 21 cm emission at the EoR are the
bright synchrotron foreground emission coming from the foreground galaxy and from extra-
galactic sources, which are at least 4-5 orders of magnitude brighter. One of the ways to
circumvent the foreground obstacle is to employ a 2D power spectrum approach that has a
potential to separate the cosmological signals from the foregrounds. The spectrally smooth
foreground emission, in principle, is confined to a certain range of the delay (τ) or the line-of-
sight cosmological modes (k∥), a Fourier dual to the frequency. In contrast, the cosmological
signals trace the evolution of the neutral hydrogen with fluctuations in a brightness temper-
ature field along the redshift or frequency, and hence are distributed across a wide range of
the delay modes. This provides foreground-free delay modes for the cosmological detection
(Datta et al., 2010, Liu et al., 2014, Morales et al., 2012, Morales et al., 2018, Parsons et al.,
2012, Pober et al., 2014, Thyagarajan et al., 2013, Trott et al., 2012, Vedantham et al., 2012).

In order to adopt the strategy described above, high-precision antenna gain calibration
is required. Especially if there are frequency-dependent (chromatic) calibration gain errors
larger than in a fraction of 10−5, the spectral artifacts from the gain solutions can sig-
nificantly reduce the detectability of the 21 cm cosmological signals. Redundant baseline
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calibration proposes a way of precise calibration that uses redundancy in measurements of
baselines that sample the same Fourier mode (Dillon et al., 2020, Liu et al., 2010, Wieringa,
1992). If all antennas are identical, the calibration process should return exact gain solu-
tions independent of our knowledge of the sky. However, if there are nonredundancies in
the data, for example due to per-antenna perturbations, the redundant calibration can give
rise to spurious chromaticity in gain solutions (Byrne et al., 2019, Choudhuri et al., 2021,
Orosz et al., 2019). Furthermore, redundant calibration schemes have degenerate degrees of
freedom that must be solved using an external sky model (Byrne et al., 2019, Dillon et al.,
2018, Kern et al., 2020a, Liu et al., 2010, Zheng et al., 2017).

Kim et al. (2022, hereafter, Paper I) numerically model the deformation of the primary
beams for HERA according to different types of per-antenna feed perturbations, including
vertical, horizontal, and tilting offsets. Such a beam deformation can introduce nonredun-
dancies into measurements and cause chromatic gain errors from redundant calibration. As
a result, the chromatic gain errors will give rise to the leakage of foreground modes into
the cosmological modes, which are supposed to be foreground-free in the ideal redundant
calibration.

Ewall-Wice et al. (2017) and Orosz et al. (2019) look primarily at the nonredundancy ef-
fect on gain errors with simplistic per-antenna primary beam deformations. They show that
down-weighting the contribution of long baselines to the calibration can reduce the calibra-
tion bias and alleviate the foreground contamination in the 2D power spectrum. Motivated
by these studies, we try to mitigate the spectral gain errors found in Paper I with various
mitigation methods.

In this study, similar to Paper I, we focus on the Phase II system of HERA with zenith-
pointing 14-m dish elements. We explore three different techniques of mitigating the chro-
matic gain errors. These are

• Baseline cut : we restrict the baseline lengths used for calibration, similar to ? and
Orosz et al. (2019).

• Gain smoothing : we apply a smoothing filter to the recovered gain solutions across
frequency to reject spurious features caused by the inherent nonredundancies in the
data.

• Temporal visibility filtering : we apply the temporal filter technique (Charles et al.,
2023, Parsons and Backer, 2009), or fringe-rate filtering, which filters the data prior to
calibration to down-weight strong nonredundant features in the data originating from
galactic diffuse emission entering the side lobes of the primary beam.

Note that Charles et al. (2023 in prep) also discuss the use of temporal filtering to suppress
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nonredundant errors in calibration, but they focus on its application in mitigating mutual
coupling systematics, whereas this work focuses solely on nonredundancies caused by per-
antenna feed displacements.

In Section 4.2, we explain about the visibility simulation and the input gain model.
Section 4.3 describes the redundant baseline calibration scheme, followed by the absolute
calibration, and presents the calibration gain errors before mitigation. Section 4.4 discusses
the effects of three different mitigation methods and their combinations on reducing the chro-
matic gain errors. The power spectrum analysis without and with mitigation is performed in
Section 4.5. Section 4.6 summarizes the main results of this study. Throughout the paper,
we adopted the cosmological parameters from Planck Collaboration et al. (2016) which are
consistent with what we used in Paper I: ΩΛ = 0.6844, Ωm = 0.3156, Ωb = 0.04911, and
H0 = 67.27 km s−1Mpc−1.

4.2 Visibility Simulations with Perturbed Primary Beams

As described in Paper I, we simplified the feed motions by separating them into vertical,
horizontal, and tilting offsets. We utilized a three-dimensional Vivaldi feed model for the
calculation of the primary beam at each feed position using the CST electromagnetic sim-
ulation software. The fiducial model locates the feed at the place, 5 m above the vertex of
the 14-m parabolic dish (Fagnoni et al., 2021). For the perturbed feed models, we displaced
the feed away from the fiducial position and simulated far-field electric fields. The far-field
electric fields were calculated for the 160–180 MHz band, sampled at 0.125 MHz. The be-
havior of the primary beam responses alters for different feed perturbations. The vertical
feed offset mainly causes a change to the width of the main lobe of the primary beam, while
the horizontal or tilting ones mainly results in a change to the pointing angle of the main
lobe.

We utilized the HERA core array configuration consisting of 320 antenna elements for
visibility simulations (HERA-320; Dillon and Parsons, 2016). The HERA array is designed to
be compact with a large number of redundant baselines, so that it can achieve high-precision
calibration and high sensitivity to the 21 cm power spectrum. The array configuration re-
quires 51,360 visibility calculations per frequency bin and per time integration.

The visibility measurement for a given antenna pair, frequency, and time is calculated as
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follows1 (e.g., Smirnov, 2011).

Vij(ν, t) =
Nsrc∑
n=1

Bij(ŝn(t), ν)S(ŝn(t), ν)e
−2πiνbij ·ŝn(t)/c, (4.1)

where Vij is the complex visibility at time t and frequency bin ν, bij is a baseline vector
between antennas i and j, and ŝn(t) is a pointing vector to a source varying with time in the
local observer frame. We consider the middle band of HERA, 160–180 MHz, corresponding
to the redshift of ∼7 at a cadence of 0.25 MHz. There are three components involved with
the calculation. Bij is the power beam computed from far-field electric fields of the antenna
pair i and j. S is the flux density of a sky source in Jy that corresponds to either a compact
source or a discretized pixel of a diffuse source. The last exponential term is the baseline
interferometric fringe response.

The power beam term is defined by Bij(θ, ϕ, ν) = Ep
i,θE

p
j,θ

∗+Ep
i,ϕE

p
j,ϕ

∗ where p is the feed
polarization (e.g., Kohn et al., 2019). We use an East-oriented feed polarization throughout
the study. Each far-field electric field of antenna i and j is perturbed by the feed motions.
We consider vertical, horizontal, and tilting motions separately. Those motions follow a
Gaussian distribution with zero mean and standard deviation σfeed = 2, 3, and 4 cm for
the vertical and horizontal feed motions and σfeed = 2◦ and 3◦ feed tilting at the fiducial
feed position, providing 8 different simulation sets. The perturbed power beam responses
were then fed into the sky visibility calculation. Descriptions of the beam simulations and
visibility simulations are detailed in Paper I.

For the foreground emission, we consider two different sky components, a point source
model and a diffuse sky model. The former comes from the GaLactic and Extragalactic
All-sky MWA (GLEAM) survey. We combined GLEAM I (Hurley-Walker et al., 2017) and
GLEAM II (Hurley-Walker et al., 2019) point source catalogs as well as peeled bright sources
listed in Table 2 of Hurley-Walker et al. (2017) and Fornax A (e.g., Bernardi et al., 2013).
The diffuse sky model is constructed with Hierarchical Equal Area isoLatitude Pixelization
(HEALPix; Gorski et al., 2005) using the Global Sky Model (GSM; Zheng et al., 2017) that
removed the bright compact sources from the sky model. This makes us minimize double
counting bright point sources when we combine the point source model and the diffuse sky
model. We chose HEALPix Nside = 256, containing 786,432 pixels with the pixel area of
1.60 × 10−5 sr. When the pixel area is larger than the angular resolution of a particular
baseline (θ ∼ λ/|b|), an error may be introduced into the power spectrum due to under-
sampling of the discretized map (Lanman et al., 2020). For the array configuration and the
frequency band we adopted, the angular resolution corresponding to the longest baseline,
292 m, is ∼ 3 × 10−5 sr that satisfies the Nyquist limit. This means for most of baselines,

1We developed a visibility simulator for fast computation of visibilities using multiple beam models that
are randomly perturbed. It is publicly available in https://github.com/vispb/vispb.
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especially for short baselines that could achieve high sensitivity in power spectrum estimate,
the adopted pixel area of the GSM does not have a critical impact on our power spectrum
analysis.

The cosmological signals are simulated as a reference for the detection of the EoR. To
simulate the EoR signal, we employed the 21cmFAST public software (Mesinger et al., 2011)
with the fiducial model studied by Park et al. (2019). The cube size and the number of
pixels per side are 250 Mpc and 128, respectively. The cube is simulated at the redshifts
of interest spanning 160–180 MHz, and each cube is converted to the HEALPix map to feed
into the visibility simulation by following the method described in Kittiwisit et al. (2017).
For the conversion, we considered Nside = 8192 so that at least two HEALPix pixels are
sampled at each cube cell, and degraded the resolution of the HEALPix to Nside = 256 that
is computationally feasible for the visibility simulation. The EoR visibility is simulated with
the fiducial primary beam. Because the EoR visibility is only for assessing the detectability
of the EoR in the power spectrum analysis, no gains and calibration are applied.

As the sky rotates with time, the nonredundancy effect can alter at a different local
sidereal time (LST). For example, Paper I found that when strong diffuse emission, such
as the galactic plane, is located near the horizon, the deformation of side lobes due to feed
motions can induce significant nonredundancies in the visibility data. Additionally, another
type of nonredundancy can arise when strong compact radio sources come in and out the
main lobe with time. This effect is expected to be stronger for the vertical feed motion since
it predominantly affects the beam width of the main lobe comparing to the horizontal and
tilting perturbations.

In this work, we simulated the visibility over LST of 0–3 hours at a cadence of 50 seconds.
The range and sampling rate along the LST is chosen for the temporal filter defined in
the fringe rate (f), carrying units of millihertz (mHz), the Fourier dual of time defined as
Ṽ (f) =

∫
dt e2πitfV (t). That is, we have enough resolution (δf ∼ 0.046 mHz) and coverage

(∆f ∼ 10 mHz) in the fringe-rate domain to perform the fringe-rate filter which will filter
out signals < 0.3 mHz. Throughout the analysis, the feed positions are fixed, and we do not
take into account time-dependent feed motions.

The simulated raw visibilities are corrupted by multiplying complex antenna gains to yield
the “observed" visibilities, V obs

ij = gig
∗
jV

raw
ij . The antenna gains gi are modeled by following

the calculation of the voltage response described in Equation of (5) of Fagnoni et al. (2021).
The calculation is based on the impedance of the antenna, the electric-field pattern, and the
scattering parameter. The gain model is interpolated by using Gaussian process regression
(GPR) with a fixed kernel size of 1 MHz, which effectively smooths out frequency structure
smaller than 1 MHz (e.g. Kern et al., 2018, Lanman et al., 2020). Then the input gains are
randomly perturbed in amplitudes (ηi) and cable delays (τi), by exp(ηi+2πiτiν), according to
a Gaussian distribution of zero mean and a standard deviation of 0.2 and 20 ns, respectively.
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Details of the full antenna gain derivation are described in Paper I. We ignore thermal noise
in generating the measured visibilities to focus on the foreground contamination leaking into
the EoR window that are supposed to be foreground-free.

4.3 Redundant-baseline Calibration and Observed Chro-
matic Gain Errors

HERA benefits from the highly redundant baseline configuration for precise calibration. We
follow the standard HERA direction-independent calibration scheme consisting of a redun-
dant baseline calibration step, followed by an absolute calibration step that solves for the
inherent degeneracies in redundant calibration. Instead of using prior information of the
sky, the redundant baseline calibration uses the redundancy of measurements of the same
baselines. For antenna pairs with the same baseline separation, they are assumed to share
the same unique visibility solution, V sol

i−j. Namely, the redundant calibration is carried out
by solving V obs

ij = gig
∗
jV

sol
i−j to obtain gi, gj, and V sol

i−j by minimizing the χ2 statistic,

χ2 =
∑
i<j

|V obs
ij − gig

∗
jV

sol
i−j|2

σ2
ij

, (4.2)

where σ2
ij is the thermal noise corresponding to each V obs

ij .

The antenna gains and unique visibility solutions derived from the redundant baseline
calibration can be degenerate. There are four well-known degenerate parameters, including
the overall amplitude (gi → Âgi, V sol

i−j → V sol
i−j/Â

2), the overall phase (gi → eiψgi, g∗j →
e−iψg∗j ), and two phase gradients associated with tip-tilt slopes across the array along the
east-west (gi → gie

iΦxxi and V sol
i−j → V sol

i−je
−iΦx(xi−xj)) and the north-south direction (gi →

gie
iΦyyi and V sol

i−j → V sol
i−je

−iΦy(yi−yj)) where Â, ψ, Φx, and Φy are scalar free parameters and
xi and yi are antenna positions (Byrne et al., 2019, Dillon et al., 2018, Dillon et al., 2020,
Kern et al., 2020a, Li et al., 2018, Liu et al., 2010, Zheng et al., 2014). To solve for these
degeneracies, an absolute calibration step using sky information is needed. In this second
calibration step, the raw visibility simulated with the unperturbed beam is chosen for the
model visibility. As discussed in Paper I, when the feed positions are perturbed, majority
of the chromatic gain errors come from the redundant baseline calibration step, and the
absolute calibration mainly causes the errors at high delays.

During the calibration, we exclude bad antennas with relatively larger feed displacement
that may degrade calibration solutions. The process is implemented by ruling out antennas
with a modified Z-score > 4 in the redundant-baseline calibration. The modified Z-score
for antenna i, described in The HERA Collaboration et al. (2022a), is defined as Zmod

i =
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Figure 4.1: Antenna layout with antennas colored according to the feed offset. This is an example
when the feed positions are perturbed by following a Gaussian distribution with zero mean and
σfeed = 2 cm for the vertical and horizontal feed motions and σfeed = 2◦ for the tilting feed motion.
The color bar indicates absolute values of the offsets that are sampled to 5 bins for illustrative
purposes. The flagged antennas based on the modified Z-score metric in the redundant-baseline
calibration are marked with blue circular boundaries. Overall, the metric works well enough to
exclude bad antennas with large offset.

(xi − med(x))/σmad where σmad = 1.482 × med|x − med(x)| which is the median absolute
deviation. xi is the mean visibility amplitude computed by xi =

∑
j ̸=i,ν,t |Vij(ν, t)|/(N − 1)

whereN is the number of antennas and the sum is performed over j ̸= i, ν, and t. This metric
takes an iterative process that is repeated three times with the removal of bad antennas (i.e.,
modified Z-score > 4) in every iteration.

Figure 4.1 illustrates how the modified Z-score works to exclude bad antennas during the
calibration process. The feed is displaced according to a Gaussian distribution of the zero
mean and σfeed = 2 cm for the translation feed motion and σfeed = 2◦ for the tilting feed
motion. The flagged antennas with the modified Z-score > 4 are highlighted with bold edges
of blue circles. This result indicates that many antennas with large feed offset around 3–5 cm
or 3–5◦ are ruled out during the calibration and the modified Z-score metric is an effective
tool to identify bad antennas that may harm the calibration. We found that this reduces
the overall χ2 defined in Equation (4.2) but has little impact on reducing spurious spectral
gain structure and thus no advance in terms of reducing the foreground power leakage in the
power spectrum.

In practice, antennas that contribute large errors to the calibration solution are flagged.
To be consistent with actual HERA calibration techniques, calibration solutions in this
analysis are calculated with flagged antenna omitted. We only consider σfeed = 2 cm for the
axial and lateral feed motions and σfeed = 2◦ for the tip-tilt motion throughout the paper
unless it is explicitly stated otherwise.
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4.3.1 Chromatic Gain Errors

For the fiducial model where all antenna elements have identical beam responses, the cali-
bration is expected to be perfect without introducing additional frequency structure to the
antenna gain solutions. When the feeds are perturbed, however, the key assumption of re-
dundancy is violated, and the mismatch between visibilities in the redundant baseline group
may introduce artifacts to the gain solution to account for the nonredundancy in the data.
In Figure 4.2, we demonstrate how the artifacts look like for the vertical (second column),
horizontal (third column), and tilting (forth column) feed motions compared to the fiducial
one (first column). We select three antennas to illustrate the effects of different types of
feed motions on the recovered gain solutions: one antenna displaced by −4.3 cm in height
from the vertical feed motion simulation, another off by +3.4 cm in east-direction from the
horizontal motion simulation, and the other perturbed by +3.1◦ in east-direction from the
tip-tilt simulation.

As the input gain does not change in time, we expect calibration gains from the fiducial
beam model should also be time-constant as shown in the first panel of Figure 4.2. When
feeds are perturbed, regardless of the type of feed motions, calibration solutions show addi-
tional spectral and temporal structure. The artificial features are evident in the difference
between the calibration gains and the input gains (bottom row).

There are two different scales of artifacts. One is the change in the bulk shape of the
gain that can be understood based on the primary beam patterns changing with the feed
motions. For example, in the bottom panel of the vertical motion, there are negative and
positive features along frequency at LST∼3 hr that is close to Fornax A located at 3.3 hr, one
of the brightest radio sources in the HERA stripe (e.g., Dillon et al., 2020). Paper I shows
that the change in the feed height can drive the change to the beam width. With the height
offset of −4.3 cm, the beam width is narrower than the fiducial beam at 160 MHz and gets
broader as the frequency increases, and reaches a similar beam width level as the fiducial
one at ∼165 MHz (see Figure 3 of Paper I). Such a behavior indicates the flux density of
Fornax A is more/less attenuated by the primary beam than the fiducial one at frequency
below/above 165 MHz, which is consistent with the pattern shown in Figure 4.2.

Similarly, when the feed moves in the horizontal direction or tilts, the primary beam’s
center position shifts. According to the results of Paper I, when the feed moves in the
east-direction, the beam shifts in the opposite direction, and hence the beam-weighted flux
density of Fornax A becomes dimmer than the fiducial case at LST∼3 hr, resulting in smaller
gain amplitudes. Meanwhile, when the feed tilts in the east-direction, the beam shifts in
the same direction, and the beam-weighted flux density of Fornax A is brighter than the
fiducial one at LST∼3 hr, leading to larger gain amplitudes than the fiducial beam model.
Additionally, there are also horizontal patterns between 1.5 and 2.5 hr in the bottom panels
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Figure 4.2: Antenna gain solutions derived from the perturbed beam simulations with LST compared
to the fiducial one. Three randomly perturbed antennas are picked from the simulation sets for
vertical, horizontal, and tilting motions, respectively. Each antenna is perturbed with −4.3 cm
of height offset (center left), +3.4 cm of east-direction displacement (center right), and +3.1◦ of
east-direction tip-tilt (far right). Top panels show the gain amplitudes and the bottom panels show
the difference between the calibrated gains and the input gains. For the fiducial model, the gain
solutions have constant temporal structure as the input gains without any artificial features. When
the feed is perturbed, fine-scale artifacts show up and result in corrupting the cosmological modes
in the EoR window.

of horizontal and tilting motions. Those are caused by two point sources transiting zenith
at LST∼2 hr, and can be understood in the same way as the LST∼3 hr feature.

Another noticeable artificial features are fine-scale structure in frequency. Because we
include long baselines in the calibration, artificial gain features arising from the baselines
are expected to form fine structure in frequency, resulting in complex patterns as observed
in Figure 4.2. These chromatic gain errors corrupting high delay modes are ones responsible
for the foreground leakage observed in Paper I. Figure 4.3 presents how the chromatic gain
errors of the perturbed beam models are shaped in the delay domain compared to the fiducial
model. To transform the gain to the delay spectrum, we divided the gain by the input gain,
multiplied it by a seven-term Blackman-Harris tapering function along the frequency axis,
and performed the frequency Fourier transform. Then we averaged the amplitudes of the
peak-normalized delay spectra over unflagged antennas at each LST bin. In the first column,
we show results of the fiducial model with the time-constant gain solutions (top) and the
LST-averaged gain solution consistent with the input gain as expected (bottom).
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Figure 4.3: Delay spectrum of the calibrated gains without mitigation. Top panels show the gain
delay spectrum varying with LST. Bottom panels present the LST-averaged delay spectrum. The
fiducial beam model (far left panel) recovers the input gain, providing the clean window at high
delay modes > 400 ns. g/ginput is constant with frequency and the bell-shaped curve shown in
the first bottom panel comes from the seven-term Blackman-Harris tapering function. For the
perturbed cases, the window k∥ > 0.25hMpc−1 is corrupted by chromatic gain errors arising from
the nonredundancy in measurements. The bulge occurring at 0.5–1.5 hr is due to the galactic plane
located near the horizon.

As shown in Figure 4.3 from the second left to right columns, when the feeds are displaced
from the fiducial position, gain errors bleed into high delay modes. The overall patterns are
similar regardless of the type of feed motions, showing more power leakage than the fiducial
model across all LST. The strongest bleeding regions appear to be at LST range of 0.5–1.5 hr,
when the galactic plane lies near the horizon and sets as the Earth rotates as depicted in
Figure 4.4. Since the perturbed primary beams induced by the feed motions are responsive
to the strong diffuse emission from horizon, it can be understood that the bulge produced
at LST∼1 hr is most likely due to the galactic plane near the horizon. In addition, because
the feed offsets, especially vertical ones, are sensitive to the stochastic distribution of point
sources, they introduce irregularly narrow structures across each LST bin.

Bottom panels of Figure 4.3 show the averaged gain delay spectra over LST. For the
perturbed feed models, power in the delay spectrum is 4–5 orders of magnitudes stronger
than the input gain at 500–1000 ns. Because the power spectrum of cosmological signals is
expected to be 1010 times smaller than the foregrounds (e.g., Thyagarajan et al., 2016), the
delay spectrum should be smaller than 10−5 at around 700 ns or k∥ ∼ 0.4 hMpc−1, which
indicates we need to mitigate the chromatic gain errors to achieve robust detection of the
EoR2. We chose k∥ ∼ 0.4 hMpc−1 since it provides a foreground-free region for the fiducial

2Though averaging uncorrelated gain errors in forming a power spectrum may lessen this stringent re-
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Figure 4.4: GSM maps viewed in horizon coordinates from the HERA observing site at (−30.72◦S,
21.43◦E), plotted at different local sidereal times. At LST∼0.8 hr, the galactic plane lies near the
horizon, and the bright emission disappears as the Earth rotates.

power spectrum (see Figure 4.13) with high sensitivity when thermal noise is included. In
the following section, we introduce three different ways of mitigating these chromatic gain
errors.

4.4 Mitigation of the spectral structure in the gain solu-
tions

In this section, we explore three different ways of mitigating spurious fine-scale frequency
structure in the derived antenna gains due to nonredundancy created by random feed dis-
placements. Two of the methods, baseline cut and temporal filtering, treat the visibilities
before calibration, thus mitigating potential errors introduced by the calibration process it-
self. Meanwhile, the other method, gain smoothing, treats the derived gains after performing

quirement of 10−5 in gain powers, we use the requirement as it guarantees the recovery of a clean EoR
window as shown in Figure 4.14.
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Figure 4.5: The gain delay spectra with different maximum baseline cut-offs for vertical (left),
horizontal (middle), and tilting feed motions (right) at 1 hr of LST. The Fourier transform of the
antenna gain divided by the true input gain is averaged over the unflagged antennas. There is a
trend that the broad wing appearing at high delays gets reduced as we consider tighter baseline
limits for the calibration, indicating the chromatic gain errors are mitigated with the restriction of
the baseline lengths. There is an order of magnitude improvement at 700 ns or k = 0.4hMpc−1

(vertical dashed line) for |b| < 87.6 m case compared to no mitigation case.

calibration. Baseline cut is to down-weight long baselines in the data, which contribute to
gain errors at fine spectral scales during calibration. Gain smoothing is to suppress the
fine-scale frequency structure in the derived gain solutions using a low-pass frequency filter
after the calibration, thus smoothing the gains. Temporal filtering is to apply the fringe-rate
notch filter that excludes the horizon emission before performing the redundant calibration.
This is effective to reduce the nonredundancy in the visibility when strong emission such as
the galactic plane is lying on the horizon. All different strategies are discussed separately
and then combined to illustrate the composite effect of the mitigation on the power spectrum
in Section 4.5.

4.4.1 Down-weighting Long Baselines

High-frequency errors in antenna gains caused by nonredundancy associated with compact
radio sources can predominantly arise from long baselines with high delays (|b|/c). For
example, visibilities suffering from nonredundancy in a 200-m baseline group, which has a
delay of ∼700 ns, can be affected by nonredundancy errors at the scale of ∼1 MHz or smaller,
which will propagate into the same scale of gain errors during the calibration process. Ewall-
Wice et al. (2017) and Orosz et al. (2019) found that chromatic gain errors can be reduced
by placing a restriction on baseline lengths used in the redundant calibration. Following the
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Figure 4.6: Delay spectrum of the gain solutions with down-weighting long baselines. We consider
87.6 m baseline cut-off for the mitigation. The top row shows the delay spectrum for the mitigated
gain with LST for the vertical (left), horizontal (middle), and tilting (right) feed motions. Overall,
the delay spectra fall down to < 5× 10−5 at 700 ns, which is also manifested in the bottom row for
the LST-averaged delay spectra.

approach of Orosz et al. (2019), we considered a binary weight to down-weight baselines that
are longer than certain threshold (i.e., 1 for shorter baselines and 0 otherwise).

In order to look for an optimal maximum baseline cut-off, we examined the improvement
of calibration gains by changing the baseline cut-off used for the redundant calibration and
absolute calibration. For the baseline cut-off values, we chose 87.6, 131.4, and 175.2 m which
correspond to 6×, 9×, and 12× the shortest baseline (14.6 m), respectively.3 Figure 4.5
presents the gain delay spectra with different baseline cut-offs for the vertical (left), horizontal
(middle), and tilting feed motion (right) at LST = 1 hr. Each curve is computed as the
Fourier transform of the ratio of antenna gains and input gains, weighted by a seven-term
Blackman-Harris window function, then averaged over all unflagged antennas. Regardless of
the types of feed motions, it is apparent that the power leakage at high delays is suppressed
more as the baseline limit becomes tighter, which supports the finding of Orosz et al. (2019).

With the cut-off of 87.6 m, the power leakage is reduced by an order of magnitude at
k∥ ∼ 0.4 hMpc−1 (vertical dashed line). For all cases, the mitigation brings the power leakage
down to 5 × 10−5, which is still a bit higher than desired. There is an additional bump at

3In practice, we also impose a minimum baseline cut-off to reduce the effect of modeling uncertainty of
diffuse emission in the absolute calibration. Thus, choosing maximum baseline cut-off smaller than 87.6 m
may cause lack of redundant baselines in the system.
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Figure 4.7: Delay spectrum of the gain solutions with gain smoothing along the frequency. The
format is the same as that of Figure 4.6. As the Fourier filter rules out the spectral scales smaller
than 1 MHz, or larger than 500 ns, the top panels show the clean window beyond 700 ns for all
types of the feed motions over all LSTs as expected.

∼300 ns (magenta curve) compared to no mitigation case since redundant calibration is most
sensitive to the nonredundancy errors arsing from the cut-off baseline corresponding to the
delay of 300 ns (i.e., 87.6/c ∼ 300 ns).

In Figure 4.6, we illustrate how the mitigation with the 87.6-m cut-off is effective over
the LST range. Across all LSTs, the mitigated gain has reduced spectral artifacts compared
to the case without mitigation. The mitigation is relatively less effective at LST between
0.5 and 1.5 hr, where significant chromatic gain errors result from strong horizon emission
captured by the perturbed beams. This is even worse for the tilting motion as there are more
variations in the side lobes owing to that motion than other motions. The LST-averaged
delay spectra in the bottom row of Figure 4.6 indicate that the chromatic gain errors are
sufficiently mitigated at high delays but need to be suppressed further at k∥ = 0.4hMpc−1.
We adopt 87.6 m as the optimal baseline cut-off for the remaining sections.

4.4.2 Gain Smoothing

The mitigation of fine-scale spurious features in the derived antenna gain solutions can also
be achieved by smoothing the gains in some manner. Barry et al. (2016) proposed doing this
with low-order polynomials, whereas Kern et al. (2020a), The HERA Collaboration et al.
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(2022a) propose doing this with Fourier filters, while Yatawatta (2015) enforce spectral
smoothness in the process of calibration itself. In this work, we use a formalism similar to
the one used in The HERA Collaboration et al. (2022a) for smoothing the derived gains
in frequency with a low-pass filter. Our input gain is designed to have features at a scale
larger than 1 MHz. Thus, we find that a 1-MHz smoothing scale to be the most effective
in rejecting spectral gain errors while retaining major components of the true gain structure
that need to be calibrated out.

The delay spectrum results after applying the low-pass filter with the filter size of 500 ns,
corresponding to the 1 MHz smoothing scale, are shown in Figure 4.7. As expected, power
leakage beyond 700 ns (vertical dashed line) is well suppressed below the level of 10−5 across
all LST bins for all three types of feed motions. However, unlike other mitigation methods
used in this study, this method is essentially a low-pass filtering thus, by design, ineffective
in reducing gain error power leakage at delays < 500 ns, which corrupts low k-modes in the
power spectrum. The LST-averaged delay spectra for all feed offset types (bottom panels)
also display a fast drop-off of the power beyond 700 ns, and no mitigation of the chromatic
errors inside 500 ns.

4.4.3 Fringe-rate Filtering

For interferometric drift-scan observations, which do not track any particular field on the
sky and simply observe the sky as it passes through the baseline fringes, there is a useful
mapping from time-based Fourier modes in the visibility (i.e., fringe-rates) to the location
on the sky where the signal originated from. Parsons and Backer (2009) first studied this
relationship for the purposes of low-frequency interferometric calibration. This was later
studied as a means for understanding both foregrounds and instrumental features seen in
drift-scan observations (e.g. Parsons et al., 2016, Shaw et al., 2014). For HERA, these kinds
of filters have been used to effectively mitigate instrumental systematics (Josaitis et al., 2022,
Kern et al., 2019, 2020b, The HERA Collaboration et al., 2022a).

Recently, Charles et al. (2023) proposed using fringe-rate filters to improve the fidelity
of gain calibration for low-frequency 21 cm interferometers. Their analysis focused solely
on mitigating the impact of poorly modeled diffuse emission on absolute calibration, while
Charles et al. (2023 in prep) investigates how this technique can mitigate nonredundancies
arising from mutual coupling. Here, we adopt this fringe-rate filtering technique to study its
efficacy in improving redundant calibration in the presence of nonredundancies caused by
antenna beam variations. Specifically, we use a “fringe-rate notch” filter that rejects f ∼ 0

mHz modes in the data similar to the one described in Charles et al. (2023). In our paper I,
we showed that diffuse emission from the observer’s horizon, which has f ∼ 0 mHz, is one
of the main sources of the nonredundancy error, especially for the feed tilting offset (see
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Figure 4.8: Fourier transform of simulated HERA visibilities for GLEAM (left), GSM (middle),
and EoR (right) sky models in the delay and fringe-rate domain. Two antenna pairs with similar
separations but with different orientations are presented as labeled in the plot. For the north-south
only baseline (bottom row), all types of sky models have their power located near zero fringe rates,
which drift away from the center as the baseline length in the east-west direction increases. On the
top row, the two central bloblike features in the GSM panel that originate from the pitchfork effect
of the horizon emission. The fringe-rate notch filter excludes the horizon emission within the region
outlined by the orange dashed box.

Figure 7 of Paper I). This implies that applying the fringe-rate notch filter should reduce
nonredundancies in the data, and improve the calibration process.

Figure 4.8 describes where different kinds of sky sources are located in the delay and
fringe-rate space. We considered raw visibilities (i.e., no gains and calibration applied)
for GLEAM (left), GSM (middle), and EoR (right) signals, separately to present Fourier
transform as functions of the frequency and time. Two short baselines were chosen: the
east-west direction (top panels) and the north-south direction (bottom panels). If we look
at the delay axis first, most power of the GLEAM sources resides in the low delay modes
spanning −200 to 200 ns since the point sources are spectrally smooth. In the case of diffuse
emission based on the GSM, there are additional features such as two central bright blobs
from the pitchfork effect (Thyagarajan et al., 2015a,b) and extended power in high delay
modes. As for the EoR signal, the spectrum is fluctuating along frequency, and thus the
power is uniformly distributed in the delay domain.

Now let’s consider the fringe-rate axis. The north-south baseline maps the sky inside the
main lobe to near zero fringe rates and thus contains majority of the power at f ∼ 0 mHz
as shown in the bottom panels. For the east-west baseline, sky sources in the main lobe of
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Figure 4.9: Delay spectrum of the gain solutions with fringe-rate filtering. The format is the same
as Figure 4.6. We considered the half filter width fw = 0.3 mHz corresponding to the orange dashed
box in Figure 4.8. The mitigation takes effect across all delays. The improvement at around 300–
500 ns is notable compared to previous mitigation methods.

the primary beam, especially at zenith, have positive fringe rates and the main lobe drifts
in the positive direction as the east-west baseline length increases. However, for the GSM,
there is still a significant fraction of power remaining at zero fringe rate that originates
from the horizon galactic emission. Namely, the fringe-rate notch filtering can suppress
nonredundancies dominated by the diffuse horizon emission by removing signals at around
zero fringe rates within the orange dashed box. Further details about the baseline-dependent
relation between the sky positions and fringe rates are described in Parsons et al. (2016).

For fringe-rate notch filtering (analogous to a high-pass temporal filtering), we adopted
the DAYENU4 filter (Ewall-Wice et al., 2020) which is a linear filter defined in a basis of
Discrete Prolate Spheroidal Sequences (DPSS; Slepian, 1978). This filter takes an analytic
covariance model to suppress signal inside a half-filter width (fw) with a suppression factor
(ϵ), where ϵ = 10−8 was chosen for this study.

The high-pass DPSS-based filter is applied to the observed visibilities before the calibra-
tion along the time axis. The filtered visibilities are then calibrated through the redundant
and absolute calibration steps with the model visibilities that are also fringe-rate filtered. An
optimal half filter width of fw = 0.3 mHz was determined by accessing degrees of mitigation

4The full name is DPSS Approximate lazY filtEriNg of foregroUnds. The software library is publicly
available in https://github.com/HERA-Team/uvtools.
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Figure 4.10: Delay spectra with the three gain error mitigation techniques are contrasted to the
delay spectrum before mitigation is applied (black curve). Without loss of generality, only the
results for vertical feed perturbations are shown. The delay spectra at LST = 1 hr are averaged
over unflagged antennas. All different strategies provide mitigated delay spectrum results but in
different shapes. See the main context for more details.

on chromatic gain errors with various filter sizes. A smaller or larger than the optimal filter
size returns a larger calibration bias.

Figure 4.9 summarizes results of the fringe-rate filtering mitigation. The strong bulge
observed at around LST of 1 hr in Figure 4.3 has almost vanished, which indicates the
effectiveness of the fringe-rate filter in suppressing the emission from the galactic plane lying
on the horizon. Compared to the baseline cut-off mitigation, the frequency structure at
∼700 ns is less effectively reduced. However, the delay spectrum at low delay modes, ∼300–
500 ns, is a few factor lower than the case without any mitigation, which is not accomplished
by other mitigation methods.

As different mitigation techniques result in different mitigated gain results, we anticipate
combining the mitigation methods would improve the overall gain solution, as discussed in
the following section.
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Figure 4.11: Delay spectra with different combinations of mitigation strategies. The delay spectra
are shown for the vertical feed motion with a sky at LST = 1 hr. The most effective method (orange
curve) is the combination of baseline cut-off and fringe-rate filtering. It brings the suppression to
10−6 at k∥ ∼ 0.4hMpc−1 to satisfy the EoR detection requirements.

4.4.4 Summary of Mitigation

In this section, we summarize the three mitigation methods and discuss their hybrid ap-
plications. Figure 4.10 characterizes the result of each mitigation at LST = 1 hr, showing
the delay spectra with suppressed power at high delay modes. Without loss of generality,
only the vertical feed perturbation cases are represented, as all feed motions share a similar
trend. All mitigation techniques alleviate the chromatic gain errors but in different ways.
The baseline cut-off mitigation that down-weights long baselines (> 87.6 m) in calibration
mainly reduces the fine-frequency structure induced by the baselines, and thus suppresses the
delay spectrum at high delays. Meanwhile, the fringe-rate notch filtering, excluding diffuse
galactic emission located at nearly zero fringe rates across all delays to 2000 ns, drops the
delay spectrum by at least a few factors beyond 300 ns. The smoothing that rules out fine
spectral structure with the low-pass frequency filter brings a rapid fall of the delay spectrum
above 700 ns, but has little improvement below 500 ns.

Since different mitigation approaches alleviate the chromatic gain errors in different ways,
a combination of the mitigation techniques can provide a more effective way to control the
leakage. In Figure 4.11, four different combinations of the methods are presented: baseline
cut-off + smoothing (purple), baseline cut-off + fringe-rate filtering (orange), smoothing +
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Figure 4.12: Delay spectrum of the gain solutions with both baseline cut-off and fringe-rate filtering
mitigation applied. The leakage due to chromatic gain errors shown in Figure 4.3 retreats to
k∥ ∼ 0.3hMpc−1 over all LSTs, which indicates that gain errors are suppressed enough to recover
the EoR window on the power spectrum.

fringe-rate filtering (green), and all three combined method (brown). Either the baseline
cut-off or the fringe-rate filtering method together with smoothing results in a fast drop at
delays > 700 ns, but there is little improvement at delays < 500 ns compared to the method
alone.

The combination of baseline cut-off and fringe-rate filtering is distinct from the smoothing
joint cases. Limiting the baselines to short ones leads to less nonredundancy errors from
point sources and applying the fringe-rate notch filter reduces the nonredundancy caused
by the diffuse emission. As a result, this combination accounts for the nonredundancy
effects for both types of sources, and substantially suppresses the spectral artifacts arising
from calibration. The orange line in Figure 4.11, with the baseline cut-off = 87.6 m and
fw = 0.3 mHz for the fringe-rate filter, shows that the delay spectrum is significantly reduced
across all delay modes, and can reach down to 10−6 at k∥ ∼ 0.4hMpc−1, which in return
helps recover the clean EoR window similarly to the fiducial one. The fully combined case
also reduces the delay spectrum considerably but there is a bump artifact created by the
low-pass filter for the smoothing at 500 ns.

Figure 4.12 presents the delay spectrum along LST when the baseline cut-off and fringe-
rate notch filtering are both applied. Across all LSTs, the bleeding gain errors shown in
Figure 4.3 are reduced significantly, restrained to k∥ ∼ 0.3hMpc−1 for all three types of
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feed perturbations, which offers at least two orders of magnitude in improvement at k∥ ∼
0.4hMpc−1.

So far, we have mainly focused on the mitigation effect in terms of the gain solutions.
The gain solutions will be applied to the observed visibility, and calibration errors will
propagate to the calibrated visibility. One way to assess the calibration errors imprinted in
the visibility is to compute the power spectrum. In addition, our test is limited to a certain
size of feed perturbations: σfeed = 2 cm for axial and lateral feed motions and σfeed = 2◦

for feed tilting. For a comprehensive understanding on the effectiveness of the mitigation,
we test various sizes of feed perturbations and discuss the mitigation effect on the power
spectrum in Section 4.5.

4.5 Power Spectrum Estimation

In Section 4.3 and 4.4, we introduced the delay spectrum of gain solutions. Equivalently, the
visibility delay spectrum can be produced by performing the frequency Fourier transform on
the calibrated visibilities,

Ṽ (u, τ) =
∫
dν w(ν)V (u, ν)e2πiντ , (4.3)

where u = b/λ and w(ν) is the seven-term Blackman-Harris tapering window function.
According to Equation (4.3), for a given baseline, the smooth frequency spectrum of the
foreground confines its delay spectrum to near zero delay modes with a width limited by the
horizon limit, τhor = |b|/c (Datta et al., 2010, Liu et al., 2014, Morales et al., 2012, Morales
et al., 2018, Parsons et al., 2012, Pober et al., 2014, Thyagarajan et al., 2013, Trott et al.,
2012, Vedantham et al., 2012). In contrast, the 21-cm cosmological signal with fluctuating
spectral structure allows its delay spectrum to spread beyond the horizon limit.

4.5.1 2D Power Spectrum Estimation

The 2D power spectrum, or cylindrically averaged power spectrum, is a tool to separate
the cosmological signals from the foregrounds. It is defined by cosmological Fourier modes
perpendicular and parallel to the line-of-sight, k⊥ and k∥, which are linearly scaled from |u|
and τ . More specifically, the relationship is

k⊥ =
2π|u|
X

, k∥ =
2πτ

Y
, (4.4)
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Figure 4.13: Foreground power spectrum estimation with the fiducial beam model before (left) and
after (right) the fringe-rate notch filter. Orange and white contours represent the EoR power equal
to and 5 times larger than the foreground power, respectively. The pitchfork along the horizon limit
(black dashed line) shown in the left panel is suppressed in the right panel after the fringe-rate notch
filtering. As a result, the spillover of the foregrounds is constrained inside the buffer line (white
dashed line), offering a room for the EoR detection above the white dashed line. Note that the
fringe-rate filter here is not being applied to visiblities prior to calibration but applied to visibilities
after calibration prior to forming the power spectrum merely to suppress the pitchfork.

where X = D(z), Y = c(1 + z)2/(ν0H(z)), D(z) is the comoving distance, and H(z) is the
Hubble parameter. With increasing k⊥, k∥,hor corresponding to τhor also increases, forming
the foreground wedge below the horizon limit k∥,hor =

H(z)D(z)
c(1+z)

k⊥.

The 2D power spectrum estimate is calculated from the delay spectrum as follows,

P̂ (k⊥, k∥) =
X2Y

BppΩpp

|Ṽ (u, τ)|2, (4.5)

where Bpp =
∫
dν |w(ν)|2 and Ωpp is the spatial integral of the squared primary beam

(Parsons et al., 2014). The complex visibility delay spectra were averaged over redundant
baselines and fed into Equation (4.5). We implemented the power spectrum calculation via
the publicly available software, hera_pspec5.

Figure 4.13 shows the 2D foreground power spectrum with the fiducial beam model. The
power spectrum is averaged over LST of 0–3 hr. The foregrounds are indicated in the color
bar. We also over-plotted the cosmological signal in contours, the orange and white solid
contours corresponding to the region that the EoR power is equal to and 5 times larger than
the foregrounds, respectively. The black dashed line indicates the horizon limit, and the
white dashed line is for a 500-ns buffer above the horizon limit.

5https://github.com/HERA-Team/hera_pspec
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Because the fiducial case does not suffer from calibration errors, in principle the fore-
ground should not leak into high k∥ modes beyond the horizon limit. In the left panel, we
see the foreground power still spills into the EoR window above the horizon limit, which
is different from the leakage due to calibration errors. This is because of the pitchfork ef-
fect, along the horizon limit line, that is convolved with the primary beam. The pitchfork
and associated spillover can be reduced by the fringe-rate notch filter (Kern et al., 2020a,b,
Thyagarajan et al., 2016) and thus we applied the fringe-rate notch filter with fw = 0.3 mHz
to calibrated visibilities.

In addition, as illustrated in Figure 4.8, the EoR signals with short east-west baselines are
influenced by a significant signal loss. Therefore, in forming the power spectrum we included
only baselines longer than 15 m in the east-west direction for both foreground and EoR
power spectra. See Kern et al. 2021 (HERA memo #966) for more discussion on the signal
loss due to the fringe-rate notch filter. In the right panel of Figure 4.13, after the fringe-rate
filtering, the bright foreground along the black dashed line, the pitchfork, is suppressed and
as a result, the intrinsic spillover above the white dashed line is also reduced. In the following
section, the power spectra with perturbed beams are also results of the fringe-rate filtering
to suppress the pitchfork.

4.5.2 Power Spectrum Estimation with Mitigation

As discussed above, in the ideal case when there is no calibration bias, the foreground is
confined to the foreground wedge. However, when there are chromatic gain errors due to per-
antenna perturbations, the convolution of gain errors with the observed visibility in Fourier
space can result in foreground leakage on the power spectrum, analogous to Figure 4.3. In
the top panels of Figure 4.14, the resultant power spectra without applying any mitigation
strategy, averaged across 0–3 hr, are shown. All feed motions display the corrupted EoR
window with the detection border line (orange contour) pushed beyond k∥ ∼ 0.7hMpc−1,
losing potential detectability at low k modes where relatively higher sensitivity can be ob-
tained when the thermal noise is included. The foreground leakage is predominantly derived
by the 0.5–1.5 hr gain corruption shown in Figure 4.3.

The middle panels show the case for the mitigation with baseline cut-off that has been
explored by previous studies (Ewall-Wice et al., 2017, Orosz et al., 2019). We set 87.6 m
cut-off for the mitigation. The foreground corruption in the EoR window is largely restrained
compared to no mitigation case, which is consistent with the finding of Orosz et al. (2019).
One notable thing is that the low k⊥ modes are still corrupted by the foreground leakage,
making the EoR detection difficult at low k modes without further suppression of the fore-
ground contamination. For the tilting motion, the mitigation is less effective than other

6http://reionization.org/science/memos/
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Figure 4.14: Foreground power spectrum estimation for perturbed beams without and with the
mitigation strategies. Top row shows the foreground power spectrum for the vertical (left column),
horizontal (middle column) and tilting (right column) motions before the mitigation on the chro-
matic gain errors. The foreground leakage contaminates the cosmological modes that are available
for the EoR detection above the buffer line (white dashed line). The middle row presents the results
after the baseline cut-off mitigation with 87.6 m cut-off. The mitigation reduces the leakage to
some extent, but the low Fourier modes are still corrupted by the foreground contamination. In
the bottom row, the combined method of the baseline cut-off and fringe-rate filtering leads to a
considerable reduction of the foreground leakage for all types of feed perturbations and recovers the
clean EoR window similar to the fiducial power spectrum shown in Figure 4.13.

motions as the gain errors due to the tip-tilt primarily derive from diffuse emission.

With the combined strategy of the baseline cut-off and fringe-rate filtering, we showed
that chromatic gain errors are significantly improved. In the bottom panels of Figure 4.14,
the results with the mitigated gains are given. Regardless of the feed motions, the mitigation
method removes the foreground contamination and achieve as clean a EoR window as the
fiducial model, enabling EoR detectability at k∥ = 0.3–0.5hMpc−1 where the cosmological
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Figure 4.15: 1D power spectra along k∥ at k⊥ = 0.04hMpc−1 for the foregrounds (dashed and solid
lines) and the EoR (red dotted line). The vertical line indicates the 500-ns buffer line. We present
the case without mitigation for σfeed = 2 cm or 2◦ (gray solid line) that corrupts k modes in the EoR
window by the foreground residual. The combined mitigation method with the baseline cut-off and
fringe-rate filtering makes the perturbed power spectra comparable to the fiducial one, and leave
the EoR detection feasible beyond the buffer line, regardless of the sizes of perturbations.

signal detection may be feasible with a high sensitivity.

Paper I shows that larger feed motions cause larger calibration errors, and thus larger
amounts of foreground leakage. With the mitigation technique, we examined how the fore-
ground contamination can be alleviated for the larger perturbation cases. Figure 4.15
presents 1D power spectra along k∥ at k⊥ = 0.04hMpc−1, averaged over 0–3 hr. From
left to right, results for vertical, horizontal, and tilting motions are given. For the vertical
and horizontal feed motions, σfeed = 2, 3, and 4 cm models are considered and for the tip-tilt,
σfeed = 2◦ and 3◦ models are used. For comparison, we also show the case without mitigation
with σfeed = 2 cm and 2◦ for the translation and tilting motion, respectively. The vertical
line indicates the 500-ns buffer, k∥,buffer = k∥,hor + 0.29 hMpc−1.

The foreground power spectrum with no mitigation (gray solid line) shrinks available k
modes for the EoR detection compared to the fiducial case (black solid line). We found that
the joint mitigation method with the baseline cut-off and the fringe-rate filtering (dashed
lines) makes the foreground power in the EoR window comparable to the fiducial model,
regardless of the types of feed motions and the perturbation sizes. The excess EoR power
spectrum beyond the buffer line relative to the foregrounds means the EoR detection is
free from the foreground bias. However, we noticed that as the perturbation size increases,
the calibration pipeline tends to fail to converge to the global minimum because of large
nonredundancies, ending up flagging more data to keep well-calibrated results. The models
with σfeed > 2 cm or 2◦ result in the unstable calibration solutions, which may indicate the
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feed motion should be constrained to σfeed = 2 cm or 2◦ perturbations for better calibration
performance.

4.6 Conclusions

Feed motions cause a deviation of the primary beam shape from the fiducial one. The per-
antenna perturbations from the feed motions cause nonredundancies in measured visibilities
and introduce artificial spectral structure in the calibration gain solutions from the redundant
and absolute calibration, employed by HERA, propagating to the power spectrum estimation.
The perturbation in the beam shape and the resultant chromatic gain errors are discussed
in Paper I.

To extend the work of Paper I, we simulated longer LST mock observations covering
0–3 hr including the GLEAM sky model and the GSM that represent point sources and
diffuse emission, respectively. Analogous to Paper I, we separated the feed motions into the
vertical, horizontal, and tilting motions. All feed motions introduce artificial structure in
the calibration gains compared to the fiducial model, but with different overall aspects for
different feed motions as shown in Figure 4.2. It can be understood in terms of the different
behaviors of the primary beam induced by each feed motion. In addition, fine spectral and
temporal gain structure is produced for all feed motions. The gain delay spectrum shows
that the chromatic gain errors corrupt the delay modes k∥ > 0.2hMpc−1, forming a bulge at
LST = 0.5–1.5 hr where the galactic plane are located near the horizon (Figure 4.3). Miti-
gating the chromatic gain errors is the main goal of this study: attaining ∼10−5 suppression
of the gain delay spectrum at ≤ 700 ns (or k∥ ≤ 0.4hMpc−1).

We have explored three different mitigation techniques: placing a limit on the maximum
baseline length used for the calibration, smoothing the gain structure along the frequency
axis after the calibration, and applying the fringe-rate notch filter on the measured visibil-
ities prior to the calibration. All mitigation methods reduce the fine spectral artifacts to
some extent but the aspects of the improvement are different. The baseline cut-off method
constrains the nonredundancy arising from long baselines and results in a reduction in the
fine-frequency artifacts at > 400 ns. The gain delay spectrum is suppressed to ∼5 × 10−5

at 700 ns, which is still a bit higher than desired. The smoothing with the low-pass fre-
quency filter effectively smooths out the small scale frequency features, presenting the gain
delay spectrum with a rapid drop after ∼700 ns. Nonetheless, it has little effect at delays
< 500 ns. The fringe-rate notch filtering improves the calibration process by eliminating the
diffuse horizon emission, one of the main nonredundancy sources, from the visibility mea-
surements. It leads to the delay spectrum mitigated by a few factor across all delay modes
> 300 ns, which is still not sufficient to acheive the required suppression.
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Because each method alone is not enough to accomplish the required suppression of
the chromatic gain errors, joint mitigation strategies are also examined. The combinations
between the smoothing and other methods only improve the delay spectrum beyond 700 ns
and low delay modes have little improvement. When the baseline cut-off method is joint with
the fringe-rate filtering, there is substantial improvement. Because the baseline cut-off and
the fringe-rate filtering strategies are mainly responsible for reducing the nonredundancies
from the point sources and diffuse horizon emission, respectively, the joint method addresses
both nonredundancy effects. It brings the delay spectrum down to ∼10−6 at 700 ns that
satisfies the need for suppression of gain errors for EoR detection.

As the chromatic gain errors propagate to the power spectrum estimate, we see that the
EoR window is corrupted by the foreground leakage in the 2D power spectra when there is
no mitigation for all feed motions. If the baseline cut-off mitigation is applied as Ewall-Wice
et al. (2017) and Orosz et al. (2019) did, the foreground contamination is suppressed to some
degree but some contamination still remains in the low k modes. The combined method of
the baseline cut-off and the fringe-rate filtering clears away the contamination in the EoR
window and arrives at a power spectrum similar to the fiducial one with perfect calibration.

In Section 4.3–4.5, we focused on the modest feed motions by σfeed = 2 cm and 2◦ for
the translation motions and the tip-tilts, respectively. We also investigated the effectiveness
of the mitigation technique with larger perturbation sizes. We found that the 1D power
spectra with the combined mitigation of the baseline cut-off and fringe-rate filtering present
the results similar to the fiducial one even for σfeed = 4 cm or 3◦, demonstrating that the
mitigation technique is effective enough to suppress the chromatic gain errors for larger
perturbations. However, we also noticed that the larger nonredundancies due to the feed
motion may lead to failure in finding appropriate gain solutions, which implies we need to
constrain the feed motions to σfeed = 2 cm and 2◦.

In this study, we only focused on the middle band corresponding to the redshift of ∼7.
HERA is also designed to study the Cosmic Dawn at lower frequencies. The low band with
a wider primary beam may bring about a larger per-antenna perturbation than the middle
band for the same feed position deviations. Hence, it is important to test the mitigation
scheme for the low band as well to set a requirement for feed positioning with a more
comprehensive analysis. We defer this to future work.
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Chapter 5

Conclusion

In this chapter, I provide a brief summary of the thesis work and discuss the novel contri-
butions to the research field.

5.1 Summary

This thesis presents my contributions to observational 21 cm cosmology using the HERA
radio interferometer. The primary focus of this work is on investigating the impact of
instrument systematics on our statistical measurements, specifically the power spectrum and
one-point statistics. The one-point statistics measured from the HERA Phase I observations
examine how systematics affect the Gaussian and non-Gaussian features in the images. Using
future Phase II mock observations, I investigate how systematics, stemming from per-antenna
perturbations, impact data calibration and power spectrum estimation. I also devise methods
to mitigate calibration errors and reduce foreground contamination in the power spectrum
analysis.

Chapter 2 describes the results of one-point statistics measured from the HERA Phase I
observational data. First, in order to remove the bright foreground emission, I evaluate the
effectiveness of three different foreground removal methods using simulation data: DAYENU-
filtering, standard wedge-masking, and PCA-based foreground subtraction. The first two
techniques employ foreground avoidance, while the last one uses foreground subtraction
in image space. I find that the DAYENU-filtering method surpasses the other methods in
minimizing the amount of foreground residuals in the map.

I then apply the wedge-filtering (DAYENU) foreground removal technique to the obser-
vational data and produce images by using the direct optimal mapping, which optimally
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down-weights the data with large noise variance, suitable in detecting faint cosmological
signals. To infer statistical properties from the data, I use forward modeling to simulate
mock observations of thermal noise and the 21 cm signal. This approach takes into account
pixel correlations introduced by the instrument response and frequency correlations induced
by the wedge-filtering. One-point statistics, such as the second moment (m2), third moment
(m3) and standardized third moment (S3), representing variance and skewness, are com-
puted for all datasets and compared. The instrument response substantially diminishes the
amplitude of the one-point statistics measurements. This reduction is further compounded,
particularly in m3 and S3, by wedge-filtering, making it difficult to probe non-Gaussianity.
Nevertheless, there may remain an increasing trend in S3 toward lower redshifts.

The comparison of the observational data to the theoretical expectation shows that the
foreground-removed maps are limited by systematics rather than by noise, despite efforts
in systematics mitigation during the observational data processing. The likelihood analysis,
given the observational data, is likely to reject the cold reionization model characterized by
the inefficient X-ray heating, which is consistent with the earlier power spectrum studies
(The HERA Collaboration et al., 2022b, 2023).

In the chapter, I also include forecasts on the detectability of non-Gaussianity for future
observations with the full HERA core array. I conclude that the S/N for the perfect fore-
ground removal, assuming no signal loss of 21 cm signals, reach about 6 for m2 and 2 for m3.
This S/N is limited by cosmic variance rather than thermal noise. However, once wedge-
filtering is applied, the S/N drops significantly to below 1, indicating potential difficulties
in measuring non-Gaussianity. Despite this, the Fisher information matrix, which combines
information from all frequency bins, suggests that m3, along with m2, may provide a better
constraint on the EoR model than m2 alone.

In Chapter 3, I investigate the calibration errors induced by per-antenna perturbations,
specifically feed misalignment, a potential systematic issue that HERA may encounter. Pre-
vious studies (e.g., Ewall-Wice et al., 2017, Orosz et al., 2019) have explored the effects of
per-antenna perturbations using airy beams. However, in practice, the primary beams are
more complex than the simple airy beam models, making them insufficient to capture the
detailed behavior of the HERA system. To address this, I use an electromagnetic simulator
(CST) to create more realistic beam models by perturbing the feed positions. These models
are then used to generate mock Phase II observations for foregrounds and 21 cm signals. I
consider three different directions of the feed misalignment: vertical, horizontal, and tip-tiling
displacement. Additionally, I separately account for point-source and diffuse foregrounds,
as they each contribute differently to calibration errors. By varying the size of the pertur-
bations, I examine their impact on calibration errors and how these errors propagate to the
power spectrum calculation. I conclude that stringent constraints on feed misalignment are
necessary (σfeed ≤ 1 cm or σfeed ≤ 1◦) in the absence of mitigation efforts.
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Finally, Chapter 4 addresses various strategies to minimize the calibration errors. I em-
ploy three different techniques including restricting long baselines during calibration, smooth-
ing gain solutions post-calibration, and applying a temporal filter (fringe-rate notch filter)
prior to calibration. Through a combination of these techniques, calibration errors are sub-
stantially reduced, allowing recovery of a clean EoR window. The findings indicate that the
acceptable tolerance for feed positioning can be relaxed to σfeed ∼ 2 cm or 2◦.

5.2 Novel Contributions

In Chapter 2, I present the results for one-point statistics. This study is unique compared
to previous ones because it: 1) employs a robust foreground-filtering method, 2) considers
the real instrument response or PSF when forming mock observations of noise and 21 cm
simulations, and 3) forward models each data set to account for correlation effects in recon-
structed maps. Additionally, this work is a milestone as it is the first to measure m2 and
m3 from HERA Phase I observations, which represent the deepest available data targeting
high redshift. Although the results were limited by systematics and thermal noise, this work
offers a direction for future observations to study the non-Gaussianity of 21 cm signals.

The systematics we observe in the one-point statistics may arise from calibration errors,
inducing foreground leakage into the EoR window. In Chapter 3, I showcase the possible
scenarios of per-antenna perturbations by using physically motivated feed models, alerting
the stringent requirements of feed positioning to minimize corruption of the EoR window.

In Chapter 4, I demonstrate the effectiveness of the fringe-rate filtering in minimizing
systematics. While the fringe-rate notch filter has often been used for crosstalk mitigation
post-calibration, this is the first time it has been used to address nonredundancies from per-
antenna perturbations prior to calibration. If visibility data contain nonredundancies due to
feed displacement or other factors, the fringe-rate notch filter, combined with the baseline
cut-off method, is expected to significantly improve redundant calibration performance and
reduce the effects of systematics in future observations. Recently, Charles et al. (2024,
in prep) show that nonredundancies caused by mutual coupling between antennas can be
mitigated by applying the fringe-rate notch filter prior to calibration.

In the study of feed displacement, I conducted a large number of visibility simulations
across different frequencies, times, and baselines for each set of perturbed feed models. Due
to the high computational cost, using public visibility simulators designed for general use
was not feasible. Consequently, I developed a new visibility simulator called VisPB1. This
simulator is optimized for rapid visibility calculations, particularly for arrays with redundant

1https://github.com/vispb/vispb
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layouts and perturbed antenna primary beams. For instance, to streamline the process, I
avoided redundant calculations for baselines with identical configurations by computing the
unchanging parts of the visibility calculation for one baseline and reusing them for the others.
In addition, I vectorized the calculations as much as possible and parallelized computationally
intensive tasks, such as beam interpolations at sky positions and fringe term calculations
over baselines. The HERA collaboration is actively investigating the mutual coupling effects
between antennas in the Phase II system. Since mutual coupling causes perturbations in
beam shapes, VisPB may contribute to facilitating the calculations of these effects on the
visibility within a reasonable timeframe.
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