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ABSTRACT

Dark matter (DM) constitutes about 85% of the matter in the Universe, yet its particle
nature remains one of the greatest outstanding questions in astrophysics. DM halos act as
the scaffolding within which galaxies form, but the specific mechanisms through which they
influence galaxy evolution are not fully understood, especially at galactic scales. While cos-
mological simulations and astrophysical surveys have made significant strides in constraining
DM properties, upcoming surveys will generate terabytes of complex, high-dimensional data.
It is thus imperative to develop new methodologies capable of interpreting and linking this
data with theoretical models. Machine learning techniques, coupled with advancements in
cosmological simulations, present a transformative opportunity.

In this thesis, I conduct a multi-scale investigation into the nature of DM and its role in
shaping galaxies by integrating advanced machine-learning techniques with cutting-edge cos-
mological simulations. First, I employ simulation-based inference and graph neural networks
to infer the mass density profiles of DM halos in dwarf galaxies from their stellar kinematics.
Next, I develop a generative model using normalizing flows and recurrent neural networks
to reconstruct the mass assembly histories of DM halos in cosmological simulations. Fur-
thermore, I utilize variational diffusion models and Transformer-based neural networks to
perform point-cloud modeling of satellite populations under alternative DM models. Finally,
I create synthetic surveys for the Gaia surveys from Milky Way-like simulations, bridging
the gap between simulations and observations.

This thesis demonstrates the transformative potential of machine learning techniques to
probe the DM properties and galaxy formation. The methodologies developed herein provide
new avenues for interpreting vast and complex astronomical datasets and offer insights that
could lead to a deeper understanding of the fundamental nature of DM.

Thesis supervisor: Lina Necib
Title: Assistant Professor of Physics
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Chapter 1

Introduction

1.1 Dark Matter Halos and their Galaxies

Dark Matter (DM) is a form of matter that does not interact with electromagnetic waves like
light [1]. Unlike normal matter, it cannot absorb, emit, or scatter light and is thus invisible
to conventional detectors such as telescopes. Though we have not yet detected DM, we
have strong evidence for its existence through its gravitational influence on its surroundings,
e.g., dynamical observations of stars and galaxies, gravitational lensing [1], [2]. Because
DM constitutes about 85% of matter in the Universe, it has important implications for the
dynamics and evolution of stars, galaxies, and even the Universe itself [3]. Still, the nature of
DM remains one of the greatest outstanding questions in modern astrophysics and has been
the priority of many scientific experiments since the 20th century [4], [5]. The discovery of
DM is bound to be a major breakthrough that revolutionizes physics and astronomy.

1.1.1 Observational evidence for Dark Matter

In this section, I discuss the key observational evidence that supports the existence of DM:

1. Galactic Rotation Curves: A rotation curve of a galaxy describes how the orbital
velocity of its stars changes as a function of distance to the center of the galaxy. The
observed rotational velocities are related to the enclosed mass via the relation:

v(r) ∝
√

GM(r)

r
(1.1)

where G is the gravitational constant, r is the radius to the center of the galaxy,
v(r) is the rotational velocity, and M(r) is the enclosed mass. By measuring the
orbital velocity, which can be obtained from spectroscopic observations of the Doppler
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Figure 1.1: The rotation curve of the Triangulum Galaxy (M33) suggests the galaxy is
dominated by an invisible mass component that extends beyond the optical radius of the
galaxy. Figure adapted from [11].

shift of stellar or gas emission lines (see Ref. [6] for a review), we can infer the mass
distribution of both visible and invisible matter. Observations of the rotation curves of
galaxies show that the rotational velocity of stars remains constant or even increases
with distance from the galactic center [7], contrary to what would be expected if only
visible matter were present. This discrepancy implies the presence of additional, unseen
mass (e.g., [7]–[10]).

Figure 1.1, adapted from [11], illustrates how the rotational velocity of the Triangulum
Galaxy (M33) increases with increasing distance from the galactic center. Based on
the amount of visible mass presented in M33, we would expect the rotational velocity
to be decreasing with distance, following a Keplerian decline. Instead, the observed in-
creasing rotation curve indicates the presence of a dominant invisible mass component,
which we then call DM, that extends well beyond the optical radius of the galaxy.

2. Dynamics within Clusters: The dynamics of stars within dwarf galaxies and galax-
ies within galaxy clusters further support the existence of DM. In particular, the ve-
locity dispersion σ, which is a measure of the range of velocities of stars or galaxies in
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Figure 1.2: Left : An image of the Abell 370 galaxy cluster taken by the Hubble Space
Telescope, showing several hundred galaxies. The arcs of blue light are distorted images
of galaxies located behind the cluster, caused by the gravitational lensing effect. Credit:
NASA, ESA, and J. Lotz and the HFF Team (STScI). Right : An X-ray image of the Bullet
Cluster taken by the Chandra X-ray Observatory, adopted from [13]. The contours show the
mass distribution, which is offset from the distribution of hot X-ray gas.

a system, scales with the enclosed mass:

σ2 ∝ GM(r)

r
(1.2)

Observations of galaxy clusters show that the velocity dispersions observed in these
systems are too high to be explained by visible mass alone [12]–[14]. Likewise, studies
of dwarf galaxies, which have relatively little visible matter, also show that their dy-
namics and velocity dispersion can only be explained if a substantial amount of DM is
present (e.g., [15]–[18]).

3. Gravitational Lensing: Predicted by Einstein’s General Theory of Relativity, grav-
itational lensing is a phenomenon in which the gravitational field of a massive object,
such as galaxies and galaxy clusters, bends the light from an object behind it [19], [20]
(see Figure 1.2). This effect allows astrophysicists to detect and map the distribution
of mass that is difficult or impossible to observe through electromagnetic radiation,
including DM, black holes, faint stars, and even extrasolar planets. Observations of
gravitational lensing in galaxy clusters and individual galaxies reveal more mass than
can be accounted for by visible matter alone, providing strong evidence for the presence
of DM (see Ref. [21] for a review).

4. Bullet Cluster: The Bullet Cluster (1E 0657-56) is a compelling example of gravi-
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tational lensing that provides direct evidence for DM [13]. It consists of two galaxy
clusters that have collided, with the hot gas from each cluster interacting and slowing
down, while the galaxies and DM passed through each other with minimal interaction.

Lensing maps of the Bullet Cluster reveal two distinct mass concentrations that are
spatially separated from the hot gas (see Figure 1.2). These indicate that most of
the mass is associated with the DM and galaxies, rather than the hot gas. This
separation also demonstrates that DM behaves differently from normal matter, as it
might not significantly interact with itself [22] or the hot gas during the collision [13],
[23]. Furthermore, this observation challenges modified gravity theories [24], which
struggle to explain the distinct separation of mass [25], [26].

5. Cosmic Microwave Background: The Cosmic Microwave Background (CMB) is
the afterglow of the Big Bang and contains small temperature fluctuations that reflect
the density variations in the early Universe. The scales of the density fluctuations, com-
monly called the anisotropies, are sensitive to models of DM and cosmological param-
eters. Observations from missions such as COBE (Cosmic Background Explorer, [27]),
WMAP (Wilkinson Microwave Anisotropy Probe, [28]), and Planck [3] have measured
these anisotropies with high precision. The power spectrum of the CMB anisotropies,
particularly the first three acoustic peaks, aligns with models that include DM [28]–[32].
These observations indicate that DM constitutes about 85% of the total matter content
in the universe, influencing the formation and evolution of large-scale structures.

6. Large-scale Structure: The distribution and evolution of galaxies and galaxy clus-
ters on cosmic scales provide additional evidence for DM. Simulations of large-scale
structure formation require DM to reproduce the observed filaments structure of the
Universe. These simulations match the distribution of galaxies observed in large sur-
veys, such as the Sloan Digital Sky Survey (SDSS, [33]), only when DM is included [34].

These various lines of evidence for the existence of DM, all originating from astrophysical
observations, paint a compelling picture of a universe dominated by an invisible form of
matter. These astrophysical observations not only suggest the presence of DM but also hint
at its critical role in shaping the cosmos. To further understand the implications of DM,
we must understand the theoretical frameworks and simulations that describe the formation
and evolution of the so-called dark matter halos.
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1.1.2 Connection between Halos, Galaxies, and Stars

DM particles, due to their gravitational interactions and negligible self-interactions [22], [35]–
[38], tend to collapse into highly dense and roughly spherical regions known as dark matter
halos. According to the standard cosmological model, ΛCDM (Lambda Cold Dark Matter),
these halos form through a hierarchical process [39]. In the early Universe, small DM halos
merged and accreted matter, eventually forming larger and more massive halos over time.

DM halos play a crucial role in the formation and evolution of baryonic structures. Within
these halos, baryonic matter, primarily gas, cools and collapses under gravity, leading to
the formation of stars and galaxies. Consequently, galaxies are enclosed within DM halos.
Since DM halos typically account for the majority of mass in galaxies, they have signif-
icant influences on the dynamics, morphology, and evolution of the stars and gas within
galaxies. Therefore, understanding the properties and distribution of DM is essential for
comprehending galaxy formation and evolution. The interplay between DM and baryonic
matter dictates various processes such as star formation rates, feedback mechanisms from
supernovae and active galactic nuclei, and the overall structural evolution of galaxies. High-
resolution cosmological simulations incorporating both DM and baryonic physics, such as
the IllustrisTNG [40], [41], EAGLE [42], FIRE [43] simulations, have provided insights into
these complex interactions. By studying these simulations alongside observational data, we
can test and refine models of galaxy evolution within the framework of ΛCDM.

1.1.3 Constraining Dark Matter with Galaxies and Stars

In the previous section, we discuss how insights into the DM models can help understand
the physical processes behind galaxy formation and evolution. Conversely, galaxies and their
stellar populations can be used as tracers to study the distribution of DM in galaxies and
clusters, which is sensitive to the underlying DM model (see [44], [45] for a review). For
example, cold dark matter (CDM) models predict numerous small halos and cuspy den-
sity profiles due to the absence of significant DM particle interactions. Warm dark matter
(WDM) models, with slightly more energetic particles, predict fewer small-scale structures
and smoother DM distributions, as these small-scale fluctuations are suppressed (e.g., [46],
[47]). Self-interacting dark matter (SIDM) models introduce interactions between DM par-
ticles, leading to core-like density profiles in the centers of halos due to scattering (e.g., [36],
[48], [49]).

In this section, I highlight a few ways galaxies and stars can help differentiate between
DM models, starting with observations within the Milky Way:

• The Gaia mission [50] creates a precise 6D map of the positions and velocities of billions
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Figure 1.3: An image of the Milky Way by the Gaia space telescope showing billions of stars.
Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO.

of stars in the Milky Way (see Figure 1.3). Stellar motions provide critical data for
modeling the Milky Way’s gravitational potential and constructing its rotation curve,
which is essential for understanding the distribution of both visible and dark matter
in our galaxy. By accurately mapping these stellar motions, Gaia helps constrain the
distribution and density of DM within the Milky Way and subsequently informs the
DM models (e.g., [51]–[53]).

• Stellar motions can also be used to trace the local DM distribution near the Solar
neighborhood [54]. This has direct implications for DM direct detection experiments,
such as XENONnT [55], LZ (LUX-ZEPLIN, [56]), etc. These experiments search for
interactions between DM particles and atomic nuclei in the detector materials and rely
on accurate models of the DM local velocity distribution and density to predict the
flux and scattering rates of DM particles.

• Galaxies undergoing mergers with the Milky Way form elongated stellar structures
known as “stellar streams” (see Figure 1.4). When a stellar stream passes through
a DM subhalo, it experiences disruptions that can be detected as gaps or shifts in
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Figure 1.4: Density mapping of the Northern and Southern Galactic Hemisphere from SDSS
showing various elongated stellar structures known as stellar streams. These streams are
remnants of galaxies and star clusters that are accreted onto the Milky Way. Credit: SDSS
DR8 / Bonaca, Giuere, Geha.
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the stream [57]–[60]. These DM subhalos are often not massive enough to host stars
(known as dark subhalo) and thus are challenging to detect. Mapping stellar streams
with surveys like Gaia, S5 (Southern Stellar Stream Spectroscopic Survey [57], [61]),
DES (Dark Energy Survey [60], [62]), can help detect and constrain the abundances
and density profiles of these subhalos, which are sensitive to the properties of DM [57],
[58]. For example, the presence and frequency of these disruptions can differentiate
between CDM, which predicts numerous small subhalos, and WDM, which predicts
fewer subhalos [63].

• Spectroscopic surveys such as SDSS (Sloan Digital Sky Survey [33]) and APOGEE
(Apache Point Observatory Galactic Evolution Experiment [64]), can help constrain the
properties of DM. The stellar spectra measured by these surveys are used to determine
the radial velocities of stars more accurately, as well as their chemical compositions.
By studying the motions and chemical compositions of stars, we can identify past
merger events and accretion of smaller galaxies (e.g., [59], [65]–[69]). These merger
events can be used to understand the hierarchical formation of the Milky Way, which
is a key prediction of the ΛCDM model. Differences in the predicted and observed
merger histories (e.g., accretion rate, formation time, etc.) can indicate the need for
modifications in the DM model and even cosmology [63], [70], [71].

• Detailed chemical abundances provided by spectroscopic surveys are required to ac-
curately model baryonic processes such as star formation histories and the impact of
supernovae and stellar winds on the interstellar medium. Star formation and feedback
processes can alter the distribution of DM in galaxies in a similar way to the effects
predicted by alternative DM models [72]–[75]. For example, SIDM models predict
core-like density profiles due to DM particle interactions, which can also result from
baryonic feedback processes like supernovae [76]–[78]. The degeneracy between bary-
onic feedback effects and those predicted by alternative DM models is among the most
significant challenges in understanding DM properties [79]. By accurately modeling
these baryonic processes, we can differentiate between the effects caused by baryonic
feedback and those intrinsic to DM models, breaking this degeneracy.

In addition to the Milky Way, observations of dwarf galaxies can also help constrain DM
models. Dwarf galaxies are small, DM-dominated galaxies that are often found orbiting
larger, Milky Way-mass halos [80]–[83] (see Figure 1.5). They are among the first galaxies
to form and thus encode the density conditions of the early Universe. Moreover, due to
their lack of baryonic matters (e.g., stars and gas) relative to Milky Way-mass galaxies,
they are perfect testbeds of DM and have provided some of the strongest constraints on DM

32



properties (see Ref. [45], [83] for a review). Indeed, as we currently lack a comprehensive
understanding of the small-scale effects of DM and their implications for galaxy formation,
dwarf galaxies are among the most promising avenues for testing DM models in the near
future. Below, I discuss a few key observations of dwarf galaxies and their implications.

• The inner density profiles of dwarf galaxies are sensitive to the underlying DM models.
CDM predicts steeply rising density profiles (known as cuspy profiles), while alternative
DM models such as WDM and SIDM can predict constant density cores (known as
cored profiles). Unlike Milky Way-mass galaxies, dwarf galaxies, especially ultra-faint
dwarfs, lack significant stars and gas, making them less affected by baryonic processes
that can alter their DM profiles [85], [86]. This provides near-pristine conditions for
testing DM models. To measure the inner density profiles and infer DM properties,
we can analyze the stellar dynamics in these galaxies, using radial velocities data from
high-latitude spectroscopic surveys such as APOGEE and DES (e.g., [87]–[93]).

• The inner density profiles also have implications for DM indirect detection experiments,
which search for signatures of DM annihilation and decay. DM particles can annihilate
or decay into standard model particles, producing high-energy photons such as γ-rays.
These γ-rays can be detected by telescopes such as Fermi-LAT [88], [94]–[101]. The
rate of DM annihilation or decay is proportional to the square of the DM density
(for annihilation) or linearly proportional to the DM density (for decay) [102], making
the inner density profiles of dwarf galaxies critical for these searches. Since dwarf
galaxies, especially ultra-faint dwarfs, have high DM densities and low astrophysical
backgrounds, they provide ideal environments for indirect detection experiments [88],
[94]–[101].

• Other properties of dwarf galaxies, such as their abundances and orbits around their
hosts, can be used to constrain the DM models. Satellite orbits can be used to re-
construct the Milky Way’s gravitational potential and merger histories, which, as dis-
cussed, are sensitive to the DM models. The abundance of satellite dwarf galaxies is a
key observation for distinguishing between CDM, WDM, and other more exotic models
of DM. In the early Universe, WDM particles are more energetic, leading to a free-
streaming effect [46], [103] that suppresses structure formation at small scales. In other
words, WDM models predict fewer low-mass galaxies within this mass range [104]. This
affects the abundance and stellar mass distributions and thus can be used to test the
validity of these models. Key surveys such as ELVES (Exploring the Local Volume
in the Extended Solar neighborhood, [105]) and SAGA (Satellites Around Galactic
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Figure 1.5: A catalog of 27 simulated dwarf galaxies, adopted from [84].
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Analogs, [80]–[82]) characterize hundreds of satellite galaxies around nearby galaxies
in the Local Volume and beyond.

• As discussed previously, stellar streams and other tidal remnants of accreted dwarf
galaxies can be used to detect DM substructure within the Milky Way. Properties of
these streams, such as orbital motions, shapes, and chemical compositions, can also
be used to reconstruct their galaxy progenitors and past merger events (see [106] for a
review). For example, by tracing the path of the stellar stream in the sky and measuring
the velocities of its stars, we can reconstruct the orbit of the progenitor. The width
and density of a stellar stream provide clues about the mass of the progenitor [57],
which can subsequently be used for calculating the subhalo mass functions. The age
distribution of stars within a stellar stream can inform the star formation history of
the progenitor and the merger time, constraining the models of hierarchical formation.

Observations of the Milky Way and dwarf galaxies in Local Group and beyond have
enabled some of the strongest constraints on the particle properties of DM and its role in
structure formation at the smallest scales. It is also worth mentioning a few large-scale
observations that can help constrain DM.

• For example, large-scale surveys like SDSS, DES, and DESI (Dark Energy Spectro-
scopic Instrument [107]) map the distribution of millions of galaxies. By analyzing
galaxy clustering and gravitational lensing, these surveys help trace the distribution
of DM on large scales, which can be used to test predictions of different DM and
cosmological models (e.g. [108], [109]).

• Additionally, in recent years, the James Webb Space Telescope (JWST [110]) has
delivered unprecedented observations of the early Universe. These observations are not
only crucial for understanding the formation and evolution of supermassive black holes
and galaxies but also highlight some potential tensions with the current cosmological
and DM models. For example, JWST observes an overabundance of galaxies in the
early Universe, implying that these galaxies might have formed much earlier than
predicted by ΛCDM [111], [112]. This suggests that our understanding of galaxy
formation, cosmology, and DM is incomplete and opens up exciting avenues for using
these early galaxies as probes for DM models.
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1.2 The Galactic Frontier of Dark Matter Research in

Astrophysics

In the previous section, I discuss the observational evidence for DM and the connection
between DM halos, galaxies, and stars. This interconnected relationship implies that to
accurately model the formation and evolution of galaxies, we must first understand the
nature and behavior of DM. Conversely, to constrain the particle properties of DM, we must
study the galaxies and structures it helps form. The study of DM and galaxies is thus deeply
intertwined, with each providing critical insights into the other.

My thesis focuses on developing novel techniques that will assist future probes for the
nature of DM, using observations of galactic cosmic structures such as the Milky Way and
dwarf galaxies. This is among the most promising avenues for DM research and will be
the priority for future surveys and telescopes such as the Vera C. Rubin Observatory [113]
and the Nancy Grace Roman Space Telescope. Indeed, the role of DM in the formation and
evolution of galaxies at small scales is not fully understood. While ΛCDM has many successes
in explaining large-scale structures such as the power spectrum of the CMB anisotropy [28],
[32] and the distribution of galaxy clusters [114], [115], discrepancies arise at the small scales
(see Refs.[79], [116] for a review).

In this section, I will first discuss these small-scale challenges to ΛCDM. Then, I will
discuss theoretical and analysis tools, including simulations, synthetic observations, and ma-
chine learning techniques, that are being developed to address these challenges and enhance
our understanding of DM at small scales.

1.2.1 Small-scale challenges to Lambda-CDM

Cosmological simulations of ΛCDM at the scales of the Milky Way and dwarf galaxies often
struggle to reconcile with observations. These challenges point to gaps in our understanding
of DM as well as the baryonic processes that govern galaxy formation and evolution. Below
I discuss some key challenges:

1. Core-Cusp: As briefly discussed previously, DM halos in CDM simulations have den-
sity profiles with steeply rising slopes at lower radii (cuspy profiles), while in alternative
DM simulations like SIDM, these halos tend to have flat central density profiles (cored
profiles). However, recent observations of dwarf and low surface brightness galaxies
often show cored DM profiles [117]–[119], contradicting CDM predictions. A poten-
tial solution is that baryonic feedback could flatten the density profiles, as has been
observed in Milky Way-mass galaxies and galaxy clusters [72]–[75]. However, dwarf
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galaxies, especially ultra-faint dwarfs, lack significant baryonic matter and thus might
not experience substantial feedback [120], [121]. Thus, alternative DM models like
SIDM, which can naturally produce cored profiles without the need for strong bary-
onic processes, could provide a better explanation for this core-cusp problem.

2. Diversity of Shapes: Observations of the rotation curves of dwarf galaxies show a
wide diversity in shape [122]–[125], suggesting a corresponding diversity in their DM
halo density profiles. Such variation is not easily reproduced by ΛCDM simulations,
which typically predict a more uniform set of rotation curves for dwarf galaxies. In
addition, recent studies highlight these discrepancies, showing that some dwarf galaxies
have flat, cored profiles while others have steeper, cuspy profiles. The diversity in
observed rotation curves indicates that there might be complex interactions between
DM and baryonic matter that are not fully captured in current models.

3. Planes of Satellites: Observations show that the satellites of the Milky Way and
Andromeda often lie in thin, planar structures [126]–[130]. This planar arrangement is
difficult to explain under the current ΛCDM paradigm, which predicts a more isotropic
distribution. This suggests either a need for new physics or a better understanding
of satellite galaxy formation and dynamics. Note, however, that is also unclear if
alternative DM models will allow for similar planar configurations of satellites. It is
also unknown if the Milky Way and Andromeda are outliers. In the future, surveys
such as SAGA and Rubin Observatory’s Legacy Survey of Space and Time (LSST) will
observe more satellites and can help shed light on this problem [80]–[82], [131].

4. Too-Big-to-Fail: ΛCDM simulations predict the existence of several massive, lu-
minous subhalos around the Milky Way. However, these predicted subhalos do not
correspond to any observed satellites, which are too small and faint. Specifically, these
subhalos appear to be too massive to fail to form stars and become visible satellites,
yet they do not appear in the expected numbers or luminosities [132], [133]. This
discrepancy challenges our understanding of galaxy formation in massive subhalos and
suggests the need for a reassessment of either the DM properties, the baryonic pro-
cesses, or the detectability limits of current surveys [134], [135]. Future surveys such
as Rubin Observatory’s LSST are expected to help resolve this problem by increasing
the completeness of nearby dwarf galaxies [131].

5. Missing Satellite: The missing satellite problem refers to the discrepancy between
the number of small satellite galaxies predicted by CDM simulations and the number
observed around the Milky Way and other galaxies [16], [136]. This suggests a stronger
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baryonic feedback model that suppresses star formation in these satellites or alternative
DM models such as WDM that predict fewer low-mass subhalos [63]. However, this
problem has been partially resolved due to a better understanding of survey selection
effects and deeper observational surveys [137], [138]. Next-generation surveys, such as
the Rubin Observatory’s LSST, are expected to further improve our understanding by
uncovering more faint satellite galaxies [131].

Many of these challenges stem from an incomplete understanding of baryonic processes,
including, for example, star formation, supernovae and stellar wind feedback, and the cooling
and heating of interstellar gas. These processes are among the key systematic uncertainties
in cosmological simulations [121], [139]–[145]. Environmental effects, such as tidal interac-
tions with the Milky Way and other galaxies [132], [146], and observational systematics can
further complicate the comparisons between simulations and observational data. While some
like the Missing Satellite Problem have partially been resolved, many open questions still
remain [147], [148]. This not only motivates alternative theories of DM but also highlights
the importance of accurate models for baryonic processes.

In the following sections, I will discuss the tools in modern astrophysics that can address
these challenges, including advanced simulations, synthetic surveys, and machine learning
techniques.

1.2.2 Cosmological simulations

In the previous sections, I have many times invoked “cosmological simulations.” But what
are these simulations, and why are they so critical to our understanding of the Universe?
Cosmological simulations are sophisticated computational models that evolve the Universe
from the initial density perturbations after the Big Bang to the large-scale structures we
observe today. These simulations use numerical methods to solve the complex equations
governing the interactions of DM, dark energy, and baryonic matter.

The literature surrounding cosmological simulations, including numerical techniques, lim-
itations, and scientific predictions, is comprehensive and well-documented. For a review, refer
to Ref. [149] and references therein. Here, I highlight a few key points about these simula-
tions, specifically their techniques, current limitations, and their application to small-scale
structures.
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Figure 1.6: Cosmological simulations. Figure adopted from [149].
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Overview of Techniques and Types of Simulations

Cosmological simulations employ a variety of numerical techniques to accurately model the
evolution of the Universe. Starting from an initial density perturbation derived from cosmo-
logical observations such as the CMB, these simulations track the distribution of matter over
cosmic time [150], [151]. Specifically, “particles” are created from the matter overdensities
in this initial perturbation and subsequently evolved under the influence of physical forces
such as gravity. Note that these particles are not individual atoms or molecules; they are
computational elements that represent a population of DM or baryonic matter, with each
particle on the order of thousands to millions of solar masses. They are necessary to reduce
the computational costs of cosmological simulations, which can take days or even weeks to
run. The lower the mass of the particles, the higher the resolution and accuracy of the
simulation.

Simulations can be grouped into two main categories based on how they treat different
components of the Universe. Figure 1.6 shows the example and visualization of a few key
simulations.

• Dark matter-only (N-body) simulations: Dark matter-only simulations, also
known as N -body simulations, evolve a large number of DM particles under the influ-
ence of gravity. As the name suggests, these simulations do not include any baryonic
matter such as stars, gas, and galaxies, and thus their results cannot be directly com-
pared with observations. Despite this limitation, N -body simulations are crucial for
studying the formation and evolution of large-scale structures such as clusters and the
cosmic web, where baryonic processes have minimal impact. They are also compu-
tationally cheap (e.g., [152]–[154]), making them ideal for exploring a wide range of
cosmological scenarios and parameters at higher resolutions.

• Hydrodynamic simulations: In contrast, hydrodynamic simulations, include both
DM and baryonic matter. These simulations solve the equations of fluid dynamics in
addition to gravitational interactions to accurately model processes like gas cooling,
star formation, and supernova feedback. Hydrodynamic simulations are significantly
more expensive than N -body simulations. This is because the hydrodynamic equations
that govern baryonic processes are computationally intensive and often involve small-
scale physics that require high resolution to model accurately [155]–[158]. Nevertheless,
hydrodynamic simulations are critical for our understanding of galaxy formation and
evolution and the interplay between DM and baryonic matter.

It is also important to further subdivide cosmological simulations based on the scales
that they simulate:
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• Large-volume simulations: Large-volume simulations capture the largest structures
of the Universe such as galaxy clusters, filaments, and voids. They are thus important
for testing cosmological parameters and the large-scale effects of DM and dark energy.
Furthermore, consisting of millions of halos and galaxies, they are suitable statistical
studies of galaxy populations. Examples include simulations like the Millennium Sim-
ulation [34] and IllustrisTNG [40], [41], which span hundreds of millions of parsecs1

and contain billions of particles.

• Zoom-in simulations: As the name suggests, zoom-in simulations focus on a partic-
ular DM halo or galaxy. By increasing the resolution in a localized region of interest
while maintaining a lower resolution in the surrounding area, these simulations can
model the internal structure and dynamics of individual galaxies or galaxy clusters
in much more detail. Examples include simulations like FIRE (Feedback In Realis-
tic Environments, [43]), NIHAO (Numerical Investigation of a Hundred Astrophysical
Objects, [157]), APOSTLE (A Project Of Simulating The Local Environment, [158]),
and Auriga [156].

Limitations

Cosmological simulations are astrophysical laboratories that have allowed astrophysicists to
explore the formation and evolution of the Universe in unprecedented detail. However, as
with real laboratories, these simulations come with limitations. Understanding these limita-
tions is crucial for interpreting their results accurately and for improving future simulations.
Below, I discuss the key limitations of modern simulations:

• Mass-Volume Tension: Hinted in previous discussions, the mass-volume tension
refers to the trade-off between the mass resolution and the simulated volume of cos-
mological simulations. High mass resolutions allow small-scale physical processes to
be captured in detail, while large volumes are necessary to capture more massive (and
thus much rarer) halos. However, achieving both high mass resolution and large volume
simultaneously is computationally challenging and often impractical, if not impossible,
even with modern technology. Large-volume simulations such as IllustrisTNG cannot
accurately resolve the mass scales of dwarf galaxies [159], while zoom-in simulations
such as FIRE can only simulate a small number of galaxies [160]. This limitation wors-
ens if one wants to capture the entire formation histories of halos and galaxies up to

1A parsec is a common length measurement in astrophysics. A parsec is approximately 3.26 light-years.
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high redshifts,2 as structures in the earlier Universe are less massive and require higher
resolution to be accurately modeled.

• Halo Finders: Halos and galaxies in simulations are collections of DM or star par-
ticles that are gravitationally bound together. Simulations employ the so-called “halo
finders,” most notably Friends-of-Friends (FoF), Subfind [161], ROCKSTAR [162], and
Amiga’s Halo Finder [163], to identify and characterize these structures.

Unfortunately, halo finders have several limitations [164]–[166]. First, halos are not
always spherical; they can be elongated or irregular in shape, especially when under
tidal interactions with another halo. Halo finders may miss particles at the outskirts
of the halo, leading to incorrect estimations of halo mass and size. Second, in dense
environments, such as galaxy clusters or mergers, halo finders can struggle to distin-
guish between closely packed halos. Lastly, the choice of halo finder and the specific
parameters used can significantly impact the resulting halo catalogs and the derived
properties of halos and galaxies. The effectiveness of halo finders also depends on
the resolution of the simulation; lower-resolution simulations may miss smaller halos,
leading to incomplete or biased halo catalogs.

• Baryonic Physics: Including baryonic processes such as star formation, supernova
feedback, and gas cooling introduces additional complexity and uncertainty into cosmo-
logical simulations. These processes are often modeled using subgrid physics because
they occur at scales smaller than the resolution of the simulation. While these models
are essential for accurately modeling galaxy formation and evolution, they are inher-
ently approximations and will significantly impact the results. The accuracy of subgrid
models is crucial, and discrepancies in how these processes are implemented can lead to
variations in the simulation outputs. Comparisons between different subgrid physics
models have been conducted in various studies to understand these impacts better.
For example, Ref. [167] provide a thorough comparison of different feedback imple-
mentations and their effects on galaxy properties, while the AGORA project [168]
benchmarks various hydrodynamic codes and their subgrid physics recipes.

• Resolution and Numerical Artifacts: The resolution of a simulation determines
its ability to accurately model small-scale structures and processes. Higher resolutions
require more substantial computational resources, thus limiting the cosmological vol-
ume that can be simulated, as discussed in the mass-volume tension. Low resolution

2Redshift refers to the phenomenon where light from distant objects is shifted to longer wavelengths due
to the expansion of the Universe. Higher redshifts correspond to earlier cosmic times.
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can lead to underestimation of the number of substructures and inaccurate modeling
of small-scale processes. Furthermore, numerical methods used in simulations can in-
troduce artifacts or errors. For example, the choice of time-stepping methods, grid
resolution, and particle-mesh methods can affect the accuracy of the results [167],
[169]. These numerical artifacts can lead to spurious features in the simulated data,
complicating the interpretation of results [166], [170].

Overcoming these limitations is an important and ongoing challenge in astrophysics. For
example, the mass-volume tension can be addressed by employing a multi-tier simulation ap-
proach similar to the recent GUREFT simulations, in which I participated [154]. Advances in
halo finders, with recent techniques such as Symfind [166], address some of the shortcomings
of earlier methods and overall improve the accuracy of halo identification and characteriza-
tion. Differences in baryonic physics and numerical methods should be always treated with
utmost care to ensure the reliability of simulation results. The CAMELS project [171] and
the DREAMS project, to which I contributed [172], revolutionize this approach by system-
atically varying subgrid physics and cosmological parameters to understand their effects on
simulated galaxy properties.

To conclude, cosmological simulations are indispensable tools for exploring the complex pro-
cesses underlying the formation and evolution of the Universe. Despite their limitations,
ongoing research efforts will continue to improve their accuracy and reliability. These im-
provements will advance our theoretical understanding of the complex interplay between DM
and baryonic matter, bridging the gap between simulations and the real Universe.

1.2.3 Synthetic surveys

Cosmological simulations are powerful tools that can make significant theoretical predictions
about our Universe. However, even without their limitations as discussed previously, they
cannot be directly compared to real astrophysical observations. For example, the raw outputs
of simulations are not individual stars, but particles that represent a population of thousands
to millions of stars. Another example is the simulation of gas dynamics, where interactions of
gas clouds and interstellar medium are represented by oversimplified models. These models
may not capture all details and the different phases of the ISM, such as the cold molecular
clouds, warm neutral medium, and hot ionized gas, observed in reality.

To further complicate the comparisons, observations are complex and (unfortunately)
also riddled with their own systematics. Common systematics include instrumental calibra-
tion errors, atmospheric distortions, foreground contamination, and survey selection effects.
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Figure 1.7: Mock real-color image of the m12i FIRE simulation. The synthetic survey is
designed to mimic observations from the Gaia telescope and is very similar to Figure 1.3. A
keen observer will notice that this galaxy is not the Milky Way because it lacks a counterpart
to the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC). Figure adapted
from [173].

These observing systematics can introduce significant biases and uncertainties in the data,
further complicating comparisons with theoretical predictions.

Synthetic surveys, also called mock surveys, are simulated observations that are derived
from cosmological simulations and designed to mimic real astronomical surveys (e.g., [173]–
[177]). They are thus the natural next steps to bridge the gap between observations and
simulations. These surveys are created by taking the output of simulations and applying
observational effects to them, such as instrumental noise, resolution limits, and survey se-
lection functions. This can involve projecting the 3D simulation data onto a 2D plane to
simulate telescope images or generating stellar spectra, taking into account the character-
istics of the observing instruments and even the multi-wavelength nature of real surveys,
from radio waves to X-rays. Figure 1.7, adopted from Ref [174], shows an example of a
synthetic survey of the Gaia telescope, generated from a Milky Way-like galaxy in the FIRE
simulations.

Synthetic surveys are not without their own systematics. For example, effects such as
atmospheric distortion of ground-based telescopes can be challenging to quantify and incor-
porate into these surveys accurately. More importantly, simulated galaxies are not perfect
one-to-one matches with the Milky Way or other observed galaxies. One must assume a
specific viewing point and orientation when generating synthetic observations, which can
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introduce additional uncertainties. Moreover, complex treatments of dust and galactic ex-
tinction must be handled in a self-consistent manner to ensure realistic representations.3

Survey effects based on the telescope’s scanning law are virtually impossible to replicate.
Since the slewing of the telescope depends on numerous factors, and simulated galaxies are
not one-to-one matches with the Milky Way, these effects cannot be directly simulated.

Despite these limitations, synthetic surveys remain a powerful tool in astrophysics. They
enable us to test theoretical models under controlled conditions, help identify potential obser-
vational systematics, and allow for the development of more robust data analysis techniques.
Moreover, they serve as valuable benchmarks for upcoming observational campaigns, since
they can give insights into what to expect and how to optimize the design and execution
of these surveys. As observational capabilities continue to advance with new telescopes
and instruments, synthetic surveys will play an increasingly vital role in interpreting the
vast amounts of data collected. By iteratively improving both cosmological simulations and
synthetic surveys, we can achieve a more accurate and comprehensive picture of cosmic
phenomena, from the behavior of DM to the formation and evolution of galaxies.

1.2.4 Machine learning

Simulations and observations both produce incredibly complex, high-dimensional data that
can be challenging to analyze and compare. For example, a stellar spectrum is high-
dimensional and encodes information about the chemical compositions, temperatures, and
velocities of the stars [178]. More importantly, numerous processes such as instrument noise,
atmospheric interference, and foreground contamination can obscure the desired informa-
tion, especially for distant objects. As a result, astrophysical data can often have much
lower signal-to-noise ratios compared to other fields of study and real-life applications.

Moreover, the vast volume of data will only exponentially increase with future surveys.
Cosmological surveys such as SDSS and DES already capture the spatial distributions of
millions of galaxies [179], [180]. Meanwhile, Milky Way surveys such as Gaia capture the
positions and velocities of billions of stars, along with information on their age, color, and
temperature [181]–[184]. The Rubin Observatory’s LSST will further revolutionize the field
by observing millions of astronomical objects and producing 20 terabytes of raw data per
night [113]. Many of these objects are also transients, astronomical events that change in
brightness over short timescales. Their detection and analysis thus require rapid processing
and immediate follow-up observations.

3Galactic extinction refers to the dimming and reddening of light from astronomical objects due to dust
within the Milky Way. Simulated galaxies have different distributions of dust, and thus we cannot directly
use the Milky Way dust map for simulations, making it challenging to model extinction accurately
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Traditionally, these problems have been tackled using a variety of statistical methods.
Common techniques include linear regression [185], Fourier transformation and wavelet anal-
ysis [186]–[188], and Bayesian inference (e.g., [186], [189]–[191]). Summary statistics, such
as mean values and variances, are often used to condense vast amounts of data into more
manageable forms. Scaling relations describe how different properties of an astronomical
object correlate with each other and are used to make predictions. While these approaches
have been successful, they fail to keep up with the increasing complexity and high dimension-
ality of modern astrophysical data. Linear regression cannot model non-linear relationships,
while Fourier transform and wavelet analysis struggle to capture non-periodic or transient
phenomena. Bayesian inference can be computationally intensive, and its results depend
heavily on the convergence of the sampler, which can vary. In addition, to simplify the anal-
ysis process, many methods rely on Gaussian assumptions (that the data or noise follows a
normal distribution) which tend to break down with more complex datasets.

The techniques described above share a common limitation: they tend to oversimplify the
complexity of the data. Analyzing high-dimensional data in a reasonable computational time
is seemingly an impossible task. However, when generations of astrophysics grad students
look up into the night sky to seek answers, instead of solutions written in the stars, they
found machine learning.

Overview of Machine Learning in Astrophysics

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to
learn and make decisions or predictions from data without memorization or being explicitly
programmed for specific tasks. Imagine training an astrophysics graduate student to recog-
nize stellar spectra. Instead of giving them a set of common spectra lines to identify, the
advisor simply shows them many spectra of different types of stars. Over time, the graduate
student learns to identify the stellar spectra based on the patterns they observe, earning
them a Ph.D. Similarly, in ML, we feed an algorithm, typically a neural network, a large
amount of data and train it to identify patterns and relationships within that data.

ML techniques, specifically neural networks, are designed to handle large volumes of data.
They are capable of extracting subtle patterns from high-dimensional data, as has been
shown in many real-life applications and other fields of science. In physics, for example, ML
algorithms are employed in the Large Hadron Collider (LHC) to analyze low-level triggers
and detect rare particle events [192], [193]. These capabilities make ML an invaluable asset
for managing and interpreting complex datasets, and thus, it has seen increasing use in
modern astrophysics. Below, I discuss some common applications:
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• Classification: Neural networks have been used to classify astronomical objects based
on their spectra, light curves, or images. For example, recurrent and Transformer-based
models have been used to classify supernova light curves [194], stellar spectra [178],
or gravitational waves [195]. Convolutional neural networks can be used to classify or
identify desired features from in astronomical images (e.g., [196]) or gravitational-wave
spectrograms (e.g. [197]). Multi-layer perceptrons have been used to classify stars that
are accreted onto the Milky Way and even identify new accreted structures [65], [66].
This automated classification significantly speeds up the analysis process and allows
us to handle the vast amount of data generated by modern surveys.

• Regression and Inference: Similarly, neural networks can be used to predict con-
tinuous trends based on the input data (regression) or draw conclusions about the
underlying parameters that govern these trends (inference). In astrophysics, they have
been used to predict properties such as the redshift, stellar mass, and star-formation
rates of galaxies from multi-band imaging data [198]–[200]. For inference, ML mod-
els have been employed for various applications ranging from extracting cosmological
parameters from large-scale structures [201]–[204], DM properties from stellar motions
and strong lensing images [93], [205], [206], to properties of gravitational-wave progen-
itors [207].

• Clustering and Anomaly detection: Neural network architectures such as varia-
tional autoencoders (VAE) are commonly employed for clustering and anomaly detec-
tion. These architectures learn to group similar data samples, typically by minimizing
the distance in their representation (latent) space during training. Most deep learn-
ing algorithms for clustering also give access to this latent space, allowing them to
be used to detect anomalous samples. For example, ML have been used to identify
unmodeled transient gravitational waves (e.g., typically non-merger sources such as su-
pernovae) [208] and anomalous images in optical surveys [209]. Clustering techniques
are used to identify structures in data or data compression (e.g., [210], [211]).

• Generative models (emulators): Generative models, also called emulators, are de-
signed to learn the properties of observed or simulated data and generate new samples.
They can be used to fill in gaps in parameter spaces, predict future observations, or
even create entirely new datasets for training and testing other ML algorithms. For
example, Generative Adversarial Networks (GANs) have been used to generate density
fields in cosmological simulations and “paint” galaxies onto DM-only fields [212], [213].
VAEs are commonly used to “de-noise” noisy observations, by learning to reconstruct
clean samples from noisy samples (e.g., [214], [215]) or reconstruct missing information
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(e.g., [216]). Normalizing flows [217] have been used to predict the galaxy mass func-
tions and other relations vary with cosmological parameters [218]. Diffusion models
have been used for point-cloud modeling of cosmological simulations [219].

Limitations

While ML techniques have shown great promise in astrophysics, they are not without limi-
tations. In this section, I list a few key limitations:

• Data Quality and Quantity: High-quality, labeled data is critical for training ro-
bust ML models. Acquiring such data, however, can be challenging, especially in
astrophysics due to observational limitations, noise, and incomplete datasets. For ex-
ample, astronomical phenomena such as supernovae are extremely rare and difficult to
build a training dataset for.

• Simulations versus Reality (Generalization): To tackle the data challenge, as-
trophysicists often rely on simulations, whether they are cosmological simulations that
model entire universes, template-based simulations of transients, or even numerical
relativity simulations of gravitational waves. However, simulated data can never per-
fectly match real observations due to simplifications and assumptions inherent in the
models. Additionally, as also discussed previously, observational systematics and un-
certainties are difficult, if not impossible, to model. Discrepancies between simulations
and actual data can lead to subtle biases in the trained models. It is thus extremely
important to continue improving simulation techniques to better reflect the complex-
ities of the Universe. Domain adaptation techniques [220]–[222], which address shifts
in data distribution, are also a significant focus of research in the ML community.

• Uncertainty quantification: The challenge of reconciling simulations and reality
is not unique to ML techniques. For example, statistical methods that are based on
template matching will share similar limitations if the templates do not perfectly match
real data. However, this issue is exacerbated for ML models because these models often
struggle to provide clear measures of uncertainty, making it challenging to assess the
reliability of their predictions.

It is worth dividing uncertainties into two categories: aleatoric uncertainty, which is
the inherent noise in the data, and epistemic uncertainty, which reflects the uncertainty
due to the model’s lack of knowledge or incomplete understanding of the underlying
data distribution. Aleatoric uncertainty can be addressed using techniques like nor-
malizing flows and simulation-based inference, which can model the inherent noise in
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the data. Epistemic uncertainty can be tackled with methods such as Bayesian neural
networks and ensemble learning, which provide a measure of the model’s confidence
in its predictions and can highlight areas where the model lacks sufficient informa-
tion. Properly addressing these uncertainties is crucial to ensuring the robustness and
reliability of ML applications in astrophysics.

• Interpretability: ML models often operate as “black boxes,” providing predictions
without clear explanations of how those predictions were made. This lack of inter-
pretability can be problematic in astrophysics research, where understanding the un-
derlying processes and validating results are important. Additionally, this exacerbates
the generalization problem discussed above. However, it is worth noting that it is not
impossible to gain insights into these models. They can often be subjected to stress
tests to evaluate their reliability and robustness. For many applications, it is practical
to use these models even without knowing the exact mechanisms behind their predic-
tions, as long as their outputs are validated and their limitations are well-understood.
The reliability and interpretability of neural networks are among the most active areas
of research in the ML community [223]–[225].

• Overfitting: Overfitting occurs when a model learns to capture features or noise
uniquely present in the training data rather than the underlying signal. This can
lead to poor generalization to new, unseen data. ML models are more susceptible to
overfitting because they are too complex relative to the amount of training. However,
in many cases, this can be easily identified and addressed with more training data,
better regularization techniques (e.g., dropout, batch normalization, early stopping,
learning rate scheduler [226]–[228]), or simply reducing the complexity of the model. It
is especially important to note that many ML models follow a well-documented double
descent phenomenon, which describes a counter-intuitive behavior where increasing
model complexity initially leads to worse performance before eventually improving it
again as complexity continues to rise. This also partially explains why ML techniques
tend to have better performance than traditional methods that have fewer parameters.
Interested readers should refer to Refs. [229], [230].

• Computational resources: Deep learning models require significant computational
power and memory to train. Additionally, the environmental impact of ML models is
an emerging area of concern, primarily due to the substantial energy consumption and
carbon emissions associated with training and deploying these models (see e.g., https:
//aiindex.stanford.edu/report/). Thus, one should also take special care to optimize
and manage resources effectively to ensure efficient model training and deployment.
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Addressing these limitations requires a combination of improved data acquisition tech-
niques, the development of more interpretable and robust model architectures, the integra-
tion of domain knowledge, and advanced methods for uncertainty quantification. Ongoing
research and collaboration between astrophysicists, ML scientists, and industry professionals
are crucial for overcoming these challenges and realizing the full potential of ML in astro-
physics.

The Next Steps

Despite these limitations, ML techniques remain a powerful tool in advancing astrophysical
research. In this section, I highlight a few exciting areas of ML research, in no particular
order:

• Simulation-based Inference: Simulation-based inference determines the parame-
ters of a model by comparing observed data with data generated through simulations
(see Ref.[231] for a review). Unlike traditional techniques, simulation-based inference
can directly leverage the simulations without the need for an explicit likelihood.4 Key
techniques include conditional neural density estimation methods such as conditional
normalizing flows [217], [232]. As also discussed previously, simulation-based infer-
ence is powerful for scientific applications as it can model the aleatoric uncertainty, or
the uncertainty inherent in the simulations and data. Simulation-based inference has
found many applications in astrophysics, including strong lensing [205], [206], cosmol-
ogy [202], [203], and DM studies [93], [201].

• Diffusion models: Diffusion models are the next generation of generative modeling.
These models work by gradually corrupting the data with noise and then learning
to reverse this process to recover the original data distribution, [233]–[236]. They
have many inherent advantages over other generative models, such as GANs, VAEs,
and normalizing flows. Unlike GANs, diffusion models allow both sampling and like-
lihood evaluation, making them much more suitable for scientific applications. Also
unlike GANs, they are much more stable to train and also less susceptible to mode col-
lapse [237], [238]. Diffusion models are also more expressive and allow for more flexible
neural network architectures than VAEs and normalizing flows. For example, diffusion
models have been employed mainly for generating galaxy surveys from large-volume
simulations [219], density fields [239], [240], and radio images [241].

4For this reason, it is also called likelihood-free inference, though this is a bit of a misnomer because the
likelihood is built in implicitly through the simulations.
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• Geometric deep learning: Many astrophysical observations inherently reside in non-
Euclidean spaces. For example, the coordinates of celestial objects are often given in
Right Ascension and Declination, which are analogous to longitude and latitude on a
sphere. Leveraging this spherical geometry is key to accurately modeling and analyzing
the spatial distribution of celestial objects. Geometric deep learning employs principles
of geometry and topology to handle data in these non-Euclidean spaces. Techniques
such as graph neural networks [242], [243] can effectively represent and process data
on computational graphs. For example, graph neural networks have been used in
conjunction with simulation-based inference to infer cosmological and dark matter
parameters from the distribution of galaxies or star clusters (e.g., [93], [202]–[204]).

Additionally, geometric deep learning techniques often make it easier to incorporate
geometric invariants such as rotation, translation, or even Lorentz invariance and equiv-
ariance [244]5. This is particularly powerful for physics and astronomy applications,
where symmetry plays a crucial role in many physical processes.

• Multi-modal models: Astrophysical observations come in many forms and flavors.
A galaxy, for example, can be observed through its images across different wavelengths,
its full spectra, and its light curves showing its brightness variations over time. Each
of these data types (known as “modes” to the ML community) encodes different but
somewhat overlapping information about the same galaxy. Multi-modal models can
exploit information from different modalities, often by using self-supervised learning
to map these diverse data types into the same latent space. This unified latent repre-
sentation allows these models to leverage the strengths of each mode and often leads
to better generalizations.

It is worth emphasizing that these models are designed to still work effectively even
when only one data type is accessible. In many of these cases, their performance has
been found to even be superior to non-multi-modal models, though the exact reasons
for this improved performance are still an active area of research in the ML commu-
nity [245]–[248]. An exciting recent work introduced AstroCLIP [199], a model that
creates a shared embedding space for galaxy images and spectra, and demonstrated
better performance on tasks like redshift estimation and galaxy property prediction,
even compared to supervised baselines. Note that each data mode does not have to cor-

5Invariance refers to a property of a model where the output remains unchanged when the input undergoes
certain transformations. Equivariance means that the output of the model transforms in a predictable way
when the input is transformed. For example, a rotation-invariant model would produce the same output
regardless of the rotation of the input, while a rotation-equivariant model’s output would rotate in the same
manner as the input.
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respond to different data types; multi-modal methods can also be applied to the same
data type of different telescopes and instruments, such as the same images taken by
two different telescopes. This opens up for more robust applications of ML techniques
on astronomical data.

• Foundational models: Foundational models are large-scale, pre-trained models de-
signed to be fine-tuned for various downstream tasks. They provide a robust starting
point by leveraging vast amounts of data and powerful architectures, making them
adaptable to a wide range of applications in astrophysics, from image recognition to
spectral analysis. Examples of recent foundational models in astrophysics include As-
troCLIP [199] and Radio Galaxy Zoo [249].

1.3 Roadmap and the Big Picture

1.3.1 Roadmap

In the previous section, I discuss how ML techniques are powerful analysis tools that have
increasingly seen more applications in astrophysics and cosmology. While they have the
potential to transform astrophysics research, they come with their own set of limitations and
challenges. Addressing these challenges is crucial for making significant astrophysical dis-
coveries and is an active area of research. In this thesis, I present a few exciting applications
that showcase the power of ML in DM research, galaxy formation, and cosmology. My thesis
is structured as follows:

• In Chapter 2, I present a novel application of graph neural networks and simulation-
based inference to constrain the DM density profiles of dwarf galaxies from the kine-
matics of their stars. This approach provides stronger constraints on the density pro-
files than the traditional Jeans dynamical modeling techniques, thereby addressing the
core-cusp discrepancy and other small-scale structure issues in DM halos. This work
was published in Physics Review D Volume 107, Issue 4, Page 043015 in February
2023 [93]. Though the method presented in this chapter has only been mostly applied
to simple, analytical simulations, in my postdoctoral research, I will extend it to more
sophisticated, cosmological simulations and eventually real data.

• Chapter 3 presents FLORAH, a generative model for mass assembly histories of ha-
los, based on recurrent neural networks and normalizing flows. The mass assembly
histories are crucial for understanding galaxy formation and evolution, yet current an-
alytic methods fall short in accuracy and fail to capture their relationship with halo
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structure and environment. I demonstrate FLORAH’s ability to accurately model the
mass assembly histories, as well as other key relations such as the stellar-to-halo mass
relations, concentration-mass relations, and even galaxy assembly bias. This work was
submitted to Monthly Notices of the Royal Astronomical Society and is currently under
peer-reviewed. A copy is available on arXiv at https://arxiv.org/abs/2308.05145 [250].
Future work will focus on extending FLORAH to emulate the entire merger histo-
ries, which can then be used for small-scale applications such as generating mock tidal
disruption structures.

• Chapter 4 combines normalizing flows, variational diffusion models, and Transformer-
based neural networks to emulate the satellite populations under WDM scenarios. By
modeling satellite populations as point clouds, this method, called NeHOD (Neural
Halo Occupancy Distribution), can uniquely emulate the kinematics and spatial distri-
butions of these satellites, which other methods have struggled with. I train NeHOD on
the WDM Milky Way suites of the DREAMS simulations and show that it can capture
how key summary statistics, such as satellite counts, mass functions, concentration-
mass relations, etc. vary with the WDM particle mass and astrophysical parameters.
The work is currently under internal revision of the DREAMS collaboration before
being submitted to The Astrophysical Journal.

• In Chapter 5, I present the Ananke synthetic surveys of 3 Milky Way-like galaxies
in the FIRE simulations. These surveys are designed to match observations from the
Gaia DR3 (Data Release 3) catalog [181]–[184], which was released on June 13, 2022.
Prior work with the Gaia DR2 catalog was led by Robyn Sanderson in Ref. [173].
In this work, my collaborators and I extend Ananke to Gaia DR3 by incorporating
observational effects such as measurement uncertainties, dust extinction, and survey
selection effects. I share an equal contribution with Xiaowei Ou, a fellow Ph.D. student
in Lina’s group. This work was published in The Astrophysical Journal Volume 966,
Number 1, Page 108 in April 2024 [174].

• Finally, I conclude my thesis in Chapter 6.

1.3.2 The Big Picture

In this section, I briefly discuss how the above projects tie into the bigger picture of un-
derstanding the properties of DM and the physical process behind galaxy formation and
evolution.

53

https://arxiv.org/abs/2308.05145


Figure 1.8: The inner slope α of the DM density profiles as a function of the stellar-to-mass
ratios of galaxies in the FIRE-2 simulations. Here, α = 0 denotes cored profiles, while
α = −1 denote cuspy profiles. We see the impact of stellar feedback, characterized by the
mass ratios, on the density profiles. Figure adapted from [251].

The work described in Chapter 2 and Chapter 4 will help place constrains on both DM
properties such as the annihilation cross-section of DM and the strength of baryon feedback.
The work described in Chapter 3 will help create more accurate theoretical models for galaxy
formation and evolution, which can then be compared to results from JWST. The work
described in Chapter 5 can be used to create mock catalogs and training datasets for current
astrophysical surveys, as well as forecasts for future ones, thus bridging the gap between
observations and theoretical modeling.

Figure 1.8, adapted from Ref. [251] shows how the inner slope α of the DM density profiles
vary as a function of the strength of the feedback, which is characterized by the fraction of
stellar mass M⋆/Mhalo, of galaxies in the FIRE-2 simulations [43], [253]. Measurements
of the inner slope α in real dwarf galaxies (M⋆/Mhalo < 10−3) rely on the stellar velocity
dispersions and Jeans equations and are relatively under-constrained [117]–[119]. In addition,
Ref. [254] shows that these techniques cannot distinguish between cored (α = 0) and cuspy
(α = −1) density profiles with 1,000 stars (see Table 3 and 4 in Ref. [254]). This creates
challenges in comparing the values of α from observations with the theoretical fits from
hydrodynamic simulations in Figure 1.8. With the simulation-based inference framework
presented in Chapter 2, I will place a better constrain on the inner slope α for dwarf galaxies,
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Figure 1.9: Constraints on the bb̄ (left) and τ+τ− (right) annihilation channels derived from
Fermi-LAT data from Ref. [252]. Figure adapted from [252].

especially ultra-faint dwarfs with few stars, which will facilitate the comparisons between
observations and simulations. In addition, constraining the DM density profiles will also
improve estimations of the so-called J-factor, which is proportional to the expected signal
flux from DM annihilation:

J =

∫
ds

∫
dΩ ρ2(s,Ω). (1.3)

where ρ is the DM density profiles, s is the line-of-sight distance, and Ω is the solid angle.
Accurately determining J-factors are important for DM indirect detection experiments that
use dwarf galaxies as targets [88], [94]–[101]. Figure 1.9, adapted from Ref. [252], shows the
upper limits derived from Fermi-LAT data on the annihilation cross-section of DM for the bb̄

and τ+τ− channels, where b and τ denote the bottom quark and tau particle, respectively.
The containment regions, shown as the yellow and green bands, are calculated from Monte
Carlo simulations assuming a certain background and the measured values of the J-factor.
The black line shows the upper limit derived from observations of dwarf galaxies. If the
observed upper limit is greater than the containment regions, this suggests a potential excess
of events that could be indicative of DM interactions at that particular mass and cross-
section. The widths of these containment regions are influenced by the uncertainties in the
J-factor. Therefore, improving the precision of J-factor measurements would enhance the
sensitivity of these searches. The simulation-based framework in Chapter 2 aims to achieve
that by providing more accurate constraints on the DM density profiles and subsequently
the J-factor. For example, in the preliminary analysis on idealized data, we found that our
framework can, on average, reduce the error bar on the J-factor by approximately 10-20%.

55



Figure 1.10: The satellite stellar mass functions in differential form reported by the SAGA
survey [80]–[82]. The left panel shows the mass functions for two populations of satellite
galaxies, separated by their star formation rate. The right panel compares the SAGA mass
functions with previous results from ELVES [105]. Figure adapted from [80].

Chapter 4 presents NeHOD, a generative model for satellite galaxies in Milky Way-like
halos. NeHOD can be thought of as a machine learning-based extension to Halo Occupation
Distribution (HOD) methods, in which galaxies are assigned to DM halos in N-body simu-
lations based on a statistical framework that describes the probability of a halo hosting a
certain number of galaxies [255]. This process, known as “painting” galaxies onto DM halos,
follows a set of recipes that aim to capture the main physics describing the halo-galaxy con-
nection. HODs have been applied in various contexts, from studying galaxy clustering [256]–
[258] and the halo-galaxy connection [259]–[261] to generating mock galaxy catalogs for recent
surveys such as DESI [262] and Euclid [263]. NeHOD can be used to predict properties such
as satellite mass functions, which can then be compared with observations from dwarf galaxy
surveys such as SAGA [80]–[82] and ELVES [105]. Figure 1.10, adapted from Ref. [80], shows
how star formation affects the satellite stellar mass functions in the SAGA survey. Note that
the satellite stellar mass functions will also be impacted by the DM models. For example,
WDM models predict fewer low-mass subhalos due to free-streaming in the early Universe
and thus also affect the satellite mass functions in a similar way. Therefore, an accurate the-
oretical modeling of satellite mass functions, combined with other independent observations
like the ones described above, is the key to disentangle and place constraints on both the
DM properties and baryonic processes. The NeHOD framework presented in Chapter 4 is a
promising step towards this.

Chapter 3 presents FLORAH, a generative model for assembly histories of DM halos.
Assembly and merger histories of halos are often combined with semi-analytic models (SAMs)
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Figure 1.11: The top panel shows the observed samples of galaxies as a function of redshift
by the CEERS [111], [264] survey of JWST. The bottom panel shows the cumulative surface
density of bright galaxies as a function of redshifts. The F277W denotes the wide-band mid-
infrared (MIR) filter with the central wavelength of approximately 2.77µm. The gray band
shows observations of the JWST. The lines show the theoretical predictions from cosmological
simulations (solid lines), semi-analytical models (dashed lines) and semi-empirical models
(dashed dotted lines). We see that theoretical models under-predict the abundance of high-
redshift galaxies, which is characterized by the surface density. Figure adapted from [264].
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to predict the formation and evolution of galaxies [265]–[287]. For example, SAMs have been
used to make predictions on the abundance of high-redshift galaxies, which are important
for interpreting results from JWST and placing constraints on the formation processes of
the first galaxies. Figure 1.11, adapted from Ref. [264], shows an example result from the
CEERS (Cosmic Evolution Early Release Science) survey of JWST. In the Figure, we see a
disagreement in the number of high-redshift galaxies observed by JWST (gray bands) and
predicted by theoretical models, including cosmological simulations, semi-analytical models,
and semi-empirical models. Specifically, theoretical models under-predict the number of
high-redshift galaxies. This creates a tension between observations and theories of galaxy
formations and potentially even cosmology. A potential way to alleviate this tension is
to have a more accurate model of the formation of supermassive black holes in the early
Universe. The FLORAH framework presented in Chapter 3 will generate fast and accurate
mass assembly histories of halos, which are an important ingredient for SAMs. This will
facilitate testing of theoretical models for supermassive black holes seeding, thus improving
the accuracy of SAMs.
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Chapter 2

Uncovering dark matter density profiles
in dwarf galaxies

Disclaimer

The content of this chapter was published in Physics Review D Volume 107, Issue 4, Page
043015 in February 2023 [93]. The authors are Tri Nguyen, Siddharth Mishra-Sharma, Reuel
Williams, and Lina Necib.

Abstract

Dwarf galaxies are small, dark matter-dominated galaxies, some of which are embedded
within the Milky Way. Their lack of baryonic matter (e.g., stars and gas) makes them
perfect test beds for probing the properties of dark matter—understanding the spatial dark
matter distribution in these systems can be used to constrain microphysical dark matter
interactions that influence the formation and evolution of structures in our Universe. We
introduce a new method that leverages simulation-based inference and graph-based machine
learning in order to infer the dark matter density profiles of dwarf galaxies from observable
kinematics of stars gravitationally bound to these systems. Our approach aims to address
some of the limitations of established methods based on dynamical Jeans modeling. We
show that this novel method can place stronger constraints on dark matter profiles and,
consequently, has the potential to weigh in on some of the ongoing puzzles associated with
the small-scale structure of dark matter halos, such as the core-cusp discrepancy.
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2.1 Introduction

Cosmological structure formation is known to proceed hierarchically—smaller structures seed
the formation of larger structures [288]. Dark matter (DM) plays an outsized role in this
process, acting as a “scaffolding” on which structure evolution plays out. At the same time,
the precise mechanism of structure formation is keenly sensitive to the microphysical prop-
erties of DM e.g., the nature of its self-interactions. Deviations from the canonical Λ Cold
Dark Matter (ΛCDM) paradigm of cosmology would be imprinted in the properties of DM
clumps (known as halos) on smaller spatial scales. Robustly characterizing the distribution
of small-scale structures in our Universe may therefore hold the key to answering one of the
major unsolved questions in particle physics and cosmology—the particle nature of DM.

Dwarf galaxies are small galaxies, some of which are embedded within larger galaxies
like the Milky Way. They are dominated by DM [15], making them versatile astrophysical
laboratories for DM studies. A major goal in cosmology and particle physics is to detect
non-gravitational interactions of DM. For the canonical Weakly-Interacting Massive Particle
(WIMP) DM paradigm, one of the main avenues to do so is DM indirect detection: WIMPs
could annihilate into Standard Model (SM) particles, producing striking signatures from DM-
overdense regions in γ-ray observations [88], [94]–[101] Being deficient in baryonic matter,
dwarf galaxies act as ideal targets for indirect detection, with a relatively large predicted
ratio of DM signal to astrophysical background.

A pervasive puzzle in cosmology is the so-called core-cusp discrepancy, referring to the
question of whether the inner DM density profiles of dwarf galaxies are cuspy (steeply rising)
or cored (flattened) [289], [290]. N -body simulations using ΛCDM cosmology suggest that
in the absence of baryonic physics, cold DM halos follow the cuspy Navarro-Frenk-White
density (NFW) profile [117], which is characterized by a steep rise in the density ρ ∝ r−1 at
small halo-centric radii r. However, recent measurements of stellar dynamics suggest that
these systems could instead have a flattened density profile at their center, also known as
a core [117], [118]; see Ref. [45] for a review. Potential solutions to the core-cusp discrep-
ancy range from stellar feedback which ejects baryons and flattens the DM central density
profile [72]–[75] to alternative DM models like self-interactions [76]–[78].

DM density profiles in dwarf galaxies are traditionally inferred using spectroscopic ob-
servations of line-of-sight velocities and angular positions of stars gravitationally bound to
these systems. In particular, integral moments of the Jeans equation can be used to relate
the velocity dispersions of tracer stars to the gravitational potential of the system [91], [291].
Although Jeans modeling has proven highly successful for modeling DM distributions in
dwarf galaxies, there are several caveats and limitations associated with this approach (see
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e.g. Refs. [85], [254], [292]). For example, Jeans modeling assumes the system is in dynam-
ical equilibrium, which may not be a robust assumption given the active merger history of
the Milky Way (see Ref. [106] for a review). Assumptions such as isotropy of the gravitating
system are also often necessary in order to enable a tractable analysis. Finally, by relying
on a simplified description of the data through second moments of the stellar velocity dis-
tribution, inference based on Jeans modeling is likely to lose some of the salient information
available in observations. Absent additional assumptions, this is expressed as a degeneracy
between the mass profile of the system and the anisotropy structure of stellar orbits, known
as the mass-anisotropy degeneracy. Exploiting additional information about the modeled
stellar phase-space distribution can further inform the DM density profile, helping break
this degeneracy. Several methods have been proposed in the literature to this end [293],
including using higher-order moments of the Jeans equation [92], [292], [294], leveraging
multiple distinct tracer populations [295]–[297], including measured proper motions when
these are available [298], [299], and alternative strategies to solving the Jeans equation [300].

This chapter introduces a new machine learning-based approach for linking observed
stellar properties to the DM density profiles of dwarf galaxies. Our method is based on for-
ward modeling simulated dwarf galaxy systems and corresponding observations, learning to
summarize representative features from these data sets using graph neural networks, and per-
forming simulation-based inference to simultaneously extract the spatial profiles associated
with the DM and stellar components of the dwarf galaxy.

2.2 Methodology

We describe, in turn, the forward model used in this study and its realization via simula-
tions, the representation of stellar kinematic data as a graph, and finally the feature-extractor
graph neural network and simulation-based inference procedure. We show a schematic illus-
tration of our method, including a rough breakdown of the different steps of the pipeline, in
Figure 2.1.

2.2.1 Datasets and the forward model

In this proof-of-principle exposition, we consider idealized simulations of spherical and dy-
namically equilibrated dwarf galaxies. Our forward model is fully specified by the joint
distribution function (DF) f(x⃗, v⃗) of positions and velocities of stars following a certain
(a-priori unknown) spatial distribution (known as the light profile). These tracer stars are
gravitationally bound to a DM halo with a density profile we wish to infer. We use the public
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code StarSampler1 to generate simulated realizations of stellar kinematics (6-D position and
velocity phase-space components) from the forward model. StarSampler uses importance
sampling [301]–[303] to sample the DF of positions and velocities of tracer stars in a given
DM potential.

We model the DM profile using the generalized Navarro–Frenk–White (gNFW) pro-
file [117]:

ρgNFW
DM (r) = ρ0

(
r

rs

)−γ (
1 +

r

rs

)−(3−γ)

, (2.1)

which depends on three free parameters: the density normalization ρ0, the scale radius rs,
and the asymptotic inner slope γ. The inner slope value γ = 1 corresponds to a cuspy NFW
profile, while γ = 0 corresponds to a pure DM core. We consider these two parameter points
as benchmarks, since the ability to robustly distinguish between the two possibilities would
offer a path towards resolution of the core-cusp discrepancy.

We assume a stellar density distribution ν(r) that follows a 3-D Plummer profile [304]:

ν(r) =
3L

4πr3⋆

(
1 +

r2

r2⋆

)−5/2

(2.2)

where L is the total luminosity and r⋆ is the scale length. We also introduce a velocity
anisotropy profile β(r) in order to model deviations from circular orbits; β(r) is defined
similarly to Ref. [305], [306] as

β(r) =
r2

r2 + r2a
, (2.3)

which has an additional parameter ra describing the radius of transition from isotropic
velocity orbits at small radii to radially-biased orbits at larger radii.

In total, our model has three DM parameters (ρ0, rs, γ) and two stellar parameters (r⋆, ra).
Assuming the gravitational potential of the system is dominated by DM, and the model is
independent of L in Equation 2.2. We provide further details of the forward model, phase-
space distribution function, and a summary of the prior distributions of the DM and stellar
parameters in Appendix A.1.

We generate 80,000 training samples, 10,000 validation samples, and 10,000 test samples
using the prior parameter distributions. Each sample contains the 3-D positions and 3-
D velocities of tracer stars with respect to the center of a dwarf galaxy. The number of
stars in each galaxy is sampled from a Poisson distribution nstars ∼ Pois(µstars). We set
µstars = 100 stars in our baseline benchmark, roughly corresponding in order of magnitude
to the number of stars typically observed in dwarf galaxies of interest [18], [89], [90], [307].

1https://github.com/maoshenl/StarSampler
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We explore variations on this choice in Appendix A.2.

2.2.2 Data pre-processing and graph construction

For each kinematic sample, we randomly draw a line-of-sight axis and project the galaxy
onto the 2-D plane perpendicular to it. We then derive the 2-D projected spatial coordinates
with respect to the center of the galaxy (X, Y ) and line-of-sight velocities vlos for each star
in these coordinates, reflecting typically-available observations. To study the validity of the
method before the inclusion of large measurement errors, we assume a Gaussian velocity
noise model with standard deviation 0.1 km/s. The effect of larger measurement errors is
shown in Appendix A.2.

We can represent the stellar kinematic data in the form of a potentially weighted, undi-
rected graph G = (V , E , A), where V is a set of nodes representing |V| = Nstars individual
stars, E is a set of edges, and A ∈ RNstars×Nstars is an adjacency matrix describing the weights
of connections between vertices. This representation is well-suited for our purposes since the
stars in a dwarf galaxy have no intrinsic ordering, and the graph structure can efficiently
capture information about the phase-space correlation structure, including higher-order mo-
ments [204].

In our analysis, each node represents a star, with the node features being its line-of-sight
velocity ṽlos and the projected radius R =

√
X2 + Y 2. We choose to use R instead of the full

(X, Y ) coordinates in order to incorporate projective rotational invariance into the graph
representation, which was found to enhance the simulation-efficiency of our method.

To determine the graph edges E , we calculate pair-wise distances between all stars using
(X, Y ), then connect each star to its k-nearest stars including itself. Since the edges are
assumed to be undirected, each star can be connected to more than k other stars. We found
k = 20 to provide a good trade-off between model performance and computational overhead.
Finally, we do not include edge weights in our graph, however, we have experimented with
a variety of weighting schemes, including attention-based learned weights [242], and found
them to perform similarly in downstream inference to the unweighted case.

2.2.3 Neural network architecture and optimization

We use a graph neural network (GNN) gφ : G → RNfeat in order to extract Nfeat summary
features from the constructed graph representation x ∈ G of mock dwarf galaxy stellar
kinematic data. Here φ represent the parameters of the graph neural network. The feature-
extraction network consists of 5 graph-convolutional layers, each with 128 channels, based
on convolutions in the Fourier domain using a basis of Chebyshev polynomials of order
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4 as filters [308]. This is followed by a global mean pooling layer which aggregates the
permutation-equivariant features into a permutation-invariant representation, and a fully-
connected layer which projects the output onto a set of Nfeat = 128 summaries gφ(x). We
explore variations on the graph-convolution scheme in Appendix A.2.

The joint posterior p̂ϕ(θ | gφ(x)) of the five parameters of interest θ characterizing the
DM and stellar profiles is modeled using a normalizing flow [232], [309]—a class of flexi-
ble generative models that allow for efficient density estimation as well as sampling. The
flow transformation (with parameters ϕ) is conditioned on the summary features extracted
by the graph neural network and its negative log-density − log p̂ϕ (θ | gφ(x)) is used as the
optimization loss. Our flow model consists of 4 Masked Autoregressive Flow (MAF) trans-
formations, each using a 2-layer Masked Autoencoder for Distribution Estimation (MADE)
with hidden dimension 128 [310]. This method falls under the class of approaches known
as simulation-based inference (see Ref. [311] for a review), specifically neural conditional
posterior estimation [312], [313].

The GNN and normalizing flow parameters {φ, ϕ} are optimized simultaneously on the
80,000 simulated training samples using the AdamW optimizer [314], [315] with an initial
learning rate of 5× 10−4 and a weight decay of 10−2 using a batch size of 64. At the end of
each epoch, we evaluate the loss on the 10,000 held out validation samples and reduce the
learning rate by a factor of 10 if no improvement is seen after 4 epochs. We stop training
if the validation loss has not improved after 10 epochs. Model training typically terminates
after ∼ 30− 40 epochs, which takes ∼ 30 minutes on a single NVIDIA Tesla V100 GPU.

2.3 Results and Conclusion

We apply our pipeline to 10,000 test dwarf galaxies and summarize our results in Figure 2.2.
For each galaxy, we condition the trained normalizing flow on features extracted using the
trained GNN feature extractor and draw 10,000 samples from the joint DM and stellar
posterior. We then compute the marginal medians as the predicted parameters and sort
them into bins based on their truth values. Figure 2.2 shows the median (solid blue line),
middle-68% (blue bands), and middle-95% (light blue bands) credible intervals for each bin of
the DM parameters. In general, our method successfully recovers individual DM parameters
consistent with the underlying truth.

To demonstrate the ability of our method to distinguish between a cored (γ = 0) and
cuspy (γ = 1) DM profile, in Figs. 2.3 and 2.4 we show the inferred posteriors on two test
dwarf galaxies with the same DM density normalization (ρ0 = 107M⊙/kpc

3), scale radius
(rs = 1kpc), and stellar profile, but with different inner density slopes (γ = 0 and γ = 1).
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Figure 2.2: A comparison between the predicted and the truth values of the DM parameters
on 10,000 test galaxies for our baseline scenario. For each galaxy, the predicted parameters
are taken to be the marginal medians of the joint posterior binned in truth values. The
median (solid blue line), middle-68% percentile (dark blue band), and middle-95% (light
blue band) containment regions of each bin are shown. The diagonal dashed red line denotes
where the predicted and truth values are equal. The bottom row shows the prediction error
on the median ∆θ ≡ θ̂ − θtruth.

Figure 2.3 shows the posteriors on the recovered density profile (top row), enclosed mass
profile (middle row), and orbital anisotropy profile (bottom row) as a function of halo-centric
radius of a cored (left) and a cupsy (right) profile. The middle-68% and middle-95% credible
intervals are shown as blue bands, and the truth profiles are shown with the dashed red
lines. We find our method is able to successfully reconstruct the density, mass, and orbital
anisotropy profiles at small and large radii.

We apply Jeans analysis on these two test galaxies using a procedure similar to that
used in Ref. [254]. The posterior is approximated with nested sampling [316], [317] using
the module dynesty [318] with nlive = 500 live points and a convergence tolerance of
∆ lnZ = 0.1 on the estimated evidence. Details of the Jeans analysis procedure are provided
in Appendix A.1.2. Figure 2.4 shows the joint and marginal DM posteriors from Jeans
modeling (left panel) and our method (right panel) for γ = 0 (red) and γ = 1 (blue), with
the middle-68% and middle-95% credible intervals as the contour lines. In the Jeans analysis,
we see significant overlap between the γ posteriors of the cored and cuspy halos. On the
other hand, γ posteriors inferred by our method have substantially smaller overlap. See
Appendix A.2.2 for a quantitative comparison of the separability.

An important quantity in indirect searches for DM is the astrophysical J-factor—the inte-
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Figure 2.4: Example corner plots of the posterior DM parameters from Jeans dynamical
modeling (left) and our method (right) on two test galaxies with cored DM profile (red)
and cuspy DM profile (blue). Both galaxies have the same central slope ρ0 and scale radius
rs. The contour lines show the 68% and the 95% credible intervals. It can be seen that our
method provides a stronger constraint on the DM parameters and is able to distinguish more
cleanly between a cored and cuspy profile.

gral along the line-of-sight s and over solid angle Ω of the squared DM density corresponding
to a source target,

J =

∫
ds

∫
dΩ ρ2(s,Ω), (2.4)

accurately determining it is therefore important for robustly interpreting results of DM
indirect detection experiments using dwarf galaxies as targets [88], [94]–[101].

In Figure 2.5, we show the inferred J-factors, normalized to the truth values, for 100
dwarf galaxies randomly sampled from our test dataset using our method (red error bars)
and compare these to the corresponding J-factors obtained using Jeans analysis (green error
bars). The middle panel of Figure 2.5 shows ratios of uncertainties on the log10 J-factors
obtained by our method to those obtained by the Jeans analysis. It can be seen that our
method generically provides more stringent constraints than the Jeans analysis, as expected
from the fact that the DM density parameters are overall better constrained. For the cases
studied, this log-uncertainty is on average ∼ 20% and up to a factor of ∼ 2 smaller for our
method than that obtained using Jeans analysis. The bottom panel shows the ratios of the
absolute differences between the truth and predicted log10 J-factors obtained by our method
as compared to those obtained by the Jeans analysis. The scatter around unity indicates that
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neither method is systematically biased, as expected, and serves as an additional cross-check
of our analysis. Details of the J-factor calculation and additional results comparing the two
methods are shown in Appendices A.1.3 and A.2.3.

To conclude, this chapter introduces a novel method to reconstruct the DM density pro-
files of Milky Way dwarf galaxies from measured kinematics of tracer stars based on graph
neural networks and simulation-based inference. The method compares favorably with and
can outperform established approaches based on Jeans dynamical modeling in speed, flexi-
bility, as well as constraining power. The latter is due to the fact that our method incor-
porates more information about the phase-space structure of bound stars, contrasted with
Jeans-based methods which typically rely on the second moments of the velocity distribu-
tion. Additionally, the method simultaneously models the stellar light profile and does not
require fitting it beforehand. Although in this chapter, we used simulations of orbitally-
anisotropic spherical systems in order to enable a direct comparison with existing methods,
a particular strength of our method is the ability to incorporate non-equilibrium dynam-
ics using cosmologically-realistic simulations of isolated dwarfs as well as satellites of Milky
Way-like systems, accounting for baryonic effects like tidal disruption [144] and supernova
feedback [78]. We defer this extension, as well as application of our method to observational
data, to future work.

Software and Data Availability

This research made use of the Bilby [186], dynesty [318], IPython [319], Jupyter [320],
Matplotlib [321], nflows [322], NumPy [323], PyTorch [324], PyTorch Geomet-

ric [243], PyTorch Lightning [325], and SciPy [326] software packages.
Code used to reproduce the results of this chapter is available at https://github.com/

trivnguyen/dsph_gnn.
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Chapter 3

Generative Modeling for Halo Assembly
Histories

Disclaimer

The content of this chapter was submitted to Monthly Notices of the Royal Astronomical
Society and is currently under peer-reviewed. A copy is available on arXiv at https://arxiv.
org/abs/2308.05145 [250]. The authors are Tri Nguyen, Chirag Modi, L.Y. Aaron Yung, and
Rachel Somerville.

Abstract

The mass assembly history (MAH) of dark matter halos plays a crucial role in shaping the
formation and evolution of galaxies. MAHs are used extensively in semi-analytic and empiri-
cal models of galaxy formation, yet current analytic methods to generate them are inaccurate
and unable to capture their relationship with the halo internal structure and large-scale en-
vironment. This chapter introduces florah, a machine-learning framework for generating
assembly histories of ensembles of dark matter halos. We train florah on the assembly
histories from the gureft and vsmdpl N-body simulations and demonstrate its ability
to recover key properties such as the time evolution of mass and concentration. We obtain
similar results for the galaxy stellar mass versus halo mass relation and its residuals when we
run the Santa Cruz semi-analytic model on florah-generated assembly histories and halo
formation histories extracted from an N-body simulation. We further show that florah

also reproduces the dependence of clustering on properties other than mass (assembly bias),
which is not captured by other analytic methods. By combining multiple networks trained
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on a suite of simulations with different redshift ranges and mass resolutions, we are able to
construct accurate main progenitor branches (MPBs) with a wide dynamic mass range from
z = 0 up to an ultra-high redshift z ≈ 20, currently far beyond that of a single N-body sim-
ulation. florah is the first step towards a machine learning-based framework for planting
full merger trees; this will enable the exploration of different galaxy formation scenarios with
great computational efficiency at unprecedented accuracy.

3.1 Introduction

In the Λ-Cold Dark Matter (ΛCDM) paradigm, dark matter (DM) halos form hierarchically
and grow in mass through the mergers of smaller DM halos [39]. The assembly history of
a halo or galaxy refers to the sequence of events that led to its formation and growth over
cosmic time. It encompasses the accretion of matter, mergers with other halos or galaxies,
and internal processes such as star formation and black hole growth. In simulations, this is
often represented in the form of “merger trees” i.e. progenitor and descendant halos that are
linked across cosmic time. In the modern paradigm of galaxy formation, the properties of
galaxies (such as stellar mass and star formation rate) are believed to be closely linked to the
assembly history of their halos and their formation environment. Understanding this intricate
halo-galaxy connection remains one of the key open questions of modern astrophysics.

N-body simulations provide a powerful tool to directly follow the formation and evolu-
tion of DM halos as they merge with other halos and interact with the large-scale environ-
ment [149]. However, these simulations are computationally expensive, and their cost grows
rapidly with the simulated volume and resolution. Therefore, they are often run with only
dark matter and without including baryonic physics. It is not feasible to run a single simu-
lation that can simultaneously capture the formation histories of halos from dwarf galaxies
(105−1010 M⊙) to galaxy clusters (1014−1015 M⊙) up to high redshifts. It is currently chal-
lenging to run even a single dark matter-only simulation with a volume comparable to that
of existing galaxy surveys and a mass resolution sufficient to accurately trace the merger
histories of the halos hosting the galaxies that are detected in those surveys — let alone
next-generation surveys. Computational limitations also hinder the exploration of different
structure formation scenarios and cosmological parameters.

Semi-analytic models (SAMs) are commonly used to populate DM halo merger trees
with galaxies. SAMs apply simplified prescriptions for baryonic physics (e.g., radiative cool-
ing, star formation, supernova, and AGN feedback prescriptions, etc.) within cosmological
merger trees to track the formation and evolution of galaxies and forward model their ob-
servable properties [276], [285], [327]–[330]. SAMs require significantly fewer computational
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resources compared to N-body simulations and allow for exploration of a wider range of
physical processes and parameters. They have been used to study many aspects of galaxy
formation, ranging from large-scale clustering (e.g. [265]–[273]) to galaxy properties (e.g.,
colors, metallicities, sizes, cold gas contents) [274]–[281] to supermassive black hole forma-
tion and active galactic nuclei feedback [282]–[284] to reionization [285]–[287]. Similarly,
semi-empirical models such as UniverseMachine and EMERGE link galaxy observables
to halo formation histories [331]–[333]. Accounting for the dependence of halo clustering on
properties other than mass (assembly bias) has been shown to be important for accurately
interpreting galaxy clustering measurements [e.g 269], [271], [334]. "Decorated" halo occu-
pation distribution models have been proposed, which again require knowledge of the halo
formation history and/or structural properties [e.g. 258].

To overcome these computational challenges, previous works have developed analytic
methods that rely on the Extended Press-Schechter (EPS) formalism [335], [336]. EPS trees
are constructed by sampling the conditional mass probability p(M1|M0, z0, z1) that a halo
with mass M0 at redshift z0 had a mass of M1 at an earlier redshift z1 > z0. For halos of any
given initial mass M0 and redshift z0, the algorithm uses Monte-Carlo methods and assumes
the Markov property to construct its past merger histories [e.g. 337]–[343]. However, this
approach has many limitations. The resulting MAHs and merger trees are known to disagree
with the results of N-body simulations at the factor of few levels [344]–[346]. Moreover, EPS-
based techniques are fundamentally unable to capture the relationship between the assembly
history, the halo structure, and the environment. For a comparison between different EPS-
based techniques for generating merger trees, we refer readers to [347].

A recent study has applied Generative Adversarial Networks and Convolutional Neu-
ral Networks to generate ensembles of merger trees [348]. Although this approach seems
promising, this work did not incorporate the correlation between halo formation history and
environment and did not show a complete set of diagnostic tests on the resulting merger
tree ensembles. Another recent study using differential programming was able to accurately
capture both the MAHs and assembly bias [349]. However, this approach smooths out the
MAH of individual halos, making it difficult to capture merger events. It is also unclear how
the halo structure and formation environment can potentially be included in the framework.

In this chapter, we introduce florah (FLOw-based Recurrent model for Assembly His-
tories) a deep generative model based on recurrent neural network and normalizing flows,
to generate assembly histories of halos. As a first step, we focus on generating the mass
assembly histories (MAHs) and DM concentration histories of only the main progenitor
branches (MPBs). The MPB tracks the most massive progenitor of a halo and thus is the
most important for understanding the assembly history. MPBs can be naturally modeled as
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a time-ordered sequence; hence we use a recurrent neural network to learn their represen-
tative features. Furthermore, for a halo of given mass and concentration, we are interested
in learning the full distribution of possible assembly histories and hence we combine this
recurrent network with a normalizing flow to learn this distribution. Once trained, florah

can be used to generate the MAHs and DM concentration histories of MPBs consistent with
N-body simulations. Although florah only generates the MPBs of merger trees, it is the
first framework to build in the correlation between halo structural properties and merger
history.

To demonstrate this, we use the Santa Cruz SAM (SC-SAM) [276], [350], with free pa-
rameters calibrated to reproduce a subset of observed galaxy properties at z = 0 (see [271]
for detailed calibration criteria), to populate florah-generated MPBs with galaxies and
show that florah can correctly capture the assembly bias and environmental dependence
of galaxies, which existing EPS-based methods cannot reproduce. In addition, by combin-
ing multiple networks trained on different simulations with varying resolutions and redshift
ranges, we are able to generate high-resolution MPBs to ultra-high redshifts, from z = 0 to
z = 20. This allows us to overcome the dynamic range limit of a single simulation.

This chapter is organized as follows. Section 3.2 provides a detailed description of the
training simulation and the algorithms employed to extract the merger trees. Section 3.3
outlines our proposed method, including the data preprocessing procedure for a single sim-
ulation (Section 3.3.1) and for the combination of multiple simulations (Section 3.3.1). We
describe the neural network architecture and optimization in Section 3.3.2, followed by an
explanation of the generation procedure in Section 3.3.3. In Section 3.4, we show the gener-
ation results with vsmdpl (Section 3.4.1) and gureft (Section 3.4.2), while Section 3.4.3
presents a comparison with the combined gureft and vsmdpl simulations. We compare
florah to previous approaches for modeling MAHs, and discuss the limitations of the cur-
rent approach and potential avenues for future research in Section 3.5. We conclude the
chapter in Section 3.6.

3.2 Simulation
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Table 3.1: The simulation specifications of vsmdpl and the four gureft simulations. The third and second-to-last columns
show the minimum and maximum root mass of the training dataset for each simulation. Note that the four gureft simulations
are combined into one training dataset. The last column shows the minimum progenitor mass during the generation process.

Box size MDM N ϵ nsnap Redshift range min Mvir,0 max Mvir,0 Mmin,halo

[Mpch−1] [M⊙ h−1] [kpc h−1] [M⊙ h−1] [M⊙ h−1] [M⊙ h−1]

gureft-05 5 9.92× 103 10243 0.16 171 5.89− 40.0 4.96× 106 2.14× 109 9.92× 105

gureft-15 15 2.68× 105 10243 0.49 171 5.89− 40.0 2.14× 109 2.14× 1010 2.68× 107

gureft-35 35 3.40× 106 10243 1.14 171 5.89− 40.0 2.14× 1010 2.14× 1011 3.40× 108

gureft-90 90 5.78× 107 10243 2.93 171 5.89− 40.0 2.14× 1011 n/a 5.78× 109

vsmdpl 160 6.20× 106 38403 1.0 → 2.0 151 0.00− 24.9 3.10× 108 n/a 6.20× 108
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For training datasets, we extract merger trees from the gureft (Gadget at Ultra-
high Redshift with Extra Fine Timesteps) [154] suites and the vsmdpl simulation from
the MultiDark suite [153]. Both gureft and vsmdpl are DM-only, N-body simulations
run with the Gadget-2 smoothed particle hydrodynamics code [150], [151]. The cos-
mological parameters are broadly consistent with the Planck 2013 results [31], namely
Ωm = 0.307,ΩΛ = 0.693, h = 0.678, σ8 = 0.823, ns = 0.960. The specifications of gureft

and vsmdpl are summarized in Table 3.1.
The gureft suite consists of four boxes with sizes of 5, 15, 35, and 90 Mpch−1. Each

box has the same number of particles 10243, with the smaller box having a higher mass
resolution. Therefore, each box captures the assembly histories of a different halo mass range.
The gureft boxes have 171 snapshots from z ≈ 40 to 6 at a high temporal resolution,
making them the ideal simulations to capture the merger rates and assembly histories at
high to ultra-high redshift. For z ≲ 6, we instead use the vsmdpl simulation, which has
151 snapshots from z = 0 to 25. Thanks to its high mass resolution, with a particle mass
of 6.2 × 106 M⊙ h−1, vsmdpl has a higher number of well-resolved and low-mass halos at
high redshift. This allows us to combine vsmdpl with gureft into one training dataset
spanning a wider redshift and mass range. We will describe this procedure in more detail in
Section 3.3.1.

We construct merger trees for each gureft simulation and use the publicly available
merger trees from vsmdpl. All merger trees used in this work are constructed using the
Rockstar halo finder and the ConsistentTree algorithm [351], [352]. Note that merger
trees may be sensitive to the details of the halo finding and tree construction algorithms. We
plan to experiment with different parameters and tree reconstruction algorithms in future
work.

Figure 3.1 displays the median MAHs on the main branches of gureft and vsmdpl.
The overlapping MAHs between the two simulations from z ≈ 13−5 are crucial for combining
them. We have only shown the median MAHs down to approximately 100MDM, where MDM

denotes the mass of the DM particles in the corresponding simulations. Halos with masses
below this threshold cannot be reliably identified by Rockstar. Therefore, this limits the
maximum redshift that we can generate for each simulation, with a maximum of z ≈ 20

(from gureft-05), as shown in Figure 3.1. Furthermore, the less massive root halos of
vsmdpl (≲ 1010M⊙) do not overlap with gureft, which imposes a further limit on the
maximum generation redshift for these halos. Additionally, each simulation has a unique
particle mass and a resolved mass limit, which can complicate the process of combining the
simulations. We will provide a more detailed discussion of the effects of particle mass and
resolution limitations in Section 3.3.1.
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3.3 Methodology

In this section, we outline the data preprocessing, neural network architecture, and the
optimization and generation process used in this work. A schematic illustration of florah

is displayed in Figure 3.3. As a first approach, we aim to generate only the MPBs of merger
trees since they contribute a first-order impact on the assembly histories of halos. We plan
to extend our framework to generate secondary branches and other branches in future work.

3.3.1 Data preprocessing

Using a single simulation

In this section, we describe the data preprocessing steps for a single simulation. The same
steps apply for the four gureft boxes and vsmdpl with different parameters because they
have different redshift ranges and resolutions. We will highlight the parameters that differ
in Section 3.4, where we describe the training dataset in more detail. The following steps
are the same for all simulations.
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Figure 3.3: A schematic illustration of florah.

As a first step, we extract only the main progenitor branches (MPBs) and exclude all
branches with root halos containing fewer than 500 DM particles; halos below this limit may
have poorly resolved progenitors. As previously mentioned in Section 3.2, the lower limit of
the progenitor mass is about 100MDM, below which Rockstar may not reliably identify
halos. We remove these unresolved halos during the post-processing of the generated MPBs
(described in Section 3.3.3), rather than during the training dataset creation, as we have
found that it leads to improved model performance. This resolution limit is particularly
important when combining multiple simulations with varying MDM into a single training
dataset, which we further elaborate on in Section 3.3.1. In addition, MPBs from Consis-

tentTree may sometimes have progenitor masses greater than their descendants. This is
a common phenomenon that occurs due to the tree construction algorithm (including Con-

sistentTree) misidentifying the halos and their mass assignments. As with the unresolved
halos, we will correct for this effect during the generation and post-processing of the MPBs
in Section 3.3.3, rather than during the training phase.

To enhance the generalization ability of our model, we employ data augmentation by
creating multiple “sub-branches” for each MPB. We begin by selecting the initial snapshot
from a uniform distribution up to the first 50 snapshots (z ≈ 2 for vsmdpl and z ≈ 10.6

for gureft). Next, we subsample the MPB by selecting every 2 to 6 snapshots (chosen
uniformly) up to either a maximum redshift of zmax,train or a maximum length of 20 halos.
We limit the length of each sub-branch” to 20 halos to prevent overly long sequences that
could impact the learning process of the recurrent neural network [353], [354]. Subsampling
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the tree in this way has a few advantages. First, it allows us to cover a wider range of redshifts,
improving the overall generalization of the model. Second, it has a smoothing effect on the
MAHs. Third, randomizing the time steps helps prevent the model from becoming overly
reliant on one particular set of time steps and improves generalization. We repeat the above
data augmentation process 15 times for each tree.

The input features to the recurrent neural network at each stage are the logarithm of
the virial mass log10Mvir, the Navarro-Frenk-White DM concentration cvir [355], and scale
factors a of the halo and the next progenitor. The concentration is not given directly by
Rockstar and instead computed from the relation cvir ≡ rvir/rs where rs is the Navarro-
Frenk-White (NFW) scale radius [355] and rvir is the virial radius. Note that the NFW scale
radius in Rockstar is computed in two different ways, by fitting the density profiles or by
converting from the radius of the maximum circular velocity [152]. Here we use the value
provided by fit to the density profiles. If a halo undergoes a recent major merger or has
multiple density peaks, the fitting procedure in Rockstar can fail, and rs will be capped
at rvir.This can create a “pile up" in the concentration for halos with rs ≈ rvir. Therefore, we
require that (rs − rvir)/rs > 0.1, or equivalently cvir > 1.1. We remove all halos that do not
pass this cut during the generation and post-processing of the MPBs in Section 3.3.3, as with
the unresolved halos. Including cvir helps the model learn assembly histories more accurately
because cvir has been found to capture the environmental dependency in many assembly bias
studies [356]–[359]. We will experiment with expanding to more halo features (e.g. spin,
shape) and environment features (e.g. local density, number of neighboring halos) in future
work. The scale factors of the halo and its next progenitor serve as the time features in our
framework. We have experimented with other time features like redshift and age and found
similar performance.

For the output of the network, we model the logarithm of the change in mass, defined
as:

∆ log10M
(i+1)
vir = log10(M

(i+1)
vir /M

(i)
vir), (3.1)

for the (i + 1)-th halo, and the concentration cvir of the next progenitor. We found that
using accreted masses (∆ log10M

(i+1)
vir ) as targets, instead of progenitor masses (log10M

(i+1)
vir ),

improves the model performance. During generation, progenitor masses can be derived from
masses and accreted masses using Equation 3.1.

Combining multiple simulations

We present a procedure for combining the four gureft boxes (gureft-05, gureft-15,
gureft-35, and gureft-90) into a single training dataset, which we denote as gureft-
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c. The four gureft boxes exhibit significant overlap in halo masses as depicted by the
distributions of Mvir in Figure 3.2. However, due to differences in resolutions and volumes,
MAH for halos in overlapping mass bins could vary by a significant amount, particularly
at high redshifts. In such instances, the box with the highest resolution (i.e., the one with
the lowest MDM) would yield a more accurate MAH and we would like to only use these
for training. Hence to combine the gureft boxes, we impose an additional minimum root
mass cut of log10Mmin,root ≈ 9.5, 10.5, 11.5 dex for gureft-15, gureft-35, and gureft-90
respectively. These cuts are applied directly to the root halos at z = 5.89 and before any
data augmentation step. These thresholds are chosen to strike a good balance between MAH
accuracy (which increases for smaller boxes at a given mass) and the number of halos in a
mass bin (which is lower for smaller boxes), as having too few halos can adversely affect
the training process. No additional cut is applied to gureft-05, which has the highest
resolution, resulting in an over-representation of low-mass halos in our training dataset.
Despite the imbalance in the number of low and high-mass halos, we show in Section 3.4 that
we are able to capture the high-mass halos accurately. The remaining data preprocessing
steps follow the guidelines outlined in Section 3.3.1. Each gureft box is preprocessed
separately, and the resulting datasets are combined into a single, large training dataset
denoted as gureft-c.

3.3.2 Neural network architecture and optimization

We model each sub-branch as a sequence of N halos, with the root halo denoted with the
index zero. The input and target feature vectors are:

x⃗ = {x(i) ∈ Rfin} = {log10M (i)
vir , c

(i)
vir, a

(i), a(i+1)}, (3.2)

y⃗ = {y(i+1) ∈ Rfout} = {∆ log10M
(i+1)
vir , c

(i+1)
vir }, (3.3)

respectively, where fin = 4, fout = 2, and i = 0, ..., N − 2. We do not include any “end-of-
sequence” token in our framework, so the feature vector includes only the first N − 1 halos.
During the generation process (Section 3.3.3), we can choose to terminate the assembly
history at a maximum redshift or minimum progenitor mass. Our goal is to learn the true
conditional distribution of y(i+1), denoted as p(y(i+1)|{x(≤i)}).

We use a recurrent neural network gφ : RNin → RH with parameters φ to extract H
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summary features from the input features of each halo. The summary features are then:

z⃗ = {z(i) ∈ RH} = {gφ(x(i), h(i))}, (3.4)

h(i) = z(i−1) if i > 0 else 0. (3.5)

The hidden state h(i) is dependent on the input features of all the previous halos x(≤i),
which allows the network to “memorize" the entire assembly history. Our recurrent network
consists of 4 Gated Recurrent Unit (GRU) layers, each with H = 128 hidden channels. For
the recurrent layers, we have also experimented with different network architectures like
Transformers [360], adding a decay mechanism to the hidden states [361], and adding time-
embedding layers. We found that these choices result in similar performance while being
more computationally intensive than our current model.

To learn the true probability distribution p(y(i+1) |x(≤i)), we use a normalizing flow [232],
[309], [362] that is conditioned on the summary features z(i). The flow thus estimates a
conditional probability distribution p̂ϕ(y

(i+1) | gφ(x(i), h(i))) with learnable parameters ϕ. Our
normalizing flow model consists of 4 Masked Autoregressive Flow (MAF) transformations.
Each MAF includes a 4-layer Masked Autoencoder for Distribution Estimation (MADE)
with a hidden dimension of 128 [310], [362].

During training, we optimize the parameters {φ, ϕ} of the recurrent network and flow
simultaneously using the negative log-density

L = −
N−1∑

i=0

log p̂ϕ(y
(i+1) | gφ(x(i), h(i))), (3.6)

as the optimization loss. We use the AdamW optimizer [314], [315] with parameters (γ, β1, β2, λ) =

(0.001, 0.9, 0.98, 0.01), where γ is the learning rate, β1 and β2 are the running average coef-
ficients, and λ is the weight decay coefficient. At the end of each epoch (defined as one full
iteration over the training set), we evaluate the loss on the validation samples and reduce
the learning rate by a factor of 10 if no improvement is seen after 20 epochs. We terminate
the training process if the validation has not improved after 40 epochs. The training process
terminated at ∼ 200 epochs or ∼ 2 hours on a single NVIDIA Tesla V100 GPU.

3.3.3 Generation and post-processing

Once the model is trained, the generation process for one tree is as follows:

1. Select an initial halo feature x(0), which is the initial mass log10M
(0)
vir and concentration

c
(0)
vir .
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2. Select a list of scale factors {a(i)} as time steps. florah is robust across various time
steps, as long as the chosen time steps remain within a reasonable range relative to the
training time steps.

3. Starting with the first time step i = 0, pass the halo feature x(i) and the hidden
state h(i) (with h(0) initialized to 0) through the GRU layers and extract the summary
features z(i) = gφ(x

(i), h(i)).

4. Sample ŷ(i+1) ∼ p̂ϕ(ŷ
(i+1) | z(i)) using the normalizing flow layers. This returns the

accreted mass ∆ log10M
(i+1)
vir and the DM concentration of the progenitor halo c

(i+1)
vir

1.

5. Convert the accreted mass to progenitor mass using Equation 3.1 and set the feature
of the progenitor halo to be x(i+1) = (log10M

(i+1)
vir , c

(i+1)
vir , a(i+1), a(i+2)).

6. Update the time step to i+ 1 and repeat Steps (ii) to (v) until a minimum progenitor
mass Mmin,halo or a maximum redshift zmax,gen. We elaborate on the procedure to choose
these thresholds below.

As mentioned in Section 3.3.1, halos with fewer than 100 DM particles are not reliably
identified by Rockstar. For a model trained on a single simulation (i.e. vsmdpl in our
case), we set the minimum progenitor mass to be Mmin,halo = 100MDM, where MDM is
the DM particle mass of the simulation. For a model trained on a combined simulation
(i.e. gureft-c in our case), due to the additional mass cut described in Section 3.3.1, the
generated MPBs will have varying mass resolutions depending on their root masses. In the
case of gureft-c, we determine the DM particle mass MDM based on the root mass of
the MPB at z = 5.89 and set Mmin,halo = 100MDM as before. The minimum progenitor
masses are shown in the last column of Table 3.1 for each simulation. As for the maximum
generation redshift zmax,gen, we generally recommend zmax,gen to be smaller than zmax,train to
avoid extrapolation. However, we will show in Section 3.4 that florah can extrapolate the
MPBs beyond zmax,train.

Throughout the formation process of an MPB, the mass of the halo increases monotoni-
cally. However, as mentioned in Section 3.3.1, due to the misidentification of halos and mass
assignments, progenitor halos may sometimes be assigned a mass greater than that of their
descendant halos. For florah-generated MPBs, this can be corrected by simply re-sampling
the mass and concentration in Step (iv). However, for MPBs in N-body simulations, the
specific corrective measures will depend on the nature of the problem and the characteristics

1As mentioned in Section 3.3.1, Rockstar caps rs at rvir, resulting in a “pile up” at around c ≈ 1. To
remove this population, we require the generated concentration c

(i+1)
vir > 1.1 and simply re-sample the halo

if this condition is not satisfied.
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of the simulation data. Thus, to compare florah-generated MPBs with N-body MPBs,
we adopt the following simple method. For an MPB with N halos, starting from the last
progenitor halo at time step i = N − 1 (with the root halo at time step 0), we compare
its mass M

(i)
vir with the mass of the next halo M

(i−1)
vir . If M (i)

vir > M
(i−1)
vir , we assume that no

accretion occurs and set the mass and concentration of the next halo (M
(i−1)
vir , c

(i−1)
vir ) to be

the progenitor’s, i.e. (M (i)
vir , c

(i)
vir). We then move forward to the next time step i− 1 until we

reach the root halo at time step 0.

3.4 Results

In Section 3.4.1, we train florah on vsmdpl to show results for learning MPBs of a single
simulation. Then we train florah on the combined gureft-c simulations to show results
for combining multiple simulations at different resolutions. Finally, in Section 3.4.3, we
combine the trained models to extend the mass and redshift coverage of florah.

3.4.1 Learning the vsmdpl simulation

We trained florah on vsmdpl to test our method on its capability to learn the assembly
histories of a single simulation. We refer to this model as florah-v. For our training and val-
idation datasets, we extracted 306, 014 and 34, 400 MPBs, respectively, from a (80Mpc h−1)3

sub-volume of vsmdpl and applied the preprocessing step in Section 3.3.1. The maximum
training redshift is set to be zmax,train = 10. The training process terminated at ∼ 200 epochs
or ∼ 2 hours on a single NVIDIA Tesla V100 GPU.

For our test dataset, we extracted 387, 031 MPBs from a different (80Mpc h−1)3 vsmdpl

sub-volume. For each MPB in the test dataset, we used the initial halo at z = 0, taking its
mass and concentration as the initial input feature x(0) = (log10M

(0)
vir , c

(0)
vir) for the generation

process. We sampled the scale factors every 2 – 6 snapshots2 starting from z = 0 to obtain
the time features of each branch a(i). We also sampled up to a redshift of zmax,gen = 14,
beyond the maximum training redshift (zmax,train = 10), to explore the model’s extrapolation
capability. As the length of each MPB is set by choosing a(i), which are chosen randomly, we
can generate MPBs with variable lengths, and the upper bound in the number of progenitor
halos depends on the minimum mass. We generated 387, 031 florah-v MPBs to match the
number obtained from vsmdpl.

2This choice is done out of convenience to compare the generated MPBs with the N-body simulation. In
general, the time steps can be set randomly as long as they are within a reasonable range of the training
time steps, as mentioned in Step (ii) of Section 3.3.3.
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Figure 3.4: Example mass and concentration assembly histories generated by florah-v.
Each column shows the mass (top) and concentration (bottom) assembly histories of an ex-
ample root halo from the vsmdpl simulation (blue) and 30 different realizations by florah-
v. The shaded gray box denotes the “extrapolation region” as we only train florah-v up
to a maximum training redshift of z = 10.
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In Figure 3.4, we show an example of a few histories generated by florah-v. Each
column shows the mass (top panel) and concentration (bottom panel) histories of an exam-
ple root halo in the vsmdpl simulation (blue). For each root halo, we use florah-v to
generate 30 different realizations of the histories (orange). The shaded regions denote the ex-
trapolation region beyond zmax,train = 10, as mentioned above. This figure demonstrates the
stochasticity of the assembly histories of halos: for the same descendant mass and concentra-
tion, we can arrive at vastly assembly scenarios. In addition, we see that florah-generated
MAHs can capture both smooth accretion, characterized by a steady increase in the MAHs,
as well as implicit merger events, characterized by sharp jumps in the MAHs. This highlights
the advantage of florah over other approaches, distinguishing it from other methods that
predominantly capture the average trends of MAH.

Progenitor-descendant ratio distribution

In the following sections, we present various tests to validate the mass and concentration
histories generated by florah-v. In Figure 3.5, we show the distribution of the progenitor-
descendant mass ratios log10MP/MD across four mass bins (columns) and three redshift
slices (rows). The distribution of log10MP/MD is learned directly by florah-v during
the training process and thus presents a good first validation test. We see good agreement
between the distributions from vsmdpl (shaded blue) and florah-v (solid orange). Note
that because the last mass bin with log10Mvir,0 ∈ [13.0, 14.0] dex contains only 373 MPBs, the
distributions are noticeably noisier. In each bin of the first row of Figure 3.5, the descendant
halos are also the root halos and thus have roughly the same virial mass. However, we
see that the distribution of the progenitor-descendant mass ratios can span a wide range of
values, which further demonstrates the stochasticity of the MAHs between redshifts.

Mass and DM concentration histories

In Figure 3.6, we show the median, middle-68% percentile, and middle-95% percentile con-
tainment region of the assembly histories of vsmdpl (blue) and florah (orange), along with
their residuals, in four mass bins. We normalize the MAHs by dividing the progenitor masses
by the root mass so that they can be more easily compared between bins. The residual of the
containment region is computed by averaging the residuals of the corresponding upper and
lower percentile curves. As can be seen from the slopes of the MAHs, low-mass halos tend to
form earlier than high-mass halos, as has been observed in previous studies of galaxy forma-
tion (e.g. [334]). The MAHs plateau out at around the resolution limit Mmin,halo = 100MDM

(dashed black line, computed from the high end of each mass bin), as expected, because we
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Figure 3.6: The medians, middle 68-% percentile, and middle-95% containment regions of the
MAHs (top) and DM concentration histories (bottom) of vsmdpl (dashed blue) and florah
(solid orange), along with their residuals (bot), in four mass bins (in M⊙ unit). The residual
of the containment region is computed by averaging the residuals of the corresponding upper
and lower percentile curves. The shaded gray box (z > 10) denotes the “extrapolation region”
beyond the maximum training redshift.
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remove all halos below this mass limit. In all mass bins, the MAHs predicted by florah-

v are consistent with those from vsmdpl. As mentioned previously, the last mass bin
log10Mvir,0 ∈ [13.0, 14.0] dex contains significantly fewer MPBs, so the containment regions
are noisier. In the bottom panels of Figure 3.6, we show the DM concentration cvir histories
of vsmdpl and florah. Similarly, the concentration histories predicted by florah agree
well with those of vsmdpl. The shaded gray box represents the z > zmax,train = 10 region,
beyond which the MAHs and concentration histories are extrapolated. Except for the first
bin, florah-v demonstrates an impressive capability to extrapolate and predict the MAHs
and concentration histories up to z = 14. In the lowest mass bin, florah accurately ex-
trapolates up to about z ≈ 12, but it overestimates the MAHs after this point. We attribute
this to the fact that this bin is the closest to the resolution limit Mmin,halo, as can be seen
from the horizontal dashed line, and caution against extrapolating florah near this limit.

In Figure 3.8, we show the joint distribution between a few chosen redshifts (z =

0.1, 1, 2, 4, 6, 8) for Mvir and cvir for florah-v-generated (solid orange) and gureft-c

(dashed blue) MPBs. The 68% and 95% of the Mvir joint distributions are shown in the
left panel and cvir joint distributions in the right panel. The Mvir values at different redshifts
are highly and positively correlated. The mass correlation becomes weaker over a wider
redshift range, as expected. On the other hand, the cvir values are more correlated at low
redshifts (although still much less than Mvir) and uncorrelated at high redshifts. For both
Mvir and cvir , florah-v can learn the joint distributions and correlations between redshifts
present in vsmdpl simulation.

We also emphasize that florah jointly predicts the mass and DM concentration of the
halos at each redshift using the conditional normalizing flows. The flows excel at modeling
high-dimensional correlations, so additional halo properties (e.g., halo shape, environment
density) can naturally be incorporated into florah without requiring additional assumptions
about the data. In Figure 3.9, we show the median concentration-mass relations at different
redshifts, as derived from vsmdpl (dashed lines) and florah-v-generated (solid lines)
MPBs. The error bars represent the spread in the concentration-mass relations. The bottom
panel shows the residual between the florah-v and vsmdpl median. In general, we see
that the concentration-mass relations recovered by florah-v are consistent with vsmdpl

across multiple redshifts.
In Figure 3.7, we show the distribution of the formation redshift z50, defined as the

redshift at which the halo forms 50% of its mass, for the four chosen mass bins. As mentioned
above, low-mass halos tend to form at higher redshift than high-mass halos. We see that the
z50 distribution by florah-v agrees well with vsmdpl. We emphasize that the formation
redshift z50 is not explicitly learned by the network but instead derived from the MAHs. This

90



z0 = 0.10

florah-v

vsmdpl

9
10
11
12

lo
g 1

0
M

vi
r
(z

1)

z1 = 1.00

9
10
11
12

lo
g 1

0
M

vi
r
(z

2)

z2 = 2.00

9
10
11
12

lo
g 1

0
M

vi
r
(z

3)

z3 = 4.00

9 10 11 12

log10Mvir (z0)

9
10
11
12

lo
g 1

0
M

vi
r
(z

4)

9 10 11 12

log10Mvir (z1)

9 10 11 12

log10Mvir (z2)

9 10 11 12

log10Mvir (z3)

9 10 11 12

log10Mvir (z4)

z4 = 8.00

z0 = 0.10

florah-v

vsmdpl

0.
0

0.
5

1.
0

1.
5

2.
0

lo
g 1

0
c v

ir
(z

1)

z1 = 1.00

0.
0

0.
5

1.
0

1.
5

2.
0

lo
g 1

0
c v

ir
(z

2)

z2 = 2.00

0.
0

0.
5

1.
0

1.
5

2.
0

lo
g 1

0
c v

ir
(z

3)

z3 = 4.00

0.
0

0.
5

1.
0

1.
5

2.
0

log10 cvir (z0)

0.
0

0.
5

1.
0

1.
5

2.
0

lo
g 1

0
c v

ir
(z

4)

0.
0

0.
5

1.
0

1.
5

2.
0

log10 cvir (z1)
0.

0
0.

5
1.

0
1.

5
2.

0

log10 cvir (z2)
0.

0
0.

5
1.

0
1.

5
2.

0

log10 cvir (z3)
0.

0
0.

5
1.

0
1.

5
2.

0

log10 cvir (z4)

z4 = 8.00

Figure 3.8: The joint distributions of log10Mvir (top) and of cvir (bottom) across a few chosen
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Figure 3.10: Top: The stellar-to-halo mass relation (SHMR) at z = 0 computed by the
SC-SAM. Bottom: The residual of SHMR, defined as the difference between the M⋆/Mvir

value for each halo and the median value in its corresponding Mvir bin, as a function of
the DM halo concentration. In both panels, the shaded regions represent the middle-68 %
containment regions.

further shows that florah can capture the “long-range” mass correlation in the MAHs.

Observables and Halo assembly bias

We do not directly observe dark matter halos or merger trees, but only the observable prop-
erties of galaxies. In semi-analytic models (SAMs), these properties are predicted by using
merger trees as inputs and solving ordinary differential equations for observables like galaxy
luminosities and quasi-observables like stellar mass. Thus we need to test that florah-
generated assembly histories can be used in place of N-body assembly histories in SAMs to
predict these observables. To that end, here we apply the SC-SAM to predict the stellar
masses M⋆ of galaxies. For a fair comparison with vsmdpl, we input only the MPBs of
vsmdpl trees to the SAM. We use both the mass and DM concentration of the generated
MPBs. In SC-SAM, the concentration is used in two ways: first, in computing the galaxy
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sizes (see [282]), and second, in computing the timescale for disruption of satellite galaxies
by tidal forces. Note that since we do not model satellite galaxies in our analysis, the latter
point is not directly relevant. We apply the minimum progenitor mass cut Mmin,halo to both
vsmdpl and florah halos. In addition, we do not restrict the redshift range of either
vsmdpl and florah halos.

In the top panel of Figure 3.10, we show the stellar-to-halo mass relation (SHMR). Next,
we compute the SHMR residual, defined as the difference between the M⋆/Mvir value for
each halo and its median value in the corresponding Mvir bin. The correlation between the
SHMR residual and the DM concentration cvir is shown in the bottom panel. Estimating the
residual this way removes most of the mass dependence. This demonstrates that the galaxy
properties depend on secondary halo characteristics beyond halo mass, which can lead to
the phenomenon known as “assembly bias” [269], [271]. In both cases, relations predicted by
florah are consistent with vsmdpl. A SAM run on florah-generated assembly histories
accurately reproduces the correlation between stellar mass, halo formation history, and halo
concentration.

However, in the top panel of Figure 3.10, we observe a bifurcation in the SHMR, leading
to a secondary population of galaxies with low stellar mass. We theorize that this population
represents galaxies which normally grow their mass via mergers. Since we only input MPBs
into the SC-SAM, we underestimate the stellar mass of these galaxies. The bifurcation
disappears when we input full merger trees of vsmdpl into the SC-SAM, which further
supports our theory. Currently florah only generates MPBs, and thus it is unable to
capture these merger-driven galaxies. We have also found that using only the MPBs, SC-
SAM does not correctly recover the mass of the central supermassive black holes for both
vsmdpl and florah. This is expected because the central supermassive black holes grow
mass via mergers. We further discuss the limitations of the current framework and future
outlook for florah in Section 3.5.

Clustering

To further probe the assembly bias, we compute the galaxy power spectra P (k) of vsmdpl

and florah-v-generated galaxy catalogs at z = 0. florah does not generate positions,
and so for each halo, we take the positions of the corresponding vsmdpl halo in the test
dataset at z = 0. Thus, only the stellar masses computed by SC-SAM differ between the
two catalogs. In the top left panel of Figure 3.11, we show the galaxy power spectra P (k)

of vsmdpl (dashed blue) and florah-v (solid orange) catalogs. The ratio between the
residual ∆P (k) = Pflorah(k)− Pvsmdpl(k) and the vsmdpl power spectrum is shown in the
bottom panel. We see excellent agreement between the power spectrum of the florah-v
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Figure 3.11: Left: The top panel shows the galaxy power spectra P (k) at z = 0 of galaxy
catalogs from vsmdpl (dashed blue) and generated by florah-v (solid orange). The bot-
tom panel shows the ratio of the residual ∆P (k) = Pflorah(k)−Pvsmdpl(k) and the vsmdpl
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corresponding population. Similarly, the solid line represents the late-forming population,
while the dashed line represents the early-forming population.
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catalog and that of the vsmdpl catalog. We emphasize that this test is non-trivial because
florah is trained on individual halos, independently, and has no notion of any spatial
correlations when generating MAHs for a population of clustered halos together.

Studies of assembly bias have also shown that early-forming galaxies exhibit stronger
clustering tendencies compared to their late-forming counterparts (e.g., [358]). To investi-
gate this phenomenon, we categorized each galaxy catalog into two groups based on their
formation redshift z50: a late-forming population comprised of the first 25% of halos, and an
early-forming population consisting of the last 25%. The resulting power spectra P (k) and
residuals are displayed in the right panels of Figure 3.11, with the solid line representing the
late-forming population and the dashed line representing the early-forming population. The
orange lines represent florah-v galaxies, while the blue lines represent vsmdpl galaxies.
Our analysis indicates that the power spectra of florah-v galaxies are consistent with those
of vsmdpl galaxies for both populations. This further suggests that florah-generated his-
tories can accurately replicate the assembly bias of galaxies.

3.4.2 Learning the combined gureft simulations

Using the procedure in Section 3.3.1 to combine the four gureft boxes, we extracted 42, 774

unique MPBs and applied the data augmentation steps in Section 3.3.1. Note that gureft-

c contains significantly fewer halos than vsmdpl because the gureft boxes have much
smaller volumes and particle numbers (as can be seen from Table 3.1). For this reason, we
used 38, 023 MPBs for the training dataset and 4, 751 MPBs for the validation dataset and
did not create a test dataset for gureft-c. We trained a model, denoted as florah-g,
up to a redshift of zmax,train = 20. Then we generated 4, 751 florah-g MPBs to match
the number obtained from gureft-c. During the generation process, we applied a similar
procedure in Section 3.4.1 to choose the starting halo x(0) = (log10M

(0)
vir , c

(0)
vir) at z = 5.89

and list of scale factors from the validation dataset. Similarly, we generate MPBs up to a
redshift zmax,gen = 24 > zmax,train to demonstrate the model’s extrapolation capability.

We perform additional validation checks similar to Section 3.4.1. In Figure 3.12, we
compare distributions of the progenitor-descendant mass ratio log10MD/MP from gureft-

c (shaded blue) and generated by florah-g (solid orange) for four mass bins (columns) and
three redshift slices (rows). We choose the four mass bins such that each bin corresponds to
a different gureft box, with gureft-05 being the least massive bin and gureft-90 being
the most massive bin. Similar to the vsmdpl example in Section 3.4.1, we observe good
agreement between the distributions from gureft-c and generated by florah-g.

In Figure 3.13, we present the median, 68%-percentile, and 95%-percentile containment
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Figure 3.14: The joint distributions of log10Mvir (top) and cvir (bottom) across a few chosen
redshifts (z = 6, 8, 12, 16, 20) of florah-g (solid orange) and vsmdpl (dashed blue). The
contour lines show the 68% and the 95% intervals.
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regions of the MAHs (top panels) and the DM concentration histories (bottom panels) for
MPBs from gureft-c (blue) and generated by florah-g (orange). Similarly to vsmdpl,
low-mass halos tend to form at earlier redshifts than high-mass halos. Also as expected, the
MAHs of both gureft-c and florah-vg plateau out at Mmin,halo. There are a few differ-
ences compared to vsmdpl and the low-redshift case. Unlike in vsmdpl, where Mmin,halo is
fixed at 100 times the DM mass of vsmdpl, here Mmin,halo is determined by the log10Mvir,0

at z = 5.89 (refer to Table 3.1). choose the same four mass bins as Figure 3.12, with each
bin corresponding to a different gureft box. Due to a low number of halos in the validation
dataset, we only display redshift slices with more than 10 resolved halos, resulting in the
termination of the MPBs before zmax,train = 20 in the last two mass bins. Again, we observe
good agreement between the MAHs and concentration histories of florah-g MPBs with
those of gureft-c MPBs. Moreover, florah-g exhibits a similar capability to extrapolate
the MPBs beyond zmax,train = 20 in the first two mass bins.

In Figure 3.14, we show the joint distributions of Mvir (left panels) and cvir (right pan-
els) at selected redshifts (z = 6, 8, 12, 16, 20) for florah-g-generated (solid orange) and
gureft-c (dashed blue) MPBs. The contour lines represent the 68% and 95% intervals.
Once again, the distributions of florah-g MPBs match well with those of gureft-c

MPBs. Note that the mass distribution of gureft-c exhibits multiple peaks due to the
applied mass cuts in the procedure to combine the four gureft-c boxes (see Section 3.3.1).

In Figure 3.15, we show the median concentration-mass relations from the combined
gureft-c boxes and florah-g-generated MPBs. Similar to the vsmdpl example in Fig-
ure 3.9, the error bars denote the spread of the relations, computed from the 16th and 84th
percentiles. The bottom panel shows the residual between florah-g and gureft-c median
relations. Here, we also see that the relations between gureft-c and florah-g agree well.

Finally, we show the distribution of the formation redshift z50 for the four chosen mass
bins of gureft-c in Figure 3.16. We see that similarly as in the vsmdpl case, we recover
the z50 distribution of the gureft-c simulations. Again, we emphasize that the formation
redshift z50 is a derived quantity from the MAHs and not learned directly by the network,
indicating that florah can capture the “long-range” mass correlation in the MAHs. We
opt not to apply the same SAM analysis shown in Section 3.4.1 and 3.4.1 on florah-g and
gureft-c MPBs. Given that florah-g can recover the environment-dependent quantities
such as the z50, we expect the SHMR, SHMR residual-concentration relation, and galaxy
clustering predicted by florah-g to also be consistent with the simulations.

To conclude this section, we developed a procedure to combine multiple N-body sim-
ulations with varying resolutions into the training dataset and showed that florah can
accurately learn the MAHs and concentration histories of these simulations. The gureft
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Figure 3.15: The median concentration-mass relations derived from gureft-c (dashed lines)
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simulations in this example are designed to capture the assembly histories of DM halos at the
ultra-high redshifts at an unprecedented temporal resolution. By successfully incorporating
the gureft simulations into our training dataset, florah becomes an essential tool for
understanding and analyzing the formation and evolution of cosmic structures during the
early Universe.

3.4.3 Combining gureft and vsmdpl

High computational costs make it infeasible to run N-body simulations at the mass resolution
required to simultaneously capture the merger dynamics from dwarf galaxies (105−1010 M⊙)
to galaxy clusters (1014 − 1015 M⊙) up to high redshifts and in large volumes. The gureft

simulations are simulated up to z ≈ 6 and designed to be complementary to past large
volume simulations such as vsmdpl. In this section, we combine the previously trained
model, florah-v on vsmdpl and florah-g on gureft-c, in an attempt to generate
MPBs spanning z = 0 to z ≈ 24.
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The generation of the combined assembly histories is done in two steps. First, we applied
a similar procedure in Section 3.4.1 to choose the starting halo x(0) = (log10M

(0)
vir , c

(0)
vir) at

z = 0 from the test dataset of vsmdpl. As before, we chose the list of vsmdpl scale
factors by sampling every 2 – 6 vsmdpl snapshots from z = 0 and used florah-v to
generate the MPBs. Here, we only generate the MPBs up to a redshift of z = 5.89 and
down to a progenitor mass of Mmin,halo = 5.89 × 108M⊙, i.e. 100 times the DM mass of
vsmdpl. In the second step, for the MPBs that are not terminated before z = 5.89, we
used florah-g to further generate their progenitors. Note that currently, we do not carry
the hidden states between models (i.e. from florah-v to florah-g). This is because the
two models are trained independently due to the lack of N-body simulations spanning the
entire redshift range from z = 0 to z ≈ 24, and hence their hidden states are not necessarily
correlated. Thus here, for the sake of simplicity, we initialize the hidden state for florah-g

with zeros but plan on investigating better initialization procedures in the future. We chose
a list of gureft scale factors by sampling every 2 – 6 gureft snapshots from z = 5.89

up to zmax,gen = 24. Again, we set zmax,gen = 24 > zmax,train of gureft-c to demonstrate
the model’s extrapolation capability. Unlike in vsmdpl, the Mmin,halo is set based on the
progenitor mass at z = 5.89. After we generate the full MPB, we apply the post-processing
steps in Section 3.3.3. We generated 387, 031 MPBs, the same number of trees as the vsmdpl

test dataset. For convenience, we denote these combined MPBs as florah-vg MPBs.

We first present the median MAHs of vsmdpl, gureft-c, and florah-vg from z =

0− 24 in Figure 3.17. The median MAHs of vsmdpl and gureft-c are represented by the
data points, while the median MAHs of florah-vg are represented by the dashed lines.
The vertical dashed line at z ≈ 6 represents the transition redshift at which we switch from
florah-v to florah-g during the generation procedure. Overall, the florah-vg MAHs
lines up nicely with both vsmdpl at low redshifts and gureft-c at high redshifts. However,
as mentioned in Section 3.2, due to the resolution limit of vsmdpl, less massive root halos
of vsmdpl (≲ 1010M⊙) do not have MAHs that overlap with gureft-c. We cannot extend
the MPBs of these halos with gureft-c and florah-g unless we allow the generation of
poorly resolved halos (i.e. halos with fewer than 100 DM particles) during the first step of
the generation procedure. Thus, for halos with ≲ 1010M⊙, which corresponds to the host
halos of dwarf galaxies, we are unable to reliably generate their assembly histories beyond
z ≈ 4 − 5. The longest florah-vg MPBs have root masses from 1.8 × 1010 − 1011M⊙

(corresponding to the bright end of the dwarf galaxy population) extend to z ≈ 20 − 22.
Finally, it is worth noting that gureft-90 and vsmdpl do not overlap due to the mass
cut applied when combining the gureft boxes (as described in Section 3.3.1). As a result,
we do not fully utilize gureft-90 during the generation. In future work, we can connect
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the massive end of gureft-90 with vsmdpl by including an additional simulation in the
training dataset.

Next, we examine the generated MPBs in more detail. Since we do not have N-body
MPBs that span from z = 0 to z ≈ 24, we divide each florah-vg MPB into a low-redshift
component which spans z = 0−10 and a high-redshift component which spans z = 5.89−25.
We will compare the low-redshift component with vsmdpl and the high-redshift component
with gureft.

Mass and DM concentration histories at low redshifts

In Figure 3.18, we show the median, 68%-percentile, and 95%-percentile containment regions
of the MAHs (top panels) and DM concentration (bottom panels) histories for MPBs from
vsmdpl (dashed blue) and florah-vg (solid orange). The MAHs and DM concentration
histories of vsmdpl are the same as Figure 3.6. Unlike the vsmdpl MAHs and the florah-

g MAHs in Figure 3.6, the florah-vg MAHs do not plateau out at the resolution limit of
vsmdpl (horizontal dashed line). This is to be expected because the progenitors of florah-

vg halos at high redshifts are generated by the florah-g model and thus have a higher
mass resolution. We will show in Section 3.4.3 below that the MAHs at high redshifts are
indeed consistent with gureft-c. However, we note some unphysical features in the MAHs
and concentration histories. The MAHs of vsmdpl and gureft-c do not line up perfectly
at the transition redshift z = 5.89, creating “kinks” in the 95% of the MAHs in the first
two mass bins. This is particularly clear in the bottom panels, where the kinks can also be
seen in the third mass bins and the median and 68% of the DM concentration histories. We
defer the discussions of the limitations of our approach in more detail in Section 3.5, after
we compare the high-redshift components of florah-vg to gureft-c.

Mass and DM concentration histories at high redshifts

In Figure 3.19, we compare the high-redshift components of the florah-vg MPBs with
gureft-c MPBs. As above, the median, 68%-percentile, and 95%-percentile containment
regions of the MAHs (top panels) and DM concentration (bottom panels) histories. Because
gureft-c contains significantly fewer MPBs than generated by florah-vg (since florah-

vg MPBs are generated from the root halos of vsmdpl), we subsample florah-vg MPBs
to match the number of MPBs in gureft-c for a fair comparison. Similarly to Figure 3.13,
we do not include redshift slices with fewer than 10 resolved halos, resulting in the MAHs and
concentration histories in the last two bins terminating before zmax,train = 20. In general, both
the MAHs and concentration histories of florah-vg agree well with gureft-c. Unlike in
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Figure 3.18: The MAHs and DM concentration histories of the MPBs in vsmdpl and
florah-vg in four mass bins (in M⊙unit. Panels are the same as Figure 3.6. The dis-
agreement between the vsmdpl MAHs and florah-vg MAHs at high redshift is expected.
Similarly to Figure 3.6, the vsmdpl MAHs plateau out at the resolution limit of vsmdpl.
On the other hand, at z ≳ 6, florah-vg MAHs do not plateau out since they are gener-
ated by florah-g, which is trained on gureft-c, and thus have higher resolutions than
vsmdpl.
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Figure 3.19: The MAHs and DM concentration histories of the MPBs in gureft-c and
florah-vg in four mass bins (in M⊙unit. Panels are the same as Figure 3.6.
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the low-redshift case, the MAHs of both gureft-c and florah-vg plateau out at Mmin,halo

as expected. As a reminder, here Mmin,halo is determined by the log10Mvir,0 at z = 5.89 (refer
Table 3.1). Note that we still see the effect of the sharp transition between vsmdpl and
gureft-c at z = 5.89 in the concentration histories, though to a much lesser extent.

3.5 Discussion

3.5.1 Comparison with previous works

Previous approaches to modeling the cosmological MAHs of DM halos typically fit a param-
eterized functional form over the entire simulated MAH population (e.g. [334], [349], [363],
etc.). For example, [363] assumes the MAHs take the form:

M(z) = M0(1 + z)βe−γz, (3.7)

where M0 = M(0) is the mass of the root halo, and θ ≡ (β, γ) are free parameters of the
fit. One can also imagine fitting the evolution of the DM concentration cvir(z) or other
properties of the halos in a similar manner. As shown in the aforementioned works, these
approaches can also provide a reasonably accurate representation of the MAH and capture
population-level statistics such as the mean MAH for a given root halo mass. To capture the
full distribution (i.e., the scatter) of the MAH population, one can model the full distribution
of the fit parameters P (θ), as shown in [349]. The dependency of θ on the root halo properties
such as M0 and c0 can be included as a conditional probability, i.e. P (θ|M0, c0).

The florah framework can be considered as a non-parametric modeling method for
the MAH, with a few notable advantages. First, the parametric modeling approaches above
assume a functional form not only for the mean of the MAH but also the scatter (and other
quantiles) of the MAH population distribution, as this stochasticity is folded into the sam-
pling of the fit parameters P (θ|M0, c0) at z = 0. It is unclear if these all should follow
the same distribution. Thus, non-parametric methods such as florah can provide more
flexibility in modeling the MAH distribution. Moreover, parametric methods may require
additional assumptions to incorporate more than one halo property. For example, to fit both
the MAH and the DM concentration histories, one needs to assume how the mass and con-
centration are correlated, e.g. via the halo concentration-mass relations. On the other hand,
florah can jointly fit both the mass and DM concentration without requiring additional as-
sumptions about the data. Indeed, we show in Figures 3.9 and 3.15 that MPBs generated by
florah follow the same halo concentration-mass relations as the simulations. Additionally,
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incorporating additional halo properties (e.g., the halo shape or environment information)
into florah is straightforward, since the conditional normalizing flows can easily model
high-dimensional distributions. We plan to explore different sets of halo properties in future
work.

As shown in Section 3.4, florah can correctly capture the progenitor-descendant mass
ratios at each time step and model the MAH at the individual halo level. The distribution
of the mass (and DM concentration) at each redshift z is modeled independently with the
conditional normalizing flows, thus allowing for “jumps” in the MAH to occur, representing
DM halo mergers, which can play an important role in galaxy formation models. In contrast,
the parametric modeling approaches assume the MAH to be a smooth function, so there is
no stochasticity between redshifts once the fit parameters θ are sampled from P (θ|M0, c0)

at z = 0. Though it is possible to increase the fidelity of the parametric fits by resampling
θ at different z, this requires modeling P (θ|M0, c0, z), which will be much more difficult.
Halo-level properties such as the progenitor-descendant mass ratios are important for cer-
tain modeling applications of black hole seeding in SC-SAM, which we will explore with
florah in future works. We note that EPS-based approaches can also model the stochas-
ticity between redshifts in a similar autoregressive manner, by sampling the conditional mass
function from the EPS formalism. However, in EPS-based approaches, the MAH is usually
modeled as a Markov Chain, in which the mass of the progenitor is modeled using only
the mass of its immediate descendant. florah extends this so that the progenitor mass is
modeled using the entire assembly history.

3.5.2 Current limitations and future outlook

We showed in Section 3.4.1 that when trained on a single N-body simulation, florah can ac-
curately recover the MAHs and concentration histories. This applies similarly when multiple
N-body simulations with the same redshift range but varying mass resolutions are combined
into a single training dataset (Section 3.4.2). We further showed that florah-generated
MAHs can be input into the SC-SAM to predict observable properties and assembly bias of
galaxies. However, because the current framework only generates the MPBs of merger trees,
florah cannot yet capture correctly merger-driven properties such as the stellar mass of
some population of galaxies or the mass of supermassive black holes. To capture these prop-
erties, we must include secondary branches as well as other sub-branches in the generation
process. In ongoing work, we are extending it to generate full merger trees by, for example,
modeling the probabilities of branching events and utilizing graph generative models.

In Section 3.4.3, we combined the florah-v and florah-g model to generate assembly
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histories from z = 0 to z ≈ 24. Overall, we found that the generated MAHs and concentration
histories agree with the N-body simulations. However, the current approach has two main
drawbacks.

First, due to the lack of N-body simulations spanning the redshift range from z = 0 to z ≈
24, florah-v and florah-g are trained independently. Thus, their hidden states are not
necessarily correlated and cannot be carried from one model to the other (i.e. from florah-

v to florah-g). As a result, the information carried by the hidden states of florah-v

is lost during the transition. We plan on investigating better initialization procedures in
future work. For example, instead of transitioning at z = 5.89, we may better utilize the
overlapping redshift range between vsmdpl and gureft. We found that the current range,
z > 5.89, to be insufficient because it includes too many poorly resolved halos of vsmdpl

(i.e. those with fewer than 100 DM particles), which create an inconsistency between the
MAHs of vsmdpl and of gureft.

Second, the current approach for combining the simulations can result in some unphys-
ical features in the MAHs and concentration histories at the transition redshift z = 5.89

between the two simulations. This is especially clear in the concentration histories, where
we see that the concentration histories of vsmdpl are consistently higher than florah-

vg at z > 5.89. However, from Figure 3.19, it is clear that the concentration histories of
florah-vg is consistent with gureft-c. This implies that there is a systematic difference
between the concentration histories of gureft-c and vsmdpl. We attribute this difference
to the absence of unresolved, low-mass progenitor halos in vsmdpl at these redshifts. At
high redshifts, cvir tends to be lower for lower-mass halos, so missing the low-mass halo
population will artificially push the distribution of cvir towards the high values. This is
supported by the fact that the lower-68% and lower-95% of the concentration histories are
less affected compared to the upper-68% and upper-95%. Although a more sophisticated
generation procedure may mitigate the sharp transitions, we attribute the problem mainly
to the inconsistency in the MAHs and concentration histories of the two training simulations.
We refer to [154] for a more detailed diagnosis of this inconsistency and comparison between
gureft and the MultiDark simulations (including vsmdpl).

Both of the above drawbacks can be mitigated by improving the simulations. In future
work, we are considering the possibility of further running gureft to a redshift of 4 and with
a larger box size (e.g. 120 Mpch−1). This will extend the overlapping redshift range between
the two simulations and ensure that vsmdpl has a sufficient number of resolved halos in
this range, thus improving the consistency between the assembly histories. In addition,
this enables the assembly histories of halos with less than 1010M⊙ to be extended using a
gureft-based florah model.
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3.6 Conclusion

In this chapter, we developed florah, a deep generative model based on recurrent neu-
ral networks and normalizing flows, to generate the mass assembly histories (MAHs) of
dark matter halo merger trees. We trained two models independently on the vsmdpl and
gureft N-body simulations and assessed the performance of the models to recover the
MAHs, concentration histories, and observable and semi-observable properties derived from
semi-analytic models such as stellar mass. Our main findings are summarized as follows:

• In Section 3.4.1, we found that the florah-v model, which is trained on the vsmdpl

simulation up to redshift 10, can accurately capture the MAHs and concentration his-
tories across a wide range of host halo masses. Additionally, when operating well above
the resolution limit of the simulation, florah-v robustly extrapolates the histories up
to redshift 14, beyond the training redshift. We applied the Santa Cruz semi-analytic
model to florah-generated histories and showed that florah can recover correla-
tions between galaxy properties and halo assembly history, such as the correlation
between stellar-to-mass ratio residual and halo concentration, as well as the galaxy
matter power spectrum. florah is the first machine learning framework that ac-
curately learns and incorporates the correlations between halo properties and merger
history.

• In Section 3.3.1, we developed a procedure to incorporate multiple simulations with
the same redshift range and varying mass resolutions into a single training dataset. In
Section 3.4.2, we trained the florah-g model on the gureft suite of simulations,
comprising four boxes (gureft-05, gureft-15, gureft-35, and gureft-90), and
successfully demonstrated florah’s ability to handle this variation. The gureft

simulations were purposefully crafted to capture the evolution of dark matter halos
at the ultra-high redshift Universe and at an unprecedented temporal resolution. By
successfully learning the assembly histories of these simulations, florah proves to be
a versatile tool for studying the formation and evolution of cosmic structures during
the initial phases of the Universe.

• In Section 3.4.3, we developed a procedure to concatenate multiple florah models.
We used florah-v to generate the assembly histories from z = 0 to z = 5.89 and
florah-g to further generate the histories to z ≈ 20 − 24. We showed that despite
the simplicity of our approach, we were able to generate the mass assembly histories
from z = 0 to an ultra-high redshift z ≈ 24 for halos with root mass ≲ 1010M⊙, which
corresponds to the bright end of the dwarf galaxy population. We were unable to
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reliably generate assembly histories below this mass due to the resolution limitation of
vsmdpl. In addition, during the generation process, we found an inconsistency in the
dark matter concentration histories of vsmdpl and gureft at z ≳ 6, which may be
attributed to the missing of unresolved progenitor halos in vsmdpl (refer to [154] for
a more detailed discussion). This results in sharp kinks in the concentration histories
at the transition redshift z = 5.89 between the two florah models. These limitations
can be overcome by improving the overlapping between gureft-c and vsmdpl, e.g.,
by running gureft-c to a lower redshift and with a larger volume.) Despite the
current limitations, this represents the first step towards generating assembly histories
at a mass resolution required to simultaneously capture the merger dynamics from
dwarf galaxies to galaxy clusters up to high redshifts and in large volumes. At present,
this is far beyond the capability of numerical simulations.

• In Section 3.5, we discuss the advantages of florah over traditional parametric mod-
eling approaches for the MAHs. Like many machine learning methods, florah is
non-parametric and does not require assumptions on the functional form of the mass
and DM concentration assembly histories. It is also straightforward to include addi-
tional halo properties beyond the mass and DM concentration since the normalizing
flows employed for density modeling excel at capturing high-dimensional distributions.
In addition, florah models the MAHs in an autoregressive manner, sampling the halo
mass and concentration at each redshift based on the entire halo history. This allows
florah to capture variations between redshifts, such as the progenitor-descendant
mass ratios, more easily.

florah represents an exciting and promising initial step towards the development of a
machine learning-based framework for generating full merger trees. Such a framework has the
potential to revolutionize our understanding of how galaxies form and evolve by allowing for
the exploration of different galaxy formation scenarios with excellent computational efficiency
at unprecedented accuracy. To achieve this goal, we intend to expand florah’s capabilities
to generate secondary branches and other sub-branches. In addition, we aim to develop
an emulator that can generate merger trees by training florah on simulations featuring
different cosmological parameters. Doing so will enable florah to learn and capture the
dependence of halo assembly histories on cosmology.
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Software and Data Availability

This research made use of the corner [364], IPython [319], Jupyter [320], Matplotlib [321],
NumPy [323], nflows [322], PyTorch [324], PyTorch Lightning [325], SciPy [365], and
ytree [366] software packages.

The code version used for this chapter is available at https://github.com/trivnguyen/
florah. The vsmdpl training dataset in this article uses public simulations from the Cos-
moSim and MultiDark database available at https://www.cosmosim.org/. The gureft

training dataset will be shared on reasonable request to the corresponding author. The
output data generated by the florah models will be shared on reasonable request to the
corresponding author.
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Chapter 4

Emulating subhalo populations under
alternative dark matter scenarios with
Diffusion Models

Disclaimer

The content of this chapter is a paper draft that is currently under internal revision of the
DREAMS collaboration. The lead authors are Tri Nguyen, Francisco Villaescusa-Navarro,
Siddharth Mishra-Sharma, and Carolina Cuesta-Lazaro. Following this revision, the paper
will be submitted to the Astrophysical Journal and uploaded to arXiv.

Abstract

To maximize the scientific return of cosmological surveys, it is important to model the
relationship between galaxies, subhalos, and their host dark matter halos. Many differ-
ent techniques have been developed to accomplish this, from Halo Occupation Distribution
(HOD) models to hydrodynamic simulations passing via empirical and semi-analytic models.
Hydrodynamic simulations make accurate theoretical predictions but are computationally
expensive; HODs, on the other hand, are computationally cheap, but the accuracy of their
predictions is limited. In this work, we develop a model that can paint galaxies/subhalos
on top of dark matter halos, with predictions as accurate as those of hydrodynamic sim-
ulations but with computational costs similar to HODs. Our model combines normalizing
flows, diffusion models, and transformers to predict subhalo positions, velocities, and inter-
nal properties as a function of astrophysics and warm dark matter mass. We train our model
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on high-resolution zoom-in hydrodynamic simulations from the DREAMS project and com-
pare summary statistics from the simulations against those derived from samples emulated
from our model. We show that our model captures the complex relation between subhalo
positions, velocities, and internal properties. Our method can be used for a large variety of
downstream tasks, from galaxy clustering to strong lensing studies.

4.1 Introduction

The abundance and spatial distribution of galaxies, and subhalos in general, contain a wealth
of information about the composition and laws governing the Universe. For instance, different
dark matter (DM) models will predict different subhalo abundances. If we want to maximize
the information we can extract from these surveys (through e.g. galaxy clustering or strong
lensing studies), we need accurate theoretical predictions for galaxy/subhalo properties as a
function of cosmology, astrophysics, and DM properties.

There are different ways to obtain theoretical predictions for the abundance and spatial
distribution of galaxies/subhalos. On one end of the spectrum, we have full hydrodynamic
simulations that make very precise theoretical predictions about the phase-space distribution
of galaxies and their intrinsic properties (e.g. stellar mass, metallicity, neutral hydrogen mass,
etc) but that are very computationally demanding. On the other end of the spectrum, we
have Halo Occupation Distribution (HOD) models that can paint galaxies on top of DM
halos from computationally cheaper N-body (i.e, gravity-only) simulations at the expense
of limited precision on the spatial distribution of galaxies and with the additional challenge
of modeling clustering and intrinsic galaxy properties simultaneously. Along the spectrum,
there are methods such as empirical models, semi-analytical models, and subhalo abundance
matching techniques (see Ref. [367] for a review).

Ideally, we would like to run a large set of large-volume and high-resolution hydrody-
namic simulations for different cosmologies, astrophysics, and DM properties to get accu-
rate theoretical predictions for the abundance and spatial distribution of galaxies/subhalos.
However, that is computationally unfeasible at present. For instance, the Cosmology and
Astrophysics with MachinE Learning Simulations (CAMELS, [171]) and the DaRk mattEr
and Astrophysics with Machine learning and Simulations (DREAMS, [172]) projects, which
contain thousands of state-of-the-art hydrodynamic simulations that vary cosmology, astro-
physics, and DM properties, are two recent attempts to accomplish this but the volume they
can sample is relatively small.

On the other hand, HODs are widely used by the community, given that the compu-
tational cost of N-body simulations is much smaller than that of their full hydrodynamic

116



counterparts. In these methods, galaxies are painted on top of the DM halos of N-body
simulations, following a set of recipes that aim to capture the main physics describing the
halo-galaxy connection. While these methods are designed to match some summary statistics
(e.g. galaxy abundance and 2-point correlation function) they may fail for other summary
statistics or probes of the entire observed distribution (e.g. field level analyses) as they rely
on simplified assumptions about the halo-galaxy connection.

It is therefore desirable to have the best of both approaches: the precision and accuracy
of full hydrodynamic simulations at the computational cost of HODs. This is precisely the
goal of this chapter: to develop a model that can generate galaxy/subhalo catalogs given
the properties of a parent halo and the value of the astrophysical and DM parameters.
Our goal is that our model not only accurately matches a given set of summary statistics
but instead generates catalogs by sampling the complex and high-dimensional distribution
that characterize the properties of subhalos/galaxies such as their positions, velocities, and
internal properties (e.g., stellar mass, concentration, etc). We note that recent works have
exploited these ideas (e.g., [218], [368]) by either painting galaxy properties on top of subhalos
or modeling the displacement vectors between subhalos and galaxies.

In this chapter, we introduce a generative machine learning framework based on normal-
izing flows [217], [369], [370] and variational diffusion models [233], [235], [371], to model
the connection between halos and their subhalo/galaxies at the field level. Distinct from
most HODs, our model can populate DM halos with subhalos that are jointly characterized
by multiple properties (positions, velocities, and internal properties), taking into account
intra-galaxy (i.e., properties of a single galaxy) as well as inter-galaxy (i.e., between galaxies
in a catalog) properties.

We train our model using data from the DREAMS project [172] that contains high-
resolution zoom-in simulations of Milky Way-like halos. Each of those simulations has a
different value of the astrophysical parameters (modeling the strength of supernova and
AGN feedback) and has been run with a different warm dark matter (WDM) mass. Once
trained, our model can generate a galaxy catalog that represents the subhalos residing in a
halo, given some values of the astrophysical parameters and the WDM mass. Our model
returns a galaxy catalog with the position, velocity, and internal properties of each subhalo
inside the halo. We use multiple summary statistics to quantify the accuracy and precision
of the generated galaxy catalogs and compare them with the ones from the simulations.
Our model, coined NeHOD, exhibits the accuracy of the full hydrodynamic simulations while
being orders of magnitude faster. The approach may thus play an important role in studies
that require modeling the halo-galaxy/subhalo connection, e.g. galaxy redshift surveys and
strong lensing studies.
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This chapter is structured as follows. In Section 4.2, we briefly summarize the DREAMS
project and the WDM zoom-in suite of simulations used as the training dataset. In Sec-
tion 4.3, we describe the training dataset in 4.3.1, the machine learning models in 4.3.2,
and the training procedure in 4.3.3. In Section 4.4, we show examples of generated subhalo
realizations and quantify the fidelity of the trained emulator model. In Section 4.5, we com-
pare NeHOD to previous emulator frameworks and discuss its current limitations and future
prospects. Finally, we conclude in Section 4.6.

4.2 Simulations

The DREAMS project1, introduced in [172], is a collection of thousands of state-of-the-
art hydrodynamic simulations. These include both cosmological simulations (Uniform Box
suites), which provide extensive samples of halos and galaxies, and zoom-in simulations
(Milky Way suites) for higher-resolution studies of smaller scales. Similar to the CAMELS
project [171], the DREAMS simulations vary both cosmological and astrophysical parame-
ters. On the other hand, DREAMS also vary parameters related to the particle properties of
DM for different models (e.g. warm DM, self-interacting DM, etc.). The DREAMS project
is the first set of simulations designed to train machine learning algorithms by means of
running simulations that sample a large parameter space (cosmology plus astrophysics plus
DM properties). Among the simulations currently completed are the WDM Uniform Box
and Milky Way suites, with the former explored in [201]. For the full specifications of the
simulations, we refer readers to Table 1 of [172].

Here, we briefly describe the WDM Milky Way suite used for the machine learning study
in this work. The WDM Milky Way suite contains 1024 simulations of Milky Way-mass
halos with varying WDM mass and astrophysical parameters. The simulations are run with
the moving-mesh code Arepo [372], which uses the TreePM algorithm to solve the self-
gravity magnetohydrodynamic equations [373], [374]. The gravitational softening length
is 305 pch−1. The initial conditions are generated by the MUlti-Scale Initial Conditions
(MUSIC; [375]) code at z = 127 using the second-order Lagrangian perturbation theory
(2LPT). Cosmological parameters are fixed at Ωm = 0.301712, ΩΛ = 0.698288, Ωb = 0.046,
σ8 = 0.839, H0 = 69.1 km s−1Mpc−1 (h = 0.691), which is consistent with the Planck 2016
cosmology [376]. The DM and baryon mass resolution are 1.2 × 106 and 1.9 × 105M⊙h

−1

respectively, which is comparable to the mass resolution of the TNG50 simulation [377],
[378], which has a DM and baryon mass resolution of 6.5× 105 and 1.2× 106M⊙h

−1.
The simulations adopt the IllustrisTNG galaxy formation model, as detailed in [40],

1https://www.dreams-project.org/
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[41]. This model incorporates AGN feedback, self-consistent magnetohydrodynamic, and an
updated prescription of stellar formation and evolution, galactic winds, and outflows from
the previous Illustris model [379], [380]. Parameters are kept the same as the TNG model,
except for two parameters that control supernova (SN) feedback and one that controls AGN
feedback. Prescriptions of SN and AGN feedback are currently among the key sources of
systematic uncertainty in cosmological simulations. These feedback mechanisms introduce
significant challenges in distinguishing the effects of baryonic processes from the inherent
properties of DM, e.g. by altering the inner density profiles in dwarf galaxies ([289], [290];
see also [79] for a review). Decoupling baryonic effects from DM properties is one of the
primary goals of the DREAMS simulations. For a more detailed discussion of the baryonic
prescription in DREAMS, we refer readers to Section 2.1 of [172]. Here, we quickly summarize
the three feedback parameters and their relevant physical processes.

The two stellar feedback parameters control the energy and velocity of SN-induced winds,
which expel gas from galaxies. In the TNG model, the strength of stellar feedback is quan-
tified using the mass-loading factor:

ηw ≡ Ṁw

ṀSFR

=
2

v2w
ew(1− τw), (4.1)

where ew is the specific wind energy in units of 1051 ergM−1
⊙ , τw is the fraction of energy

released thermally, and vw is the wind velocity. The wind velocity depends on the local DM
velocity dispersion σDM through the redshift-dependent relation,

vw = max

[
κwσDM

(
H0

H(z)

)1/3

, vw,min

]
, (4.2)

where κw is a dimensionless normalization factor, and vw,min is the minimum wind velocity.
In DREAMS, τw and vw,min are set to their fiducial values τw = 0.1 and vw,min = 350 km/s,
and ew and κw are varied logarithmically over a range of ew ∈ [0.9, 14.4] and κw ∈ [3.7, 14.8],
respectively. The AGN feedback parameter controls the feedback energy released from ac-
cretion, which takes the functional form:

∆Ė = ϵf,highϵrṀBHc
2, (4.3)

where ϵf,high is the fraction of energy transferred to nearby gas, ϵr is the radiative efficiency,
and ṀBH is the black hole accretion rate. ϵf,high is varied logarithmically from [0.025, 0.4],
and other parameters are kept fixed at their TNG values.

In addition to the three feedback parameters, each simulation in the WDM Milky Way
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Table 4.1: Parameter range of the suite of 1024 simulations used in this work.

Parameters Range Prior Fiducial

MWDM [1.8, 30] keV Inverse Uniform ∞

ew [0.9, 14.4] Log Uniform 3.6

κw [3.7, 14.8] Log Uniform 7.4

ϵf,high [0.025, 0.4] Log Uniform 0.1

suite also varies over the mass of the WDM particles MWDM. The WDM mass is varied
inversely from MWDM ∈ [1.8, 30] keV. These parameters are varied according to a Sobol
sequence [381], which ensures a quasi-random, well-distributed sampling across the parameter
space that is suitable for machine learning applications. The full prior specification of the
WDM mass and feedback parameters, along with their fiducial values, can be found in
Table 4.1.

Each simulation zooms in on a high-resolution region that contains a MW-mass galaxy.
These galaxies are selected such that they are not in the vicinity of another massive galaxy,
i.e. they are not MW-analog. This choice is to reduce the computational cost associated with
simulating dense environments. Details on the zoom-in procedure are outlined in Appendix
A of [172]. Similarly, as in TNG, the halos and subhalos are identified using the friends-of-
friends (FoF) and Subfind algorithms [161] with a linking length of b = 0.2. We will explore
the impact of the choice of the halo finder on the emulated halo and subhalo properties in
future work.

4.3 Methodology

In this section, we introduce the NeHOD framework. The framework consists of two main
components: (1) a conditional normalizing flow for predicting the properties of the Milky
Way-mass halo and its central subhalo given the simulation parameters, and (2) a variational
diffusion model for predicting the properties of satellite galaxies of the corresponding halo
and central subhalo. The framework operates hierarchically, where the diffusion model is
conditioned on the output from the normalizing flows (i.e., the halo and central subhalo prop-
erties). This hierarchical approach ensures that the dependencies between the properties of
a halo, its central subhalo, and its satellites are accurately modeled. A visual representation
of the NeHOD framework is shown in Figure 4.1.
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Figure 4.1: Flow chart of the NeHOD framework.
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In Section 4.3.1, we describe the procedure for creating and preprocessing the dataset as
well as the halo properties used as input and output features. We then describe the NeHOD

architecture and training strategy in Section 4.3.2 and 4.3.3, respectively.

4.3.1 Dataset

For each simulation, we extract the high-resolution halo with approximately MW-mass to-
gether with its subhalos from the group catalogs as follows. First, we identify halos with a
total mass within 7 × 1011M⊙ < Mhalo < 3 × 1012M⊙. Next, we choose the halo with the
least contamination from low-resolution DM particles. We require that the total mass of the
low-resolution DM particles does not exceed 2% of the total mass within the virial radius in
all of our halos. From the 1,024 zoom-in simulations, 1,018 halos satisfy the above criteria.

We now describe the halo and subhalo properties used as input and output features of
the NeHOD framework. Table 4.2 provides a brief description of the relevant features and the
corresponding FoF/Subfind field. As mentioned above, we separate the framework into
two components: (1) given the simulation parameters, predicting the properties of the halo
and its central subhalo, and (2) given the halo, central subhalo, and simulation parameters,
predicting the properties of the satellite subhalos.

Given some feature vector θsim (commonly referred to as the “conditioning context”) of
the simulations, we are interested in emulating the halo and central subhalo. Here, we let
the context θsim be the WDM mass and the astrophysical parameters in Section 4.2 (i.e., the
SN specific wind energy and velocity normalization, AGN parameter),

θsim = {MWDM, ew, κw, ϵf,high} ∈ R4. (4.4)

Note that in practice, we use the inverse of the WDM mass and the logarithm of the feed-
back parameters because they are sampled uniformly in this space (see Table 4.1). These
parameters form a 4-dimensional input vector for our framework. We now describe how our
model predicts the properties of the 1) halo, 2) central subhalo, and 3) individual satellite
subhalos.

Halo. The conditional normalizing flow takes as input the simulation parameters θsim and
outputs the properties of the halo and its central subhalo. For the halo properties, we are
interested in modeling the halo virial mass Mhalo, total stellar mass M⋆, and the number of
satellite subhalos Nsat. The virial mass Mhalo is estimated as the total mass enclosed within
R200, the radius where the average density of the halo is 200 times the critical density of the
Universe. We use a reference system where the center of the halo and its peculiar velocity
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are both at (0, 0, 0). As mentioned above, we model the central subhalo independently from
the satellite subhalos (more details below).

Central subhalo. Our framework models the properties of the central subhalo, yc, inde-
pendently of its satellite subhalos. We do this for several reasons. First, as mentioned above,
the positions and velocities of the subhalos are in the frame of reference of the halo. Thus,
by definition, the position of the central subhalo is always at xc = (0, 0, 0). Note that, in
general, there may be a small bias between the velocities of the halo and the central subhalo.
However, assuming this velocity bias is isotropic2, we only need to model its magnitude, i.e.
|vc|. Second, the central subhalo dominates the mass within the halo and is significantly
more massive than its satellite subhalos, typically by a few orders of magnitude in M⊙. It
plays a significant role in the dynamics of satellite subhalos through processes such as tidal
stripping, dynamical friction, and mergers, which can alter the mass distribution within the
halo and affect the formation and evolution of galaxies within these subhalos [34], [382],
[383]. For these reasons, we expect the properties of the central subhalo to vastly differ from
those of satellite subhalos. Thus, modeling all subhalos at the same time may be challenging
and we decided to model them separately.

In addition to |vc|, the halo mass Msub,c and the stellar mass Msub,⋆,c of subhalos, we are
interested in modeling the relation between the total mass and subhalo structural parameters,
such as the DM concentration, which has been found to strongly correlate with the halo
formation time and environment in many assembly bias studies [e.g., 356]–[359]). Because
the DM concentration is not available in Subfind, we instead use the quantity Ṽmax,i ≡
Vmax,i/(H0rmax,i), where Vmax,i is the maximum circular velocity of the subhalo and rmax,i is
the radius at this velocity. This follows from [384], which demonstrates that Ṽmax is a good
proxy for the DM concentration. Following [385], we can relate Ṽmax to the DM concentration
c of a Navarro-Frenk-White (NFW, [386]) density profile using the following relations:

δv = 2Ṽ 2
max =

δc
7.213

, where δc =
200

3

c3

ln(1 + c)− c/(1 + c)
. (4.5)

Here, δv is the mean overdensity within rmax, and δc is the characteristic NFW overdensity.
Note that the relation between Ṽmax and c is one-to-one, so both Ṽmax and c can be used
interchangeably as training features. Here, we choose to use Ṽmax instead of c because Vmax

and rmax are directly available from the FoF/Subfind catalog.
2This is a reasonable assumption because the gravitational forces acting upon the central subhalo from

various directions tend to average out due to the symmetric distribution of matter within the halo, resulting
in an overall isotropic velocity distribution.
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To summarize, for the central subhalo, our model predicts these four properties:

yc = {Msub,c,Msub,⋆,c, |vc|, Ṽmax,c} ∈ R4, (4.6)

Combining with the halo properties, the output of the conditional normalizing flows can be
represented as a vector θhalo:

θhalo = {Mhalo,M⋆,Msub,c,Msub,⋆,c, |vc|, Ṽmax,c, Nsat} ∈ R7, (4.7)

These features, along with the simulation parameters θsim, are used as the context of the
variational diffusion model for generating the satellite subhalos.

Satellite subhalos. For the features of each satellite subhalo yi, our model predicts the
3-dimensional positions xi, velocities vi, the halo mass Msub,i, the stellar mass Msub,⋆,i, and
the concentration proxy Ṽmax,i. We only include subhalos with at least 100 DM particles,
which corresponds to a minimum mass of 1.2× 108M⊙h

−1. Below this threshold, Subfind

does not reliably identify subhalos. The features are thus:

yi = {xi,vi,Msub,i,Msub,⋆,i, Ṽmax,i} ∈ R9, (4.8)

forming a 9-dimensional output vector for each subhalo. Our framework outputs a vector
y = {yi|i = 1, ..., Nsat} ∈ RNsat×9 containing the properties of Nsat subhalos. The number of
satellite subhalos Nsat is inherently random and varies based on the context θsim, e.g., a larger
value of MWDM will result in fewer subhalos per halo. We will discuss the machine learning
architecture suitable for predicting variable numbers of output in Section 4.3.2 below.
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Table 4.2: List of parameters and their corresponding FoF/Subfind fields used in this work.

Parameters Description Relevant FoF/SubFind Field

MWDM Mass of WDM particles n/a

ew Specific wind energy of SN wind n/a

κw Dimensionless scaling factor of SN wind velocity n/a

ϵf,high Fraction of energy transferred to nearby gas due to AGN accretion n/a

Mhalo Halo virial mass Group_M_Crit200

M⋆ Halo stellar mass GroupMassType PartType4

x 3-dimensional subhalo position vector SubhaloPos

v 3-dimensional subhalo velocity vector SubhaloVel

Msub Satellite subhalo total mass SubhaloMass

Msub,⋆ Satellite subhalo stellar mass SubhaloMassType PartType4

Vmax Maximum circular velocity SubhaloVmax

rmax Radius at V (rmax) = Vmax SubhaloVmaxRad

Ṽmax Ṽmax ≡ Vmax/(H0rmax), proxy for DM concentration n/a

Nsat Number of satellite subhalos n/a
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4.3.2 Machine learning framework

For each set of simulation parameters θsim, we would like to model and sample from the joint
likelihood p(y,θhalo | θsim), where θhalo is the properties of the halo and central subhalo, and
y = {yi|i = 1, ..., Nsat} is a set of interested properties of Nsat subhalos. As mentioned
previously, since we model θhalo and y independently and hierarchically, we can rewrite the
final target distribution as:

p(y,θhalo|θsim) = p(y1, ...,yNsat|θsim,θhalo)p(θhalo|θsim). (4.9)

This consists of two independent components: a halo likelihood p(θhalo|θsim), which will
be modeled by the flows, and a satellite likelihood p(y1, ...,yNsat|θsim,θhalo), which will be
modeled by the variational diffusion model.

Halo likelihood. To model the properties of the halo and central subhalo, we use a normal-
izing flow [217], [369], [370] that is conditioned on simulation parameters θsim. Normalizing
flows employ non-linear, invertible transformations (with tractable Jacobians and its inverse)
from a standard, base Gaussian distribution to a complex target distribution, allowing for
efficient density estimation and sampling. They have been employed in various astrophysical
applications including generative modeling and simulation-based inference (see [231] for a
review). In our framework, our flow model consists of 8 neural spline flows (NSF, [387])
layers, each using a rational quadratic spline transformation with 8 bins (9 knots). To read
in the conditioning context, each flow also has a multi-layer perceptron (MLP) with 2 layers
of hidden size 16 and ReLU activation function. Each MLP layer is followed a batch normal-
ization layer [227] and a dropout layer [226] with a rate of 0.2. We found that due to the
limited number of simulations available in our application, batch normalization and dropout
are especially important to reduce overfitting in the flows.

Satellite likelihood. To emulate the satellite subhalo population, we adopt an approach
similar to [219] and model it as a point cloud, i.e., a set of points in 3-dimensional space
with attributes such as velocities, masses, and concentrations. Point clouds eliminate the
need for binning and voxelization, which introduces additional hyperparameters that can
complicate the training and analysis process. More importantly, this allows us to retain
the most information from the data and resolve arbitrary small scales limited only by the
spatial resolution of the simulations. Similarly, we also employ a variational diffusion model
(VDM, [235], [388], [389]). VDMs are a class of generative models that progressively learn
to generate complex data distributions through a process of gradually denoising samples
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(referred to as the “reverse diffusion”), starting from a random noise distribution. They offer
a few advantages over other generative models. VDMs are more expressive than traditional
variational autoencoders, (VAE, [390]), allowing for more flexible network architecture than
normalizing flows. Unlike generative adversarial networks,(GANs, [391]), they are generally
much easier to train and less prone to experiencing mode collapse [392]. Additionally, they
facilitate the tractable evaluation of likelihood, which allows them to be used for inference
and anomaly detection.

The VDM consists of a noise schedule, γ(t), which determines how much Gaussian noise
is added to the data y at each step t of the forward diffusion process, and a noise prediction
model, ϵ̂(zt, t), which estimates the added noise given the time step t and the noisy data
zt [233], [235], [371]. In our setup, we use a linear noise schedule with trainable parameters
ηmin and ηmax that determine the minimum and maximum amount of noise added. For
the noise prediction model, we use a Transformer with a fully-connected network for the
conditioning embedding layers. Further details on the diffusion process, including the noise
schedule, and forward and reverse diffusion process, can be found in Appendix B.2. In the
subsequent paragraphs, we discuss the noise prediction model.

The Transformer architecture, first introduced [360], leverages the self-attention mecha-
nism to efficiently process sequential data, such as time series. Self-attention allows transformer-
based models to dynamically assess and prioritize the relevance of each part of the input,
making them powerful models for many applications ranging from large language model-
ing [393], [394] to more recent astrophysics applications (see e.g. [219], [395]–[398]). In our
framework, we use a transformer with a conditioning-embedding layer. Because each sub-
halo population is modeled as a set of points with no inherent ordering, we do not include
any position encoding or casual masking layer, making the model permutation-equivariant.
During the forward pass, both the input data and the conditioning context are mapped onto
a 128-dimensional space using separate fully-connected layers. The outputs of these layers
are summed together and subsequently passed through 6 transformer layers, each with 128
hidden channels and 4 attention heads, and a 2-layer MLP with 256 hidden channels and
a GELU activation function [399]. It is also important to highlight that our neural network
architecture does not explicitly incorporate geometrical symmetries, such as rotational and
translational invariance. Instead, we apply data augmentation techniques during the training
process, as detailed in Section 4.3.3.

Lastly, it is worth noting that graph-based neural networks are also permutation-equivariant
and capable of efficiently modeling point cloud cosmological data, as have been shown in
recent studies (e.g., [93], [201]–[203], [400]). [219] also demonstrates that using a graph
convolutional neural network and k-nearest neighbors graphs can yield comparable results
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to transformers. An advantage of using graph neural networks is that the computational
cost scales more slowly with the number of point cloud data (i.e. the number of satellite
subhalos) increase, as self-attention scales quadratically O(N2

sat). However, in our appli-
cation, where the number of points is of order Nsat ∼ O(100), the performance difference
becomes negligible. In addition, constructing graphs from point clouds introduces addi-
tional hyperparameters, e.g., the number of neighbors k. For these reasons, we thus choose
a transformer-based architecture for our noise prediction model.

4.3.3 Training and Optimization

The mathematical formulations of normalizing flows and diffusion models are comprehensive
and thoroughly documented in the machine learning literature. Thus, we opt to omit their
detailed derivations from this section. Instead, we provide summaries of both models, includ-
ing their optimization objectives, in Appendix B.2 for diffusion models and Appendix B.1
for normalizing flows.

We split the dataset into approximately 800 training and 200 validation simulations.
The flows and the VDM are trained independently by performing gradient descent using
the AdamW [401], [402] optimizer, with a peak learning rate of 0.0005 and a weight decay
coefficient of 0.01. We use a cosine annealing learning rate scheduler [403] with 5000 (100)
linear warm-up steps, 10,000 (1000) cosine decay steps, and a batch size Nbatch of 128 (64)
for the VDM (flows). The VDM and flows converge after about 50,000 and 10,000 iterations,
which takes approximately 30 minutes in total on an NVIDIA Tesla V100 GPU.

As mentioned in Section 4.3.2, we apply data augmentation to help the model learn
the relevant geometrical symmetries, such as translational and rotational invariance. We
consider only rotational invariance because the coordinates are always in the frame of the
central subhalo by construction. The data augmentation is applied during training. In other
words, a random rotational matrix is applied to the satellite subhalo coordinates on the fly
before being passed through the VDM.

4.4 Results

We present results generating novel satellite populations from our model and perform valida-
tion tests by comparing key summary statistics of the populations to those in the DREAMS
simulations. To generate a test dataset, we randomly sample the WDM mass and astrophys-
ical parameters from the prior distributions in Table 4.1. We first generate the properties of
the halo and central subhalo using the flows, and then use the VDM to generate the subhalo
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population given the generated halo and central subhalo. In total, we generate 100,000 halos,
which take approximately 40 minutes on a GPU using 1,000 diffusion steps for each sample.

4.4.1 Halo and central subhalo properties

We would like to evaluate how well the conditional flows can recover the properties of Milky
Way-mass halos and their central subhalos. We divide the conditioning parameters, i.e. the
WDM mass and astrophysical parameters, into bins and calculate the median, 16th, and
84th percentiles of each halo and central subhalo property in each bin. The bins are divided
inverse-uniformly for the WDM mass and log-uniformly for the astrophysical parameters
(see Table 4.1). Each bin contains about 100 and 10,000 halos for the DREAMS and NeHOD

samples, respectively.
Figure 4.2 shows variations in each of these properties for both the generated samples and

the simulations. The top three rows display the halo properties, including the satellite count,
virial mass, and stellar mass. The bottom four rows show the central subhalo properties,
including the total mass, stellar mass, velocity, and DM concentration. We compute the
concentration using the relations in Equation 4.5. The median, 16th, and 84th percentiles
of each bin are shown as the solid and dashed lines respectively. The black lines show the
generated samples, whereas the blue lines and shaded regions show the simulations.

We briefly note a few important trends in the simulations. First, decreasing the WDM
mass MWDM decreases the satellite count Nsat. This is expected, as lower MWDM corresponds
to a larger free-streaming length, inhibiting the formation of low-mass halos in the early
Universe. Other halo and central subhalo properties are relatively invariant to the changes
in the WDM mass. However, we note that the halos are selected based on the Milky Way-
mass criterion in Section 4.3.1, we do not expect to see much variations in the halo and
central subhalo mass. On the other hand, changing either the SN specific wind energy ew

and wind velocity κw have pronounced effects on the satellite count, stellar masses, and DM
concentrations of central subhalos. The satellite count strongly correlates with the mass-
loading factor, which increases with ew and decreases with κw, since higher mass-loading
factors lead to more efficient expulsion of gas from subhalos, thereby reducing the number
of satellites. Increasing ew and κw reduces the cosmic star formation rate density (SFRD) in
the early Universe [40], resulting in lower stellar mass at the present day. The strength of the
feedback also leads to decreasing DM concentration in central subhalos due to the expulsion
of gas and reduction of potential wells. Similarly to [172], we found that the abundance of
satellites appears invariant to changes in the BH feedback factor ϵf,high, suggesting that BH
feedback might not play a significant role in altering the small-scale structure within these
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Figure 4.2: The properties of halos and their central subhalo as a function of the WDM mass,
SN specific wind energy, SN wind velocity, and AGN parameter (left to right). From top
to bottom, the panels show the satellite count, halo virial and stellar mass, central subhalo
total mass and stellar mass, central subhalo velocity, and DM concentration. The median
(solid lines), 16th, and 84th percentiles (dashed lines) are shown. The black lines denote the
samples generated by conditional flows, while the blue lines and shaded regions denote the
simulations.
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mass ranges in the TNG model.
As evidenced, the halo and central subhalo properties are complex functions of the WDM

mass and astrophysical parameters. Therefore, accurately modeling their distributions is
crucial for understanding how WDM and baryonic processes influence galaxy formation and
evolution. Moreover, in our framework, these parameters are fed directly into the VDM
model as conditioning parameters, making the overall performance heavily reliant on the
accurate representation of these input parameters (as we will discuss in Section 4.4.2). We
now compare the generated samples and the DREAMS samples to evaluate the performance
of the conditional flows.

In general, the median halo and central subhalo properties predicted by the flows align
well with the simulations. There are minor discrepancies in the median DM concentration
of the central subhalos csub,c, though they are small compared to the intrinsic spread of
the distribution. We also note that the distribution of csub,c is bimodal, making it more
challenging to capture accurately. Though the origin of this bi-modality is unknown, we find
that the peaks are strongly correlated with the stellar mass and the SN feedback parameters
ew and κw, suggesting that SN feedback can disrupt DM potential wells in distinct ways.
This origin will be the subject of future exploration. We present additional results and
analysis in Appendix B.3.1. Compared to the median, the 16th and 84th percentiles are
noticeably noisier, and the agreement between the flow samples and the simulations is less
robust. In the case of the satellite count Nsat, the flows slightly overestimate the 84th
percentile. The velocity distribution |vc| has a long tail at the high end, which is also not
perfectly captured by the flows. Similarly to the median, the DM concentration also shows
less agreement compared to other properties. Despite these issues, the overall agreement
between the generated and simulated properties remains quite good, demonstrating the
effectiveness of the conditional flows in modeling halos and subhalos. We expect that with
more simulated data, the accuracy of the distributions will further improve.

We note that [172] also presented a machine learning-based emulator for the WDM satel-
lite count (Section 3). Given the four simulation parameters (i.e., the WDM mass and
astrophysical parameters), [172] assumes a Gaussian distribution of satellite count and uti-
lizes a fully-connected neural network to predict the mean and standard deviation. Similarly
to the conditional flows, this approach also allows both efficient sampling and likelihood
evaluation and achieves somewhat similar results to the flows. However, in our framework,
we opt to use the flow as it requires fewer assumptions on the truth distributions and thus
can model more complex distributions. As seen in Figure 4.2, some properties display non-
Gaussian features, such as the long tails in the distributions of the halo and central subhalo
stellar mass, central subhalo velocity, and DM concentration. This is especially true when
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Figure 4.3: Top: The satellite stellar mass functions as emulated by NeHOD and from the
DREAMS simulations. The columns show the variations of the mass functions over the
WDM mass and astrophysical parameters. In each column, the corresponding parameter is
divided into four bins with approximately the same number of halos, which are approximately
25,000 and 250 for the emulated and simulated halos, respectively. The color denotes the
average mass functions for the emulated (solid lines) and the simulated (squares) satellite
populations in the corresponding bin. The error bars denote the error in estimating the
average mass functions of the simulations, due to the limited number of samples. Middle:
The standard deviation of the satellite stellar mass functions in. Bottom: The residuals of
the median stellar mass functions between NeHOD and DREAMS.

modeling multi-dimensional distribution, where correlations between halo properties can be
non-Gaussian and complex. For example, we expect the total mass and stellar mass of the
halos and central subhalos to be strongly correlated though this is not shown directly in
Figure 4.2. We further explore these correlations in Appendix B.3.1.

4.4.2 Satellite properties

We now evaluate the properties of the satellite populations generated by the VDM, by
comparing key summary statistics. We divide each parameter into four bins such that
each bin contains approximately the same number of simulations. Because of the prior
distributions in the simulation parameters (as shown in Table 4.1), the bins are distributed
inverse-uniformly in WDM mass and log-uniformly for the astrophysical parameters. Each
bin contains approximately 25,000 and 250 emulated and simulated satellite populations,
respectively. For each bin, we calculate and compare the halo and stellar mass functions
(Section 4.4.2), stellar-to-halo mass relations (Section 4.4.2), concentration-mass relations
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Figure 4.4: The satellite halo mass functions as emulated by NeHOD and from the DREAMS
simulations. Panels are similar to Figure 4.3. The vertical arrows in the first column (WDM
mass) show the half-mode mass Mhm.

(Section 4.4.2), and position and velocity clustering (Section 4.4.2).

Mass functions

The mass functions are among the key observables that have been used to place constraints
on the WDM mass [e.g., 404], [405]. As also discussed in Section 4.4.1 with the abundance
of satellites, lower WDM masses lead to fewer low-mass subhalos in the mass functions due
to free-streaming effects. The satellite stellar and halo mass functions are thus sensitive to
changes in the WDM mass, making them effective tools for constraining DM properties on
these scales. However, baryonic feedback can also disrupt the formation of low-mass satellites
and leads to similar effects in the mass functions [e.g., 121], [406]. It is thus important to
differentiate the effects of DM properties from those of baryonic feedback when interpreting
the mass functions.

We show the satellite stellar and halo mass functions respectively in Figures 4.3 and 4.4.
From left to right, the columns show variations over the WDM mass MWDM, SN specific
wind energy ew, SN wind velocity normalization κw, and BH feedback factor ϵf,high. The top,
middle, and bottom panels show the average, standard deviation, and fractional residuals
between the generated samples and those from DREAMS, respectively, with each color rep-
resenting a different parameter bin. The fractional residuals are defined as the differences
between the average mass functions divided by the DREAMS mass functions. The error
bars denote the standard errors of the simulations due to the limited number of samples. In
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the WDM panels of Figures 4.4, we also include the WDM half-mode mass Mhm as vertical
arrows. The half-mode mass Mhm characterizes the length scale at which the WDM power
spectrum drops by one-half relative to the CDM power spectrum, using the fitting formula
from [47], [63]. For our choice of cosmological parameters (Ωm = 0.301712, h = 0.691), Mhm

follows the scaling relation:

Mhm = 3.64× 108
(
MWDM

3.0 keV

)−3.33

M⊙h
−1. (4.10)

We expect properties such as the WDM mass functions to deviate from CDM below approx-
imately Mhm.

The average trends of the mass functions provided by the DREAMS simulations align
well with theoretical predictions. In the first column of both Figures 4.3 and 4.4, we observe
that decreasing the WDM mass leads to a generally smaller number of low-mass subhalos
and shallower mass functions due to the free-streaming effect. On the other hand, changing
the SN specific wind energy ew and SN wind velocity normalization κw does not significantly
affect the shape of the halo mass functions. The offsets between the bins are mainly due
to differences in the number of subhalos, as shown in Figure 4.2. Increasing either the SN
specific wind energy or wind velocity normalization results in satellites with lower stellar
mass, though the impact of each parameter varies. For example, the effect of SN wind
velocity normalization is more subtle and only becomes significant in more massive satellites,
potentially due to the wind velocity cap, as discussed in Section 4.4.1. Similar to the halo
properties, we find that the BH feedback factor ϵf,high does not significantly affect the mass
functions.

These differences in parameter trends further highlight the complexity of baryonic feed-
back processes in shaping the satellite populations. Accurately modeling these processes
is thus crucial for addressing parameter degeneracy and interpreting the mass functions.
Overall, the VDM can accurately reproduce these trends in both the average and standard
deviations of mass functions. However, there are slight offsets at the 10-15% level between
the generated mass functions and the simulations in both the stellar and halo mass func-
tions. This discrepancy potentially arises because the conditional flows overestimate the
number of satellite subhalos, as illustrated in Figure 4.2. To address this, we investigate
the normalized stellar and halo mass functions and find that the normalized mass functions
generally provide a better match. We present these results and additional analysis in Ap-
pendix B.3.2. Additionally, in both the stellar and halo mass functions, we see that the
VDM tends to under-predict the number of massive satellite subhalos, starting at about
Msub,⋆ ≳ 108.5M⊙h

−1 and Msub,halo ≳ 109.5M⊙h
−1. These differences are generally within
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Figure 4.5: The stellar-to-halo mass relations (SHMR) of satellite halos generated by NeHOD
and extracted from the DREAMS simulations. From the top to bottom panels, we show the
averages, standard deviations, and residuals between the NeHOD samples and simulations of
the SHMR. Each column shows the variations of the SHMR to the WDM mass and astro-
physical parameters, with each color denoting a different bin of the corresponding parameter.
The error bars denote the errors in estimating the average SHMR of the simulations, due to
the limited number of samples. The vertical arrows in the first column (WDM mass) show
the half-mode mass Mhm.

1–2 error bars of the simulations, which also increase significantly towards the high mass
end. This is to be expected, as the number of subhalos satisfying Msub,⋆ ≳ 108.5M⊙h

−1 and
Msub ≳ 109.8M⊙h

−1 constitute only about 6% and 14% of the subhalos in the simulations,
respectively. This rarity also creates challenges for the VDM in learning the distribution of
their properties accurately due to the limited representation of these high-mass subhalos in
the training data.

Stellar-to-halo mass relation

In addition to the mass functions, we would like to test how well the VDM can capture
relationships between the satellite halo and stellar mass. We thus compute the stellar-to-
halo mass relation (SHMR), which is a key summary statistic used in many galaxy formation
studies (e.g., [271], [407], [408], etc.). The SHMR provides insights into the efficiency of star
formation and the impact of feedback processes and thus is sensitive to baryonic prescriptions
of the simulations. Accurate modeling of the SHMR is important for understanding galaxy
evolution and the role of different baryonic processes in shaping satellite populations.

In Figure 4.5, we compare the SHMRs of the NeHOD and DREAMS samples for different
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Figure 4.6: The concentration-mass relations of satellite halos generated by NeHOD and ex-
tracted from the DREAMS simulations. Panels are similar to Figure 4.5.

parameter bins. Similarly to Figures 4.3 and 4.4, we show the average (top), standard
deviation (middle), and fractional residuals (bottom) of the SHMR. As expected, the SHMR
is sensitive to changes in the SN specific wind energy ew and wind velocity normalization
κw, as shown in the second and third columns of Figure 4.5. The latter affects only high-
mass subhalos, possibly because of the cut-off in minimum wind velocity in Equation 4.2
and as also discussed previously. These trends in the SHMR also help explain the shape
of the stellar mass functions in Figure 4.3. Again, we do not see significant impacts of the
BH feedback factor ϵf,high at these mass scales. Though somewhat interestingly, for low-mass
subhalos (Msub,halo ≲ 109M⊙h

−1), increasing the WDM mass MWDM somewhat increases the
subhalo stellar mass. Similar effects of the WDM mass on the baryonic contents of galaxies
have also been observed in previous studies (e.g., [407], [409]). A potential explanation could
be that WDM delays star formation, resulting in a more extended period of gas availability
for star formation. However, investigating these trends further is beyond the scope of this
chapter and is left for future work.

Compared to the mass functions, we see a much better agreement between the average
SHMRs of the NeHOD and DREAMS samples. Deviations from the simulations are typically
at about 1-2%, as observed from the bottom panels of Figure 4.5. Likewise, the standard
deviations of the SHMR are well-recovered by the VDM. Additionally, we do not observe any
significant bias in the SHMR, including in high-mass subhalos. This indicates that the VDM
can learn the SHMR well even given the limited representations of these high-mass subhalos,
contrary to the mass functions in Figures 4.3 and 4.4. We offer a few potential explanations
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for this discrepancy. First, to accurately capture the mass functions, the VDM must learn
the correlations between the mass of all satellite subhalos in a given halo. If the number of
satellite subhalos is high, this can be difficult to learn. In contrast, the SHMR only requires
learning correlations between properties of a single subhalo, particularly the total and stellar
mass, which are easier to capture. Additionally, the strong correlations between the stellar
and halo mass can facilitate learning and result in a better fit with fewer subhalos. Lastly,
as we sample the halo properties using the conditional flows in Section 4.4.1, this can create
a mismatch between the halo populations of the NeHOD and DREAMS samples if the flows
do not capture the halo population perfectly. In the case of the number of subhalos, we see
that this can create a slight offset between the average mass functions of the NeHOD samples
and the simulations. The SHMR might be more invariant to the halo properties such as the
number of subhalos, leading to better agreement in the fit.

Concentration-mass relation

We now test how well the VDM can recover the DM concentrations of satellite subhalos.
The DM concentration describes the internal structure of a halo and is known to correlate
strongly with both the formation time and the environment of the halo [356]–[359]. A key
relation in galaxy formation studies is the concentration-mass relation, which links the DM
concentration to the halo mass.

Using Equation 4.5, we convert Ṽmax to DM concentration csub and calculate the concentration-
mass relations for NeHOD samples and the DREAMS simulations. Figure 4.6 presents the
concentration-mass relations for the same WDM and astrophysical parameters bins. Simi-
larly, as with the SHMR, we show the average, standard deviation, and fractional residual
between the generated samples and simulations. We note that as in the case with the central
subhalo, the distribution of csub is bimodal and strongly correlates with the subhalo stel-
lar mass and SN feedback parameters (i.e., the specific wind energy ew and velocity κw).
However, the bi-modality is much less prominent for the satellite subhalos, possibly due to
lower stellar mass, making average and standard deviation acceptable summaries for the
concentration-mass relations. We present additional results on the DM concentration in
Appendix B.3.3.

We highlight several important trends in the concentration-mass relations. Satellite sub-
halos in simulations with lower WDM mass tend to be slightly less concentrated, as expected
since lower WDM mass leads to a suppression of small-scale structure formation and results
in less dense subhalos. For low-mass subhalos (Msub ≲ 109M⊙h

−1), the concentration re-
mains relatively constant regardless of variations in WDM mass or feedback parameters.
However, for high-mass subhalos, the concentration exhibits significant variability. This is
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Figure 4.7: The CDFs of the pairwise distances. From top to bottom, the rows show the
average CDF, its standard deviation, and the residual between the NeHOD samples and the
simulations. Each column shows the variations of the CDF to the WDM mass and astro-
physical parameters. Each color shows a different parameter bin. The error bars denote the
errors in estimating the CDF of the simulations, due to the limited number of samples.

especially true in the case of the SN specific wind energy ew, where we see the concentrations
of the highest-mass bins (Msub ≈ 1011M⊙h

−1) can differ by 2− 3 dex between high and low
values of ew. We also see smaller but notable effects from the SN wind velocity normalization
κw and the BH feedback factor ϵf,high. However, the simulation data becomes increasingly
noisy at higher masses, as we marginalize over ew, where the DM concentration varies over
a wide range, making it difficult to draw conclusive statements.

In Figure 4.6, the averages and the standard deviations of the concentration-mass relation
predicted by NeHOD generally agree with the simulations. We do not observe any significant
bias in the overall trends, though there are some notable deviations in the average relations
at higher masses in the κw and ϵf,high panels. As mentioned previously, the concentrations of
these high-mass subhalos can vary significantly, resulting in noisier simulation data that can
complicate the learning process and make it challenging to discern any clear trend. Despite
this, the VDM predicts slight variations in the DM concentrations with κw and ϵf,high.

Position and velocity clustering

As discussed in Section 4.3, the NeHOD framework is unique such that the point-cloud ap-
proach allows for more natural modeling of the subhalos phase-space. More importantly,
this eliminates reliance on binning or voxelization and can resolve arbitrary small scales,

138



0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D

F
(s
k
n
n
)

k = 1

DREAMS

Emulator (this work)

0.0

0.2

σ
C

D
F

0 100 200

sknn [kpc h−1]

−0.05
0.00
0.05

R
es

0 100 200

sknn [kpc h−1]
0 100 200

sknn [kpc h−1]
0 100 200

sknn [kpc h−1]

1.8 2.4 3.4 6.1 29.7

mwdm [keV]
0.90 1.81 3.59 7.21 14.40

ew
3.71 5.24 7.41 10.46 14.78

κw
0.03 0.05 0.10 0.20 0.40

εf,high

Figure 4.8: The CDFs of the k-nearest neighbor distance for k = 1. Panels are the same as
Figure 4.7.
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Figure 4.9: The CDFs of the pairwise velocities. Panels are the same with Figure 4.7.
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Figure 4.10: The CDFs of the k-nearest neighbor velocities for k = 1. Panels are the same
with Figure 4.7.

down to the spatial resolution of the simulations. In this section, we examine the clustering
of satellites in this space, which is important for applications such as strong lensing and
cosmological inference using large-scale structures. We thus compute the pairwise distances
in position and velocity space. In addition, we calculate k-nearest neighbor statistics for
each satellite, such as the mean distance and velocity for the k nearest satellites.

We first examine the position clustering. Figures 4.7 and 4.8 show the cumulative dis-
tribution functions (CDFs) of the pairwise distances and the k-nearest neighbor distance,
respectively. From the top to bottom panels, we display the averages, standard deviations,
and residuals between the generated samples and the simulations for the CDFs. Figure 4.8
show the k-nearest neighbor distance for k = 1, though we observe similar performance for
k = 2 and k = 4 (which we show in Appendix B.3.4).

As shown in Figure 4.7, variations in the WDM mass and astrophysical parameters do
not influence the average pairwise distances CDF, though there are notable effects on the
spread. This is likely because the pairwise distance distribution is dominated by large-scale
structure, which is less sensitive to the details of small-scale physics governed by the WDM
mass and astrophysical feedback processes. On the other hand, there are clear variations in
both the average and spread of the CDF in Figure 4.8, which is more sensitive to clustering
at small scales. As expected, increasing the WDM mass MWDM would result in a steeper
CDF (more clustered). Additionally increasing the specific wind energy κw and decreasing
the wind velocity normalization ew both result in a steep distribution, as they both increase
the SN mass-loading factor and result in a more efficient feedback effect.
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In general, we observe that the VDM accurately predicts the above trends in both the
pairwise distances and the k-nearest neighbor distance. The average and standard deviation
of the CDFs are recovered, though the averages often agree slightly better. This indicates
that the VDM can effectively learn the position-space distribution of galaxies. This is sig-
nificant as it demonstrates the potential of NeHOD to capture complex spatial relationships
in cosmological data, enabling more precise predictions of galaxy clustering and improving
our understanding of the underlying physical processes driving structure formation in the
universe.

We now examine the velocity clustering. Figures 4.9 and 4.10 show the averages, standard
deviations, and residuals CDFs of the pairwise velocities and k-nearest neighbor velocities.
As evidenced, the WDM mass and astrophysical parameters have more subtle impacts on
the CDFs of the pairwise velocities and k-nearest neighbor velocities, mainly affecting the
spread of the CDFs.

In the case of the pairwise velocities, the VDM can predict both the average CDFs and
the standard deviations well for each parameter bin. The VDM captures subtle variations in
the CDFs due to changes in the SN wind velocity normalization κw, indicating its sensitivity
to this parameter. However, for the k-nearest neighbor velocities, while the predicted trends
generally align with the simulations, the VDM underestimates the average CDFs at low
velocities by about 5%. This trend is observed across all parameter bins, suggesting a
systematic shift in the k-nearest neighbor velocities towards high velocities. Though small,
this discrepancy suggests that while the VDM effectively captures the general trends in
velocity clustering, it may have limitations in accurately modeling the detailed distribution.
These findings highlight the challenges in modeling velocity clustering, especially at small
scales where various processes and interactions play significant roles. Further refinement of
the VDM, possibly incorporating more detailed physical processes or higher resolution data,
could improve its predictive accuracy. Understanding these velocity distributions is crucial,
as they provide insights into the dynamic state of galaxies and influence various processes
such as accretion and tidal interactions.

4.5 Discussion

4.5.1 Comparison with previous works

Emulators such as NeHOD can considered as non-parametric techniques for modeling the
galaxy-connection simulations. Similar non-parametric, machine learning-based techniques
have also been employed in various aspects of galaxy formation and cosmology [e.g., 250],
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[406], [410], [411]. The NeHOD framework carries a few notable advantages compared to
traditional parametric modeling:

• NeHOD requires fewer assumptions on the distributions of halo and galaxy properties.
This is particularly important when such distribution displays non-Gaussian features
that are difficult to model. For example, the DM concentration of subhalos in our
simulations is bimodal, with this bi-modality correlating non-trivially with the subhalo
stellar mass and the stellar feedback parameters (i.e., ew and κw). NeHOD can capture
these features, as shown in Appendix B.3.1 and B.3.3.

• Both the VDM and the normalizing flows employed in NeHOD can effectively model
high-dimensional distributions. This allows NeHOD to capture the complex relationships
between halo and galaxy properties with few assumptions. For example, traditional
HOD techniques must assume a functional form for the average SHMR and its scatter
to model the stellar and halo mass of subhalos. These assumptions can be further com-
plicated by dependencies on the WDM mass and astrophysical parameters, as shown in
Section 4.4.2. Moreover, traditional methods do not scale well with increasing param-
eter dimensions, as each additional property requires new assumptions. In contrast,
NeHOD learns these complex relationships directly from the data, allowing it to handle
a larger parameter space more efficiently and accurately.

We also highlight the key advantages of NeHOD over past machine learning-based emula-
tors for modeling galaxy-halo connections.

• Existing emulators have employed techniques such as Gaussian Process for emulating
summary statistics like satellite counts and mass functions. In contrast, NeHOD uses a
transformed-based VDM that can model individual satellites, which we then extract
summary statistics as shown in Section 4.4. This capability provides access to lower-
level information that can be leveraged for various applications, such as generating
mock subhalo catalogs.

• As discussed in Section 4.3, we represent satellite subhalos as point clouds. In contrast
to binning and voxelization, point clouds carry more information about the data and
can resolve smaller scales, down to the spatial resolution of the simulations. We see
in Section 4.4.2 that NeHOD can successfully capture the general trends in the position
and velocity clustering, in particular the CDFs of the pairwise separation and the k-
nearest neighbor statistics. Additionally, though not explored in this work, point clouds
facilitate the incorporation of symmetry into the model, which can further enhance its
accuracy and performance in capturing the underlying physical processes.
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• Using VDMs for learning point-cloud data has notable advantages compared to other
generative machine learning models. Compared to GANs, VDMs are more stable and
less prone to mode collapse. They also provide a tractable way to evaluate the likeli-
hood, making them suitable for inference and anomaly detection tasks. Additionally,
VDM is more expressive than VAE and normalizing flows. Compared to normalizing
flows, VDMs also scale better with high-dimensional data.

4.5.2 Current limitations and future outlook

We now discuss the current limitations and future prospects of the NeHOD framework.

• Although our framework can recover the general trends in the simulations, it tends
to struggle at the extreme values. In particular, as shown in Appendix B.3.2 and
Figures 4.3 and 4.4, the model tends to under-predict the number of massive subhalos
in the stellar and halo subhalo mass functions. This issue likely arises from the rarity of
these subhalos and the limited number of training simulations available. We anticipate
that this limitation will be mitigated as we incorporate more simulations into our
training dataset.

• In Section 4.4.2, we compare the clustering in position and velocity space between the
NeHOD-generated samples and the simulations by computing the pairwise separations
and k-nearest neighbor statistics. The position clustering is well-recovered; however,
we observe that the distributions of the k-nearest neighbor velocities predicted by
NeHOD are slightly shifted towards the high velocities. Understanding the local velocity
distributions is important to capture physical processes such as accretion and tidal
interactions. In future work, we will focus on refining the model to correct this velocity
shift by incorporating additional velocity constraints and enhancing the training data
with more diverse simulation scenarios.

• In this work, our model is conditioned on the properties of the central subhalo of the
considered halo from the hydrodynamic simulation. Ideally, we would like to condi-
tion our model on the properties of the central subhalo of the corresponding N-body
simulation. We note that in this case, the positions of the halos in the N-body and
hydrodynamic simulations may be different, so our model should also predict the dis-
placement vector. We leave this for future work.

• In this work, we have trained our model with halos whose mass lies in a relatively small
range. It would be good to train the models on halos with much wider mass variations
to fully exploit our method’s capabilities.
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• Although we apply data augmentation techniques to incorporate SE(3) symmetry, such
as rotational equivariance, during training, our model does not explicitly impose these
symmetries. It is expected that building such symmetries into our model may improve
its performance.

• In this work, the flows model the joint distribution of the halo and central subhalo
properties. Another interesting avenue for exploration is using a hierarchical normal-
izing flows approach, similar to what is described in [218]. Specifically, we can employ
one flow to model the conditional distribution of halo properties given the simula-
tion parameters, and another to model the conditional distribution of central subhalo
properties given the halo properties and simulation parameters. This can be helpful
for applications in which we already have access to the halo properties but not the
subhalos, e.g., “painting” subhalos onto existing halos in N-body simulations.

4.6 Conclusion

In this work, we develop an emulator for Milky Way-mass halos and their subhalos using nor-
malizing flows and variational diffusion models. Our framework, NeHOD, is hierarchical: the
normalizing flows capture the conditional distribution of halo and central subhalo properties
given the simulation parameters. The diffusion models then learn the properties of satellite
subhalos given the halo properties and simulation parameters. This approach allows us to
capture the complex dependencies between different levels of structure in the simulations. We
represent satellite subhalos of each simulation as a point cloud, which eliminates the need for
binning and voxelization and can capture simulation details at extremely fine spatial scales.
To model this point cloud, we employ a transformer-based architecture in the diffusion mod-
els, which can effectively analyze the intricate spatial relationships and high-dimensional
characteristics of the data. This architecture leverages self-attention mechanisms to dynam-
ically focus on different parts of the point cloud, improving the model’s ability to learn and
represent complex structures.

We train the NeHOD framework on the Milky Way WDM simulation suite of the DREAMS
project, which includes 1024 simulations with varying WDM mass and astrophysical param-
eters, and summarize our main results below:

• Using the conditional flows, we sample the halo and central subhalo properties given
the WDM mass and astrophysical parameters, and compare the generated samples
with the simulations in Section 4.4.1. We show that the flows can capture the median,
16th, and 84th percentiles of the distributions of these properties and their complex
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dependencies on the simulation parameters. There are some slight discrepancies in the
84th percentiles of the satellite count and the concentration, though we expect this to
improve with more training simulations.

• For each halo and central subhalo generated by the flows, we use the VDM to gener-
ate its satellite populations, including the positions, velocities, halo and stellar mass,
and DM concentration of each satellite. In Section 4.4.2, we extract key summary
statistics, including the stellar and halo mass functions, stellar-to-halo mass relations,
concentration-mass relations, and spatial and velocity clustering. We demonstrate that
the VDM can generally capture these summary statistics. We observe small disagree-
ments in the outer bins of the mass functions, which could be attributed to the limited
number of high-mass satellites in the training data. Additionally, there is a slight shift
towards higher velocities in the k-nearest neighbor velocity distributions, although the
overall trends remain consistent. In future work, we will focus on refining the model
architecture, incorporating additional velocity constraints, and improving the diversity
of the training simulations to enhance the model’s accuracy and robustness.

Overall, the NeHOD framework represents a promising and exciting next step in the non-
parametric modeling of galaxy-halo connections. Our framework can model individual satel-
lites and effectively capture complex dependencies between halo and galaxy properties and
the simulation parameters, while requiring minimal assumptions and scaling well with high-
dimensional data. We envision various applications for NeHOD, including generating realistic
mock catalogs for large-scale structure and strong lensing studies, cosmological parameter
inference, and outlier detection. Additionally, NeHOD can be used to explore various DM
models and astrophysical scenarios, offering valuable insights into the underlying physics of
our universe.
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Chapter 5

Synthetic Gaia surveys of
Milky-Way-mass galaxies

Disclaimer

The content of this chapter was published in The Astrophysical Journal Volume 966, Num-
ber 1, Page 108 in April 2024 [174]. The authors are Tri Nguyen, Xiaowei Ou, Nondh
Panithanpaisal, Nora Shipp, Lina Necib, Robyn Sanderson, and Andrew Wetzel. Authors
Nguyen and Ou contribute equally to this work.

Abstract

The third data release (DR3) of Gaia has provided a five-fold increase in the number of
radial velocity measurements of stars, as well as a stark improvement in parallax and proper
motion measurements. To help with studies that seek to test models and interpret Gaia
DR3, we present nine Gaia synthetic surveys, based on three solar positions in three Milky
Way mass galaxies of the Latte suite of the Fire-2 cosmological simulations. These synthetic
surveys match the selection function, radial velocity measurements, and photometry of Gaia
DR3, adapting the code base Ananke, previously used to match the Gaia DR2 release in
Sanderson et al. 2020. The synthetic surveys are publicly available and can be found
at http://ananke.hub.yt/. Similarly to the previous release of Ananke, these surveys are
based on cosmological simulations and thus able to model non-equilibrium dynamical effects,
making them a useful tool in testing and interpreting Gaia DR3.

The Gaia mission [412] has revolutionized the study of our Galaxy, the Milky Way.
The second data release [DR2; 413] provided positions, proper motions, and parallaxes for
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over one billion stars, including the first kinematic measurements of many stars across the
Galaxy. In addition, DR2 included radial velocities for ∼ 7 million stars, making it the
largest six-dimensional kinematic catalog at the time. This data has enabled the discovery
of new merging events, such as the Gaia Sausage Enceladus [69], [414], and the Kraken
[415] (see [106] for a review), the construction of a new 3D dust map of the Milky Way
[416], a detailed study of open clusters to unveil the history of the Galactic disk [417], an
accurate measurement of the circular velocity of the Galaxy [418], and detailed studies of
the fine resonances of the Milky Way disk [see e.g. 419]. The third data release [DR3; 420],
[421] builds upon DR2, incorporating 12 months of additional observations, and significantly
increasing the catalog of stars with 6D phase space measurements, including radial velocities,
to ∼ 33 million stars, as well as reducing uncertainties on and increasing the size of the sample
of stars with full astrometry. These data have further enabled a deeper understanding of the
dynamics of the Galaxy, for example by extending measurements of the circular velocity of
the Milky Way to larger distances [52].

Synthetic catalogs and mock observations generated from cosmological simulations pro-
vide a valuable comparison to these rich observations of our own Galaxy. They enable tests
of analysis tools and of our ability to recover true properties of our Galaxy from observa-
tions. [173], hereafter S20, produced nine Gaia DR2 synthetic surveys of the Latte suite
of simulations [155], [422], using the code Ananke. Such synthetic surveys have been used
in many studies involving the dynamics of the Milky Way, for example to estimate the de-
tectability of simulated stellar streams [423], as a training set for a neural network that built
the first accreted star catalog in the Milky Way [65], leading to a discovery of a prograde
local structure Nyx [67], as a framework to test the ability of unsupervised machine learning
techniques to reproduce the stellar phase space density [424], and as a link to connect the
formation history and the components of the Milky Way [425]. In this work, we present
synthetic Gaia DR3 surveys based on the same suite of Latte simulations.

The Latte simulations first introduced in [422] are baryonic zoom-in simulations of Milky
Way analogs from the Feedback in Realistic Environments (Fire) project [155], [426]. With
an initial stellar particle mass resolution of 7070M⊙, the Latte simulations resolve stellar
populations down to the masses of individual star clusters. They self-consistently model
baryonic processes, including star formation and the metal-enrichment of gas, which is es-
sential for accurately calculating the extinction of observed stars. At the same time, they
incorporate the effects of galaxy formation in a cosmological context, including a realistic
history of mergers and accretion events.

Ananke is a framework for producing synthetic surveys based on the Fire simulations,
first presented by S20. Such work is based on Galaxia [427], which generated synthetic
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surveys of the Milky Way based on kinematic distributions and N-body simulations. The
framework entails sampling a population of individual stars from simulated star particles,
assigning them realistic physical properties, and applying a simple error model to produce
mock observations. Ananke has been applied to produce mock observations of other surveys
from a range of simulated data sets, such as APOGEE [428], Dark Energy Survey [DES; 62],
[429], and the Rubin Observatory Legacy Survey of Space and Time [LSST; 113] in [423].

In this chapter, we use Ananke to produce synthetic Gaia DR3 surveys of three Milky Way
analogs from the Latte simulation suite, focusing on the updates to the surveys compared to
S20. This chapter is organized as follows: In Section 5.1 we review the simulations and mock
catalogs used in this work, in Section 5.2 we discuss the synthetic Gaia DR3 observations, and
in Section 5.3, we present the resulting synthetic surveys, comparing them with those from
Gaia DR2. We list the columns of the public release and their definitions in Section 5.3.3,
and discuss the use cases and limitations of these synthetic surveys in Section 5.4.

5.1 Simulations and Mock Catalogs

In this section, we outline the different steps to build both a mock catalog and a synthetic
survey. We first seek to define these two terms. Generating a mock catalog consists of
spawning stars from star particles in the initial simulations. This process is independent of
the target survey. The star particles in simulations typically have masses orders of magnitude
greater than a single solar mass, depending on the initial simulation resolution. For the
Fire simulations, the star particles have a mass ∼ 7000M⊙. Generating a synthetic survey
involves incorporating the specifics of a particular survey into the catalog of simulated stars,
including, for example, photometric passbands, measurement errors, dust extinction, and
the observer’s location.

In order to build the new synthetic Ananke DR3 survey, we use the same three zoom-in
simulations of Milky Way-mass galaxies from the Latte suite of Fire-2 simulations as in
S20 (m12i, m12f, m12m)1. The choice of these specific simulations is motivated by [422],
[430], which have shown that these simulated galaxies Specifically, studies have shown that
these simulated galaxies have galactic bar morphology [431], [432], stellar thin and thick disk
morphology [433], gas kinematics [434], etc., that are broadly similar to the Milky Way. It is
impossible, however, for any simulated galaxy to fully reproduce all properties of the Milky
Way, and thus, we caution those using the synthetic surveys to be aware of the differences
and refer to the literature mentioned above for details.

1For a brief overview of the simulation and the simulated galaxies used, we refer the reader to Section 2
of S20.
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Table 5.1: The coordinates of each LSR as shown in Table 4 of S20.

xLSR yLSR zLSR vx,LSR vy,LSR vz,LSR vR,LSR vZ,LSR vϕ,LSR

label (kpc) (kpc) (kpc) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s)
m12i-lsr-0 0.0 8.2 0.0 224.7092 −20.3801 3.8954 −17.8 −3.9 224.4

m12i-lsr-1 −7.1014 −4.1 0.0 −80.4269 191.7240 1.5039 −24.4 −1.5 210.9

m12i-lsr-2 7.1014 −4.1 0.0 −87.2735 −186.8567 −9.4608 22.1 9.5 206.5

m12f-lsr-0 0.0 8.2 0.0 226.1849 14.3773 −4.8906 14.9 4.9 227.9

m12f-lsr-1 −7.1014 −4.1 0.0 −114.0351 208.7267 5.0635 −3.4 −5.1 244.3

m12f-lsr-2 7.1014 −4.1 0.0 −118.1430 −187.7631 −3.8905 −11.4 3.9 227.4

m12m-lsr-0 0.0 8.2 0.0 254.9187 16.7901 1.9648 16.2 −2.0 254.7

m12m-lsr-1 −7.1014 −4.1 0.0 −128.2480 221.1489 5.8506 2.4 −5.9 252.7

m12m-lsr-2 7.1014 −4.1 0.0 −106.6203 −232.2056 −6.4185 15.4 6.4 265.3

5.1.1 Locations of the Sun

To build a synthetic survey, we must assume the location of the observer, which we define
as the solar position in the simulation. The procedure we adopt here for the coordinate
transformation and the definition of the local standards of rest (LSRs) remain unchanged
from S20, which we briefly summarize here. We assume that the Sun is at R⊙ = 8.2 kpc [435]
in the three simulations2, and define the principle axes based on the moment of inertia tensor
of the youngest stars (with ages < 1 Gyr) located within R⊙. We note that it is possible to
scale the solar position differently for each simulation based on disk scale radii, local density,
or the local circular velocity. As pointed out in S20, however, doing so introduces extra
complexity for users to accommodate different solar radii for different simulations, and the
variation in the results is not significant compared to changing the azimuth position of the
Sun.

The three positions of the Sun in each galaxy are chosen to be evenly distributed in
azimuthal angle to allow different view angles of axisymmetric features such as the bar and
spiral arms, and at vertical distance Z⊙ = 0 kpc. We define the velocity of LSR as the
median velocity of the star particles within 200 pc of the solar position. We summarize the
positions and velocities of the LSRs in Table 5.1, which matches Table 4 of S20.

2This is an appropriate approximation given that these simulations have comparable scale heights and
radii to the Milky Way.
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5.1.2 Building a mock catalog

In this section, we discuss the procedure to build a mock catalog by converting the star
particles from the Fire-2 simulations into synthetic stars, leaving the construction of the
synthetic survey in which we add the correct properties to these synthetic stars as drawn by
the survey to Section 5.2.

Each star particle, with a mass M∗ ∼ 7070M⊙, is assumed to represent a population
of synthetic stars with a single age and metallicity. To generate such mock catalogs, S20
used the Galaxia code [427]. In this work, we adopt the same mock catalogs as in S20,
modifying the stellar isochrones used in the generation of stars to the updated Gaia DR3
isochrones. This modification is performed at Step 2 below, while keeping the masses and
the phase-space positions the same as in S20 in Step 1 & 3.

To build a mock catalog, we perform the following three steps. We will leave a detailed
description of the DR3 isochrones to Section 5.2.1.

1. First, we sample the stellar masses of synthetic stars using the initial mass function
(IMF) in [436] until the total mass equals the mass of the particle.3

2. Select the isochrone model that is closest in age and metallicity to the parent particle
and obtain stellar properties and Gaia DR3 passband magnitudes by interpolating
across initial stellar mass. Only stars with estimated unextincted apparent Gaia DR2/3
magnitudes of 3 < G < 21 are kept in the catalog, before applying the full selection
function in Section 5.2.4.

3. Assign the positions in phase space to each star by sampling from a parabolic or
Epanechikov density kernel [437] centered on the parent particle. The density kernel
generates smooth phase space distributions from the discrete individual parent parti-
cles. We then sample the position and velocities of the synthetic stars from the smooth
distribution. The smoothing kernel is computed from the 6-dimensional phase space
coordinates using the EnLink code [438], [439]. Similarly to S20, we use the nearest
8 neighboring star particles to compute the kernel size. The kernel size taken with
respect to two independent smoothing lengths, one for the distances, and one for the
velocities. The size is proportional to the geometric mean of the smoothing lengths
along each of the three-dimensions. To preserve the dynamic ranges of the different
stellar populations and avoiding the oversmoothing of structures from different stellar

3The number of stars sampled is required to be an integer, while the fraction of the IMF within a subrange
of mass is not. Some rounding is assumed, and given that the highest possible stellar mass is still two orders
of magnitude lower than the mass of the star particle, in this work, as in S20, we assume that this is a valid
approach with a small fractional error.

151



populations, a kernel is computed for in situ stars, which are defined as those formed
within 30 physical kpc of the main galaxy, while a separate kernel is computed for
stars formed outside of this radius. In addition, we subdivide in situ stars into eight
age bins corresponding to the populations of the Besançon Milky Way model (Table
2.1 of [440]) and compute a different kernel for each of them. For full details on the
phase space smoothing procedure, we refer readers to Section 4.3 of S20. This kernel is
not optimized for small-scale structures, and in some cases may introduce unphysical
features into substructures such as low mass satellite galaxies and stellar streams. For
example, [423] adopted a different kernel (albeit also based on the Epanechikov kernel)
but with the 16 neighboring star particles and a kernel size that is inversely propor-
tional to the cube-root of the local density around each parent particle, to properly
smooth out stellar streams.

5.2 Synthetic Surveys

We describe the procedure used to produce the Ananke DR3 synthetic surveys. As men-
tioned in Section 5.1, we use the mock catalogs presented in S20, and apply updated DR3
isochrones (Section 5.2.1), extinction modeling (Section 5.2.2), observational uncertainty
modeling (Section 5.2.3), and selection function (Section 5.2.4).

5.2.1 Isochrones

We use updated Gaia DR3 passbands and isochrones from Padova CMD v3.64 to generate
updated intrinsic Gaia DR3 magnitudes for stars in the mock catalogs in the G, GBP , and
GRP bands. The photometric system follows the revised and expanded library described
in [441], adopting a revised spectral energy distribution (SED) for Vega from [442]. Two
assumptions are made while adopting the isochrones. First, circumstellar dust is ignored as
it mostly affects the bright end of the isochrones, where the grid is the sparsest. Therefore,
linear interpolation with the circumstellar dust included creates unphysical features when
stars fall between these sparse grid points. Second, we remove the isochrone grid points
representing white dwarfs, as the transition from the tip of the red giant branch to the white
dwarf is not modeled by Galaxia. Since Galaxia takes the edge value for magnitudes
when a star is outside of the isochrone grid, stars beyond the last non-white dwarf grid point
are all assigned the same magnitudes, creating artificial overdensities at the tip of the giant
branches in the final sample. We expect these stars to be potential white dwarfs and flag

4http://stev.oapd.inaf.it/cgi-bin/cmd
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all affected stars in the final synthetic survey as flag_wd and recommend removing stars
with flag_wd set to 1 before conducting analysis. We expect a minimal effect on the overall
completeness of the sample as a result of this treatment. As shown by [443], 359, 073 white
dwarfs are confidently identified in Gaia DR3, comprising less than 0.05% of the full Gaia
sample. Even accounting for the fact that the white dwarf catalog presented by [443] is less
complete in crowded regions near the galactic plane, the total white dwarf count in the actual
Gaia catalog is expected to be a tiny fraction of the full sample. Thus, for the synthetic
survey, the overall loss in stellar count and impact on sample completeness are expected to
be minimal as a result of this cut.

5.2.2 Extinction Modeling

We adopt a self-consistent extinction model similar to Section 5.1 of S20, which we briefly
describe below. The Fire-2 simulations do not resolve the creation and destruction of dust
grains, so we assume the line-of-sight extinction by dust traces the metal-enriched gas in
the simulations. We calculate the reddening B − V of each star using the metal-weighted
column density of hydrogen along the line of sight between the star and the solar position.
The extinction is therefore calculated self-consistently, using the gas and metal distributions
of each individual simulated galaxy, and thus accurately captures the spatial structures of
the galaxy (see Figure 12 of S20 for the simulated galaxy dust map). The extinction at 550
nm A0 is calculated using the standard relation, A0 = 3.1E(B − V ) [444]–[446], and then
converted into extinction in the Gaia DR3 passbands.

Using the coefficient A0 from the Ananke DR2 mock catalogs, as described in [173], we
re-calculate the extinction coefficients AG,BP,RP in the Gaia DR3 passbands. We adopt the
extinction conversion relation provided by the Gaia collaboration as part of the auxiliary data
for eDR3 to compute AG,RP,BP as functions of A0 and the unextincted color (GBP −GRP ).
5. Specifically, we compute AG,BP,RP = kG,BP,RP A0, where kG,BP,RP is a function of A0

and (GBP − GRP ). Using the extinction coefficients (AG,BP,RP ), we convert the intrinsic
magnitudes interpolated from the isochrones into the extincted intrinsic magnitudes. These
extincted intrinsic magnitudes are combined with the distance modulus to calculate the true
extincted apparent magnitudes.

Following the recommendation from the Gaia collaboration, we do not directly apply the
extinction law outside of the applicable color range, −0.06 < GBP − GRP < 2.5. However,
excluding stars outside of range introduces an unnatural cut on the GBP −GRP distribution.

5The relationship and coefficients can be downloaded from https://www.cosmos.esa.int/web/gaia/
edr3-extinction-law

153

https://www.cosmos.esa.int/web/gaia/edr3-extinction-law
https://www.cosmos.esa.int/web/gaia/edr3-extinction-law


We therefore extrapolate their Gaia passbands extinction coefficients using the nearest GBP−
GRP extreme value (i.e. −0.06 or 2.5).

The extinction law is also limited to extinction coefficients (A0) in the range from 0.01

to 20. On the low end, since the extinction law returns finite positive values for kG,BP,RP ,
the resulting AG,BP,RP always converge to 0 as A0 goes to 0 and thus the extinction law
naturally extrapolates to A0 = 0. On the high end, unlike with the color, we do not adopt
the extreme value (i.e., 20) for A0 or attempt to approximate the extinction law outside of
the applicable A0 range. Stars with A0 > 20 are not included in the final synthetic survey
for two reasons. Firstly, A0 is implicitly related to the distance of the star as the extinction
arises from the dust between the star and the observer. If we were to adopt the extreme
value for the extinction coefficient for a given star, the reported extincted photometry in the
final synthetic survey would be inconsistent with the reported parallax and the underlying
dust map. Secondly, the extincted apparent magnitudes for the majority of the stars with
A0 > 20 are expected to be significantly fainter than the observational limit of the synthetic
survey (Gobs < 21, as described in Section 5.2.4). We therefore do not expect the cut on
A0 > 20 to have a significant impact on the completeness of the final synthetic survey.

5.2.3 Error Modeling

We construct the photometric error model from the fit Gaia DR3 photometric uncertainties
tool provided by Gaia DPAC (Data Processing and Analysis Consortium)6, based on data
originally described in [184]. We adopt the astrometric measurement error models from the
PyGaia package7. The spectroscopic error model is obtained from private communication
with the Gaia collaboration as a function of Teff and GRVS. We calculate the errors and the
error-convolved quantities by randomly sampling from a one-dimensional Gaussian centered
on the truth values. In the final catalog, we report both the truth values and the error-
convolved values.

Photometric Error

As mentioned, we adopt the photometric uncertainties tool from Gaia DPAC to calculate
the errors in (G, GBP , GRP ). The tool models the median behavior of the real Gaia (e)DR3
photometric uncertainties in the three Gaia passbands via cubic B-spline fitting. The errors
in each photometric band are calculated as a function of the band extincted magnitudes.
Because the B-spline is restricted to a range [4, 21] in all three bands, we extrapolate the

6https://www.cosmos.esa.int/web/gaia/fitted-dr3-photometric-uncertainties-tool
7https://github.com/agabrown/PyGaia
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Figure 5.1: Logarithm of the expected uncertainties for sources with 200(20) observations in
G(GBP/GRP ).

Table 5.2: Coefficients of the astrometric errors in Equation 5.1.

ϖ α⋆ δ µα⋆ µδ

1.0 0.80 0.70 1.03 0.89

photometric uncertainties of each band using the nearest extreme values (i.e. 4 or 21) In
addition, the tool is capable of scaling the fit B-splines with different numbers of observa-
tions. We take, for simplicity, the default number of observations (i.e., 200 for G and 20
for GBP/GRP ) for all stars in our catalogs. We show in Figure 5.1 the errors as a function
of extincted magnitude and reproduce Figure 14 of [184]. We note that this error modeling
does not take into account systematic effects originating from the properties of the source,
e.g., position and color.

Astrometric Error

PyGaia models the astrometric errors (i.e. parallax, position, and proper motion) as solely
dependent on the apparent G magnitude. The position and proper motion errors are returned
in the ICRS frame, i.e. in RA and Dec. To obtain the error-convolved positions and proper
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Table 5.3: Coefficients for color transformation from G−GRP to GRV S −GRP .

a0 a1 a2 a3 G−GRP range
−0.0397−0.2852−0.0330−0.0867 [−0.15, 1.2]

−4.061810.0187−9.0532 2.6089 [1.2, 1.7]

Table 5.4: Coefficients for σRV as a function of GRVS

σfloor a b GRVS,0 Applicable range
0.12 0.9 6.0 14.0 Teff < 6500 K
0.4 0.8 20.0 12.75 Teff > 7000 K

motions in Galactic coordinates (ℓ, b), we calculate the error-convolved ICRS coordinates
and apply a coordinate transformation. Similarly to Gaia, we do not report the error in the
Galactic coordinates. The astrometric errors, σX, for X ∈ (α⋆, δ, µα⋆, µδ), can be summarized
as follows:

σX = cXσϖ, σϖ =
√
40 + 800z + 30z2 (5.1)

log10 z = 0.4(max[G,Gbright]− 15.0), (5.2)

where σϖ is the parallax error, and Gbright = 13. The coefficients cX are reported in Table 5.2.
Because PyGaia returns the error in RA cos(Dec) σα⋆, we convert σα⋆ to the RA error σα

via analytical error propagation.

Spectroscopic Error

For spectroscopic measurements, Gaia DR3 provides radial velocity spectra (with magnitude
GRVS), object classifications, and measured stellar parameters, such as effective temperature,
surface gravity, extinction coefficient, and metallicity, in addition to radial velocities. Our
synthetic survey only provides error-convolved radial velocity measurements. For DR3 radial
velocities, we first use relationships provided by [181] to obtain true Gaia RVS magnitude,
GRV S, from G and GRP . To do so, we use

GRV S −GRP = a0 + a1(G−GRP )

+ a2(G−GRP )
2 + a3(G−GRP )

3,
(5.3)

where the coefficients are provided in Table 5.3. As for the extinction law extrapolation, we
approximate the conversion for stars outside of the applicable range (−0.15 < G−GRP < 1.7),
using the coefficients corresponding to the nearest G − GRP extreme value (i.e., −0.15 or
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Table 5.5: Coefficients for f as a function of GRVS

a b c Applicable range
0.318 0.3884 -0.02778 GRVS < 12 mag
16.554 -2.4899 0.09933 GRVS > 12 mag

1.7).
The radial velocity uncertainty is fit as a function of GRVS,

σRV = σfloor + b exp (a(GRVS −GRVS,0)). (5.4)

The coefficients a, b are fit independently for cooler (Teff < 6750 K) and warmer (Teff >

6750 K) stars (Table 5.4), obtained from private communication with the Gaia Collaboration
prior to the official release of the third data release. Warmer stars generally have a larger
error in radial velocities. While the error modeling for warm stars, as shown in Figure 5.2,
appears to greatly exceed 10 km s−1at the very faint end (GRVS ∼ 14), we note that only warm
stars with GRVS < 12 are selected to have a measured radial velocity in the final catalog,
as described in more detail in Section 5.2.4. The maximum radial velocity measurement
uncertainties are thus ∼ 6 km/s for cool stars and ∼ 11 km/s for warm stars.

During the preparation of this manuscript, we were made aware of a more detailed Gaia
DR3 radial velocity error model based on the derived stellar population.8 Since our synthetic
survey does not include the stellar evolutionary stage, we opt for the simple recipe that
assigns errors based on the effective temperature of the stars. The coefficients provided are
not identical to those adopted here, but a comparison between the two indicates that our
adopted error modeling is roughly consistent with those from the more detailed model. For
the most part, our error modeling falls on the conservative side of the latest model.

[182] noted that during scientific validation of the published DR3 radial velocities, the
above uncertainties were underestimated and thus require an additional multiplicative cor-
rection factor f . This multiplicative factor (f) is a function of GRVS,

f = a+ bGRVS + cG2
RVS, (5.5)

with coefficients given in Table 5.5. The velocity uncertainties should therefore be f × σVR
.

We note that the relation is only valid for GRVS > 8. For GRVS < 8, we still apply the
correction function but assume GRVS = 8. The correction factor is not applied directly to
the uncertainties in the final Gaia DR3 dataset. Following that practice, we calculate this

8https://www.cosmos.esa.int/web/gaia/science-performance
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Figure 5.2: Comparison between the radial velocity error models adopted in this study
(solid line) and those provided by the Gaia collaboration with the official release of DR3
(dashed/dotted lines). Blue dashed lines represent error estimates for dwarfs, whereas red
dotted lines represent error estimates for giants. Our estimate for cooler stars (Teff < 6750 K)
is largely consistent with the estimates for giants and, similarly, our estimate for warmer stars
(Teff > 6750 K) with the estimates for dwarfs.
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correction factor and provide it separately in the final synthetic survey.

5.2.4 Selection Function and Data Release

With error-convolved values computed, we next apply the selection function to produce the
final synthetic surveys. We apply two selection functions, one for selecting stars that are
detectable in all three photometric bands and another for selecting stars with reported radial
velocity.

We apply a G-band magnitude cut to select stars with reported photometry in each
catalog. We note that the cuts are applied on the error-convolved observed magnitudes. We
select the sample of stars with reported photometry via a cut on the observed G magnitude,
3 < Gobs < 21. This is the same selection cut applied in S20.

To select the sample of stars with reported radial velocities, we make a cut on effective
temperature, Teff and GRVS. S20 reported radial velocity measurements for bright stars with
GRVS < 14 and effective temperature of 3550 < Teff < 6900 K. We extend the radial velocity
selection to 3600 < Teff < 14500 K for bright stars (GRVS ≤ 12) and 3100 < Teff < 6750 K

for fainter stars (12 < GRVS < 14), in order to match the temperature range reported in
[182], reflecting the improvements from Gaia DR2 to DR3.

We bin the stars in each catalog by their LSR-centric distance into 10 radial slices.
Table 5.6 shows the total number of stars, as well as the number of stars with radial velocity
measurements, in each radial slice and catalog.
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Table 5.6: Number of stars in the Ananke DR3 surveys of the Latte MW-mass suite of FIRE simulations.

File Information Number of stars

dmin dmax m12i m12i with radial velocity

index [kpc] [kpc] lsr-0 lsr-1 lsr-2 lsr-0 lsr-1 lsr-2

0 0 3 316, 095, 707 357, 883, 822 392, 451, 308 15, 646, 316 18, 615, 906 20, 116, 160

1 3 4.25 290, 904, 524 299, 505, 191 302, 616, 084 5, 468, 516 5, 571, 554 5, 555, 894

2 4.25 5.5 401, 479, 587 420, 118, 792 371, 841, 356 7, 015, 408 7, 442, 827 6, 477, 804

3 5.5 6.5 400, 845, 878 451, 022, 716 362, 386, 254 6, 624, 552 7, 557, 280 6, 134, 119

4 6.5 7.25 365, 130, 175 436, 233, 406 320, 076, 487 6, 257, 625 7, 157, 334 5, 952, 305

5 7.25 8 418, 818, 886 526, 227, 703 362, 084, 404 8, 324, 411 9, 089, 852 8, 126, 577

6 8 9 507, 799, 164 823, 576, 930 435, 396, 583 11, 999, 243 14, 032, 870 11, 840, 268

7 9 10 320, 749, 442 382, 157, 501 269, 564, 468 8, 105, 168 8, 450, 961 7, 978, 302

8 10 15 510, 906, 338 604, 188, 984 455, 152, 086 15, 677, 739 15, 913, 215 15, 528, 607

9 15 300 149, 436, 821 137, 907, 134 133, 845, 033 11, 557, 428 9, 579, 237 10, 301, 140

Total 3, 682, 166, 522 4, 438, 822, 179 3, 405, 414, 063 96, 676, 406 103, 411, 036 98, 011, 176

DR2 Total 3, 215, 565, 725 3, 754, 501, 977 2, 932, 162, 112 38, 183, 839 44, 583, 007 39, 191, 496
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Table 5.6: (continued)

File Information Number of stars

dmin dmax m12f m12f with radial velocity

index [kpc] [kpc] lsr-0 lsr-1 lsr-2 lsr-0 lsr-1 lsr-2

0 0 3 424, 006, 559 608, 837, 889 547, 265, 888 20, 533, 729 31, 377, 347 26, 192, 624

1 3 4.25 399, 657, 145 422, 500, 160 434, 830, 068 7, 581, 674 7, 891, 448 8, 082, 358

2 4.25 5.5 577, 804, 699 526, 740, 558 506, 589, 056 11, 046, 401 9, 879, 024 9, 407, 981

3 5.5 6.5 606, 129, 500 519, 988, 527 484, 524, 451 11, 670, 711 9, 207, 476 8, 932, 140

4 6.5 7.25 590, 389, 532 475, 891, 126 438, 928, 174 11, 559, 183 9, 064, 200 8, 673, 940

5 7.25 8 719, 850, 219 590, 388, 390 532, 925, 594 14, 469, 396 13, 004, 977 11, 436, 403

6 8 9 883, 408, 757 747, 272, 883 671, 353, 993 18, 926, 746 19, 388, 311 15, 961, 569

7 9 10 554, 034, 772 416, 802, 559 401, 635, 820 11, 909, 320 11, 913, 256 10, 193, 449

8 10 15 1, 099, 412, 587 719, 518, 336 772, 769, 865 21, 025, 371 20, 362, 945 17, 498, 773

9 15 300 536, 944, 872 389, 292, 686 500, 404, 364 18, 697, 669 16, 215, 180 14, 172, 354

Total 6, 391, 638, 642 5, 417, 233, 114 5, 291, 227, 273 147, 420, 200 148, 304, 164 130, 551, 591

DR2 Total 5, 851, 407, 276 4, 706, 540, 756 4, 678, 842, 172 62, 673, 864 61, 393, 185 57, 808, 862
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Table 5.6: (continued)

File Information Number of stars

dmin dmax m12m m12m with radial velocity

index [kpc] [kpc] lsr-0 lsr-1 lsr-2 lsr-0 lsr-1 lsr-2

0 0 3 984, 809, 951 1, 073, 978, 992 910, 734, 608 47, 393, 328 54, 240, 600 43, 119, 764

1 3 4.25 728, 265, 777 798, 150, 011 686, 462, 276 12, 171, 491 13, 592, 305 11, 429, 030

2 4.25 5.5 814, 806, 044 863, 540, 944 796, 780, 191 12, 767, 460 13, 727, 680 12, 465, 994

3 5.5 6.5 685, 954, 361 723, 050, 215 689, 642, 062 10, 229, 572 10, 706, 710 9, 751, 780

4 6.5 7.25 528, 436, 556 558, 951, 415 531, 816, 221 7, 774, 165 7, 855, 599 7, 300, 150

5 7.25 8 523, 399, 484 551, 230, 847 532, 527, 598 7, 611, 444 7, 589, 807 7, 471, 248

6 8 9 2, 003, 093, 353 639, 727, 826 617, 194, 075 17, 707, 039 9, 881, 911 10, 009, 474

7 9 10 422, 716, 282 458, 827, 031 432, 726, 049 8, 073, 088 8, 469, 156 8, 438, 569

8 10 15 835, 507, 954 1, 267, 343, 926 1, 192, 679, 933 23, 167, 408 26, 128, 219 26, 126, 666

9 15 300 261, 056, 409 268, 075, 320 244, 124, 886 20, 074, 951 20, 492, 819 19, 063, 333

Total 7, 788, 046, 171 7, 202, 876, 527 6, 634, 687, 899 166, 969, 946 172, 684, 806 155, 176, 008

DR2 Total 5, 701, 759, 381 6, 415, 674, 623 5, 516, 835, 110 84, 931, 532 108, 808, 464 78, 520, 886
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5.3 Results

5.3.1 Comparison with Ananke DR2

We compare our final synthetic survey for Gaia DR3 using Fire with the synthetic Gaia
DR2 survey from S20. We updated the photometry to be consistent with Gaia DR3, using
isochrones and extinction laws corresponding to the Gaia DR3 photometric system. We also
updated the error modeling for photometric measurements and radial velocity measurements.

The detailed numbers of sources in each radial bin of each galaxy are given in Table 5.6.
In general, there is a small increase in the total number of observed stars in the DR3 catalogs
as compared to the DR2 catalogs. The number of stars with radial velocity measurements
in each catalog has increased by ∼ 2− 3 times, as expected from the wider range of effective
temperature Teff in the selection cut (see Section 5.2.4). However, this is a more moderate
increase than the factor of 5 between the two Gaia data releases (from ∼ 7 millions stars
in Gaia DR2 to ∼ 33 million stars in Gaia DR3) [182]. This is due to the radial velocity
selection cut in S20 being overly optimistic, already at GRVS < 14 when considering the
actual performance of Gaia DR2 at GRVS < 12.5 [447]. In all catalogs, the overall fraction of
stars with radial velocity measurement compared to the total sample, which can be calculated
from Table 5.6, is about 2−3%, which is indeed comparable to that of Gaia DR3, which was
about ∼ 2% [182]. For reference, the fractions of stars with radial velocity measurements in
the Ananke DR2 catalogs are about 1− 1.5%.

5.3.2 Synthetic Surveys

In Figure 5.3 and Figure 5.4, we compare the distributions of radial velocity errors and proper
motion errors between DR2 and DR3 for all stars in m12i-lsr0-rslice09. Figure 5.3 shows
the distributions of the radial velocity errors for DR2 (blue) and DR3 (solid black) for
all stars with radial velocities. As expected, the radial velocity errors in Ananke DR3 are
significantly lower than in DR2. The radial velocity errors for DR3 are composed of two
stellar populations: one with low Teff and one with high Teff , while the radial velocity errors
in DR2 are modeled by a single exponential [173]. In Ananke DR3, the low Teff population
makes up most of the distribution below σVR

≲ 6 km/s, while the high Teff population is
responsible for the tail at high σVR

≳ 6 km/s. The sharp cut at the lower end of the DR2
error is the systematic noise floor at 0.11 km/s mentioned in S20. Figure 5.4 shows the
distributions of errors in the proper motions µα,⋆ and µδ for DR2 (blue) and DR3 (solid

9The choice of the m12i and lsr-0 synthetic survey is just an example that we use to illustrate different
properties. Similar treatment can be done with any of the other synthetic survey.
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Figure 5.3: Distributions of the radial velocity errors for DR3 (solid black) and DR2 (blue)
for all stars with radial velocities in m12i-lsr0-rslice0.
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Figure 5.4: Distributions of the proper motion errors for RA cos(Dec) α⋆ (left) and Dec δ
(right) for DR3 (solid black) and DR2 (blue) for all stars in m12i-lsr0-rslice0.
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black). Similarly, as with the radial velocity errors, the proper motion errors in Ananke

DR3, shown in Fig. 5.4 are typically much lower than in DR2. The DR2 proper motion
errors have a cut off of 0.0861852 mas/yr at the low end, as described in Equation 16 and
Table 5 of S20.

We examine the Hertzsprung-Russell diagram of one simulation (m12i at rslice 0) as
shown in Figure 5.5. We plot only stars with an estimated parallax error of less than 10%.
Figure 5.5 shows that our results are qualitatively similar to what was shown in Ananke DR2
from S20. We see minor differences at the low-mass end of the main sequence and at the
tip of the red giant branch, likely arising from the updated isochrones. Some echoes of the
underlying grid of isochrones are still visible at the brightest magnitudes, where the model
grid is sparsest, and potential artifacts from linear isochrone interpolation near the tip of
the red giant branch are present (see Section 5.2). The diagrams for the other simulations
presented in this study are shown in Figure 5.6.

We additionally compare our results with an actual Gaia DR3 CMD from [183]. In
Figure 5.7, we partially reproduce Figure 1 in [183]. Our synthetic survey generates CMDs
qualitatively similar to the Gaia DR3 data. When we only consider the subsample with RV
measurements (has_rvs), the synthetic survey distributions qualitatively resemble that of
the real Gaia DR3 survey.

5.3.3 List of parameters in the synthetic surveys
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Figure 5.5: The Hertzsprung–Russell diagram for the first radial slice rslice-0 of
m12i-lsr0, m12i-lsr1, and m12i-lsr2 for stars satisfying the parallax cut σϖ/ϖ > 10.
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Figure 5.6: Same as Figure 5.5 but for rslice-0 of m12f and m12m for all three LSRs.
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Figure 5.7: The color-magnitude diagram for m12i-lsr0-rslice0 to m12i-lsr0-rslice9
for all stars (left) and those with RV measurements (right) satisfying the positive parallax
cut ϖ > 0. The top panels show the observed color-magnitude diagram, whereas the bottom
panels show the absolute G magnitude computed from the measured parallax.
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Table 5.7: Data Model for Synthetic Surveys.

Quantity Explanation Data type Unit

Fields with names identical to those in DR2

Astrometry

ra Right ascension double Angle (deg)

ra_error Standard error of R.A. double Angle (deg)

dec Declination double Angle (deg)

dec_error Standard error of declination double Angle (deg)

parallax Parallax double Angle (mas)

parallax_error Standard error of parallax double Angle (mas)

parallax_over_error Parallax divided by its error float

pmra Proper motion in R.A. direction double Angular Velocity (mas yr−1)

pmra_error Standard error of proper motion in R.A. direction double Angular Velocity (mas yr−1)

pmdec Proper motion in Dec direction double Angular Velocity (mas yr−1)

pmdec_error Standard error of proper motion in Dec direction double Angular Velocity (mas yr−1)

l Galactic longitude (converted from R.A., Dec) double Angle (deg)

b Galactic latitude (converted from R.A., Dec) double Angle (deg)

Photometry

phot_g_mean_mag Extincted apparent G-band mean magnitude float Magnitude (mag)

phot_bp_mean_mag Extincted apparent GBP -band mean magnitude float Magnitude (mag)

phot_rp_mean_mag Extincted apparent GRP -band mean magnitude float Magnitude (mag)

bp_rp Reddened GBP −GRP color float Magnitude (mag)

bp_g Reddened GBP −G color float Magnitude (mag)

g_rp Reddened G−GRP color float Magnitude (mag)
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Table 5.7: (continued)

Quantity Explanation Data type Unit

Spectroscopy

radial_velocity Radial velocity double Velocity (km s−1)

radial_velocity_error Standard error of radial velocity double Velocity (km s−1)

Other fields not in the Gaia DR2 data model

Indices

starid array index of the star (per mock catalog) long

parentid array index of the generating star particle in the snapshot file long

partid
0 if phase-space coordinates are identical to the
generating star particle, 1 otherwise short

Phase Space

ra_true true R.A. double Angle (deg)

dec_true true Dec double Angle (deg)

dmod_true true distance modulus double Magnitude (mag)

ra_cosdec_error standard error in R.A.cos (Dec) double Magnitude (deg)

parallax_true true parallax double Angle (mas)

pmra_true true pm in R.A. direction double Angular Velocity (mas yr−1)

pmdec_true true pm in Dec direction double Angular Velocity (mas yr−1)

radial_velocity_true true RV double Velocity (km s−1)

l_true true Galactic long double Angle (deg)

b_true true Galactic lat double Angle (deg)

pml pm in Galactic long direction double Angular Velocity (mas yr−1)

pmb pm in Galactic lat direction double Angular Velocity (mas yr−1)

pml_true true pm in Galactic long direction double Angular Velocity (mas yr−1)

pmb_true true pm in Galactic lat direction double Angular Velocity (mas yr−1)
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Table 5.7: (continued)

Quantity Explanation Data type Unit

px_true, py_true, pz_true true position relative to LSR double Distance (kpc)

vx_true, vy_true, vz_true true velocity relative to LSR double Velocity (km s−1)

Photometry

phot_g_mean_mag_true
true (i.e., after extinction, but before error convolution)
apparent G-band mean magnitude float Magnitude (mag)

phot_bp_mean_mag_true true apparent GBP -band mean magnitude float Magnitude (mag)

phot_rp_mean_mag_true true apparent GRP -band mean magnitude float Magnitude (mag)

phot_g_mean_mag_int
intrinsic (i.e., before extinction or error convolution)
apparent G-band mean magnitude float Magnitude (mag)

phot_bp_mean_mag_int intrinsic apparent GBP -band mean magnitude float Magnitude (mag)

phot_rp_mean_mag_int intrinsic apparent GRP -band mean magnitude float Magnitude (mag)

phot_g_mean_mag_abs absolute G-band mean magnitude float Magnitude (mag)

phot_bp_mean_mag_abs absolute GBP -band mean magnitude float Magnitude (mag)

phot_rp_mean_mag_abs absolute GRP -band mean magnitude float Magnitude (mag)

phot_g_mean_mag_error Standard error of G-band mean magnitude float Magnitude (mag)

phot_bp_mean_mag_error Standard error of GBP -band mean magnitude float Magnitude (mag)

phot_rp_mean_mag_error Standard error of GRP -band mean magnitude float Magnitude (mag)

bp_rp_true true GBP −GRP color float Magnitude (mag)

bp_g_true true GBP −G color float Magnitude (mag)

g_rp_true true G−GRP color float Magnitude (mag)

vmini_true true V − I color used for error modeling float Magnitude (mag)

Extinction

lognh log10 equivalent H column density along line of sight to star float surface number density(cm−2)

ebv E(B − V ) reddening, calculated from Neff
H float Magnitude (mag)

A0 A0, extinction at 550 nm, assuming RV = 3.1 float Magnitude (mag)
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Table 5.7: (continued)

Quantity Explanation Data type Unit

a_g_val true line-of-sight extinction in the G band, AG float Magnitude (mag)

e_bp_min_rp_val true line-of-sight reddening GBP −GRP float Magnitude (mag)

Spectroscopy

radial_velocity_error_corr_factor correction factor for radial_velocity_error double Velocity (km s−1)

Stellar Parameter

mact current stellar mass float Mass (Solar Mass)

mtip mass of a star at tip of giant branch for given age, metallicity float Mass (Solar Mass)

mini stellar mass on zero-age main sequence float Mass (Solar Mass)

age
log10 of stellar age; identical for all stars
generated from the same particle float Time (log yr)

teff stellar effective temperature float Temperature (K)

logg surface gravity float Surface Gravity (log cgs)

lum log10 of stellar luminosity float Luminosity (log Solar Luminosity)

Abundances

feh [Fe/H] float Magnitude (mag)

alpha [Mg/Fe] float Magnitude (mag)

carbon [C/H] float Magnitude (mag)

helium [He/H] float Magnitude (mag)

nitrogen [N/H] float Magnitude (mag)

sulphur [S/H] float Magnitude (mag)

oxygen [O/H] float Magnitude (mag)

silicon [Si/H] float Magnitude (mag)

calcium [Ca/H] float Magnitude (mag)

magnesium [Mg/H] float Magnitude (mag)
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Table 5.7: (continued)

Quantity Explanation Data type Unit

neon [Ne/H] float Magnitude (mag)

Quality Control

flag_wd flag for potential white dwarfs; see Section 5.2.1 int
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In Table 5.7, we present the column names of the parameters used in the synthetic surveys,
as well as their definitions, data types, and units. These column names are categorized
by those matching Gaia DR2/DR3 (as well as Ananke DR2), those that are relating the
properties of the simulations (for example the true non-error convolved values), and the
properties of the stars (for example their Fire-2 chemical abundances).

5.4 Use Cases and Limitations

Synthetic surveys can be extremely powerful in testing modeling procedures, calculating
false positive rates, and validating methods. This is largely due to the fact that cosmological
simulations in general track non-equilibrium dynamics self-consistently, and are therefore
powerful tools for exploring dynamical inferences. The need for synthetic surveys is becoming
even more critical with the large swaths of data being collected by current and upcoming
surveys like Gaia and LSST. There are, however, limitations to these studies, based on the
nature of the construction of the synthetic surveys. In particular, as was highlighted in
Section 5.1, the original simulations have a stellar mass resolution limit of ∼ 7000M⊙. We
spawn individual stars from these simulated star particles to generate the mock catalogs.
The resulting positions and velocities of the synthetic stars depend on the kernel of choice,
limiting the usage of such synthetic surveys. In particular, the internal dynamics of small-
scale structures like satellite galaxies and stellar streams are sensitive to the choice of kernel.
Studies of small-scale Milky Way structures therefore required careful kernel selection based
on the science question at hand; [423], for example, changed the kernel to be able to perform
detectability studies of stellar streams with LSST.

More generally, studies of large stellar structures (larger than a few star particles in the
original simulation), velocity anisotropies of the Galaxy, and the Milky Way potential, should
be robust to the choices of construction of the synthetic surveys, while studies of smaller
structures should be treated with care, and potentially a more adequate choice of kernels.

Additionally, the original simulations from which we built these synthetic surveys are
not meant to reproduce the Milky Way itself. Indeed, these are cosmological simulations
with varying initial conditions, and therefore varying histories; some contain a late merger
like m12f, while m12i has a quieter merger history, for example [see e.g. 54, for details of
the merger histories of these two galaxies]. Therefore, it is critical to treat these galaxies as
examples of galaxies with the same mass as our own, but with their own individual properties.
A corollary to this is the dust model adapted for these synthetic surveys is self-consistent
with that of the simulations themselves, and therefore is different from that of the Milky
Way.
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Lastly, synthetic surveys, by definition, are tailor-made to reproduce the observing prop-
erties of a particular survey, in the case of Gaia, of a particular data release. As new theories,
instruments, surveys, and data become available, many key ingredients of synthetic surveys
(isochrones, selection functions, error models, and etc.) will become obsolete and inaccurate.
To that end, [448] developed py-ananke, a universal pipeline designed to generate synthetic
surveys from cosmological simulations, adaptable to various instruments. The package builds
upon the method employed in S20 and this study, with the crucial feature that allows users
to change the ingredients mentioned above. This tool will greatly reduce the time and ef-
fort to update synthetic surveys, and ultimately provide a bridge between simulations and
observations.

5.5 Conclusion

In this chapter, we presented a new set of synthetic surveys that match Gaia DR3, based on
the Latte suite of the Fire-2 simulations. This is an update to the synthetic surveys released
by [173] that matched the previous data release Gaia DR2. These synthetic surveys include
three different solar positions for three galaxies. The major changes compared to S20 are
an updated set of isochrones matching the latest release, a different treatment of the radial
velocity errors that increased the precision of the radial velocity measurements, an update
to the proper motion treatment, which decreased the measurement proper motion errors
in the synthetic surveys, and an increase in the total number of stars with radial velocity
measurements through the update of the selection cuts.

These synthetic surveys are made available to the community on http://ananke.hub.yt/,
where they can be used to test any model/analysis pipeline on simulations prior to application
to Gaia DR3. In particular, these synthetic surveys are the best tool for studies involving
the dynamic properties of the Milky Way, especially given that the “true" star particles from
the original simulations are also provided. For example, recent studies on the Milky Way
rotation curve [e.g., 52] using Gaia data have found tentative tension on the dark matter
distribution in the Milky Way. Synthetic surveys in this case may be used to quantify the
effect of Gaia selection function on the accuracy of the measured rotation curve.

More generally, the adoption of synthetic surveys is not only applicable in the study of
stars, but also the dynamics of dark matter and properties of gas particles. [160] has made
the simulations used in this work publicly available10, including the formation coordinates of
all star particles, as well as catalogs of all satellite galaxies/halos. Therefore, the community
can use such information to answer more general questions as to what the field can learn

10http://flathub.flatironinstitute.org/fire
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through Gaia about the galaxy as a whole, from its stellar components as measured through
the Gaia lens, to the inner workings of the dark matter in the Galaxy that governs the
dynamics of the stars.
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Chapter 6

Conclusion

In this thesis, I have explored various innovative approaches to uncover the nature of DM
and its role in galaxy formation and evolution at small scales, through advanced machine
learning techniques and detailed simulations.

Chapter 2 demonstrated how graph neural networks and simulation-based inference can
provide stronger constraints on the DM density profiles of dwarf galaxies, addressing the
core-cusp discrepancy and other small-scale structure issues in DM halos. In Chapter 3, I
introduced FLORAH, a machine-learning framework for generating mass assembly histories
of DM halos. This framework successfully recovered key properties such as the time evolu-
tion of mass and concentration, and accurately modeled assembly bias. Chapter 4 combined
normalizing flows, variational diffusion models, and Transformer-based neural networks to
emulate the satellite populations of Milky Way-mass halos under various DM and astro-
physics scenarios. In Chapter 5, the Ananke synthetic surveys of three Milky Way-like
galaxies in the FIRE simulations were presented. These surveys, designed to match observa-
tions from the Gaia DR3 catalog, incorporated observational effects and extended previous
efforts with Gaia DR2, providing more detailed and accurate synthetic surveys.

The research presented in this thesis highlights the importance of combining advanced
computational techniques with detailed simulations to bridge the gap between theoretical
models and observational data. Future work will continue to build on these foundations,
exploring new DM models, refining machine learning techniques, and further integrating
observational data. The ongoing development of synthetic surveys, cosmological simulations,
and machine learning techniques will play a crucial role in advancing our knowledge and
opening new avenues of research in the study of DM and galaxy formation.
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Appendix A

Uncovering dark matter density profiles
in dwarf galaxies

A.1 Additional details on the analysis

We elaborate here on several details of the analysis presented in the paper.

A.1.1 Details on the forward model and phase-space distribution

function

In this section, we describe in detail the forward model used to generate the dataset. We
model the distribution function (DF) using the Osipkov-Merritt (OM) model as proposed
by Refs. [305] and [306]. The OM model depends on the angular momentum J and relative
energy per unit mass E = ϕ−v2/2, where ϕ is the gravitational potential and v is the velocity,
through the variable Q ≡ E−J2/(2ra). Here, ra is the scale radius of the velocity anisotropy
profile β(r) = r2/(r2+ r2a) that defines the transition from an isotropic velocity dispersion at
small radii to a radially-biased dispersion at larger radii. To solve for the DF f(E , J) = f(Q),
we first integrate f(Q) over the velocity space to obtain the stellar mass-density profile

ρ⋆(r) =
4π

1 + r2/r2a

∫ ϕ

0

dQf(Q)
√
2(ϕ−Q). (A.1)

Note that f(Q) = 0 for Q < 0. The final DF f(Q) can be obtained by Abel transforming ρ⋆,

f(Q) =
1

2π
√
2

dG(Q)

dQ
, where G(Q) = −

∫ Q

0

dρQ
dϕ

dϕ√
Q− ϕ

and ρ(Q) =

(
1 +

r2

r2a

)
ρ⋆(r).

(A.2)
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Assuming that the system is dominated by DM, the gravitational potential ϕ depends on
the DM density profile via Poisson’s equation ∇2ϕ = −4πGρDM(r). The DM density profile
is parameterized through the generalized Navarro-Frenk-White model as in Chapter 2:

ρgNFW
DM (r) = ρ0

(
r

rs

)−γ (
1 +

r

rs

)−(3−γ)

, (A.3)

where ρ0 is the density normalization, rs is the DM scale radius, and γ is the inner density
slope. The stellar density profile is

ρ⋆(r) = ρ0,⋆

[
1 +

r2

r2⋆

]−5/2

, (A.4)

where r⋆ is the stellar scale radius and ρ0,⋆ is the density normalization of the stellar profile.
For ρ0,⋆ = 3M/4πr3⋆ and M ∝ L, where M and L is the enclosed mass and luminosity, this
is proportional to the 3-D Plummer profile

ν(r) =
3L

4πr3⋆

(
1 +

r2

r2⋆

)−5/2

(A.5)

which we use to characterize our stellar profile in Chapter 2. The DF f(Q) may be written in
terms of the radius r and the tangential and radial velocity vr and vt (i.e. f(Q) = f(r, vr, vt))
since J = rvt and E = ϕ(r) − (v2t + v2r)/2. StarSampler samples the coordinates r, vr, vt

of each star from f(r, vr, vt) using importance sampling [301]–[303]. The 6-D coordinates
(x, y, z, vx, vy, vz) are then calculated by assuming a random projection direction and spher-
ical symmetry.

A.1.2 Details on Jeans analysis procedure

In this section, we briefly outline the Jeans analysis procedure used in this work, closely
following Ref. [254]. Following the derivation from Refs. [449] and [450], we first assume the
system follows the collisionless Boltzmann equation

∂f

∂t
+ v⃗

∂f

∂x⃗
− ∂Φ

∂x⃗
· ∂f
∂v⃗

= 0, (A.6)

where ϕ is the gravitational potential, f = f(x⃗, v⃗) is the phase-space distribution function,
and (x⃗, v⃗) are the phase space coordinates of tracer stars.

Working in the dwarf galaxy’s spherical coordinate system (r, θ, ϕ) and assuming spherical
symmetry and steady state, we multiply Eq. (A.6) by the radial velocity vr and integrate
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Figure A.1: The initial Plummer fit for the two test galaxies presented in the result of Chap-
ter 2. The left panel shows the 68% and 95% credible intervals of the posterior distributions
of L and r⋆. Both galaxies have the same light profile (L = 100L⊙ and r⋆ = 0.25 kpc)
but different DM profiles: cored DM profile (red) versus cuspy DM profile (blue). The right
panel shows the best fit, the truth Plummer profile, and the binned data with Poisson un-
certainties for both galaxies. The dark blue and light blue bands show the middle-68% and
95% credible intervals of the reconstructed profile.

over all velocity components to obtain the spherical Jeans equation

1

ν

[
∂

∂r
(νσ2

r) +
2β(r)

r
(νσ2

r)

]
= −∂ϕ

∂r
= −GM(< r)

r2
, (A.7)

where ν =
∫
d3v⃗ f(x⃗, v⃗) is the number density of the tracer stars, σi is the velocity dispersion

σi =
√

⟨v2i ⟩ − ⟨vi⟩ for i ∈ (r, θ, ϕ), and β(r) = 1− (σ2
θ + σ2

ϕ)/(2σ
2
r) is the velocity anisotropy

profile. The gravitational potential ϕ is assumed to be dominated by DM and may be written
as ϕ = −GM(< r)/r, where G is the gravitational constant and M(< r) is the enclosed
mass of DM. The Jeans equation (A.7) has therefore the solution

σ2(r)ν(r) =
1

g(r)

∫ ∞

r

GM(< r′)ν(r′)

r′2
g(r′)dr′ where g(r) = exp

(
2

∫ r

0

β(r′)

r′
dr′

)
.

(A.8)
Projecting Eq. (A.8) along the line of sight using the Abel transformation s(r) → S(R) for
the spherically symmetric function s(r),

S(R) = 2

∫ ∞

R

s(r)r dr√
r2 −R2

, (A.9)

we obtain
σ2
p(R)I(R) = 2

∫ ∞

R

(
1− β(r)

R2

r2

)
ν(r)σ2

r(r)r√
r2 −R2

dr, (A.10)

where σp is the projected velocity dispersion profile and I(R) is the projected number density
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Table A.1: Prior ranges for the DM and stellar parameter for the Jeans analysis and our
method.

Parameter Prior distribution

DM density profile
log10(ρ0/(M⊙ kpc−3) U(5, 8)

log10(rs/kpc)) U(−1, 0.7)

γ U(−1, 2)

Light profile (GNN + Flows)
r⋆/rs U(0.2, 1)
ra/r⋆ U(0.5, 2)

Light profile (Jeans analysis)

log10(L/L⊙) U(−2, 5)

log10(r⋆/kpc) U(−3, 3)

ra/r⋆ U(0.5, 2)
v̄/(km s−1) U(−100, 100)

of tracer stars, also known as the surface brightness or the light profile. In our analysis, we
parameterize the DM density profile using the gNFW profile in Eq. (A.3). The light profile
I(R) is the projection along the line-of-sight of the 3-D Plummer profile in Eq. (A.5) and is
given by

I(R) =
L

πr2⋆

(
1 +

R2

r2⋆

)−2

, (A.11)

which has two free parameters: the total luminosity L and the scale length r⋆.
The Jeans analysis requires two separate fits: fitting the light profile and subsequently

fitting the DM profile. We first fit L and r⋆ using the priors in Table A.1. We approximate
the posteriors as Gaussian distributions and use them as the priors for L and r⋆ in the
second fit. To compare the performance between Jeans analysis and our machine learning
framework, the DM priors are set to be the same as those used to generate the training
datasets for the GNN and normalizing flow method, and are summarized in Table A.1.

For the initial fit of the light profile, we bin the data in log10-spaced bins in the projected
radius R. The number of bins is chosen to be ∼ √

Nstars where Nstars is the number of stars.
Similarly to Ref. [254], we assume Poisson uncertainties on the number of stars in each bin.
Let ni(θ) and n̂i be the predicted and mean number of stars (with θ is the parameters of the
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light profile model) in ith bins. We construct the binned likelihood [451]

lnLPlummer = −1

2

Nstars∑

i=1

(n̂i − ni(θ))
2

Vi − V ′
i (n̂i − ni(θ))

, (A.12)

where V = σloσhi and V ′ = σhi − σlo; here, σlo and σhi are the asymmetric Poisson uncer-
tainties. We refer to Ref. [254] for further details. As described in Chapter 2, we sample
the posterior with nested sampling [316], [317] using the dynesty module [318]. We use
nlive = 500 live points and a convergence tolerance of ∆ lnZ = 0.1 on the estimated re-
maining contribution to the log-evidence. In Fig. A.1, we show the initial Plummer fit for
the two test galaxies presented in the result of Chapter 2. The posteriors for L and r⋆ are
well-constrained and agree well with the true Plummer profile.

As mentioned, we approximate the posteriors of L and r⋆ as Gaussian distributions and
use them as priors in the second fit of the DM profile. Unlike the initial Plummer fit, for
the Jeans analysis, we construct an unbinned Gaussian likelihood. The likelihood is given
by Ref. [189],

LJeans =
Nstars∏

i=1

(2π)−1/2

√
σ2
p(Ri) + ∆vi2

exp

[
−1

2

(
(vi − v̄)2

σ2
p(Ri) + ∆vi2

)]
, (A.13)

where σp(R) is the projected velocity dispersion profile in Eq. (A.10), v̄ is the mean velocity
of tracer stars, and vi and ∆vi is the line-of-sight velocity and its measurement error for star
i. We treat the mean velocity v̄ as a nuisance parameters and fit it together with the DM
and light profile, using the prior distribution in Table A.1. We sample the joint DM and
light profile posteriors using dynesty [318] with the same sampler configuration as in the
initial Plummer fit.

A.1.3 Details on the J-factor calculation

In this section, we outline the details on the annihilation J-factor calculation. The J-factor
is defined as the integral along the line-of-sight s and over solid angle Ω of the squared DM
density corresponding to a source target,

J =

∫
ds

∫
dΩ ρ2(s,Ω). (A.14)

We transform the coordinate system in the Eq. (A.14) from a spherical coordinate system
centered at the Earth’s location to a spherical coordinate system centered at the dwarf
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Figure A.2: The predicted DM parameters versus truth DM parameters for three different
runs. In each run, a GNN and normalizing is trained and tested on galaxies with a mean
number of stars µstars = 20 (left), 100 (center), 1000 (right) stars. The line-of-sight velocity
measurement error is set to be ∆v = 0.1 km/s. The µstars = 100 case (middle column) is the
same case as shown in the result of Chapter 2. The median (solid blue line), middle-68%
percentile (blue band), and middle-95% (light blue band) containment regions of each bin are
shown. The diagonal dashed red line shows the locus of equality between true and predicted
values.
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Figure A.3: Same as Fig. A.2, but with different line-of-sight velocity errors ∆v. The mean
number of stars µstars is 100 stars. The ∆v = 0.1 km/s case (left column) is the same case
as shown in the result of Chapter 2.
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Figure A.4: Same as Fig. A.2, but with variation in the type of graph convolutional layer.
Each network is trained and tested on the dataset presented in Chapter 2, i.e. µstars = 100
stars and ∆v = 0.1 km/s. The ChebConv case (left column) refers to the baseline graph-
convolutional scheme presented in Chapter 2.
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galaxy considered. Let r⃗′ be the position from the center of the galaxy; the J-factor in this
coordinate system is given by

J =

∫
ds

∫
dΩ ρ2(s,Ω) =

∫
dV

ρ2(s,Ω)

s2
=

∫
dV ′ ρ2(r′,Ω′)

r′2 − 2dcr′ cos θ′ + d2c
, (A.15)

where dc = |r⃗| is the comoving distance and r⃗ · r⃗′ = dcr
′ cos θ′. Note that the volume elements

between the two coordinate systems are equal, dV = dV ′, since the transformation is only
a translation. We integrate Eq. (A.15) up to the virial radius rvir, defined as the radius
within which the mean density of the halo is equal to a specified overdensity factor times
the critical density of the Universe, ρ(r < rvir) = ∆virρc. As per common convention, we
take ∆vir = 200. We assume the distant-source approximation dc ≫ rvir > r′, justified for
most Milky Way dwarf galaxies, which allows us to write J as a volume integral in spherical
coordinates [452]

J =

∫
dV ′ ρ2(r′,Ω′)

r′2 − 2dcr′ cos θ′ + d2c
≈ 1

d2c

∫
dV ′ ρ2(r′). (A.16)

Plugging the gNFW density profile Eq. (A.3) into the above expression, we find

J =
1

d2c

∫
dV ′ (ρgNFW

DM )2(r′) =
4πρ2sr

2
s

d2c

∫ rvir

0

dr′
(

r

rs

)2−2γ (
1 +

r

rs

)2γ−6

(A.17)

=
4πρ2sr

3
s

d2c

[
c3−2γ
vir (1 + cvir)

2γ−5 (20 + 4γ2 + 2cvir(5 + cvir)− 2γ(9 + 2cvir))

(5− 2γ)(4− 2γ)(3− 2γ)

]
(A.18)

where cvir ≡ rvir/rs is the virial concentration of the dwarf galaxy. Note that the integration
only converges when γ < 1.5, which is the case for the DM profiles shown in Chapter 2.

A.1.4 Prior distributions on the parameters of interest

The prior distributions for both our method and the Jeans analysis are shown in Table A.1.
The priors on the DM density profile parameters are the same between the Jeans analysis
and our method. As described in Section A.1.2, the Jeans analysis consists of an initial fit
of the light profile parameters L and r⋆, and a subsequent joint fit of both the DM and light
profile parameters.
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A.2 Additional results

A.2.1 Systematic variations on the analysis

We explore variations on the assumptions made in our baseline analysis, including the effect
of varying the mean number of stars µstars and line-of-sight velocity measurement error ∆v.
We also examine the performance of different graph convolution schemes.

Variations on the number of stars: We generate three datasets (including the one pre-
sented in Chapter 2) with the same velocity measurement error ∆ = 0.1 km/s and different
mean number of stars: µstars = 20, 100, 1000. As in the baseline case, each dataset con-
tain 80,000 training samples, 10,000 validation samples, and 10,000 test samples. For each
dataset, we train a GNN and normalizing flow with the same hyperparameters as described
in Chapter 2 and plot the results on the test samples in Fig. A.2. We take the marginal
medians as the predicted DM parameters, bin them based on their truth values, and show
the median (solid blue line), middle-68% (blue bands), and middle-95% (light blue bands)
containment regions. The baseline µstars = 100 stars (middle column) case is the same as
that in Chapter 2 and is shown here for comparison.

The performance on the scale radius rs (middle row) and density normalization ρs (bot-
tom row) is similar for all three cases. For the inner slope γ (top row), we see that increasing
the number of stars helps increase the accuracy of the marginal medians. This is expected
because the underlying phase-space distribution is more completely sampled for a larger
number of observed tracer stars. We observed a similar increase in prediction accuracy with
increasing sample size in Ref. [254]. The marginal medians for the µstars = 20 case are slightly
biased towards the tails of the γ prior distribution. This is potentially due to clipping caused
by a finite prior range that prevents the marginal median from being centered around the
true value when constraining power is low.

Variations on measurement uncertainty: We generate three datasets with the same
mean number of stars µstars and different velocity measurement errors ∆v = 0.1, 1.0, 2.5 km/s.
Similar to our baseline case of ∆v = 0.1 km/s, each dataset has 80,000 training samples,
10,000 validation samples, and 10,000 test samples, and we train our pipeline on each dataset
separately. The results of this variation are shown in Fig. A.3 in the same format as Fig. A.2
(with the baseline ∆v = 0.1 km/s case the same as in the result of Chapter 2).

Again, we observe that for the scale radius rs (middle row) and the density normalization
ρ0 (bottom row), the performance is approximately constant across all variations. Similar to
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Ref. [254], as the measurement uncertainties increase we observe a decrease in constraining
power of the central slope γ. This is to be expected because we did not explicitly account
for the uncertainties in the neural network architecture—sampling from the noise model is
treated as a form of data augmentation, with larger error magnitudes leading to increased
sample variance and reduced sample efficiency. We defer the explicit inclusion of observa-
tional uncertainties in the neural network construction to future work.

Variations on the graph convolution scheme: In Fig. A.4 we show variations on the
type of graph convolutional layer used, otherwise keeping all hyperparameters (e.g., channel
dimension) the same as the baseline case. This case, labeled ‘ChebConv’ and shown in the
left-most column, uses the graph convolution prescription from Ref. [308].

The second column shows results using the graph attention layer from Ref. [242], which
uses the attention mechanism to implicitly weigh neighboring nodes. The final column shows
results using the deep set architecture, where node-wise features are obtained using a dense
network and aggregated through averaging, before finally being passed through a dense layer
as in the baseline case. Relatively good recovery of all parameters can be seen in these cases.
Together, these results point to the fact that aggregation of neighborhood information may
not play a key role in the success of our method on the examples tested. We expect this
fact to not hold on more realistic test cases—in particular, the systems in this paper were
chosen to be relatively simple (spherical and dynamically equilibrated) in order to enable
a direct comparison with the conventional Jeans analysis method. With these assumptions
and our choice of stellar and DM profiles, the node-wise features {R, vlos} can be assumed
to be independent.

Finally, the third column of Fig. A.4 shows results using the graph convolutional layer
from Ref. [453] with the default configuration in PyTorch Geometric, showing poor
recovery of the inner slope γ.

A.2.2 Comparison of inner density slopes

In order to quantitatively compare the inferred inner density slope γ posteriors for a large
galaxy sample, we compute and summarize the Jensen-Shannon (JS)-divergence [454], [455]
between 100 pairs of cored and cuspy γ posteriors using our method as well as Jeans anal-
ysis. Given two probability distribution functions P (x) and Q(x), defined over the same
probability space X ∋ x, the Jensen-Shannon (JS)-divergence is defined as

DJS(P ||Q) ≡ 1

2
[DKL(P ||M) +DKL(Q||M)] , (A.19)
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where M(x) = P (x) +Q(x) and DKL is the Kullback–Leibler (KL) divergence, for which we
use the definition

DKL(P ||Q) =
∑

x∈X

P (x) log2

(
P (x)

Q(x)

)
. (A.20)

The KL divergence of P from Q represents the expected entropy gain from using Q as
an approximation for truth distribution P [456]. The JS-divergence is based on the KL-
divergence but has more desirable properties for the present case, specifically being symmetric
in the two posterior distributions. Note that using a log2 definition of the constituent KL-
divergences, the JS-divergence is constrained to lie within the range DJS ∈ [0, 1], with 0

corresponding to two identical distributions and 1 two non-overlapping distributions.
We generate 100 galaxies with cored DM profiles (γ = 0) and 100 galaxies with cuspy

profiles (γ = 1). These galaxies have the same DM scale radius rs = 1kpc, density normal-
ization ρ0 = 107M⊙/kpc

3, and light profile parameters as the two galaxies presented in the
result of Chapter 2. We obtain samples the DM parameter posteriors for each galaxy and
calculate DJS using Eq. (A.19) for each pair of cored and cuspy galaxies (in total, there are
10,000 pairs). We show the distribution of the JS-divergences DJS between the γ = 0 poste-
rior and γ = 1 posterior for the Jeans analysis and for our method in Fig. A.5. The median
and middle-68% containment region values are DJeans

JS = 0.417+0.288
−0.280 and DGNN

JS = 0.629+0.196
−0.278.

Our method generically produces higher values of DJS compared to the Jeans analysis, cor-
responding to a larger contrast between the cored and cuspy γ posteriors and thus increased
ability to distinguish between the two scenarios given a set of observations.

A.2.3 Comparison of the inferred J-factors

As mentioned in Chapter 2, we calculate the J-factors (normalized to distance of 100 kpc)
for 100 galaxies randomly sampled from our test set. In this section, we plot the posterior
distribution of the J-factor for a few examples for the Jeans analysis and our method in
Fig. A.6. In all cases shown, the GNN and normalizing flow can predict the J-factor with a
similar or higher accuracy compared to the Jeans analysis.

A.2.4 Test of statistical coverage of the inferred posteriors

Simulation-based inference methods such as those employed in this work can be susceptible
to producing overconfident posteriors [457]. In this section, we examine the quality of the
posterior distributions produced by our simulation-based inference pipeline following the
prescription in Ref. [457].

Using the same notation as in Chapter 2, let θ be the parameters of interest (i.e. the
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Figure A.5: The JS divergence DJS between the γ = 0 and γ = 1 posteriors for the Jeans
analysis (red) and the GNN and normalizing flow model (blue). As evidenced from the
higher values of the DJS, compared to the Jeans analysis, the GNN and normalizing flow
produces γ = 0 and γ = 1 more distinct from each other.
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Figure A.6: Posterior distributions of the J-factors predicted by the Jeans analysis (red) and
by the GNN and normalizing flow (blue). Each panel show the ∆ log10 J = log10 Jpredict −
log10 Jtruth posteriors of an example galaxy. The dashed black line represents the truth J-
factor value (i.e. ∆ log10 J = 0).

DM and stellar parameters) and x be the observable (i.e. the graph representation of a
galaxy constructed from its the stellar kinematics). We denote our learned posterior density
estimator as p̂(θ|x). For a confidence level 1− α, the expected coverage probability is

E(θ,x)∼p(θ,x)

[
1Θ(θ ∈ Θp̂(θ|x)(1− α))

]
, (A.21)

where Θp̂(θ|x)(1−α) gives the 1−α highest posterior density interval (HDPI) of the estimator
p̂(θ|x) and 1Θ() is an indicator function mapping samples that fall within the HDPI to unity.
Given N samples from the joint distribution (θ⋆, x) ∼ p(θ, x), the empirical expected coverage

192



0.0 0.2 0.4 0.6 0.8 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0
E

m
p

ir
ic

al
co

ve
ra

ge

rs
γ

ρ0

ra

r?

Figure A.7: The expected coverage of the marginal DM and stellar parameters posteriors by
the model presented in Chapter 2 (µstars = 100,∆v = 0.1 km/s). If an estimator produces
perfectly calibrated posteriors, then its empirical expected coverage probability is equal to
the nominal expected coverage probability (dashed diagonal black line). The estimator is
conservative (overconfident) if it produces an empirical expected coverage probability above
(below) the diagonal line.

for the posterior estimator p̂(θ|x) is defined as

1

N

N∑

i=1

1Θ

(
θ⋆ ∈ Θp̂(θ|x)(1− α)

)
. (A.22)

The nominal expected coverage is the expected coverage in the case when p̂(θ|x) = p(θ|x)
and equals to the confidence level 1 − α. In general, we want our estimator to have an
empirical expected coverage probability larger than or equal to the nominal expected coverage
probability at all confidence levels. Such estimators will produce conservative posteriors,
in contrast to overconfident posteriors which may spuriously exclude allowable regions of
parameter space.

In Fig. A.7, we plot the empirical expected coverage probability for the marginal pos-
teriors as produced by the baseline model presented in Chapter 2 (i.e. µstars = 100 and
∆v = 0.1 km/s) against the nominal confidence levels. The dashed diagonal black line repre-
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Figure A.8: Example corner plots of the posterior DM parameters of two test galaxies, each
with three orthogonal projections. The left (right) panel shows the posteriors for a galaxy
with a cored (cuspy) DM profile. The contour lines show the 68-% containment region, with
each color representing a different projection. For each projection, its graph representation
is also shown (with the edge color matching the contour color) on the upper right corner.

sents the nominal expected coverage probability. A conservative estimator will lie above the
diagonal line, while an overconfident estimator will lie below it. In general, the posteriors
produced by our model lie very close to the well-calibrated regime, although the posteriors
for the stellar radius r⋆ are slightly overconfident. We note that methodological improve-
ment in calibration quality of posteriors produced using forward-modeling approaches is an
ongoing, active area of research [458].

A.2.5 Robustness to observational projection

Typically, only line-of-sight velocities and angular coordinates of tracer stars are observation-
ally accessible, presenting the challenge of working with incomplete phase-space information
when inferring the DM density profile. A test of our method is then its susceptibility to the
specific direction from which a dwarf galaxy is viewed—its observational projection. Since
different projections correspond to the same latent DM parameters, it is desirable for differ-
ent projections to produce similar summary representations, and therefore similar posterior
distributions. Since this is not explicitly baked into the network, approximate projective
symmetry can be learned implicitly using the training sample.
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We take the galaxies with the same DM profiles presented in Chapter 2 and project them
onto orthogonal planes. For each galaxy, we thus obtain 3 orthogonal projections (including
the original projection). In Fig. A.8, we show the 68% contour line of the posterior DM
parameters for three orthogonal projections of two galaxies (one with a cored DM profile
and one with a cuspy DM profile) and the graph representations of the projections. For
each projection, its graph representation matches the color of the contour line of the DM
posteriors. It can be seen that even though the graph representations may vary significantly
between projections (e.g. the positions of each node may shift, forming new edge connections
or breaking up old ones), the DM posteriors remain consistent. Note that we do not expect
the DM posteriors to be identical, since the information given to the GNN is not the identical
between projections.
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Appendix B

Emulating subhalo populations under
alternative dark matter scenarios with
Diffusion Models

B.1 Normalizing flows

Normalizing flows model the distribution p(y) of the data y by transforming it from a base
distribution p(u) via an invertible transformation. Let f be an invertible transformation
that maps a random variable u to y, i.e. y = f(u). Using the change of variables formula,
we can write the p(y) as:

p(y) = p(f−1(y))

∣∣∣∣det
(
∂f−1

∂y

)∣∣∣∣ (B.1)

where the last term is the absolute value of the determinant of the Jacobian matrix of f−1

at y and accounts for the change in volume under the transformation. The base distribution
p(u) is often set to a simple, well-understood distribution such as a standard Gaussian. The
transformation f is a neural network with trainable parameters but with a few restrictions.
First, we emphasize the invertibility of the transformation, which allows for both sampling
(forward transformation from p(u) to p(y)) and density estimation (inverse transformation
from p(y) to p(u)). In addition, the Jacobian determinant must be tractable to ensure
the model can be efficiently trained and applied to high-dimensional data. These require-
ments restrict the type of transformations available, with common flows being the masked
autoregressive flows [370], [459] and neural spline flows [387].

In practice, the normalizing flows are constructed from a sequence of T discrete transfor-
mations f = f1 ◦f2 ◦ ...◦fT , where each transformation fi is also invertible and has tractable
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Jacobian determinant. The data likelihood p(y) can be written as:

pT (y) = p0(u0)
T∏

i=1

∣∣∣∣det
(
∂f−1

i

∂ui−1

)∣∣∣∣ (B.2)

where y = uT . The optimization objective is thus simply the negative log-likelihood
log pT (y), i.e.

Lflows(y) = − log p0(f
−1(y))−

T∑

i=1

log

∣∣∣∣det
(
∂f−1

i

∂ui−1

)∣∣∣∣ . (B.3)

Each transformation fi is parameterized by a neural network with parameters ϕi. During
training, the full set of parameters ϕ = {ϕ1, ϕ2, ..., ϕT} is optimized simultaneously. In the
case of a conditional generative model, with conditioning features θ, we simply include θ

into each transformation, i.e. fi(y) → fi(y,θ).

B.2 Diffusion Model

In this Appendix, we present a summary of the inner workings of variational diffusion models
(VDM), following the discussion in [235]. For more detailed mathematical formalism and
derivation, we also referred readers to a review in [234].

B.2.1 Forward diffusion

In the context of a Gaussian diffusion model, forward diffusion refers to the process of
gradually corrupting an original data y by incrementally adding Gaussian noise to it over
T discrete timesteps. Let the noisy version of y at some time step t ∈ [0, 1] be the latent
variables zt, we may define the variance-preserving mapping from y to zt (see [233], [460])
as:

q(zt|y) = N
(
zt|αty, σ

2
t I
)
, (B.4)

where σ2
t is a strictly positive scalar-valued function of t that represents the variance of the

noise added at each step, and αt =
√
1− σ2

t . Note that the distribution q(zt|y) is conditioned
on the data y.

One can define a signal-to-noise ratio SNR(t) ≡ α2
t/σ

2
t . As t progresses from 0 (least

noisy) to 1 (most noisy), we require that σ2
t increases, indicating that more noise is being

added, which in turn reduces the signal-to-noise ratio SNR(t). With a sufficiently small
SNR(1), the variance-preserving diffusion transformation ensures that the maximally noise-

198



corrupted data at t = 1 follow a standard Gaussian distribution, i.e.

q(z1|y) ≈ N (z1|0, I) . (B.5)

The condition offers key benefits, including analytical tractability, consistency in variance,
and ease of sampling, which collectively enhance model stability and efficiency.

As mentioned in Section 4.3.2, the noise schedule, which controls how σ2
t depends on t,

is the most critical part for the performance of diffusion models [228]. In our framework, we
employ a linear noise schedule with the following functional form:

σ2
t = Sigmoid (γη(t)) , where γη(t) = γmax − (γmax − γmin)t, (B.6)

where η = {γmax, γmin} is the trainable parameter. It is straightforward to see that SNR(t) =
exp(−γ(t)), so γmax and γmin also controls the minimum and maximum signal-to-noise ratio of
the forward diffusion process. During our training, we initialize {γmin, γmax} to be {−8, 14},
though there is no restriction of what values they can take. Other possibilities for the noise
schedule include, for example, a linear or cosine noise schedule with fixed hyperparameters,
or using a monotonic neural network (in which case η will be the parameters of the network).

B.2.2 Reverse diffusion

To generate new data, we would like to revert the forward diffusion process in Equation B.4
by gradually denoising the corrupted data at t = 1 over a series of discrete timesteps T . This
involves training a generative model that can sample a sequence of latent variables zt with
time moving backward from t = 1 to t = 0. Define the time steps to be s(i) = (i− 1)/T and
t(i) = i/T where i ∈ [0, T ], our generative model for data y can be written as:

p(y) = p(z1)p(y|z0)
T∏

i=1

p(zs(i)|zt(i)). (B.7)

Familiar readers may recognize that this formalism is similar to a Markovian hierarchical
variational autoencoder (VAE) [461], [462], a generalization of VAEs that incorporates mul-
tiple levels of latent hierarchies and a Markov chain generative process. Indeed, VDMs
can be thought of as Markovian hierarchical VAEs where the latent dimension is the same
as the data dimension and the latent encoding process is pre-defined as a linear Gaussian
model (see [234]). This interpretation of VDMs is especially useful for understanding its
optimization objective.

As stated in Appendix B.2.1, with sufficiently large T and small SNR(1), we expect q(z1)
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to be a standard Gaussian distribution. We thus also model the first term p(z1) as a standard
Gaussian, i.e

p(z1) ≈ N (z1|0, I). (B.8)

Similarly, as in the VAE analog, the second term represents the reconstructed data likelihood,
which we will simply model as:

p(y|z0) ≈ N (y|z1, σ2I). (B.9)

Note that σ is a hyperparameter of the data likelihood and not related to the noise schedule.
It determines how accurately the data is to be reconstructed during the training process,
as well as the relative scaling between each term of the optimization objective (see Ap-
pendix B.2.3). In our framework, we set σ = 0.001. Finally, we choose the last term to
be:

p(zs|y) = q(zs|zt,y), (B.10)

where we have rewritten the ground truth q(zs|zt) to be conditioned on the target data
q(zs|zt,y).

B.2.3 Variational optimization objective

To train the VDM, we minimize the negative Evidence Lower Bound (ELBO, [390]),

− log p(y) ≤ −ELBO(y) =− Eq(z1|y) [DKL (q(z1|y)∥p(z1))] (B.11)

+ Eq(z0|y) [log p(y|z0)] (B.12)

+ Ldiff(y), (B.13)

where DKL is the Kullback–Leibler (KL) divergence. The first two terms are referred to as
the prior matching loss and the reconstruction loss, paraappendix4:vdmlleling their coun-
terparts in the VAE analog. The prior matching term minimizes the discrepancy between
the final latent distribution and the Gaussian prior, while the reconstruction term ensures
the accuracy between the data y and its reconstruction from the latent variable z0. It is
worth noting that in a common setup where the noise schedule is linear, these two terms are
ignored since they do not depend on the parameters of the noise prediction model (see [233]
for example). However, as our noise schedule (Equation B.6) consists of trainable parameters
η, we do not ignore these terms.

Unlike in the VAE analog, the VDM loss includes an additional term, known as the
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forward-reverse consistency loss, which can be written as:

Ldiff(y) =
T∑

i=1

Eq(zi|y)DKL

[
q(zs(i)|zt(i),y)∥p(zs(i)|zt(i))

]
(B.14)

in case of finite T . This term is minimized when the forward diffusion process q(zs|zt,y)
matches the reverse generative process pφ(zs|zt) across all time steps.

In practice, we parameterize the denoising model as a noise prediction model ϵ̂φ(zt, t),
which is a neural network with parameters φ. Additionally, the sum over the timesteps in
Equation B.14 can be written as an expectation over the timesteps t(i), which is sampled
uniformly (i.e., over i ∼ U(1, T )). We can thus simplify Equation B.14 to be:

Ldiff(y) =
T

2
Eϵ∼N (0,I),i∼U(1,T )

[
wη(t)∥ϵ− ϵ̂φ(zt, t)∥22

]
, (B.15)

where the pre-factor w(t) can be written as:

wη(t) = exp(γη(t)− γη(s))− 1. (B.16)

A step-by-step derivation of the diffusion loss can be found in [234]. Here, we note that
rewriting Ldiff(y) as an expectation over the timesteps t(i) allows for the negative ELBO
through a Monte Carlo estimator. This greatly increases the tractability and stability of
the optimization process, as we do not need to simulate the entire trajectory from y to z0.
Equation B.15 optimizes the parameter φ of the noise prediction model and η = {γmax, γmin}
of the noise schedule simultaneously.

Lastly, in case of a conditional generative process, we simply include the conditioning
features θ into the noise prediction model, i.e. ϵ̂φ(zt, t,θ).

B.2.4 Continuous-time diffusion

The number of diffusion steps T is an important hyperparameter of the VDM, with a higher
T generally leading to better performance (see Appendix F of [235]). In our framework,
we employ a continuous-time VDM, corresponding to setting T → ∞ and also reducing
the number of hyperparameters by one. In this limit, the summation over the timesteps in
Equation B.14 is simply replaced by an integration over t from t = 0 to t = 1. The final
diffusion loss becomes:

Ldiff(y) =
1

2
Eϵ∼N (0,I),t∼U(0,1)

[
γ′
η(t)∥ϵ− ϵ̂φ(zt, t)∥22

]
, (B.17)
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where the time derivative γ′
η(t) = dγη(t)/dt can be evaluated via automatic differentiation. It

is worth noting that in this limit, the diffusion process is governed by a stochastic differential
equation; see [371] for a more detailed discussion.

B.3 Additional Results

B.3.1 Halo and central subhalo properties

We show additional results for the halo and central subhalo properties recovered by the
conditional normalizing flows. As briefly discussed in Section 4.4.1, an important advantage
of normalizing flows over traditional regressions is that they can effectively model complex
and multi-dimensional distributions.

In Figure B.1, each panel shows the 1σ contours of a few notable parameter combinations.
From left to right, the columns show the correlations between (1) the halo mass and central
subhalo mass Mhalo − Msub,c, (2) the halo stellar mass and central subhalo stellar mass
M⋆ − M⋆,c, (3) the stellar mass and total mass of the central subhalo Msub,c − M⋆,c, (4)
the DM concentration and stellar mass of the central subhalo csub,c −M⋆,c, and (5) the DM
concentration and total mass of the central subhalo csub,c − Msub,c. The top and bottom
panels show the contours for the four ew bins and four κw bins, respectively, with each bin
denoted by a different color. The contours of NeHOD samples and the simulations are shown
as solid and dashed lines. We do not include the MWDM and ϵf,high bins as changing these
parameters does not significantly alter the contours.

There is a strong correlation between the masses of the halo and the central subhalo,
which is expected since the central subhalo dominates the halo mass. We see the 1σ contours
predicted by the flows agree well with the simulations for both the ew and κw bins. Similarly,
in the third column, the contours of Msub,c − M⋆,c also show good agreement between the
generated samples and the simulations.

Perhaps most interesting is the relationship between the DM concentration and the stellar
mass of the central subhalos in the fourth column. As evidenced, the distribution of the DM
concentration is bimodal, suggesting two distinct populations of central subhalos. This bi-
modality depends on the stellar mass, which, in turn, is influenced by the stellar feedback
parameters ew and κw. Increasing either ew and κw will result in halos with lower stellar mass
and DM concentration, which is expected as feedback processes expel gas and reduce star
formation efficiency. It is important to note that we do not observe a similar dependency
on the subhalo total mass, where the bi-modality occurs at all mass ranges (as shown in
the fifth column). This suggests that stellar feedback plays an important role in shaping
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Figure B.1: The 1σ contours of different combinations of halo and central properties. From
left to right, the columns show the correlations between (1) the halo mass and central subhalo
mass Mhalo−Msub,c, (2) the halo stellar mass and central subhalo stellar mass M⋆−M⋆,c, (3)
the stellar mass and total mass of the central subhalo Msub,c−M⋆,c, (4) the DM concentration
and stellar mass of the central subhalo csub,c−M⋆,c, and (5) the DM concentration and total
mass of the central subhalo csub,c −Msub,c. The top and bottom panels show the bins of ew
and ew, respectively.

the potential well and structure of these subhalos. Despite the complex relations between
feedback parameters, stellar mass, and DM concentration, we see that the contours predicted
by flows agree well with the simulations. There are some minor discrepancies in the highest
ew bin (ew ∈ [7.21, 14.40]), where the high-csub,c population predicted by NeHOD is a bit more
prominent than in the simulations, though this is most likely due to the limited number of
training samples.

B.3.2 Mass functions

In Figures B.2 and B.3, we show the normalized stellar and halo mass functions of the gener-
ated samples and the DREAMS simulations. This allows us to highlight and better compare
the shape of the mass functions. Overall, the general trends of both the stellar and halo mass
functions of the NeHOD samples align well with the simulations. The most significant discrep-
ancy occurs at the highest ew bin (ew ∈ [7.21, 14.40]). However, we note that the stellar mass
functions of the simulations appear somewhat anomalous in this case. The highest ew line
seems to converge with the second-highest bin, which is unusual. Additionally, we note that
the mass functions for the highest and lowest bins are not as accurately recovered as those for
the middle bins, though this is most likely due to the edge effects of the prior distributions.
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Figure B.2: The normalized satellite stellar mass functions as emulated by NeHOD and from
the DREAMS simulations. Panels are similar to Figure 4.3.

As also discussed in Section 4.4.2, the VDM slightly underestimates the number of massive
subhalos, though it can be seen more clearly with the normalized mass functions. This is
likely due to the rarity of these subhalos in the training dataset compared to the rest of the
population.

B.3.3 Dark matter concentration

In Figure B.4, we show the 2-D contours for the DM concentration and the total mass of
the generated satellites (solid lines) and the simulations (dashed lines) for the same bins of
WDM mass and astrophysical parameters. The top panels show the 1σ contours, while the
bottom panels show the 2σ contours.

Figure B.4 demonstrates the complex relationship between DM concentration, satellite
mass, and the feedback parameters. The distribution of DM concentration is bimodal,
though this bi-modality is much less pronounced than observed with the central subha-
los (Figure B.1) due to the lower mass range. In general, we see the contours predicted by
NeHOD align well with those from the simulations. There are minor differences at the high
subhalo mass that are also observed in Figure 4.6 in Section 4.4.2. These discrepancies arise
because the WDM slightly underestimates the number of high-mass halos, as discussed in
Section 4.4.2), due to the limited number of training samples for these subhalos.
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Figure B.3: The normalized satellite halo mass functions as emulated by NeHOD and from
the DREAMS simulations. Panels are similar to Figure 4.3. The vertical arrows in the first
column (WDM mass) show the half-mode mass Mhm.
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Figure B.4: Contours of the DM concentration and total mass of satellite subhalos generated
by NeHOD (solid lines) and extracted from the DREAMS simulations (dashed lines). The top
and bottom panels show the 1σ and 2σ contours, respectively. Each column shows the
contours for different bins of the WDM mass and astrophysical parameters (left to right),
with each bin denoted by a different color.
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Figure B.5: The CDFs of the k-nearest neighbor distances for k = 2. Panels are the same
as Figure 4.7.

B.3.4 Position and velocity clustering

We show additional results for the k-nearest neighbor distance and velocity distributions in
Section 4.4.2 for k = 2 and k = 4. The CDFs of the k-nearest neighbor distances are shown
in Figure B.5 (k = 2) and Figure B.6 (k = 4), and velocities are shown in Figure B.7 (k = 2)
and Figure B.8 (k = 4).

In general, the trends are similar to what observed in Figures 4.8 and 4.10, though both
the distance and velocity distributions tend to shift towards higher values as the number
of nearest neighbor k increases. The performance of the VDM is similar as observed in the
k = 1 case. The VDM can effectively recover the average CDFs and the standard deviations
for the k-nearest neighbor distance. Likewise, we see slight underestimations in the k-nearest
neighbor velocity CDFs. This effect is also minimal, at about 5%, and the VDM can capture
the general trends of the CDFs accurately.
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Figure B.6: The CDFs of the k-nearest neighbor distances for k = 4. Panels are the same
as Figure 4.7.
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Figure B.7: The CDFs of the k-nearest neighbor velocities for k = 2. Panels are the same
as Figure 4.7.
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Figure B.8: The CDFs of the k-nearest neighbor velocities for k = 4. Panels are the same
as Figure 4.7.
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