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As the second highest national emitter, the US has the opportunity, and responsibility, to reduce 

emissions and mitigate the impacts of climate change. The power sector has been identified as 

the linchpin in our national decarbonization strategy, with high electrification goals for the other 

sectors. As of 2022, the power sector was responsible for more than a quarter of annual 

emissions. As electrification increases, the importance of decreasing the emissions and emissions 

intensity of electricity production grows. 

This thesis explores the challenges and opportunities of decarbonizing the US power sector. Two 

models were built to complete this analysis: Ideal Grid (IG) which is a greenfield capacity 

expansion and economic dispatch model, and Evolving Grid (EG), which is a brownfield 

capacity expansion and economic dispatch model. These models are an especially novel addition 

to the current arsenal of publicly available capacity expansion models because they include 

embodied emissions, in addition to the industry-standard consideration of power plant tailpipe 

emissions from fossil fuel combustion. Nine regions of the contiguous US are represented in 

these models.  

First, IG is used to highlight regional decarbonization challenges. Regions with significant land 

available for variable renewable energy (VRE) buildout and strong wind resources had the 

cheapest paths to a clean grid. Also, hydropower resources play a significant role. At deep 

decarbonization levels, the need for long-duration energy storage (like pumped hydropower 

storage) increases. The role of embodied emissions is explored, showing that as fossil-fuel 

consumption decreases and VRE penetration increases, they become nonnegligible. To most 

effectively reduce system emissions, embodied emissions should be accounted for. 

Next, fusion is integrated into the model to demonstrate its potential role. Assuming a 

$8,500/kW CAPEX, fusion is not economically competitive unless a carbon constraint is 

applied. But, at deep decarbonization levels, fusion is prominent in all regions. EG shows that 

intermediary decarbonization goals before 2050 play a pivotal role in determining fusion 

adoption and overall fleet composition. Lastly, the versatility and value of presented models is 

demonstrated by outlining other potential applications. 
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Chapter 1. Introduction 

1.1 Motivation 

1.1.1 Decarbonizing to mitigate climate change 

The global atmospheric carbon dioxide concentrations have risen at staggering rates since the 

start of the industrial revolution, increasing by nearly 50% from 227 parts per million (ppm) in 

1750 to 412 ppm in 2020 [1]. More disheartening than the already high levels of carbon dioxide, 

is the fact that annual global emissions are still on the rise, meaning that this change in 

atmospheric composition has the potential to get even worse, if significant mitigation measures 

are not taken soon. In 2022, 37 gigatons of carbon dioxide (GtCO2) was released into the 

atmosphere [1]. 

Global targets have been set to limit the change that we impose on our environment. Climate 

models have shown that there will be key ecosystem differences in a 1.5C warming scenario vs a 

2C scenario vs 2019 warming levels (~1C), including, but not limited to extreme temperatures 

and precipitation [2].  

As of July 2023, countries have revised their Nationally Determined Contributions (NDCs) 2030 

targets in the Paris agreement. Advanced and emerging economies’ revised goals are both still 

far short of the necessary overhaul needed to reach Net Zero Emissions (NZE) by 2050. In fact, 

2030 emissions from advanced economies must be reduced to ~5 GtCO2 in 2030, but revised 

NDCs allow for ~8 GtCO2 [3]. And even more alarming is the fact that projected emissions from 

advanced economies based on established and planned policies and regulations allow for greater 

than 8 GtCO2 in 2030 [3]. 
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Already, we are seeing the terrifying effects of global warming, foreshadowing the even worse 

consequences of climate change. Global warming is causing dangerous and alarming weather 

patterns [4]. An additional 20-36% of the global population may face hunger in 2050 based on 

high emissions scenarios [5]. Even in low emissions scenarios, an additional 11-33% of the 

population may face food shortage [5]. Global temperature-related mortality rates are estimated 

to rise by the end of the century, by up to 17% in places like Ghana [6]. On top of the 

humanitarian cost of climate change, there is also a significant economic toll. The total cost 

attributable to climate change of 14 extreme flooding events in New Zealand between 2007 and 

2014, sums to ~$140 million [7]. Global warming is dangerous, unfair, and expensive. 

1.1.2 Focus on the US Power Sector 

This body of work focuses on just the energy economy of the contiguous states of the US. As the 

second-highest emitting nation, responsible for ~5 billion tons of CO2 in 2022, the US has the 

opportunity, and responsibility, to significantly reduce total global emissions [8]. 

The power sector is the linchpin of the US’s decarbonization goals. In 2022, the US’s power 

sector with an annual load of ~4.1 trillion kilowatt-hours (kWh), was responsible for ~1,500 

million metrics tons (MMmt) of carbon dioxide-equivalent (CO2-e), where CO2-e indicates the 

total global warming potential of all greenhouse gases, in terms of equivalent tons of CO2 

released [9]. 

The power sector is the key to decarbonizing the US’s energy economy because it has alternative 

generation technologies that are already competitive with more traditional power generation, on 

a levelized cost of electricity (LCOE) basis, or total cost of infrastructure per total kWh of 

electricity produced. Having said that, not all electrons being injected onto the grid are of equal 
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value, so LCOE is a metric of limited scope. Regardless, the national decarbonization plan relies 

on transition to a clean grid combined with electrification of other parts of the economy. 

Electrification consists of replacing fossil-fueled processes in the other sectors of the economy to 

be powered by electricity. Some examples of electrification include replacing natural gas (NG) 

fired water heaters with electric in the residential and commercial sectors, switching from 

internal combustion engines to battery electric vehicles in the transportation sector, and 

converting from blast furnaces to electric arc furnaces in the industrial sector. Electrification 

relies on decarbonization of the power sector, or else the result is just a shifting of emissions 

source. 

The importance to decarbonize quickly, starting now cannot be overemphasized. If fact, if only 

current Paris Agreement pledges are met (without further improvement), “researchers find very 

few (if any) ways to reduce emissions after 2030 to limit warming to 1.5C [2].” Reaching the 

US’s goal of 100% clean electricity by 2035 [2] will require immense and unprecedented 

buildout of renewable technologies, resulting in a total rehaul of our current power sector. 

Decarbonizing the power sector has possibilities, but also has daunting challenges. The infamous 

2021 Texas blackouts serve as a warning to understand the difficulty and importance of 

constructing a robust grid by displaying the consequences of power sector failures [10]. In fact, it 

is estimated that a prolonged collapse of the nation’s electric grid could result in the death of up 

to 90% of the American population, due to starvation, disease, etc. [11]. We need to decarbonize 

our power sector quickly, but we need to do it so electricity remains reliable. 
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1.2 Important models and metrics 

1.2.1 Current tools 

With the US power sector facing such a daunting evolution in the coming years, many models 

have been built or tailored to answer specific questions regarding this energy transition. Capacity 

Expansion Models (CEMs) are the industry standard for mapping out electricity decarbonization 

pathways. CEMs are models used to simulate and optimize generation and transmission capacity 

investments, based on model- or user- defined constraints and assumptions. 

CEMs are often paired or solved simultaneously with unit commitment and/or economic dispatch 

models. Unit commitment involves determining the start-up and shut-down schedule of all 

production units based on technological constraints, including ramping rates, minimum up-times, 

minimum down-times, etc. Economic dispatch is the optimization of power output from each 

generating unit based on generator availability and transmission constraints. 

Table 1-1 shows a comparison of relevant CEMs which the work from this study can be 

benchmarked against, where the last two rows indicate the models contributed throughout this 

thesis. The following section provides clarity on the respective added value of Ideal Grid (IG) 

and Evolving Grid (EG) to the current arsenal of available CEMs. 

Table 1-1. Comparison of current CEMs 

 Open 

source 

Online 

web-based 

UI 

Completes 

LCA 

Language Built in module(s) 
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GenX [12]    Julia with 

JuMP 

New England ISO 

Switch 2.0 [13]    Python with 

Pyomo 

Hawaii 

TIMES/MARKAL 

[14], [15] 

   GAMS  

ReEDS [16]    GAMS Many scenarios 

for contiguous US 

REMix [17]    GAMS and 

Python 

Morocco and 

Botswana 

RESOLVE [18]    Not available Hawaii, California, 

New York, New 

England 

LIMES-EU [19]    GAMS with 

CPLEX 

Europe 

DIETERpy [20]    Python and 

GAMS 

Germany, France, 

Denmark, Belgium, 

Netherlands, 

Poland, Czech 

Republic, Austria, 

Switzerland, Spain, 

Italy, Portugal 
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Ideal Grid [21]    Python with 

Pyomo 

Each NERC 

region within the 

US 

Evolving Grid    Python with 

Pyomo 

Each NERC 

region within the 

US 

 

Also, this body of work leverages and incorporates Life-Cycle Assessment (LCA) and Techno-

Economic Analysis (TEA) data available in MIT’s Sustainable Energy System Analysis 

Modelling Environment (SESAME) [22]. Figure 1-1 shows the connection and information flow 

between IG and SESAME. Miller’s paper on tracking emissions throughout the solar life-cycle 

provides a detailed description of the LCA framework [23]. Note that the structure featured in 

Figure 1-1 is also applicable to EG. 
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Figure 1-1. Information flow diagram for IG and EG 

LCA is the methodical accounting of the resultant global warming potential of each step in the 

life cycle for a product (e.g. steel) or resource (e.g. electricity) in the energy economy. Similarly, 

TEA is the bookkeeping of costs resultant from each step in the life cycle for a product or 

resource in the energy economy. Within the context of electricity generation, the upstream 

module accounts for extraction and production of fuels for thermal generators, and sourcing 

materials for and construction of variable renewable generators. The midstream includes 

transporting and pre-processing fuels. The process module accounts for generator operation. 

Gate to user is accounting for transmission and distribution of power. Lastly, end use of 

electricity does not add any system costs or emissions. 

1.2.2 Added value of my tools 

Chapter 2 and Chapter 4 provide detailed documentation on the methodology, assumptions, and 

features of Ideal Grid (IG) and Evolving Grid (EG), respectively. But as a basic primer for the 



22 

 

below, IG and EG’s added value can be described at a high level as a combination of 3 features, 

allowing them to provide new and improved insights to the decarbonization landscape.  

First, both models are open-source and accessible, meaning that they do not require prohibitively 

expensive software licenses to run. Next, they both include uniformly preprocessed, regional-

specific input data for the North American Electric Reliability Corporation (NERC) regions of 

the contiguous US states. This means that users can easily and fairly compare decarbonization in 

each region of the US without the excessive energy barrier of extensive data collection. Lastly, 

and most importantly, both models utilize LCA to accurately assess the global warming impacts 

of a variety of decarbonization scenarios, while most CEMs only account for fossil-fuel fired 

generators’ tailpipe emissions. While this is a reasonable approximation for today’s grid where 

the vast majority of emissions are due to natural gas or coal combustion, this will become less 

and less accurate as we decarbonize. The danger of this commonplace approximation is 

discussed in detail in Chapter 3. 
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Chapter 2. Leveraging IG to highlight regional decarbonization 

challenges 

2.1 Overview 

This Chapter highlights the importance of regionally tailored decarbonization strategies to reach 

emissions intensity targets. The presented Ideal Grid model is used to compare and contrast 

decarbonization strategies for 9 regions of the continental US. For each of these regions, techno-

economic analysis (TEA) and life-cycle assessment (LCA) are completed to track emissions 

intensity and electricity cost based on system installations. Thirteen technologies are included in 

this analysis: nuclear, wind, solar, natural gas (3 types), coal (3 types), lithium-ion batteries 

(LIB), conventional hydro, run-of-river (RoR) hydro, and pumped hydro storage. Leveraging 

only the first ten listed technologies, the impact of carbon emissions intensity constraint and 

carbon taxes are explored. It is shown that a carbon tax can linearly incentivize decarbonization 

in certain regions and exponentially incentivize decarbonization in other regions. It is shown that 

wind capacity factors can be used to indicate decarbonization strategies due to a strong 

correlation that is explored. At deep decarbonization levels (25 gCO2/kWh), regions have a 

varying reliance on nuclear. Regions source anywhere from 27-72% of their electricity from 

nuclear, with electricity costs ranging from $112/MWh to $137/MWh. At lenient 

decarbonization targets (100 gCO2/kWh), electricity costs range from $93/MWh to $112/MWh. 

An additional case study on the potential role of hydro technologies (conventional, run-of-river, 

and pumped hydro storage) shows that hydro can reduce system cost by up to 8%. Also, since 

hydro technologies provide load-shifting and dispatchable capabilities, the penetration of other 
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low-carbon firm and dispatchable technologies (such as nuclear and natural gas with carbon 

capture) decreases. 

2.2 Introduction 

2.2.1 Value of IG in providing bespoke decarbonization solutions 

Each region within the US has unique characteristics. For example, Texas has the highest energy 

demand, 13,000 Trillion Btu annually, which is about double the demand of the next highest 

energy intensive state, California [24]. Not only does demand vary greatly from state to state, but 

current infrastructure also varies significantly from region to region. For example, New 

Hampshire currently generates 59% of its electricity from nuclear, which can be contrasted with 

Delaware which generates 92% of its electricity via natural gas. These regional differences make 

designing decarbonization strategies more complex and more important. 

Clearly, transformation of electricity grids requires bespoke solutions as renewable resources, 

available infrastructure, and projected demand profiles vary regionally. IG provides a platform 

which can be used to compare the decarbonization difficulty of regions within the US. Figure 2-1 

shows the nine regions which are represented in this model and their current generation fleet. The 

regions are divided along North American Electric Reliability Corporation (NERC) boundaries. 

We can see that current power sector designs vary significantly from region to region due to the 

distinctiveness of each region. There is clear variability from region to region in magnitude and 

composition of generator fleets, such as a relatively high reliance on hydropower in the Northwest, 

and a comparatively small generator fleet in the Southwest. 
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Figure 2-1. (a) US grid represented by nine NERC regions, and (b) generator capacity of each 

region broken down by energy source. 

This Chapter compares decarbonization strategies of different regions which highlights that 

decarbonization is harder in some regions than others due to available renewable resources. This 

is invaluable insight as we look to plan an energy transition that is feasible and robust for each 

region. Since the same tool and assumptions are used for analyzing all regions which make the 

highlighted similarities and differences in decarbonization more traceable.  

Most similar to our manuscript, are a group of studies contrasting the regional challenges of the 

continental US. Mallapragada, et. al. compared the role of battery energy storage in Texas to New 

England, but with a greater focus on VRE penetration rather than emissions reduction [25]. A 

different study contrasts decarbonization in California with decarbonization in New England, but 

did so with two separate regional models, operating under different assumptions [27]. Bistline and 

Blanford discuss how the cost of decarbonization will vary regionally, but do not cite the 

technologies that will be installed in these regions nor do they include their operational patterns 

[28]. Another manuscript quantifies the impact of state-level policy on carbon mitigation in Utah 

and Arizona, but does not capture regional variation as these are two bordering states [29]. 

Ueckerdt, et al. contrasts regional decarbonization strategies on a global level, but does not 
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examine variation within the US [30]. Each of these studies provides insight in decarbonizing the 

USA, but none compares each region of the United States to highlight the causes and impacts of 

differences in demand and renewable resources. 

2.2.2 Included case study on hydropower 

In 2019, US hydropower capacity is 80.25 GW, outputting 274 TWh of energy annually [31]. This 

contribution accounts for 6.7% of generation capacity, and 6.6% overall power production and 

38% of renewable power production [31]. Around this technology, there is a heated debate 

regarding its value and impacts. It has been shown that hydropower can be leveraged to lower the 

cost of decarbonization, where hydro integration provides increasing value to the system as 

decarbonization targets become more stringent [32], [33]. Conversely, another fraction of 

researchers emphasizes that hydro can damage the social and ecological ecosystems of a region, 

and that these impacts are not accurately captured in power system expansion and planning [34], 

[35]. This study contains a case study aimed to fairly assess the value of hydro while penalizing it 

appropriately for its direct and indirect emissions. 

The term “hydro” primarily refers to a conventional dammed river because the vast majority of 

hydro resources are this type. However, hydropower technologies can fit into 3 main categories. 

Dammed hydro will hereafter be referred to as “conventional.” Run-of-river hydro (RoR) does not 

incorporate any water storage, so power generation is intermittent and non-dispatchable as it 

depends solely on river flowrate. Pumped hydro storage (PHS) requires two nearby reservoirs at 

varying heights. Water is pumped up or drained down to the respective higher or lower reservoir 

to convert electricity to and from gravitational potential energy. IG’s built-in LCA provides 

invaluable insight into the current debate around hydro.  
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2.3 Methodology 

2.3.1 Inputs and outputs 

Ideal Grid, like most CEMs, optimizes the system via minimization of total system cost. 

Capacity installations are not limited only based on geography of each region, giving the model 

the freedom to explore a wide range of decarbonization strategies. Operation of the infrastructure 

is constricted based on current technological parameters and constraints with technology-specific 

details included in Section 1.4. Using the graphical user interface (GUI) pictured in Figure 2-2, 

the user can seamlessly explore the impact of changes in: costs from current values, imposed 

emissions ceilings and taxes, and regional and yearly variation. All necessary system parameters 

are pre-existing in the model, allowing users of all levels of expertise to explore scenarios and 

find impactful insights. More details on the technology-specific characteristics are provided in 

the following sections. 

This optimization provides the user with capacity buildout and unit-operations optimizations for 

all technologies. Information is provided on cost and emissions for each technology as well. 

Emissions and cost values are provided from each technology so that the user can understand the 

system’s response to case-study adjustments. This model provides statistics on technology 

curtailment, fractional energy losses due to transmission and distribution, and other valuable 

metrics. Lastly, the economic dispatch data provided at an hourly resolution helps ground the 

user identify predictable trends (such as solar only producing power in the mid-day hours), and 

less intuitive trends (such as the complimentary characteristic of solar and wind because wind 

power output tends to increase in the nighttime hours). All this information allows the user to 

fully understand the system and specific impact of each technology. 
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Figure 2-2. GUI with inputs and selected outputs for example case study for IG 

2.3.2 System assumptions 

Ideal Grid operates under a series of simplistic assumptions. Each NERC region is analyzed as a 

single-nodal system with an assumed transmission and distribution (TD) efficiency loss of 4.7%, 

tax of 6.35%, and TD cost of $47/kWh consistent across all regions. As the name suggests, this 

is a greenfield model, meaning that the model does not consider the current generator fleet of 

each region. Lastly, IG is deterministic, and so operates under an assumption of perfect foresight 

in demand and VRE profile predictions. 

Currently, Ideal Grid includes sixteen technologies: three types of lithium ion batteries (4-, 2-, 

and 8-hour duration), utility-scale single crystal silicon solar panels with an inverter loading ratio 

of 1.3, 2.8 MW nameplate-rated land-based wind turbines with 90.2 m hub height, fixed-bottom 

offshore wind, RoR hydro, conventional hydro, PHS, combustion turbine natural gas plants 

(CT), combined cycle natural gas plants (CC), combined cycle carbon capture and storage 

(CCS), coal boiler, geothermal, fusion, and nuclear fission plants. Throughout this thesis, 
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different combinations of technologies are assumed to be available, to explore a variety of 

potential futures. 

Figure 2-1 shows that these technologies represent the vast majority of current grid installations. 

Hydroelectric is only considered in some of the below findings because of the aforementioned 

debate outlined in Section 1.2.2. Biomass is not currently considered because it is highly land- 

and water-intensive which brings up debate regarding environmental disruption and habitat 

destruction. Geothermal (geo) is present in Chapters 4-6. Lastly, the potential role of fusion is 

explored in depth in Chapter 4. 

Figure 2-3 shows the respective costs and emissions values for all generating technologies. Note 

that transmission costs, distribution costs, and taxes are not included. These values are just 

approximations used to orient the reader and are not used in the model. Note that LCOE and 

emissions intensity for VREs vary based on installation location and LCOE and emissions 

intensity for all generators vary based on usage. All greenhouse gas emissions are converted to 

CO2 equivalent for easy combination and comparison. CO2 equivalent is hereafter referred to as 

CO2-e. Exact values and more detailed explanations are included in the Supplementary 

Information. 

For the technologies that include carbon capture technology, the operating costs of the generator 

include carbon compression. Natural gas is assumed to capture 267 gCO2-e per kWh electricity 

produced, and coal is assumed to capture 553 gCO2-e/kWh [22]. A transportation and storage fee 

of $20/t CO2-e is assumed for all regions [36]. 
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Figure 2-3. Mapping the cost-emissions space for generators and energy storage technologies 

2.3.3 Data sources 

Cost and emissions data of each technology type come from model interconnections shown in 

Figure 1-1. Data collection and preprocessing was required for all other model inputs.  

Demand profiles were sourced from the NREL’s 2022 Cambium data set [37]. NREL provides 

hourly demand data within NERC boundaries. Some of the smaller NERC regions are 

aggregated to represent the regions shown in Figure 2-1. It should be noted that results are shown 

in a relative format to allow for inter-regional comparisons. Demand is scaled down by a 

different factor in each region so that average hourly demand is equal. This format measures 

installations in “capacity over average demand” units, where installations totaling 1 implies that 

all resources were operating at 100% capacity factor. 

All three types of hydro resources (conventional, RoR, and PHS) have capacity limits in each 

region. Conventional hydro is limited based on estimates from Electric Power Annual, 

Hydropower Vision, and An Assessment of Energy Potential at Non-Powered Dams in the US 

[38]–[40]. RoR capacity limits are sourced from the New Stream Reach Development [41]. PHS 

capacity limits are obtained from NREL’s Closed-Loop Pumped Storage Hydropower Resource 
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Assessment for the US [42]. More details around these limitations can be found in Accurately 

Modeling Hydropower in the US [43]. 

 

Figure 2-4. Relative regional capacity limits for hydro technologies 

Wind and solar hourly availabilities are compiled from data pulled from the Zero-emissions 

Electricity system Planning with HourlY operational Resolution (ZEPHYR) [44]. For each 

region, hourly capacity factor (CF) vectors are sourced for 169 equidistant sites within the 

boundary, each 30 miles apart. Capacity factor is average power output per nameplate capacity.  

These 169 CF curves are then aggregated to create a profile that is representative of the region. 

Wind CF values are calculated based on NREL’s Wind Integration National Dataset (WIND) 

Toolkit, assuming a 100m hub height [45]. Solar CF values are calculated based on NREL’s 

National Solar Radiation Database (NSRDB), assuming single-crystalline modules with single-

axis tracking systems and 1.3 DC-to-AC inverter ratios [46]. 
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RoR hourly availabilities are calculated based on the United State Geological Survey (USGS) 

daily flowrate data. This source provides flowrate data on over 1.9 million water-resources 

within the US. River resources were sorted into their appropriate regions based on latitude and 

longitude coordinates. These data are only available at a daily timestep, so the corresponding CF 

values are assumed for all 24 hours of the day. Daily flowrates were summed together and then 

used to calculate power output using:  

 

where Qd is hourly flowrate, Qmax is the flowrate which 30% of the hours exceed, and turbine 

efficiency, turb, is 85%. The values calculated with this method match the estimated values 

published in the New Stream-reach Development assessment with less than 15% discrepancy. 

Also, conventional hydropower CFs are constrained at monthly checkpoints to account for 

reservoir volume limitations. Within each month, the hourly CF is allowed to ramp without 

restriction.  

For wind and solar resources, a collection of representative capacity factor curves was manually 

sourced for each region, at a range of years (2007-2013), at a variety of geographical coordinates 

distributed within each region. Regarding weather data, the user can select year of weather data, 

number of generation curves that are aggregated to represent the overall regional VRE power 

output, and distance between selected sites. In all selection options, the collection of capacity 

factor curves that are aggregated form an equidistant grid. Figure 2-5 compares the average CF 

for each variable generation technology in each region, across the aforementioned timeline, in 

comparison to the national average. 
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Figure 2-5. Regional CFs compared to national average for represented variable renewable 

generation technologies 

2.3.4 Framework and runtime 

IG is formulated in Python with Pyomo and solved with Gurobi. An academic license is used to 

access Gurobi version 9. Because of the modular flexibility of Pyomo, other open-source solvers 

can easily be substituted for Gurobi. IG runs on Amazon’s EC2 t2.medium instance with 2 cores, 

and 4gb ram. With these parameters, the model completes optimizations and displays results in 

~45 seconds when run for 1 year of optimization with 10 available technologies. 

2.4 Modeling details 

2.4.1 Nomenclature 

Table 2-1. IG sets 

Notation Description Unit 
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ℎ𝑜𝑢𝑟 Incremental integer vector from 0 to 8759 with a step size of 

1 that monitors the number of hours into the selected year 

hour 

 All generator types and energy storage types: solar, wind, 

RoR, conventional, nuclear, natural gas (3 types), coal, LIB, 

and PHS 

- 

Φ All generator types: solar, wind, RoR, conventional, nuclear, 

natural gas (3 types), and coal 

- 

Υ Non-dispatchable generating types: solar, wind, RoR, and 

nuclear 

- 

 Dispatchable generating types: conventional, natural gas (3 

types), and coal 

- 

 Thermal generating types: nuclear, natural gas (3 types), and 

coal 

- 

 VRE generating types: solar, wind, and RoR - 

 Generators using carbon capture technology: CC natural gas 

with 95% CCS 

- 

 Generators technologies eligible for early retirement: coal - 

 Energy storage types: LIB, and PHS - 

 LIB types: 4-hour duration - 

 

Table 2-2. Scalar decision variables 

Notation Description Unit 
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𝐺𝐶𝑜𝑝𝑡Φ Generating capacity for each generator type kW 

𝐺𝐶𝐸𝑆t Generating capacity for each energy storage type kWh 

 

Table 2-3. Vector decision variables 

Notation Description Unit 

𝐺2𝐿𝐼𝐵 ℎ𝑜𝑢𝑟 Dispatchable generated energy sent to batteries at every 

time step ℎ𝑜𝑢𝑟 

kWh 

𝐺2𝑃𝐻𝑆 ℎ𝑜𝑢𝑟 Dispatchable generated energy sent to PHS at every time 

step ℎ𝑜𝑢𝑟 

kWh 

𝐺2𝐷 ℎ𝑜𝑢𝑟 Dispatchable generated energy sent to demand at every 

time step ℎ𝑜𝑢𝑟 

kWh 

𝑉𝑅𝐸2𝐿𝐼𝐵 ℎ𝑜𝑢𝑟 VRE generated energy sent to batteries at every time step 

ℎ𝑜𝑢𝑟 

kWh 

𝑉𝑅𝐸2𝑃𝐻𝑆 ℎ𝑜𝑢𝑟 VRE generated energy sent to PHS at every time step 

ℎ𝑜𝑢𝑟 

kWh 

𝑉𝑅𝐸2𝐷 ℎ𝑜𝑢𝑟 VRE generated energy sent to demand at every time step 

ℎ𝑜𝑢𝑟 

kWh 

𝑉𝑅𝐸2𝐶 ℎ𝑜𝑢𝑟 VRE generated energy curtailed at every time step ℎ𝑜𝑢𝑟 kWh 

𝐿𝐼𝐵2𝐷 ℎ𝑜𝑢𝑟 Energy leaving batteries at every time step ℎ𝑜𝑢𝑟 kWh 

𝑃𝐻𝑆2𝐷 ℎ𝑜𝑢𝑟 Energy leaving PHS at every time step ℎ𝑜𝑢𝑟 kWh 

𝐿𝐼𝐵𝑙𝑒𝑣𝑒𝑙 ℎ𝑜𝑢𝑟 Batteries energy level at every time step ℎ𝑜𝑢𝑟 kWh 

𝑃𝐻𝑆𝑙𝑒𝑣𝑒𝑙 ℎ𝑜𝑢𝑟 PHS energy level at every time step ℎ𝑜𝑢𝑟 kWh 
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Table 2-4. User inputs 

Notation Description Unit 

𝑟𝑒𝑔𝑖𝑜𝑛 NERC region - 

𝑑𝑐𝐺 Decrease in renewable generator costs compared to today’s 

values 

% 

𝑑𝑐𝑆 Decrease in storage costs compared to today’s values % 

𝑑𝑐𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒𝑓𝑢𝑒𝑙
 Decrease in storage costs compared to today’s values % 

𝑀 Monthly self-discharge of batteries % 

𝐷𝑦𝑒𝑎𝑟* Year of demand profile shape - 

𝑦𝑒𝑎𝑟* Year of hourly weather used to estimate solar and wind 

generation 

- 

𝑠𝑖𝑡𝑒𝑠* Number of VRE generation sites aggregated to represent solar 

and wind CF curves 

sites 

𝑎𝑟𝑒𝑎𝑤𝑖𝑑𝑡ℎ* Height and width of area used to approximate VRE CF curves mi 

𝑒𝑡𝑎𝑥 Emissions tax $/gCO2-e 

𝑒𝑐𝑎𝑝 Emissions intensity cap gCO2-e 

/kWh 

* parameters adjustable in the user interface, but not explored in this analysis. Instead, the most 

robust selections are chosen for each of the above options, as described below. 

Table 2-5. IG parameters 

Notation Description Unit 
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𝐶𝐹Υ,ℎ𝑜𝑢𝑟 VRE CF at every time step ℎ𝑜𝑢𝑟 1 

𝐷𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒𝑑 Demand at every time step ℎ𝑜𝑢𝑟 kW 

𝑇𝐷𝑙𝑜𝑠𝑠𝑒𝑠 Fraction of generated electricity that is lost due to 

transmission and distribution inefficiencies 

1 

𝑂𝐶𝐶Y  Annualized capital cost for each technology $/kW 

𝐹𝑂𝑀Y Fixed operating cost for each technology $/kWh/year 

𝑉𝑂𝑀Y Variable operating cost for each technology $/kWh 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡Y Fuel cost for each technology $/MMBtu 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒Y Heat rate for each technology MMBtu/kWh 

𝑒𝐺𝐶Y Emissions per capacity for each technology gCO2-e/kW 

𝑒𝑔𝑒𝑛Y Emissions per electricity generated for each 

technology 

gCO2-e/kWh 

𝑒t Emissions per electricity sent to storage for each 

energy storage type 

gCO2-e/kWh 

𝜂t Efficiency of charging and discharging energy for 

each energy storage type 

1 

𝜂ℎ𝑜𝑢𝑟𝑙𝑦t Hourly efficiency for each energy storage type 1 

𝐿Y Lifetime of each technology Years 

𝑐𝐶𝐶𝑆 Cost of transporting and storing captured carbon  $/gCO2-e 

𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑w Captured emissions per electricity generated for 

each energy storage type using carbon capture 

technology 

gCO2-e/kWh 
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𝐶𝑃𝐶t Charging and discharging capacity for each energy 

storage type, per energy capacity 

kW/kWh 

 

2.4.2 Selection of parameters based on user inputs 

As mentioned in the above section, the parameters used in this linear optimization vary based on 

input selections. The user’s selected 𝑟𝑒𝑔𝑖𝑜𝑛  and 𝐷𝑦𝑒𝑎𝑟  are used to select the appropriate  

𝐷𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒𝑑 vector from an internal data library. Cost of natural gas and coal is dependent on 

region selected. Values input for 𝑑𝑐𝐺, 𝑑𝑐𝑆, and 𝑑𝑐𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒𝑓𝑢𝑒𝑙
are used to scale the SESAME-

sourced TEA values based on the input percent. The raw cost and emissions values used in this 

model can be seen in the Supplementary Information.  

VRE profiles are selected from the extensive data library aggregated based on selected values for 

𝑟𝑒𝑔𝑖𝑜𝑛, 𝑦𝑒𝑎𝑟, 𝑎𝑟𝑒𝑎𝑤𝑖𝑑𝑡ℎ, and 𝑠𝑖𝑡𝑒𝑠. The latter two inputs refer to the model’s aggregation level 

of weather trends. Site number refers to the number of locations that renewable trends are gathered 

from, before being aggregated into a single profile. Area refers to the distance between the 

aggregated sites. There are many studies which show that the more generator profiles you 

aggregate together, and the farther apart they are, the less variability you will see with VRE output 

profiles. Bera et al. show that aggregation of geographically diverse wind can reduce its 

intermittency [47]. Ellis et al. show that solar power output variability decreases as the number of 

systems grows, with diminishing returns [48]. Another study address the issue that cost-optimal 

VRE deployment can lead to inequitable power systems [49]. All other inputs (self-discharge, 

carbon tax, carbon ceiling, and renewable breakdown) are set to a scalar value by the user. 
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Note that many of the parameters described in this section are only relevant to the GUI shown in 

Figure 2-2, and are not explored in this body of work. Costs and emissions in this Chapter are 

based on 2022 estimates (𝑑𝑐𝐺 = 𝑑𝑐𝑆 = 𝑑𝑐𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒𝑓𝑢𝑒𝑙
 = 0), although Chapters 3 and 4 explore at 

projected values. Similarly, the demand curve for this analysis is real data for 2022 (𝐷𝑦𝑒𝑎𝑟 = 

2022), but Chapters 3 and 4 explore projections out to 2050. For all analysis in this thesis, all 

equidistant CF profiles available in a region are aggregated together to provide the most accurate 

regional representation (𝑎𝑟𝑒𝑎𝑤𝑖𝑑𝑡ℎ = 360 square miles, and 𝑠𝑖𝑡𝑒𝑠 = 169) for all available years, 

(𝑦𝑒𝑎𝑟 = 2007 − 2013) as described above. 

2.4.3 Objective function 

The objective function, Equation 2.1, minimizes costs from 4 major components. 
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 (2.1) 

The first component minimizes fixed yearly cost of all generator and storage types. These values 

are a combination of capital costs and fixed operation and maintenance costs, after tax credits, 

depreciation, interest rate, inflation, and more have been accounted for. The second component 

minimizes variable costs. These values are a combination of variable operational and 

maintenance costs, and fuel costs. The third component captures the cost of taxed emissions. 

Emissions from installed capacities, and fuel sourcing and usage are all taxed. This term is trivial 

when etax is input as $0/gCO2-e. The fourth and last term accounts for the cost of transporting 

and storing captured carbon from generators with carbon capture technology. The linear 
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combination of costs can be understood as a weighted optimization of technology installation 

and technology use. 

2.4.4 Hourly constraints 

Technologies are sized based on a consideration of their CF limits and their maximum hourly 

usage. Below, Equations 2.2 through 2.7 are used to size and track energy storage parameters. It 

is clear from these equations that all energy storage technologies are assumed to be symmetric in 

terms of their charging and discharging capabilities. 

 2 2j j i

i

G LIB VRE LIB GC


+         ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.2) 

 2 j i

i

LIB D GC


        ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.3) 

               2 2j j PHSG PHS VRE PHS GC+         ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.4) 

 2 j PHSPHS D GC        ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.5) 

                     *LIB i i

i

EClevel GC CPC


        ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟                 (2.6) 

 *PHS PHS PHSEClevel GC CPC        ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.7) 

Equations 2.2 and 2.3 ensure that the batteries are operating within their respective charging and 

discharging limits. These limits are imposed before the consideration of charging and 

discharging inefficiencies, but that the electricity that is delivered to the battery, or to the demand 

is reduced by the charging and discharging efficiencies cited above in the nomenclature. 

Equations 2.4 and 2.5 apply the same constraints to PHS. Equations 2.6 and 2.7 determine the 

energy capacities of each type of storage needed based on the highest energy inventory 
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throughout the optimization. Similarly, Equations 2.8, and 2.9 size GCdispatchables, and GCnuclear 

based on maximum power output throughout the optimization.  

 ,i j ioutput GC        ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 ∧  𝑖 ∈ u (2.8) 

 , *nuclear j nuclear nuclearoutput GC CF=     ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.9) 

The capacity factors of thermal units are followed at an hourly basis, as can be seen in Equation 

2.10. At this point, it is significant to note the absolute lack of ramping allowed by nuclear 

generators in contrast with the complete freedom of natural gas, fusion, geo, conventional hydro, 

and coal generators to ramp at unrestricted rates. While this is not the actual technology 

limitations, these approximations represent current operation of these units [50]. 

 
,

,

i j

i j

i

output
CF

GC
=      ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 ∧  𝑖 ∈ u (2.10) 

The flow of electricity can be tracked with the below equations. Equation 2.11 calculates the 

hourly thermal electricity generated by summing output from each thermal generator and 

tracking its flow. It can be noted from Equation 2.11 that thermally generated electricity is 

prevented from being curtailed, as is the convention with current CEMs [12]. Equation 2.12 

shows that at every hour, electricity generated from VREs can be sent to storage or demand, or 

be curtailed. Transmission and distribution losses are considered in this stage for simplicity 

because the same fractional loss is considered regardless of energy pathway. This simple balance 

can be monitored and post-processed to show the usage efficiency of generated electricity. 

Equation 2.13 ensures that demand is satisfied either directly by generation, or indirectly through 

energy storage. 
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,2 2 2 * *(1 )j j j i i j

i

G D G LIB G PHS GC CF TDlosses


+ + = −     ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.11)          

,2 2 2 2 * *(1 )j j j j i i j

i

VRE D VRE LIB VRE PHS VRE C GC CF TDlosses


+ + + = −   ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.12) 

 2 2 2 * 2 *j j j LIB j PHS jG D VRE D LIB D PHS D Dunderlined + + + =      ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 (2.13) 

 

The hourly energy levels for both types of energy storage are calculated in Equations 2.14 and 

2.15 through a simple balance tracking electricity charged and discharged. It can also be noted 

that parasitic losses are imposed on electricity being stored in LIB. These constraints are not 

applied to the first hour of the analysis. 

( )1 * 2 2 * 2j j LIB j j LIB jLIBlevel LIBlevel hourly G LIB VRE LIB LIB D −= + + −  ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟/0    (2.14) 

( )1 2 2 * 2j j j j PHS jPHSlevel PHSlevel G PHS VRE PHS PHS D−= + + −   ∀ 𝑗 ∈ ℎ𝑜𝑢𝑟/0  (2.15) 

2.4.5 Overall constraints 

Equation 2.16 links the energy level in storage at the first hour of the year with that of the last 

hour of the year. This is necessary to ensure that this optimized year is not used as an energy 

source or sink. 

 0 [ 1]jEClevel EClevel −=  (2.16) 

 

Equation 2.17 shows the simple relationship used to convert user-input monthly battery 

efficiency to hourly battery efficiency. 
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LIB e
−

=  (2.17) 

 

When an 𝑒𝑐𝑎𝑝 is nonzero, the Equation 2.18 is introduced to limit the overall emissions intensity 

where total emissions are normalized by total demand. Since Ideal Grid considers emissions 

from all life-stages, there is a limit on carbon intensities that are achievable. Because of this, the 

current minimum 𝑒𝑐𝑎𝑝 allowed in the GUI is 25 gCO2-e/kWh. 

  
[ 1]

0

* * *
j

j cap i i i i

j i

Dunderlined e eGC GC e total


−

= 

= +   (2.18) 

2.5 Results and discussion 

The added value of Ideal Grid is captured in the high diversity and large span of cases that are 

presented below. The specific focus of these studies is highlighting the unique regional 

challenges of decarbonizing the US power sector. First, analysis without hydro is presented, then 

Sections 6.2.4 and 6.2.5 explore hydro’s impact on decarbonization. 
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2.5.1 Each region decarbonizes with different technologies 

 

Figure 2-6. Regional decarbonization strategies at lenient, moderate, and deep decarbonization 

levels (100, 50, and 25 gCO2/kWh) 

Figure 2-6 shows an optimized grid in each region of the US at three different decarbonization 

levels: 100 gCO2/kWh, 50 gCO2/kWh, and 25 gCO2/kWh. This optimization is completed 7 

times using weather data from seven years (2007 to 2013). The mean values are presented in, 

Figure 2-6 with error bars representing yearly variation in cost and total capacity installed. 

Demand year was chosen to be 2021 because it is the most recent available. 

In the lenient decarbonization case, over 50% of technology installations are VREs, which are 

supported with natural gas technologies and energy storage. The total generation capacity is over 

two times greater than average hourly power demand, as is consistent with other decarbonization 

reports [51]. Figure 2-13 shows that combustion turbine generators are cheaper to build, and 

combined cycle generators are cheaper to operate. Because of this, combined cycle generators 

operate at a higher capacity factor (23%), compared to combustion turbine (0.8%). Also, there is 

a higher reliance on wind over solar, but still has a large variability in range which matches the 
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patterns that we can be seen in other papers. A Chinese study shows that system stability 

maximizes when there is more wind installed than solar [52]. A study of the Pennsylvania-New 

Jersey-Maryland Interconnection showed that wind installations were favored over solar at all 

VRE penetration levels [51]. The most notable regional variation is that certain regions have a 

high need for energy storage (2.1 power capacity per average demand in California and 1.9 

power capacity per average demand in Southwest), in sharp contrast with regions that require 

zero energy storage (Central, North Central, and Texas). Regions with the lowest wind CFs 

require the most energy storage, and regions with high wind CFs require the least amounts of 

energy storage, as seen in Figure 2-5. This is due to the high reliance on wind. California has the 

second highest solar CF, but this does not offset the need for storage because of the long and 

consistent nightly periods of solar unproductivity. This regional discrepancy correlates with cost 

ranking. Central, North Central, and Texas have the lowest regional costs (92.5, 94.9, 94.9 

$/MWh, respectively), in contrast with California and Southwest which have the highest and 

third highest regional costs (118.9, 111.6 $/MWh, respectively). This is because energy storage 

adds a capital cost of balancing demand and supply, on top of the cost of generating the 

electricity. In conclusion, wind CF is the most influential regional factor when determining the 

level of energy storage, and consequently the regional system cost of lenient decarbonization. 

Note that this analysis only represents 4-hour duration energy storage, but analyses in later 

chapters introduce 2-hour and 10-hour duration energy storage.  Lastly, it should be noted that 

California is already relying on 0.13 power capacity per average demand installation of nuclear, 

which contributes 11% of non-curtailed system electricity. 

Moderate decarbonization prompts all regions to adopt substantial amounts of energy storage. 

The most notable discrepancy between regions is the introduction of nuclear or not. Like above, 
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certain regions rely heavily on this introduced technology (0.61 power capacity per average 

demand in California, 0.40 power capacity per average demand in Southeast). This means ~17 

GW of nuclear in California and ~10 GW in the Southeast.  Other regions do not install any 

nuclear generation (Central, North Central, and Texas). Again, a low wind CF is correlated with 

regions that rely on supporting technologies, in this case, nuclear. Because nuclear is more 

expensive than wind and solar, regions that rely on nuclear have higher costs. Lastly, it is noted 

that certain regions are relying on natural gas with carbon capture (0.21 power capacity per 

average demand in Southwest, 0.22 power capacity per average demand in Atlantic, and 0.23 

power capacity per average demand in the Northeast), while others do not (California and 

Central). The cause of this cannot be easily isolated. Natural gas with carbon capture operated at 

a higher CF (24%) than without (10% CF) because it has 29% higher operational costs but has 

53% lower operational emissions. The reduction in operational emissions from carbon capture 

technologies is ~ 54%. This assumes that the amine regeneration technology that is used in 

carbon capture requires natural gas heating and 0% carbon capture is assumed for the fueling of 

this process. Also, the introduction of carbon capture technology increases the natural gas heat 

rate (and therefore reduces fuel efficiency) by 13%.  And, upstream emissions attributed to 

methane leakage are not reduced.  Note that carbon capture technologies present an interesting 

tradeoff where larger and larger fractions of carbon can be captured, but at increasing costs.  The 

carbon capture technology represented in this analysis is only a conservative approximation of 

what capabilities and technologies may be commercialized in 2050. 

Deep decarbonization is attained by an increased reliance on nuclear in all regions. Most regions 

have most of their non-curtailed electricity generated from nuclear (72% in California, 72% in 

Northeast, etc.). Central and North Central regions have the lowest dependencies on nuclear 
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(27% and 40% of non-curtailed electricity). Again, the highest uses of nuclear are correlated to a 

low wind CF. It should be noted that this high reliance on nuclear is occurring under the 

constraint of zero ramping. As this limitation is loosened and ramping is introduced into the 

model, the reliance on nuclear will increase even farther. 

2.5.2 Is a carbon tax effective? 

 

Figure 2-7. How a carbon tax affects emissions intensity (a) and system cost (b) in all regions 

One strategy to meet potential decarbonization goals is to impose a carbon tax. Current carbon 

taxes that are suggested roughly range from $0 – 100/t [53]. Figure 2-7 shows how an increasing 

tax rate affects emissions intensity and system cost. Ideally, a tax would prompt a significant 

reduction in emissions, while only negligibly increasing electricity cost. Figure 2-7 shows that 

without a tax incentive to decarbonize, the cheapest power system composition varies greatly from 

region to region. Emissions intensities vary from 540 gCO2/kWh in California to 90 gCO2/kWh in 

the Central region. Similarly, costs range from $112/MWh in California to $92/MWh in the 

Central region. In all regions, an increasing carbon tax monotonically decreases emissions 

intensity, and monotonically increases system cost. Below, two regions are analyzed more closely 

to highlight the varying impact of a carbon tax from region to region.  



48 

 

 

Figure 2-8. Impact of a carbon tax in the Northwest region 

Figure 2-8 shows that in the Northwest region, a low carbon tax ($10/t) is effective in significantly 

decreasing system emissions (65%) while only slightly increasing system cost (2.8%). The vast 

majority of these offset emissions are from a coal (boiler) power plant (392 gCO2/kWh to 0 

gCO2/kWh). Coal is offset by combined cycle natural gas, which is cheaper to install, but more 

expensive to operate, as seen in Figure 2-13. This tax-motivated reduction in coal is similar to 

what is seen in an analysis of decarbonizing the Chinese power sector [54]. As discussed above, 

combined cycle operates at a higher CF than combustion turbine because it has lower operational 

costs. An increased carbon tax past $10/t linearly decarbonizes the system at a rate of -0.71 

gCO2/kWh per $/t carbon tax with an R2 value of 0.989, while increasing system cost at a rate of 

$0.13/MWh per $/t carbon tax with an R2 value of 0.997. This decarbonization comes from a 50% 

reduction of combined cycle natural gas operation. Instead, electricity demand is satisfied with 

VREs. Batteries are introduced to support the VREs at a carbon tax of $35/ton. It is notable that 

nuclear does not become economically competitive until high carbon taxes, above $100/t.  
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Note that the impact of a carbon tax is lessened when other low-carbon generation technologies are 

introduced into the system, such as hydro.  The value and impact of hydro on regional behavior is 

discussed in the following sections. 

 

Figure 2-9. Impact of a carbon tax in the Central region 

In contrast, Figure 2-9 shows that a tax on the Central region causes a linear decrease in emissions 

for all tax values. 0.28 gCO2/kWh emissions are prevented for every dollar of carbon tax with a 

R2 value of 0.976, while increasing system price at a rate of $0.074/kWh with an R2 value of 0.998. 

This shallower decarbonization rate in comparison to the Northwest is due to the already low 

emissions intensity (90 gCO2/kWh without a carbon tax, and 62 gCO2/kWh with a $100/t carbon 

tax), and the fact that a zero emissions intensity is impossible to reach. In fact, the Central region 

without a carbon tax has a lower emissions intensity than the Northwest region with a $100/t tax 

(110 gCO2/kWh). Like the Northwest region, emissions reduction comes mainly from a reduced 

reliance on natural gas (40% reduction in combined cycle operation) and increased reliance on 

VREs (18% capacity increase). At high carbon taxes ($500/t), no nuclear is installed, and there is 

a higher reliance on natural gas with carbon capture than was seen in the Northwest. This trend is 

consistent across regions where a higher reliance on nuclear means a lower reliance on carbon 

capture. Lastly, system cost before tax is included in figures within this section to track tax revenue.  
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2.5.3 Why does California’s nuclear ban make decarbonization harder? 

Currently, California is facing the retirement of its last remaining nuclear power plants and 

cannot replace these resources due to a 1976 law banning new nuclear power plant construction 

[55]. Figure 2-10 illustrates the impact of this legislation. At a less restrictive emissions intensity 

target (200 gCO2/kWh), nuclear is not incorporated into the system because of its relatively high 

electricity cost in comparison to other low-carbon generator options, as seen in Figure 2-3. As 

the emissions cap tightens to 50 gCO2/kWh, nuclear technology becomes economically 

competitive. Because nuclear operates at a high and consistent capacity factor of 93.7%, in 

contrast to wind and solar which operate with seasonal and hourly variability at lower capacity 

factors (~25% and ~29% in California), both overall generator fleet and energy storage decrease 

in size (by 45% and 47%) when nuclear is incorporated. This larger generator fleet without 

nuclear results in a 7% increase in price. This price and system size increase matches the trends 

seen in Carrara’s publication [56]. Lastly, it is important to examine the error bars representing 

yearly variation. Yearly variation increases as the emissions cap tightens because a system more 

highly reliant on VREs is less stable due to its decreased dispatchability. 

 

Figure 2-10. California reaching various carbon intensities with and without nuclear 
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As an extreme case, emissions intensity can be minimized, regardless of system cost. This 

analysis highlights the value of complete LCA by showing decarbonization limits. The low 

emissions intensity of nuclear power (8.0 gCO2/kWh), as seen in Figure 2-3, allows California to 

reach a low of 16 gCO2/kWh with nuclear, versus a low of 40 gCO2/kWh without nuclear. Solar 

and wind have relatively low emissions intensities (23 gCO2/kWh and 14 gCO2/kWh) when 

operating at their above capacity factors, but in extreme cases where much of their generated 

electricity is lost (curtailed, lost in TD, or lost in battery operation), their effective CF drops and 

consequently their emissions intensity increases. In the case where nuclear is restricted, the 

collective CF of VREs drops to 16%, causing their emissions intensity to rise to 27 gCO2/kWh. 

Lastly, there is a very slight reliance on a coal boiler with carbon capture which substitutes 

natural gas because its lower operational cost offsets its higher capital investment, as seen in 

Figure 2-13. 
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2.5.4 Including hydro in optimization aids decarbonization 

 

Figure 2-11. Fleet comparison for a system with vs. without hydro buildout allowed, at 50 

gCO2/kWh 

First, it is clear from Figure 2-11 that some form hydro is adopted in all regions, when allowed 

by the model, even considering respective embodied emissions, that some groups cite as a reason 

to avoid hydro, as mentioned in section 1.2.2. Note that the social consequences of hydro are not 

considered in this analysis and should still be considered before any new hydro construction. 

Easiest to spot is the replacement of LIB with PHS. More analysis on this trend is provided in the 

following section. Nuclear penetration and natural gas with carbon capture is decreased because 
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hydro technologies directly compete with low-carbon firm and dispatchable technologies. It’s 

interesting to note that conventional hydro is cheaper than nuclear if both are compared at low 

CFs. For example, at a CF of 36%, (about the national average for conventional hydro) nuclear 

LCOE is about $150/MWh, which is higher than most conventional hydro installation options, as 

shown in Figure 2-3. The impact of hydro on solar and wind resources is not homogeneous 

across all regions. In most locations (Atlantic, California, North Central, Northeast, and 

Southwest), solar capacity is increased and wind capacity is decreased, albeit to varying degrees. 

Other regions (Central and Texas) require less solar and wind buildout, but only to a slight 

degree because these regions are mostly flat, with limited hydro resources. The characteristics 

motivating these discrepancies is a complex combination of many factors. Lastly, and most 

importantly, there is a system cost reduction ranging from 2-8% when hydro is allowed. 

Also worth noting is the importance of including capacity limits on hydro. In this analysis, hydro 

capacity limits were hit in six out of the nine analyzed regions, in one hydro technology or 

another. Table 2-6 shows which regions hit capacity limits at the 50 gCO2/kWh carbon ceiling. 

Table 2-6. Regions which hit their hydro capacity limits 
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2.5.5 Value of long-duration energy storage 

 
Figure 2-12. Impact on generator fleet when PHS is introduced 

The role of PHS – or more generally, long-duration energy storage – is shown in Figure 2-12. 

Leveraging this technology allows for up to 4% system cost saving, depending on region. More 

interestingly, it changes least-cost fleet breakdown. Obviously, a more diverse arsenal of energy 

storage technologies increases the reliance on storage. Reliance on solar also increases because 

of its extreme oscillation, which pairs well with storage. In contrast, PHS decreases system 

reliance on nuclear, conventional, hydro, and natural gas with carbon capture. This is because 

PHS gives the system a load-shifting ability, meaning that dispatchable, and firm generation 

technologies are needed less. Dirty natural gas (CT) reliance increases because there is more 

space in the carbon budget as the other technologies are phased out. Lastly, Central and Texas 
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regions see a minuscule decrease in energy storage capacity as PHS replaces LIB, but that 

overall storage energy capacity still increases. 

2.5.6 Meaning and importance of yearly variation 

Error bars are present in all results graphs to show yearly variation in optimization. This 

variation is caused by diversity in VRE output trends, which causes the optimum generation fleet 

to vary from year to year. Regardless of this variation, the proposed system must guarantee 

robust output to satisfy the electricity demand. System robustness can be increased in several 

ways, including load-shifting, utilizing battery electric vehicles as energy storage, targeted load 

shedding, etc. 

2.6 Conclusions 

This report describes the novel and impactful nature of Ideal Grid, most namely its ability to 

execute numerous and diverse analysis without requiring any data collection or pre-processing. 

This allows users to explore the power sector landscape without the entry-barrier which limits 

the potential users of many other tools. Within Ideal Grid, LCA and TEA results can be produced 

for a massive number of case studies.  

In this paper, there is a focus on identifying regional discrepancies in decarbonization schemes to 

highlight regional challenges. Lenient, moderate, and deep decarbonization targets are imposed 

on all regions. At all three decarbonization levels, the wind capacity factor directly corresponds 

to technologies used and resultant costs. In lenient decarbonization, regions with high wind CFs 

do not require energy storage. In contrast, regions with low wind CFs require large amounts of 

energy storage. California even requires 11% electricity generation from nuclear, resulting in the 

highest cost at this decarbonization target, $118.9/MWh. At deeper decarbonization levels, all 
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regions rely more heavily on nuclear generation. California and New England rely most heavily 

on nuclear, generating 72% of their electricity in each region. 

California’s relatively high reliance on nuclear draws additional attention to its current ban of 

new nuclear installations. Without nuclear, California’s minimum carbon intensity that can be 

reached is 40 gCO2/kWh, while allowing for nuclear extends the decarbonization potential to 16 

gCO2/kWh. To reach moderate decarbonization levels without nuclear, the power system must 

increase in size by 45%, and correspondingly increase electricity cost by 7%. 

A carbon tax is imposed on all regions to test and quantify its effectiveness. A low carbon tax 

($10/t) is effective in drastically reducing emissions by phasing out all coal generation. After 

coal has been phased out of all regions, a carbon tax linearly decreases carbon emissions and 

linearly increases price. In the Northwest region, an increasing carbon tax reduces emissions at a 

rate of 0.71 gCO2/kWh per $/t tax and increases cost at a rate of $0.13/MWh per $/t tax. In the 

Central region, a carbon tax is less effective, where 0.28 gCO2/kWh emissions are prevented for 

every $/t tax, at the cost of $0.074/MWh per $/t tax. 

Lastly, a wide range of sources are used to comprehensively evaluate hydro resources across the 

USA. Regional capacity limits and performance profiles are identified for conventional, RoR, 

and PHS resources. LCA is used to show that the optimal decarbonization strategy for every 

region involves the leveraging of at least one hydro resource. Hydro provides valuable load-

shifting and dispatchable capabilities, which leads to an overall decrease in system cost by up to 

8%. National reliance on solar is increased because it pairs well with load-shifting and highly 

dispatchable technologies. Also, the need to firm and/or dispatchable, low-carbon generation 

technologies is lessened as hydro technologies compete for that role. Consequently, introducing 

hydro to the system reduces nuclear and natural gas with carbon capture penetration. 
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2.7 Appendix 

2.7.1 Parameter values independent of user inputs 

 Value Unit Source 

𝑇𝐷𝑙𝑜𝑠𝑠𝑒𝑠 0.047 - [57] 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝐿𝐼𝐵 22.8 $/kW/year [58] Utility-Scale Battery Storage; 4hr battery 

storage – moderate case; 2022 CAPEX, 

normalized by lifetime; **reduction by a factor 

of 4 to convert from power capacity to energy 

capacity  

𝐹𝑂𝑀𝐿𝐼𝐵  8.5 $/kW/year [58] Utility-Scale Battery Storage; 4hr battery 

storage – moderate case; 2022 Fixed Operation 

and Maintenance Expenses; **reduction by a 

factor of 4 to convert from power capacity to 

energy capacity 

𝑉𝑂𝑀𝐿𝐼𝐵 0 $/kWh [58] Utility-Scale Battery Storage; 4hr battery 

storage – moderate case; 2022 Fixed Operation 

and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝐿𝐼𝐵 0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝐿𝐼𝐵 0 MMBtu/kWh - 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑤𝑖𝑛𝑑  59.72 $/kW/year [58] Land-Based Wind; Moderate case; 2022 

annualized CAPEX multiplied by calculated 
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FRC, considering tax credits, depreciation, etc.; 

exact equations included below 

𝐹𝑂𝑀𝑤𝑖𝑛𝑑 42 $/kW/year [58] Land-Based Wind; Moderate case; 2022 

Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑤𝑖𝑛𝑑 0 $/kWh [58] Land-Based Wind; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑤𝑖𝑛𝑑 0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑤𝑖𝑛𝑑 0 MMBtu/kWh - 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑠𝑜𝑙𝑎𝑟 38.71 $/kW/year [58] Solar – Utility PV; Moderate case; 2022 

annualized CAPEX multiplied by calculated 

FRC, considering tax credits, depreciation, etc.; 

exact equations included below 

𝐹𝑂𝑀𝑠𝑜𝑙𝑎𝑟 20 $/kW/year [58] Solar – Utility PV; Moderate case; 2022 

Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑠𝑜𝑙𝑎𝑟 0 $/kWh [58] Solar – Utility PV; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑠𝑜𝑙𝑎𝑟 0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑠𝑜𝑙𝑎𝑟 0 MMBtu/kWh - 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑢𝑐𝑙𝑒𝑎𝑟 309.80 $/kW/year [58] Nuclear; Moderate case; annualized CAPEX 

multiplied by calculated FRC, considering 

interest rates, depreciation, etc.; exact equations 

included below 
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𝐹𝑂𝑀𝑛𝑢𝑐𝑙𝑒𝑎𝑟 146 $/kW/year [58] Nuclear; Moderate case; 2022 Fixed 

Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑛𝑢𝑐𝑙𝑒𝑎𝑟 0.003 $/kWh [58] Nuclear; Moderate case; 2022 Variable 

Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑛𝑢𝑐𝑙𝑒𝑎𝑟 0.68 $/MMBtu [58] Nuclear; Moderate case; 2022 Fuels Costs 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑛𝑢𝑐𝑙𝑒𝑎𝑟 0.01044 MMBtu/kWh [58] Nuclear; Moderate case; 2022 Heat Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑔𝑐𝑡 40.58 $/kW/year [58] Natural Gases – CT; Moderate case; 

annualized CAPEX multiplied by calculated 

FRC, considering interest rates, depreciation, 

etc.; exact equations included below 

𝐹𝑂𝑀𝑛𝑔𝑐𝑡 21 $/kW/year [58] Natural Gas_FE – CT; Moderate case; 2022 

Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑛𝑔𝑐𝑡 0.005 $/kWh [58] Natural Gas_FE – CT; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑛𝑔𝑐𝑡 - $/MMBtu Dependent on input-selected region; exact values 

included below 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑛𝑔𝑐𝑡 0.00972 MMBtu/kWh [58] Natural Gas_FE – CT; Moderate case; 2022 

Heat Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑔𝑐𝑐 45.64 $/kW/year [58] Natural Gas_FE – CC; Moderate case; 

annualized CAPEX multiplied by calculated 

FRC, considering interest rates, depreciation, 

etc.; exact equations included below 
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𝐹𝑂𝑀𝑛𝑔𝑐𝑐 28 $/kW/year [58] Natural Gas_FE – CC; Moderate case; 2022 

Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑛𝑔𝑐𝑐 0.002 $/kWh [58] Natural Gas_FE – CC; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑛𝑔𝑐𝑐 - $/MMBtu Dependent on input-selected region; exact values 

included below 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑛𝑔𝑐𝑐 0.00636 MMBtu/kWh [58] Natural Gas_FE – CC; Moderate case; 2022 

Heat Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑔𝑐𝑐𝑠 105.03 $/kW/year [58] Natural Gas_FE – CC – CCS; Moderate 

case; annualized CAPEX multiplied by 

calculated FRC, considering interest rates, 

depreciation, etc.; exact equations included below 

𝐹𝑂𝑀𝑛𝑔𝑐𝑐𝑠 63 $/kW/year [58] Natural Gas_FE – CC – CCS; Moderate 

case; 2022 Fixed Operation and Maintenance 

Expenses 

𝑉𝑂𝑀𝑛𝑔𝑐𝑐𝑠 0.006 $/kWh [58] Natural Gas_FE – CC – CCS; Moderate 

case; 2022 Variable Operation and Maintenance 

Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑛𝑔𝑐𝑐𝑠 - $/MMBtu Dependent on input-selected region; exact values 

included below 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑛𝑔𝑐𝑐𝑠 0.00717 MMBtu/kWh [58] Natural Gas_FE – CC – CCS; Moderate 

case; 2022 Heat Rate 
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𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 136.42 $/kW/year [58] Coal_FE – new; Moderate case; annualized 

CAPEX multiplied by calculated FRC, 

considering interest rates, depreciation, etc.; exact 

equations included below 

𝐹𝑂𝑀𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 74 $/kW/year [58] Coal_FE – new; Moderate case; 2022 Fixed 

Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 0.008 $/kWh [58] Coal_FE – new; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 - $/MMBtu Dependent on input-selected region; exact values 

included below 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 0.00849 MMBtu/kWh [58] Coal_FE – new; Moderate case; 2022 Heat 

Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 245.85 $/kW/year [58] Coal_FE – CCS – 90%; Moderate case; 

annualized CAPEX multiplied by calculated 

FRC, considering interest rates, depreciation, 

etc.; exact equations included below 

𝐹𝑂𝑀𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 125 $/kW/year [58] Coal_FE – CCS – 90%; Moderate case; 

2022 Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 0.015 $/kWh [58] Coal_FE – CCS – 90%; Moderate case; 

2022 Variable Operation and Maintenance 

Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 - $/MMBtu Dependent on input-selected region; exact values 

included below 
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ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 0.01078 MMBtu/kWh [58] Coal_FE – CCS – 90%; Moderate case; 

2022 Heat Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 389.81 $/kW/year [58] Coal_FE – IGCC; Moderate case; 

annualized CAPEX multiplied by calculated 

FRC, considering interest rates, depreciation, 

etc.; exact equations included below 

𝐹𝑂𝑀𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 141 $/kW/year [58] Coal_FE – IGCC; Moderate case; 2022 

Fixed Operation and Maintenance Expenses 

𝑉𝑂𝑀𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 0.014 $/kWh [58] Coal_FE – IGCC; Moderate case; 2022 

Variable Operation and Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 - $/MMBtu Dependent on input-selected region; exact values 

included below 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 0.00849 MMBtu/kWh [58] Coal_FE – IGCC; Moderate case; 2022 Heat 

Rate 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 243.56 $/kW/year [58] Hydropower; Averaged value for moderate 

case for NSD 2; 2022 annualized CAPEX 

multiplied by calculated FRC, considering tax 

credits, depreciation, etc.; exact equations 

included below 

𝐹𝑂𝑀𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 45 $/kW/year [58] Hydropower; Averaged value for moderate 

case for NSD 2; Fixed Operation and 

Maintenance Expenses 
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𝑉𝑂𝑀𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 0 $/kWh/year [58] Hydropower; Averaged value for moderate 

case for NSD 2; Variable Operation and 

Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙  0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 0 MMBtu/kWh - 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑅𝑜𝑅 240.53 $/kW/year [58] Hydropower; Averaged value for moderate 

case for NSD 1-4; 2022 annualized CAPEX 

multiplied by calculated FRC, considering tax 

credits, depreciation, etc.; exact equations 

included below 

𝐹𝑂𝑀𝑅𝑜𝑅 86 $/kW/year [58] Hydropower; Averaged value for moderate 

case for NSD 1-4; Fixed Operation and 

Maintenance Expenses 

𝑉𝑂𝑀𝑅𝑜𝑅 0 $/kWh/year [58] Hydropower; Averaged value for moderate 

case for NSD 1-4; Variable Operation and 

Maintenance Expenses 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑅𝑜𝑅 0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑅𝑜𝑅 0 MMBtu/kWh - 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑃𝐻𝑆 - $/kW/year Dependent on input-selected region; exact values 

included below 

𝐹𝑂𝑀𝑃𝐻𝑆 17.8 $/kW/year [58] Pumped Storage Hydropower; Moderate 

case; 2022 FOM 
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𝑉𝑂𝑀𝑃𝐻𝑆 0.00051 $/kWh [58] Pumped Storage Hydropower; Moderate 

case; 2022 FOM 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑃𝐻𝑆 0 $/MMBtu - 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑃𝐻𝑆 0 MMBtu/kWh - 

𝑒𝐺𝐶𝐿𝐼𝐵
 72,900 gCO2/kWh [59] Build a Pathway; Other Technology * 

𝑒𝐺𝐶𝑠𝑜𝑙𝑎𝑟
 58,580 gCO2/kW [59] Build a Pathway; utility, fixed tilt; all other 

inputs are default * 

𝑒𝐺𝐶𝑤𝑖𝑛𝑑
 30,660 gCO2/kW [59] Build a Pathway; all inputs are default * 

𝑒𝐺𝐶𝑛𝑢𝑐𝑙𝑒𝑎𝑟
 3,283 gCO2/kW [59] Build a Pathway; HTGR reactor; all inputs 

are default; does not include decommission 

emissions * 

𝑒𝐺𝐶𝑛𝑔𝑐𝑡
 35,485 gCO2/kW [59] Build a Pathway; Gas Turbine * 

𝑒𝐺𝐶𝑛𝑔𝑐𝑐
 39,900 gCO2/kW [59] Build a Pathway; Combined Cycle * 

𝑒𝐺𝐶𝑛𝑔𝑐𝑐𝑠
 48,768 gCO2/kW [59] Build a Pathway; Combined Cycle with Use 

CCS on; 90% captured from plant; 0% captured 

from Amine Regeneration; all other inputs 

default * 

𝑒𝐺𝐶𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟
 3,044 gCO2/kW [59] Build a Pathway; all inputs are default * 

𝑒𝐺𝐶𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90
 3,044 gCO2/kW [59] Build a Pathway; all inputs are default * 

𝑒𝐺𝐶𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶
 3,402 gCO2/kW [59] Build a Pathway; IGCC type; all other inputs 

are default * 

𝑒𝐺𝐶𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙
 87,540 gCO2/kW [60] 
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𝑒𝐺𝐶𝑅𝑜𝑅
 45235 gCO2/kW [60] 

𝑒𝐺𝐶𝑃𝐻𝑆
 3150 gCO2/kW [61] 

𝑒𝑤𝑖𝑛𝑑 0 gCO2/kWh - 

𝑒𝑠𝑜𝑙𝑎𝑟 0 gCO2/kWh - 

𝑒𝑛𝑢𝑐𝑙𝑒𝑎𝑟 7.6 gCO2/kWh [59] Build a Pathway; HTGR reactor; all other 

inputs are default; emissions are only from 

methane leaking 

𝑒𝑛𝑔𝑐𝑡 780 gCO2/kWh [59] Build a Pathway; Gas Turbine 

𝑒𝑛𝑔𝑐𝑐 481 gCO2/kWh [59] Build a Pathway; Combined Cycle 

𝑒𝑛𝑔𝑐𝑐𝑠 223 gCO2/kWh [59] Build a Pathway; Combined Cycle with Use 

CCS on; 90% captured from plant; 0% captured 

from Amine Regeneration; all other inputs 

default 

𝑒𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 1,044 gCO2/kWh [59] Build a Pathway; all inputs are default 

𝑒𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 491 gCO2/kWh [59] Build a Pathway; all inputs are default 

𝑒𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 935 gCO2/kWh [59] Build a Pathway; IGCC type; all other inputs 

are default 

𝑒𝐿𝐼𝐵 0 gCO2/kWh - 

𝑒𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 0 gCO2/kWh - 

𝑒𝑅𝑜𝑅 0 gCO2/kWh - 

𝑒𝑃𝐻𝑆 0 gCO2/kWh - 
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𝜂𝐿𝐼𝐵 0.92 - [58] Assuming equal charging and discharging 

efficiencies 

𝜂ℎ𝑜𝑢𝑟𝑙𝑦𝐿𝐼𝐵 0.9999315 - [62] Converted from M = 5% based on the below 

equation  

𝜂𝑃𝐻𝑆 0.8944272 - [58] Assuming equal charging and discharging 

efficiencies 

𝜂ℎ𝑜𝑢𝑟𝑙𝑦𝑃𝐻𝑆 1 -  

𝐶𝐹𝑛𝑢𝑐𝑙𝑒𝑎𝑟 0.937 - [58] Nuclear; Moderate case; 2022 net CF 

𝐿𝑤𝑖𝑛𝑑 30 years [58] Financial and CRP inputs tab; Land-based 

wind 

𝐿𝑠𝑜𝑙𝑎𝑟 30 years [58] Financial and CRP inputs tab; Solar – Utility 

PV 

𝐿𝑛𝑢𝑐𝑙𝑒𝑎𝑟 60 years [58] Financial and CRP inputs tab; Nuclear 

𝐿𝑛𝑔𝑐𝑡 55 years [63] Natural Gas; Technology Life 

𝐿𝑛𝑔𝑐𝑐 55 years [63] Natural Gas; Technology Life 

𝐿𝑛𝑔𝑐𝑐𝑠 55 years [63] Natural Gas; Technology Life 

𝐿𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟 75 years [63] Coal; Technology Life 

𝐿𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 75 years [63] Coal; Technology Life 

𝐿𝑐𝑜𝑎𝑙𝐼𝐺𝐶𝐶 75 years [63] Coal; Technology Life 

𝐿𝐸𝐶  15 years [58] Utility-Scale Battery Storage; Technology 

Life 

𝐿𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 100 years [58] Hydropower; Technology Life 
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𝐿𝑅𝑜𝑅 100 years [58] Hydropower; Technology Life 

𝐿𝑃𝐻𝑆 100 years [58] Pumped Storage Hydropower; Technology 

Life 

𝑐𝐶𝐶𝑆 0.00002 $/gCO2 [36] Cost of transportation and storage of carbon; 

assuming 8$/ton for storage and 0.05 $/ton/mile 

with an average transportation distance of 240 

miles  

𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑛𝑔𝑐𝑐𝑠 267 gCO2/kWh [59] 

𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑐𝑜𝑎𝑙𝑏𝑜𝑖𝑙𝑒𝑟90 553 gCO2/kWh [59] 

*Note: Sparse data on these values because emissions analyses usually focus on operational 

emissions 

**explanations for chosen assumptions 

2.7.2 Cost and emissions figures for ten technologies 

Figure 2-13 and Figure 2-14 can be used to directly compare costs and emissions values for all 

ten technologies. Costs and emissions values are broken up into their capacity-related and 

operation-related components. 

 

Figure 2-13. Technology specific capital and operational costs 
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Figure 2-14. Technology specific capital and operational emissions 

2.7.3 Effectiveness of carbon taxes 

Figure 2-15 shows the impact of a carbon tax on emissions intensity (a), cost (b), and cost before 

tax (c). This allows the user to understand what portion of electricity price increase is due to 

switching to more expensive technologies vs. paying taxes. 

 

Figure 2-15. Impact of carbon tax on emissions intensity, costs, and costs before subsidies 

2.7.4 Equations used in pre-processing values 

Equation 2.19 used to convert monthly to hourly LIB efficiency losses [62]:  

 
/730M

EC e −=  (2.19) 

 

Equations 2.20 through 2.26 are used to convert CAPEX to capital for all generators (𝚽) [58]: 
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capital CAPEX FCR CFF PTC CF= −  (2.26) 

Where: 

DF is debt fraction and = 67% for nuclear, 55% for natural gas and 55% for coal, 

IR is nominal interest rate and = 5%, 

TR is federal and state tax rate and = 25.7%, 

RROE is rate of return on equity and = 10%, 

i is inflation rate and = 2.5%, 

ITC is investment tax credit and = 0% for all thermal and wind generators and 30% for solar,  

PTC is production tax credit and = 0$/MWh for all thermal and solar generators and 14.4 $/MW 

for wind, 

CF is annual capacity factor, 
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WACC is weighted average cost of capital, 

CRF is capital recovery factor, 

PVD is present value of depreciation, 

PFF is project finance factor, 

and FCR is fixed charge rate. 

2.7.5 PHS CAPEX by region [42] 
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2.7.6 Fuel costs [64] 

 

Figure 2-16. Regional natural gas and coal prices 

For Natural Gas: 
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For the selected region, hourly state prices are scaled by hourly percent consumption and 

summed together to calculate hourly regional values. The median value from the 2019 price 

vector is selected to reflect pre-pandemic and pre-Russo-Ukrainian War trends. 

For Coal: 

For the selected region, annual state prices are scaled by annual percent consumption and 

summed together. 2019 regional values are used to reflect pre-pandemic and pre-Russo-

Ukrainian War trends. 
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Chapter 3. The elephant in the room: embodied emissions in our 

power sector 

3.1 Overview 

Inaccurate accounting of greenhouse gas emissions will have detrimental consequences for our 

planet. Specifically, this Chapter shows that: 1) ignoring embodied emissions in policy and 

planning will mean never actually reaching carbon neutrality, 2) carbon negative technologies 

are needed to actually reach net-zero, 3) fair and accurate decarbonization is even harder and 

more expensive than we are currently estimating. Ignoring embodied emissions is not only 

neglectful, but also leads to a suboptimal design of a decarbonized power sector. At deep levels 

of decarbonization, 20 gCO2-e/kWh, embodied emissions are over 50% of total system 

emissions. As our grid becomes cleaner, further reducing power sector emissions becomes even 

more challenging and expensive. 

3.2 Introduction 

Although the necessary grid transformation is daunting, we have a unique opportunity to build it 

right. Early and targeted analysis can provide a detailed roadmap to ensure economic viability 

and system reliability throughout the transition. The importance of comprehensive and accurate 

grid analysis on all levels cannot be overemphasized.  

Currently, the standard, both in modeling and policy, is to only account for operational 

emissions, and therefore ignore embodied emissions associated with mining materials, 

manufacturing, transportation of infrastructure, etc. For example, Biden’s existing goal is to 

achieve a “carbon pollution-free” power sector by 2035 [65]. “Carbon pollution-free” can be 

translated to mean “without burning fossil fuels.” Figure 3-1 which is an adjusted version of 

Figure 2-3 built with 2030 cost projections – shows that significant emissions are produced 
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during infrastructure creation and decommissioning, or outside of operations, for all 

technologies. While it is clear that solar, wind, hydro, and nuclear are leaps-and-bounds cleaner 

than fossil-fuel fired generators, this study focuses on the fact that their embodied emissions are 

nonzero. At deep decarbonization levels, with significant VRE penetration and reduction of 

fossil fuel consumption, embodied emissions will become the dominant greenhouse gas 

contributor. 

 

Figure 3-1. LCA emissions vs operational emissions in the cost (2030 projections)-emissions 

space 

 

Since policy ignores embodied emissions, most grid decarbonization planning tools/analysis do 

as well, as shown in Table 1-1. Embodied emissions deserve heightened attention to track 

electricity emissions intensity more accurately, and to achieve the highest reduction of emissions, 
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from all stages of the life cycle. Ignoring embodied emissions can lead to designing suboptimal 

decarbonization schemes. 

Previous studies have already highlighted a need for more comprehensive emissions tracking in 

CEM. Byles and Mohagheghi emphasize the added value of holistic emissions analysis to better 

inform policy [66]. Rauner and Buzinski note the importance of balancing direct (or operational) 

with indirect (or embodied) emissions [67]. Van De Ven et al. demonstrate that at 80% solar 

penetration, indirect emissions can reach up to 50 gCO2-e/kWh [68]. Indirect emissions become 

comparable with direct at deep decarbonization levels [69]. Accounting for embodied emissions 

leads to a more accurate and effective decarbonization strategy, but to what degree? 

Life-cycle assessment (LCA) is a commonly used method of tracking emissions for a variety of 

difference current and emerging technologies which allows fair benchmarking and comparisons 

[70]. This study leverages MIT’s Ideal Grid to demonstrate the importance of integrating LCA 

into CEM [21].  This body of work marks the first of its kind to focus on the importance of 

incorporating LCA into CEM. 

3.3 Methods 

3.3.1 Assumptions 

Most of the assumptions described in Chapter 2 remain, with only a few adjustments. Most 

notably, in this analysis, cost values are sourced from the 2023 Annual Technology Baseline, 

using values projected for 2030 [71]. Similarly, projected 2030 electricity demand was sourced 

from NREL’s Cambium data set [37]. Hourly demand data is available in the North American 

Electric Reliability Cooperation (NERC) regions, which can be easily aggregated into the 

regions shown in Figure 2-1. The optimization is conducted for seven consecutive years (2007-
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2013). This seven-year timeline is chosen because weather data vary from year to year, and it is 

important to design a robust system that will satisfy demand for a variety of scenarios. The 

optimized fleet must satisfy demand during all seven years.  

Solar, land-based wind, and offshore wind have capacity limits in each region. NREL’s 

Assessment of Offshore Wind Energy Resources for the United States provides estimates for 

offshore wind capacity limits [72]. Solar and land-based wind restrictions were obtained from 

NREL’s US Renewable Energy Technical Potentials [73]. 

The calculations conducted in this experiment were run on MIT’s SuperCloud [74], where each 

case ran in ~2 minutes. 

3.3.2 LCA case study vs. operational emissions case study 

As described above, this Chapter explores the differences in optimization between two distinct 

case studies. The first, more accurate set of case studies conducted consider emissions from all 

stages of the life cycle, using the below Equation 3.1 to impose a carbon ceiling. This case study 

is referred to as “LCA,” or “base-case.” 

∑ {𝐷𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒𝑑𝑗 ∗ 𝐶𝐴𝑃}61,320
𝑗=0 ≥  ∑{𝑒𝐺𝐶𝑖 ∗ 𝐺𝐶𝑖 + 𝑒𝑖 ∗ ∑ (𝐶𝐹𝑗,𝑖 ∗ 𝐺𝐶𝑖)61,320

𝑗=0 } , 𝑖 ∈ Y  (3.1) 

Note that Equation 3.1 is a slightly more explicit variation of Equation 2.18. Exact emissions 

values are available in Table 3-2 of the Appendix. 

The second, more common set of case studies conducted only consider emissions from the 

operational phase. In this case, the first term on the right side of Equation 3.1 is set to zero. This 

is referred to hereafter as “only operational emissions,” or “ignoring embodied emissions.” 
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3.4 Results and discussion 

3.4.1 LCA case results 

As is shown in Chapter 2, the US regions require bespoke decarbonization strategies. Figure 3-2 

shows the least-cost fleet of generators and energy storage technologies that are required at 

decreasing carbon ceilings. The diversity of profiles in Figure 3-2 motivates the multi-regional 

element of this analysis. All systems install large amounts of VRE capacity, but at varying ratios. 

The Southeast installs over 25 times more solar than wind while the Northwest installs over 3 

times more wind than solar. These results are impacted by a variety of characteristics and 

constraints, such as capacity buildout limitations based on geography and land availability. A 

comprehensive understanding and investigation of these results provides clarity to the future 

sections of this Chapter. This is the base-case that “operational emissions only” analyses will be 

compared to. 
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Figure 3-2. Base case system buildout for nine regions, at decreasing carbon ceilings 

PHS is the primary energy storage technology because of its lower emissions intensity, as shown 

in Figure 3-1. In fact, LIBs are only installed in the above results when PHS has reached its 

regional capacity limit. Atlantic, California, Northeast, and Southeast see a decrease in total 

system capacity after nuclear is installed, beginning anywhere from 60 to 30 gCO2-e/kWh, 

depending on the region. These four regions which rely on nuclear have all reached their land-

based wind capacity. Without this constraint, regions rely on nuclear less heavily, proving the 

importance of accurate capacity limits. All these observations are consistent with Chapter 2’s 

conclusions. 
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Figure 3-3. Regional operation of natural gas (solid line is a sum of NGCT and NGCC, and 

dotted line is NGCCS) 

Operation of natural gas is a more illuminating trend than installed capacity. Figure 3-3 shows 

that operation of natural gas without carbon capture (NGCT and NGCC) decreases steadily and 

monotonically. In contrast, natural gas with carbon capture peaks as an intermediary 

decarbonization steppingstone, with maximum operation occurring at 50 gCO2-e/kWh. This is 

due to the emissions intensity of NGCCS being almost 200 gCO2-e/kWh. 

3.4.2 Ignoring embodied emissions changes generator buildout 

As mentioned above, the same analysis is conducted with the common, but inaccurate 

approximation of ignoring embodied emissions. This is the type of analysis that current policies 

and decarbonization strategies are based on. Figure 3-4 shows the difference in buildout for three 

regions: Southeast, Central, and California. Area above the horizontal axis indicates an increase 

in installed capacity when embodied emissions are ignored, and the opposite is true for area 

below the horizontal axis. This area shows the error introduced by only accounting for 

operational emissions. More accurate bookkeeping of emissions leads to different recommended 

generator buildouts. 
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Figure 3-4. Error introduced in capacity buildout by ignoring embodied emissions 

Ignoring embodied emissions causes a technological bias of nonuniform magnitude. In general, 

we observe wider deployment of more emission intensive solar, and less wind and nuclear, albeit 

to varying degrees, depending on the region. Solar displaces wind because it’s ~3 times higher 

embodied emissions are ignored. Nuclear is reduced because there is more room in the carbon 

budget for increased renewables and natural gas operation.  

The largest magnitude changes in capacity occur in the Southeast. In fact, the solar increase 

is >50% at 30 and 20 gCO2-e/kWh emissions intensity. This is a staggering value. Ignoring 

embodied emissions leads to a doubling of recommended solar installations. These two grid 

decarbonization strategies are different. Therefore, ignoring embodied emissions leads to a 

suboptimal grid design. 

Conversely, the Central region sees the smallest changes. At 30 and 20 gCO2-e/kWh, the wind 

decrease is 12, then 26%, respectively. While these values are smaller in magnitude than the 

Southeast’s, they remain nonnegligible. At high carbon ceilings, there is no difference between 

the LCA and only operational emissions optimizations. This is because the least-cost system has 

a lower emissions intensity than the applied constraint. Lastly, it should be noted that some 
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regions see an unintuitive polytonic change in capacity, such as California’s solar response. Even 

in systems which are more resilient against introduced error, the changes in decarbonization 

strategy are too large to be ignored. 

Policy makers, companies, and the general public are basing their decisions off inaccurate 

assumptions. Integrating LCA into CEM changes grid decarbonization optimization. Therefore, 

to enact the best policies and make the best choices, these groups must stop ignoring embodied 

emissions. 

3.4.3 What amount of emissions are being ignored? 

Figure 3-5 shows the comparison of emissions in the base-case vs. when embodied emissions are 

ignored. When LCA techniques are used, the sum of total system emissions remains below the 

imposed carbon ceiling. When embodied emissions are ignored, operational emissions grow until 

they are restricted by the carbon cap, meaning that embodied emissions cause system emissions 

to exceed the intended target. 

 

Figure 3-5. Comparison of emissions from LCA (left bar) vs. when embodied emissions are 

ignored (right bar, with ignored emissions retroactively added on top and represented with 

stripes) 
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The fraction of ignored emissions increases as emissions ceiling lowers because 1) VRE 

penetration increases, and 2) total system emissions decreases. Unaccounted for emissions are 

highest in the Southeast, starting at 21% and reaching 58% as the carbon ceiling drops from 100 

to 20 gCO2-e/kWh. Conversely, ignored emissions are lowest in the Central region, ranging from 

18% to 40% of total. These comparatively lower values are due to the smaller change in 

capacities and greater reliance on wind, which is less emissions intensive. The total system 

emissions are equal for the Central region at 100, 90, and 80 gCO2-e/kWh (after embodied 

emissions are accounted for) because the least-cost optimization has a lower emissions intensity 

than the imposed carbon ceiling. Figure 3-5 shows how current accounting methods 

underestimate the difficulty of decarbonizing. 

In fact, the national sum of neglected emissions at 20 gCO2-e/kWh, add up to 61 MMmt of CO2 

per year, meaning that actual emissions intensity is ~38 gCO2-e/kWh. This is roughly equivalent 

to the yearly emissions of more than 13 million cars on the road [75]! Reaching decarbonization 

targets based on LCA or only operational emissions would be a massive improvement compared 

to the US’s current carbon intensity of ~370 gCO2-e/kWh. But, since massive reform is required, 

we are presented with the unique opportunity and responsibility to transform our grid in the most 

sustainable way possible. Also, it would be harmful and misleading to ignore embodied 

emissions which comprise almost 50% of power-sector emissions in this particular scenario. 

Another important conclusion is that net-zero electricity cannot be reached without significant 

contribution from negative emission technologies. The two most promising technologies are 

direct-air capture and bioenergy with carbon capture and storage (BECCS) [76]. There is a wide 

range of estimated DAC costs, from $180-1,000/ton-of-CO2 captured [77]. Also, it has been 

shown that up to 200 MMmt of CO2 can be captured via BECCS in Europe [78]. 
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3.4.4 Real decarbonization is more expensive 

Since considering all emissions leads to a different, cleaner optimization, the cost must increase, 

but to what degree? 

 

Figure 3-6. Added cost of fairly accounting for embodied emissions 

Figure 3-6 shows the increase in cost to reduce all emissions, rather than just operational. As the 

carbon ceiling tightens, the cost hike increases, which agrees with the trends seen in the above 

sections because embodied emissions become a larger fraction of total system emissions. The 

national average cost increases from 0.1 to 0.8 to 7.4 $/kWh, or a 0.1% to 1% to 8% difference 

as the carbon ceiling drops from 100 to 50 to 20 gCO2-e/kWh. At deeper decarbonization levels, 

marginal carbon abatement costs increase. 

The Southeast sees the largest impact on price, reaching a 15% difference at 20 gCO2-e/kWh. 

Conversely, Central sees the smallest impact on price, reaching a 4% difference at 20 gCO2-

e/kWh. The bottom line is: it costs more to decarbonize than we are currently predicting. 
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3.5 Conclusions 

Global warming does not distinguish emissions sources. We have a limited carbon budget and 

the damage of not being honest about emissions will have irreversible consequences. This study 

marks the first of its kind to highlight the importance of considering embodied emissions. A 

comprehensive investigation was conducted across nine regions of the US power sector, at a 

range of carbon ceilings, to understand the impact of this commonplace neglect. First and 

foremost, it is important to start being precise with our societal terminology. Is our goal to 

eliminate operational emissions or all emissions from the power sector? To accurately plan for 

our goals, they need to be understood and defined with accuracy. 

Ignoring embodied emissions produced staggeringly different decarbonization strategies, 

meaning that if we base our policies and decisions off this assumption, we will be evolving our 

grid to a suboptimal decarbonized design. Ignoring embodied emissions increases reliance on 

solar because solar has a higher emissions intensity than other low-carbon options. Also, nuclear 

penetration is decreased, and natural gas adoption is increased. This is because when embodied 

emissions are ignored, there is more space in the carbon budget for burning fossil fuels. At 

deeper decarbonization levels, the error introduced increases. This means, as our grid begins to 

transition, an understanding of the importance of embodied emissions only increases. 

Ignoring embodied emissions in policy and planning is counterproductive against reach net-

neutrality. Embodied emissions are real with a nonnegligible impact on the system. In fact, in 

regions that highly favor solar, neglected emissions can reach up to 58% of total system 

emissions at a carbon ceiling of 20 gCO2-e/kWh. In regions that highly favor wind, neglected 

emissions can reach up to 40%. In fact, the national sum of embodied emissions is 61 MMmt 

CO2-e annually. At higher carbon ceilings, with lesser VRE penetration, ignored emissions 
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account for ~20% of total. To be serious about decarbonization targets, these nonnegligible 

embodied emissions must be accounted for. And, to reach actual carbon neutrality, carbon-

negative technologies must be leveraged. 

The costs required to decrease all emissions are higher than those required to just decrease 

operational emissions. In most cases, the more decarbonized our grid becomes, the more difficult 

and expensive it is to further reduce emissions. 

3.6 Appendix 

3.6.1 Financial values and equations 

Financial values included below are sourced from NREL’ATB [71]. 

Table 3-1. Financial values for technologies 
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1.04 

Wind 1,08
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6 

1.06 
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Offshore 

Wind 

2,58

1 

90 0 0 0 30 7 11 50.7 30 0 1.11 

Convention

al Hydro 

7,32

8 

36 0 0 0 100 7 11 48.7 30 0 1.07 

RoR Hydro 7,08

2 

47 0 0 0 100 7 11 48.7 30 0 1.07 

Nuclear 6,11

5 

152 2.5 0.65

8 

10.4

5 

60 8 11 48.9 30 0 1.26 

Natural 

Gas (CT) 

939 23 6.4 3.99 9.72 55 8 11 55 0 0 1.12 

Natural 

Gas (CC) 

1,03

9 

29 1.8 3.99 6.24 55 8 11 55 0 0 1.12 

Natural 

Gas (CCS) 

2,01

8 

54 4.1 3.99 6.99 55 8 11 55 0 0 1.12 

PHS 3,16

6 

18.7 0.54 0 0 100 7 11 69.5 30 0 1.07 

LIB 1,20

4 

30 0 0 0 15 7 8.8 45.5 30 0 1.04 

 

Depreciation Values: 

ft,y = depreciation factor for technology, t, in year, y 

FDt,y = fraction of capital depreciated for technology, t, in year, y 

fsolar,y = [0.9421, 0.8876, 0.8363, 0.7879, 0.7423, 0.6993] 

FDsolar,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

fwind,y = [0.9224, 0.8508, 0.7848, 0.7239, 0.6677, 0.6158] 

FDwind,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

foffw,y = [0.9363, 0.8766, 0.8208, 0.7685, 0.7195, 0.6736] 

FDoffw,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

fconventional,y = [0.9244, 0.8546, 0.79, 0.7303, 0.6751, 0.6241] 

FDconventional,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 
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fRoR,y = [0.9244, 0.8546, 0.79, 0.7303, 0.6751, 0.6241] 

FDRoR,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

fNGCT,y = [0.9499, 0.9023, 0.8571, 0.8142, 0.7734, 0.7346, 0.6978, 0.6629, 0.6297, 0.5981, 

0.5682, 0.5397, 0.5127, 0.487, 0.4626, 0.4394] 

FDNGCT,y = [0.05, 0.095, 0.0855, 0.077, 0.0693, 0.0623, 0.059, 0.059, 0.0591, 0.059, 0.0591, 

0.059, 0.0591, 0.059, 0.0591, 0.0295] 

fNGCC,y = [0.9499, 0.9023, 0.8571, 0.8142, 0.7734, 0.7346, 0.6978, 0.6629, 0.6297, 0.5981, 

0.5682, 0.5397, 0.5127, 0.487, 0.4626, 0.4394] 

FDNGCC,y = [0.05, 0.095, 0.0855, 0.077, 0.0693, 0.0623, 0.059, 0.059, 0.0591, 0.059, 0.0591, 

0.059, 0.0591, 0.059, 0.0591, 0.0295] 

fNGCCS,y = [0.9499, 0.9023, 0.8571, 0.8142, 0.7734, 0.7346, 0.6978, 0.6629, 0.6297, 0.5981, 

0.5682, 0.5397, 0.5127, 0.487, 0.4626, 0.4394] 

FDNGCCS,y = [0.05, 0.095, 0.0855, 0.077, 0.0693, 0.0623, 0.059, 0.059, 0.0591, 0.059, 0.0591, 

0.059, 0.0591, 0.059, 0.0591, 0.0295] 

fPHS,y = [0.9244, 0.8546, 0.79, 0.7303, 0.6751, 0.6241] 

FDPHS,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

fLIB,y = [0.9421, 0.8876, 0.8363, 0.7879, 0.7423, 0.6993] 

FDLIB,y = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576] 

Converting OCC to capital: 

Tax rate = 25.7% (TR) 

Inflation = 2.5% (i) 

Capacity Factor is dependent on region and technology (CF) 

WACCnominalt = DFt * IRt * (1 - TRt) + (1 – DFt) * RROEt 

WACCt = (1 + WACCnominalt) / (1 + it) – 1 

CRFt = WACCt / (1 - (1 / (1 + WACCt) ** Lt)) 

PVDt = sum(FDt,i * ft,i) for all i 

PFFt = (1 - TRt * PVDt * (1 - ITCt / 2) - ITCt) / (1 - TRt) 

FCRt = CRFt * PFFt 

CRF_10yrt = WACCt / (1-(1/(1 + WACCt)
10)) 

PTC_discountt = PTCt / (1 - TRt) * CRFt / CRF_10yrt 

capital = OCCt * FCRt * CFFt - PTC_discountt * CFt * 8760 / 1000 [$/kW/yr] 

LCOE calculation: 

LCOE is not used anywhere in this study, except in Figure 3-1, to orient the reader of the general 

emissions-cost space. 

LCOEt = (capitalt + FOMt) * 1000 / 8760 / CFt + VOMt + fuelcostt *heatratet [$/MWh] 

3.6.2 Emissions values 

Emissions values below are sourced from MIT’s pathway analysis tool [59]. 
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Table 3-2. Emissions values for all technologies 

 Embodied Emissions (gCO2/kW) Operational 

Emissions 

(gCO2/kWh) 

Grid 

Emissions 

Intensity 

(gCO2/kWh) 

100 90 80 70 60 50 40 30 20 all 

Abbreviation eGC eOP 

Solar 45,096 44,413 43,730 43,047 42,193 41,509 40,826 40,143 39,459 0 

Wind 13,374 13,238 13,102 12,966 12,830 12,695 12,559 12,423 12,287 0 

Offshore 

Wind 

22,269 22,016 21,763 21,509 21,256 21,003 20,749 20,496 20,243 0 

Conventional 

Hydro 

110,376 0 

RoR Hydro 28,330 0 

Nuclear 3,735 8 

Natural Gas 

(CT) 

32,755 781 

Natural Gas 

(CC) 

39,901 481 

Natural Gas 

(CCS) 

44,334 162 

PHS 3,150 0 

LIB 19,440 0 

 

LCA calculation: 
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This LCA calculation is not used anywhere in this study, except in Figure 3-1, to orient the 

reader of the general emissions-cost space. 

LCAt = Embodied_emissionst / 8760 / CFt + operational_emissionst 
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Chapter 4. Can fusion help decarbonize US power sector? 

4.1 Overview 

This chapter examines the potential role of fusion in decarbonizing the U.S. power sector. Fusion 

penetration is explored under a variety of assumptions in every region in the US to identify 

specific fusion adoption trends and regional characteristics that dictate these trends. Geothermal 

and onshore wind capacity limits are the most important factors affecting fusion penetration at an 

assumed CAPEX of $8,500/kW. As the assumed fusion CAPEX is lowered, fusion integration is 

dictated more so by annual wind and solar CFs. This is because at $3,000-4,000/kW CAPEX, 

fusion is competitive with VREs even without carbon ceilings. This analysis assumes that 

nuclear buildout is not allowed. Fusion has a role in the decarbonized US power sector, but to 

significantly varying degrees depending on region of analysis. Some regions see up to 18% 

system cost increase when fusion is unavailable, whereas other regions can reach the same 

decarbonization targets at almost the same price with and without fusion. 

4.2 Introduction 

Current electricity decarbonization technology options are progressing in promising directions, 

but still leave important gaps to fill. Solar and wind generation technologies are economically 

competitive on a levelized cost of electricity basis, but their intrinsic intermittency means that 

they must be augmented to continuously match supply and demand in the electricity system. This 

can be accomplished in many ways including storage, transmission, or firm generation resources 

such as nuclear and hydropower. These add additional costs to the system and can come with 

siting and permitting issues. Currently, nuclear has a negative public perception as being 

disproportionally dangerous in comparison to other generator options. Hydropower is 

dispatchable but is limited based on geography [43]. Carbon capture technologies have the 
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potential to greatly reduce emissions of natural gas-powered generators, but costs rise with 

percent of carbon captured, and complete capture is not feasible. Even with all these 

technological options, there remains a need for a firm, low-carbon electricity source [79]. DAC 

technologies are still under development, with a lot of uncertainty around commercialized cost 

[77]. 

Fusion is a promising, rapidly developing technology which has the potential to fill this firm, 

low-carbon generation need. Many approaches being pursued today use magnetic or inertial 

forces to compress fuels into a plasma. In the plasma, two light atomic nuclei react to form a 

heavier one and release energy. This particular analysis considers the fusing of deuterium and 

tritium to produce helium, a neutron, and release energy (-17.6 MeV) via magnetic confinement. 

This particular reaction is chosen because it is the most common fuel-confinement combination. 

The energy of these neutrons can be converted to heat, which can in turn be converted to 

electricity via standard thermal power conversion cycles. This power generation technology is 

carbon neutral with readily available fuel sources. Fusion is also a naturally self-quenching 

reaction, meaning that there is no risk of uncontrolled reactions [80]. While fusion generator 

technologies remain under development, there is a significant push towards commercialization 

within the next 5-10 years. In fact, $4.8 billion in funding was raised in 2022 by fusion startups 

[81]. This combination of promising potential and momentum prompts the following 

investigation of the potential impact of fusion in the power sector. 

Since fusion technology is still developing, there have been a limited number of studies 

investigating fusion’s potential for impact on the power sector. Most similar to this study is 

Schwartz et al.’s article on the value of fusion in the US power sector at net-zero emissions 

intensity [82]. This research expands on that work as it conducts many more case studies. A 2020 
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paper shows that fusion is most competitive in countries which do not have alternative renewable 

energy options, such as Japan, Korea, or Turkey [83]. Nicholas et al. provide a high-level 

discussion on how fusion fundamentally compliments renewables because it provides firm 

potential [84]. An investigation by the International Atomic Energy Agency shows that fusion 

will contribute significantly to the world energy market, if successfully introduced [85]. Lastly, 

Sepulveda et al.’s paper highlights the importance of firm, low-carbon power sources in 

decreasing electricity price at deep decarbonization levels [86]. Although this analysis is based 

on to nuclear fission, geothermal, and biofuels, the conclusions can also be related to fusion, as it 

expected to have similar benefits to the electricity system if successfully commercialized. 

Fusion’s cost is important to its potential for widespread integration into the power sector. 

Bustreo et al. analyze fusion’s potential in decarbonizing the European power sector, with a 

focus on identifying capital cost ceilings that fusion must stay below to remain commercially 

viable in each region [87]. Also, it is shown that fusion can play a big role in the energy 

transition, but that capital cost and date of commercialization can play a big role in penetration 

levels [88]. Other research suggests that fusion developers should target markets with high-

priced electricity to better compete against renewables [89]. 

This study is novel and impactful for its focus on understanding regional characteristics that 

make fusion economically viable or not. This involves a comparing a diverse set of case studies 

conducted on each region to pinpoint key regional factors which determine fusion adoption. Note 

that all case studies are conducted in the year 2050, well as after expected fusion 

commercialization. 
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4.3 Methodology 

This section of work builds on what is presented in Chapters 2 and 3, with the below 

adjustments. The most important assumptions of this Chapter are: 1) neglect of embodied 

emissions, 2) consideration of current infrastructure, 3) successful introduction of fusion, 4) 

adjusted calculation of annualized capital costs to reflect regional discrepancies, primarily in 

land and labor costs, 5) approximation of transmission costs for each technology and distribution 

costs are approximated for each region, and 6) application of technology-specific regional cost-

adjustment factors. Each of these is described and defended below. 

4.3.1 Fusion and other new technologies 

First and foremost, fusion is a new technology. Since it is still developing, there are a lot of 

assumptions made about its characteristics. First, its CAPEX is assumed to be $8,500, as this is 

roughly a 20% increase from NREL’s ATB 2050 nuclear CAPEX projection [71]. This 20% 

increase is to account for the increased complexity fusion relative to fission at this stage of 

development. Fusion’s FOM is assumed to be 15% of its annualized cost, which comes out to 

$94.9/kW/year. Fusion’s VOM is calculated to be $12.2/MWh, assuming $2/MWh traditional 

variable costs, and $10.2/MWh assigned to replacement costs. CF is limited to 85%, but infinite 

ramping is allowed within hours. The benefits of this ability from pulsed fusion operation is 

explored by Guazzotto and Freidberg [90]. 

Geothermal generation and two additional LIB durations (2-hour and 8-hour) are introduced. 

Costs values are sourced from NREL’s 2023 ATB, and capacity restrictions were sourced from 

NREL’s US Renewable Energy Technical Potentials [73]. 
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4.3.2 Considering current infrastructure 

Based on the installation date and lifetime of current infrastructure, current units which will not 

have retired in 2050 can be incorporated into the model. Note that these technologies can be 

retired early to reduce system FOM costs, as shown in the below in Equations 4.1 and 4.2. 

 tech techGCreq GC        ∀𝑡𝑒𝑐ℎ ∈ Y (4.1) 
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 (4.2) 

The required installations, GCreqtech, relevant to Equation 4.1 are shown in Figure 4-1. Equation 

3.3 shows how transmission costs are made to be technology-specific and how early retirements, 

earlyretirestech, can reduce system cost. The values are calculated from data sourced from the 

EPA’s eGRID [91]. Lastly, note that only coal, NGCT, and NGCC are eligible for early 

retirement. 
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Figure 4-1. Installations required in 2050 because they are already existent, and their retirement 

dates are after 2050 

Current infrastructure is only considered in one case study in this section, while the base-case 

and majority of results assume greenfield buildout. 

4.3.3 Technology-specific transmission costs and region-specific distribution 

costs 

Distribution costs are estimated and projected out in Tables 54.1-54.25 of the EIA’s Annual 

Energy Outlook 2023 [9]. Distribution costs are provided for regions separated along the NERC 

boundaries, which coincide conveniently with IG’s nine regions of analysis, allowing for easy 

aggregation of the 2050 projected values. Resultant values are shown in Figure 4-2. Note that 

distribution costs in the Northeast are over double the cost of any other region. 
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Figure 4-2. Regional distribution costs projections for 2050 

Transmission costs are calculated based on a series of publications from Berkley Labs. A series 

of analyses have been conducted to gain clarity on the interconnection costs of different 

technologies, in different regions. A study was done in the following territories: New England’s 

ISO [92], the Southwest Power Pool [93], New York [94], Pennsylvania-New Jersey-Maryland 

[95], and the Midcontinent Independent System Operator [96]. These reports show that there is 

significant regional- and technological-variability in interconnection costs. Since this analysis 

was only conducted for a collection of regions, the other areas are assumed to have costs equal to 

the national average. Also, no data were available on the cost of offshore wind installations in the 

Central and North Central regions, so again, the national average is assumed. Note that wind 

turbine installations in the Great Lakes is also considered to be “offshore.” The resultant values 

are shown in Figure 4-3.  
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Figure 4-3. Regionally- and technologically- specific interconnection costs 

Figure 4-3 shows current interconnection values, but these values are expected to increase by 

2050. The EIA’s Annual Energy Outlook 2023 contains regional estimates for transmissions 

costs increases. These values are collected and aggregated in the same way that distribution costs 

were. Note that calculated % increases are applied equally to all technologies. Below, Table 4-1 

shows the % price increase of each region by 2050, reaching up to 100% in some regions. 

Table 4-1. Projected change in interconnection costs, by region 
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4.3.4 Calculating annualized capital cost with CAPEX 

All financial values in this chapter are 2050 projections from NREL’s 2023 ATB publication. 

Exact values are available in the appendix. Annualized capital costs are calculated with CAPEX, 
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rather than OCC (as seen in the above Chapters 2 and 3). Equations 4.4 and 4.5 show the exact 

calculations performed. 

 
( )1 1 tech

tech L

df
CRC

df
−

=
− +

 (4.3) 

 *tech tech techcapital CRC CAPEX=  (4.4) 

 *tech tech techtransmission CRC transmissionCAPEX=  (4.5) 

∀ 𝑡𝑒𝑐ℎ ∈  Y 

where df is discount factor, assumed to be 0.06 for all technologies. Also, note that the same 

multiplication is applied to transmission investment values, as shown in Equation 3.6. 

4.3.5 No embodied emissions 

This Chapter ignores all embodied emissions. This is done to allow for comparison of results 

from this analysis to similar studies. Note that natural gas combined cycle and combustion 

turbine are both assumed to emit 352 gCO2/kWh, natural gas with 95% carbon capture is 

assumed to emit 38 gCO2/kWh, and coal is assumed to emit 781 gCO2/kWh. These are the only 

considered sources of emissions. 

4.3.6 Technology-specific regional cost-adjustment factors 

National cost projections that are presented in Table 4-4 are adjusted based on the regional of 

installation, with values shown in Figure 4-4. Values for all technologies, except PHS are 

sourced from EIA’s Capital Cost and Performance Characteristic Estimates for Utility Scale 

Electric Power Generating Technologies [97]. These locational adjustments are calculated based 

on differences in wages, environmental factors (to account for design choices affected by wind, 
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seismic, snow, and tsunami effects), water availability, and wastewater discharge requirements, 

among other considerations. These adjustments are applied to the CAPEX, before annualized 

capital cost is calculated. 

 

Figure 4-4. Technology-specific regional cost-adjustment factors 

PHS values shown in Figure 4-4 are sourced from NREL’s Closed-Loop Pumped Storage 

Hydropower Resources Assessment for the US [42]. This analysis conducted individual 

assessment of ~15,000 sites for PHS within the US and estimated normalized capital costs at 

each site. The values shown in Figure 4-4 are a simple percent difference from the national 

average. 
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4.4 Results 

4.4.1 Base case 

First, analysis is conducted with the above base-case assumptions. A range of carbon intensity 

ceilings (from 20 gCO2/kWh to 1 gCO2/kWh) is applied in order lower to evaluate what the 

decarbonization target must be to incentivize fusion in each region. Figure 4-5 shows that 

decarbonization schemes vary significantly from region to region. There are many dimensions of 

variation, but the Southeast and Texas represent extremes in terms of fusion deployment. The 

Southeast leverages fusion even at the most lenient carbon ceiling (20 gCO2/kWh) whereas 

Texas does not integrate fusion until the tightest carbon ceiling (1 gCO2/kWh). The Northwest is 

moderate, with fusion integration beginning at ~7 gCO2/kWh. Note that a version of this figure 

incorporating all regions is available in the appendix. 

 

Figure 4-5. Fleet composition required to reach decarbonization targets ranging from 1 to 20 

gCO2/kWh in the Southeast, Northwest, and Texas.  See Figure 4-18 for all regions. 

Figure 4-5 also highlights that fusion reduces the total fleet size. As fusion penetration increases, 

total generation capacity is reduced. This is better understood with the context provided in Figure 

4-6, which shows relative generation of each technology. Note that in all cases total generation is 

greater than 1, which is the value for which generation perfectly matches demand. Values greater 
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than 1 indicate efficiency losses or curtailment. Inefficiencies are considered in transmission as 

well as charging, discharging, and parasitic losses from energy storage operations. 

 

Figure 4-6. Relative generation from all technologies 

Fusion supplies a large fraction of demand, compared to its buildout. This is because it operates 

at a higher capacity factor (CF) in comparison to other generation options. Variable renewable 

energy (VRE) technologies (solar, wind, offshore wind, RoR, and conventional hydro) are 

limited based on availabilities. Fossil fueled unit operations are limited based on decarbonization 

targets. Geothermal and nuclear are the only other firm, carbon-neutral generator options, which 

also operate at high CFs. In the Southeast, fusion supplies over 50% of electricity at carbon 

ceilings at or below 2.5 gCO2/kWh, but accounts for less than 20% of fleet capacity. 
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Figure 4-7. Regional fusion integration values, at decreasing carbon caps 

Figure 4-7 allows regional fusion deployment to be compared at varying carbon intensities. 

Fusion increases monotonically in all regions as carbon ceiling decreases, but shape and 

magnitude of the increase integration varies significantly from region to region. The goal of this 

chapter is to not only to identify regions within the US that are better suited to fusion integration, 

but also to understand the motivation of these differences. 

4.4.2 The key distinguishing factor: buildout limits 

Regions differ in many characteristics, including demand shape, cost adjustment factors, CF 

curves, but one distinctive regional feature has been identified as most strongly dictating fusion 

deployment: capacity buildout limits. Below, Table 4-2 shows that buildout constraints are active 

in the optimization at the emissions intensity when fusion is first introduced. The light-yellow 

background indicates region-technology combinations which have zero buildout capacity. Also, 

note that solar and offshore wind limits are never active, and so not included in Table 4-2. 
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Table 4-2. Buildout constraints which are active when fusion is first integrated (where yellow 

indicates buildout limit = 0) 

 

First, geothermal power output is always maxed out before fusion is integrated. This is because 

these two resources are both dispatchable, low-carbon energy technologies, and so directly 

compete; and geothermal is less expensive. The regional availability of geothermal ranges from 

0-20% of average demand, with exact values available in the appendix. The difference that this 

makes can be seen when comparing California (which has ~20% geothermal) to the Atlantic 

(which has no geothermal). All other technological buildout limits are similar, as is verifiable in 

the appendix. The California fusion integration curve in Figure 4-7 is about 0.2 capacity per 

demand lower than the Atlantic fusion integration curve. This is primarily due to geothermal 

availability. Conventional limits have a similar effect, but to a lesser extent because conventional 

is more expensive than geothermal and has monthly availability constraints. 

The four regions which see the earliest and most significant integration of fusion (Atlantic, 

California, Northeast, and Southeast) have the most stringent wind constraints. In all these 

regions, if wind buildout is maximized and all curtailment is avoided, wind still cannot produce 

enough electricity to satisfy one-quarter of demand. Not surprisingly, limiting wind buildout that 

severely makes fusion necessary at much more lenient emissions caps. Below, Figure 4-8 shows 

fusion integration when wind limitations are ignored. 

Atlantic California Central North Central Northeast Northwest Southeast Southwest Texas

Wind AT MAX AT MAX AT MAX AT MAX

RoR AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX

Conventional AT MAX AT MAX AT MAX AT MAX AT MAX

Geothermal AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX AT MAX

PHS AT MAX
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Figure 4-8. Regional fusion integration: base case (solid line), and without wind limitations 

(dashed lines) 

4.4.3 Fusion cost sensitivity analysis 

As fusion is a technology which is still under development, there is an obvious uncertainty to all 

presented results. To explore the potential impact of this unknown, a sensitivity analysis around 

fusion CAPEX is conducted. Note that since FOM is calculated as 15% of fusion annualized 

cost, FOM is also being adjusted with CAPEX. Assuming 85% annual CF, the LCOEs for 

CAPEX’s of $3,000/kW, $6,000/kW, $8,500/kW, and $12,000/kW are $52/MWh, $81/MWh, 

$110/MWh, and $150/MWh, respectively. 
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Figure 4-9. Regional fusion buildout, at varying CAPEX values 

Figure 4-9 shows how the regional buildout patterns change based on CAPEX. At the lowest 

CAPEX, $3,000/kW, buildout is relatively independent of carbon cap. Fusion installations vary 

by 2% in the most resilient region (the Northwest), and by 23% in the least resilient region 

(Texas). In general, fusion installations in all regions are equal to average demand +/- 20%. 

Fusion is supplying most of the electricity. It makes sense that Texas is most sensitive to fusion 

price because it is the hardest market to penetrate, as other technologies more closely compete on 

an economic level. In general, bars of similar heights indicate that other technologies are less 

competitive vs. bars of varying heights means that other technologies are more competitive with 

fusion. 

Table 4-3. Regions with most and least fusion penetration, at varying CAPEX 

 

3,000 6,000 8,500 12,000

Most Fusion Northeast Southeast Southeast Southeast

Second Most Fusion Northwest Northwest Atlantic Atlantic

Least Fusion Southwest Central Texas

Second Least Fusion Texas Texas Central

Texas, Southwest, Northwest, 

Central, North Central

CAPEX ($/kW)
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As detailed above, fusion adoption is largely determined by regional limitations at $8,500/kW 

CAPEX. But regional behavior changes at lower CAPEX values, as is shown in Table 4-3. At 

lower price points, a different regional characteristic is motivating fusion adoption. Note that 

“most” and “least” in Table 4-3 are calculated at total fusion adoption at all carbon ceiling caps. 

At low CAPEX values, amount of fusion is determined, instead, by wind and solar CFs. At such 

low CFs, the low LCOE of wind and solar becomes less advantageous. Figure 2-5 shows the 

agreement between the $3,000/kW CAPEX column in Table 4-3, and annual wind and solar CFs. 

The Northeast has poor solar resources and only average wind resources. Texas has above 

average wind and solar resources.  

The $8,500 CAPEX is the base case and therefore discussed in detail in throughout this Chapter. 

$6,000/kW is a transitional CAPEX value, showing trends seen in fusion adoption at $3,000/kW 

and $8,500/kW CAPEX values. Lastly, note that Figure 4-9 at 12,000 CAPEX is similar in shape 

to 8,500, but shifted down by ~0.3 capacity per average demand. 

This interesting shift in the determining factor of fusion buildout prompts the question: at what 

price point is fusion economically competitive without a carbon constraint. IG was optimized 

with a variety of input CAPEX values, without a carbon constraint, with results shown in Figure 

4-10. Fusion must reach $3,000-4,000/kW to be competitive with a grid of VREs supplemented 

with fossil-fueled generation. 
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Figure 4-10. Fusion penetration, at varying CAPEX estimates, without an imposed carbon cap 

4.4.4 Allow nuclear buildout 

The conclusions from the analysis presented thus far in this Chapter hinge on the assumption that 

nuclear is not allowed in the energy generation mix. Figure 4-11 shows the importance of this 

assumption. With inclusion of nuclear, the need for fusion decreases drastically. In fact, zero 

fusion buildout is seen in California, the Northeast, and the Northwest, even at the most stringent 

carbon constraints. Fusion is drastically decreased in the Atlantic, Southeast, and Southwest 

regions. Interestingly, fusion impact is not affected in Central, North Central (at only 1.5 

gCO2/kWh), and Texas, as is explored later. The negative impact of nuclear on fusion buildout is 

due to the favorable CAPEX of nuclear of $6,668/kW relative to the base case CAPEX for 

fusion of $8,500/kWh. 
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Figure 4-11. Fusion penetration base case (solid lines) vs. when nuclear buildout is allowed 

(dashed lines) 

Nuclear buildout is shown in Figure 4-12. In most regions, nuclear has higher penetration levels 

than fusion, due to its lower price point, despite its inability to ramp in response to grid 

conditions. Note that nuclear is modeled as firm, but baseload because that is how it is currently 

operated in the US.  Note that if this changes, results will also change. 
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Figure 4-12. Base-case fusion buildout (solid lines) compared to nuclear buildout (dashed lines), 

when allowed 

Regions which did not see a shift in optimization when nuclear was allowed (Central, North 

Central, and Texas), see no nuclear adoption. These are the three regions with the lowest annual 

fusion CF, as is apparent in Figure 4-13. This makes sense why nuclear, which is operated at 

baseload does not compete with fusion. When fusion has a low CF, its dispatchability is being 

leveraged significantly. 
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Figure 4-13. Fusion annual CFs for base-case analysis 

4.4.5 Restrict fusion to baseload 

The above section highlights the importance of fusion’s dispatchability. When fusion is restricted 

to baseload operations, penetration decreases in all regions, as seen in Figure 4-14. Fusion is not 

installed in Central, North Central, Southwest, and Texas. These are the regions which operate 

fusion at the lowest CFs, as discussed in the above subsection, and shown in Figure 4-13.  
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Figure 4-14. Fusion penetration when operated dispatchably (base case – solid lines) vs. 

restricted to baseload (dashed line) 

Lastly, it should be noted that at very low decarbonization caps (1-2.5 gCO2/kWh), fusion 

penetration actually increases in the Atlantic and Southeast regions. This is because fusion’s full 

power output is required during certain system periods with low VRE output, to limit fossil-fuel 

generation. This interesting behavior only occurs in regions with high fusion penetration because 

there is more limited buildout of other technologies. 

4.4.6 Decarbonization with vs. without fusion 

There is a role for fusion to play in a decarbonized grid. To further emphasize this point, the base 

case scenario is compared to decarbonization without fusion. 
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Figure 4-15. Regional electricity costs with economically optimized fusion vs. no fusion 

Figure 4-15 shows that reaching deeper decarbonization targets increases electricity cost. It costs 

anywhere from 10-23% more to reach 1 gCO2/kWh emissions intensity compared to 20 

gCO2/kWh, depending on region of analysis. The regions that have the highest fusion penetration 

(Southeast, Atlantic, California, and Northeast) have the highest electricity costs, regardless of 

decarbonization target. It makes sense that fusion is more competitive in already-expensive 

markets, making fusion more competitive.  

Without fusion, regional electricity costs are even higher at deeper decarbonization targets. 

Figure 4-15 shows that fusion reduces regional electricity cost by up to 13% in some regions. 

One key factor contributing to this cost reduction is the fact that onshore wind limits are active in 

all these regions, so offshore wind buildout is required, which significantly impacts system costs. 

Conversely, regions with lower fusion adoption (Northwest, North Central, Central, Southwest, 

and Texas) see nonzero, but negligible impact on price if fusion is not available. These regions 

have the ability to further build out inexpensive VRE options and are able to avoid installations 

of more expensive offshore wind. 
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4.4.7 Considering current capacities 

Lastly, the impact of the greenfield assumption is explored. How important is it to consider 

current infrastructure? Does current infrastructure impact 2050 optimization and if so, is the 

impact positive or negative relative to cost? Figure 4-16 shows negligible variations in fusion 

adoption between greenfield analysis and a case in which current infrastructure is considered. 

 

Figure 4-16. Fusion adoption assuming greenfield (base case – solid lines) compared with fusion 

adoption when current infrastructure is available in 2050 (dashed lines) 

Figure 4-17 compares differences in fleet buildout and cost breakdowns between the base case 

analysis (left) vs. the case considering current infrastructure (right) for the Central region, where 

annual system cost is normalized by annual demand. Note that the Central region was chosen to 

represent these trends, but patterns identified here are consistent across all regions. Fossil fuel 

generation costs are the source of the significant discrepancies between these two scenarios. 

Although a significant portion of fossil-fueled generators are retired, and thus do not contribute 
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to the fleet operations, these resources are assumed to have been financed; and the model 

requires continued annualized CAPEX payments until resource-specific retirement ages are met.  

 

Figure 4-17. Fleet capacity (left figure) and system costs (right figure) breakdown for base case 

(left bars) vs. analysis which considers current infrastructure (right bars) 

There is also a small difference in dispatchable clean energy penetration between these two 

scenarios, as is clear in Figure 4-17. Conventional and fusion are introduced into the system 

slightly more when current infrastructure is considered, because this allows for very minimal 

operations of NG without carbon capture and coal. 

4.5 Conclusions 

The Ideal Grid (IG) model was used to explore the potential role of fusion in each region of the 

US, and subsequently identify regional characteristics which make fusion especially competitive 

or not. There is a role for fusion in all regions, at low enough decarbonization targets, but at 

significantly different magnitudes. The Southeast introduces fusion even with the most lenient 

emissions cap imposed, (20 gCO2/kWh). Texas, on the other hand, does not leverage fusion until 



114 

 

the most stringent carbon cap is imposed (1 gCO2/kWh). Although there are many differences in 

the represented regions, the constraint which most heavily impacts fusion adoption was 

identified to be buildout constraints of other generation technologies. Geothermal directly 

competes with fusion as it is a firm, dispatchable, carbon-free generator. Since geothermal is less 

expensive, it is always built to its maximum capacity before fusion is integrated into the system. 

Therefore, greater geothermal resources mean less fusion penetration. The second most 

important buildout limit is for wind. Regions with limited wind resources lead to earlier and 

higher fusion penetration. 

This Chapter assumes a $8,500/kW CAPEX for fusion. However, as noted previously there is a 

significant amount of uncertainty around this number, because fusion is still in early stages of 

development. A sensitivity analysis is conducted with fusion CAPEX values equal to: 

$3,000/kW, $6,000/kW, $8,500/kW, and $12,000/kW. At low CAPEX values, fusion penetration 

is dictated by annual wind and solar CFs, rather than buildout limits. This is because fusion 

becomes economically competitive, even without a carbon cap, at CAPEX values ranging from 

$3,000-4,000/kW, depending on the region. 

The majority of this analysis hinges on the assumption that no nuclear is installed. This is a very 

important constraint because if fusion buildout is allowed, the space for fusion shrinks 

significantly. The few regions which retain a small amount of fusion, even when nuclear is 

available are operating those fusion plants at low CF. The value of fusion over nuclear is found 

in fusion’s dispatchability, compared to nuclear which is operated at baseload. In fact, when 

fusion is restricted to baseload operations, Central, North Central, Southwest, and Texas regions 

do not install any fusion, even in the base case where no nuclear is allowed. Operating fusion at 

baseload decreases penetration in all scenarios compared to the base case, except in the Atlantic 
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and Southeast regions at deep decarbonization level, which see a slight increase. In these cases, 

more fusion is installed because the full power capacity of fusion is needed in certain hours when 

other generating sources are unavailable. 

The role of fusion in decarbonizing the power sector depends on the region of analysis. Without 

fusion, Southeast, Atlantic, California, and Northeast regions see an electricity increase up to 

13% to reach deep decarbonization goals. In all other regions, decarbonization is achievable at 

similar system costs with or without fusion.  

4.6 Appendix 

Table 4-4. 2050 financial projections 

 CAPEX FOM VOM fuelcost heatrate Lifetime 

 $/kW $/kW/yr $/MWh $/MMBtu MMBtu/MWh years 

Solar 632 13 0 0 0 30 

Wind 924 23 0 0 0 30 

Offwind 2,314 71 0 0 0 30 

RoR 4,067 18.7 0 0 0 100 

Hydro 5,317 31 0 0 0 100 

Geo 5,156 104 0 0 0 30 

NGCT 872 20 6.44 7.25 9.72 55 

NGCC 985 24 1.61 7.25 6.196 55 

NGCCS 1,611 39 3.23 7.25 7.007 55 

Nuclear 6,668 152 2.47 0.66 10.45 60 

Fusion 8,500 152 12.2 0 0 40 
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PHS 7,553 47 0 0 0 100 

LIB 833 21 0 0 0 15 

LIBshort 541 14 0 0 0 15 

LIBlong 1,415 35 0 0 0 15 

Coal 2,152 72 7.79 2.07 7.09 75 

Notes: 

• Solar is utility class 9, Wind is class 7, Offshore Wind is class 1, RoR is hydro class NSD 

2, hydro is class NPD 5, geo is hydro/flash, NGCC and NGCCS are H-frame, nuclear is 

AP1000, PHS is class 13, LIB is 4-hour duration, LIBshort is 2-hour duration, and 

LIBlong is 8-hour duration. 

 

Table 4-5. Regional buildout limits 

 
Sources for the values provided in Table 4-5 are included in Section 2.3.3. 

Table 4-6. Scaled regional buildout limits 

 
Values in Table 4-5 were scaled by regional average 2050 demand values estimated by [37] to 

calculate the normalized values shown in Table 4-6. 

Atlantic California Central North Central Northeast Northwest Southeast Southwest Texas

Solar 6063 4198 16550 17338 1832 22970 5285 12337 20626

Wind 66 34 682 1223 45 1966 2 503 1902

Offshore wind 318 588 386 620 539 342 60 0 278

RoR 6 3 6 2 4 27 1 1 1

Conventional 6 11 7 2 7 40 6 4 1

Geothermal 0 17 0 0 0 14 0 3 0

PHS 70 324 8 0 17 210 34 554 37

Buildout Capacity (GW)

Atlantic California Central North Central Northeast Northwest Southeast Southwest Texas

Solar 37.54 51.03 240.68 256.27 31.27 295.54 83.86 306.47 248.42

Wind 0.41 0.41 9.92 18.08 0.77 25.29 0.03 12.50 22.91

Offshore wind 1.97 7.15 5.61 9.17 9.20 4.40 0.96 0.00 3.35

RoR 0.04 0.04 0.09 0.03 0.07 0.34 0.02 0.04 0.02

Conventional 0.04 0.13 0.10 0.03 0.12 0.51 0.10 0.10 0.02

Geothermal 0.00 0.21 0.00 0.00 0.00 0.18 0.00 0.07 0.00

PHS 0.43 3.94 0.12 0.00 0.29 2.70 0.53 13.77 0.45

Buildout Capacity (per average demand)
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Figure 4-18. Fleet composition required to reach decarbonization targets ranging from 1 to 20 

gCO2/kWh for all nine regions 

  



118 

 

Chapter 5. Fusion Representation in a Transforming Grid 

5.1 Overview 

In the above Chapter, it was shown that fusion has the potential to play a nonnegligible role in 

decarbonizing our power sector, but determining how and when fusion should be adopted requires a new 

type of analysis.  Here, a brownfield model is used to explore what system characteristics most highly 

dictate fusion adoption.  Using the same assumptions, fusion adoption seen in 2050 by Evolving Grid is 

~40% less that fusion deployment seen by Ideal Grid.  This means that fleet optimization and evolutions 

before 2050 have a big impact of optimized 2050 grid composition.  Many factors impact this result.  

Decarbonization strategy highly dictates fusion adoption.  Decreasing emissions linear, rather than 

exponentially, decreases fusion penetration by almost 50%.  Also, commercialization date impact fusion 

adoption.  If fusion is commercialized in 2040 rather than 2035, supply chain limitations dictate fusion 

buildout in 2050, also reducing deployment by almost 50%. 

5.2 Introduction 

Evolving Grid (EG) is a valuable addition to the currently available CEM arsenal.  Its moving 

optimization allows the user to explore energy transitional questions.  This model shows that deployment 

decisions made today, and over the coming year impact the grid in 2050. 

5.2.1 Decarbonization motivation 

Many policies and targets are set for 2050, or 2035. While these targets are important, the 

pathway taken to reach these targets is even more important. In fact, to limit global warming to 

1.5C by 2050, GHG emissions in 2030 must be between 25-30 GtCO2-e/year, but current 

national pledges target reduction to only 52-58 GtCO2-e/year in 2030 [98]. Global 2030 

emissions are projected to be double what they need to be to reach 2050 NZE [98]. 

Decarbonization measures cannot wait. To keep the possibility of limiting global warming to 



119 

 

1.5C increase within reach, drastic changes must begin today. We need to find the most cost-

effective way to transition our current grid to a cleaner one by 2050, while minimizing 

cumulative emissions along the way. 

5.2.2 Novelty of this EG analysis 

This model was specifically designed to understand the potential impact of fusion, so most inputs 

revolve around fusion-related assumptions. This model explores the impact of a range of 

commercialization dates, doubling times, learning rates, and 2050 fusion CAPEX values. Note 

that the base case is commercialization in 2035 (since this is the timeline for most prominent 

companies [81]), doubling time of 2.26 (assuming that 2035 global capacity of fusion is 1 GW, 

and 2050 global capacity is 100), learning rate of 10% which is within the wide range seen for all 

technologies [99], and $8,500 CAPEX. Also, because of the high importance of quick 

decarbonization, different cumulative emissions caps are applied in different scenarios. 

This analysis marks the first published study which uses a brownfield capacity expansion model 

to evaluate the potential role of fusion in decarbonization. This section focuses on the importance 

of variables that limit fleet evolution, like fusion doubling time and commercialization date. 

Current infrastructure is also represented in the model. In this way, the complexity of the power 

sector transition is captured. 

5.3 Modeling details 

5.3.1 Nomenclature 

Table 5-1. EG sets 

Notation Description Unit 
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year Years of analysis, ranging from 2020 to 2050, with a 5-year 

step size 

- 

N Number of years optimized per optimization timestep years 

ℎ𝑜𝑢𝑟 Incremental integer vector from 0 to 8759 * N with a step 

size of 1 that monitors the number of hours into the selected 

year 

hour 

 All generator types and energy storage types: solar, wind, 

offshore wind, conventional hydro, run-of-river (RoR) 

hydro, fusion, nuclear, geothermal (geo), natural gas (3 

types), coal, pumped hydro storage (PHS), and lithium-ion 

battery storage (LIB, 3 durations) 

- 

Φ All generator types: solar, wind, offshore wind, conventional 

hydro, run-of-river (RoR) hydro, fusion, nuclear, geothermal 

(geo), natural gas (3 types), and coal 

- 

Υ Firm, but not dispatchable generating types: nuclear - 

s Dispatchable, but monthly-constrained generating types: 

conventional 

- 

 Dispatchable generating types: natural gas (3 types), geo, 

fusion, and coal 

- 

 Dispatchable generating types with annual CF limits: geo 

and fusion 

- 

 Firm generating types: Υ, s, and  - 

 VRE generating types: solar, wind, offshore wind, and RoR - 
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 Generators using carbon capture technology: CC natural gas 

with 90% CCS 

- 

 Generators technologies eligible for early retirement: NG 

CC, NG CT, and coal 

- 

 Energy storage types: LIB (3 types), and PHS - 

 Space-limited technologies: solar, wind, offshore wind, RoR, 

conventional, PHS, and geo 

 

 

Table 5-2. 2-D scalar decision variables 

Notation Description Unit 

𝐺𝐶𝑦𝑒𝑎𝑟,Y Generating capacity for each technology, , at each 

optimization timestep, year 

kW 

𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡𝑦𝑒𝑎𝑟,𝑖𝑛𝑠𝑡𝑎𝑙𝑙,z Generating capacity retired early for each eligible 

technology, , at each optimization timestep, year 

kW 

 

Table 5-3. Binary decision variables 

Notation Description Unit 

𝑓𝑢𝑠𝑖𝑜𝑛𝑒𝑥𝑖𝑠𝑡𝑠𝑦𝑒𝑎𝑟 1 if fusion is eligible to exist (year of analysis is after 

commercialization date), 0 if not, for each optimization 

timestep, year 

- 
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Table 5-4. Vector decision variables 

Notation Description Unit 

𝑉𝑅𝐸2𝐷 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟 VRE generated energy sent to demand at every 

time step, ℎ𝑜𝑢𝑟, at each optimization timestep, 

year 

kWh 

𝑉𝑅𝐸2𝐶 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟 VRE generated energy curtailed at every time 

step, ℎ𝑜𝑢𝑟, at each optimization timestep, year 

kWh 

𝑉𝑅𝐸2𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟,t VRE generated energy sent to storage at every 

time step, ℎ𝑜𝑢𝑟, at each optimization timestep, 

year, for each storage technology 

kWh 

𝑓𝑖𝑟𝑚2𝐷 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟 Energy generated by firm resources sent to 

demand at every time step, ℎ𝑜𝑢𝑟, at each 

optimization timestep, year 

kWh 

𝑓𝑖𝑟𝑚2𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟,t Energy generated by firm resources sent to 

storage at every time step, ℎ𝑜𝑢𝑟, at each 

optimization timestep, year 

kWh 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒2𝐷 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟,t Energy sent to demand from each storage type, 

, at every time step, ℎ𝑜𝑢𝑟, at each optimization 

timestep, year 

kWh 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑙𝑒𝑣𝑒𝑙 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟,t Energy level for each storage type, , at every 

time step, ℎ𝑜𝑢𝑟, at each optimization time step, 

year 

kWh 
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𝑓𝑖𝑟𝑚𝑜𝑢𝑡𝑝𝑢𝑡 𝑦𝑒𝑎𝑟,ℎ𝑜𝑢𝑟,W Energy generated by each firm generator type, 

, at every time step, ℎ𝑜𝑢𝑟, at each optimization 

timestep, year 

kWh 

 

Table 5-5. User inputs 

Notation Description Unit 

ℎ𝑖𝑔ℎ𝑡𝑒𝑐ℎ𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 Learning rate for fusion-specific costs % 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑡𝑜 Percent of total unit cost that is considered to be 

fusion-specific 

% 

𝑓𝑢𝑠𝑖𝑜𝑛𝐶𝐴𝑃𝐸𝑋 Fusion CAPEX in 2050 $/kW 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑎𝑟𝑔𝑒𝑡 Emissions intensity target for 2050 gCO2/kW 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 Shape of emissions intensity decrease (exponential 

or linear) 

- 

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 First year that fusion buildout is allowed - 

𝑐𝑓𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠𝑡𝑦𝑙𝑒 Selection method for VRE profiles selected (all, 

high_and_low, or low_and_low) 

- 

doublingtime Years required to double fusion’s manufacturing 

capacities 

- 

 

Table 5-6. EG parameters 

Notation Description Value Unit 
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𝐶𝐹Q,ℎ𝑜𝑢𝑟 CF at every time step ℎ𝑜𝑢𝑟 for each 

VRE technology,  

* 1 

𝐶𝐹Υ Hourly CF for base generators, Υ * 1 

𝐶𝐹X Annual CF for base generators, Υ * 1 

𝐶𝐹𝑚𝑜𝑛𝑡ℎ,s Monthly CFs for monthly-

constrained generators, s 

* 1 

𝑑𝑒𝑚𝑎𝑛𝑑year,hour Scaled demand at every time step 

ℎ𝑜𝑢𝑟, at each optimization timestep, 

year 

* kW 

𝑇𝐷𝑙𝑜𝑠𝑠𝑒𝑠 Fraction of generated electricity that 

is lost due to transmission and 

distribution inefficiencies 

0.95 [100] 1 

𝐶𝐴𝑃𝐸𝑋𝑦𝑒𝑎𝑟,Y CAPEX for each technology, Y, at 

each optimization timestep, year 

* $/kW 

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑦𝑒𝑎𝑟,Y Transmission cost for each 

technology, Y, at each optimization 

timestep, year 

* $/kW 

𝐹𝑂𝑀𝑦𝑒𝑎𝑟,Y Fixed operating cost for each 

technology, Y, at each installation 

timestep, year 

* $/kWh/year 

𝑉𝑂𝑀𝑦𝑒𝑎𝑟,Y Variable operating cost for each 

technology (including carbon 

capture and storage where 

* $/kWh 
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applicable), Y, at each installation 

timestep, year 

𝑓𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑦𝑒𝑎𝑟,Y Fuel cost for each technology, Y, at 

each installation timestep, year 

* $/MMBtu 

ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒𝑦𝑒𝑎𝑟,Y Heat rate for each technology, Y, at 

each installation timestep, year 

* MMBtu/kWh 

𝑒𝑔𝑒𝑛𝑦𝑒𝑎𝑟,Y Emissions per electricity generated 

for each technology, Y, at each 

installation timestep, year 

* gCO2-e/kWh 

𝜂t Efficiency of charging and 

discharging energy for each energy 

storage type 

* 1 

𝜂ℎ𝑜𝑢𝑟𝑙𝑦t Hourly efficiency for each energy 

storage type 

* 1 

𝐿Y Lifetime of each technology * Years 

stepsize Years between optimizations 5 years 

limit Maximum buildout of a region for 

each space-limited technology,  

* kW 

GCinstyear,tech Installations that already exist * kW 

GCretyear,tech Required retirements of already-

existent infrastructure. 

* kW 

duration Energy capacity per power capacity 

of each storage technology,  

* kWh/kW 
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*variable, with more information available in the appendix 

5.3.2 Building the objective function 

The objective function is a linear combination of capacity-related costs and operations-related 

costs, as can be seen below in Equation 5.1. 

( )
, , , ,

, , ,

*

min *

install tech install tech install analysis tech

tech analysis year install year

install tech install analysis tech

tech analysis year install year

analy

capital transmission existing

FOM tracking

VOM

  

  

+ +

+

  

  

( )
, ,

, , ,
* cos *

analysis hours tech

hours hour

sis tech analysis tech analysis tech

tech analysis year

firmoutput

heatrate fuel t
N



 

+

 
 
 
 
 
 
 
 
 
  


 

 (5.1) 

The first component tracks annualized capital investments for all existing units. Note that 

existing units include generators that have been retired early because financed costs are still 

expected to be repaid. Capital investments are broken into two technology-specific categories: 

capital which is all infrastructure on the facility site needed to delivery electricity to the grid, and 

transmission, which is an estimate of transmission network extensions and upgrades needed to 

integrate a new generation unit. The second component accounts for fixed operations and 

maintenance costs for generation units that are function, or not retired. This exclusion of 

generators that are retired incentivizes early retirements of generation units that are not being 

used. The last component accounts for all variable operations costs. Note that carbon 

compression, transportation and storage costs are included in the VOM, when applicable. Also 

note that the fuel costs are region-specific. 

Since the analysis above analysis depends on the year that infrastructure was installed, this is 

tracked in the tracking data frame, which is defined below, in Table 5-7. 
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Table 5-7. Tracking dataframe for LIB 
  Install Year 

Y
ea

r 
o

f 
A

n
al

y
si

s 

 2020 2025 2030 … 2050 

2
0

2
0
 𝐺𝐶𝑖𝑛𝑠𝑡2020,𝐿𝐼𝐵 0 0 … 0 

2
0

2
5
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝐿𝐼𝐵

− 𝐺𝐶𝑟𝑒𝑡2020:2025,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2025,𝐿𝐼𝐵 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝐿𝐼𝐵

+ 𝐺𝐶2025,𝐿𝐼𝐵 

0 … 0 

2
0

3
0
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝐿𝐼𝐵

− 𝐺𝐶𝑟𝑒𝑡2020:2030,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2030,𝐿𝐼𝐵 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝐿𝐼𝐵

+ 𝐺𝐶2025,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2030,𝐿𝐼𝐵 

𝐺𝐶2030,𝐿𝐼𝐵 … 0 

2
0

3
5
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝐿𝐼𝐵

− 𝐺𝐶𝑟𝑒𝑡2020:2035,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2035,𝐿𝐼𝐵 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝐿𝐼𝐵

+ 𝐺𝐶2025,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2035,𝐿𝐼𝐵 

𝐺𝐶2030,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2035,𝐿𝐼𝐵 

… 0 

2
0

4
0
 

0 𝐺𝐶𝑖𝑛𝑠𝑡2025,𝐿𝐼𝐵

+ 𝐺𝐶2025,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2040,𝐿𝐼𝐵 

𝐺𝐶2030,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2040,𝐿𝐼𝐵 

… 0 

2
0

4
5
 

0 0 𝐺𝐶2030,𝐿𝐼𝐵

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2045,𝐿𝐼𝐵 

… 0 

2
0

5
0
 0 0 0 … 𝐺𝐶2050,𝐿𝐼𝐵 

 

GCinst accounts for infrastructure already built in each region. Note that anything built after 

2020 is considered to be installed in 2025, and anything built before 2020 is considered installed 

in 2020, but with a shortened lifetime, depending on installation year. GCret is used to track the 

required retirements each year of current infrastructure. This system ensure that older 

infrastructure is forced to retire at the end of its lifetime.  
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Note that Table 5-7 includes many interesting patterns due to LIB’s short lifetime, such as its 

banded nature with large regions of scarcity. Below, Table 5-8 shows how patterns change with 

longer-lived technologies, such as geo. 

Table 5-8. Tracking dataframe for geo 

  Install Year 

Y
ea

r 
o

f 
A

n
al

y
si

s 

 2020 2025 2030 … 2050 

2
0

2
0
 𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜 0 0 … 0 

2
0

2
5
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2025,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜 

0 … 0 

2
0

3
0
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2030,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2030,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2030,𝑔𝑒𝑜 

𝐺𝐶2030,𝑔𝑒𝑜 … 0 

2
0

3
5
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2035,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2035,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2035,𝑔𝑒𝑜 

𝐺𝐶2030,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2035,𝑔𝑒𝑜 

… 0 

2
0

4
0
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2040,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2040,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2040,𝑔𝑒𝑜 

𝐺𝐶2030,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2040,𝑔𝑒𝑜 

… 0 

2
0

4
5
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2045,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2045,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2045,𝑔𝑒𝑜 

𝐺𝐶2030,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2045,𝑔𝑒𝑜 

… 0 

2
0

5
0
 

𝐺𝐶𝑖𝑛𝑠𝑡2020,𝑔𝑒𝑜

− 𝐺𝐶𝑟𝑒𝑡2020:2050,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2020,2050,𝑔𝑒𝑜 

𝐺𝐶𝑖𝑛𝑠𝑡2025,𝑔𝑒𝑜

+ 𝐺𝐶2025,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2025,2050,𝑔𝑒𝑜 

𝐺𝐶2030,𝑔𝑒𝑜

− 𝐺𝐶𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑡2030,2045,𝑔𝑒𝑜 

… 𝐺𝐶2050,𝑔𝑒𝑜 
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The existing dataframe is almost identical to the tracking dataframe for all technologies. The 

only difference is that existing does not record early retirements. For example, existing for geo 

would be Table 5-8, but without the subtractions of GCearlyretinstallyear,yearofanalysis,geo whenever 

applicable.  

5.3.3 Hourly constraints 

The imposed constraints can be categorized into two groups: hourly and annually. This section 

explored the hourly energy flow and behavior of the model. First, Equations 3.7 through 3.9 

track the flow of energy through the available pathways, based on how the electricity is 

generated, and short storage options are available. Equation 3.7 ensures that demand is satisfied 

for every hour of every year, either directly from generation (VRE and firm) or from storage 

reserves. Equation 3.8 calculates all firm generation at every hour of every year and allows it to 

flow to demand or any of the available storage resources. Note that TDlosses are applied at this 

initial step of generation accounting, and therefore TDlosses do not depend on electricity 

pathway. Similarly, Equation 3.9 calculated VRE-generated electricity at every hour of every 

year and allows it to flow to demand, storage or be curtailed, with TDlosses applied in the same 

way as Equation 3.8. Notice that VRE-generated electricity can be curtailed, but firm generation 

cannot. 

 
, , ,

, ,

,

2 2 2 *years hours years hours years tech

tech years hours tech

years hours

firm D VRE D storage D

demand






+ +

=


 (3.7) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 

, , , ,* 2 2years hours tech years hours years hours

tech

firmoutput TDlosses firm D firm storage


= +  (3.8) 
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∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 
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, , , ,

* *

2 2 2

years hours tech years hour tech

tech

years hours years hours years hours tech

tech

CF tracking TDlosses

VRE D VRE C VRE storage
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 (3.9) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 

Equation 3.10 limits all firm output to stay below available capacity for every hour of every 

year. To increase generation potential, the model must size-up its resources. 

 , , ,years hours tech years techfirmoutput tracking  (3.10) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ W 

Equations 3.11 through 3.13 restrict energy storage operations to be within the parameters of 

each technology. Equation 3.11 is used to size each storage technology, ensuring that the energy 

level is limited to the installed energy capacity of each storage technology. Equations 3.12 and 

3.13 limit the power capacity of energy storage. Note that these limits are applied before 

inefficiencies are accounted for. Also note that Equations 3.12 and 3.13 assume that charging 

and discharging power capacity is symmetric for all storage technologies. Equation 3.14 

monitors that energy level of each technology. Energy level is dependent of energy level of the 

previous hour plus all electricity sent to storage in that hour minus any electricity sent to demand 

in that hour. Because of this historical dependence, Equation 3.14 is not applied to the first hour, 

0. 

 , , , , *years hours tech years hours techstoragelevel tracking duration  (3.11) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ t 

 , , , , ,2 2year hours tech year hours tech years techfirm storage VRE storage tracking+   (3.12) 
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∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ t 

 , , ,2 years hours tech years techstorage D tracking  (3.13) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ t 
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, , ,
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2 2 * 2

years hours tech years hours tech years tech

year tech years hours tech

storagelevel storagelevel hourly

VRE storage firm storage storage D





−=

+ + −
 (3.14) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 \ 0 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ t 

Some firm generation types are limited by more than just their capacity. Equation 3.15 applies to 

baseload generation technologies which are restricted from any and all ramping. Equation 3.16 

limits monthly CFs for relevant technologies. And Equation 3.17 limits annual CFs for relevant 

technologies 

 , ,years hours tech techfirmoutput CF=  (3.15) 

∀ ℎ𝑜𝑢𝑟𝑠 ∈ ℎ𝑜𝑢𝑟 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ Υ 

 , , ,

hours lastinmonth

month tech years hours tech

hours firstinmonth

CF firmoutput
=

=

=   (3.16) 

∀ 𝑚𝑜𝑛𝑡ℎ ∈ 𝑗𝑎𝑛, 𝑓𝑒𝑏 … 𝑑𝑒𝑐 ∧  𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ s 

 

, ,

, * *8760

years hours tech

hours hour
tech

years tech

firmoutput

CF
tracking N




 (3.17) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧ 𝑡𝑒𝑐ℎ ∈ X 

5.3.4 Annual constraints 

The second group of constraints is applied on an annual basis. Equation 3.18 restricts model-

optimized capacity buildouts in the year 2020. The capacities of each region are predefined 

based on historically collected data. Capacity expansion is not allowed until 2025, because this is 
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the first optimized year in the future. Equation 3.19 restricts nuclear buildout. Current nuclear 

units are operated until their retirement age, but no new nuclear can be added to the fleet. 

 2020, 0techGC =  (3.18) 

∀ 𝑡𝑒𝑐ℎ ∈ Φ 

 , 0years nuclearGC =  (3.19) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 

The next collection of equations constrains fusion buildout. Equations 3.20 restricts fusion 

buildout before it is commercially available. Equation 3.21 repackages the information in the 

fusionexists binary variable to be cleaner for the later constraints. Consequently, turnedon is also 

binary. Put simply, turnedon is 1 on the year that fusion is installed and is 0 for all other years. 

This is important because Equation 3.22 constrains the first year of fusion to be one power plant, 

which is assumed to be 350 MW. There are some multiplication factors because the optimization 

is scaled down considerably to reduce computational time. Finally, Equation 3.23 limits fusion 

installations based on the user-input doublingtime. Installations every year after the first year of 

fusion adoption are restricted based on the installations of the previous year. 

 , 0years fusionGC =  (3.20) 

∀ 𝑦𝑒𝑎𝑟𝑠 < 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 

   
[ 1]

0
years

years years

turnedon
fusionexists fusionexists −


= 

−
  

𝑖𝑓 𝑦𝑒𝑎𝑟𝑠 < 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙
𝑖𝑓 𝑦𝑒𝑎𝑟𝑠 ≥ 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙

        (3.21) 

 ,350*1000 / * *years years fusion yearsmultiplier turnedon GC turnedon==  (3.22) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 
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/

, ,*(1 ) *2 *(1 )stepsize doublingtime

years fusion years years fusion yearsGC turnedon GC turnedon−  −  (3.23) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 

Equation 3.24 ensures that relevant capacities remain below their regionally-specific limit. 

 , limyears tech techtracking it  (3.24) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 ∧  𝑡𝑒𝑐ℎ ∈ c 

And finally, Equation 3.25 limits annual emissions intensity. Note that a strict limit is applied 

every optimization year, without any allowance of emissions banking. This is an emissions 

intensity target rather than a raw emissions release limit, so allowed emissions depend on 

demand growth. The annual emissionsintensity is calculated with an extrapolation from current 

regional emissions intensity, included below in Figure 5-1, to user-input 

emissionsintensitytarget. This extrapolation can be done linearly (with emissionsintensity = 

m*year+b) or exponentially (with emissionsintensity = a*byear), based on the user-selected 

cumulativeconstraint shape. 

 

, ,

,sin *

years hours tech

hours hour tech

years hours years

hours hour

firmoutput

emission tensity demand

 





 


 (3.25) 

∀ 𝑦𝑒𝑎𝑟𝑠 ∈ 𝑦𝑒𝑎𝑟 
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Figure 5-1.Current regional emissions intensities [101] 

Figure 5-2 shows that differences in emissions reduction schemes. Note the stark discrepancies 

in reduction strategy based on both 1) 2021 emissions intensity per region, and 2) 

cumulativeconstraint shape. Since exponential reduction leads to much lower cumulative 

emissions sums, the entirety of analysis in this Chapter is imposed using an exponential 

cumulativeconstraint. 

 

Figure 5-2. Emissions intensity constraint trend comparison between regions and reduction 

strategies: exponential (base case – line) and linear (dashed) 
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5.4 Results 

5.4.1 Base case analysis 

First, fusion adoption is modeled, given the aforementioned base case assumptions. Figure 5-3 

shows the fleet buildout and generation results of this analysis. Note that units that are retired 

early are still included in the fleet capacity, but are not present in the generation graph as they are 

dormant. Carbon-free electricity sources steadily increase from year to year, and there are no 

new installations of fossil-fueled generation without carbon capture. Lastly, note that although 

there are 3 types of LIB being modeled, they are aggregated and displayed as one category for 

concision. 

 

Figure 5-3. National capacities (left) and generation (right), from 2020 to 2050 

In this scenario, fusion composes ~1.7% of the grid capacity by 2050, and supplies ~5.2% of 

demand. Note that buildout only occurs in the Atlantic and Southeast regions, as seen in Figure 

5-4, which are the regions which saw the largest need for fusion in Chapter 4. Buildout begins in 

2035, the year of fusion commercialization, and installments are limited by the estimated 

doubling rate.  
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Figure 5-4. Base case regional fusion buildout 

The results of this analysis are starkly different from what is presented in Chapter 4. Calculated 

from values shown in Figure 4-7, greenfield analysis shows that 100 GW of fusion is the optimal 

national buildout in 2050, given a 4 gCO2/kWh carbon cap. This is about twice as much as seen 

in Figure 5-4. There are many added complexities in brownfield analysis that introduce 

deviations from Chapter 4’s results. The below sections explore the different constraint 

dimensions to best understand what evolving constraints most heavily motivate these 

discrepancies. 

National costs and emissions values are also postprocessed and shown below. The costs 

associated with these high decarbonization schemes are relatively palatable, with electricity 

system costs rising from ~$152/MWh in 2020 to $175/MWh in 2050, to achieve a reduction 

from 212 gCO2/kWh in 2020 to 4 gCO2/kWh in 2050. Note that costs and emissions values for 

2020 are not historical data, but rather an optimization of 2020’s infrastructure given the model’s 

framework and assumptions. Note that coal units still comprise a nonnegligible fraction of costs 

even in later years of optimization when they are retired because of inactivity. This is because 

their finance payments on CAPEX values must be paid until the end of their lifetime, regardless 

of whether the units are retired or not. 
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Figure 5-5. Base case national power sector costs and emissions intensity 

5.4.2 Varying fusion CAPEX 

As discussed in Chapter 4, fusion CAPEX is highly uncertain. And so, a sensitivity analysis is 

conducted in this chapter as well, with the same range of CAPEX values: $3,000/kW, 

$6,000/kW, $8,500/kW, and $12,000/kW. Figure 5-6 shows the impact of varying fusion 

CAPEX on national fleet composition. Reducing fusion CAPEX to $6,000/kW reduces reliance 

on solar, wind (both land-based and offshore), natural gas with carbon capture, and energy 

storage, with the impact on other technologies being negligible. At this price point, fusion is 

installed in all regions, albeit to significantly different degrees. The Central and Northwest 

regions see the lowest fusion penetration, each region only installing one 350 MW plant. The 

Northwest has significant hydro resources which will still be in operation in 2050, which lessens 

the need for fusion. The Central region has a substantial nuclear fleet, most of which not retiring 

until 2050. Also, it has the highest initial emissions intensity so has the most lenient cap applied 

in 2045, when compared to the other regions, as shown in Figure 5-2. In 2045, Central allows for 

an emissions intensity of 9.4 gCO2/kWh, while California is restricted to only 7.3 gCO2/kWh. 
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Figure 5-6. Change in capacities, as CAPEX is varied from base case: $3,000/kW on left, 

$6,000/kW on right, and $12,000/kW on right 

Once fusion is reduced to $3,000/kW, Chapter 4 proved that it becomes competitive with wind 

and solar even without carbon constraints. Because of this, fusion buildout is maximized in every 

region from 2035-2045 (expect the Southwest and Northeast in 2045). Then, fusion continues to 

quickly increase in 2050, but the buildout limit is high enough to no longer dictate system 

behavior. Lastly, note that there is still offshore wind in the national fleet, even though this is one 

of the first technologies that fusion normally pushes out. This is installed in the Atlantic and 

Southeast regions in 2045. This is needed to reach those regions respective 2045 decarbonization 

goals with a still developing fusion supply chain. 

Lastly, at $12,000/kW CAPEX, there is no fusion buildout. Therefore, this case can also be used 

to represent a scenario when fusion is not available or never commercialized. Without fusion, the 
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system relies more heavily on solar, offshore wind, LIBs, and a small contribution from other 

technologies. 

5.4.3 Different learning rates 

 

Figure 5-7. Fusion LCOE at each optimized year, depending on learning rate: 5%, 10% (base 

case), 20%, and 30% 

Fusion’s learning rate is used to calculate fusion CAPEX at year of analysis, extrapolated out 

from the assumed 2050 value. Since the final cost is fixed, rather than the initial, a higher 

learning rate leads to a higher cost of fusion in 2035, and therefore lesser adoption. This is 

unintuitive, and so figures are labeled with “initial cost” rather than learning rate, for clarity. 

Learning rates tested are: 10% (base case), 20% (high 2035 cost), 30% (very high 2035 cost), 

and 5% (low 2035 cost). Note that the learning rate is always only applied to 60% of CAPEX, 

because this is the estimated fraction of the cost that is fusion-specific. Other costs, such as 

balance-of-plant costs are used to not have any learning rate because they will be very similar-, if 

not identical-to current technologies. Figure 5-7 shows the evolution of fusion’s CAPEX, at the 

different learning rates. Given a 5% learning rate, LCOE reduces by 17% over 15 years, 

compared to at a learning rate of 30%, LCOE reduces by 71% over 15 years. 
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Figure 5-8. Fusion penetration, depending on learning rate: 5% left, 10% center left (base case), 

20% center right, and 30% right 

Learning rate has a high impact not only on early years of adoption, but also national total sum 

of fusion by 2050. This is because of the doubling limit. In fact, installations occurring in years 

before 2050 are often at their limit. Table 5-9 shows that fusion’s buildout limit is active, 

meaning that installations in earlier years are necessary to reach the optimal fusion capacities in 

2050. As fusion’s learning rate increases, fusion installations are delayed and reduced to avoid 

the heightened costs of new technology. 

Table 5-9. Years when fusion buildout is limited by learning rate 

 

Atlantic Southeast Atlantic Southeast Atlantic Southeast Atlantic Southeast

2035 MAX

2040 MAX MAX MAX MAX MAX

2045 MAX MAX MAX MAX MAX MAX MAX

2050 MAX MAX MAX MAX MAX MAX MAX

5% learning 10% learning 20% learning 30% learning
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5.4.4 Varying fusion commercialization 

 

Figure 5-9. Maximum regional fusion capacity, based on commercialization date: 2035 (base 

case), 2040, 2045, and 2050 
Fusion commercialization also affects buildout. Figure 5-9 shows the maximum fusion capacity 

that can be reached in a region, based on commercialization date. These values are calculated 

based of the base case doubling time. Note that all other variables are considered to be the same 

as the base case, including fusion costs, learning rate, and size of fusion plant. 

 

Figure 5-10. Commercialization date’s impact on regional maximum fusion buildout 

Figure 5-10 shows national fusion capacity, given a range of commercialization dates. The trends 

present in Figure 5-10 are similar to those in Figure 5-9. This is because for any 
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commercialization date after 2035, fusion buildout is limited every year based on the assumed 

doubling time. Note that analysis was conducted for 2030 commercialization of fusion, but that 

no regions adopted fusion before 2035, so this analysis is not pictured for concision. 

5.4.5 Varying doubling time 

Doubling time impacts both LCOE and maximum allowed fusion buildout. Note that maximum 

installations are calculated assuming that the previous year also reached its supply chain limit. If 

a year does not build all possible units, the following year will have a lesser maximum buildout 

capacity. This is often the case as seen in the other sections of analysis. Also, note that LCOE is 

not dependent on regional installations. This is because utility costs will be determined by the 

national and global demand for fusion, not regional. Lastly, the doubling times of 2.7 years, 2.3 

years, and 2.0 years are calculated based on 1 GW global fusion in 2035, and 50 GW, 100 GW, 

and 200 GW of global fusion in 2050, respectively. 

 

Figure 5-11. LCOE and maximum allowed buildout, based on variable doubling time: 2.7 years, 

2.3 years (base case), and 2.0 years 

The contrasting adjustment to parameters leads to interesting behavior, shown in Figure 5-12. In 

the Southeast, increased doubling time, with lower fusion costs leads to increased fusion buildout 

for all years. At these lower costs, the buildout limit is active from 2040-2050. Since buildout is 

slower than in the base case, which is also maximized over this timeframe, the relative difference 
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in installations decreases, although the actual difference increases. The system behavior is simply 

opposite what is seen with an increased doubling time. 

 

Figure 5-12. Impact of doubling rate on fusion buildout, compared to base case (2.3 years 

doubling time): 2.7 years on left and 2.0 years on right 

In the Atlantic, when doubling time increases, fusion capacity is maxed out in every year. Fusion 

capacity starts higher, but is surpassed by the base case in 2050. The increased early installations 

are to build up the supply chain. When doubling time is decreased, the opposite behavior is true. 

Fusion installations start lower, but surpass base case capacities by 2050. 

5.4.6 Varying carbon cap 

Chapter 4 shows how more ambitious decarbonization goals integrate more fusion into the 

optimal greenfield buildout. The shape of this trend, under brownfield assumptions, is shown in 

Figure 5-13. At a 2.5 gCO2/kWh carbon cap, not only do Atlantic and Southeast fusion 

installations increase, but California, North Central, and the Northeast all install a single 350 

MW plant in 2050. Conversely, with a 15 gCO2/kWh carbon cap, the only fusion installation is a 

single 350 MW unit in the Southeast. The brownfield installations compared to greenfield are 

43% at 2.5 gCO2/kWh, 40% at 4 gCO2/kWh, and 3% at 15 gCO2/kWh. 
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Figure 5-13. Fusion penetration at varying carbon caps: 2.5 gCO2/kWh (left), 4 gCO2/kWh (base 

case – center cleft), linear 4 gCO2/kWh (center right), and 15 gCO2/kWh (right) 

When a linear carbon constraint is allowed, fusion reliance decreases. There is less need for 

fusion in the earlier years, but equal need in 2050. This shows how important intermediary 

decarbonization targets are, as they will shape our 2050 grid composition. Figure 5-14 shows the 

tradeoff between linear and exponential decarbonization schemes in terms of costs and 

emissions. Linear decarbonization is cheaper during years 2025-2045 because the system opts 

for a dirtier, less-expensive buildout. Linear decarbonization is cheaper in 2050 because clean 

resources were installed later, when their costs are projected to be lower. Given a linear 

decarbonization strategy, the Atlantic and Southeast grid emissions intensities are still around 70 

by 2045. And ultimately, linear decarbonization allows for more than double the cumulative 

emissions from 2020 to 2050. 
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Figure 5-14. System cost, emission intensity, and cumulative emissions given an exponential 

(base case – line) vs. linear (dashed) decarbonization strategy 

5.4.7 Comparison of constraint impacts 

This Chapter reviews the impact of many different variables: fusion CAPEX, fusion learning 

rate, fusion doubling rate, date of commercialization, and carbon constraint. It was shown that all 

these parameters affect fusion buildout, albeit to varying degrees. Figure 5-15 compares the 

impact of each input, to highlight which constraints hold the highest impact on the future of 

fusion. Note that the ranges explored for each parameter are not analogous, so a direct 

comparison, although interesting, is not fair. Note that Figure 5-16 in the Appendix shows the 

same information, in percent format. 

 

 

Figure 5-15. Comparison of parameter impact on fusion capacity 
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5.5 Conclusions 

The range of CAPEX values have the greatest potential to influence fusion adoption. 

Commercialization date can only negatively impact fusion adoption. An earlier 

commercialization date serves no benefit to the system, and a later date constricts fusion 

buildout. Learning rate has a significant impact on fusion buildout. Less expensive costs 

encourage buildout, which increases the supply change capacity. The supply chain is limiting 

from 2040-2050 in the base case, so early adoption is key to allow large installations in 2050. 

Doubling rate has a nonhomogeneous impact on regions. A shorter doubling time allows some 

regions to wait until later years to install larger amounts of fusion. In other regions, different 

behavior is observed.  

Also, it was shown that the imposed carbon cap highly dictates fusion adoption. Imposing a 

tighter carbon cap (2.5 gCO2/kWh) incentivizes a 17% increase in fusion installations by 2050 

compared to the base case, while imposing a more lenient carbon cap (15 gCO2/kWh) reduces 

fusion adoption by 99%. Lastly, linear decarbonization is compared to exponential. Linear 

reduction reduces fusion penetration by 58%. It allows for a 2-3% cheaper regional grid, but at 

the cost of over double the cumulative emissions. It has been shown that there are many 

uncertain factors which will influence the role that fusion will play in a decarbonized power 

sector. 
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5.6 Appendix 

Table 5-10. Scalar financial values for all technologies 
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Abbreviation CAPEX FOM VOM   L 

Solar2021 1291 23 0 0 0 30 

Solar2025 1248 20 0 0 0 30 

Solar2030 1038 18 0 0 0 30 

Solar2035 829 16 0 0 0 30 

Solar2040 764 15 0 0 0 30 

Solar2045 698 14 0 0 0 30 

Solar2050 632 13 0 0 0 30 

Solar2021-2050 source 2023 ATB Publication [71] 

Wind2021 1363 30 0 0 0 30 

Wind2025 1268 29 0 0 0 30 

Wind2030 1150 27 0 0 0 30 

Wind2035 1093 26 0 0 0 30 

Wind2040 1037 25 0 0 0 30 

Wind2045 980 24 0 0 0 30 



148 

 

Wind2050 924 23 0 0 0 30 

Wind2021-2050 source 2023 ATB Publication [71] – Class 7 

Offw2021 3396 107 0 0 0 30 

Offw2025 2962 95 0 0 0 30 

Offw2030 2723 87 0 0 0 30 

Offw2035 2575 81 0 0 0 30 

Offw2040 2468 77 0 0 0 30 

Offw2045 2383 74 0 0 0 30 

Offw2050 2314 71 0 0 0 30 

Offw2021-2050 source 2023 ATB Publication [71] – Class 1; CAPEX includes grid connection costs 

RoR2021 4067 19 0 0 0 100 

RoR2025 4067 19 0 0 0 100 

RoR2030 4067 19 0 0 0 100 

RoR2035 4067 19 0 0 0 100 

RoR2040 4067 19 0 0 0 100 

RoR2045 4067 19 0 0 0 100 

RoR2050 4067 19 0 0 0 100 

RoR2021-2050 source 2023 ATB Publication [71] – Average of Class NSD 2 

Hydro2021 4843 32 0 0 0 100 

Hydro2025 4843 32 0 0 0 100 

Hydro2030 5159 32 0 0 0 100 

Hydro2035 5539 32 0 0 0 100 

Hydro2040 5317 31 0 0 0 100 
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Hydro2045 5317 31 0 0 0 100 

Hydro2050 5317 31 0 0 0 100 

Hydro2021-2050 source 2023 ATB Publication [71] – Average of Class NPD 5 

Geo2021 6750 114 0 0 0 30 

Geo2025 6469 111 0 0 0 30 

Geo2030 5926 107 0 0 0 30 

Geo2035 5559 104 0 0 0 30 

Geo2040 5421 104 0 0 0 30 

Geo2045 5287 104 0 0 0 30 

Geo2050 5156 104 0 0 0 30 

Geo2021-2050 source 2023 ATB Publication [71] – Hydro/Flash 

NGCT2021 1120 24 6.44 2.99 9.72 55 

NGCT2025 1094 24 6.44 3.51 9.72 55 

NGCT2030 1050 23 6.44 3.85 9.72 55 

NGCT2035 1005 22 6.44 3.96 9.72 55 

NGCT2040 961 22 6.44 4.04 9.72 55 

NGCT2045 917 21 6.44 4.08 9.72 55 

NGCT2050 872 20 6.44 4.31 9.72 55 

NGCT2021-2050 source [102] for fuel cost & 2023 ATB Publication [71] all else 

NGCC2021 1283 31 1.96 2.99 6.2 55 

NGCC2025 1246 30 1.91 3.51 6.17 55 

NGCC2030 1185 28 1.84 3.85 6.12 55 

NGCC2035 1124 27 1.77 3.96 6.08 55 
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NGCC2040 1078 26 1.72 4.04 6.08 55 

NGCC2045 1031 25 1.66 4.08 6.08 55 

NGCC2050 985 24 1.61 4.31 6.08 55 

NGCC2021-2050 source [102] for fuel cost & 2023 ATB Publication [71] all else – H-Frame 

NGCCS2021 2531 59 4.4 2.99 7.01 55 

NGCCS2025 2396 56 4.22 3.51 6.95 55 

NGCCS2030 2170 51 3.91 3.85 6.84 55 

NGCCS2035 1944 46 3.61 3.96 6.74 55 

NGCCS2040 1833 44 3.48 4.04 6.74 55 

NGCCS2045 1722 41 3.353 4.08 6.74 55 

NGCCS2050 1611 39 3.23 4.31 6.74 55 

NGCCS2021-2050 

source [102] for fuel cost & 2023 ATB Publication [71] all else – H-Frame; 95% CCS 

Nuclear2021 9440 152 2.47 0.66 10.45 60 

Nuclear2025 8106 152 2.47 0.66 10.45 60 

Nuclear2030 7730 152 2.47 0.66 10.45 60 

Nuclear2035 7473 152 2.47 0.66 10.45 60 

Nuclear2040 7209 152 2.47 0.66 10.45 60 

Nuclear2045 6961 152 2.47 0.66 10.45 60 

Nuclear2050 6668 152 2.47 0.66 10.45 60 

Nuclear2021-2050 

source 

2023 ATB Publication [71] 

Fusion2021 8500 152 2.47 0 0 40 
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Fusion2025 8500 152 2.47 0 0 40 

Fusion2030 8500 152 2.47 0 0 40 

Fusion2035 8500 152 2.47 0 0 40 

Fusion2040 8500 152 2.47 0 0 40 

Fusion2045 8500 152 2.47 0 0 40 

Fusion2050 8500 152 2.47 0 0 40 

Fusion2021-2050 source 2023 ATB Publication [71] – nuclear, except OCC, heat rate, fuel cost, L, and 

ITC which are explained below 

PHS2021 7082 47 0 0 0 100 

PHS2025 7082 47 0 0 0 100 

PHS2030 7082 47 0 0 0 100 

PHS2035 7082 47 0 0 0 100 

PHS2040 7082 47 0 0 0 100 

PHS2045 7082 47 0 0 0 100 

PHS2050 7082 47 0 0 0 100 

PHS2021-2050 source 2023 ATB Publication [71] – Class 13 

LIB2021 1587 40 0 0 0 15 

LIB2025 1436 36 0 0 0 15 

LIB2030 1204 30 0 0 0 15 

LIB2035 111 28 0 0 0 15 

LIB2040 1018 25 0 0 0 15 

LIB2045 925 23 0 0 0 15 

LIB2050 833 21 0 0 0 15 
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LIB2021-2050 source 2023 ATB Publication [71] – 4Hr for CAPEX, FOM, LIB, L, and PTC and 

ITC; Utility PV Plus Battery for all else 

LIBshort2021 943 24 0 0 0 15 

LIBshort2025 862 22 0 0 0 15 

LIBshort2030 749 19 0 0 0 15 

LIBshort2035 697 17 0 0 0 15 

LIBshort2040 646 16 0 0 0 15 

LIBshort2045 594 15 0 0 0 15 

LIBshort2050 541 14 0 0 0 15 

LIBshort2021-2050 

source 

2023 ATB Publication [71] – 2Hr for CAPEX, FOM, LIB, L, and PTC and 

ITC; Utility PV Plus Battery for all else 

LIBlong2021 2875 72 0 0 0 15 

LIBlong2025 2584 65 0 0 0 15 

LIBlong2030 2114 53 0 0 0 15 

LIBlong2035 1938 48 0 0 0 15 

LIBlong2040 1763 44 0 0 0 15 

LIBlong2045 1589 40 0 0 0 15 

LIBlong2050 1415 35 0 0 0 15 

LIBlong2021-2050 

source 

2023 ATB Publication [71] – 8Hr for CAPEX, FOM, LIB, L, and PTC and 

ITC; Utility PV Plus Battery for all else 

Coal2021 2746 76 8.33 2.15 8.47 75 

Coal2025 2704 76 8.27 2.07 8.47 75 

Coal2030 2554 74 7.97 2.07 7.61 75 

Coal2035 2423 72 7.79 2.07 7.09 75 
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Coal2040 2339 72 7.79 2.06 7.09 75 

Coal2045 2259 72 7.79 2.07 7.09 75 

Coal2050 2152 72 7.79 2.07 7.09 75 

Coal021-2050 source 2020 ATB Publication [102] for fuel cost and lifetime, 2023 ATB Publication 

[71] for CFF & 2021 ATB Publication [103] all else – new-AvgCF 

 

• Converting to 2021 dollars [71]:  

o 2018$ to 2019$ multiplier = 1.0181 

o 2019$ to 2020$ multiplier = 1.0123 

o 2020$ to 2021$ multiplier = 1.047 

 

Figure 5-16. Change in fusion capacity, with varying parameter values (%) 
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Chapter 6. Summary of contributions and future directions 

6.1 Novel and impactful contributions 

The analyses in this thesis explore decarbonization of the power sector from multiple angles. 

Chapters 2 and 5 introduce two novel CEMs, Ideal Grid and Evolving Grid, which are unique 

and valuable to the field due to their combination of three main characteristics: 1) they are open 

source, 2) they allow for extensive individual and comparative analysis of nine regions of the 

US, and most importantly, 3) they consider emissions from all stages of the life cycle. These 

models can be used to answer a broad range of questions, illustrated by the 4 main case studies 

presented above, each in a different Chapter.  

Chapter 2 shows how bespoke decarbonization strategies are needed because there is significant 

diversity and nuance in optimized transitional decision making just within the US. For example, 

annual wind CF has a high correlation with a region’s low emissions intensity LCOE. Chapter 2 

also shows that decarbonization is cheaper in regions with available hydro resources.  

Chapter 3 shows the importance of LCA. The US power sector requires major transitions to 

reach national decarbonization goals, meaning we have the opportunity, and responsibility, to 

redesign and rebuild a large portion of current infrastructure. It is important to redesign in ways 

which will minimize costs, and yet result in a robust and reliable grid. The industry standard for 

current policy and analysis is to optimize the reduction of power-plant tailpipe emissions. 

Chapter 3 shows that this inaccurate approximation leads to a dirtier grid and neglects up to 50% 

of emissions, when the target emissions intensity is 20 gCO2/kWh. To actually reach net-zero 

requires negative-emissions technologies and will be more expensive than most models are 

currently predicting. But to be serious about our goals, we must consider these embodied 

emissions. 
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Chapter 4 explores the potential role of a developing technology, fusion. Fusion is a low-carbon, 

dispatchable generating option. In this analysis, fusion is assumed to have a CAPEX of 

$8,500/kW. Fusion penetration was found to be highest in regions which had severely limited 

onshore wind buildout options. Fusion allows these systems to decarbonize with significantly 

less reliance on offshore wind. A sensitivity was conducted on fusion costs and it was found that 

fusion becomes economically viable in regions at a CAPEX of $3,000-4,000/kW, without carbon 

caps. However, if nuclear buildout is allowed, the space for fusion penetration decreases 

significantly. In fact, California, the Northeast, and the Northwest see no fusion adoption at all in 

these scenarios. Fusion has the potential to play a role in decarbonization, but to strikingly 

different degrees, depending on regional characteristics and costs. 

Chapter 5 shows that grid inertia has a great impact on the role of new technologies. National 

fusion adoption is tracked from commercialization to 2050, assuming an exponential decrease in 

emissions intensity, targeting 4 gCO2/kWh in 2050. Fusion adoption begins in 2035 and reaches 

~43 GW of total capacity by 2050. This base case brownfield analysis sees only ~40% as much 

fusion penetration as greenfield analysis. The impacts of varying CAPEX, learning rate, 

commercialization date, doubling rate, and carbon cap are all discussed. The range of CAPEX 

values explored showed the largest impact on buildout, which aligns with conclusions from 

Chapter 4. Other than carbon cap, initial commercialization date was shown to pose the largest 

threat to fusion adoption. Maximum buildout rate constrains the base case from 2040-2050. 

Delaying commercialization date further constricts this time period. The complexities of 

brownfield analysis reveal that decarbonization strategy, fusion commercialization date, and 

fusion CAPEX strongly dictate fusion adoption. 



156 

 

The below sections present ongoing research leveraging IG and EG as examples of the broader 

impact of the work in this thesis. These two case studies are introduced and have their 

methodology described. The first demonstrates the coupling of sectors and discusses the 

challenges and opportunities around this occurrence in the transportation sector.  The second is 

showcases IG’s range with a discussion around subsidies and their optimization.  Note that these 

examples are demonstrations of IG and EG extensions, rather than completed, comprehensive 

analysis. 

6.2 Enabling electric vehicle-to-grid interactions 

6.2.1 Introduction 

In 2021, the transportation sector was the largest emitter in the US, responsible for 29% of 

annual emissions [104]. We know that converting to electric vehicles (EVs) is the main strategy 

for decarbonization of this sector. Since transportation is responsible for such a large portion of 

our national energy demand (36%), we understand that electrification will pose a nonnegligible 

change to our electric load [105]. However, with a little imagination, one can actually think of 

EVs not only as drain on the power sector, but also a resource. In fact, within the confines of 

grid-discussions, EV batteries can be considered intermittent electricity sources and sinks on 

wheels, used to power transportation as well as supply other grid services. Similar to how current 

LIBs are operated, EVs have the potential to inject electricity back into the grid. The undeniable 

value of this type of operation is outlined in Owens et al.’s paper [106]. 

The most flexible type of analysis is vehicle to grid (V2G); this allows the aggregate resource of 

EV batteries to be used as an energy storage resource for the grid. Electricity can be sent to EV 

batteries from the grid and can also be sent from EV batteries to the grid. Bidirectional electricity 
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flow is allowed. It is constrained as described a complex series of equations below. Smart and 

uncontrolled charging schemes only allow for monodirectional electricity flow from the grid to 

EV batteries. Uncontrolled assumes a charging schedule based on charger and vehicle 

availability. Smart charging allows the model to optimize the aggregated EV battery charging 

scheme to minimize overall system costs. This will encourage charging to occur in periods where 

there is low demand and/or excess generated electricity available. 

Owens’ analysis focuses on the impact of electrifying New England’s light-duty fleet. The study 

suggested here integrates IG to explore the difference in impact of medium-duty V2G 

capabilities. It explores the regional difference in the vehicle fleet, power sector fleet, and the 

intersection of these discrepancies to better understand V2G nuances. Note that the analysis 

suggested here is different from the above Chapters because capacities are predefined based on 

projections. Instead of build-out-related questions, this case study is better suited for economic 

dispatch questions: given a defined future scenario, what is the value of smart charging or V2G? 

This analysis is targeted at two future dates (2035 and 2050), which will answer the question: 

how will the role and importance of V2G capabilities change over time? Lastly, a tax is imposed 

to see explore how V2G amplifies the impact of a carbon tax, as it enlarges the optimization 

space. 

6.2.2 Methodology 

This project is built upon the Ideal Grid model, with important added nomenclature and 

constraints presented below. All other values, set, equations, constraints, etc. that were presented 

in Chapter 2 apply to this analysis, except when noted otherwise. 
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6.2.2.1 Nomenclature 

Table 6-1. Sets specific to V2G analysis 

Notation Description Unit 

 Energy storage types: LIB (3 types), PHS, and EV - 

 

Table 6-2. Vector decision variables specific to V2G 

Notation Description Unit 

𝐸𝑉𝑙𝑒𝑣𝑒𝑙 ℎ𝑜𝑢𝑟 EV battery energy level at every time step ℎ𝑜𝑢𝑟 kWh 

𝑉𝑅𝐸2𝐸𝑉 ℎ𝑜𝑢𝑟 VRE generated energy sent to EV batteries at every time 

step ℎ𝑜𝑢𝑟 

kWh 

𝐺2𝐸𝑉 ℎ𝑜𝑢𝑟 Dispatchable generated energy sent to EV batteries at 

every time step ℎ𝑜𝑢𝑟 

kWh 

𝐸𝑉2𝐷 ℎ𝑜𝑢𝑟 Energy leaving EV batteries at every time step ℎ𝑜𝑢𝑟 kWh 

 

Table 6-3. User inputs specific to V2G 

Notation Description Unit 

type Describes the type of interaction between the grid and EVs 

(uncontrolled, smart, or V2G) 

kWh 

Table 6-4. EV parameters 

Notation Description Unit 

𝑑𝑟𝑖𝑣𝑖𝑛𝑔ℎ𝑜𝑢𝑟 Discharge from the EV energy storage technology 

due to driving, at every time step hour 

kWh 
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𝑃𝑐𝑎𝑝ℎ𝑜𝑢𝑟 Power capacity of EV energy storage technology 

available for charging and charging, at every time 

step hour 

kW 

Ecap Maximum energy capacity of the EV fleet kWh 

𝑚𝑖𝑛𝑆𝑂𝐶ℎ𝑜𝑢𝑟 Minimum state of charge for the EV energy storage 

technology, at every time step hour 

kWh 

fraction The faction of the fleet which is approximated to be 

at a charger, at every time step hour 

1 

dischargecost Penalty of EV battery technology discharge to the 

grid (valued at $0.00948/kWh) 

$/kWh 

6.2.2.2 Objective function 

The IG objective function presented in Chapter 2 is adjusted based on the model’s new 

capabilities.  

 

( )

2 * arg cos

cos * *

min
*( * * )

*

j

j hour

i i i i

i

tax i i i i

i

i

i

EV D disch e t

VOM fuel t heatrate total

yearlycost
e eGC GC e total

ecaptured cCCS















 +
 
 

+ + 
 

=  
+ + 

 
 
  









 (6.1) 

The optimization of capacity expansion is removed because sizing of technologies are set based 

on Cambium projections discussed below. The first component in Equation 6.1 is the addition of 

a discharge penalty. This is to penalize vehicle discharges to the grid which are cause additional 

battery degradation.  
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6.2.2.3 Hourly constraints 

Electricity flow is tracked very similarly to Equations 2.11 through 2.13 presented in Chapter 2. 

The adjusted versions are shown below. Notice that VRE and dispatchable generated electricity 

has the added flexibility to flow to EV battery energy storage, as seen in Equations 6.2 and 6.3. 

When uncontrolled type analysis is being conducted, generation to EV is predefined, not 

optimized. Equation 6.4 shows that demand can be satisfied by injecting electricity back into the 

grid. Note that the addition to equation 6.4 is only valid when V2G is user-selected.  

 
,2 2 2 2 * *(1 )j j j j i i j

i

G D G LIB G PHS G EV GC CF TDlosses


+ + + = −  (6.2) 

 
,2 2 2 2 2 * *(1 )j j j j j i i j

i

VRE D VRE LIB VRE PHS VRE C VRE EV GC CF TDlosses


+ + + + = −

 (6.3) 

 2 2 2 * 2 * 2 *j j j LIB j PHS j LIB jG D VRE D LIB D PHS D EV D Dunderlined  + + + + =  (6.4) 

∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 

The hourly energy level of EV batteries is tracked with equation 6.5. This is very similar to the 

LIBs modeled in chapter 2, but with the added discharge of powering the EV. 

 ( )1 * 2 2 * 2j j LIB j j LIB j jEVlevel EVlevel hourly G EV VRE EV EV D driving −= + + − −  (6.5) 

∀ 𝑗 ∈ ℎ𝑜𝑢𝑟/0 

The next group of hourly constraints restricts EV battery level and operations. Equation 6.6 

restricts energy in EV batteries to remain below their energy capacity limit. Equations 6.7 and 

6.8 enforce charging and discharging limitations, respectively. 

 jEVlevel Ecap  (6.6) 
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 2 2 ( )*j j j jVRE EV G EV Ecap EVlevel fraction+  −  (6.7) 

 2 *j j jEV D EVlevel fraction  (6.8) 

∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 

The last hourly constraint is unique to this Chapter of analysis. Equation 6.9 ensures that the EV 

battery state of charge remains above a specified range, which varies temporally. 

 min j jSOC EVlevel  (6.9) 

∀ 𝑗 ∈ ℎ𝑜𝑢𝑟 

 

6.2.2.4 Annual constraints 

The last EV-specific constraint is included below. The state of charge at the first hour is 

constrained to equal the state of charge in the last hour so that the battery is not used as an annual 

energy sink or source. 

 0 [ 1]jEVlevel EVlevel −=  (6.10) 

6.2.3 Data sources 

6.2.3.1 Capacity projections 

Capacity projections are sourced from NREL’s Cambium resource [37]. Cambium’s Mid-Case 

projection has biennial state-level capacity projections based on current policies and subsidies. 

These values can be aggregated to reflect buildout in each of the nine regions of analysis. Figure 

6-1 shows how regional fleets are projected to grow and evolve. It is important to note that 

although there is significant VRE buildout, these resources are still supplemented by a 

nonnegligible number of fossil-fueled generators.  
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Figure 6-1. Cambium's mid-case projected regional capacities in 2035 (left) and 2050 (right) 
6.2.3.2 Demand projections 

Demand projections are sourced by multiplying 2022 demand shapes from EIA’s “Real-Time 

Operating Grid” [107] by region-specific power projections from EIA’s “Annual Energy 

Outlook” [9]. Figure 6-2 shows that there are starkly different projected changes in demand in 

each region. Note that the added load of electrified transportation is not included in the below 

values; only increases in residential, commercial, and industrial electric demand are represented 

in Figure 6-2. 
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Figure 6-2. Projections of change of regional annual demand sum, excluding transportation 

demand 

6.2.3.3 Vehicle demand and parameter calculations 

The vehicle fleet represented in this model is made of class 3-6 trucks, more colloquially known 

as medium-duty trucks, including delivery trucks, buses, ambulances, etc. By using 2019 state-

level registration data from Oak Ridge National Lab’s Transportation Energy Data Book (TEDB) 

[108] and the National Truck Equipment Association (NTEA) [109], current fleet sizes can be 

calculated for each region. Next, the Argonne National Lab’s VISION model [110] is used to 

extrapolate from current fleet sizes to 2035 and 2050 sizes, assuming that future regional sales 

are proportional to current stock size. This gives regional Ecap values. 

Fleet operations are estimated using NREL’s Fleet DNA travel data [111]. Fleet DNA has 974 

days of driving data for 94 class 3-6 vehicles. Each vehicle has a daily departure time and return 

time. From this information, fraction and 𝑃𝑐𝑎𝑝ℎ𝑜𝑢𝑟 are calculated. The remaining V2G-specific 

variables (drivinghour and minSOChour) are calculated with the following assumptions: 1) vehicles 

travel 52 miles per day (based on aggregated fleet DNA data), 2) vehicles have an efficiency of 

1.5 mi/kWh, and 3) EV batteries have 100 kWh energy capacity. Lastly, note that when 
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uncontrolled analysis is being conducted, it is assumed that vehicles are recharged starting the 

hour after they return from use. 

6.2.4 Planned analysis and hypotheses 

Since only economic dispatch is optimized in this analysis, system operations rather than 

recommended buildout are the focus of this case study. The base-case to which more flexible 

analysis is compared is uncontrolled, which represents a future scenario in which EV batteries 

are not leveraged in any way. The largest improvements will be seen in the V2G analysis because 

there is the most optimization allowed. Smart charging is still expected to see measurable 

improvements from the uncontrolled analysis. 

The objective function is a cost minimization, so there will be a reduction in system cost as we 

unlock V2G capabilities, but the larger improvement will be seen in emissions intensity levels. 

This is because the only way for the system to reduce costs is by reducing VOM and fuel costs, 

because capital and FOM costs are fixed. Since VOM and fuel costs are only nonnegligible in 

thermal generating units, these power output from these units will reduce. While operational 

costs are a relatively small fraction of the overall lifetime costs of thermal generating units, 

operational emissions are the main source of greenhouse gasses. Reduction of fossil-fueled 

generation has a significantly higher impact on emissions intensity than on system cost. Having 

said that, it is still important to note the cost reductions because they can motivate V2G adoption. 
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6.3 Subsidy analysis 

6.3.1 Introduction 

As mentioned in the above Chapters, significant power-system reform is required to reach 

targeted emissions reduction levels. To encourage this transition, there is a collection of national 

subsidies that have been enacted; most notably is the Inflation Reduction Act (IRA) [112].  

The IRA is recognized as the most significant climate legislation ever passed. Bistline et al’s 

review of the IRA’s impact using a variety of US energy sector models shows that the IRA is 

projected to motivate 38-80% reduction in emissions compared to 2005 level, by 2030, and 

stimulate 66-87% reductions by 2035 [113]. This draws the US’s Paris agreement target of 

reaching 50-52% reduction by 2030 into range [114]. But, even with this promising enactment, 

there remains serious need to further decarbonize the power sector to halt the damage of climate 

change. 

There are two types of subsidies: investment tax credits (ITCs) are calculated based on system 

cost and applied the year of installation, and production tax credits (PTCs) are calculated based 

on power generated and are applied for the first 10 years of system operation. Both these 

calculated tax credits reduce federal income tax liability [115]. 

The research suggested here explores the best way to decarbonize without subsidies vs with 

current subsidies. In general, we want to make decarbonization cheaper, but we don’t want to 

accidentally favor one technology over another. This analysis will look at how subsidies 

encourage decarbonization as well as whether they are optimal or not. Furthermore, there will be 

a comparison between regions to understand if region-specific subsidy designs can more 
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effectively incentivize decarbonization. Alternative subsidy schemes are explored to see how the 

IRA can be built upon and its momentum can be furthered. 

6.3.2 Methodology 

This analysis uses the equations, constraints and parameters presented in Chapter 5. The only 

difference is the change in calculation of capital cost. The annual calculation of capital cost is 

defined in Equations 2-20 through 2-26 of Chapter 2’s appendix, where both PTC and ITC are 

considered. In the base-case of this analysis, both PTC and ITC are considered to be 0, regardless 

of installation year. The difference in LCOE of each technology is shown below in Figure 6-3. 

Fossil-fuel powered generators are not included because they are not eligible for subsidy. It is 

clear that government programs subsidize different percentages of technology’s costs. For 

example, in 2035, wind LCOE is reduced by ~72% while nuclear LCOE is reduced by ~20%.  

The percent reduction difference is because nuclear is more expensive than solar, but the same 

price reduction is applied. 

 

Figure 6-3. LCOE projections based on enacted subsidies vs. ignoring subsidies 
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6.3.3 Planned analysis and hypotheses 

Decarbonization buildout strategies will be compared when subsidies are applied vs are not 

applied. Based on Figure 6-3, one can hypothesize that subsidies encourage the adoption of the 

less expensive technologies (solar and wind) over more expensive technologies (offshore wind 

and hydro). By assuming that the costs of subsidies are indirectly being passed onto the 

consumer via increased taxes, the total cost to the consumer can be recalculated. Ideally, 

increased decarbonization is encouraged with little overall system cost increase. The danger of 

flat subsidies across all technologies is that they impact technologies differently, and therefore 

may lead to overbuilding of certain technologies. 

Out of this research, a series of alternative subsidy schemes can be proposed. Of special note is 

the investigation into region-specific designs. Also, the combination of carbon taxes in 

conjunction with subsidies will be investigated. What level and type of carbon taxes achieve the 

same decarbonization results as are projected with the IRA? 

6.4 Connecting back to the big picture 

This thesis motivates the quick and strategic reduction of all global emissions. This work is 

based on US emissions and targets because of its current and historically high contributions to 

total global emissions. The power sector is the focus of analysis as it is expected to be integrated 

into other sectors of the energy economy. Two tools were presented, and numerous valuable 

conclusions were identified. But, as described in the introduction, power sector decarbonization 

must be paired with significant transformation in the other sectors as well. The above V2G 

analysis provides a prime example of the transition of other sectors and how these evolutions 

will impact the power sector and vice versa. Similar V2G analysis shows that with only 14% 

fleet participation in V2G services in 2050, the need for stationary storage is completely 
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displaced [106]. The production of green electrolytic hydrogen is another example of tight 

coupling between the power sector and others. In fact, a novel study shows how economical 

hydrogen production can be achieved with a collection of renewables [116]. Johnson’s work 

optimizing decarbonization of India’s steel sector shows how similar techniques can be used in 

other industries to effectively strategize transitions [117]. All of these areas of analyses are 

instrumental in achieving an economical and robust clean energy economy. Also, economic tools 

may be linked to this work. To achieve our goals, accurate and comprehensive investigations of 

climate change must be conducted, as well as extensive exploration of all potential mitigation 

strategies. The power sector is vital to our national and global decarbonization strategies, but 

swift and significant efforts must be made to decarbonize all sectors and stages of the energy 

economy. 
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