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Abstract
Artificial intelligence (AI) is increasingly intervening in our lives,

raising widespread concern about its unintended and undeclared

side effects. These developments have brought attention to the

problem of AI auditing: the systematic evaluation and analysis of

an AI system, its development, and its behavior relative to a set of

predetermined criteria. Auditing can take many forms, including

pre-deployment risk assessments, ongoing monitoring, and com-

pliance testing. It plays a critical role in providing assurances to

various AI stakeholders, from developers to end users. Audits may,

for instance, be used to verify that an algorithm complies with the

law, is consistent with industry standards, andmeets the developer’s

claimed specifications. However, AI developers and companies will

rarely grant auditors unfettered access to their systems.

In this work, we examine a key consideration in AI auditing:

what type of access to an AI system is needed to perform a mean-

ingful audit? Addressing this question has direct policy relevance,

as it can inform AI audit guidelines and requirements. We begin by

discussing the factors that auditors balance when determining the

appropriate type of access, and unpack the benefits and drawbacks

of four types of access. We conclude that, at minimum, black-box

access—providing query access to a model without exposing its in-

ternal implementation—should be granted to auditors. In particular,

we argue that black-box access effectively balances concerns re-

lated to proprietary technology, data privacy, audit standardization,

and audit efficiency. We then suggest a framework for determining

how much further access (on top of black-box access) to provide to

auditors. We show that auditing can be cast as a natural hypothesis

test and argue that this framing provides clear and interpretable

guidance on the implementation of AI audits. In particular, we draw

parallels between aspects of hypothesis testing and those of legal

procedure, such as legal presumption and burden of proof. As a

result, hypothesis testing provides an approach to AI auditing that

is both interpretable and effective, offering a potential path forward

despite the challenges posed by AI’s opacity.
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1 Introduction
Auditing is the systematic evaluation of a system, often to deter-

mine whether it satisfies a predetermined set of criteria. With the

proliferation of artificial intelligence (AI), auditing will serve as a

vital tool for AI oversight and accountability. For example, without

the ability to systematically test and assess—or audit—for compli-

ance, AI regulations are impossible to enforce. Beyond compliance

testing, auditing also plays several important roles. Perhaps most

fundamentally, it allows for the independent evaluation of devel-

oper claims that would otherwise go unverified. It can also be used

to certify whether an AI technology meets industry standards (e.g.,

privacy standards) that matter to downstream users (e.g., customers)

even when they are not legally required. In this way, auditing not

only plays an important role in AI accountability, but also takes an

important step toward developing trustworthy AI.

Consider, by analogy, the U.S. car industry, in which auditing

has three important functions. In the U.S., vehicles must adhere

to a variety of federal standards and regulations related to safety

and emissions, which are enforced through audits conducted by

the National Highway Traffic Safety Administration (NHTSA). Be-

yond compliance testing, car manufacturers are required to disclose

information about their vehicles, such as their fuel economy (i.e.,

mileage per gallon), which are both internally verified and subject

to external audits by the Environmental Protection Agency (EPA).

To gain an edge over competitors, car manufacturers also make

claims about their vehicles; external and third-party audits vali-

date these claims, legitimizing them and establishing trust between

consumers and manufacturers.

There is a growing consensus that the AI industry would benefit

from similar auditing mechanisms [9, 107, 109, 130]. For instance, in

the European Union (EU), the AI Act mandates a mix of internal and

third-party audits in the form of “conformity assessments” before

the release of an AI system or after a substantial modification [118];

https://orcid.org/0000-0003-3723-8883
https://orcid.org/0009-0002-1338-3728
https://doi.org/10.1145/3689904.3694711
https://doi.org/10.1145/3689904.3694711


EAAMO ’24, October 29–31, 2024, San Luis Potosi, Mexico Sarah H. Cen and Rohan Alur

the General Data Protection Regulation (GDPR) calls for internal

audits in the form of impact assessments conducted before data

processing [14]; and the Digital Services Act (DSA) requires annual

internal and external audits of risks [124]. Moreover, to ensure

compliance, regulatory bodies (e.g., under GDPR, data protection

authorities in each member state) are granted broad authority to

conduct compliance tests. There are even provisions (e.g., in the

DSA) that grant researchers special access to data and systems so

that they can audit for criteria that the regulatory bodies may not

consider [124].

Creating a healthy AI auditing ecosystem includes various con-

siderations, such as who conducts the audits, who audits the au-

ditors, what auditors test for, whether audits are prospective or

retrospective, how often audits are conducted, and more. For many

of these considerations, we may be able to look to other industries

in which auditing practices are well established for inspiration.

However, one question is particularly salient for AI auditing:

What type of access and how much access is needed to
conduct a meaningful AI audit?

All auditing procedures require some form of access to the AI sys-

tem, but the particular form of this access must balance (at times,

competing) interests: (1) the protection of intellectual property and

proprietary information; (2) security and privacy concerns; and (3)

resource constraints. First, the protection of proprietary technolo-

gies and data (in particular, of trade secrets) is a key concern for

companies, and access granted to auditors is therefore typically

limited and carefully controlled. For example, EU regulatory bodies

must adhere to strict principles of “necessity” and “proportionality”

when handling personal data that is protected by GDPR [14, 77].

Second, requiring that AI companies open up their technology and

datasets can create security and privacy risks. Third, auditors op-

erate with limited resources (e.g., in labor, budget, and technical

expertise) and are therefore interested in the amount of access that

allows them to efficiently conduct effective audits. Motivated by

this question, this work makes the following contributions:

• Landscape of AI audits. In Section 2, we survey contexts in

which AI audits arise, including recent regulatory requirements,

and discuss related work.We then examine the various (at times,

competing) interests that influence the design and execution of

AI audits, motivating our attention to audit access. In Section 3,

we ground our discussion of audit access and implementation

through a case study on New York City Local Law 144.

• Audit access. Auditing AI necessarily requires granting the

auditor some form of access to the underlying system. In Sec-

tion 4, we discuss the relative merits and limitations of different

types of access to an AI system. While the appropriate form

of access is context-dependent, we conclude that black-box

access—the ability to observe a system’s behavior on queries

of the auditor’s choice without examining the system’s inner

workings—provides the greatest amount of flexibility with the

least amount of ambiguity.
1
We consequently argue that, at min-

imum, black-box should be granted to auditors. In particular,

1
A simple example of black-box access is how most users interact with Google Search

and ChatGPT. In both cases, a user submits a query or prompt, to which they receive

a response in the form of search rankings for Google and an answer for ChatGPT.

This constitutes black-box access in that one can collect input-output pairs without

knowledge of the underlying mechanism.

evidence obtained through black-box access can be definitively

attributed to the AI system whereas evidence obtained through

other forms of access is less conclusive. Black-box access offers

several additional benefits: (1) it does not require direct access

to proprietary algorithms or data, i.e., it does not “open the box;”

(2) it is agnostic to the underlying AI mechanisms, meaning that

the audit does not need to be updated even if the underlying

training pipeline changes, i.e., a standardized audit can be used

across different algorithms; (3) it is less resource-intensive than

alternate auditing options, allowing continual, comprehensive,

and scalable auditing; and (4) it can be run prospectively.
2

• Connections between auditing and hypothesis testing.
While we argue that black-box access is minimally necessary

to conduct meaningful audits, it is not always sufficient. In Sec-

tion 5, we discuss how auditing can be operationalized using

hypothesis testing—a well studied statistical framework—and

how this perspective provides clarity on two key auditing chal-

lenges. First, casting an audit as a hypothesis test provides clear

guidance on how much access (in addition to black-box access)

is needed to obtain the evidence required for a meaningful au-

dit. That is, once the parameters of the hypothesis test are set,

determining what evidence is needed for a meaningful test (i.e.,

audit) becomes a statistical exercise. Second, hypothesis testing

has clear parallels to legal procedure and thus provides a way

to map between complex statistical auditing methods and the

law. In particular, we discuss how the null hypothesis can be

viewed as legal presumption, placing the burden of proof on

the party that wishes to falsify this presumption. Moreover, the

“threshold” that an auditor selects maps to the “false positive

rate” or “false negative rate” in hypothesis testing.

Remark. Black-box access is not adequate for every context. As

we discuss in Section 4, black-box audits have their blind spot (e.g.,

they cannot speak to the intentions of AI developers or their data

hygiene), and we argue that it is often necessary to complement

black-box access with additional access, though full white-box ac-

cess is often unnecessary.

2 Background and terminology
In this section, we briefly review auditing and its relation to AI.

Of particular note is Table 1, which summarizes recent AI audit

requirements. We note that AI auditing is a broad topic spanning

computer science, law, and the social sciences, and we provide a

more extensive discussion of related work in Appendices A and B.

2.1 A brief introduction to auditing
An audit is a systematic assessment of an organization, system,

and/or process. Audits are conducted for many reasons, including

(i) testing for compliance with regulations, (ii) determining whether

a technology meets certification standards, (iii) validating claims
made by system designers, (iv) monitoring an organization’s internal
practices, and (v) uncovering vulnerabilities.

As examples, the 2002 Sarbanes-Oxley Act made financial audit-

ing commonplace as a tool to detect fraud and confirm the accuracy

2
By “prospective,” we mean that (i) the audit can be run before an AI system is deployed

and (ii) the AI system can be tested on hypothetical examples (e.g., extreme contexts)

that need not exist.
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and completeness of financial reports; to earn a fair trade certifica-

tion, vendors regularly undergo audits to ensure they uphold fair

trade practices; many organizations audit themselves to detect, e.g.,

financial waste; and software designers often undertake audits to

discover security vulnerabilities.

Generally, there are three types of auditors: internal, external,

and third-party auditors. An internal auditor is selected from

within an organization that seeks to audit itself. An external audi-
tor is an independent party that is hired by the organization (e.g.,

its board of directors) to perform an audit. External auditors typ-

ically enter into a contractual agreement with the organization

that outlines, for instance, the scope of the audit and level of en-

gagement. Like an external auditor, a third-party auditor is not

a part of the organization being audited. Unlike external auditors,

third-party auditors are not hired by the organization that they au-

dit. For example, a third-party auditor may be a regulatory agency

or be employed by a regulatory agency. Third-party auditors also

include journalists and non-profits (as long as they are not hired

by the organization being audited). In order to ensure that auditors

provide objective and high-quality reports, auditors are also subject
to audits. It is customary for auditors to audit one another and, in

certain industries, auditors are overseen by government agencies,

such as the Public Company Accounting Oversight Board (PCAOB)

in the US and the Financial Reporting Council (FRC) in the UK.

Audits can be initiated at different times and run with varying

frequency. Retrospective audits evaluate a system’s past behav-

ior. For example, audits that examine financial records or system

performance are retrospective. These retrospective audits can be

ad hoc (in response to specific events), continuous, or periodic. In

contrast, prospective audits are proactive. They can either (i) be

performed before deployment or (ii) be tested on examples/contexts

that have not yet arisen. As an example of (i), prospective audits can

be run prior to an AI system’s release or after major modifications

to evaluate potential risk. As an example of (ii), prospective audits

can also assess how a system would behave under conditions that

have not yet occurred, e.g., in extreme scenarios.

Although out of the scope of this work, a final consideration for

auditing is the development of relevantmetrics,measurement
methods, and standards, which has become a central focus of the

U.S. National Institute for Standards and Technology (NIST) and

European Commission. These efforts center around what AI audits
should test for, which we take to be predetermined in this work in

order to focus on AI auditing’s implementation challenges.

2.2 AI auditing
Legally required AI audits. While some organizations audit them-

selves and some organizations are audited by journalists, researchers,

and more, there have historically been few instances of legally man-

dated AI audits. That is beginning to change; Table 1 provides a

(non-exhaustive) list of auditing requirements for the European

Union (EU) Artificial Intelligence (AI) Act, the EU General Data

Protection Regulation (GDPR), the California Consumer Privacy

Act (CCPA), the US Algorithmic Accountability Act (AAA), the New

York City (NYC) Local Law 144, Canada’s Directive on Automated

Decision-Making (CDADM), and the EU Digital Services Act (DSA).

Laws that indirectly mandate AI audits. In addition to those de-

tailed in Table 1, there are several domains in which AI audits are

indirectly required. For example, the Dodd-Frank Wall Street Re-

form and Consumer Protection Act and Sarbanes-Oxley Act (SOX)

both require audits to check for compliance with financial regula-

tions. Although neither explicitly mention AI or algorithms, they

have both become common tools in organizations that are required

to comply with Dodd-Frank and SOX. As a result, they indirectly

fall within the scope of these required audits.

Other contexts. Audits are also a common tool for ensuring com-

pliance with the law, even when the audits are not explicitly men-

tioned. Regulatory bodies and third-parties will often audit in order

to hold organizations legally or publicly accountable, e.g., the Chil-

dren’s Online Privacy Protection Act (COPPA) does not explicitly

mention audits, but the Federal Trade Commission (FTC) conducts

investigations to verify compliance with COPPA’s mandates [50].

Academic researchers, companies, and journalists may also con-

duct audits that fall outside the scope of compliance auditing. These

audits are often used to verify that AI satisfies normative standards
and meets developers’ claimed specifications, even if these stan-

dards are not (or not yet) legally mandated. Some of these audits are

an extension of longstanding approaches to AI and ML evaluation,
which has historically focused on measures of performance (e.g.,

popular benchmark datasets like those in the UCI Machine Learn-

ing Repository [73] or ImageNet [42], and standardized evaluation

suites like the Holistic Evaluation of Language Models (HELM)

[82], among many others). Others have advocated for audits that

look beyond performance, toward considerations such as bias, dis-

crimination, and equity [114]. Several well known audit studies,

such as those that brought light to potential discrimination in crim-

inal justice algorithms [7] and facial recognition algorithms [21],

underscore the need for such audits.

Efforts to audit for these kinds of harms are rapidly evolving,

particularly in the context of newer generative AI technologies, but

some common practices have started to emerge. These include “sock

puppet audits," in which auditors programmatically impersonate

users of an online platform to investigate the platform’s algorith-

mic behavior [58, 60, 63, 65, 114], and “sociotechnical audits,” in

which auditors explicitly study interactions between humans and

algorithms to contextualize an algorithm’s behavior relative to the

social environment in which it is deployed [80]. Raji et al. [108]

propose an end-to-end framework for internal audits, e.g., those

which are voluntarily conducted by a company or model provider,

which nevertheless provides guidance on audits more broadly.

Auditing frameworks and methodology have also emerged for

more specific contexts, including the auditing of social media plat-

forms [29, 31], auditing for (a particular notion of) fairness via

active learning [128], and auditing for differential privacy [69, 74,

98]. Red teaming, a classical approach to ensuring the security of

software systems, has emerged as a popular method for evaluat-

ing modern generative AI systems (e.g., large language models)

[54, 103, 111, 131], though questions remain about its efficacy in

this context [51]. We provide additional background on other forms

of AI auditing in Appendix A, and a discussion of other related

work in Appendix B.



EAAMO ’24, October 29–31, 2024, San Luis Potosi, Mexico Sarah H. Cen and Rohan Alur

Table 1: Examples of legislation that require audits of data-driven or AI algorithms

Law Enforced by Performed by Audit frequency and requirements Penalty

EU GDPR (2016) Data Protection

Authorities in

EU member

states

Data controllers

(typically internal)

Data Protection Impact Assessments

(DPIAs): Description of data processing,

purposes, risks to rights & freedoms of

subjects, measures to address risks.

Conducted before high-risk data

processing.

Up to €20M or 4% of

annual worldwide

turnover (whichever is

higher) for severe

violations.

EU AI Act (2023) National

authorities in EU

member states

AI system providers

(internal); must give

national competent

authorities & notified

bodies access

(third-party)

High-risk AI systems must undergo

conformity assessments to ensure they

meet requirements for safety, transparency,

human oversight, data, and more (as laid

out in Title III, Chapter 2). Conducted

before system on market, ongoing

post-market monitoring, and whenever

system is substantially modified.

Determined by

member states; Some

infringements up to

€30M or 6% of annual

worldwide turnover,

whichever is higher

CCPA (2018) California

Attorney

General

Businesses whose data

processing presents

significant risks to

consumer privacy or

security

Cybersecurity Audit must assess

effectiveness of business’ cybersecurity

measures in protecting consumer personal

information. Risk Assessment weighs the

benefits of processing personal

information against potential risks to

consumer rights. Cybersecurity Audit

performed on annual basis; Risk

Assessment performed on regular basis

(unspecified)

Up to $7.5K per

intentional violation;

additional penalties

given by California

Privacy Protection

Agency

US AAA (2023
†
) Federal Trade

Commission

(FTC)

Covered entities

(businesses using AI

systems)

Evaluation of automated decision system’s

or augmented critical decision process’

potential impacts on consumers,

considering privacy, bias, fairness,

transparency, and more. Conducted on an

ongoing basis, with annual reports

required.

Determined by the

FTC

NYC 144 (2021) NYC Dept. of

Consumer &

Worker

Protection

Employer/agency using

Automated Employment

Decision Tool (internal);

can use independent

auditor (external)

Checks whether automated employment

decision tools have disparate impact on

persons of any “component 1 category”;

summary must be made publicly available.

Conducted prior to first use and annually.

Up to $1.5K per

instance; others

determined by

enforcement body

CDADM (2019) Treasury Board

of Canada

Secretariat

Federal institutions using

automated decision

systems

Assess effect of automated

decision-making systems on

individual/community rights, economic

interests, sustainability, and more.

Conducted early in development, before

release, and after major changes.

Case-by-case, as

determined by the

Treasury Board

EU DSA (2022) Digital Service

Coordinators in

each EU member

state and the EC

Independent

organizations with

restrictions (e.g., cannot

audit >10 consecutive

years)

Tests compliance with the obligations set

out in Chapter III of the DSA and

voluntary commitments (e.g., in code of

conduct or crisis protocol). Conducted

annually.

Up to 6% of annual

worldwide turnover

for severe violations;

ongoing penalties of

up to 5% average daily

turnover

† Proposed but not passed
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Limitations on audit access. Auditors are typically limited in their

ability to access the systems they audit. In some cases, limited ac-

cess is mandated by the law, e.g., the CCPA states that “nothing

in this section [on risk assessments] shall require a business to di-

vulge trade secrets” and GDPR similarly states that data processing

measures (including audits) “should be appropriate, necessary and

proportionate in view of ensuring compliance with this Regulation.”

In addition to trade-secret and privacy concerns, auditor access may

be limited for cybersecurity reasons. At times, third-party auditors

do not notify (and therefore do not cooperate with) the organization

being audited, and thus have minimal access to the AI system. This

consideration of access will be central to our discussion.

3 Illustrating AI auditing challenges
To highlight the challenges of implementing AI audits, we will

ground our discussion in a case study of New York City (NYC)

Local Law 144, which we will return to throughout our discussion.

NYC Local Law 144. This law, which was enacted in 2021 and

took effect in 2023, governs the use of automated employment

decision tools (AEDTs). It “prohibits employers and employment

agencies from using an automated employment decision tool unless

the tool has been subject to a bias audit within one year of the use of

the tool, information about the bias audit is publicly available, and

certain notices have been provided to employees or job candidates”

[1]. The law defines a bias audit as an “impartial evaluation by

an independent auditor” that assesses “the tool’s disparate impact”

with respect to job category, sex, and race or ethnicity; and an

AEDT is defined as any “computational process” that is “derived

machine learning, statistical modeling, data analytics, or artificial

intelligence” that substantially supports, assists, or replaces any

“discretionary decision-making” task in hiring or promotion, e.g.,

by providing an assessment of a candidate’s skills or screening

candidates for interviews [99].

Although the administrative code enacted in 2021 does not spec-

ify implementation details, rules released by city agencies in 2023

provided more specific guidance that we discuss below [43].

Regulations providing guidelines for NYC Local Law 144. The rules
released in 2023 provide greater details on what should be reported

in the audits and what data should be used. It specifies that a bias

audit must, at minimum, calculate selection rates, scoring rates,

median scores, and impact ratios for race/ethnicity, sex, and inter-

sectional categories. The audit may also interrogate other features

of the AEDT, though no further assessment is required.

The rules also require that bias audits be conducted on “histor-
ical data” (data collected during the employer’s or employment

agency’s use of the AEDT or, in some circumstances, others’ use

of an AEDT). This audit must be performed on sufficient historical

data to be “statistically significant,” though the rules do not clar-

ify key elements of this requirement, which can lead to two very

different outcomes (see Section 5). The law also makes allowances

for the use of “test data” (any data that is not historical data, such

as synthetic inputs) only if sufficient historical data is unavailable

to conduct a statistically significant audit, though it does not pro-

vide explicit requirements or guidance on how such data should be

acquired or generated. However, the law does require that a “sum-

mary of results of the bias audit must explain why historical data

was not used and describe how the test data used was generated

and obtained” [43]. Similarly, the law does not restrict the ability

to exclude certain historical data (e.g., specific time periods) from

the audit, but requires that these choices be publicly disclosed.

Interestingly, imputed and inferred data cannot be used in a bias

audit, implying that if race, ethnicity, or gender is not reported

for an individual, then they would be excluded from the corre-

sponding bias analysis, even if the AEDT imputes or infers race,

ethnicity, or gender from the individual’s other attributes. Thus,

even if the historical dataset contains many samples, statistically

significant results may only be possible with the help of synthetic

data if candidates’ demographics were not collected by the em-

ployer/employment agency. Several other elements of the bias audit

remain unspecified, including whether the bias audit is performed

over the AEDT alone, over the entire decision-making process that

includes the AEDT, or over a subset of it.

Open implementation challenges. The rules discussed above pro-

vide clarifications on NYC Local Law 144 but also defer many im-

plementation details to the auditor (or relevant standards-setting

body), including the manner in which the auditor accesses the algo-
rithm, what evidence they should collect, how one should interpret

that evidence, and more.

For example, there are many cases in which test data may be

required (e.g., if there is insufficient historical data to conduct a

statistical test, or demographic information is missing), but there

are multiple ways in which the auditor could construct the test data,

potentially yielding very different results. As another example, the

rules require that bias audits yield statistically significant results,

but what model should be used to assess “statistical significance?”

Both questions are implicitly related to the “access question” that

motivates our discussion: creating test data requires, at a minimum,

query (or black-box) access to a system, and constructing a reason-

able model similarly requires insights into the AEDT (e.g., a form

of access to the training procedure), as we discuss extensively in

Section 4. Finally, there are also challenges around audit reporting,

such as how the auditor should communicate the results of (often

highly technical) audits, which we discuss in Section 5.

Connections to this work. As the prior section highlights, these

concerns are broadly relevant for AI audits, thus motivating our

focus, in Section 4, on the type of access an auditor needs to audit

AI systems and, in Section 5, on a principled and flexible framework

for (1) determining what additional assumptions or information are

necessary to conduct an AI audit, and (2) gathering and interpreting

evidence gathered from the audit. In Section 5, we discuss what

kind of access to an AI system is necessary to perform a meaning-

ful audit. We survey possible options and argue that the ability to

query an AI system—construct arbitrary inputs and observe the

system’s outputs—is almost always necessary (i.e., minimally re-

quired) to perform an informative audit. In other words, auditors

should at least be granted black-box access to an AI system. We

proceed to connect AI auditing to the field of hypothesis testing

in Section 5, which we find provides a principled framework for

collecting and interpreting evidence in the context of an audit. In

particular, we map the regulatory process of gathering evidence in
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service of an audit (e.g., to gather conclusive evidence of compliance

or noncompliance) to well-known statistical frameworks, which

serve to illustrate the assumptions—in addition to black-box query

access—under which AI auditing is feasible. Finally, we show that

hypothesis testing provides a rigorous and well-studied framework

for auditing which remains interpretable.

4 Types of auditing access
In this section, we address our motivating question: what form

of access does an auditor require to perform a meaningful audit?

In practice, answering this question is not straightforward due to

competing concerns: while the auditor necessarily requires some

form of access to the underlying system to conduct an audit, it is

often desirable to keep this access “minimal” to avoid unnecessarily

exposing proprietary technologies, compromising private data, and

introducing cybersecurity risks, among other concerns. To address

this question, we discuss the relative merits of four types of auditor

access: access to the training data, the training procedure, the model

architecture, and (white- and black-box access) to the trained model.

Our discussion below hews closely to that of Cen et al. [28].

4.1 Option 1: Access to training data
AI models learn patterns and relationships that are exhibited in

their training data. Because this data is one of the key determinants

of an AI system’s behavior, an auditor may wish to examine it for

suggestive evidence of potential harms or failure modes. For exam-

ple, over- or under-representation of a population in the training

data can lead to bias [35]. Similarly, differences between the test

and training data distributions can lead to generalization failures

[134]. Nonetheless, access to the training data alone is typically

insufficient for a rigorous audit. The primary reason is that the same

training data can induce many different downstreammodels, whose

behavior ultimately depends on the entire training pipeline (e.g.,

the choice of hyperparameters, model architecture, and learning

algorithm). Although they arise from the same training data, these

models may differ substantially along nearly any dimension of in-

terest, including accuracy, fairness, and robustness. This “model

multiplicity” [17] or “underspecification” [40] is an unavoidable fea-

ture of modern AI systems. As such, it is not only difficult, but often

impossible for an auditor to conclusively characterize a system’s

behavior from its training data alone.

Nonetheless, examining the training data can play a key role in

AI auditing. For instance, auditing a company’s data acquisition,

cleaning, balancing, privacy, and provenance practices can encour-

age good data hygiene. Although requiring that the training data

meet a strict set of property requirements does not generally have

the intended effect (most bright-line rules are easily circumvented

due to the underspecification phenomenon mentioned above), data
disclosure audits can encourage responsible developer practices

and prevent downstream harms [55, 96, 106]. For example, in the

context of modern large language models (LLMs), the common

practice of publishing a “knowledge cutoff date"—roughly, the most

recent date of the data on which the LLMwas trained—may obscure

important heterogeneity in the model’s temporal understanding

across different tasks; disclosure audits may therefore encourage

developers to release finer grained or resource-specific knowledge

cutoffs that could enable more informed use [32].

4.2 Option 2: Access to training procedures
Another option is to grant an auditor access to the training proce-
dure, which includes details such as the general model class (e.g.,

decision trees, linear models, transformers), objective function used

to optimize parameters, hyperparameter tuning methodology, qual-

ity checks, or model selection criteria. The training procedure can

be viewed as a roadmap for how the AI system was developed. For

example, around 2017, one of the objective functions in Facebook’s

“News Feed“ algorithm placed five times more weight on “reactions”

than it did on “likes” when ranking content in a user’s feed [92].

This change had the unintended consequence of amplifying emo-

tional content; indeed, the company’s own data scientists found

that posts that “sparked [the] angry reaction emoji were dispropor-

tionately likely to include misinformation, toxicity and low-quality

news" [92]. These issues were not detected by Facebook until 2019

and only made public in 2021 by a whistleblower [92]. An earlier

audit of the training procedure, including the objective functions,

may have encouraged the company to scrutinize and justify (and,

if appropriate, abandon) these design choices.

However, as with the training data, a particular training proce-

dure can yield many downstream models, and there is no guarantee

that these models behave similarly. The resulting model depends

on various other factors, including the training data, model weights

at initialization, and more. Therefore, while an auditor who is given

access to a system’s training procedure can perform sanity checks,

they typically cannot draw precise conclusions about the system’s

ultimate behavior. Furthermore, since the training procedure lays

out the steps taken to produce the AI system, access to training

procedures is carefully guarded by companies; of the forms of ac-

cess discussed, the training procedure is arguably the most valuable

intellectual property associated with a commercial product.

4.3 Option 3: Access to the model skeleton
The next form of access we consider is access to the model “skele-

ton", whichwe also refer to as the “untrained"model. This “skeleton"

refers to the specific model class that is used (e.g., the specific neural
network architecture) and the way that different system compo-

nents interact (e.g., how an AI model interacts with other models

within the same system). Importantly, this skeleton is disclosed

without the model parameters (i.e., weights).

One defining feature of this form of access is that it reveals the

key interfaces of an AI system. From the model skeleton, an auditor

can determine the expected inputs (e.g., types of features) and out-

puts (e.g., a floating point number between 0 and 1) of the model.

The auditor can also ascertain how many components make up the

AI system and the relationship between different components of

the AI system. For example, suppose that a job applicant’s informa-

tion and resume are first sorted into one of several job categories,

processed by appropriate algorithms, before being assigned a score

between 0 and 1, which is finally thresholded to produce a hiring

recommendation. Then, this entire “pipeline” would be captured by

the model skeleton. In this way, access to the model skeleton pro-

vides perhaps the most interpretable view of an AI system. Indeed,

when the social media platform X (formerly known as Twitter)
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voluntarily released their recommendation model skeleton, [123],

it revealed qualitative insights into X’s content curation algorithm.

For example, the public could glean that X “sources half of a user’s

content from in-network tweets (i.e., from accounts that the user

follows) and the other half from out-of-network tweets" [28].

As with the training procedure, a model skeleton allows the

auditor to perform sanity checks to flag obvious flaws. It can even

be used to identify discrepancies between an AI company’s claims

and the deployed system. The model skeleton alone, however, is

not enough to characterize the precise behavior of an AI system.

As mentioned in Section 4.1, models with the exact same skeleton

can behave very differently, making it difficult to verify whether an

AI system complies with a specific rule or meets a given standard

from access to the model skeleton alone.

4.4 Option 4: Access to the trained model
We now turn to the last option we consider: access to the final

trained model. In contrast to the other three forms of access, access

to the trained model allows the auditor to inspect the specific model

that is or will be released.

There are several different flavors of access to the trained model.

Black-box access allows the auditor to query the model on the audi-

tor’s choice of inputs and observe the outputs but nothing more,

yielding a series of input-output pairs. For example, sending Chat-

GPT queries (or “prompts”) and observing how ChatGPT responds

is a form of black-box access. Similarly, observing the ratings that a

hiring algorithm assigns to job applicants is also a form of black-box

access. On the other hand,model-weight access allows the auditor to
not only query the model, but also to see the entire trained model,

including the trained model parameters (i.e., the model weights).

By analogy, one can think of black-box access as an auditor being

able to crash-test a car, whereas an auditor with model-weight ac-

cess would also be able to inspect every component of the car. In

between these two, there are other forms of access that have been

explored, including fine-tuning access (the ability to fine-tune the

final trained model on a dataset of interest) and log-probabilities
access (the ability to view “probabilities” the model assigns to dif-

ferent prediction outcomes, before the final prediction is produced

in most neural networks). In this way, there are tiers of access to

the trained model. For instance, model-weight access is strictly

stronger than log-probabilities access (in that one can always ob-

tain log probabilities from model weights), which is stronger than

black-box access.

Of the four options considered in this section, only access to the

trained model circumvents the problem of “underspecification" or

“model multiplicity" [17, 40]. This implies that access to the trained
model is minimally necessary for meaningful audits because it best
indicates how the system behaves when deployed. However, there

are limitations to auditing the trained model alone. An auditor

cannot gain insight into the developers’ process and reasoning

from the trained model alone, which is not always satisfactory

from a broader accountability perspective. Much of US law, for

instance, considers intent when determining culpability. Moreover,

auditing developers’ process and reasoning can encourage safer

and more thoughtful industry practices. As such, further access is

often needed.

4.5 Key takeaway: Black-box access is
minimally necessary

The four types of access described above are not exhaustive. For

example, white-box access allows the auditor to view the model

weights, training procedure, and source code but typically not the

training data. Although there are numerous access options, one

can view them as follows: putting resource constraints aside, the

stronger the form of access, the closer the auditor is to being able to

reproduce the AI system from scratch. Therefore, granting auditors

access which is overly broad can introduce its own risks, such as

undermining a company’s competitive advantage or allowing bad

actors to exploit system vulnerabilities.

We argue that black-box access—the weakest form of access to

the trained model—should be minimally required because it pro-

vides concrete evidence about the specific AI system being audited

(as discussed in Section 4.4). In addition, it has several characteris-

tics that may address implementation difficulties that auditors face,

as enumerated below:

(1) Minimal access. Black-box access only allows the auditor to

view the outputs of an AI system. It thus allows the auditor

to assess the system that is ultimately deployed without fur-

ther insight into the underlying implementation, which can

allay concerns about revealing trade secrets, compromising

data privacy, or exposing security vulnerabilities.

(2) Prospective. Although this property is shared with model-

weight and log-probabilities access (but not all flavors of trained-

model access), black-box access gives the auditor the ability to

prospectively inspect the AI system. That is, the auditor can

test the AI system on inputs of their choice and observe how

the system behaves in situations that may not have arisen. This

allows the auditor to perform pre-deployment assessments, and

it can also be used to stress-test the system under extreme

scenarios that have not yet arisen in natural datasets.

(3) Model agnostic. Because black-box audits do not look “under

the hood,” they are agnostic to the inner workings of the AI

system. Perhaps the key benefit is that the audit does not need

to be adapted to the underlying AI system, making it possible to

develop a standardized audit procedure that works across mul-

tiple AI systems. For example, even when developers change

their model architecture, an auditor does not need to devise

a new black-box audit as long as the input-output “types” are

consistent. Another benefit of model agnosticism is that it al-

lows the auditor to test how the model behaves end-to-end

without necessarily requiring that the auditor be technically

proficient (which is often needed if an auditor wishes to conduct

model-specific audits).

(4) Well suited to AI. Finally, it is worth remarking that AI sys-

tems are well-suited to black-box audits. Consider, for example,

auditing a firm’s (non-AI) hiring practices for discrimination. A

black-box audit would require gathering everyone who plays a

role in hiring, providing them with a set of applications, asking

them to evaluate each as they normally would, and observing

their decisions. This process is not scalable, as it would require

auditors and the firm to invest significant time and resources.
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Perhaps more importantly, those involved with the audit can

easily manipulate the outcome by misreporting their true pref-

erences on who to hire. On the other hand, it is straightforward

to repeatedly query an AI system, and the results of black-box

AI audits are guaranteed to be faithful to how the AI system

would behave in practice.

As discussed in this section, no form of access is uniformly better

than its alternatives, and the appropriate form of access is context-

dependent. We argue however that black-box access is minimally

necessary for an informative audit, reduces some of the risks asso-

ciated with stronger forms of access, and offers other advantages

to the auditor. This however begs the question: if black-box access

is minimally necessary, in what contexts is stronger access needed,
and how should one develop standardized audit protocols based on
the available level of access? We examine this question next.

5 Hypothesis testing and its connections to
audits

In the prior section, we discuss different forms of access to an AI

system, and argue that black-box access is often necessary to con-

duct an informative audit. When, however, does the auditor need

more than black-box access, and how should the auditor interpret

the evidence that they gather? In this section, we draw parallels

between auditing and hypothesis testing, using NYC Local Law

144 (as described in Section 3) as an illustration. We show that this

connection helps (i) clarify how an auditor can interpret and com-

municate the results of an audit, and (ii) produce precise guidance

on how much access an auditor needs. We highlight that the null

hypothesis can be viewed as a formalization of the relevant legal

presumption, and the evidence needed to reject the null hypothesis

can be viewed as the corresponding burden of proof. We provide a

discussion of related work in hypothesis testing in Appendix A.

5.1 Setup
Consider a model developer or operator, who we refer to as the AI
provider for the remainder of this section. The provider employs

an algorithm 𝑓 ∈ F , where F is a class of mappings from values

in X to distributions over a countable set Y as denoted by Δ(Y).
For example, in the context of hiring decisions, 𝑓 could map an

applicant’s characteristics 𝑥 ∈ X to a prediction 𝑓 (𝑥) ∈ Y ⊂ [0, 1]
of the applicant’s fit for a given role. Let 𝑝𝑥 denote the true (possibly

unknown) marginal distribution of 𝑥 . The auditor is interested in

determining whether the provider’s algorithm 𝑓 complies with a

requirement of interest. We denote this requirement by 𝑔 : F → R.

Definition 1. We say that an algorithm 𝑓 ∈ F is 𝑔-compliant if
and only if 𝑔(𝑓 ) ≤ 0.

When the property 𝑔 is clear from context, we simply say an

algorithm is compliant. In a black-box audit, the auditor has access
to 𝑁 input-output pairs (𝑥𝑖 , 𝑓 (𝑥𝑖 )). We denote the evidence that an
auditor has access to (including that gathered through black-box

access) by E. Thus, the auditor’s task is as follows:

Determine whether 𝑓 is 𝑔-compliant given evidence E.

Example 1 (Maximum loss). Requiring that 𝑓 ’s maximum loss ℓ
over some 𝑆 ⊆ X is at most 𝜂 is equivalent to requiring that 𝑔(𝑓 ) ≤ 0,

where 𝑔(𝑓 ) = max𝑥∈𝑆 ℓ (𝑓 (𝑥), 𝑥) − 𝜂. Depending on the definition of
loss, one can audit for minimax fairness (by defining loss as negative
performance), worst-case harm (by defining loss as the output’s harm,
e.g., toxicity level), and even copyright infringement (by defining loss
as the dissimilarity between 𝑥 and the copyrighted work).

Example 2 (Group fairness). In the area of algorithmic fairness,
group fairness typically reflects a notion of parity across groups. For
example, one notion of group fairness known as “statistical parity”
requires that the rate at which a binary classifier 𝑓 : X → {0, 1}
selects members of group 𝐺1 is at most 𝜂 > 0 far from the rate at
which 𝑓 selects members of group 𝐺2 under some distribution 𝑝𝑥
over X. This is equivalent to requiring that 𝑔(𝑓 ) ≤ 0, where 𝑔(𝑓 ) =
|E[𝑓 (𝑥) | 𝑥𝐺 = 𝐺1] − E[𝑓 (𝑥) | 𝑥𝐺 = 𝐺2] | −𝜂. The expectation above
is taken over 𝑥 ∼ 𝑝𝑥 , and 𝑥𝐺 ∈ {𝐺1,𝐺2} is the feature in 𝑥 denoting
group membership.

Example 3 (Individual fairness). Another notion of algorithmic
fairness requires that “similar individuals be treated similarly,” as
captured by the criterion: 𝐷 (𝑓 (𝑥), 𝑓 (𝑥 ′)) ≤ 𝐿𝑑 (𝑥, 𝑥 ′) for all 𝑥, 𝑥 ′ ∈
X; distance metrics 𝐷 and 𝑑 on Y and X, respectively; and Lipschitz
constant 𝐿 > 0 [45]. This is equivalent to requiring that 𝑔(𝑓 ) ≤ 0,
where 𝑔(𝑓 ) = max𝑥,𝑥 ′∈X

𝐷 (𝑓 (𝑥 ),𝑓 (𝑥 ′ ) )
𝑑 (𝑥,𝑥 ′ ) − 𝐿.

One could similarly cast selection rates or impact ratios (from

Section 3) in this format.

5.2 Hypothesis testing and the burden of proof
Given an algorithm 𝑓 and auditing criterion 𝑔, the auditor seeks to

determine whether 𝑓 is 𝑔-compliant using E. Below, we discuss two
possible hypothesis tests before describing the general hypothesis

testing procedure in Section 5.3.

Presumption of compliance. Consider an auditor who seeks to

discern which of the following hypotheses holds:

𝐻0 : 𝑔(𝑓 ) ≤ 0, 𝐻1 : 𝑔(𝑓 ) > 0. (1)

Let 𝐻 ∈ {𝐻0, 𝐻1} denote the ground-truth state. For example, if 𝑓

is compliant, then 𝐻 = 𝐻0; if 𝑓 is not, then 𝐻 = 𝐻1.

The auditor does not know 𝐻 a priori. Therefore, the auditor’s

goal is to develop a decision test or rule �̂� such that �̂� (E) = 𝐻0 if

the auditor believes 𝑓 is compliant and �̂� (E) = 𝐻1, otherwise. The

auditor would like �̂� to match 𝐻 for all 𝑓 ∈ F because this means

that the auditor has neither false positives nor false negatives, as

formalized in Section 5.3.

𝐻0 is known as the null hypothesis. In practice, the implication

is that the auditor’s presumption under (1) is that 𝑓 is compliant.

The auditor therefore assumes (and reports) that 𝑓 is compliant

unless the evidence allows them to confidently reject this presumption.
This framework therefore highlights what evidence is needed for

an auditor to reject 𝐻0 when 𝐻1 is indeed the true hypothesis, i.e.,

what information the auditor needs to prove that an AI system is

non-compliant when it is indeed non-compliant. Though subtle,

this point is crucial. By viewing auditing as hypothesis testing, it

becomes clear what it means for the available information to be

(in)sufficient for auditing. Below, we show that the hypothesis test

can be reversed to instead presume non-compliance.
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Presumption of non-compliance. Consider a different set of hy-
potheses:

𝐽0 : 𝑔(𝑓 ) > 0, 𝐽1 : 𝑔(𝑓 ) ≤ 0 (2)

Relative to (1), the null and alternate hypotheses have been swapped.

As before, there is a ground-truth state 𝐽 ∈ {𝐽0, 𝐽1}, and the auditor’s
goal is to develop a decision rule 𝐽 such that, given evidence E, the
decision 𝐽 approximates 𝐽 well across all 𝑓 ∈ F . In this case, the

null hypothesis 𝐽0 (i.e., the legal presumption) is that the algorithm

is not compliant.

Burden of proof: Which test should the auditor use? The null hy-

pothesis reflects the auditor’s presumption and, accordingly, who

bears the burden of proof. For example, NYC Local Law 144 requires

bias audits to be “statistically significant” but does not specify the

null hypothesis. among other necessary modeling assumptions that

we discuss further below. When such audits are required but do

not explicitly require the AI provider to disclose any information

to auditors, then, under (1), the AI provider is not incentivized to

disclose information (i.e., to contribute evidence E to the auditing

process). To see this, observe that since the auditor can only reject

the null hypothesis 𝐻0 : 𝑔(𝑓 ) ≤ 0 if they have enough evidence

to do so, the burden of proof is on the auditor or governing body.

Therefore, NYC Local Law 144, as it stands, incentivizes employers

and employment agencies to release minimal amounts of historical

data (recall that it does not specify the timeframe of the data that

must be provided).

On the other hand, the burden of proof under (2) is on the AI

provider. That is, the AI provider is incentivized to give the au-

ditor enough evidence to convince the auditor to reject the null

hypothesis 𝐽0, e. g., the employer is incentivized to prove that their

hiring process is not biased. In this way, the choice of hypothesis

test should reflect the desired legal presumption and corresponding

placement of burden of proof. This choice may vary across contexts.

For example, if the auditor’s evidentiary burden is too great under

(1), and the one may wish to shift the evidentiary burden via (2).

5.3 Hypothesis testing procedure
In this section, we describe the procedure for casting an AI audit as a

hypothesis test. We refer readers interested in hypothesis testing to

Casella and Berger [26] for a textbook treatment. For the remainder

of this work, we adopt a presumption of compliance as given in (1),

though our results can be equivalently applied to (2). We discuss

four main components of hypothesis testing next: the evidence,

decision rule, model, and tolerance.

(1) Evidence. The auditor has access to evidence E, as defined in

Section 5.1. The auditor is generally limited in the amount of

evidence they can gather, for example, due to strictly controlled

access to algorithm 𝑓 or its training data, or due to limited

resources. In the context of NYC Local Law 144, evidence is the

historical or test data.

(2) Decision rule. Given evidence E, the auditor’s goal is to de-

velop an audit—which, in hypothesis testing, is called a decision

rule �̂�—that maps evidence E to a decision 𝐻0 or 𝐻1 that cor-

respond to deciding whether to report that 𝑓 is compliant or

non-compliant, respectively. Under (1), the auditor adopts the

default decision 𝐻0 unless the evidence is convincing enough

for the auditor to reject 𝐻0, as we review next.

(3) Design criteria & tolerance. A decision rule �̂� is evaluated

based on two quantities: the false positive rate (FPR) and true

positive rate (TPR), FPR = P
(
�̂� = 𝐻1 |𝐻 = 𝐻0

)
and TPR =

P
(
�̂� = 𝐻1 |𝐻 = 𝐻1

)
, where P is taken with respect to random-

ness in the evidence E and decision rule �̂� . (Observe that the

true negative rate and false negative rate can be computed di-

rectly from the FPR and TPR.) Hypothesis testing is largely

concerned with finding rules that maximize the TPR while min-

imizing the FPR. Although we do not review them here, one

approach is to restrict the maximum allowable FPR (known

as the significance level) to 𝜁 and find the decision rule that

achieves the maximum TPR among all rules with an FPR no

more than 𝜁 and for all possible algorithms in F . This rule is

known as the uniformly most powerful (UMP) test and can be

treated as an ideal benchmark (though it does not always exist).

The allowable FPR can be viewed as the tolerance of an audit.

Thus, one interpretation of “statistical significance” for NYC

Local Law 144 is to perform the UMP test given a pre-specified

tolerance. However, there may be more fundamental issues

with the casual use of “statistical significance” in NYC Local

Law 144 for the same reasons discussed at the end of Section 5.2.

In particular, the term “statistical significance” generally only

applies when the null hypothesis is rejected, which implies that

“statistical significance” cannot be achieved if one adopts the

null hypothesis in (1) and the null hypothesis is indeed true.

Therefore, asking that “enough” historical data or additional test

data be provided until the audit is statistically significant may be

problematic, and more careful consideration of the hypothesis

test may be needed.

(4) Model. Given evidence E, the auditor’s job is to determine

whether 𝑔(𝑓 ) ≤ 0. Doing so necessarily requires some assump-

tions (i.e., a model) about how 𝑓 generates E. For example,

the auditor may assume that 𝑥 are drawn from some known

distribution D. By definition, the auditor does not know the

algorithm 𝑓 that they wish to audit, but the auditor may assume

that 𝑓 belongs to some model family
¯F ⊂ F . In this case, the

model is determined by (D, ¯F ). Without a model, the auditor

lacks the necessary assumptions to inform a decision rule; more-

over, both FPR and TPR cannot be defined without a model.

Crucially, the model clarifies what additional information, if
any, is needed to conduct an audit. In the context of NYC Local

Law 144, the key model that the auditor needs is the (empiri-

cal) test distribution; given this distribution, it is not clear that

anything stronger than black-box access is needed since the

law seeks to audit for disparate impact (i.e., the outcome and

not the process) and the metrics of interest are rates (which can

be estimated from simple sampling protocols). In other more

complex cases (e.g., privacy or “unlearning” audits [25, 115]),

further assumptions and further access may be needed.

Therefore, to conduct an audit, the auditor takes the following steps:

decide on an appropriate model and tolerance, develop a decision

rule, gather evidence, and apply the decision rule.
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6 Limitations and future work
Multiple testing.While our work considers testing a single property

of a model, auditors are typically interested in auditing for multiple

criteria or running repeated audits over time. This can present

additional challenges, as (1) the reuse of data across audits will

invalidate basic statistical guarantees and (2) even audits run on

independent samples will not (on their own) control the family-wise

error rate or false discovery rate [11]. These issues are exacerbated

when the number of audits is not known ex-ante, and may depend

on the results of prior audits.

Explanations, recourse and the limits of auditing. While audits

that can be cast as hypothesis test can be powerful tools, they do

not necessarily indicate what the provider should do to correct

or mitigate these issues. Indeed, as argued in Casper et al. [27]

and discussed in Section 4, it is possible that white- and gray-box

approaches can be more informative in this regard. For example,

hypothesis tests would not necessarily reveal whether the model

made a mistake or otherwise behaved unreasonably on a specific
instance. In such cases, a more localized (or “counterfactual-based”)

approach to auditing might be appropriate [3, 30, 81]. Furthermore,

black-box auditing does not necessarily enable appropriate recourse

when an individual is harmed by an algorithm, as the result of a

black-box audit does reveal the reasoning behind a developer’s

design choices or their intentions.

Active learning for auditing. When given black-box access to

an algorithm, auditors must choose the inputs that they wish to

test, i.e., the set 𝑆 on which to run 𝑓 . The simplest methods involve

sampling instances independently from some population of interest,

or otherwise specifying 𝑆 a priori. However, a natural approach

would also consider choosing these instances in an online fashion,
in which successive samples are chosen conditional on the output of

prior queries. An online sampling procedure will naturally improve

the power (i.e., the true positive rate) of an audit at any fixed false

positive rate. This class of algorithms is sometimes referred to as

active learning [59].

Manipulation-proofness. The auditor may also have other con-

cerns, such as ensuring that the audit is manipulation-proof. This

direction is concerned with removing loopholes that may permit

AI developers or companies to pass audits in practice without sat-

isfying the desired criteria in spirit [128] or guaranteeing that the

evidence gathered during an audit reflects how the AI system be-

haves when deployed [122].
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A AI auditing techniques
Background: Audit studies. Audit studies have a long history in

the social sciences. Bertrand and Mullainathan [13] find in a study

of labor market discrimination that resumes with White-sounding

names receive 50 percent more callbacks, on average, than identical

resumes with African-American-sounding names. This evidence

was gathered by submitting a set of fictitious resumes in response

to real help-wanted ads, allowing researchers to experimentally

manipulate the perceived race of job applicants in a way akin to

the black-box audits described in this work.

Taking inspiration from this tradition, there is now a growing

body of literature that audits algorithmic systems for evidence

of consumer harm. Investigators have employed audit studies to

examine self-preferencing in search results [46, 56, 70, 86], discrim-

ination in online platforms [8, 41, 47, 61, 78, 93, 114, 116, 121], and

the effects of algorithmic personalization (particularly on political

polarization) [60, 64, 66, 76, 94, 101]. A key challenge is that the

inputs to these systems are often highly complex, and may not be

directly manipulable by researchers. This motivates other causal

identification strategies, e.g., by identifying natural experiments

in observational data (see Yao et al. [129] for a recent survey or

Angrist and Pischke [6], Imbens and Rubin [68], Pearl [102] for

textbook treatments). For additional background on audit studies,

including the legal and ethical questions that arise, as well as rec-

ommendations for best practices, we refer to Metaxa et al. [95]. For

systematic reviews of the algorithm auditing literature, we refer to

Bandy [9] and Urman et al. [120].

Frameworks for algorithmic auditing. Perhaps most closely re-

lated to this work are general frameworks for ensuring that algo-

rithms satisfy normative and regulatory constraints. As discussed

in Section 2, Raji et al. [108] propose a framework which guides

the development life cycle of an algorithmic decision pipeline. In

contrast, we provide an in-depth discussion of black-box audits, pro-

pose a way to translate between the law and audit procedure, and

describe an open problem related to query complexity. Lam et al.

[80] take a different perspective, and instead propose the notion of

a socio-technical audit to directly study the interplay between algo-

rithms and their users. In particular, a socio-technical audit involves

experimentally manipulating the outputs of an algorithm—for ex-

ample, via a browser extension which manipulates search results or

social media feeds—to study human components of a system (e.g.,

how user react or modify their behavior) in addition to algorithmic

components. Farley [49] advocates for government-mandated au-

dits of AI systems, and outlines a regulatory framework intended

to standardize the practice of AI auditing. Farley [49] focuses on

the policy aspects of AI auditing; in contrast, our work develops

a framework for implementing AI audits. Raji et al. [109] and [37]

survey the current practice of auditing and make recommendations

for enabling the effective oversight and regulation of algorithms. In

the case of Raji et al. [109], these lessons are drawn primarily from

other fields where third-party (or “outsider") audits have proven

effective.

Finally, [19] propose a framework for regulating algorithms

based on model explanations that are tailored to capture specific

model characteristics—for example, racial disparities in the model’s
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predictions—rather than to best explain the model’s average perfor-

mance. We further discuss the relationship of auditing and these

interpretability techniques in Appendix B.

Black-box auditing. Our work focuses on black-box auditing,

where the auditor may only query the model, rather than e.g., in-

specting source code, model architecture or training procedures.

This approach is intended to enable third party oversight of algo-

rithms [109], even in the face of limited cooperation by algorithm

providers [37]. This aligns with the perspective taken in Cen et al.

[29], which propose auditing procedures for algorithms which cu-

rate content on social media platforms. It is also the approach taken

in Rastegarpanah et al. [112], who develop algorithms for testing

compliance with the GDPR’s data minimization principle (that an

algorithm uses only “the minimal information that is necessary

for performing the task at hand" [112]). This is also similar to the

perspective taken in Akpinar et al. [3], Lee [81], which propose the

use of black-box audits to assess counterfactuals. For example, such

an audit might ask whether, for a given individual, the algorithmic

recommendation changes if the individual’s race were different.

As we discuss in Section 6, these localized audits can be useful for

individuals seeking recourse for algorithmic harms.

Finally, contemporaneous work by Casper et al. [27] argues

that a black-box approach is insufficient for rigorous auditing, and

highlight the limitations of black-box queries. These include (1) the

difficulty of developing a global understanding of how a system

behaves, (2) the inability to study system components separately, (3)

the possibility that overly simplistic black-box audits can produce

misleading results, (4) the limitations of black-box interpretability

methods and (5) the inability to suggest remedies when models

are noncompliant. We share the view that broader access (e.g.,

to model weights, gradients or source code) can enable more in

depth auditing of algorithmic systems, and we discuss the benefits

and limitations of black-box auditing at length in Section 4. Given

the strictly controlled access provided to auditors (see our remark

above) and concerns such as privacy, our discussion of black-box

audits is driven by a desire to explore what can be achieved with

black-box access, which can be supplemented with further access

to cover its blind spots.

B Additional related work
Algorithmic fairness. Our work is inspired by a large literature

on algorithmic fairness. This methodological work is itself inspired

by well-publicized instances of real-world algorithmic discrimina-

tion (e.g, Chouldechova [34]). Of particular relevance to our work

are the many definitions of fairness which have been proposed,

including the notion of individual fairness [45], equalized odds [62],

statistical parity or disparate impact [23, 24, 48, 52, 71, 72, 125, 132]

and calibration [38, 44], [12, 53, 105]. Choosing a particular fairness

measure is highly nontrivial, as imposing fairness constraints gen-

erally comes at some cost to model accuracy ([36]). Furthermore,

many seemingly natural definitions of fairness turn out to be in-

compatible with each other ([75, 105]). This motivates alternative

approaches to fairness which do not directly alter model training

procedures [110].

Our work is most closely related to a smaller but growing litera-

ture which develops tests for specific kinds of algorithmic harms or

failures. For example, Black et al. [18], Cherian and Candès [33], Yan

and Zhang [128] develop tests for disparities in performance on

important (and perhaps legally protected) subgroups, Xue et al.

[127] and Maity et al. [89] propose algorithms to detect violations

of individual fairness, Tramèr et al. [119] and Adler et al. [2] de-

velop methods to understand how protected attributes influence

model behavior (including indirectly). Alur et al. [4, 5] propose

tests to detect whether algorithms fail to incorporate contextual

information which may be available to a human decision maker,

and Bartlett et al. [10] propose a framework for detecting ‘input’

or proxy discrimination. For additional background we refer to

Chouldechova and Roth [35] and Mehrabi et al. [91] for surveys of

the literature.

Explainable machine learning. Our work is also related to a large
and growing literature on explainable (or interpretable) machine

learning. Although we cannot provide a complete overview here,

notable works include LIME [113], a technique for providing ex-

planations for individual model predictions via black-box access,

and SHAP [87], a technique for attributing individual model predic-

tions to specific inputs (‘features’). Zeiler and Fergus [133] propose

a method for visualizing intermediate layers of a convolutional

neural network. These works are broadly motivated by a desire to

understand why and how machine learning models (particularly

nonlinear models) make predictions. For additional background,

including the challenges of defining model interpretability, we refer

to Lipton [83]. For a survey and book-length treatment of specific

techniques for model interpretability, we refer to Burkart and Huber

[22], Molnar [97], respectively.

Adversarial attacks. Finally, our work on black-box auditing is

complementary to a rich literature on adversarial machine learning,

which seeks to discover (or mitigate against) adversarial inputs—

often small perturbations of non-adversarial inputs—which ‘fool’ an

algorithm into producing incorrect or incoherent outputs. Indeed,

the robustness of algorithmic predictors to adversarial attacks is

itself a natural property of interest for both internal and external

auditors. Furthermore, the task of generating adversarial inputs

using a sequence of black-box queries is very similar to the problem

of auditing for extreme values, and both are naturally addressed

via the machinery of online convex optimization.

Work on adversarial attacks against machine learning models

dates to early email spam filters [39, 84, 85]. Much of the more

recent literature on the vulnerability of deep neural networks to ad-

versarial attacks can be traced to Szegedy et al. [117], who document

the sensitivity of neural networks to imperceptible perturbations

of their inputs. Notable work on adversarial attacks of deep neural

networks includes Biggio et al. [15], Brendel et al. [20], Goodfellow

et al. [57], Ilyas et al. [67], Kurakin et al. [79], Nguyen et al. [100]. To

address these vulnerabilities, Madry et al. [88] propose an approach

for training adversarially robust neural networks. More recently,

Maus et al. [90], Perez and Ribeiro [104], Xu et al. [126] propose

techniques for generating adversarial prompts for modern foun-

dation models. For additional background on adversarial machine

learning, we refer to Biggio and Roli [16].
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