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Non-invasive estimation of the powder size
distribution from a single speckle image
Qihang Zhang 1,2,7, Ajinkya Pandit3, Zhiguang Liu4, Zhen Guo 1, Shashank Muddu5, Yi Wei4, Deborah Pereg4,
Neda Nazemifard5, Charles Papageorgiou5, Yihui Yang5, Wenlong Tang6, Richard D. Braatz3, Allan S. Myerson3 and
George Barbastathis2,4✉

Abstract
Non-invasive characterization of powders may take one of two approaches: imaging and counting individual particles;
or relying on scattered light to estimate the particle size distribution (PSD) of the ensemble. The former approach runs
into practical difficulties, as the system must conform to the working distance and other restrictions of the imaging
optics. The latter approach requires an inverse map from the speckle autocorrelation to the particle sizes. The principle
relies on the pupil function determining the basic sidelobe shape, whereas the particle size spread modulates the
sidelobe intensity. We recently showed that it is feasible to invert the speckle autocorrelation and obtain the PSD using
a neural network, trained efficiently through a physics-informed semi-generative approach. In this work, we eliminate
one of the most time-consuming steps of our previous method by engineering the pupil function. By judiciously
blocking portions of the pupil, we sacrifice some photons but in return we achieve much enhanced sidelobes and,
hence, higher sensitivity to the change of the size distribution. The result is a 60 × reduction in total acquisition and
processing time, or 0.25 seconds per frame in our implementation. Almost real-time operation in our system is not
only more appealing toward rapid industrial adoption, it also paves the way for quantitative characterization of
complex spatial or temporal dynamics in drying, blending, and other chemical and pharmaceutical manufacturing
processes.

Introduction
The phenomenon of coherent scattering forming speckle

patterns from a rough surface has been recognized since
the 1960s. Initial analyses associated the statistical prop-
erties of speckle with the roughness statistics of the sub-
wavelength granularities1,2. As a known source of artifacts
in coherent imaging systems, speckle has been the focus of
many studies aimed at suppressing its impact via signal
processing in coherent tomography3–7, fluorescence
microscopy8,9 and imaging through diffuse media10–17. A
well-known speckle correlation property, the “memory
effect”, is extensively employed to despeckle by exploiting

statistical homogeneity within small neighborhoods of
angular directions without necessitating consideration of
the physical properties of the scattering material itself13,14.
The opposite attitude of exploiting laser speckles to non-

invasively characterize surfaces has also been widely pur-
sued12,18–24. The prevalent method involves reconstructing
the amplitude and phase of the optical field, which is
notoriously difficult2,25,26 due to the multitude of vortices in
the speckle pattern. Conventional closed-form formulas
require the condition that the surface height fluctuation be
less than or comparable to the light wavelength1,2, which is
not applicable in many industrial processes. Alternatively,
end-to-end machine learning models are capable of quali-
tatively categorizing various materials based on the
appearance of the scattered light24,27–29.
Recently, we established a quantitative relationship

between the speckle autocorrelation and the granularity of
the powder for particle sizes significantly larger than
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visible wavelengths, ranging from 50 μm to 1mm. The
overall approach estimates the particle size distribution
(PSD) from the backscattered light using a Physics-
Enhanced Autocorrelation-based Estimator (PEACE)30.
To our knowledge, the PEACE technique provided the
first non-invasive, in-line and quantitative particle size
analysis for dense powder surfaces. However, it necessi-
tates multi-frame data collection, and the total measure-
ment time, including data collection and computation, is
approximately 15 s. This might be very long for many
applications, especially while the powders are being
agitated.
In this report, we propose a new PSD estimation

method, based on pupil engineering, which overcomes
the need for multiple frames. Our learning-based model
can estimate the powder size distribution from a single
snapshot speckle image, consequently reducing the
reconstruction time from 15 s to a mere 0.25 s. Pupil
engineering, a common method for shaping the point
spread function and the corresponding power spectral
density, is typically utilized for super-resolution
microscope31–33, compressive imaging34–37, spectral
imaging38,39 and 3D localization40–43. In our context,
pupil engineering is a modulation of the beam profile
that is incident on the powder. This enhances the
sidelobes of the speckle correlation function, where size
information is obtained from, resulting in a more robust
measurement.
We analyzed the sensitivity of the PSD for both clear

and engineered pupils. Although we drop two-thirds of
the photons with an intensity mask, the remaining
photons are redirected to a more advantageous spatial
distribution, facilitating particle size estimation from a
single frame instead of 200 frames in the original
PEACE30, and yielding improved performance overall.
Moreover, after the neural network training process,
estimation from a single image requires fewer compu-
tational resources it can be processed on a CPU, while
the ensemble average of autocorrelations needs a GPU
for a practical speed.
Numerous manufacturing and research processes pose

a strong demand for swift and non-invasive surface
characterization23,30,44–51. In particular, the pharma-
ceutical industry, to ensure product uniformity, requires
monitoring of the particle size distribution during the
drying process30,44,45. To demonstrate the effectiveness
of quick size estimation, we conducted a pilot drying
experiment. A cost-effective slice of the 3D-printed
intensity mask can push the response time of this non-
invasive surface characterization technique into the
real-time domain. This development broadens its
potential applicability beyond pharmaceutical manu-
facturing to other industries such as batteries46–48, rock
deterioration52–55, construction materials50,51, food

security49 and paper identification, e.g. currency
verification23.

Results
Speckle correlation enhancement by pupil engineering
Figure 1a presents the sketch of our laser speckle probe.

We positioned a 3D-printed intensity mask in the path of
the incident beam to alter its original clear profile into a
designed pattern and then gathered the light scattered from
the powder surface. The autocorrelation function, once
processed, enables a neural network to estimate the particle
size distribution. We developed a forward model, expanding
upon previous work30, which yields the relationship
between autocorrelation function A uð Þh i and PSD p rð Þ as

A uð Þh i ¼ M uð Þj j2
R
r2Jinc r uj jð Þp rð Þdr�� ��2R

r2p rð Þdr�� ��2 ð1Þ

The detailed derivation is in Supplementary Section 1.
The normalized displacement u¼u0=λf relates to the
spatial displacement u0, λ is the wavelength and f is the
focal length of the Fourier lens as shown in Fig. 1a. The
ensemble average is denoted by �h i. The function
Jinc xð Þ ¼ 2J1ðxÞ=x, where J1ðxÞ is the first order Bessel
function of the first kind. The particle size term manifests
itself as modulation in the contrast of the autocorrelation
sidelobes: larger particle size results in a weaker sidelobe
intensity. M uð Þj j2 is the power spectral density for the
modulus square pupil function jm xð Þj2. This term implies
that only an intensity mask can modify the speckle pat-
tern; a phase mask is ineffective, because the phase is
rendered useless by additional random modulation by the
fine roughness on the particle surface.
Figure 1b(ii) and 1c(ii) illustrate the power spectral den-

sity M uð Þj j2 for the original clear pupil Fig. 1b(i) and the
engineered pupil Fig. 1c(i), respectively. Figure. 1b(ii) is the
well-known Airy pattern in which more than 87.4% of
photon energy is concentrated in the non-informative main
lobe, while the peak intensity of the useful sidelobe accounts
for a mere 0.2% of that of the main lobe. Consequently, for
the conventional clear pupil where the sidelobes drop
sharply according to an inverse square law, the inverse
process becomes severely noise sensitive and requires
extensive averaging. The engineered pupil retains only one-
third of the photons compared to the original beam, but the
main lobe’s contribution in the power spectral density is
reduced to 35.05%, resulting in markedly stronger sidelobes,
as shown in Fig. 1c(ii). The engineered effective sidelobe
energy increases to 62.9% from 9.0% for the clear pupil.
Figure. 1b(iii) and Fig. 1c(iii) provide examples of the raw
speckle pattern captured from the camera. The texture in
Fig. 1c(iii) exhibits more elongated features compared to
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that of Fig. 1b(iii), indicating that photons are redirected
into a designed spatial distribution.
Figure 2a presents a comparison of the averaged speckle

autocorrelations of varying sizes between the natural clear
pupil (i)–(iii) and the engineered pupil (iv)-(vi). The
measurement result is depicted in the upper half of each
subplot, while the lower half represents the calculation
derived from Eq. (1). For both types of pupils, the sidelobe
intensity shows a decay as the particle size increases,
which conforms to the prediction from our forward
model. The 1-st order sidelobe (around pixel -10 labeled
in Fig. 2b) merges in the main lobe for the original pupil
and becomes indistinguishable, while for the engineered
pupil, it is clearly visible in Fig. 2a(iv)–(vi) along the y
direction. Figure 2b shows the horizontal cross-sections
across the center in Fig. 2a. Both the absolute value and
the size modulation contrast increase with the engineered

pupil. Specifically, the 2-nd order sidelobe intensity for
the 106–180 µm sample increased from 0.002 to 0.055.
Higher-order sidelobes are hard to resolve for the clear
pupil while some features can still be observed for the
engineered one. The overall improvement is ~25–45
times enhancement for different sidelobes.
We defined the measurement sensitivity S u; rð Þ ¼

∂ A uð Þh i=∂p rð Þ to quantify how the autocorrelation at
displacement u is modified if a small population of par-
ticles of size r are added to the powder. The result is

S u; rð Þ ¼ A uð Þh i r2Jinc r uj jð ÞR
r2Jinc r uj jð Þp rð Þdr �

r2R
r2p rð Þdr

� �
ð2Þ

More details about this sensitivity expression are in
Supplementary Section 1. Figure 2c presents the
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Fig. 1 Laser speckle apparatus with the pupil engineering. a Schematic representation of our speckle granularity probe. An engineered pupil
shapes the incident beam into a designed pattern. The powder surface scatters the light in all directions, which is subsequently collected using a lens.
For simplicity, we omit a quarter waveplate between the powder surface and the polarized beam splitter in this diagram, detailed information can be
found in Supplementary Section 4. The raw images are processed by the autocorrelation function before entering a neural network for PSD
estimation. b (i) The original clear beam profile with a 5 mm diameter. (ii) The power spectral density of the clear beam, with the zero-order lobe
holding 87.4% of the photon energy. (iii) An example of the speckle pattern for the clear pupil, demonstrating statistical symmetry in all directions.
c (i) The engineered pupil on the powder surface, blocking approximately two-thirds of the total photons. The feature size is in millimeter scale which
is larger than our interest particle size range. As later mentioned in Discussion, mild diffraction effects are evident by the time the light reaches the
powder, but this does not affect our application. (ii) Its power spectral density has eight stronger side lobes (marked by red arrows) compared to b(ii),
and the peak radial positions along the x and y directions are different. (iii) The modified speckle image displays asymmetric spatial frequency
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sensitivity maps for the 250–300 µm sample set. Smaller
particle size always suffers a lower sensitivity in all maps,
which is consistent with our discussion in PEACE30.
Compared to the clear pupil in Fig. 2c(i), the sensitivity is

enhanced at all particle size r in Fig. 2c(ii), (iii), and the
engineered pupil gains a more expansive and continuous
feature region along u. Given the symmetry of all direc-
tions for the particles in the illumination region, the size
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Fig. 2 Microscopic images and the corresponding average autocorrelations for KCl powder of different sizes. a (i)–(iii) Autocorrelations of
the clear pupil for sizes 106–180 μm, 250–300 μm and 425–500 μm. (iv)–(vi) The same plots for engineered pupils. The upper half depicts the
measurements averaged over 500 frames, while the lower half presents calculations from Eq. (1). They show a high degree of consistency, with only
minor discrepancies. To enhance the visibility of the sidelobes, the autocorrelation values are raised to the power of one-fourth. b Horizontal cross
sections along the center (the black line in (a) (i)–(vi)). y-axis is the raw autocorrelation value. The inset is a zoomed-in view of the clear pupil.
c Sensitivity Sðu; rÞ of the ensemble averaged autocorrelation A uð Þh i to the population of particles of size r for a sample set with the size ranging
from 250 μm to 300 μm, according to Eq. (2). (i) Clear pupil, corresponding to (a) (ii), (ii), (iii) Engineered pupil along x axis (ii) and y axis (iii),

corresponding to a(v). For better visibility, jSðu; rÞj1=4 has been plotted
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modulation term is dependent solely on the absolute
value of uj j rather than u. However, we deliberately
introduce asymmetry to the pupil to disambiguate spatial
frequencies along the x and y directions. This ensures that
a dip along the x direction is compensated by a corre-
sponding peak along the y direction, when we only con-
sider the radial coordinate. This heuristic strategy of pupil
design and accurate values for all designed features are
concisely outlined in Supplementary Section 7. Other
strategies are certainly possible, but beyond the scope of
our present work.

PSD estimation from a snapshot speckle image with a
learning-based model
Inverting Eq. (1) with the clear pupil is a highly ill-posed

problem due to two challenges. First, in the size mod-
ulation term, the probability size p(r) carries a weight
r2Jinc r uj jð Þ. This imbalanced weight approaches 0 as r
approaches 0, resulting in ill-posedness for small parti-
cles30. Second, the presence of weak sidelobes results in
low contrast for the size modulation term. The engineered
pupil does not solve the first problem, but significantly
improves the second, leading to less ill-posedness and,
subsequently, less need for regularization and
training data.
Figure 3a, b shows the speckle autocorrelations with a

reduction in averaging frames from 200 to 1 for the clear
pupil and the engineered pupil, respectively. The weak
signal in the clear pupil gradually merges into the back-
ground fluctuations with fewer frames. For the engineered
pupil, some distinguishable features persist above the
fluctuations even in a single frame image, which could be
utilized to infer the particle size distribution. Figure 4a
plots the background fluctuations as a function of aver-
aging frames N . We choose the standard deviation in the
marked region, as shown in the inset of Fig. 4a, as a
quantification of the fluctuation level. It is an incoherent
superposition and proportional to 1=

ffiffiffiffi
N

p
. When N ¼ 1,

the fluctuation level is comparable to, or even exceeds, the
sidelobes for the clear pupil in Fig. 3a. This analysis tea-
ches us practically how much enhancement is necessary
for the sidelobes to remain above the background
fluctuations.
As in the original PEACE, a neural network carries out

the final step of PSD estimation but now from a single
frame autocorrelation. The network takes the auto-
correlation as input and its output is the cumulative dis-
tribution of the particle sizes. Subsequently, we
differentiate this to obtain the PSD. In practice, we dis-
covered that it is helpful to apply a digital filter to select
the effective peak region in the input autocorrelations
where the peak height is stronger than the background
fluctuation. In the normalized pupil power spectral den-
sity image, we require that values larger than 0.023 be

considered as the effective region. This threshold gen-
erates the digital filter. We prepared 18 sample sets of
different sizes to form our dataset with each size con-
taining 500 autocorrelation images. The ground truth was
calibrated by a commercial offline particle size analyzer,
the “Mastersizer”. Half of these sets served as the training
dataset, while the rest were employed as test dataset.
Additional details about sample preparation and data
collection can be found in Supplementary Section 2. The
neural network consists of four convolutional stages fol-
lowed by a fully connected layer and contains around
625k parameters. Initially, the entire network was trained
using 9000 synthetic images, generated according to Eq.
(1) with different sizes. Subsequently, the parameters in
the final three stages were frozen, and only the first stage
(containing 4.2k parameters) was fine-tuned using
experimental data. This domain transfer technique is
widely utilized in training with limited data56,57 and offers
a better generalization for the size outside the training
sets. Additional details about the neural network structure
and training hyperparameters are provided in Supple-
mentary Section 3.
Figure 3c presents the test results. All test sets are dis-

joint in the training process. The first and second columns
are the raw and masked autocorrelation images, with the
third column depicting the cumulative distribution. We
optimize the L1 loss of the cumulative distribution, which
is equivalent to the 1-Wasserstein distance, particularly
for the 1D probability distribution. The fourth column
confirms that the estimated PSD aligns closely with the
ground truth PSD across various peak positions and
widths. Figure 4b plots the optimized test L1 loss for
models that take N frames averaged image as input.
Increasing the number of frames results in better pre-
dictions. Notably, even when the frame count diminishes
to 1, the engineered pupil continues to outperform the
200 frames averaged estimation for the clear pupil.

Time-lapsed PSD monitoring in a drying process
To demonstrate the capacities of rapid PSD estimation,

we implemented a demonstrative drying process30 to
record the PSD evolution. Detailed specifications of our
filter dryer are provided in Supplementary Section 4. The
drying process was initiated with 280 g of potassium
chloride (KCl) powder and a mixed solvent (40 g of water/
60 g of ethanol). Operational conditions were maintained
at a temperature of 26 °C, pressure of −720mbar, and an
agitation speed of 4 rpm. The time interval of the PSD
measurement reached 0.25 s, including both data collec-
tion and computation times. The computer used for this
experiment was an Intel Xeon W2245 CPU, 64 GB RAM,
we abstained from utilizing the GPU for this measure-
ment, as parallel computation of autocorrelations was not
required.
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Figure 5a shows the PSD evolution throughout the
complete drying process. The red dashed line serves as a
smoothed guide to the PSD peak position to enhance
visibility. The PSD curve initially shifted right upon the

addition of solvents, subsequently reverting to its original
positions gradually. Figure 5b provides zoom-in plots and
their corresponding camera photos for the regions
marked with colorful rectangles in Fig. 5a. Figure 5b(i)

(i) (ii) (iii) (iv) (v)
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Fig. 3 Single-frame speckle image PSD estimation via machine learning. Speckle autocorrelations for the KCl sample in the 425–500 μm size
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captures the starting details, where the PSD remained
stable at ~300 μm when initially dry, as depicted in the
photo. The addition of solvent at the 2.5-min mark
transformed the powder into a slurry. Consequently, the
PSD promptly broadened, and the peak shifted to 400 μm.
Upon the vacuum’s extraction of the liquid, the slurry
transitioned into wet powder, leading to particle
agglomeration as large lumps shown in Fig. 5b(ii) camera
photo. This phenomenon is referred to as soft agglom-
eration. The corresponding PSD peak fluctuated between
300 and 400 μm during the 16–19min interval, with a
substantial portion of particles exceeding 450 μm in size.
This oscillation is attributed to the drying and subsequent
detachment of some powder from the large aggregate.
These partially dried, deagglomerated powder particles
were smaller in size. The agitator’s continuous movement
caused the large aggregate and small dry powder to
intermittently intersect with our laser beam spot, resulting
in the observed oscillation. The zoom-in plot Fig. 5b(iii)
during the 52–55 min interval displays a stronger oscil-
lation centered at 300 μm, due to the progressive deag-
glomeration of the powder over time. From photo Fig.
5b(iii), we can observe that some fluffy powder fell on the
base while other particles remained plump. The zoom-in
plot Fig. 5b(iv) during 79.5–82.5 min interval indicates the
end of the drying process. At ~81.5 min, the PSD oscil-
lation suddenly stopped, stabilizing at its original position.
In Supplementary Section 6, we compared the PSD esti-
mations at the beginning and ending time with the
Mastersizer measurements as the ground truth. They
match well and both methods validated that the possible
crystal breakage58 did not happen in this experiment. We
did not compare the estimated PSD with the Mastersizer
during the drying process due to the Mastersizer’s
inability to support in-situ measurement for wet powder,
we would either have to wait until it fully dries or add
solvent to create a slurry for liquid-mode detection to use
Mastersizer. This limitation highlights one of the advan-
tages of our non-invasive measurement over the tradi-
tional Mastersizer.
The increased response speed can provide more details

for long-duration drying process (tens of minutes). The
total duration is influenced by many factors, including the
materials, temperature, pressure, and especially the sol-
vents. Typically, organic solvents dry much faster than
water and are also commonly used in manufacturing. We
demonstrated an additional drying process with Acetone,
maintaining all other conditions identical to the previous
experiments. The overall drying time is only around
2.5 min, which is too fast to be caught by the old 15-s
probe30. Figure 5c shows the time-lapse PSD for the
Acetone drying experiment. After adding solvent for
1 min, the PSD shifted to the right, reverting to its original
position within a minute. By the 3.5-min point, the

powder had fully dried. This experiment demonstrated
the capability of this technique in the detection of short-
duration processes.

Discussion
Although our pupil design in this work was heuristic, it

yielded a significant improvement over PEACE30. Due to
diffraction and the imperfection in the actual 3D printed
mask, the beam intensity profile on the powder surface
deforms from the designed shape as shown in Supple-
mentary Section 7. However, this deformation does not
influence the main conclusion in this work since the
enhancement is enough to distinguish sidelobe peaks
from background fluctuations even in a single frame
measurement. The use of a neural network is still
necessary to compensate for ill-posedness within the
integral term in (1), and to further reduce residual noise
effects from the enhanced sidelobes, for example due to
ambient light or other environmental disturbances. Thus,
even further optimization is possible by use of the sensi-
tivity function, but beyond the scope of the present work.
Generalizations for non-spherical particles, as discussed

in the clear pupil case30, remain applicable here. We also
performed a stress test for the bimodal PSD estimation, as
outlined in Supplementary Section 5, demonstrating sig-
nificant improvement over the clear pupil outcome for the
same bimodal case30. The faster sampling rate allows for
quantifying the measured system’s underlying dynamics,
e.g. fitting to population balance equations for agglom-
eration during the drying process59,60.

Materials and methods
The laser model is Excelsior 532 Single Mode with

300mW output power. The monochromatic camera
model is ZWO ASI183MM Pro, which contains
5496 × 3672 pixels with a 2.4 μm pixel size, we run it in
the bin-pixel mode with 2744 × 1836 pixels at 45 fps fra-
merate. A 200 μs exposure time was maintained to ensure
a high degree of spatial correlation. Commercially
obtained potassium chloride (KCl) powder was used to
calibrate the speckle. Twenty samples of KCl with varying
size distributions were prepared by sieving bulk KCl using
sieves attached to the sieve shaker. The sieves, organized
in decreasing order of opening size from top to bottom
(Sieve opening sizes used: 500 μm, 425 μm, 355 μm,
300 μm, 250 μm, 180 μm, 106 μm). The sieving continued
for 15–30min until the powder weight in each sieves
stabilized. Malvern Mastersizer 2000 attached to a Scir-
occo 2000 dry dispersion unit was used to obtain particle
size data. More details about the optics, the filter dryer,
the neural network structure, and the material prepara-
tion are included in the Supplementary.
The designed masks are fabricated using a commercial

3D printer (Ember 3D printer, Autodesk) with resin
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(PR48). Layer thickness is set to 50 microns. The printing
time is 5 s for each layer, except the first layer which has a
longer exposure of 8 s. After printing, the samples are
washed with isopropyl alcohol to remove uncured resin
from the surface and dried by airflow.
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