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Abstract: Viral particle systems are integral parts of modern biotechnology, finding use in
vaccines, drug delivery platforms, and recombinant protein production. Continuous manufac-
turing of these systems can offer improved manufacturability and quality control. However, viral
systems often have complex kinetics which can introduce undesirable process dynamics and
lower product titers in continuous operation. This article explores the use of economic nonlinear
dynamic optimization and model predictive control to achieve multiple process objectives such
as maximizing productivity and/or purity. Economic nonlinear model predictive control is
also demonstrated to robustly control the bioreactor under plant-model mismatch in different
scenarios.
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1. INTRODUCTION

Viral particle systems include wild-type viruses, viral vec-
tors, and virus-like particles and are integral to modern
biotechnology and medicine. These viral systems find use
in the production of vaccines (Plotkin, 2014), vaccine ad-
juvants and antiviral therapeutics (Frensing, 2015), gene
therapies (Robbins et al., 1998), and recombinant protein
production (Wurm and Bernard, 1999). The limitations
of current large-scale viral particle manufacturing pro-
cesses (e.g., egg-based, fed-batch cell culture processes)
(Hegde, 2015) and the advantages of continuous cell-
culture processes such as improved productivity, manu-
facturability, and product quality control have motivated
the advancement of continuous manufacturing of viral
particles (Gutiérrez-Granados et al., 2018).

The presence of viruses in the bioreactor can introduce
complex dynamics to the process arising from viral kinet-
ics, e.g., predator-prey dynamics (Frensing et al., 2013;
Inguva et al., 2023; Canova et al., 2023). Figure 1 provides
an illustration of the kinetic processes in a simple viral
bioreactor. An interesting feature of many viruses, includ-
ing influenza, is the production of defective interfering par-
ticles (DIPs) during replication. These DIPs only contain
a portion of the complete viral genome which makes them
“defective” in the sense that they can only replicate in cells
co-infected with the standard virus (STV) (see Frensing
(2015) for an in-depth discussion on DIPs). The presence
of DIPs can affect propagation dynamics (Frensing et al.,
2013). DIPs are seen as undesirable during production
due to their presence adversely impacting productivity
(i.e., lower viral titers), introducing undesirable process
dynamics, and impacting the biological activity of the
final product (Frensing et al., 2013; Frensing, 2015). Con-
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tinuous bioreactor configurations are also typically more
complex than equivalent batch setups which can introduce
additional complex process dynamics (Gutiérrez-Granados
et al., 2018; Matanguihan and Wu, 2022).

The optimization and control of viral bioreactors can be
challenging, and is often done experimentally through
classical bioengineering (Gallo–Ramı́rez et al., 2015; Grein
et al., 2017; Fang et al., 2022). For example, strategies
to mitigate the impact of DIPs and minimize DIP titers
include purifying the virus inoculum, engineering cell
lines and virus strains to minimize de novo generation
of DIPs, and selecting operating conditions that result in
low multiplicity of infection (MOI), that is, the ratio of
virus particles to host cells (Aggarwal et al., 2011; Frensing
et al., 2013; Frensing, 2015).

To date, the use of model-based optimization and control
strategies to achieve various process and control objec-
tives for viral bioreactors has not been explored in the
literature. Nonlinear model predictive control (MPC), in
particular economic nonlinear MPC, can guide the process
dynamics along an optimal path, improved disturbance
rejection, explicitly account for model uncertainties (Ellis
et al., 2014). Nonlinear MPC is well-suited for and has
increasingly found successful application in biopharmaceu-
tical manufacturing (Sommeregger et al., 2017; Rathore
et al., 2021), and its application to continuous viral particle
manufacturing similarly has the potential to improve pro-
cess operations and facilitate the maturation of continuous
manufacturing technologies for viral particles.

In recent work, we explored the dynamics of various biore-
actors, including for the production of viral particles, when
controlled by simple static output feedback (Proportional
control) designed to suppress oscillatory behavior (Inguva
et al., 2023). In contrast, here we explore the design and
resulting dynamics of much more complex control systems
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– namely, economic nonlinear dynamic optimization and
MPC – of a viral bioreactor to achieve a larger set of
more complex process aims. Four process and control ob-
jectives are considered: maximize bioreactor productivity,
enable robust process operation (e.g., model uncertainty),
produce a high-purity STV product stream, and identify
an optimal startup trajectory. The article is structured as
follows. Section 2 outlines the continuous viral manufac-
turing process and bioreactor model. Section 3 describes
the use of open-loop dynamic optimization to optimize the
bioreactor. Section 4 demonstrates the use of nonlinear
economic MPC to control the bioreactor under plant-
model mismatch. The results are summarized in Section
5.

2. VIRAL BIOREACTOR PROCESS AND MODEL

A two-stage continuous stirred-tank bioreactor adapted
from Frensing et al. (2013) is considered. The setup con-
sists of a first-stage cell bioreactor used to grow uninfected
target cells that are fed into a second-stage virus bioreactor
where the viral particles are produced. This configuration
decouples the cell growth and viral replication processes.
The model equations are adapted from Frensing et al.
(2013) and are developed by considering species balances
across the viral bioreactor. A schematic of the kinetic
processes taking place in a viral bioreactor described by
(1) is presented in Fig. 1.

Fig. 1. Schematic of viral kinetics for (1). Similar schemat-
ics can be constructed for more complex systems, e.g.,
see Muller (2015).

Two model variants are considered. The simpler model is

d

dt


T
Is
Vs


=


µT − k1VsT +D(Tin − T )

k1VsT − (k2 +D)Is
k3Is − k1(T + Is)Vs − (k4 +D)Vs


, (1)

where T , Is, and Vs are the concentrations of the unin-
fected target cells, cells infected with STVs, and STVs,
respectively. A model with more complex dynamics is

d

dt




T
Id
Is
Ic
Vs

Vd



=




µT − k1(Vs + Vd)T +D(Tin − T )
k1VdT − (k1Vs − µ)Id −DId
k1VsT − (k1Vd + k2)Is −DIs
k1(VsId + VdIs)− k2Ic −DIc

k3Is − (k1(T + Id + Is + Ic) + k4 +D)Vs

k33Ic+fk3Is−(k1(T+Id+Is+Ic)+k4+D)Vd



,

(2)
which incorporates three additional states to account for
the presence of DIPs – Id, Ic, and Vd – which are the
concentrations of cells infected with DIPs, co-infected cells,
and DIPs, respectively. Both models have two inputs: the

bioreactor dilutionD and the feed target cell concentration
Tin. For convenience, the labels “Simplified” and “Full” are
used to describe (1) and (2) respectively henceforth. A de-
scription of the model parameters and their nominal values
for both models can be found in Table 1. The simplified
and full models have the initial conditions (T0, Is,0, Vs,0) =
(3×106, 0, 1.25×105) and (T0, Id,0, Is,0, Ic,0, Vs,0, Vd,0) =
(3×106, 0, 0, 0, 0, 1.25×105), respectively. The dilution
D and the target cell concentration in the feed Tin have
nominal values of 0.0396 and 3×106, respectively. A simu-
lation of both models with the nominal initial conditions
and parameter values can be found in Canova et al. (2023).

Table 1. Summary of parameters in the viral
bioreactor models (1) and (2).

Parameter Description Nominal Value Units

µ
Cell growth
rate constant

0.027 1
hr

k1

STV and DIP
infection rate

constant
2.12×10−9 mL

virion hr

k2

Virus-induced
cell apoptosis
rate constant

7.13×10−3 1
hr

k3
STV production
rate constant

168 virions
cell hr

k33
DIP production
rate constant

168 virions
cell hr

k4
Virus degradation

rate constant
0.035 1

hr

f
Fraction of

STV-infected cells
that produce DIPs

10−3 –

Local sensitivity analysis on (1) and (2) with the nominal
parameter values in Table 1 was performed using the
DiffEqSensitivity.jl package (Ma et al., 2021) to iden-
tify which parameters have the largest effect on the states.
To first approximation, for a change in parameter pi, the

impact on state xj is approximately ∆xj ≈ ∂xj

∂pi
∆pi, and

the product of the sensitivity and the nominal parameter
is taken as the metric for identifying the most sensitive
parameters.

For the simplified model (1), the virus infection and STV
production rate constants (k1 and k3 respectively) have a
large impact on the STV concentration Vs during startup,
and the STV production and virus degradation constants
(k3 and k4, respectively) have a large effect on the STV
concentration Vs at later times. For the full model (2),
the virus infection and STV production rate constants
(k1 and k3 respectively) similarly have the largest effect
on STV concentration Vs during startup, and the DIP
production and virus degradation rate constants (k33 and
k4, respectively) have the largest impact on the DIP
concentration Vd for most times. Given that k3, k4 and
k33, k4 have the largest effects for most of the times for
the simplified and full models respectively, the impact
of uncertainty in those kinetic parameters is explored in
Section 4.
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3. OPEN-LOOP DYNAMIC OPTIMIZATION

Open-loop dynamic optimization of both the simplified
and full models was performed using the do-mpc software
package (Lucia et al., 2017; Fiedler et al., 2023) which
solves the optimal control problem,

min
x,u

∫ tf

t0

J(x,u) dt

s.t. ẋ = f(x,u),

x(t = 0) = x0,

g(x,u) ≤ 0, (3)

where J is the objective function, t0 and tf are the initial
and final times of the simulation respectively, x is the
vector of states of the system given by (1) and (2) with
the corresponding initial condition x0, u is the vector of
inputs which correspond to the bioreactor dilution D and
feed target cell concentration Tin, and g defines the set
of constraints on the system. The subscripts ub and lb
denote the upper and lower bounds respectively on the
state variables and inputs. Non-negativity constraints are
imposed on all states and inputs for physical reasons, i.e.,
xlb = ulb = 0. The choice of upper bounds is described in
the subsequent text. do-mpc includes an additional term
into the objective function to penalize rapid changes to
the inputs: r⊤∆u2

k, where ∆uk = uk − uk−1 and r is the
vector of penalties (Fiedler et al., 2023).

To identify an optimal startup trajectory and maximize
the productivity of the bioreactor, an economic objective
function was specified. Two scenarios are considered in this
work:

(1) Maximize STV production with the simplified model,
with Dub set to 0.1 and Tin,ub varied. A higher biore-
actor dilution corresponds to a larger media consump-
tion, which increases operating costs and, in the case
of the simplified model, Dub is sufficient to illustrate
the optimal operating strategy. The objective func-
tion specified is J = −DVs, as the product of the
STV concentration Vs and the dilution D provides
a measure for the instantaneous productivity of the
system.

(2) Maximize STV production while minimizing DIP
production with the full model, with Dub and Tin,ub

set to 0.25 and 1×107, respectively. Two values of the
initial condition of the target cell concentration T0 are
considered; the nominal value of 3×106 and a reduced
value of 1.5×106. The objective function specified is
J = −D(Vs − Vd), which seeks to maximize dilution
D and STV concentration Vs while minimizing DIP
concentration Vd.

In both scenarios, the objective function J has units of
virion
hr mL which corresponds to the viral particle concentration
in the product stream normalized by the reactor volume
and is a direct measure of the instantaneous productivity.
When integrated over the simulation time, the total viral
particle yield is obtained. For Scenario 1, the full opti-
mal control problem is solved in a single step, i.e., from
t = t0 to t = tf . For Scenario 2, numerical issues related
to achieving convergence in the optimization step were
encountered when attempting solutions in a single step.
Instead, we compute the optimal values of u sequentially

using a receding prediction horizon in a manner equivalent
to using MPC in the absence of uncertainty and distur-
bances.

3.1 Scenario 1

Fig. 2. Numerical solutions to the optimal control problem
for Scenario 1 for different values of the maximum
allowable feed target cell concentration Tin,ub.

The optimal control results for varying the maximum
allowable feed target cell concentration Tin,ub is shown in
Fig. 2. For Tin,ub ≲ T (t = 0), the optimal startup strategy
is to delay feeding any cells and media into the bioreactor
(i.e., Tin = D = 0) to allow accumulation of infected
cells and viral particles (Is and Vs respectively in Fig. 2).
For Tin,ub > T (t = 0), higher productivity is obtained by
immediately feeding the bioreactor with media and cells at
the maximum possible values, which enables the bioreactor
to operate at a higher concentration of target cells as early
as possible. In general, the optimal strategy for systems
described by the simplified model is to operate at high
cell densities and dilution, which may include an initial
delay to allow the accumulation of virus particles and
infected cells. This control strategy of always operating
with both manipulated variables at constraints (i.e., bang-
bang control) is easy to implement and understand.

3.2 Scenario 2

This scenario explores the feasibility of employing process
controls to obtain a high-purity STV product stream. In
the absence of any controls, the model when simulated
with nominal parameter and input values predicts that
the steady-state concentration of DIPs is much larger than
STVs, i.e., Vd ≫ Vs (Inguva et al., 2023). As seen in Fig. 3,
a suitable trajectory for the feed target cell concentration
Tin and dilution D can be used to drive the system to
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The optimal control results for varying the maximum
allowable feed target cell concentration Tin,ub is shown in
Fig. 2. For Tin,ub ≲ T (t = 0), the optimal startup strategy
is to delay feeding any cells and media into the bioreactor
(i.e., Tin = D = 0) to allow accumulation of infected
cells and viral particles (Is and Vs respectively in Fig. 2).
For Tin,ub > T (t = 0), higher productivity is obtained by
immediately feeding the bioreactor with media and cells at
the maximum possible values, which enables the bioreactor
to operate at a higher concentration of target cells as early
as possible. In general, the optimal strategy for systems
described by the simplified model is to operate at high
cell densities and dilution, which may include an initial
delay to allow the accumulation of virus particles and
infected cells. This control strategy of always operating
with both manipulated variables at constraints (i.e., bang-
bang control) is easy to implement and understand.

3.2 Scenario 2

This scenario explores the feasibility of employing process
controls to obtain a high-purity STV product stream. In
the absence of any controls, the model when simulated
with nominal parameter and input values predicts that
the steady-state concentration of DIPs is much larger than
STVs, i.e., Vd ≫ Vs (Inguva et al., 2023). As seen in Fig. 3,
a suitable trajectory for the feed target cell concentration
Tin and dilution D can be used to drive the system to

Fig. 3. Dynamic responses obtained from numerical so-
lution of the optimal control problem for Scenario 2
with two values for the initial uninfected target cell
concentration T0 (the red line is for T0 = 1.5×106 and
the black line is for 3×106).

produce a high-purity STV product stream (Vs ≫ Vd)
while also suppressing oscillatory behaviour. The tradeoff
in doing so is that the overall productivity of the system is
comparatively low. In effect, this strategy involves operat-
ing the bioreactor at a much lower multiplicity of infection
(MOI) than the nominal operating conditions, which is a
known strategy to minimize DIP production (Aggarwal
et al., 2011; Frensing et al., 2013). Similarly, employing at
a lower initial uninfected target cell concentration T0 helps
reduce the initial rapid increase in virus particle concen-
trations (both Vs and Vd) and accelerate the transition of
the bioreactor to a state of operation at low MOI.

Considering the comparatively low productivity of such
a process, alternative approaches are desired. One such
approach is to adopt alternative bioreactor configurations,
e.g., tubular flow bioreactors which prevent the accumula-
tion of DIPs along the bioreactor, enabling higher bioreac-
tor productivity while simultaneously generating a high-
purity STV product stream (Tapia et al., 2019; Inguva
et al., 2023).

4. ECONOMIC NONLINEAR MODEL PREDICTIVE
CONTROL

The do-mpc package is used to implement economic non-
linear MPC for the two scenarios described in Section 3.
We consider plant-model mismatch where the “simulated”
plant is different from the model used in the control calcu-
lations (given by (1) and (2) with the nominal parameter
values).

More specifically, the simulated plant has different values
for the most sensitive parameters determined by local
sensitivity analysis (see Section 2). Plant-model mismatch
of ±50% in the most sensitive parameters is considered. In
the do-mpc package, the control and prediction horizons

are the same and are set to 50 hr for both scenarios while
the sampling time is set to 0.5 and 1 hr for Scenarios 1
and 2 respectively.

Considering the sensors available for viral quantification
and cell analysis (e.g., see Schwartz and Lowen (2016);
Pais et al. (2020); Lomont and Smith (2023)), state-space
control for the simplified model (1) is realizable as all three
states (i.e., uninfected target cells T , cells infected with
STVs Vs, and STVs Is) are measurable. For the full model
(2), a state observer is necessary as distinguishing the
different types of infected cells is difficult, making direct
measurement of the different infected cell states (i.e., co-
infection cells Ic, cells infected with STVs Is, and cells
infected with DIPs Id) infeasible. In both cases, state-space
control establishes a bound on the achievable performance
of output feedback-based control.

4.1 Scenario 1

Fig. 4. Dynamic responses for economic nonlinear MPC
of the simplified model in Scenario 1 under plant-
model mismatch and Tin,ub = 5×106. Uncertainty
in the parameters k3 and k4 (STV production and
virus degradation rate constants, respectively) is con-
sidered.

This section considers the effects of uncertainty in the most
sensitive parameters k3 and k4 (STV production and virus
degradation rate constants, respectively) on the economic
nonlinear MPC designed for Scenario 1, which aims to
maximize the production of STVs for a system described
by the simplified model (1). For values of the upper bound
on the feed target cell concentration Tin,ub larger than
about twice the T (t = 0), the closed-loop performance is
not significantly affected by the plant-model mismatch, as
the optimal operating strategy remains to operate at the
highest possible values of the dilution D and feed target
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Fig. 5. Comparison of the dynamics responses for open-
loop dynamic optimization (dashed lines) and closed-
loop economic nonlinear MPC (solid lines) for
Tin,ub = 5×106 and k3 ± 50%.

cell concentration Tin from the beginning (plots not shown
due to space constraints).

For Tin,ub ≲ T (t = 0), the delay in the feeding of the
media and target cells varies slightly, with the controller
starting feeding earlier for more productive systems (e.g.,
1.5k3) and later for less productive systems (e.g., 0.5k3),
as shown in Fig. 4. In all cases, the onset of controller
action (i.e., when the feeding of media and target cells
begins) when Tin,ub = 5×106 (as shown in Figs. 4–5) is
slightly earlier in closed-loop operation, even under plant-
model mismatch, resulting in improved productivity over
the open-loop operation (3.6% gain for 0.5k3 and 11.7% for
1.5k3). This demonstrates that economic nonlinear MPC
is indeed a very robust control strategy for Scenario 1.

4.2 Scenario 2

The application of economic nonlinear MPC for the ob-
jective function specified in Scenario 2, which aims to
maximize the production of STVs while simultaneously
minimizing DIPs, is robust in ensuring a high-purity STV
product stream under plant-model mismatch in the most
sensitive parameters k33 and k4 (DIP production and virus
degradation rate constants, respectively) as seen in Fig. 6.
In all cases, the oscillatory behaviour is suppressed, which
is not surprising considering that the process is driven
to operate at a low multiplicity of infection (MOI) as
expected from the open-loop dynamic optimization.

5. CONCLUSION

The optimization and control of a two-stage continuous
viral bioreactor is explored in this work. When the system

Fig. 6. Economic nonlinear MPC of the full model per Sce-
nario 2 with plant-model mismatch and T0 = 3×106.
Uncertainty in the parameters k33 and k4 (DIP pro-
duction and virus degradation rate constants, respec-
tively) is considered.

does not have DIPs present and can be described by the
simplified model, the optimal control strategy to maximize
bioreactor productivity, which varies slightly as a function
of the upper bound on the feed target cell concentration
Tin,ub, is to operate at maximum Tin and dilution D. For
lower Tin,ub, the bioreactor should be operated with zero
feed initially, to enable the accumulation of viral particles
and infected cells. The simplicity of the control action
results in plant-model mismatch having minimal impact
on controller performance.

When DIPs need to be considered and the full model
provides a more accurate description of the system, the
qualitative behavior of the control strategy depends on the
performance objective. This work considers the scenario
of minimizing DIP production while maximizing STV
production to obtain a high-purity STV product stream.
The optimal control strategy drives the bioreactor to
a state of low multiplicity of infection (MOI), which
achieves the desired process objective at the expense of
significantly lower productivity. The developed controller
is demonstrated to be robust to plant-model mismatch.
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