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Abstract  
 

By promoting sediment deposition and retention, aquatic vegetation can 
contribute to river bank stabilization, biodiversity, as well as carbon sequestration. The 
morphology and distribution of aquatic plants influence the velocity field, turbulence 
intensity, and sediment transport in wetlands, which impacts the erosion and deposition 
processes. By combining physical and numerical experiments, this thesis quantified how 
vegetation geometry impacts turbulence and sediment transport near the bed. 

 
In aquatic canopies, turbulence generated at the stem scale, and for submerged 

canopies, also in the canopy shear layer, could contribute to the near-bed turbulence. 
Results of flume experiments using a constant channel average velocity revealed that 
bedload transport was predominantly correlated with near-bed turbulence, but was also 
weakly correlated with near-bed velocity. First, in emergent canopies, if vegetation was 
not clustered, turbulent kinetic energy (TKE) and bedload transport did not depend on the 
arrangement and stem diameter(s) and can be predicted from plant biomass and velocity. 
If vegetation was clustered in patches, TKE and bedload transport decreased with 
increased clustering and can be predicted from plant biomass, patch geometry, and 
velocity. Second, in submerged canopies, for constant channel velocity, submerged 
canopies could enhance or reduce bedload transport, depending on their degree of 
submergence. With increasing submergence, H/h (defined as the ratio of flow depth H to 
canopy height h), the near-bed velocity and TKE decreased, and the source of near-bed 
turbulence shifted from stem wake to the shear layer at the canopy top. A model to 
predict near-bed TKE in submerged canopies was developed and used to explore bedload 
transport under more realistic conditions with constant energy slope and flexible 
vegetation. For a constant energy slope, the denser the canopy, and/or the larger fraction 
of flow depth occupied by the canopy (decreasing H/h), the greater the sediment transport 
was reduced compared to unvegetated beds. This thesis provides essential 
parameterizations of vegetation to hydrodynamic and morphodynamic models, which can 
be used to predict the vegetation conditions that promote or diminish erosion, offering a 
useful guide for river and coastal restoration. 
 
Thesis supervisor: Heidi Nepf 
Title: Donald and Martha Harleman Professor of Civil and Environmental Engineering 
  



3 
 

Acknowledgments 
The completion of this thesis is under financial support from MIT (Linde 

Presidential Fellowship, CEE Teaching Assistantship, Teaching Development 
Fellowship, and MathWorks Fellowship) and NSF EAR 1854564, which are hereby 
gratefully acknowledged. 

 
First and foremost, I would like to sincerely thank my advisor, Heidi Nepf. This 

thesis would not have been possible without her unwavering guidance and support. A role 
model herself who defines excellence, Professor Heidi Nepf is a source of inspiration for 
her students to pursue excellence in both research and teaching. As a researcher, Heidi is 
enthusiastic, knowledgeable, and rigorous. As a mentor, she shows great patience, 
flexibility, and sympathy to mentees. As a teacher, she consistently delivers effective, 
enjoyable, and enlightening lectures with cutting-edge knowledge. Her careful and 
patient work approach has set a high standard that I aspire to emulate. I would also like to 
thank my doctoral committee members, Michael Howland and Taylor Perron. Thank you 
for your insightful questions and constructive feedback, which have encouraged me to 
think more about the theoretical assumptions and big picture, and to carefully examine 
and iterate my work with more technical details and potential field applications. 
 

Second, many thanks go to the fellow members of the Nepf Lab: Qingjun (Judy) 
Yang, Jiarui (Gary) Lei, Isabella Schalko, Yuqi Shan, Chao Liu, Yuan Xu, Hyoungchul 
Park, Rachel Schaefer, In Him (Ernie) Lee, Autumn Deitrick, Jiao (Caroline) Zhang, 
James Vincent Brice, Chuyan Zhao, Xiaoxia Zhang, Yuanheng (Aki) Zhang, and Thomas 
van Veelen. I am fortunate to have the opportunity to work with two outstanding 
undergraduate researchers, Jade Ishii and Rovi Porter. The broader Environmental Fluid 
Mechanics community is a source of support and ideas, in which I would like to 
particularly thank Tong Bo, Yilang Xu, Adrian Garcia, Dayang (Cindy) Wang, Ishita 
Shrivastava, Rose Palermo, Souha El Mousadik, Kirby Heck, and Liying Qiu. I also 
thank Andy Ryan, Steve Rudolph, Scott Spence, and Andy Gallant for the maintenance 
of experimental facilities, Brenda Pepe, Denise Stewart, Jay Matthews, Lili Zhu, and Sal 
Netherton for assistance with purchases and logistics, and Kiley Clapper and Sarah Smith 
for administrative assistance. 
 

Third, I thank the people I have met at MIT and beyond who have shown me a 
wide spectrum of expertise, ideas, lives, and possibilities. In CEE – Tong Bo, Yilang Xu, 
Yunpo Li, Xiaoyu Shan, Jie Yun, Yue (Olivia) Meng, Ruijiao Sun, Adrian Garcia, Lucas 
Medeiros, Yu Qiu, Baichuan Mo, Yunhan Zheng, Chuliang Song, Jingqiu Liao, Ke Xu, 
Lurong Yang, Dayang (Cindy) Wang, Na Chen, Kirby Heck, Haoran Cai, Ruofei Jia, Jie 
Deng, and Wei Lu. I thank Souha El Mousadik, a CEE Communication Lab Fellow who 
patiently helped me polish up my conference presentations and fellowship statement. At 
MIT – special thanks go to all the folks who bettered my teaching and communication 
skills: Meghan Moriarty for hosting my Kaufman Teaching Certificate Program, Ben 
Hansberry for the opportunity to let me serve as the Teaching Development Fellow for 
CEE in Academic Year 2022-2023, students in Heidi’s courses (1.061/1.61 and 1.106) 
for letting me practice and refine my teaching skills (and for endorsing me for the 



4 
 

Maseeh Award!), and Diana Chien and Amanda Cornwall for hosting the Research 
Mentoring Certificate Program. I also thank MIT Libraries for their convenient literature 
delivery services. At Harvard – thanks go to Professor Nick Trefethen for his insights on 
numerical analysis/scientific computation and collegiate teaching, and his book An 
Applied Mathematician's Apology. From Nanjing University – Qian Yu, Yunwei Wang, 
Zhiyun Du, Hangjie Lin, and Yun Peng for their continued company in research and life, 
and Ze-Xun Lin, Yang Chen, Ge Yu, Xiaofan Xu, Yunhan Chen, Pai-Hung Lin, Yihang 
She, Tianyi Tang, Mengyang Zhou, and Hongming Huang for continued friendship. 
Lastly, my childhood friends Han Bao and Chao Zhang, for your support throughout my 
doctoral journey.  
 

Finally, I thank my parents for raising me up and for respecting and supporting 
my decisions. We learn from each other and grow together. 
 

 

  



5 
 

Contents 
 

Acknowledgments  .............................................................................................................3 

 
List of Figures  ....................................................................................................................9 

List of Tables  ...................................................................................................................12 

 

1 Introduction ...................................................................................................................13 

1.1 Flow and Turbulence in Vegetated Channels...........................................................15 

1.2 Sediment Transport ..................................................................................................23 

1.3 Thesis Structure ........................................................................................................27 

 

2 Turbulence and Bedload Transport in Channels with Randomly Distributed 

Emergent Patches of Model Vegetation .........................................................................35 

2.1 Introduction ..............................................................................................................35 

2.2 Theory: Turbulence in a Channel with Patchy Vegetation ......................................38 

2.3 Experimental Methods .............................................................................................41 

2.4 Results and Discussion .............................................................................................45 

2.5 Summary ..................................................................................................................49 

Chapter 2 References .....................................................................................................50 

 

3 Turbulence Dictates Bedload Transport in Vegetated Channels without 

Dependence on Stem Diameter and Arrangement .......................................................53 

3.1 Introduction ..............................................................................................................53 

3.2 Background and Theory  ..........................................................................................54 

3.3 Methods ....................................................................................................................57 

3.4 Results ......................................................................................................................60 

3.4.1 Bedload Sediment Transport .............................................................................61 

3.4.2 Integral Length Scale .........................................................................................61 

3.4.3 Turbulence .........................................................................................................62 

3.5 Discussion ................................................................................................................63 



   
 

6 
 

3.5.1 Comparison of Stress-Based and Turbulence-Based Predictions of qs  ............63 

3.5.2 Model Limitations .............................................................................................64 

3.5.3 Extension to More Complex Plant Morphology ...............................................66 

3.6 Conclusions ..............................................................................................................68 

Chapter 3 References .....................................................................................................69 

 

4 Turbulence and Bedload Transport in Submerged Vegetation Canopies ...............73 

4.1 Introduction ..............................................................................................................73 

4.2 Methods ....................................................................................................................76 

4.3 Results and Discussion .............................................................................................79 

4.3.1 Time-mean and Turbulent Velocity Statistics ...................................................80 

4.3.2 Near-bed Velocity, Turbulence, and Sediment Transport .................................82 

4.3.3 Prediction of Near-bed Velocity, Turbulence, and Bedload Transport Rate ....86 

4.3.4 Role of Canopy Density, Submergence Ratio, and Flexibility .........................91 

4.4 Conclusions ..............................................................................................................98 

Chapter 4 References .....................................................................................................99 

 

5 Bedform Dynamics in Rigid Submerged Model Canopies ......................................105 

5.1 Introduction ............................................................................................................105 

5.2 Methods ..................................................................................................................106 

5.3 Results and Discussion ...........................................................................................109 

5.3.1 Initial Bedform Dynamics ...............................................................................109 

5.3.2 Height of Migrating Bedforms ........................................................................112 

5.3.3 Migrating Bedforms and Sediment Transport .................................................115 

Chapter 5 References ...................................................................................................119 

 

6 Conclusions and Suggestions for Future Work........................................................121 

6.1 Thesis Summary .....................................................................................................121 

6.2 Future Work ...........................................................................................................122 

Chapter 6 References ...................................................................................................127 

 



   
 

7 
 

Appendices  .....................................................................................................................129 

A1 Supporting Information for Chapter 2  ...................................................................129 

 

A2 Supporting Information for Chapter 3 ....................................................................137 

A2.1. Introduction to the turbulence model (Eqn. 3.4) ............................................137 

A2.2. Quantitative description of the impulse model ...............................................138 

A2.3. Proof of equal total impulse............................................................................139 

A2.4. Photographs of 1-m-long section within 3-m long array ................................142 

A2.5. Grain size analysis of bed sediment ...............................................................144 

A2.6. Bedload transport prediction ..........................................................................145 

A2.7. Model plants used in Xu and Nepf (2020)  ....................................................147 

 
A3 Supporting Information for Chapter 4  ...................................................................154 

A3.1. Near-bed TKE budget  ....................................................................................154 

A3.2. Bedload transport rate on an unvegetated bed at same channel conditions  ...155 

A3.3. Sensitivity analysis of bed-shear-generated turbulence ..................................155 

 
A4 Supporting Information for Chapter 5  ...................................................................163 

 

A5 Final Remarks  ........................................................................................................171 

 
 
 

 

 

  



   
 

8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 

  



   
 

9 
 

List of Figures 
 

Figure 1-1. Examples of aquatic vegetation ......................................................................14 

Figure 1-2. Flow past a cylinder of diameter d and uniform into the page........................16 

Figure 1-3. Turbulent eddies of size le generated in a cylinder array of uniform stem 

diameter d and random surface-to-surface spacing s  ........................................................17 

Figure 1-4. Scales of turbulence in a patch of cylinders  ...................................................18 

Figure 1-5. Flow adjustment in a submerged vegetation canopy  .....................................19 

Figure 1-6. Scales of turbulence in submerged vegetation canopies .................................20 

Figure 1-7. Reconfiguration of flexible aquatic vegetation, with increasing Cauchy 

number Ca  .........................................................................................................................23 

Figure 1-8. Shields diagram  ..............................................................................................25 

Figure 1-9. Illustration of bed load and suspended load  ...................................................25 

 
Figure 2-1. (a) Randomly distributed model vegetation patches in an L‐m‐long and B‐m‐

wide channel section. (b) Patch Case 2.4 ...........................................................................38 

Figure 2-2. (a, c, and e) Measured (red symbols) and predicted (solid curve, Equations 

2.2, 2.6, and 2.7) bedload transport, qs, as a function of patch diameter, D. (b, d, and f) 

Measured (red symbols) and predicted (Equations 2.6, and 2.7) channel-averaged 

turbulent kinetic energy, 〈𝒌𝒌𝐭𝐭〉 .............................................................................................45 

Figure 2-3. Measured sediment transport rate, 𝒒𝒒𝐬𝐬∗  = 𝒒𝒒𝐬𝐬

𝝆𝝆𝐬𝐬�(𝝆𝝆𝐬𝐬 𝝆𝝆⁄ −𝟏𝟏)𝒈𝒈𝒅𝒅𝐬𝐬
𝟑𝟑
, versus (a) channel-

averaged turbulent kinetic energy, 〈𝒌𝒌𝐭𝐭∗〉 = 〈𝒌𝒌𝐭𝐭〉
(𝝆𝝆𝐬𝐬 𝝆𝝆⁄ −𝟏𝟏)𝒈𝒈𝒅𝒅𝐬𝐬

, from Equations 2.6 and 2.7, and 

versus (b) channel-averaged bed shear stress, 〈𝝉𝝉∗〉 = 〈𝝉𝝉〉
(𝝆𝝆𝐬𝐬 𝝆𝝆⁄ −𝟏𝟏)𝒈𝒈𝒅𝒅𝐬𝐬

, with 〈𝝉𝝉〉 =

𝑪𝑪𝐟𝐟𝑼𝑼𝐛𝐛
𝟐𝟐�𝟏𝟏 − 𝝓𝝓𝐩𝐩� + 𝑪𝑪𝐟𝐟𝑼𝑼𝐩𝐩

𝟐𝟐𝝓𝝓𝐩𝐩.  ...............................................................................................48 

 
Figure 3-1. For canopies with same solid volume fraction and velocity, cumulative 

impulse does not depend on stem size.  .............................................................................56 

Figure 3-2. (a) Measured sediment transport rate qs versus measured turbulent kinetic 

energy 〈𝒌𝒌𝐭𝐭〉. (b) and (c) Measured dimensionless sediment transport rate 𝒒𝒒𝐬𝐬∗ = 𝒒𝒒𝐬𝐬
𝝆𝝆𝒔𝒔𝒘𝒘𝒔𝒔𝒅𝒅𝟓𝟓𝟓𝟓

 



   
 

10 
 

versus (b) dimensionless bed stress 𝜽𝜽 = 𝝉𝝉
(𝝆𝝆𝐬𝐬−𝝆𝝆)𝒈𝒈𝒅𝒅𝟓𝟓𝟓𝟓

 predicted using Equation 3.10, and (c) 

dimensionless turbulent kinetic energy 𝒌𝒌𝐭𝐭∗ = 〈𝒌𝒌𝐭𝐭〉
(𝝆𝝆𝒔𝒔/𝝆𝝆−𝟏𝟏)𝒈𝒈𝒅𝒅𝟓𝟓𝟓𝟓

  predicted using Equation 3.8 

and 𝜹𝜹𝒌𝒌𝐭𝐭 = 𝟓𝟓.𝟓𝟓𝟐𝟐 ± 𝟓𝟓.𝟓𝟓𝟎𝟎 (95% CI) ....................................................................................60 

Figure 3-3. (a) Morphology ratio  𝝓𝝓
𝝅𝝅
𝟒𝟒
〈𝒂𝒂〉〈𝒅𝒅〉

 for Typha and Rotala for different flow depths. 

(b) Vertical profiles of frontal area per unit volume, a, and characteristic width, 𝒅𝒅, 

(Equation 16 in Xu & Nepf, 2020) for Typha. For Rotala, d = 0.68 ± 0.13 cm (SE). (c) 

and (d) Predicted channel-averaged turbulent kinetic energy, 〈𝒌𝒌𝐭𝐭〉 for Typha and Rotala 

using Equation 3.8 (subplot c) and Equation 3.11 (subplot d) versus measured values ....66 

 
Figure 4-1. Side view of sediment recirculating flume, with sand layer (brown) within an 

array of submerged cylinders. Brown dots represent sediment in motion  ........................76 

Figure 4-2. Vertical profiles of streamwise velocity (a, d), Reynolds stress (b, e), and 

turbulent kinetic energy (TKE, c, f) for frontal area per canopy volume a = 1.1 m-1 (first 

row, a – c, denoted as sparse in this paper) and a = 4.9 m-1 (second row, d – f, denoted as 

dense in this paper) ............................................................................................................80 

Figure 4-3. (a) Normalized near-bed velocity, Unb/U, (b) normalized near-bed TKE, 

kt,nb/U2, and (c) dimensionless sediment transport rate, 𝒒𝒒𝐬𝐬∗ = 𝒒𝒒𝐬𝐬
𝝆𝝆𝐬𝐬𝒘𝒘𝐬𝐬𝒅𝒅𝟓𝟓𝟓𝟓

, versus submergence 

ratio (H/h)...........................................................................................................................82 

Figure 4-4. Measured dimensionless sediment transport rate 𝒒𝒒𝐬𝐬∗ = 𝒒𝒒𝐬𝐬
𝝆𝝆𝐬𝐬𝒘𝒘𝐬𝐬𝒅𝒅𝟓𝟓𝟓𝟓

 versus (a) 

measured flow parameter 𝒇𝒇 = �𝑼𝑼𝐧𝐧𝐛𝐛+𝟏𝟏𝟓𝟓�𝒌𝒌𝐭𝐭,𝐧𝐧𝐛𝐛�
𝟐𝟐

�𝝆𝝆𝐬𝐬𝝆𝝆 −𝟏𝟏�𝒈𝒈𝒅𝒅𝟓𝟓𝟓𝟓
 and (b) measured dimensionless near-bed 

TKE 𝒌𝒌𝐭𝐭,𝐧𝐧𝐛𝐛∗ = 𝒌𝒌𝐭𝐭,𝐧𝐧𝐛𝐛
�𝝆𝝆𝐬𝐬𝝆𝝆 −𝟏𝟏�𝒈𝒈𝒅𝒅𝟓𝟓𝟓𝟓

 ......................................................................................................86 

Figure 4-5. (a) Ratio of measured near-bed TKE to predicted sum of bed and wake TKE 

(Equation 4.24), 𝒌𝒌𝐭𝐭,𝐧𝐧𝐛𝐛 
𝒌𝒌𝐭𝐭,𝐰𝐰𝐛𝐛

, versus parameter (𝒂𝒂𝒂𝒂)
𝟏𝟏
𝟐𝟐 �𝟏𝟏 − 𝒂𝒂

𝑯𝑯
�
𝟗𝟗
𝟐𝟐 representing the ratio of canopy-

averaged shear production, ⟨𝑷𝑷𝐬𝐬⟩, to wake production, ⟨𝑷𝑷𝐰𝐰⟩ (from Equation 4.23). (b) 

Normalized near-bed velocity Unb/U versus submergence ratio H/h (from Equation 4.16). 

(c) ah (Unb/U)3, product of canopy density ah and cube of normalized near-bed velocity 

Unb/U, versus submergence ratio H/h. (d) Near-bed TKE normalized by the square of 



   
 

11 
 

channel-averaged velocity, kt,nb/U2, versus submergence ratio, H/h (from Equation 4.24). 

(e) Sediment transport rate, qs, versus submergence ratio, H/h .........................................88 

Figure 4-6. Modeled depth-averaged velocity (U), near-bed velocity (Unb), near-bed TKE 

(kt,nb), and sediment transport rate (qs) under constant hydrodynamic forcing (energy 

slope, S, from top to bottom: S = 0.0001, 0.001, 0.005) in canopies of submerged rigid 

vegetation  ..........................................................................................................................92 

Figure 4-7. Modeled deflected canopy height (hdef) and penetration length (δe), 

submergence ratio (H/ hdef), near-bed velocity (Unb), near-bed TKE (kt,nb), depth-averaged 

velocity (U), and sediment transport rate (qs) under constant hydrodynamic forcing 

(constant energy slope S = 5×10-5) in canopies of submerged flexible vegetation  ...........96 

Figure 5-1. Side view of sediment recirculating flume, with sand layer (brown) within an 

array of submerged cylinders  ..........................................................................................106 

Figure 5-2. Side view of the camera’s image frame (dimensions: 110.0 cm (L) x 53.0 cm 

(H)) of Case S2  ...............................................................................................................107 

Figure 5-3. Predicted versus measured bedform (migrating sand layer) height in 

submerged canopies  ........................................................................................................115 

Figure 5-4. Annotated image of bedform migration within the submerged canopy in Case 

S3 .....................................................................................................................................116 

Figure 5-5. Bedload transport rate 𝒒𝒒𝐬𝐬,𝐛𝐛𝐟𝐟, inferred from estimated migration rate, c, using 

right-most side of Equation 5.5 ........................................................................................117 

Figure 6-1. Canopy and sediment transport responses to a modeled flood process  .......126 

 
 
 
 
 
 
 
 
 
 
  



   
 

12 
 

List of Tables 
 

Table 2.1: Summary of Experimental Parameters .............................................................44 

Table 4.1: Summary of Experimental Cases .....................................................................79 

Table 5.1: Summary of Experimental Cases ...................................................................111 

Table 5.2: Prediction of bedform height in submerged canopies  ...................................114 

Table 6.1: Parameters in the modeled flood process  ......................................................125 

 
  



   
 

13 
 

Chapter 1 Introduction 
Aquatic vegetation plays a crucial role in floodplain and coastal ecosystems. It 

slows the flow by increasing flow resistance, which promotes sediment deposition and 

stabilizes river banks (Afzalimehr & Dey, 2009; Hackney et al., 2020; Pollen-Bankhead 

& Simon, 2010; Tal & Paola, 2007). Vegetation also dissipates wave energy, thereby 

reducing the wave intensity onshore and discouraging erosion (Barbier et al., 2011). 

Additionally, aquatic vegetation can improve water quality by removing nutrients (e.g., 

Chambers & Prepas, 1994; Wilcock et al., 1999) and pollutants (e.g., Dhir et al., 2009), 

and by producing oxygen through photosynthesis (e.g., Sand-Jensen, 1989). In aquatic 

canopies, enhanced water quality, along with low-flow zones create sheltered nursery 

habitat, which is important for fisheries and enhances biodiversity (Costanza et al., 1997; 

Crowder & Diplas, 2002; Kemp et al., 2000). Although occupying no more than 0.2% of 

global seabed, coastal vegetation is estimated to contribute to 10% of annual organic 

carbon burial in the oceans (Fourqurean et al., 2012). 

Aquatic vegetation is categorized into three common types: emergent, submerged, 

and floating (Figure 1-1; e.g., Massachusetts Department of Conservation and Recreation, 

2016). Emergent vegetation is rooted to the bed, with stiff stems, and penetrates through 

the water surface, i.e., the plant height is greater than the water depth. Common species 

include Spartina (cordgrass), Juncus (rushes), Salicornia (pickleweed), and Typha 

(cattails), as well as the mangroves Rhizophora (true mangroves), Avicennia (black 

mangrove), Laguncularia racemosa (white mangrove), and Conocarpus erectus 

(buttonwood). Submerged vegetation is rooted in the bed sediment, and is usually softer 

and more flexible than emergent vegetation, but its shoots (e.g., leaves/blades and stems) 

are fully submerged underwater. Common submerged plants include Elodea 

(waterweeds), Vallisneria (eelgrass), Zostera (marine eelgrass), and Posidonia 

(Mediterranean tapeweed). Floating vegetation grows on the water surface and may or 

may not be rooted. Common species include Nymphaea (water lilies), Lemna 

(duckweeds), Sargassum, and Pontederia crassipes (water hyacinth). All aquatic 

vegetation exhibits flexibility to different degrees, leading to different reconfiguration, 

i.e., changes in posture, in response to the incoming flow (Vogel, 1994). The dimensions 
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of their stems, leaves/blades, and roots also vary depending on their growth stage, bed 

type, light and nutrient availability, temperature, as well as local hydrodynamics. 

 

Emergent aquatic plants 

    

Sporobolus 
alterniflorus 

(formerly known as 
Spartina alterniflora) 

Juncus roemerianus Salicornia europaea 

 
 

Typha latifolia 
 
 

    
Rhizophora mangle Avicennia marina Laguncularia racemosa Conocarpus erectus 

Submerged aquatic plants 

    
Elodea canadensis Vallisneria spiralis Zostera marina Posidonia oceanica 

Floating aquatic plants 

    
Nymphaea immutabilis Lemna minor Sargassum polyphyllum Pontederia crassipes 

Figure 1-1. Examples of aquatic vegetation. Image source: Wikimedia Commons. 
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In addition to their various morphological features, aquatic vegetation also forms 

different distribution patterns. First, aquatic vegetation often exhibits zonation along the 

bed profile (e.g., Minnesota Department of Natural Resources, 2021), in which emergent 

and floating species dominate in shallow regions, whereas submerged plants are more 

common in deep regions. Second, aquatic vegetation may form patches, i.e., clusters of 

vegetation, due to seed dispersal (Orth et al., 1994), reproduction (e.g., Wang et al., 2005; 

McLain & Ross, 2005), as well as natural disturbances (Collins & Glenn, 1997; Lake, 

2000; Luisa, 2012), which in turn reshapes the local physical, chemical, and ecological 

environment. 

Aquatic vegetation can act as a nature-based solution for global climate change, 

i.e., they can “protect, sustainably manage, or restore natural ecosystems, that address 

societal challenges such as climate change, human health, food and water security, and 

disaster risk reduction effectively and adaptively, simultaneously providing human 

wellbeing and biodiversity benefits” (World Bank, 2022). Seeking nature-based solutions 

can further accomplish the 17 Sustainable Development Goals (United Nations, 2015), 

specifically sustainable cities and communities (#11), climate action (#13), and life below 

water (#14). 

 

1.1 Flow and Turbulence in Vegetated Channels 

Flow through vegetation is a type of canopy flow, for which fluid moves through 

and/or around a porous canopy of obstacles (roughness elements). When fluid flows past 

an individual obstacle, the velocity directly behind the obstacle is reduced. The area 

downstream of the object, where the flow patterns are influenced by the presence of the 

object, is called the wake. The flow accelerates on both sides of the obstacle, creating 

regions of enhanced velocity, whereas the velocity in the wake region is low, leading to a 

spatial gradient in velocity, which is called velocity shear. The velocity shear produces 

chaotic fluid motion, which is called turbulence (Figure 1-2). In a submerged canopy, 

additionally, flow tends to bypass the underlying canopy, thus the overflow layer above 

the canopy has a greater velocity than that in the canopy layer, which also produces shear 

and turbulence (Figures 1-5 & 1-6). The production of turbulence facilitates mass and 
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momentum exchange (Finnigan, 2000; Nepf, 2012a), thus playing an important role in 

gas (e.g., Tseng & Tinoco, 2021), nutrient (e.g., Okamoto & Nezu, 2010), and particle 

(e.g., Neary et al., 2012) transport. 

 

Figure 1-2. Flow past a cylinder of diameter d and uniform into the page. Upstream uniform 
velocity is U. Arrows indicate flow direction and magnitude. Turbulence is generated in the 
cylinder wake when the stem Reynolds number 𝑅𝑅𝑒𝑒d = 𝑈𝑈𝑈𝑈

𝜈𝜈
> 120, in which 𝜈𝜈 is the kinematic 

viscosity.  

 

The scale of turbulence depends on the dimensions of the shear region, which is 

related to the geometry of the roughness elements. In aquatic canopies, the scales of 

turbulence production range from individual roughness elements (e.g., stems, leaves, or 

roots; Tanino & Nepf, 2008), clusters of roughness elements (e.g., bunches of leaves or 

vegetation patches; Nicolle & Eames, 2011), to canopy height (e.g., Raupach et al., 

1986). First, for individual vegetation elements, the scale of turbulence is set by the wake 

dimension (Tanino & Nepf, 2008). In a sparse array in which wakes are allowed to grow 

with sufficient space, the scale is the dimension of individual vegetation elements, e.g., 

stem diameter. In a dense array in which wake growth is limited by the element spacing, 

the scale is such spacing (Figure 1-3). 
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Figure 1-3. Turbulent eddies of size le generated in a cylinder array of uniform stem diameter d 
and random surface-to-surface spacing s. Angle brackets indicate spatial average. (a) Sparse 
array, in which eddy size scales with cylinder diameter, i.e., le ~ d. (b) Dense array, in which eddy 
size scales with cylinder spacing, i.e., 𝑙𝑙e~〈𝑠𝑠〉. Modified from Tanino and Nepf (2008). 

 

Second, for emergent vegetation clustered in patches, in addition to the element-

scale turbulence, patch-scale turbulence may be generated for 𝜙𝜙 > 0.04 (𝜙𝜙: solid volume 

fraction) downstream of the patch due to the wake formed downstream of the patch 

(Nicolle & Eames, 2011; Zong & Nepf, 2012). However, the patch-scale turbulence will 

be only observed five to ten times patch diameter (5D to 10D) downstream of the patch. 

If the solid volume within the patch is higher than 0.2, then the wake of the circular patch 

approximates that of a solid cylinder (Figure 1-4). 
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Figure 1-4. Scales of turbulence in a patch of cylinders. The cylinders have a uniform stem 
diameter d, and the patch has a diameter of D. 𝜙𝜙 is the solid volume fraction within the patch. (a) 
Sparse patch. No patch-scale turbulence is triggered. (b) Dense patch. Patch-scale turbulence is 
present. Modified from Nicolle and Eames (2011). 

 

Third, aquatic canopies may experience different degrees of submergence. 

Different from terrestrial canopies, in which the canopy only occupies O (1%) of the 

atmospheric boundary layer thickness (Forseth, 2010; Monin, 1970), aquatic canopies 

can occupy a large fraction of the flow depth, thus impacting the entire flow domain 

(Nepf, 2012a). The submergence ratio of a canopy, H/h, is defined as the ratio of flow 

depth (H) to canopy height (h). In aquatic canopies, H/h ranges from 1 (emergent) to 

O(10), which is limited because light is required for vegetation growth (e.g., Duarte, 

1991). In terrestrial canopies, H/h > O(10). For emergent canopies, turbulence primarily 

arises from stem wakes and patch wakes, and for 𝜙𝜙 > 0.01, vegetation-induced drag and 

turbulence are dominant over bed drag and turbulence (Belcher et al., 2003; Yang & 

Nepf, 2019). For long submerged canopies, due to the canopy drag, the vertical velocity 

profile adjusts downstream from upstream of the canopy leading edge and becomes fully 

developed (Figure 1-5; Belcher et al., 2003; Chen et al., 2013). The length scale of in-

canopy flow adjustment, XD (subscript “D” for deflection and deceleration, Chen et al., 

2013), is 
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 𝑋𝑋D = (1 + 𝛼𝛼𝐶𝐶D𝑎𝑎ℎ)𝛽𝛽𝐿𝐿C (1.1) 

in which CD is the canopy drag coefficient, a the frontal canopy area per unit volume, h 

the canopy height, 𝐿𝐿C = 2
𝐶𝐶D𝑎𝑎(1−𝜙𝜙)

 is the canopy drag length scale, and coefficients 𝛼𝛼 =

2.3 ± 0.2 and 𝛽𝛽 = 1.5 ± 0.2 are based on empirical fits presented on Figure 6 in Chen et 

al. (2013). A shear layer develops downstream around the canopy top and becomes fully 

developed at a larger length scale X* (Chen et al., 2013): 

 𝑋𝑋∗ = 𝛾𝛾 𝑈𝑈canopy+𝑈𝑈of
2

𝐿𝐿s
𝑢𝑢∗

 (1.2) 

in which 𝑈𝑈canopy and 𝑈𝑈of (subscript “of” for “overflow”) represent the average velocity 

within and above the canopy in the fully developed region, respectively, shear length 

scale 𝐿𝐿s ≈ 𝛿𝛿e (penetration length, discussed below), and 𝑢𝑢∗ the friction velocity. 

Coefficient 𝛾𝛾 = 8 ± 2 is based on empirical fits presented on Figure 11 in Chen et al. 

(2013). 

 

Figure 1-5. Flow adjustment in a submerged vegetation canopy. Modified from Chen et al. 
(2013). In a canopy of height h, the velocity profile u(z) adjusts over the adjustment length XD, 
and a shear layer grows downstream over X* until fully developed, where the distance between its 
lower limit and the canopy top is defined as the penetration length 𝛿𝛿𝑒𝑒. H is the flow depth. 
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When the canopy density is sufficiently large (ah > 0.1), an inflection point in the 

velocity profile coincides with the canopy top (Figure 1-6; Belcher et al., 2003), which 

induces canopy-scale turbulence that directly penetrates into the canopy over the 

penetration length 𝛿𝛿𝑒𝑒. 𝛿𝛿𝑒𝑒 is inversely proportional to the product of canopy drag 

coefficient, 𝐶𝐶D, and frontal canopy area per unit volume, a, i.e. 𝛿𝛿e ≈  1
3

(𝐶𝐶D𝑎𝑎)−1, which 

was verified for model rigid and flexible aquatic canopies, model terrestrial and urban 

canopies, coral reefs, and dense porous media, with 0.1 < 𝐶𝐶D𝑎𝑎ℎ < 4 (Ghisalberti, 2009, 

Figure 4). However, the penetration length is also restricted by the bed (δe = h) and the 

water surface (δe = H − h, Nepf & Vivoni, 2000), such that 

 𝛿𝛿𝑒𝑒 = min �1
3

(𝐶𝐶D𝑎𝑎)−1, ℎ, 𝐻𝐻 − ℎ�.  (1.3) 

This implies that, if not limited by the water surface, in a sparse canopy (0.1 < ah 

< 0.3), canopy turbulence penetrates throughout the canopy to the bed, whereas for dense 

canopies (ah > 0.3), the production of shear layer turbulence does not extend to the bed 

(Figure 1-6). All the types of turbulence listed above, with scales ranging from element, 

patch to canopy, can in turn impact the hydrodynamic forces and velocity within the 

canopy, which influences sediment transport in vegetated channels. 

 

Figure 1-6. Scales of turbulence in submerged vegetation canopies. Element-scale turbulence is 
present in all cases. (a) Extremely sparse canopy (ah < 0.1), in which canopy-scale turbulence is 
not triggered. (b) Moderately sparse canopy (0.1 < ah < 0.3), in which the growth of canopy-scale 
turbulence is limited by the bottom boundary. (c) Dense canopy (ah > 0.3), in which the growth 
of canopy-scale turbulence is limited by the canopy density (ah). Modified from Nepf (2012a). 
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The magnitude of vegetation turbulence depends on the magnitude of velocity 

shear, which is also related to the vegetation geometry. The turbulent kinetic energy 

(TKE), kt, is set by both the vegetation density (solid volume fraction) and the length 

scale of turbulence. Tanino and Nepf (2008) proposed a model of channel average TKE 

in emergent arrays of rigid circular cylinders: 

 𝑘𝑘t
𝑈𝑈2

=

⎩
⎨

⎧ 1.2 �𝐶𝐶Df
2𝜙𝜙

𝜋𝜋(1−𝜙𝜙)�
2
3 𝑑𝑑 < 0.56𝑠𝑠n

0.77 �𝐶𝐶Df
𝑠𝑠n
𝑈𝑈

2𝐶𝐶Df𝜙𝜙
𝜋𝜋(1−𝜙𝜙)�

2
3 𝑑𝑑 ≥ 0.56𝑠𝑠n

 (1.4) 

in which the channel average TKE is normalized by the channel-averaged velocity U, 𝐶𝐶Df 

is the form drag coefficient, 𝜙𝜙 is the solid volume fraction, d is the stem diameter, and 𝑠𝑠n 

is the average surface-to-surface distance between a cylinder and its nearest neighbor in 

the vegetation array. The normalized channel average TKE increases almost linearly with 

increasing solid volume fraction in the sparse regime (𝑑𝑑 < 0.56𝑠𝑠n, i.e., 𝜙𝜙 < 0.1), but 

approaches a nearly constant value in the dense regime (𝑑𝑑 ≥ 0.56𝑠𝑠n, i.e., 𝜙𝜙 ≥ 0.1; see 

Figure 14 & 15 in Tanino & Nepf, 2008). Note that this model is only valid for emergent 

plants with cylindrical morphology, e.g., reeds and mangrove pneumatophores.  

In the discussions above, the model vegetation consisted of rigid cylinders of 

uniform cylindrical morphology, which mimics the shape of erect main stems. In addition 

to the stems that may or may not branch, aquatic plants have other structures including 

leaves and roots (e.g., mangrove pneumatophores) that exert drag on the flow. For 

example, see Rhizophora mangle in Figure 1-1. In this case, the vertical distribution of 

vegetation frontal area is not uniform. An equivalent diameter, de, may be defined based 

on the geometry of plant elements (e.g., stem diameter and leaf/blade width) to be used as 

an input in the turbulence model derived based on simple morphology (circular 

cylinders). For example, for emergent vegetation, Xu and Nepf (2020) defined an 

effective diameter (𝑑𝑑e) of a cylinder spanning water depth H with the same submerged 

total frontal area 𝐴𝐴f: 

 𝑑𝑑e = 𝐴𝐴f/𝐻𝐻. (1.5) 
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In the field, aquatic vegetation species exhibit different degrees of flexibility. In 

response to the flow, flexible plants will bend, which reduces their height and 

consequently frontal area. This process is called reconfiguration (Figure 1-7). For a single 

flexible blade tied to a stem with negligible height, Luhar and Nepf (2011, 2013) 

proposed a model to predict the ratio of deflected canopy height, h, to the blade length 

(i.e., the height of canopy at erection), l: 

 ℎ
𝑙𝑙

= 1 − 1−𝐶𝐶𝑎𝑎−
1
4

1+𝐶𝐶𝑎𝑎−
3
5�4+𝐵𝐵

3
5�+𝐶𝐶𝑎𝑎−2(8+𝐵𝐵2)

, (1.6) 

in which the Cauchy number 

 𝐶𝐶𝑎𝑎 = 1
2
𝜌𝜌𝐶𝐶𝐷𝐷𝑏𝑏𝑈𝑈hor

2 𝑙𝑙3

𝐸𝐸𝐸𝐸
 (1.7) 

is the ratio of inertial force to elastic restoring force, and the buoyancy parameter 

 𝐵𝐵 = �𝜌𝜌−𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣�𝑔𝑔𝑏𝑏𝑔𝑔𝑙𝑙3

𝐸𝐸𝐸𝐸
 (1.8) 

is the ratio of buoyant restoring force to elastic restoring force. 𝜌𝜌 and 𝜌𝜌veg are the density 

of water and vegetation, respectively. b is the blade width, t the blade thickness, l the 

blade length, Uhor the horizontal velocity (assumed vertically uniform in their study, i.e., 

Uhor = U), g the gravitational acceleration, E the Young’s modulus of the blade, and 𝐼𝐼 =
𝑏𝑏𝑔𝑔3

12
 the moment of inertia of area of the blade. 

Luhar and Nepf (2011) also defined an effective blade length, leff, as the height of 

erect rigid blade that produces the same total drag as a reconfiguring flexible blade, may 

be defined to characterize the drag reduction by reconfiguration: 

 𝑙𝑙eff
𝑙𝑙

= 1 − 1−0.9𝐶𝐶𝑎𝑎−
1
3

1+𝐶𝐶𝑎𝑎−
3
2�8+𝐵𝐵

3
2�

. (1.9) 

Flexible plants may also perform wavy motion (known as monami; Japanese: 藻

波, lit. “water weed wave”, Ackerman & Okubo, 1993; Okamoto & Nezu, 2009; Wang et 

al., 2022) that leads to temporal changes in their height and frontal area. 
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Figure 1-7. Reconfiguration of flexible aquatic vegetation, with increasing Cauchy number Ca. 
When the flexible canopy is prone, no canopy-scale vortices were observed. Modified from 
Okamoto et al. (2016) and Tschisgale et al. (2021). 

 

1.2 Sediment Transport 

Aquatic vegetation has the potential to act as a nature-based solution for global 

climate change. Projects of wetland protection and restoration can be implemented to 

exploit this potential, which requires understanding of the flow and sediment transport 

processes in wetlands where aquatic vegetation resides (Paola et al., 2011; Fagherazzi et 

al., 2017). Specifically, the erosion and deposition of sediment bed (e.g., seabed, 

riverbed, lakebed, delta, desert, floodplain) is reflected by the bed level change and 

determined by the divergence of sediment flux: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔

= − 1
1−𝜆𝜆p

∇ ⋅ 𝑞𝑞s���⃗ , (1.10) 

in which 𝜂𝜂 is bed elevation, t is time, 𝜆𝜆p is bed porosity, and 𝑞𝑞s���⃗ = (𝑞𝑞s,x,𝑞𝑞s,y, 𝑞𝑞s,z) is the 

sediment transport rate vector. Equation 1.10 is called the Exner equation (Exner, 1920, 

1925). To protect the wetland, we require a non-negative change in bed elevation (𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔
≥

0), which may be attributed to increased sediment supply from upstream and/or reduced 

local erosion, both leading to convergence of sediment transport (∇ ⋅ 𝑞𝑞s���⃗ ≤ 0). 
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Sediment transport refers to the movement of sediment particles, which is often 

driven by turbulent fluid flow (e.g., water or air; Julien, 2010) and which can reshape the 

landscape of earth and other planets (Pähtz et al., 2020). Coasts and riverbanks with 

limited sediment supply undergo erosion, i.e., the removal of sediment through sediment 

transport, which can lead to severe property and ecological damages. For example, 

according to the U.S. Climate Resilience Toolkit (2021), every year in the U.S., $500 

million of coastal property loss is due to coastal erosion and $150 million is spent on 

erosion control by the federal government. In addition, aside from beach erosion, more 

than 300 km2 of coastal wetlands, crucial habitats for many coastal species ranging from 

birds, fish, crabs to frogs, are lost annually. 

The classic view of sediment transport in bare channels holds that bed sediments 

enter motion when the applied fluid boundary shear stress exceeds a threshold value 

(Julien, 2010), which is a function of grain size and specific weight. The threshold of 

sediment motion has been recorded empirically in the Shields (1936) diagram (Figure 1-

8; Whitehouse et al., 2000; Guo, 2020), which shows the applied shear stress observed to 

initiate the motion of grains of a specific size. Sediment in motion is divided into bedload 

and suspended load (Figure 1-9; Julien, 2010). Bedload maintains close contact with the 

bed as it moves downstream, whereas suspended load remains in suspension in the water 

column, not in frequent contact with the bed. The focus of this thesis is bedload transport 

in vegetated channels. For suspended load transport in vegetated channels, readers are 

invited to refer to Xu (2022) and Tseng (2022)’s theses. 
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Figure 1-8. Shields diagram. This diagram shows the corresponding critical shear stress (in 
dimensionless form 𝜃𝜃cr = 𝜏𝜏cr

(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50
) for a given sediment grain size (in dimensionless form 

𝐷𝐷∗ = �(𝜌𝜌s−𝜌𝜌)𝑔𝑔
𝜌𝜌𝜈𝜈2

�
1
3 𝑑𝑑50). The curve is Soulsby (1997)’s fit of experimental results. 

 

 

 

Figure 1-9. Illustration of bed load and suspended load. Bed load maintains close contact with 
the bed while in motion (rolling, sliding, and saltation). Suspended load is kept in suspension by 
fluid turbulence. 

 



   
 

26 
 

In classic sediment transport studies, bedload transport rate (sediment mass per 

unit channel width and time) is described as a function of time-mean channel average bed 

shear stress (e.g., Einstein, 1942; Engelund & Hansen, 1967). A critical bed shear stress 

associated with the median grain size of bed sediment is often included in the function 

(e.g., Meyer-Peter & Müller, 1948; Shields, 1936). While this approach can predict 

bedload transport rate in many scenarios, it does not directly account for turbulence that 

is also important in initiating and maintaining sediment transport (Yager et al., 2018). 

Turbulence causes instantaneous fluctuations in both the magnitude and direction of bed 

shear stress through ejection (u’ < 0, w’ > 0) and sweep events (u’ > 0, w’ < 0) that create 

short pulses of higher-than-average bed shear stress (Nelson et al., 1995) and favorable 

pressure fields for particle motion (Shih et al., 2017), both of which enhance sediment 

transport (Sumer et al., 2003; Noguchi & Nezu, 2009; Tinoco & Coco, 2016; Salim et al., 

2017; Tseng & Tinoco, 2021). The enhancement of sediment transport by turbulence is 

more important near the motion threshold (Yang et al., 2016; Benavides et al., 2022). Not 

only the magnitude but also the duration of stress fluctuations is important to sediment 

transport. Both the stress magnitude and the impulse, i.e., product of magnitude and 

duration of a fluctuation, contribute to the onset of grain motion (Diplas et al., 2008; 

Celik et al., 2010).  

In vegetated channels, the shear-stress-based models have been shown to 

underestimate bedload transport by several orders of magnitude (Yager & Schmeeckle, 

2013; Yang & Nepf, 2018), not only because they do not account for vegetation-

generated turbulence, but also due to the difficulty of quantifying total bed shear stress in 

the presence of vegetation (Nepf, 2012b). In unvegetated channels, bed shear stress is 

usually extrapolated from a linear Reynolds stress profile (e.g., Nezu & Rodi, 1986; 

Stacey et al., 1999), or inferred from a correlation between the near-bed TKE and bed 

shear stress (Soulsby, 1983). However, in vegetated channels, the Reynolds stress profile 

is not a good predictor for the bed shear stress (Yang et al., 2015; Conde-Frias et al., 

2023), and TKE has been shown to provide a better prediction than bed shear stress for 

the sediment motion threshold (Yang et al., 2016), the resuspension threshold (Tinoco & 

Coco, 2018; Liu et al., 2021), sediment pickup rate (Xu et al., 2022), and bedload 

transport rate (Yang & Nepf, 2018, 2019). This raises the question: can we predict 
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bedload transport solely from the intensity of near-bed turbulence? Previous studies have 

suggested that bedload transport rate can be described as the product of grain velocity, 

which is correlated with fluid velocity, and the number of grains in motion, which is 

correlated with turbulence (Ancey et al., 2008), but that net sediment transport is 

predominantly controlled by the number of grains in motion (e.g., Radice & Ballio, 2008; 

Roseberry et al., 2012). Both the near-bed TKE and velocity may be required for 

modeling bedload transport. Laboratory experiments are designed to explore this 

question. 

 

1.3 Thesis Structure 

This thesis explored how different vegetation geometries control near-bed turbulence 

and bedload sediment transport. Chapter 2 examines turbulence and bedload transport in 

channels with randomly distributed emergent patches of model vegetation. With constant 

channel velocity and solid volume fraction, TKE and bedload transport decreased with 

increased clustering. The channel average TKE better predicted sediment transport than 

channel average bed shear stress. 

Chapter 3 explores whether stem diameter and element arrangement of emergent 

model vegetation influence channel turbulence and bedload transport. For vegetation 

canopies that are not clustered, bedload transport did not depend on the arrangement and 

stem diameter(s), which was explained by the impulse model for sediment entrainment. 

The classic Meyer-Peter-Müller bedload transport model was recast in terms of TKE to 

predict sediment transport in channels with emergent vegetation. In addition, this chapter 

outlines how to predict the channel average TKE from plant biomass and velocity, 

offering an important step toward predicting turbulence and sediment transport in 

vegetation canopies of real morphology in the field. 

Chapter 4 explores the turbulence and bedload transport in canopies of submerged 

model vegetation. For constant channel velocity, submerged canopies could enhance or 

reduce bedload transport, depending on their degree of submergence. With increasing 

submergence H/h, the near-bed velocity and TKE decreased, and the source of near-bed 

turbulence shifted from stem wake to the shear layer at the canopy top. For high 
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submergence ratio (H/h > 2), TKE was insensitive to changes in H/h and ah. Bedload 

transport was predominantly correlated with near-bed turbulence but also weakly 

correlated with near-bed velocity, so bedload transport monotonically decreased with 

increasing H/h. A model to predict near-bed TKE in submerged canopies was developed 

and used to explore bedload transport with constant energy slope and flexible vegetation, 

commonly seen in the field. In the modeled scenarios, canopies reduced sediment 

transport compared to unvegetated cases. Because of the important contribution of 

canopy-shear-generated turbulence, with constant energy slope, the highest sediment 

transport rates occurred for vegetation with the greatest submergence ratio and the 

smallest canopy density. 

Chapter 5 describes the bedform migration observed during the experiment within 

a submerged model vegetation canopy. The rate of bedform migration was inferred from 

photographs. The migration of bedforms explained the observed cyclical variation in 

channel-averaged sediment transport rates. Finally, Chapter 6 summarizes this 

dissertation and offers several research directions. 
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Chapter 2 Turbulence and Bedload Transport in 

Channels with Randomly Distributed Vegetation 

Patches* 

Laboratory experiments explored the impact of vegetation patchiness on channel-

averaged turbulence and sediment transport. Stems were clustered into 16 randomly 

distributed circular patches of decreasing diameter. For the same channel velocity, the 

sediment transport increased with total stem number but decreased as stems were 

clustered into smaller patch diameters, occupying a smaller fraction of the bed area. The 

channel‐averaged turbulence, which also declined with increased clustering, was shown 

to be a good predictor for sediment transport at the channel scale. Previous models for 

uniform vegetation were adapted to predict both the channel‐averaged turbulence and 

sediment transport as a function of the total number of stems and degree of clustering, 

represented by the fraction of bed covered by patches. This provides a way for numerical 

modelers to represent the impact of subgrid‐scale vegetation patchiness on sediment 

transport. 

 

2.1 Introduction 

Vegetation is often present in rivers and on floodplains, altering the velocity and 

turbulence intensity, which in turn alters sediment transport and bed morphology (e.g., 

Bywater‐Reyes et al., 2018; Rominger et al., 2010; Sukhodolov & Sukhodolova, 2010; 

Yang & Nepf, 2019). Some channel restoration projects use vegetation to stabilize banks 

and floodplains (Surian et al., 2015; Tal & Paola, 2010), but to do so effectively, it is 

crucial to understand how vegetation impacts sediment transport (e.g., Larsen & Harvey, 

 
* This chapter is part of the following published article: 
Shan, Y., Zhao, T., Liu, C., & Nepf, H. (2020). Turbulence and Bed Load Transport in Channels 

With Randomly Distributed Emergent Patches of Model Vegetation. Geophysical Research 
Letters, 47(12), e2020GL087055. doi:10.1029/2020GL087055 
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2010; Reed et al., 1999). While vegetation can reduce local velocity, which promotes 

sediment retention, recent studies have highlighted how vegetation-generated turbulence 

may also enhance resuspension and sediment transport (Tinoco & Coco, 2016, 2018; 

Yager & Schmeeckle, 2013; Yang et al., 2016; Yang & Nepf, 2018). Further, when 

vegetation-generated turbulence is present, sediment transport models based on bed shear 

stress, 𝜏𝜏, do not provide good estimates of sediment transport (Yager & Schmeeckle, 

2013; Yang & Nepf, 2018). Recent studies have suggested that near-bed turbulence, 𝑘𝑘t, 

may be a better predictor of sediment transport. For example, the initiation of both bed 

load and suspended load transport in vegetated channels can be better described by a 

threshold value of 𝑘𝑘t than of 𝜏𝜏 (Tang et al., 2019; Tinoco & Coco, 2018; Yang et al., 

2016). 

The turbulent kinetic energy per fluid mass, 𝑘𝑘t, includes bed-generated turbulence, 

𝑘𝑘t,b, and vegetation-generated turbulence, 𝑘𝑘t,v. Bed-generated turbulence is correlated 

with the bed shear stress, 𝜏𝜏 = 𝜌𝜌𝐶𝐶f𝑈𝑈2, with fluid density, 𝜌𝜌, velocity, U, and bed drag 

coefficient, 𝐶𝐶f (e.g., Biron et al. 2004). Specifically, 𝑘𝑘t,b = 𝜏𝜏/𝜔𝜔, with scale factor 𝜔𝜔 = 

0.20 ± 0.01 (Soulsby, 1981). The vegetation-generated turbulence, 𝑘𝑘t,v, can be estimated 

from 𝑘𝑘t = 𝛾𝛾2 ��𝐶𝐶D,form
𝜙𝜙

1−𝜙𝜙
2
𝜋𝜋
�
2/3

𝑈𝑈2� (Tanino & Nepf, 2008a), in which 𝛾𝛾 is an 

empirical coefficient and 𝜙𝜙 is the solid volume fraction of the vegetation. Yang et al. 

(2016) and Yang and Nepf (2019) combined these two models to predict the total 

turbulence, 𝑘𝑘t , in a channel with emergent vegetation: 

 𝑘𝑘t = 𝐶𝐶f𝑈𝑈2

𝜔𝜔�
𝑘𝑘t,b

+ 𝛾𝛾2 ��𝐶𝐶D,form
𝜙𝜙

1−𝜙𝜙
2
𝜋𝜋
�
2/3

𝑈𝑈2������������������
𝑘𝑘t,v

. (2.1) 

Because only form drag contributes to turbulence generation, Equation 2.1 uses a 

form drag coefficient, 𝐶𝐶D,form = 2[(0.46 ± 0.11) + (3.8 ± 0.5) 𝜙𝜙], described for 

random arrays in Equation (2.10) in Tanino and Nepf (2008a). The second term in 

Equation 2.1 is only valid when the stem wakes are turbulent, that is, Red = 𝑈𝑈𝑑𝑑/𝜈𝜈 > 120, 

with stem diameter d and kinematic viscosity 𝜈𝜈 (Liu & Nepf, 2016). Finally, Equation 2.1 

is valid for stem spacing greater than the stem diameter (Tanino & Nepf, 2008a). 
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The Einstein-Brown equation, based on measurements in a bare channel, provides 

an empirical description of bedload transport as a function of bed shear stress (Brown, 

1950; Einstein, 1950). Yang and Nepf (2018) suggested that this relationship could be 

converted to a 𝑘𝑘t-based model (Equation 2.2 below) using the expression provided above 

(𝑘𝑘t,b = 𝜏𝜏/𝜔𝜔). They verified that bedload transport rate per channel width, 𝑞𝑞s, could be 

predicted from near-bed turbulence in both vegetated and bare channels. Specifically, the 

nondimensional bedload transport, 𝑞𝑞s∗ (=
𝑞𝑞s

𝜌𝜌s�(𝜌𝜌s 𝜌𝜌⁄ −1)𝑔𝑔𝑈𝑈s3
, in which 𝜌𝜌s is the sediment 

density, 𝑑𝑑s is the sediment diameter, and g is the acceleration of gravity), can be 

predicted from the non-dimensional turbulence, 𝑘𝑘t∗ (=
𝑘𝑘t

(𝜌𝜌s 𝜌𝜌⁄ −1)𝑔𝑔𝑈𝑈s
): 

 𝑞𝑞s∗ =  �2.15𝑒𝑒𝛽𝛽 𝑘𝑘t∗⁄ ,
0.27𝑘𝑘t∗

3,
   𝑘𝑘t∗ < 0.95

0.95 < 𝑘𝑘t∗ < 2.74  (2.2) 

in which 𝛽𝛽 = -2.06 is the original scale factor in the Einstein-Brown equation adapted by 

Yang and Nepf (2018) (see also Julien, 2010). Yang and Nepf (2018, 2019) validated the 

turbulence (Equation 2.1) and bedload transport (Equation 2.2) models using experiments 

with model vegetation consisting of staggered arrays of circular cylinders distributed 

uniformly across the channel width, for which the velocity averaged over distances 

greater than the stem spacing was uniform over the channel width (see Figures 4 and 5 in 

Yang & Nepf, 2019). However, in nature, vegetation often exists in individual patches of 

limited width and length. For example, the patch size in rivers has been observed to fall 

between 0.5 and 5 m, smaller than the channel width (e.g., Cornacchia et al., 2018; Sand‐

Jensen & Pedersen, 2008; Schoelynck et al., 2012). The horizontal distribution of patches 

is constrained by feedbacks between hydrodynamic, morphologic, and biologic 

processes, which often results in patches of vegetation within which velocity is lower 

separated by unvegetated regions in which the velocity is higher (e.g., Montgomery et al., 

2018; Temmerman et al., 2007). The present study sought to understand how the patchy 

distribution of vegetation within a channel would influence bed load transport. A model 

was proposed to predict the spatial mean turbulence. The new turbulence model was 

combined with Equation 2.2 to predict bedload transport. 
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2.2 Theory: Turbulence in a Channel with Patchy Vegetation 

In this study, a heterogeneous distribution of vegetation will be represented by an 

idealized configuration of circular patches with bare channel between them. Consider M 

circular patches of vegetation, each of diameter D (grey circles in Figure 2-1) that are 

randomly distributed in an L-m long and B-m wide section of channel. The fraction of 

bed occupied by patches is 𝜙𝜙p = 𝜋𝜋
4
𝑀𝑀𝐷𝐷2

𝐿𝐿𝐵𝐵
. It is used to describe the weighted average 

contribution of the patches to channel‐averaged velocity and turbulence (see Equations 

2.3, 2.6, and 2.7 below).Within each patch, the vegetation is represented by a random 

distribution of cylindrical stems with diameter d and stem density m (stems / bed area), 

such that the solid volume fraction within the patch is 𝜙𝜙 = 𝜋𝜋
4
𝑚𝑚𝑑𝑑2, which is used to 

describe the in‐patch turbulence generation (see Equation 2.7 below). The channel-

averaged solid volume fraction is 𝜙𝜙𝑐𝑐 = 𝜋𝜋
4
𝑛𝑛total
𝐿𝐿𝐵𝐵

𝑑𝑑2, with 𝑛𝑛total the total number of stems in 

the section L × B. 

 

Figure 2-1. (a) Randomly distributed model vegetation patches in an L‐m‐long and B‐m‐wide 
channel section. Gray circles indicate patches within which cylinders were randomly distributed. 
The white area indicates bare sand bed. The individual cylinders were inserted into predrilled 
holes in the baseboard. The staggered array of holes was labeled with a coordinate system (cx,cy), 
a portion of which is shown in the inset above. Within the test section, cx = 1 to 190 and cy = 1 to 
80. (b) Patch Case 2.4, in which each patch had a diameter D = 20 cm and contained 25 dowels. 
The photo shows the area denoted by a red dashed box in subplot (a), in which full and half 
patches were included. 
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A channel with patches of vegetation may have three sources of turbulence: bed 

shear, stem wake, and patch wake. The generation of turbulence within individual stem 

wakes has been observed for both vegetation mimics (rigid cylinders, Nepf & Vivoni, 

2000; Poggi et al., 2004; Tanino & Nepf, 2008a) and real vegetation (King et al., 2012), 

and it occurs when the stem Reynolds number, 𝑅𝑅𝑒𝑒𝑈𝑈(= 𝑈𝑈𝑈𝑈
𝜐𝜐

), > 120 (Liu & Nepf, 2016). 

Patch-scale vortices can form in the wake of a porous patch when 𝜙𝜙 > 0.05. Because the 

porosity of the patch allows bleed flow into the wake, the patch-scale vortices appear five 

to ten diameters downstream from the patch (Nicolle & Eames, 2011; Zong & Nepf, 

2012). The present study considered a distribution of patches spaced at distances of no 

more than six patch diameters, in which case the flow was redirected by neighboring 

patches before the patch wake developed vortices, so that patch-scale turbulence was not 

generated. This was confirmed by flow visualization, which is described and illustrated in 

Figure A1-1 in the Appendices. For this reason, patch-scale turbulence will be not 

considered here. The channel-averaged turbulent kinetic energy, 〈𝑘𝑘t〉, is defined as the 

area-weighted average of the turbulence generated in the bare channel and within the 

patches. The brackets denote the spatial average. 

Because the vegetation contributes to flow resistance, the average velocity within a 

patch, Up, is smaller than the spatially averaged velocity in the bare channel, Ub. These 

velocities are related to the channel-averaged velocity, Uo, by the conservation of mass:  

 𝑈𝑈𝑜𝑜 = 𝑈𝑈𝑏𝑏�1 − 𝜙𝜙𝑝𝑝� + 𝑈𝑈𝑝𝑝𝜙𝜙𝑝𝑝.  (2.3) 

Up is defined as the average of the velocity entering, assumed to be Ub, and exiting, 

Ue, each patch; that is, 

 𝑈𝑈𝑝𝑝 = (𝑈𝑈𝑏𝑏 + 𝑈𝑈𝑒𝑒)/2 (2.4) 

The velocity exiting the patch, Ue, is estimated from Equation (5) in Chen et al. 

(2012), which describes the velocity exiting an individual patch: 

 𝑈𝑈𝑣𝑣
𝑈𝑈𝑏𝑏

= 1 − 𝜇𝜇 𝐷𝐷
𝐿𝐿p

, (2.5) 
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in which 𝜇𝜇 = 0.42 ± 0.03. 𝐿𝐿p = ��2(1−𝜙𝜙)
𝐶𝐶D𝑎𝑎

�
2

+ �𝐷𝐷
2
�
2
�
1 2⁄

is the flow adjustment length 

scale within the patch (Rominger & Nepf, 2011), and 𝑎𝑎 (= md) is the frontal area per 

volume inside the patch, and 𝐶𝐶D is the drag coefficient, which is a function of 𝜙𝜙 and 

𝑅𝑅𝑒𝑒d,p = 𝑈𝑈p𝑑𝑑/𝜐𝜐, as described for random cylinder distributions in Tanino and Nepf 

(2008b). Since Up is required for 𝑅𝑅𝑒𝑒d,p, an iterative solution of Equations 2.3-2.5 is 

needed. Starting from 𝐶𝐶D = 1, 𝐿𝐿p was estimated and used to obtain Ue from Equation 2.5, 

which in turn was used in Equation 2.4 to estimate Up. Next, 𝑅𝑅𝑒𝑒d,p and 𝜙𝜙 were used to 

estimate a new 𝐶𝐶D (Tanino & Nepf, 2008b). The iteration was repeated until consecutive 

estimates of 𝐶𝐶D differed by less than 5%.  

The bed-generated turbulence in Equation 2.1 is modified to be a weighted average 

of the bare and patch regions, with 𝜙𝜙p defining the area occupied by vegetation. The 

channel-averaged bed-generated turbulence is then 

 〈𝑘𝑘t,b〉 = 𝐶𝐶f
𝜔𝜔
𝑈𝑈b2�1 − 𝜙𝜙p����������

 bare channel

+ 𝐶𝐶f
𝜔𝜔
𝑈𝑈p2𝜙𝜙p�����

 inside patches

 (2.6)  

The stem turbulence is described by the second term in Equation 2.1 using the 

patch velocity, 𝑈𝑈p. The stem contribution to the channel average is then  

 〈𝑘𝑘t,v〉 = 𝛾𝛾2 ��𝐶𝐶D,form
𝜙𝜙

1−𝜙𝜙
2
𝜋𝜋
�
2/3

𝑈𝑈p2�𝜙𝜙p (2.7) 

Finally, the channel-averaged turbulent kinetic energy, 〈𝑘𝑘t〉, is the sum of 

Equations 2.6 and 2.7. 
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2.3 Experimental Methods 

Experiments were designed to explore how the vegetation patchiness impacts 

bedload transport and to test the models for channel-averaged turbulence (Equations 2.6 

and 2.7) and bedload transport (Equation 2.2). Vegetation clustering was increased by 

distributing the same number of stems into patches of smaller patch diameter, D, which 

resulted in a smaller value of 𝜙𝜙p, the fraction of bed covered by vegetation patches. That 

is, a higher clustering corresponded to a smaller patch diameter. The experiments were 

performed in a 10-m-long and 1-m-wide flume with a horizontal bed, which recirculated 

water and sediment through separate pipes. The flow depth was H = 12.0 ± 0.4 cm, and 

the channel-averaged velocity was Uo = 30.0 ± 0.5 cm/s. The Reynolds number 𝑅𝑅𝑒𝑒 (=

𝑈𝑈o𝑅𝑅/𝜐𝜐, with the hydraulic radius R) was 29,000, and the Froude number, 𝐹𝐹𝐹𝐹 (= 

𝑈𝑈o/�𝑔𝑔𝐻𝐻), = 0.3 < 1, indicating that the flow was turbulent and subcritical.  

The model vegetation consisted of circular cylinders arranged in randomly 

distributed patches (Figure 2-1) or in a uniform random distribution that covered the 

entire test section (Figure A1-2). The cylinders do not represent a specific macrophyte but 

resemble the morphology of a reed, the base of a tree, or a mangrove root (e.g., 

Lightbody & Nepf, 2006; Liu et al., 2018; Shan et al., 2019; Tinoco & Coco, 2016; 

Zhang et al., 2018). The cylinder diameter, d = 0.6 cm, was chosen based on the range of 

scales found in reeds, and young plants on floodplains, d = 0.2 to 1.2 cm (e.g. Lightbody 

& Nepf, 2006; Manners et al., 2015). The cylinders extended through the water depth, 

modeling emergent vegetation. The channel-averaged solid volume fraction, 𝜙𝜙c = 0.005, 

0.015, and 0.02, were chosen based on the observed range on a reed bed, 𝜙𝜙c = 0.001 to 

0.04 (Coon et al., 2000; Grace & Harrison, 1986). The control case (Case 1.1) was with a 

bare bed, that is, no cylinders. 

In each case with patches, M = 16 circular patches were randomly distributed 

within the test section (2.4 m × 1 m, Figure 1a). The patch diameter, 𝐷𝐷, was varied from 

6.5 to 30 cm, resulting in patch area fractions 𝜙𝜙p = 0.01 to 0.24. The length of the test 

section was limited by the position of the sediment return. Because the flow adjusts to 

(deflects around) each patch, a fully developed flow was not present in the test section. 
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Predrilled holes in the baseboards were used to determine the patch positions. The 

streamwise, lateral, and vertical directions were denoted as x, y, and z, respectively, with 

the origin at the right sidewall at the leading edge of the test section. The test section had 

cx = 1 to 190 holes in the x direction and cy = 1 to 80 holes in the y direction. The hole 

closest to the origin was (𝑐𝑐x, 𝑐𝑐y) = (1, 1), as shown in Figure 2-1a. The center position 

(hole) of each patch was determined using the MATLAB random number generator. To 

avoid overlapping patches, a minimum distance of D was allowed between the centers of 

any two patches. Half patches were constructed if the distance between the patch center 

and the side wall was less than D/2. Patch distributions for Cases 2.1 to 4.3 (Table 2.1) 

are shown in Figures A1-3 to A1-5. For the uniform random array, the position of each 

cylinder was randomly selected. 

A 5-cm thick layer of sand was placed on top of the baseboards and manually 

flattened. The mean sand grain diameter was 𝑑𝑑s= 0.5 mm, and the sand density was 𝜌𝜌s = 

2.65 g/cm3. The sediment transport rate was measured by using a T-valve to divert 

sediment from the sand recirculation pipe into a mesh bag for a measured collection time. 

The mesh bag was hung to drain and shook to remove excess water. The sand was then 

placed into a container with 5 L of water, and the displacement of water provided a 

measure of the sediment volume (𝑉𝑉) and mass (𝜌𝜌s𝑉𝑉). The transport rate per unit channel 

width, qs (g m-1 s-1), was calculated as the collected sand mass divided by the collection 

time and the width of the channel. Four replicate measurements were used to estimate the 

mean qs and standard error, 𝜎𝜎𝑞𝑞s. This was repeated every 3 hr until the measured 

𝑞𝑞s (±𝜎𝜎𝑞𝑞s) was the same as the previous, indicating that the bedload transport had reached 

equilibrium, which required 14 to 30 hours of running time.  

After transport equilibrium was achieved, a Nortek Vectrino with a side-looking 

probe was used to measure the instantaneous velocities 𝑢𝑢(𝑡𝑡), 𝑣𝑣(𝑡𝑡) and 𝑤𝑤(𝑡𝑡), 

corresponding to the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) directions, respectively, along lateral transects with a 5-cm 

interval between measurements. The velocity was measured at mid-depth (z = 6 cm). 

Vertical profiles confirmed that measurements at mid-depth provided representative 

values of depth-averaged velocity (see Figure A1-6a). Further, the mid‐depth turbulence 

was similar to the near-bed turbulence (see Figure A1-6b). Specifically, the ratio of near‐
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bed to mid‐depth turbulence was 1.1 ± 0.3, indicating bedforms did not contribute 

significantly to turbulence. MATLAB code was used to extract time-averaged (𝑢𝑢�, 𝑣𝑣 �and 

𝑤𝑤�) and fluctuating (𝑢𝑢′, 𝑣𝑣′ and 𝑤𝑤′) velocities. The turbulent kinetic energy was defined as 

𝑘𝑘t = 0.5 �𝑢𝑢′  2����� + 𝑣𝑣′  2����� + 𝑤𝑤′ 2������. The noise in the velocity and turbulence measurements 

was 0.1 cm/s and 0.15 cm2/s2, respectively, determined from measurements in still water. 

For each condition, a lateral profile of velocities was measured at two streamwise 

positions. The channel-averaged turbulent kinetic energy was determined as the average 

over both transects, which was denoted as 〈𝑘𝑘t〉. A channel-averaged 〈𝑘𝑘t〉 based on eight 

transects differed by only 6% from one based on two transects, confirming that two 

transects were sufficient (Figure A1-7b). The maximum value of turbulent kinetic energy 

within the two transects was denoted kt,max. For patchy cases, transects of time mean 

velocity and turbulent kinetic energy are summarized in Table A1-1. 
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Table 2.1: Summary of Experimental Parameters 

Case pattern Case D 
(m) 

m 
(m-2) ntotal npatch 𝜙𝜙c 𝜙𝜙p 𝜙𝜙 Ub 

(cm/s) 
Up 

(cm/s) 
𝑞𝑞s ± 𝜎𝜎𝑞𝑞s 
(g m-1 s-1) 

〈𝑘𝑘t〉 ± 𝜎𝜎𝑘𝑘t 
(cm2/s2) 

𝑘𝑘t,max 
(cm2/s2) 

Bare channel 1.1 - - 0 0 0 - - 30.0 30.0 0.20 ± 0.04 14 ± 1 - 

Patches 

2.1a 0.065 7,538 400 25 0.005 0.02 0.24 30.3 17.9 1.0 ± 0.3 23 ± 3 54 
2.2a 0.1 3,185 400 25 0.005 0.05 0.10 30.5 21.3 1.2 ± 0.3 21 ± 2 35 
2.3 0.15 1,415 400 25 0.005 0.12 0.05 30.7 24.8 1.9 ± 0.5 23 ± 3 97 
2.4a 0.2 796 400 25 0.005 0.21 0.03 31.0 26.5 1.6 ± 0.3 26 ± 4 92 
2.5a 0.3 354 400 25 0.005 0.47 0.01 32.1 27.9 2.5 ± 0.3 39 ± 5 96 
3.1 0.15 4,246 1,200 75 0.015 0.12 0.14 31.6 18.4 3.7 ± 1.0 25 ± 3 92 
3.2 0.2 2,389 1,200 75 0.015 0.21 0.08 32.7 20.2 5.2 ± 0.5 25 ± 3 81 
3.3 0.3 1,061 1,200 75 0.015 0.47 0.03 36.2 23.3 6.5 ± 0.4 32 ± 3 61 
4.1 0.2 3,185 1,600 100 0.02 0.21 0.10 33.0 18.8 4.6 ± 0.8 26 ± 3 85 
4.2 0.25 2,038 1,600 100 0.02 0.33 0.07 34.9 20.2 7.0 ± 0.6 30 ± 5 160 
4.3 0.3 1,415 1,600 100 0.02 0.47 0.05 37.8 21.6 9.8 ± 1.0 32 ± 3 86 

Uniform 
random 

distribution 

5.1 - - 400 - 0.005 1 - 30.2 30.2 2.8 ± 0.6 25 ± 5 126 
5.2 - - 1,200 - 0.015 1 - 30.5 30.5 8.4 ± 0.5 43 ± 3 62 
5.3 - - 1,600 - 0.02 1 - 30.6 30.6 13 ± 1 48 ± 4 126 

Note: D is the patch diameter; m is the cylinder density in the patch; ntotal is the total number of cylinders in the test section; npatch is 
the number of cylinders per patch; 𝜙𝜙c (=

𝜋𝜋
4
𝑛𝑛total
𝐿𝐿𝐵𝐵

𝑑𝑑2) is the channel-averaged solid volume fraction, with bed area LB and cylinder 

diameter d; 𝜙𝜙p (= 𝜋𝜋
4
𝑀𝑀𝐷𝐷2

𝐿𝐿𝐵𝐵
) is the patch area fraction, with n = 6.67 m-2 the number of patches per unit bed area; 𝜙𝜙(= 𝜋𝜋

4
𝑚𝑚𝑑𝑑2) is the 

solid volume fraction inside the patch; Ub and Up are the spatial mean velocities in the bare channel and in a patch, respectively, using 
Equations 2.3-2.5. qs is the sediment transport rate per channel width. 〈𝑘𝑘t〉 and 𝑘𝑘t,max are the mean and maximum turbulent kinetic 
energy measured over two transects, respectively. 
aCases for which two realizations were performed with different patch distributions. For each patch case, sixteen circular patches were 
constructed in the test section. 
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2.4 Results and Discussion 

 

Figure 2-2. (a, c, and e) Measured (red symbols) and predicted (solid curve, Equations 2.2, 2.6, 
and 2.7) bedload transport, qs, as a function of patch diameter, D. (b, d, and f) Measured (red 
symbols) and predicted (Equations 2.6, and 2.7) channel-averaged turbulent kinetic energy, 〈𝑘𝑘t〉. 
〈𝑘𝑘t,b〉 is predicted from Equation 2.6 using Cf = 0.004, Ub, Up, and 𝜙𝜙p (orange dashed line), and 
〈𝑘𝑘t,v〉 is predicted from Equation 2.7 using γ = 0.8, 𝜙𝜙, Up, and 𝜙𝜙p (blue dashed lines). All 
parameters are summarized in Table 2.1. The blue symbols above the axis label “R” indicate 
uniform random distributions (𝜙𝜙p = 1). The red symbols indicate randomly distributed patches. 
The green symbols in (a) and (b) indicate the bare channel case. Channel-averaged solid volume 
fractions are (a, b) 𝜙𝜙c = 0.005, (c, d) 𝜙𝜙c = 0.015, and (e, f) 𝜙𝜙c = 0.02. 
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The channel-averaged turbulent kinetic energy predicted from Equations 2.6 and 

2.7 was compared to the measured values (Figure 2-2a). The bed drag coefficient was 𝐶𝐶f 

= 0.004 ± 0.001, based on 𝐶𝐶f = [5.75 log (2𝐻𝐻 𝑑𝑑𝑠𝑠⁄ )]−2 from Julien (2010). The scale 

coefficient 𝜔𝜔 = 0.22 ± 0.01 was determined from the bare bed condition (green dot in 

Figure A1-8a), which was consistent with previous estimates (0.20 ± 0.01 in Soulsby, 

1981). For cases with patches, the scale constant 𝛾𝛾 = 0.8 ± 0.4 (95% CI) was determined 

using a least squares fit of predicted 〈𝑘𝑘t〉 to measured values from all cases in Table 2.1. 

This value was consistent with previous measurements in uniform random arrays (γ = 1.1, 

Tanino & Nepf, 2008a). Note that Yang and Nepf (2019) fit a slightly smaller value (γ = 

0.6) to measurements of turbulence in uniform staggered arrays, suggesting that 

staggered arrays produce slightly less turbulence, possibly due to the influence of 

upstream, in-line wakes. 

The predicted turbulent kinetic energy was used to predict the sediment transport 

rate using Equation 2.2, which was then fit to the measured sediment transport rate (Table 

2.1) with 𝛽𝛽 = -1.6 ± 0.3 (Figure A1-8). The combined prediction of 〈𝑘𝑘t〉 (Equations 2.6 

and 2.7) and qs (Equation 2.2) worked across all cases with randomly arranged cylinders 

(this study, Figure A1-8b) and for most cases with staggered cylinders from Yang and 

Nepf (2019, diamonds in Figure A1-8b) with similar flow depth h (=10 to 12 cm), 

channel velocity Uo (= 21 to 43 cm/s), and sediment size (0.5 mm) to this study. An 

overprediction in staggered arrays was noted at low values of sediment transport. This is 

likely due to the fact that the turbulence model used here (with γ = 0.8) over predicted the 

turbulence in the staggered array (with γ = 0.6), and the overprediction of 〈𝑘𝑘t〉 contributed 

to an overprediction of qs. 

For each channel-averaged stem density (𝜙𝜙c), the bedload transport was highest 

for the uniform, random distribution (blue dots in Figure 2-2) and decreased as patches 

were formed and decreased in size (Figures 2-2a, 2-2c, and 2-2e). The sediment transport 

rate was highest and the impact of clustering (decreasing patch size) was greatest for the 

highest channel-averaged stem density (𝜙𝜙c = 0.02, Figure 2e). The trends in qs were 

generally consistent with the trends in measured turbulence. Specifically, for 𝜙𝜙c = 0.015 

and 0.02, the peak turbulence was associated with the uniform random distribution and 
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turbulence level decreased as patches formed and decreased in size. The smallest bedload 

transport rate and turbulence level were observed in the bare channel (green points in 

Figures 2-2a and 2-2b). 

By describing the relative contributions of bed- and vegetation- generated 

turbulence, Equations 2.6 and 2.7 provided insight into the changes in bedload transport 

associated with changes in the total number of stems and patch size. Specifically, the 

trends in turbulence, and by association in sediment transport, were due mostly to 

changes in vegetation-generated turbulence. As the stem distribution changed, the bed-

generated turbulence (〈𝑘𝑘t,b〉, orange dashed lines in Figure 2-2) had almost no change 

(less than 5%), whereas the vegetation-generated turbulence (〈𝑘𝑘t,v〉, blue dashed lines in 

Figure 2-2) approximately tripled between the smallest patch size (smallest 𝜙𝜙p) and the 

uniform random distribution. The relative contributions of bed- and vegetation- generated 

turbulence also depended on the total amount of vegetation present. For example, for the 

randomly distributed stems at the smallest channel-averaged stem density (𝜙𝜙c = 0.005), 

the vegetation-generated turbulence was smaller than the bed-generated turbulence 

(Figure 2-2b). Because of this, clustering the vegetation into patches did not have a 

significant impact on channel-averaged turbulence (Figure 2-2b) or bedload transport 

(Figure 2-2a). In contrast, for the higher stem densities (𝜙𝜙c = 0.015 and 0.02), vegetation-

generated turbulence exceeded bed-generated turbulence in the random distribution, so 

that when clustering was introduced, the drop in vegetation-generated turbulence had a 

significant impact on channel-averaged turbulence (Figure 2-2d and 2-2f) and bedload 

transport (Figures 2-2c and 2-2e). The clustering of vegetation into patches decreased the 

velocity impacting individual stems, which decreased the stem-generated turbulence 

(Equation 2.7). Specifically, as the patches became more clustered (smaller D and higher 

𝜙𝜙), the velocity within the patch, Up, declined (Table 2.1). The decrease in Up could be 

more pronounced if the patch was placed directly in the wake of the upstream patch (e.g., 

Ghani et al., 2019). In addition, as clustering increased (decreasing D), a smaller fraction 

of bed area contained patches (smaller 𝜙𝜙p). These two trends led to a decline in 〈𝑘𝑘t,v〉.  
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Figure 2-3. Measured sediment transport rate, 𝑞𝑞s∗  = 𝑞𝑞s

𝜌𝜌s�(𝜌𝜌s 𝜌𝜌⁄ −1)𝑔𝑔𝑈𝑈s3
, versus (a) channel-averaged 

turbulent kinetic energy, 〈𝑘𝑘t∗〉 = 〈𝑘𝑘t〉
(𝜌𝜌s 𝜌𝜌⁄ −1)𝑔𝑔𝑈𝑈s

, from Equations 2.6 and 2.7, and versus (b) channel-

averaged bed shear stress, 〈𝜏𝜏∗〉 = 〈𝜏𝜏〉
(𝜌𝜌s 𝜌𝜌⁄ −1)𝑔𝑔𝑈𝑈s

, with 〈𝜏𝜏〉 = 𝐶𝐶f𝑈𝑈b2�1 −𝜙𝜙p� + 𝐶𝐶f𝑈𝑈p2𝜙𝜙p. The vertical 
gray bar denotes 〈𝜏𝜏〉 = 𝐶𝐶f𝑈𝑈o2 with bar width indicating the uncertainty due to the propagated 
uncertainty of Cf and Uo. Patch cases are shown with red circles, and uniform random 
distributions are shown with blue circles. 
 

The variation in measured bedload transport, qs, exhibited a dependence on 

channel-averaged turbulence, but no dependence on channel-averaged bed-shear stress, 

which was estimated as 〈𝜏𝜏〉 = 𝐶𝐶f𝑈𝑈b2�1 − 𝜙𝜙p� + 𝐶𝐶f𝑈𝑈p2𝜙𝜙p (Figure 2-3). The bedload 

transport increased with increasing 〈𝑘𝑘t〉, but had no clear dependence on 〈𝜏𝜏〉. Specifically, 

across the range of patch conditions, the bed shear stress was unchanged within 

uncertainty, yet the bedload transport exhibited a more than tenfold change (Figure 2-3b 

and Table 2.1). Further, the bedload transport had little dependence on peak turbulence, 

kt,max, because kt,max did not vary consistently with the spatial average 〈𝑘𝑘t〉. Specifically, 

𝑘𝑘t,max/〈𝑘𝑘t〉 exhibited a wide range of value (between 1.4 and 5.4) that did not vary 

systematically with either the channel-scale vegetation density, 𝜙𝜙c, or the fraction of 

channel occupied by vegetation patches, 𝜙𝜙p (see Figure A1-9). In order to impact the 

channel-averaged sediment transport directly, 𝑘𝑘t,max would need to occur over a spacing 

smaller than or equal to the individual sediment excursions. It appears that this condition 

was not met in our study. 
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The results above may be applied to hydrodynamic and morphodynamic models, 

which is further discussed in Shan et al. (2020). 

 

2.5 Summary 

This study measured sediment transport in a channel with model vegetation and 

considered both uniform random distributions of individual stems and heterogeneous 

distributions with stems clustered into patches separated by bare bed. For the same 

channel velocity, the highest turbulence and bed load transport was observed with the 

uniform random distribution, and both turbulence and bed load transport decreased as 

stems were clustered into progressively smaller patch diameters, associated with a 

smaller fraction of bed area occupied by stems (smaller 𝜙𝜙p). For both uniform and 

clustered distributions of model vegetation the channel-averaged turbulence was shown 

to be a better predictor for sediment transport than channel-averaged bed shear stress. A 

model was developed to predict the channel-averaged turbulence and sediment transport 

as a function of channel‐averaged vegetation density (𝜙𝜙c) and degree of clustering, 

represented by vegetation patch area fraction (𝜙𝜙p). This provides a way for numerical 

modelers to represent the impact of subgrid-scale heterogeneity in vegetation distribution 

on sediment transport. 

  



   
 

50 
 

Chapter 2 References 
Brown, C. (1950). Sediment transportation. Engineering Hydraulics, 12, 769–857. 
Biron, P., Robson, C. Lapointe, M., and Gaskin, S. (2004). Comparing different methods of bed 

shear stress estimates in simple and complex flow fields, Earth Surf. Processes Landforms, 
29(11), 1403–1415. https://doi.org/10.1002/esp.1111 

Bywater-Reyes, S., Diehl, R., and Wilcox, A. (2018). The influence of a vegetated bar on channel-
bend flow dynamics. Earth Surface Dynamics, 6(2), 487-503. https://doi.org/10.5194/esurf-6-
487-2018 

Cornacchia, L., Van De Koppel, J., Van Der Wal, D., Wharton, G., Puijalon, S., Bouma, T.J., 
(2018). Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes 
promotes diversity in streams. Ecology 99 (4), 832–847. https://doi. org/10.1002/ecy.2177.  

Chen, D., and Jirka, G. (1995). Experimental study of plane turbulent wakes in a shallow water 
layer. Fluid dynamics research, 16(1), 11-41. 

Chen, Z., Ortiz, A., Zong, L., and Nepf, H. (2012). The wake structure behind a porous obstruction 
and its implications for deposition near a finite patch of emergent vegetation. Water Resources 
Research, 48(9), W09517. https://doi.org/10.1029/2012WR012224.  

Coon, W., Bernard, J., Seischab, F. (2000). Effects of a Cattail Wetland on Water Quality of 
Irondequoit Creek near Rochester, New York (No. 2000-4032). US Geological Survey. 

Diplas, P., Dancey, C., Celik, A., Valyrakis, M., Greer, K., and Akar, T. (2008). The role of impulse 
on the initiation of particle movement underturbulent flow conditions. Science, 322(5902), 
717–720. 

Einstein, H. (1950). The bed-load function for sediment transportation in open channel flows 
(Technical Bulletin No 1026). Washington, DC: US Department of Agriculture. 

Grace, J., and Harrison, J. (1986). The biology of Canadian weeds, Typha latifolia L., Typha 
angustifolia, L., and Typha xglauca Godr., Canadian Journal of Plant Science, 66, 361-37, 
https://doi.org/10.4141/cjps86-051 

Julien, P. (2010). Erosion and Sedimentation, 2nd edition, Cambridge University Press [p198] 
Larsen, L., and Harvey, J. (2010). How vegetation and sediment transport feedbacks drive 

landscape change in the Everglades and wetlands worldwide. The American 
Naturalist, 176(3), E66-E79. 

Liu, C, Nepf, H. (2016). Sediment deposition within and around a finite patch of model vegetation 
over a range of channel velocity. Water Res. Res., 2016, 52(1): 600-612. 
https://doi.org/10.1002/2015WR018249. 

Liu, C, Hu, Z., Lei, J., Nepf, H. (2018). Vortex structure and sediment deposition in the wake 
behind a finite patch of model submerged vegetation. J. Hydr. Eng., 144(2), 04017065. 
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001408. 

Lightbody, A., and Nepf H. (2006). Prediction of velocity profiles and longitudinal dispersion in 
emergent salt marsh vegetation, Limnol. Oceanogr., 51(1), 218–228. 
https://doi.org/10.4319/lo.2006.51.1.0218. 

Manners, R., Wilcox, A., Kui, L., Lightbody, A., Stella, J., and Sklar, L. (2015). When do plants 
modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment 
supply rates, JGR - Earth Surf., 120, 325–345, doi:10.1002/ 2014JF003265. 

Reed, D., Spencer, T., Murray, A., French, J., and Leonard, L. (1999). Marsh surface sediment 
deposition and the role of tidal creeks: Implications for created and managed coastal 
marshes. J. Coastal Conservation, 5(1), 81-90. 
https://xs.scihub.ltd/https://doi.org/10.1007/BF02802742 

Rominger, J., Lightbody, A., and Nepf, H. (2010). The effects of vegetation on sand bar stability 
and stream hydrodynamics. J. Hydr. Eng. 136(12):994-1002, doi:10.1061/(ASCE)HY.1943-
7900.0000215 

https://xs.scihub.ltd/https:/doi.org/10.1002/esp.1111


   
 

51 
 

Rominger, J., Nepf, H.  (2011). Flow adjustment and interior flow associated with a rectangular 
porous obstruction. J. Fluid Mech., 680, 636–659. https://doi.org/10.1017/jfm.2011.199. 

Shan Y., Chao, L., Nepf, H. (2019). Comparison of drag and velocity in model mangrove forests 
with random and in-line tree distributions. J. Hydrology, 568: 735-746. 
https://doi.org/10.1016/j.jhydrol.2018.10.077 

Sukhodolov, A., Sukhodolova, T. (2010). Case study: effect of submerged aquatic plants on 
turbulence structure in a lowland river. J. Hydraul. Eng. 136 (7), 434–446. 
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000195. 

Schoelynck, J., De Groote, T., Bal, K., Vandenbruwaene, W., Meire, P., and Temmerman, S. 
(2012). Self-organized patchiness and scale-dependent bio-geomorphic feedbacks in aquatic 
river vegetation. Ecography 35 (8), 760–768. https://doi.org/10.1111/j.1600-
0587.2011.07177.x.  

Sand-Jensen, K., Pedersen, M. (2008). Streamlining of plant patches in streams. Freshwater Biol. 
53 (4), 714–726. https://doi.org/10.1111/j.1365-2427.2007. 01928.x. 

Surian, N., Barban, M., Ziliani, L., Monegato, G., Bertoldi, W., and Comiti, F. (2015). Vegetation 
turnover in a braided river: frequency and effectiveness of floods of different magnitude. Earth 
Surface Processes and Landforms, 40(4), 542-558. https://doi.org/10.1002/esp.3660 

Soulsby, R. (1981). Measurement of the Reynolds stress components close to a marine sand bank, 
Marine Geology, 42: 35-47. https://doi.org/10.1016/0025-3227(81)90157-2 

Tang, C., Lei, J. and Nepf, H. (2019). The Impact of a Vegetation-generated Turbulence on the 
Critical Wave-velocity for Sediment Resuspension. Water Res. Res., 55, 5904–5917. 
https://doi.org/10.1029/2018WR024335 

Tanino, Y., and Nepf, H. (2008). Lateral dispersion in random cylinder arrays at high Reynolds 
number. J. Fluid Mechanics, 600, 339-371. https://doi.org/10.1017/S0022112008000505 

Tal, M., Paola, C. (2010). Effects of vegetation on channel morphodynamics: results and insights 
from laboratory experiments. Earth Surface Proc. and Land. 35: 1014–1028. 
https://doi.org/10.1002/esp.1908 

Tinoco, R., and Coco, G. (2016). A laboratory study on sediment resuspension within arrays of 
rigid cylinders. Advances in Water Resources, 92, 1-9. 
https://doi.org/10.1016/j.advwatres.2016.04.003 

Widdows, J., Pope, N., and Brinsley, M. (2008). Effect of Spartina anglica stems on near-bed 
hydrodynamics, sediment erodability and morphological changes on an intertidal 
mudflat. Marine Ecol. Prog. Ser., 362, 45-57. https://doi.org/10.3354/meps07448 

Yang, J. Q., Chung, H., & Nepf, H. M. (2016). The onset of sediment transport in vegetated 
channels predicted by turbulent kinetic energy. Geophysical Research Letters, 43(21), 11-261. 
https://doi.org/10.1002/2016GL071092 

Yang, J. Q., and Nepf, H. (2018). A Turbulence‐Based Bed-Load Transport Model for Bare and 
Vegetated Channels. Geophys. Res. Letters, 45(19), 10-428. 
https://doi.org/10.1029/2018GL079319 

Yang, J. Q., and Nepf, H. (2019). Impact of vegetation on bedload transport rate and bedform 
characteristics. Water Res. Res., 55, 6109–6124. https://doi.org/10.1029/2018WR024404 

Yager, E., and Schmeeckle, M. (2013). The influence of vegetation on turbulence and bed load 
transport. JGR - Earth Surface, 118, 1585–1601. https://doi.org/10.1002/jgrf.20085 

Zhang, Y., Tang, C., and Nepf, H. (2018). Turbulent kinetic energy in submerged model canopies 
under oscillatory flow. Water Res. Res., 54, doi.org/10.1002/2017WR021732 

 
  

https://doi.org/10.1016/j.jhydrol.2018.10.077
https://xs.scihub.ltd/https:/doi.org/10.1002/esp.3660
https://doi.org/10.1016/0025-3227(81)90157-2
https://doi.org/10.1017/S0022112008000505
https://xs.scihub.ltd/https:/doi.org/10.1002/esp.1908
https://doi.org/10.1016/j.advwatres.2016.04.003
https://doi.org/10.3354/meps07448
https://doi.org/10.1002/2016GL071092
https://doi.org/10.1029/2018GL079319


   
 

52 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 

  



   
 

53 
 

Chapter 3 Turbulence Dictates Bedload Transport in 
Vegetated Channels without Dependence on Stem 
Diameter and Arrangement† 

 

Vegetation provides habitat and nature-based solutions to coastal flooding and 

erosion, drawing significant interest in its restoration, which requires an understanding of 

sediment transport and retention. Laboratory experiments examined the influence of stem 

diameter and arrangement on bedload sediment transport by considering arrays of 

different stem diameter and mixed diameters. Bedload transport rate was observed to 

depend on turbulent kinetic energy (TKE), with no dependence on stem diameter, which 

was shown to be consistent with the impulse model for sediment entrainment. Existing 

predictors of bedload transport for bare beds, based on bed shear stress, were recast in 

terms of turbulence. The new turbulence-based model predicted sediment transport 

measured in model canopies across a range of conditions drawn from several previous 

studies. A prediction of turbulence based on biomass and velocity was also described, 

providing an important step toward predicting turbulence and bedload transport in 

canopies of real vegetation morphology. 

 

3.1 Introduction 

Aquatic vegetation is a crucial part of wetland and floodplain ecosystems. It 

stabilizes river banks (Hackney et al., 2020), protects coasts from waves and storm surges 

(Barbier et al., 2011), and provides habitat for fisheries (Costanza et al., 1997). Wetlands 

sustain themselves partially through their ability to retain and accrete sediment. However, 

the influence of vegetation on water motion and sediment transport is complex. On the 

one hand, vegetation provides additional drag, which reduces current (Kouwen & Unny, 

1973), facilitating sediment deposition (Abt et al., 1994) and increasing bed elevation. On 

 
† This chapter is published as: 
Zhao, T., & Nepf, H. M. (2021). Turbulence Dictates Bedload Transport in Vegetated Channels 

Without Dependence on Stem Diameter and Arrangement. Geophysical Research Letters, 
48(21), e2021GL095316. doi:10.1029/2021GL095316 
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the other hand, vegetation generates turbulence (Tanino & Nepf, 2008; Xu & Nepf, 

2020), which can enhance erosion (Niño & Garcia, 1996), alter the vertical distribution of 

suspended sediment (Tseng & Tinoco, 2021), and decrease bed elevation in the vicinity 

of vegetation (Yagci et al., 2016; Norris et al., 2021). Recent studies have proposed ways 

to incorporate the impacts of vegetation on bedload transport by considering the related 

process of scour hole formation (Wu et al., 2021), or by modifying the parameters of the 

Einstein (1950) probabilistic model (Armanini & Cavedon, 2019). A deeper 

understanding of sediment transport within aquatic ecosystems is still critical (Fagherazzi 

et al., 2017) to facilitate wetland protection and restoration projects (Paola et al., 2011). 

 

3.2 Background and Theory 

This study considered the impact of vegetation on bedload transport, in which 

sediment maintains close contact with the bed. Most previous studies of bedload (e.g., 

Shields, 1936; Einstein, 1942; Meyer-Peter & Müller, 1948; Engelund & Hansen, 1967) 

relate sediment mass transport rate, qs, to the time-averaged bed shear stress, τ. For 

example, the Meyer-Peter-Müller formula (MPM, 1948) is a commonly used τ-based 

model: 

 𝑞𝑞s∗ = 8(𝜃𝜃 − 𝜃𝜃cr)1.5,  (3.1) 

in which 𝑞𝑞s∗ = 𝑞𝑞s
𝜌𝜌𝑠𝑠𝑤𝑤𝑠𝑠𝑈𝑈50

 is the dimensionless sediment transport rate and 𝜃𝜃 = 𝜏𝜏
(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50

 is 

the dimensionless skin bed shear stress, with 𝜏𝜏 the skin bed shear stress, 𝜃𝜃cr the 

dimensionless critical shear stress, 𝜌𝜌𝑠𝑠 the sediment density, 𝜌𝜌 the fluid density, 𝑤𝑤𝑠𝑠 the 

sediment settling velocity, 𝑔𝑔 the gravitational acceleration, and 𝑑𝑑50 the median grain size 

of bed sediment. 

Several studies have shown that turbulence contributes to the entrainment and 

mobility of individual grains (Celik et al., 2010; Shih & Diplas, 2018) as well as net 

sediment transport at the bed scale (Niño & Garcia, 1996; Sumer et al., 2003; Salim et al., 

2017). Over a bare flat bed, the near-bed turbulent kinetic energy (TKE, 𝑘𝑘t) is generated 

by bed shear and thus proportional to the bed shear stress (Soulsby, 1983), so that the 

impact of turbulence is implicitly embedded in the τ-based sediment transport models. 
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However, large roughness elements, including vegetation and bedforms, produce 

additional turbulence that also impacts sediment transport (Nelson et al., 1995; Yager & 

Schmeeckle, 2013; Yang & Nepf, 2018), but which are not captured by τ-based models. 

Consequently, the τ-based models significantly underestimate sediment transport in 

channels with obstacles (Nelson et al., 1995; Schmeeckle, 2015). Recent work has 

suggested that within regions of vegetation, turbulence is a better predictor than bed 

stress for incipient motion (Yang et al., 2016), resuspension (Tinoco & Coco, 2018; Liu 

et al., 2021), and bedload transport (Yang & Nepf, 2018, 2019). Therefore, we have 

recast the MPM formula in terms of TKE. Specifically, for the flat bare beds considered 

in MPM, bed stress is directly correlated with near-bed turbulence. We apply the 

conversion suggested by Soulsby (1983) based on flow measurements in atmospheric and 

marine boundary layers: 

 𝑘𝑘t = 5.3𝜏𝜏/𝜌𝜌,  (3.2) 

in which 𝑘𝑘t is the near-bed TKE. Using this, we recast Equation 3.1 in terms of TKE,  

 𝑞𝑞𝑠𝑠∗ = 0.66�𝑘𝑘t∗ − 𝑘𝑘t,cr∗ �
1.5

,  (3.3) 

in which 𝑘𝑘t∗ = 𝑘𝑘t
(𝜌𝜌𝑠𝑠/𝜌𝜌−1)𝑔𝑔𝑈𝑈50

= 5.3 𝜃𝜃 is the dimensionless TKE. Previous studies have 

shown that the critical TKE for sediment entrainment, 𝑘𝑘t,cr, is the same for vegetated and 

unvegetated channels (Yang et al., 2016; Liu et al., 2021). Based on this, we propose that 

𝑘𝑘t,cr can be estimated from previously determined critical bed shear stress for bare bed, 

i.e., in dimensionless form, 𝑘𝑘t,cr∗ = 5.3 𝜃𝜃𝑐𝑐𝑐𝑐 (based on Equation 3.2).  

In application, Equation 3.3 uses the spatial-averaged turbulence 〈𝑘𝑘t〉, which can 

be predicted within an emergent canopy of circular stems as a combination of bed-

generated (𝑘𝑘t,b) and vegetation-generated (𝑘𝑘t,v) turbulence (Yang & Nepf, 2019; see A2.1 

in Appendices for model details). For canopy solid volume fraction (SVF) 𝜙𝜙 < 0.1, 

 〈𝑘𝑘t〉 = 𝐶𝐶f𝑈𝑈2

0.19�
𝑘𝑘t,b

+ 𝛿𝛿𝑘𝑘t �
2𝐶𝐶D,form 𝜙𝜙
𝜋𝜋(1−𝜙𝜙) �

2
3 𝑈𝑈2

�������������
𝑘𝑘t,v

, (3.4) 

in which 𝐶𝐶f is the bed drag coefficient. 𝐶𝐶D,form  is the stem form drag coefficient, and 𝛿𝛿𝑘𝑘t 

is an O(1) scale constant. Equation 3.4 is valid if the velocity 𝑈𝑈 is sufficient to produce 
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stem turbulence, i.e. stem Reynolds number 𝑅𝑅𝑒𝑒d = 𝑈𝑈𝑈𝑈
𝜈𝜈

> 120 (Liu & Nepf, 2016). A 

combination of Equations 3.3 and 3.4 predicts bedload based only on U and 𝜙𝜙, which 

could be estimated from canopy biomass. The prediction has no dependence on stem 

diameter. This is somewhat surprising, because the stem diameter sets the scale of 

vegetation-generated turbulence (Tanino & Nepf, 2008; King et al., 2012), and we expect 

larger eddies to be more effective in mobilizing sediment. The lack of dependence on 

stem size needs justification and testing, which is the main point of this study. 

 

 

Figure 3-1. For canopies with same solid volume fraction and velocity, cumulative impulse does 
not depend on stem size. (a) and (b) Top view of sparse cylinder arrays with the same solid 
volume fraction, 𝜙𝜙, but different stem diameter and eddy length scale 𝑙𝑙e~ 𝑑𝑑. The arrays are 
exposed to the same velocity, and thus have the same 𝑘𝑘t (Eqn. 4) and same peak hydrodynamic 
force √2𝑢𝑢𝑐𝑐𝑟𝑟𝑠𝑠

2  ~ 𝑘𝑘𝑔𝑔. (c) Temporal variation in hydrodynamic force (~ 𝑢𝑢′2) generated by the 
eddies. The duration of a single turbulent event, Δ𝑡𝑡, associated with force magnitude above the 
threshold for incipient motion (𝑢𝑢𝑐𝑐𝑐𝑐′

2), is proportional to the stem diameter, d. However, the event 
frequency is inversely proportional to d, so that the two arrays generate the same total impulse 
(area of shaded region). 
 

Bedload transport reflects the sum of individual grain dislodgement events (Niño 

& Garcia, 1996) and depends on the cumulative influence of hydrodynamic forces, set by 
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both the magnitude and duration of the lift and drag interacting with the particle, which 

can be characterized by impulse (Diplas et al., 2008), work (Lee et al., 2012), or stream 

power (Shih & Diplas, 2018). These models suggest that larger eddies, which interact 

with a bed particle for a longer duration, are more effective in initiating particle motion 

during a single event. However, the number of stems producing eddies is also important. 

Consider two arrays of circular stems with the same 𝜙𝜙, the same sediment d50, exposed to 

the same channel-averaged velocity, U, and flow depth, h, but consisting of different 

stem diameter, d (Figure 3-1). The array with larger d (Figure 3-1a) produces larger but 

fewer eddies, compared to the array with smaller d (Figure 3-1b). This trade-off between 

number (frequency) and size (duration) of turbulent interactions with the bed produces 

the same channel-averaged impulse in both channels, if turbulence intensity, which sets 

the force magnitude, is the same (Figure 3-1c). Within these constraints, we expect the 

same channel-averaged impulse and sediment transport rate, regardless of stem size. The 

present study used laboratory experiments to validate this conclusion. A more 

quantitative description of how the impulse model supports this conclusion is given in 

A2.2 and A2.3. 

 

3.3 Methods 

Laboratory experiments were conducted in a 1-m-wide and 10.4-m-long flume, 

with water and sediment recirculated separately. Velocity and sediment transport rate 

were measured for similar channel velocity and SVF, but different cylinder sizes (d = 

0.64, 2.5, or 5.1 cm) and in both random and staggered emergent arrays (see A2, Table 

A2.2 for experimental conditions and Section A2.4 for photographs). Two randomly 

distributed arrays were constructed with mixed cylinder diameters (d = 1.3 and 1.9 cm, 

and d = 1.3, 1.9, and 5.1 cm). The random distributions were generated using the 

randperm() function in MATLAB to select the cylinder position. The number of cylinders 

per bed area were m = 0 to 775 m-2, corresponding to vegetation frontal area per volume 

𝑎𝑎 = 𝑚𝑚𝑑𝑑 = 0 to 4.9 m−1, and 𝜙𝜙 = 𝜋𝜋𝑎𝑎𝑑𝑑/4 =  0 to 0.049. These ranges were chosen 

based on marsh plants, mangrove pneumatophores, and young floodplain trees (Nepf, 

2012; Manners et al., 2015; Norris et al, 2017). The 3-m-long array of cylinders occupied 
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the entire channel width. A 9-cm layer of manually flattened sand (d50 = 0.6 mm, ρs = 

2650 kg/m3, see A2.5 for grain size distribution) was added within the array. The water 

depth was h = 12.0 cm above the sand layer, measured with a ruler mid-length along the 

array. 

The sediment transport rate was measured four to six times every four hours using 

a butterfly valve to divert flow from the sediment recirculating pipe to a mesh bag 

(Figure A2-1). The collected sediment weighed at least 50 g and the duration of 

collection was at least 1 min, but no more than 30 min. The number of collections (4 to 6) 

was smaller when longer collection time was required, and a larger number was used 

when sediment transport showed considerable temporal variability. This was continued 

for up to 70 hours, until the measured sediment transport reached equilibrium, which was 

defined once the sediment transport rate of the last two measurement sets agreed within 

the standard error within each set, typically smaller than 10% of the mean value. 

After the bed reached equilibrium, a Nortek Vectrino recorded instantaneous 

velocity components u(t), v(t), and w(t). Spherical glass (Potters Industries Inc. 110P8, 

median grain size d50 = 10 µm) was added to enhance the backscatter signal. At each 

position, a 150-second record was measured at 200 Hz. The sampling duration was 

confirmed by a convergence test of mean and turbulent flow statistics (Figure A2-2). For 

staggered arrays, the channel-averaged velocity, U, was measured using a lateral transect 

at mid-depth and 2 m downstream from the array leading edge. A vertical profile was 

made at the point where the time-mean velocity matched the transect average. In a 

random array, two lateral transects provided an accurate estimate of 𝑈𝑈 and 〈𝑘𝑘𝑔𝑔〉. 

Specifically, the velocity statistics converged to a constant value after averaging two 

complete transects chosen randomly along the array (see SI in Shan et al., 2020). Along 

each transect, two locations whose time-mean streamwise velocity and TKE were closest 

to the transect mean were selected for a vertical profile. The vertical profiles confirmed 

that mid-depth measurements reasonably represented near-bed flow conditions (Figure 

A2-3). 

The velocity records were processed using the Goring and Nikora (2002) method 

to remove spikes, with the acceleration and velocity thresholds set to λa = 1 and k = 1.5, 
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respectively. After despiking, TKE was calculated at each position as 𝑘𝑘t =
1
2

(𝑢𝑢′2 + 𝑣𝑣′2 + 𝑤𝑤′2)����������������������, and its spatial average was denoted 〈𝑘𝑘t〉. The integral time scale of 

turbulence, Λt, was estimated using the autocorrelation function (Kundu et al. 2016): 

 Λt = ∫ 𝑣𝑣(𝑔𝑔)𝑣𝑣(𝑔𝑔+𝜏𝜏)���������������

[𝑣𝑣′(𝑔𝑔)]2����������� 𝑑𝑑𝜏𝜏+∞
0 ≈ ∫ 𝑣𝑣(𝑔𝑔)𝑣𝑣(𝑔𝑔+𝜏𝜏)���������������

[𝑣𝑣′(𝑔𝑔)]2����������� 𝑑𝑑𝜏𝜏𝑔𝑔c
0 ,  (3.5) 

in which 𝑡𝑡c is the first zero-crossing of the autocorrelation function. The lateral velocity, 

𝑣𝑣(𝑡𝑡), was used because the identification of the zero crossing was more precise, although 

similar values were obtained from the streamwise component. At each position, the local 

integral length scale was defined as 𝑙𝑙e = 𝑢𝑢�Λt, with 𝑢𝑢� the local time-averaged velocity. 

The spatial-averaged (across the transects) eddy length scale was denoted 〈𝑙𝑙e〉. 
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3.4 Results 

 

 

Figure 3-2. (a) Measured sediment transport rate qs versus measured turbulent kinetic energy 
〈𝑘𝑘t〉. Error bars denote standard error of multiple measurements in two transects for TKE and in 
time for qs. The error in qs was smaller than the symbol size. (b) and (c) Measured dimensionless 
sediment transport rate 𝑞𝑞s∗ = 𝑞𝑞s

𝜌𝜌𝑠𝑠𝑤𝑤𝑠𝑠𝑈𝑈50
 versus (b) dimensionless bed stress 𝜃𝜃 = 𝜏𝜏

(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50
 predicted 

using Equation 3.10, and (c) dimensionless turbulent kinetic energy 𝑘𝑘t∗ = 〈𝑘𝑘t〉
(𝜌𝜌𝑠𝑠/𝜌𝜌−1)𝑔𝑔𝑈𝑈50

  predicted 
using Equation 3.8 and 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 (95% CI). The median grain size 𝑑𝑑50 = 0.6 𝑚𝑚𝑚𝑚 in the 
current study and in Yang and Nepf (2019) and Shan et al. (2020); 𝑑𝑑50 = 0.5 𝑚𝑚𝑚𝑚 in Yager and 
Schmeeckle (2013), Armanini and Cavedon (2019); and 𝑑𝑑50 = 0.93 mm in Wu et al. (2021). The 
dashed line represents MPM (Eqns. 1 and 3) using 𝜃𝜃𝑐𝑐𝑐𝑐 = 0.03 in subplot (b) and 𝑘𝑘t,cr∗ = 5.3𝜃𝜃𝑐𝑐𝑐𝑐 =
0.16 in subplot (c). The shaded regions bound the range 𝜃𝜃𝑐𝑐𝑐𝑐 = 0.02 to 0.04 and 𝑘𝑘t,cr∗  = 0.11 to 
0.21, respectively, as discussed in the text. 
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3.4.1 Bedload Sediment Transport 

Considering a five-fold variation in stem diameter (0.64 to 2.5 cm), the measured 

bedload transport rate, qs, did not exhibit a dependence on the stem diameter, d, but 

increased with spatial-averaged TKE 〈𝑘𝑘t〉 (Figure 3-2a). These results support the 

conclusion drawn from the impulse model, i.e., sediment transport rate depended 

primarily on TKE and not stem size, such that 𝑞𝑞𝑠𝑠 may be predicted from channel-

averaged turbulence alone. Further, the arrays consisting of multiple stem diameters 

(downward triangles in Figure 3-2a) exhibited the same dependence on 〈𝑘𝑘t〉 as the single-

diameter arrays, indicating that the impulse description for single-diameter arrays (Figure 

3-1) extends to arrays with multiple diameters. 

 

3.4.2 Integral Length Scale 

For arrays with mixed cylinder size, an average diameter 〈𝑑𝑑〉 was defined that 

preserved the frontal area. This choice was made because turbulent eddies are expected to 

scale with the projected width of the plant elements, which has been confirmed for plants 

of real morphology (Xu & Nepf, 2020). Within a mixed array, each stem diameter, 𝑑𝑑𝑖𝑖, 

occurs at area density 𝑚𝑚𝑖𝑖 (stems per bed area). The total frontal area per canopy volume 

is 

 〈𝑎𝑎〉 = ∑ 𝑚𝑚𝑖𝑖𝑑𝑑𝑖𝑖
𝑝𝑝
𝑖𝑖=1 = �∑ 𝑚𝑚𝑖𝑖

𝑝𝑝
𝑖𝑖=1 �〈𝑑𝑑〉, (3.6) 

from which we define 

 〈𝑑𝑑〉 = 〈𝑎𝑎〉
∑ 𝑟𝑟𝑖𝑖
𝑝𝑝
𝑖𝑖=1

=
∑ 𝑟𝑟𝑖𝑖𝑈𝑈𝑖𝑖
𝑝𝑝
𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖
𝑝𝑝
𝑖𝑖=1

. (3.7) 

Within both staggered and random arrays of both uniform and mixed diameter, 

〈𝑙𝑙e〉 was proportional to 〈𝑑𝑑〉. Specifically, 〈𝑙𝑙e〉 = (0.43 ± 0.02)〈𝑑𝑑〉 (Figure A2-4). This 

was consistent with Tanino and Nepf (2008, Figure 12, d = 0.6 cm), who also found 𝑙𝑙e 

proportional to 𝑑𝑑 within a sparse array (𝛥𝛥𝑠𝑠/d > 2). All cases in this study fell in the sparse 

array regime. Note that Tanino and Nepf (2008) measured a larger scale coefficient, 𝑙𝑙e/d 
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≈ 1, which might be attributed to the smaller Reynolds numbers in that study (𝑅𝑅𝑒𝑒𝑈𝑈 <

600, versus 𝑅𝑅𝑒𝑒𝑈𝑈 ≥ 1000 in this study). 

3.4.3 Turbulence 

Although the turbulence arises from stem wakes at a scale proportional to 𝑑𝑑, 

Equation 3.4 does not include the stem diameter, d. This is due to the cylindrical 

geometry of the plant model, such that the same vegetation length scale (𝑑𝑑) determines 

both the scale of turbulence, le ~𝑑𝑑, and the SVF 𝜙𝜙 = 𝜋𝜋
4
𝑚𝑚𝑑𝑑2 (see details in Tanino & 

Nepf, 2008). To accommodate canopies of mixed element scale, we follow Xu and Nepf 

(2020), who predicted depth-averaged TKE using the depth-averaged values of 𝑎𝑎 and 𝑙𝑙e. 

It is reasonable to expect that a similar spatial average can be used in the horizontal plane 

to accommodate variations in stem diameter and to make the substitution 〈𝑙𝑙e〉~〈𝑑𝑑〉, as 

shown in 3.4.2, such that the spatial-averaged TKE within heterogeneous arrays can be 

described from 〈𝑎𝑎〉 and 〈𝑑𝑑〉: 

 〈𝑘𝑘𝑔𝑔〉 = 𝐶𝐶f𝑈𝑈2

0.19�
𝑘𝑘t,b

+ 𝛿𝛿𝑘𝑘t �
𝐶𝐶D,form 〈𝑎𝑎〉〈𝑈𝑈〉

2(1−𝜙𝜙) �
2
3 𝑈𝑈2

�������������
𝑘𝑘t,v

. (3.8) 

For 𝑅𝑅𝑒𝑒𝑈𝑈 ≥ 200, Etminan et al. (2018) showed that 𝐶𝐶D,form ≈ 0.9 𝐶𝐶D, with 𝐶𝐶D the 

total drag coefficient, which can be predicted following Etminan et al. (2017): 

 𝐶𝐶D = � 1−𝜙𝜙
1−�2𝜙𝜙/𝜋𝜋

�
2
�1 + 10𝑅𝑅𝑒𝑒d

−2/3 � 1−𝜙𝜙
1−�2𝜙𝜙/𝜋𝜋

�
−2/3

�.  (3.9) 

A least-squares fit of Equation 3.8 with measured 〈𝑘𝑘𝑔𝑔〉 yielded 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 

(95% CI, Figure A2-5). When a canopy consists of a single diameter, Equation 3.8 is 

equivalent to Equation 3.4. Given this, the scale constant for Equation 3.8 was consistent 

with Yang and Nepf (2019), who found 𝛿𝛿𝑘𝑘t = 0.4 ± 0.3 (95% CI) for an array with a 

single diameter (𝑑𝑑 = 0.6 cm). 
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3.5 Discussion 

3.5.1 Comparison of Stress-Based and Turbulence-Based Predictions of qs 

Measurements from previous studies were combined with the current study to 

both contrast the predictive capability of bed stress and TKE within vegetated regions 

and to validate the prediction of bedload transport using Equations 3.3 and 3.8 (Equation 

6 in Yang & Nepf, 2018): 

 𝜏𝜏 = �

4𝜌𝜌𝜈𝜈𝑈𝑈
𝑈𝑈

𝑅𝑅𝑒𝑒d < 4
𝐶𝐶f

𝜌𝜌𝐶𝐶f𝑈𝑈2 𝑅𝑅𝑒𝑒d ≥
4
𝐶𝐶f

,  (3.10) 

which reflects the reduction of the viscous sublayer due to vegetation-generated 

turbulence. For each case, including the present study, the bed stress and TKE were 

predicted from the measured channel-averaged velocity and array characteristics (details 

in A2.6).  

First, the measured bedload transport rate (symbols in Figure 3-2b, 3-2c) had only 

a weak dependence on bed stress (Figure 3-2b), with 𝑞𝑞s∗ varying by up to two orders of 

magnitude for conditions with the same 𝜃𝜃. In contrast, 𝑞𝑞s∗ collapsed into a clear 

monotonic trend when plotted versus 𝑘𝑘𝑔𝑔
∗ (Figure 3-2c). This demonstrated that bedload 

transport in vegetated channels was better described as a function of TKE, which echoes 

Figure 3 in Yang and Nepf (2018; also see A2.6). However, this study extended the result 

to arrays of different stem diameter (d = 0.6 to 5.1 cm) and to arrays of mixed stem sizes. 

Second, this study considered the MPM model, which includes a threshold for 

sediment motion. This is in contrast to Yang and Nepf (2018), who used the Einstein-

Brown (1942, 1950) model (SI, S6), which describes bedload as the sum of individual 

grain dislodgement events related to a probabilistic distribution, for which a threshold of 

sediment motion is not defined. However, for the timescale of interest in typical 

experiments, 100 to 102 min, and for many applications of monitoring and predicting bed 

evolution, 100 to 103 hr, a critical threshold makes physical and practical sense. 

The MPM model (Equation 3.1) was recast in terms of TKE (Equation 3.3), 

which required a prediction of 𝑘𝑘t,cr. Previous studies have shown that the threshold for 
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grain motion can be described in terms of TKE, and that 𝑘𝑘t,cr is the same for vegetated 

and unvegetated channels with the same bed sediment (Yang et al., 2016; Tinoco & 

Coco, 2018; Liu et al., 2021). Hence, we proposed that the threshold of sediment motion 

documented for bare beds in terms of 𝜃𝜃𝑐𝑐𝑐𝑐 can be used to estimate the turbulence 

threshold, 𝑘𝑘t,cr∗ = 5.3 𝜃𝜃𝑐𝑐𝑐𝑐, using Equation 3.2. For the included studies, d50 = 0.5, 0.6 and 

0.93 mm, for which 𝜃𝜃𝑐𝑐𝑐𝑐 = 0.03 was estimated from the Shields diagram, using the fitted 

curve in Soulsby (1997). The corresponding 𝑘𝑘t,cr∗  = 0.16. The red dashed curves in Figure 

3-2 correspond to these critical values. We note that measurements of incipient motion 

exhibit significant spread, which has been attributed to factors including bed 

characteristics (Lamb et al., 2008) and the different definitions for incipient motion 

(Buffington & Montgomery, 1997). From the spread in the Shields diagram, but 

considering only unidirectional flow conditions (e.g., Soulsby, 1997; Buffington & 

Montgomery, 1997; Whitehouse et al., 2000), we extracted a minimum (𝜃𝜃𝑐𝑐𝑐𝑐 = 0.02) and 

maximum (𝜃𝜃𝑐𝑐𝑐𝑐 = 0.04), corresponding to 𝑘𝑘t,cr∗  = 0.11 and 0.21, respectively. These values 

were used to define the green shaded region in Figure 3-2b and 3-2c, respectively. Note 

that Yang et al. (2016) used visual observation to determine 𝑘𝑘t,cr∗ =  0.15 for grain size ds 

= 0.6 – 0.85 mm within arrays of different 𝜙𝜙 (Figure 3 in Yang et al., 2016). This 

corresponded to 𝜃𝜃𝑐𝑐𝑐𝑐 = 0.028, consistent with the range of critical shear stress extracted 

from the Shields diagram. This agreement supports the proposal that 𝑘𝑘t,cr∗  can be 

estimated from archived measurements of 𝜃𝜃𝑐𝑐𝑐𝑐. 

Finally, the stress-based MPM formula did poorly predicting sediment transport 

within model vegetation (Figure 3-2b), underpredicting the measured transport rate by up 

to three orders of magnitude. In contrast, when MPM was recast in terms of TKE, using 

𝑘𝑘t,cr∗ = 5.3 𝜃𝜃𝑐𝑐𝑐𝑐, the prediction matched the measurement more closely, with only a factor-

four maximum deviation from the measurement. 

 

3.5.2 Model Limitations 

The equations for predicting bedload transport (Equations 3.3, 3.4, and 3.8) have 

some limitations. First, bed-generated turbulence is characterized by Cf defined by a 
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logarithmic profile over an unvegetated bed. Within a canopy, the velocity profile is more 

uniform, and the bed shear stress may be elevated due to thinning of the viscous sublayer 

by vegetation turbulence (Yang et al., 2015; Etminan et al., 2018). In addition, bed-

generated turbulence can be broken down by stems, shifting turbulent energy from depth-

scale (bed turbulence) to the stem-scale le, making it difficult to strictly partition bed and 

vegetation contributions. Despite these issues, Equations 3.4 and 3.8 performed well in 

predicting canopy turbulence, in part because the vegetation-generated turbulence is often 

the dominant term. Specifically, laboratory experiments (Yang & Nepf, 2019, Figure 4b) 

and numerical simulation (Etminan et al., 2018, Figure 11) indicate that bed-generated 

turbulence is small compared to vegetation-generated turbulence for 𝜙𝜙 > 0.01, making 

weaknesses in 𝑘𝑘t,b prediction unimportant. Second, the model assumes 𝑙𝑙e ~ 𝑑𝑑, which is 

valid for 𝜙𝜙 < 0.1 and 0.06 for a regular and random array, respectively (Tanino & Nepf, 

2008). For 𝜙𝜙 ≥ 0.1, the turbulence length scale is constrained by stem spacing, i.e. 

𝑙𝑙e~𝛥𝛥𝑠𝑠, which modifies the form of Equation 3.4 (Tanino & Nepf, 2008). Third, the 

model assumes an emergent canopy. If the canopy is submerged, turbulence may be 

additionally generated in the shear layer at canopy top (e.g., Zhang et al., 2020). Canopy-

scale turbulence forms when the non-dimensional meadow density 𝑎𝑎ℎ𝑣𝑣 > 0.1, with ℎ𝑣𝑣 the 

canopy height (Nepf, 2012). If the canopy is not too dense (𝑎𝑎ℎ𝑣𝑣 ≤ 0.5), this turbulence 

may reach the bed and influence sediment transport (e.g., Figure 3 in Luhar et al., 2008), 

a process that is not represented in the present model. Finally, grain-to-grain interaction 

can also influence sediment transport, including grain arrangement (Masteller & 

Finnegan, 2017) and collective grain entrainment (Lee & Jerolmack, 2018). These factors 

were not considered within the model, and the obstruction provided by the vegetation 

may alter these effects from those observed in bare channels.  
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3.5.3 Extension to More Complex Plant Morphology 

 

Figure 3-3. (a) Morphology ratio  𝜙𝜙
𝜋𝜋
4〈𝑎𝑎〉〈𝑈𝑈〉

 for Typha and Rotala for different flow depths. Black 

dashed line corresponds to cylindrical stems. (b) Vertical profiles of frontal area per unit volume, 
a, and characteristic width, 𝑑𝑑, (Equation 16 in Xu & Nepf, 2020) for Typha. For Rotala, d = 0.68 
± 0.13 cm (SE). (c) and (d) Predicted channel-averaged turbulent kinetic energy, 〈𝑘𝑘t〉 for Typha 
and Rotala using Equation 3.8 (subplot c) and Equation 3.11 (subplot d) versus measured values. 
All data from Xu and Nepf (2020). 

 

Vegetation density is often characterized in terms of biomass 𝐵𝐵 = 𝜌𝜌𝑣𝑣𝜙𝜙ℎ𝑣𝑣 

(mass/bed area), which is directly related to solid volume fraction (𝜙𝜙), with 𝜌𝜌𝑣𝑣 the plant 

bulk density. Therefore, it is useful to consider a prediction of TKE and bedload using 𝐵𝐵 

to infer 𝜙𝜙. As an example, we considered two plant species with different morphology 

(A2.7 in SI), Typha latifolia (with branching leaves emerging from a short cylindrical 

culm) and Rotala indica (with decussate leaves distributed along the stem in orthogonal 

pairs). Even for these complex morphologies, 𝑙𝑙𝑒𝑒 scales with the characteristic width of 

plant element, 𝑑𝑑, following the morphological variation over depth (Figure 12 in Xu & 
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Nepf, 2020). Therefore, we retain the assumption in Equations 3.4 and 3.8 that the 

canopy-averaged turbulence scale is proportional to the canopy average plant element 

width, i.e., 〈𝑙𝑙𝑒𝑒〉 =  〈𝑑𝑑〉. 

For a canopy of cylindrical stems, 𝜙𝜙 = 𝜋𝜋
4
𝑎𝑎𝑑𝑑, which makes Equations 3.4 and 3.8 

equivalent. However, for real plant morphology with flat elements like leaves, 𝜙𝜙 <
𝜋𝜋
4
〈𝑎𝑎〉〈𝑑𝑑〉, so that Equation 3.4 will underpredict turbulence, compared to Equation 3.8. 

Specifically, 𝜙𝜙
𝜋𝜋
4
〈𝑎𝑎〉〈𝑈𝑈〉

= 0.24 ± 0.02 (Typha, SE) and 0.30 ± 0.01 (Rotala, SE), compared 

to 𝜙𝜙
𝜋𝜋
4
〈𝑎𝑎〉〈𝑈𝑈〉

 = 1 for cylinders. Conveniently, this morphology ratio is not a function of water 

depth (Figure 3-3a). This was expected for Rotala, which has a vertically uniform frontal 

area (Figure 1f in Xu & Nepf, 2020). In contrast, Typha has a nonuniform frontal area. 

However, its characteristic width 𝑑𝑑 varies in a complementary trend with 𝑎𝑎 (Figure 3-3b), 

such that the product 𝑎𝑎𝑑𝑑 has little vertical variation. 

Xu and Nepf (2020) validated Equation 3.8 for the prediction of TKE within 

canopies of Typha and Rotala (repeated in Figure 3-3c). Here, we considered a 

modification of Eqn. 8 cast in terms of 𝜙𝜙, derived using the morphology ratio (Figure 3-

3a). The plant-specific morphology ratio 𝜙𝜙
𝜋𝜋
4
〈𝑎𝑎〉〈𝑈𝑈〉

 was used to replace 〈𝑎𝑎〉〈𝑑𝑑〉 in Equation 

3.8, and the constants incorporated into a pre-factor 𝛿𝛿g (2.6 ± 0.2 for Typha and 2.2 ±

0.1 for Rotala) in 𝑘𝑘t,v: 

 〈𝑘𝑘t〉 = 𝐶𝐶f𝑈𝑈2

0.19�
𝑘𝑘t,b

+ 𝛿𝛿g𝛿𝛿𝑘𝑘t �
2𝐶𝐶D,form 𝜙𝜙
𝜋𝜋(1−𝜙𝜙) �

2
3 𝑈𝑈2

�������������
𝑘𝑘t,v

.  (3.11) 

Within the Typha and Rotala canopies, the bed contribution 𝑘𝑘t,b
𝑈𝑈2

= 0.019 ± 0.002 

(SE) was estimated from bare-bed measurements, and measured 𝐶𝐶D = 1.62 ± 0.11 for 

Typha and 𝐶𝐶D = 1.75 ± 0.15 for Rotala (SE), all reported in Xu and Nepf (2020, Figure 

5b). The 〈𝑘𝑘t〉 predicted by Equation 3.11 agreed with the measured 〈𝑘𝑘t〉 to within factor 3 

(Figure 3-3d). To apply this in the field, one could use measurements of biomass (𝐵𝐵) to 

estimate SVF, 𝜙𝜙 = 𝐵𝐵
𝜌𝜌𝑣𝑣ℎ𝑣𝑣

. 
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3.6 Conclusions 

In canopies of different stem size and of mixed stem size, bedload transport rate 

was a function of turbulent kinetic energy alone, with no dependence on stem size or 

distribution. This was consistent with the impulse model, which describes sediment 

entrainment as a function of both the duration and magnitude of turbulent events. 

Specifically, canopies of comparable solid volume fraction and velocity (producing the 

same TKE magnitude) but different stem sizes produce similar impulse, due to a trade-off 

between number (frequency) and size (duration) of turbulent interactions with the bed. 

Based on this, indirect methods for predicting turbulence (e.g., through measured or 

predicted energy gradients) may be used to predict sediment transport, without requiring 

specific descriptions of plant morphology. Further, the Meyer-Peter-Müller bedload 

equation was recast in terms of TKE, with critical TKE inferred from the Shields 

diagram. By accounting for the morphology-dependent ratios of non-dimensional frontal 

area 〈𝑎𝑎〉〈𝑑𝑑〉 and SVF, one can predict TKE and thus sediment transport from biomass, 

flow depth, and flow velocity. This represents an important step in the description of 

turbulence and bedload transport within vegetated regions, enabling prediction of coastal 

and riverbank evolution. 
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Chapter 4 Turbulence and Bedload Transport in 

Submerged Vegetation Canopies‡ 

Depending on the degree of submergence, aquatic vegetation can either enhance 

or reduce bedload transport and thus erosion. Using the same channel average velocity U, 

flume experiments investigated how canopy density (ah, with canopy frontal area per unit 

volume a, and canopy height h) and submergence ratio (H/h, with H the flow depth) 

impacted near-bed velocity, turbulence, and bedload transport within a submerged 

canopy of rigid model vegetation. For H/h < 2, as ah increased, both the near-bed 

turbulent kinetic energy (TKE) and bedload transport rate (qs) increased. The near-bed 

TKE was predominantly stem-generated. For H/h > 2, the near-bed TKE was insensitive 

to ah and H/h, because of a trade-off between stem-generated turbulence and the 

turbulence originated from canopy shear. While the near-bed TKE was insensitive to ah 

for H/h > 2, the near-bed velocity declined with increasing ah and H/h, such that qs also 

declined, highlighting that both TKE and velocity were important in setting the bedload 

transport. A model to predict the near-bed velocity and TKE was developed and validated 

with measurements. This model was used to explore bedload transport under more 

realistic conditions with constant energy slope (S) and flexible vegetation. For a constant 

S, the channel average velocity, U, increased as ah decreased and as H/h increased, which 

in turn influenced the near-bed velocity and TKE. The highest qs occurred with the 

greatest H/h and the smallest ah, because of the contribution of canopy-shear-generated 

turbulence and because these conditions were associated with the highest U.  

 

4.1 Introduction 

Aquatic vegetation facilitates several wetland ecosystem services, such as slowing 

floods and storm surge (Barbier et al., 2011), capturing and fixing carbon (Fourqurean et 

al., 2012), and enhancing biodiversity (Costanza et al., 1997). Wetland ecosystems are 

 
‡ This chapter is submitted to Water Resources Research with manuscript number 
2024WR037694, and is currently under major revision at the time this thesis is published. 
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sustained through sediment retention (Clarke, 2002), which is influenced by vegetation 

morphology and distribution (e.g., Nardin & Edmonds, 2014; Xu et al., 2022). A better 

understanding of sediment transport in vegetated regions is needed to guide existing and 

future projects of wetland protection and restoration (Paola et al., 2011; Fagherazzi et al., 

2017). While many previous studies have considered sediment transport through 

emergent vegetation (e.g., Jordanova & James, 2003; Tang et al., 2013; Armanini & 

Cavedon, 2019), few have considered submerged vegetation. Submerged vegetation is 

likely to provide greater protection from erosion, compared to emergent vegetation, 

because as flow is routed over the submerged canopy, the velocity and turbulence near 

the bed are reduced.    

This study focused on bedload transport. Classic studies relate bedload transport 

rate to the time-averaged bed shear stress (e.g., Einstein, 1942; Engelund & Hansen, 

1967; Meyer-Peter & Müller, 1948; Shields, 1936). However, several studies have shown 

that turbulence facilitates the mobility of individual particles (Celik et al., 2010; Shih & 

Diplas, 2018) and enhances channel-average sediment transport (Niño & Garcia, 1996; 

Salim et al., 2017; Sumer et al., 2003; Tseng & Tinoco, 2021). Vegetation can generate 

turbulence (Nepf, 2012), and when the canopy is sufficiently dense, the vegetation-

generated turbulence dominates turbulence generated by bed shear stress, such that, in 

regions with vegetation, near-bed turbulence, rather than bed shear stress, better predicts 

the sediment motion threshold (Yang et al., 2016), the resuspension threshold (Tinoco & 

Coco, 2018; Liu et al., 2021), the sediment pickup rate (Xu et al., 2022), and bedload 

transport rate (Yang & Nepf, 2018, 2019). 

Within canopies, the near-bed TKE is influenced by vegetation morphology. 

Previous studies have investigated the role of plant density (Poggi et al., 2004; Tanino & 

Nepf, 2008; Yager & Schmeeckle, 2013), stem diameter (Zhao & Nepf, 2021), clustering 

(Sukhodolov & Sukhodolova, 2010; Shan et al., 2020), and branching (Maza et al., 2017; 

Xu & Nepf, 2020) in shaping the near-bed turbulence, but the model vegetation used in 

each of these studies was emergent, i.e., taller than the water surface. Submerged aquatic 

vegetation is also common in the field. In addition to turbulence generated by vegetation 

elements, such as stems, leaves, and roots, for submerged canopies of sufficient density, 

canopy-scale turbulence is also created by the velocity shear generated by the drag 
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discontinuity at the top of the canopy (Raupach et al., 1996). The canopy shear 

production may contribute directly to the near-bed turbulence, or indirectly through 

turbulent transport (King et al., 2012). The penetration length scale, δe, which is inversely 

related to canopy density, describes the distance from the canopy top that turbulent 

momentum flux enhances the velocity, resulting in velocity shear and shear production of 

turbulence near the canopy top. If the shear layer production penetrates to the bed, it can 

directly enhance near-bed turbulence (King et al., 2012; Zhang et al., 2020), which might 

enhance sediment transport. For example, a significant shift in resuspension within a 

seagrass meadow was observed to occur when the canopy density was small enough to 

permit the penetration of shear layer turbulence to the bed (Moore, 2004, as discussed in 

Luhar et al., 2008). However, even in canopies with shear production isolated at the top 

of the canopy (δe/h < 1), turbulent transport may carry turbulence produced in the shear 

layer toward the bed (King et al., 2012).  

The present study investigated near-bed turbulence and bedload transport rate 

within a submerged canopy of model vegetation. Canopy density (ah, defined by the 

frontal area per unit volume a and canopy height h) and submergence ratio (H/h, defined 

as the ratio of flow depth H to the canopy height h) were chosen to compare conditions 

for which shear layer turbulence had different degrees of influence near the bed. 

Conditions were compared for two constraints, either with the channel average velocity 

(U) or with the energy slope (S) held constant. In the laboratory experiments, the channel 

average velocity U was held constant, because U was easier to adjust than S. Sections 

4.3.1 – 4.3.3 describe the flume experiments, which were used to develop a near-bed 

turbulence model and a model to predict bedload transport. The models were used to 

explore the influence of vegetation flexibility on turbulence and bedload transport. 

Section 4.3.4 considers field scenarios, in which energy slope S was kept constant, while 

the canopy parameters were varied. Readers should note that the same U does not 

necessarily mean the same S, and vice versa. Their relationship is discussed in detail in 

Section 4.3. 
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4.2 Methods 

 

Figure 4-1. Side view of sediment recirculating flume, with sand layer (brown) within an array of 
submerged cylinders. Brown dots represent sediment in motion. The right-handed coordinates are 
x (streamwise), y (lateral), and z (vertical). 

 

A submerged array of cylinders (diameter d = 1.27 cm) in a staggered 

arrangement was constructed in a 1-m wide and 10.4-m long test section of a sediment 

recirculating flume (Figure 4-1). The cylinder diameter was chosen both to be consistent 

with the stem diameter of submerged aquatic vegetation (Sukhodolov & Sukhodolova, 

2006) and to ensure that cylinder-scale turbulence could be resolved by the 0.6-cm 

control volume of the velocity measurement. The array length (8 m) was sufficient for the 

velocity field to reach a fully developed condition (Chen et al., 2013). A sand bed 

(density ρs = 2650 kg/m3, median grain size d50 = 0.35 mm) with an initial thickness of 

7.8 cm was installed along the test section. Initially, the canopy height was h = 10 cm 

above the top of the sand layer. To consider different contributions of shear layer 

turbulence at the bed, the dimensionless canopy density was set to ah = 0.11 (δe = h, 

which will be called the sparse canopy) and 0.49 (δe < h, which will be called the dense 

canopy). The targeted channel-averaged velocity U was 40 cm/s, but it varied by up to 

15% as the bed level adjusted during specific flow and canopy conditions. The flow 

depth (H) was varied to produce a range of submergence ratio H/h = 1.5 to 3.5. 

Starting from level, the bed profile evolved before reaching an equilibrium state. 

To observe the evolution of the bed, a tripod-mounted Canon D7500 camera captured 

images of a side section of the channel every 15 min. Once the bed elevation varied by 
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less than 5 mm per hour, direct measurements of sediment transport rate were made to 

confirm that the bed had reached equilibrium. Sediment was collected by diverting 

sediment from the recirculation pipe (Figure 4-1) into a mesh bag for 20 min. If the 

collected sediment weighed more than 50 g, the collection time was decreased, but to no 

shorter than 2 min. Each measurement was followed by a 15-min break and was repeated 

four times. If the standard error within a 1-hr measurement set was less than 15% of the 

set average, the bed was considered to have reached equilibrium. The time to reach 

equilibrium was between 30 and 160 hours.  

The sediment transport rate was normalized for comparison with other studies. 

Specifically, the dimensionless sediment transport rate is: 

 𝑞𝑞s∗ = 𝑞𝑞s
𝜌𝜌s𝑤𝑤s𝑈𝑈50

 , (4.1) 

in which 𝑞𝑞s is the mass transported per unit width per time, and ws is the settling velocity 

estimated by Rubey’s equation (1933): 

 𝑤𝑤s = ��2
3

+ 36𝜈𝜈2

(𝜌𝜌s/𝜌𝜌−1)𝑔𝑔𝑈𝑈50
3 − � 36𝜈𝜈2

(𝜌𝜌s/𝜌𝜌−1)𝑔𝑔𝑈𝑈50
3 ��(𝜌𝜌s/𝜌𝜌 − 1)𝑔𝑔𝑑𝑑50,  (4.2) 

which yielded ws = 0.047 m/s for the quartz sediment (d50 = 0.35 mm) used in this study. 

After equilibrium was reached, a vertical profile of instantaneous velocity (u, v, 

and w, corresponding to streamwise, lateral, and vertical velocities, respectively) was 

measured 7 m downstream of the array leading edge, where the flow was fully developed. 

The profile was taken close to the channel centerline (y = 46.8 cm or 47.6 cm) and 

midway between two adjacent cylinder rows and columns. Based on preliminary 

measurements and previous studies, at this position, the velocity and turbulent kinetic 

energy respectively matched their spatial average to within 10% error (Figure A3-1; also 

see Figure 2 in Chen et al., 2013 and Figures 4 & 13 in Conde-Frias et al., 2023). The 

difference between the Reynolds stress at this point and the spatial average was less than 

30% (Figure A3-1; Figure 4 & 13, Conde-Frias et al., 2023). At each point, velocity was 

recorded for 150 seconds at 200 Hz by a down-looking Nortek Vectrino. The region 

within 5 cm of the water surface was measured with a side-looking probe. Seeding 
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material (Potters Industries Inc. Spherical Glass 110P8, d50 = 10 µm) was added to 

enhance the backscatter signal. 

The following protocol was used to process the velocity records. First, as 

suggested by Nortek (2021), data points with signal-to-noise ratio smaller than 10 (none 

in this study) or signal correlation smaller than 70% (observed in near-bed velocity data 

in dense canopy) were removed. Second, the Goring and Nikora (2002) spike removal 

algorithm was applied, with the acceleration and velocity thresholds set to λa = 1 and k = 

1.5, respectively. For each velocity component, the temporal average (denoted by 

overbar), 𝑋𝑋� = 1
𝑇𝑇 ∫ 𝑋𝑋(𝑡𝑡)𝑇𝑇

0 dt, and fluctuation (denoted by prime), 𝑋𝑋′(𝑡𝑡) = 𝑋𝑋(𝑡𝑡) − 𝑋𝑋�, were 

calculated. Here X is a velocity component, t is time, and T is the sampling duration (150 

s). The root-mean-square velocity (Xrms), Reynolds stress (τRe), and turbulent kinetic 

energy (kt) were calculated, respectively, as: 

 𝑋𝑋rms = �1
𝑇𝑇 ∫ [𝑋𝑋′(𝑡𝑡)]2𝑇𝑇

0 dt  (4.3) 

 𝜏𝜏Re = −𝜌𝜌𝑢𝑢′𝑤𝑤′������  (4.4) 

 𝑘𝑘t = 1
2
�𝑢𝑢′2���� + 𝑣𝑣′2���� + 𝑤𝑤′2������ = 1

2
(𝑢𝑢rms2 + 𝑣𝑣rms2 + 𝑤𝑤rms2 )  (4.5) 

The canopy average was denoted by angle brackets, ⟨⬚⟩ = 1
ℎ ∫ ( ) dzℎ

0 . After 

finishing the velocity measurements, the sediment transport rate was measured for 

another four consecutive times to confirm stationary conditions.  

Because the canopy was submerged, the vertical profiles of velocity and 

turbulence had significant variation with distance from the bed. However, for bedload 

transport, the conditions near the bed were the most relevant. Thus, we defined a near-

bed region within 2 cm from the bed, excluding the region of significant shear in the 

upper canopy. The near-bed average was defined as (⬚)nb = 1
2 cm∫ ( ) dz2 cm

0 . 
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4.3 Results and Discussion 

Table 4.1: Summary of Experimental Cases 
Case # 1.1 1.2 1.3 2.1 2.2 2.3 

a (m-1) 1.1 1.1 1.1 4.9 4.9 4.9 
h (cm) 13.3 11.8 10.9 16.7 11.6 10.5 

ah (-) 0.15 0.13 0.12 0.82 0.57 0.51 
H (cm) 18.9 26.8 32.3 24.5 26.8 36.5 

H/h (-) 1.4 2.3 3.0 1.5 2.3 3.5 
δe (cm) 6.7 9.5 9.0 7.0 6.5 5.6 

δ(δe) (cm) 0.3 0.4 0.4 1.4 1.0 0.2 
δe/h (-) 0.50 0.81 0.83 0.42 0.56 0.53 

δ(δe/h) (-) 0.03 0.05 0.05 0.08 0.09 0.03 
qs (g m-1 s-1) 3.8 0.85 0.265 8.2 0.86 0.036 

SE(qs) (g m-1 s-1) 0.5 0.06 0.01 0.2 0.02 0.003 
U (cm/s) 38.1 41.2 38.9 39.3 45.8 38.4 

SE(U) (cm/s) 1.1 1.3 1.2 2.5 1.8 1.6 
Unb (cm/s) 28.8 20.1 15.6 18.7 12.2 7.15 

SE(Unb) (cm/s) 0.8 1.5 1.5 0.3 0.2 0.16 
Ucanopy (cm/s) 32.7 27.0 21.2 26 19.6 12.0 

SE(Ucanopy) (cm/s) 0.9 1.2 1.1 2 1.8 1.2 
kt,nb (cm2/s2) 18.1 16.4 14.2 29 24 15.6 

SE(kt,nb) (cm2/s2) 0.5 0.4 0.3 3 3 1.5 
kt,canopy (cm2/s2) 44 43 34 93 87 52 

SE(kt,canopy) (cm2/s2) 4 4 4 12 11 7 
τRe,nb (N/m2) 0.17 0.090 0.06 0.20 0.13 0.038 

SE(τRe,nb) (N/m2) 0.03 0.015 0.02 0.05 0.07 0.015 
τRe|z=h (N/m2) 1.96 1.69 1.1 5.55 3.4 2.8 

SE(τRe|z=h) (N/m2) 0.06 0.10 0.3 0.17 0.2 0.9 
 
Notes 

(1) Nomenclature 
a: Frontal area per unit volume 
h: Canopy height 
ah: Canopy density 
H: Flow depth 
H/h: Submergence ratio 
δe: Penetration length 
U: Channel average velocity 

Unb: Near-bed velocity 
Ucanopy: Canopy-averaged velocity 
kt,nb: Near-bed turbulent kinetic energy 
kt,canopy: Canopy-averaged turbulent 
kinetic energy 
SE: Standard error 

 
(2) Uncertainties (denoted by 𝜹𝜹) 

𝛿𝛿𝑎𝑎
𝑎𝑎

= 𝛿𝛿𝑈𝑈
𝑈𝑈

= 8%, 𝛿𝛿ℎ = 𝛿𝛿𝐻𝐻 = 0.5 cm. 
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4.3.1 Time-mean and Turbulent Velocity Statistics 

 
Figure 4-2. Vertical profiles of streamwise velocity (a, d), Reynolds stress (b, e), and turbulent 
kinetic energy (TKE, c, f) for frontal area per canopy volume a = 1.1 m-1 (first row, a – c, denoted 
as sparse in this paper) and a = 4.9 m-1 (second row, d – f, denoted as dense in this paper). 
Vertical coordinate (z), local time-average velocity (𝑢𝑢�), Reynolds stress (RS, 𝜏𝜏Re = −𝜌𝜌𝑢𝑢′𝑤𝑤′������), and 
TKE (kt) are respectively normalized by canopy height above sand bed (h), channel average 
velocity (U), Reynolds stress at canopy top (𝜌𝜌𝑢𝑢∗2|𝑧𝑧=ℎ), and the near-bed velocity (𝑈𝑈nb =
1

2 cm∫ 𝑢𝑢�(𝑧𝑧)2 cm
0 𝑑𝑑𝑧𝑧). Submergence ratio (H/h) is indicated by symbol color in legend, with 

corresponding water surface position denoted by a horizontal line of the same color. Black dashed 
lines indicate the top of canopy (z = h). Measurement errors are smaller than the symbol size. 

 

The vertical profiles of velocity (Figure 4-2a, 4-2d) were similar to those 

measured in other submerged canopies (e.g., Raupach et al. 1996; Ghisalberti, 2009; 

King et al., 2012), with velocity diminished within the canopy, relative to above the 

canopy, producing a shear layer with an inflection point near the canopy top (z/h = 1, 

Figure 4-2). The in-canopy velocity decreased both with an increase in canopy density 

(compare a = 1.1 m-1 and 4.9 m-1, shown in Figure 4-2a and 4-2d, respectively) and with 
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an increase in the depth of submergence (e.g., compare H/h = 1.5 and 3.5 in Figure 4-2d). 

These trends were consistent with predictions from two-layer models based on 

conservation of mass and momentum (e.g., Huthoff et al., 2007; Chen et al., 2013). 

The peak Reynolds stress (RS) occurred at the canopy top, coincident with the 

velocity inflection point (Figure 4-2b, 4-2e). Above the canopy, the RS profiles were 

linear, decreasing toward zero at the free surface, which was consistent with stress 

profiles over an unvegetated bed (e.g., Nezu & Rodi, 1986; Stacey et al., 1999). Because 

canopy drag inhibited downward turbulent momentum flux (−𝜌𝜌𝑢𝑢′𝑤𝑤′������) into the canopy, 

RS decreased from the canopy top toward the bed (Figure 4-2b, 4-2e). The distance that 

turbulent momentum flux penetrates into the canopy, denoted 𝛿𝛿e, has been experimentally 

defined as the distance from the canopy top at which RS decreases to a value 10% of its 

peak value at the canopy top, i.e., normalized stress value of 0.1 (Nepf & Vivoni, 2000; 

Ghisalberti, 2009). Previous studies have shown 𝛿𝛿e ≈  1
3

(𝐶𝐶D𝑎𝑎)−1 (Ghisalberti, 2009), 

with 𝐶𝐶D the canopy drag coefficient. The penetration length is also restricted by the bed 

(δe = h), and the water surface (δe = H − h, Nepf & Vivoni, 2000). Combining these 

constraints,  

 𝛿𝛿𝑒𝑒 = min �1
3

(𝐶𝐶D𝑎𝑎)−1, ℎ, 𝐻𝐻 − ℎ�.  (4.6) 

The water surface constraint was observed in the sparse canopy (a = 1.1 m-1, 

Figure 2a) at submergence ratio H/h = 1.4 (blue dots), for which the penetration length 

was limited by the free surface (horizontal blue line), such that δe = H − h (Table 4.1, 

Figure 4-2b). In this case δe < h, such that turbulent stress did not penetrate to the bed, 

creating a near-bed region with vertically uniform velocity (Figure 4-2a). Compared to 

the sparse canopy at a similar submergence ratio, in the dense canopy (a = 4.9 m-1) the 

near-bed velocity was reduced to a greater degree (Figure 4-2d), leading to a stronger 

velocity shear and Reynolds stress at the top of the canopy (Table 4.1). Further, the dense 

canopy had a penetration length smaller than the canopy height (𝛿𝛿e =  1
3

(𝐶𝐶D𝑎𝑎)−1 < ℎ, 

Table 4.1), for all values of submergence ratio, resulting in a near-bed region unaffected 

by turbulent stress and thus having vertically uniform velocity (Figure 4-2d).  
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Turbulent kinetic energy, kt, had a maximum value near the canopy top, 

associated with shear production in the canopy shear layer (Figure 4-2c, 4-2f). For both 

canopy densities, the normalized near-bed TKE increased as the submergence ratio 

increased (blue to yellow to green symbols), suggesting enhancement of near-bed 

turbulence by the shear layer turbulence. Note that TKE was enhanced even in regions 

without shear production, i.e., regions below the penetration distance (z < h − δe), within 

which both RS and shear, and thus shear production (𝑃𝑃s = −𝜌𝜌𝑢𝑢′𝑤𝑤′������ 𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

 ), were negligible 

(Figure 4-2c, 4-2f, & Figure A3-2). This suggested that the turbulent transport of 

turbulence played a role in elevating the near-bed turbulence by transporting turbulence 

produced in the shear layer toward the bed. A similar conclusion can be drawn from 

Figure 7 in Nepf and Vivoni (2000), which showed that the TKE normalized by the 

square of local velocity was elevated, relative to the emergent (H/h = 1) condition, when 

H/h > 1.75, indicating that near-bed turbulence was elevated by turbulent transport from 

the canopy shear layer. 

 

4.3.2 Near-bed Velocity, Turbulence, and Sediment Transport 

 

Figure 4-3. (a) Normalized near-bed velocity, Unb/U, (b) normalized near-bed TKE, kt,nb/U2, and 
(c) dimensionless sediment transport rate, 𝑞𝑞s∗ = 𝑞𝑞s

𝜌𝜌s𝑤𝑤s𝑈𝑈50
, versus submergence ratio (H/h). 

Triangles represent sparse array (a = 1.1 m-1), and circles represent dense array (a = 4.9 m-1). 
Shaded band denotes conditions for an unvegetated bed with same channel average velocity and 
bed material (U = 0.4 m/s, d50 = 0.35 mm) estimated from measurements made by Ishii (2023), 
who used the same flume and sediment as this study. 
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The near-bed velocity, Unb, normalized by channel average velocity, U, decreased 

as submergence ratio, H/h, increased, and for the same H/h, Unb/U decreased as ah 

increased (Figure 4-3a), consistent with a two-layer momentum model (e.g., Chen et al., 

2013, see Figure 4-5b). For H/h > 2, Unb/U was smaller than the unvegetated bed (shaded 

band). The near-bed turbulence, kt,nb, normalized by U2, exhibited two regimes (Figure 4-

3b). First, at the shallowest submergence (H/h < 2), kt,nb/U2 achieved the highest observed 

values and was higher for the denser canopy. This was consistent with a dominance of 

stem-generated turbulence, which is proportional to aUnb
 2 (Tanino & Nepf, 2008). 

Specifically, in the denser canopy, compared to the sparser canopy, (Unb/U)2 was smaller, 

but a was larger, leading to a higher kt,nb/U2 value. Second, for H/h > 2, kt,nb/U2 was not a 

function of canopy density or submergence, but exhibited a constant value of 0.0103 ± 

0.0004, which was only slightly smaller than the value for unvegetated bed (0.0118 ± 

0.0010).  

For both canopy densities, the bedload transport rate decreased as H/h increased 

(Figure 4-3c). For H/h < 2, the sediment transport rate was higher than that associated 

with the bare bed and was also higher for the denser canopy (red circle) than the sparser 

canopy (blue triangle). Both of these trends were consistent with the dense canopy having 

the highest near-bed turbulence (Figure 4-3b). Similarly, emergent canopies (H/h = 1) 

have been consistently shown to produce higher bedload transport, compared to the bare 

channels, if the channel average velocity is the same (e.g., Yager & Schmeeckle, 2013; 

Yang & Nepf, 2018; Wu et al., 2021). For H/h > 2, the dimensionless sediment transport 

rate was similar for both canopy densities and lower than that associated with a bare bed.  

Figure 4-3 suggests that bedload transport was positively correlated with both 

near-bed turbulence and velocity. First, compare Cases 1.2 (blue triangle at H/h = 2.3) 

and 2.1 (orange circle at H/h = 1.5), which have the same near-bed velocity within 

uncertainty (Figure 4-3a), but the normalized near-bed TKE of Case 1.2 was half of that 

of Case 2.1 (Figure 4-3b), leading to much weaker sediment transport (Figure 4-3c). 

Next, compare Case 1.2 (blue triangle at H/h = 2.3) and Case 1.3 (blue triangle at H/h = 

3.0), which have the same near-bed TKE within uncertainty (Figure 4-3b), but the near-

bed velocity was higher in Case 1.2 (Figure 4-3a), yielding higher sediment transport 

(Figure 4-3c). The dependence of sediment transport on a combination of velocity and 
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turbulence has been noted in previous studies. Specifically, in bare channels, bedload 

transport has been described as the product of grain velocity, correlated with fluid 

velocity, and the number of grains in motion, correlated with turbulence (Ancey et al., 

2008), but bedload is predominantly controlled by the number of grains in motion (e.g., 

Radice & Ballio, 2008; Roseberry et al., 2012). Similar observations have been made in 

vegetated channels, with the number of grains in motion shown to have a positive 

correlation with a linear combination of time-mean and turbulent velocity (Yang & Nepf, 

2019; Lu et al., 2021). Consistent with Yang and Nepf (2019), we found a strong 

correlation between sediment transport and a linear combination of time-mean and 

turbulence velocity, 𝑓𝑓 = �𝑈𝑈nb+𝛼𝛼�𝑘𝑘t,nb�
2

�𝜌𝜌s𝜌𝜌 −1�𝑔𝑔𝑈𝑈50
. Specifically, 

 𝑞𝑞s∗ = 𝛽𝛽𝑓𝑓𝑛𝑛,  (4.7) 

with α = 10 (as given in Yang & Nepf, 2019), and β = 7.8×10-11 (95% CI: [5.1×10-12, 

1.2×10-9]) and n = 4.5 (95% CI: [3.9, 5.1]), based on data in Yang and Nepf (2019), Zhao 

and Nepf (2021) and this study (see Figure 4-4). This hybrid function of near-bed time-

mean velocity and turbulence captures two modes of sediment mobilization, due to time-

mean stress and due to impulse. When turbulence is low (e.g., flat beds without 

vegetation) or conditions far above the threshold of motion, time-mean stress is more 

important, which is correlated with time-mean velocity. When turbulence is high (e.g., 

beds with roughness elements, such as vegetation) or conditions close to the threshold of 

motion, turbulent fluctuations in bed stress or turbulent pressure can provoke sediment 

mobility, even when the time-mean bed stress is below the critical value. In these 

conditions, turbulence plays a more important role in sediment mobility. In this study (d50 

= 0.35 mm) and in Yang and Nepf (2019, d50 = 0.60 mm), the constant α = 10, indicating 

that turbulence becomes dominant only when �𝑘𝑘t,nb > 0.1 𝑈𝑈nb. It is interesting to note 

that for bare beds the turbulence intensity is typically �𝑘𝑘t,nb 𝑈𝑈nb� ≈ 0.1 (e.g., Nezu & 

Rodi, 1986), indicating a condition for which turbulence would only weakly mediate the 

relationship between sediment mobility and time-mean bed stress, which is consistent 

with the large literature correlating sediment transport rate with time-mean bed stress in 

bare channels (e.g., Einstein, 1942; Engelund & Hansen, 1967; Meyer-Peter & Müller, 
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1948; Shields, 1936). Further, we note that the value α = 10 has only been estimated for 

non-cohesive sediment in the range of medium sand (d50 = 0.35 to 0.60 mm). The value 

of α could be a function of both the grain size and the length scale of turbulence. For 

example, in a gravel-bed river with reed-scale vegetation, the diameter of vegetation 

elements (≈ 0.5 cm) could be much smaller than the grain size (4 to 6 cm), such that the 

vegetation-generated turbulence may not be large enough or act on the bed long enough 

to mobilize the sediment (e.g., Deitrick et al., 2024). Therefore, for gravel-bed rivers, α 

may be smaller than 10, or even zero. 

Previously, to incorporate the role of vegetation turbulence in bedload transport, 

Zhao and Nepf (2021) recast the Meyer-Peter-Müller model (Meyer-Peter & Müller, 

1948) in terms of TKE: 

 𝑞𝑞s∗ = 0.66�𝑘𝑘t,nb∗ − 𝑘𝑘t,cr∗ �
1.5

.  (4.8) 

in which the critical dimensionless TKE, 𝑘𝑘t,cr∗  = 0.095 and 0.16 for d50 = 0.35 mm (Ishii, 

2023) and 0.6 mm (Yang et al., 2016; Zhao & Nepf, 2021), respectively. While this 

model predicts sediment transport well for cases with strong channel turbulence, it 

overpredicts sediment transport by more than one order of magnitude with weak 

turbulence, because it did not account for the role of near-bed velocity (Figure 4-4b). 

Compared to Equation 4.8, which only considers near-bed TKE, Equation 4.7, which 

incorporates both velocity and TKE, provided a better description of sediment transport, 

cutting the root-mean-square error in half (Figure 4-4). This illustrates how the hybrid 

function in Equation 4.7 captures the role of TKE, when TKE is high, and that the time-

mean velocity is only important when TKE is small. 
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Figure 4-4. Measured dimensionless sediment transport rate 𝑞𝑞s∗ = 𝑞𝑞s
𝜌𝜌s𝑤𝑤s𝑈𝑈50

 versus (a) measured 

flow parameter 𝑓𝑓 = �𝑈𝑈nb+10�𝑘𝑘t,nb�
2

�𝜌𝜌s𝜌𝜌 −1�𝑔𝑔𝑈𝑈50
 and (b) measured dimensionless near-bed TKE 𝑘𝑘t,nb∗ =

𝑘𝑘t,nb
�𝜌𝜌s𝜌𝜌 −1�𝑔𝑔𝑈𝑈50

. The present study used d50 = 0.35 mm with sparse (a = 1.1 m-1, blue circles) and dense 

(a = 4.9 m-1) canopies. Zhao and Nepf (2021, orange stars) and Yang and Nepf (2019, blue stars) 
used d50 = 0.6 mm. Red dashed line in (a) represents the least squares fit of Equation 4.7. Green 
and cyan dashed curves in (b) represent the revised TKE-based Meyer-Peter-Müller model in 
Zhao and Nepf (2021) with corresponding threshold values (0.095 for d50 = 0.35 mm and 0.16 for 
d50 = 0.6 mm, respectively), i.e., Equation 4.8. 

 

4.3.3 Prediction of Near-bed Velocity, Turbulence, and Bedload Transport 

Rate 

A prediction for near-bed velocity, turbulence, and sediment transport rate was 

developed by combining the new sediment transport model (Equation 4.7) with models 

from several previous studies. In a submerged canopy, the time-mean velocity decays 

exponentially from a maximum value (Uh) at the top of the canopy (e.g., Nepf, 2012): 

 𝑢𝑢�(𝑧𝑧) = 𝑈𝑈S + (𝑈𝑈h − 𝑈𝑈S)𝑒𝑒−𝐾𝐾𝑢𝑢(ℎ−𝑧𝑧),  (4.9) 

in which US is the velocity within the canopy driven only by the energy slope (subscript 

‘S’) and unaffected by turbulent stress. For 𝜙𝜙 < 0.1, Equation 14 in Nepf (2012) gives  

 𝑈𝑈S = �2𝑔𝑔𝑔𝑔
𝐶𝐶D𝑎𝑎

. (4.10) 
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The coefficient Ku = (8.7 ± 1.4) CDa describes the decay of the stress-driven 

velocity component with distance from the canopy top. Ghisalberti (2009, Figure 4b) 

showed an empirical fit for submerged canopies that 

 𝑈𝑈h − 𝑈𝑈S = 2.6𝑢𝑢∗,  (4.11) 

in which 𝑢𝑢∗ is the shear velocity at the top of the canopy. If the water surface or bed slope 

(S) is known, the shear stress can be estimated as  

 𝑢𝑢∗ = �𝑔𝑔(𝐻𝐻 − ℎ)𝑆𝑆,  (4.12) 

so that Equations 4.9 through 4.12 describe the velocity within the canopy.  

In the present study, the flume had zero bed slope and the water surface slope was 

too small to accurately measure, so that S was not available. Instead, 𝑢𝑢∗ was inferred 

from a two-layer momentum model described in Chen et al. (2013), which defines the 

average velocity within the canopy (Ucanopy) and over the canopy (Uof, subscript for 

“overflow”), respectively, in relation to the channel average velocity, U: 

 

⎩
⎪
⎨

⎪
⎧𝑈𝑈canopy

𝑈𝑈
= �1 − ℎ

𝐻𝐻
𝜙𝜙 + � 𝐶𝐶𝐷𝐷𝑎𝑎ℎ

2𝐶𝐶(1−𝜙𝜙) �
𝐻𝐻−ℎ
𝐻𝐻
�
3
�
−1

𝑈𝑈of
𝑈𝑈canopy

= 1
𝐻𝐻−ℎ

�𝐻𝐻 − 𝑈𝑈
𝑈𝑈canopy

ℎ(1 − 𝜙𝜙)�
 . (4.13) 

The coefficient 𝐶𝐶 describes the turbulent stress at the top of the canopy: 

 𝐶𝐶 = 𝑢𝑢∗2/�𝑈𝑈of − 𝑈𝑈canopy�
2
,  (4.14) 

and for rigid canopies of sufficient density (ah > 0.1), 𝐶𝐶 = (0.07 ± 0.02) �𝛿𝛿𝑣𝑣
𝐻𝐻
�
1
3. 

Therefore, the shear velocity at the top of the canopy can be estimated from Equations 

4.13 and 4.14: 

 𝑢𝑢∗ = √𝐶𝐶�𝑈𝑈of − 𝑈𝑈canopy�.  (4.15) 

Equations 4.9 – 4.15 together describe the velocity profile 𝑢𝑢�(𝑧𝑧), from which the 

near-bed velocity is 

 𝑈𝑈nb = 1
2 cm∫ 𝑢𝑢�(𝑧𝑧)dz2 cm

0 .  (4.16) 
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Figure 4-5. (a) Ratio of measured near-bed TKE to predicted sum of bed and wake TKE 

(Equation 4.24), 𝑘𝑘t,nb 
𝑘𝑘t,wb

, versus parameter (𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2 representing the ratio of canopy-averaged 

shear production, ⟨𝑃𝑃s⟩, to wake production, ⟨𝑃𝑃w⟩ (from Equation 4.23). Gray band represents the 
range of 𝑘𝑘t,nb 

𝑘𝑘t,wb
 measured in emergent canopies in Zhao and Nepf (2021), and blue line and band 

represent the average and 95% confidence interval of linear fit. (b) Normalized near-bed velocity 
Unb/U versus submergence ratio H/h (from Equation 4.16). (c) ah (Unb/U)3, product of canopy 
density ah and cube of normalized near-bed velocity Unb/U, versus submergence ratio H/h. (d) 
Near-bed TKE normalized by the square of channel-averaged velocity, kt,nb/U2, versus 
submergence ratio, H/h (from Equation 4.24). (e) Sediment transport rate, qs, versus submergence 
ratio, H/h. Data points from this study are blue triangles (a = 1.1 m-1) and red circles (a = 4.9 m-1), 
and those from Poggi et al. (2004) and Nepf and Vivoni (2000) are black squares and green 
triangles, respectively. In (b) – (e), solid lines represent model values. In (b) and (d), gray band 
represents the unvegetated value reported in Ishii (2023), who used the same flume and sediment 
as in this study. In (e), gray band represents sediment transport rate for unvegetated bed of the 
same sediment with U = 40 cm/s, based on Ishii (2023, see A3.2 in Appendices). Sediment 
transport in submerged canopies was predicted from Equation 4.7, using predicted Unb and kt,nb. 
Transparent bands around each curve show variation associated with experimental velocity range 
38 cm/s ≤ U ≤ 41 cm/s. 

 

Next, consider the near-bed turbulence, kt,nb. Within an emergent vegetation 

canopy, turbulence can arise from bed shear and the stem wakes (e.g., Nepf, 1999; 

Stoesser et al., 2010). Modifying the model for emergent canopies (e.g., Zhao & Nepf, 
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2021), the wake- and bed-generated turbulence within a submerged canopy, kt,wb (“wb” 

for wake and bed), was written in terms of the near-bed velocity:   

 𝑘𝑘t,wb = 𝐶𝐶b𝑈𝑈nb2���
bed−generated

+ 𝛿𝛿𝑘𝑘t �
𝐶𝐶D,form 𝑎𝑎𝑈𝑈
2(1−𝜙𝜙) �

2
3 𝑈𝑈nb2�������������

vegetation−generated

, (4.17) 

in which 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 (Zhao & Nepf, 2021), and Cb describes the contribution of 

bed-generated turbulence. The form drag coefficient was estimated as (Etminan et al., 

2017, 2018) 

 𝐶𝐶D,form = 0.9𝐶𝐶D = 0.9 � 1−𝜙𝜙
1−�2𝜙𝜙/𝜋𝜋

�
2
�1 + 10𝑅𝑅𝑒𝑒d

−2/3 � 1−𝜙𝜙
1−�2𝜙𝜙/𝜋𝜋

�
−2/3

�,  (4.18) 

which is valid for stem Reynolds number 𝑅𝑅𝑒𝑒d = 𝑈𝑈canopy𝑈𝑈
𝜈𝜈

≥ 200, with kinematic viscosity 

𝜈𝜈.  

Within a submerged canopy, turbulence is also produced in the shear layer at the 

top of the canopy, and this turbulence may be transported toward the bed by turbulent 

transport, as discussed in Figure 4-2. As more turbulence is produced by shear production 

at the top of the canopy, more turbulence can be transported downward to augment the 

near-bed turbulence, so that it is reasonable to expect the increase in near-bed turbulence, 

kt,nb, above the baseline of wake- and bed-generated turbulence (Equation 4.16) to be 

proportional to the ratio of shear production to wake production in the canopy, that is, 
𝑘𝑘t,nb−𝑘𝑘t,wb

𝑘𝑘t,wb
~ 〈𝑃𝑃𝑠𝑠〉
〈𝑃𝑃𝑤𝑤〉

.  

From Zhang et al. (2020), the canopy average wake production is 

 〈𝑃𝑃𝑤𝑤〉 = 1
2
𝐶𝐶D,form

𝑎𝑎
1−𝜙𝜙

𝑈𝑈canopy3 , (4.19) 

and the canopy average shear production is 

 〈𝑃𝑃𝑠𝑠〉 = 1.3
ℎ
𝐶𝐶
3
2�𝑈𝑈of − 𝑈𝑈canopy�

3
, (4.20) 

from which, 

 〈𝑃𝑃𝑠𝑠〉
〈𝑃𝑃𝑤𝑤〉

= 0.65 𝐶𝐶
3
2

𝑎𝑎ℎ𝐶𝐶D,form
� 𝑈𝑈of
𝑈𝑈canopy

− 1�
3
. (4.21) 
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The velocity ratio 𝑈𝑈of
𝑈𝑈canopy

 in Equation 4.21 can be replaced with Equation 4.13. 

Assuming CD ≈ 1 (as expected from Equation 4.18) and 𝜙𝜙 ≪ 1, 

 𝑈𝑈of
𝑈𝑈canopy

= 1 + 𝐻𝐻
𝐻𝐻−ℎ

�𝐶𝐶𝐷𝐷𝑎𝑎ℎ
2𝐶𝐶

�𝐻𝐻−ℎ
𝐻𝐻
�
3
 , (4.22) 

so that  

 〈𝑃𝑃𝑠𝑠〉
〈𝑃𝑃𝑤𝑤〉

∝ (𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2. (4.23) 

This theoretically derived function agreed with measurements (see Figure A3-3). 

From Equation 4.23 and assuming  𝑘𝑘t,nb−𝑘𝑘t,wb
𝑘𝑘t,wb

~ 〈𝑃𝑃𝑠𝑠〉
〈𝑃𝑃𝑤𝑤〉

, we expect 

 𝑘𝑘t,nb
𝑘𝑘t,wb

= 1 + 𝛿𝛿s(𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2.  (4.24) 

The intercept in Equation 4.24 is unity, because for emergent canopies (H/h = 1) 

the second term is zero, and kt,nb = kt,wb, because there is no shear production. Equation 

4.24 was confirmed using measurements from this study and from Poggi et al. (2004). An 

optimization of this fit suggested δs = 22 ± 2 (95% CI, Figure 4-5a) and Cb = 0 (see A3.3 

and Figure A3-5), which implied that the bed turbulence made a negligible contribution 

to kt,wb (Equation 4.17). This is consistent with the fact that in the near-bed region, the 

bed shear production was much smaller than wake production (Figure A3-2). In addition, 

for both canopies ah > 0.1, indicating that stem drag and turbulence were dominant over 

bed drag and turbulence (see Belcher et al., 2003 and Yang & Nepf, 2019, respectively). 

Finally, using the predicted Unb (Equation 4.16) and predicted kt,nb (Equation 

4.24), the bedload transport qs was predicted from Equation 4.7. The modeled and 

measured values of Unb, kt,nb, and qs had strong agreement (see Figure A3-6). 

Specifically, modeled Unb matched measurements to within 20%. Modeled and measured 

kt,nb agreed within uncertainty. Modeled qs matched measurements within factor 2. 
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4.3.4 Role of Canopy Density, Submergence Ratio, and Flexibility 

The model developed in Section 4.3.3 was used to provide a detailed description 

of how near-bed turbulence (Figure 4-5d) and sediment transport (Figure 4-5e) vary with 

canopy density (ah) and submergence (H/h). Assuming a constant channel velocity, two 

regimes were defined by the degree of submergence. For shallow submergence, H/h < 2, 

canopy shear production is restricted to a region close to the canopy top (small δe, see 

Table 4.1) and the transport of this turbulence into the near-bed region is small compared 

to the local stem generation. Specifically, for H/h < 2, Tt,nb/Pw,nb < 0.2 (Figure A3-4). 

Therefore, the near-bed turbulence is dominated by stem wake production, which is 

proportional to a and Unb
3 (Equation 4.19, also Tanino & Nepf, 2008). Although Unb/U 

decreases with increasing ah, the combination aUnb
3 is positively related to ah (Figure 4-

5c, H/h < 2), so that near-bed turbulence (kt,nb/U2) increases as canopy density (ah) 

increases. In this regime, near-bed TKE dominates the channel-scale bedload transport 

(as discussed in 4.3.2 and A3.2), so that the bedload transport rate decreases with 

increasing submergence ratio and decreasing canopy density, consistent with the trends in 

kt,nb (Figure 4-5d and 4-5e, H/h < 2). For deeper submergence, H/h > 2, the near-bed 

turbulence is enhanced by turbulent transport, which carries turbulence produced in the 

canopy shear-layer toward the bed (Figures A3.2 and A3.4). As ah increases, the near-

bed velocity decreases, which decreases local wake production (Equation 4.19), but this 

also increases the velocity shear and thus canopy shear production (Equation 4.20), which 

contributes to near-bed turbulence via turbulent transport (Figures A3.2 and A3.4). The 

changes in wake production and turbulent transport are complementary, resulting in 

kt,nb/U2 that is almost invariant to ah (Figure 4-5d, H/h > 2). Because the near-bed TKE is 

insensitive to ah in this regime, the dependence of sediment transport on near-bed 

velocity comes into play (see discussion in 4.3.2 around Equation 4.7), so that for H/h > 

2, cases with higher ah and smaller Unb, yield weaker sediment transport (Figure 4-5e, for 

H/h > 2). Further, in this regime, both kt,nb/U2 and Unb/U decrease to values smaller than 

that of the unvegetated case (Figure 4-5b and 4-5d), such that sediment transport is 

reduced to below that of a bare unvegetated bed for H/h > 2 (Figure 4-5e).
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Figure 4-6. Modeled depth-averaged velocity (U), near-bed velocity (Unb), near-bed TKE (kt,nb), and sediment transport rate (qs) under constant 
hydrodynamic forcing (energy slope, S, from top to bottom: S = 0.0001, 0.001, 0.005) in canopies of submerged rigid vegetation. See model details 
in Section 4.3.3. Canopies had stem diameter d = 1.3 cm and height h = 10 cm. Bed sediment d50 = 0.35 mm. Flow depth was varied from H = 10 
cm to 50 cm, corresponding to the horizontal axis H/h = 1 to 5. Solid curves represent model results, with color distinguishing canopy density. 
Black dashed curves in right-most column show sediment transport rate for bare bed (see A3.2 in Appendices for details). Gray band represents 
transport rates with bedforms (Wong & Parker, 2006). 
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The previous paragraph compared conditions with the same channel velocity U as 

vegetation density and submergence ratio were varied, which is consistent with the 

present and many previous laboratory studies. Under the same channel velocity but 

different canopies, the canopy drag could vary with the density and submergence of 

vegetation, thus producing different water surface or bed slopes (energy slopes). 

However, in the field, it is often the case that the controlling boundary condition is a 

constant energy slope (Fagherazzi et al., 1999). With this constraint, the density and 

submergence of vegetation have a strong influence on the channel velocity, which in turn 

impacts turbulence and bedload transport. To have a complete picture of field conditions, 

it is important to consider trends with constant energy slope. Using S (= 1×10-4, 1×10-3, 

and 5×10-3) to define the friction velocity (Equation 4.12), Equations 4.8, 4.9−4.12, 4.16, 

4.17, and 4.24 were used to predict near-bed velocity, turbulence, and bedload transport, 

with stem diameter d = 1.3 cm, canopy height h = 10 cm, and median grain size d50 = 

0.35 mm. The canopy density was varied from 0.11 to 1.0, for which canopy shear 

turbulence is present (ah > 0.1). 

Figure 4-6 shows how canopy density and submergence ratio control velocity, 

turbulence, and bedload transport under constant energy slope S. In contrast to conditions 

constrained to have the same channel velocity (Figure 4-5), with a constant slope, 

turbulence and bedload transport increase with increasing submergence ratio, reflecting 

the increase in channel average velocity (Figure 4-6). For the same canopy density (ah), 

the channel average velocity is lowest for emergent conditions (H/h = 1) and increases as 

H/h increases (Figure 4-6, first column). However, the near-bed velocity only increases 

with submergence ratio (H/h) for sparse canopies (ah < 0.36, Figure 4-6, second column). 

For denser canopies (ah > 0.36), the penetration of turbulent stress is limited, i.e., 𝛿𝛿e =

 1
3

(𝐶𝐶D𝑎𝑎)−1 < ℎ, so that the near-bed velocity is only a function of the energy gradient 

(𝑈𝑈S, Equation 4.10) and independent of H/h. The downward transport of turbulence 

generated in the canopy shear layer enhances the near-bed TKE. Because shear and shear 

production increase with the velocity difference, U−Unb, kt,nb increases with increasing 

H/h (Figures 4-6, first through third columns), which in turn leads to increasing sediment 
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transport with increasing degree of submergence (Figure 4-6, last column). For the same 

submergence (H/h), as canopy density (ah) and thus drag increases, both the depth-

averaged and near-bed flows are reduced. The near-bed turbulence decreases with 

increasing ah, but reaches a nearly constant value for dense canopies (ah > 0.36), 

corresponding to the trade-off between decreased stem wake production and increased 

canopy shear production discussed with Figure 4-5. The trends in sediment transport rate 

reflect the trends in kt,nb and Unb, increasing as H/h increases and ah decreases. It is worth 

noting that at high submergence (H/h > 3), the bedload transport (qs) reaches a limit for 

dense canopies such that the curves for ah > 0.36 converge. This is because with deep 

submergence, 𝛼𝛼�𝑘𝑘t,nb ≫ 𝑈𝑈nb, so that 𝑓𝑓 = �𝑈𝑈nb+𝛼𝛼�𝑘𝑘t,nb�
2

�𝜌𝜌s𝜌𝜌 −1�𝑔𝑔𝑈𝑈50
 is dominated by 𝑘𝑘t,nb, which 

also has convergent behavior for ah > 0.36 (Figure 4-6). For comparison, in Figure A3-7, 

flow depth was held constant, and canopy height was varied for the same range of 

submergence, 1 ≤ H/h ≤ 5, which yielded similar trends as Figure 4-6. 

In addition, many submerged aquatic plants are flexible, so that they bend in 

response to the flow, which reduces their height and frontal area. For a single flexible 

blade tied to a stem with negligible height, Luhar and Nepf (2011, 2013) proposed a 

model to predict the ratio of deflected canopy height, h, to the blade length l, which is 

also the height of the fully erect canopy: 

 ℎ
𝑙𝑙

= 1 − 1−𝐶𝐶𝑎𝑎−
1
4

1+𝐶𝐶𝑎𝑎−
3
5�4+𝐵𝐵

3
5�+𝐶𝐶𝑎𝑎−2(8+𝐵𝐵2)

, (4.25) 

in which the Cauchy number 

 𝐶𝐶𝑎𝑎 = 1
2
𝜌𝜌𝐶𝐶𝐷𝐷𝑏𝑏𝑈𝑈hor

2 𝑙𝑙3

𝐸𝐸𝐸𝐸
 (4.26) 

is the ratio of drag force bending the stem to elastic restoring force which resists bending. 

The buoyancy parameter 

 𝐵𝐵 = �𝜌𝜌−𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣�𝑔𝑔𝑏𝑏𝑔𝑔𝑙𝑙3

𝐸𝐸𝐸𝐸
 (4.27) 

is the ratio of buoyant restoring force to elastic restoring force. 𝜌𝜌 and 𝜌𝜌veg are the density 

of water and vegetation, respectively. b is the blade width, t the blade thickness, Uhor the 
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horizontal velocity acting on the blade, g the gravitational acceleration, E the Young’s 

modulus of the blade, and 𝐼𝐼 = 𝑏𝑏𝑔𝑔3

12
 the bending moment of inertia of the blade. To 

characterize the drag reduction by reconfiguration, Luhar and Nepf (2011) also defined 

an effective blade length, leff, as the height of erect rigid blade that produces the same 

total drag as a reconfiguring flexible blade: 

 𝑙𝑙eff
𝑙𝑙

= 1 − 1−0.9𝐶𝐶𝑎𝑎−
1
3

1+𝐶𝐶𝑎𝑎−
3
2�8+𝐵𝐵

3
2�

. (4.28) 

The equations above can be used to describe the reconfiguration of a submerged 

canopy, which in turn changes the velocity and TKE within the canopy and the resulting 

bedload transport. As an example, consider a flexible canopy of Zostera marina 

(eelgrass), a common seagrass. The canopy is sufficiently long, so that the downstream 

flow is fully developed. We assume no change in the canopy frontal area a during 

configuration (Razmi et al., 2020). Measurements have shown that blades of Zostera 

marina are close to neutrally buoyant, that is, 𝜌𝜌veg ≈ 𝜌𝜌 (Vettori & Marjoribanks, 2021), 

thus we assume the buoyancy parameter B = 0. For the blade geometry and mechanical 

properties, Young’s modulus of the blade E = 2 × 108 Pa, blade width b = 4 mm, blade 

thickness t = 0.3 mm, blade length l = 50 cm (Vettori & Marjoribanks, 2021), and drag 

coefficient CD = 1.95 (Luhar et al., 2017). For the horizontal velocity acting on the blade, 

we assume Uhor = Ucanopy, and Cauchy number Ca, deflected canopy height hdef, and 

effective blade length leff are solved iteratively. For the erect canopy density al, Luhar et 

al. (2010) summarized that al ranges from 3.2 to 23.1 for Zostera marina, and 0.5 to 40.8 

for a range of seagrass species (see Table 3 in Luhar et al., 2010). In this model, we 

choose al = 0.5, 5, and 20 to represent Zostera marina and to extend to canopies of other 

species of flexible vegetation. For a seabed with median grain size d50 = 0.35 mm 

(medium sand), and assuming a fixed energy slope S = 5×10-5 based on typical tidal 

forcing (S = O(10-5~10-4), e.g., Burke & Stolzenbach, 1983; Leopold et al., 1993; 

Burchard, 1999; Ensign et al., 2013), we vary the flow depth H = 0.5 m to 2 m to 

examine the impact of flexible canopy on flow and bedload transport. Specifically, before 

varying the erect canopy density, the model was run to compare with flume results in Le 

Bouteiller and Venditti (2014), who constructed a nearly neutrally buoyant flexible 
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canopy with E = 2 × 108 Pa, b = 7.5 mm, l = 25.5 cm, t = 0.2 mm, a = 6 m-1, leading to al 

= 1.5. Le Bouteiller and Venditti (2014) reported a deflected canopy height hdef = 4.5 cm 

and in-canopy velocity Ucanopy = 9.4 ± 7.2 cm/s (Mean ± SD), whereas the model 

developed above predicts hdef = 4.3 cm and Ucanopy =14.8 cm/s, agreeing with their 

measurements. 

 

 

Figure 4-7. Modeled deflected canopy height (hdef) and penetration length (δe), submergence ratio 
(H/ hdef), near-bed velocity (Unb), near-bed TKE (kt,nb), depth-averaged velocity (U), and sediment 
transport rate (qs) under constant hydrodynamic forcing (constant energy slope S = 5×10-5) in 
canopies of submerged flexible vegetation. See model details in Section 4.3.3. Canopies had 
blade elasticity E = 2 × 108 Pa, blade width b = 4 mm, blade thickness t = 0.3 mm, blade length l 
= 50 cm, and erect canopy density al = 0.5, 5, and 20. Bed sediment d50 = 0.35 mm. Flow depth 
was varied from H = 0.5 m to 2 m, corresponding to the horizontal axis. Solid curves represent 
model results, with color distinguishing canopy density. Black dashed curves in subplots (a) and 
(f) show bare unvegetated bed scenarios (see A3.2 for details). Gray band represents transport 
rates with bedforms (Wong & Parker, 2006). 
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Figure 4-7 shows how flexible canopies of different density respond to the fixed 

hydrodynamic forcing. First, in response to the flow, flexible canopies exhibit significant 

reduction in their height (Figure 4-7a). Because sparser canopies are associated with 

higher in-canopy velocity compared to denser canopies, the blades within the sparser 

canopies bend more than denser canopies, resulting in lower deflected canopy height 

(Figure 4-7a). The canopy height decreases by up to 60% for al = 0.5 (deep blue curve), 

and 20% for al = 20 (light blue curve). Due to this canopy deflection, as the flow depth H 

increases, the submergence ratio H/hdef also increases, whose degree of increase is greater 

than the rigid canopies. The sparser the canopy is, the more deflection is observed (Figure 

4-7b), associated with greater dominance of near-bed turbulence by the canopy shear 

production (H/hdef > 2, black horizontal line in Figure 4-7b; see discussion of Figure 4-5). 

Second, the trends of near-bed velocity (Figure 4-7c) and turbulence (Figure 4-7d) are 

generally consistent with those in rigid canopies (Figure 4-6). As H increases, the canopy 

height is reduced to close to the penetration length for al = 0.5 (Figure 4-7a), so that the 

near-bed region is more subject to the canopy shear vortices, leading to slight increase in 

its near-bed velocity (Figure 4-7c). For denser canopies (al = 5 and 20), the penetration 

length is much smaller than the canopy height, so that the near-bed velocity is not 

influenced by canopy shear. The near-bed turbulence increases as H increases because 

the submergence ratio H/hdef also increases, associated with more downward transport of 

canopy shear turbulence. Third, bedload transport (Figure 4-7f) increases with increasing 

submergence ratio and decreasing canopy density, reflecting the increase in channel 

average velocity (Figure 4-7e), which is also consistent with the trends in rigid model 

canopies. Finally, because it contributes additional drag, the presence of the canopy 

significantly reduces the channel average velocity. For example, compared with the 

unvegetated bed, the depth-averaged velocity under the same energy slope S = 5×10-5 is 

reduced by up to 70% with flexible canopies (Figure 4-7e), reducing sediment transport 

to negligible (Figure 4-7f).  

The model results provide some conclusions relevant to real-world applications. 

First, the scenarios considered cover a wide range of real field conditions, and in all cases 

with a constant slope boundary condition the bedload transport was reduced compared to 

bare beds, supporting the general conclusion that submerged aquatic vegetation reduces 
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erosion and sediment transport. This is consistent with Le Bouteiller and Vendetti (2014), 

who observed that bedload transport was reduced within a submerged patch of flexible 

model seagrass. Second, the saturated sediment transport rate for dense canopies (ah > 

0.36 in model rigid canopies, and the model flexible canopies) suggests that there could 

be an optimal canopy density that maximizes bed protection and habitat creation for a 

given biomass investment. This can point to an optimum in the price-performance ratio in 

nature-based erosion control projects. It also suggests a possible energetic optimum for 

meadow growth. 

 

4.4 Conclusions 

Flume experiments in a channel with constant depth-averaged velocity (U) 

showed that near-bed velocity, turbulence, and bedload transport all decreased as canopy 

submergence ratio (H/h) increased. However, as canopy density (ah) increased, bedload 

transport increased in canopies of shallow submergence (H/h < 2) but decreased in deeply 

submerged canopies (H/h > 2). As H/h increased, the source of near-bed turbulence 

shifted from local stem wake production to the turbulence generated in the shear layer at 

the canopy top. A simple model that relates enhanced near-bed turbulence to the canopy 

shear was derived to predict near-bed turbulence within a submerged canopy. Bedload 

transport rate was found to be predominantly correlated with near-bed turbulence but also 

weakly correlated with near-bed velocity. A flow parameter that incorporates the near-

bed velocity and turbulence was shown to predict bedload transport, which can facilitate 

modeling of coastal and alluvial morphodynamics. The new models were used to explore 

field conditions with constant water surface or bed slope (S) and flexible vegetation. In 

the modeled scenarios, for a constant S, bedload transport increase with increasing 

submergence ratio (H/h) and decreasing canopy density (ah), but is always less than the 

corresponding bare unvegetated bed condition, illustrating that submerged aquatic 

vegetation contributes to reducing erosion. 

 

  



   
 

99 
 

Chapter 4 References 

Ancey, C., Davison, A. C., Böhm, T., Jodeau, M., & Frey, P. (2008). Entrainment and motion of 
coarse particles in a shallow water stream down a steep slope. Journal of Fluid Mechanics, 
595, 83–114. doi:10.1017/S0022112007008774 

Armanini, A., & Cavedon, V. (2019). Bed-load through emergent vegetation. Advances in Water 
Resources, 129, 250–259. doi:10.1016/j.advwatres.2019.05.021 

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C. & Silliman, B. R. (2011). The 
value of estuarine and coastal ecosystem services. Ecological Monographs, 81: 169–193. 
doi:10.1890/10-1510.1 

Belcher, S. E., Jerram, N., & Hunt, J. C. R. (2003). Adjustment of a turbulent boundary layer to a 
canopy of roughness elements. Journal of Fluid Mechanics, 488: 369–398. 
doi:10.1017/S0022112003005019 

Burchard, H. (1999). Recalculation of surface slopes as forcing for numerical water column models 
of tidal flow. Applied Mathematical Modelling, 23(10), 737-755. doi:10.1016/S0307-
904X(99)00008-6 

Burke, R. W., & Stolzenbach, K. D. (1983). Free Surface Flow Through Salt Marsh Grass. MIT 
Sea Grant College Program. 
https://repository.library.noaa.gov/view/noaa/9839/noaa_9839_DS1.pdf 

Celik, A. O., Diplas, P., Dancey, C. L., & Valyrakis, M. (2010). Impulse and particle dislodgement 
under turbulent flow conditions. Physics of Fluids, 22(4), 46601. doi:10.1063/1.3385433 

Chen, Z., Jiang, C., & Nepf, H. (2013). Flow adjustment at the leading edge of a submerged aquatic 
canopy. Water Resources Research, 49(9), 5537–5551. doi:10.1002/wrcr.20403 

Clarke, S. J. (2002). Vegetation growth in rivers: influences upon sediment and nutrient 
dynamics. Progress in Physical Geography: Earth and Environment, 26(2), 159–172. 
doi:10.1191/0309133302pp324ra 

Conde-Frias, M., Ghisalberti, M., Lowe, R.J., Abdolahpour, M., & Etminan, V. (2023). The Near-
Bed Flow Structure and Bed Shear Stresses Within Emergent Vegetation. Water Resources 
Research, 59(4), e2022WR032499. doi:10.1029/2022WR032499 

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., ... & van den Belt, M. 
(1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 
253–260. doi:10.1038/387253a0 

Deitrick, A.R., Ralston, D.K., Esposito, C.R., Baustian, M.M., Burgos, M.B., Courtois, A.J., & 
Nepf, H. (2024). Vegetation‐Generated Turbulence Does Not Impact the Erosion of Natural 
Cohesive Sediment. Geophysical Research Letters, 51(14), e2024GL109730. 
doi:10.1029/2024GL109730 

Einstein, H. A. (1942). Formulas for the Transportation of Bed Load. Transactions of the American 
Society of Civil Engineers, 107(1), 561–577. 

Engelund, F., & Hansen, E. (1967). A monograph on sediment transport in alluvial streams. 
Teknisk Forlag. 

Ensign, S.H., Doyle, M.W., & Piehler, M.F. (2013). The effect of tide on the hydrology and 
morphology of a freshwater river. Earth Surface Processes and Landforms, 38(6), 655-660. 
doi:10.1002/esp.3392 

Etminan, V., Ghisalberti, M., & Lowe, R. J. (2018). Predicting Bed Shear Stresses in Vegetated 
Channels. Water Resources Research, 54(11), 9187–9206. doi:10.1029/2018WR022811 

Etminan, V., Lowe, R. J., & Ghisalberti, M. (2017). A new model for predicting the drag exerted 
by vegetation canopies. Water Resources Research, 53(4), 3179–3196. 
doi:10.1002/2016WR020090 

Fagherazzi, S., Bortoluzzi, A., Dietrich, W.E., Adami, A., Lanzoni, S., Marani, M., & Rinaldo, A. 
(1999). Tidal networks: 1. Automatic network extraction and preliminary scaling features 



   
 

100 
 

from digital terrain maps. Water Resources Research, 35(12), 3891-3904. 
doi:10.1029/1999WR900236 

Fagherazzi, S., Bryan, K., & Nardin, W. (2017). Buried Alive or Washed Away: The Challenging 
Life of Mangroves in the Mekong Delta. Oceanography, 30(3), 48–59. 
doi:10.5670/oceanog.2017.313 

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., ... & 
Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature 
Geoscience, 5(7), 505–509. doi:10.1038/ngeo1477 

Ghisalberti, M. (2009). Obstructed shear flows: similarities across systems and scales. Journal of 
Fluid Mechanics, 641, 51–61. doi:10.1017/S0022112009992175 

Huthoff, F., Augustijn, D. C. M., & Hulscher, S. J. M. H. (2007). Analytical solution of the depth-
averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resources 
Research, 43(6), W06413. doi:10.1029/2006WR005625 

Ishii, J. (2023). The influence of current and ripple development on seagrass transplant survival 
[Master’s thesis, Massachusetts Institute of Technology]. DSpace@MIT. 
https://dspace.mit.edu/handle/1721.1/151912 

Jordanova, A. A., & James, C. S. (2003). Experimental Study of Bed Load Transport through 
Emergent Vegetation. Journal of Hydraulic Engineering, 129(6), 474–478. 
doi:10.1061/(ASCE)0733-9429(2003)129:6(474) 

King, A. T., Tinoco, R. O., & Cowen, E. A. (2012). A k–ε turbulence model based on the scales of 
vertical shear and stem wakes valid for emergent and submerged vegetated flows. Journal of 
Fluid Mechanics, 701, 1–39. doi:10.1017/jfm.2012.113 

Le Bouteiller, C., & Venditti, J. G. (2014). Vegetation-driven morphodynamic adjustments of a 
sand bed. Geophysical Research Letters, 41(11), 3876-3883. doi:10.1002/2014GL060155 

Leopold, L., Collins, J., & Collins, L. (1993). Hydrology of some tidal channels in estuarine 
marshland near San Francisco. CATENA, 20(5), 469-493. doi:10.1016/0341-8162(93)90043-
O 

Liu, C., Shan, Y., & Nepf, H. (2021). Impact of Stem Size on Turbulence and Sediment 
Resuspension Under Unidirectional Flow. Water Resources Research, 57(3), 
e2020WR028620. doi:10.1029/2020WR028620 

Lu, Y., Cheng, N., & Wei, M. (2021). Formulation of bed shear stress for computing bed-load 
transport rate in vegetated flows. Physics of Fluids, 33(11), 115105. doi:10.1063/5.0067851 

Luhar, M., Coutu, S., Infantes, E., Fox, S., & Nepf, H. (2010). Wave‐induced velocities inside a 
model seagrass bed. Journal of Geophysical Research: Oceans, 115(C12), C12005. 
doi:10.1029/2010JC006345 

Luhar, M., Infantes, E., & Nepf, H. (2017). Seagrass blade motion under waves and its impact on 
wave decay. Journal of Geophysical Research: Oceans, 122(5), 3736-3752. doi: 
10.1002/2017JC012731 

Luhar, M., Rominger, J., & Nepf, H. (2008). Interaction between flow, transport and vegetation 
spatial structure. Environmental Fluid Mechanics, 8(5-6), 423–439. doi:10.1007/s10652-008-
9080-9 

Meyer-Peter, E., & Müller, R. (1948). Formulas for Bed Load Transport. In Proceedings of 2nd 
meeting of the International Association for Hydraulic Structures Research, Stockholm, 
Appendix 2, 39–64. 

Moore, K. A. (2004). Influence of Seagrasses on Water Quality in Shallow Regions of the Lower 
Chesapeake Bay. Journal of Coastal Research, 10045, 162–178. doi:10.2112/SI45-162.1 

Nardin, W., & Edmonds, D. A. (2014). Optimum vegetation height and density for inorganic 
sedimentation in deltaic marshes. Nature Geoscience, 7(10), 722–726. doi:10.1038/ngeo2233 

Nepf, H. M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water 
Resources Research, 35(2), 479–489. doi:10.1029/1998WR900069 



   
 

101 
 

Nepf, H. M. (2012). Flow and Transport in Regions with Aquatic Vegetation. Annual Review of 
Fluid Mechanics, 44(1), 123–142. doi:10.1146/annurev-fluid-120710-101048 

Nepf, H. M., & Vivoni, E. R. (2000). Flow structure in depth‐limited, vegetated flow. Journal of 
Geophysical Research: Oceans, 105(C12), 28547–28557. doi:10.1029/2000JC900145 

Nepf, H., Ghisalberti, M., White, B., & Murphy, E. (2007). Retention time and dispersion 
associated with submerged aquatic canopies. Water Resources Research, 43(4), W04422. 
doi:10.1029/2006WR005362 

Nezu, I., & Rodi, W. (1986). Open‐channel Flow Measurements with a Laser Doppler 
Anemometer. Journal of Hydraulic Engineering, 112(5), 335–355. doi:10.1061/(ASCE)0733-
9429(1986)112:5(335) 

Niño, Y., & Garcia, M. H. (1996). Experiments on particle-turbulence interactions in the near-wall 
region of an open channel flow: implications for sediment transport. Journal of Fluid 
Mechanics, 326, 285–319. doi:10.1017/S0022112096008324 

Nortek. (2021). How do I enhance Correlation and SNR? Retrieved January, 15, 2023, from 
https://support.nortekgroup.com/hc/en-us/articles/360029819951-How-do-I-enhance-
Correlation-and-SNR 

Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., ... & Voller, V. R. 
(2011). Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual 
Review of Marine Science, 3(1), 67–91. doi:10.1146/annurev-marine-120709-142856 

Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D., & Katul, G. G. (2004). The Effect of 
Vegetation Density on Canopy Sub-Layer Turbulence. Boundary-Layer Meteorology, 111(3), 
565–587. doi:10.1023/B:BOUN.0000016576.05621.73 

Radice, A., & Ballio, F. (2008). Double-average characteristics of sediment motion in one-
dimensional bed load. Acta Geophysica, 56(3), 654–668. doi:10.2478/s11600-008-0015-0 

Raupach, M. R., Finnigan, J. J., & Brunet, Y. (1996). Coherent Eddies and Turbulence in 
Vegetation Canopies: The Mixing-Layer Analogy. In: Garratt, J.R., Taylor, P.A. (eds) 
Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995 (pp. 351–382). Springer. 
doi:10.1007/978-94-017-0944-6_15 

Razmi, A. M., Chamecki, M., & Nepf, H. M. (2020). Efficient numerical representation of the 
impacts of flexible plant reconfiguration on canopy posture and hydrodynamic drag. Journal 
of Hydraulic Research, 58(5), 755-766. doi:10.1080/00221686.2019.1671511 

Roseberry, J. C., Schmeeckle, M. W., & Furbish, D. J. (2012). A probabilistic description of the 
bed load sediment flux: 2. Particle activity and motions. Journal of Geophysical Research: 
Earth Surface, 117(F3), F03032. doi:10.1029/2012JF002353 

Rubey, W. W. (1933). Settling velocity of gravel, sand, and silt particles. American Journal of 
Science, s5-25(148), 325–338. doi:10.2475/ajs.s5-25.148.325 

Salim, S., Pattiaratchi, C., Tinoco, R., Coco, G., Hetzel, Y., Wijeratne, S., & Jayaratne, R. (2017). 
The influence of turbulent bursting on sediment resuspension under unidirectional currents. 
Earth Surface Dynamics, 5(3), 399–415. doi:10.5194/esurf-5-399-2017 

Shan, Y., Zhao, T., Liu, C., & Nepf, H. (2020). Turbulence and Bed Load Transport in Channels 
With Randomly Distributed Emergent Patches of Model Vegetation. Geophysical Research 
Letters, 47(12), e2020GL087055. doi:10.1029/2020GL087055 

Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die 
Geschiebebewegung [Application of similarity mechanics and turbulence research on shear 
flow]. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau (in German). 26. Berlin: 
Preußische Versuchsanstalt für Wasserbau. 

Shih, W., & Diplas, P. (2018). A Unified Approach to Bed Load Transport Description Over a 
Wide Range of Flow Conditions via the Use of Conditional Data Treatment. Water Resources 
Research, 54(5), 3490–3509. doi:10.1029/2017WR022373 



   
 

102 
 

Stacey, M. T., Monismith, S. G., & Burau, J. R. (1999). Measurements of Reynolds stress profiles 
in unstratified tidal flow. Journal of Geophysical Research: Oceans, 104(C5), 10933–10949. 
doi:10.1029/1998JC900095 

Stoesser, T., Kim, S. J., & Diplas, P. (2010). Turbulent Flow through Idealized Emergent 
Vegetation. Journal of Hydraulic Engineering, 136(12), 1003–1017. 
doi:10.1061/(ASCE)HY.1943-7900.0000153 

Sukhodolov, A. N., & Sukhodolova, T. A. (2010). Case Study: Effect of Submerged Aquatic Plants 
on Turbulence Structure in a Lowland River. Journal of Hydraulic Engineering, 136(7), 434–
446. doi:10.1061/(ASCE)HY.1943-7900.0000195 

Sukhodolov, A., & Sukhodolova, T. (2006). Evolution of mixing layers in turbulent flow over 
submersed vegetation: Field experiments and measurement study. In River Flow 2006: 
Proceedings of the International Conference on Fluvial Hydraulics, Lisbon, Portugal, 6-8 
September 2006 (pp. 525–534), CRC Press. 

Sumer, B. M., Chua, L. H. C., Cheng, N.-S., & Fredsøe, J. (2003). Influence of Turbulence on Bed 
Load Sediment Transport, Journal of Hydraulic Engineering, 129(8), 585–596. 
doi:10.1061/(ASCE)0733-9429(2003)129:8(585) 

Tang, H., Wang, H., Liang, D., Lv, S., & Yan, L. (2013). Incipient motion of sediment in the 
presence of emergent rigid vegetation. Journal of Hydro-environment Research, 7(3), 202–
208. doi:10.1016/j.jher.2012.11.002 

Tanino, Y., & Nepf, H.M. (2008). Lateral dispersion in random cylinder arrays at high Reynolds 
number. Journal of Fluid Mechanics, 600, 339–371. doi:10.1017/S0022112008000505 

Tinoco, R.O., & Coco, G. (2018). Turbulence as the Main Driver of Resuspension in Oscillatory 
Flow Through Vegetation. Journal of Geophysical Research: Earth Surface, 123(5), 891–904. 
doi:10.1002/2017JF004504 

Tseng, C., & Tinoco, R. O. (2021). A Two-Layer Turbulence-Based Model to Predict Suspended 
Sediment Concentration in Flows with Aquatic Vegetation. Geophysical Research Letters, 
48(3), e2020GL091255. doi:10.1029/2020GL091255 

Vettori, D., & Marjoribanks, T. I. (2021). Temporal Variability and Within‐Plant Heterogeneity in 
Blade Biomechanics Regulate Flow‐Seagrass Interactions of Zostera marina. Water 
Resources Research, 57(3), e2020WR027747. doi:10.1029/2020WR027747 

Wong, M., & Parker, G. (2006). Reanalysis and Correction of Bed-Load Relation of Meyer-Peter 
and Müller Using Their Own Database. Journal of Hydraulic Engineering, 132(11), 1159–
1168. doi: 10.1061/(ASCE)0733-9429(2006)132:11(1159) 

Wu, H., Cheng, N.-S., & Chiew, Y.-M. (2021). Bed-load Transport in Vegetated Flows: 
Phenomena, Parametrization, and Prediction. Water Resources Research, 57(4), 
e2020WR028143. doi:10.1029/2020WR028143 

Xu, Y., & Nepf, H. (2020). Measured and Predicted Turbulent Kinetic Energy in Flow Through 
Emergent Vegetation With Real Plant Morphology. Water Resources Research, 56(12), 
e2020WR027892. doi:10.1029/2020WR027892 

Xu, Y., Li, D., & Nepf, H. (2022). Sediment Pickup Rate in Bare and Vegetated 
Channels. Geophysical Research Letters, 49(21), e2022GL101279. 
doi:10.1029/2022GL101279 

Yager, E. M., & Schmeeckle, M. W. (2013). The influence of vegetation on turbulence and bed 
load transport. Journal of Geophysical Research: Earth Surface, 118(3), 1585–1601. 
doi:10.1002/jgrf.20085 

Yang, J. Q., & Nepf, H. M. (2018). A Turbulence-Based Bed-Load Transport Model for Bare and 
Vegetated Channels. Geophysical Research Letters, 45(19), 10,428–10,436. 
doi:10.1029/2018GL079319 

Yang, J. Q., & Nepf, H. M. (2019). Impact of Vegetation on Bed Load Transport Rate and Bedform 
Characteristics. Water Resources Research, 55(7), 6109–6124. doi:10.1029/2018WR024404 



   
 

103 
 

Yang, J. Q., Chung, H., & Nepf, H. M. (2016). The onset of sediment transport in vegetated 
channels predicted by turbulent kinetic energy. Geophysical Research Letters, 43(21), 
11,261–11,268. doi:10.1002/2016GL071092 

Zhang, J., Lei, J., Huai, W., & Nepf, H. (2020). Turbulence and Particle Deposition Under Steady 
Flow Along a Submerged Seagrass Meadow. Journal of Geophysical Research: Oceans, 
125(5), e2019JC015985. doi:10.1029/2019JC015985 

Zhao, T., & Nepf, H. M. (2021). Turbulence Dictates Bedload Transport in Vegetated Channels 
Without Dependence on Stem Diameter and Arrangement. Geophysical Research Letters, 
48(21), e2021GL095316. doi:10.1029/2021GL095316 

 

  



   
 

104 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 

 



   
 

105 
 

Chapter 5 Bedform Dynamics in Rigid Submerged 

Model Canopies 

5.1 Introduction 

The topographic patterns that form on a mobile sediment bed by unidirectional or 

oscillatory fluid flows are called bedforms (Southard, 1991; Charru et al., 2013). They 

are ubiquitous in aeolian environments on Earth (e.g., dunes in a desert; Bagnold, 1941) 

and other planets (e.g., Mars, Venus, and Titan; Bourke et al., 2010), as well as in 

subaqueous environments (Best, 2005). Bedforms have scales that are orders of 

magnitude greater than the grains, varying from centimeters (e.g., subaqueous ripples) to 

kilometers (e.g., dunes in a desert), and smaller secondary bedforms may be 

superimposed on the larger primary ones (Charru et al., 2013). Depending on the 

overlying flow and sediment supply, bedforms can migrate and change their shape 

(Engelund & Fredsøe, 1982). In some cases, the migration rate of bedforms may be used 

to estimate bedload transport (van den Berg, 1987). This chapter considers the migrating 

bedforms formed in the submerged model canopy considered in the laboratory study, and 

it will not discuss scour holes around individual vegetation elements. 

Vegetation and bedforms can coexist in nature, but the interaction between them 

is complicated. In aeolian environments, vegetation can decelerate the flow and cause 

particle deposition around it, forming nebkhas (Arabic: نبکة, lit.: small, sandy mound; also 

known as coppice dunes or phytogenetic dunes) and downwind shadow dunes in aeolian 

environments (Hesp & Smyth, 2017). In subaqueous environments, vegetation may 

weaken or suppress the emergence and migration of bedforms by generating or trapping 

cohesive materials (Parsons et al., 2016), reducing in-canopy velocity (Rominger et al., 

2010), and/or enhancing near-bed turbulence to promote sheet flow (Yang & Nepf, 

2019).  

This chapter describes the bedform generated in a submerged model canopy of 

finite length. At the leading edge of a submerged canopy, the in-canopy flow is not yet 

decelerated, so that stem-generated turbulence has a longitudinal maximum at this 

location, which locally erodes sediment. Initially, the sediment eroded near the leading 
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edge of a submerged canopy forms a bedform within the canopy at a distance into the 

canopy at which the in-canopy velocity has been reduced from its magnitude at the 

leading edge. A similar scour and dune formation near the leading edge of a submerged 

canopy was also reported in Kim et al. (2015) and Le Bouteiller and Venditti (2014). In 

this study, over time, the dune moved downstream and was gradually flattened due to the 

streamwise diffusion of sediment. A similar migration was also captured by Le Bouteiller 

and Venditti (2014). Because the flume recirculated the sediment, the migrating bedform 

passed from the downstream back to the upstream part of the test section, repeatedly 

migrating through the test section. In natural environments without artificial sediment 

recirculation, this recirculation and reappearance of the bedform within the canopy would 

not be observed. Nevertheless, the observed phenomenon could be of interest to future 

flume experiments on bedload transport.  

 

5.2 Methods 

 

Figure 5-1. Side view of sediment recirculating flume, with sand layer (brown) within an array of 
submerged cylinders. Brown dots represent sediment in motion. The right-handed coordinates are 
x (streamwise), y (lateral), and z (vertical). Camera was placed at x = 6.20 m to capture images of 
side section x = 5.65 to 6.75 m. The dimensions of the glass frame were 110.0 cm (L) x 53.0 cm 
(H). 

 

A submerged array of cylinders (diameter d = 1.27 cm) in a staggered 

arrangement was constructed in a 1-m wide and 10.4-m long test section of a sediment 

recirculating flume (Figure 5-1). The array length (8 m) was sufficient for the velocity 

8 m

Flow

Butterfly valve

Sediment
collector

ADV

x

z
y

Pump

Sediment recirculation

Water recirculation

Camera
frame



   
 

107 
 

field to reach a fully developed condition (Chen et al., 2013). A sand bed (density ρs = 

2650 kg/m3, median grain size d50 = 0.35 mm) with an initial thickness of 7.8 ± 0.5 cm 

was installed along the test section. Initially, the canopy height was h = 10 cm above the 

top of the sand layer. The dimensionless canopy density was set to ah = 0.11 (δe = h, 

which will be called the sparse canopy) and 0.49 (δe < h, which will be called the dense 

canopy). The targeted channel-averaged velocity U was 40 cm/s, but it varied by up to 

15% as the bed level adjusted during specific flow and canopy conditions. The flow 

depth (H) was varied to produce a range of submergence ratio H/h = 1.5 to 3.5. 

 

Figure 5-2. Side view of the camera’s image frame (dimensions: 110.0 cm (L) x 53.0 cm (H)) of 
Case S2. The migrating bedform captured within the image frame is marked by the area between 
white (bed top at t = 182.3 hr) and red (bed top at t = 187.3 hr) curves, with its height hbf marked 
by a red vertical line. 
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To observe the bed evolution, a tripod-mounted Canon D7500 camera captured 

images of a side section (x = 5.65 to 6.75 m) of the channel every 15 min in each run 

from its start to the end (last sediment transport measurement). The camera view was 

centered at x = 6.20 m. Because of obstructions in the laboratory, the camera could not be 

positioned further downstream. For cases with persistent migrating bedforms, camera 

images were used to determine the bedform position, and height (hbf) and migration rate 

(c). First, camera images were stepped forward in time until the bedform was observed to 

enter the upstream edge of the image frame. The image at this time point was set as the 

reference image and the bed surface was marked by a white curve (Figure 5-2a). Next, 

the images were stepped forward in time until the bedform front had passed more than 50 

cm within the image frame. The bed surface was then marked by a red curve (Figure 5-

2b). By overlapping the two images, the migrating bedform was indicated by the area 

between the white and red curves (Figure 5-2b). The bedform height, hbf, was determined 

at a position in the image center as the distance between the white and red curves for 

every cycle available. The bedform migration rate, c, was calculated by dividing the 

bedform front displacement by the time for the front to migrate over this distance. The 

standard error was reported as uncertainty for hbf and c. 

Depending on the geometry and migration rate of the bedform, the test section 

may or may not reach an equilibrium state, in which the sediment transport is uniform 

throughout the test section. However, when present, the bedform migration rate was slow 

enough, compared to the time needed to run a set of velocity measurements, that one 

could assume a quasi-equilibrium. Specifically, the study was able to quantify the 

velocity statistics and sediment transport near the outlet section over a period of 

sufficiently stationary conditions such that the influence of the migrating bedform could 

be excluded. The following criteria were used to confirm that local stationary conditions 

were present. First, the bed elevation at the downstream end of the test section varied by 

less than 5 mm/hr. Second, the sediment transport varied by less than 15%. This was 

confirmed using four consecutive measurements of sediment transport rate, and the 

standard error of this data set should be less than 15% of the set average. For every 

individual sediment transport rate measurement, sediment was collected by diverting 

sediment from the recirculation pipe (Figure 5-1) into a mesh bag for 20 min. However, if 
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the collected sediment weighed more than 50 g, the collection time was then decreased, 

but to no shorter than 2 min. Each measurement was followed by a 15-min break and was 

repeated four times to constitute a valid data set. Once the two criteria of locally 

stationary conditions were met, velocity measurements were performed in the region of 

stationary conditions. The time to reach this quasi-equilibrium at the measurement 

position ranged between 30 and 160 hours among all the cases. In cases with weak 

bedform migration, the quasi-equilibrium state persisted long enough, e.g., more than a 

day, so that practically this quasi-equilibrium state can be considered an equilibrium 

state, i.e., local sediment transport rate was uniform everywhere throughout the test 

section. 

 

5.3 Results and Discussion 

The cases were conducted in the following order: S2 (initially flat bed) -> S1 -> 

S3 -> D3 (initially flat bed) -> D1 -> D2. The sand bed was manually flattened before the 

first case in each array configuration (sparse S2 and dense D3), so that in these cases the 

bed evolved from a flat bed with maximum local bed slope smaller than 1/200. To reduce 

the case run time, for Cases S1, S3, D1, and D2, the sand bed was not flattened but 

started from the final state of the previous case. It was assumed that given a specific flow 

rate, the experimental bed would adjust to the same final state regardless of the initial 

topography.  

5.3.1 Initial Bedform Dynamics 

The evolution of the channel-scale bedform in Cases S3 (H/h = 3.0) and D3 (H/h 

= 3.5), with similar submergence ratios, was documented by mobile phone images 

(Figure A4-1). Because velocity within the canopy was highest at the leading edge, the 

highest level of turbulence also occurred at the canopy leading edge, producing 

significant erosion near the leading edge, resulting in a local lowering of the sediment 

surface over a distance comparable to the adjustment length. The sediment removed from 

the leading edge initially formed a bedform within the canopy, just downstream of the 

eroded section at the leading edge. At the same time, the near-bed turbulence within the 



   
 

110 
 

canopy, but downstream of the bedform, was also strong enough to generate sediment 

transport. Sediment mobilized from the downstream end of the canopy was recirculated 

to the upstream end of the canopy, providing a sediment source into the canopy. At this 

initial development stage, both the local erosion at the canopy leading edge, and the 

additional sediment fed from the downstream recirculation contributed to the bedform 

volume, which increased over time (see Figure 3a1->3a2 and 3b1->3b2). The bedforms 

had a maximum height comparable with the canopy height. 

At the peak of the bedform, the local velocity was enhanced, relative to other 

locations in the test section, because the water depth and canopy height were locally 

reduced, resulting in higher channel-average and near-bed velocity. As a result, the 

sediment transport above the bedform was higher than elsewhere in the canopy, which 

resulted in the migration of the bedform (see Figure A4-1). Specifically, due to the strong 

velocity shear near the canopy top, sediment at the bedform top was quickly eroded and 

resuspended. It was observed that this sediment settled in the wake of bedform as much 

as two to three canopy heights downstream of the bedform top. In addition, sediment 

grains rolled down the lee side of the bedform. As a result, the bedform migrated 

downstream. During migration, the bedforms were flattened by longitudinal sediment 

diffusivity, becoming just a thin layer of sand that moved over the test section, causing a 

1 to 4 cm, cyclical variation in bed elevation and associated changes in sediment 

transport rate measured at the sediment return at the end of the test section (see Table 

A4.1). 
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Table 5.1: Summary of Experimental Cases 
 

Case # S1 S2 S3 D1 D2 D3 
a (m-1) 1.1 1.1 1.1 4.9 4.9 4.9 
h (cm) 13.3 11.8 10.9 16.7 11.6 10.5 

ah (-) 0.15 0.13 0.12 0.82 0.57 0.51 
H (cm) 18.9 26.8 32.3 24.5 26.8 36.5 

H/h (-) 1.4 2.3 3.0 1.5 2.3 3.5 
δe (cm) 6.7 9.5 9.0 7.0 6.5 5.6 

δ(δe) (cm) 0.3 0.4 0.4 1.4 1.0 0.2 

qs (g m-1 
s-1) 3.8 0.85 0.265 8.2 0.86 0.036 

SE(qs) (g m-1 
s-1) 0.5 0.06 0.01 0.2 0.02 0.003 

Total 
bedload 

transport 

(g m-1 
s-1) 7.3 1.5 0.265 6.1 0.860 0.036 

SE (g m-1 
s-1) 0.6 0.2 0.010 0.8 0.020 0.003 

U (cm/s) 38.1 41.2 38.9 39.3 45.8 38.4 
SE(U) (cm/s) 1.1 1.3 1.2 2.5 1.8 1.6 
Ucanopy (cm/s) 32.7 27.0 21.2 26 19.6 12.0 

SE(Ucanopy) (cm/s) 0.9 1.2 1.1 2 1.8 1.2 
c (m/hr) 0.66 0.183 N/A 1.41 N/A N/A 

δ(c) (m/hr) 0.05 0.009 N/A 0.05 N/A N/A 
hbf (cm) 1.4 1.6 0 3.5 0 0 

δ(hbf) (cm) 0.2 0.2 0 0.4 0 0 
Location 
of initial 
bedform 

formation 

(cm) 14.5 ± 1.0 63.5 ± 1.0 127.5 ± 1.0 No data 74.0 ± 1.0 75.0 ± 1.0 

Notes 

(1) Nomenclature 
a: Frontal area per unit volume 
h: Canopy height 
ah: Canopy density 
H: Flow depth 
H/h: Submergence ratio 
δe: Penetration length 
qs: Sediment transport rate 

U: Channel average velocity 
Ucanopy: Canopy-averaged velocity 
c: Bedform migration rate (translation speed 
of bedform front) 
T: Period of bed cycle 
hbf: Height of migrating bedform 
SE: Standard error 

(2) Uncertainties (denoted by 𝜹𝜹) 
𝛿𝛿𝑎𝑎
𝑎𝑎

= 𝛿𝛿𝑈𝑈
𝑈𝑈

= 8%, 𝛿𝛿ℎ = 𝛿𝛿𝐻𝐻 = 0.5 cm. 
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5.3.2 Height of Migrating Bedforms 
After the initial formation, the bedform flattened and spread longitudinally as it 

migrated. Eventually, it became a very long, thin layer, covering a large portion of the 

text section.  At this point, the continued migration of this layer is most clearly observed 

by the cyclic variation in bed thickness and sediment transport rate. The period and phase 

of the variation in bed elevation matched the temporal variation of sediment transport, 

considering the time lag between flow and sediment transport measurements (see Table 

A4.1), with higher rates of sediment transport correlating with conditions with greater 

bed thickness, and thus smaller canopy height. This bedform migration and cyclic 

variation in bed elevation were documented in Cases S1, S2, and D1, but not in Cases S3, 

D2, and D3. A possible explanation for this difference will be offered later in this section. 

For unvegetated beds, van Rijn (1984) described the bedform height produced by 

steady, unidirectional current, and proposed a transport stage parameter to describe the 

different regimes of sediment transport: 

 𝑇𝑇s = 𝜏𝜏bs
𝜏𝜏cr

− 1,  (5.1) 

which is the excess grain-scale shear stress normalized by the critical stress threshold. 

Here 𝜏𝜏cr is the critical bed shear stress for sediment motion, and 𝜏𝜏bs = 𝜌𝜌𝐶𝐶fs𝑈𝑈2 is the bed 

shear stress due to grain friction. For 𝑇𝑇s ≤ 0 (no sediment motion) or 𝑇𝑇s ≥ 25 (sheet flow 

without bedforms), no bedforms will be formed. In between these two regimes, the 

bedform height, ℎbf, may be predicted from the empirical relation 

 ℎbf = 0.11𝐻𝐻 �𝑈𝑈50
𝐻𝐻
�
0.3

(1 − 𝑒𝑒−0.5𝑇𝑇s)(25 − 𝑇𝑇s),  (5.2) 

in which H is the flow depth, and d50 the median grain size. Equation 5.2 is accurate to 

within a factor of 2 (see Figure 2 in van Rijn, 1984). Here, I considered whether this 

relation would apply on a sand bed with a submerged model canopy. 

In this study, the estimated grain Reynolds number 𝑅𝑅𝑒𝑒p = 𝑢𝑢∗𝑈𝑈50
𝜈𝜈

 was slightly 

above the smooth turbulent flow threshold 𝑅𝑅𝑒𝑒p = 5, so for simplicity, we shall assume 

that the sediment boundary could be modeled as smooth turbulent, for which the grain 

friction coefficient can be estimated as follows  (Julien, 2010): 

 1
�𝐶𝐶fs

= 𝑈𝑈
𝑢𝑢∗

= 5.75 lg �𝑢𝑢∗𝐻𝐻
𝜈𝜈
� + 3.25, (5.3) 
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in which 𝑢𝑢∗ is the friction velocity. With 𝑈𝑈 the channel average velocity, Equation 5.3 

was used estimate 𝜏𝜏bs = 𝜌𝜌𝐶𝐶fs𝑈𝑈2. Ishii (2023)’s study with the same sediment (d50 = 0.35 

mm) yielded a dimensionless critical shear stress, 𝜃𝜃cr = 𝜏𝜏cr
(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50 

= 0.012, with 𝜏𝜏cr = 

0.068 N/m2. The bedform height was predicted using this critical stress in Equation 5.2 

and 𝜏𝜏bs predicted from the depth-averaged velocity.  Results are listed in Table 5.2. The 

predicted bedform height significantly overpredicted the observed bedform height 

(Figure 5-3a). This suggested that introducing submerged vegetation to a bare bed could 

suppress the migrating bedforms, as noted previously in Nepf (2012) and Przyborowski 

et al. (2018). 

Bedforms are related to bedload transport and thus near-bed flow conditions. In 

submerged canopies, the near-bed velocity is smaller than that on an unvegetated bed 

with the same bed sediment and depth-averaged velocity (see discussions in the previous 

chapter), so that the energy available to move sediment and shape bedforms is reduced 

within a submerged canopy, leading to a reduction in bedform height. A more accurate 

prediction of bedform height might result from using the in-canopy velocity, Ucanopy, to 

predict the bed stress as 

 𝜏𝜏bs = 𝜌𝜌𝐶𝐶fs𝑈𝑈canopy2 ,  (5.4) 

Bedform heights predicted from Equation 5.4 are listed in Table 5.2 and plotted on Figure 

5-3b. The new predicted bedform height, using the in-canopy velocity, agrees with 

measured bedform height within uncertainty, suggesting that the height of bedform in 

submerged canopies may be predicted with Ucanopy as input. 
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Table 5.2: Prediction of bedform height in submerged canopies. The uncertainty of predicted 
bedform height hbf is factor 2. 
 

Case S1 S2 S3 D1 D2 D3 
 Measured values 

H (m) 0.189 0.268 0.323 0.245 0.268 0.365 
U (m/s) 0.381 0.412 0.389 0.393 0.458 0.384 

Ucanopy (m/s) 0.327 0.270 0.212 0.260 0.196 0.120 
qs (g m-1 s-1) 3.8 0.85 0.265 8.2 0.86 0.036 

hbf (m) 0.014 0.016 0 0.035 0 0 
δ(hbf) (m) 0.002 0.002 0 0.004 0 0 

 Unvegetated beds with U as input 
u* (m/s) 0.0163 0.0170 0.0158 0.0164 0.0187 0.0155 

Cfs 0.00183 0.00170 0.00165 0.00174 0.00167 0.00163 
Rep 5.7 6.0 5.5 5.7 6.5 5.4 

𝜏𝜏bs (N/m2) 0.266 0.289 0.250 0.269 0.350 0.240 
Ts 2.9 3.3 2.7 3.0 4.1 2.5 

hbf (m) 0.053 0.070 0.075 0.064 0.073 0.081 
 Unvegetated beds with Ucanopy as input 

𝜏𝜏bs (N/m2) 0.196 0.124 0.074 0.118 0.064 0.023 
Ts 1.9 0.8 0.1 0.7 <0 <0 

hbf (m) 0.044 0.033 0.005 0.028 0 0 
 

 

Nomenclature: 

H: Flow depth 
U: Channel average velocity 
Ucanopy: Canopy-averaged velocity 
qs: Sediment transport rate 
hbf: Bedform (traversing sand layer) height 
u*: Friction/Shear velocity 
Cfs: Grain-related bed drag coefficient 
𝑅𝑅𝑒𝑒p = 𝑢𝑢∗𝑈𝑈50

𝜈𝜈
: Particle Reynolds number 

𝜏𝜏bs: Grain-related bed skin shear stress 
𝑇𝑇s = 𝜏𝜏bs

𝜏𝜏cr
− 1: Transport stage parameter 
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Figure 5-3. Predicted versus measured bedform (migrating sand layer) height in submerged 
canopies. Error bars denote factor of 2 uncertainty in the van Rijn (1984) model. For the sediment 
transport rate of each case, refer to Table 5.2 above. 

 

5.3.3 Migrating Bedforms and Sediment Transport 
In this study, the initial bedform size, high sediment transport rates, and duration 

of Cases S1, S2, and D1 resulted in a bedform that passed through the canopy several 

times, due to the continuous recirculation of sediment in the experimental facility. In 

contrast, for Cases S3, D2, and D3, the mobilization of sediment was weaker, and the 

downstream bed elevation varied less than 10% within 24 hrs of the start of velocity 

measurements. The absence of migrating bedforms is consistent with the modified 

Equation 5.2, which predicted negligible bedform height in these cases (Figure 5-3b). 

Specifically, Equation 5.2 predicted that no bedform would develop in Cases D2 and D3, 

and the bedform height in S3 would be less than a centimeter, which is difficult to detect. 

For the cases (S1, S2, and D1) which produced a cyclically appearing bedform, it 

is reasonable to imagine that if the sand bed evolved from an initially flat condition, due 

to the region of high turbulence at the canopy leading edge, the upstream bedforms would 

always form as in Cases S2 and D3 and then spread and flatten to their limit, which is the 

migrating bedform.  
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Figure 5-4. Annotated image of bedform migration within the submerged canopy in Case S3. 
Flow was from the left to the right. Red curves denote the bedform captured within the image 
frame. hbf and c are the bedform height and migration rate, respectively. 𝑞𝑞s,in and 𝑞𝑞s,out represent 
the sediment transport rate upstream and downstream of the bedform front, respectively. 
 

Sediment transport due to bedform migration may represent the total bedload 

transport, if rolling and sliding are the dominant mode of transport (van den Berg, 1987; 

Alvarez & Franklin, 2020). In cases with bedform migration, the local bedload transport 

upstream and downstream of the bedform front corresponded to the flow conditions 

upstream and downstream of the front, respectively (see Table A4.1). Specifically, the 

higher bed upstream of the front was associated with higher near-bed velocity and 

turbulence, and thus higher bedload transport 𝑞𝑞s,in, as compared to each of these 

parameters measured downstream of the front, with transport rate 𝑞𝑞s,out. The difference 

in sediment transport rate up- and downstream of the front describes the migration of the 

bedform front: 

 𝑞𝑞s,bf = 𝑞𝑞s,in − 𝑞𝑞s,out = 𝜌𝜌s�1 − 𝜆𝜆p�𝑐𝑐ℎbf,  (5.5) 

in which 𝜌𝜌s the density of sediment, 𝜆𝜆p = 0.40 ± 0.02 the porosity of sediment (Beard & 

Weyl, 1973), 𝑐𝑐 the bedform migration speed, and ℎbf the bedform height (Figure 5-4). 

Equation 5.5 assumes that only bedform migration contributes to the total sediment 

transport, i.e., it excludes saltation and suspension. Therefore, the difference between the 
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sediment transport estimated by Equation 5.5 and the sediment transport measured at the 

channel-scale indicates the relative importance of bedform migration to the total sediment 

transport. 

 

Figure 5-5. Bedload transport rate 𝑞𝑞s,bf, inferred from estimated migration rate, c, using right-
most side of Equation 5.5. (a) Versus difference in measured sediment transport between high and 
low bed stages, and (b) versus measured total bedload transport. 

 

Figure 5-5a compares two estimates of the bedload transport rate due to bedform 

migration, one being the difference of  𝑞𝑞s,in and 𝑞𝑞s,out, the other estimated from the 

bedform migration rate c depicted by camera images. 𝑞𝑞s,in were calculated as the average 

of the largest two sediment transport rates of a specific case, whereas 𝑞𝑞s,out the average 

of the smallest two. In general, 𝑞𝑞s,in − 𝑞𝑞s,out agreed with 𝑞𝑞s,bf = 𝜌𝜌s�1 − 𝜆𝜆p�𝑐𝑐ℎbf, within 

uncertainty, with the exception of S1, in which measured 𝑞𝑞s,in − 𝑞𝑞s,out was greater than 

𝑞𝑞s,bf = 𝜌𝜌s�1 − 𝜆𝜆p�𝑐𝑐ℎbf. This may be attributed to the fact that not all the bedload was 

associated with bedform migration, as also observed by Yang and Nepf (2019). In this 

study, we observed intermittent near-bed transport, e.g., observed grain saltation and 

suspension, which suggests that sediment transport was at the transition of bedload and 

suspended load (McElroy & Mohrig, 2009). The other exception is Case D1, in which the 

inferred 𝑞𝑞s,bf = 𝜌𝜌s�1 − 𝜆𝜆p�𝑐𝑐ℎbf is significantly greater than 𝑞𝑞s,in − 𝑞𝑞s,out, which does not 
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make physical sense. The cause of this misalignment could be error in the estimates in 𝑐𝑐 

and ℎbf. In this case, as indicated by camera images, scour holes adjacent to the flume 

walls were more significant than in the other cases, due to the higher canopy density and 

near-bed turbulence (see Table A4.1). The sidewall scour made it more difficult to define 

the bedform boundaries, which contributed error to the estimates of 𝑐𝑐 and ℎbf. Figure 5-

5b compares the bedload transport rate due to bedform migration estimated from camera 

images versus total bedload transport, qs,b,total, which was determined as the average of 

measured bedload transport rate over the entire bed cycle (see Table A4.1 for 

instantaneous qs values). The trend is similar to that in Figure 5-5a.  
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Chapter 6 Conclusions and Suggestions for Future 

Work 

6.1 Thesis Summary 

The morphology and distribution of aquatic plants influence the velocity field, 

turbulence intensity, and bedload transport in wetlands, which impacts the erosion and 

deposition processes. By combining physical and numerical experiments, this thesis 

quantified how vegetation geometry impacts velocity and turbulence near the bed, which 

in turn impacts bedload transport. 

Chapter 2 examined turbulence and bedload transport in channels with randomly 

distributed emergent patches of model vegetation, each with diameter D. With constant 

channel velocity and total solid volume fraction, TKE and bedload transport decreased 

with increased clustering, associated with decreasing patch size (D). The channel average 

TKE better predicted sediment transport than channel average bed shear stress. The 

experimental results demonstrated that aside from vegetation density, it is also necessary 

to consider the clustering of vegetation into discrete patches, which occurs at scales 

typically smaller than a computational grid size. Therefore, sub-grid scale models for 

bedload transport should consider vegetation distribution. 

Chapter 3 explored whether stem diameter and element arrangement (staggered 

versus random distributions) of emergent model vegetation influenced channel turbulence 

and bedload transport. When emergent vegetation was not clustered, bedload transport 

was only a function of channel-scale velocity and solid volume fraction and did not 

depend on the arrangement or diameter range of individual stems. This was explained by 

the impulse model for sediment entrainment. The classic Meyer-Peter-Müller bedload 

transport model was recast in terms of TKE to predict sediment transport in channels with 

emergent vegetation. In addition, this chapter outlined how to predict the channel average 

TKE from plant biomass and velocity, offering an important step toward predicting 

turbulence and sediment transport in vegetation canopies of real morphology in the field. 
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Chapter 4 explored turbulence and bedload transport in canopies of submerged 

model vegetation. For constant depth-averaged velocity U, submerged canopies could 

enhance or reduce bedload transport, depending on their degree of submergence. With 

increasing submergence H/h, the near-bed velocity and TKE decreased, and the source of 

near-bed turbulence shifted from individual stem wakes to the shear layer at the canopy 

top. For high submergence (H/h > 2), TKE was insensitive to changes in H/h and 

dimensionless canopy density ah. Bedload transport was predominantly correlated with 

near-bed turbulence but also weakly correlated with near-bed velocity, and bedload 

transport monotonically decreased with increasing H/h. A model to predict near-bed TKE 

in submerged canopies was developed and used to explore bedload transport under more 

realistic conditions with constant energy slope and flexible vegetation. In the modeled 

scenarios, submerged canopies reduce sediment transport compared to unvegetated cases. 

With a constant energy slope, the channel average velocity increases with decreasing 

dimensionless canopy density and increasing submergence, which also tend to increase 

the shear production of turbulence in the canopy shear layer. Because of the important 

contribution of canopy-shear-generated turbulence, with constant energy slope, the 

highest sediment transport rates occurred for vegetation with the greatest submergence 

and the smallest canopy density. 

Chapter 5 described the bedform migration observed during the experiments with 

a submerged model vegetation canopy. Due to the strong turbulence in the flow 

adjustment region at the canopy leading edge, a bedform was formed downstream of the 

adjustment length, which later diffused and migrated over the test section. Because 

sediment was recirculated, the migrating bedform repeatedly passed through the test 

section causing cyclic temporal variations in the bed elevation and sediment transport rate 

measured at the end of the test section. 

 

6.2 Future Work 

Chapter 2 considered circular patches of emergent model vegetation with a 

spacing less than six times of the patch diameter, so that the patch-scale turbulence was 

not generated. If the patch spacing exceeds six times but is less than ten times of the 
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patch diameter, patch-scale turbulence could be generated (Nicolle & Eames, 2011; Zong 

& Nepf, 2012), and could also impact the near-bed flow and sediment transport. 

Moreover, in the field, aquatic vegetation patches may exhibit different shapes, e.g., 

elliptical (Licci et al., 2019) or polygonal (Schoelynck et al., 2011), that could require a 

shape factor to be included in turbulence and sediment transport modeling. For example, 

with the same width, elliptical patches are more streamlined than circular and polygonal 

patches, thus could generate less pronounced wakes but also longer shear layers on the 

patch sides. For local, patch-scale hydrodynamic and morphodynamic modeling, it is 

necessary to solve for the flow field to estimate the sediment transport and consequently 

patterns of erosion and deposition. However, for reach-scale modeling, it is too 

computationally expensive to compute the patch-scale hydrodynamics, so the model grid 

size could be one order of magnitude higher than the patch size. This is when the shape 

factor could be of benefit to the modelers. Also, the length of patches is a crucial factor 

for consideration, because the patch must have a length comparable to or longer than the 

adjustment length to modify the flow field (Chen et al., 2013; Licci et al., 2019). 

Therefore, the impact of patch spacing, shape, and length should be taken into 

consideration. 

Chapter 3 considered the impact of stem diameter and element arrangement of 

emergent model vegetation on channel turbulence and bedload transport. The turbulence 

model used in this chapter included a bed drag coefficient that was defined by a 

logarithmic profile over an unvegetated bed, which was used to estimate the magnitude of 

bed-generated turbulence. However, as Yang and Nepf (2019, Figure 4b) suggested, for 

an emergent canopy with solid volume fraction 𝜙𝜙 > 0.01, stem wake turbulence is 

stronger than bed-generated turbulence. TKE budget analysis could have been done to 

estimate the near-bed shear production Ps,nb and wake production Pw,nb. A ratio of 

Ps,nb/Pw,nb << 1 would suggest that the bed turbulence is negligible compared to stem 

wake turbulence, so that the bed turbulence term could be dropped in the turbulence 

model (e.g., Equation 3.4). Further, when extending the turbulence model to a more 

complex plant morphology, I assumed a single shape factor for specific plant species (see 

Typha in Section 3.5.3), but Liu et al. (2024) have found that this assumption could alter 

the prediction of sediment transport by up to an order of magnitude, because the 
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nonuniform profile of vegetation frontal area led to an accordingly nonuniform velocity 

profile (Lightbody & Nepf, 2006). Instead, when modeling sediment transport in the 

field, the plant shape factor should have been defined based on the difference between 

near-bed and depth-averaged frontal areas. 

Chapter 4 developed models that predicted the turbulence and bedload transport 

in canopies of submerged vegetation. This model can now be used to explore field 

scenarios. For example, in real systems, the flow depth may vary over days (e.g., flood 

processes) to decades (e.g., sea level rise). Here is an example that incorporates a time-

varying flow depth. Consider a flood process in a river, for which the bed slope is 

constant over time, so that the flow depth is proportional to the flow rate in the channel. 

The bed may be bare, or be covered with rigid or flexible submerged canopy, with the 

same dimensionless canopy density when individual plants are erect. The submerged 

canopies are assumed sufficiently long, so that the velocity profile is fully developed. The 

model parameters are listed in Table 6.1. The rigid canopies maintain their height 

regardless of the water level, whereas the flexible canopies deflect to different degrees in 

response to the variation in velocity associated with the varying flow depth. The 

deflection of the canopy increases with increasing channel velocity and decreasing 

canopy density. Because the model is quasi-steady, the sediment transport trends, in 

general, agree with the discussions in Chapter 4.3. Specifically, denser canopies and 

canopies with greater submergence produce weaker bedload transport, which implies that 

canopies which are denser and more flexible (and thus more pronated) provide more 

protection to the bed. This calls for further physical and economic analyses of an optimal 

canopy density for feasible and effective erosion control. 
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Table 6.1: Parameters in the modeled flood process 
Parameter Symbol (unit) Rigid canopy Flexible canopy 

Energy slope S (-) 0.001 
Flow depth H (m) 0.5 -> 1.5 -> 0.5 

Median grain size of 
bed sediment d50 (mm) 0.35 

Erect canopy height 
(blade length in 

flexible canopies) 
h (m) 0.3 

Canopy frontal area 
per unit volume a (m-1) 0.33, 3.3, 16.7 

Dimensionless 
canopy density ah (-) 0.1, 1, 5 

Stem diameter d (cm) 1.3 N/A 
Blade width w (cm) N/A 0.4 

Blade thickness t (mm) N/A 0.3 
Young’s modulus E (GPa) N/A 0.2 

Water density 𝜌𝜌 (kg/m3) 1000 

Blade density 𝜌𝜌veg (kg/m3) N/A 1000 

Drag coefficient CD (-) 1 1.95 
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Figure 6-1. Canopy and sediment transport responses to a modeled flood process. Solid lines 
represent rigid model canopies and dashed lines represent flexible canopies. See Chapter 4.3.4 for 
model details and Table 6.1 for input parameters. Energy slope S = 0.001. Canopy densities are 
differentiated by colors. (a) Flow depth. (b) Canopy height. For flexible canopies, this represents 
the deflected canopy height hdef. (c) Sediment transport rate. Gray band represents transport rates 
with bedforms (Wong & Parker, 2006). 
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Appendices 

A1 Supporting Information for Chapter 2 
(a) D = 6.5 cm, 𝝓𝝓 = 0.24 

 
(b) D = 20 cm, 𝝓𝝓 = 0.03 

 
Figure A1-1. Top view of tracer experiments designed to examine the wakes behind individual patches 
within the channel. Red tracer was injected at mid-depth and at the outer edges of the patch. The channel 
velocity was Uo = 30.0 ± 0.5 cm/s, and the depth was H = 12 cm. Zong and Nepf (2012) reported that a 
von Karman vortex street would be present when 𝜙𝜙 ≥ 0.04. A patch with 𝜙𝜙 = 0.03 (subplot b) did not 
produce a vortex street, consistent with Zong and Nepf (2012). A vortex street was expected for 𝜙𝜙 = 0.24 
(subplot a), but was not observed. The presence of neighboring and downstream patches altered the flow 
sufficiently to prevent the formation of vortices. For shallow flow, the bed friction may also suppress the 
vortex formation if the stability parameter, S = Cf D/H, is greater than a critical value Sc = 0.2 (Chen and 
Jirka, 1995). Here, S = 0.002 to 0.007, smaller than the critical value, Sc, suggesting that the bed friction 
was not the mechanism of vortex suppression. 
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Figure A1-2. Examples of the cylinder arrangements used in this study, for patches with (a) D = 6.5 cm, 
(b) D = 20 cm, (c) D = 30 cm, and (d) for a uniform random distribution. These four cases had the same 
the channel-scale solid volume fraction, 𝜙𝜙𝑐𝑐 = 0.005. The photos were taken after the experiment. The 
flow was from top to bottom. 
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Figure A1-3. Patch distributions for the channel-average solid volume fraction, 𝜙𝜙𝑐𝑐= 0.005. 
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Figure A1-4. Patch distributions for the channel-average solid volume fraction, 𝜙𝜙𝑐𝑐= 0.015. 

 
 
 
 
 
 

       
 
Figure A1-5. Patch distributions for the channel-average solid volume fraction, 𝜙𝜙𝑐𝑐= 0.02. 
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Figure A1-6. (a) Velocity measured at mid-depth (z = H/2), Uz=H/2, compared to depth-averaged velocity, 
Ud. The ratio of velocity at mid-depth to the depth-averaged velocity was 1.0 ± 0.1. (b) Turbulent kinetic 
energy measured at mid-depth, kt(z=H/2), and at 1 cm above the bed, kt(z=1 cm). The ratio of near-bed to mid-
depth turbulence, kt(z=H/2)/kt(z=1 cm), was 1.1 ± 0.3. Both sub-plots include all cases in Table 2.1. 
 

     
 
Figure A1-7. (a) Lateral profile of the turbulent kinetic energy, kt. The horizontal gray bar denotes the 
average over the transect kt = 27 ± 4 cm2/s2. (b) The cumulative average of turbulent kinetic energy 
plotted against the number of individual transects included in the average. The individual transects were 
located at randomly selected longitudinal positions along the channel. The data are from Case 2.4. The 
spatial mean of kt achieved a constant value after two transects. The percentage difference between the 
two-transect average and the average of eight transects was 6 %, indicating that measurements from two 
transects were sufficient to obtain 〈𝑘𝑘𝑔𝑔〉.  
 
  

(a) (b) 
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Figure A1-8. (a) Measured (Table 2.1) versus predicted (Equations 2.6 and 2.7) channel-average turbulent 
kinetic energy, 〈𝑘𝑘𝑔𝑔〉. Uncertainty in the prediction was propagated from uncertainty in 𝛾𝛾, 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑈𝑈. The 
scale factor 𝛾𝛾 = 0.8 ± 0.4 in Equation 2.7 was determined from the least squares fit of all measurements in 
Table 1. (b) Measured (Table 2.1) versus predicted (Equations 2.2, 2.6, and 2.7) bedload transport. The 
parameter 𝛽𝛽 = -1.6 ± 0.3 in Equation 2.2 was determined from the minimum mean square error using all 
cases in Table 1. The legend labels of “Patches”, “Uniform random” and “Bare channel” correspond to the 
patterns listed in Table 2.1. Cases with staggered arrangements of cylinders (diamonds) are from Yang 
and Nepf (2019).  
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Figure A1-9. The maximum turbulent kinetic energy, kt(max), measured in the channel, normalized by 
channel-average turbulent kinetic energy, 〈𝑘𝑘𝑔𝑔〉, plotted against (a) the fraction of bed occupied by 
patches, 𝜙𝜙𝑝𝑝, and (b) the channel-average solid volume fraction, 𝜙𝜙𝑐𝑐. The peak turbulence values did not 
systematically vary with channel-average values. As a result, sediment transport rate per channel width, 
Qs, had little dependence on the maximum turbulent kinetic energy, kt(max), as shown in subplot (c). Local 
peak values in kt can only impact the channel-scale sediment transport if the peaks occur over a spacing 
smaller than or equal to the individual sediment excursions. It appears that this condition was not met in 
our study.

(c) 

(a) (b) 
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Table A1-1: Transects of time-mean velocity and turbulence kinetic energy * 
Patterns Number Transects y (cm) 99 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 1 

Bare Channel case 1.1 transect 1  
( x = 204 cm ) 

U (cm/s)  28.0 27.3 30.1 30.2 29.2 29.4 29.0 29.5 30.8 30.5 28.8 28.2 29.5 29.7 28.8 26.4 25.5 24.0 24.5  
kt (cm2/s2)  17.9 23.7 19.4 16.1 13.6 10.5 16.4 16.4 11.4 12.0 17.4 15.3 11.0 8.8 9.4 12.9 11.4 15.0 9.9  

Patches 

case 2.1 

transect 1  
( x = 180 cm ) 

U (cm/s)    36.6 36.4 0.3 19.8 27.2 21.9 26.5 29.4 29.1 30.4 13.5 5.2 22.9 31.6     
kt (cm2/s2)    10.9 19.2 27.1 54.1 50.1 35.3 28.7 19.3 17.4 20.9 48.2 16.1 34.5 10.5     

transect 2 
( x = 180 cm ) 

U (cm/s)    31.6 30.3 32.9 34.4 34.7 6.0 28.8 34.4 30.9 28.7 29.6 30.9 22.9 12.6     
kt (cm2/s2)    15.3 14.2 11.9 9.3 12.0 14.0 40.9 12.5 14.5 17.7 14.6 12.3 29.2 21.9     

case 2.2 

transect 1  
( x = 180 cm ) 

U (cm/s)    44.6 44.1 29.0 18.9 22.9 44.1 35.0 27.4 37.5 41.8 40.1 33.4 17.9 10.5     
kt (cm2/s2)    24.0 21.5 34.0 14.4 16.5 32.8 35.5 20.7 27.1 24.2 24.2 29.4 20.4 14.0     

transect 2 
( x = 180 cm ) 

U (cm/s)    34.2 35.2 32.5 10.3 9.9 28.7 26.2 18.8 21.4 28.8 27.4 29.0 26.7 8.5     
kt (cm2/s2)    10.1 10.7 19.6 12.3 14.0 22.5 32.1 22.9 26.5 16.8 14.4 16.4 30.0 10.4     

case 2.3 

transect 1  
( x = 140 cm ) 

U (cm/s)  30.5  30.78 27.1 25.4 23.8 25.7 34.9 30.3 32.1 36.2 35.2 24.1 21.8 20.8    28.1  
kt (cm2/s2)  12.7  26.0 29.8 28.5 25.7 26.0 17.7 15.9 14.9 15.4 20.8 14.3 8.4 49.6    11.2  

transect 2 
( x = 157 cm ) 

U (cm/s)  31.5 28.2 32.4 30.1 29.2 27.3 29.0 36.4 33.6 32.2 35.1 31.6 25.9 26.1 18.1 18.1 17.7 30.9 30.9  
kt (cm2/s2)  8.5 96.7 16.0 11.5 13.5 14.7 14.5 18.1 18.4 14.8 13.6 25.1 11.8 7.5 20.0 22.4 20.0 91.5 10.5  

case 2.4 

transect 1  
( x = 180 cm ) 

U (cm/s)    27.0 26.0 27.1 27.5 35.1 29.6 27.0 19.3 20.2 21.4 22.9 31.6 31.0 28.6     
kt (cm2/s2)    20.9 26.0 28.7 25.5 30.5 19.0 15.0 37.6 52.0 43.6 43.5 12.2 7.9 14.0     

transect 2 
( x = 180 cm ) 

U (cm/s)    35.2 30.3 26.0 24.8 26.5 40.5 35.7 29.2 23.7 26.1 32.1 37.0 28.0 29.0     
kt (cm2/s2)    19.0 39.4 26.5 28.7 21.3 19.4 12.0 9.7 8.2 7.5 9.6 13.7 50.1 91.6     

case 2.5 

transect 1  
( x = 180 cm ) 

U (cm/s)    25.6 20.0 24.7  27.5 28.6 30.9 26.2 29.0 27.5 24.2 23.3 21.1 27.4     
kt (cm2/s2)    22.7 93.1 31.9  7.1 10.1 12.0 16.1 19.2 17.4 80.7 96.0 86.0 41.4     

transect 2 
( x = 180 cm ) 

U (cm/s)    27.2  18.2 20.6 28.3 30.3 23.7 26.1 22.3 26.7 26.2 27.0 25.7 22.2     
kt (cm2/s2)    66.6  59.6 42.3 36.3 18.4 29.8 26.9 61.1 25.3 26.7 16.2 18.3 41.4     

case 3.1 

transect 1  
( x = 153 cm ) 

U (cm/s)  35.9 40.4 17.9 8.0 8.7 19.0 38.9 46.8 28.8 8.3 9.4 5.1 28.5 40.7 35.0 22.4 12.5 20.3 31.5  
kt (cm2/s2)  7.1 20.9 33.9 9.4 10.0 27.7 35.5 28.2 92.1 8.8 9.9 17.4 51.4 28.7 23.2 42.0 29.3 41.1 17.4  

transect 2 
( x = 188 cm ) 

U (cm/s)  30.4 34.8 38.8 29.4 12.1 13.6 16.8 39.3 37.7 37.9 41.5 37.4 26.9 28.0 29.1 7.8 9.1 7.4 37.7  
kt (cm2/s2)  9.2 24.9 19.7 21.7 13.7 11.1 22.3 36.4 25.7 20.9 15.5 35.0 42.0 45.9 27.8 14.7 9.5 15.7 12.8  

case 3.2 

transect 1  
( x = 159 cm ) 

U (cm/s)  37.3 34.8 30.7 35.2 30.0 16.2 18.0 19.2     30.0 15.5 12.9 13.1 13.1 37.9 34.6  
kt (cm2/s2)  14.7 66.3 24.5 31.6 38.3 15.2 15.9 15.9     33.3 19.7 17.1 18.7 17.2 81.4 9.7  

transect 2 
( x = 198 cm ) 

U (cm/s)  44.9 35.9 25.3 29.8 23.2 28.9 33.6 31.2 19.6 17.9 23.9 26.6 41.0 38.4 25.7 17.1 14.2 17.3 23.8  
kt (cm2/s2)  21.3 44.8 19.4 18.0 15.4 18.1 8.1 12.4 10.4 8.4 12.8 18.1 36.7 34.4 27.4 22.0 30.1 35.7 42.6  

case 3.3 

transect 1  
( x = 145 cm ) 

U (cm/s)  36.7 37.8 29.0 26.6 24.7 22.7 19.5 29.7 38.9 38.6 31.6 31.8         
kt (cm2/s2)  10.0 33.4 25.2 29.4 42.9 46.2 59.3 39.5 24.3 14.7 12.4 11.7         

transect 2 
( x = 194 cm ) 

U (cm/s)  32.5 32.0 24.6 26.9 24.1 25.2 36.3 34.3 29.1 26.9 26.5 27.5         
kt (cm2/s2)  29.4 36.4 40.9 38.5 34.4 33.9 35.0 24.6 29.1 28.4 30.2 28.0         

case 4.1 

transect 1  
( x = 120 cm ) 

U (cm/s) 22.7 16.4 10.9 19.5 37.9 41.4 30.1 16.7 15.7 23.1 38.7 17.5 14.9 13.2 18.3 16.3 16.4 24.5 30.8 28.6 31.4 
kt (cm2/s2) 27.5 15.8 39.2 14.5 44.4 17.7 32.6 10.2 12.6 30.4 36.8 24.1 29.6 33.2 25.2 32.4 14.4 17.8 84.7 15.4 23.3 

transect 2 
( x = 190 cm ) 

U (cm/s) 39.2 40.6 18.7 21.5 21.0 23.5 28.2 34.0 34.3 23.5 15.5 18.4 22.5 38.5 30.5       
kt (cm2/s2) 8.9 40.2 20.2 38.2 18.6 37.6 22.7 11.0 16.6 12.3 56.5 34.4 10.3 12.4 7.5       

case 4.2 

transect 1  
( x = 165 cm ) 

U (cm/s) 36.1 35.8 33.3 28.2 25.3 29.7 16.4 14.0 21.9 11.3 18.7 15.9 24.1 27.9 33.8 19.8 18.8 19.1 23.8 43.4 43.3 
kt (cm2/s2) 14.4 28.8 36.7 68.0 90.7 28.6 5.6 21.8 6.7 38.3 15.9 51.3 17.5 35.1 17.7 9.1 12.6 11.2 14.6 19.3 19.3 

transect 2 
( x = 190 cm ) 

U (cm/s) 42.6 44.8 29.8 24.4 25.9 26.1 28.8 29.3 34.8 28.5 25.4 21.9 21.3 26.7 38.0 32.6 18.9 16.4 26.5 29.0 49.8 
kt (cm2/s2) 7.2 6.8 36.6 38.6 30.7 30.5 23.4 14.5 10.0 15.0 28.8 15.5 14.2 12.5 18.7 22.3 26.6 22.8 128 160 25.1 

case 4.3 

transect 1  
( x = 135 cm ) 

U (cm/s) 39.7 39.4 42.8 31.6 31.9 17.5 10.0 17.0 22.1 20.2 8.8 26.4 22.6 28.9 26.4 20.4 18.8 29.4 33.4 42.3  
kt (cm2/s2) 28.7 23.6 19.6 10.1 13.9 40.8 60.3 76.2 21.1 22.8 86.4 51.0 36.1 10.4 12.0 33.4 22.1 10.8 11.6 12.7  

transect 2 
( x = 165 cm ) 

U (cm/s) 28.9 26.1 30.8 31.3 21.3 12.1 15.0 11.5 26.3 17.5 26.6 22.2 20.5 27.8 26.0 24.5 21.6 22.0 25.6 40.4  
kt (cm2/s2) 37.8 34.7 31.5 82.1 45.4 58.2 16.5 67.0 9.6 33.7 15.0 33.8 40.8 30.9 24.0 14.0 14.5 19.6 25.4 22.7  

*Data with low correlation were excluded, mostly coinciding with position inside patches. Patch distributions are shown in Figures A1.3-A1.5. 
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A2 Supporting Information for Chapter 3 

A2.1. Introduction to the turbulence model (Eqn. 3.4) 

 
In the main text, turbulence within a canopy of cylindrical stems is described by  

 〈𝑘𝑘t〉 = 𝐶𝐶f𝑈𝑈2

0.19�
𝑘𝑘t,b

+ 𝛿𝛿𝑘𝑘t �
2𝐶𝐶D,form 𝜙𝜙
𝜋𝜋(1−𝜙𝜙) �

2
3 𝑈𝑈2

�������������
𝑘𝑘t,v

, (3.4) 

 
which is based on Yang et al. (2016) and assumes that the near-bed TKE is the sum of bed-
generated turbulence, 𝑘𝑘t,b, and stem-generated turbulence, 𝑘𝑘t,v. 
 

The model of stem-generated turbulence was proposed by Tanino and Nepf (2008). This 
model assumes a local balance between TKE production in the stem wake, 𝑃𝑃𝑤𝑤, and viscous 
dissipation, 𝜖𝜖, which is accurate for emergent vegetation (e.g., Nepf & Vivoni, 2000). TKE 
production in the stem wake is equal to the rate of work done by form drag on the cylindrical 
stems (Eqn. 2.8 in Tanino & Nepf, 2008). The viscous dissipation can be written in terms of the 

turbulent velocity scale �𝑘𝑘𝑔𝑔 and integral length scale, 𝑙𝑙𝑒𝑒 (e.g., Tennekes and Lumley, 1972). 

Specifically, 𝜖𝜖~�𝑘𝑘𝑔𝑔
3
𝑙𝑙𝑒𝑒�  . Using 𝑃𝑃𝑤𝑤 ≈ 𝜖𝜖 and rearranging, 

 〈𝑘𝑘𝑡𝑡〉
𝑈𝑈2

~ �2𝐶𝐶D,form 𝜙𝜙
𝜋𝜋(1−𝜙𝜙)

𝑙𝑙𝑣𝑣
𝑈𝑈
�
2
3. (A2.1) 

 
In a sparse array (𝜙𝜙 < 0.1 and 0.06 for a regular and random array, respectively), 𝑙𝑙e ~ 𝑑𝑑, 

with 𝑑𝑑 the stem diameter. Yang et al. (2016, 2018, 2019) and the current study only consider 
sparse arrays, so 𝑙𝑙e ~ 𝑑𝑑, and stem size is cancelled from Equation A2.1, so that 𝑘𝑘𝑔𝑔 is a function of 
solid volume fraction, 𝜙𝜙, but not stem size. 
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A2.2. Quantitative description of the impulse model 

Bedload transport reflects the sum of individual grain dislodgement events (Niño & 
Garcia, 1996), which depend on both the magnitude, F, and the duration, Δ𝑡𝑡, of drag and lift 
forces exerted on the bed (Diplas et al., 2008; Celik et al., 2010), the combination of which is 
impulse. The force magnitude is proportional to the square of the turbulence intensity, 𝐹𝐹~𝑢𝑢𝑐𝑐𝑟𝑟𝑠𝑠

2 
(Zanke, 2003), and 𝑢𝑢𝑐𝑐𝑟𝑟𝑠𝑠

2 ~ 𝑘𝑘t. The duration of a turbulent event depends on the eddy size, 𝑙𝑙e, 
and advection speed, which is generally assumed to be the time-and-spatial-mean velocity, 𝑈𝑈, 
according to Taylor’s frozen turbulence approximation (Pope, 2000), i.e., Δ𝑡𝑡~𝑙𝑙e/𝑈𝑈. Within an 
array, the eddy scale is set by the minimum of the stem diameter, 𝑑𝑑, and surface-to-surface 
spacing, 𝛥𝛥𝑠𝑠, i.e., 𝑙𝑙e~ min{𝑑𝑑,𝛥𝛥𝑠𝑠} (Tanino & Nepf, 2008). Here we consider a sparse array 
(𝑑𝑑/𝛥𝛥𝑠𝑠 < 0.56,𝜙𝜙 < 0.1), for which 𝑙𝑙e ~ 𝑑𝑑, so that larger stems produce larger eddies, which 
generate turbulence events of longer duration at the bed.  

 
For a constant solid volume fraction and velocity, the cumulative impulse, and thus 

sediment transport, is not impacted by stem size. Consider two arrays of circular stems with the 
same solid volume fraction, 𝜙𝜙, and exposed to the same channel-averaged velocity, U, but 
consisting of different stem diameter, d (Figure 3-1 in main text). If 𝑈𝑈 is sufficient to generate 

stem turbulence in both arrays (𝑅𝑅𝑒𝑒d = 𝑈𝑈𝑈𝑈
𝜈𝜈

> 120, Liu & Nepf, 2016), then these arrays have the 

same turbulence (Eqn. 3.4, given above and in the main text; Yang & Nepf, 2019). For simplicity, 
we attribute all of the turbulent kinetic energy, 𝑘𝑘t, to the main energy-containing eddies with 
length scale 𝑙𝑙e, so that the turbulent velocity fluctuation can be represented by a single sinusoidal 
associated with 𝑙𝑙e and its associated frequency 𝑓𝑓e, which has the following streamwise component 
 𝑢𝑢′(𝑡𝑡) = √2 𝑢𝑢rms sin(2𝜋𝜋𝑓𝑓𝑒𝑒𝑡𝑡). (A2.2) 
 

The force magnitude is proportional to 𝑢𝑢′2, which is plotted in Figure 1c for the two stem 
sizes. For particle entrainment to occur, the force must exceed a critical value, (𝑢𝑢𝑐𝑐𝑐𝑐′

2 in Figure 3-
1c), and the product of force magnitude (~𝑢𝑢′2) and duration (∆𝑡𝑡 ~𝑙𝑙e/𝑈𝑈) must exceed the critical 
impulse, 𝐼𝐼cr, both of which are functions of grain size (Diplas et al., 2008). Combing these 
constraints, 𝑢𝑢′2 > 𝑢𝑢𝑐𝑐𝑐𝑐′

2 must be experienced for a minimum time, ∆𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛 ~ 𝐼𝐼𝑐𝑐𝑐𝑐 𝑢𝑢𝑐𝑐𝑐𝑐′
2⁄ , to generate 

particle entrainment. In each eddy cycle, the critical force is exceeded for ∆𝑡𝑡1 and ∆𝑡𝑡2, in array 1 
(Figure 3-1a) and 2 (Figure 3-1b), respectively. If both ∆𝑡𝑡1 and ∆𝑡𝑡2 are larger than ∆𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛, it can 
be shown that for equal turbulence magnitude (Figure 3-1c), the average impulse in exceedance 
of the critical value is the same in both arrays, because there is a trade-off between number 
(frequency) and size (duration) of turbulent interactions with the bed. That is, the integral over 
time represented by the blue and orange shading is the same in arrays 1 and 2 (Figure 3-1c, for 
mathematical details see A2.3). Assuming the same grain size for both channels, exposure to an 
equivalent total impulse should produce a similar channel-scale bedload sediment transport. That 
is, given the same turbulent kinetic energy, bedload transport does not depend on stem diameter.   
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A2.3. Proof of equal total impulse 

The total impulse for Case n (n = 1 or 2 in Figure 3-1) is defined by 

 𝐼𝐼n = ∫ [𝑢𝑢′(𝑡𝑡;𝑛𝑛)]2𝐻𝐻{[𝑢𝑢′(𝑡𝑡;𝑛𝑛)]2 − 𝑢𝑢cr′2(𝑛𝑛)}𝑑𝑑𝑡𝑡𝑇𝑇s
0 ,  (A2.3) 

in which 𝑇𝑇s is the time of interest, and 𝐻𝐻(𝑥𝑥) = �0 𝑥𝑥 < 0
1 𝑥𝑥 ≥ 0 is the unit (Heaviside) step function. 

Case 1 and 2 have different scales of turbulent eddies with periods 𝑇𝑇1 = 1
𝑓𝑓λ1

 and 𝑇𝑇2 = 1
𝑓𝑓λ2

 , as 

depicted in Figure 1. If the duration of interest is sufficiently long (𝑇𝑇s ≫ 𝑇𝑇1,𝑇𝑇2), the remainder of 
𝑇𝑇s divided by 𝑇𝑇1 (𝑇𝑇s mod 𝑇𝑇1) or 𝑇𝑇2 (𝑇𝑇s mod 𝑇𝑇2) will also be sufficiently small compared with 𝑇𝑇s, 
so that we have: 

 𝑇𝑇s ≈ 𝑁𝑁1𝑇𝑇1 ≈ 𝑁𝑁2𝑇𝑇2,  (A2.4) 

in which 𝑁𝑁1 and 𝑁𝑁2 are positive integers. In addition, we assume 𝑢𝑢rms(1) = 𝑢𝑢rms(2) = 𝑢𝑢rms >
0 and 𝑢𝑢cr′ (1) = 𝑢𝑢cr′ (2) = 𝑢𝑢cr′ > 0. 

 

For Case 1, we have: 

𝐼𝐼1 = � [𝑢𝑢′(𝑡𝑡; 1)]2𝐻𝐻{[𝑢𝑢′(𝑡𝑡; 1)]2 − 𝑢𝑢cr′2(1)}𝑑𝑑𝑡𝑡
𝑇𝑇s

0
 

≈ 𝑁𝑁1 � [𝑢𝑢′(𝑡𝑡; 1)]2𝐻𝐻{[𝑢𝑢′(𝑡𝑡; 1)]2 − 𝑢𝑢cr′2(1)}𝑑𝑑𝑡𝑡
𝑇𝑇1

0
 

= 2𝑁𝑁1𝑢𝑢rms2 � sin2�2𝜋𝜋𝑓𝑓λ1𝑡𝑡 + 𝜑𝜑λ1�𝐻𝐻{[𝑢𝑢′(𝑡𝑡; 1)]2 − 𝑢𝑢cr′2}𝑑𝑑𝑡𝑡
𝑇𝑇1

0
 

= 𝑁𝑁1𝑢𝑢rms2 ∫ �1 − cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡 + 2𝜑𝜑λ1��𝐻𝐻{[𝑢𝑢′(𝑡𝑡; 1)]2 − 𝑢𝑢cr′2}𝑑𝑑𝑡𝑡𝑇𝑇1
0 .  (A2.5) 

 

If √2𝑢𝑢rms ≤ 𝑢𝑢cr′ , given |𝑢𝑢′(𝑡𝑡;𝑛𝑛)| ≤ √2𝑢𝑢rms, 𝐻𝐻{[𝑢𝑢′(𝑡𝑡;𝑛𝑛)]2 − 𝑢𝑢cr′2} = 0 is thus valid for 
∀𝑡𝑡 ∈ [0,𝑇𝑇s], and the integral 𝐼𝐼1 = 𝐼𝐼2 = 0. This implies we will not observe sediment transport for 
either case. If √2𝑢𝑢rms > 𝑢𝑢cr′ , the integral in Eqn. A2.5 can be simplified as follows: 

𝐼𝐼1 ≈ 𝑁𝑁1𝑢𝑢rms2 � �1− cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡 + 2𝜑𝜑λ1��𝐻𝐻{[𝑢𝑢′(𝑡𝑡; 1)]2 − 𝑢𝑢cr′2}𝑑𝑑𝑡𝑡
𝑇𝑇1

0
 

= 𝑁𝑁1𝑢𝑢rms2 � �1 − cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡��𝐻𝐻 ��𝑢𝑢′ �𝑡𝑡 −
𝜑𝜑λ1

2𝜋𝜋𝑓𝑓λ1
; 1��

2

− 𝑢𝑢cr′2� 𝑑𝑑𝑡𝑡
𝑇𝑇1

0
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= 2𝑁𝑁1𝑢𝑢rms2 � �1 − cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡��𝐻𝐻 ��𝑢𝑢′ �𝑡𝑡 −
𝜑𝜑λ1

2𝜋𝜋𝑓𝑓λ1
; 1��

2

− 𝑢𝑢cr′2� 𝑑𝑑𝑡𝑡
𝑇𝑇1/2

0
. 

  (A2.6) 

Within the interval [0,𝑇𝑇1/2], the step function 𝐻𝐻 ��𝑢𝑢′ �𝑡𝑡 −
𝜑𝜑λ1
2𝜋𝜋𝑓𝑓λ1

; 1��
2
− 𝑢𝑢cr′2� has two 

discontinuities at 𝑡𝑡 = 𝑇𝑇1a and 𝑡𝑡 = 𝑇𝑇1b. Without loss of generality, let 𝑇𝑇1a < 𝑇𝑇1b and 

𝑢𝑢′ �𝑇𝑇1a −
𝜑𝜑λ1
2𝜋𝜋𝑓𝑓λ1

; 1� = 𝑢𝑢′ �𝑇𝑇1b −
𝜑𝜑λ1
2𝜋𝜋𝑓𝑓λ1

; 1� = 𝑢𝑢cr′ > 0, so that 

 sin�2𝜋𝜋𝑓𝑓λ1𝑇𝑇1a� = sin�2𝜋𝜋𝑓𝑓λ1𝑇𝑇1b� = 𝑢𝑢cr′

√2𝑢𝑢rms
,  (A2.7) 

and 

 𝑇𝑇1a = 𝑇𝑇1
2𝜋𝜋

sin−1 � 𝑢𝑢cr′

√2𝑢𝑢rms
� ∈ �0, 𝑇𝑇1

4
� ,𝑇𝑇1b = 𝑇𝑇1

2
− 𝑇𝑇1a.  (A2.8) 

 

Hence, 

𝐼𝐼1 ≈ 2𝑁𝑁1𝑢𝑢rms2 � �1 − cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡��𝐻𝐻 ��𝑢𝑢′ �𝑡𝑡 −
𝜑𝜑λ1

2𝜋𝜋𝑓𝑓λ1
; 1��

2

− 𝑢𝑢cr′2� 𝑑𝑑𝑡𝑡
𝑇𝑇1
2

0
 

= 4𝑁𝑁1𝑢𝑢rms2 � �1 − cos�4𝜋𝜋𝑓𝑓λ1𝑡𝑡��𝑑𝑑𝑡𝑡
𝑇𝑇1
4

𝑇𝑇1a
 

= 4𝑁𝑁1𝑢𝑢rms2 �𝑡𝑡 −
1

4𝜋𝜋𝑓𝑓λ1
sin�4𝜋𝜋𝑓𝑓λ1𝑡𝑡���

𝑇𝑇1a

𝑇𝑇1
4

 

= 4𝑁𝑁1𝑢𝑢rms2 ��
𝑇𝑇1
4
−
𝑇𝑇1
2𝜋𝜋

sin−1 �
𝑢𝑢cr′

√2𝑢𝑢rms
�� −

𝑇𝑇1
4𝜋𝜋 �

1− sin �2 sin−1 �
𝑢𝑢cr′

√2𝑢𝑢rms
���� 

= 4𝑵𝑵𝟏𝟏𝑻𝑻𝟏𝟏𝑢𝑢rms2 ��
1
4
−

1
2𝜋𝜋

sin−1 �
𝑢𝑢cr′

√2𝑢𝑢rms
�� −

1
4𝜋𝜋 �

1 − sin �2 sin−1 �
𝑢𝑢cr′

√2𝑢𝑢rms
����. 

  (A2.9) 

Note: It can be shown that sin(2 sin−1 𝑥𝑥) = 2𝑥𝑥√1 − 𝑥𝑥2, but this is unnecessary here. 

Similarly,  
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𝐼𝐼2 ≈ 4𝑵𝑵𝟐𝟐𝑻𝑻𝟐𝟐𝑢𝑢rms2 ��1
4
− 1

2𝜋𝜋
sin−1 � 𝑢𝑢cr′

√2𝑢𝑢rms
�� − 1

4𝜋𝜋
�1 − sin �2 sin−1 � 𝑢𝑢cr′

√2𝑢𝑢rms
����. 

  (A2.10) 

Because 𝑇𝑇s ≈ 𝑁𝑁1𝑇𝑇1 ≈ 𝑁𝑁2𝑇𝑇2, 𝐼𝐼1 ≈ 𝐼𝐼2. That is, the same cumulative impulse is experienced 
in both channels, so that cumulative impulse is not a function of stem size. 

 

Furthermore, if significant bed sediment entrainment is assumed, the total impulse a 
sediment grain experiences, 𝐼𝐼, within the duration of interest, 𝑇𝑇s, is approximately not dependent 
on the ratio of the velocity fluctuation, 𝑢𝑢rms, to the velocity threshold, 𝑢𝑢cr′ . This is granted when 

𝑢𝑢rms
𝑢𝑢cr′

> 1.34 so that 
�𝐸𝐸total−𝐸𝐸total�

𝑢𝑢rms
𝑢𝑢cr′

→+∞��

𝐸𝐸total�
𝑢𝑢rms
𝑢𝑢cr′

→+∞�
< 0.1. With this assumption, 𝐼𝐼 ∝ 𝑢𝑢rms2 . 
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A2.4. Photographs of 1-m-long section within 3-m long array.  

Flow direction was from left to right for all images. 
 

 
 
 

Case 1.1 
d = 0.64 cm, 
ϕ = 0.012, 
U = 25.3 ± 0.5 cm/s 

 

Case 2.1 
d = 2.5 cm, 
ϕ = 0.0051, 
U = 38.0 ± 1.1 cm/s 
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Case 2.7 
d = 2.5 cm, 
ϕ = 0.012, 
U = 33.6 ± 1.2 cm/s 
 

 
 

Case 3.4 
d = 1.3, 1.9 cm, 
ϕ = 0.025, 
U = 16.8 ± 0.7 cm/s 

 

Case 4.2 
d = 1.3, 1.9, 5.1 cm, 
ϕ = 0.025, 
U = 33.8 ± 0.6 cm/s 
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A2.5. Grain size analysis of bed sediment 

This study used AGSCO #00N silica sand, which was also used by Yang and Nepf (2018, 
2019) and Shan et al. (2020). After the final run, we sampled approximately 300 g of bed 
sediment, and conducted sieve analysis at MIT Pierce Laboratory. The sieves were cleaned and 
weighed separately. The sediment sample went through a stack of sieves, fining downward, and 
the finest composition was collected in a pan at the bottom. Then, the lid of sieve set was closed, 
and the entire set was shaken for 5 min on a sieve shaker. The sieve set was taken off and 
disassembled, and we weigh each sieve again to derive the mass of retrieved sediment for each 
class. 
 

Sieve # μm φ Tare (g) Bulk (g) Net (g) % Cumulative % 
20 850 0.2  410.55  413.70  3.15  1.25  1.25  
25 710 0.5  432.17  479.06  46.89  18.61  19.87  
30 600 0.7  616.00  696.35  80.35  31.90  51.76  
35 500 1.0  553.53  632.28  78.75  31.26  83.03  
40 425 1.2  573.94  605.67  31.73  12.60  95.62  
45 350 1.5  450.32  455.11  4.79  1.90  97.52  

Pan   339.37  345.61  6.24  2.48  100.00  
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A2.6. Bedload transport prediction 

The bed shear stress was predicted using Eqn. 6 in Yang and Nepf (2018): 

 𝜏𝜏 = �

4𝜌𝜌𝜈𝜈𝑈𝑈
𝑈𝑈

𝑅𝑅𝑒𝑒d < 4
𝐶𝐶f

𝜌𝜌𝐶𝐶f𝑈𝑈2 𝑅𝑅𝑒𝑒d ≥
4
𝐶𝐶f

,  (3.10) 

which reflects the reduction of the viscous sublayer due to vegetation-generated turbulence. The 
bed drag coefficient was estimated from Julien (2010, Eqn. 6.19c in page 121): 
 𝐶𝐶f = 1

�1𝜅𝜅ln�
2ℎ
𝑑𝑑50

��
2,  (A2.11) 

in which 𝜅𝜅 = 0.4 is the von Kármán constant. The measured 𝐶𝐶f = 0.0043 ± 0.0009, based on 
velocity profiles over an unvegetated flat bed in this study, matched Eqn. 3.11. The TKE, 𝑘𝑘t, was 
predicted using Eqn. 3.8 with 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 (95% CI). The settling velocity was calculated 
using the Rubey (1933) equation 

 𝑤𝑤𝑠𝑠 = ��2
3

+ 36𝜈𝜈2

(ρ𝑠𝑠/ρ−1)𝑔𝑔𝑈𝑈50
3 − � 36𝜈𝜈2

(ρ𝑠𝑠/ρ−1)𝑔𝑔𝑈𝑈50
3 ��(ρ𝑠𝑠/ρ − 1)𝑔𝑔𝑑𝑑50,  (A2.12) 

which is accurate to within 30% for the grain sizes considered (Hallermeier, 1981; Dietrich, 
1982). The critical shear stress 𝜃𝜃𝑐𝑐𝑐𝑐 was extracted from previous data and fitted Shields curves 
reported in Soulsby (1997) and Whitehouse et al. (2000). The 𝜃𝜃𝑐𝑐𝑐𝑐 and 𝑘𝑘t,cr∗  values are discussed in 
more detail in Section 3.5.1 in the main text. 
 

In addition, Yang and Nepf (2018) considered the Einstein-Brown (1950) formula to 
predict sediment transport in model vegetation. The original Einstein-Brown (Einstein, 1950; 
Brown, 1950) model (blue dashed curve in subplot a) 

 𝑞𝑞s∗ = �
2.15𝑒𝑒−0.391/𝜃𝜃 𝜃𝜃 < 0.18

40𝜃𝜃3 0.18 ≤ 𝜃𝜃 ≤ 0.52
15𝜃𝜃1.5 𝜃𝜃 > 0.52

.  (A2.13) 

was converted to a kt-based model. Specifically, Yang and Nepf (2018) replaced the 
dimensionless bed shear stress 𝜃𝜃 with 0.19𝑘𝑘𝑔𝑔∗ (Soulsby, 1983). The converted kt-based Einstein-
Brown model (blue dashed curve in subplot b) is: 

 𝑞𝑞s∗ = �
2.15𝑒𝑒−2.06/𝑘𝑘t∗ 𝑘𝑘t∗ < 0.95

0.27𝑘𝑘t∗
3 0.95 ≤ 𝑘𝑘t∗ ≤ 2.74

1.24𝑘𝑘t∗
1.5 𝑘𝑘t∗ > 2.74

.  (A2.14) 

 
The plot below is an updated version of Figure 3 in Yang and Nepf (2018), with the 

addition of data from Armanini and Cavedon (2019), Shan et al. (2020), Wu et al. (2021), and the 
current study. Yang and Nepf (2018) estimated bed shear stress using their Eqn. 6 (Eqn. 3.10 in 
this study), and found that turbulent kinetic energy, rather than bed shear stress, was a better 
predictor for bedload transport rate in vegetated channels. 
 



   
 

146 
 

 

Measured dimensionless sediment transport rate 𝑞𝑞s∗ = 𝑞𝑞s
𝜌𝜌s𝑤𝑤s𝑈𝑈50

 versus (a) dimensionless bed stress 

𝜃𝜃 = 𝜏𝜏
(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50

 predicted using Eqns. 3.10 and A2.11, and (b) dimensionless turbulent kinetic 

energy 𝑘𝑘t∗ = 𝑘𝑘t
(𝜌𝜌𝑠𝑠/𝜌𝜌−1)𝑔𝑔𝑈𝑈50

  predicted using Eqn. 3.8 and 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 (95% CI). The median 

grain size was 𝑑𝑑50 = 0.5 mm in the current study and in Yager and Schmeeckle (2013), Armanini 
and Cavedon (2019), Yang and Nepf (2019), and Shan et al. (2020). For Wu et al. (2021), 𝑑𝑑50 = 
0.93 mm. The blue dashed lines represent EB (Eqns. A2.13 & A2.14). 
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A2.7. Model plants used in Xu and Nepf (2020) 

 

  
Typha latifolia Rotala indica 

Data used to produce Figure 4 can be downloaded from: 
https://doi.org/10.6084/m9.figshare.12228812.v2 
 

https://doi.org/10.6084/m9.figshare.12228812.v2


   
 

148 
 

 

Figure A2-1. Side view of the flume (not to scale). 
 
 

 
 

Figure A2-2. Cumulative average of velocity components and root-mean-square values over 
time, at (x, y, z) = (199 cm, 50 cm, 4 cm) in Case 4.3. The sampling frequency was 200 Hz. 
Down-looking Vectrino reports two vertical velocities at the same time. All the averages 
converge at ~6000 sample points (corresponding to a 30-s-long record), but 150-s-long signals 
were recorded for turbulence analysis with higher resolution. 

3 m
Flow

Butterfly valve

Sediment collector
ADV

x

z
y

Pump

Sediment recirculation

Water recirculation
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Figure A2-3. Vertical profiles of normalized velocity (u/U, v/U, w/U), normalized TKE (kt/U2), 
and normalized integral length scale (le/<d>) at (x, y) = (245 cm, 55 cm) in Case 4.1. Vertical 
profiles were measured at the spatial position at which the time-mean velocity matched the 
spatially and temporally averaged velocity of the transect. The vertical profiles confirmed that 
mid-depth measurements reasonably represented near-bed conditions (2 cm above the bed). 
 

 

Figure A2-4. Integral length scale versus mean diameter defined as 〈𝑑𝑑〉 =
∑ 𝑟𝑟𝑖𝑖𝑈𝑈𝑖𝑖
𝑝𝑝
𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖
𝑝𝑝
𝑖𝑖=1

. Cases 

marked by an asterisk were collected without sediment. Each data point is an average taken along 
one or two lateral transects. Error bars represent the standard error across transect(s). 
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Figure A2-5. Predicted 〈𝑘𝑘t〉 versus measured 〈𝑘𝑘t〉. A least-squares fit with data in this study 
yielded 𝛿𝛿𝑘𝑘t = 0.52 ± 0.07 (95% CI) in Eqn. 3.10. Predicted and measured spatially averaged 
TKE values are plotted, along with a 1:1 line for reference.
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Table A2.1: Nomenclature 
Symbol Unit Name 
〈⬚〉  Angle brackets; spatial average 
⬚�   Overbar; temporal average 
’  Prime; temporal fluctuation 
𝑎𝑎 m-1 Frontal (submerged) vegetation area per unit volume 
𝐶𝐶D - Total drag coefficient of vegetation canopy 

𝐶𝐶D,form - Form drag coefficient of (model) vegetation canopy  
Cf - Bed drag coefficient 
𝑑𝑑 m Stem diameter (or characteristic width) of vegetation 
𝑑𝑑𝑠𝑠 m Grain size of bed sediment 
𝑑𝑑50 m Median grain size of bed sediment 

𝐹𝐹 m2 s-2 Force magnitude of hydrodynamic force acting on bed 
sediment, per bed area and per fluid mass 

𝑓𝑓𝑒𝑒 s-1 Frequency of eddy generation 
𝑔𝑔 m s-2 Gravitational acceleration, 9.8 m s-2 
ℎ m-1 Flow depth 

𝐼𝐼 m2 s-1 Impulse of hydrodynamic force acting on bed 
sediment, per bed area and per fluid mass 

𝑘𝑘 - Goring and Nikora (2002)’s velocity threshold in spike 
removal, 1.5 

𝑘𝑘t m2 s-2 Turbulent kinetic energy per unit fluid mass, spatially 
averaged 

𝑘𝑘t,b m2 s-2 Bed-generated turbulent kinetic energy 
𝑘𝑘t,v m2 s-2 Vegetation-generated turbulent kinetic energy 

𝑘𝑘t∗ =
𝑘𝑘t

(𝜌𝜌𝑠𝑠/𝜌𝜌 − 1)𝑔𝑔𝑑𝑑50
 - Dimensionless turbulent kinetic energy 

𝑘𝑘t,cr∗  - Dimensionless critical turbulent kinetic energy 

𝑙𝑙e m Length scale of turbulent eddies; (local) integral length 
scale 

𝑚𝑚 m-2 Number of stems per unit bed area 
qs kg m-1 s-1 Mass sediment transport rate per unit width 

𝑞𝑞s∗ =
𝑞𝑞s

𝜌𝜌𝑠𝑠𝑤𝑤𝑠𝑠𝑑𝑑50
 - Dimensionless sediment transport rate (Einstein 

number) 
𝑅𝑅𝑒𝑒d = 𝑈𝑈𝑑𝑑/ν - Stem Reynolds number 

𝑆𝑆 - Surface energy slope 
𝛥𝛥𝑠𝑠 m Surface-to-surface spacing between stems 
𝑡𝑡 s Time 

𝛥𝛥𝑡𝑡 s Duration of hydrodynamic force acting on bed 
sediment 

𝑈𝑈 m s-1 Channel velocity, spatially and temporally averaged 
𝑢𝑢cr′2 m2 s-2 Critical force magnitude for local grain entrainment 
𝑢𝑢𝑒𝑒 m s-1 Eddy velocity 

u, v, w m s-1 Instantaneous velocity component 
x, y, z m Streamwise, lateral/transverse, and vertical coordinates 
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𝑢𝑢rms = �
1
𝑁𝑁
�(𝑢𝑢′)2
𝑁𝑁

𝑖𝑖=1

 m s-1 Root-mean-square velocity component 

𝑤𝑤𝑠𝑠 m s-1 Settling velocity of sediment 
𝛿𝛿𝑘𝑘t - Scale factor of vegetation-generated turbulence 
𝜙𝜙 - Solid volume fraction of (model) vegetation 
𝜌𝜌𝑠𝑠 kg m-3 Sediment density, 2650 kg m-3 for quartz 
𝜌𝜌 kg m-3 Fluid density, 1000 kg m-3 for water 

τ kg m-1 s-2 
or N m-2 Bed shear stress, temporally averaged 

𝜃𝜃 =
𝜏𝜏

(𝜌𝜌s − 𝜌𝜌)𝑔𝑔𝑑𝑑50
 - Dimensionless bed shear stress (Shields number) 

𝜃𝜃cr - Critical Shields number 
𝜅𝜅 - von Kármán constant, 0.4 

𝜆𝜆a - Goring and Nikora (2002)’s acceleration threshold in 
spike removal, 1 

Λt s (Local) integral time scale 
𝜈𝜈 m2 s-1 Fluid kinematic viscosity, 10-6 m2 s-1 for water at 20°C 
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Table A2.2: Summary of experimental cases 
 

Case # Arrangement ϕ d 
(cm) 

h 
(cm) 

U 
(cm/s) 

σ(U) 
(cm/s) 

<kt> 
(cm2/s2) 

σ(kt) 
(cm2/s2) 

qs 
(g m-1 s-1) 

σ(qs) 
(g m-1 s-1) 

<le> 
(cm) 

σ(le) 
(cm) 

1.1 Uniform staggered 0.012 0.64 12.1 25.3 0.5 33 3 2.98 0.19 0.382 0.006 
1.2 Uniform staggered 0.012 0.64 12.0 37.4 0.5 65 4 58.7 0.8 0.557 0.013 
2.1 Random 0.0051 2.5 10.8 38.0 1.1 44 10 10.7 0.4 1.12 0.03 
2.2 Random 0.0051 2.5 11.0 28.0 0.9 26 5 0.86 0.02 0.97 0.05 
2.3 Random 0.0051 2.5 11.5 24.6 0.9 24 5 0.16 0.03 0.92 0.04 
2.4 Uniform staggered 0.012 2.5 10.7 19.9 0.6 25 3 0.40 0.03 1.35 0.04 
2.5 Uniform staggered 0.012 2.5 12.5 24.7 0.8 35 4 1.56 0.12 1.06 0.02 
2.6 Uniform staggered 0.012 2.5 12.6 27.0 1.0 41 6 3.52 0.14 1.10 0.02 
2.7 Uniform staggered 0.012 2.5 12.5 33.6 1.2 58 8 21.4 0.6 1.100 0.017 
3.1 Random 0.025 1.3, 1.9 11.0 13.0 0.6 14.6 1.5 - - 0.73 0.04 
3.2 Random 0.025 1.3, 1.9 10.5 22.3 1.1 31 4 4.79 0.11 0.66 0.03 
3.3 Random 0.025 1.3, 1.9 13.0 30.1 1.2 49 5 32.4 0.5 0.72 0.02 
3.4 Random 0.025 1.3, 1.9 11.5 16.8 0.7 20 2 0.188 0.004 0.60 0.02 
4.1 Random 0.025 1.3, 1.9, 5.1 11.5 19.7 0.9 18 3 0.124 0.003 0.88 0.01 
4.2 Random 0.025 1.3, 1.9, 5.1 10.8 33.8 0.6 47 3 18.0 0.3 1.010 0.019 
4.3 Random 0.025 1.3, 1.9, 5.1 11.0 25.2 0.5 32 2 2.76 0.08 0.95 0.02 

 
Notes 

(a) The sediment used in this study is AGSCO #00N silica sand, d50 = 0.6 mm, 𝜌𝜌𝑠𝑠 = 2.65 × 103 kg/m3; 
(b) All the uncertainties σ() represent standard error of measurements; 
In Cases 3.1 – 3.4, the amount ratio of 1.3-cm and 1.9-cm cylinders was 9:5; in Cases 4.1 – 4.3, the amount ratio of 1.3-cm, 1.9-cm, and 5.1-cm 
cylinders was 4:3:3, respectively. 
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A3 Supporting Information for Chapter 4 

A3.1. Near-bed TKE budget 
The TKE budget terms were estimated from measured velocity. Wake production was 

calculated using the local time-mean streamwise velocity: 
 𝑃𝑃w = 1

2
𝐶𝐶D𝑎𝑎𝑢𝑢�3. (A3.1) 

 
Shear production was evaluated as the product of Reynolds stress (−𝑢𝑢′𝑤𝑤′������) and vertical 

gradient of streamwise velocity (𝜕𝜕𝑢𝑢� 𝜕𝜕𝑧𝑧),⁄  with the latter estimated using a central difference. 
 𝑃𝑃s = −𝑢𝑢′𝑤𝑤′������ 𝜕𝜕𝑢𝑢�

𝜕𝜕𝑧𝑧
. (A3.2) 

 
Turbulent transport was estimated as the vertical gradient of vertical TKE flux (𝑤𝑤′𝑘𝑘t������): 
 𝑇𝑇t = 𝜕𝜕𝑤𝑤′𝑘𝑘t�������

𝜕𝜕𝑧𝑧
. (A3.3) 

 
The gradients were calculated in MATLAB using gradient() function. The input data was 

not smoothed. In most cases, wake production was the dominant term in the near-bed region. 
However, in the dense canopy (Cases 3.1 – 3.3), as the submergence ratio (H/h) increased, 
turbulent transport became more important.  
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A3.2. Bedload transport rate on an unvegetated bed at same channel 
conditions 

Ishii (2023) studied bare bed conditions in the same channel and with the same sediment 
(d50 = 0.5 mm) as in the present study. She determined the critical channel velocity for incipient 
motion U = 24.9 ± 0.8 cm/s. At this flow condition, the friction velocity was u* = 0.0084 ± 0.0014 
m/s, based on a logarithmic fit of the velocity profile within 10 cm of the bed. These values 
defined the bed skin friction coefficient, 

 𝐶𝐶f = �𝑢𝑢∗
𝑈𝑈
�
2
= 0.0011 ± 0.0002 (95% CI). (A3.4) 

 
Based on particle Reynolds number 𝑅𝑅𝑒𝑒p = 𝑢𝑢∗𝑈𝑈50

𝜈𝜈
= 2.9 < 5, indicating that the flow was 

smooth turbulent. Consistent with this, Julien (2010)’s skin friction formula 
 𝑈𝑈

𝑢𝑢∗
= 5.75 lg �𝑢𝑢∗𝐻𝐻

𝜈𝜈
� + 3.25 (A3.5) 

predicted u* = 0.010 m/s and Cf = 0.0016, which is in reasonable agreement with the measured 
values. The measured Cf = 0.0011 will be used in the following estimation. 
 

The dimensionless critical bed shear stress is then,  
 𝜃𝜃cr = 𝜏𝜏cr

(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50 
= 𝜌𝜌𝐶𝐶f𝑈𝑈2

(𝜌𝜌s−𝜌𝜌)𝑔𝑔𝑈𝑈50 
 = 0.012. (A3.6) 

 
For bare bed (i.e., no vegetation), the Meyer-Peter-Müller (MPM) formula (Meyer-Peter & 

Müller, 1948) is a well-validated model: 
 𝑞𝑞s∗ = 8(𝜃𝜃 − 𝜃𝜃cr)1.5 . (A3.7) 
 
Due to a problem with the facility, a direct measurement of sediment transport for a bare 

bed at 40 cm/s was not possible. Equation A3.7 was used to estimate the bedload transport for a 
bare bed under flow conditions comparable to the submerged canopy experiments (U = 40 ± 2 
cm/s), resulting in qs = 0.9 ± 0.2 g m-1 s-1, which is shown with a gray horizontal band in Figure 
4-5e. 

 

A3.3. Sensitivity analysis of bed-shear-generated turbulence 
Equation 4.24 from the main text is repeated here for convenience. 

 𝑘𝑘t,nb
𝑘𝑘t,wb

= 1 + 𝛿𝛿s(𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2,  (4.24) 

in which 𝛿𝛿s is the coefficient for near-bed turbulence enhancement by canopy shear production. 
 

Using measured values of near-bed turbulence kt,nb, a sensitivity analysis (Figure A3-5) was 
used to find the best fit value for the bed turbulence coefficient, Cb. Specifically, we varied Cb for 
optimal fit with δs = 22 ± 2 (95% CI), which had the highest coefficient of determination, R2, and 
the smallest root-mean-square error (RMSE). The best fit value was Cb = 0. This was consistent 
with the fact that in the near-bed region (z = 0 to 2 cm), the bed shear production was much 
smaller than wake production (Figure A3-2). In addition, for both canopies, ah > 0.1, indicating 
that stem drag and turbulence were dominant over bed drag and turbulence (see Belcher et al., 
2003 and Yang & Nepf, 2019, respectively). 
  



 
 

156 
 

 

 

Figure A3-1. Case 2.3 contour plots of near-bed measurements taken in horizontal plane at z = 
1.8 ± 0.2 cm relative to average bed level. (a) time-mean velocity, (b) Reynolds stress, and (c) 
turbulent kinetic energy, each normalized by the horizontal average, indicated by hat. Black dots 
indicate sampling points. Red cross shows the position of the vertical profile. Brown quarter-
circles show position of cylinders. The contours of unity, where the local value matches the 
horizontal average, are marked with red dashed curves. Flow direction was from left to right. 
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Figure A3-2. Vertical profiles in near-bed region (z/h < 0.2) of individual terms in TKE budget: 
Wake production 𝑃𝑃w = 1

2
𝐶𝐶D𝑎𝑎𝑢𝑢�3 (blue circles), shear production 𝑃𝑃s = −𝑢𝑢′𝑤𝑤′������ 𝜕𝜕𝑢𝑢�

𝜕𝜕𝑧𝑧
 (red upward 

triangles), and turbulent transport 𝑇𝑇t = 𝜕𝜕𝑤𝑤′𝑘𝑘t�������

𝜕𝜕𝑧𝑧
 (orange downward triangles). Note that near-bed 

shear production was much weaker than wake production for all the cases, except for some points 
directly at the bed.  
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Figure A3-3. Ratio of canopy-averaged shear production 〈𝑃𝑃𝑠𝑠〉 to wake production 〈𝑃𝑃𝑤𝑤〉 versus 

(𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2. Bracket indicates an average over the canopy height. Blue and orange symbols 

represent sparse (a = 1.1 m-1) and dense (a = 4.9 m-1) cases in this study, respectively. The 
estimation of shear and wake production is described in section A3.1. This figure supports the 

theoretically derived dependence of 〈𝑃𝑃𝑠𝑠〉/〈𝑃𝑃𝑤𝑤〉 on (𝑎𝑎ℎ)
1
2 �1 − ℎ

𝐻𝐻
�
9
2, which is discussed in the main 

text leading to Equation 4.21.  
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Figure A3-4. Ratio of near-bed turbulent transport (Tt,nb) to wake production (Pw,nb) versus 
submergence ratio (H/h). Blue and orange symbols represent sparse (a = 1.1 m-1) and dense (a = 
4.9 m-1) cases in this study, respectively. To estimate the near-bed mean values, the point 
estimates of Tt and Pw (see section A3.1) were averaged within 2 cm from the bed. For the sparse 
canopy (a = 4.9 m-1, blue triangles), Tt,nb/Pw,nb < 0.1, showing that near-bed turbulence was 
dominated by wake production. For the dense canopy (a = 1.1 m-1, red circles), Tt,nb/Pw,nb 
increased as depth of submergence increased, suggesting a shift in near-bed turbulence from stem 
wake production to turbulence generated in the shear layer at the canopy top and transported to 
the bed by turbulent transport.  
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Figure A3-5. Sensitivity analysis to determine the factors δs in Equation 4.24 and Cb in Equation 
4.17. For each Cb value, a least-squares fit produced a corresponding δs in Equation 4.24, which 
was used to model 𝑘𝑘t,nb

𝑘𝑘t,wb
 and report R2 and RMSE values.  (a) δs value corresponding to each Cb 

between 0 and 0.02, (b) corresponding coefficient of determination (R2), and (c) root mean square 
error (RMSE) of 𝑘𝑘t,nb

𝑘𝑘t,wb
. The optimal fit, which corresponded to the maximum R2 and minimum 

RMSE, was achieved at Cb = 0 and δs = 22 ± 2. 
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Figure A3-6. Measured versus modeled values of (a) near-bed velocity, (b) near-bed TKE, and 
(c) bedload transport rate. Blue triangles represent sparse cases (a = 1.1 m-1) and orange circles 
represent dense cases (a = 4.9 m-1). Near-bed velocity Unb was predicted from Equation 4.16. 
Near-bed TKE kt,nb was from Equation 4.24. Bedload transport rate qs was from Equation 4.7. 
Modeled Unb matched measurements to within 20%. Modeled and measured kt,nb agreed within 
uncertainty. Modeled qs matched measurements within factor 2. 
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Figure A3-7. Modeled depth-averaged velocity (U), near-bed velocity (Unb), near-bed TKE (kt,nb), and sediment transport rate (qs) under constant 
hydrodynamic forcing (energy slope, S, from top to bottom: S = 0.0001, 0.001, 0.005) and flow depth H = 50 cm in canopies of submerged rigid 
vegetation. See model details in Section 4.3.3. Bed sediment d50 = 0.35 mm. Canopies had stem diameter d = 1.3 cm, with their height varied from 
h = 50 cm to 10 cm, corresponding to submergence ratio H/h = 1 to 5. Solid curves represent model results, with color distinguishing canopy 
density. Black dashed curves in right-most column show sediment transport rate for bare bed (see A3.2 in SI for details). Gray band represents 
transport rates with bedforms (Wong & Parker, 2006).  
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Figure A4-1. Initial evolution of bedform. Flow was from left to right. (a) Case S3, (b) Case D3. White tapes indicate initial flat bed elevation. 
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Case S1 

    
t = 69.0 h t = 70.2 h t = 72.5 h t = 73.8 h 

    
t = 75.0 h t = 76.2 h t = 77.4 h t = 78.6 h 
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Case S2 

    
t = 182.3 h t = 183.3 h t = 184.3 h t = 185.3 h 

    
t = 186.3 h t = 187.3 h t = 188.0 h t = 190.0 h 

    
t = 195.1 h t = 200.1 h t = 205.0 h t = 210.0 h 

   

 

t = 215.2 h t = 220.1 h t = 225.0 h  
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Case S3 

    
t = 123.0 h t = 143.0 h t = 163.0 h t = 181.5 h 

 

(Continued on next page) 
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Case D1 

    
t = 27.3 h t = 28.0 h t = 28.8 h t = 29.6 h 

    
t = 30.3 h t = 31.3 h t = 32.1 h t = 32.6 h 

 
 
 

(Continued on next page) 
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Case D2 

   

 

t = 3.3 h t = 5.1 h t = 7.4 h  

    
t = 83.5 h t = 84.5 h t = 85.5 h t = 87.0 h 

   

 

t = 89.0 h t = 91.0 h t = 92.8 h  
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Case D3 

   

 

t = 163.0 h t = 170.1 h t = 178.0 h  
 

 
 
Table A4.1. Gallery of bedform migration and measured instantaneous bedload transport. t 
denotes the cumulative pump running time from the start of case. Blue box represents time 
interval of flow measurements, and red ovals indicate the individual measurements used to 
evaluate the sediment transport rate corresponding to the flow measurements. Flow was from the 
right to the left. Note that the left (downstream) edge of the 1.1 m-long image frame, at which 
the ADV was placed, was 1.3 m upstream of the end of test section, so there was a time lag 
between the flow measurements and corresponding sediment transport rate. 
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A5 Final Remarks 
The flow data of Chapters 3 and 4, and any updates to the text will be available on: 

(Dryad)  doi: 10.5061/dryad.r4xgxd2p9 

(Google Drive) https://drive.google.com/drive/folders/1RCw6dS4lm4TbCb5SHva-

79RINBtwaR5O?usp=sharing 

  

https://drive.google.com/drive/folders/1RCw6dS4lm4TbCb5SHva-79RINBtwaR5O?usp=sharing
https://drive.google.com/drive/folders/1RCw6dS4lm4TbCb5SHva-79RINBtwaR5O?usp=sharing
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