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Abstract

The rise of e-commerce has led to a surge in package deliveries, resulting in the prolifera-
tion of unattended delivery methods to address the “last-meter” problem – the challenge
of delivering packages from the roadside or sidewalk to the customer’s front door. This
thesis proposes a methodology for implementing Large Language Model (LLM), and Vision
Language Model (VLM) to enable delivery robots to identify the final delivery target and
navigate the complex terrain from the curb to the front door. The proposed solution aims to
enhance the autonomy and safety of last-mile delivery systems, addressing the “last-meter”
challenge and improving the customer experience.

This thesis presents a comprehensive overview of the last-meter delivery concept, aiming
to bridge the gap between the roadside/sidewalk and the customer’s front door. It begins
by introducing the significance of last-meter delivery in the growing e-commerce industry
and the challenges posed by unattended deliveries. The thesis then reviews the existing lit-
erature on autonomous and unmanned delivery systems, multimodal delivery approaches,
and the application of large language models and vision language models in robotics. This
research identifies the advancements and gaps in the field that the proposed methodology
aims to address.

The thesis primarily focuses on leveraging Large Language Models, the Segment Anything
Model, and the open-source Florence-2 vision foundation model to enable the transmission
of customers’ delivery instructions to the final delivery target in the context of last-meter
delivery. It outlines the methodology for data preparation, object detection and labeling,
as well as the integration of Large Language Models to handle customer instructions and
coordinate delivery target. It also describes the experimental design and methodologies
employed to validate the effectiveness of the proposed system. This includes the use of a
last-meter dataset and the evaluation of last-meter scene and target coordinate identifica-
tion.
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The thesis concludes by summarizing the key findings and contributions, discussing the
broader implications of the proposed methodology, and suggesting directions for future
work, such as enhancing system robustness and scalability.

KEYWORDS: Last-Mile Delivery, last-meter Delivery, Large Language Models (LLM), Vi-
sion Language Models (VLM), Robotics, Segment Anything Model (SAM), Open-Vocabulary
Object Detection (OVD).
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Chapter 1

Introduction

The rapid growth in e-commerce and online shopping has sparked a substantial and widespread

increase in parcel deliveries. For instance, in Sweden, e-commerce sales grew by an average

of 18% per year between 2005 and 2019, with a further 40% increase in 2020 during the

COVID-19 pandemic [43]. This expansion has led to heightened challenges for the last

stage of the delivery process, known as last-mile logistics [4]. According to Bosona [7],

last-mile delivery refers to the final transportation segment of a supply chain. Last-mile

delivery is often the most inefficient and costly, accounting for up to 50% of the total de-

livery expense [35]. Changes in consumer shopping behaviors and rising urban population

have made last-mile delivery particularly problematic in urban areas, leading to issues with

congestion, delivery times, and sustainability [21]. This challenge is especially pronounced

in highly urbanized regions with a substantial share of e-commerce, such as Europe and the

United States. Further, innovative transport modes and systems are rapidly changing the

conditions for last-mile deliveries, particularly with regard to unattended delivery [24].

At the same time, customers demand faster, more predictable, and more flexible deliver-

ies [40] [43]. This results in last-mile delivery being an expensive and inefficient component

of the supply chain [31]. Concurrently, technology is undergoing significant advancements in

digitalization and autonomous vehicles, with substantial ongoing research [12]. Autonomous

vehicles are increasingly becoming commercially available and expanding into new domains.
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Automated guided vehicles have been commonplace in warehouses for decades [45] and have

more recently emerged on sidewalks in the form of autonomous delivery robots. The ex-

ternalities, coupled with the rise in e-commerce and urbanization mentioned above, have

created pressure to find innovative solutions to enhance the efficiency of last-mile deliveries.

One approach to addressing this problem could be the utilization of new advanced tech-

nologies to develop automated delivery systems, potentially leading to a more efficient and

sustainable last-mile delivery system [39].

To address these challenges, the concept of “last-meter” delivery, which aims to bridge the

gap between the roadside/sidewalk and the customer’s front door, has gained significant

attention. This approach seeks to optimize the efficiency and sustainability of the final

delivery by exploring innovative solutions that can overcome the obstacles posed by unat-

tended deliveries. Researchers have explored various last-mile delivery concepts, including

the use of unmanned aerial vehicles (UAVs) [5] [10] [34] and autonomous delivery robots

(ADRs) [1] [2] [3], which have the potential to reduce delivery time, increase efficiency, and

cut costs. However, most unattended delivery robots still require human involvement to

retrieve packages. How to fully automate the last-meter delivery process in a way that

ensures the safe and secure delivery of packages to customers’ doorsteps remains a critical

challenge that requires further research and technological advancements [6] [8].

Figure 1-1: Definition of Last-Meter
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In this context, the concept of a multimodal autonomous last-mile delivery system has

emerged as a promising approach. Land vehicles transport parcels to the curb, and a

smaller robot then delivers them to the customer’s front door, enabling a seamless transi-

tion between different modes of transportation and reducing the overall delivery time. The

last-mile modes should be equipped with basic sensors commonly found in autonomous

vehicles [16], such as cameras, LiDAR, radars, and GPS, to navigate and detect obstacles.

Furthermore, integrating advanced communication technologies can enhance the coordina-

tion between these vehicles and the surrounding infrastructure, ultimately leading to a more

streamlined and efficient delivery process [38]. The last-meter modes will depart from the

last-mile modes to safely approach and deposit the packages at the customer’s doorstep.

This requires the implementation of communication and charging systems within the last-

mile and last-meter delivery modes. The last-meter delivery robots must be equipped with

their own sensors, such as LiDAR and radars, to detect unexpected obstacles or environ-

mental changes as they move, as well as advanced computer vision and object detection

capabilities to precisely locate the customer’s door and safely drop the package. Once the

last-meter delivery robot reaches the final destination, it should be able to autonomously

complete the package delivery without any human intervention, send a confirmation signal

and an image indicating the package’s arrival back to the last-mile modes or the central

system, marking the delivery as complete, and then return to the last-mile mode. As many

e-commerce platforms now offer customers the option to decide where to have their pack-

ages dropped off, this enhances customer convenience and flexibility but also increases the

delivery complexity and challenge. This data can be fed into the last-meter robots to bet-

ter locate and identify each customer’s preferred delivery location. This paper examines

the potential of last-meter delivery in addressing the unattended delivery problem, drawing

from the latest research and industry developments. The aim of this thesis is to leverage

Large Language Models, the Segment Anything Model, and the open-source Florence-2 vi-

sion foundation model to enable the transmission of customers’ delivery instructions to the

final delivery target in the context of last-meter delivery.
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Figure 1-2: Comparison of Delivery Methods by Number of Packages and Miles Traveled
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Chapter 2

Related Works

This section presents a review of the existing scholarly literature on the challenges associated

with last-mile delivery, as well as the development of autonomous delivery systems and

multimodal delivery approaches. It explores the potential benefits of employing multimodal

solutions that leverage Large Language Models and Vision Language Models to enhance the

efficiency and reliability of last-mile delivery systems.

Additionally, this section delves into the critical importance of human-robot interaction

and safety considerations in urban settings. It highlights the growing emphasis on sus-

tainability and environmental factors in the context of last-mile delivery, discussing how

innovative solutions can contribute to reducing greenhouse gas emissions and mitigating

the environmental impact of the growing e-commerce industry.

17



2.1 Autonomous and Unmanned Delivery Systems

The unattended delivery problem has garnered substantial attention in recent years, with

researchers and industry professionals exploring various solutions to enhance the efficiency

and reliability of last-mile delivery systems. The most common approaches include the use

of parcel lockers [29] [52], smart mailboxes [44] [41], and secure delivery boxes [23] [28],

which allow for the safe storage of packages until customers can retrieve them at their

convenience [46]. These solutions, however, do not fully address the “last-meter” problem,

as they often require customers to travel to a designated location to collect their packages.

To tackle the unattended delivery problem more comprehensively, autonomous delivery

robots (ADRs) and unmanned aerial vehicles (UAVs) have emerged as promising solu-

tions. ADRs are designed to navigate urban environments and deliver packages directly

to customers’ doorsteps. Researchers use simulators to navigate on sidewalks, campuses,

and other urban scenarios, avoiding real-world damage from algorithm failures or program-

ming errors. This accelerates development and reduces costs [42]. Recent advancements in

robotics, artificial intelligence, and computer vision have significantly improved the capa-

bilities of ADRs, enabling them to operate with minimal human intervention. Companies

such as Starship Technologies and Nuro have successfully deployed ADRs in various ur-

ban settings, demonstrating the potential for these robots to enhance last-mile delivery

efficiency [18]. However, these approaches primarily focus on wheeled robots that can only

navigate roads and sidewalks, and are not capable of traveling up to the customer’s doorstep.

This requires customers to retrieve their packages from the curb or roadside areas, which

can be inconvenient and may not fully address the unattended delivery problem.

In parallel, unmanned aerial vehicles (UAVs), or drones, represent another innovative ap-

proach to addressing the unattended delivery problem. Drones offer the advantage of by-

passing ground traffic, potentially reducing delivery times and costs [20]. Companies like

Amazon and Google have invested heavily in developing drone delivery systems, with pilot

programs demonstrating their feasibility in specific use cases. However, regulatory chal-

lenges, safety concerns, and technical limitations, such as battery life and payload capacity,
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continue to hinder the widespread adoption of UAVs for last-mile delivery.
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2.2 Multimodal Delivery Systems

The integration of various delivery methods, including ADRs, UAVs, and traditional deliv-

ery vehicles, into a cohesive multimodal delivery system has the potential to address the

limitations of individual approaches. Multimodal delivery systems leverage the strengths

of each delivery method to optimize efficiency and reduce costs [37]. For example, ADRs

can handle deliveries in densely populated urban areas, while UAVs can service remote

or difficult-to-access locations. The development of intelligent logistics platforms that can

coordinate these different delivery modes is crucial for the success of multimodal delivery

systems.

Prior studies have explored the concept of an unmanned vehicle-robot system, where a self-

driving vehicle acts as a mothership transporting multiple autonomous robots [25]. In this

approach, the self-driving vehicle travels from a central depot to various dispersed stations,

and the onboard robots are then deployed to handle the individual pickup and delivery tasks.

Furthermore, some researchers have investigated the integration of autonomous vehicles

with drone-based solutions to fully automate the last-mile delivery process [17].

Zhu et al. [54] have proposed and investigated the feasibility of a multi-agent modular

robotic delivery system. This innovative system can latch onto a single package, function-

ing as a legged robotic system where the package itself serves as the body. This research

aims to address the inefficiencies often encountered with the use of traditional legged and

humanoid robots, which tend to occupy large amounts of space and limit scalability and

task parallelization, thereby reducing the overall package carrying capacity of delivery ve-

hicles. By utilizing a modular design where the package acts as the body, this system

can potentially achieve greater flexibility, improved space utilization, and enhanced task

parallelization capabilities, ultimately enhancing the efficiency and scalability of last-mile

delivery operations.
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2.3 Large Language Models and Vision Language Models

Recent advancements in computer vision and machine learning have paved the way for more

sophisticated localization and navigation systems for delivery robots. Vision-based systems

enable robots to accurately identify delivery targets and navigate complex urban environ-

ments. By leveraging large language models (LLMs) and vision language models(VLMs),

researchers have developed algorithms that allow robots to interpret visual data, recognize

landmarks, and plan efficient delivery routes [27]. These technologies are essential for over-

coming the “last-meter” challenge, as they enable robots to autonomously navigate the final

few meters to the customer’s doorstep.

Researchers have also explored the use of Large Language Models (LLMs) and other multi-

agent AI systems to enable robot to adapt and navigate complex environments. Gu et

al. [13] use depth-camera and semantic segmentation to help robots identify objects, un-

derstand the spatial context and identify target locations within indoor environments. Fur-

thermore, studies [15] [26] [48] [53] have demonstrated the potential of LLMs in facilitating

natural language interaction between humans, robots, and enviroments. This has enabled

advancements in interactive object search tasks involving mobile manipulation [14] as well

as scalable approaches to robot task planning [30]. However, most existing research in this

space has focused on laboratory or controlled environments, an important next step is to

validate the performance and robustness of these AI-powered systems in real-world settings.

Moreover, Wei et al. [49] demonstrated that sufficiently large large language models can

perform similar tasks to the examples provided, without requiring any adjustments to the

model weights. The concept of Chain-of-Thought prompting, which involves providing

the model with a series of examples, can be conveniently implemented to leverage these

capabilities.
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2.4 Human-Robot Interaction and Safety

Ensuring the safe and secure operation of delivery robots in urban environments is a criti-

cal aspect of last-meter delivery research. Human-robot interaction (HRI) studies focus on

understanding how robots can interact safely and effectively with pedestrians [36], cyclists,

and other road users [50] [19]. Researchers are developing advanced sensors, collision avoid-

ance systems, and communication protocols to enhance the safety and reliability of ADRs.

Additionally, regulatory frameworks and industry standards are being established to govern

the deployment and operation of delivery robots.

2.5 Sustainability

The field of last-mile delivery is progressing rapidly, with a growing emphasis on sustainabil-

ity and environmental considerations. Recent research has indicated emerging trends and

future directions in this area, highlighting the importance of adopting more eco-friendly

delivery solutions [21]. Compared to traditional delivery methods relying on fossil-fuel-

powered vehicles, autonomous delivery robots and unmanned aerial vehicles have the po-

tential to significantly reduce energy consumption and greenhouse gas emissions [11]. By

decreasing the number of traditional delivery vehicles on the road, these autonomous sys-

tems can contribute to decreased traffic congestion and improved air quality in urban areas,

making last-mile delivery more sustainable. Additionally, the integration of various delivery

modes, such as ADRs and UAVs, into a cohesive multimodal delivery system can further

optimize efficiency and reduce environmental impact.
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Chapter 3

Methodology

The methodology aims to leverage the Segment Anything Model [32] and Florence-2 [51]

for scene analysis in outdoor settings, and employ large language models to interpret cus-

tomer instructions from e-commerce platforms. This information is then used to coordinate

the delivery target, and for the further utilization of quadrupedal robots to navigate the

diverse terrain encountered during the last-meter delivery scenario, ultimately delivering

the packages. The methodology involves several core components: assembling a compre-

hensive dataset for the last-mile delivery scenario, utilizing SAM2 [32] and Florence-2 [51]

to segment images and analyze outdoor scenes, and using large language models and vision-

language models for processing customer instructions to pinpoint delivery destinations, and

finally coordinating the target delivery location for navigation of quadrupedal robots to

the final drop-off locations. The conceptual model of the last-mile and last-meter delivery

ecosystem depicted in Figure 3-1 encompasses an initial state characterized by package in-

formation, such as product details, dimensions, warehouse location, delivery address, and

customer-provided delivery instructions. This information is then communicated to rele-

vant logistics entities, including warehouses, restaurants, or merchandisers. These entities

subsequently allocate the most suitable last-mile delivery mode, such as vans, motorcycles,

vehicles, bikes, Persuasive Electric Vehicles, and scooters, as well as the appropriate last-

meter delivery mode, including quadrupedal, humanoid, drone, or delivery robot, based on
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factors like capacity, travel distance, terrain capability, and autonomy level.

Figure 3-1: Conceptual Model of the Last-Mile and Last-Meter Delivery Ecosystem

3.1 Data Preparation

The initial stage of the study focused on procuring outdoor data through the use of

consumer-grade devices. Given the absence of a standardized dataset tailored to the last-

meter delivery domain, I employed an Apple iPad Pro equipped with LiDAR sensors. This

LiDAR technology enabled the acquisition of high-resolution, precise three-dimensional

point cloud data, which was essential for constructing detailed and reliable maps of the deliv-

ery environment. Furthermore, the research utilized Polycam, a free drone photogrammetry

application, to efficiently generate high-quality three-dimensional models from photographs

captured with any iPhone or iPad. This enabled the rapid creation of detailed scans of the

delivery environments using LiDAR technology, as well as the capture of comprehensive

360-degree imagery.

This data collection will predominantly focus on residential areas, as the study is centered

on the last-meter delivery domain. Additionally, a publicly available last-meter outdoor

dataset will be shared with the research community to encourage further exploration and

advancement in this field.

• Hardware: Apple iPad Pro (6th generation) with iPadOS 16.0

• Application: Polycam version 3.5.7
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3.2 Object Detection and Labeling

Accurate object detection and recognition is a critical component in addressing the last-

meter delivery challenge. This is because real-world residential environments present sig-

nificant variability and complexity that autonomous delivery robots must navigate. In

contrast to standardized delivery points like parcel lockers, residential areas feature diverse

doorstep characteristics, such as stairs, plants, and other obstacles. By employing robust

object recognition capabilities, ADRs can accurately identify these environmental features

and adapt their actions accordingly. This ensures precise and reliable package placement,

even in the absence of customer presence.

Following the collection of last-meter delivery data, the subsequent step is to leverage the

Segment Anything Model 2 to segment and classify various elements within the environment,

such as buildings, trees, sidewalks, and parked vehicles. Additionally, this research employs

the Florence-2, an open-vocabulary object detection model, to label the segmented objects

and provide their spatial coordinates, enabling a comprehensive scene analysis of the delivery

environment.

The Florence-2 model exhibits the flexibility of vision-language models employed in open-

vocabulary object detection. These models can recognize a diverse range of objects without

necessitating extensive retraining for specific items yet maintain the ability to be fine-tuned

using customized datasets, unlike conventional approaches like YOLO [33] [47], which would

require training on a custom dataset tailored to the last-meter delivery domain. The training

process for such models involves manually segmenting and labeling numerous objects, which

is a time-intensive endeavor and restricts the models to only the trained objects, thus

reducing their versatility compared to the open-vocabulary capabilities of the Florence-2

model.

This comprehensive scene understanding, achieved through the integration of SAM2 and

Florence-2, will contribute to the development of robust navigation strategies for the quadrupedal

robots as they navigate the diverse and dynamic last-meter delivery setting.
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3.2.1 Segment Anything Model 2 (SAM2)

Figure 3-2: The SAM 2 architecture, Image Source: Ravi et al. [32]

The Segment Anything Model 2 is a foundation model designed to address the challenge

of promptable visual segmentation in images and videos. It is capable of segmenting and

classifying various elements within the environment, such as buildings, trees, sidewalks,

and parked vehicles. The model employs a simple transformer architecture with streaming

memory, enabling real-time video processing. According to the research, SAM 2, trained

on a comprehensive dataset, demonstrates strong performance across a wide range of tasks.

Specifically, in video segmentation, the model exhibits improved accuracy, requiring 3 times

fewer interactions than previous approaches. Furthermore, in image segmentation, SAM

2 is found to be more accurate and 6 times faster than the original Segment Anything

Model [22].
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3.2.2 Florence-2 Open-Vocabulary Object Detection

Figure 3-3: Florence-2 data engine, Image Source: Xiao et al. [51]

Florence-2 is a novel vision foundation model that uses a unified, prompt-based approach

to handle various computer vision and vision-language tasks. It can label objects within

images, provide their coordinates, and describe the spatial relationships between objects

to understand their relative positions and interactions. Florence-2 is designed to take text

prompts as task instructions and generate appropriate results, whether for image captioning,

object detection, grounding, or segmentation.

3.3 Processing Customer Instructions by LLM

The system will leverage large language models to analyze the natural language delivery

instructions provided by customers. This will enable the extraction of key information, such

as the intended delivery location or any specific objects that need to be considered during the

delivery process. To facilitate this, the system will leverage the labeled objects and their

spatial coordinates obtained through scene analysis. Furthermore, the chain-of-thought

prompting technique will be employed to guide the language model in determining the

target delivery coordinates by aligning the customer’s instructions with the understanding

of the delivery environment.
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3.3.1 Chain-of-Tought (CoT) Prompting

The chain-of-thought (CoT) prompting technique enhances the capability of LLMs to engage

in complex reasoning. This approach involves providing the model with a sequence of

intermediate reasoning steps as exemplars, allowing the model to autonomously develop its

own reasoning abilities.

The rationale for employing this technique is that standard LLMs or VLMs alone could

not reliably determine precise delivery coordinates based solely on customer instructions.

By utilizing chain-of-thought prompting in conjunction with examples of detected objects

and their coordinates, the language model is guided to deduce the final optimal target

coordinate, which aligns more closely with the customer’s specific delivery instructions.

Example code demonstrating this technique is provided in Appendix B.

Incorporating the CoT prompting technique within the language model prompting frame-

work can augment the system’s ability to interpret the objects referenced in customer de-

livery instructions and infer the corresponding delivery target. To illustrate the difference,

a side-by-side comparison between a standard input-output prompt and a chain-of-thought

prompt is presented in Figure 3-4, highlighting the example-based approach of the chain-

of-thought prompting method.
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Figure 3-4: Standard Input-Output Prompt v.s. CoT Prompt, Image Source: Wei et al. [49]
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Chapter 4

Experiment Results and Discussion

This thesis presents an experimental framework to validate the proposed methodology for

addressing the last-meter delivery challenge. The experiments are designed to demonstrate

the viability of the system, which leverages Segment Anything Model, open vocabulary

object detection, large language models, and vision-language models to process customer

delivery instructions. The key aspects evaluated include the construction of detailed scene

graphs, the retrieval of objects based on textual queries, and the identification of target

delivery coordinates through chain-of-thought prompting.

Figure 4-1: Experiment Overview
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4.1 Last-Meter Data Collection

The initial experiment focuses on constructing detailed scene graphs utilizing the collected

LiDAR data. This involves capturing high-resolution three-dimensional point cloud data

by equipping an Apple iPad Pro with LiDAR sensors and leveraging the Polycam applica-

tion to efficiently generate high-quality three-dimensional models from the LiDAR-captured

photographs. The last-meter dataset comprises four main categories of data: RGB, NeRF,

geometry, and instance segmentation, collected from three residential places in Cambridge,

Massachusetts.

Figure 4-2: Last-Meter Dataset
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4.2 Last-Meter Scene Analysis

This experiment evaluates the performance of the Segment Anything Model 2 and the

Florence-2 Model in analyzing the collected data. It compares the number of detected

objects and the average Intersection over Union (IoU) between the standalone use of the

Florence-2 Model for object labeling and the combined use of SAM2 and Florence-2. Specif-

ically, the Segment Anything Model 2 is utilized to segment various elements within the

scene, such as buildings, trees, sidewalks, and parked vehicles. Additionally, the Florence-2

model is employed to identify and label specific objects in the scene, as well as their spatial

relationships.

4.2.1 Evaluation Method

To evaluate if the additional information provided by SAM2 leads to a better understand-

ing of the scene, we calculated the average Intersection over Union (IoU) between the

standalone use of the Florence-2 Model for object labeling and the combined use of SAM2

and Florence-2. Additionally, the comparison of the number of objects detected between

the standalone use of the Florence-2 Model and the combined use of SAM2 and Florence-2

was also evaluated.

IoU =
Area of Intersection

Area of Union

• Intersection: This refers to the area of overlap between the predicted bounding box

and the ground truth bounding box which is manually labeled. It is the common area

that both boxes share.

• Union: This is the total area covered by both the predicted and ground truth bounding

boxes combined. It includes the overlapping area plus the areas covered by the boxes

but not in overlap.

• IoU Value: The IoU value ranges from 0 to 1, where 0 means no overlap, and 1 meands

perfect overlap.
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4.2.2 Results

The integrated application of the SAM2 and the Florence-2 Model identified a similar

quantity of objects to the independent use of the Florence-2 Model, with 27 and 26 objects

detected, respectively.

Objects Florence-2 SAM2 + Florence-2

Dorm

door 0.84 1
houseplant 0.77 0
lamp #1 0.83 0.95
lamp #2 0.80 0.98
stairs 0.76 0.84

window #1 0.95 1
window #2 0.90 1
window #3 0.95 1
pillar #1 0 0.98
pillar #2 0 0.90

House #1

door 0.83 0.86
lamp 0.93 0
porch 0.70 0
stairs 0.73 0.92

air conditioner 0.98 0
window #1 0.96 1
window #2 0.72 1
window #3 0.84 0.84
window #4 0.90 1
window #5 0.86 0.93
window #6 0.82 0.84

House #2

door 0 0.98
lamp 0.84 1
porch 0.89 0.97
stairs 0 0.97

pillar #1 0 0
pillar #2 0 0.95

window #1 1 0.91
window #2 0.76 0.81
window #3 1 0.92
window #4 1 1
window #5 1 1

Average IoU 0.705 0.798

Table 4.1: Comparison of IoU between Florence-2 and SAM2 + Florence-2 for various
objects in different locations.
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However, the average IoU increased from 0.705 for the standalone Florence-2 Model to 0.798

for the combined SAM2 and Florence-2 approach. This approximately 10% increase in IoU

is statistically significant, suggesting that the integrated application of the two models

resulted in a demonstrable improvement in the ability to segment and accurately label

objects within the observed scenes. Furthermore, the results indicate that the standalone

approach using the Florence-2 Model identified an air conditioner, which is less pertinent for

last-meter delivery operations. In contrast, the integrated method leveraging both SAM2

and Florence-2 did not detect the air conditioner but successfully identified other objects

more relevant for last-meter delivery, such as doors and stairs. A similar pattern was

observed in house #2 of the dataset, where the combined approach effectively identified the

door and stairs, while the standalone Florence-2 Model approach did not.
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4.3 Target Coordinate Identification by Chain-of-Thought

Prompting

This experiment evaluates the system’s ability to employ LLMs in conjunction with the CoT

prompting technique. The aim is to leverage the coordinates of detected objects, obtained

from the previous experiment, to identify the target delivery location. By incorporating

the CoT approach and providing examples of the detected objects and their corresponding

coordinates, the LLM is guided to deduce the optimal target coordinate, which aligns more

closely with the customer’s specific delivery instructions. Appendix B provides an example

of the CoT approach employed in this experiment.

4.3.1 Evaluation Method

The performance of this experiment was evaluated by calculating the coverage rate of the

predicted bounding boxes, defined as the ratio of the area of overlap between the predicted

bounding box and the manually labeled ground truth area to the total area of the predicted

bounding box.

Coverage Rate =
Area of Overlap

Area of Predicted Bounding Box

• Overlap: This refers to the area of intersection between the predicted bounding box

and the manually labeled ground truth bounding box. It is the common area that

both boxes share.

• Predicted Bounding Box Area: This is the total area of the bounding box predicted

by the model.

• Coverage Rate Value: The coverage rate ranges from 0 to 1, where 0 indicates no

overlap, and 1 indicates that the predicted bounding box fully overlaps the ground

truth area.
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4.3.2 Results

The results demonstrated that both models performed well in scenarios where the relevant

object was clearly detectable, achieving high coverage rates approaching 1. However, when

instructions involved objects not present in the observed environment, both models failed to

accurately identify the correct delivery coordinates, resulting in a coverage rate of 0. This

highlights a key limitation: the models’ dependency on the presence of detectable objects

to accurately determine the target delivery location.

The coverage rates exhibited slight variations between the models, with the GPT-4-o bench-

mark generally achieving higher accuracy compared to the LLaMA 3.1 model. For instance,

GPT-4-o attained a coverage rate of 0.97 for the instruction “Leave at the front door” at

House #1, compared to 0.8 for LLaMA 3.1. These findings suggest that while both models

can effectively interpret straightforward delivery instructions, the precision of the coordinate

identification improves when using the more advanced LLM model.

Overall, these results underscore the effectiveness of CoT prompting technique in guiding

the LLMs to align customer instructions with the detected objects, thereby deducing precise

delivery coordinates. However, the findings also highlight to the need for further enhance-

ments, such as implementing default fallback prompts or leveraging additional cues like

low-cost RFID tags, to address cases where the specified objects are not detected within

the observed scene.

Location Delivery Instruction Ground Truth GPT 4-o Llama 3.1

Dorm Leave on the stair (172, 612, 1278, 958) 1 1
Leave at the front door (489, 275, 753, 565) 1 1
Leave under the mailbox - 0 0

House #1 Leave on the stair (179, 358, 976, 958) 1 0.92
Leave at the front door (583, 312, 673, 518) 0.97 0.8
Leave under the mailbox (465, 252, 110, 100) 0 0

House #2 Leave on the stair (484, 485, 832, 568) 0.82 0.81
Leave at the front door (761, 1053, 277, 1136) 1 0.96
Leave under the mailbox - 0 0

Table 4.2: Ground Truth Coordinates and Coverage Rate Comparison
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Figure 4-3: Coordinate Output from GPT4-o
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4.4 Discussion

The experiments conducted demonstrate that the integrated application of the Segment

Anything Model 2 and the Florence-2 Model exhibits better performance in object detection

and labeling compared to the standalone use of the Florence-2 Model. Additionally, the

GPT-4-o benchmark displayed a higher Intersection over Union value relative to the LLaMA

3.1 benchmark. However, when the object mentioned in the customer’s instruction is not

detected within the scene, neither the GPT-4-o nor the LLaMA 3.1 language models can

accurately identify the appropriate delivery coordinates, as the referenced object is not

present. This issue could potentially be addressed by implementing a series of default

prompts to handle such scenarios where the requested object is not found in the observed

environment.

The conducted experiments show that using the Segment Anything Model 2 and the

Florence-2 Model together performs better in object detection and labeling compared to

using just the Florence-2 Model alone. The increase in accuracy, indicated by the higher av-

erage Intersection over Union, supports the claim that combining advanced models leads to

more reliable detection results, which is important for real-world applications like last-meter

delivery scenarios.

The standalone application of Florence-2 identified an air conditioner in house #1 of the

dataset, which is less relevant for the task of last-meter delivery. In contrast, the integrated

approach utilizing both SAM2 and Florence-2 did not detect the air conditioner, but suc-

cessfully identified other objects more pertinent to last-meter delivery, such as doors and

stairs. A similar pattern was observed in house #2 of the dataset, where the combined

method effectively recognized the door and stairs, while the standalone Florence-2 Model

approach did not. This suggests that the integrated application of the two models leads to

a more targeted and relevant object detection and labeling, which is crucial for improving

the performance of last-meter delivery systems. Furthermore, the potential benefit of fine-

tuning the Florence-2 Model to better recognize specific objects, such as mailboxes, could

further enhance the system’s ability to identify critical elements for last-meter delivery in
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future research iterations.

Additionally, the GPT-4-o benchmark displayed a higher Intersection over Union value

relative to the LLaMA 3.1 benchmark. However, when the object mentioned in the cus-

tomer’s instruction is not detected within the scene, neither the GPT-4-o nor the LLaMA

3.1 language models can accurately identify the appropriate delivery coordinates, as the

referenced object is not present. This challenge could potentially be addressed through the

implementation of a decision-making framework that dynamically adapts to the available

environmental cues. By employing a decision tree approach, the system can leverage the

information gathered from the scene analysis to determine the most appropriate course

of action. Furthermore, a set of default prompts can be developed to handle scenarios

where the specific object referenced in the customer’s instructions is not detected within

the observed environment. In such cases, the system could send a follow-up message to the

customer, informing them that the requested object was not identified and, therefore, the

delivery instructions could not be fully executed. This adaptive approach would enhance

the system’s ability to navigate complex real-world situations and provide a more reliable

and responsive last-meter delivery service. Moreover, exploring the integration of low-cost

wireless RFID tags that customers can easily install at their doorsteps could assist in more

accurately locating the target delivery destination during the last-meter stage of the delivery

process.
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Chapter 5

Conclusion

This research outlines the implementation and evaluation of the Segment Anything Model

2, Florence-2, and large language models for the purpose of identifying delivery destina-

tions based on customer instructions. The study develops a methodology to bridge the gap

between last-mile and last-meter delivery operations, and assesses the viability of the pro-

posed approach for future last-meter delivery applications in outdoor environments. The

findings indicate that the utilization of SAM2, Florence-2, and LLMs has the potential to

enhance last-meter delivery by providing an efficient solution for navigating complex out-

door environments and delivering packages to their intended recipients with minimal human

intervention.

5.1 Contribution

This thesis makes several contributions to the field of last-meter delivery:

• Last-Meter Dataset: Introduced the first last-meter dataset, incorporating high-

resolution three-dimensional LiDAR data, detailed geometric information, segmented

objects, and labeled elements within the environment.
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• Feasibility Study: Conducted a thorough evaluation of Segment Anything Model,

Florence-2, and LLMs for outdoor last-meter delivery applications, demonstrating its

potential to accomplish the last-meter delivery.

• Developed a methodology to bridge the gap between last-mile and last-meter delivery

operations: Ultimately, this thesis lays the groundwork for future research and devel-

opment in the emerging field of autonomous last-meter delivery, which holds potential

to address the growing challenges of urban logistics and transportation.

5.2 Limitation

While the results are promising, this research also encountered several limitations:

• Data Collection: The quality and completeness of LiDAR data collected under

various weather conditions and environments can affect the accuracy of scene repre-

sentation. Additionally, obtaining permission from property owners to scan and make

data open-source limited the scope of the dataset, as securing such permissions can

be time-consuming and challenging.

• Model Accuracy: Limitations in the accuracy of 3D object detection, semantic

segmentation, and spatial reasoning models can impact the overall performance of the

delivery system.

• Computational Demands: The proposed method requires significant computa-

tional resources for real-time scene analysis and navigation, which may limit its scal-

ability and practical deployment in resource-constrained settings.

• Regulatory Challenges: Legal and regulatory constraints related to the deploy-

ment of autonomous delivery robots in public spaces pose additional challenges to

widespread adoption.
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5.3 Potential

The potential of LLM and VLM in revolutionizing last-meter delivery is vast:

• Last-meter delivery is a critical and unsolved challenge in the broader context of urban

logistics, as it involves navigating complex outdoor environments to reach the final

destination.

• Enhanced Autonomy: By providing detailed 3D scene representations and rela-

tional information, LLM can significantly enhance the autonomy of delivery robots,

reducing the need for human intervention.

• Broader Applications: Beyond last-meter delivery, VLM’s scene representation

and dynamic updating capabilities have the potential to be applied in various other

domains, such as search and rescue operations, autonomous driving, and smart city

infrastructure management.

• Improved Customer Experience: The ability to accurately map customer instruc-

tions to delivery targets can improve the reliability and efficiency of delivery services,

leading to a better customer experience.
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5.4 Future Work

Future research may involve incorporating temporal dynamics into the model and preloading

local maps to address out-of-sight issues, as well as evaluating the system’s performance in

less structured and more challenging environments to further enhance its reliability and

applicability. Fine-tuning Florence-2 for specific objects, such as mailboxes, could also be

a viable approach for future research iterations and would likely improve recognition rates

for such critical items.

Additionally, exploring the integration of VLM with emerging technologies, such as 5G

communication networks and advanced sensor arrays, could potentially improve its robust-

ness and scalability. We can consider integrating with RFID localization to enable more

robust last-meter delivery and new applications. A recent study [9] shows the use of robotic

systems to achieve efficient and accurate localization of RFID tags, which enables new pos-

sibilities in robot delivery services. Expanding the dataset to encompass a wider range of

environments and conditions will also be crucial for enhancing the generalizability of the

proposed method.

Furthermore, compared to wheeled robots, quadrupedal and humanoid robots may be better

equipped to navigate the diverse terrain and obstacles encountered during the last-meter

delivery scenario. Consequently, another area for future work could be the utilization of

quadrupeds to complete the final phase of the delivery workflow.
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Appendix A

Object Detection Output

Comparison of Object Detection Output

Subject Dorm

Objects Florence2 SAM2 + Florence2

door 0.84 1

houseplant 0.77 0

lamp #1 0.83 0.95

lamp #2 0.80 0.98

stairs 0.76 0.84

window #1 0.95 1

window #2 0.90 1

window #3 0.95 1

pillar #1 0 0.98

pillar #2 0 0.90

Table A.1: Comparison of IoU between Florence-2 and SAM2 + Florence-2 at the dorm of
the last-meter dataset
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Comparison of Object Detection Output

Subject House #1

Objects Florence2 SAM2 + Florence2

door 0.83 0.86

lamp 0.93 0

porch 0.70 0

stairs 0.73 0.92

air conditioner 0.98 0

window #1 0.96 1

window #2 0.72 1

window #3 0.84 0.84

window #4 0.90 1

window #5 0.86 0.93

window #6 0.82 0.84

Table A.2: Comparison of IoU between Florence-2 and SAM2 + Florence-2 at the house#1
of the last-meter dataset

Comparison of Object Detection Output

Subject House #2

Objects Florence2 SAM2 + Florence2

door 0 0.98

lamp 0.84 1

porch 0.89 0.97

stairs 0 0.97

pillar #1 0 0

pillar #2 0 0.95

window #1 1 0.91

window #2 0.76 0.81

window #3 1 0.92

window #4 1 1

window #5 1 1

Table A.3: Comparison of IoU between Florence-2 and SAM2 + Florence-2 at the house#2
of the last-meter dataset
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Appendix B

Code of LLM Chain-of-Though

1 from openai import OpenAI

2 client = OpenAI ()

3

4

5 system_message = {

6 "role": "system",

7 "content": ’’’You ’re a help assistant of package delivery. When given a

text instruction like "put the package infront of the door", you

can infer where is the most possible coordinates of the target area

based on the reference objects and your position.

8 Example Input:

9 {

10 " instruction ": "Leave the package at the front door.",

11 " reference objects ": {

12 Door: [3 ,0 ,1.5] ,

13 Stairs :[1.5 ,0 ,0.75] ,

14 Mailbox :[3 ,0.5 ,1.5]

15 },

16 "your position ": [2 ,0 ,1.5]

17 }

18 Example Output:

19 {

20 Task: allocate the coordinates in font the door.

21 Observation : the door is at [3 ,0 ,1.5] , my position is at [2 ,0 ,1.5]

22 Though: the door is in front of me , the area in front of the door

should be somewhere between my position and the door , but closer

to the door.

49



23 Answer: {2.8 ,0 ,1.5}

24 }

25 },

26 ’’’

27 },

28

29 user_message = {

30 "role": "user",

31 "content": ’’’{

32 " instruction ": "Leave the package under the mailbox ."

33 " reference objects ": {

34 Door: [3 ,0 ,1.5] ,

35 Mailbox :[3 ,0.5 ,1.5]

36 },

37 "your position ": [2 ,0 ,1.5]

38 }

39 ’’’

40 }

41

42 completion = client.chat.completions.create(

43 model="gpt -4o-mini",

44 messages = [

45 {"role": "system", "content": ’’’You ’re a help assistant of package

delivery. When given a text instruction like "put the package

infront of the door", you can infer where is the most possible

coordinates of the target area based on the reference objects and

your position.

46 Example Input:

47 {

48 " instruction ": "Leave the package at the front door.",

49 " reference objects ": {

50 Door: [3 ,0 ,1.5] ,

51 Stairs :[1.5 ,0 ,0.75] ,

52 Mailbox :[3 ,0.5 ,1.5]

53 },

54 "your position ": [2 ,0 ,1.5]

55 }

56 Example Output:

57 {

58 Task: allocate the coordinates in font the door.

59 Observation : the door is at [3 ,0 ,1.5] , my position is at [2 ,0 ,1.5]

60 Though: the door is in front of me , the area in front of the door

should be somewhere between my position and the door , but closer
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to the door.

61 Answer: {2.8 ,0 ,1.5}

62 }

63 },

64 ’’’},

65 {"role": "user", "content": ’’’{

66 " instruction ": "Leave the package under the mailbox ."

67 " reference objects ": {

68 Door: [3 ,0 ,1.5] ,

69 Mailbox :[3 ,0.5 ,1.5]

70 },

71 "your position ": [2 ,0 ,1.5]

72 }

73 ’’’}

74 ]

75 )

76

77 print(completion.choices [0]. message)

Listing B.1: Chain of Thought
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Skowrońska. Sustainable last mile delivery on e-commerce market in cities from the

perspective of various stakeholders. literature review. Sustainable Cities and Society,

71:102984, 2021.

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr

Dollár, and Ross Girshick. Segment anything, 2023.

[23] S Santosh Kumar, D Hemanth, S Dwneeth, K Dilip, and A Divyatej. Automated

package delivery accepting system-smart freight box. In 2019 4th International Con-

ference on Recent Trends on Electronics, Information, Communication & Technology

(RTEICT), pages 1510–1514. IEEE, 2019.

[24] Bai Li, Shaoshan Liu, Jie Tang, Jean-Luc Gaudiot, L. Zhang, and Qi Kong. Au-

tonomous last-mile delivery vehicles in complex traffic environments. IEEE Computer

Society, 53(11):26–35, 11 2020.

[25] Yongjian Li, Yan Chen, Gaicong Guo, Hui-WenWu, and Yuan Zhao. Integrated routing

for a vehicle-robot pickup and delivery system with time constraints, 01 2022.

[26] Jacob P. Macdonald, Rohit Mallick, Allan B. Wollaber, Jaime D. Peña, Nathan Mc-

Neese, and Ho Chit Siu. Language, camera, autonomy! prompt-engineered robot

54



control for rapidly evolving deployment. In Companion of the 2024 ACM/IEEE Inter-

national Conference on Human-Robot Interaction, HRI ’24, page 717–721, New York,

NY, USA, 2024. Association for Computing Machinery.

[27] Blake Nazario-Casey, Harris Newsteder, and O. Patrick Kreidl. Algorithmic decision

making for robot navigation in unknown environments. 03 2017.

[28] Thanat Nonthaputha, Montree Kumngern, Jirapat Phookwantong, and Sompong

Keawwang. Arduino based smart box for receiving parcel posts. In 2020 18th In-

ternational Conference on ICT and Knowledge Engineering (ICT&KE), pages 1–5.

IEEE, 2020.

[29] Jing Zhi Ooi and Chye Cheah Tan. Smart modular parcel locker system using internet

of things (iot). In 2021 IEEE 11th International Conference on System Engineering

and Technology (ICSET), pages 66–71, 2021.

[30] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko

Suenderhauf. Sayplan: Grounding large language models using 3d scene graphs for

scalable task planning. In 7th Annual Conference on Robot Learning, 2023.

[31] Luigi Ranieri, Salvatore Digiesi, Bartolomeo Silvestri, and Michele Roccotelli. A review

of last mile logistics innovations in an externalities cost reduction vision. Sustainability,

10(3), 2018.

[32] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya K. Ryali,
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