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Abstract

The rational design of materials with tightly controlled properties is crucial to ad-
dressing future challenges in energy, electronics and catalysis. While improvements
in computing power have made simulation with density functional theory (DFT) an
essential tool in screening new materials, it remains too costly to address truly high-
dimensional design spaces. This problem is especially acute for open-shell transition
metal (TM) complexes, which are of central importance in homogeneous catalysis
and have applications in solar energy and electronics. The space of TM complexes
is enormous and poorly characterized, while DFT calculations for these systems are
expensive and sensitive to method choice, making it impractical to simulate large
numbers of candidates indiscriminately. This makes the search for TM complexes
with desired properties a formidable challenge. This thesis addresses this challenge by
formulating strategies for materials design that exploit insights from data-driven sur-
rogate models together with first-principles simulations. A framework for data-driven
inference of the quantum properties of TM complexes is developed, using artificial
neural networks (ANNs) and graph-based molecular representations that facilitate
rapid screening while retaining physical meaning such that chemical insights can be
extracted. Multiple sources of uncertainty that would limit the application of these
methods to TM complexes are addressed. Surrogate models are trained to estimate
system-specific DFT uncertainty by including data from DFT calculations with dif-
ferent fractions of exact exchange, and a novel uncertainty metric for data-driven
discovery is proposed that quantifies the ability of ANNs to generalize to unseen
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data based on similarity in the learned latent space. This metric is shown to of-
fer superior performance over existing methods. The application of these methods
to virtual design problems is demonstrated with two case studies: 1) identifying
spin crossover complexes from a design space of thousands using an evolutionary
strategy and 2) probabilistic, multiobjective optimization of redox couples over a
3 million-complex space. The utility of this surrogate-assisted approach is evident
and orders-of-magnitude accelerations are obtained over screening purely with DFT.
Such strategies open the door for in silico design of some of the most challenging
molecular systems at a far greater scale than ever before.

Thesis Supervisor: Heather J. Kulik
Title: Department of Chemical Engineering

Thesis Supervisor: Youssef Marzouk
Title: Department of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Rational design of transition metal complexes

The rational design of functional materials at a molecular level is a central objective

in chemistry and materials science1–3. Serious challenges in sustainable energy4,5,

chemical process design6, molecular electronics7 and drug discovery3 require the

design of molecular systems with exotic and tightly controlled properties that are

fundamentally quantum-mechanical in nature8, for example excitation energies for

photochemical systems9 or reaction barriers in catalysis10,11.

The vast nature of chemical space makes computational tools essential for screen-

ing for novel molecules and materials with targeted properties12, from the design

of solvents13, light emitting diodes (LEDs)14, dye sensitizers15–17, polymers18, redox

couples19, catalysis20, and nonlinear optical materials21. Many commercial drugs,

dating back to the 1980s have at least benefited from computational design3. The

potential for designing novel molecules with targeted properties with computational

chemistry is enormous.
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Despite increases in computational power to simulate new compounds, the diversity

of chemical space and cost of these calculations means that the fraction of possible

designs that can be probed directly by these methods is vanishingly small22. To

address these difficulties, chemists have turned to data-driven surrogate models to

help interpolate between, and extrapolate from, computational and experimental ob-

servations. While this idea is not new - concern about hype over neural networks

in chemistry dates back thirty years23 - there has been a contemporary boon in the

development of data-driven models of unprecedented complexity and accuracy24–29,

exploiting recent developments in the field of machine learning30 and the availability

of ever-larger datasets31–33. These models are increasingly being utilized to supple-

ment virtual screening and identify exceptional novel materials in silico which can be

realized synthetically, including light emitting materials34, metallic glasses35, singlet

fission complexes36 and magnetic materials37. The future of molecular design and

discovery is expected increasingly to leverage both physics-based and data-driven

methods to guide experiments38.

This thesis concerns the combination of first-principles high throughput virtual screen-

ing (HTVS) and data-driven modeling to a challenging design problem: open-shell

transition metal complexes. These transition metal complexes, consisting of a set

of ligands coordinating to a one or more of the elements in the periodic table that

have partially filled 𝑑 shells (Figure 1-1), are of great practical importance. Tran-

sition metal complexes are ubiquitous in homogeneous/biomimetic39–43, where they

show promise for achieving some of the most challenging and industrially-relevant

reactions including selective partial oxidation of hydrocarbons44–46 and reduction of

CO2
47,48.
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A B C

Figure 1-1: Some noteworthy examples of octahedral transition metal complexes: A:
Fe[(O)(TMC)(NCCH3)] (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane),
a reactive intermediate step in catalytic cycle possesing a iron(IV)=O motiety for olefin
epoxidation46; B: Fe[(H2B(pz)2)2(bipy)] (bipy = 2,2-bipyridine, H2B(pz)2 = dihydrobis(1-
pyrazolyl)borate), a spin crossover complex49; C: Cr[(acac)3] (acac = acetylacetonate), a
redox couple for non-aqueous redox flow batteries50. The metal centers are shown as large
spheres (orange = Fe, blue = Cr), while other atoms are drawn as sticks (gray = C, red =
O, blue = N, pink = B, white =H).

The open-shell 3d electron structure of mid-row transition metals allows them to

access different spin states51, and complexes with finely-tuned spin state orderings

have potential applications as sensors52,53, electronics7, thermochromatic materials54

and dye sensitizers16,55,56. In these applications, the energy difference between the

high- and low-spin states plays a key role in determining material properties, for

example determining the frequency of light that can be absorbed or emitted. Spin

state ordering is essential for understanding reactions catalyzed by open-shell com-

plexes57,58 as the spin state can dramatically alter the free energy landscape of the

reaction. Spin crossover complexes (SCOs), transition metal complexes that exhibit

spin bistability52, are of particular interest for rational design49,53,59–61. These mate-
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rials possess high- and low-spin states are close enough in energy that entropic effects

can alter the spin state ordering in response to changing temperature, mechanical

strain62 or upon absorbing light, creating functional, single-molecule devices63.

Another important application of transition metal complexes is in redox flow bat-

teriess (RFBs), which are a promising grid-level energy storage technology64,65 that

decouples power delivery and cell capacity by holding the redox active species in a

liquid solution which is stored separately and pumped to a cell when required. RFBs

are appealing for high capacity and low cost, making them ideal for fixed storage

energy applications in support of renewable energy66,67. Transition metal complexes

have been used as redox couples in RFBs for decades68 due their redox stability and

low membrane permeation propensity69. By tuning their ligand field70,71, important

characteristics, such as cell potential and solubility, can be manipulated to create

more efficient non-aqueous flow batteries50.

In all cases, the promise of molecular transition metal chemistry derives from the

ability to manipulate these electronic properties precisely through control of the lig-

and field. However, since the space of conceivable ligands is practically infinite72,

and matching ligand fields and metal centers is a fundamentally combinatorial prob-

lem, the challenge of designing novel transition metal complexes is considerable.

This is compounded by the general lack of understanding and intuition compared to

organic chemistry51,58, the complicated electronic structure of these materials73,74,

and the lack of large databases12,31,75, open source tools76,77 and well-established

machine learning (ML) approaches24,27,78–81 that support the design of organic and

bulk materials. Evidently, there is a need to develop new methods that address these

challenges and facilitate the de novo design of these systems. This thesis will address

these challenges.
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1.2 Thesis overview

This thesis develops a framework for first-principles design of transition metal com-

plexes with targeted properties that integrates data-driven surrogate modeling to

accelerate, guide and understand density functional theory (DFT) calculations. The

thesis is structured as follows:

� Chapter 2 reviews the theory behind first-principles screening, how it can be

bypassed by machine learning and how these methods have been combined to

solve to chemical design problems in other application domains such as small

organic molecules and bulk crystalline systems.

� Chapter 3 presents the first data-driven surrogate models for the spin-dependent

quantum chemical properties of open-shell transition metal complexes, uniquely

addressing the idiosyncratic challenges of this region of chemical space. Heuris-

tic descriptors based on chemical knowledge are used to represent complexes

and demonstrated to have good correlation with quantum mechanical (QM)

outcomes. The capacity of these models to extrapolate to new data is probed

with a test of very dissimilar complexes and this provides important insights

that lay the groundwork for the handling of model uncertainty in later chapters.

� Chapter 4 develops novel representations for transition metal complexes and

proposes a new family of descriptors based on molecular graphs that can en-

code flexibility metal-local and global atomic information. These representa-

tions lead to predictive models with increased accuracy, but simultaneously

retain interpretability. Feature selection is performed to identify the most im-

portant features for different outcomes, providing to physical insight into the

first-principles data used to parameterize the models. In particular, by analysis
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of the features correlated with different QM outcomes, specific length-scales of

atomic influence on the metal center can be detected, suggesting new orthog-

onal design strategies.

� Chapter 5 applies the developed surrogate models to discover new SCOs posed

on a space of a few thousand transition metal complexes. An artificial neu-

ral network (ANN) surrogate model is equipped with a geometric measure

of extrapolative uncertainty and combined with a newly-developed, diversity-

seeking, evolutionary design strategy to identify lead candidates to simulate

with DFT. A set of these leads are simulated using DFT and the majority are

verified as having the target DFT-level spin state properties, yielding DFT-level

SCOs in a fraction of the time required for conventional HTVS. The impact

of the proposed uncertainty-constrained optimization on the optimization pro-

cess is explored and shown to provide increased diversity relative to the naïve

approach.

� Chapter 6 examines uncertainty quantification for ANN models for chemi-

cal discovery and develops a novel method for assigning confidence based on

geometric extrapolation using the learned nonlinear transformations in the

ANN latent space. This metric provides as-good-or-better performance com-

pared to existing ensembles methods without additional overheads inherent in

committee-based uncertainty. A probabilistic error model based on this metric

is introduced and shown to provide superior quantitative error estimation on

both transition metal complexes and traditional organic benchmarks, as well

as allowing for efficient active learning.

� Chapter 7 exploits the developed machine learning framework to tackle a mul-
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tiobjective design problem in the space of RFBs, identifying transition metal

complexes with suitable redox and solubility properties from a space of nearly 3

million candidates. A combinatorial strategy to construct potential transition

metal complexes is devised and used to generate a diverse and densely-sampled

chemical space. A two-dimensional Bayesian optimization strategy based on

expected improvement (EI) is implemented to balance exploration and exploita-

tion in this design space using a multitask ANN surrogate model, coupled with

an uncertainty model on based exploration in the learned latent space. The

algorithm is able to identify and iteratively refine a Pareto frontier of candi-

date complexes using a few hundred DFT simulations that are substantially

enriched relative to random sampling.

� Chapter 8 provides conclusions on the research presented in the previous chap-

ters and discuses how the developed methods can be applied to other important

areas such as catalysis.
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Chapter 2

Background

2.1 First-principles virtual screening

2.1.1 Overview

Experimental characterization of materials is generally expensive, time consuming

and requires expert knowledge. While advances in automated, high throughput ex-

perimental setups82–84, possibly assisted by data-driven methods85,86, show great

promise for testing large numbers of candidates5, for example drugs3,87, catalysts88

or solid materials89; these approaches are inherently restricted to certain chemical

regimes due to the range of reagents and synthesis conditions that can be automated.

The practically infinite variety of possible candidates, 𝒪 (1060) organic molecules

alone90, guarantee that we will only ever access a tiny fraction of chemical space

synthetically. In light of these challenges, high throughput virtual screening (HTVS)

of materials with computers has emerged as a critical paradigm5,8,12,91, complement-

ing experimental investigations while being far less limited with respect to the types

and numbers of systems that can be studied.
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Techniques of computational chemistry have been instrumental in developing under-

standing of complex processes occurring on length- and time-scales that are difficult

to access, for example catalysis92, electrochemistry93, proteins and enzymes94,95,

cellular processes96, batteries97 and solar devices15,98. However, the ability to dis-

cover new materials ‘from scratch’ using computational techniques is a fairly recent

development99–101. Increases in computational resources along with more efficient al-

gorithms and methods, including GPU-accelerated computing102–106, have facilitated

the use accurate quantum methods for screening of large numbers of materials on

a scale that was previously unobtainable10,107, and improved understanding of the

accuracy of these methods relative to experimental measurements has allowed even

complex phenomena such as catalysis to be screened with useful fidelity6.

Large-scale HTVS efforts have so far been mainly applied to bulk crystalline inor-

ganic materials, with prominent examples being the Materials Project108, which in-

cludes computational properties of over 120k inorganic crystals and 500k nanoporous

materials, the Open Quantum Materials Database (OQMD)12 which includes 300k

quantum simulations of periodic systems, the AFLOW library75 consisting of 3M

crystal structures with 500k calculated properties, or organic chemistry as in the

Harvard Clean energy project98,109, consisting of density functional theory (DFT)

calculations for over 2 million molecules for solar cell applications. The exhaustive

screening of thousands of candidates at a quantum mechanical level has lead to the

discovery of real materials with exotic electronic properties, for example singlet fis-

sion materials36 (with applications in photovolatic materials) or metal carbides with

exceptional hardness110. Importantly, we draw a distinction between these exhaus-

tive simulations of a large number of candidates (‘pure’ HTVS) and the ideas of

rational design discussed in Section 2.3, where complexes are selectively simulated.

One important question in any simulation of a chemical system is the choice of
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method, which relates a chosen chemical structure (a molecule for example) to a prop-

erty of interest (energy, redox potential, affinity for given protein target etc). Differ-

ent methods can be classified by the degree to which they approximate fundamental

physics with empirical parameters. On the one end of the spectrum, purely-empirical

models, such as quantitative structure–activity relationships (QSARs) or quantita-

tive structure–property relationships (QSPRs)111,112, group-additivity113, fragmen-

tation methods114,115 or the myriad of machine learned models that have been devel-

oped (vide infra), make no specific recourse to physics and rely on being calibrated

from or fit to existing data, which makes them cheap to compute for a large number

of inputs but fundamentally limits their transferability to systems unlike their train-

ing data.

While even the simplest quantum method remain more expensive than classical New-

tonian methods116,117 (such as force fields118–120), they offer an unparalleled ability

to generalize to new systems, making these ab initio methods incredibly powerful

for HTVS. In addition, many important applications, such as catalyst discovery6,101,

discovering new reactions100, spintronics7 and photovolatic systems16 involve the

electrons explicitly and thus require quantum treatment.

According to (non-relativistic) quantum mechanics, all of the observable properties of

a system can be obtained from its wavefunction121, Ψ, which, for the ground state of

an atomistic system, in turn obeys the (time-independent) Schrödinger equation122:

𝐻Ψ = 𝐸Ψ

Here, 𝐻 is the Hamiltonian and 𝐸 is the energy of the system in state Ψ. Methods

that approximate solutions to the Schrödinger equation are termed ab initio methods,

since they make relatively few assumptions and have correspondingly few parame-
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ters. Therefore, they are applicable to a wide variety of systems, without the need

for case-by-case calibration. These methods typically employ the Born–Oppenheimer

approximation123, meaning that electrons are treated quantum-mechanically and nu-

clei are treated classically121. However, the solution of the Schrödinger equation for

a multi-electron system remains challenging and it must be solved numerically, re-

quiring approximations. The number and nature of approximations determine the

accuracy-cost trade off of the method (Figure 2-1).

co
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)
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semiempirical

𝒪(𝑁) DFT

𝒪(𝑁3)

MP2

𝒪(𝑁5)
CCSD

𝒪(𝑁6)
CCSD(T)

𝒪(𝑁7) full CI

Figure 2-1: Different quantum chemistry methods by formal scaling (in terms of the number
of basis functions, 𝑁) and nominal accuracy. DFT = density functional theory, CCSD =
coupled cluster with singles and doubles, CCSD(T) = coupled cluster with singles and
doubles with perturbative triples, MP2 = Møller-Plesset perturbation theory, order 2, CI
= configuration interaction. Based on Ref.124.

These techniques range from semiempirical methods125–127, which attempt to use

parametric simplifications to the full Hamiltonian128 (and hence are not truly ab

initio), through mainstay methods such as DFT, which are affordable enough to
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make quantum simulations of hundreds of atoms routine, to methods which address

electron correlation explicitly122, including coupled-cluster models129–131, configu-

ration interaction132,133 and Möller-Plesset perturbation theory134,135. While these

methods can match experimental accuracy136, the costs are severe – for example,

coupled-cluster models* formally scale as 𝒪 (𝑁7) (c.f. ∼ 𝒪 (𝑁3) for DFT), where 𝑁

is the number of basis functions74, and to screen databases of thousands of species

using these methods would take decades137.

2.1.2 Density functional theory

DFT is the most popular91 electronic structure method with a good compromise be-

tween computational cost and useful accuracy91,138, resulting in the 1998 Nobel prize

in chemistry, and generating in excess of 10k publications per yer138. The fundamen-

tal idea behind DFT is to avoid working with the high-dimensional wavefunction

and instead work with the electronic density (the amplitude of the wavefunction,

𝜌 ∝
∫︀
Ψ*Ψ). Hohenberg and Kohn139 proved the one-to-one correspondence of the

ground state electron density, external potential and wavefunction by the existence�

of a universal density functional (𝐸 [𝜌]), which means it is possible to evaluate the

energy of a system in terms of either the wavefunction or the electron density:

𝐸 [Ψ] ⇐⇒ 𝐸 [𝜌]

This direct formulation is still in use as ‘orbital-free’ DFT, but is complicated by

the inability to express the kinetic energy contribution analytically in terms of elec-

tron density, requiring empirical approximations141–143. Instead, Kohn and Sham144

*with single and double excitations and perturbative treatment of triple excitations
�subject to some weak representability restrictions140
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reformulated the electron density in terms of the orbitals of a system of fictitious,

non-interacting particles which nonetheless share the same total density145, Ψ𝐾𝑆.

Since this fictitious system shares the same density as the original system, it is ‘as

good’ as the original system:

Ψ =⇒ 𝜌 ⇐= Ψ𝐾𝑆

=⇒ =⇒ =⇒

𝐸 [Ψ] = 𝐸 [𝜌] = 𝐸 [Ψ𝐾𝑆]

The existence of such an equivalent system is theoretically guaranteed139,140 for some

external potential, 𝐸𝑥𝑐 that accounts for the differences between the interacting real

system and this non-interacting, Kohn-Sham system. The difference can be broken

down into contributions from correlation and exchange terms, giving rise to the

exchange-correlation functional. It is this term that is not known analytically, and

therefore this is the only approximation necessary is describe a real system in the

Kohn-Sham framework138. The re-expression of the problem as a non-interacting

system of electrons acting under a modified potential is the key to practical Kohn-

Sham DFT, resulting in a method that formally scales as 𝒪(𝑁3), and allowing it to

benefit from the well-developed computational methods for finding the ground state

wavefunctions of such system of non-interacting electrons140,145: the same machinery

used to solve the Hartree-Fock problem via the self-consistent field method122 for

molecular and periodic systems, with the addition of the parameterized exchange-

correlation potential added in.

Many different methods for parameterizing this functional have been proposed, and

are sometimes grouped by complexity (and nominally accuracy) into a Jacob’s lad-

38



der146. The simplest are termed local density approximations (LDAs), which depend

only on the local density, 𝜌, and are parameterized to reproduce the correct behavior

for the asymptotic case of a uniform electron gas147–149. In practice, this is a strong

approximation that makes LDAs most applicable to bulk metallic systems where the

density changes slowly146, but not sufficiently accurate in the presence of strong local

variations, such as those characteristic of molecular orbitals150. In order to address

these issues, generalized gradient approximations (GGAs) such as BLYP146,151,152

or PBE146 include an explicit dependence on the gradient of the density153, ∇2𝜌.

This improves upon the description of molecular systems146, with up to an order

of magnitude reduction of error compared to LDAs for atomization benchmarks91.

Meta-GGAs are a further development in this line that incorporate information from

the second derivative154 of the density (i.e. the Laplacian, Δ𝜌).

The most important class of functionals from the perspective of this thesis are (global)

hybrid-GGA functionals, which use a linear combination of the exchange functional

from a GGA and the so-called exact exchange contribution from the Hartree-Fock

method. This is a judicious choice because the Hartree-Fock method tends to over-

localize electron density (relative to more accurate methods), while the GGAs (or

LDAs) will tend to over-delocalize the density155. A hybrid which lies between these

two can therefore be substantially more accurate than either method alone. A pro-

totypical hybrid GGA exchange functional might be expressed as156:

𝐸hybrid
𝑥 = 𝐸GGA

𝑥 + 𝛼
(︀
𝐸exact

𝑥 − 𝐸GGA
𝑥

)︀
where 𝐸exact

𝑥 is the exchange term based on Hartree-Fock and 𝛼 ∈ (0, 1) is the mixing

fraction. The hybrid functional B3LYP152,157,158 (based on BLYP) uses 𝛼 = 0.20,

determined empirically, while PBE0159,160 (based on PBE) uses 25%, derived theoret-
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ically. Hybrid-GGAs have shown improvement in accuracy on diverse systems91,161

including transition metal complexes162, leading to their popularity138 and motivat-

ing their use in this thesis. Another type of hybrid functional, called range-separated

hybrids, applies the exact exchange correction over specific length-scales only, either

to improve long-range interactions163–165 or to reduce the computational overhead of

evaluating the exact exchange component in periodic systems166,167.

In spite of its popularity, DFT suffers from issues surrounding functional choice138,168

and simple functionals are known to have systematic deficiencies. Some major dif-

ficulties faced by hybrid-GGA level DFT include the underprediction of reaction

barriers, band gaps and charge transfer energies136,155, as well as poor descriptions of

weak, non-covalent interactions138,168 (e.g. dispersion, which can be addressed with

post-facto empirical corrections169–171).

2.1.3 Challenges for transition metal chemistry

Unfortunately, open-shell transition metal complexes are very challenging systems

to study with electronic structure methods74 for several reasons. At the most ba-

sic level, transition metals are heavier than main group organic elements and hence

have more electrons and require either effective core potentials172 or simply more

basis functions. Transition metal complexes are also typically larger molecules – the

largest non-trivial octahedral transition metal complex (for example Fe(III)[(CO)6])

has thirteen heavy (non-H) atoms, compared to large databases of DFT calculations

on organic molecules31,32, which typically contain molecules with < 10 heavy atoms.

The partially occupied d orbitals of mid-row transition metal complexes can be pop-

ulated in multiple, non-equivalent ways, distinguished by spin state. For octahedral

complexes such as the Fe(III)[(CO)6] example, the fivefold degeneracy of the iron
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3𝑑 orbitals is broken by differing overlap with the orbitals of the ligands, resulting

in splitting the orbitals into eg and t2g sets with an energy gap that depends on

the nature of the ligand field (Figure 2-2). A metal with five 3𝑑 electrons such as

Fe(III) may exist in a high spin configuration with unpaired electrons populating the

eg set, or in low spin state with the eg set empty (or in intermediate states between

these two extremes). The energetic difference between these states is termed the

spin splitting energy, Δ𝐸H−L (Figure 2-2), and will be a key prediction target in this

thesis (particularly Chapters 3 and 5). Accurate knowledge of the relative energetics

between these different states is of great importance as the spin state can dramati-

cally the geometric51, magnetic173, electronic52–54,63 and catalytic properties57,58 of

the transition metal complex.

t2g

eg

t2g

eg

high spin (H)

low spin (L)

Δ𝐸H−L

Figure 2-2: An octahedral Fe(III)[(CO)6] complex (left) and two possible spin states (right),
showing the d-orbital splitting into t2g and eg sets with either high- (red) or low-spin (blue)
occupations of the five 3d electrons indicated with barbed arrows. The spin splitting energy,
Δ𝐸H−L, is the difference in energy between these states.
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This ambiguity in ground spin state typically motivates studying multiple spin states

simultaneously, driving up the computational cost of simulation, particularly for

HTVS. Spin is a fundamental quantum mechanical property and hence computa-

tional prediction of the spin preferences of a given compound requires first principles

simulation. In addition, transition metal complexes may exist in multiple different

oxidation states (i.e. number of d electrons), which adds and additional complexity

to screening efforts.

Beyond questions of size, oxidation state and spin, inorganic chemistry lags behind

the open-source infrastructure that facilitates HTVS for organic and periodic systems

(Figure 2-3). Computational screening in organic chemistry benefits from mature,

feature-rich, open-source toolboxes such as RDKit76 and OpenBabel77, compact and

efficient representations such as SMILES strings174, accurate and broadly-applicable

classical methods175 (i.e. force fields), freely-accessible databases of millions poten-

tial candidates such as ChEMBL176 or ZINC177, and well-defined notions of chemical

similarity, for example the Tanimoto similarity178. For periodic systems, the Atom

Simulation Environment179, pymatgen and AFLOW75/OQMD12 provide some sim-

ilar capacity. Machine learning on organic chemistry has benefited from large quan-

tum chemical data sets that have been assembled specifically to facilitate data-driven

modeling, such as QM931, including multiple DFT-derived properties for 130k small

orangic molecules, or the ANI-1 databases32, consisting of 20 million off-equilibrium

DFT energy calculations on small organic molecules.
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Figure 2-3: Differences between HTVS in organic (top) and inorganic chemistry (bottom).
From left to right: 3D structure generation, applicable simulation methods, databases and
concepts of molecular similarity. Reproduced from Ref.180.

By contrast, many of these advances are not applicable to transition metal com-

plexes181: what few force fields are applicable182 are insufficiently flexible to handle

spin and oxidation dependence of metal-ligand bonding180, common76,77 implemen-

tations are unable to decode SMILES strings to good starting geometries, notions of

similarity are not clearly defined and what few databases are available183,184 are an

order of magnitude smaller (∼ 105 complexes) and consist of experimentally charac-

terized structures, limiting their potential for new chemical discovery.

Fortunately, molSimplify181(github.com/hjkgrp/molSimplify), an open source in-

organic complex construction toolbox recently developed at MIT, has begun to ad-

dress these deficiencies, providing a scriptable framework for creating 3D geometries

for transition metal complexes and automating HTVS for these systems. This thesis
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makes extensive use of, and in turn contributes to the development of, molSimplify.

Even if sufficiently many complexes can be simulated, the accuracy of DFT for

transition metal complexes is highly variable185. The variety of low-lying elec-

tronic d states that facilities the tunability of transition metal complexes, and hence

their useful properties as functional materials, simultaneously creates difficulties

for first-principles simulations73,186 due to many near-degenerate orbitals. Rigorous

handling of these effects requires specialized multi-configurational methods51,185,187

such as multi-configurational self-consistent field (MCSCF)188 or complete active-

space second-order perturbation theory (CASPT2)189, which are not ‘black box’

and require expert input187 (though efforts to automate these decisions have shown

promise190,191). Nonetheless, DFT has been applied extensively to study properties of

transition metal complexes such as spin state ordering74,162,192 and redox69. Studies

have indicated surprisingly good qualitative performance from hybrid functionals186

for calculations of redox potentials and spin splitting energies, though empirical

corrections have been suggested to improve agreement with experimental measure-

ments193. In particular, different amounts of exact exchange are advocated for tran-

sition metal complexes in the literature, ranging from 0%194 or 15%74 (so-called

B3LYP*) to 30%–50% or more195,196. The impact of varying the exact exchange

fraction on spin state ordering has been thoroughly investigated59,192,194,197–199, with

three main conclusions (Figure 2-4): 1) the spin state ordering, as characterized by

the energy difference between high- and low-spin configurations, is a nearly linear

function of the exchange fraction over the range 0%–30%; 2) the sensitivity to the

exchange fraction is a strong function of ligand field, i.e. the gradient of this linear

relationship is typically larger for strong field ligands (those that bias toward low spin

states); 3) the amount of exchange needed to capture the correct spin state ordering

is different for different systems – for example, exchange of 15% was found to suffice
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for a series of Fe(II/III) spin crossover complexes (SCOs)59,200, while a study across

different metals and ligand fields found 40% to give the best average agreement with

high-accuracy wavefunction methods201. In summary, choice of exchange fraction

serves as a lever to correct errors in DFT methods but the appropriate fraction for a

given calculation is not known a priori, acting as source of uncertainty for simulation

results.

Figure 2-4: The effect of changing the fraction of exact exchange used on the DFT-predicted
energetic difference between high-spin and low-spin states (Δ𝐸H−L) for four octahedral,
homoleptic Fe(III) complexes with ligands: NCH, NH3, CNH and CO with a 3𝜎 confidence
interval from normal distribution poll data on hybrid exchange functionals, as indicated
with black dashed lines and black arrow. Results are calculated with B3LYP-like DFT.
Reproduced from Ref.197.

Practical comparisons with experimental systems also require corrections for solva-

tion202,203 and finite-temperature thermodynamic effects192,204, further increasing the

computational burden and requiring additional approximations – for example, the

conductor like polarizable continuum model205. In spite of all of these factors, accu-

racy for calculation of spin splitting energies with hybrid functions is ∼ 10kcal/mol
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out-of-the-box and qualitatively-correct behavior can be obtained, with results im-

proved after adjusting exchange fractions59,196 or adding post-facto empirical correc-

tions206. The accuracy of hybrid DFT for transition metal complexes has also been

investigated, finding excellent correlation between computed and experimental redox

potentials (𝑅2 > 0.95 according to Ref.203) with typical errors of around 0.15eV19

or 0.1 eV207. For quantitatively comparing redox potentials to experimentally mea-

sured values, it is necessary to use a reference potential calculated with the same

method203,207 to benefit from cancellations of systematic errors.

2.2 Machine learning in chemistry

Note: Parts of this section have been submitted for publication in the ACS Ele-
ments series, intended to provide an pedagogical introduction to machine learning in
chemical sciences. They have been abridged and reformatted for consistency.

2.2.1 Overview

Machine learning (ML) methods are applied to a great variety of problems in chem-

istry, and will doubtless continue to find novel applications in the future. While all

of these application areas necessitate specific adaptions, (almost) all fit into the basic

framework of supervised learning. This section provides a review of the basic ideas

underlying supervised learning that will be used in this thesis, and is largely based

on the books by Vapnik208 and Hastie et al.209.

Supervised learning

The fundamental objective of supervised learning is to develop a regression model

or function, 𝑓 , that is capable of making predictions in response to some supplied
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inputs, 𝑥, denoted generally as 𝑦(𝑥) = 𝑓(𝑥). There are few restrictions on what 𝑥 and

𝑦 may be: scalars, vectors, images, graphs and more exotic types of data are possible.

In chemistry the inputs are often different arrangements of atoms in 3D space and the

outputs could be the corresponding energy of the system – this is the same task that

is the main objective of computational chemistry (e.g. molecular mechanics or first-

principles simulations). The choice of model 𝑓 is more standardized and typically

comes from a few major families: kernel methods, random forests, or neural networks

models. In either case, the model will depend on some parameters, denoted 𝑊 :

𝑦(𝑥) := 𝑓(𝑥,𝑊 ) (2.1)

The choice of these parameters will uniquely determine the behavior of the model

and the central task in training the model, is the selection of these parameters. This

is one way in which the soft distinction between ‘machine learning’ and general re-

gression might be drawn: in machine learning, there is typically little effort made to

adapt the structure of the model to the task at hand, instead preferring a very flexible

model family with many parameters210, and making an intelligent choice of 𝑊 . For

example, neural network potentials (NNPs), a family of neural network models that

directly relate atomic coordinates to energies24, are similar in purpose to molecular

mechanics force fields and both are parameterized to agree with experimental obser-

vations or first-principles simulations. However, while force fields assume structured

nonlinear equations based on polynomials (e.g. electrostatic repulsion and harmonic

oscillators), NNPs make no explicit assumptions about the type of functions relating

the atomic positions and energies and instead start with a very general form and

learn to reproduce the structure-energy relation them from the data directly.
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1: Training phase

training
data

update
model

parameters

model
loss

function

inputs, 𝑋 labels, 𝑦(𝑋)

parameters, 𝑊 loss, ℒ

predictions, 𝑦(𝑋)

repeat
until

converged

2: Testing phase

test data model evaluation

final 𝑊

inputs, 𝑋* predictions, 𝑦(𝑋*)

Figure 2-5: Overview of a typical iterative supervised learning training and testing process.

Supervised learning here refers to the use of 𝑛 labeled training data pairs of previous

examples, (𝑥𝑖, 𝑦𝑖), to infer the relationship between inputs and outputs, as controlled

by the model parameters, 𝑊 . We will use 𝑋 and 𝑦 without subscripts to refer to

the collection of all the data and with subscripts to refer to individual data points,

and adopt the convention of forming the training data into a data matrix, 𝑋 ∈ R𝑛×𝑑,

which has the 𝑛 individual observations as rows and the descriptors for each the

observations as columns. This immediately requires a way of determining how good

a given value of 𝑊 is for capturing the relationship between 𝑋 and 𝑦 with a loss

function. A loss function is a way to measure how well the model predictions match
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with the data, and the obvious choice is compute the (𝑙2) norm of the error between

𝑦 and 𝑦 for some input 𝑋:

ℒ(𝑦, 𝑦(𝑋)) := ‖𝑦 − 𝑦(𝑋)‖22 = ‖𝑦 − 𝑓(𝑋,𝑊 )‖22 =
𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖,𝑊 ))2 (2.2)

This is the well known “least-squares" error function and has number of useful prop-

erties that are worth discussing briefly. First, it is a strictly non-negative, even

function of the errors 𝑦𝑖 − 𝑦(𝑥𝑖), and is differentiable and moreover a convex func-

tion (of 𝑦), which is extremely important for optimization. This provides optimality

guarantees for any minima if 𝑓 itself is convex, as in the case of linear least-squares

regression. There are alternative loss functions as well, particularly for classifica-

tion tasks where the output 𝑦 is a probability associated with a certain label209, but

this simple metric is used in many applications of ML in chemical sciences. The

learning task can then be understood as a problem of minimizing the chosen loss

function. This is often done iteratively by starting with some initial choice, perhaps

normally distributed about zero, and then optimizing 𝑊 using a traditional opti-

mization routine to update 𝑊 and reduce the loss. In some cases this optimization

can be done directly, as is the case with linear and kernel methods, but generally

it must be carried out numerically, for example by gradient descent and derivatives

thereof (Figure 2-5). The amount of data needed is highly application dependent

and the availability of data is related to the source and cost of acquiring the data.

For the construction of high-quality NNPs, thousands to hundreds of thousand of

observations of molecular configurations evaluated using density functional theory

(DFT) are routinely used24,211,212, as sufficient data is required to infer relationships

between the bond angles and distances and the relative energy of the atomic config-

uration. Modern general purpose NNPs for organic chemistry have been trained on
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more than 20 million DFT geometries213, but NNPs that are specialized for limited

element compositions and conditions, for example those developed by Behler and

coworkers for zinc oxides214 or water clusters215, can achieve high accuracy with tens

of thousands of DFT geometries or less. Data points for ML can be drawn from

large databases216 or measured from experiments directly217, but the most common

source is from the output of computational chemistry calculations.

Once the training procedure is complete, and some finalized model parameters are

selected, the model is typically tested on some out of sample (OOS) or test data,

which are observations that are not drawn from the training data. This a critical

step in the assessment of any fitted ML model, especially those with large numbers

of parameters, because of the risk of over-fitting for sufficiently complicated models.

Statistical learning theory

Over-fitting is defined as a mismatch between the true risk – the loss function over

all inputs, and the empirical risk, the loss on the finite observations used to calibrate

the model, for a certain choice of model 𝑓 (uniquely determined by the parameters

𝑊 ):

ℰemp(𝑓) = ℰemp(𝑊 ) =
1

𝑛

𝑛∑︁
𝑖=1

ℒ(𝑦𝑖, 𝑓(𝑥𝑖,𝑊 )) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖,𝑊 ))2 (2.3)

where the second equality only applies in the case of the least-squares loss func-

tion. The basic process of supervised learning (Figure 2-5) is to update the model
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parameters, 𝑊 , to make ℰemp as small as possible. We denote this function

𝑓 := argmin
𝑓∈𝒯
ℰemp(𝑓) (2.4)

This is the best function over a family of models, 𝒯 considered. However, the ob-

jective of constructing a surrogate model is to build a useful proxy for a physical

process that is applicable to new values of 𝑥 not in the training data. For example,

in drug design one might train a model to predict activity of some known reference

molecules and want to apply the model to screen unknown targets218, or one might

want to use a NNP to assess the energy of unknown conformations24. This is called

generalization and can be mathematically formulated as the expected risk for any

fixed function, 𝑓 :

ℰ(𝑓) :=
∫︁
𝒳×R
ℒ(𝑦, 𝑓(𝑥))𝑝(𝑥, 𝑦) d𝑥 d𝑦 = E [ℒ(𝑌, 𝑓(𝑋))] (2.5)

Here, the integral is taken over all possible inputs and outputs, and 𝑝(𝑥, 𝑦) represents

the true, usually unknowable joint probability distribution between the random vari-

ables 𝑋 and 𝑌 . Application of the laws of probability gives that the function that

minimizes ℰ(𝑓) is 𝑓 *(𝑥) := E [ℒ (𝑌, 𝑓 (𝑋)) |𝑋 = 𝑥], i.e., the conditional mean value

of 𝑌 given 𝑥. This formulation allows for non-deterministic relationships between 𝑥

and 𝑦, as in the case of processes with measurement noise. The field of statistical

learning theory is concerned with the analysis of equations 2.3–2.5 to determine when

models found by minimizing empirical risk can be expected to generalize, i.e. give

true low risk. A central concept208 is that generalization error can be decomposed
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into two contributions:

𝑓 † := argmin
𝑓∈𝒯
ℰ(𝑓) (2.6)

ℰ(𝑓)− ℰ(𝑓 *) =
(︁
ℰ(𝑓)− ℰ(𝑓 †)

)︁
+
(︀
ℰ(𝑓 †)− ℰ(𝑓 *)

)︀
(2.7)

the first term is the estimation error, which arises when from making a sub-optimal

choice of function based on training data, commonly called over-fitting. The second

term is the approximation error, the error made by restricting the choice of model

family. For example, using a linear model, for an application that might not be cap-

tured by a linear relationship. There are two critical ideas that are worth noting208:

under mild assumptions one can show that:

1. Assume that the space of possible models is complex enough to have near-zero

approximation error, for example using a very nonlinear model that can fit any

data exactly. Then, if we draw training points from a fixed distribution, our

empirical risk will converge to the risk for that distribution as the number of

training points increases, i.e. our model will generalize.

2. The rate of convergence as we add more data is inversely related to size of 𝒯
i.e., more complex model spaces require more data to generalize.

The rigorous definition of ‘size’ is the Vapnik–Chervonenkis dimension219, but the

above can be intuitively interpreted as the set of model functions 𝒯 to be large/complex

enough to have low approximation error, but no more complex. With limited data,

it may be better searching for a model in a simpler, smaller family of models that

‘learn’ more robustly and quickly as opposed to very complex models with many

parameters. Conversely, a simple model will stop improving with more data past a

certain point – where the approximation error dominates.
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Regularization

Regularization techniques allow control model complexity in a fine-grain manner,

allowing us to search for the correct level of model complexity using a smooth pa-

rameterization by adding a penalty, 𝑅(𝑓(𝑋)), to the loss function, which depends

only on the complexity of the model and not on how well it fits the data.

ℒ′(𝑦, 𝑓(𝑋)) = ℒ(𝑦, 𝑓(𝑋)) + 𝜆𝑅(𝑓(𝑋)) (2.8)

Here, 𝜆 ≥ 0 balances between making the model fit the data and forcing the model

to be as simple as possible. As a concrete example, the most common type of

regularization208,209 is Tikhonov or ℓ2 regularization, which is given by the ℓ2 norm

of the model parameters, 𝑅(𝑓(𝑋,𝑊 )) := ‖𝑊‖22. Combining this with the square loss
function and writing out the explicit dependence on the model parameters gives:

ℒ′(𝑦, 𝑓(𝑋,𝑊 )) =
1

𝑛
‖𝑦 − 𝑓(𝑋,𝑊 )‖22 + 𝜆 ‖𝑊‖22 (2.9)

By optimizing ℒ′ in place of ℒ, some of the fit to training data will be sacrificed

to reduce the magnitude of the weights. However, the model will be simpler and

will often generalize better (i.e. have a lower true risk). It is useful to note that,

via Lagrange multipliers, minimizing eq. 2.9 with respect to some 𝑝-dimensional

parameters 𝑊 is equivalent to minimizing:

min
𝑊∈R𝑝

1

𝑛
‖𝑦 − 𝑓(𝑋,𝑊 )‖22 (2.10)

s.t. ‖𝑊‖22 ≤ 𝑟 (2.11)
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This establishes that setting a value of 𝜆 defines a budget for parameters (how large

we allow 𝑡 to become), such that large values of 𝜆 result in small coefficients 𝑊 and

vice-versa.
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Figure 2-6: The ‘classical’ picture of over-fitting: (left) illustration of the relationship
between model complexity and true and empirical risk, showing that sufficiently flexible
models will always fit training data arbitrarily well but will tend to generalize poorly (right)
CV error estimate as an indicator of true risk, showing fitting of 𝑦 = sin(𝜋𝑥) with a 15th

order polynomial 30 points uniformly sampled in [0, 1] with measurement noise 𝒩 (0, 0.15)
and different levels of Tikhonov regularization 𝜆, which is inversely correlated with model
complexity. An LOOCV estimate of the error is computed for each value of 𝜆 (green), and
compared to the empirical (blue) and true (black) risks.

𝜆 is called a hyperparameter, as opposed to a parameter, because while both affect

model performance, it is note selected based on the training data – it is set for the

model before we begin the training process. Note that trying to set the derivative of

eq. 2.9 with respect to 𝜆 to zero in order to minimize our training loss would trivially

result in 𝜆 = 0, aligning with the notion that more complicated models can always fit

training data better. However, while regularization provides us with a fine-grained

control on model complexity, it does not help to answer the important question: how
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complicated should my model be?

Unfortunately, errors on training data cannot help determine how complicated a

model the data set can support. Figure 2-6 shows a schematic illustration of this

issue – although the empirical risks, that is the error on the training data, continues

to decrease as complexity is added, the real ability of the model to predict new results

(true risk) begins to degrade.

(Cross)-validation and model selection

Instead, one can use validation data to answer this question. That is, the ‘training

data’ should be further divided into a set of data that will be used for training and a

validation set to estimate how well each model generalizes. The distinction between

validation and test data is that the ‘validation data’ is used to help construct the

model (e.g., by selecting how much regularization to use), whereas ‘test data’ is not

used at any stage of model training.

In order to reduce dependence on the particular way training and validation data

are partitioned, it is standard practice to use a technique known as cross-validation

(CV), which involves sub-dividing the training data into 𝑘 equal folds. Then, remove

the first fold is removed from the training data and the remaining 𝑘 − 1 folds are

used to train the model, with a fixed choice of the hyperparameters. This model is

tested on the left-out fold to generate an error estimate for OOS data. This error

is recorded, and then the training process is repeated repeated 𝑘 times, such that

each fold has been left out exactly once. These errors are averaged to produce the

cross-validation error (inner loop in Figure 2-7).

This metric for error is an estimator for the generalization error made by the model

since it is only based on data not used to train the model at each step. Of course,
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this increases the cost of training the model by a factor of 𝑘 for each model that is

to be evaluated.

𝜀1

model
(𝜆[𝑖])

fixed 𝜆[𝑖]

best model
(𝜆*)

fold 1 error 1

CV loop

model selection loopset of possible
hyperparame-

ters:
𝜆[1], 𝜆[2], . . . 𝜆[𝑙]

final results
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repeat for
𝑘 folds

repeat
for each

𝜆[𝑖]

Figure 2-7: Illustration of the machinery for model selection via double loop grid search
𝑘-fold cross-validation (CV) for a single hyperparameter 𝜆. The full dataset is split into
test and train fractions. Then, for each choice of the hyperparameter 𝜆 (the gray outer
loop), the training data is further split into 𝑘 equal folds and then a series of 𝑘 models are
trained with one fold left out of the training process each time (green inner loop). Each
model is evaluated on the left-out fold to generate 𝑘 errors 𝜀1, 𝜀2, . . . 𝜀𝑘. The average error
for each 𝜆 is compared and the best 𝜆* is chosen to train a model on the full training set.
The test data is only used to evaluate the final model.
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Because the average cross-validation (CV) error is an estimate of the generalizability

of a given model and hyperparameter combination, it can be used to select among

different models and hyperparameters (Figure 2-6).

The choice of 𝑘 is typically between 5 and the amount of data available, 𝑛. The

special case where 𝑘 = 𝑛 is called leave one out cross-validation (LOOCV, used in

Figure 2-6) because only one point is left out in each fold.

In practice 5 or 10 are common choices, with the smaller values of 𝑘 being cheaper to

evaluate since the training process is repeated fewer times. The larger the value of

𝑘, the less biased the CV error estimator is relative to generalization potential of the

model trained on all the training data*. When using small data sets, small values of

𝑘 may be undesirable since the model trained on only 𝑘−1
𝑘

of the data may be highly

unstable. When a large amount of data is available, the overheard of repeating the

training process is impractical, and a large 𝑘 may not be feasible.

Since in practice choosing good values of the hyperparameters is difficult, and hyper-

parameters are typically interrelated, a standard approach is to perform grid search

cross-validation (outer loop in Figure 2-7). Here, a range of values is selected for

each hyperparameter, and this range is discretized into sample values to try for each

hyperparameter. Every combination of hyperparameters can then be scored using

CV, and the best performing model is then re-trained on all of the training data (and

evaluated against the held-out test data). This provides a robust method for model

selection and can be used to decide between different types of models (e.g., linear vs.

non-linear or maximum degree of non-linearity) as well. This pipeline is essentially

a double loop, requiring training the model 𝑘 times for each hyperparameter combi-

nation. For robustness to how the test/train data is partitioned, it is also possible to

repeat this entire process for different test/train splits, forming a triple loop scheme

*This bias is introduced precisely because a smaller fraction of data is used.
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sometimes called nested cross-validation. This can be important for small or highly

heterogeneous data sets, and testing robustness to test/train splits is always a good

practice.

Alternatives to CV do exist, for example bootstrapping220, where random training

sets of consistent size are assembled by drawing from the original data set with rep-

etition. These approaches face similar costs of model training time. For more than a

handful of hyperparamter values, an exhaustive grid search becomes infeasible, and

so it is natural to seek more optimal strategies, particularly for neural networks or

other models where the training cost is substantial. One approach is to use Bayesian

methods to optimally sample the hyperparameter space221,222. For complex models,

practitioners may be forced to do with a single validation split.

2.2.2 Representations

All machine learning models, from linear regression to neural networks, take numbers,

vectors, and matrices as inputs and transform them to outputs. Therefore, in order

apply machine learning to molecules or materials consisting of atoms, they must first

be converted into numerical features or descriptors that describe each observation.

Molecules or materials generally correspond to discrete objects in chemical space,

𝑐(𝑖), which we may then featurize in a manner that produces discrete vectors, 𝑥(𝑖),

in some 𝑑-dimensional vector space 𝒳 ⊂ R𝑑 (Figure 2-8). For efficeint infeference

it is desirable to build a feature space in which molecules or materials with similar

properties are proximal to each other223 (i.e., a small 𝑑(𝑥(𝑖), 𝑥(𝑗)) in Figure 2-8), but

it can be challenging to know a priori how to build such a feature space.
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Chemical Space 𝐶

𝑐(𝑖)

Feature Space 𝒳 ⊂ R𝑑

x(i)

x(j)

𝑐(𝑗)

𝑑(x(𝑖),x(𝑗))

Figure 2-8: Basic overview of the featurization process, mapping elements in chemical space
to vectors that represent them in descriptor space. The choice of the featurization governs
the geometric similarity and overall geometry of the descriptor space.

For these reasons, a significant body of work has focused on the development of

representations for atomistic systems81,223–225. The earliest developments date back

to the 1960s-1980s in the cheminformatics community and featurization continues to

be an area of active research223,226. Unfortunately, one cannot expect there to be a

single ideal featurization for the broad range of challenges of interest to researchers

in the chemical sciences. Before getting into specific featurization strategies, we will

consider what makes a feature set broadly suitable for a given problem. There are

some ideal characteristics of representations that are all typically only imperfectly

realized by real feature sets:

1. The representation should be invariant to equivalent inputs that correspond

to the same physical system and conversely should should provide a unique

encoding for each distinct input.

2. The representation should encode property (i.e., chemical) similarity, i.e. the
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distribution of observations in the feature space should correspond with the

distribution in property. The worse the input-output correspondence is, the

more nonlinearity is required of the model to make predictions.

3. The representation should be as affordable and straightforward to compute as

possible227. This requirement is particularly applicable to training of ML mod-

els based on first principles calculation where attributes of the wavefunction

may correlate very well with output properties but may be too expensive to

compute over large numbers of inputs..

4. The representation should be easy to interpret to enable extraction or encapsu-

lation into derived heuristics or physcial principles. While not critical in terms

of model performance,it is much easier for the practioner to understand why

models make a certain prediction or how to improve predictions when features

are interpretable.

5. Finally, a highly desirable aspect of a representation would be bijection, that

is any point in the feature space should be able to be inverted back to a real

molecule or material227. Representations that have such qualities enable so-

called inverse design strategies, where optimization can be conducted in the

continous descriptor space228.

Another important distinction is to be drawn between what system or portion of a

system the descriptors represent. In chemistry, it is natural to focus on the proper-

ties of individual molecules, as has historically been done in quantitative structure–

property relationship (QSPR) modelling. In this case, features are computed on a

per-molecule basis, even when the ultimate property being predicted may depend
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on many other molecules present, such as solvent or the human body, as is the case

in quantitative-structure activity relationship building for therapeutic drug design.

There are many applications where representations must be computed for multiple

molecules at a time or for systems for which the chemical bonding is not strictly co-

valent and the definition of a molecule becomes challenging. For example, predicting

reaction outcomes from multiple reactant species229,230 to one or more products or

in predicting the binding energy of reactant species on catalysts on surfaces231,232.

For periodic systems, such as metal-organic frameworks233 or crystalline materials80,

challenges in choosing how to represent the unit cell can also be apparent. In the

case of multiple molecules being involved, one option is to consider all molecules

present as parts of the single, partially disconnected system. Both of these issues

can be handled naturally by representing the systems through their connectivity in

a molecular graph representation introduced below.

Alternatively, in analogy with classical molecular mechanics force fields, local atomic

environments can be featurized. Thus, each molecule This essentially converts each

observation of a molecule into a large number of atomic features. The output prop-

erty used in training machine learning models is usually obtained on a per-molecule

basis, but some properties, especially the atomization energy24 or local atomic partial

charges234, can be naturally broken down into a sum of contributions of individual

atoms. Thus, a mapping to local atomic environments may be more suitable for some

property predictions than others. Increasing ease of training larger neural networks

with modern computational resources has motivated the use of learned representa-

tions, which sidestep complex, pre-computed features and instead learn an internal

representation at the same time as the model is trained starting only from simple

atomic identity and connectivity information81,235
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complexity

heuristics

� Counts of functional
groups, atomic and
molecular physio-
chemical properties,
compositions

� No information
related to molec-
ular geometry or
connectivity

� Cheap to compute
and simple

graph based

� Graph invariant
functions, topolog-
ical fingerprints,
SMILES strings

� Exploit informa-
tion from atomic
connectivity, can
use attributed or
unattributed graphs

� Captures
chemically-intuitive
information, easy to
compute

3D structure

� Symmetry functions
and related geo-
metric operations,
SOAP kernels

� Fine-grained infor-
mation involving
distances and angles
that mimics in-
puts to a quantum
chemistry code

� Can disambiguate
conformations but
requires determina-
tion of 3D structure

Figure 2-9: Comparison of some common featurization strategies, organized by the level of
detail included/complexity.

The simplest possible feature sets are collections of ad hoc system properties that

are counted or inferred from the input molecule directly. Examples of these features

range from the number of each element type present to tabulated, semi-empirical

or quantum mechanically-calculated, physicochemical properties of molecules such

as molecular weight or lipophilicity. These types of properties have been used in

the development of quantitative structure property or quantitative structure activity

relationship (i.e., QSPR and quantitative structure–activity relationship (QSAR))

models for decades224. When empirical ad hocfeatures are employed, they are typ-

ically cheap to compute. However, because constructing these feature sets assumes

some knowledge of the most important predictors of a chemical property a priori,

models built on these features will not be unique or can be insensitive to small
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changes in chemistry. These features have shown good baseline results in many ar-

eas, including in challenging problems, especially those that are not well-described

by covalent bonding. Some examples are peridoic ‘materials’ systems236,237 and het-

erogenous catalysis231,238.

Fingerprints are an important subset of classical cheminformatics descriptors that

are vectorial representations of molecules computed by breaking the molecule into

fragments. There is a great degree of flexibility in how this is done and, as a result,

a large number of fingerprints. The most basic molecular fingerprints, such as the

FP2 fingerprint77, are binary vectors that count if a specific functional group (e.g., a

phenyl ring) is present. Each position in the vector corresponds to a functional group

or collection of functional groups. To include additional information about functional

group proximity, topological features are used. These feature sets use information

about the connectivity of atoms in the molecule, sometimes including information

about the bond order between atoms, without depending on any specific 3D arrange-

ment of atoms. We will also refer to these as features based on the molecular graph,

which is a mathematical graph with atoms as vertices and bonds as the edges (Figure

2-10). Graph representations may include vertex and edge attributes. The represen-

tation can be modified by adding more attributes to the graph, e.g., atomic nuclear

charges, bond orders, or even bond lengths from 3D geometry. Graphs are an at-

tractive mathematical representation for machine learning in chemistry because they

inherently reflect the locality of chemistry and the proximity or separation between

different components of a molecule or material.
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Figure 2-10: Graph representations of oxalate ion, C2O
2–
4 (left); a weighted representation

with atomic numbers and bond distances (center); and an unweighted representation (right).

For the simplest representations, graphs may be unattributed with indistinguishable

vertices that only map connectivity and no information about elemental identities.

Even this simplified graph model generates useful descriptors. The Randić239 index,

which was proposed over 40 years ago, is a measure of molecular branching that is

known to correlate well with boiling points of alkanes and is given by the equation:

r𝛼 :=
∑︁
𝑖

∑︁
𝑗

(deg(𝑖) deg(𝑗))𝛼 (2.12)

Here, deg(𝑖) refers to the degree, or number of bonds that node/atom 𝑖 has in the

graph, the sum is taken over all bonds 𝑖, 𝑗 in the graph, and 𝛼 is a constant, originally

−1
2
or−1. Other well-known features based on unattributed graphs are the Wiener240

index and the many descriptors proposed by Kier and Hall241–243, which are variants

of bond counting methods that differentiate bonding patterns in molecules.

Attributed graphs readily incorporate more chemical information by associating

nodes and edges with specific chemical properties. For example, autocorrelation

descriptors22,244 are calculated as functions of physical properties of the atoms in the
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graph that are separated by a fixed 𝑑 bonds:

AC𝑑 =
∑︁
𝑖

∑︁
𝑗

𝑃𝑖𝑃𝑗𝛿(𝑑𝑖𝑗, 𝑑) (2.13)

where 𝑃 refers to an atomic property, for example nuclear charge or electronegativity,

and 𝛿(𝑑𝑖𝑗, 𝑑) is one if atoms 𝑖 and 𝑗 are separated by 𝑑 bonds. By varying the number

of bonds considered and using different atomic properties, a large number of possible

features can be generated. Graph convolutions28,235 are a recent generalization of

these graph-kernel methods that learns the function to be applied on neighbouring

atoms at training time and are presented in more detail in the Section on artificial

neural networks (ANNs). The text based SMILES representation174 contains the

same information as the atom-type attributed molecular graph and has been used as

a representation, e.g., in reaction outcome prediction245,246.

Many fingerprint methods that use topological information are also available, for ex-

ample Morgan or extended connectivity fingerprints247,248. These fingerprints work

by collecting a description of the atomic types a certain number of bonds from each

atom. However, rather than producing a numerical value, extended connectivity

fingerprintss (ECFPs) concatenate the identifiers of adjacent atoms, resulting in a

dynamically-derived list of fragments for each atom that can be hashed into a binary

vector of fixed length. This is similar to the FP2 fingerprints introduced above but

the key difference is that there is no pre-defined library of substructures. The ECFPs

is instead dynamically generated based on the molecular graph.

None of the featurizations introduced so far incorporate 3D structural information,

and thus they would not be suitable for property predictions that require 3D informa-

tion (e.g., NNPs). Most 3D structural descriptors make use of internal coordinates to

maintain rotation and translation invariance, although some models include symme-
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try operations as part of the model and are able to use raw Cartesian coordinates as

inputs249. In addition, features should not be sensitive to the atomic ordering in the

molecule. Thus, pairwise Euclidean distances r𝑖𝑗 between atoms 𝑖 and 𝑗 are a nat-

ural starting point. The Coulomb matrix250, named for its relation to the Coulomb

operator, is a simple example of a 3D structural descriptor. For a molecule with 𝑚

atoms, the Coulomb matrix is defined as an 𝑚×𝑚 matrix with elements:

𝐶𝑖,𝑗 :=

⎧⎪⎨⎪⎩0.5 (𝑍𝑖𝑍𝑗)
0.5 𝑖 = 𝑗

𝑍𝑖𝑍𝑗

r𝑖𝑗
otherwise

(2.14)

where 𝑍𝑖 is the nuclear charge of atom 𝑖. The exponent of the diagonal elements

in the Coulomb matrix was obtained from an empirical fitting procedure on organic

molecules. By definition, matrix elements decay with 1/𝑟, leading to stronger ma-

trix elements between chemically-bonded atoms. Although simple and intuitive to

build, this representation has some limitations. The labeling order of atoms alters

the structure of the matrix, and the Coulomb matrix also changes when the number

of atoms changes. The first limitation can be solved in a number of ways, e.g., by

using the eigenvalues of the matrix instead of the elements, by sorting the rows and

columns, or by randomly-sampling different orderings251. The issue of dependence

on molecule size must be solved by padding smaller matrices with zeros in order to

match the size of the largest molecule either in training data or on which one would

like to carry out model prediction.

Many extensions to the basic idea of eq. 2.14 have been proposed, most commonly

to include angular information in a similar manner. The ‘Bag of Bonds’25 descriptor

explicitly factorizes and sorts the elements in the matrix by the atom types involved

in each pairwise distance, e.g., grouping all of the C–C terms. The ‘Bonds, an-

66



gles’ machine learning (BAML) descriptor223 replaces the distances with Morse and

Lennard-Jones potentials with parameters from force fields. It also includes explicit

three- and four-body angular terms. A slightly different family of features can be

obtained by inspection of the histograms of all pairwise distances and three- and

four-body angles for each group of atom types, i.e. one histogram of C–C distances,

one histogram of C–H distances per molecule. Discretizing these histograms into a

fixed length vector results in the histogram of distances, angles and dihedral angles

(HDAD212) descriptor. A different set of features can be obtained by consideration

of atomic environments, instead of molecules. As mentioned, these methods are typi-

cally associated with NNPs. The atomic environment is defined by a set of symmetry

functions that encode pairwise distances to neighbors using a square-exponential ker-

nel24,213, giving a scalar 𝐺𝑟
𝑖 for each atom 𝑖. A cutoff function, 𝑓𝑐 (r𝑖𝑗), is used to

enforce locality, decaying smoothly to zero for distances larger than a given thresh-

old. These thresholds are typically around 6Åor less to reduce the computational

cost of the featurization, which is notably shorter range than electrostatic and van

der Waals force lengthscales typically considered in molecular mechanics force fields.

To address this concern, explicit physics-derived terms252,253 can be alongside these

necessarily short-range features. An additional angular term obtained by replacing

the square-exponential with trigonometric functions is also used to give angular de-

pendence. These terms then account for local interactions at each atom by measuring

how crowded the local environment is254:

𝑘𝑟
𝑖𝑗 := 𝑒−𝜂(r𝑖𝑗−𝑟𝑠)

2

(2.15)

𝐺𝑟
𝑖 :=

∑︁
𝑖 ̸=𝑗

𝑘𝑟
𝑖𝑗𝑓𝑐 (r𝑖𝑗) (2.16)

Typically a number of different values of 𝜂 and 𝑟𝑠 are used to give a vector of sym-
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metry functions for each atomic environment which decay more or less rapidly and

modulate the degree of locality in 3D space. One difficulty is that this approach

does not naturally distinguish atom types. To get around this limitation, a separate

environment fingerprint can be constructed for each possible atom type, e.g., one

for carbon and one for hydrogen. Angular symmetry functions use two inter-atomic

distances for a three-body angle and so one symmetry function is needed for each

pair of atom types. A typical NNP implementation213 in organic chemistry (i.e., C,

N, O, H, F elements) uses 32 radial symmetry functions for each atom type and 8

angular symmetry functions for each atom type pair, leading to a final dimension of

about 750 for each atomic environment.

A distinct approach called the smooth overlap of atomic densities 255 generalizes the

square-exponential basis used in symmetry functions to a position-dependent Gaus-

sian function, as shown in eq. 2.17, over values of 𝑟𝑠. The density of neighbors

around atom 𝑖 is defined as:

𝜌𝑖(𝑟𝑠) :=
∑︁
𝑗

𝑒−𝜂(r𝑖𝑗−𝑟𝑠)
2

(2.17)

This is a continuous function of 𝑟𝑠. Rather than constructing a fixed, finite-dimensional

fingerprint from this function, the overlap of two environments can be explicitly cal-

culated by integration, giving a similarity score between two atomic environments

𝐾̃𝑖𝑗. While the dependence on pairwise distances ensures translational invariance,

this approach is not rotationally invariant by default and therefore requires an addi-

tional integration over all possible rotations in 3D space, 𝑅̂. Practical computation

of the integral in eq. 2.18 is achieved with a set of radial basis functions and spherical
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harmonic functions, which allows the rotational integral to be computed easily255.

𝐾̃𝑖𝑗 =

∫︁
𝑑𝑅̂

⃒⃒⃒⃒∫︁
𝑑𝑟𝑠𝜌𝑖(𝑟𝑠)𝜌𝑗(𝑅̂𝑟𝑠)

⃒⃒⃒⃒2
(2.18)

𝐾𝑖𝑗 =
𝐾̃𝑖𝑗√︁
𝐾̃𝑖𝑖𝐾̃𝑗𝑗

(2.19)

A final normalization in eq. 2.19 provides a scaled similarity measure that is suit-

able for direct use as the kernel term between any two environments. Extension to

systems with multiple chemical species can be accomplished by treating each pair-

ing of atom types separately. Other proposed approaches exploit properties of the

molecular wavefunction calculated with quantum chemical methods. Such features

can be highly informative because the wavefunction describes the electronic config-

uration of the system of interest, and historical QSPR relationships have exploited

this link256,257. In recent examples, atomic partial charges and vibrational modes258,

bond orders259, or matrix elements from the electronic Hamiltonian217,260,261 have

been employed in machine learning models as features. Samples of the raw elec-

tron density grid262 have also been used as input to convolutional ANNs. These

approaches incur the additional cost of solving for the wavefunction at Hartree-Fock

(HF) or DFT level but provide a rich source of information for statistical learning

since they transfer some of the difficulty of the inference task to the electronic struc-

ture calculation. Such approaches are beneficial when the target property is still

more costly than the quantum chemocical evaluation. For example, geometry op-

timizations consist of many sequential calculations, and so wavefunction properties

have been used to evaluate and predict outcomes of such calculations as they were

being performed259. Similarly, orbitals from low level methods have been used as

inputs to estimate higher-scaling CCSD(T) energies261. Another advantage of this
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type of featurization is that it may lead to more transferable models than those

based on more basic geometric or graph-based features. Beyond the examples above,

promising results have also been obtained for predicting DFT exchange-correlation

functional energies217,260, direct relationships between electron density and energy

for orbital-free DFT143, and experimental reaction yields258.

2.2.3 Models

In this section, some of the main nonlinear model forms that are used to construct

surrogates throughout this thesis are presented: kernel methods and artificial neural

networks.

Linear and kernel Models

The simplest model that can be interpreted as with the kernel framework is multiple

linear regression (MLR). An MLR model produces estimates, 𝑦, for a quantity of

interest, 𝑦, as linear function of the data matrix of 𝑛, 𝑑-dimensional observations

𝑋 ∈ R𝑛×𝑑, by choosing 𝑑 weights, 𝑤:

𝑦MLR(𝑋) := 𝑋𝑤, 𝑤 ∈ R𝑑, 𝑋 ∈ R𝑛×𝑑 (2.20)

The model can be fit using the least-squares loss function with 𝑙2 regularization (eq.

2.9) by taking the derivative with respect to our parameters and setting it equal to

zero:

ℒ(𝑤) = ‖𝑦MLR(𝑋)− 𝑦‖22 + 𝜆 ‖𝑤‖22
𝜕ℒ(𝑤)
𝜕𝑤

= 0 ⇐⇒ = (𝑋𝑇𝑋 + 𝐼𝑑𝜆)
−1𝑋𝑇𝑦 (2.21)
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Setting 𝜆 = 0 returns to a fully standard linear least-squares regression problem, in

which case the normal equation is recovered, representing a projection263 of the data

𝑦 into the column space of 𝑋*.

The computational cost of this operation classically scales with 𝑑3 and the result

is 𝑑 best-fit weights. For numerical reasons the equation (𝑋𝑇𝑋 + 𝐼𝑑𝜆)𝑤 = 𝑋𝑇𝑦

should be solved through a factorization technique, for example the lower-upper

(𝐿𝑈)-decomposition (see, for example Trefethen and Bau 263). However, there is

another way to formulate this process that facilities extension to non-linear (i.e.,

general kernel methods). For 𝑛 > 𝑑, the rows of 𝑋 or columns of 𝑋𝑇 are full ran

and eq. 2.21 can be rewritten to express 𝑤 = 𝑋𝑇𝑎 for 𝑎 ∈ R𝑛. This corresponds to

a shift of basis for 𝑤 in the row space of 𝑋, instead of the column space. The use of

regularization with 𝜆 > 0 favors the smallest solution for 𝑎, as measured by the the

ℓ2 norm (for Tikhonov regularization). Now, the MLR equations can be expressed

in terms of this transform at new (test) point 𝑥* ∈ R1×𝑑. Here, each observation is

a row vector:

𝑦MLR(𝑥
*) = 𝑥*𝑤 =

𝑑∑︁
𝑗=1

𝑥*
𝑗𝑤𝑗 = 𝑥*𝑋𝑇𝑎 =

𝑛∑︁
𝑖=1

𝑥*(︀𝑥(𝑖)
)︀𝑇

𝑎𝑖 =
𝑛∑︁

𝑖=1

𝑘
(︀
𝑥*, 𝑥(𝑖)

)︀
𝑎𝑖 (2.22)

where 𝑘(𝑥′, 𝑥) = ⟨𝑥′, 𝑥⟩ : R𝑑 × R𝑑 → R is the linear kernel function. To avoid

confusion, parenthesis are included in the superscripts to refer to different observation

indices, not powers. Eq. 2.22 provides two equivalent formulations of the linear

model. The linear kernel defines the similarity of inputs by the euclidean inner

product ⟨𝑥′, 𝑥⟩ = (𝑥′)𝑇𝑥. This means orthogonal points such as [0, 1] and [1, 0] are

maximally dissimilar, resulting in a zero kernel term, while points that are co-linear

*It is easily shown that (𝑦 − 𝑦) ⊥ 𝑋𝑤, i.e. any remaining error is orthogonal to the model
family
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are the ‘most similar’. The corresponding vector form of the kernel equation can be

expressed in terms of the kernel matrix 𝐾, with 𝐾𝑖,𝑗 = 𝑘(𝑥(𝑖), 𝑥(𝑗)):

𝑦(𝑋) = 𝐾𝑎 (2.23)

𝑎 = (𝐾 + 𝐼𝑛𝜆)
−1𝑦 (2.24)

Owing to its simplicity and interpretability, MLR has a long history of application to

problems in chemical science domains. Drug design in particular has seen widespread

application of linear models264,265. MLR is still routinely used to model complex sys-

tems, such as catalysis266, solubility267 and reaction selectivity prediction268. Low

training cost also makes regularized MLR models a good toolbox227 for testing dif-

ferent feature sets and extracting the most correlated descriptors. However, since

these model does not include any non-linearity by definition, it is essential that the

target property is well correlated with the descriptors used, which may necessitate

using difficult-to-compute descriptors (such as those from quantum mechanical cal-

culations257 or experiments, for example linear free energy relationships) or the range

of applicability is limited to a small set of systems. This can be addressed some-

what by dividing the input space into regions and training only local models269,

but MLR models typically cannot match the quantitative accuracy of more flexible

models. Nonetheless, a simple model that is readily understood by non-specialists is

extremely valuable

Not all functions are well expressed as linear combinations of their properties, for

example we do expect the energy of a chemical bond to be a linear function of the

distance between them. In general, it is required to be able to model arbitrary func-

tional forms as well as interactions the features. To demonstrate how to extend this

framework for nonlinear regression, we beginning with a simple example: fitting a
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quadratic polynomial to a case with two features per input (two properties for each

observation 𝑥(𝑗): 𝑥(𝑗)
1 and 𝑥

(𝑗)
2 ):

𝑦QUAD(𝑥) := 𝑤1 + 𝑤2

√
2𝑥1 + 𝑤3

√
2𝑥2 + 𝑤4

√
2𝑥1𝑥2 + 𝑤5𝑥

2
1 + 𝑤6𝑥

2
2 (2.25)

that is, a general quadratic function with an cross term, involving both features,

controlled by 𝑤4. The presence of the
√
2 terms will simplify the expressions later, but

they could be combined with the coefficients 𝑤. Notice that, although the features are

transformed nonlinearly, the model is linear in its parameters. The nonlinear feature

transform 𝜙 that maps the original observations in R1×2 to expanded features in

R1×6 is:

𝜙(
[︁
𝑥1 𝑥2

]︁
) =

[︁
1
√
2𝑥1

√
2𝑥2

√
2𝑥1𝑥2 𝑥2

1 𝑥2
2

]︁
(2.26)
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This enlarged feature space is sometimes called the ‘lifted feature space’270. The

problem can be expressed in terms of the the matrix that is obtained by applying 𝜙

to each row of 𝑋 as 𝜙(𝑋) ∈ R𝑛×6:

𝑦QUAD(𝑥) := 𝜙(𝑋)𝑤 =

⎡⎢⎢⎢⎣
1
√
2𝑥

(1)
1

√
2𝑥

(1)
2

√
2𝑥

(1)
1 𝑥

(1)
2 (𝑥

(1)
1 )2 (𝑥

(1)
2 )2

...
...

1
√
2𝑥

(𝑛)
1

√
2𝑥

(𝑛)
2

√
2𝑥

(𝑛)
1 𝑥

(𝑛)
2 (𝑥

(𝑛)
1 )2 (𝑥

(𝑛)
2 )2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑤1

...

𝑤6

⎤⎥⎥⎥⎦
(2.27)

Eq. 2.27 shows that the proposed model is linear in the lifted feature space and

there the best fit coefficients can be obtained in direct analogy to the linear case:

𝑤 = (𝜙(𝑋)𝑇𝜙(𝑋) + 𝐼𝑑′𝜆)
−1𝜙(𝑋)𝑇𝑦 (2.28)

Note that the dimension of the inverse in eq. 2.28 is now 𝑑′ = 6, larger than the

𝑑 = 2 linear case and hence the computational cost of solving the equation is in

principle ∼ 30× larger. In general, the dimension of the lifted feature space will

grow rapidly with the dimension of the underlying features. For example, extending

general second-order polynomials to a four variable case (including all cross-terms)

leads to 16 coefficients. Fortunately, the kernel formulation proposed in eqs. 2.23–

2.24 will also apply. One can equivalently operate on the 𝑛×𝑛 kernel matrix, which

is defined for this case as:

𝐾 = 𝜙(𝑋)𝜙(𝑋)𝑇 ∈ R𝑛×𝑛 (2.29)
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𝐾𝑖,𝑗 =
⟨︀
𝜙(𝑥(𝑖)), 𝜙(𝑥(𝑗))

⟩︀
=
[︁
1
√
2𝑥

(𝑖)
1 . . . (𝑥

(𝑖)
1 )2 (𝑥

(𝑖)
2 )2

]︁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2𝑥

(𝑗)
1

...

(𝑥
(𝑗)
1 )2

(𝑥
(𝑗)
2 )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.30)

Again, the kernel matrix elements are inner products, but in the transformed space

instead of the underlying features. As eqs. 2.23–2.24 apply, the number of parameters

in the kernel version of the regression problem and the dimension of the matrix that

needs to be inverted is only 𝑛, the number of training points, regardless of the

dimension of the feature transform. This is useful if the computation of these inner

products is straightforward and of low computational cost. Fortunately, this is often

the case – for a quadratic model, the have the following expression is available for

the kernel271:

𝐾𝑖,𝑗 =
(︀
(𝑥(1))𝑇𝑥(2) + 1

)︀2
(2.31)

By using this expression to form the kernel, one can calculate all the terms needed

for the regression problem using only vector products in the dimension of the original

features (in this case 2) and solve it using eqs. 2.23–2.24 . This means that calculating

and inverting the kernel matrix scales with the number training points as 𝑛3, but

does not scale with the dimension of our transformed feature space, as long as the

kernel can be efficiently. These concepts lead to one of the best-developed and

understood branches of machine learning: the study of reproducing kernel Hilbert

spaces (RKHSs)271. Hilbert spaces are spaces of functions, and the theory underlying

kernel methods is thus very general272,273, applying to problems posed in the space of
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both functions and finite collections of transforms such as the quadratic polynomials

and even infinite expansions of such basis functions.

Notice that the variable transform introduced above is characterized completely by its

kernel function, eq. 2.30. This function defines data similarity as the inner product

in the transformed space. Reversing this observation, if a metric to define similarity

is available, the explicit transformation can be bypassed by selecting a kernel 𝑘 :

R𝑑×R𝑑 → R = ⟨𝜙, 𝜙⟩ without ever explicitly considering the transformation function
𝑥→ 𝜙(𝑥). One natural question is whether any function can be the kernel, and the

theoretical requirements for kernels are given in Mercer’s theorem273. In general seek

to formulate kernel functions that satisfy the following, slightly stricter criteria271:

1. The function must be non-negative and symmetric: 𝑘(𝑥′, 𝑥) = 𝑘(𝑥, 𝑥′) ≥ 0 for

all inputs.

2. The kernel must be positive definite, that is
∑︀𝑛

𝑖=1

∑︀𝑛
𝑗=1 𝑘(𝑥

(𝑖), 𝑥(𝑗))𝑐𝑖𝑐𝑗 ≥ 0 for

all possible sets of 𝑛 training data 𝑥(𝑖), 𝑥(𝑗) and real coefficients 𝑐𝑖, 𝑐𝑗

These requirements are a direct consequence of the kernel needing to correspond

to an inner product in the transformed space. One can select a suitable function

to be the definition of similarity, even if the corresponding feature transform, 𝜙, is

not known. This simplifies the machine learning task because determining the most

suitable transform in high dimensions is challenging, whereas quantifying similarity

between points can be more straightforward. To be concrete, general kernel ridge
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regression (KRR) models can be formulated as:

min
𝑤

𝑛∑︁
𝑖=1

(︀
𝑦(𝑖) − 𝑦KRR(𝑥

(𝑖))
)︀2

+ 𝜆 ‖𝑤‖2 (2.32)

where 𝑦KRR(𝑥
(𝑖)) =

𝑑′∑︁
𝑗=1

𝑤𝑗𝜙𝑗(𝑥
(𝑖)) =

𝑛∑︁
𝑘=1

𝑎𝑘𝑘(𝑥
(𝑘), 𝑥(𝑖)) (2.33)

One can always express the optimal solution to the regression problem as a sum

over 𝑛 coefficients 𝑎, i.e., one per training point, instead of 𝑑′ coefficients 𝑤, i.e.,

one per transformed dimension, even in the case where there are infinitely many

basis functions. This result is known as the Representer Theorem272 and is a direct

consequence of the properties of Hilbert spaces*. The key idea is that the minimizer

of the training error can be expressed as a function of the training points only and

an orthogonal component, and the presence of the regularization term in eq. 2.32

ensures that this orthogonal term increase the regularization penalty while not de-

creasing the loss function value.

Having outlined the theory of KRR, we now turn to the practical question of se-

lecting kernel functions. The most obvious idea is to base kernels on the geometric

distance between points in their feature space,
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦2
2
. This type of translation

invariant kernel ensures that that only the relative similarity between inputs mat-

ters. However, using the raw distance would not make a reasonable kernel because

it would assign nearly equal points no similarity (
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦2
2
≈ 0) while far away

points would have large kernel terms. Therefore, a family of kernels can be obtained

by taking the negative exponent of the pairwise distance, giving the Gaussian or

*for a recent, general proof see Ref.272
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radial basis function (RBF) kernel:

𝐾𝑖,𝑗 = exp
(︁
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦2
2

)︁
= exp

(︃
−𝛾

𝑑∑︁
𝑘=1

(︁
𝑥
(𝑖)
𝑘 − 𝑥

(𝑗)
𝑘

)︁2)︃
(2.34)

𝑦(𝑥*) =
∑︀𝑛

𝑖=1 𝑎𝑖𝑘(𝑥
(𝑖), 𝑥*)

𝑥1

𝑥2 x*

x(1)

x(2)

x(3)

linear kernel

𝑘(𝑥(𝑖), 𝑥*) =
⟨︀
𝑥(𝑖), 𝑥*⟩︀

𝑥1

𝑥2

Gaussian kernel

x*

x(1)

x(2)

x(3)

𝑘(𝑥(𝑖), 𝑥*) = exp
(︁
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥*

⃦⃦2
2

)︁

Figure 2-11: Comparison of linear and Gaussian kernel similarity in a function of two input
dimensions (𝑥1, 𝑥2) evaluated at a new point 𝑥*: the linear kernel (left) considered the
inner product between 𝑥* and the training points 𝑥(1−3) while the Gaussian kernel (right)
considers a decaying exponential of the Euclidean distance between 𝑥* and the training
points 𝑥(1−3), illustrated as a fading blue region of influence. Kernel expressions and the
overall regression equation are given above.

In comparison with the linear kernel function, pairwise similarity in this case is

simply an exponentially decaying function of the distance between each point. The

prediction of new points is taken as a linear function of these pairwise distance-based

similarities (Figure 2-11). Note that this kernel depends on one hyperparameter,

𝛾 > 0, referred to as the inverse correlation length, which controls how quickly the
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similarity function decays as the distance between points increases. Large values of

𝛾 correspond to rapid decay and very ‘local’ influence in feature space, while small

values of 𝛾 correspond to long-range interactions.

It is useful to examine what nonlinear feature map, 𝜙(𝑋), underlies the kernel in

eq. 2.34. For this case, the underlying feature map is given by the Taylor series

expansion of the exponential function, shown for 𝑥 ∈ R for simplicity:

𝜙(𝑥) = 𝑒−𝛾𝑥2
[︁
1
√︁

2𝛾
1!
𝑥
√︁

22𝛾2

2!
𝑥2

√︁
23𝛾3

3!
𝑥3 · · ·

]︁
Therefore, performing KRR with this kernel is equivalent to linear regression in this

functional space. Many other choices of one-hyperparameter kernel function are pos-

sible (Table 2.1). Generally, the different kernels can be distinguished by how quickly

they decay with respect to the distance between points, and it is difficult to infer

which kernel to use a-priori. In practice, it is best to test a number of kernels and

select the best through cross-validation. In practical chemical applications79,274, eq.

2.34 is often preferred.

Table 2.1: Some commonly used kernels their hyperparameters

Name Expression

Gaussian/RBF 𝑘(𝑥(𝑖), 𝑥(𝑗)) = exp
(︁
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦2
2

)︁
Exponential 𝑘(𝑥(𝑖), 𝑥(𝑗)) = exp

(︀
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦
2

)︀
Laplacian 𝑘(𝑥(𝑖), 𝑥(𝑗)) = exp

(︀
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦
1

)︀
Matérn 3/2 𝑘(𝑥(𝑖), 𝑥(𝑗)) =

(︀
1 + 𝛾

⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦
2

)︀
exp

(︀
−𝛾
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦
2

)︀
The primary difficulty and computational expense incurred when training KRR mod-

els is therefore rigorous hyperparameter selection. Selecting the wrong hyperparam-
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eters can have a large impact on model performance. A typical supervised learning

task using a one-parameter kernel from Table 2.1 involves selecting two hyperparam-

eters, the kernel length scale, 𝛾, and the regularization strength, 𝜆. Both of these

hyperparameters can be thought of in terms of tuning the smoothness of the func-

tion. As 𝛾 becomes large, the support of the kernel function around each data point

becomes narrower and the fitting function sharper or higher frequency. Taking large

values of 𝜆 biases towards smooth functions.
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Figure 2-12: Comparison of fitting the function 𝑦 = sin(𝜋𝑥) based on 8 points uniformly
sampled in [0, 1] with measurement noise 𝒩 (0, 0.152) using KRR with a Gaussian kernel.
Hyperparameter estimation by 2D grid search (left) shows complicated dependence of the
leave-one-out cross validation (CV) error as a function of 𝛾 and 𝜆. The optimal values,
𝛾 = 0.28 and 𝜆 = 8.6 × 10−5 are shown as a green circle, while an example of a too-high
value of 𝛾 = 102.5 is shown as a red diamond while a too-high value of 𝜆 = 10 is shown as
blue square. The result on the predicted function for these hyperparameters is shown with
lines in corresponding colors (right). Sampled points are shown in black, with the ground
truth shown with a gray line.

These effects may be explored by considering what happens to eq. 2.34 as 𝛾 becomes

very large. Then, all off-diagonal entries of the kernel matrix will decay to zero,
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giving 𝐾 ≈ 𝐼. Applying this to eqs. 2.23–2.24 in limit of large 𝛾 gives:

𝑦(𝑋) = 𝐾𝑎 = 𝐼𝑛(𝐼𝑛 + 𝐼𝑛𝜆)
−1𝑦 =

⎡⎢⎢⎢⎣
𝑦1
1+𝜆
...
𝑦𝑛
1+𝜆

⎤⎥⎥⎥⎦

Therefore, this will return the training data 𝑦 exactly for small 𝜆. It is also clear that

including the regularization parameter will worsen our fit to training data. What

about the predictions on a new point? Consider that the vector 𝐾(𝑋, 𝑥*) ≈ 0 for

large enough 𝛾 if 𝑥* is not in the training set. Then, we see that the prediction for

out of sample points will be zero:

𝑦(𝑥*) = 𝐾(𝑋, 𝑥*)𝑎 =

⎡⎢⎢⎢⎣
𝐾(𝑥(1), 𝑥*)

...

𝐾(𝑥(𝑛), 𝑥*)

⎤⎥⎥⎥⎦ 𝑎 = 0

If the out-of-sample data is scaled by the training data average, the net result will

be that we will make the average training prediction, 𝑦, for all out-of-sample points.

For the large 𝜆 limit, one can neglect the kernel term in eqs. 2.23–2.24, leading to:

𝑦(𝑋) = 𝐾𝑎 = 𝐾(𝐼𝑛𝜆)
−1𝑦 = 𝐾

⎡⎢⎢⎢⎣
𝑦1
𝜆
...
𝑦𝑛
𝜆

⎤⎥⎥⎥⎦ = 0

In this limit, the training predictions are zero or the average if the data has been
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scaled. Since in this case, coefficients 𝑎 are also zero, the predictions on any out-of-

sample point will also be zero. Therefore, both hyperparameter limits give the same

out-of-sample predictions but for distinct reasons (Figure 2-12). The high 𝛾 model

is a corrugated surface, rising up to meet each training point and falling away just

as quickly to zero in between them. The high 𝜆 model is flat everywhere and very

smooth. Since the two hyperparameters are coupled, they must be chosen simulta-

neously. A standard approach would be to conduct a two-dimensional grid search

cross-validation scheme, evaluating all combinations for a range of 𝜆 and 𝛾 values.

KRR models have also seen widespread application to predictions of energies and

various electronic and orbital properties79,212,251,275,276, electron densities277 and cat-

alytic properties for heterogeneous278 and homogeneous279 systems based on struc-

tural molecular descriptors. Many of these examples use relatively small numbers of

training examples (≤ 104 observations), especially compared to ANN models trained

for similar purposes, which suggests KRR methods are a good choice for applications

with more limited data. Another promising application of KRR methods is in ‘Δ’-

learning137, where predictions at a cheap level of theory (for example, Hartree-Fock)

are ‘corrected’ to match results from more expensive simulations (such as correlated

wavefunction theory methods). Owing to their transparent dependence on pairwise

distances in the feature space, KRR models retain a degree of interpretability that

is lacking from, for example, neural networks. This property, as well as the relative

speed of training and good accuracy, helps explain the popularity of kernel-based

methods. Accuracy of kernel-based models may meet or exceed that of neural net-

works in some cases79,212,280, meaning they should not be overlooked based on the

popularity of deep learning. While most applications use the Gaussian kernel, Lapa-

cian79 and Matern261 kernels (as in Table 2.1) have been reported to offer superior

performance in some applications. One drawback to KRR methods is that calculat-

82



ing the best-fit coefficients for eq. 2.24 involves inverting a matrix with dimension

equal to the square of the number of training points, and even making predictions

once trained requires calculating the kernel function between the new point and all

training data. Thus, these methods do not scale well as the number training exam-

ples becomes large (though they have been routinely applied to ∼ 104 examples).

Recent work281 has attempted to address this issue by fragmenting organic molecules

into local environments that generalize with fewer (100s–1000s) training examples.

Gaussian process regression

Gaussian process regression (GPR) provides an alternative theoretical basis for pre-

ceding discussion of kernel methods. GPR produces similar predictive model forms

but via distinct reasoning. Similar to KRR, the literature and interpretation of GPR

is rich, and a detailed theoretical review is given in Ref.282. For completeness, GPR

is briefly reviewed here in relation to the previous KRR framework.

Within the Gaussian processs (GPs) framework, one models the data-generating pro-

cess as a probabilistic relationship between inputs 𝑋 and outputs 𝑦. The probability

distribution of the output variable(s) can be determined based on the set of accumu-

lated observations and conditioned on observing specific a new input, 𝑥*. A Gaussian

process is defined as a collection of random variables where any finite subset has a

joint Gaussian distribution, which we assume to have a zero mean. Modeling the

regression function as a stationary Gaussian process yields:

𝑦GP(𝑥) ∼ 𝒩 (0, 𝑘(𝑥, 𝑥′)) (2.35)
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The function value at a given position is related to the evaluation at all other inputs

by a covariance function, 𝑘(𝑥, 𝑥′). Covariance functions can be selected using the

same criteria as for the kernels. While the Gaussian kernel is a popular choice, this

is not required or implied for it be a Gaussian process and specifying this covariance

function completely defines the GP. When it comes to the regression task, one aims

to determine the distribution around a given new point, 𝑥*, based on the training

data 𝑋 and 𝑦. Their joint distribution may be written as follows282:⎡⎣𝑦GP(𝑋)

𝑦GP(𝑥
*)

⎤⎦ ∼
⎡⎣𝐾(𝑋,𝑋) 𝐾(𝑋, 𝑥*)

𝐾(𝑥*, 𝑋) 𝐾(𝑥*, 𝑥*)

⎤⎦
It is also standard to interpret the observations 𝑋 as having some inherent noise 𝜎2.

For such a case, one replaces the self-interaction kernel, that is the diagonal elements

of the kernel matrix, with 𝐾(𝑋,𝑋) + 𝐼𝜎2. The GP need not exactly interpolate

the previous observations, thus improving numerical stability in the same manner

as ridge regression in KRR. Through manipulation of the above expression for the

conditional distribution, where 𝐾 = 𝐾(𝑋,𝑋), one can show:

𝑝 (𝑦GP(𝑥
*)|𝑋, 𝑦) = 𝒩

(︁
𝐾
(︀
𝐾 + 𝐼𝜎2

)︀−1
𝑦,𝐾(𝑥*, 𝑥*)−𝐾(𝑋,𝑥*)

(︀
𝐾 + 𝐼𝜎2

)︀−1
𝐾(𝑋,𝑥*)

)︁
(2.36)

84



-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ

ground truth

measured data

predicted mean

Figure 2-13: Fitting the function 𝑦 = sin(𝜋𝑥) based on 8 points uniformly sampled in [0, 1]
with measurement noise 𝒩 (0, 0.152) using a GP with a Gaussian kernel and hyperparam-
eters estimated as per Figure 2-12. The mean predicted value is shown as a dashed green
line with the shaded region representing one standard deviation above and below the mean.
Sampled points are shown in black with the ground truth shown with a gray line.

This expression enables prediction of the average and most likely value for the func-

tion at 𝑥*, given by 𝐾 (𝐾 + 𝐼𝜎2)
−1

𝑦. Setting 𝑎 = (𝐾 + 𝐼𝜎2)
−1

𝑦 and identifying

𝜎2 = 𝜆, we also recover the original KRR expressions, eqs. (2.23–2.24). Thus, one

obtains the same prediction for the same choice of kernel from the GP mean value,

although with a slightly different interpretation.

The key advantage of the GPR approach is that eq. 2.36 gives not only a point value

prediction but a distribution of possible values for the function at each new point,

meaning that the GP comes with built-in estimates of system-specific uncertainty,

with larger variance predicted for points with which the model is least certain. This

predicted uncertainty, given by the variance in eq. 2.36, is a direct function of the

pairwise distance between a new point and the training data (Figure 2-13). Note that

this variance goes to zero if 𝑥* = 𝑋 and 𝜎2 is small, meaning that the uncertainty

at the training points goes zero (or at least to 𝜎2).

This built-in uncertainty estimate makes GPs a popular tool for optimization or ex-
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ploration problems where data-driven decisions need to be made about which new

points to simulate.

Another advantage of the GP probabilistic framework is that the likelihood of observ-

ing the training data for a fixed set of hyperparameters can be explicitly computed.

This gives another metric for how well the proposed model represents that data.

Since this probability can be obtained as an analytic, differentiable function of the

hyperparameter, one may choose hyperparameters by maximizing this probability

directly rather than relying on the validation-set strategies discussed earlier. In

practice, such an optimization typically suffers from multiple local minima, and so,

if attempted, should be carried out multiple times with distinct initial guesses282.

Kernel models in the guise of GPs have also been widely applied to chemical ap-

plications. One notable example are so-called Gaussian approximation potentialss

(GAPs)78,255. These are a class of GPs that utilize a custom kernel similarity defini-

tion based on 3D geometry to recreate the potential energy surfaces of DFT simula-

tions. GAPs have been used to create low-cost, accurate potentials for various bulk

and atomic systems226,283–285, exploiting the built-in uncertainty estimates to decide

when new simulations are needed for a particular atomic configuration. GPs have

also been used to accelerate geometry optimizations directly286, to predict dispersion

interactions287, correlation energies261 and reaction outcomes288, and to interpolate

between levels of theory for band-gap predictions236. Generally the GPR framework

is invoked when it is desirable to use the ML model to recommend to data points to

acquire, or to track model uncertainty.
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Neural Networks

Artificial neural networks are a type of regression and classification models with sig-

nificant contemporary popularity but a long history, first developed in the 1960s289–291.

Their simpler predecessor called the perceptron, was introduced292 in the 1950s, and

the development of the original, underlying theories293–295 can be traced back to the

1940s. ANNs are so-named because they were initially conceptualized as a model of

how neurons in the brain communicate by collecting input signals from other neurons

and propagating this signal to other neurons. A detailed history of the development

of ANNs is provided in Ref.289. d ANNs are best thought of as a flexible class of

non-linear models that can have billions of parameters296 and still remain efficient

to train. There has been a renewed interest in both chemistry and beyond in ANNs

models, driven in part by the excellent progress obtained in some benchmarks30.

Alexnet297, an ANN developed in 2012, achieved state-of-the-art performance on the

1000-class ImageNet Large-Scale Visual Recognition Challenge298, beating the pre-

vious best known model by 60% and revolutionizing the field of computer vision.

ANN models also exceeded the performance of other models for natural language

processing with long short-term memory (LSTM) layers299,300. These advances were

due to both algorithmic improvements, i.e. convolutional and long-term short-term

memory (LTSM) layers, as well as increased computational power through the use

of graphics processing units (GPUs) that made it possible for larger networks to

be trained289,301.These developments in ANN architectures led to increasing interest

in the chemistry community302. The simplest model of an ANN is the multi-layer

perceptron. A multi-layer perceptron (MLP) is a series of transformations from one

vector space to another. Each one of these transforms is called a neuron or node, and

the basic model of a node is as follows303: the node calculates a weighted sum over
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the input vector, combining elements of the feature space, 𝑥𝑖 with unique weights, 𝑤𝑖

(Figure 2-14). The output of an idealized neuron209 is zero unless the total computed

sum exceeds a certain threshold, at which point the node ‘turns on’ and propagates

a signal downstream.

𝑥1

𝑥2

𝑥3

𝜎

𝑏

𝑤1

𝑤2

𝑤3

𝜎
(︀∑︀3

𝑖=1𝑤𝑖𝑥𝑖 + 𝑏
)︀

Figure 2-14: Diagram of a single neuron, showing a combination of inputs 𝑥𝑖, weighted by
weights 𝑤𝑖, and a possible bias term 𝑏. The output of the neuron is given by passing the
summation to the activation function, 𝜎. Parameters of the model that can be learned to
change the output are indicated in blue.

This non-linear response is governed by an activation function 𝜎, which receives the

weighted sum of inputs 𝑤𝑖𝑥𝑖 and a possible bias term 𝑏 as inputs. Originally, non-

differentiable step function were used to mimic biology209. These non-smooth func-

tions were replaced with smooth approximations such as the sigmoid or hyperbolic

tangent functions (Figure 2-15). Recently, these functions have been supplanted30

by so-called rectified linear units (ReLUs)304, which have the following form:

𝜎
(︁∑︁

𝑤𝑖𝑥𝑖 + 𝑏
)︁
=

⎧⎪⎨⎪⎩0
∑︀

𝑤𝑖𝑥𝑖 + 𝑏 ≤ 0∑︀
𝑤𝑖𝑥𝑖 + 𝑏

∑︀
𝑤𝑖𝑥𝑖 + 𝑏 > 0

(2.37)
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This shift to ReLU-like functions has been motivated mainly by the lower computa-

tional cost of evaluating the ReLU function and its derivatives, especially in modern

‘deep learning’ where a great many activation functions are used305 simultaneously.

Only the activation function can make the neural network become non-linear, and if

a linear activation function with 𝜎(𝑥) ∝ 𝑥 were to be used, the entire MLP model

would collapse to MLR. However, the incorporation of non-linearities in the activa-

tion function makes MLPs extremely flexible, powerful regression functions. Output

of nodes is control by changing the input weights 𝑤𝑖 and bias term 𝑏 (blue labels in

Figure 2-14). The derivative of the node output with respect to any of the weights

can be obtained by:

𝜕𝜎 (
∑︀

𝑤𝑖𝑥𝑖 + 𝑏)

𝜕𝑤𝑖

= 𝑥𝑖𝜎
′
(︁∑︁

𝑤𝑖𝑥𝑖 + 𝑏
)︁

(2.38)
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Figure 2-15: Activation functions for neural networks, showing initially-proposed step func-
tion (black) and approximations hyperbolic tangent (tanh, blue) and rectified linear (ReLU,
red) functions.

However, the capacity of a single neuron are fairly limited, so many such nodes are
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grouped together into a layer, and many such layers are grouped into a network (Fig-

ure 2-16). The input representation, I, is passed into multiple layers of nodes, called

hidden layers because their output is not directly observed, denoted with an H. Net-

works with more than one hidden layer209 are called deep neural networks (DNNs),

although in practice this is usually implies a large289 number of layers. DNNs such as

ResNet306 have hundreds of hidden convolutional layers. Each hidden layer in simple

MLP consists of multiple nodes that all receive the same input signals, although each

neuron has its own vector of input weights, denoted 𝑤
[𝑙]
𝑖,𝑗 for the weight of input 𝑖 to

hidden node 𝐻 [𝑙+1]
𝑗 at layer 𝑙+1. To avoid confusion with indices of the vector, given

by subscripts, and different training examples, indicated with superscript parenthe-

sis, (𝑖), we use superscripts with brackets, [𝑙], to refer to the sequence of layers in

the network. The output of each hidden node in layer (𝑙 − 1) is used as the input

for all of the nodes in layer 𝑙. The MLP model is also called a fully connected network.
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Figure 2-16: Overview of a multilayer perceptron model, showing how three input nodes,
I, connect to two layers of four hidden nodes, H, and a scalar output node O. One possible
pathway through the network passing through node 𝐻

[1]
2 , and the associated learnable

weights, 𝑤, is highlighted in blue. Other pathways through the other hidden nodes in layer
one are shown in gray. The dimensions of the representation at each stage are is shown
below the nodes: 𝑥 for the feature space and 𝑧[1] and 𝑧[2] for the two latent representations.

The collection of outputs from all the nodes in layer 𝑙 the latent state, 𝑧[𝑙]. The latent

state is a vector space of the dimension of the number of nodes in layer 𝑙, and the neu-

ral network as a whole can be understood as a mapping from the input, 𝑥, through

a series of learned latent representations 𝑥 ↦→ 𝑧[1] ↦→ 𝑧[2] . . . ↦→ 𝑦. The final output of

the network is constructed from a linear combination of the outputs of the final layer,

meaning that there is an additional set of weights that convert the the final latent

space to the output (𝑤[2]
𝑖,𝑜 in Figure 2-16).Because the relationship between the final

latent space and the output is a linear one, inspecting how the latent representation

of an input (i.e., molecule or data) varies for different inputs provides insight into

how the ANN operates. Latent representations have been exploited for interpolation

in the model space between molecules228, and to enrich data sets optimally307.
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By combining a large number of nodes, highly non-linear models can be constructed.

The number of parameters for a fully-connected network of 𝐿 layers, each with 𝑁

nodes, a single scalar output, and a 𝑑-dimensional input is 𝒪(𝑁2𝐿+𝑑𝑁). The num-

ber of layers should in principal be selected based on fit to validation data, though

in practice small changes to the number of nodes has limited effect. Typical imple-

mentations24,79,143,213,308,309 of MLP in chemistry use 50–500 nodes per layer and ≤ 3

layers, corresponding to around 104–105 parameters.

Multiple output nodes can be used to predict multiple properties from the same

latent representation using a multi-task ANN. By predicting multiple properties

simultaneously, for example dipole moments and energies253,310, multi-task ANNs

increase utility and can sometimes show improved performance over multiple, single-

task models as in the DeepTox311 multi-task ANN which predicts binding affinity of

drug-like molecules to 12 types of receptors.

Fortunately, the required derivatives for all internal weights can be obtained in a

straighfoward, analytical manner using the chain rule. The resulting expressions are

simplest for the final layer and increase in complexity as the derivatives propagate

back through the network. Thus, the gradient calculation should start at the final

layer and move progressively back through the network, reusing already calculated

terms. However, derivatives for the weights at layer 𝑙 depend on the hidden state

variables at early layers 𝑧[𝑙−1] . . . 𝑧[1]. Therefore, during training, the states and out-

puts of the network are calculated in a forward pass by inputting the features of

the training data to enable the loss function to be calculated. Then, the gradients

of the loss function with respect to the weights are calculated in a backwards pass

from the final layer to the input and used to update the weights. This process is

known as back propagation and is critical to the efficiency of modern neural network

training303.
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In principle any numerical optimization procedure could be applied to update the

weights of the ANN to minimize the loss function, but by far the most common30,303

in practice is stochastic minibatch gradient descent. The basic idea is to update the

weights of the network iteratively by taking a step of length 𝛼, commonly known as

the learning rate, in the negative direction of the loss function:

𝑤[𝑡+1] = 𝑤[𝑡] − 𝛼
∑︁

𝑖∈batch

∇ℒ𝑤(𝑥𝑖, 𝑤
[𝑡]) (2.39)

The dependence on only ∇ℒ, instead of second or higher derivatives, is important

since higher derivatives are not as readily computed. This algorithm follows the

gradient of the loss function in a descent direction, ∇ℒ𝑤(𝑋,𝑤𝑖), calculated at the

current weights and summed over a randomly-sampled subset of the data in each

step312,313, called a batch. The size of the batch can range from a single observation,

called stochastic gradient descent (SGD), to the full data set, which is ordinary gra-

dient descent. A full pass through all the batches is called one epoch.

The use of batches serves two purposes: firstly, loading all examples into memory

can become a bottleneck in model training when using very large data sets or large-

footprint inputs, for example high-resolution images297, which can be mitigated by

using a series of smaller batches. Secondly, since the optimization problem is not

convex303,312, gradient descent can only find local minima. Since the number of pa-

rameters in the model is often extremely large, and the model is highly nonlinear,

the optimization landscape is generally very challenging and local minima and sad-

dle points occur frequently. The number of local minima can be expected to grow

exponentially with the dimension314 and the number of saddle points may be even

larger315. The use random batches introduces noise into the optimization procedure

and can allow the model to escape locally minima. Generally, the larger the batch
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size, the smoother the optimization and the faster it will converge but the more sus-

ceptible the procedure is to getting stuck in unproductive minima.

The selection of the learning rate, 𝛼, can have a significant effect on the stability of

the training process and the quality of the final model305. The learning rate is often

decreased during training time313 using learning rate decay, which helps the model

optimization process travel quickly to productive regions in the initial steps and then

fine-tune the estimates with smaller stepsizes later. While eq. 2.39 is the underlying

method, modern optimizers for ANN training such as Adam316 (a portmanteau of

‘adaptive moments’) and AdaDelta317 make use of these and other enhancements to

offer better performance in comparison to raw SGD.

Fully-connected layers are only one of the possible types of neural network models.

Alternative layers leading to distinct architectures303 have been proposed. Convo-

lutional neural network (CNN) layers are a type of ANN layer that encodes spatial

invariance and reduces the number of free parameters in the model. Originally pro-

posed in analogy to the visual cortex in the 1980s in a model known as the neocog-

nitron318, CNNs gained prominence in image recognition tasks319,320. CNNs have

spurred some of the increased interest in deep learning from the early 2010s by pow-

ering record-setting image classification models such as AlexNet297 and ResNet306.

The CNN uses convolutional filters to extract predictive information from a raw in-

put. A convolutional filter is comprised of a small receptive field that is repeatedly

applied to different parts of the input, a process called convolution. In an image

context, a block of the image at a time is fed into a small MLP, until the process

has covered the entire image. The parameters of the filter are fixed throughout the

translation across the image (i.e., the convolution process), and therefore each filter

in a CNN applies the same operation to each sub-region. In the context of image

classification, this filter, once trained, can be interpreted as a means of detecting

94



a particular input signature (e.g. a cat’s ear) wherever it is located in the image.

Multiple filters can be defined, which detect the presence different features. Figure

2-17 shows the application of a single convolutional filter to a 2D input. The re-

ceptive field is translated across the input image, producing a scalar output each

time. Therefore, the output of each single feature is an array of reduced dimension

compared to the input.
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Figure 2-17: Illustration of a single 2D convolutional filter applied to an input array of
dimension 12 × 12 units with a zero-padding of one 1. The filter has a receptive field of
4×4 units and stride of 2 units, illustrated being applied to the blue sub-region of the input
array. The unit applies its activation function, 𝜎, to this 4 × 4 sub-region and stores the
scalar result in the corresponding unit of the output array, illustrated with a blue square.
Next, the receptive field will be translated to the right by the stride, and this is shown in
with a dashed green region, whose output will occupy the green square in the output array.
An example of what happens when the receptive field overhangs the edge of the array and
utilizes the zero padding is shown by the red dashed region, with the corresponding output
region shown with a red square.

Since CNNs explicitly encode translational invariance, they are most appropriate

for processing 2D images or 3D coordinates where an object or feature’s absolute

location is not important to the model prediction. In three dimensions, voxels or
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point-cloud data321 are used in the place of pixels, and the filters are cubes instead

of rectangles. Convolutions in 1D are also sometimes useful, for example if the dimen-

sion is time, they can be employed to detect a feature in the same way at all times,

and have been applied in analyzing medical electrocardiography data322. In chem-

istry, convolutional networks have been applied to input images or 3D geometries, for

Some examples include protein docking323, energies of atoms in planar materials324,

and the relationship between electron density and energies in orbital-free DFT143

or exchange correlation energies262. Other examples include making predictions of

molecular properties from images of 2D chemical skeleton structures325 or, alterna-

tively, converting images of 2D skeleton structures into machine-readable SMILES

strings326.

One subfamily of CNNs that is particularly relevant to chemistry is graph convo-

lutional neural networks (GCNNs)235. These are similar to standard CNNs, except

that they use the connections in the molecular graph (i.e., chemical bonds) to define

proximity rather than 2D or 3D space. While in an image convolution, nearby pixels

are assessed by the same filter, in a GCNN, atoms that are connected or near each

other in the molecular graph that are treated together. GCNNs assign a ‘fingerprint’

vector to each atom235,327 and this fingerprint is then updated by comparing it with

all the atoms bonded to it, and the process is repeated multiple times. It is a convolu-

tion because the same operation is applied to all atoms in the molecule at each stage.

This framework of iterative updates based on graph connectivity can be more broadly

classified as a message passing neural networks (MPNNs)327, and a large number of

varieties are possible. The ‘message’ is the information that is passed to each atom

from its neighbors, a function of the neighbors’ own fingerprints. Information only

propagates one bond away per iteration. For a molecule with a longest bond path

of 𝑁 atoms, 𝑁/2 iterations of the convolutional operation are required for the most
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distant atoms to see each other and share information. Some alternative formula-

tions known as weave328 or wave329 networks attempt to address this shortcoming by

passing information more non-locally. Many extensions, for example updating bond

properties and atom properties at each step328,330 or treating molecules as directed

graphs in which each bond has a start and end atom81,331 have been attempted.

Crystalline systems can be handled by considering periodic versions of the molecular

graph80. Geometric information can be included through edge features or incorpo-

rating additional bond types for non-covalent interactions332. Another related class

of models uses 3D distances in place of graph bonding information, and so these

models pass information between regions of 3D space centered on atoms instead but

have similar update functions based on the state of their neighbors. Some examples

of this approach are continuous filter convolutions in SchNet27,211, the Hierarchically

Interacting Particle Neural Network (HIP-NN)26 or the atoms-in-molecule network

(AIMNet)310.

Applying these specialized convolutional filters on the molecular graph produces a

set of atomic features for either direct use in property prediction, such as atomic

energies26,27, or to compute a representative ‘molecule fingerprint’ from all of the

atoms in the graph in conjunction with another neural network327. The molecular

fingerprint can be used as an input to a final MLP to give some of the most accurate

predictions of molecular properties28,81,310 to date, or to predict reaction sites and

outcomes229.

Neural networks also support some unique types of modeling that have garnered

substantial interest333, such as is that of generative modeling. The principle goal

of generative modeling is not to assign values to previously unknown input samples

but rather to generate new inputs that are similar and yet still distinct from the

original inputs303 (Figure 2-18). The model should ‘imagine’ new samples that are
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diverse and representative of the original data. In chemistry, this would correspond

to the generation of new molecules, based on but distinct from existing sets that

largely follow the chemical rules implicitly encoded in the source data. In theory,

such models could enable significant augmentation of such databases.

𝑥(𝑖) 𝑓(𝑥(𝑖))
representation

learning
regression𝑧(𝑖)(𝑥(𝑖))

latent space

𝑧(𝑖) ∼ 𝒩
generative

model
𝑥̃(𝑖)(𝑧(𝑖))

Predictive modeling:

Generative modeling:

Figure 2-18: Comparison between predictive (top) and generative (bottom) modeling ap-
proaches. In predictive modeling, the learned function maps from the input 𝑥(𝑖) to the
output 𝑓(𝑥(𝑖)) through the latent representation 𝑧(𝑖). By contrast, generative modeling
attempts to map a (usually Gaussian) distribution of vectors in latent space, 𝑧(𝑖) ∼ 𝒩 ,
to a distribution of synthetic inputs 𝑥̃(𝑖)(𝑧(𝑖))), such that these synthetic inputs should be
indistinguishable from samples from the original data distribution.

There are two primary types of generative model: variational autoencoders (VAEs)

and generative adversarial networks (GANs). These two types differ primarily in how

the generative model is trained, but, once trained, both models function similarly.

The trained generative model takes in samples from a random latent variable, which

is almost always drawn from a Gaussian distribution303,334. The mean and covariance

are learned during training in VAEs, but are typically set at the outset when using

GANs. This use of random variables is essential to ensure that each time the model
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is called it will generate distinct output. The generative model can be interpreted

as a mapping between a distribution over the latent space to a distribution over the

space of real input data. The sampled latent vectors are passed through a neural

network model that outputs vectors that imitate the distribution of the ‘real’ data

as closely as possible303, extracting syntactic meaning from variations in the latent

vector and reconstructing real data (Figure 2-18).

VAEs are related to a simpler class of models called autoencoders. A standard au-

toencoder consist of an encoder, which is a neural network that maps the inputs

to a latent vector, just like a standard ANN. However, this encoder is followed by

another neural network that acts as a decoder and converts points from the latent

space back into their input format303. During training, the loss function is set as

the difference between the original data points and the reconstructed data 𝑥̃. This

approach creates low-dimensional latent representation that can be used to interpret

high-dimensional data more readily. Autoencoders have been used in chemistry to

cluster molecular dynamics trajectories335,336 and extract collective variables.

The VAE also consists of an encoder, but this encoder maps the inputs to parame-

ters of the latent space distribution instead of the latent vectors directly. In practice,

the mapping is to the mean and variance or covariance of a normal distribution,

which sampled to generate latent points that are passed to the decoder. In order

to train the model, real inputs are fed to the encoder network, and the resulting

latent distribution is sampled and used to generate a distribution of synthetic data.

This distribution is scored by how similar it is to the original distribution, and the

gradient of this loss function can be used to update the network weights for both the

encoder and generator. Care must be taken in selecting a suitable metric for mea-

suring the similarity between the synthetic and original data distributions in order

encourage a diverse synthetic distribution, as opposed to perfectly reconstructing the
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input as in the standard autoencoder. The approach typically taken is to optimize

the variational lower bound on the probability of observing the original data under

the proposed distribution from the generator334,337. One advantage of autoencoders

over GANs is that any known molecule can be injected into the latent space with the

encoder, making it possible to identify paths between known molecules in the latent

space338 or to optimize molecular properties in latent space228 and to then decode

them to real molecules.

GANs are the other main type of generative model. GANs also use a decoder network,

here, called a generator, which maps samples of the latent space to elements in the

input or feature space. Unlike VAEs, there is no encoder stage, and the generator is

not trained to reproduce the existing data. Instead GANs are trained simultaneously

with a second network called the discriminator. The objective of the discriminator

is to distinguish between the synthetic samples from the generator and samples from

the original data339. The generator is trained to make the discriminator confuse its

output with the real data while the discriminator is trained to correctly distinguish

real and fake data. These two networks are trained in a stagewise, adversarial man-

ner.This simple approach can generate very convincing synthetic results, for example

realistic human faces using convolutional layers340. One issue with GANs is that the

entire synthetic data distribution can concentrate on a limited set of outputs re-

gardless of the latent space input. This is called ‘mode collapse’, and can be partly

addressed by attempting to match the distribution of the synthetic data to the real

data using the Wasserstein loss function341.

Small organic molecules have been generated either SMILES strings or as graphs with

both VAEs342–345 and GANs346–348. Both representations of molecular structures are

challenging to generate in comparison to fixed size vectors or images because the

size of the molecules can vary substantially. SMILES strings have been generated
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sequentially, with the starting character generated first and then subsequent letters

added to the string until a termination key is selected346, making use of a technique

known as policy gradient optimization349. Due to the probabilistic nature of the pro-

cess, taking the derivative of the so-called policy is not as simple as the deterministic

derivatives, but an expectation or average gradient can be calculated using multiple

samples. This approach was first demonstrated for text (in SeqGAN350) and then

adapted to yield SMILES-generating models346,347,351 in chemistry.

Generation of molecular graphs, as opposed to SMILES strings, can be realized ‘all-

at-once’ by outputting a full graph343,352 up to a maximum fixed size or by learning

step-wise construction rules344,353,354, as with the sequential assembly of SMILES.

One potential problem with generative models is the ease with which one can gen-

erate invalid structures. This issue can be resolved though enforcing grammar in

SMILES strings355,356, introducing text-based SMILES alternatives that have sim-

pler grammar357, or limiting the types of graphs that can be generated by only adding

chemically-reasonable bonds353. Generative models are usually assessed based on the

fraction of valid and unique generated molecules as well as the diversity of the gener-

ated molecules. In the case that targeted molecules have been generated, they could

also be judged on the distribution of the molecules’ targeted physical properties such

as molecular weight and solubility. Since generative modeling for chemistry is a rela-

tively new field, it is not immediately apparent which, if any, of the presented strate-

gies is best. In a comparison of SMILES-based GANs and SMILES- and graph-based

VAE, similar performance was obtained for all models358. In a comparison between

an all-at-once graph GAN and a sequence-based SMILES GAN, it was reported352

that the graph approach resulted in higher validity and better ability to steer gen-

eration towards specific properties but at the cost of a much lower uniqueness score

compared to SMILES.
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2.3 Using surrogate models for chemical design

Overview

Having reviewed both ‘physics-based’ virtual screening with first-principles methods

in Section 2.1 and data-driven surrogates in Section 2.2, we now turn to the question

of rational design or discovery. The problem of chemical design can be formulated

as an optimization problem: from the space of all possible arrangements of atoms

𝐶𝑓 , find candidates 𝑥opt that have desirable properties, as scored by a given utility

function 𝑓 which judges the suitability of a proposed candidate:

𝑥opt = arg min
𝑥∈𝐶𝑓

[−𝑓 (𝑥)] (2.40)

Some severe simplifications are necessary to address this problem:

1. The search of possible materials must be heavily constrained, by limiting the

range of possible candidates to a finite and manageable subset, 𝐶𝑓 ′ ⊂ 𝐶𝑓 , which

should still be sufficiently large to contain useful complexes. This is typically

a specific set of molecules, selected based on chemical intuition – for exam-

ple, fragments that are common in photoactive materials or pharmacologically

relevant. For the purpose of this thesis, the search space will be restricted to

transition metal complexes comprised of first-row transition metals and discrete

collections of ligands based on those commonly used in inorganic chemistry.

2. The true utility function for a new molecule is incredibly complicated, involving

a great number of dimensions – having the intended properties, stability, syn-

thetic accessibly, cost and toxicity (especially for drug candidates3). Because

of these challenges, 𝑓 must also be restrictively approximated, usually to a
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one-dimensional descriptor for high throughput virtual screening (HTVS) – for

example, the excitation energy for photoemitters34 or the energy of the d-band

center in catalysis92. Additionally, rather than experimentally determining this

property, the evaluation is carried out using either a first-principles method, or

a surrogate thereof, in the interests of being able to evaluate a larger number

of designs. This approximation introduces uncertainty into the real utility of

any proposed candidates and therefore motivates identifying as many ‘good’

candidates as possible, in the hopes that some of them will have the expected

property when evaluated at a higher level of theory or experimentally synthe-

sized. This also immediately invokes the need for uncertainty quantification,

requiring that the fidelity, both of the simulation to the physical system and

the of the data-driven surrogate to the simulation, be estimated.

3. Often, solutions to eq. 2.40 will be found iteratively, that is candidates are

proposed and evaluated, and then the results of this evaluation are used to

select future candidates. In order to be a ‘rational strategy’, the iterative

sampling proposed by the method must outperform random search359.

Computational molecular design strategies to address eq. 2.40 have been extensively

reported in the literature1; thorough reviews are given in Refs359–361. In principle,

any discrete optimization strategy could be employed to select candidates362. Where

the model for 𝑓 is affordable or the search space is small enough, direct HTVS

has been applied to a large diversity of applications, from perovskites363 and chro-

mophores17 to drugs87. Metropolis Monte Carlo strategies have also been employed

for this discrete optimization, particularly in pharmacological applications, for ex-

ample the virtual design of enzyme–inhibitor364 and protein-ligand365 interactions.

However, all of these methods are restricted by the need to perform many property
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evaluations, which become prohibitively expensive, particularly for the screening of

quantum mechanical properties and when addressing large design spaces.

Use of data-driven surrogate models can greatly improve the ratio between the num-

ber of materials screened and the number of expensive simulations or experiments

needed359,366, for example allowing for identification of photovoltaic materials from

a design space of thousands using only hundred of first-principles simulations237 or

training artificial neural network (ANN) surrogate models to predict the CO adsorp-

tion energy of one hundred bimetallic surfaces and using it to explore a much larger

space of candidates231. In drug discovery, the application of quantitative structure–

activity relationship (QSAR) methods to screening is well established112, and ap-

plications367 of deep neural network (DNN) and modern machine learning (ML)

methods are rapidly proliferating368,369. In one study, antimicrobial peptides370 were

successfully identified from a design space of around 100k candidates with ANNs

trained on only 1400 experimental observations.

These approaches are subsets of multifidelity optimization 371, because they exploit

a low-cost, less-reliable surrogate model in together with the more expensive, more

accurate physics-based simulations or experiments372,373. The basic idea of these

surrogate-based optimization routines373 is to investigate initial candidates, use these

candidates to parameterize a surrogate model, and then use this surrogate model to

explore the design space and select new candidates to investigate (Figure 2-19).

This method is classified as model adaption371 since information from the high fi-

delity model is used to correct the lower order model adaptively. A typical iteration

of such a method involves solving the optimization problem, evaluating the high-

fidelity model at the optimum, using this new evaluation to adapt the surrogate,

and then repeating the process. The cheaper model is used to explore the space

more completely and reduce the number of ‘bad’ calls to the expensive model. Since
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the surrogate model is only an approximation to the truth, this creates a competing

incentive to select new points not only on the basis of their estimated suitability in

terms of eq. 2.40 (blue circles Figure 2-19), but also their ability to enrich the surro-

gate model (regions of low confidence in Figure 2-19) – active learning374, which has

been demonstrated to drastically lower the amount of data needed to fit ML models

to chemical data375. These two objectives define a trade-off between exploitation

(i.e. improving properties) and exploration (i.e. improving surrogate confidence)372.

Chemical Design Space 𝐶𝑓

DFT + surrogate

training points

leads

varying
confidence

Figure 2-19: Schematic of surrogate-assisted virtual screening workflow representing a dis-
crete chemical design space (squares). Some limited available training data (red) is screened
using a first-principles method (DFT) and used to train a surrogate model (an ANN), which
is used to search the space for new leads to simulate next (blue circles). Decaying model
confidence far from the training data is illustrated by continuous green shading.

Many authors have highlighted the obvious synergy5,33 between modern data-driven

methods, computational chemistry and high-throughput synthesis, which has re-

cently led to experimental discovery of several new materials. Some examples include
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the most efficient, blue, organic light emitting compound34, discovered by screening a

1M complex space using an ANN and density functional theory (DFT), demonstrat-

ing an order-of-magnitude increase in the number of materials that can be assessed

relative to the examples of real physical materials discovered from ‘pure’ HTVS pre-

sented in in Section 2.1.1. Other real materials discovered using surrogate-assisted

design processes and subsequently experimentally validated include novel magnetic

materials37 from nearly 300k candidates using regression based on quantum me-

chanics (QM) descriptors and metallic glasses35 screened with random forest model

initially based on ∼ 7000 experimental compositions.

Genetic algorithms

Perhaps the most popular strategies for searching through chemical space are genetic

algorithms (GAs). Genetic or evolutionary algorithms for molecular design all follow

the same general principle. To begin with, a set of genes is assembled, where each

gene codes one choice in the discrete design space. The quality of the candidates is

assessed, and then the most fit genes are retained. In order to explore new combi-

nations14, each generation the pool is enriched by randomly changing some of the

genes (‘mutation’), meaning changing one of the connected functional groups, and by

exchanging groups between candidates (‘reproduction’). These changes can be nat-

urally mapped onto chemically-reasonable transformations, for example connection

of molecular fragments14 or functional groups376, or as text modifications directly to

SMILES strings377.

First-principles-powered GAs have been applied to challenging virtual design prob-

lems, such as finding nearly 4000 fluorophores from a design space of over 1M can-

didates at the cost of 7500 DFT calculations14 and reactive core-shell nanoparticle
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catalysts of different sizes378 were identified from spaces of thousands of candidates

at much greater efficiency than by random search. While GAs can be based on first-

principles methods only, they can naturally be accelerated by replacing expensive

function evaluations with data-driven surrogate models379.

Some early examples of molecular design with GAs and simple data-driven models

are to optimize the solubility of drug candidates380 based on QSAR models and the

polymer properties using group-additivity methods18, which both outperformed ran-

dom search strategies. A GA with a Gaussian process regression (GPR) surrogate

has recently been demonstrated381 to provide 50-fold reduction in the number of

required energy calculations (relative to a pure-DFT GA) to extract a convex hull

over a space of 1044 homotops of PtxAu147–x alloys. This thesis will apply these ideas

to aid design of spin crossover complexes (SCOs) with ANN surrogates in Chapter

5.

Another advantage of GAs is their extensiblity to multiobjective optimization382,383

and inherent parallelism. GAs have been suggested to be substantially simpler than,

and provide competitive results with generative models for optimizing solubility377.

However, genetic algorithms are limited in that they are localized and cannot ex-

plore chemical space more than one mutation from existing structures360,384 – thus

focusing on exploitation at the expense of exploration.

Probabilistic and Bayesian approaches

An alternative approach to solve eq. 2.40 with surrogate models is to account di-

rectly for uncertainty in the design process by formulating a probabilistic model of

utility of potential candidates, 𝑓(𝑥), conditioned on the previously observed values,
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𝑓(𝑋) =
{︀
𝑓(𝑥(1)), 𝑓(𝑥(2)) . . .

}︀
. In this way, a distribution 𝑝 (𝑓(𝑥)|𝐹 (𝑋), 𝑋) is pre-

dicted instead of a point estimate. This approach can account for system-specific

uncertainty naturally by having the distribution be more or less concentrated at dif-

ferent sample points 𝑥. The most common way to construct an estimate of such a

distribution is by formulating a posterior distribution over functional values using

Bayes’ rule282. Recalling Section 2.2.3, the Gaussian process regression produces

exactly such an estimate,

𝑝 (𝑓(𝑥)|𝑋, 𝑓(𝑋)) = 𝒩
(︀
𝜇(𝑥), 𝜎2(𝑥))

)︀
(2.41)

where the predictive mean and variance have been abbreviated to 𝜇(𝑥*) and 𝜎2(𝑥*)

respectively from full expressions in eq. 2.36. This construction of the surrogate

model enables the use of global acquisition functions that choose new sample points

in way that seeks out global (as opposed to local) minima. Efficient Global Opti-

mization372 (EGO) is staple of Bayesian optimization385 that makes use of Gaussian

processs (GPs) to balance optimally exploitation and exploration of the solution

space during optimization. To illustrate the method, consider an iterative minimiza-

tion problem, and denote the current minimum value of the utility function at the

best input, 𝑥*, of out currently observed inputs 𝑋, as 𝑓 * = 𝑓(𝑥*). Then improvement

can be defined as:

𝐼(𝑓) := 𝐼(𝑓(𝑥)) = max (0, 𝑓 * − 𝑓(𝑥)) (2.42)

This can be combined with eq. 2.41 to calculate the probability that a new point

will be better (i.e. lower) than 𝑓 *. Since the distribution is Gaussian, these integrals
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can be solved analytically, yielding:

𝑃 [𝐼] := 𝑃 [𝐼(𝑓) > 0] =

∫︁ ∞

−∞
1𝐼(𝑓)𝑝(𝑓 |𝑓(𝑋), 𝑋)𝑑𝑓 (2.43)

=

∫︁ 𝑓*

−∞

1√︀
2𝜋𝜎2(𝑥)

exp

(︃
− (𝑓 − 𝜇(𝑥))2

2𝜎2(𝑥)

)︃
𝑑𝑓 (2.44)

= Φ

[︂
𝑓 * − 𝜇(𝑥)

𝜎(𝑥)

]︂
(2.45)

where Φ is the cumulative standard normal distribution function and 1 is an indicator

function, i.e. 1𝑥 = 1 ⇐⇒ 𝑥 > 0, else 1𝑥 = 0. Eq. 2.45 is defined entirely as a

function the posterior GP distribution for a given input 𝑥, and could be used to choose

which points to simulate in the next iteration. However, this score is insensitive to the

magnitude of the improvement, whereas in optimization contexts such as chemical

design, a large improvement is much more desirable than a small one. The expected

value of this improvement is therefore proposed instead372,386, and is defined as:

𝐸[𝐼] := E (𝐼(𝑓)) =

∫︁ ∞

−∞
𝐼(𝑓)𝑝(𝑓 |𝑓(𝑋), 𝑋)𝑑𝑓 (2.46)

=

∫︁ 𝑓*

−∞
[𝑓 * − 𝑓(𝑥)]

1√︀
2𝜋𝜎2(𝑥)

exp

(︃
− (𝑓 − 𝜇(𝑥))2

2𝜎2(𝑥)

)︃
𝑑𝑓 (2.47)

= (𝑓 * − 𝜇 (𝑥)) Φ

(︂
𝑓 * − 𝜇 (𝑥)

𝜎 (𝑥)

)︂
+ 𝜎 (𝑥)𝜑

(︂
𝑦* − 𝑦(𝑥)

𝜎 (𝑥)

)︂
(2.48)

where 𝜑 is the standard normal distribution. The first term in eq. 2.48 corresponds

to exploitation of the model – i.e. seeking to sample points with the greatest po-

tential gains – while the second term favors exploration, i.e. seeking out regions of

the space with high variance, which corresponds in practice to regions that are far

from the previously sampled values. Using this expression as the objective for surro-

gate optimization encourages the model to visit new regions of the design space. In

109



molecular discovery applications, expected improvement strategies have been used to

search for low-energy conformers387, stable perovskites388 and crystals with targeted

melting temperatures389 in an uncertainty-aware manner.

A drawback of GP regression is that the complexity is cubic in the number of data

evaluations, as opposed to ANN models which have linear complexity390; however,

relative to the cost of DFT, which might take hours, inverting a matrix corresponding

to hundreds or thousands of observations may not be a substantial computational

cost. efficient global optimization (EGO) is also a sequential approach as described,

though modifications to generate parallel samples have been proposed391. The knowl-

edge gradient 392,393 is a more recent acquisition function in the spirit of eq. 2.48 that

seeks to maximize information content of the surrogate while accounting for cost

explicitly. Expected improvement techniques can also be extended to treat multi-

objective optimization394, and these will be applied to the problem of redox flow

batteries (RFB) design in Chapter 7.

General alternatives to expected improvement have also been proposed, most notably

Thompson sampling395. Thompson sampling can be used to conduct optimization in

the presence of model uncertainty by sampling one realization of the model param-

eters and optimizing under this belief, then repeating this process many times. It

has a stronger focus on exploitation than expected improvement, is naturally parallel

and does not depend on the structure of the posterior (i.e. non-Gaussian posteriors).

Thompson sampling has been coupled to Bayesian neural networks and applied to

chemical discovery problems, showing greater sample efficiency than EGO on some

benchmark datasets396. The Phoenics optimizer397 is an acquisition function devel-

oped especially for planning chemical discovery experiments that also claims superior

sample efficiency and stability compared to vanilla EGO.
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Continuous and generative approaches

Not all approaches to solve eq. 2.40 operate in discrete chemical space. Some prob-

lems can be cast naturally in terms of continuous variables, for example the design of

lithography targets398,399, or optimization of reaction conditions400. Converting the

discrete chemical optimization problem into optimization over a continuous vector

space has obvious advantages in terms of optimization, being amenable to gradient-

based optimization machinery, and has therefore been attempted in various guises

over many decades. An early inverse design idea401 was based on finding a wave-

function with intended properties, back-calculating a corresponding Hamiltonian and

then inverting back to molecule structure, but this was restricted to very simple

systems. Another approach402 demonstrated a shell-wise method for constructing

molecular catalysts by optimizing the number and position of nuclear charges using

gradient-based optimization, but reported difficulties in generating in inverting these

positions back to chemical space.

A similar proposal is the linear combination of atomic potentials (LCAP) method403,

which proposes casting the search in chemical space as continuous optimization over

nuclear potential functions, 𝑉 (r). Every molecular system generates a 𝑉 (r) based

on atomic types and positions, which uniquely defines all properties of the system.

However, the relationship is not surjective; it is not possible to find a unique set of

nuclei and positions that generate a given 𝑉 (r). To get around this, the method

fixes possible positions for nuclei, and then considers continuous variations in the

potential field from different atom types at these locations. Setting all coefficients

except one to zero at a given nuclear position allows recovery of real systems, while

other values of the coefficients correspond to non-physical hybrid systems that in-

terpolate between the potential maps of physical systems. This approach allows for
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fully continuous, differentiable optimization in the space of chemical configurations,

and was successfully demonstrated for a two-site system403. However, when expand-

ing to more complicated systems, the method failed due to extremely non-smooth

property response behaviors being observed for the hybrid potential fields – to the

extent that moving in the interpolated space is infeasible404. Instead, methods have

been proposed that utilize the gradients to inform search directions in a Monte Carlo

search of the discrete space405, and these methods have been demonstrated for de-

signing non-linear optical materials from fixed libraries with hundreds of thousands

of candidates21,404.

In all of these cases, the primary difficulty is mapping the continuous variable back

to a real system after the optimization is complete. Deep generative models, as

described in Section 2.2.3 (Page 98), have emerged as a promising way of address-

ing this challenge333. Additionally, generative models have the unique potential to

dispense with the need to create a human-engineered design space and are not lim-

ited to the extents of existing databases or motifs. variational autoencoders (VAEs)

are by their nature able to invert from an arbitrary coordinates in latent space to

representation of chemistry, and optimization in their learned latent space has been

shown228 to be able to design novel molecules with targeted properties such as solubil-

ity and synthetic accessibility (as judged by quantitative structure–property relation-

ship (QSPR) methods). In the case of generative adversarial networks (GANs), it is

possible to ‘steer’ the generation process toward specific regions of chemical space by

designing a ‘reward function’ that provides a higher score to generated samples that

have a desired property, as has been demonstrated by generating drug-like molecular

graphs352 and SMILES346. However, generative models to date have only been ap-

plied to generate organic molecules, where large databases already exist, and make

extensive use of tools such as RDKit76 for property prediction and validation.
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Chapter 3

Surrogate models for transition metal

complexes

Note: This chapter was originally published as “Janet, J. P., Kulik, H. J. Pre-
dicting electronic structure properties of transition metal complexes with neural
networks. Chem. Sci. 2017, 8, 5137–5152” and has been formatted for consis-
tency. Supporting information provided with the manuscript, available online at
http://www.doi.org/10.1039/C7SC01247K, has been placed in Appendix A.

Chapter summary

Direct density functional theory (DFT) simulation of inorganic materials and molec-
ular transition metal complexes is often used to describe subtle trends in inor-
ganic bonding and spin-state ordering, but these calculations are computationally
costly and properties are sensitive to the exchange–correlation functional employed.
This chapter begins to overcome these challenges by using artificial neural networks
(ANNs) to predict quantum-mechanically-derived properties, including spin-state
ordering, sensitivity to Hartree–Fock exchange, and spin-state specific bond length
variation. The ANNs are trained on a small set of heuristic inorganic-chemistry-
appropriate empirical inputs that are both maximally transferable and do not require
three-dimensional structural information for prediction. Using these descriptors,
our ANN predicts spin-state splittings of single-site transition metal complexes (i.e.,
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Cr–Ni) at arbitrary amounts of Hartree–Fock exchange to within 3 kcal/mol accuracy
of DFT calculations. Our exchange-sensitivity ANN enables improved predictions
on a diverse test set of experimentally-characterized transition metal complexes by
extrapolation from semi-local DFT to hybrid DFT. The ANN also outperforms other
machine learning models (i.e., support vector regression and kernel ridge regression),
demonstrating particularly improved performance in transferability, as measured by
prediction errors on the diverse test set. The ability to generalize to diverse com-
plexes from experimental databases is examined and heuristics are developed to
identify when a compound of interest is likely to be poorly predicted by the ANN.
The ANNs developed in this chapter provide foundation for data-driven models for
screening transition metal complexes.

3.1 Introduction

High-throughput computational screening has become a leading component of the

workflow for identifying new molecules34,406, catalysts6, and materials108. First-

principles simulation remains critical to many screening and discovery studies, but

relatively high computational cost of direct simulation limits exploration of chem-

ical space to a small fraction of feasible compounds22,90. In order to accelerate

discovery, lower levels of theory, including machine-learning models, have emerged

as alternate approaches for efficient evaluation of new candidate materials407. Ar-

tificial neural networks (ANNs) have recently found wide application in the com-

putational chemistry community254,408,409. Machine learning approaches were ini-

tially appreciated for their flexibility to fit potential energy surfaces and thus force

field models24,213,214,410–413. Broader applications have recently been explored, in-

cluding in exchange-correlation functional development260,408, general solutions to

the Schrödinger equation414, orbital free density functional theory143,415, many body

expansions416, acceleration of dynamics417–419, band-gap prediction236,420, and molec-

ular34,406 or heterogeneous catalyst231 and materials421–424 discovery, to name a few.
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Essential challenges for ANNs to replace direct calculation by first-principles methods

include the appropriate determination of broadly applicable descriptors that enable

the use of the ANN flexibly beyond molecules in the training set, e.g. for larger

molecules or for those with diverse chemistry. Indeed, the most successful applica-

tions of ANNs at this time beyond proof-of-concept demonstration in replacement

of direct first-principles simulation have been in the development of force fields for

well-defined compositions, e.g. of water215,425. Within organic chemistry, structural

descriptors such as a Coulomb matrix426 or local descriptions of the chemical en-

vironment and bonding223,427 have been useful to enable predictions of energetics

as long as a relatively narrow range of compositions is considered (e.g., C, H, N, O

compounds). These observations are consistent with previous successes in cheminfor-

matics for evaluating molecular similarity428, force field development429, quantitative

structure-activity relationships430, and group additivity431 theories. For transition

metal complexes, few force fields have been established that can capture a full range

of inorganic chemical bonding432, and the spin-state- and coordination-environment-

dependence of bonding173 suggests that more careful development of descriptors is

required to broadly predict properties of open-shell transition metal complexes. Sim-

ilarly, descriptors that worked well for organic molecules have been demonstrated

to not be suitable in inorganic crystalline materials433. It is well-known197,434,435

that there is a strong relationship between sensitivity of electronic properties (e.g.,

spin-state splitting) and the direct ligand-atom and ligand field strength436,437 in

transition-metal complexes. Since ligands with the same direct metal-bonding atom

can have substantially different ligand-field strengths (e.g., C for both weaker field

CH3CN versus strong-field CO), whereas distant substitutions (e.g., tetraphenylpor-

phyrin vs. base porphine) will have a limited effect, a transition-metal complex

descriptor set that carefully balances metal-proximal and metal-distant descriptors
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is needed.

Within transition metal chemistry and correlated, inorganic materials, a second

concern arises for the development of ANN predictions of first-principles proper-

ties. Although efficient correlated wavefunction theory methods (e.g., MP2) may be

straightforwardly applied to small organic molecules, such methods are not appropri-

ate for transition metal complexes where best practices remain an open question438.

Although promising avenues for ANNs include the mapping of lower-level theory

results, e.g. from semi-empirical theory439, to a higher-level one, as has been demon-

strated on atomization energies137 and more recently reaction barriers440, suitable

levels of theory for extrapolation are less clear in transition metal chemistry.

Additionally, uncertainty remains about the amount of exact (Hartree-Fock, HF)

exchange to include in study of transition metal complexes, with recommendations

ranging from no exchange, despite disproportionate delocalization errors in approx-

imate DFT on transition metal complexes155,436,441, to alternately low59,198,199 or

high196 amounts of exact exchange in a system-dependent manner. Indeed, there

has been much interest recently in quantifying uncertainty with respect to functional

choice in energetic predictions442–444, including through evaluation of sensitivity of

predictions with respect to inclusion of exact exchange196,197. Spin-state splitting is

particularly sensitive to exchange fraction197,434,435, making it a representative quan-

tity for which it is useful to both obtain a direct value and its sensitivity to varying

the exchange fraction. Thus, a machine-learning model that predicts spin-state or-

dering across exchange values will be useful for translating literature predictions or

providing sensitivity measures on computed data.

Overall, a demonstration of ANNs in inorganic chemistry, e.g. for efficient discovery

of new spin-crossover complexes60,44563-64, for dye-sensitizers in solar cells1665, or

for identification of reactivity of open-shell catalysts58 via rapid evaluation of spin-
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state ordering should satisfy two criteria: i) contain flexible descriptors that balance

metal-proximal and metal-distant features and ii) be able to predict spin-state order-

ing across exchange-correlation mixing. In this work, we make progress toward both

of these aims, harnessing cheminformatics-inspired transition metal-complex struc-

ture generation tools181 and established structure-functional sensitivity relationships

in transition metal complexes196,437 to train ANNs for transition metal complex prop-

erty prediction.

The outline of the rest of this work is as follows. In Section 3.2, we review the

computational details of data set generation, we discuss our variable selection pro-

cedure, and we review details of the artificial neural network trained. In Section

3.3, we provide the results and discussion on the trained neural networks for spin-

state ordering, spin-state exchange sensitivity, and bond-length prediction on both

training-set-representative complexes and diverse experimental complexes. Finally,

in Section 3.4, we provide our conclusions.

3.2 Methods

3.2.1 Test set construction and simulation details

Data set construction

Our training set consists of octahedral complexes of first-row transition metals in

common oxidation states: Cr2+/3+, Mn2+/3+, Fe2+/3+, Co2+/3+, and Ni2+. High-spin

(H) and low-spin (L) multiplicities were selected for each metal from the ground,

high-spin state of the isolated atom and the higher-energy, lowest-spin state within

5 eV that had a consistent d-orbital occupation for both states, as obtained from the

National Institute of Standards and Technology atomic spectra database446. The
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selected H-L states were: triplet-singlet for Ni2+, quartet-doublet for Co2+ and Cr3+,

quintet-singlet for Fe2+ and Co3+, quintet-triplet for Cr2+ and Mn3+, and sextet-

doublet for Mn2+ and Fe3+.

Figure 3-1: Set of ligands used to generate the transition metal complex data set. Ligands
are numbered 1-16 and colored according to the atom type that coordinates with the metal,
with chlorine in green, carbon in gray, sulfur in orange, nitrogen in blue, and oxygen in
red. Purple lines indicate the bonds formed to metal-coordinating atoms in the ligand
complexes. Abbreviations for each ligand used in the text are also shown. Full chemical
names are provided in Appendix A, Table A.3.

A set of common ligands in inorganic chemistry was chosen for variability in denticity,

rigidity, and size (nine monodentate, six bidentate, and one tetradentate in Figure

3-1 and Appendix A, Table A.1). These ligands span the spectrochemical series from

weak-field chloride (1, Cl–) to strong-field carbonyl (6, CO) along with representa-

tive intermediate-field ligands and connecting atoms, including S (2, SCN–), N (e.g.,
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9, NH3), and O (e.g., 14, acac). All possible homoleptic structures with all met-

als/oxidation states were generated from ten of these ligands (90 molecules) using

the molSimplify toolkit181 (Appendix A, Table A.2). Additional heteroleptic com-

plexes (114 molecules) were generated with molSimplify with one mono- or bidentate

axial ligand type (Lax) and an equatorial ligand type (Leq) of compatible denticity

(ligands shown in Figure 3-1, schematic shown in Figure 3-1). We also selected 35

molecules from the Cambridge Structural Database184 (Appendix A, Table A.3).

Figure 3-2: Schematic diagram of descriptors (left) as inputs to the ANN (right), along
with hidden layers, and output (e.g., spin-state splittings) layers with additive bias term in
each node omitted.

First-principles geometry optimizations

DFT gas-phase geometry optimizations were carried out using TeraChem105,447. DFT

calculations employ the B3LYP hybrid functional152,157,158 with 20% Hartree-Fock

(HF) exchange (𝑎𝐻𝐹 = 0.20) and a variant45 (𝑎𝐻𝐹 = 0.00 to 0.30 in 0.05 incre-

ments) that holds the semi-local DFT portion of exchange in a constant ratio. We

119



calculate and predict sensitivities with respect to HF exchange, 𝜕ΔH−L

𝜕𝑎𝐻𝐹
, as approx-

imated from linear fits, in units of kcal/mol.HFX-1, where 1 HFX corresponds to

varying from 0% to 100% HF exchange. B3LYP152,157,158 is chosen here due to its

widespread use and our prior experience45 with tuning it to study HF exchange

sensitivity, where we also observed45 similar behavior with other GGA hybrids, e.g.

PBE0, as long as the same HF exchange fraction was compared.

The composite basis set used consists of the LANL2DZ effective core potential172

for transition metals and the 6-31G* basis for the remaining atoms. All calculations

are spin-unrestricted with virtual and open-shell orbitals level-shifted448 by 1.0 and

0.1 eV, respectively, to aid self-consistent field (SCF) convergence to an unrestricted

solution.

For all training and test case geometry optimizations, default tolerances of 10−6

hartree for SCF energy changes between steps and a maximum gradient of 4.5×10−4

hartree/bohr were employed, as implemented in the DL-FIND interface449 with Ter-

aChem (Appendix A, Table A.4). Entropic and solvent effects that enable compari-

son to experimental spin-state splittings have been omitted, and we instead evaluate

the DFT adiabatic electronic spin state splitting, as in previous work because our

goal is to predict DFT properties and sensitivity to functional choice194,197. In high-

throughput screening efforts ongoing in our lab, entropic and solvent effects that

influence catalytic and redox properties will be considered in the future.

For each molecular structure (90 homoleptic, 114 heteroleptic) 14 geometry opti-

mizations were carried out at 7 exchange fractions (from 0.00 to 0.30) and in high-

or low- spin, for a theoretical maximum of 2856 geometry optimizations. In practice,

166 structures were excluded due to i) large spin contamination, as defined by an

expectation value of ⟨𝑆2⟩ that deviated more than 1 µB from the exact value (< 1%,

26 of 2856, see Appendix A, Table A.5), ii) dissociation in one or both spin states,
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especially of negatively charged ligands, leading to loss of octahedral coordination

(4%, 126 of 2856, see Appendix A, Table A.6), or iii) challenges associated with

obtaining a stable minimized geometry (< 1%, 14 of 2856, see Appendix A, Table

A.2). Eliminating these cases produced a final data set of 2, 690 geometry optimiza-

tions (Appendix A, Text A.1). Although these excluded cases are a fraction of our

original data set, they highlight considerations for application of the ANN in high-

throughput screening: highly negatively charged complexes should be avoided, and

single point DFT calculations should be used to confirm that a high-fitness complex

does not suffer from large ⟨𝑆2⟩ deviations.

3.2.2 Descriptor selection

High-throughput screening of transition-metal complex properties with direct pre-

diction from an ANN requires mapping of an empirical feature space that represents

the complex, 𝒳 , to quantum-mechanical predictions. This feature space should be

balanced to avoid i) too few descriptors with insufficient predictive capability or ii)

too many descriptors that lead to over-fitting of the ANN. Molecular descriptors384

that have been used for parameterizing chemical space include: atomic composition,

electronegativity427, formal charges, and representations of the geometric structure.

This last class of descriptors may be divided into those that depend either on 3D

structural information25,143,214,450,451 or on graph-theoretic connectivity maps452 (e.g.,

the Randić239, Wiener shape240, or Kier453 indices). Graph-theoretic methods are

preferable to 3D structural information to avoid sensitivity to translation/rotation or

molecule size250, though we note that subsystem descriptors214,451,454 and element-

specific pairwise potentials25,250 have been employed successfully to overcome some

challenges. A secondary reason to avoid use of 3D structural information is the im-

121



plicit requirement of equilibrium geometries obtained from a geometry optimization,

which are readily achieved with semi-empirical methods on small organic molecules452

but would be prohibitive and error-prone for transition metal complexes.

We use 𝐿1-regularized, least absolute shrinkage and selection operator (LASSO) lin-

ear least-squares regression209, as implemented in the glmnet455 package in R3.2.5456,

to evaluate candidate descriptor sets. LASSO is used to reduce over-fitting, force the

coefficients of the least-powerful indicators to zero, and avoid monotonic decrease of

model error as feature space dimensionality increases. Given observed input-output

pairs (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, 2, . . . 𝑛 with 𝑥 ∈ 𝒳 ⊂ R𝑚 assembled as rows of data matrix 𝑋

and 𝜆 ∈ R+, the output is modeled as:

𝑦𝑝𝑟𝑒𝑑 = 𝛽𝑇𝑋 + 𝛽01 (3.1)

for {𝛽, 𝛽0} ∈ R𝑚 × R, where

{𝛽, 𝛽0} = argmin
𝛽,𝛽0

(︃⃦⃦
𝑦 − 𝛽𝑇𝑋 − 𝛽01

⃦⃦2
2
+ 𝜆

𝑚∑︁
𝑖=1

|𝛽𝑖|
)︃

(3.2)

The parameter 𝜆 is selected by ten-fold cross-validation with values typically be-

tween 10−1 and 10−6. Our descriptors include both continuous variables that are

normalized and discrete variables that are described by zero-one binary coding (Ap-

pendix A, Table A.7). Metal identity represents a descriptor best described by a set

of discrete variables: 4 binary variables are chosen to represent Cr, Mn, Fe, and Ni,

and Co corresponds to the case where all 4 variables are zero. This leads to a higher

number of overall variables than for continuous descriptors (see Table 3.1).

Based on previous observations197,437 we hypothesize that spin-state ordering is pre-

dominantly determined by the immediate chemical environment around the metal
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center, potentially enabling predictive descriptors that are widely transferable across

a range of molecule sizes. We compare 7 descriptor sets on the data and select

the subset of descriptors that give the best simultaneous predictive performance for

spin-state splitting, Δ𝐸H−L, and its sensitivity with respect to HF exchange varia-

tion, 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
, as indicated by the prediction root mean squared error (RMSE):

RMSE =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖,𝑝𝑟𝑒𝑑 − 𝑦𝑖)
2 (3.3)

When two variable sets perform comparably, we select the variable set that will enable

broader application of the ANN. All sets include the metal identity as a discrete

variable and metal oxidation state, ligand formal charge, and ligand denticity as

continuous variables (Figure 3-3, some descriptors shown in Figure 3-2).

Table 3.1: Comparison of variable sets by root-mean-squared errors (RMSE) after regular-
ization in Δ𝐸H−L and 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
prediction along with number of discrete variables (with all

binary levels of the discrete variables counted in parentheses) and the number of continuous
variables.

set RMSE(Δ𝐸H−L)

(kcal/mol)

RMSE(𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
)

(kcal/mol.HFX )

Discrete

variables

Continuous

variables

a 14.6 20.6 3 (37) 6

b 15.1 21.7 3 (15) 8

c 15.2 21.2 3 (15) 11

d 15.1 21.3 3 (15) 10

e 14.9 21.1 3 (15) 12

f 15.1 23.5 3 (15) 10

g 14.9 21.3 3 (15) 12
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Set a represents our most specific model, where we explicitly code the full axial or

equatorial ligand identity as a discrete variable, limiting the application of the model

but producing one of the lowest RMSEs for Δ𝐸H−L and 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
(Table 3.1). Elim-

ination of ligand identity in favor of ligand connecting atom elemental identity and

total number of atoms in set b increases Δ𝐸H−L MSE slightly and decreases 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹

MSE (Table 3.1).

Figure 3-3: Summary of variables chosen for each set a through g. Employed variables are
indicated in shaded gray and grouped by whether they are assessed on the whole complex
(complex-based) or on each individual axial or equatorial ligand (ligand-based). Δ𝜒 is the
difference in Pauling electronegativity between the ligand connecting atom and all atoms
bonded to it, and the sum, maximum or minimum values are obtained over all ligands.
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The shift from set a to b increases the model applicability but at the cost of omitting

subtler ligand effects. For instance, ethylenediamine (11, en) and phenanthroline (10,

phen) have the same ligand charge/denticity and direct ligand atom (N), making

them equivalent in set b except for the larger size of phen. System size alone is

not expected to be a good predictor of field strength (e.g., the small CO is one

of the strongest field ligands). In set c, we introduce properties that depend on

the empirical pairwise Pauling electronegativity difference (Δ𝜒) between the ligand

connecting atom (LC) and any ith atom connected (CA) to it:

Δ𝜒𝐿𝐶,𝑖 = 𝜒𝐿𝐶 − 𝜒𝑖 (3.4)

These whole-complex differences include the maximum, max (Δ𝜒) and minimum,

min (Δ𝜒), as well as sum:

sum (Δ𝜒) =
∑︁
𝑙𝑖𝑔

∑︁
𝐿𝐶∈𝑙𝑖𝑔

∑︁
𝑖∈𝐶𝐴

Δ𝜒𝐿𝐶,𝑖 (3.5)

which is taken over the direct ligand atom and all atoms bonded to it for all ligands

(lig.) in the complex. These additional set c descriptors reduce Δ𝐸H−L MSE slightly

and decrease the 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
MSE to its lowest value (see Table 3.1). In set d, we elimi-

nate min (Δ𝜒) expecting it to be redundant with the max and sum, at the cost of a

small increase in both MSEs.

Finally, in sets e-g, we replace ligand size (i.e., number of atoms) with general de-

scriptors to enable prediction on molecules larger than those in any training set. For

example, tetraphenylporphyrin will have comparable electronic properties to unfunc-

tionalized porphyrin (12), despite a substantial size increase. In set e, we introduce

the maximum bond order of the ligand connecting atom to any of its nearest neigh-
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bors, a measure of the rigidity of the ligand environment, which is zero if the ligand is

atomic (see Appendix A, Table A.1). In set f, we eliminate the number of atoms and

bond order metric, replacing them with a broader measure of the ligand geometry ad-

jacent to the metal. After trial and error, we have selected the truncated Kier shape

index453, 2𝜅 which is defined by the inverse ratio of the square of number unique

paths of length two (2𝑃 ) in the molecular graph of heavy atoms to the theoretical

maximum and minimum for a linear alkane with the same number of atoms:

2𝜅 =
2 2𝑃𝑚𝑎𝑥

2𝑃𝑚𝑖𝑛(︀
2𝑃
)︀2 (3.6)

and set to zero for any molecules that do not have paths of length two. The truncation

means that only the ligand atoms within three bonds of the connecting atom are

included in the graph. The set f MSEs are comparable to or a slight increase from

sets with molecule size, but they beneficially eliminate system size dependence. In set

g, we reintroduce the bond order metric as well, providing the lowest MSEs except for

set a or c, both of which are much less transferable than set g. Thus, the comparable

performance of set g to a full ligand descriptor (set a) supports our hypothesis that

a combination of metal-centric and ligand-centric in a heuristic descriptor set can be

predictive and transferable.

This final feature space is 15-dimensional with five per-complex descriptors and five

per-ligand descriptors for each equatorial or axial ligand (see Table 3.2 for ranges of

values and descriptions). A comparison of all errors and weights of variables across

the seven data sets is provided in Appendix A, Tables A.7–A.21 and Figure A-1.
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Table 3.2: Optimal (set g) input space descriptors and their range in the training set. Δ𝜒
is the difference in Pauling electronegativity between the ligand connecting atom and all
atoms bonded to it. Here, a continuous descriptor corresponds to a single input, whereas
discrete descriptors correspond to one input per level.

Symbol Type Descriptor Values or Range

whole-complex descriptors

M Discrete metal identity Cr, Mn, Fe, Co, Ni

O Continuous oxidation state 2 to 3

me Continuous max Δ𝜒 over all ligands -0.89 to 1.20

se Continuous sum of Δ𝜒 over all ligands -5.30 to 7.20

aHF Continuous HF exchange fraction 0.00 to 0.30

ligand-specific descriptors

L Discrete ligand connection atom Cl, S, C, N, or O

C Continuous ligand charge 0 to -2

k Continuous truncated Kier index 0.00 to 6.95

b Continuous ligand bond order 0 to 3

D Continuous ligand denticity 1 to 4

3.2.3 Training and uncertainty quantification of ML models

ANNs enable complex mapping of inputs to outputs457 beyond multiple linear regres-

sion and support the use of both discrete (i.e., binary choices such as metal identity)

and continuous (e.g., the % of HF exchange) variables. Here, we apply an ANN with

an input layer, two intermediate hidden layers, and an output layer (Figure 3-2). The

network topology was determined by trial and error, with additional hidden layers

yielding no improved performance. All analysis is conducted in R 3.2.5456, using the

H2O package458 with tanh non-linearity and linear output.
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As with many ML models, ANNs are sensitive to over-fitting due to the number of

weights to be trained459. We address overfitting using dropout460,461, wherein ro-

bustness of the fit is improved by zeroing out nodes in the network with an equal

probability, 𝑝𝑑𝑟𝑜𝑝, at each stage of training (5% for spin-state splitting, 15% for

HF exchange sensitivity, and 30% for bond lengths, selected by trial and error).

Dropout has been shown to address overfitting when training feedforward ANNs on

small datasets96, with larger values of 𝑝𝑑𝑟𝑜𝑝 giving more aggressive regularization

that worsens training errors but improves test errors. We use 𝐿2 weight regulariza-

tion with a fixed penalty weight 𝜆, as is applied in standard ridge regression, with

an effective loss function for training:

{𝑊} = argmin
𝑊

(︃
𝑁∑︁
𝑖=1

(𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)− 𝑦𝑖)
2 + 𝜆

𝐿∑︁
𝑙=1

(︀
‖𝑊𝑙‖22 + ‖𝑏𝑙‖

2
2

)︀)︃
(3.7)

Here, 𝑊𝑙 refers to the weights from layer 𝑙 to 𝑙 + 1, 𝑏𝑙 are the corresponding biases,

and 𝑦𝑝𝑟𝑒𝑑(𝑥𝑖) is the ANN prediction for the input-output pair (𝑥𝑖, 𝑦𝑖), and the sums

run over 𝑁 training pairs and 𝐿 layers.

During network training, we randomize the order of data points and partition the

first 60% as training data and the last 40% for testing. Dropout networks, consisting

of two hidden layers of 50 nodes each, are trained on the data set for varying values

of 𝜆 ranging from 10−1 to 10−1 using 10-fold cross validation. For each 𝜆, the train-

ing data is partitioned into ten groups, a network is trained on nine of the groups

and scored based on eq. 3.7 on the left-out group to select the best regularization

parameter: 5 × 10−4 for spin-state splitting, 10−2 for HF exchange sensitivity, and

×10−3 for bond lengths. We varied and optimized462 the learning rate between 0.05

and 1.5, and optimal rates were selected as 1.0 (bond lengths) and 1.5 (spin-state

splitting or HF exchange sensitivity). We use batch optimization for training (batch
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size = 20) for 2000 epochs. The training algorithm minimizes eq. 3.7 over the train-

ing data using stochastic gradient descent320,462–464.

It has been challenging to estimate ANN model uncertainty460,465with the possi-

ble exception of bootstrapping466 by training the ANN on numerous subsamples of

available training data. Model uncertainty will be due to either high-sensitivity to

descriptor changes or test molecule distance in chemical space to training data (see

also Section 3.3). Recent work459 showed that minimization of the loss function in eq.

3.7 is equivalent to approximate variational optimization of a Gaussian process (GP),

making previously suggested ANN sampling for different dropout realizations460 a

rigorously justified459 model uncertainty estimate. We sample 𝐽 = 100 distinct net-

works each with output 𝑦𝑗𝑝𝑟𝑒𝑑 with different nodes dropped at the optimized weights

and average over the predictions:

𝑦𝑝𝑟𝑒𝑑(𝑥𝑖) =
1

𝐽

𝐽∑︁
𝑗=1

𝑦𝑗𝑝𝑟𝑒𝑑(𝑥𝑖) (3.8)

The ANN predictive variance is estimated as459:

var(𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)) ≈ 𝜏−1𝐼 +
1

𝐽

𝐽∑︁
𝑗=1

(︀
𝑦𝑗𝑝𝑟𝑒𝑑(𝑥𝑖)

𝑇𝑦𝑗𝑝𝑟𝑒𝑑(𝑥𝑖)− 𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)
𝑇𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)

)︀
(3.9)

Here, 𝜏 is

𝜏 =
(1− 𝑝𝑑𝑟𝑜𝑝) 𝑙

2

2𝑁𝜆
(3.10)

where 𝑁 is the number of training data points, and 𝑙 is a model hyperparameter for

the GP that affects the estimation of predictive variance but does not enter into the
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ANN training. The contribution of 𝜏 in eq. 3.9 is a baseline variance inherent in

the data, whereas the second term represents the variability of the GP itself. We

obtain 𝜏 values of 0.6 for spin-state splitting, 0.07 for HF exchange sensitivity, and

104 for bond lengths (see Section 3.3). We choose 𝑙 by maximizing the log predictive

likelihood of the corresponding GP based on the training data (details are provided

in the Appendix A, Text A.2).

We selected an ANN model based on the successful demonstrations24,79,410 of ANN-

based models for predicting quantum chemical properties but also provide a compari-

son to two other common machine learning models209: kernel ridge regression (KRR)

and a support vector regression model (SVR), both using a square-exponential ker-

nel. We used the R package kernlab467 and selected hyperparameters (the width

of the kernel, and the magnitude of the regularization parameters which are given

in the Appendix A, Table A.22) using a grid search and ten-fold cross-validation

using the R package CVST468. We also compared training on our descriptor set to a

KRR model with a kernel based on the 𝐿1 distance between sorted Coulomb matrix

representations250, as demonstrated previously31,79.

3.3 Results and discussion

3.3.1 Overview of data set spin-state energetics

Analysis of the qualitative and quantitative features of the spin-state splitting data

set motivates the training of an ANN to move beyond ligand field arguments. We

visualize qualitative ground states (i.e., high-spin or low-spin) for the homoleptic

subset of the data using a recursive binary tree (Figure 3-4, descriptor definitions

provided in Table 3.2), as previously outlined106 and implemented in the open source
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rpart package469 for R 3.2.5456. A recursive binary tree is a list of “branches" of the

data ordered by statistical significance that gives the most homogeneous final “leaves"

(here, with at least 10 data points) after a given number of permitted divisions (here,

6). Using descriptor set g, the data are partitioned into branches by testing which

descriptors provide the “best" division to produce majority high- or low-spin states

in leaves based on the concept of information impurity469 and pruning to remove sta-

tistically insignificant branches. The resulting electronic structure spectrochemical

“tree" simultaneously addresses metal-specific strengths of ligands and exchange-

correlation sensitivity. As expected, strong field direct carbon ligands (no Cl, N, O

or S in Figure 3-4) provide the root division of the tree, producing low-spin ground

states for 92% of all Mn, Fe, and Co complexes (far right box on the third tier in

Figure 3-4). Next level divisions include the M(II) oxidation state for 𝑎𝐻𝐹 > 0.05

that are predominantly (96%) high-spin. Spin-state ordering is well-known196,197 to

be sensitive to HF exchange, and the tree reveals Mn3+ with nitrogen ligands to have

the strongest aHF dependence, since they are 69% high-spin for 𝑎𝐻𝐹 > 0.1 but 90%

low-spin for 𝑎𝐻𝐹 ≤ 0.1. Extension of the recursive binary tree to heteroleptic com-

pounds produces a second-level division based on sum (Δ𝜒), validating the relevance

of the identified electronegativity descriptors for predicting heteroleptic spin-state

ordering (Appendix A, Figure A-2).

Quantitatively, the maximum Δ𝐸H−L in the data set is 90.7 kcal/mol for the strong-

field Co(III)(misc)6 complex at 𝑎𝐻𝐹 = 0.00, and the minimum value is−54.2 kcal/mol
for the weak-field Mn(II)(NCS–)6 at 𝑎𝐻𝐹 = 0.30. These extrema are consistent with

i) the ordering of metals in the spectrochemical series173 and ii) the uniform effect of

stabilizing high-spin states with increasing HF exchange. By comparing compound

trends in the data set, we are able to identify whether additivity in ligand field effects,

which has been leveraged previously in heuristic DFT correction models193,206,470, is
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a universally good assumption. For the Fe(III)(Cl–)6–n(pisc)n complexes (denoted 1-1

through 3-3 in Figure 3-5), increasing 𝑛 from 0 to 2 through the addition of two axial

pisc ligands increases the spin-state splitting by 15.1 kcal/mol per replaced chloride.

Transitioning to a complex with all equatorial pisc ligands (𝑛 = 4) increases the

spin-state splitting by only 10.4 kcal/mol per additional ligand, and the homoleptic

structure pisc (𝑛 = 6) only adds 7.5 kcal/mol per additional ligand beyond the 𝑛 = 4

case. An additive model cannot precisely reproduce diminishing ligand effects.

Figure 3-4: Binary ground state classification tree for homoleptic compounds. M indicates
metal identity, L ligand connection atom, O oxidation state, a the fraction of HF exchange,
C the charge, and D the ligand denticity. Each leaf node indicates the percent of elements
in that leaf (light blue boxes for high-spin and dark gray boxes for low-spin) in bold font
and percentage of total homoleptic population in the node (italic font, in parentheses).
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As a stronger example for the need for nonlinear models such as an ANN, replacing

two axial ligands from the strong-field Mn(II)(CO)6 complex with the weaker-field

NCS– (6-6 and 6-7 in Appendix A, Figure A-3) alters Δ𝐸H−L by < 1 kcal/mol, as

strong-field ligands (e.g., CO, CN–) have an overriding effect on spin-state splitting.

Figure 3-5: ANN model predictions (ANN, blue bars) and computed (data, gray bars) spin-
state splittings, Δ𝐸H−L, for the B3LYP functional (𝑎𝐻𝐹 = 0.20) in kcal/mol. Complexes
are labeled by equatorial and then axial ligands according to the numbering indicated in
Figure 3-1 and color-coded by direct ligand atom (green for chlorine, gray for carbon, blue
for nitrogen, red for oxygen, and orange for sulfur). The error bars represent an estimated
±1 standard deviation credible interval from the mean prediction, and error bars that do
not encompass the computed value are highlighted in red. Brown dashed lines correspond
to a ±5 kcal/mol range around zero Δ𝐸H−L, corresponding to near-degenerate spin states.

3.3.2 Spin-state splittings from an ANN

Motivated by non-linear effects in ligand additivity, we trained an ANN using a

heuristic descriptor set (see Section 3.2.2) to predict qualitative spin-state and quan-

titative spin-state splitting. The ANN predicts the correct ground state in 98% of

the test cases (528 of 538) and 96% of training cases (777 of 807). All of the mis-

classifications are for cases in which DFT Δ𝐸H−L is < ±5 kcal/mol (Appendix A).
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The ANN spin-state prediction errors are not sensitive to HF exchange mixing, and

thus our trained ANN is able to predict ground states of transition metal complexes

from the pure GGA limit to hybrids with moderate exchange.

Figure 3-6: Error boxplots forΔ𝐸H−L in kcal/mol using the ANN for test (top) and training
(bottom) data partitioned by metal identity. The top number inside the box indicates the
number of cases in each set, and the bottom number indicates the RMSE in kcal/mol. The
range for both graphs is from 15 kcal/mol to −15 kcal/mol.
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We assess quantitative performance with root mean squared errors (RMSE) of the

ANN (eq. 3.3), overall and by metal (Figure 3-6, Appendix A, Table A.23, and Ap-

pendix A, Figures A-3–A-6). The comparable RMSE of 3.0 and 3.1 kcal/mol for the

test and training data, respectively, indicate an appropriate degree of regularization.

The ANN predicts DFT spin-state splittings within 1 kcal/mol (i.e., “chemical accu-

racy") for 31% (168 of 538) of the test data and within 3 kcal/mol (i.e., “transition

metal chemical accuracy"187 for 72% (389 of 538) of the test data. Only a small

subset of 49 (4) test molecules have errors above 5 (10) kcal/mol, and correspond to

strong-field Co and Cr complexes, e.g., Cr(II)(NCS–)2(pisc)4 (Appendix A, Figure A-

5). The model is equivalently predictive for homoleptic and heteroleptic compounds

at 2.2 and 2.3 kcal/mol average unsigned error respectively.

The training and test RMSEs broken down by metal reveal comparable performance

across the periodic table (Figure 3-6). Slightly higher test RMSEs (maximum un-

signed errors) forCo and Fe complexes at 3.8 (15.7) and 3.3 (13.0) kcal/mol, respec-

tively, are due to the train/test partition and more variable ligand dependence of spin-

state ordering in these complexes (Figure 3-6 and Appendix A, Table A.23). When

the ANN performs poorly, the errors are due to both under- and over-estimation of

Δ𝐸H−L for both strong- and weak-field ligands, regardless of HF exchange fraction:

e.g., Δ𝐸H−L for Co(III)(CN–)6 at 𝑎𝐻𝐹 = 0.00 and Co(III)(en)3 at 𝑎𝐻𝐹 = 0.20 are

overestimated by 14 and 9 kcal/mol, respectively, but Δ𝐸H−L for Fe(III)(Cl–)6 at

𝑎𝐻𝐹 = 0.10 and Co(II)(H2O)2(CN
–)4 at 𝑎𝐻𝐹 = 0.30 and are underestimated by 9

and 7 kcal/mol, respectively.

Quantified uncertainty estimates correspond to a baseline standard deviation in the

model of approximately 1.5 kcal/mol (
√
𝜏−1) and a mean total estimated standard

deviation across the training and test cases of 3.8 and 3.9 kcal/mol, respectively

(see sec 2.3 and error bars on Figure 3-5). These credible intervals are not rigor-
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ously confidence intervals but can highlight when prediction uncertainty is high: a

±1 (±2) standard deviation (std. dev.) interval on ANN predictions captures 83%

(98%) of computed values for test set (see Appendix A, Figure A-7). Highest std.

dev. values of around 5 kcal/mol are observed for Fe(II) and Mn(II) complexes and

the lowest are around 3 for Cr and Co complexes. A single std. dev. around the

ANN prediction contains the calculated Δ𝐸H−L for 26 of 29 Fe(III) complexes at

𝑎𝐻𝐹 = 0.20 but misses heteroleptic oxygen coordinating complexes, 13-13 and 14-1,

and underestimates the effect of C/N ligands in 3-7 (Figure 3-5). The model performs

consistently across different ligand sizes, from porphyrin Fe(III) complexes (12-13,

12-5) to Fe(II)(NH3)6 and Fe(II)(CO)6 (6-6 and 8-8). For ligand-specific effects, the

ANN performs well, reversing splitting magnitude as equatorial and axial ligands are

swapped (e.g., 1-3 versus 3-1).

Review of other metals/oxidation states reveals comparable performance for cases

where the high-spin state is always favored (e.g., Mn(II), Cr(III), or Ni(II)), low-spin

state is always favored (e.g., Cr(III)), and those where ligands have strong influence

over the favored spin state (e.g., Fe(II) and Cr(II)) (see Appendix A, Figure A-3–A-

6). For instance, metal-specific effects examined through comparison of M(II)(CO)6

complexes (Figure 3-7) reveal good ANN performance both for where the strong-field

ligand strongly favors the low-spin state (i.e., Fe and Ni) and where the spin-states

are nearly degenerate (i.e., Cr, Mn, Co). The trends outlined here for 20% HF ex-

change hold at other exchange mixing values. Thus, our ANN trained on a modest

data set with heuristic descriptors predicts spin-state splitting within a few kcal/mol

of the DFT result.
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Figure 3-7: ANN model predictions (ANN, blue bars) and computed (data, gray bars)
spin-state splittings, Δ𝐸H−L, with the B3LYP functional (𝑎𝐻𝐹 = 0.20) in kcal/mol on
M(II)(CO)6 complexes, where M = Cr, Mn, Fe, Co, or Ni. The error bars represent an
estimated ±1 standard deviation credible interval from the mean prediction, and brown
dashed lines correspond to a ±5 kcal/mol range around zero Δ𝐸H−L, corresponding to
near-degenerate spin states.

Comparing our results to KRR, SVR, and LASSO regression reinforces the choice

of an ANN (Table 3.3 and Appendix A, Figure A-8). The ANN outperforms KRR

with either our descriptor set or the sorted Coulomb matrix descriptor both on the

full data set or at fixed HF exchange (Appendix A, Text A.3). The ANN also per-

forms slightly better than SVR on test data with our descriptors. Linear LASSO

regression was employed for feature selection (Section 3.2.2) but is outperformed by

all other methods (Table 3.3). We will revisit the performance of these models on a

more diverse molecule test set in Section 3.3.5 to assess the question of transferability.
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Table 3.3: Train/test data and CSD test set RMSEs and max UEs in kcal/mol.HFX-1
for different machine learning methods and descriptor sets compared: KRR, kernel ridge
regression, using square-exponential kernel for descriptor set g and the L1 matrix dis-
tance52 for the sorted Coulomb matrix descriptor; SVR, support vector regression using
square-exponential kernel; ANN, artificial neural network. Results are also given for the
KRR/Coulomb case, restricted to B3LYP only since the Coulomb matrix does not naturally
account for varying HF exchange.

Model Descriptor
Training Test CSD

RMSE max UE RMSE max UE RMSE max UE

LASSO set g 16.1 89.7 15.7 93.5 19.2 72.5

KRR set g 1.6 8.5 3.9 17.0 38.3 88.4

SVR set g 2.1 20.9 3.6 20.4 20.3 64.8

ANN set g 3.0 12.3 3.1 15.6 13.1 30.4

KRR sorted Coulomb 4.3 41.5 30.8 103.7 54.5 123.9

KRR, B3LYP only sorted Coulomb 17.2 58.0 28.1 69.5 46.7 118.7

3.3.3 Predicting exchange sensitivity with an ANN

Spin-state splittings exhibit high sensitivity to exchange196,197 with linear behavior

that we previously identified197 to be strongly dependent on direct ligand identity

and field strength when we compared a set of Fe complexes. Over this data set, com-

puted exchange sensitivities are indeed linear, ranging from−174 kcal/mol.HFX-1 for
strong-field Fe(II)(CO)6 to −13 kcal/mol.HFX-1 for weak-field Cr(III)(en)2(NH3)2.

Cr(III) is the least exchange-sensitive metal in our test set, whereas Fe(II) and Mn(II)

are the most sensitive (Appendix A, Table A.24 and Figure A-9).

We therefore generalize previous observations45 in an ANN that predicts HF ex-

change sensitivity of spin-state ordering, 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
, using the same descriptors as for

direct spin-state splitting, excluding only 𝑎𝐻𝐹 . The smaller size of this data set

(1
7
the size of the Δ𝐸H−L data set) leads to overfitting, with lower RMSE values
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of 13 kcal/mol.HFX-1 for the training data versus 22 kcal/mol.HFX-1 for the test

set (Table 3.4, Appendix A, Figure A-10). Although results are reported in units

of HFX (from 0 to 100% exchange), for typical 20% variation in exchange, a 20

kcal/mol.HFX-1 sensitivity error only corresponds to a 4 kcal/mol energy difference.

Both maximum unsigned errors (UE) and RMSEs are largest for Mn(II/III) and

Cr(II) complexes, with the largest case producing an 92 kcal/mol.HFX-1 underpre-

diction for Mn(III)(H2O)4(pisc)2. Overall, the ANN prediction errors are less than

less than 20 (40) kcal/mol.HFX-1 for 65% (95%) of the test data. The ANN provides

a valuable strategy for predicting exchange sensitivity, reproducing nonmonotonic

and nonconvex ligand sensitivity in heteroleptic compounds: a Fe(III) complex with

ox, 16, and NCS–, 7, ligands is more sensitive to HFX than the respective homoleptic

complexes (Figure 3-8, other metals in Appendix A, Figures A-11–A-14).

Table 3.4: Test set RMSEs in kcal/mol.HFX-1 separated by metal and oxidation state
along with minimum and maximum unsigned test errors (UE). The number of test cases is
indicated in parentheses.

Species RMSE min. UE max. UE

Cr(II) 21(14) 4 45

Cr(III) 17(8) 2 37

Mn(II) 24 (6) 3 40

Mn(III) 38(8) 4 92

Fe(II) 18 (9) 2 41

Fe(III) 15(12) <1 32

Co(II) 17(8) <1 26

Co(III) 20(8) <1 46

Ni(II) 9(4) 1 15
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Figure 3-8: ANN model predictions (ANN, blue bars) and computed (data, gray bars) spin-
state splitting sensitivities to HF exchange, 𝜕Δ𝐸H−L

𝜕𝑎𝐻𝐹
, in kcal/mol.HFX-1 , for Fe3 com-

plexes. Complexes are labeled as equatorial and then axial ligands according to the num-
bering indicated in Figure 3-1 and color-coded by direct ligand atom (green for chlorine,
gray for carbon, blue for nitrogen, red for oxygen, and orange for sulfur). The error bars
represent an estimated ±1 standard deviation credible interval from the mean prediction,
and error bars that do not encompass the computed value are highlighted in red.

Uncertainty intervals of ANN predictions for HFX sensitivity yield a narrow range

from 14 kcal/mol.HFX-1 to 17 kcal/mol.HFX-1. For the 29 Fe(III) complexes studied,

23 (80%) of the ANN credible intervals span the computed exchange sensitivity

(Figure 3-8). Across the full metal and oxidation state data set, 70% (83%) of the

computed data is contained by ±1 (±2) std. dev. intervals (Figure 3-8 and Appendix
A, Figure A-15). This performance can be further improved by extending the training

data. Exchange-sensitivity provides value both for extrapolation of computed (see

Section 3.3.6) or literature values obtained at an arbitrary exchange mixing and in

identification of cases of high-sensitivity to DFT functional choice.

3.3.4 Predicting metal-ligand bond length with an ANN

Using our descriptor set, we trained an ANN on the minimum metal-ligand bond

distances for both low-spin and high-spin geometries (min(𝑅𝐿𝑆/𝐻𝑆)), which only dif-
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fer from the exact metal-ligand bond length for distorted or heteroleptic compounds.

This ANN for bond length prediction extends capabilities we have recently introduced

for generating high-quality transition metal complex geometries181 in order to enable

spin-state dependent predictions without requiring extended geometry-optimization.

Figure 3-9: The vertical or adiabatic spin-state splittings, Δ𝐸H−L, in kcal/mol as a function
of HF exchange, 𝑎𝐻𝐹 , for Fe(II)(CO)6. Spin-state splittings evaluated at the HS or LS
geometries are indicated by open blue squares and open red circles, respectively. The
adiabatic spin-state splitting is shown as filled gray triangles. The HS vertical and adiabatic
splittings overlap, whereas the LS vertical splitting overestimates Δ𝐸H−L, as indicated by
the green arrow and annotated 𝛿 in kcal/mol for 𝑎𝐻𝐹 = 0.00 and 𝑎𝐻𝐹 = 0.30.

Furthermore, comparison of adiabatic and vertical spin-state splittings computed ei-

ther at the low- or high-spin optimized geometries reveals that the vertical splitting

at the HS geometry is indistinguishable from the adiabatic splitting, but the LS ge-

ometry vertical splitting favors the LS state by 10 − 30 kcal/mol, increasing with

𝑎𝐻𝐹 (Figure 3-9). Thus, if the ANN bond length predictions are accurate, adiabatic
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spin-state splittings can be obtained from DFT single points at ANN-predicted HS-

only or both LS/HS geometries.

Metal-ligand bond distances in the 𝑎𝐻𝐹 = 0.20 data set vary from𝑚𝑖𝑛(𝑅𝐿𝑆) = 1.81Å

(in Fe(II)(pisc)2(Cl
–)4) to min(𝑅𝐻𝑆) = 2.55Å (in Fe(III)(Cl–)6). The metal-ligand

bond length ANN produces comparable RMSE across training (0.02 AA for HS and

LS) and test (0.02 Å for LS and 0.03 Å for HS) data with comparable errors re-

gardless of metal identity and oxidation- or spin- state (Appendix A, Table A.25

and Figures A-16–A-27). ANN bond length std. devs. Range from 0.026 to 0.045

Å with a ∼ 0.01 Å baseline contribution. For low-spin (high-spin) complexes, 79%

(81%) and 96% (96%) of the calculated values fall within one and two std. dev. of

ANN-predicted bond lengths, respectively (Appendix A, Figures A-17 and A-23).

The ANN overestimates bond lengths of low-spin Fe(III) complexes by more than a

full standard deviation for seven cases, e.g., underestimating Fe-C distances in CN

(7-5, 13-5) and pisc (3-7, 3-13) complexes (Figure 3-10). However, it also reproduces

subtle trends, e.g. replacing axial ligands in homoleptic LS Fe(III)(pisc)6 (3-3 in

Figure 3-10, min(𝑅𝐿𝑆) = 1.92 Å) with Cl– increases the minimum bond distance to

1.94 Å (3-1 in Figure 3-10), but replacing equatorial pisc ligands instead with Cl–

(1-3 in Figure 3-10) decreases the minimum bond distance to 1.90 Å, a feature repro-

duced by the ANN. Non-additive bond length effects motivate the use of the ANN in

initial geometry construction437. Indeed, when we use ANN-predicted metal-ligand

bond lengths in structure generation instead of our previous strategy based on a

discrete database of DFT bond lengths437, we reduce the metal-ligand component of

the gradient by 54−90% (Appendix A, Text A.4, Figure A-28 and Table A.26). The

ANN-predicted bond lengths and spin states are now available in molSimplify437 as

an improved tool for structure generation.
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Figure 3-10: ANN model predictions (ANN, blue bars) and computed (data, gray bars)
minimum LS Fe3+ bond lengths, 𝑚𝑖𝑛(𝑅𝐿𝑆), in Å. Complexes are labeled as equatorial and
then axial ligands according to the numbering indicated in Figure 3-1 and color-coded by di-
rect ligand atom (green for chlorine, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation credible interval around the
mean prediction, and error bars that do not encompass the computed value are highlighted
in red. Fe(III)(Cl)6 (1-1) is excluded due to being off scale: it has a predicted/calculated
bond length of 2.44/2.45 Å, and an error standard deviation of ±0.02.

3.3.5 Expanding the test set with experimental complexes

In order to test the broad applicability of the trained ANNs, we selected 35 homolep-

tic and heteroleptic octahedral complexes from the Cambridge Structural Database184

(CSD) with a range of metals (Cr to Ni) and direct ligand atom types (N, C, O, S, Cl)

(Appendix A, Table A.26). The CSD test cases span a broader range of compounds

than the training set, containing i) larger macrocycles, e.g. substituted porphyrins

(tests 9, 25), clathrochelates (test 16), phthalocyanines (tests 4, 7), and cyclams

(tests 5, 12, 14, 17, 24, 29, and 33, 12 and 33 shown in Figure 3-11) and ii) coor-

dination combinations or functional groups, e.g., OCN in test 30, absent from the

training set. Indeed, large CSD test molecule sizes, e.g. up to 103 atoms in a sin-

gle equatorial ligand, further motivates our relatively size-independent descriptor set

over forms that do not scale well with molecule size.
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Figure 3-11: Representative CSD test set molecules shown in ball and stick representation
with carbon atoms in gray, nitrogen atoms in blue, oxygen in red, hydrogen in white,
chlorine in green, chromium in orange, and iron in brown. Test molecules 12 (CSD ID:
SUMLET) and 33 (CSD ID: YUJCIQ) are Cr(III) cyclams for which the ANN performs
least well, and test molecules 8 (CSD ID: TPYFEC04) and 31 (CSD ID: BIPGEN) are
cases for which the ANN predicts Δ𝐸H−L within 3 kcal/mol.

The ANN predicts CSD test case spin-state splittings within 5 kcal/mol for 15 of

the 35 complexes, an overall mean unsigned error of 10 kcal/mol, and RMSE of 13

kcal/mol (see Appendix A, Table A.27). The large RMSE is due in part to poor

performance on early-transition-metal cyclams (red symbols in left panel of Figure

3-12) for which the ANN overestimates spin-state splitting by at about 30 kcal/mol

(Cr-cyclams, tests 12 and 33 in Figure 3-11). The ANN predicts spin-state splittings

within around 3 kcal/mol for several non-macrocyclic complexes that are better rep-

resented in the training data (e.g., test cases 8 and 31 in Figure 3-11). The correct

ground state is assigned in 90% of CSD test cases (96% after excluding cyclams); the

only incorrect, non-cyclam spin state assignment is a spin-crossover complex, test 25

(calculated Δ𝐸H−L = −0.2 kcal/mol). Compared to other machine learning models

(KRR and SVR), the ANN is more transferable to dissimilar CSD structures (Table

3.3), outperforming the next-best model, SVR, by 30%. The relative success of the
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ANN on the CSD data is partially attributable to the use of dropout regularization,

which has been shown461 to improve robustness.

Figure 3-12: ANN spin-state splitting energy, Δ𝐸H−L, prediction on CSD test structures
vs. DFT-calculated values, both at 𝑎𝐻𝐹 = 0.20 and in kcal/mol. Direct prediction (left) is
compared to GGA calculations and extrapolation using the predicted slope from the ANN
(right). Error bars represent a credible interval of one standard deviation from the model
uncertainty analysis (either in direct ANN at left or slope ANN at right), and a parity line
(black, dashed) is indicated. Cyclams are indicated in red triangles, as described in main
text, and the remaining test cases are indicated by blue squares.

The observation of good performance with reasonable similarity between CSD struc-

tures and the training data but poor performance when the CSD structure is not

well-represented motivates a quantitative estimate of test compound similarity to

training data. We first computed overall molecular similarity metrics (e.g., FP2 fin-

gerprint via Tanimoto428,471 as implemented in OpenBabel77) but found limited cor-

relation (𝑅2 = 0.1) to prediction error (see Appendix A, Figure A-29 and Text A.5).

Comparing the Euclidean and uncentered Pearson distances in descriptor space be-

tween the CSD test cases and the closest training data descriptors provides improved

correlation to prediction error of 𝑅2 = 0.3 and 𝑅2 = 0.2, respectively (Appendix A,
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Figure A-30). Large errors (i.e., > 15 kcal/mol) are only observed at a Euclidean

norm difference exceeding 1.0 (half of the CSD data), providing an indication of lack

of reliability in ANN prediction. This high distance to training data does not guar-

antee inaccurate prediction, e.g., CSD test case 8, a Fe(II) tetrapyridine complex, is

predicted with fortuitously good ∼ 2 kcal/mol error but has a Euclidean norm dif-

ference > 1.4. We have implemented the Euclidean norm metric alongside the ANN

in our automated screening code181 to detect complexes that are poorly represented

in training data and advise retraining or direct calculation.

ANN-predicted equilibrium metal-ligand bond lengths for both HS and LS CSD ge-

ometries produced RMSEs of 0.10 and 0.07 Å, respectively (Appendix A, Tables

A.28–A.29). Trends in bond length prediction error differ from those obtained for

spin-state splitting. For instance, bond length errors are average in the cyclams even

though spin-state splitting predictions were poor. The large Euclidean distance to

training data heuristic (> 1.0) is observed for five of the seven large (i.e., > 0.1Å)

HS bond distance errors (see Appendix A, Texts A.4–A.5 and Figures A-31–A-32).

The highest HS prediction errors (> 0.2Å) occur for tests 8 and 35, underestimating

the Fe-N bond length by 0.2Å (2.1Å ANN vs. 2.3 Å calculated) in the former case.

Despite poor geometric predictions, the ANN predicts test 8 Δ𝐸H−L to within 3

kcal/mol, and this differing performance is due to the fact that predictions of these

two outputs are independent. Interligand effects that are ignored by our descriptor

set can restrict bond length extension, e.g. in test 16, where an O-. . .O- interligand

hydrogen-bond produces an unusually short 1.9Å high-spin Fe-N bond distance (vs.

ANN prediction of 2.1 Å). Future work will focus on incorporating extended metrics

of rigidity to account for these effects.

We investigated the relationship between the experimental CSD bond distances and

the ANN-predicted bond distances. If the experimentally measured bond distance
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lies close to one spin state’s predicted bond length, then the complex may be ex-

pected to be in that spin state, assuming i) the ANN provides a good prediction of

the spin-state specific bond lengths and ii) that the gas-phase optimized DFT and

CSD bond distances are comparable. The majority of experimental bond lengths are

near the extrema of the ANN predictions (subset where ANN predicts LS-HS bond

distance of at least 0.05 Å shown in Figure 3-13, full set in Appendix A, Figure A-33).

Figure 3-13: Comparison of measured CSD bond distances in the crystal phase, repre-
sented by symbols (red squares for high-spin or blue triangles for low-spin based on DFT
assignment at 𝑎𝐻𝐹 = 0.20 with the ANN predicted HS (red line) and LS (blue line) bond
distances. Only the CSD test cases where the difference between ANN-predicted LS and HS
bond distances is ≥ 0.05 Å are shown for clarity. For all of these cases, the ANN correctly
predicts the DFT spin state.

Nine of the twelve (9 of 9 in Figure 3-13) experimental bond lengths that are on or

above the predicted HS bond distance boundary have an HS ground state, eleven of

the fifteen (6 of 6 in Figure 3-13) experimental bond lengths that are on or below

the predicted LS bond distance have an LS ground state, and remaining structures

(3 in Figure 3-13) reside at intermediate distances. Some discrepancies are due to
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differences between the gas phase geometries and those in the crystal environment

(e.g., test 27 in Figure 3-13 and see Appendix A, Tables A.27–A.29). This bond-

length-based spin-assignment thus provides a strategy for corroboration of direct

spin-state prediction.

3.3.6 Extrapolating GGA functionals to hybrids with an ANN

Linear spin-state HF exchange sensitivity may be exploited to predict properties at

one aHF value from computed properties obtained at another, e.g., to translate liter-

ature values or to accelerate periodic, plane-wave calculations where incorporation of

HF exchange increases computational cost. We carry out comparison of the utility of

this Δ-ML-inspired137 strategy on the 35 CSD test set to identify if prediction errors

are improved, especially for molecules poorly-represented in the training set. On the

CSD molecules, extrapolating 𝑎𝐻𝐹 = 0.00 spin-state ordering to 𝑎𝐻𝐹 = 0.20 with the

exchange-sensitivity ANN reduces the maximum error to 23 kcal/mol and decrease

the mean unsigned error and RMSE to 5 kcal/mol and 7 kcal/mol (the right pane

of Figure 3-11). For the GGA + slope ANN approach, excluding the nine cyclams

does not change the RMSE/MUE values, confirming good ANN exchange-sensitivity

prediction even when spin-state splitting prediction is poor.

These reduced average errors are quite close to the uncertainty introduced by the

slope prediction performance at around 4 kcal/mol over a 20% exchange interval.

Although this approach does eliminate the largest outliers and improve prediction

across the CSD test set, it necessitates semi-local DFT geometry optimizations or

a judicious bond length choice for vertically-approximated spin-state ordering. This

approach also has limited benefit for cases well-represented in the training data set

due to the sparser data set in the exchange sensitivity ANN. Indeed, over the origi-
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nal test set molecules, extrapolated ANN exchange sensitivities on top of calculated

𝑎𝐻𝐹 = 0.00 splittings produce an RMSE of around 4 kcal/mol comparable to or

slightly worse than direct prediction (Appendix A, Figure A-34).

3.4 Conclusions

We have presented a series of ANN models trained using 2, 690 DFT geometry opti-

mizations of octahedral transition metal complexes generated from a set of 16 candi-

date axial and equatorial ligands and transition metals (Cr-Ni) at varying fractions

of HF exchange. From the unseen test cases of a 60-40% train-test partition, we

demonstrated good accuracy on spin-state splitting predictions of around 3 kcal/mol

and metal-ligand bond distances around 0.02-0.03 Å. Our simple descriptor set, in-

cluding: i) the ligand connection atom, ii) electronegativity and bonding of the

coordinating ligand atom environment, iii) ligand formal charge, iv) ligand dentic-

ity, and v) metal identity and oxidation state ensures transferability of the ANN.

Importantly, the employed connectivity models are not 3D-structure-based, instead

relying on a truncated graph-theoretic representation of the ligand, making the ap-

proach suitable for screening large numbers of complexes without precise structural

information. Although we have trained ANNs to predict bond lengths and spin-state

splitting, the data set and descriptors could be used to predict other quantities such

as ionization potential, redox potential, or molecular orbital energies. Such efforts

are currently underway in our lab.

A test of our ANN on diverse molecules obtained from an experimental database

indicated good performance, with MUEs of 5 kcal/mol for spin states for compounds

within our proposed Euclidean distance reliability criteria and 10 kcal/mol for the

full set. In both diverse and representative cases, the ANN outperforms other ma-
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chine learning models. Our ANN predictions of HF exchange sensitivity provide a

tool for interpolating between exchange-correlation functionals or extrapolating from

semi-local GGAs to a hybrid result, which we demonstrated on CSD cases, improving

MUE to 5 kcal/mol across the full 35 molecule set.

Natural extensions to this work include the development of the current ANN for ex-

trapolation of GGA to hybrid functional properties in condensed matter systems and

generalizing the coordination definition to enable prediction of properties of unsat-

urated metals in catalytic cycles. Overall, we have demonstrated a relatively sparse

feature space to be capable of predicting electronic structure properties of transition

metal complexes, and we anticipate that this strategy may be used for both high-

throughput screening with knowledge of functional choice sensitivity and in guiding

assessment of sources of errors in approximate DFT.
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Chapter 4

Mapping transition metal complex

space for machine learning

Note: This chapter was originally published as “Janet, J. P., Kulik, H. J. Re-
solving Transition Metal Chemical Space: Feature Selection for Machine Learning
and Structure-Property Relationships. J. Phys. Chem. A 2017, 121, 8939–8954”
and has been formatted for consistency. Supporting information provided with the
manuscript, available online at http://www.doi.org/10.1021/acs.jpca.7b08750,
has been placed in Appendix B.

Chapter summary

While the choice of representation is always important in ML, the small size of avail-
able data sets and lack of chemical intuition transition metal chemistry, where an
appropriate molecular representation becomes a critical ingredient in ML model pre-
dictive accuracy. This chapter introduces a series of revised autocorrelation descrip-
tors (RACs) that encode relationships between the heuristic atomic properties (e.g.,
size, connectivity, and electronegativity) on a molecular graph. By manipulating the
starting point, scope, and nature of the quantities evaluated in standard ACs, we
make these RACs efficient graph representations for inorganic chemistry. On an or-
ganic molecule set, we first demonstrate superior standard AC performance to other
presently-available topologica-only descriptors for predictive inference. For inorganic
chemistry, our RACs yield ∼ 1 kcal/mol ML MUEs on set-aside test molecules in
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spin-state splitting in comparison to an order-of-magnitude higher errors from fea-
ture sets that encode whole-molecule structural information. Systematic feature
selection methods including univariate filtering, recursive feature elimination, and
direct optimization (e.g., random forest and LASSO) are used to down sample the
high dimensional RAC space and identify the most important dimensions. Random-
forest- or LASSO-selected subsets 4–5× smaller than the full RAC set produce even
better predictive performance and show good transferability to metal-ligand bond
length and redox potential prediction. Evaluation of feature selection results across
property sets reveals the relative importance of local, electronic descriptors (e.g.,
electronegativity, atomic number) in spin-splitting and distal, steric effects in redox
potential and bond lengths, leading to insights into the nature of ligand functional-
ization and the electronic properties of the metal center.

4.1 Introduction

Computational high-throughput screening is key in chemical and materials discov-

ery14,75,99,109,472–478, but high computational cost has limited chemical space explo-

ration to a small fraction of feasible compounds22,90. Machine-learning (ML) models

have emerged as alternative approaches especially for efficient evaluation of new

candidate materials407 or potential energy surface fitting and exploration through

sophisticated force field models24,213,214,254,410–413. Examples of recent ML applica-

tions in computational chemistry include exchange-correlation functional develop-

ment260,479, general solutions to the Schrödinger equation414, orbital free density

functional theory143,415, many body expansions416, acceleration of dynamics417,419,480,

band-gap prediction236,420, and molecular34,406 or heterogeneous catalyst231,481 and

materials421–424 discovery, to name a few.

Essential challenges for ML models to augment or replace first-principles screening

are model selection and transferable feature set identification. For modest sized

data sets, descriptor set selection is especially critical223,227,255,426 for successful ML
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modeling. Good feature sets should227 be cheap to compute, as low dimensional as

possible, and preserve target similarity (i.e. materials with similar should properties

have similar feature representations). Within organic chemistry, structural descrip-

tors such as a Coulomb matrix426 or local descriptions of the chemical environment

and bonding223,427 have been useful to enable predictions of energetics as long as a

relatively narrow range of elements (e.g., C, H, N, O, F) is considered. These obser-

vations are consistent with previous successes in evaluating molecular similarity428,

force field development429, quantitative structure-activity relationships430, and group

additivity431 theories on organic molecules.

Descriptors that work well for organic molecules have proven unsuitable for inor-

ganic materials433 or molecules308. This lack of transferability can be readily ra-

tionalized: it is well-known197,308,434,435 that some electronic properties of transition

metal complexes (e.g., spin state splitting) are much more sensitive to direct ligand

atom identity that dominates ligand field strength436,437. Unlike organic molecules,

few force fields have been established that can capture the full range of inorganic

chemical bonding432. The spin-state- and coordination-environment-dependence of

bonding173 produces a higher-dimensional space that must be captured by sophis-

ticated descriptors or functions. In spite of these challenges, suitable data-driven

models for inorganic chemistry will be crucial in the efficient discovery of new func-

tional materials60,445, for solar energy16, and for catalyst discovery58,402.

With the unique challenges of inorganic chemistry74 in mind, we recently trained

a neural network to predict transition metal complex quantum mechanical proper-

ties308. From several candidate descriptor sets, we demonstrated good performance,

i.e., 3 kcal/mol root mean squared error for spin-splitting and 0.02–0.03 Å for metal-

ligand bond lengths, of heuristic, topological-only near-sighted descriptors. These

descriptors required no precise three-dimensional information and outperformed es-
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tablished organic chemistry ML descriptors that encode more whole-complex infor-

mation.

In this work, we introduce systematic, adaptable-resolution heuristic and topological

descriptors that can be tuned to encode molecular characteristics ranging from local

to global. As these descriptors require no structural information, rapid ML model

prediction without prior first-principles calculation is possible, and such ML models

can improve structure generation181 through bond length prediction308,482. We apply

this adaptable descriptor set to both organic and inorganic test sets, demonstrating

excellent transferability. We use rigorous feature selection tools to quantitatively

identify optimal locality and composition in machine learning feature sets for predict-

ing electronic (i.e., spin-state and redox potential) and geometric (i.e., bond length)

properties. The outline of the rest of this work is as follows. In Section 4.2, we re-

view our new descriptors, methods for subset selection, and the ML models trained

in this work. In Section 4.3, we provide the computational details of first-principles

data sets and associated simulation methodology. In Section 4.4, we present Results

and discussion on the trained ML models for spin-state splitting, bond-lengths, and

ionization/redox potentials. Finally, in Section 4.5, we provide our conclusions.

4.2 Approach to feature construction and selection

4.2.1 Autocorrelation functions as descriptors

Autocorrelation functions244 (ACs) are a class of molecular descriptors that have

been used in quantitative structure-activity relationships for organic chemistry and

drug design483–485. ACs are defined in terms of the molecular graph, with vertices for

atoms and unweighted (i.e., no bond length or order information) edges for bonds.
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Standard ACs244 are defined as:

𝑃𝑑 =
∑︁
𝑖

∑︁
𝑗

𝑃𝑖𝑃𝑗𝛿 (𝑑𝑖𝑗, 𝑑) (4.1)

where 𝑃𝑑 is the AC for property 𝑃 at depth 𝑑, 𝛿 is the Dirac delta function, and

𝑑𝑖𝑗 is the bond-wise path distance between atoms 𝑖 and 𝑗. Alternatives to the eq.

4.1 AC sums are motivated and discussed in Section 4.2.2. The AC depth 𝑑 thus

encodes relationships between properties of atoms separated by 𝑑 bonds; it is zero

if 𝑑 is larger than the longest molecular path, and 0-depth ACs are just sums over

squared properties. The five atomic, heuristic properties used in our ACs are: i)

nuclear charge, 𝑍, as is used in Coulomb matrices250; ii) Pauling electronegativity,

𝜒, motivated by our previous work482; iii) topology, 𝑇 , which is the atom’s coordi-

nation number; iv) identity, 𝐼, that is 1 for any atom, as suggested in Ref.22; and v)

covalent atomic radius, 𝑆. Although i, ii, and v are expected to be interrelated, the

𝑆 quantity uniquely imparts knowledge of spatial extent, and covalent radii follow

different trends than 𝑍 or 𝜒 (e.g. the covalent radius of Co is larger than Fe and Ni).

ACs are compact descriptors, with 𝑑 + 1 dimensions per physical property encoded

at maximum depth 𝑑, that depend only on connectivity and do not require Carte-

sian or internal coordinate information. Although inclusion of geometric information

improves predictive capabilities of machine learning models in organic chemistry486,

reliance on structural information requires explicit calculation or knowledge of it prior

to ML prediction, which is not practical for transition metal complexes. AC sets also

are vectorial descriptors that are invariant with respect to system size and compo-

sition, unlike frequently-used symmetry functions24, bag-of-bonds25, and Coulomb

matrices79,250.

Despite their promise in therapeutic drug design244,483,485 or in revealing inorganic
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complex structure-property relationships482, ACs have not yet been tested as fea-

tures in machine learning models that predict quantum mechanical properties. We

first apply ACs to the QM9 database31 of 134k organic (C, H, O, N, and F el-

ements) molecules consisting of up to nine heavy atoms. This database contains

B3LYP/6-31G-calculated properties, including atomization energies and HOMO-

LUMO gaps, making it a frequent test set for machine learning models and descriptor

sets212,223,486,487. The QM9 test set allows us to both identify if there is an optimal

maximum depth for ACs and to determine the baseline predictive capability of ACs

in comparison to established descriptors25,79,250. Throughout this work, we score fea-

ture sets by training Kernel ridge regression (KRR) models209 with a Gaussian kernel.

KRR is a widely-employed25,79,250 ML model, that has produced sub-kcal/mol out-

of-sample property prediction error on large organic databases and crystals137,212,488.

We have selected KRR for the i) ease of retraining, ii) transparency of differences in

KRR models209, as predictions are related to arrangement of data points in feature

space, and iii) wide use of KRR in computational chemistry25,79,137,250,488 (Appendix

B, Text B.1).

First, we test the effect of increasing the maximum AC depth to incorporate increas-

ingly nonlocal ACs on AE prediction test set errors using a 1000 molecule training set

repeated five times (Figure 4-1). We evaluate prediction test set mean unsigned error

(MUE) on the remaining 133k molecules in the QM9 set. Test set MUEs first decrease

with increasing depth from 18 kcal/mol MUE at zero-depth (i.e., only sums of con-

stituent atom properties) and reach a minimum of 8.8 kcal/mol MUE at maximum

three-depth ACs. Without any further feature reduction, maximum three-depth ACs

(3d-ACs) correspond to a 20-dimensional feature set (i.e., 4 length scales ×5 proper-
ties). Increasing the maximum depth beyond three increases test errors slightly up to

9.2 kcal/mol for maximum six-depth ACs (Figure 4-1). Minimum train/test MUEs
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with 3𝑑-ACs emphasizes the length scale of chemically relevant effects, in line with

previous observations197,308,486 and increasing train/test MUEs due to the addition of

more poorly correlating non-local descriptors emphasizes the importance of careful

feature selection (Section 4.2.3). Regardless of maximum depth chosen, AC-derived

prediction accuracy is impressive since the KRR model is trained with < 1% of the

QM9 data set, which has a large overall AE mean absolute deviation of 188 kcal/mol.

Figure 4-1: Train (black line) and test (red line) MUEs (in kcal/mol) for QM931 AEs
predicted by KRR models trained on AC feature sets with increasing maximum depth.
Each model is trained on 1, 000 molecules and tested on the 133k remaining molecules.
Error bars on test set error correspond to standard deviations from training the KRR
model on five different samples, and the red circles correspond to the mean test error. The
lowest MUE maximum-depth, 3, is indicated with an asterisk. An example of a term in a
3-depth AC is shown on butane in inset.

We now compare 3𝑑-AC performance and learning rates (i.e., over increasingly large

training sets) to i) the Coulomb matrix eigenspectrum250 (CM-ES) representation,

which is an easy to implement 3D-derived descriptor79; ii) the recently-developed486

2B descriptor that, like ACs, does not require explicit 3D information and encodes

connectivity and bond order information for atom pairs; and iii) and more com-
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plex486 12NP3B4B descriptors. The 12NP3B4B descriptors, which encode a con-

tinuous, normal distribution of bond distances for each bond-type in a system-size

invariant manner, require 3D information but have demonstrated performance sim-

ilar to the best results reported275,488 QM9 AEs486. We trained the CM-ES KRR

model using the recommended79 Laplacian kernel, but we selected a Gaussian kernel

for 3𝑑-ACs after confirming it produced lower MUEs (Appendix B, Text B.2). For

our ultimate goal of inorganic complex property prediction (Section 4.3), 3D infor-

mation, even from semi-empirical geometries, is not readily achievable from currently

available semi-empirical theories. However, we compare our two trained KRRs to

reported performance of 2B and 12NP3B4B descriptors from the literature, which

we select as the best-reported 3D-structure-free descriptor and as a high-accuracy,

3D-structure-dependent descriptor, respectively486.

For the largest 16000 molecule training set, the 3𝑑-AC test set MUEs are 68% and

43% lower than CM-ES and 2B descriptors, respectively. The 3𝑑-AC descriptors are

only outperformed by 12NP3B4B by 74% or 4.5 kcal/mol, owing to the bond distance

information encoded in this set (Figure 4-2 and Appendix B, Table B.1). This im-

proved performance of 12NP3B4B and other comparably-performing486 descriptors

(e.g., superposition of atomic densities427 or the many-body tensor representation488)

comes at a severe cost of requiring accurate geometries before predictions can be

made, whereas 3𝑑-AC significantly outperforms the previous best-in-class topology-

only descriptors set 2B. Learning rates (i.e., training-set size test set MUE depen-

dence) are comparable among 3𝑑-AC, 2B, and 12NP3B4B descriptors but slightly

steeper for the poorer performing CM-ES representation (Figure 4-2). For dipole

moment prediction, 3𝑑-AC performs nearly as well as 12NP3B4B: the 3𝑑-AC test

MUE at 1, 000 training points is only 2% higher than 12NP3B4B and 19% higher

at 16, 000 training points (Appendix B, Table B.2). Thus, ACs are promising size-
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invariant, connectivity-only descriptors for machine learning of molecular properties.

However, we have previously observed limited transferability of organic represen-

tations for inorganic complexes308, and we next identify the transferability of our

present descriptors as well as beneficial inorganic chemistry adaptations.

Figure 4-2: Training set size dependence of test set MUEs (in kcal/mol) for KRR model
prediction of QM931 AEs for four feature sets. In all cases, the test set consists of the
remainder of the 134k molecule set not in the training set. For the maximum 3-depth
autocorrelation (3𝑑-AC, gray circles) and Coulomb matrix eigenspectrum250 (CM-ES, red
circles) trained in this work, standard deviations (error bars) and mean test errors are
reported from training results on five samples selected for each training set size. The
2B (green open square) and 12NP3B4B (blue open square) KRR test set MUEs from
literature486 are provided for comparison.

4.2.2 Revised autocorrelations for transition metal complexes

We previously proposed308 a mixed continuous (e.g., electronegativity differences)

and discrete (e.g., metal and connecting atom identity) set of empirical, topological

descriptors (referred to in this work as MCDL-25) that emphasized metal-proximal

properties for predictive modeling of transition metal complexes with an artificial
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neural network. The MCDL-25 set is metal-focused in nature with the longest range

effects only up to two bonds through a truncated Kier shape index453. This imparted

good accuracy (i.e., root mean squared error, RMSE, of 3 kcal/mol) for spin-state

splitting predictions and superior transferability to test set molecules with respect to

commonly-employed descriptors250 used in machine learning for organic chemistry

that encode complete, 3D information. In addition to standard ACs (eq. 4.1 in

Section 4.2.1), we now introduce revised ACs (RACs) inspired by descriptors in the

metal-focused MCDL-25 set. In these RACs, we both restrict where the sums in

eq. 4.1 start (i.e., to account for potentially greater importance of the metal and

inner coordination sphere) and which other atoms are in the scope (Figure 4-3). In

the extended notation of the broader AC set, the standard ACs starts on the full

molecule (𝑓) and has all atoms in the scope (𝑎𝑙𝑙), i.e., 𝑓
𝑎𝑙𝑙𝑃 𝑑. As in ref.482, we compute

restricted-scope ACs that separately evaluate axial or equatorial ligand properties:

𝑓
𝑎𝑥/𝑒𝑞𝑃 𝑑 =

1

|ax/eq ligands|

𝑛𝑎𝑥/𝑒𝑞∑︁
𝑖

𝑛𝑎𝑥/𝑒𝑞∑︁
𝑗

𝑃𝑖𝑃𝑗𝛿 (𝑑𝑖𝑗, 𝑑) (4.2)

where 𝑛𝑎𝑥/𝑒𝑞 is the number of atoms in the corresponding axial or equatorial ligand

and properties are averaged within the ligand subtype. We introduce restricted-

scope, metal-centered (𝑚𝑐) descriptors, in which one of the atoms, 𝑖, in the 𝑖,𝑗 pair

is a metal center:

𝑚𝑐
𝑎𝑙𝑙𝑃 𝑑 =

𝑚𝑐∑︁
𝑖

𝑎𝑙𝑙∑︁
𝑗

𝑃𝑖𝑃𝑗𝛿 (𝑑𝑖𝑗, 𝑑) (4.3)

For the complexes in this work there is only one metal-center, which simplifies the

sum, but there is no inherent restriction to a single metal center (see green arrows

in Figure 4-3).
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Figure 4-3: Schematic of ACs in the equatorial plane of an iron octahedral complex with
two eq. oxalate ligands shown in ball and stick representation (iron is brown, oxygen is red,
and carbon is gray). Regions of the molecule used to classify descriptors are designated as
proximal (metal and first coordination shell, in red), middle (second coordination shell, in
green) and distal (third shell and beyond, in blue) throughout the text. Light green circles
and arrows depict terms in a 2-depth 𝑚𝑐 RAC (e.g., 𝑚𝑐

𝑎𝑙𝑙𝑍2), and the light blue circles and
arrows depict terms in a 1-depth 𝑙𝑐 RAC (e.g., 𝑙𝑐

𝑎𝑥𝑍1).

A second restricted-scope, metal-proximal AC definition is the ligand-centered (𝑙𝑐)

sum in which one of the atoms, 𝑖, in the 𝑖,𝑗 pair is the metal-coordinating atom of

the ligand:

𝑙𝑐
𝑎𝑥/𝑒𝑞𝑃 𝑑 =

1

|ax/eq ligands|
1

|𝑙𝑐|
𝑙𝑐∑︁
𝑖

𝑛𝑎𝑥/𝑒𝑞∑︁
𝑗

𝑃𝑖𝑃𝑗𝛿 (𝑑𝑖𝑗, 𝑑) (4.4)

We average the ACs over all lc atoms and over all ligands in order to treat ligands

of differing denticity on equal footing (see light blue arrows in Figure 4-3).

Inspired by our previous success308,489 in employing electronegativity differences be-
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tween atoms to predict electronic properties, we also modify the AC definition, 𝑃 ′,

to property differences rather than products for a minimum depth, 𝑑, of 1:

𝑙𝑐/𝑚𝑐
𝑎𝑥/𝑒𝑞/𝑎𝑙𝑙𝑃

′
𝑑 =

1

|ax/eq ligands|
1

|𝑙𝑐|

𝑙𝑐/𝑚𝑐∑︁
𝑖

𝑛𝑎𝑥/𝑒𝑞/𝑎𝑙𝑙∑︁
𝑗

(𝑃𝑖 − 𝑃𝑗) 𝛿 (𝑑𝑖𝑗, 𝑑) (4.5)

where the scope can be axial, equatorial, or all ligands, the start must be 𝑙𝑐 or 𝑚𝑐

because a sum of differences over all will be zero, and these ACs are not symmetric

so the ordering of indices 𝑖,𝑗 is enforced for consistency.

We combine all six types of AC or RAC start/scope definitions (𝑓/𝑎𝑙𝑙; 𝑚𝑐/𝑎𝑙𝑙; 𝑙𝑐/𝑎𝑥;

𝑙𝑐/𝑒𝑞, 𝑓/𝑎𝑥; and 𝑓/𝑒𝑞, eqs. 4.1–4.5) with both products and differences of the five

atomic properties for depths from zero, where applicable, to maximum depth 𝑑.

There are 6𝑑 + 6 descriptors for six product AC/RACs (eqs. 4.1–4.4) with each of

the five atomic properties (i.e., a total of 30𝑑 + 30 product AC/RACs). For dif-

ference RACs (eq. 4.5), there are no zero-depth descriptors, and three non-trivial

start/scope definitions (𝑚𝑐/𝑎𝑙𝑙; 𝑙𝑐/𝑎𝑥; and 𝑙𝑐/𝑒𝑞), producing 3𝑑 descriptors for all

of the atomic properties excluding 𝐼, giving 12𝑑 difference descriptors for a total

of 42𝑑 + 30 product or difference RACs. These ACs represent a continuous vector

space that is increasingly nonlocal with increased maximum 𝑑 and dimension invari-

ant with respect to system size. This descriptor set also does not depend on any 3D

information, which is valuable for structure prediction308,482.

We classify relative locality of ACs into three categories (see Figure 4-3): 1) proximal:

depends only on atom types and connectivity in first coordination shell; 2) middle:

depends on information from two coordination shells; and 3) distal: all remaining

descriptors based on the molecular graph. This broad AC set naturally recovers well-

known quantities: i) 𝑚𝑐
𝑎𝑙𝑙𝐼1 is the metal coordination number and ii) 𝑓

𝑎𝑙𝑙𝐼0 is the total
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number of atoms. We also recover continuous descriptor analogues to the variables

in MCDL-2552: i) 𝑚𝑐
𝑎𝑙𝑙𝑍0 is the metal identity, ii) 𝑙𝑐

𝑎𝑥/𝑒𝑞𝑍0 is the coordinating atom

identity, and iii) 𝑚𝑐
𝑎𝑙𝑙𝜒

′
1 is Δ𝜒. Some ACs are redundant (e.g., 𝑚𝑐

𝑎𝑙𝑙𝐼1 and 𝑚𝑐
𝑎𝑙𝑙𝑇 0 are

the same). Before model training, all ACs are normalized to have zero-mean and

unit variance based on training data, and any constant features in training data are

filtered out.

4.2.3 Feature selection methods

Feature reduction from a large descriptor space improves the ratio of training points

to the dimension of the feature space, decreasing training time and complexity490

for non-linear models (e.g., neural networks) or improving predictions in kernel-

based methods with isotopic kernels by eliminating uninformative features. In linear

models, feature reduction increases stability, transferability, and out-of-sample per-

formance490. Reducing feature space, without impact on model performance490, is

also useful491 for providing insight into which characteristics are most important for

determining materials properties. Starting from 𝑛 observations (e.g., spin-state split-

ting, bond length, or redox potential) of 𝑦𝑑𝑎𝑡𝑎(𝑥𝑖) and molecular descriptors 𝑥𝑖 ∈ 𝒳𝑚

in an 𝑚-dimensional feature space, 𝒳𝑚 ⊂ R𝑚, we use established491 feature selection

techniques to obtain a lower-dimensional representation of the data, 𝒳𝑑 ⊂ 𝒳𝑚 that

maximizes out-of-sample model performance while having the smallest possible di-

mension.

Feature selection techniques may be broadly classified491 as (Figure 4-4): 1) sim-

ple filters, 2) wrapper methods, and 3) direct optimization or shrinkage methods209.

Type 1 univariate filtering (UVF) acts on each descriptor individually, discarding
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those that fail a statistical test (here, the p-value for a linear model being above a

cutoff of 0.05). UVF is amenable to very high-dimensional problems491 but neglects

interactions between descriptors that may occur490, and the significance test in a

linear model may not relate well to the final machine learning model.

Type 2 wrapper methods require multiple steps490,491: iterative feature subset choice

along with model training and scoring (Figure 4-4). Combinatorial testing of every

possible subset is only feasible for small feature sets (e.g., < 40 variables with simple

predictive models209). The model used in training and scoring is flexible, but the re-

peated model training time may become prohibitive. Stepwise search490, with greedy

recursive feature addition or elimination (i.e., RFA or RFE) on most improvement or

least penalty, respectively, or randomized searches less prone to local minima491, are

employed for larger feature sets. Cross-validation (CV) scoring, which is unaffected

by feature space size changes, will usually produce a minimum for an optimal number

of features490. We recently used482 RFE with an embedded linear model to select

variables to use in multiple linear regression (MLR) to identify four key RACs from a

larger 28-dimensional space for redox potential prediction. In this work, we primarily

employ RFE-MLR to select features to be used for KRR training, despite potentially

eroded model transferability between MLR and KRR. The fine hyperparameter grid

search needed to produce a robust KRR model at each RFE iteration would take

around 30 days in parallel on a 4-core Intel 3.70 GHz Core i7-4820K when starting

from a large (ca. 150) descriptor set, making some initial reduction in feature space

necessary for practical RFE-KRR (Appendix B, Text B.3).

Type 3 shrinkage or direct optimization methods use regularization (e.g., elastic net

or L1-regularized linear regression, LASSO492) or a model (e.g. random forests) that

determines variable importance in one shot during training, making Type 3 methods

much more computationally efficient than Type 2.
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Figure 4-4: Schematic of three main types of feature selection approaches with retained
and input features represented by dark blue circles. Type 1 (top) univariate filters evaluate
features one at a time; type 2 (middle) wrapper methods train a model (e.g., KRR or MLR)
and use a cross validation score to recursively eliminate features; and type 3 (bottom)
shrinkage or direct optimization models such as LASSO and random forests (randF) carry
out one-shot feature selection and regularization or model training, respectively.
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However, it remains uncertain if the typically lower complexity of the combined

feature-selection and fitting model (e.g, L1 regularized regression in LASSO) pro-

duces results that are transferable to the subsequent ML model to be trained (e.g.,

KRR). In this work, we use an elastic net, a generalization of LASSO that we previ-

ously used to select descriptors for machine learning models308, in which a blend of

L2 and L1 regularization is applied493, giving the loss function as:

ℒ(𝑊 ) = ‖𝑥𝑊 − 𝑦𝑑𝑎𝑡𝑎(𝑥)‖22 − 𝜆
(︀
𝛼 ‖𝑊‖1 + (1− 𝛼) ‖𝑊‖22

)︀
(4.6)

Here, 𝑊 are the regression coefficients, 𝜆 is the regularization strength, and 𝛼 inter-

polates between ridge (𝛼 = 0) and LASSO (𝛼 = 1) regression. Higher 𝛼 aggressively

reduces the feature space, and the best 𝛼 is selected by cross-validation with 𝜆, with

intermediate 𝛼 often favored for balancing prediction with feature reduction209.

Random forests494, which are based on an ensemble of sequential binary decision

trees, are another Type 3 method (Figure 4-4). Each tree is trained on a boot-

strapped data sample and uses a random input variable set. Integrated feature

selection is achieved by comparing tree performance when descriptors are randomly

permuted495 to yield an importance score for each descriptor and discard those below

a threshold value. Here, we use 1000 trees and discard descriptors with an increase

of < 1% (or higher, where specified) in normalized MSE on out-of-model samples

upon removal (see convergence details in Appendix B, Figures B-1–B-4).

We now compare feature selection methods on our transition metal complex data

sets, as judged by performance on 60%–40% and 80%–20% train-test partitions for

the larger spin-splitting and smaller redox data set (see Section 4.3.1), respectively.

Feature selection is only carried out on the training data, and KRR models are

used for judging performance of a feature set using identical cross-validation for hy-
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perparameter estimation. All analysis is conducted in R version 3.2.3456. We use

the kernlab467 package for KR regression, CVST468 for cross-validation, glmnet455

for elastic net regression, caret496 for feature selection wrapper functions and ran-

domForest497 for random forests. All kernel hyperparameter values are provided in

Appendix B, Tables B.3–B.6.

4.3 Computational details

4.3.1 Organization of data sets

Feature selection and model training is carried out on two data sets of single-site

octahedral transition metal complexes, which were generated from extension of data

collected in previous work308,482 (Figure 4-5). These data sets are derived from

around 3, 300 DFT geometry optimizations of molecules up to over 150 atoms in

size, which is a smaller number of training points than has been feasible in machine

learning on small (i.e., up to 9 heavy atoms) organic molecules31 but slightly larger

than has successfully been used in bulk catalysis231. For both sets, the complexes

contain Cr2+/3+, Mn2+/3+, Fe2+/3+, Co2+/3+, or Ni2+ first row transition metals.

High-spin (H) and low-spin (L) multiplicities were selected for each metal from those

of the isolated ion in National Institute of Standards and Technology atomic spectra

database446: triplet-singlet for Ni2+, quartet-doublet for Co2+ and Cr3+, quintet-

singlet for Fe2+ and Co3+, quintet-triplet for Cr2+ and Mn3+ (due to the fact that

there is no data available for Mn3+ singlets446), and sextet-doublet for Mn2+ and Fe2+.
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Figure 4-5: (top) Schematic of octahedral transition metal complex illustrating possible
unique ligands (one equatorial ligand type, Leq, and up to two axial ligand types, Lax1 and
Lax2) in the spin-splitting and redox data sets. (bottom) Characteristics of each data set:
metal identity, number of ligand types (L types), connecting atom identity of the ligand
to the metal (L CA), range of denticities (L denticity), ligand symmetry corresponding
to the schematic complex representation, and associated quantum mechanical properties.
Spin-splitting and redox Fe-N sets were previously published308,482, but the “new” subset
of the redox data set was generated in this work.

For all data sets, the molSimplify181 code was used to generate starting geometries

from the above metals and a ligand list (ligands provided in Appendix B, Table B.7).

Incompatible ligand combinations are disabled (e.g., equatorial porphyrin ligands can

occur once and only with monodentate axial ligands).

The spin-state splitting data set308 consists of 1345 unique homoleptic or heterolep-

tic complexes with up to one unique axial and equatorial ligand type with ligands

selected from 16 common ligands of variable ligand field strength, connecting atom
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identity, and denticity (Figure 4-5). For this data set, the structures were evaluated

using hybrid density functional theory (DFT) at 7 percentages of Hartee-Fock (HF)

exchange from 0 to 30% in 5% increments. This set was previously used to train

models that predict i) the adiabatic, electronic spin-state splitting energy, Δ𝐸H−L, ii)

the exchange sensitivity of the spin-state splitting, and iii) the spin-state dependent

minimum metal-ligand bond lengths (e.g., min(𝑅𝐿) or 𝑚𝑖𝑛(𝑅𝐻)) that differ from

the average metal-ligand bond length only for distorted homoleptics or heteroleptic

complexes. In this work, we only train and test models on Δ𝐸H−L and min(𝑅𝐿).

The redox data set (226 unique structures) is comprised of 41 previously studied482

Fe-nitrogen monodentate and bidentate homoleptic complexes and 185 newly gener-

ated structures (Figure 4-5 and Appendix B, Table B.8). The new complexes were

obtained by generating combinations of metals (Cr, Mn, Fe, Co) and five small, neu-

tral monodentate ligands (CO, pyridine, water, furan, and methyl isocyanate) with

up to two axial ligand types and one equatorial ligand type. Axial ligand disengage-

ment occurred during optimization in several of the 300 theoretically possible cases,

reducing the final data set.

In all cases, we calculate the M(II/III) redox couple starting from the adiabatic

ionization energy of the reduced complex’s ground state spin:

Δ𝐸III−II = Δ𝐸III −Δ𝐸II (4.7)

At minimum, this ionization energy requires M(II) low-spin and high-spin geometry

optimizations as well as the selected lowest energy M(III) state that differs by a

single electron detachment (Appendix B, Table B.9).

To compute the redox potential, we also include solvent and thermodynamic (i.e. vi-

brational enthalpy and zero point vibrational energy) corrections in a widely adopted

169



thermodynamic cycle approach19,203,20798-100. We estimate the M(II/III) redox po-

tential in aqueous solution at 300K, Δ𝐺solv:

Δ𝐺solv = 𝐺𝑔𝑎𝑠 (M(III))−𝐺𝑔𝑎𝑠 (M(II)) + Δ𝐺𝑠 (M(III))−Δ𝐺𝑠 (M(II)) (4.8)

where 𝐺𝑔𝑎𝑠 is the gas phase energy with thermodynamic corrections and Δ𝐺𝑠 is

the solvation free energy of the gas phase structure. We then compute the redox

potential:

𝐸0 = −𝐺solv

𝑛𝐹
(4.9)

where the number of electrons transferred is 𝑛 = 1 and 𝐹 is Faraday’s constant.

4.3.2 First-principles simulation methodology

Our simulation methodology was the same for all generated data sets. All DFT

calculations employ the B3LYP hybrid functional152,157,158 with 20% HF exchange

(𝑎𝐻𝐹 = 0.20), except for cases where HF exchange is varied197 while holding the semi-

local DFT exchange ratio constant. In inorganic complexes, the optimal amount of

HF exchange is highly system dependent194,196,197,437, motivating our earlier training

of an ANN to predict spin-state ordering and bond length in an HF exchange de-

pendent manner as well as the sensitivity of properties to HF exchange fraction308.

Exchange-sensitivity is not the focus of the present work, as our prior work demon-

strated308 that ANN accuracy was not sensitive to functional choice. We use the

LANL2DZ effective core potential172 for all transition metals, bromine, and iodine

and the 6-31G* basis for the remaining atoms. The use of a modest basis set is moti-

vated by our previous observations482 that extended basis sets did not substantially
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alter trends in redox or spin-state properties. Gas phase geometry optimizations

were conducted using the L-BFGS algorithm implemented in the DL-FIND449 (for

the spin-splitting data set) or in translation rotation internal coordinates498 (for the

redox data set) interfaces to TeraChem105,447 to the default tolerances of 4.5× 10−4

hartree/bohr for the maximum gradient and 1× 10−6 hartree for the change in self-

consistent field (SCF) energy between steps. All calculations were spin-unrestricted

with virtual and open-shell orbitals level-shifted448 by 1.0 eV and 0.1 eV, respec-

tively, to aid SCF convergence to an unrestricted solution. Deviations of ⟨𝑆2⟩ from
the expected value by more than 1 µB led to exclusion of that data point from our

data set. The aqueous solvent environment, where applicable, was modeled using

an implicit polarizable continuum model (PCM) with the conductor-like solvation

model (COSMO205,499) and 𝜀 = 78.39. The solute cavity was built using Bondi’s

van der Waals radii500 for available elements and 2.05 Å for iron, both scaled by a

factor of 1.2. Vibrational entropy and zero-point corrections were calculated from a

numerical Hessian obtained with built-in routines in TeraChem105,447.

4.4 Results and discussion

4.4.1 Spin splitting energy

We evaluate our RACs (i.e., both standard ACs and the modified start, scope, and

difference ACs defined in Section 4.2.2) for KRR training on the spin-splitting data

set and compare to both previous MCDL-25 descriptors52 and widely-employed79,250

Coulomb-matrix-derived descriptors. Based on our results for organic molecules (Sec-

tion 4.2.1), we use a maximum depth of 3 in the 42𝑑 + 30 RACs, producing 156

potential descriptors, which reduce to 151 after discarding 5 descriptors that are
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constant (e.g., 𝑙𝑐
𝑎𝑥𝐼0 and

𝑚𝑐
𝑎𝑙𝑙𝑇 0) due to unchanged octahedral coordination in the data

sets in this work (Appendix B, Table B.10). We add four variables (i.e., oxidation

state, HF exchange and axial/equatorial ligand denticity) from our MCDL-25 set308

to produce a final 155-variable set (RAC-155). The RAC-155 set is transferable to

inorganic chemistry, with already good MCDL-25/KRR (Gaussian kernel) test set

RMSE and MUE of 3.88 and 2.52 kcal/mol reduced to 1.80 and 1.00 kcal/mol with

RAC-155 (Table 4.1). This performance is also superior to Coulomb matrix (CM)-

based descriptors computed on high-spin geometries. Using either i) an L1 matrix

difference kernel on sorted Coulomb matrices137,250 (CM-L1) or ii) eigenvalues250 and

a Laplacian kernel, as recommended in Ref.79 (CM-ES), we obtain 10-30× higher

RMSE and MUEs than for RAC-155 or MCDL-25 (Table 4.1, learning rates for

RAC-155 in Appendix B, Figure B-5).

Table 4.1: Coulomb matrix eigenspectrum representation with a Laplacian kernel (CM-
ES)25, our prior hybrid discrete-continuous descriptors (MCDL-25)308 with a Gaussian
kernel, and the full RAC-155 set introduced in this work with a Gaussian kernel.

Feature set RMSE MUE

(kcal/mol) (kcal/mol)

CM-L1 30.80 20.84

CM-ES 19.19 14.96

MCDL-25 3.88 2.52

RAC-155 1.80 1.00

Visualization with principal component analysis (PCA) of the key descriptor space

dimensions with spin-splitting or molecular size variation overlaid reveals why CM-

ES performs poorly in comparison to RACs (Figure 4-6). The first two principal
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components encode the majority of the feature space variation for both sets: 85%

of CM-ES and 55% of RAC-155 (Appendix B, Figures B-6–B-7). As expected250,308

CM-ES shows excessive molecule-size-dependent clustering that is not predictive of

how metal electronic properties vary. As an example, homoleptic Fe(III) complexes

with strong-field t-butylphenylisocyanide (pisc) and methylisocyanide (misc) ligands

have comparable Δ𝐸H−L of 41 and 38 kcal/mol but differ in size substantially at

151 and 37 atoms, respectively (structures in Figure 4-6 inset). Despite comparable

spin splitting, these molecules are on opposite ends of PC1 in the CM-ES PCA with

no intermediate data (Figure 4-6). More broadly, no clustering is apparent in spin-

splitting energies with CM-ES in comparison to the strong system size clustering

(Figure 4-6).

In contrast, RAC-155 distributes data more evenly in the PCA with smaller size-

dependence due to using both metal-centered and ligand-centered ACs in addition

to truncating the depth of descriptors to three prior to feature selection (Figure 4-6).

Improved RAC performance is also due to better representation of molecular simi-

larity with apparent weak-field and strong-field groupings, assisting KRR learning25

that relies on nearest neighbor influence for property prediction (Figure 4-6).

Spin splitting energies are well predicted by KRR with RAC-155, outperforming our

previous MCDL-25 representation but at the initial cost of an order-of-magnitude in-

crease (from 25 to 155) in feature space dimension. We thus apply feature selection

techniques (Section 4.2.3) to identify if AC subsets maintain predictive capability

with smaller feature space size.
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Figure 4-6: Projection of spin-splitting data set onto the first two principal components
(arbitrary units) for the Coulomb matrix eigenspectrum (CM-ES, left), full revised AC set
(RAC-155, center), and the LASSO-selected subset (LASSO-28, right). The PCA plots are
colored by DFT-calculated spin splitting energy (top, scale bar in kcal/mol at right) and size
(bottom, scale bar in number of atoms at right). Ball and stick structures of representative
complexes Fe(III)(pisc)6 and Fe(III)(misc)6 (iron brown, nitrogen blue, carbon gray, and
hydrogen white) are inset in the bottom left, and the associated data points are highlighted
with a blue circle and square, respectively, in each plot.

Starting with Type 3 shrinkage methods we have previously employed308, we carried

out feature selection with an elastic net. Comparable CV scores were obtained for all

𝛼, and so we chose 𝛼 = 1 (i.e., LASSO) (Appendix B, Figure B-8). LASSO retained

28 features, eliminating over 80% of the features in RAC-155 with a 0.2 kcal/mol

decrease in test RMSE and the best overall, sub-kcal/mol MUE (Table 4.2 and Ap-

pendix B, Table B.11). PCA on LASSO-28 reveals even weaker size dependence than

RAC-155 and closer pisc and misc species in PC space (Figure 4-6).
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Table 4.2: Train and test set KRR model prediction errors (RMSE for train/test and MUE
for test) for spin-splitting energy (in kcal/mol) for RAC-155 and down-selected subsets
based on spin-splitting data using LASSO, univariate filters (UV), recursive feature elim-
ination (RFE) based on MLR, and random forest (randF). The last results presented for
comparison are the common feature subset (RAC-12), a proximal-only subset (PROX-23)
of RAC-155, and the full RAC-155.

Feature set train test

RMSE RMSE MUE

(kcal/mol) (kcal/mol) (kcal/mol)

LASSO-28 0.60 1.65 0.96

UV-86 0.43 1.78 0.99

RFE-43 0.41 2.50 1.20

randF-41 0.40 1.87 1.01

randF-26 1.18 2.12 1.28

RAC-12 1.31 2.90 1.86

PROX-23 5.43 6.03 3.70

RAC-155 0.55 1.80 1.00

Type 1 feature selection with UV filters (𝑝 ≤ 0.05) retains 86 features (UV-86, Ap-

pendix B, Table B.12) and comparable performance to RAC-155, suggesting elim-

ination of descriptors that have weak univariate correlation does not reduce KRR

accuracy (Table 4.2 and Appendix B, Figure B-9). Type 3 RFE with an embedded

MLR model produces a flat CV error, with an absolute CV minimum at 43 retained

features (i.e., RFE-43, Appendix B, Table B.13 and Figure B-10). The RFE-43 KRR

model shows 0.5 kcal/mol and 0.2 kcal/mol worsened test RMSE and MUE, respec-

tively, compared to RAC-155. Improved performance could possibly be obtained

with a higher fidelity embedded model but at the cost of prohibitive computational
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time for feature selection (see Section 4.2.3).

In addition to LASSO, we also employed the Type 3 random forest (randF) model,

which has a suggested 1% MSE cutoff for feature selection, and by varying this cutoff

we can vary feature set size. The standard 1% cutoff with random forest selects 41

features (randF-41), yielding KRR test RMSE/MUE within 0.1 kcal/mol of RAC-

155 (Table 4.2 and Appendix B, Figure B-11 and Table B.14). We also truncate at

2% randF MSE to retain only 26 variables (randF-26), favorably reducing the feature

space but slightly worsening test MUE relative to randF-41 or LASSO-28 by 0.2–0.3

kcal/mol, with other cutoffs yielding no KRR test error improvement (Table 4.2 and

Appendix B, Tables B.15–B.16). In addition to average errors, error distributions

are symmetric, and maximum errors track with RMSE/MUE: LASSO-28 yields the

smallest (< 9 kcal/mol) maximum error (Appendix B, Figure B-12).

The best-performing LASSO-28 set contains some features equivalent to those in

MCDL-25: i) LASSO-28 𝑚𝑐
𝑎𝑙𝑙𝜒

′
2 and

𝑚𝑐
𝑎𝑙𝑙𝜒

′
3 are similar to MCDL-25 Δ𝜒 , ii) LASSO-

28 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1, 𝑚𝑐

𝑎𝑙𝑙𝑍1, and 𝑙𝑐
𝑎𝑥𝜒1 encode the size and identity of the ligand connecting atoms

also present in MCDL-25, and iii) metal-identity, which was a discrete variable in

MCDL-25, is represented by 𝑚𝑐
𝑎𝑙𝑙𝑍0 and 𝑚𝑐

𝑎𝑙𝑙𝜒0 in LASSO-28. Our new difference-type

RACs are well-represented (10 of 28 in LASSO-28), and only 5 of 28 are whole-

ligand(4, e.g., 𝑓
𝑎𝑥𝐼3) or whole-complex (1,

𝑓
𝑎𝑥𝜒2). Thus, 𝑚𝑐, 𝑙𝑐, and difference-derived

RACs, all motivated by our prior observations of inorganic chemistry, are key to high

accuracy predictions.

It is useful to understand the effect of feature selection method choice by identifying

the number of common features among the three best-performing selected feature

sets, LASSO-28, UV-86, and randF-41 (Figure 4-7). Only 12 features are common

to the three subsets, which we designate RAC-12 (Appendix B, Table B.17). In RAC-

12, 7 of the retained descriptors are proximal, and 5 of 12 descriptors incorporate 𝜒
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or Δ𝜒. All four of the retained distal properties in RAC-12 (e.g., 𝑚𝑐
𝑎𝑙𝑙𝜒

′
𝑑 , 𝑑 = 1, 2, 3

and 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1) are of the newly introduced difference-derived AC type. A KRR model

trained on RAC-12 produces test set RMSE and MUE 1.1 and 0.9 kcal/mol above

the 13× larger RAC-155 but still significantly lower than the twice as large MCDL-25

(see Table 4.1 and 4.2). Broadly, two thirds of all features are selected by at least

one of the three best feature selection methods (Figure 4-7).
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Figure 4-7: Venn diagram showing common descriptors among the three best perform-
ing subsets of RAC-155 returned by feature selection algorithms: UV-86, LASSO-28, and
randF-41. A total of 12 common variables are found among all three sets, and other num-
bers refer to unique or common variables between sets. Example features are indicated,
colored by classification (proximal in red, middle in green, and distal in blue).

Over 80% of the descriptors in randF-41 are also found in the larger UV-86, but

fewer (31% of randF-41) are present in the smaller LASSO-28. Unique descriptors in

randF-41 are 𝑚𝑐-type, whereas unique LASSO-28 descriptors are non-local 2-depth
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or 3-depth standard ACs on ligands.

We further classify the degree of locality in each feature set, as designated by the

bond-wise path-length scales of information in the descriptors (i.e., proximal, mid-

dle, and distal, defined in Section 4.2.2). We quantify the fraction of descriptors

corresponding to each category in a feature set, e.g. the proximal fraction:

frac (proximal) =
num. of proximal RACS+ 2

num. RACS+ 2
(4.10)

where the denominator only contains the RACs that can be assigned to proximal

(the two ligand denticity variables are also included here), middle, or distal por-

tions of the molecule, not oxidation state or HF exchange. Relative to RAC-155,

all feature selection methods increase the proximal fraction, and we observe lowest

MUEs in subsets with higher proximal fractions, i.e., over 0.3 in the best-performing

LASSO-28 or in randF-41 and increased to nearly 0.5 when a higher MSE cutoff is

used in random forest (i.e., randF-26, Figure 4-8). The higher-dimensional Type 1

UV-86 subset and Type 2 RFE-43 subset possess the most similar distributions to

RAC-155 with still good performance likely due to relatively large feature set size

(Figure 4-8). Modest feature space dimension (< 30) always gives higher proximal

fraction than larger subsets.

Given the high fraction of retained proximal descriptors in randF-26 and RAC-12, we

also tested the suitability of a full proximal-only set of RACs and denticity variables

along with oxidation state and HF exchange (PROX-23) for KRR model training

(Appendix B, Table B.18). This PROX-23 KRR model is the worst performing of

all KRR models, including MCDL-25, with test RMSE and MUE of 6.0 and 3.7

kcal/mol, emphasizing the importance of beyond-proximal information present in

both MCDL-25 and the feature sets selected in this work (Table 4.2).
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Figure 4-8: Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Figure 4-3 compared against RAC-155
reference fractions (dark red proximal fraction and green middle fraction as horizontal
lines) along with their performance for spin-splitting prediction with KRR. The normalized
relative test set spin-splitting MUE from a KRR model is shown in dark grey for each
set, and the lowest test MUE is indicated with an asterisk. Sets are sorted left to right
in decreasing distal fraction: RFE with MLR (RFE43); UV filter (UV86); LASSO (LS28),
random forest with 1% (rF41) or 2% cutoff (rF26), common set (C12), and proximal-only
(Prx23). HF exchange and oxidation state are not shown but are used in all models

The superior performance of the LASSO-28 subset over the similarly-sized randF-26

also highlights the importance of second-shell and global descriptors, as 78% of the 18

features present in LASSO-28 that are absent from randF-26 are distal (e.g., 𝑚𝑐
𝑎𝑙𝑙𝜒

′
3,

𝑙𝑐
𝑒𝑞𝜒

′
2 , and 𝑙𝑐

𝑎𝑥𝑇 3). Comparing randF-26 to the larger randF-41 set, which has a 0.3

kcal/mol lower test MUE, we observe that 12 of the 15 features present in randF-41

but omitted in randF-26 are distal.
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4.4.2 Descriptor transferability to bond length prediction

A key advantage of our geometry-free RACs is that they enable bond length predic-

tion308 to facilitate accurate structure generation180,181. We first evaluate the pre-

dictive performance of our full AC set (RAC-155), the proximal subset (PROX-23),

and spin-state splitting-selected feature sets (LASSO-28, randF-41, and randF-26) as

well as the common subset (RAC-12) for training KRR models on minimum low-spin

metal-ligand bond lengths (i.e., min(RL)) in the low-spin, DFT geometry-optimized

structures of complexes in the spin-splitting data set. If the complex is homoleptic

and symmetric, there is only a single metal-ligand bond length in the low-spin com-

plex that corresponds exactly to min(𝑅𝐿), otherwise we take the minimum of the

equatorial or axial metal-ligand bond length in order to predict a single property.

Except for PROX-23, all feature subsets yield RMSEs and MUEs around 1.4 and

0.5 and pm (i.e., 0.014 Å and 0.005 Å), respectively, with RAC-12 performing nearly

as well (test RMSE: 1.6 pm, MUE: 0.6 pm) (Table 4.3). The overall best RMSE

performance is observed for LASSO-28, better than for RAC-155, and all subsets

have very slightly degraded (i.e., 0.05 pm worse) MUE performance compared to

RAC-155 (Table 4.3). The PROX-23 set yields 2–3× larger errors (test RMSE: 2.7

pm and MUE: 1.8 pm), which is significantly worse than the smaller common set

(RAC-12), indicating the critical importance of middle and distal features (Figure

4-9). Nevertheless, nearly all feature sets yield better prediction with a KRR model

than our prior, proximally-weighted MCDL-25 set (neural network test RMSE: 2

pm)308.
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Table 4.3: Train and test set KRR model prediction errors (RMSE for train/test and MUE
for test) for minimum low-spin bond length (in pm) for down-selected subsets of RAC-155
using LASSO and random forest (randF) on bond length data (denoted with suffix “B”)
shown first, as well as original spin-splitting feature sets (LASSO-28, randF-41, and randF-
26), shown next. The randF-49B contains manually added HF exchange, which is excluded
from automatically selected randF-48B. The last results presented for comparison are the
common feature subset (RAC-12), a proximal-only subset (PROX-23) of RAC-155, and the
full RAC-155.

Feature set train test

RMSE RMSE MUE

(pm) (pm) (pm)

LASSO-83B 0.15 1.33 0.42

randF-48B 1.25 2.06 1.21

randF-49B 0.18 1.34 0.45

LASSO-28 0.12 1.28 0.47

randF-41 0.16 1.38 0.47

randF-26 0.20 1.37 0.48

RAC-12 0.16 1.62 0.59

PROX-23 2.37 2.67 1.76

RAC-155 0.16 1.33 0.42
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Figure 4-9: Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Figure 4-3 compared against RAC-155
reference fractions (dark red proximal fraction and green middle fraction as horizontal
lines) along with their performance for low-spin bond length prediction with KRR. The
normalized relative test set bond length MUE from a KRR model is shown in dark grey
for each set, and the lowest test MUE is indicated with an asterisk. Sets are sorted left
to right in decreasing distal fraction: LASSO on bond length (LS83B) or on spin-splitting
data (LS28); random forest on spin-splitting (1%, rF41), on bond length data (1%, rF49B),
higher cutoff on spin-splitting (or 2%, rF26); the spin-splitting-derived common set (C12);
and proximal-only (Prx23). HF exchange and oxidation state are not shown but are used
in all models.

We also carried out feature selection on the bond length data with LASSO and

random forest to obtain new feature sets (denoted with a “B” suffix). With bond

length data, LASSO and random forest retain larger feature sets of 83 and 48 RACs,

respectively (LASSO-83B and randF-48B in Table 4.3, and Appendix B, Tables B.19–

B.20 and Figures B-13–B-14). In KRR model training, LASSO-83B performs exactly

the same as RAC-155 with half the features, whereas randF-48B has 2-3x larger

errors (test RMSE: 2.1 pm, MUE: 1.2 pm). This degraded randF-48B performance

occurs because HF exchange has been dropped at the 1% MSE random forest cutoff,

producing a discontinuous jump in kernel hyperparameters (Table 4.3 and Appendix
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B, Table B.4 and Figure B-14). The indirect effect of HF exchange on bond length

within a single complex is apparent197, but across a wide data set of complexes, the

role of HF exchange in bond length data is more easily missed by random forest

than in the case of spin splitting. Manually adding HF exchange to the feature set

(randF-49B) makes this set perform comparably in KRR model training to the other

feature subsets (Table 4.3).

Comparison of random forest feature sets selected on bond lengths (randF-49B) and

on spin splitting (randF-41) reveals differences in the underlying structure-property

relationships. Both sets have 34 features in common, with an increased proximal

fraction relative to RAC-155, but there is a slight bias toward middle features for the

bond-length selected set (15 middle in randF-49B instead of 9 in randF-41) (Figure

4-9). The 15 unique features present in randF-49B but absent from randF-41 are

weighted toward topological, size-derived effects with 5 T-type (e.g., 𝑚𝑐
𝑎𝑙𝑙𝑇 1 ), 2 I-type

(e.g., 𝑙𝑐
𝑎𝑥𝐼1), and 4 S-type (e.g., 𝑙𝑐

𝑒𝑞𝑆0) RACs. Conversely, four of the seven features

in randF-41 but absent from randF-49B are middle/distal and 𝜒/𝑍-type (e.g., 𝑚𝑐
𝑎𝑙𝑙𝑍

′
3

and 𝑙𝑐
𝑒𝑞𝜒

′
1). Comparable KRR bond length prediction accuracy with both feature

sets is due to similar data clustering: the ten nearest complexes to Fe(III)(pisc)6 are

largely unchanged between randF-49B and randF-41, but would differ substantially

for RAC-12 and PROX-23 (Appendix B, Table B.21). Thus evaluation of random

forest feature set selection reveals structure-property-error relationships that may

not be apparent from evaluating KRR model errors alone.

4.4.3 Descriptor transferability to redox data

We now test the transferability of RAC descriptor sets to our redox data set for

the prediction of M(II/III) gas phase ionization potentials (IPs) and aqueous redox
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potentials (see Figure 4-5). Here, all calculations are with B3LYP (20% exchange),

and the oxidation state is no longer a fixed variable. Therefore, all feature sets have

two fewer variables, but we retain the sets’ original names. It might be expected

that direct gas phase IPs are easier to learn than redox potentials, which incorporate

composite and potentially opposing solvent and thermodynamic effects. However, we

observe qualitatively similar KRR model performance and feature selection trends,

and we thus summarize gas phase IP results briefly (Appendix B, Text B.4, Tables

B.22–B.24, and Figures B-15–B-16). After removal of a single outlier molecule, RAC-

155 yields test set RMSE and MUE values of 0.46 and 0.35 eV, respectively, or a 3%

or 2% error relative to the 14.4 eV data set mean, and spin-splitting-selected subsets

randF-41 or LASSO-28 produce the next lowest but slightly larger errors (Appendix

B, Table B.24 and Figures B-17–B-19).

Redox potentials (i.e., including thermodynamic and aqueous implicit solvent cor-

rections) in the full redox data set range from 3.3 to 10.4 eV with a mean of 6.7

eV, and the gas phase IP outlier is not a redox potential outlier (Appendix B, Fig-

ure B-18). The full RAC-155 set produces lower absolute errors with respect to gas

phase IP (test: RMSE 0.40 eV, 6% error and MUE: 0.32 eV, 5% error) but higher

relative errors due to the lower data set mean (Table 4.4). Feature selection on redox

potentials from the redox data set retains 19 variables with LASSO (LASSO-19G),

comparable to the size selected on gas phase IP but smaller than feature sets se-

lected by LASSO on spin-splitting or bond length (Appendix B, Figure B-20 and

Table B.25). LASSO-19G improves very slightly over RAC-155 (test RMSE: 0.38 eV

and MUE: 0.31 eV), despite being 12% of the size of the full set (Table 4.4). Ran-

dom forest on redox potential retains 38 features (randF-38G), improving over both

LASSO-19G and RAC-155 (test RMSE: 0.31 eV, 5% error and MUE: 0.26 eV, 4%

error) (Table 4.4 and Appendix B, Figure B-21 and Table B.26). Thus, comparable
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or reduced absolute errors and only slightly increased relative errors indicates that

the combination of ionization potential, solvent, and thermodynamic corrections is

only slightly more challenging to capture than IP alone.

Table 4.4: Train and test set KRR model prediction errors (RMSE for train/test and MUE
for test) for redox potential (in eV) for down-selected subsets of RAC-155 using LASSO
and random forest (randF) on redox data (denoted with suffix “G”) shown first, as well as
original spin-splitting feature sets (LASSO-28, randF-41, and randF-26), shown next. The
last results presented for comparison are the common feature subset (RAC-12) from all
methods, a proximal-only subset (PROX-23) of RAC-155, and the full RAC-155.

Feature set train test

RMSE RMSE MUE

(pm) (pm) (pm)

LASSO-83B 0.15 1.33 0.42

randF-48B 1.25 2.06 1.21

randF-49B 0.18 1.34 0.45

LASSO-28 0.12 1.28 0.47

randF-41 0.16 1.38 0.47

randF-26 0.20 1.37 0.48

RAC-12 0.16 1.62 0.59

PROX-23 2.37 2.67 1.76

RAC-155 0.16 1.33 0.42

Evaluating the spin-splitting-selected feature subsets (LASSO-28, randF-41, and

randF-26) and the common set (RAC-12) on the redox data set for redox poten-

tial prediction produces some of the lowest test errors of all sets (Table 4.4). The

spin-splitting-selected randF-26 performs best (test RMSE: 0.29 eV, 4% error and
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MUE: 0.23 eV, 3% error), with the larger randF-41 performing nearly as well, whereas

LASSO-28 has larger errors (e.g., test MUE of 0.35 eV) more comparable to RAC-155.

The RAC-12 set exhibits its best relative performance for any property prediction so

far (test RMSE: 0.37 eV and MUE: 0.32 eV), equivalent to the 13× larger full RAC-

155 and substantially better than the proximal-only PROX-23 (test MUE: 0.78 eV,

Table 4.4). The better performance of spin-splitting-selected sets on redox data could

be due to i) the larger, more diverse data in the spin-splitting training set or ii) that

our redox calculation implicitly requires knowledge of spin, as the redox potential is

always evaluated from the ground state of the reduced species. However, separate

prediction of high- or low-spin redox potentials yields similar accuracy, suggesting

combined ground state and redox potential prediction does not increase the difficulty

of the learning task (Appendix B, Table B.27).

Within the redox potential prediction subsets, a relationship between the prediction

accuracy and fraction of descriptor type (i.e., proximal vs. distal) is less clear than

for spin splitting or bond length (Figure 4-10). Simultaneously comparing locality

and test set MUE across feature sets shows comparable performance for i) randF-38G

with a proximal fraction below that of RAC-155, ii) the relatively high proximal and

middle fractions in randF-26, and iii) and even relatively good performance in the

RAC-12 minimal, proximal-heavy subset (Figure 4-10). Comparing the poorer per-

forming spin-splitting-selected LASSO-28 to the redox-selected LASSO-19G reveals

missing middle/distal S- or I-type RACs (e.g., 𝑙𝑐
𝑎𝑥/𝑒𝑞𝐼3 ,

𝑙𝑐
𝑎𝑥/𝑒𝑞𝑆

′
1 ) in the former.

Examining descriptors in the better-performing, redox-selected randF-38G that are

absent from similarly-sized spin-splitting-selected randF-41 reveals 10 T-type and 3

I-type RACs, seven lc 3-depth RACs, and two whole-ligand 𝑓
𝑒𝑞𝜒1 and 𝑓

𝑒𝑞𝜒0 RACs,

indicating a preference for whole-complex-derived, and, in particular, connectivity

information, consistent with observations of the importance of whole-ligand RACs in
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redox potentials482. Comparing instead the 17 common features in randF-38G and

randF-41 reveals mostly 𝑚𝑐 RACs (e.g., 𝑚𝑐
𝑎𝑙𝑙𝑍0 and 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1) similar to the metal and

connecting atom information in MCDL-25308.

Figure 4-10: Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Figure 4-3 compared against RAC-155
reference fractions (dark red proximal fraction and green middle fraction as horizontal lines)
along with their performance for redox potential prediction with KRR. The normalized
relative test set redox potential MUE from a KRR model is shown in dark grey for each
set, and the lowest test MUE is indicated with an asterisk. Sets are sorted left to right
in decreasing distal fraction: random forest on redox potential (rF38G); LASSO on redox
potential (LS19G) or spin-splitting (LS28); random forest on spin-splitting (1%, rF41 or
2%, rF26); spin-splitting common set (C12); and proximal-only (Prx23). HF exchange and
oxidation state are not used in any models

4.4.4 Overall comparison of best descriptor subsets

Overall, Type 3 LASSO or random forest methods have provided the best price-

performance trade-off for feature selection in KRR model training of transition metal

complex properties on the data sets studied in this work. Although LASSO-28 pro-
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duced the lowest KRR model test MUE of 0.96 kcal/mol, randF-41 (1% cutoff) and

randF-26 (2% cutoff) produce similarly good 1.01–1.28 kcal/mol test MUEs on the

spin-splitting data set and demonstrate somewhat better transferability to redox po-

tential prediction on the redox data set. All three of these subsets are accurate for

low-spin bond length prediction, with 1.3-1.4 pm test RMSE and 0.5 pm MUE that

is only slightly worse relative to larger, bond-length-selected feature sets, randF-49B

or LASSO-83B. The best redox potential prediction performance is achieved not with

redox-selected randF-38G (test MUE: 0.26 eV), LASSO-19G (test MUE: 0.31 eV), or

even the full RAC-155 (test MUE: 0.33 eV), but with the smaller spin-splitting se-

lected randF-26 (test MUE: 0.23 eV). As an overall recommendation, we thus would

select randF-26 for broad spin-splitting, bond length, and gas phase IP/redox poten-

tial prediction or LASSO-28 for only spin-splitting and bond length prediction.

To explore how feature space topology differs when using spin-splitting-selected fea-

tures (randF-26 or randF-41) versus redox-selected features (randF-38G), we consider

the example of Fe(II/III) complexes with triazolyl-pyridine ligands from the redox

data set. In two cases, these homoleptic, bidentate complexes have a methyl group

on the carbon adjacent to pyridinyl nitrogen (ligand 9, 𝐸0 = 6.1 eV and ligand 23,

𝐸0 = 6.0 eV), but in one case the methyl group is in the meta position with respect

to the metal-coordinating pyridinyl nitrogen (ligand 8 with 𝐸0 = 5.5 eV) (Appendix

B, Figure B-22). Ligands 8 and 9 contain a 1,2,3-triazole, whereas ligand 23 con-

tains 1,2,4-triazole. Within randF-26 and randF-41, the high fraction of proximal or

middle mc descriptors emphasizes differences between 1,2,3-triazole and 1,2,4-triazole

rather than capturing the importance of the ligand-connecting atom adjacent methyl

group. The additional distal 𝑇 -, 𝐼- and 𝑆-type descriptors in randF-38G increase

the relative importance of the metal-adjacent methyl groups over the order of ring

substituents, correctly identifying the nearest neighbor of the ligand 9 complex as
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the ligand 23 complex (Appendix B, Text B.5).

Although we have identified a feature set that is transferable across multiple proper-

ties when paired with a KRR model, there are still noteworthy differences in optimal

feature sets obtained from random forest (i.e., spin-splitting randF-26/41, bond-

length randF-49B, and redox randF-38G) that can inform our understanding of the

degree of locality and nature of features needed for differing property prediction. To

simplify this analysis, we classify 𝜒- and 𝑍-derived RACs as electronic and 𝑆-, 𝐼-,

and 𝑇 - as topological (Figure 4-11).

Figure 4-11: Schematic of relative proximity and electronic (blue) or topological (yellow)
of feature sets on an iron-porphyrin complex. Feature sets are designated by their training
data: spin splitting (randF-41 and randF-26, top), bond length (randF-49B, bottom left),
and redox potential (randF-38G, bottom right). Atom sizes are scaled relative to the
number of descriptor dimensions involving that atom (divided into first shell, second shell
and other), scaled, with iron kept the same size in all sets. The color bar and absolute
percentages of electronic and topological descriptors, as defined in the main text, is shown
in inset right.

We confirm our earlier observations308 of locality, especially in spin-splitting with
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randF-26/41: randF-49B and randF-38G both have more non-local (to the metal)

and topological descriptors than randF-26/41.

For direct ligand connection atoms, 80% of the descriptors are electronic for randF-

26/41, but only 52% are electronic for randF-49B and 50% for randF-38G, which

reflects the inclusion of additional first-shell 𝑇 - and 𝐼-based RACs (Figure 4-11).

Moving to the second shell shows increased topological fraction across all feature

sets while preserving the first shell trends, with second shell descriptors around 65%

electronic for the spin-splitting-selected randF-26/41 but only 40% electronic for

randF-38G. LASSO-28 has an even stronger electronic, proximal bias than randF-26,

possibly explaining its poorer performance for redox potential prediction (Appendix

B, Figure B-23). These observations suggest that overall ligand shape and size are

more useful for prediction of redox potentials and bond lengths compared to spin

splitting within the random forest model. These locality measures also highlight the

features to be varied when collecting additional data in future work to enlarge the

size of our redox data set and reach smaller ML prediction errors (e.g., 0.1 eV MUE)

that would be beneficial for screening and discovery.

Inorganic chemical similarity is less well established than equivalent concepts in or-

ganic chemistry, so proximity of inorganic complexes in descriptor space can provide

valuable chemical insight. Principal component analysis in the randF-38G feature

set of the redox data set reveals simple, intuitive relationships between homoleptic

complexes as well as the heteroleptic complexes that arise from interchanging ligands

to convert between homoleptic data points (Figure 4-12). The homoleptic Fe(II/III)

strong-field methylisocyanide complex with a carbon connecting atom is distant in

the redox PCA space from either weaker field furan (oxygen connecting atom) or

pyridine (nitrogen connecting atom) ligands. The higher relative distance between

carbon and oxygen connecting-atom ligands is also consistent with our expectations
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about ligand field effects (Figure 4-12). The heteroleptic complexes that are formed

by substituting select axial or equatorial ligands in any of these homoleptic complexes

fall in the PCA space on the straight lines that connect between these complexes.

Analysis of complex distances in the descriptor space represented by the randF-38G

feature set reveals intuitive relationships between inorganic complexes. In addition

to machine learning property prediction, such feature sets then provide a path to

mapping inorganic chemical space and identifying regions to study in order to iden-

tify new complexes similar to known complexes with desired properties.

Figure 4-12: Simplified principal component analysis for the redox data set using the randF-
38G feature set. The color map indicates redox potential (in eV, as indicated in inset color
bar), and the contours represent data density (increasing from gray to black). Represen-
tative Fe(II/III) redox couples are indicated with triangles, colored according the atomic
identity of metal- coordinating atoms: nitrogen (blue), oxygen (red), and carbon (gray).
Three reference homoleptic Fe complexes, pyridine, methylisocyanide, and furan, are indi-
cated with inset ball and stick structures; these structures form the vertices of a triangle in
the PCA space (solid black lines). Computed heteroleptic combinations colored according
to the mixing of ligand identities in the PCA space fall along the legs of the triangle, and
the location of Fe(furan)2(misc)4 is indicated with an arrow and inset.

191



4.5 Conclusions

We have introduced a new series of revised autocorrelation (RACs) descriptors for

machine learning of quantum chemical properties that extend prior ACs to incorpo-

rate modified starting points, scope over the molecule of interest, and incorporate

differences of atomic properties. We first demonstrated superior performance of

standard ACs on a large organic molecule test set, both showing the best yet perfor-

mance for atomization energies based only on topological information, particularly

when maximum topological distances were truncated at a modest maximum 3-bond

distance.

We confirmed transferability of RACs from organic to inorganic chemistry with KRR

model test set MUEs for the full RAC-155 set of 1 kcal/mol, in comparison to 15-20×
larger errors from Coulomb-matrix-derived descriptors and 2-3× larger with our prior

MCDL-25 set. We attribute this improvement to overestimation of size-dependence

in CM descriptors and underestimation of distal effects in MCDL-25. LASSO or

random forest feature selection yielded smaller subsets (LASSO-28 and randF-41,

respectively) with improved or comparable sub- to 1-kcal/mol test MUEs. Restric-

tion to a common set of descriptors identified by the three best feature selection

tools yielded half as large spin-splitting errors (test MUE: 1.9 kcal/mol) compared

to MCDL-25 with a still smaller 12 variable feature set. Both random forest as a

feature selection tool and the spin-splitting-selected randF-26 showed the best com-

bined transferability to bond length (0.005 Å test MUE) and redox potential (0.23

eV test MUE).

Random forest applied directly on bond length selected more topological features

than for spin-splitting with equivalent locality bias. Selection based on redox poten-

tial data revealed redox potential to be both more non-local and more topological in
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nature than spin-splitting or bond lengths. However, invariant data-clustering within

the trained KRR model means that no improvement in KRR test errors was observed

with redox-selected features for redox potentials and only modest improvement using

bond-length selected features for bond length prediction. Overall, this work provides

both a prescription for machine learning models capable of making accurate predic-

tions of inorganic complex quantum-mechanical properties and provides insight into

locality in transition metal chemistry structure-property relationships.
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Chapter 5

Design of spin crossover materials

with ANNs and DFT

Note: This chapter was originally published as “Janet, J. P.; Chan, L.; Kulik, H.
J. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of
Spin Crossover Complexes with an Artificial Neural Network. J. Phys. Chem. Lett.
2018, 9, 1064–1071” and has been formatted for consistency. Supporting information
provided with the manuscript, available online at http://www.doi.org/10.1021/

acs.jpclett.8b00170, has been placed in Appendix C.

Chapter summary

In this chapter, genetic algorithm (GA) optimization is used to discover unconven-
tional spin-crossover complexes in combination with efficient scoring from an ar-
tificial neural network (ANN) that predicts spin-state splitting of inorganic com-
plexes. A compound space of over 5, 600 candidate materials derived from eight
metal/oxidation state combinations and a 32-ligand pool is explored. A new strat-
egy for error-aware ML-driven discovery is introduced by limiting how far the GA
travels away from the nearest ANN training points while maximizing property (i.e.,
spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space
enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are
close to the ANN’s baseline 3 kcal/mol error, which indicates that generalization
errors were efficiently controlled. By obtaining leads from the trained ANN within
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seconds rather than days from a DFT-driven GA, this strategy demonstrates the
power of ML for accelerating inorganic materials discovery.

5.1 Introduction

Although increases in computing power and efficient algorithms103–105,501–503 have

cemented first-principles screening6,99,108,472,474–476,482,489,504 (e.g., with density func-

tional theory or DFT) as a critical component of materials and chemical discov-

ery14,99,109,472–478,505, further acceleration is needed to overcome the combinatorial

challenge of the vast regions of unexplored chemical space22,90. With the increased

availability of large training sets31, machine learning (ML) has emerged212,223,407,486,487

as a tool to replace first-principles characterization, demonstrating improvement over

linear structure-property relationships231,481 and, where large data sets are available,

predicting energies with an accuracy that approaches or exceeds the baseline accuracy

of approximate DFT energetics137,488. ML models have excelled in design for narrow

composition spaces (e.g., alloys231,481 or phase stabilities506). Descriptors used in ML

model training can have strong size and domain dependence24,25,79,250 that restrict

discovery to a specific size range and chemical composition. Following the successes

of force field development429, group additivity431, and cheminformatics428,430, major

ML-driven advances have been made in organic molecule design and discovery228,396

where structure-property relationships are well-defined. Inorganic chemistry repre-

sents a challenging case where few432 force fields are available, informatics approaches

are less well-developed482,489,507–510, and properties of interest such as spin-state or-

dering or redox potential require robust first-principles characterization.

Nevertheless, the enlarged chemical space afforded by inorganic chemistry motivates

ML model development as a tool to accelerate discovery. We recently trained308
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an artificial neural network (ANN) on 2,690 geometry optimized transition metal

complexes to predict transition metal complex adiabatic high-spin to low-spin state

splitting (Δ𝐸H−L) with root mean square error (RMSE) of 3 kcal/mol along with

its Hartree-Fock exchange sensitivity and metal-ligand bond length. We selected 25

mixed continuous (i.e., oxidation state) and discrete (i.e., metal identity) local de-

scriptors (MCDL-25) that focused on metal-proximal effects and demonstrated supe-

rior transferability over whole complex representations to the prediction on diverse

molecules from experimental databases (Figure 5-1). This feature set was selected

from seven candidate feature sets, as evaluated by retained features and errors with

LASSO209, and the inclusion of discrete features was made possible by their com-

patibility with an ANN. As suggested by the success of ligand field theory197,434,435,

our representation308,511 is ideal for predicting inherently local, electronic properties

such as spin state splitting.

Now we turn to the outstanding challenge of using ML models to enable chemi-

cal discovery in inorganic chemistry. An open question for the use of ML mod-

els25,79,308,481,487 in discovery34,389,423,512 is the manner in which we should optimally

balance exploration of new compounds with model confidence. Although ML model

predictions are of virtually no computational cost versus direct simulation, if the ML

model lacks extrapolative power to previously unstudied complexes, then its utility

for chemical space exploration will be limited. A second concern is the manner in

which optimization is carried out in continuous, data driven representations versus

discrete representations needed for characterization, e.g., by simulation.
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Figure 5-1: (top) Representative descriptors in MCDL-25: metal properties, metal-adjacent
(i.e., local ligand properties), and global ligand properties. (bottom) Representative com-
plexes including Fe(II)(H2O)6 in training data and increasingly distant complexes from the
training data (left to right): Fe(II)(bpy)3, Fe(II)(H2O)2(furan)4, and Fe(II)(bpy)2(furan)2.
The closest training point and its distance is indicated below each complex.

In this work, we develop strategies for balancing exploration in inorganic chemical

space with model confidence in a manner that makes leads obtained from a ML

model amenable to straightforward validation by first-principles simulation, a nec-

essary step towards automated, adaptive learning. We circumvent the secondary

question of continuous optimization21,398,402,403,513 by using widely used376,514–516 ge-

netic algorithms (GAs) on discrete ligand pools in combination with our ANN to

discover unconventional spin-crossover complexes.

Spin-crossover complexes (SCOs) are defined by near-zero free-energy differences of

high (H) and low (L) spin states (Δ𝐺H−L), with changes in spin in response to

light/heat due to entropic differences52. This behavior makes SCOs compelling for

potential applications, e.g., spintronics and sensing of light517,518 or small molecules519–521.

Conventional60,522–524 Fe(II)/nitrogen SCOs are well-studied434,435,477, and design
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rules for these complexes have been recently suggested525,526. In this work, we use

GAs on a larger (i.e., several thousand) compound space to reveal both expected and

unconventional SCOs as judged through adiabatic electronic energy differences (i.e.,

|Δ𝐸H−L| < 5 kcal/mol, see Section 5.5).

5.2 Design methodology

We now will explore GA-driven strategies for discovering octahedral spin-crossover

complexes from a chemical space comprised of metals in the original ANN (i.e.,

M(II/III) where M=Cr, Mn, Fe, or Co) with 32 unique ligands with varied denticity

(i.e., 16 monodentate, 14 bidentate, and 2 tetradentate), direct connecting atom

identity (CA, i.e., C, N, and O), and size (i.e., from 2 atoms in CO to 52 atoms in

cynoaceticporphyrin) (Appendix C, Table C.1 and Figure C-1). Taking into account

ligand compatibility and the symmetry required by the ANN51 (i.e., one gene each

for axial and equatorial ligand identity), these combinations produce a compound

space of 5,664 (i.e., 708 ligand combinations × 8 metals) transition metal complexes

ranging from 13 to 103 atoms in size (Appendix C, Table C.2). Of the 32 ligands,

14 were in the original set of ligands used to train the ANN, but only 113 of 5, 664

compounds (2%) in the design space have been previously studied308.

For spin crossover complex discovery, our target is to minimize the spin-state splitting

(i.e., Δ𝐸H−L) obtained (e.g., with DFT or an ANN), using H-L definitions as in

previous work308 (see Section 5.5 and Appendix C, Table C.3). At each generation

in the GA, compound spin-splitting fitness (𝐹𝑠) is evaluated as:

𝐹𝑠 = exp

[︃
−
(︂
Δ𝐸H−L

Δ𝑤H−L

)︂2
]︃

(5.1)
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where Δ𝑤H−L controls the decrease in fitness with increasing magnitude of Δ𝐸H−L,

chosen to be 15 kcal/mol to preserve 𝐹𝑠 ∼ 1.0 for |Δ𝐸H−L| < 5 kcal/mol (Appendix

C, Figure C-2). For the GA, we follow a similar strategy to Ref.14: starting from a

pool of 20randomly selected complexes, 21 generations are carried out with fitness

evaluation, which includes 5 crossovers and random mutation probability (𝑝𝑚𝑢𝑡) of

0.15 (i.e., of the metal or ligand genes, details in Appendix C, Text C.1). Differences

from standard choices14,514 are the reduced number of generations and a higher mu-

tation probability to increase diversitt515, both motivated by the modest compound

space. We introduce a diversity control mode to further increase diversity (i.e., per-

centage of complexes with distinct gene combinations in the total pool) by raising

𝑝𝑚𝑢𝑡 by 0.5 when the diversity of a generation falls below 25% of the pool and reduce

𝑝𝑚𝑢𝑡 to the 0.15 default once diversity reaches at least 25%.

Evaluation of compound fitness during GA optimization with a trained ANN mo-

tivates consideration of uncertainty in model predictions. Beyond sometimes over-

confident credible intervals459 obtained from dropout, we have identified308 large

(i.e., > 1.0) Euclidean norm of the distance (𝑑) in normalized MCDL-25 descriptor

space to training data to be a useful indicator of low ANN accuracy (Appendix C,

Text C.1). MCDL-25 emphasizes the direct metal-ligand environment: Preserving

an oxygen connecting atom but replacing water ligands with larger furan ligands

(i.e., changing the Δ𝜒 and topology from a truncated Kier index453) produces mod-

erate distances (i.e., 𝑑 = 0.5, see Figure 5-1), whereas a changed CA in otherwise

comparably structured ligands (i.e., imidazole vs furan) produces large distances

(i.e., 𝑑 = 1.5). Differences in oxidation state (e.g., Fe(II)(bpy)3 vs Fe(III)(bpy)3:

𝑑 = 0.1) are closer in descriptor space than different metals (e.g., Fe(II)(furan)6 vs

Mn(II)(furan)6: 𝑑 > 1.0) (see Figure 5-1). Large distances in descriptor space can

arise from substantial differences in all ligands, even when metal, oxidation state, and

200



direct CAs (i.e., all proximal features) are unchanged. Fe(II)(bpy)2(furan)2 is distant

(i.e., 𝑑 = 1.0) from the closest ANN training point308, Fe(II)(NCS)4(H2O)2, due to

differing denticity, Δ𝜒, and truncated Kier index453. Remote changes more than

three bonds away from the metal-ligand bond511,527 are neglected in the nearsighted

descriptor set, so distinct compounds can be identical in MCDL-25 (see Appendix

C, Table C.1).

Thus, using observations about the relationship between chemical differences and

descriptor distances, we define our target discovery region for ANN scoring as 0.3 ≤
𝑑 ≤ 1.0, to avoid both “discovery" of complexes too similar to training data and

high-promise but very low confidence complexes. We introduce a modified fitness

function (𝐹𝑠,𝑑):

𝐹𝑠,𝑑 = exp

[︃
−
(︂
Δ𝐸H−L

Δ𝑤H−L

)︂2
]︃
exp

[︃
−
(︂

𝑑

𝑑𝑜𝑝𝑡

)︂2
]︃

(5.2)

where in addition to a splitting fitness term, a penalty scaled by 𝑑𝑜𝑝𝑡 is set to dis-

courage sampling compounds with a very large distance to the training data. To

encourage compound discovery (i.e., 0.3 ≤ 𝑑 ≤ 1.0), we introduce a distance control

mode that adapts the fitness function from eq. 5.1 to eq. 5.2 only if the average 𝑑 of

all complexes is large (𝑑𝑎𝑣 > 0.6, selected by trial and error) after a generation has

been selected for fitness and reverts to eq. 5.1 if 𝑑𝑎𝑣 falls below 0.6 in a subsequent

generation. We have selected 𝑑𝑜𝑝𝑡 = 1.0 in eq. 5.2 by trial and error to avoid over-

penalizing discovery.

We compare four modes of spin crossover complex GA optimization using an ANN

for scoring: i) distance control in the fitness function, ii) mutation-rate enhancement

to encourage diversity, iii) both distance and diversity controls, and iv) a standard
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spin-splitting fitness GA. A 21-generation GA run requires a little over 5 minutes

to complete (limited by complex assembly with partial force field optimization for

optional follow-up DFT study), whereas fitness evaluation with DFT single points at

guessed geometries181 would require 4 days (Appendix C, Text C.2). All molecules

are built, scored, and evolved using an automated design extension to our molSim-

plify toolkit181, which is freely available online (Appendix C, Text C.3). As expected,

the standard GA rapidly (i.e., within 5 generations) approaches a mean pool fitness

of 1.0 through a dramatic drop in diversity corresponding to roughly one lead com-

pound at the end of the GA run (Figure 5-2). Introducing diversity control improves

the number of retained compounds, but diversity control or standard GA runs con-

verge to high-distance/low-confidence leads (𝑑𝑎𝑣 ∼ 1.0, Figure 5-2). Adjusting fitness

evaluation from eq. 5.1 to eq. 5.2 with distance control reduces 𝑑𝑎𝑣 to around 0.5

(Figure 5-2). Introducing a distance control comes at the cost of slightly reducing

the mean spin-splitting only fitness of the retained ligands to around 0.8, a modest

increase in |Δ𝐸H−L| due to the exponential fitness function, and, interestingly, in-

creases the pool diversity (Figure 5-2). Finally, combining both controls preserves

the good features of both strategies: diversity of leads at the end of a GA run is

highest overall, and mean distance to training set is unchanged from distance con-

trol (Figure 5-2). Incorporating diversity or both controls increases the number of

distinct complexes sampled in the GA runs by 50% (150 vs. 100) over other modes

and localizes retained hits to a narrow area of target distance and spin-splitting (Ap-

pendix C, Figures C-3–C-4).
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Figure 5-2: ANN GA runs with diversity and distance control (both, green), diversity
control only (div, blue), distance only (dist, gray), and no controls on (none, red), as
described in the main text: mean splitting-only pool fitness (top), diversity of the pool
(middle), and mean distance to training data (bottom) with one standard deviation over
50 runs shown in translucent shading.

203



5.3 Results and discussion

Over 50 repeats, roughly half (∼ 2, 800) of the compound space is sampled by the

standard GA, and the slight reduction (∼ 2, 650) in compounds sampled with dis-

tance control is compensated by combination with diversity control (∼ 3, 300) (Ap-

pendix C, Table C.4 and Figure C-5). We evaluated the full feasible design space

with the ANN in a little over 7 hours on a standard desktop machine to identify the

fraction of leads (i.e., |Δ𝐸H−L| < 5 kcal/mol and 0.3 ≤ 𝑑 ≤ 1.0) missed during these

GA optimizations (Appendix C, Text C.2).

Figure 5-3: (a) t-SNE plot of the full compound space colored by Δ𝐸H−L (in kcal/mol as
indicated in inset color bar) with increasingly high distance-to-train regions indicated in
darker shades of gray. The convex hulls of two families of Fe(II) with substituted-bpy ligands
and substituted-cyano ligands are indicated by orange and bright green triangles, respec-
tively. Insets show zooms to each of these regions with discrete hits in empty diamonds with
sampled hits as filled dark green circles. (b) 1D histograms of the ANN-predicted Δ𝐸H−L
(top) and data distance to training data (bottom) using both controls in a stacked bar graph
consisting of all sampled points(blue), non-sampled, non-hits (gray), and non-sampled hits
(red)
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Roughly 8% (474 complexes) of the constructed design space corresponds to our def-

inition of lead compounds (Figure 5-3, pane a and Appendix C, Table C.4). Our

recommended control strategy (both) recovers nearly 80% of the lead compounds,

a substantial improvement over a standard GA or distance control. Most missed

compounds are at larger (𝑑 > 0.5) distances (Figure 5-3, pane b and Appendix C,

Table C.4 and Figure C-6).

Dimensionality reduction528 of the full compound space in continuous descriptors511

similar to MCDL-25 reveals why it is challenging to ensure that a GA samples all

compound leads (Figure 5-3, pane a and Appendix C, Text C.4). Although families

of related complexes are reasonably well-clustered in this representation (i.e., most

Fe(II) substituted-bpy and nearly all Fe(II) substituted-cyano complexes are sampled

in small regions), variation of properties in this space is quite rough. Narrow target

regions that correspond to SCOs are surrounded by non-leads, and several of these

promising compound regions are in areas where the ANN confidence is low (black

shading in 5-3, pane a).

Both distance- and diversity-controlled GA exploration provides a promising ap-

proach to reveal a large fraction of theoretical leads in compound space with an ANN.

An additional concern is whether our distance control ensures reasonable reliability

of the ANN-based fitness scoring. We quantify the ANN prediction accuracy over a

randomly selected 51-complex subset (i.e., roughly 15%) of the 372 identified leads

by fully geometry optimizing the high-spin and low-spin states (see Section 5.5 and

Appendix C, Table C.5). Overall performance on these newly generated complexes is

good, with mean unsigned error (MUE) of 4.5 kcal/mol, 40% (80%) of all compounds

are predicted at or below 1× (1×) baseline error of the ANN308 on a set-aside test set

(Figure 5-4). Around 2
3
of ANN spin-crossover leads are validated (i.e., |Δ𝐸H−L| ≤ 5

kcal/mol) by DFT geometry optimization (Figure 5-4). Inclusion of solvent and
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thermodynamic corrections, which were omitted from ANN training or our fitness

function, reduces this fraction only slightly to around 1
2
of candidates (22 of 49, see

Appendix C, Table C.5). Improvement upon this performance would likely require

ANN training directly on Δ𝐺H−L rather than shifting the fitness function because

inclusion of solvent and thermodynamic corrections does not produce a systematic

shift of Δ𝐺H−L with respect to Δ𝐸H−L. Unconventional, promising complexes (i.e.,

non-Fe(II)/N, with Δ𝐺H−L ∼ 1.5 kcal/mol) identified by the ANN and confirmed

with DFT Δ𝐺H−L include Mn(II)(CNCH3)2(CO)4 or Fe(II)(CO)2(NCS)4. Conven-

tional60,522–524 complexes (e.g., Fe(II)(phen)(en)2 and Fe(III)(NCS)2(mebpy)2) are

also captured (Appendix C, Table C.5).

Figure 5-4: (left) B3LYP (DFT) geometry optimization Δ𝐸H−L vs. ANN prediction dis-
tinguished by metal identity (Cr gray, Mn green, Fe red, and Co blue) and distance from
closest training point (near, circles: < 0.5, mid, squares: 0.5 to 0.75, and far, triangles:
> 0.75). A parity line is shown (gray, dotted), and the |Δ𝐸H−L| ≤ 5 is shown in light blue.
(right, top) Error histogram of ANN predictions with baseline error (medium green) and
2× baseline error (light green) regions shown. (right, bottom) Representative complexes
corresponding to labels at left.

Categorizing distance to training data into near (𝑑 < 0.5), mid (0.5 < 𝑑 < 0.75),
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and far (0.75 < 𝑑 < 1.0) complexes reveals excellent prediction accuracy on the

near subset (MUE = 1.5 kcal/mol) and non-monotonically worsening performance

for mid (MUE = 6.24 kcal/mol) and far (MUE = 4.7 kcal/mol) subsets (Figure 5-4

and Appendix C, Table C.5 and Figure C-7). Good performance is obtained for far

iron complexes, such as Fe(II)(CNPh)2(NH2CH3)4 (𝑑 = 0.79 and error: 1.3 kcal/mol,

see 2 in Figure 5-4). A systematic underprediction of Mn complexes is apparent,

with MUE for all Mn of 5.1 kcal/mol vs. 4.1 kcal/mol for remaining metals, despite

comparable average distances over the two subsets (𝑑𝑎𝑣 = 0.65 vs 0.63). The most

notable example is Mn(II)(CO)2(CNPh)4 (𝑑 = 0.51 and error: −18.9 kcal/mol, see

1 in Figure 5-4). The closest training points308 are homoleptic Mn(II)(CNCH3)6

(Δ𝐸H−L = 10 kcal/mol) and Mn(II)(CO)6 (Δ𝐸H−L = −6.6 kcal/mol), explaining

why the ANN might predict the Mn(II)(CO)2(CNPh)4 complex to have near degen-

erate spin states (i.e., by averaging these two compounds), even though the ANN

can predict non-additive effects. The origin of this unexpected deviation is indicated

by large (i.e., > 2.5 Å) Mn-CO distances in the DFT-optimized high spin complex

compared to low-spin complexes (1.9 Å), suggesting electronic structure differences

in this sampled heteroleptic compound absent from the homoleptic-focused training

data. These observations at mid/far distances motivate adaptive retraining (i.e., to

incorporate more heteroleptic combinations of weak and strong field ligands) for im-

proved accuracy in using ANNs for discovery.

From a theoretical compound space of which only a fraction were likely spin crossover

complexes, the ANN-GA results are enriched in the number of DFT-level spin crossover

complexes by around an order of magnitude (Appendix C, Text C.2). Best estimates

of a full geometry-optimization-driven GA run walltime are around 10 − 30 days,

even with parallel evaluation of each generation (Appendix C, Text C.2 and Figures

C-8–C-9). We considered alternatively using guessed181,308,482 H and L geometries
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to evaluate single point (SP) 𝐸H−L with DFT, requiring around 4 days for a GA

run (Appendix C, Text C.2 and Figures C-8 and C-10). Imbalanced effects in bond

length prediction errors308 on spin-state ordering means that the DFT-SP-GA per-

forms worse than the ANN with MAEs of 11 kcal/mol and only 30% of compounds

remaining spin-crossover complexes after geometry optimization (Appendix C, Table

C.6).

A final consideration in computational discovery of spin crossover complexes is the

strong dependence of spin-state ordering on functional59,194,196–199,435,437 with few ex-

ceptions529, especially on admixture of Hartree-Fock (HF) exchange59,194,196–199,435

due to differences in delocalization error between spin states530. Our ANN was

trained on a range of HF exchange, making it possible to identify SCOs in a functional-

dependent manner. Re-running the ANN GA with both controls at reduced 15%

exchange (i.e., B3LYP*198,199 vs. 20% in B3LYP thus far) yields new candidates

with weaker field ligands (e.g., Mn(III)(NH2CH3)4(CNPyr)2 and Fe(II)(ox)2(CN)2

𝐸H−L ∼ 0–2 kcal/mol), in line with our prior observations197,308 (Appendix C, Fig-

ure C-11). Of leads predicted by the ANN, exchange sensitivity is predicted by the

ANN to be lowest for Mn(III)/en ligand complexes or Co(II) complexes, and this

kind of functional invariance could be a useful metric in future multiobjective opti-

mization.

5.4 Conclusions

In conclusion, we have demonstrated an ML-driven strategy for accelerating SCO

discovery with an ANN. By pairing our trained ML model with a strategy for con-

trolling novelty of leads in the GA, we discover complexes sufficiently distinct from
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training data but for which the ML model can still be suitably employed to make

predictions. Using this approach, we have explored a space of > 5, 500 candidate

materials generated from eight possible metal/oxidation state combinations and 32

possible ligands. Of over 51 representative spin-crossover complexes distinct from

ANN training points, average unsigned errors (4.5 kcal/mol) are close to the ANN’s

baseline 3.1 kcal/mol error. Two thirds of the discovered compounds, including un-

conventional complexes, are still considered spin-crossover candidates after full DFT

geometry optimization. The largest errors can be avoided in future work by ap-

plying an even more conservative distance-control, using a series of independently

trained ANNs, or enriching the data set with more heteroleptic compounds. This

strategy demonstrates the power of ML for accelerating materials discovery through

pre-screening vast chemical space. In future work, we will identify ways to exploit

(instead of avoid) high-promise, low-confidence compounds for adaptive retraining

of ML models during discovery. We expect this suite of ML models, discovery algo-

rithms, and simulation automation software to be valuable for the optimization of

key properties in inorganic chemistry.

5.5 Computational details

Single point energies and geometry optimizations were carried out with TeraChem105,447

at the B3LYP152,157,158 level of theory with LANL2DZ effective core potential172 for

all transition metals, bromine, and iodine and the 6-31G* basis for the remaining

atoms, as employed during ANN training308. Basis set dependence is observed to

be small (Appendix C, Table C.7). Although their inclusion has been motivated192,

vibrational or solvent contributions, which often have compensating effects192,482 are

neglected during fitness scoring by DFT or with the trained ANN (Appendix C,
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Table C.5). On representative molecules, vibrational enthalpy and entropy correc-

tions were obtained through calculation of the gas phase Hessian of each spin state.

Solvent corrections were obtained from differences in solvation free energy on the

gas phase geometries using COSMO205,499 (𝜀 = 78.39 and a cavity constructed from

1.2× Bondi radii500).
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Chapter 6

Uncertainty and extrapolation of

ANNs for chemical discovery

Note: Sections 6.1–6.4 of this chapter were originally published as “Janet, J. P., Duan,
C., Yang, T., Nandy, A., Kulik, H. J. A quantitative uncertainty metric controls
error in neural network-driven chemical discovery. Chem. Sci. 2019, 10, 7913–
7922” and has been formatted for consistency. Supporting information provided with
the manuscript, available online at http://www.doi.org/10.1039/C9SC02298H, has
been placed in Appendix D. Section 6.5 was originally published as “Gugler, S., Janet,
J. P., Kulik, H. J. Enumeration of de novo inorganic complexes for chemical discovery
and machine learning. Mol. Syst. Des. Eng. 2019, Advance Article", and includes
an alternative strategy to improve generalization performance on the same test set
for comparison.

Chapter summary

Artificial neural networks have emerged as a complement to high- throughput screen-
ing, enabling characterization of new compounds in seconds instead of hours, but the
promise large-scale chemical space exploration can only be realized if it is straight-
forward to identify when molecules and materials are outside the model’s domain of
applicability. Established uncertainty metrics for neural network models are either
costly to obtain (e.g., ensemble models) or rely on feature engineering (e.g., feature
space distances), and each has limitations in estimating prediction errors for chemical
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space exploration. This chapter develops new strategies to quantify the generaliza-
tion ability of neural networks to chemistry that is dissimilar to their training data,
based on the ANN-learned latent space. This metric serves as a low-cost, quanti-
tative uncertainty description that works for both inorganic and organic chemistry.
Calibrated probabilistic models based on these distances outperform widely used un-
certainty metrics and are readily applied to models of increasing complexity at no
additional cost. Tightening latent distance cutoffs systematically drives down pre-
dicted model errors below training errors, thus enabling predictive error control in
chemical discovery or identification of useful data points for active learning.

6.1 Introduction

Machine learning (ML) models for property prediction have emerged231,279,423,427,511,531–533

as powerful complements to high-throughput computation75,77,181,533–535 and experi-

ment536–538, enabling the prediction of properties in seconds rather than the hours to

days that direct observations would require. Using large data sets, trained interpola-

tive potentials213,252,254,539,540 and property prediction models231,279,423,427,511,531–533

have achieved chemical accuracy with respect to the underlying data212. Predictive

models hold great promise in the discovery of new catalysts231,279,541,542 and materi-

als35,237,333,533,543–546 by enabling researchers to overcome combinatorial challenges in

chemical space exploration. While application of ML to chemical space exploration

is increasingly becoming a reality, a key outstanding challenge remains in knowing in

which regions of chemical space a trained ML model may be confidently applied547.

While trained ML models are fast to deploy to large compound spaces, many models

(e.g., artificial neural networks or ANNs) are typically trained only after acquisition

of thousands31 to millions32,252 of data points. Quantitative uncertainty metrics are

most critical in applications of active learning375,548 where the model is improved

by acquisition of selected data. Although some models (e.g., Gaussian process re-
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gression) inherently provide estimates of model uncertainty288,549, quantitative un-

certainty measures for models suited to handle large data sets (e.g., ANNs) remains

an active area of research550–552.

Figure 6-1: Schematic of an ANN annotated with the four uncertainty metrics considered
in this work. Two points are compared in terms of their feature space distance (i.e., the
difference between two points in the molecular representation) on a t-distributed stochastic
neighbor embedding map528 (t-SNE) of data in the input layer (top, left, annotations in
orange) and the latent space distance (i.e., the difference between two points in the final
layer latent space) on a t-SNE of the data in the last layer (top, right, annotations in green).
The standard ANN architecture (middle) is compared at bottom for Monte-Carlo dropout
(i.e., zeroed out nodes) and ensemble models (i.e., varied model weights) at bottom left and
right.

One approach to estimating model uncertainty is to train an ensemble of identi-

cal architecture models on distinct partitions of training data to provide both a
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mean prediction and associated variance (Figure 6-1). While widely employed in the

chemistry community213,550,551,553,554 ensembles increase the model training effort in

proportion to the number of models used (typically an order of magnitude, Appendix

D, Text D.1). Although this additional effort may be practical for some models (e.g.,

networks with only a few layers), the training effort becomes cost-prohibitive555 dur-

ing iterative retraining for active learning or for more complex models that are in-

creasingly used in chemical discovery, such as those using many convolutional27,211

or recurrent351,556 layers. Thus, ensemble uncertainty estimates have been most fre-

quently applied213,551 in the context of simpler networks, especially in neural network

potentials that are trained in a one-shot manner. A key failing of ensemble metrics

is that with sufficient model damping (e.g., by 𝐿2 regularization), variance over en-

semble models can approach zero553 for compounds very distant from training data,

leading to over-confidence in model predictions.

Another approach to obtain model-derived variances in dropout-regularized neural

networks is Monte Carlo dropout (mc-dropout)459 (Figure 6-1). In mc-dropout, a sin-

gle trained model is run repeatedly with varied dropout masks, randomly eliminating

nodes from the model (Appendix D, Text D.1). The variance over these predictions

provides an effective credible interval with the modest cost of running the model

multiple times rather than the added cost of model re-training. In transition metal

complex discovery, we found that dropout-generated credible intervals provided a

good estimate of errors on a set aside test partition but were over-confident when

applied to more diverse transition metal complexes511,533. Consistent with the ensem-

bles and mc-dropout estimates, uncertainty in ANNs can be interpreted by taking a

Bayesian view of weight uncertainty where a prior is assumed over the distribution

of weights of the ANN and then updated upon observing data, giving a distribution

over possible models557. However, if the distribution of the new test data is distinct
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from training data, as is expected in chemical discovery, this viewpoint on model

uncertainty may be incomplete.

A final class of widely applied uncertainty metrics employs distances in feature space

of the test molecule to available training data to provide an estimate of molecular

similarity and thus model applicability. The advantages of feature space distances

are that they are easily interpreted, may be rapidly computed, and are readily ap-

plied regardless of the regression model511,533,558 (Figure 6-1). We used511,533 high

feature space distances to successfully reduce model prediction errors on retained

points while still discovering new transition metal complexes. Limitations of this

approach are that the molecular representation must be carefully engineered such

that distance in feature space is representative of distances in property space, the

relationship between distance cutoff and high property uncertainty must be manu-

ally chosen, and this metric cannot be applied to message-passing models that learn

representations235,327.

A chief advantage of multi-layer neural network models over simpler ML models

is that successive layers act to automatically engineer features, limiting the effect

of weakly-informative features that otherwise distort distances in the feature space

(Figure 6-1). Thus, for multi-layer ANNs, feature-based proximity can be very dis-

tinct from the intrinsic relationship between points in the model. Such ideas have

been explored in generative modeling where distances in auto-encoded latent rep-

resentations have informed chemical diversity228,307 and in anomaly detection with

separate models559,560 (e.g., autoencoders561–563 or nearest-neighbor classifiers564,565)

have enabled detection of ’poisoned’ input data566. However, the relationship be-

tween latent space properties and feature space properties has not been exploited or

understood in the context of error estimation for property prediction (i.e., regression)

ML models.
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In this work, we propose the distance in latent space, i.e., the distance of a test point

to the closest training set point or points in the final layer latent space, as a new

uncertainty metric (Figure 6-1). The advantages of this approach are that i) it in-

troduces no overhead into model training or evaluation, ii) it can work just as easily

with both simple and complex ML models that have been used for chemical property

prediction (e.g., hierarchical26, recurrent351,556 or convolutional28,211,567–569), and iii)

it naturally ignores distances corresponding to features to which the model predic-

tion is insensitive, obviating the need for feature engineering to develop an estimate

of test point proximity to prior training data. We show that these attributes yield

superior performance over other metrics in chemical discovery.

6.2 Results and discussion

To demonstrate the advantages of the latent space distance metric in a quantitative

fashion, we compare to three established uncertainty metrics. This assessment is par-

ticularly motivated by the nature of chemical discovery applications533, where data

set sizes are often smaller and have more broadly varying chemistry than typical ap-

plications in neural network potentials213,551 and in quantitative structure–property

relationships in cheminformatics552,558. To mimic chemical discovery efforts, we train

neural networks to predict transition metal complex spin state energetics511 and test

them on diverse transition metal complexes from experimental databases. To con-

firm the generality of our observations, we also compare uncertainty estimates for

neural network models trained on a very small subset (i.e., 5%) of QM931, a widely

used26,212,223,330,486,487,570 data set in organic chemistry ML.

For open-shell transition metal chemistry, we use 1901 equilibrium high (H)/low

(L) spin splitting energies (i.e., Δ𝐸H−L) for octahedral first-row transition metal
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(i.e., M(II) or M(III) where M = Cr, Mn, Fe, or Co) complexes generated in prior

work511,533 using density functional theory (DFT). We use the previously intro-

duced511 full set of revised autocorrelation (RACs) descriptors (i.e., RAC-155) to

train a fully connected ANN with three 200-node hidden layers (see Computational

Details and Appendix D, Text D.2, Table D.1, and Figure D-1). RACs have been

demonstrated for training predictive models of transition metal complex proper-

ties180,259,511,533 including spin splitting, metal-ligand bond length, redox and ioniza-

tion potentials, and likelihood of simulation success.

To mimic chemical discovery application of this model, we extracted a set of 116

octahedral, first-row transition metal complexes that have been characterized exper-

imentally (i.e., from the Cambridge Structural Database or CSD184) as an out-of-

sample test set (Figure 6-2 and Appendix D, Text D.2 and Figures D-2–D-5). We

selected these CSD complexes to be intentionally distinct from training data, as is

apparent from principal component analysis (PCA) in the RAC-1557 representation

(Figure 6-2). Several complexes in the CSD test set fall outside the convex hull of

the training data in the first two principal components (ca. 50% of the variance)

and are distant from training data, as judged by the Euclidean distance in the full

RAC-155 feature space (Figure 6-2 and Appendix D, Figure D-6). High distances are

observed for complexes containing elements rarely present (e.g., an S/N macrocycle

for a Co(II) complex, CSD ID: FATJIT) or completely absent from our training data

(e.g., B in boronated dipyrazole ligands of the Fe(II) complex CSD ID: ECODIM

and As in thioarsenite ligands in an Mn(II) complex, CSD ID: CEDTAJ) as well

as ligand topologies (e.g., acrylamide axial ligands in an Mn(II) complex, CSD ID:

EYUSUO) not present in training data (Figure 6-2).
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Figure 6-2: (left) Comparison of inorganic training and CSD test data in the dominant two
principal components of the RAC-155 representation of the training data set. The density
of training data is shown as gray squares shaded as indicated in inset count colorbar. CSD
test data points are shown as circles colored by the 10-nearest-neighbor-averaged Euclidean
distance in RAC-155 space, as shown in dist. inset color bar. Four representative high-
distance structures are shown in circle insets in ball and stick representations: (top left
inset, CSD ID: FATJIT) a Co(II) complex with S/N macrocycle and axial Br- ligands, (top
right inset, CSD ID: EYUSUO) Mn(II) tetra-chlorophenyl-porhpyrin with acrylamide axial
ligands, (bottom left inset, CSD ID: CEDTAJ) a Mn(II) complex with thioarsenite ligands,
and (bottom right inset, CSD ID: ECODIM) an Fe(II) complex with boronated dipyrazole
and thiolated phenanthrene ligands. (right) Distribution of absolute CSD test set model
errors for Δ𝐸H−L (in kcal/mol, bins: 2.5 kcal/mol) with the MAE annotated as a green
vertical bar and the cumulative count shown in blue according to the axis on the right.

Due to the distinct nature of the CSD test set from the original training data, the

8.6 kcal/mol mean absolute error (MAE) of the RAC-155 ANN on the CSD data set

is much larger than the 1.5 kcal/mol training set MAE (Figure 6-2 and Appendix D,

Table D.2). Use of ensemble- or mc–dropout–averaged predictions unexpectedly571

worsens or does not improve test MAEs (ensemble: 9.0 kcal/mol; mc-dropout: 8.5

kcal/mol), which we attribute to noise in averaging due to the relatively heteroge-

neous training data (Appendix D, Figures D-7–D-9). The relative error increase on

diverse data is consistent with our prior work where we achieved low errors on test
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set partitions of 1− 3 kcal/mol7511 that increased308 to around 10 kcal/mol on sets

of diverse molecules (e.g., 35 molecules from a prior curation of the CSD). These ob-

servations held across feature sets308 (e.g., MCDL-25308 vs. RAC-155511) and model

architectures (e.g., kernel ridge regression308,533 vs. ANNs308,533) for Δ𝐸H−L property

prediction.

Despite the increase in MAE, errors are not uniformly high across the 116 molecules

in our new CSD data set (Figure 6-2). A significant number (24 or 21%) of the

complexes have errors within the 1.5 kcal/mol training MAE, a substantial fraction

are within the 3 kcal/mol test set error described in prior work308 (41𝑜𝑟35%), and

a majority (61𝑜𝑟53%) have errors 5 kcal/mol or below (Figure 6-2). At the same

time, a number of outlier compounds have very large absolute errors with 31 (27%)

above 10 kcal/mol and 12(10%) above 20 kcal/mol (Figure 6-2). Large errors are

due to both underestimation of Δ𝐸H−L by the model (e.g., Fe(II) complex CSD ID:

CEYSAA, model = −23.8 kcal/mol, DFT data = 26.6 kcal/mol) and overestimation

(CSD ID: Mn(III) complex CSD ID: EYUSUO, model = 5.7 kcal/mol, DFT data

= −46.4 kcal/mol, see Figure 6-2). Given the heterogeneity of observed errors, we

apply uncertainty metrics to this data set with the aim to i) systematically drive

down error on predicted data points by only making predictions within the model’s

domain of applicability and ii) identify data points that should be characterized and

incorporated to the model training set in an active learning setting.

For heavily engineered feature sets (i.e., MCDL-25308), we showed the Euclidean

norm feature space distance to the closest training point could be used to control

ANN errors in inorganic complex discovery533,543, typically limiting discovery MAEs

to only slightly larger (i.e., 4–5 kcal/mol) than the original test MAE. This ap-

proach required that we select a cutoff over which distances were deemed too high,

a quantity that can be sensitive to the nature of the feature set and the number of

219



nearest neighbors used in the average (Appendix D, Figures D-10–D-11). Averag-

ing Euclidean norm distances in RAC-155511 or a feature-selected subset180,511 over

the nearest (i.e., 1–10) neighbors in the training data and only predicting on points

sufficiently close to training data systematically eliminates the highest error points

(Appendix D, Figure D-11). Consistent with prior work308,533, this approach allows

us to achieve sub–6 kcal/mol MAE on over half (64 of 116) points in the CSD set,

but further improvement of predicted-data MAEs below 5 kcal/mol is not possible

(Appendix D, Figure D-11).

In the large, non-engineered feature spaces typically used as input to neural networks,

feature space distances may be insufficient for identifying when predictions lack sup-

port by data in the model. Thus, we turn to the latent space distance evaluated

at the final output layer (Figure 6-1). Using high distances in latent space as the

criterion for prediction uncertainty, we drive down MAEs on predicted data nearly

monotonically, well below the 5 kcal/mol MAE that could be achieved using feature

space distances (Appendix D, Figure D-11). This difference in performance is mo-

tivated by the distinct, higher effective dimensionality of the principal components

in the latent space over the feature space (Appendix D, Figure D-6). With the dis-

tance in latent space as our guide, 76 points can be identified as falling within model

domain of applicability (i.e., sub-6 kcal/mol MAE), and 3 kcal/mol MAE can be

achieved on over 25% of the data (ca. 30 points), indicating a close relationship be-

tween high latent space distance and model error (Appendix D, Figures D-11–D-13).

The distance in latent space has the added advantage of being less sensitive to the

number of nearest neighbors over which the distance evaluation is carried out than

feature space distances (Appendix D, Figure D-11). Our approach is general and not

restricted to the distance in the latent space described here. In future work, we could

move beyond potential ambiguities572 in measuring high-dimensional similarity with
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Euclidean distances and compare to alternatives, including averaged properties228 or

those that incorporate other geometric features of the latent data distribution.

Having confirmed that distances in latent space provide significant advantages over

feature space distances at no additional cost, we also would like to consider the

performance with respect to mc-dropout and ensemble-based uncertainty metrics

(Appendix D, Figures D-14–D-15). To do so, we overcome the key inconvenience

that the distance measure itself does not provide an error estimate in the units of

the property being predicted. After model training, we calibrate the error estimate

by fitting the predictive variance to a simple conditional Gaussian distribution of the

error, 𝜀, for a point at latent space distance, 𝑑:

𝜀(𝑑) ∼ 𝒩
(︀
0, 𝜎2

1 + 𝑑𝜎2
2

)︀
(6.1)

where the error is assumed to be normally distributed with a baseline variance term

𝜎2
1 and a growing term 𝜎2

2. Selection of 𝜎2
1 and 𝜎2

2 using a simple maximum likeli-

hood estimator on a small subset (ca. 20 points) of the CSD test set is relatively

robust, leading to property-derived uncertainties (Figure 6-3, Appendix D, Figure

D-16 and Tables D.3–D.4). Over the 116-complex CSD test set, this latent-space

derived metric spans a large 8− 24 kcal/mol range and correlates as well to absolute

model errors as do ensemble and mc-dropout standard deviation (std. dev.) metrics

(Appendix D, Figure D-13).
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Figure 6-3: Relationship between spin-splitting ANN model errors (in kcal/mol) on a 116
molecule CSD set and three uncertainty metrics all in kcal/mol: latent model energetic,
calibrated std. dev. (left), mc-dropout std. dev. (middle), and 10-model ensemble std. dev.
(right). The translucent green region corresponds to one std. dev. and translucent yellow
to two std. dev.. The points with model errors that lie inside either of these two bounds
are shown in black, and the percentage within the green or yellow regions are annotated in
each graph in green and yellow, respectively. The points outside two std. dev. are colored
red, and the percentage of points in this group is annotated in each graph in red. Three
points are omitted from the ensemble plot to allow for a consistent x-axis range.

Although not unique and depending on the training process of the model, the dis-

tance in latent space-derived energetic uncertainties provide a superior bound on

high error points (Figure 6-3). Observed errors reside within one std. dev. in the

majority (77%) of cases, and only a small fraction (8%) exceed two std. dev. ranges

(Figure 6-3). In comparison, less than half of errors are within one std. dev. eval-

uated from the ensemble (44%) or mc-dropout (37%), and a significant fraction of

errors exceed two std. dev. (23% and 34%, respectively, Figure 6-3). When the en-

semble or mc-dropout uncertainty metrics are used as cutoffs to decide if predictions

should be made, model over-confidence leads to inclusion of more high error (i.e.,

> 12 kcal/mol) points than when using the latent distance (Appendix D, Figure

D-17). The ability to smoothly transition between high cutoffs where more points

are characterized with the ML model (e.g., to achieve 8 kcal/mol MAE) vs. conser-
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vative where the error is small (e.g., 2 kcal/mol) but only a minority of predictions

are made is important for predictive control; here, the latent distance provides the

more robust separation between these two regimes, thus enabling greater distinction

between the two (Appendix D, Figure D-15).

There are numerous cases where both ensemble and mc-dropout are relatively confi-

dent on very high error points in comparison to latent distance For example, an Fe(II)

complex with ethanimine and alkanamine ligands (CSD ID: DOQRAC) is predicted

erroneously by the model to be strongly high spin (Δ𝐸H−L𝐴𝑁𝑁 = −34.7 kcal/mol

vs. Δ𝐸H−L𝐷𝐹𝑇 = −1.4 kcal/mol), but this point has a low std. dev. from the

ensemble (4.3 kcal/mol) in comparison to a relatively high 17.2 kcal/mol std. dev.

from the latent space distance. Conversely, there are no cases where the latent dis-

tance uncertainty is uniquely over-confident, but there are cases where all metrics are

overconfident. For example, an Mn(II) complex with four equatorial water ligands

and two axial, oxygen-coordinating 4-pyridinone ligands is expected by all metrics

to be reasonably well predicted (std. dev. ensemble = 2.5 kcal/mol, mc-dropout

= 2.7 kcal/mol, and latent space = 9.4 kcal/mol), but the DFT preference for the

high-spin state is underestimated by the ANN (Δ𝐸H−L𝐴𝑁𝑁 = −45.5 kcal/mol vs.

Δ𝐸H−L𝐷𝐹𝑇 = −77.4 kcal/mol). Although the latent distance error estimate does

not bound all high error points predicted by the model, it provides a high fidelity,

no cost uncertainty estimate for > 90% of the data.

o assess the generality of our observations on inorganic complexes for other chemical

data sets, we briefly consider the approach applied to atomization energies computed

with hybrid DFT (i.e., B3LYP152,157,158/6-31G573) for a set of organic (i.e., C, H, N,

O, and F-containing) small molecules. The QM9 data set31 consists of 134k organic

molecules with up to 9 heavy atoms and has been widely used as a benchmark for

atomistic machine learning model development212,223,486,487 with the best models in
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the literature reporting MAEs well below 1 kcal/mol25,26,212,330,486. As in previous

work511, we employ standard autocorrelations (ACs)244 that encode heuristic fea-

tures22 on the molecular graph and perform well (ca. 6 kcal/mol MAE) even on

small (< 10%) training set partitions for QM9 atomization energies511, exceeding

prior performance from other connectivity-only featurizations486. For this work, we

trained a two-hidden layer residual ANN using AC features and passing the input

layer forward in a ResNet-like architecture306 to improve performance over a fully-

connected architecture (Computational Details and Appendix D, Figure D-18 and

Tables D.5–D.6). We use only 5% (6, 614) of the data points for training, reserv-

ing the remaining 127k molecules for our test set to mimic chemical discovery in a

single random partition, the choice of which does not influence overall performance

(Appendix D, Table D.7). Baseline model performance for QM9 atomization ener-

gies with the ANN is improved over our prior work for both train (4.6 kcal/mol)

and test (6.8 kcal/mol) MAE, with some further improvement of test MAE with an

ensemble model (6.1 kcal/mol, see Appendix D, Tables D.7–D.8). A wide distribu-

tion of errors is observed with some outlier points such as hexafluoropropane (error

= 120 kcal/mol) having very large errors for both the single and ensemble mod-

els (Appendix D, Figure D-19). For the residual ANN, the mc-dropout uncertainty

has not been derived, and so we compare only the other three uncertainty metrics.

We observe ensemble and latent space distance uncertainty metrics to have similar

correlations to model errors and both to outperform feature space distance in this

regard (Appendix D, Figure D-20). Selecting either the distance in latent space or

ensemble uncertainty as a cutoff, we can systematically drive down MAEs on the

predicted data fraction, and latent distance again provides superior control when er-

ror tolerance is low (Appendix D, Figure D-21). For example, setting a tolerance of

3.5 kcal/mol for the MAE leads to a pool of over 4200 points retained with the latent
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space distance metric vs. few points (74) for the ensemble std. dev. (Appendix D,

Figure D-21).

Figure 6-4: Model errors (in kcal/mol) for 127k QM9 atomization energy test points shown
as contours as a function of uncertainty metrics. The three uncertainty metrics compared
are: feature space distance (in arb. u., left, with top left color bar), latent space distance (in
arb. u., middle, with top right color bar), and 10-model ensemble std. dev. (in kcal/mol,
with top right color bar). One standard deviation cutoffs are shown as orange lines for
the latent space distance from the calibrated error model (center) and directly from the
ensemble (right).

We again observe that the AC feature space distance is a poor indicator of increasing

model errors, with as many high error points occurring at low distances as at high

distances (Figure 6-4). In contrast to feature space distance, ensemble std. dev.

and latent distance both grow with increasing error (Figure 6-4). Calibration of the

latent space distance to the output property enables direct comparison to ensemble

uncertainties (Appendix D, Table D.9). As in the inorganic data set, the ensemble

std. dev. values are overconfident, capturing a smaller amount (44%) of the errors

within a single std. dev. in comparison to the distance in latent space (77%) metric

(Figure 6-4 and Appendix D, Figure D-22). For the ensemble uncertainty, a signif-
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icant fraction (28%) of points have errors larger than twice the std. dev., whereas

only a small fraction (5%) do so for the distance in latent space (Figure 6-4 and

Appendix D, Figure D-22).

Figure 6-5: MAE for predicted points (inside cutoff, green squares) and those not predicted
(outside cutoff, orange squares) compared to the training data MAE (blue horizontal dashed
line) along with data fraction in each set (top) for the inorganic CSD test set (left) and
organic QM9 set (right). The most distant point in the test set is scaled to have a latent
distance of 1.0 for comparison across data sets but the x-axis range is then truncated to
focus on the range of latent distance cutoffs that affect most of the data.

For both the CSD test set and the QM9 set, a systematic reduction in baseline

error can be observed in a practical use case where the user adjusts the applied un-

certainty metric to become more conservative (Figure 6-5). Smooth reductions in

MAE on data inside the uncertainty cutoffs can be achieved across a wide range of

latent distance cutoffs, with errors nearly monotonically approaching the training

data MAE, which may be recognized as a qualitative lower bound on our test set

error (Figure 6-5). Combining all error metrics to choose the most conservative result
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does not improve upon the single latent space distance metric (Appendix D, Figure

D-23). PCA or uniform manifold approximation and projection (UMAP)574 analysis

of the latent space distance indicates that a large number of the latent space dimen-

sions are needed for error estimation (Appendix D, Figure D-24 and Table D.10).

For either data set, at the point on which half of all possible predictions are made,

predicted data MAE is less than half of that for the excluded points (Figure 6-5).

The latent distance as a predictive estimate of uncertainty also shows promise for

application in active learning, where a model is trained iteratively by acquiring data

in regions of high model uncertainty. To mimic such an application in the context

of inorganic chemistry, we returned to the CSD data set and identified the 10 least

confident points based on the distance in latent space, retrained the ANN using

the same protocol, and re-evaluated model MAE (Appendix D, Table D.11). Incor-

porating these data points during retraining reduced model errors from 8.6 to 7.1

kcal/mol, whereas simply removing these points only reduced model MAE to 7.7

kcal/mol (Appendix D, Table D.11). This effect is particularly significant consider-

ing the relatively small change in the number of data points (i.e., 10 added to 1901 or

0.5%) and an even larger reduction in root mean square error is observed (Appendix

D, Table D.11). When compared to an ensemble or mc-dropout cutoff, selection of

retraining points based on latent space distance results in the largest reduction in

model MAE while only requiring retraining on ANN (Appendix D, Table D.11).

Although we have focused on applications in chemical discovery with fully connected

neural networks, application to other network architectures is straightforward. We

trained convolutional neural networks for image classification tasks on two standard

benchmarks, MNIST320 and Fashion-MNIST575. Incorrectly classified images are ob-

served at higher latent distances in both cases (Appendix D, Text D.3, Table D.12,

and Figure D-25).
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6.3 Conclusions

We have demonstrated on two diverse chemical data sets that the distance in the

latent space of a neural network model provides a measure of model confidence

that out-performs the best established metrics (i.e., ensembles) at no additional cost

beyond single model training. The distance in latent space provides an improved

approach to separating low- and high-confidence points, maximizing the number of

retained points for prediction at low error to enable extrapolative application of

machine learning models. We introduced a technique to calibrate latent distances

that required only a small fraction of out-of-sample data, enabling conversion of this

distance-based metric to error estimates on the property prediction. In doing so,

> 90% of model errors were bounded within 2 std. dev. of latent distance estimates,

in significant improvement beyond typically over-confident ensemble estimates. Like

ensembles or mc dropout, the latent space distance could still be challenged by

unstable models, such as those trained on highly discontinuous properties. The

latent space distance metric is general beyond the examples demonstrated here and

is expected to be particularly useful in complex architectures that are normally time-

consuming and difficult to train or in active learning approaches where rapid, iterative

model retraining may be needed.

6.4 Computational details

Neural networks were trained for this work with hyperparameters selected using Hy-

peropt222 followed by manual fine-tuning in Keras576 with the Tensorflow577 backend
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(Appendix D, Figure D-17 and Tables D.5 and D.13). The Δ𝐸H−L energy evalua-

tion protocol for inorganic chemistry training data and the curated CSD184 test set

used molSimplify181,533 to automate hybrid (i.e., B3LYP152,157,158) DFT calculations,

with more details provided in Appendix D, Text D.2. For the organic chemistry

test, the QM9 atomization energy data set was obtained from the literature31. In

all cases, we normalize the representations and properties to make the training data

have zero mean and unit variance. For calculating ensemble properties, we employ

10 sub-models trained on 10-fold cross-validation splits of the training data. For mc-

dropout, we used the same 8.25% dropout as in training with 100 realizations, and

we employed maximum likelihood to optimize the baseline uncertainty parameter, 𝜏

(Appendix D, Text D.1 and Table D.2). We do not apply mc-dropout to the organic

test case because it has not been developed for residual-connectivity networks. For

feature space distance, we measured Euclidean distance in the normalized feature

space as indicated (e.g., RAC-155511) directly. For latent distances, we use the la-

tent space after the last hidden layer, which has the dimensionality of the model (i.e.,

200 for spin splitting, 120 for the organic model).

6.5 Addendum: improving generalization with smart

data acquisition

In related work578, we created a database of the smallest feasible ligands consisting

of only two heavy atoms (from CONPS), by enumerating all possibilities and scoring

them using a series of metrics, resulting in a final set of an additional 343 transition

metal complexes and associated DFT-computed Δ𝐸H−L values, termed the ‘octahe-

dral ligand database (OHLDB)’. The small size of these ligands facilitated affordable
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simulation while the great diversity of near-metal coordination environments is in-

tended to provide robust sampling of the space of possible inner coordination shells.

According to insights gained from Chapter 4, the near-metal environment has a con-

trolling effect on the spin sate, and therefore it is hypothesized that inclusion of the

OHLDB complexes in the ANN could increase its generalization ability, even on large

CSD structures.

Figure 6-6: (left) Principal component analysis of new OHLDB data in the RAC-155 repre-
sentation colored by Euclidean norm distance to available training data (d, colored accord-
ing to inset colorbar) and overlaid on top of a 2D histogram of available data, with bins
colored by count as indicated in grayscale colorbar. (right) Stacked histogram of errors (bin
width: 5 kcal/mol) colored by metal type for the RAC-155/ANN prediction on OHLDB
molecules with successful DFT Δ𝐸H−L evaluations. Representative large error complexes
are shown in the histogram inset (left to right): Fe(II)(HNO)6, Fe(II)(PH2SSPH2)3, and
Mn(III)(CH2CH

–
3 )6.

From the successfully converged complexes that make up our curated OHLDB, we

quantified the extent to which these systematically enumerated complexes reflected

chemistry divergent from the 1901 Δ𝐸H−L values used for training ANNs in this

chapter. To compare diversity in the chemical structures, we featurized each new
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complex with the same RAC-155 representation. Although OHLDB complexes pri-

marily lie within the convex hull of the first two principal components (PCs) in the

RAC-155 representation, the overall Euclidean norm distance in feature space av-

eraged over the ten nearest neighbors in existing data is quite large (> 20) for a

number of the complexes (Figure 6-6). The complexes indeed fall outside the convex

hull of the pre-existing data but do so especially at higher PCs (i.e., 7–8), where the

first eight PCs generally contain the vast majority of the variance (89%).

An alternative measure of data diversity is in property space, which we assessed

first by determining if the previously trained ANN model could have predicted the

Δ𝐸H−L values exhibited by the OHLDB complexes (Figure 6-6) . Overall, although

a large number of complexes were well predicted, significant (e.g., > 60 kcal/mol)

over- and underestimations of Δ𝐸H−L are indicative of limited prior knowledge by

the ANN (MAE = 14.3 kcal/mol) of the chemistry of the OHLDB complexes (Figure

6-6). Indeed, high error points are both chemically distinct and exhibit unexpected

spin-state ordering, such as an Fe(II)(HNO)6 complex (Δ𝐸H−L ANN: −17.1, DFT:
50.1 kcal/mol), which contains an NO motif adjacent to the metal that had been

absent from prior training complexes and is erroneously predicted by the ANN to

be weak field in nature (Figure 6-6). Similarly, no phosphorus-coordinating metal

complexes and few sulfur-containing ligands had been in training data, leading to

large errors for an Fe(II) complex with bidentate PH2SSPH2 ligands (Δ𝐸H−L ANN:

−27.8, DFT: 15.2 kcal/mol, Figure 6-6). Although phosphorus ligands are known

to be low-spin directing, their absence from our training data means that accurate

ANN predictions on such complexes cannot be expected. Finally, in some cases,

the coordinating atom may be present in training data, but the chemistry is still

unusual, as is the case for a strongly high-spin favoring Mn(III)(CH2CH3–)6 complex

(Figure 6-6). Although the ANN correctly predicts this complex to be high spin,

231



it cannot predict the strong high-spin stabilization observed in the DFT calculation

(Δ𝐸H−L ANN: −11.8, DFT: −72.0 kcal/mol) for this saturated, negatively charged

carbon ligand that is distinct from other C-coordinating ligands (e.g., CO) in our

prior training data sets.

Next, we considered the extent to which OHLDB data could be used to improve ML

model predictions on the large, diverse CSD complexes used in this chapter by im-

proving coverage of metal-local environments in the training data. Because the CSD

complexes were chosen to be distinct from the 1901 complexes used in the training of

the ANN, the CSD set Δ𝐸H−L MAE of 8.6 kcal/mol was much poorer than set-aside

test set errors (ca. 1–3 kcal/mol) or uncertainty-controlled, out-of-sample prediction

errors (ca. 4.5 kcal/mol) obtained in the earlier sections of this chapter. Notably,

very high Δ𝐸H−L prediction errors, either due to over or underestimation, were ob-

served on the order of 20–50 kcal/mol (Figure 6-7). Incorporating OHLDB data and

retraining the ANN eliminated many of these highest error points and reduced CSD

set average error to 6.7 kcal/mol (Figure 6-7). Despite the fact that most of the CSD

complexes are much larger in size, significant improvements are observed for com-

plexes that had metal-adjacent coordination environments present in the OHLDB

but absent in our prior data, such as coordination by NO species.
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Figure 6-7: Swarm plot of RAC-155/ANN signed errors (in kcal/mol) on an out-of-sample
116 CSD structure data set (original, left) and after retraining with OHLDB data (retrained,
right). The single most improved (CSD ID: CEYSAA) and worsened (CSD ID: COBWEX)
points are shown in green and red insets, respectively, and have data points colored in the
same manner.

In most cases model performance improved, but for select complexes model perfor-

mance remained the same or worsened slightly in a manner that is not dependent

on the metal center (CSD ID: COBWEX, Figure 6-7). Given that most of the CSD

curated set is multidentate in nature, whereas the OHLDB is weighted toward mon-

odentate ligands, further improvement could likely be achieved through continued

systematic enumeration of a greater number of ligands of higher denticity.

Therefore, enriching machine learning models with the cheaply-acquired, targeted

chemical variations in the OHLDB data improved machine learning model predic-

tion performance on an out-of-sample CSD set even more than including a single

round of active learning in Section 6.2.
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Chapter 7

Multiobjective, multifidelity redox

couple design

Chapter summary

In this chapter, we apply a combination of first-principles simulations, multitask neu-
ral network surrogate models and uncertainty estimates based on latent space ex-
trapolation to conduct multiobjective probabilistic optimization of transition metal
complex redox couples. We are able to screen a combinatorially-assembled space
of nearly 3 million unique complexes and identify leads that have both high re-
dox potential and favorable solubility using active learning and a two dimensional
expected-improvement scoring function that explicitly balances exploration of the
space with extension of the Pareto frontier of these properties. Beginning with a set
of diversity-orientated clusters, we perform four additional active learning cycles and
are able to advance the Parteo frontier of the simulated materials with each cycle.
Over the course of a few hundred DFT calculations we are able to identify promis-
ing ligands and functionalizations that simultaneously sample the extreme tails of
the estimated redox potential and solubility distributions, representing an estimated
500-fold increase in sample efficiency relative to random search. This demonstrates
the clear advantages in high-throughput screening afforded by data-driven methods.
Additional details are provided in Appendix E.
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7.1 Introduction

The proliferation of machine-learned ‘surrogate’ models that predict the outcome of

atomistic simulations on new materials at greatly reduced cost has enormous po-

tential to accelerate the search for new materials5,8. Such surrogate models have

been extensively demonstrated in both data-rich applications such as organic chem-

istry24,25,27,213,451 or bulk, crystalline materials75,80,231,324,389,407,579, helped in part by

the availability of large databases of computed properties12,31,32,108, but also, in-

creasingly, in data-scarce applications such as inorganic molecular systems308,533 and

catalysis232,279,542.

Rapid screening with these methods, combined with active learning, where the model

is used to iteratively select informative points to add to the available data580,581, can

help navigate very large chemical design spaces and identify lead materials from far

more candidates than would be possible with simulation or experiment alone5,359.

Some applications of machine-learning assisted virtual design include screening light

emitting materials34, solar cells582, redox battery electrolytes583, spin-crossover ma-

terials543 and perovskites237, catalysts232 and drug candidates374,580.

The use of active learning can result in highly data-efficient surrogate models, de-

creasing requirements by an order-of-magnitude375. While for construction of a

globally-accurate model, for example when preparing a neural network potential, it

may be desirable to focus entirely on exploration254,375, in design problems we wish

to produce a series of leads which satisfy our design criteria with as few evaluations

as possible and do not care about accuracy of the ML model on poor-performing

materials. Data-efficient methods that balance exploration with optimization have

been successfully used to conduct one dimensional virtual materials optimization to

identify crystals with targeted melting temperatures389, low-energy conformations387,
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stable perovskites388 and crystal structures584.

However, real materials are required to meet many different criteria simultaneously,

necessitating multiobjective optimization. In chemical sciences, Pareto optimiza-

tion has been previously applied to identify cost-activity tradeoffs in heterogeneous

catalysis585, distillation586 and continuous flow reactor operation400, with proposed

techniques including evolutionary algorithms383 and hierarchical methods587.

In this work, we will develop an active-learning assisted optimization algorithm to

help identify transition metal complexes for redox flow batteries (RFB). RFBs are

a grid-level energy storage technology64,65. They are able to decouple power deliv-

ery and cell capacity by holding the redox active species in liquid solution which is

stored separately and pumped to a cell when required. This minimizes unintended

discharge and makes RFBs economically-appealing for large, fixed energy storage

applications66,67. Transition metal ions are good candidates for active materials in

redox flow batteries due to their ability to exist stably in different oxidation states,

which translates into good reversibility of the redox process and long service life.

Complexation of the these ions, for example with acetylacetone- or bipyridine-based

ligands68, can both tune their redox potential as well as prevent diffusion across

the cell membrane. However, these complexes show modest solubility in the polar

organic solvents that are desired for use in RFBs50. Recent experimental screening

has demonstrated that distal (with respect to the metal) ligand functionalization can

tune solubility (in acetonitrile) by orders of magnitude, while only weakly perturbing

redox potential. This holds promise for design of high redox potential, highly-soluble

complexes for use in RFBs by balanced ligand tuning. We will attempt to realize

this objective by screening a multi-million complex design space for candidates that

have both targeted redox potential and solubility properties using a combination of

first-principles simulation and machine learning.
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The remainder of this chapter is structured as follows: in Section 7.2.1 we will

present our approach for first-principles screening of candidate complexes for RFBs,

in Section 7.2.2 we will construct a multi-million complex design space over which

to optimize, in Sections 7.2.3–7.2.4 we will describe the machine learning and prob-

abilistic optimization framework used, in Section 7.3 we will present and discuss the

optimization results over five generations and in Section 7.4 we will provide con-

clusions. A detailed description of the computational methods used is provided as

Section 7.5.

7.2 Approach and methods

7.2.1 First-principles calculations

We seek to discover candidate redox couples for redox flow batteries by accelerat-

ing the screening of transition metal complexes with high Δ𝐺solv values and good

solubility in polar solvents. To facilitate screening a large compound space, we em-

ploy density functional theory (DFT). The open-shell character of first-row transition

metal complexes results in a large number of possible one-electron redox processes.

Consistent with prior work482,511, we compute the M(II/III) redox couple for the

solvent-corrected ground state spin of the M(II) complex using a thermodynamic

cycle approach. We used this spin state assignment to first compute the adiabatic,

gas phase ionization potential (IP), Δ𝐸III−II:

Δ𝐸III−II = Δ𝐸III −Δ𝐸II (7.1)
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where 𝐸II and 𝐸III are the electronic energies of the gas phase, geometry optimized

complexes in the LS or HS ground state of the M(II) complex and an M(III) com-

plex that differs by single-electron removal (Appendix E, Table E.1). To obtain the

solvent-corrected IP, Δ𝐺solv, we adjust for the difference in M(II) and M(III) aqueous

solvation free energies, Δ𝐺s,water:

Δ𝐺solv = Δ𝐸III−II +Δ𝐺s,water(M(III)) + Δ𝐺s,water(M(II)) (7.2)

whereΔ𝐺s,water is obtained as a single point energy on the relevant gas phase complex.

Here, we neglected vibrational corrections that we incorporated in prior work511 be-

cause they are small in magnitude but significantly increase the cost of computational

screening (Appendix E, Figure E-1). Computational redox potentials computed with

respect to a reference value (e.g., ferrocene/ferrocenium) at same level of theory have

shown good agreement with experimental redox potentials207; however, we neglect

this correction since it simply shifts all values by a constant factor and our focus is

on relative trends. The accuracy of this protocol is estimated to be ∼ 0.1 eV relative

to experimental measurements207.

We approximate the solubility of the transition metal complexes in the high dielec-

tric solvents (i.e., water or polar, aprotic organic solvents such acetonitrile) favored

for RFBs50,66. As a proxy for this quantity, we estimate the standard hydrophilicity

(i.e., partition coefficient, logP) between octanol and water on the M(II) complex in

its ground state spin as:

logP = log10
Δ𝐺s,octanol

Δ𝐺s,water
(7.3)
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We note that logP is a powerful descriptor in phenomenological models for the ex-

perimental solubility for organic species588,589 and can itself be well predicted by

simple QSAR models based on molecular composition590 and first-principles observ-

ables from implicit solvent calculations591. Larger logP values correspond to lower

solubility in the target RFB solvents.

7.2.2 Design space

To construct our design space, we carried out stepwise ligand construction to gener-

ate nearly three million unique candidate redox couples (Figure 7-1). This approach

is designed to provide both diversity in terms of ligand scaffolds as well as high data

density for fine-tuning properties. Inspired by experimentally-accessible50,68,525,592

ligands for transition metal complexes, we start with 38 unique five- or six-member

heterocycles that have either a nitrogen or oxygen heteroatom to coordinate to the

metal center (Appendix E, Figure E-2). These can serve as monodentate ligands

directly and this range covers common ligand motifs including pyridine, imidazole,

furan, thiazole, oxazole, pyrrole, as well as unsaturated variants thereof such as

tetrahydrofuran and piperidine. We also form bidentate ligands from all possible

heterocycle pairs, which combine with the monodentate heterocycles to create a set

of around 800 unique core ligands (Appendix E, Text E.1). In order to tune solubility

of the resulting complexes, we consider a set of 900 possible functionalizations, con-

sisting of common functional groups in organic chemistry, such as methyl, carboxylic

acid, amide, chloride and alcohol groups that can be added to the base ligands as

substituents (Appendix E, Text E.1 and Figure E-3). We consider only adding a

single unique functionalization to each base ligand resulting in approximately 700k

final, chemically distinct ligands. The functionalizations are placed distal to the

240



metal connecting atoms as this type of modification has been experimentally ob-

served50 to modulate solubility for chromium redox couples with negligible impact

on cyclic voltammetry. We restrict this study to homoleptic complexes formed from

combinations of these ligands and first-row transition metal complexes Cr to Co. For

simplicity, we consider only M(II) to M(III) redox processes, and we seek to identify

lead complexes from this space with desired properties, i.e. high redox potential and

high solubility in polar solvents.

38
heterocycles

779 core
ligands

700k unique
ligands

2.8M unique
complexes

8 heterocyclic
ring types

5 in-ring
modifications⊕

897
functional–

izations

4 first-row
metals
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N

S

O N O
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Figure 7-1: Design space of potential RFB candidates. Starting with 38 common heterocy-
cles, core ligands are assembled from all possible combinations of one or two heterocycles,
creating nearly 800 unique mono- and bi-dentate ligands that coordinate to the metal center
with oxygen (red) or nitrogen (blue) atoms. These are functionalized distal from the metal
with approximately 900 common chemical motifs and combined with first-row metals Cr-Fe
to yield around 2.8M unique candidates.
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7.2.3 Machine learning

To facilitate efficient optimization over this enormous space of candidates, we turn

to machine learning methods, and active learning in particular. Machine learning on

chemical systems depends inextricably223 on the choice of numerical representation

of the system of interest. Here, we use revised autocorrelations (RACs)511, a family

of graph-based descriptors that were specially developed for inorganic molecular sys-

tems. RACs consist of a series of products and differences of atomic properties (e.g.

nuclear charges, Pauling electronegativities) of atoms separated by a fixed number

of bonds. RACs have shown good performance in predicting properties of transition

metal complexes including spin state ordering511,593, metal ligand bonding180,511 and

redox and ionization potentials511, frontier orbital energies533, catalytic energies232

and calculation outcomes259 with both of kernel methods and ANNs. We use the full

set of RAC-155 features511, with the exception of oxidation state, since each redox

couple spans multiple oxidation states, and Hartree-Fock exchange, since all results

here use 20% exact exchange. This produces a 153-dimensional representation. Since

the representation is based on the molecular graph only, there is no need to compute

3D geometries for the entire design space in order to make predictions.

Here, we will primarily use a single, ‘multitask’, feed-forward ANN that predicts both

endpoints (Δ𝐺solv and logP) at the same time, though we provide comparisons with

a pair of independent Gaussian process (GP) models or ANNs to predict these quan-

tities separately. Multitask networks have shown superior predictive performance to

separate, single-task models in some cases311.

In order to perform active learning, it is necessary to have a surrogate model that

is both capable of predicting the properties of new complexes and providing an esti-

mate of its own uncertainty. While the GP framework provides inherent uncertainty
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estimates from the structure of the learned posterior distribution594, ANNs do not

possess a similar automatic qualification of model applicability. We recently proposed

a new method593 for estimating this extrapolative uncertainty in chemical discovery

by measuring how far a new potential complex lies from the available training in

the ANN latent space, denoted 𝑑 and computed as the average Euclidean distance

to the 10-nearest training points in the final ANN latent space. We model this

generalization error using a conditionally-Gaussian distribution:

𝜀(𝑑) = 𝒩
(︀
0, 𝜎2

1 + 𝑑𝜎2
2

)︀
(7.4)

where 𝜎1 and 𝜎2 are parameters obtained from maximum likelihood estimation on

a small set of out-of-sample complexes. It was demonstrated that this metric pro-

vided as good, if not better, qualitative correlation with out-of-sample errors and

superior quantitative results593 compared to ensemble methods which are commonly

used254,375 for ANN uncertainty in chemistry, and so we use this framework to pro-

vide uncertainty estimates for our ANN models. In the case of the multitask ANN,

there is only one latent distance for each complex, but 𝜎1 and 𝜎2 are fit independently

for Δ𝐺solv and logP. We use 10% of available data, selected randomly, to calibrate

these parameters.

Because the error distribution proposed in eq. 7.4 is Gaussian, regardless of whether

the surrogate model in question is a multitask ANN or independent GP, the pre-

dicted distributions of the Δ𝐺solv and logP values for a new, potential complex 𝑥,

are given by:

Δ𝐺solv(𝑥)

logP(𝑦)
∼ 𝒩

⎛⎝⎡⎣𝜇̂Δ𝐺solv

𝜇̂logP

⎤⎦ ,

⎡⎣𝜎̂2
Δ𝐺solv

0

0 𝜎̂logP2

⎤⎦⎞⎠ (7.5)
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where 𝜇̂Δ𝐺solv
and 𝜇̂logP are the predicted mean values for Δ𝐺solv and logP respec-

tively, while 𝜎̂2
Δ𝐺solv

and 𝜎̂logP2 are the effective variances (𝜎2 = 𝜎2
1 + 𝑑𝜎2

2 for ANN

models).

7.2.4 Multiobjective design framework

Equipped with machine-learned surrogate models and uncertainty estimates, we im-

plement a probabilistic, active learning strategy385,396 to identify promising candi-

dates from the design space to simulate. This can be understood as defining an

acquisition function221, which assigns a score to each potential element in the design

space, and this function decides how to weight exploitation of the model (picking

candidates with ‘good’ properties) and exploration (improving the model by incor-

poration of high-uncertainty points).

A popular acquisition function for optimization with probabilistic surrogate models

is the expected improvement criterion372,386, formulated for a one-dimensional mini-

mization as the expected decrease in the value of the objective value, or improvement,

𝐼:

𝐼 [𝑦(𝑥)] = max (𝑦 (𝑥*)− 𝑦(𝑥), 0) (7.6)

at a point 𝑥 with estimated value 𝑦(𝑥) distributed as 𝑝𝑥(𝑦)) (i.e. the distribution of

model predictions for design 𝑥), relative to the current best design, 𝑥*, with known

value 𝑦(𝑥*),

E[𝐼](𝑥) =
∫︁ ∞

−∞
𝐼 [𝑦(𝑥)] 𝑝𝑥(𝑦)𝑑𝑦 (7.7)
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For Gaussian process surrogates, 𝑝𝑥(𝑦) follows a Gaussian distribution around mean

value 𝜇(𝑥) with variance 𝜎2(𝑥) that is different for each design. In such cases, eq.

7.7 can be integrated analytically over all possible values of 𝑦, leading to a method

known as Efficient Global Optimization372 (EGO). In EGO, the acquisition function

at every new point 𝑥 is given in terms of the mean and standard deviations of the

predictive distribution:

E[𝐼](𝑥) = (𝑦(𝑥*)− 𝜇 (𝑥)) Φ

(︂
𝑦(𝑥*)− 𝜇 (𝑥)

𝜎 (𝑥)

)︂
+ 𝜎 (𝑥)𝜑

(︂
𝑦(𝑥*)− 𝜇(𝑥)

𝜎 (𝑥)

)︂
(7.8)

where Φ and 𝜑 are the cumulative and distribution functions of the standard normal

distribution. The first term encourages exploitation of the model and the second term

favors exploration of high uncertainty points. EGO is the simplest Bayesian opti-

mization method and has been widely applied in chemical design problems387–389,584,

although alternatives exist, such evolutionary algorithms383, Thompson sampling396,

optimal learning595 and the Phoenics397 algorithm, that have been suggested to have

better sample efficiency or stability in chemistry problems.

In the RFB case, at least two important characteristics must be optimized simul-

taneously. Instead of lumping both Δ𝐺solv and solubility estimates into a single

scalar objective, we adopt a multiobjective optimization strategy that attempts to

map the Pareto frontier of the design space. In Pareto optimization596, a potential

new candidate is considered dominated if there is an existing point that is lower

along both objective functions (gray portion of the distribution in Figure 7-2). The

set of all points which are not dominated is referred to as the Pareto frontier, and

represents all possible optimal tradeoffs between the design variables (black dashed

in line Figure 7-2). In the context of this work, a complex is dominated if there is

another complex with both a higher Δ𝐺solv (here, lower negative Δ𝐺solv) and lower

245



logP value. We seek to map this frontier in our design space in order to understand

how these variables are related. For each point on the our Pareto front, the Δ𝐺solv

cannot be improved without worsening solubility, or vice versa.

The expected improvement framework can be extended to multidimensional Pareto-

optimization problems in a natural manner386,394. Instead of considering the one

dimensional improvement, improvement is defined as the Euclidean distance a candi-

date lies beyond the current Pareto frontier (Figure 7-2). The total of the probability

mass for a candidate that lies beyond the Pareto frontier defines E[𝐼](𝑥) in direct

analogy with eq. 7.7. By approximating the distance to the front by the distance

to the nearest point of the frontier, analytical expressions for these integrals for in-

dependent Gaussian distributions were derived in Ref.394, which are generalizations

of eq. 7.8. Due to the structure of our ANN uncertainty model593, we can directly

apply these integrals to ANN surrogate models (see Section 7.2.3). We will utilize

this approach to balance exploitation and exploration in ranking candidates from

our design space and choose leads for simulation.

In order to accelerate the initial process, we begin by constructing surrogate models

on a set of 235 precomputed Δ𝐺solv values from prior studies308,511,543,593 (Appendix

E, Table E.2). However, we observed that this data was highly distinct from the pro-

posed design space, as judged by the location of this data in the first two principal

components using the RAC-155 representation (Figure 7-2, right). The pre-existing

complexes are primarily monodentate and include connecting atom types (carbon)

not present in the design space, and are also smaller and less symmetric on aver-

age, which likely limits the ability to extrapolate from these complexes to the design

space (Appendix E, Figures E-4–E-5). Therefore, instead of using these models to

select the initial generation of points, we performed k-medoids clustering to identify

300 most representative structures to simulate in the initial step. We observe these
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clusters are generally well-representative of the design space (Appendix E, Text E.2,

Table E.3, and Figures E-6–E-7). Of our initially-simulated clusters, we were able to

obtain redox and logP for 107 distinct complexes that passed our automated checks

for calculation geometry and wavefunction convergence after our time-limited calcu-

lation scheme, which is a result of a baseline success rate of 65% but requires three

independent calculations to converge.
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Figure 7-2: (Left) Illustration of the active learning workflow used in this work. DFT sim-
ulations are performed on cluster medoids which are used to iteratively train ML surrogate
models. Thus, surrogate models score all possible candidates using 2D expected improve-
ment, and the top scoring complexes are clustered and simulated to repeat the process.
Inset: illustration of a Pareto set (black points) and frontier (dashed black line) for a 2D
objective function. The distribution of values at trial point 𝑥 is shown around the mean
value, (𝜇1, 𝜇2) and the probability mass below the frontier is shown in blue. (Right) 2D
PCA based on RAC-155 representation of the design space, showing 2.8M candidates (gray,
histogram filled by count), 300 cluster medoids (golden dots) and 235 existing data points
(red dots).
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We use this set to benchmark our initial models and select the most transferable

model, which is then retrained with this additional data in order to yield the first

ANN generation. This model is then used to estimate the multiobjective E[𝐼] for each

as-yet-unexplored candidate in the design space. We then collect the 10k highest-

ranked candidates and perform E[𝐼]-weighted k-medoids clustering to select a new

batch of 100 leads for DFT simulation as the second generation. This data is used

to retrain the model the process is repeated for a further 5 generations (Figure 7-2

and Appendix E, Figure E-8).

7.3 Results and discussion

7.3.1 Model selection and extrapolation from existing data

We compared the predictive ability of our multitask ANN with two alternative ap-

proaches: a pair of independent Gaussian process (GP) and single task ANN models

which predict redox and logP separately. In all cases, we trained the models on 90%

of our initial set of 235 existing complexes and evaluated their performance on a 10%

subset held out as test data, and finally their ability to generalize to the 107 initial

medoids from the design space. We were able to obtain mean absolute errors (MAEs)

on test data of 0.3–0.4 eV of Δ𝐺solv ( ∼ 6% mean absolute percent error, MAPE),

comparable to previous kernel methods on a simpler data511, and 1.5–2.5× 10−4 for

logP (∼ 0.5% MAPE). The single task logP ANN outperforms the multitask ANN

on test data while the reverse is true for redox, where the multitask ANN holds a

small lead (Appendix E, Table E.4). Overall, errors on the uniformly selected test

candidates are comparable. Redox errors are correlated between models, with Pear-
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son 𝑟 = 0.95 for redox errors between multi- and single task ANNs (0.81 between

multitask and GP). The logP errors are not as significantly correlated between mod-

els with 𝑟 < 0.35 between any pair (Appendix E, Table E.5).

Latent-distance based uncertainty allows superior control of generalization error com-

pared with GP variance for redox prediction, where excluding the five highest uncer-

tainty points leads to a reduction in MAE from 0.32 eV to 0.21 eV for the multitask

ANN (c.f. 0.45 eV to 0.34 eV for GP standard deviation, see Appendix E, Figure

E-9). The picture is less clear for logP for the best-performing single task model,

but we note that it obtains similar training and test errors, and the latent distance

approach only accounts for increases in error due to being unlike training data, and

not baseline accuracy achieved on training data.

However, extrapolation to the generation 1 cluster medoids yields a different story

– all generalization errors are substantially increased, with the redox errors at least

doubling (14− 30% MAPE, Figure 7-3). There is an order-of-magnitude increase for

logP (7 − 30% MAPE, Appendix E, Figure E-10). We attribute this to the afore-

mentioned differences in size, composition, ligand symmetry and denticity between

the existing data and the design space, in line with recent observations545,552,597 that

uniform test partitions provide limited information about generalization capacity to

different regions of chemical space. These differences also manifest in discrepancies

in the distribution of the output properties between these sets, with mean (standard

deviation) of calculated logP values of −4.10 × 10−2 (1.78 × 10−3) for the training

data and 4.51×10−2 (2.66×10−3) for the medoids. This corresponds to a magnitude

difference of the means of the two distributions of around two standard deviations,

indicating poor overlap in the range of output variables. The means (standard devia-

tions) for the two Δ𝐺solv distributions are 7.15 (1.38) and 5.62 (0.89) eV respectively

for a similar difference (Appendix E, Figure E-11).
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We observe similar (for redox) and stronger (for logP) correlation between errors

from different models on this out-of-distribution set as compared to the test set (Ap-

pendix E, Table E.6). All uncertainty metrics agree that this data is consistently

out-of-sample, with the minimum latent distance to training data (5.8 for multitask,

average 7.5) being larger than the average for the uniformly-selected test data (5.6 for

multitask ANN). Few points are predicted well, with nearly 60% (62 of 107) having

redox errors > 0.5 eV for the best multitask model, and no uncertainty metric is able

to isolate a subset of complexes with comparable errors to the uniformly-selected test

errors (Appendix E, Figure E-12). However, in all cases the multitask ANN provides

the best generalization performance on this out-of-sample set, and so we select it as

the model used to compute E[𝐼] and drive our active learning process.
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Figure 7-3: Mean absolute errors in eV for a multitask ANN (green), a single task ANN
(blue) and a Gaussian process model (orange) when predicting DFT-derived Δ𝐺solv po-
tential on their training data, a uniform 10% test partition, and the first generation of
out-of-distribution set of cluster medoids from the design space (generation 1).
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7.3.2 Active learning process

We retrain our multitask ANNmodel incorporating the diversity-based cluster medoids

and refer to this as the generation 1 model. These initial medoids also define an ini-

tial Pareto frontier consisting of six of 107 points (blue line in Figure 7-4), spanning

six unique bidentate ligands coordinating complexes with two Fe, Co and Mn metal

centers. We will only define Pareto frontiers based on DFT results, not ML predic-

tions. The maximum Δ𝐺solv on the initial frontier is 7.37 eV (with logP value of

−4.38× 10−2), obtained for a large (145 atom) Mn complex with a ligand comprised

of two oxygen-coordinating heterocycles. The minimum logP of −5.31× 10−2 (with

redox value of 6.36 eV) is obtained for a smaller (82 atom) Fe complex with a ligand

comprised of two nitrogen-coordinating heterocycles (insets in Figure 7-4). All other

points lie between these two values.

We combine our ANN predictions with uncertainty estimates to calculate the prob-

ability that each candidate in the 2.8M complex design space will improve on this

frontier (𝑃 [𝐼]), as well as the associated expected improvement (E[𝐼]). While the

probability of improvement is insensitive to the location of the proposed point on the

frontier, the expected improvement weighs which region of the front might lead to the

largest possible increase (Figure 7-4). We also observe the impact of approximating

the distance to front by distance to the nearest point in the Pareto set introduced in

Ref.394, with points equidistant between two existing points most highly scored (E[𝐼]

response in Figure 7-4, right). We select 100 clusters from the top 10k candidates

ranked based on E[𝐼] and perform DFT simulations. The selected 100 mediods have

an average E[𝐼] value of 0.46, compared to 0.45 for the top 10k E[𝐼] candidates and

0.04 over the full space.
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Fe-N

Mn-O

Figure 7-4: ANN predicted logP and Δ𝐺solv potential values the for the 2.8M complex
design space after incorporating generation 1 medoid data, with the Pareto frontier and
DFT Pareto set shown in blue. The points are colored by the probability of improving on
the front (𝑃 [𝐼], left) or expected improvement (E[𝐼], right). The highest Δ𝐺solv potential
Mn-oxygen and lowest logP Fe-nitrogen complexes are shown as insets (left) and the 100
selected medoids for the next generation are shown as triangles (right).

We use the outcome of these simulations to obtain generation 2 data and repeat the

process to generate a further four sets of data, up to generation 5. The number of

successful DFT calculations that pass all automated checks generally decreases as we

repeat this process, leading to only 14 successful redox calculations in the generation

5 data (Appendix E, Table E.7). This may be a consequence of the algorithm seeking

information about regions of the design space where there is no data and no data can

be acquired, likely because the corresponding medoid calculation was also unsuccess-

ful. Observing variations in the computed 𝑃 [𝐼] and E[𝐼] as more data is acquired,

the algorithm generally becomes more pessimistic about further improvement in the

frontier, with the average 𝑃 [𝐼]/E[𝐼] in the 100 cluster medoids points for generation

252



1 being 0.68/0.45 vs. 0.13/0.04 for generation 4 (Appendix E, Figure E-13), which

motivates stopping the algorithm after 5 iterations.

The predictive power of the trained models can be assessed by calculating the ‘looka-

head’ errors of each model on the data simulated in later generations, which is by

definition excluded from training data. Since the lookahead error of a given model

can only be evaluated on subsequently acquired data, the number of available looka-

head errors for later models is smaller and we cannot evaluate lookahead error for

the final generation 5 model at all. The generation 0 model, trained on pre-existing

data, performs worst on tests, with the addition of the generation 1 data reducing

the generation 1 redox lookahead MAE from 0.76 eV to 0.46 eV (Figure 7-5). On

the final set of generation 5 data, the MAE is decreased from 1.64 eV to 0.41 eV

moving from the generation 0 to the generation 2 model (including up to generation

2 data). However, adding the generation 3 or 4 data does not further improve this

accuracy (∼ 0.42 eV MAE), which remains higher than the training errors or held-

out errors (∼ 0.2–0.3 eV, Appendix E, Table E.8). This expected since E[𝐼] favors

high-uncertainty points, all else being equal (e.g. eq. 7.8).

In addition to the lookahead errors, we simulate a further 300 complexes from the

design space uniformly randomly to serve as a final, diverse test set. We obtain 122

converged results for these random complexes after automated screening. Adding

the generation 1 model effectively halves the redox MAE of the generation 0 model

from 0.70 eV to 0.41 eV, illustrating the efficacy of the k-medoids approach, but only

modest accuracy increases are gained from the additional data sets down to 0.38eV

for the final generation 5 model (Figure 7-5). It is not expected that model perfor-

mance will continually improve on this ‘global’ test set as more data is added, since

the algorithm selectively enriches a particular region of the design space (i.e. those

with high Δ𝐺solv potential and low logP).
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We observe a similar set of results for the logP data (Appendix E, Figure E-14), with

incorporation of the first generation of data points reducing the lookahead MAE on

the final generation 5 dataset by 60%, from 5.98×10−3 to 2.36×10−3, which is further

improved by additional data to 1.77× 10−3 for the generation 4 model. The random

test error shows a more rapid convergence, with the MAE dropping to 1.71 × 10−3

from 2.93 × 10−3 with the inclusion of the first generation data, and oscillating be-

tween 1.59𝑥10− 3 to 1.64× 10−3 for the later models (Appendix E, Table E.9). For

all logP models, there is consistently degraded generalization performance relative

to Δ𝐺solv models (i.e. test errors are an order of magnitude worse than train errors),

which indicates overfitting and is possibly a result of the more serious mismatch be-

tween the pre-existing data and the design space (Appendix E, Figure E-11).
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Figure 7-5: Lookahead and random-test MAE (left) and RMSE (right) error metrics for
Δ𝐺solv predictions in eV from sequential generations of multitask ANN models on the
sequentially-gathered data subsequent to training each model and on a randomly-sampled
set.
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7.3.3 Analysis of leads

The generation 1 data is spread evenly across metal types since it originates from

diversity orientated clustering. However, the metals selected based on E[𝐼] vary

strongly across subsequent generations, initially favoring Co and Mn complexes, then

Mn only complexes for generations 3 and 4, before incorporating more diverse metals

again in generation 5 (Appendix E, Figure E-15). In the 194 total complexes sampled

(including initial diversity-orientated medoids), there is one duplicated ligand, DbHe,

an oxygen-coordinating bidentate comprised of one six-member 2H-pyran ring and

one five-member, sulfur-containing 1,3-oxathiole ring, combined with a branching

diaminochloropropanol (SMILES -C(O)(C)C(N)(N)Cl) decoration that is selected

with Co (Δ𝐺solv = 6.17 eV, logP = −5.31× 10−2) as the metal in generation 2 and

with Mn (Δ𝐺solv = 6.10 eV, logP = −5.40× 10−2) as the metal in generation 4 (Ap-

pendix E, Figure E-16). In terms of the core ligands, i.e. ignoring functionalizations,

the 194 complexes span 137 unique core ligands with the DbHe (the pyran-oxathiole

combination) and the closely-related DeHe (an oxathiin, 4H-1,3-oxathiin, with the

same oxathiole, adding a sulfur to the six member ring) the most frequently appear-

ing, accounting for 12 observations each, 11 times with Mn as the metal, once with

Co. Other frequently occurring core ligands are DeGb (5 observations, paring the

oxathiin with 2,5-dihydrofuran) and DeHc (4 observations paring the oxathiin with

1,3-dioxole), leading to an abundance of five- and six member oxygen-coordinating

heterocycles, particularity in later generations (Appendix E, Figures E-17–E-18).

The combination of Mn metals and bidentate ligands comprised of these core hete-

rocycles seem to consistently produce high Δ𝐺solv, though logP does not appear to

vary as consistently with composite heterocycles, likely due to the impact of func-

tionalizations (Appendix E, Figure E-19).
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Figure 7-6: Δ𝐺solv and logP values for complexes simulated during 5 generations of the
design algorithm, colored by generation. Different symbols are used for different metals.
The range of values sampled in each generation is enclosed with a convex hull. The final
Pareto frontier is indicated by a red line, and the insets show renders of two Mn complexes
(A and B) that are elements of the final Pareto set, as described in the text.

These repeatedly-occurring cases allow us to probe the impact of the functionaliza-

tions added to the core ligand. In the DeHe case, we obtained 12 Mn complexes with

different functional groups attached to the ligand, with total system sizes for the com-

plexes ranging from 88 to 124 atoms. The Δ𝐺solv window of these 12 complexes from

DFT is 7.33 eV (decoration SMILES: C(C)C(=C)) to 8.15 eV (decoration SMILES:

CC(=C)O) with a mean of 7.86 eV (range 0.82eV). The computed logP values vary

from a minimum of −4.99 × 10−2 (decoration SMILES: C(=O)C(N)Cl) and a maxi-
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mum of 4.40×10−2 (decoration SMILES: CC(N)), with a mean value of −4.70×10−2

(range 0.60 × 10−2). Compared to the full range of DFT-computed values across

the 194 complexes (5.00 eV for Δ𝐺solv and −1.61× 10−2 for logP), this represents a

larger variation in logP (37%) compared to Δ𝐺solv (16%), highlighting the important

role of the polar functionalizations in mediating solubility that has been observed

experimentally50. However, the change in Δ𝐺solv is not negligible and suggests that

Δ𝐺solv can be manipulated through chemical modification of the carbon site three

bonds from the metal. Investigating the M(II) spin splitting energy variation be-

tween these 12 Mn complexes reveals a small change, with high spin being uniformly

favored by 49 kcal/mol to 55 kcal/mol (47 kcal/mol to 52 kcal/mol without solvent

effects), consistent with our prior observations that spin state ordering is less sensi-

tive to changes in the ligand atoms distal from the metal511,533.

Considering the full range of functionalizations selected for the 194 complexes, we

sample a total of 166 unique functionalizations, with seven functionalizations re-

peated across three complexes and 14 functionalizations repeated over two complexes

(Appendix E, Table E.10). The seven most-frequently sampled functionalizations all

feature highly-polar side chains, for example alcohol and carbonyl groups (6/7) or

amine groups (4/7), with most (5/7) terminating in the only available halide, Cl.

In total, 44 out of the total 166 functionalizations sampled feature this terminal

chloride group, which is consistent with designing complexes that are preferentially

soluble in polar media. Compared to the ranges of values sampled with fixed core

ligand, the decoration exerts very weak control over Δ𝐺solv but strongly constrains

logP. For example, the decoration C(N)C(=O)Cl occurs three times (2 Mn and 1 Co

complex), with Δ𝐺solv ranging from 6.6 eV to 8.2 eV, but the corresponding logP

values range from −4.91 × 10−2 to −5.08𝑥10 − 2. As another example, decoration

C(N)(O)C(N)(O)Cl is also sampled three times (all Co complexes) with Δ𝐺solv val-
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ues ranging from 6.22 eV to 6.65 eV, and logP values ranging from −4.75× 10−2 to

4.62𝑥10−2.

In spite of the modest number of calculations added (87 converged complexes se-

lected based on E[𝐼] over 5 generations), we observe that points beyond the Pareto

frontier are successfully identified in each generation, improving on the best previous

results with every iteration (Figure 7-6, Appendix E, Table E.11). The Pareto fron-

tier is improved along both axis in different generations, for example an iron complex

in generation 5 improves the minimum logP complex found (logP= −5.59 × 10−2,

Δ𝐺solv = 5.7 eV) over the previous best Mn complex that was established in gen-

eration 3 (logP= −5.55 × 10−2, Δ𝐺solv = 8.05 eV). The final Pareto set consists of

eight complexes, with two added in generation 5, four added in generation 4, and

two added in generation 3 (Appendix E, Table E.12). This set consists of seven Mn

complexes and one Fe complex. The maximum obtained Δ𝐺solv is improved from

7.37 eV in generation 1 to 8.51 eV in generation 5 for an Mn complex with bidentate,

oxygen-coordinating ligands comprised of 4H-1,3-oxathiin and 1,3-oxathiolan rings

with hydroxymethyl decorations (complex A in Figure 7-6) – an increase of 15%.

The minimum obtained logP is decreased from to −5.60 × 10−2 from −5.30 × 10−2

for an Fe complex with a bidentate ligand containing the same oxathiin, this time

combined with 2,5-dihydrofuran and possessing a large, very bulky halide-capped

phenyl decoration. Not only are the optimal values improved independently, the

compromises made on the frontier are improved; for example the logP value of the

highest Δ𝐺solv point in generation 5 is simultaneously improved from −4.38× 10−2

in generation 1 to −4.46× 10−2 in generation 5.

Analyzing this final set, it is apparent that seven Mn complexes all possess similar,

large Δ𝐺solv (mean 8.27 eV, higher than best generation 1 complex), with varied

logP values ranging from −5.52× 10−2 to −4.46× 10−2, which is only slightly higher
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(7.25×10−4) than the Fe complex, which sacrifices 2.34 eV of Δ𝐺solv for this marginal

advantage. Instead, a Mn complex with an 2H-pyran and 1,3-oxathiole core ligand

(coded as DbHe) and ketone (SMILES C(=O)C decoration), possessing a Δ𝐺solv of

8.05 eV and logP of −5.52× 10−2, seems to represent a better compromise (complex

B in Figure 7-6).

Mn

Fe

S
O

O
O

O O

S
O

S
O

ClR

O

R

OH

O

R

R
Cl

NH2

NH2

O

Cl
R

OR

O
R

OHR

metal
center

6-member
heterocycle

5-member
heterocycle

decoration

Figure 7-7: Composition of the eight complexes in the final Pareto set. Each complex
consists of one metal center with bidentate ligands assembled from one 6-member and one
5-member ring, with a decoration attached symmetrically to both rings. Each complex is
represented by a unique colored line.

In all cases, the complexes in this final set have bidentate, oxygen-coordinating lig-

ands comprised of one six-member and one five-member core heterocycle (Figure 7-7).

259



All ligands include at least one sulfur heteroatom in one of the two heterocycles. In

terms of core heterocycle composition, the oxathiin “De" heterocycle occurs 5 times,

with the related 2H-pyran ring, which differs by replacing the sulfur heteroatom with

a unsaturated carbon, occurring twice. The last complex features a 4H-1,3-dioxine

heterocycle, replacing the sulfur heteroatom with a second oxygen. In terms of the

five-member rings, 1,3-oxathiole occurs four times, while 2,5-dihydrofuran occurs

three times and 1,3-oxathiolan once (Appendix E, Table E.12). These complexes are

uniformly predicted to have high spin ground states by at least 25 kcal/mol, consis-

tent with the oxygen ligands being weak field (Appendix E, Table E.11).

Therefore, these Mn complexes appear to be the most promising leads from our algo-

rithmic approach. This is consistent with prior, unrelated and unguided DFT screen-

ing of transition metal complex redox potentials which identified Mn(II)/Mn(III)

couples as the most promising first-row candidates69. Here, in contrast, the solubil-

ity of these complexes is simultaneously optimized.

In order to quantitatively assess the efficiency of the proposed approach, we compare

the Δ𝐺solv and logP values obtained for points in this Pareto set to those obtained

through both the initial diversity-driven clustering (generation 1) and through ran-

dom sampling (Figure 7-8, Appendix E, Figures E-20–E-21). For the Δ𝐺solv values

of the randomly-sampled data we obtain a mean value of 5.80 eV (5.62 eV for gener-

ation 1) with an empirical standard deviation of 0.89 eV (0.88 eV for generation 1).

The best candidate (highest Δ𝐺solv) in the Pareto set lies ∼ 3 standard deviations

above the mean for both distributions and nearly one standard deviation higher than

the maximum values (0.7 standard deviations for random samples, 1.3 standard de-

viations for generation 1). For logP values, the mean and standard deviation for the

randomly-sampled data are −4.45×10−2 and 2.75×10−3 respectively (−4.45×10−2

and 2.63× 10−3 for generation 1), with the suggested compromise Mn complex (‘B’
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in Figure 7-6) with highest solubility lying ∼ 4.0 standard deviations below the mean

for either randomly-sampled or clustered data.
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Figure 7-8: Tukey box-and-whiskers plot for Δ𝐺solv (top) and logP (bottom) estimated
with DFT for complexes in sequential generations of the design algorithm and a uniform-
randomly selected test set (indicated as ‘random’). The box indicates the interquartile
range (IQR) of the data, while the line denotes the median value. The whiskers extend to
the largest value closer than 1.5×IQR and any points outside this range are denoted with
black points.

Since our design approach identifies complexes that are outside the range of values
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obtained from random sampling, we approximate the distribution of the randomly-

sampled data with a normal distribution to allow us to estimate the quantiles of

our candidates. This analysis reveals that, of the 84 complexes obtained through

E[𝐼] based selection, 27 lie above the 99th percentile and 16 lie above the 99.5th

percentile with respect to Δ𝐺solv (13 below the 1st percentile and 12 below the

0.5th percentile with respect to logP). Considering both objectives together, we are

able to identify 3 complexes that a lie above the 99th percentile with respect to

Δ𝐺solv and simultaneously below the 1st percentile with respect to logP, while our

comprise candidate (‘B’ in Figure 7-6) is simultaneously above the 99.5th percentile

and below the 0.5th respectively. Assuming the two properties are independent, this

represents a ∼ 500 fold increase in sampling efficiency relative to random search. To

probe the validity of these assumptions, we performed Shapiro-Wilk normality tests

on these distributions and concluded that, while they are not normally distributed

(𝑝 = 0.02/𝑝 = 2×10−6 for redox/logP), the tails of the empirical data are significantly

lighter than a normal distribution (i.e. the empirical data is more concentrated

around the mean, Appendix E, E-21), suggesting that this analysis of acceleration

is conservative. To investigate the independence assumption, we observe that there

is little correlation between the randomly-sampled redox and logP values (Pearson

𝑟 = −0.22).

7.4 Conclusions

In conclusion, we presented a mulitifidelity, multiobjective strategy for identifying

promising transition metal redox couples. Leveraging geometry-free representations,

we are able screen large, multi-million complex design spaces in minutes using ANNs.

Our design space is combinatorially assembled from simple building blocks and con-
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tains 2.8M unique complexes. We combine machine learned surrogate models and

our recently-introduced latent space based measure of extrapolation uncertainty to

conduct multiobjective probabilistic optimization in this design space, iteratively

selecting leads for DFT simulation in a closed-loop active learning process. Our ap-

proach is able to advance the DFT-simulated Pareto frontier of redox potential and

solubility with every generation of the calculations, identifying promising lead com-

plexes that simultaneously are estimated to be soluble in polar solvents and have

high redox potential from a few hundred DFT evaluations in total. We estimate

that this represents at least a 500-fold enrichment over what could be obtained from

random sampling and candidates that are simultaneously in the extreme tails of the

estimated redox potential and logP distributions are discovered. We believe this ap-

proach would be broadly applicable to other chemical systems or objective targets,

providing strong evidence for the practical enhancements that data-driven strategies

can bring to virtual screening, even in challenging and data-scarce applications.

7.5 Computational details

7.5.1 First-principles methods

Two data sets are used: i) ‘hot start’ data from prior work308,511,543,593 and ii) newly

generated structures from the theoretical design space, both of which followed a

similar protocol. The ‘hot start’ 235 transition metal complex data set contains

an even distribution of Cr, Mn, Fe, and Co in predominantly heteroleptic com-

plexes (Appendix E, Figures E-4–E-5 and Table E.2). Structures were generated

with molSimplify181, which assembles complexes with ANN-predicted metal-ligand

bond lengths180,308,482 and uses OpenBabel77 as a backend for ligand structure gener-
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ation. All DFT geometry optimizations and single point energy calculations were per-

formed with a developer version of the TeraChem105,447 code. For all calculations, the

B3LYP152,157,158 hybrid GGA exchange-correlation functional was employed, which

in TeraChem uses the VWN1-RPA149 form for the LDA component of the correla-

tion energy. The LANL2DZ effective core potential172 was employed for transition

metals and the 6-31G* basis set was employed for the remaining atoms. Geometry

optimizations were carried out with the TRIC498 optimizer using default tolerances

of 4.5 × 10−4 hartree/bohr for the maximum gradient and 1 × 10−6 hartree for the

change in self-consistent field (SCF) energy between steps. Some ‘hot start’ data had

employed the L-BFGS optimization using the DL-FIND449 optimizer with the same

thresholds.

Low spin (LS) and high spin (HS) state multiplicities for M(II)/M(III) ions grouped

by nominal electron configuration were as follows: quintet-singlet for both 𝑑4Mn(III)/

Cr(II) and 𝑑6 Co(III)/Fe(II), sextet-doublet for 𝑑5 Fe(III)/Mn(II), and quartet-

doublet for both 𝑑3 Cr(III) and 𝑑7 Co(II). Unrestricted calculations were carried

out except for singlet states, which were treated in the restricted formalism.

Level-shifting448 values of 0.25 Ha for both virtual and occupied orbitals were applied

to all complexes in the present work, a slight shift from the 1.0 and 0.1 Ha values, re-

spectively, employed in ‘hot start’ data generation308,511,543,593. Single point energies

were carried out with the conductor-like solvation model (COSMO)205, as imple-

mented499,598 in TeraChem, to implicitly model both octanol (𝜀 = 10.3) and water

(𝜀 = 78.39) for all successful gas phase geometry optimizations. The solute cavity

was built using Bondi’s van der Waals radii500 for HCNOS atoms and 1.2 times the

standard van der Waals radii for metals599.

Calculations were automatically submitted and monitored using molSimplify Auto-

matic Design (mAD)533,543. The mAD workflow flags and excludes calculations that
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remain unconverged after the default maximum job resubmissions or unrestricted

calculations with deviations of the expectation of the ⟨𝑆⟩2 operator of more than 1.0

µB from the expected value. The mAD code also checks structures for intact geome-

tries based on predefined criteria533. For the bidentate ligands studied in this work,

we have loosened select angular and root mean square deviation (RMSD) thresholds

from their defaults (Appendix E, Table E.13).

7.5.2 Machine learning methods

ANNs were trained with hyperparameters selected using Bayesian optimization390

with Hyperopt222 followed by manual fine-tuning in Keras576 with the Tensorflow577

backend. We independently optimized hyperparameters for 1500 iterations with 10%

validation data for three ANN models: two independent single task networks for pre-

dicting Δ𝐺solv and logP and one multi-task network for predicting both quantities

(Appendix E, Figure E-22 and Table E.14). We normalized all inputs and outputs to

avoid inconsistency between the Δ𝐺solv and logP scales. At each stage, we held out

a uniform-random 10% test set partition to calibrate the ANN uncertainty model593

(Appendix E, Figure E-23). For ANN retraining, models were initialized with previ-

ously converged weights and using a more aggressive learning rate decay and a larger

batch size for smoother optimization (Appendix E, Table E.14). We trained GP

regression models to independently predict Δ𝐺solv and logP with single-parameter

isotopic Gaussian covariance kernel models using kernlab467 in R v.3.6.1456. Hy-

perparameters were optimized with a logspaced grid search using 10-fold CV, as

implemented in CVST468 (Appendix E, Table E.15 and Figure E-24). We use k-

medoids clustering with the Cluster package600 in R to select diverse candidates for

DFT simulation.
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Chapter 8

Concluding remarks

8.1 Conclusions

This thesis has demonstrated that machine-learned surrogate models can be com-

bined with DFT simulations to identify transition metal complexes with targeted

quantum mechanical properties more efficiently. The thesis began by establishing

the first data-driven models for molecular inorganic chemistry, predicting the spin

state ordering dependence on metal and ligand chemistry, successfully addressing the

unique challenges in this area of chemical space. In the process, we identified existing

representations for molecular organic chemistry are inefficient as they do not encode

the unique metal-locality of properties of transition metal complexes, and showed

that simple heuristic descriptors of the local metal environment based on chemical

understanding of these systems provided superior performance. Combining these

heuristic representations with simple ANNs models, the DFT spin state orderings

of out-of-sample complexes could be predicted to around 3 kcal/mol accuracy with

heuristic MCDL-25 descriptors (Chapter 3) or 1 kcal/mol for RACs (Chapter 4),
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making correct qualitative ground-state assignment in effectively all cases, and only

making errors in cases where the ground state is ambiguous.

Uncertainty with respect to DFT functional choice, an endemic issue for simulation

of these systems, was addressed by training surrogate models on data sampled from

DFT calculations with different levels of exact exchange and providing predictions

of the unique, system-specific functional sensitivity of transition metal complexes,

capturing variations across metal and ligand behavior. The ability to extrapolate

from the Cambridge Structural Database (CSD) to out-of-distribution complexes

was also investigated and was found to be highly variable, with many well-predicted

ground states and a few large errors. This surrogate model predictive uncertainty

was not correlated with organic chemical similarity metrics (i.e. Tanimoto distances),

but could be well-predicted based on extrapolation distance in the proposed feature

space, defined by the Euclidean distance between the proposed candidate and nearest

example in training data.

The developed approach was also used to address the difficulty in initializing new

simulations of unknown metal-ligand combinations in a spin and oxidation state de-

pendent manner by predicting DFT equilibrium metal-ligand bond lengths. This

capacity was added to the open source molSimplify toolkit, which combines these

distance predictions with force field calculations on organic bonds to construct ini-

tial geometries. This enables future simulations to benefit from high quality initial

geometries that were previously only available for organic systems.

A new framework for graph-based representations for transition metal complexes was

developed that are capable of describing a full range of metal-local and global features

while retaining chemical interpretability. In addition to improving predictive infer-

ence of trained surrogate models based on purely 2D information, the interpretability

of these features allows for extraction of chemical insight from the thousands of com-
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plexes used for training. A series of feature selection techniques was compared and

selection based on random forests was best able to extract compact feature sets that

showed good transferability across multiple tasks. Examining how the metal-local

to metal-distal character of these feature sets varied for different prediction targets,

providing insights into the relationship between ligand field and properties of the

metal center. For example, spin state ordering appears to be strongly controlled

by the immediate ligand environment (the first coordination shell) while the redox

potential is more sensitive to distal ligand modifications.

This framework was applied to design SCOs from a space of five thousand candi-

dates, exploiting the developed surrogate ANN and a newly-introduced evolutionary

algorithm that could balance both model uncertainty (as captured by feature space

extrapolation) and property optimization. The modified GA outperforms a naïve

implementation and generates hundreds of ANN-predicted leads in a fraction of the

time required for first-principles screening. We assessed a subset of these leads using

DFT and identified that the majority are SCOs at a DFT level, even after accounting

for additional free energy effects ignored in the training data. This approach provides

at least an order-of-magnitude decrease in the number of first-principles calculations

required to identify novel SCO chemistry.

Returning to the question of surrogate model uncertainty, feature space distances

were found to be less well-correlated with extrapolation errors for high-dimensional

feature spaces (as opposed to their good performance for simple, low-dimensional fea-

tures). Therefore, chemical extrapolation in the latent space of learned ANN models

was proposed as an alternative, and this was observed to provide a better qualitative

description of out-of-distribution model confidence compared with feature space dis-

tances, ensemble averaging and dropout-based standard deviations. To provide an

estimate of uncertainty in relevant units, we developed a simple probabilistic model
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based on latent distance that can be calibrated with a small amount of out-of-sample

data and gives good quantitative error bonds on both inorganic and organic datasets,

as well as good results when used for active learning.

Finally, all of this machinery was combined to conduct multiobjective transition

metal complex discovery for redox flow battery systems with high redox potential

and favorable solubility. A combinatorial ligand-construction strategy based on ex-

perimentally accessible heterocycles was employed to enumerate a large design space

of nearly 3M unique complexes, which was explored using a combination of multitask

ANN, latent distance based probabilistic uncertainty and active learning based on

a 2D Bayesian optimization algorithm. This method was able to extend the Pareto

frontier of designs with every attempted iteration, identifying novel Mn-oxygen com-

plexes that have desired properties at a DFT level. The method develops surrogate

models that are accurate over the region of interest using a few hundred DFT calcu-

lations, and is highly efficient compared to random sampling, consistently enriching

the most extreme quantiles of both redox and solubility simultaneously.

Taken together, the results of this thesis advance the field of virtual screening of

transition metal complexes, addressing many idiosyncratic challenges occurring in

this complicated but highly important region of chemical space. The methods devel-

oped in this thesis have been integrated into freely-available python packages that

are able to select, execute and analyze DFT simulations of transition metal com-

plexes automatically on remote computing resources, allowing new applications and

search spaces to be incorporated easily and thus contributing significantly to the

open source ecosystem of design tools for inorganic materials.

The developed techniques extend past purely inorganic systems and include of new

values to quantify uncertainty in chemical discovery and active learning.
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8.2 Future directions

The chemical optimization strategy developed in this thesis is expected to be trans-

ferable to other application areas for transition metal complexes, such as catalysis.

While transition metal complexes play a central role in homogeneous catalysis, char-

acterization of the catalytic ability of different metal and ligand combinations re-

mains highly challenging. Therefore, the methods introduced here could potentially

address some of the challenges in moving toward automatic design of homogeneous

catalysts. In one recent application232, methods from this thesis were used to help

identity catalytic iron-oxo complexes that violated intuitive scaling between frontier

orbital properties and reaction thermodynamics, and it is hoped that continued work

in this area will lead to the design of complexes with targeted reaction energies for

important chemical transformations such as C H bond activation and water split-

ting. Other systems that could potentially be treated by similar approaches are those

that possess localized active regions such as metal-organic frameworks and single site

catalysis.

While predicting DFT functional sensitivity is a valuable first step in understand-

ing the applicability of relatively low-cost quantum chemistry for transition metal

complexes, much more expensive multireference calculations are necessary to obtain

reliable results for some systems. However, the cost and complexity of these methods

is prohibitive for widespread application, so an ongoing effort in the Kulik group is

focussed on identifying when it is necessary to use these methods, leveraging the

data-driven framework developed here to predict the extent of multireference char-

acter on a system-specific basis. In a similar vein, many calculations on molecular

inorganic systems are not successful due to pathological convergence of the geome-

try optimizer or the wavefunction, resulting in wasted computational resources. A
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recent approach259 using some of the methods developed in this thesis, has demon-

strated that prediction of calculation outcomes coupled with live inspection of the

wavefunction can be used to avoid or terminate unproductive calculations on the

fly. More generally, one can envision an autonomous discovery workflow that can

intelligently decide not only which complexes to investigate but also what method,

from ANN surrogate to expensive simulation, to use in order to conduct transition

metal complex complex design reliably, and manage convergence of the calculation

dynamically to ensure the highest possibility of success.

Finally, the excitement around generative models may be disproportionate, but the

potential to both conduct optimization directly in a continuous space and to move

away from biases inherent in existing databases is very promising for the future of

the rational molecular design. The trends in metal locality and the optimization

approaches presented in thesis could be valuable in introducing generative models

into inorganic chemistry.
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Text A.1: Estimation of 𝜏

We determine a representative value of 𝜏 by maximizing the log predictive likelihood
of the corresponding GP based on the training data, which is a measure of how likely
the observed data are under the GP, and is approximated459 by

log 𝑝 (y (x𝑛) |x𝑛,X,Y) ≈ log

[︃
𝐽∑︁

𝑗=1

𝑒−
1
2
𝜏‖ỹ(x𝑛)−ỹ𝑗(x𝑛)‖22

]︃
− log 𝐽 − 1

2
log 2𝜋 − 1

2
log 𝜏−1

(A.1)

Here, we have only scalar output and we use the training data to optimize eq. D.4
with respect to 𝜏 numerically. We use 𝐽 = 100 repeats, as in the network itself. The
determined values of 𝜏 , based on the respective training data, are 0.4 for predicting
the splitting energy, 0.07 for predicting the HF exchange sensitivity, and 10000 for the
metal-ligand distances respectively. The magnitude of these numbers is close to the
training errors observed:

√
0.4−1 ∼ 2.5; 0.4−1 ∼ 1.6;

√
0.007−1 ∼ 12; 0.4−1 ∼ 0.01.

These numbers represent the estimated inherent variance in the training data that
limits the accuracy that could be expected from the trained networks.

Text A.2: Use of Coulomb matrix descriptor

We compare the descriptors proposed here to the Coulomb matrix descriptor, which
has previously79,250 been correlated with various molecular properties for a number of
organic molecule data sets. In order to allow comparison of complexes with differing
numbers of atoms, we pad all matrices with zeros to a size of of 151×151, necessitating
𝒪(104) elements per compound. We sort the rows and columns of the matrices in
order to obtain indexing-invariant representations and use KRR with an exponential
kernel and the matrix L1 norm as a distance metric as in Ref79. The complexes in
our training data range in size from 7 to 151 atoms, but have a mean and median
size of 38 and 29 atoms respectively. This large skew toward smaller complexes
means that most of the descriptor elements are zero, and this may make learning
good model parameters difficult. For example, the L1 distances between the sorted
matrix representations of the small Fe(III)(CN)6 complex and two large complexes,
Fe(III)(tbuc)6 and Fe(III)(pisc)6 are very similar (36.85 to 36.88 where the range of
distances spans ∼ 20 − 60), despite pisc being a similar strong C-connecting ligand
and tbuc being a much weaker O-connecting ligand. We train and test on the same
data as used in the other methods, but because the Coulomb matrix representation
does not encode any functional-dependent information, we also provide a comparison
against only B3LYP data (as opposed to varying HFX fractions).
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Text A.3: Testing ANN performance in molSimplify

In order to asses if the ANN can assist automated structure design, we used it to pre-
dict bond lengths instead of using the metal-ligand bond length databse integrated
into our structure generation toolbox, molSimplify181. We selected four of the origi-
nal benchmark structures where molSimplify was found not to reduce RMS gradient
error relative to simple force fields. Further details about the test cases are in the
original paper. We project the negative of the energy gradient on the metal and
connection atoms at the initial geometry onto the vector joining them, as explained
in Figure S32, and use this a measure of how close to an equilibrium bond length the
initial geometry is. Note that a negative value for 𝑔 means the bond would shrink in
a steepest descent step, while a positive value means that it would lengthen. Large
magnitudes indicate the bonds are far from equilibrium.
We achieve reductions in the absolute magnitude of g by 54–90% for bidentate cases
and 7% for the monodentate case. We note that the reductions in the metal-ligand
projected gradient do not necessarily correspond to reductions in the RMS gradi-
ent, which considers contributions from all atoms. In the Cr (bipy)3 case, the RMS
gradient is reduced by 30%, but it is unchanged or marginally higher in the other
cases. This may be explained by considering the signs of the projected gradient,
which show that the ANN universally reduces the metal-ligand bond length relative
to original structure. This brings the bidentate ligands closer to the metal center
and hence closer to each other, and we observe that the dominant contribution to
the RMS gradient is from other atoms in the ligand structure. This could possibly
be improved by training a similar ANN on the bite angles.

Text A.4: Molecular descriptors for CSD compounds

The poor correlation (𝑅2 = 0.1) between the Tanimoto dissimilarity (for CSD and
training ligands) and the prediction error can be understood by considering that the
molecular fingerprint is insensitive to the arrangement of groups in the ligand, so
two ligands might appear similar in the Tanimoto metric because they both contain
certain groups, but this does not ensure that the same groups are coordinating to the
metal center. The descriptors used in this work strongly suggest that the immediate
metal environment determines behavior of the complex, and so this highlights a
specific difficulty in translating established ideas from organic molecular similarity
analysis to transition metal systems.
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Table A.1: Ligand properties

Number ID Name Denticity Charge Connection max 𝛿𝜒 Bond Order Truncated Kier
1 cl chloride 1 1- Cl 0 0 0
2 scn thiocyanate 1 1- S 0.03 2 2
3 pisc t-butylphenyl isocyanide 1 0 C -0.49 3 2.25
4 misc Methyl isocyanide 1 0 C -0.49 3 2
5 cn cyanate 1 1- C -0.49 3 0
6 co carbonyl 1 0 C -0.89 3 0
7 ncs isothiocyanate 1 1- N 0.49 2 2
8 ammo ammonia 1 0 N 0.84 1 0
9 bipy 2,2-bipyridine 2 0 N 0.49 2 4.297
10 phen phenanthroline 2 0 N 0.49 2 3.868
11 en ethylenediamine 2 0 N 0.84 1 3
12 porphyrin porphyrin 4 2- N 0.49 2 6.958
13 h2o water 1 0 O 1.24 1 0
14 acac acetylacetonate 2 0 O 0.89 2 3.10
15 tbuc t-butyl catecholate 2 2- O 0.89 1 2.52
16 ox oxalate 2 2- O 0.89 2 2.22

Number ID SMILES
1 cl [Cl-]
2 scn [S-]C#N
3 pisc CC(C)(C)C1=CC=C(C=C1)[N+]#[C-]
4 misc C[N+]#[C-]
5 cn [C-]#N
6 co CO
7 ncs [N-]=C=S
9 bipy C1ccnc(c1)c2ccccn2
10 phen C1=CC2=CC=C3C=CC=NC3=C2N=C1
11 en NCCN
12 porphyrin [NH]1C2=CC3=NC(=CC4=CC=C([NH]4)C=C5C=CC(=N5)C=C1C=C2)C=C3
13 h2o O
14 acac CC(=O)CC(=O)C
15 tbuc CC(C)(C)C1=CC(=C([O-])C=C1)[O-]
16 ox [O-]C(=O)C([O-])=O
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Text A.5: Dissimilarity metrics for LS/HS bond length prediction

Using the same dissimilarity metrics that were employed to evaluate reliability of
spin-state splitting, correlations between HS bond distance error and proximity to
test data is smaller for both the HS bond distances (𝑅2 = 0.0, 0.1 and 0.2 for
the Tanimoto similarity metric, Pearson, and Euclidean distances, respectively) and
LS bond distances (𝑅2 = 0 for all metrics). However, we do observe that four
of the five large (i.e., > 0.1 Å) HS bond distance errors have a minimum Euclidean
distance greater than 1.0, supporting the use of this heuristic for evaluating prediction
reliability. Bond length errors are generally smaller for LS states compared to HS
states, with only two cases (tests 26 and 30) greater than 0.1 Å. We observe an
overall correlation between the low spin bond distance prediction inaccuracy and
poor splitting energy prediction, but bond lengths may still be well-predicted when
spin-state splittings are not (e.g., 0.006–0.03 Å errors in LS bond distances for the
cyclams).

Table A.2: Core homoleptic ligands

metal oxidation
number of converged & included HFX values per ligand
acac bipy c2h3s cn co en h2o ncs nh3 ox total

co 2 7 7 7 0 7 7 7 7 7 7 63
co 3 7 7 7 7 7 7 7 7 7 7 70
fe 2 7 0 7 7 7 7 7 7 7 7 63
fe 3 7 7 7 7 7 7 7 7 7 7 70
mn 2 7 7 7 0 7 7 7 7 7 5 61
mn 3 7 7 7 7 7 7 7 0 7 7 63
cr 2 7 7 7 0 7 7 7 0 7 7 56
cr 3 7 7 7 7 7 7 7 7 0 7 63
ni 2 7 7 7 5 7 7 7 7 7 7 68
total (core) 83 complexes, 577 HFX values, 1154 geometries

total (additional) 111 complexes, 768 HFX values, 1536 geometries
total (all) 194 complexes, 1345 HFX values, 2690 geometries
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Table A.3: List of test structures from the CSD, CSD IDs, metal and oxidation state along
with a short note for each and references to the original observations

number CSD ID Metal Ox. Con. Atom (Ax./Equit) Note Ref.
1 CODZAW10 Co 2 C/N dicyano-cobyrinate 601

2 DORLEB Co 2 C/N tetrapyrrole 602

3 KOCLET Cr 3 Cl/O tetrahydrofuran
dichloride

603

4 KEHXEA Co 3 Cl/N phthalocyanine 604

5 ZUNSEI Co 3 Cl/N cylcam 605

6 ABZACO10 Co 2 O/O benzoate 606

7 LUWPAU Fe 2 N/N phthalocyanine 607

8 TPYFEC04 Fe 2 Cl/N tetrapyridine 608

9 TPPSFE10 Fe 3 S/N substitued porphyrin 609

10 FUMJOO Mn 2 O/O large oxygen ligand 610

11 BUHKIA Ni 2 O/O sulfoxide diphenyl-
propandionate

231

12 SUMLET Cr 3 C/N cyclam 611

13 BOSDIX Fe 3 O/O bidentate oxygen 612

14 BMADFE10 Fe 3 S/N cyclam 613

15 AHAVUB Mn 2 N/O dinitrobenzoate 614

16 DOCNFE Fe 2 C/N benzyldioximate 615

17 AFAROO Mn 3 C/N cyclam 616

18 AHDNIC Ni 2 O/N cyclam 617

19 BUPTAH Fe 3 O/O bidentate oxygen 618

20 DEDKII Fe 2 O/N nitrogen rings and oxy-
gen

619

21 PUTHIX Fe 2 N/N bidentate nitrogen 61

22 AGIZEX Fe 2 N/N bidentate nitrogen 620

23 AKAGEY Fe 3 N/N large monodentate ni-
trogen

621

24 GUWYUS Fe 3 N/N monodentate nitrogen
ligand

622

25 EGILOW Fe 3 O/N heavily substituted
porphyrin

623

26 BINPET Cr 3 O/N cyclam, oxygen 624

27 JUSCIL Fe 2 N/N bidentate nitrogen 625

28 BULVAG Mn 2 O/N salen-like 626

29 FIXGID Mn 3 O/N cyclam 627

30 KUSKEQ Ni 2 O/O monodentate oxygen 628

31 AGUWEE Mn 2 O/N cyclic nitrogen 629

32 DMAZCO03 Co 2 N/N imidazole 630

33 YUJCIQ Cr 3 C/N cyclam 631

34 ACALEW Cr 3 N/N monodenate nitrogen 632

35 AKAGAU Cr 3 N/N monodentate nitrogen 621
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Table A.4: Relaxed geometry optimization tolerances for some CSD structures .

number spin energy tolerance, au
HFX = 0.20

2 LS 1.05× 10−5

2 HS 5× 10−5

1 LS 5× 10−6

Table A.5: Excluded structures due to spin contamination

metal ox axlig eqlig aHF metal ox axlig eqlig aHF
cr 3 nh3 nh3 all (7) fe 2 tbuc tbuc 0.30
mn 3 pisc h2o 0.30 mn 2 ox ox 0.25, 0.30
cr 3 tbuc tbuc 0, 0.05

total 5 complexes, 13 HFX values

Table A.6: Excluded structures due to geometric brekaup

metal ox axlig eqlig aHF metal ox axlig eqlig aHF
co 3 nh3 co 0 ni 2 cn cn 0,0.05
mn 3 ncs ncs all (7) cr 2 ncs ncs all (7)
mn 2 cn cn all (7) co 2 cn cn all (7)
cr 2 cn cn all (7) cr 2 ncs pisc 0
fe 3 co scn 0,0.05 fe 2 ncs pisc 0.25
ni 2 nh3 cn all (7) ni 2 scn ox all (7)
ni 2 h2o h2o all (7)

total 13 complexes, 63 HFX values
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Table A.7: List of input space descriptors and the normalization constants used in the
ANNs. For a given variable 𝑥, the normalization is 𝑥̃ = 𝑥−𝑐

𝑓 .

name unit 𝑐 𝑓
split energy kcal/mol -54.19 142.71

HFX sensitivity kcal/mol.HFX -174.20 161.58
ls min bond Å 1.8146 0.6910
hs min bond Å 1.8882 0.6956
oxidation state 2 1

𝑎𝐻𝐹 0 0.3
axlig charge -2 2
eqlig charge -2 2
axlig dent 1 1
eqlig dent 1 3
mdelen -5.34 12.54
maxmd -0.89 2.09
axlig bo 0 3
eqlig bo 0.00 3
axlig ki 0.00 4.29
eqlig ki 0.00 6.96
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Table A.8: Variable Selection for ΔEHS-LS: set a. Values are given for regularized and
unregularized coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 7.13 1.14
metalcr -23.3 -17.3
metalfe -8.43 -2.76
metalmn -25.4 -19
metalni -29.8 -23.9
ox 6.73 6

alpha -69.4 -64.4
axligbipy 1.82 3.48
axligc2h3ns 29.2 24.4
axligcl -9.54 -4.77
axligcn 11.7 12.5
axligco 8.79 4.07
axligen -4.65 0
axligh2o -10.3 -9.9
axligncs -10.2 -4.6
axlignh3 4.86 0.21
axligox -22 -0.42
axligphen -1.86 0
axligpisc 1.23 0

axligporphyrin 0 0
axligscn -1.19 0
axligtbuc -8.8 0
eqligbipy 9.07 0
eqligc2h3n -1.19 1.37×10−5

eqligcl -6.67 -2.43
eqligcn 8.06 10.2
eqligco 11.1 12.7
eqligen 10.1 0.284
eqligh2o -4.94 -4.31
eqligncs -3.36 -0.298
eqlignh3 -0.946 0
eqligox 9.04 0
eqligphen 15.8 6.99
eqligpisc 34.2 31.2

eqligporphyrin 35.3 13.2
eqligscn -4.83 0
eqligtbuc -4.26 -1.58

axlig charge -9.92×10−2 5.36
eqlig charge -2.29 0
axlig dent 4.05 0
eqlig dent -7.86 0
MSE 199 213
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Table A.9: Variable Selection for ΔEHS-LS: set b. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 20.6 18.3
metalcr -22.3 -17.9
metalfe -7.03 -2.25
metalmn -24 -19.1
metalni -28.6 -23.6
ox 6.63 6.1

alpha -69.5 -65
axlig charge 3.55 2
eqlig charge -0.613 0.107
axlig dent 6.83 0.999
eqlig dent -0.633 0

axlig connectCl -12.9 -9.59
axlig connectN -10.2 -6.14
axlig connectO -17.1 -12.4
axlig connectS -4.6 -2.39
eqlig connectCl -23.1 -21.2
eqlig connectN -18.2 -16.1
eqlig connectO -23.6 -21.5
eqlig connectS -21.6 -18.8
axlig natoms -0.235 0
eqlig natoms 0.525 0.414

MSE 218 227
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Table A.10: Variable Selection for ΔEHS-LS: set c. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 26.4 13.6
metalcr -22.5 -18.6
metalfe -7.1 -3.18
metalmn -24 -20
metalni -28.9 -24.7
ox 6.6 6.17

alpha -69.4 -66.1
axlig charge 3.57 2.34
eqlig charge -1.22 0.702
axlig dent 8.6 0
eqlig dent -0.841 0

axlig connectCl -17.3 -7.43
axlig connectN -19 -0.818
axlig connectO -28.9 -4.73
axlig connectS -9.04 0
eqlig connectCl -26 -16.8
eqlig connectN -24.6 -5.78
eqlig connectO -31.5 -8.28
eqlig connectS -24.6 -14
axlig natoms -0.299 0
eqlig natoms 0.568 0.399

Σ Δ𝜒 -0.203 -1.95
minΔ𝜒 7.08 0
maxΔ𝜒 5.43 -1.33
MSE 216 230
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Table A.11: Variable Selection for ΔEHS-LS: set d. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 26.1 14.8
metalcr -22.5 -18.9
metalfe -7.1 -3.49
metalmn -24.1 -20.3
metalni -28.8 -25.1
ox 6.58 6.2

alpha -69.4 -66.4
axlig charge 3.69 2.39
eqlig charge -1.3 0.595
axlig dent 7.92 0.115
eqlig dent -0.48 0

axlig connectCl -15.2 -7.78
axlig connectN -15.2 -1.6
axlig connectO -23.9 -5.75
axlig connectS -7.03 0
eqlig connectCl -27.3 -17.8
eqlig connectN -26.9 -7.23
eqlig connectO -34.5 -10.1
eqlig connectS -25.8 -15.1
axlig natoms -0.277 0
eqlig natoms 0.556 0.407
maxΔ𝜒 -1.79 -1.47
Σ Δ𝜒 2 -1.68
MSE 216 228
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Table A.12: Variable selection for ΔEHS-LS: set e. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 32.7 19.1
metalcr -22.2 -19.8
metalfe -7.72 -4.74
metalmn -24.1 -21.5
metalni -29.6 -26.4
ox 6.6 6.38

alpha -69.3 -67.3
axlig charge 5.12 2.83
eqlig charge -3.68 0
axlig dent 6.49 1.89
eqlig dent 0.769 0.283

axlig connectCl -16.7 -10.8
axlig connectN -13.6 -4.97
axlig connectO -18.1 -8.77
axlig connectS 0.368 0
eqlig connectCl -26.5 -19.7
eqlig connectN -30.7 -14
eqlig connectO -46.1 -20.4
eqlig connectS -37.8 -21.2
axlig natoms -4.3×10−2 0
eqlig natoms 0.32 0.378
axlig bo 3.64 1.39
eqlig bo -5.96 -1.78
Σ Δ𝜒 2.25 -0.591
maxΔ𝜒 -2.41 -1.46
MSE 213 221
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Table A.13: Variable selection for ΔEHS-LS: set f. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 27.8 17.8
metalcr -22.4 -19.5
metalfe -6.83 -3.71
metalmn -24.3 -21.1
metalni -29.9 -26
ox 6.69 6.27

alpha -69.4 -66.9
axlig charge 2.38 2.11
eqlig charge -0.265 0.992
axlig dent 11.3 2.18
eqlig dent -2.95 0.846

axlig connectCl -17.1 -9.14
axlig connectN -14.4 -4.04
axlig connectO -25.7 -9.6
axlig connectS -1.94 -0.457
eqlig connectCl -28.6 -21.5
eqlig connectN -33.9 -14.6
eqlig connectO -39.4 -17.7
eqlig connectS -35.4 -22

axlig ki -2.65 -0.343
eqlig ki 4 1.78
maxΔ𝜒 -1.19 -0.721
Σ Δ𝜒 2.48 -0.868
MSE 218 227
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Table A.14: Variable selection for ΔEHS-LS: set g. Values are given for regularized and
unregularized linear coefficients and MSE in kcal2/mol2

unregularized ℒ1 regularization
(Intercept) 35.2 21.6
metalcr -22.2 -19.6
metalfe -7.5 -4.28
metalmn -24.4 -21.5
metalni -30.1 -26.5
ox 6.63 6.32

alpha -69.3 -67.1
axlig charge 4.04 2.75
eqlig charge -2.84 0
axlig dent 10.1 2.19
eqlig dent 0.186 2.29

axlig connectCl -17.7 -10.4
axlig connectN -13.9 -4.73
axlig connectO -22 -8.81
axlig connectS 0.214 0
eqlig connectCl -27.7 -21.3
eqlig connectN -34 -16.3
eqlig connectO -47.9 -23.7
eqlig connectS -41.9 -25.8

axlig bo 2.05 1.24
eqlig bo -5.52 -2.71
axlig ki -1.66 0
eqlig ki 1.97 0.925
maxΔ𝜒 -2.08 -1.09
Σ Δ𝜒 2.41 -0.622
MSE 215 223
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Table A.15: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set a. Values are given for regularized and
unregularized coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -167 -167
metalcr 21.7 21.2
metalfe -26.3 -26.3
metalmn -15.2 -15.2
metalni 14.9 14.2
ox 28.2 27.9

eqligbipy -20.7 -16.6
eqligc2h3ns -30.5 -30.1
eqligcl -2.95 -0.898
eqligcn -6.33 -4.87
eqligco -18.4 -14.8
eqligen -4.02 -1.31
eqligh2o 8.22 11.8
eqligncs 1.03 2.08
eqlignh3 4.88 7.82
eqligox -0.272 -1.45
eqligphen -1.28 0
eqligpisc -31.6 -27.5

eqligporphyrin 8.4 1.34
eqligscn 6.26 6.82
eqligtbuc 10.8 7.53
axligbipy 15.5 10.2
axligc2h3ns -1.39 -0.326
axligcl 6.15 0.329
axligcn -9.2 -14
axligco -21.8 -24.1
axligen 17.4 13.5
axligh2o 15 11.8
axligncs 7.92 2.13
axlignh3 4.47 2.07
axligox 11 0.491
axligphen -10.2 -11.8
axligpisc -16.3 -18.9

axligporphyrin 0 0
axligscn 2.97 -1.65
axligtbuc 8.32 0
eqlig charge 2.31 0
axlig charge -1.12 -4.04
eqlig dent -1.75 0
axlig dent -8.15×10−2 0
alpha 5.72 5.42
MSE 422 423
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Table A.16: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set b. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -189 -186
metalcr 21.9 21.7
metalfe -26.9 -26.7
metalmn -16.3 -16.1
metalni 13.8 13.3
ox 28.6 28.2

eqlig charge -0.266 -0.359
axlig charge -3.79 -3.49
eqlig dent 0.179 0
axlig dent -7.42 -6.37

eqlig natoms -0.47 -0.452
axlig natoms 2.13×10−2 0
eqlig connectCl 10.5 9.61
eqlig connectN 17.6 17
eqlig connectO 19.3 18.9
eqlig connectS 20.1 19.2
axlig connectCl 18.6 18.1
axlig connectN 24.5 23.8
axlig connectO 29.7 28.8
axlig connectS 18.1 17.7

alpha 4.89 4.58
MSE 472 472
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Table A.17: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set c. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -170 -167
(Intercept) 0 0
metalcr 20.8 20.9
metalfe -27.6 -27.2
metalmn -17.1 -16.8
metalni 13.1 12.8
ox 28.6 28.4

eqlig charge -2.06 -1.99
axlig charge -3.98 -3.44
eqlig dent 2.38 0
axlig dent 0.717 0

eqlig natoms -0.385 -0.325
axlig natoms -0.144 -0.161
eqlig connectCl -2.56 0.619
eqlig connectN -9.37 -2.65
eqlig connectO -13.9 -5.88
eqlig connectS 6.76 9.66
axlig connectCl 6.83 7.52
axlig connectN -0.514 2.22
axlig connectO -4.21 0
axlig connectS 5.29 6.36

alpha 4.21 3.69
ΣΔ𝜒 1.76 1.02
maxΔ𝜒 14.4 13.1
minΔ𝜒 14.2 13
MSE 449 450
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Table A.18: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set d. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -168 -166
metalcr 20.8 20.9
metalfe -27.4 -27.2
metalmn -17.2 -17
metalni 13.2 12.8
ox 28.6 28.4

eqlig charge -2.24 -2.05
axlig charge -3.61 -3.24
eqlig dent 0.574 -0.291
axlig dent -1.65 -1.14

eqlig natoms -0.388 -0.347
axlig natoms -0.108 -0.147
eqlig connectCl -4.31 0
eqlig connectN -12.4 -6.75
eqlig connectO -18.8 -11.6
eqlig connectS 5.36 8.2
axlig connectCl 10.9 10.6
axlig connectN 7.03 8.26
axlig connectO 5.61 7.47
axlig connectS 9.34 9.41

alpha 4.17 3.55
ΣΔ𝜒 5.86 4.97
maxΔ𝜒 0.542 0.725
MSE 451 452
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Table A.19: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set e. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -190 -187
metalcr 20.7 20.6
metalfe -26.5 -26.4
metalmn -16.9 -16.8
metalni 13.9 13.5
ox 28.6 28.3

eqlig charge 0.243 0
axlig charge -4.29 -3.67
eqlig dent 0.362 -1.06
axlig dent -3.11 -1.84

eqlig natoms -0.252 -0.172
axlig natoms -6.34×10−2 -0.159
eqlig connectCl -4.69 -0.473
eqlig connectN -9.57 -3.89
eqlig connectO -8.03 -0.743
eqlig connectS 16.6 19.5
axlig connectCl 12.8 12.3
axlig connectN 8.55 9.11
axlig connectO 7.62 8.08
axlig connectS 10.1 9.26

alpha 5.12 4.43
axlig bo 5×10−1 0
eqlig bo 5.57 5.77
ΣΔ𝜒 5.62 4.81
maxΔ𝜒 1.4 1.45
MSE 444 445
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Table A.20: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set f. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -192 -122
metalcr 20.9 17.9
metalfe -27.7 -21.6
metalmn -16.8 -10.8
metalni 14.3 1.98
ox 28.5 19.8

eqlig charge -1.58 -0.317
axlig charge -3.9 -2.2
eqlig dent 9.74 0
axlig dent -0.587 0

eqlig connectCl -1.05 0
eqlig connectN -0.537 0
eqlig connectO -5.67 0
eqlig connectS 16.9 0
axlig connectCl 15.5 0
axlig connectN 13.8 0
axlig connectO 15.2 0
axlig connectS 11.4 0

n alpha 5.18 0
axlig ki -0.177 0
eqlig ki -4.11 0
maxΔ𝜒 0.434 0
ΣΔ𝜒 3.91 4.27
MSE 453 553
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Table A.21: Variable selection for 𝜕ΔEH-L
𝜕𝑎HF

: set g. Values are given for regularized and
unregularized linear coefficients and MSE in HF kcal2/mol2HFX2

unregularized ℒ1 regularization
(Intercept) -192 -187
metalcr 20.9 20.8
metalfe -27.7 -27.5
metalmn -16.8 -16.6
metalni 14.3 13.8
ox 28.5 28.2

eqlig charge -1.58 -1.68
axlig charge -3.9 -3.66
eqlig dent 9.74 7.56
axlig dent -0.587 0

eqlig connectCl -1.05 0
eqlig connectN -0.537 0
eqlig connectO -5.67 -3.96
eqlig connectS 16.9 15.7
axlig connectCl 15.5 14.3
axlig connectN 13.8 13.3
axlig connectO 15.2 14.4
axlig connectS 11.4 11.3

alpha 5.18 4.64
axlig ki -0.177 -0.364
eqlig ki -4.11 -3.37
maxΔ𝜒 0.434 0.522
ΣΔ𝜒 3.91 3.83
MSE 453 454
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Figure A-1: Comparison of errors for different descriptor sets for a regularized linear effects
model predicting ΔEH-L in kcal/mol (left) and 𝜕ΔEH-L

𝜕𝑎HF
in kcal/molHFX (right). Set a

includes the metal properties and full ligand identity and number of atoms. Set b replaces
ligand identity with the identity of connection atom only, while set c adds information from
the sum, maximum and minimum ligand 𝛿𝜒 to set b. Set d is the same as set c but excludes
the minimum 𝛿𝜒. Set e adds in bond order information with an MSE, while set f replaces
the ligand size metric with our truncated index. Set g represents our final set, and includes
the same descriptors from f and adds bond order information.

353



Table A.22: Optimal hyperparameter selection for KRR and SVR models found via a
grid search and 10-fold cross-validation. Parameters were selected usnig a Cartesian grid
search in

[︀
10−7, 104

]︀
for the regularization weights,

[︀
10−4, 103

]︀
for the exponential kernel

correlation length and [0.1, 0.9] for 𝜈.

𝜎 𝜆/𝐶 (KRR/SVR) 𝜈
(kernel lengthscale) (regularization weight) (SV fraction)

KRR (set g) 1 10−4

SVR (set g) 1 100 0.75
KRR (sorted Coulomb
Matrix, B3LYP)
KRR (sorted Coulomb
Matrix, B3LYP)

316 0.01

m = Cr,Mn,Ni

leq = Cl, N, O, S

87%
(40%) m = Ni

100%
(2%)

lax = N

81%
(3%) o = III

m = Cr

100%
(2%)

95%
(2%)

88%
(4%)

yes

me ≥ 1.9

o = II

𝛼 ≥ 0.1

91%
(9%)

keq < 2.6

79%
(2%)

93%
(1%)

m = Fe

leq = O

lax = Cl,N,O

81%
(4%)

86%
(1%)

cax < 0

62%
(2%)

97%
(4%)

88%
(7%)

lax = S

100%
(< 1%)

88%
(17%)

no

Key:

% HS
% of pop.

% LS
% of pop.

Figure A-2: Binary ground state classification tree for heteroleptic compounds. M indicates
metal identity, l ligand connection atom, o oxidation state, a the fraction of HF exchange
and me the sum of 𝛿𝜒 values across ligands. The first line in each leaf node is the percent
of elements in that leaf that have the indicated ground state, and the second line indicates
the percentage of the total heteroleptic population in each leaf node. Dashed blue arrows
indicate yes, solid red arrows indicate no.
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Figure A-3: Model predictions of ΔEH-L and data for Mn using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction.
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Figure A-4: Model predictions of ΔEHS-LS and data for Co using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction.
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Figure A-5: Model predictions of ΔEH-L and data for Cr using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction..
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Figure A-6: Model predictions of ΔEH-L and data for Fe(II) (top) and Ni(II) (bottom)
using an ANN. The ligands are described by two numbers indicating the equatorial first
and then the axial, color coded by ligand identity (green for halogen, gray for carbon, blue
for nitrogen, and red for oxygen). The error bars represent an estimated ±1 standard
deviation from the mean prediction..
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Figure A-7: Parity plot for ±2 standard deviation from the mean prediction and absolute
prediction error for test case ΔEH-L prediction using ANN. All units are kcal/mol. The
black line is 𝑦 = 𝑥.
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Figure A-8: Normalized error histogram for HF = 0.2 (B3LYP) test data (top) and CSD
structures (bottom), comparing ANN, KRR and SVR models using descriptor set g, as well
as a KRR model using the Coulomb matrix descriptor (trained on B3LYP data only).
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Table A.23: RMS prediction errors for ΔEH-L on test data using a deep ANN in kcal/mol
for test data divided by metal and oxidation state. The number of test cases is indicated
in parentheses

Species RMS Test error Min. Abs. Test Error Max. Abs. Test Error
Cr(II) 3.3 (86) 0.03 11.2
Cr(III) 2.5 (50) 0.06 6.3
Mn(II) 2.8 (57) 0.01 7.5
Mn(III) 2.1 (60 ) 0.04 5.6
Fe(II) 3.7 (60) 0.07 13.0
Fe(III) 3.0 (71) 0.09 7.9
Co(II) 2.8 (58) 0.07 11.8
Co(III) 4.5 (57) 0.02 15.7
Ni(II) 2.5 (39) 0.09 5.8

Table A.24: Average HF exchange sensitivity values, in kcal/mol.HFX, for homoleptic com-
pounds with C, N and O ligands grouped by metal, oxidation state and ligand connecting
atom

Metal Oxidation state Ligand connection
C N O

Cr II -82 -55 -59
III -20 -20 -18

Mn II -167 -92 -87
III -58 -44 -32

Fe II -164 -76 -59
III -118 -74 -63

Co II -106 -48 -45
III -98 -53 -46

Ni II -65 -57 -52
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Figure A-9: Scatter plot of HFX sensitivity in kcal/mol · HFX for homoleptic M(II) com-
plexes, colored by connection atom, for homoleptic (II) complexes with C (gray), N (blue)
and O (square) ligands.
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Figure A-10: Error boxplot for regression of 𝜕ΔEH-L
𝜕𝑎HF

using an ANN, showing training and
test data comparison. The top number indicates the number of trials, while the bottom
indicates the RMSE.
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Figure A-11: Model predictions of 𝜕ΔEH-L
𝜕𝑎HF

and data for Co using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction.
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Figure A-12: Model predictions of 𝜕ΔEH-L
𝜕𝑎HF

and data for Cr using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction.
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Figure A-13: Model predictions of 𝜕ΔEH-L
𝜕𝑎HF

and data for low-spin Fe(II) (top) and Ni(II)
(bottom) using an ANN. The ligands are described by two numbers indicating the equatorial
first and then the axial, color coded by ligand identity (green for halogen, gray for carbon,
blue for nitrogen, and red for oxygen). The error bars represent an estimated ±1 standard
deviation from the mean prediction.
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Figure A-14: Model predictions of 𝜕ΔEH-L
𝜕𝑎HF

and data for Mn using an ANN. The ligands are
described by two numbers indicating the equatorial first and then the axial, color coded by
ligand identity (green for halogen, gray for carbon, blue for nitrogen, and red for oxygen).
The error bars represent an estimated ±1 standard deviation from the mean prediction.
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Figure A-15: Parity plot for ±2 standard deviation from the mean prediction and absolute
prediction error for test case 𝜕ΔEH-L

𝜕𝑎HF
prediction using ANN. All units are kcal/mol. The

black line is 𝑦 = 𝑥.
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Figure A-16: Error boxplot for regression of Rmin
LS using an ANN, showing training and

test data comparison. The top number indicates the number of trials, while the bottom
indicates the RMSE.
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Figure A-17: Parity plot for ±2 standard deviation from the mean prediction and absolute
prediction error for test case Rmin

LS prediction using ANN. All units are Å. The black line is
𝑦 = 𝑥.
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Figure A-18: Model predictions of Rmin
LS and data for low-spin Co using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Figure A-19: Model predictions of Rmin
LS and data for low-spin Cr using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Figure A-20: Model predictions of Rmin
LS and data for low-spin Fe(II) (top) and Ni(II)

(bottom) using an ANN. The ligands are described by two numbers indicating the equatorial
first and then the axial, color coded by ligand identity (green for halogen, gray for carbon,
blue for nitrogen, and red for oxygen). The error bars represent an estimated ±1 standard
deviation from the mean prediction.
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Figure A-21: Model predictions of Rmin
LS and data for low-spin Mn using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Figure A-22: Error boxplot for regression of Rmin
HS using an ANN, showing training and

test data comparison. The top number indicates the number of trials, while the bottom
indicates the RMSE.
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Figure A-23: Parity plot for ±2 standard deviation from the mean prediction and absolute
prediction error for test case Rmin

HS prediction using ANN. All units are Å. The black line is
𝑦 = 𝑥.
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Figure A-24: Model predictions of Rmin
HS and data for high-spin Co using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Figure A-25: Model predictions of Rmin
HS and data for high-spin Cr using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Figure A-26: Model predictions of Rmin
HS and data for high-spin Fe(II) (top), Fe(III) (middle)

and Ni(II) (bottom) using an ANN. The ligands are described by two numbers indicating
the equatorial first and then the axial, color coded by ligand identity (green for halogen, gray
for carbon, blue for nitrogen, and red for oxygen). The error bars represent an estimated
±1 standard deviation from the mean prediction.
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Figure A-27: Model predictions of Rmin
HS and data for high-spin Mn using an ANN. The

ligands are described by two numbers indicating the equatorial first and then the axial,
color coded by ligand identity (green for halogen, gray for carbon, blue for nitrogen, and
red for oxygen). The error bars represent an estimated ±1 standard deviation from the
mean prediction.
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Table A.25: RMSEs and MUEs (in Å) for minimum metal-ligand bond length prediction
on test data by metal and oxidation state for both min(RLS) and min(RHS). The number
of test cases is indicated in parentheses.

Species RMSE (Å) MUE (Å)
min(RLS) min(RHS) min(RLS) min(RHS)

Cr(II) 0.02 (68) 0.02 (78) 0.02 0.01
Cr(III) 0.02 (54) 0.02 (54) 0.01 0.01
Mn(II) 0.02 (65) 0.03 (49) 0.02 0.02
Mn(III) 0.02 (60) 0.05 (59) 0.01 0.03
Fe(II) 0.02 (64) 0.03 (59) 0.01 0.03
Fe(III) 0.02 (84) 0.03 (88) 0.01 0.02
Co(II) 0.03 (55) 0.04 (53) 0.02 0.03
Co(III) 0.02 (52) 0.02 (51) 0.02 0.02
Ni(II) 0.01 (36) 0.02 (47) 0.01 0.01

Table A.26: molSimplify initial structure projected (g) gradients and RMS gradients with
and without preliminary ANN assisted bond lengths.

name g (kcal/Å) RMS grad. (Hartree/Bohr)

Co (acac)3
default -52 0.0487
ANN -5 0.0490

Cr (bipy)3
default -48 0.0237
ANN 29 0.0161

Fe (acac)3
default -50 0.0429
ANN 23 0.0437

Mn (misc)3
default -57 0.0459
ANN -53 0.0454
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Figure A-28: Definition of bond projected gradient, g, used to estimate the closeness of
an initial geometry to equilibrium. The projected gradient is the scalar difference between
the component of the negative energy gradient projected into the vector joining nuclear
positions of the metal (larger orange circle) and the ligand (smaller grey circle).
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Table A.27: Spin splitting energy predictions and data in kcal/mol, for the CSD test
structures. For each complex, values from DFT using B3LYP and and ANN predictions
are shown, along with the standard deviation of the ANN model.

Test number ANN DFT/B3LYP ANN Std. Dev. Error
1 21.80 29.06 3.29 -7.81
2 21.90 14.20 3.28 7.70
3 -26.50 -23.90 3.25 -2.66
4 28.70 34.10 3.65 -5.35
5 32.90 35.10 3.46 -2.18
6 -17.00 -11.50 3.87 -5.53
7 12.60 35.2 4.25 -22.60
8 -13.80 -16.40 4.14 2.61
9 30.60 0.26 3.77 30.40
10 -44.50 -40.90 3.27 -3.61
11 -31.20 -15.20 3.74 -16.00
12 4.50 -23.2 5.29 27.70
13 -13.10 -16.70 4.00 3.62
14 28.30 30.70 4.60 -2.38
15 -61.00 -45.10 3.08 -15.9
16 44.40 69.70 5.06 -25.30
17 6.92 3.51 3.92 3.41
18 -19.50 -6.35 3.25 -13.10
19 -11.50 -3.14 4.27 -8.32
20 -21.90 -15.00 3.69 -6.93
21 -5.78 -1.69 3.23 -4.10
22 -11.70 -8.49 3.91 -3.19
23 -4.20 -5.36 3.52 1.16
24 6.44 2.57 3.46 3.87
25 9.44 -0.23 4.73 9.67
26 -7.91 -24.40 4.00 16.40
27 0.54 3.59 3.24 -3.04
28 -13.40 -36.90 5.56 23.50
29 -6.85 -23.90 3.30 17.10
30 -15.60 -17.20 3.76 1.63
31 -28.20 -38.30 3.26 10.10
32 -10.00 -8.98 3.60 -1.03
33 4.50 -23.40 5.29 27.90
34 -22.00 -24.00 3.29 2.01
35 -13.90 -22.40 4.03 8.55
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Figure A-29: Dissimilarity metrics for CSD data: errors in spin energy predictions for
CSD structures are on the y-axis in kcal/mol and the minimum Tanimoto/FP2 disimilarity
metric (1 - the Tanimoto index) between the CSD ligands and the training ligands is shown
on the x-axis. A value of 1 inidicates no matches with the FP2 fingerprint.
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Figure A-30: Comparison of dissimilarity metrics for CSD data: errors in spin energy
predictions for CSD structures are on the y-axis in kcal/mol and the Euclidean (left, red)
and uncentered Pearson distances (gray, right) between the CSD structure and its nearest
representation in dimensionless descriptor space is shown on the x-axis.
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Table A.28: LS bond distance predictions and data in Å, for the CSD test structures. For
each complex, values from DFT using B3LYP and and ANN predictions are shown, along
with the standard deviation of the ANN model.

Test number ANN DFT/B3LYP ANN Std. Dev. Error
testno nn data variance error
1 2.01 1.95 0.02 0.06
2 2.01 1.90 0.02 0.11
3 1.97 2.06 0.03 -0.10
4 1.98 1.95 0.03 0.04
5 1.98 2.00 0.03 -0.02
6 1.99 1.97 0.03 0.03
7 1.97 1.96 0.02 0.01
8 2.02 2.07 0.03 -0.05
9 1.99 2.03 0.03 -0.03
10 2.02 2.03 0.03 -0.01
11 1.89 1.99 0.03 -0.10
12 2.03 2.04 0.02 -0.02
13 1.91 1.89 0.03 0.02
14 2.02 1.95 0.03 0.07
15 2.04 2.08 0.03 -0.05
16 1.99 1.91 0.03 0.09
17 2.04 2.01 0.03 0.03
18 1.94 2.00 0.02 -0.06
19 1.90 1.88 0.03 0.02
20 2.08 2.05 0.03 0.03
21 2.08 2.04 0.02 0.03
22 2.05 1.98 0.02 0.07
23 1.94 1.91 0.03 0.03
24 2.05 2.03 0.02 0.02
25 1.98 1.99 0.03 -0.01
26 2.00 1.94 0.03 0.06
27 2.04 1.97 0.02 0.06
28 2.01 2.08 0.02 -0.07
29 1.99 2.04 0.3 -0.05
30 1.88 2.04 0.03 -0.17
31 2.10 2.09 0.02 0.01
32 1.99 2.02 0.03 -0.03
33 2.03 2.04 0.02 -0.01
34 2.08 2.01 0.02 0.07
35 2.16 1.98 0.02 0.19

383



Table A.29: HS bond distance predictions and data in Å, for the CSD test structures. For
each complex, values from DFT using B3LYP and and ANN predictions are shown, along
with the standard deviation of the ANN model.

Test Number ANN DFT/B3LYP ANN Std. Dev. Error
1 2.06 1.95 0.02 0.11
2 2.06 1.87 0.02 0.16
3 1.94 2.07 0.02 -0.12
4 2.02 2.01 0.02 0.016
5 2.05 2.13 0.02 -0.08
6 2.02 2.06 0.02 -0.04
7 2.06 2.03 0.02 0.03
8 2.09 2.32 0.02 -0.23
9 2.00 2.05 0.02 -0.04
10 2.15 2.12 0.03 0.03
11 1.96 2.03 0.02 -0.07
12 1.98 2.06 0.02 -0.08
13 2.02 1.94 0.02 0.09
14 2.00 2.08 0.02 -0.08
15 2.21 2.22 0.02 -0.01
16 2.07 1.91 0.02 0.16
17 2.06 2.01 0.02 0.06
18 2.14 2.13 0.02 0.01
19 2.02 1.98 0.02 0.04
20 2.11 2.19 0.02 -0.08
21 2.23 2.05 0.02 0.187
22 2.09 2.07 0.02 0.02
23 2.12 2.03 0.02 0.10
24 2.24 2.16 0.02 0.08
25 1.99 2.02 0.02 -0.02
26 2.03 1.96 0.02 0.07
27 2.15 2.17 0.02 -0.02
28 2.13 2.26 0.02 -0.13
29 2.03 2.07 0.02 -0.03
30 2.12 2.08 0.02 0.04
31 2.28 2.25 0.02 0.03
32 2.19 2.22 0.02 -0.03
33 1.98 2.06 0.02 -0.09
34 2.09 2.02 0.02 0.07
35 2.21 1.99 0.02 0.22
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Figure A-31: Comparison of dissimilarity metrics for CSD data: errors in LS bond length
prediction for CSD structures are shown on the y-axis in Å, and three normalized dissimi-
larity metrics are compared on the x-axis: the Tanimoto/FP2 disimilarity metric between
the CSD ligands and the training ligands (blue circles), and the Euclidean (red diamonds)
and uncentered Pearson distances (gray crosses) between the CSD structure and its nearest
representation in dimensionless descriptor space.
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Figure A-32: Comparison of dissimilarity metrics for CSD data: errors in HS bond length
prediction for CSD structures are shown on the y-axis in Å, and three normalized dissimi-
larity metrics are compared on the x-axis: the Tanimoto/FP2 disimilarity metric between
the CSD ligands and the training ligands (blue circles), and the Euclidean (red diamonds)
and uncentered Pearson distances (gray crosses) between the CSD structure and its nearest
representation in dimensionless descriptor space.
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Figure A-33: Comparison of measured CSD bond distances in the crystal phase, repre-
sented by symbols (red squares for high-spin or blue triangles for low-spin based on DFT
assignment at aHF=0.20) with the ANN predicted HS (red line) and LS (blue line) bond
distances.
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Figure A-34: Parity plot comparing prediction of ΔEHS-LS in kcal/mol. The x-axis is the
DFT value at aHF = 0.20, while the y-axis is the predicted value. The blue squares are
obtained by interpolating from the values at aHF = 0.00 using the predicted slopes. The
red triangles are the matching test cases (where these were tested at aHF = 0.20).
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Appendix B

Mapping transition metal complex

space for machine learning

389



Text B.1: Kernel ridge regression

KRR is essentially linear regression in an expanded space of virtual features209, which
are constructed from non-linear transformations of the original feature space. KRR
is feasible, even for infinite-dimensional virtual feature spaces (e.g., Hilbert spaces),
as only easy to compute inner products between virtual feature space elements are
needed. We use a general exponential kernel form209:

𝑦𝑘𝑟𝑟(x𝑗) =
𝑁∑︁
𝑖=1

𝛼𝑖 exp
(︁
−𝜎 ‖x𝑗 − x𝑖‖𝑙𝑙

)︁
Here, 𝑙 = 1 corresponds to a Laplacian kernel, 𝑙 = 2 corresponds to a Gaussian
kernel, and 𝛼 are coefficients that are learned during training by minimizing the
square error between model outputs and training points. The inverse correlation
length, 𝜎, is a hyperparameter that we estimate using 10-fold cross-validation and a
grid search approach in the range of 1×10−8 to 0 or expanded as needed if the optimal
value is found to lie on the boundaries of this interval. We traverse the interval in
50 logarithmically spaced increments. Use of an isotopic kernel (i.e., fixed 𝜎 for all
descriptors) simplifies hyperparameter selection during training. 𝐿2 regularization is
employed to prevent overfitting, and the regularization parameter is selected along
with 𝜎 by simultaneous cross-validation.

Text B.2: Gaussian vs. Laplacian kernels

Using 3d -ACs, we observed Laplacian kernel errors on QM9 atomization energies of
19.0 kcal/mol training on 1k random molecules and testing on the remainder. The
comparable Gaussian kernel value is 8.80 kcal/mol.
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Table B.1: Comparison of learning rates for maximum depth three autocorrelation (3d -AC)
and Coulomb eigenspectrum (CM-ES) descriptors tested on QM9 atomization energies (in
kcal/mol). Increasing set sizes of randomly selected molecules are selected for training,
and the remainder of the 134k molecule set are used for testing. Convergence of KRR
hyperparameters 𝜆 and 𝜎 are also shown. Values are averaged over five training data
samples, and one standard deviation on test MUE is given in parenthesis.

Training points 1000 4000 8000 16000
3d -AC

train MUE 7.80 6.73 5.99 5.81
test MUE 8.80 7.19 6.54 6.10

(0.42) (0.14) (0.09) (0.07)
𝜎 1.00E-06 3.16E-05 1.00E-04 1.00E-04
𝜆 1.00E-11 1.00E-11 1.00E-11 1.00E-11

CM-ES
train MUE 1.60 23.03 20.70 19.05
test MUE 32.19 30.35 27.66 25.17

(0.61) (0.37) (0.12) (0.11)
𝜎 1.00E-006 7.20E-07 1.00E-07 1.00E-07
𝜆 1.00E-008 1.00E-08 1.00E-09 1.00E-09

Table B.2: Comparison of learning rates for maximum depth three autocorrelation (3d -
AC) descriptors tested on QM9 dipole moments in Debye. Increasing set sizes of randomly
selected molecules are selected for training, and the remainder of the 134k molecule set are
used for testing. Convergence of KRR hyperparameters 𝜆 and 𝜎 are also shown. Values
are averaged over five training data samples, and one standard deviation on test MUE is
given in parenthesis. Results from Ref.486 also shown.

Training points 1000 4000 8000 16000
3d -AC

train MUE 0.84 0.79 0.77 0.77
test MUE 0.88 0.82 0.80 0.79

(0.015) (0.004) (0.003) (0.003)
𝜎 1.00E-06 2.15E-05 5.99E-05 5.99E-05
𝜆 1.67E-11 2.78E-10 2.78E-10 2.78E-10

12𝑁𝑃3𝐵4𝐵 486

test MUE 0.86 0.76 0.68 0.63
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Text B.3: Timing for KRR-RFE models

Hyperparameter re-optimization is needed during KRR as the dimension of the fea-
ture space is changing. Conducting a 25 × 25 hyperparameter search for training a
KRR model using RAC-155 on a workstation (a 4 core Intel Core i7-4820K) takes
∼ 3.3 minutes when running in parallel. In order to conduct RFE, it is necessary
to conduct 155 such runs to determine the first feature to remove, which takes ∼ 8
hours. The number of steps required for full KRR is 𝑛(𝑛+1)

2
≈ 12𝑘. While each

subsequent step is accelerated by the smaller feature space, the cost of KRR is dom-
inated by the complexity kernel matrix which scales with the (invariant) training
space dimension. Therefore, assuming a constant hyperparameter search time, this
gives a run time of over ∼27 days. The solution is to use a more crude hyperpa-
rameter search grid and to center to the value of the hyperparameter search around
the previous values. Unfortunately, even after experimenting with different grids, we
were unable to reduce the search fidelity sufficiently without producing discontinu-
ous jumps in hyperparameter selection. This produces large jumps in the RFE mean
CV error. This results in unreliable feature elimination behavior and substantially
different KRR performance once the grid fidelity is increased for final training.
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Figure B-1: Out-of-sample mean squared error (MSE) for spin-splitting energy prediction
by random forest model on the spin-splitting data set in normalized units as a function of
number trees in the random forest model.
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Figure B-2: Out-of-sample mean squared error (MSE) for bond length prediction by random
forest model on the spin-splitting data set in normalized units as a function of number trees
in the random forest model.
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Figure B-3: Out-of-sample mean squared error (MSE) for ionization potential prediction by
the random forest model on the redox data set in normalized units as a function of number
trees in the random forest model.
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Figure B-4: Out-of-sample mean squared error (MSE) for redox potential prediction by the
random forest model on the redox data set in normalized units as a function of number
trees in the random forest model.

Table B.3: Hyperparameters selected by cross-validation for spin splitting energy prediction
on different feature sets, including varying random forest (randF) cut-off values.

𝜎 𝜆
RAC-155 1.39E-03 7.20E-12
LASSO-28 5.18E-03 3.73E-10
UV-86 4.64E-02 5.18E-08
randF-41 (1%) 6.11E-02 3.73E-07
randF-26 (2%) 1.10E-02 1.00E-08
randF-34 (1.5%) 7.85E-03 7.74E-09
randF-18 (3%) 7.85E-03 2.78E-09
RFE-43 1.93E-02 1.00E-09
C-12 4.94E-02 2.15E-07
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Table B.4: Hyperparameters selected by cross-validation for bond length prediction on
different feature sets.

𝜎 𝜆
RAC-155 1.93E-02 5.18E-08
LASSO-28 7.20E-02 3.73E-07
randF-41 1.93E-02 1.93E-08
randF-26 1.93E-02 1.93E-08
LASSO-83B 1.93E-02 1.93E-08
randF-48B 7.20E-02 1.00E-06
randF-49B 1.93E-02 5.18E-08
C-12 1.93E-02 3.73E-10

Table B.5: Hyperparameters selected by cross-validation for ionization potential prediction
on different feature sets.

𝜎 𝜆
RAC-155 7.54E-03 7.20E-05
LASSO-28 4.94E-02 1.53E-05
randF-41 7.54E-03 1.15E-04
randF-26 2.33E-02 2.02E-04
LASSO-19I 3.39E-02 6.25E-04
randF-28I 2.33E-02 6.25E-04
C-12 3.39E-02 7.20E-05

Table B.6: Hyperparameters selected by cross-validation for redox potential prediction on
different feature sets.

𝜎 𝜆
RAC-155 7.54E-03 4.94E-05
LASSO-28 3.39E-02 2.12E-05
randF-41 1.10E-02 7.54E-05
randF-26 2.33E-02 1.15E-04
randF-38G 3.39E-02 7.54E-05
LASSO-19G 4.94E-02 1.15E-04
C-12 3.73E-04 1.53E-10
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Table B.7: Spin splitting data set ligands from previous work308.

Number ID SMILES
1 cl [Cl-]
2 scn [S-]C#N
3 pisc CC(C)(C)C1=CC=C(C=C1)[N+]#[C-]
4 misc C[N+]#[C-]
5 cn [C-]#N
6 co CO
7 ncs [N-]=C=S
9 bipy C1ccnc(c1)c2ccccn2
10 phen C1=CC2=CC=C3C=CC=NC3=C2N=C1
11 en NCCN
12 porphyrin [NH]1C2=CC3=NC(=CC4=CC=C([NH]4)C=C5C=CC(=N5)C=C1C=C2)C=C3
13 h2o O
14 acac CC(=O)CC(=O)C
15 tbuc CC(C)(C)C1=CC(=C([O-])C=C1)[O-]
16 ox [O-]C(=O)C([O-])=O

Table B.8: Redox data set ligands from previous work482.

Number SMILES
1 n1c(noc1N)c1ncccc1 22 c1(ccccn1)c1n[nH]cn1
2 c1(nn[nH]n1)c1ncccc1 23 c1(cccc(n1)C)c1n[nH]cn1
3 c1(nn[nH]c1)c1ncccc1 24 c1(ccnc(n1)N)c1ncccc1
4 n1c(nccc1N)c1ncccc1 25 C(=O)(CN=[N+]=[N-])Nc1ccc(cc1)F
5 c1(nn[nH]c1)c1ncc(cc1)C 26 ONC(=N)[C](N)C
6 n1c([nH]nc1N)c1ncccc1 27 C(CN)N
7 [nH]1cnc2c(c1)nc(n2)c1ncccc1 28 N[C](C(=O)NO)Cc1[nH]cnc1
8 c1(nn[nH]c1)c1ncccc1C 29 [nH]1c(=O)[nH]cc(c1=O)NC(=O)CN
9 c1(nn[nH]c1)c1nc(ccc1)C 30 C(=C)(C(=O)NC)NC(=O)C
10 n1c2c3ncccc3ccc2ccc1 31 C(C(C(=O)O)N)NC(=O)OC
11 o1c(=O)[nH]nc1c1ccccn1 32 o1cncc1
12 o1nc(c2ncccc2)cc1CO 33 n1oc2c(c1)cccc2
13 n1c(nc(nc1N)N)c1ncccc1 34 O=C=NC
14 O=C1c2c(nccc2)c2ncccc12 35 NC
15 Clc1nc2c3ncccc3ccc2cc1 36 C(#N)O
16 o1nc(nc1c1oncc1)c1ncccc1 37 [O-][N+]#N
17 Oc1nc(c2nc(O)ccc2)ccc1 38 N#C
18 [O-][N+](=O)c1nc([nH]c1[N+](=O)[O-])c1ncccc1 39 N(=C)O
19 o1c(nc(c1N)C#N)c1ncccc1 40 N#CC=CCC
20 c1(nc(nc(c1)N)c1ncccc1)O 41 ClCCC#N
21 c1(cccc(n1)Cl)c1n[nH]cn1

396



Table B.9: Redox/ionization spin multiplicities. The M(II) ground state determines the
selected M(III) spin state for comparison.

M(II) ground state M(II) spin M(III) spin

Cr
LS 3 2
HS 5 4

Mn
LS 2 3
HS 6 5

Fe
LS 1 2
HS 5 6

Co
LS 2 1
HS 4 5
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Table B.10: Features included in the RAC-155 descriptor set.

1 ox 41 𝑓
𝑒𝑞𝑆0 81 𝑙𝑐

𝑒𝑞𝑆2 121 𝑙𝑐
𝑎𝑥𝜒

′
2

2 𝛼𝐻𝐹 42 𝑓
𝑒𝑞𝑆1 82 𝑙𝑐

𝑒𝑞𝑆3 122 𝑙𝑐
𝑎𝑥𝜒

′
3

3 ax. denticity 43 𝑓
𝑒𝑞𝑆2 83 𝑚𝑐

𝑎𝑙𝑙𝜒0 123 𝑙𝑐
𝑎𝑥𝑍

′
1

4 eq. denticity 44 𝑓
𝑒𝑞𝑆3 84 𝑚𝑐

𝑎𝑙𝑙𝜒1 124 𝑙𝑐
𝑎𝑥𝑍

′
2

5 𝑓
𝑎𝑥𝜒0 45 𝑙𝑐

𝑎𝑥𝜒0 85 𝑚𝑐
𝑎𝑙𝑙𝜒2 125 𝑙𝑐

𝑎𝑥𝑍
′
3

6 𝑓
𝑎𝑥𝜒1 46 𝑙𝑐

𝑎𝑥𝜒1 86 𝑚𝑐
𝑎𝑙𝑙𝜒3 126 𝑙𝑐

𝑎𝑥𝑇
′
1

7 𝑓
𝑎𝑥𝜒2 47 𝑙𝑐

𝑎𝑥𝜒2 87 𝑚𝑐
𝑎𝑙𝑙𝑍0 127 𝑙𝑐

𝑎𝑥𝑇
′
2

8 𝑓
𝑎𝑥𝜒3 48 𝑙𝑐

𝑎𝑥𝜒3 88 𝑚𝑐
𝑎𝑙𝑙𝑍1 128 𝑙𝑐

𝑎𝑥𝑇
′
3

9 𝑓
𝑎𝑥𝑍0 49 𝑙𝑐

𝑎𝑥𝑍0 89 𝑚𝑐
𝑎𝑙𝑙𝑍2 129 𝑙𝑐

𝑎𝑥𝑆
′
1

10 𝑓
𝑎𝑥𝑍1 50 𝑙𝑐

𝑎𝑥𝑍1 90 𝑚𝑐
𝑎𝑙𝑙𝑍3 130 𝑙𝑐

𝑎𝑥𝑆
′
2

11 𝑓
𝑎𝑥𝑍2 51 𝑙𝑐

𝑎𝑥𝑍2 91 𝑚𝑐
𝑎𝑙𝑙𝐼2 131 𝑙𝑐

𝑎𝑥𝑆
′
3

12 𝑓
𝑎𝑥𝑍3 52 𝑙𝑐

𝑎𝑥𝑍3 92 𝑚𝑐
𝑎𝑙𝑙𝐼3 132 𝑙𝑐

𝑒𝑞𝜒
′
1

13 𝑓
𝑎𝑥𝐼0 53 𝑙𝑐

𝑎𝑥𝐼1 93 𝑚𝑐
𝑎𝑙𝑙𝑇 1 133 𝑙𝑐

𝑒𝑞𝜒
′
2

14 𝑓
𝑎𝑥𝐼1 54 𝑙𝑐

𝑎𝑥𝐼2 94 𝑚𝑐
𝑎𝑙𝑙𝑇 2 134 𝑙𝑐

𝑒𝑞𝜒
′
3

15 𝑓
𝑎𝑥𝐼2 55 𝑙𝑐

𝑎𝑥𝐼3 95 𝑚𝑐
𝑎𝑙𝑙𝑇 3 135 𝑙𝑐

𝑒𝑞𝑍
′
1

16 𝑓
𝑎𝑥𝐼3 56 𝑙𝑐

𝑎𝑥𝑇 0 96 𝑚𝑐
𝑎𝑙𝑙𝑆0 136 𝑙𝑐

𝑒𝑞𝑍
′
2

17 𝑓
𝑎𝑥𝑇 0 57 𝑙𝑐

𝑎𝑥𝑇 1 97 𝑚𝑐
𝑎𝑙𝑙𝑆1 137 𝑙𝑐

𝑒𝑞𝑍
′
3

18 𝑓
𝑎𝑥𝑇 1 58 𝑙𝑐

𝑎𝑥𝑇 2 98 𝑚𝑐
𝑎𝑙𝑙𝑆2 138 𝑙𝑐

𝑒𝑞𝑇
′
1

19 𝑓
𝑎𝑥𝑇 2 59 𝑙𝑐

𝑎𝑥𝑇 3 99 𝑚𝑐
𝑎𝑙𝑙𝑆3 139 𝑙𝑐

𝑒𝑞𝑇
′
2

20 𝑓
𝑎𝑥𝑇 3 60 𝑙𝑐

𝑎𝑥𝑆0 100 𝑓
𝑎𝑙𝑙𝜒0 140 𝑙𝑐

𝑒𝑞𝑇
′
3

21 𝑓
𝑎𝑥𝑆0 61 𝑙𝑐

𝑎𝑥𝑆1 101 𝑓
𝑎𝑙𝑙𝜒1 141 𝑙𝑐

𝑒𝑞𝑆
′
1

22 𝑓
𝑎𝑥𝑆1 62 𝑙𝑐

𝑎𝑥𝑆2 102 𝑓
𝑎𝑙𝑙𝜒2 142 𝑙𝑐

𝑒𝑞𝑆
′
2

23 𝑓
𝑎𝑥𝑆2 63 𝑙𝑐

𝑎𝑥𝑆3 103 𝑓
𝑎𝑙𝑙𝜒3 143 𝑙𝑐

𝑒𝑞𝑆
′
3

24 𝑓
𝑎𝑥𝑆3 64 𝑙𝑐

𝑒𝑞𝜒0 104 𝑓
𝑎𝑙𝑙𝑍0 144 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1

25 𝑓
𝑒𝑞𝜒0 65 𝑙𝑐

𝑒𝑞𝜒1 105 𝑓
𝑎𝑙𝑙𝑍1 145 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

26 𝑓
𝑒𝑞𝜒1 66 𝑙𝑐

𝑒𝑞𝜒2 106 𝑓
𝑎𝑙𝑙𝑍2 146 𝑚𝑐

𝑎𝑙𝑙𝜒
′
3

27 𝑓
𝑒𝑞𝜒2 67 𝑙𝑐

𝑒𝑞𝜒3 107 𝑓
𝑎𝑙𝑙𝑍3 147 𝑚𝑐

𝑎𝑙𝑙𝑍
′
1

28 𝑓
𝑒𝑞𝜒3 68 𝑙𝑐

𝑒𝑞𝑍0 108 𝑓
𝑎𝑙𝑙𝐼0 148 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2

29 𝑓
𝑒𝑞𝑍0 69 𝑙𝑐

𝑒𝑞𝑍1 109 𝑓
𝑎𝑙𝑙𝐼1 149 𝑚𝑐

𝑎𝑙𝑙𝑍
′
3

30 𝑓
𝑒𝑞𝑍1 70 𝑙𝑐

𝑒𝑞𝑍2 110 𝑓
𝑎𝑙𝑙𝐼2 150 𝑚𝑐

𝑎𝑙𝑙𝑇
′
1

31 𝑓
𝑒𝑞𝑍2 71 𝑙𝑐

𝑒𝑞𝑍3 111 𝑓
𝑎𝑙𝑙𝐼3 151 𝑚𝑐

𝑎𝑙𝑙𝑇
′
2

32 𝑓
𝑒𝑞𝑍3 72 𝑙𝑐

𝑒𝑞𝐼1 112 𝑓
𝑎𝑙𝑙𝑇 0 152 𝑚𝑐

𝑎𝑙𝑙𝑇
′
3

33 𝑓
𝑒𝑞𝐼0 73 𝑙𝑐

𝑒𝑞𝐼2 113 𝑓
𝑎𝑙𝑙𝑇 1 153 𝑚𝑐

𝑎𝑙𝑙𝑆
′
1

34 𝑓
𝑒𝑞𝐼1 74 𝑙𝑐

𝑒𝑞𝐼3 114 𝑓
𝑎𝑙𝑙𝑇 2 154 𝑚𝑐

𝑎𝑙𝑙𝑆
′
2

35 𝑓
𝑒𝑞𝐼2 75 𝑙𝑐

𝑒𝑞𝑇 0 115 𝑓
𝑎𝑙𝑙𝑇 3 155 𝑚𝑐

𝑎𝑙𝑙𝑆
′
3

36 𝑓
𝑒𝑞𝐼3 76 𝑙𝑐

𝑒𝑞𝑇 1 116 𝑓
𝑎𝑙𝑙𝑆0

37 𝑓
𝑒𝑞𝑇 0 77 𝑙𝑐

𝑒𝑞𝑇 2 117 𝑓
𝑎𝑙𝑙𝑆1

38 𝑓
𝑒𝑞𝑇 1 78 𝑙𝑐

𝑒𝑞𝑇 3 118 𝑓
𝑎𝑙𝑙𝑆2

39 𝑓
𝑒𝑞𝑇 2 79 𝑙𝑐

𝑒𝑞𝑆0 119 𝑓
𝑎𝑙𝑙𝑆3

40 𝑓
𝑒𝑞𝑇 3 80 𝑙𝑐

𝑒𝑞𝑆1 120 𝑙𝑐
𝑎𝑥𝜒

′
1
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Figure B-5: Learning rates for KRR models trained on randomly drawn samples of 60%
of of dataset 1 and tested on 40% remaining points. The points show mean spin splitting
energy test (black) and train (red) RMSE values (in kcal/mol) from 10 samples and the
confidence intervals indicate one standard deviation for test RMSE at different training set
sizes using RAC-155.
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Figure B-6: PCA variance die-off with RAC-155 principal components (arb. units).
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Figure B-7: PCA variance die-off with CM-ES principal components (arb. units).
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Figure B-8: Error response of elastic net model on spin splitting energy with varying 𝛼
parameter from 0 (ridge regression) to 1 (LASSO). Colors indicate the number of selected
variables at each value.

Table B.11: Features included in the LASSO-28 descriptor set.

1 ox 11 𝑙𝑐
𝑒𝑞𝑍1 21 𝑙𝑐

𝑎𝑥𝑍
′
3

2 𝛼𝐻𝐹 12 𝑚𝑐
𝑎𝑙𝑙𝜒0 22 𝑙𝑐

𝑎𝑥𝑇
′
2

3 eq. denticity 13 𝑚𝑐
𝑎𝑙𝑙𝜒2 23 𝑙𝑐

𝑎𝑥𝑆
′
3

4 𝑓
𝑎𝑥𝑍0 14 𝑚𝑐

𝑎𝑙𝑙𝑍0 24 𝑙𝑐
𝑒𝑞𝜒

′
2

5 𝑓
𝑎𝑥𝐼3 15 𝑚𝑐

𝑎𝑙𝑙𝑍1 25 𝑚𝑐
𝑎𝑙𝑙𝜒

′
1

6 𝑓
𝑎𝑥𝑇 3 16 𝑚𝑐

𝑎𝑙𝑙𝑍3 26 𝑚𝑐
𝑎𝑙𝑙𝜒

′
2

7 𝑓
𝑒𝑞𝑍2 17 𝑚𝑐

𝑎𝑙𝑙𝑆0 27 𝑚𝑐
𝑎𝑙𝑙𝜒

′
3

8 𝑙𝑐
𝑎𝑥𝜒0 18 𝑓

𝑎𝑙𝑙𝜒2 28 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1

9 𝑙𝑐
𝑎𝑥𝑍2 19 𝑙𝑐

𝑎𝑥𝜒
′
3

10 𝑙𝑐
𝑎𝑥𝑇 3 20 𝑙𝑐

𝑎𝑥𝑍
′
1
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Table B.12: Features included in the UV-86 descriptor set.

1 ox 23 𝑓
𝑒𝑞𝑆2 45 𝑚𝑐

𝑎𝑙𝑙𝑇 1 67 𝑓
𝑎𝑙𝑙𝑆3

2 𝛼𝐻𝐹 24 𝑓
𝑒𝑞𝑆3 46 𝑚𝑐

𝑎𝑙𝑙𝑇 3 68 𝑙𝑐
𝑎𝑥𝜒

′
1

3 ax. denticity 25 𝑙𝑐
𝑎𝑥𝜒0 47 𝑚𝑐

𝑎𝑙𝑙𝑆0 69 𝑙𝑐
𝑎𝑥𝜒

′
2

4 eq. denticity 26 𝑙𝑐
𝑎𝑥𝜒1 48 𝑓

𝑎𝑙𝑙𝜒0 70 𝑙𝑐
𝑎𝑥𝑍

′
1

5 𝑓
𝑒𝑞𝜒0 27 𝑙𝑐

𝑎𝑥𝑍0 49 𝑓
𝑎𝑙𝑙𝜒1 71 𝑙𝑐

𝑎𝑥𝑇
′
1

6 𝑓
𝑒𝑞𝜒1 28 𝑙𝑐

𝑎𝑥𝑍1 50 𝑓
𝑎𝑙𝑙𝜒2 72 𝑙𝑐

𝑎𝑥𝑆
′
1

7 𝑓
𝑒𝑞𝜒2 29 𝑙𝑐

𝑎𝑥𝑍2 51 𝑓
𝑎𝑙𝑙𝜒3 73 𝑙𝑐

𝑒𝑞𝜒
′
1

8 𝑓
𝑒𝑞𝜒3 30 𝑙𝑐

𝑎𝑥𝐼1 52 𝑓
𝑎𝑙𝑙𝑍0 74 𝑙𝑐

𝑒𝑞𝜒
′
2

9 𝑓
𝑒𝑞𝑍0 31 𝑙𝑐

𝑎𝑥𝑇 0 53 𝑓
𝑎𝑙𝑙𝑍1 75 𝑙𝑐

𝑒𝑞𝜒
′
3

10 𝑓
𝑒𝑞𝑍1 32 𝑙𝑐

𝑒𝑞𝜒0 54 𝑓
𝑎𝑙𝑙𝑍2 76 𝑙𝑐

𝑒𝑞𝑍
′
1

11 𝑓
𝑒𝑞𝑍2 33 𝑙𝑐

𝑒𝑞𝜒1 55 𝑓
𝑎𝑙𝑙𝑍3 77 𝑙𝑐

𝑒𝑞𝑇
′
3

12 𝑓
𝑒𝑞𝑍3 34 𝑙𝑐

𝑒𝑞𝑍0 56 𝑓
𝑎𝑙𝑙𝐼0 78 𝑙𝑐

𝑒𝑞𝑆
′
1

13 𝑓
𝑒𝑞𝐼0 35 𝑙𝑐

𝑒𝑞𝑍1 57 𝑓
𝑎𝑙𝑙𝐼1 79 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1

14 𝑓
𝑒𝑞𝐼1 36 𝑙𝑐

𝑒𝑞𝑍2 58 𝑓
𝑎𝑙𝑙𝐼2 80 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

15 𝑓
𝑒𝑞𝐼2 37 𝑙𝑐

𝑒𝑞𝐼1 59 𝑓
𝑎𝑙𝑙𝐼3 81 𝑚𝑐

𝑎𝑙𝑙𝑍
′
1

16 𝑓
𝑒𝑞𝐼3 38 𝑙𝑐

𝑒𝑞𝑇 3 60 𝑓
𝑎𝑙𝑙𝑇 0 82 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2

17 𝑓
𝑒𝑞𝑇 0 39 𝑚𝑐

𝑎𝑙𝑙𝜒0 61 𝑓
𝑎𝑙𝑙𝑇 1 83 𝑚𝑐

𝑎𝑙𝑙𝑇
′
1

18 𝑓
𝑒𝑞𝑇 1 40 𝑚𝑐

𝑎𝑙𝑙𝜒1 62 𝑓
𝑎𝑙𝑙𝑇 2 84 𝑚𝑐

𝑎𝑙𝑙𝑇
′
2

19 𝑓
𝑒𝑞𝑇 2 41 𝑚𝑐

𝑎𝑙𝑙𝑍0 63 𝑓
𝑎𝑙𝑙𝑇 3 85 𝑚𝑐

𝑎𝑙𝑙𝑆
′
1

20 𝑓
𝑒𝑞𝑇 3 42 𝑚𝑐

𝑎𝑙𝑙𝑍1 64 𝑓
𝑎𝑙𝑙𝑆0 86 𝑚𝑐

𝑎𝑙𝑙𝑆
′
2

21 𝑓
𝑒𝑞𝑆0 43 𝑚𝑐

𝑎𝑙𝑙𝑍2 65 𝑓
𝑎𝑙𝑙𝑆1

22 𝑓
𝑒𝑞𝑆1 44 𝑚𝑐

𝑎𝑙𝑙𝐼2 66 𝑓
𝑎𝑙𝑙𝑆2
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Figure B-9: Univariate filter scores for spin splitting energy. The 5% cutoff is indicated by
a dashed red line, and rejected points are colored red. Some features with a score of more
than 50% are labeled.

Table B.13: Features included in the RFE-43 descriptor set.

1 ox 12 𝑓
𝑒𝑞𝑆2 23 𝑙𝑐

𝑒𝑞𝑆0 34 𝑓
𝑎𝑙𝑙𝑍0

2 𝛼𝐻𝐹 13 𝑓
𝑒𝑞𝑆3 24 𝑙𝑐

𝑒𝑞𝑆1 35 𝑓
𝑎𝑙𝑙𝐼2

3 ax. denticity 14 𝑙𝑐
𝑎𝑥𝜒0 25 𝑚𝑐

𝑎𝑙𝑙𝜒1 36 𝑓
𝑎𝑙𝑙𝑇 0

4 eq. denticity 15 𝑙𝑐
𝑎𝑥𝐼2 26 𝑚𝑐

𝑎𝑙𝑙𝑍1 37 𝑓
𝑎𝑙𝑙𝑆1

5 𝑓
𝑎𝑥𝑍2 16 𝑙𝑐

𝑎𝑥𝑇 0 27 𝑚𝑐
𝑎𝑙𝑙𝑍3 38 𝑓

𝑎𝑙𝑙𝑆2

6 𝑓
𝑎𝑥𝐼1 17 𝑙𝑐

𝑎𝑥𝑆0 28 𝑚𝑐
𝑎𝑙𝑙𝑇 3 39 𝑙𝑐

𝑎𝑥𝜒
′
1

7 𝑓
𝑎𝑥𝐼2 18 𝑙𝑐

𝑎𝑥𝑆1 29 𝑚𝑐
𝑎𝑙𝑙𝑆2 40 𝑙𝑐

𝑎𝑥𝑆
′
2

8 𝑓
𝑎𝑥𝑇 2 19 𝑙𝑐

𝑎𝑥𝑆2 30 𝑚𝑐
𝑎𝑙𝑙𝑆3 41 𝑙𝑐

𝑒𝑞𝑇
′
2

9 𝑓
𝑒𝑞𝜒0 20 𝑙𝑐

𝑎𝑥𝑆3 31 𝑓
𝑎𝑙𝑙𝜒0 42 𝑙𝑐

𝑒𝑞𝑇
′
3

10 𝑓
𝑒𝑞𝜒2 21 𝑙𝑐

𝑒𝑞𝜒0 32 𝑓
𝑎𝑙𝑙𝜒1 43 𝑚𝑐

𝑎𝑙𝑙𝑍
′
1

11 𝑓
𝑒𝑞𝑇 0 22 𝑙𝑐

𝑒𝑞𝐼3 33 𝑓
𝑎𝑙𝑙𝜒3
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Figure B-10: RFE mean-CV error in normalized units with number of features retained
with inner MLR model for spin splitting energy. Results are the mean value averaged over
five repeats, and one standard deviation is shown with an error bar. The global minimum
at 43 features is highlighted with a red circle.
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Figure B-11: Out-of-sample mean squared error (MSE) increase for spin splitting energy
prediction by random forest model on the spin-splitting data set in normalized units. Lines
indicate 3% (green), 2% (blue), 1.5% (yellow) 1% (gray) cutoff values, along with the
resulting included variables that are indicated in the main text as randF-26 (green + blue
squares) and randF-41 (green + blue + yellow + gray squares). Never-selected points are
colored red. Some representative features are labeled.

Table B.14: Features included in the randF-41 descriptor set.

1 𝑚𝑐
𝑎𝑙𝑙𝜒

′
1 12 𝑙𝑐

𝑒𝑞𝑍
′
1 23 𝑓

𝑎𝑙𝑙𝜒3 34 𝑚𝑐
𝑎𝑙𝑙𝑆3

2 ox 13 𝑙𝑐
𝑒𝑞𝜒

′
1 24 𝑓

𝑎𝑙𝑙𝑆0 35 𝑚𝑐
𝑎𝑙𝑙𝜒3

3 𝑚𝑐
𝑎𝑙𝑙𝑍

′
1 14 𝑙𝑐

𝑒𝑞𝑍0 25 𝑚𝑐
𝑎𝑙𝑙𝜒2 36 𝑙𝑐

𝑎𝑥𝑍0

4 𝑚𝑐
𝑎𝑙𝑙𝑍1 15 𝑙𝑐

𝑒𝑞𝜒0 26 𝑓
𝑎𝑙𝑙𝑍1 37 𝑚𝑐

𝑎𝑙𝑙𝑍
′
3

5 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1 16 𝑚𝑐

𝑎𝑙𝑙𝜒1 27 𝑓
𝑎𝑙𝑙𝑍3 38 𝑙𝑐

𝑎𝑥𝜒0

6 𝑚𝑐
𝑎𝑙𝑙𝑆1 17 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2 28 𝑓

𝑎𝑙𝑙𝑍2 39 𝑚𝑐
𝑎𝑙𝑙𝑆

′
3

7 𝑚𝑐
𝑎𝑙𝑙𝑍0 18 𝑚𝑐

𝑎𝑙𝑙𝑆2 29 𝑓
𝑎𝑙𝑙𝜒0 40 𝑓

𝑎𝑙𝑙𝐼3
8 𝑚𝑐

𝑎𝑙𝑙𝑍2 19 𝑚𝑐
𝑎𝑙𝑙𝑍

′
2 30 𝑓

𝑎𝑙𝑙𝑍0 41 𝑙𝑐
𝑎𝑥𝑍

′
1

9 𝑚𝑐
𝑎𝑙𝑙𝑆0 20 𝑓

𝑎𝑙𝑙𝑆1 31 𝑓
𝑎𝑙𝑙𝜒1

10 𝑚𝑐
𝑎𝑙𝑙𝜒0 21 𝑓

𝑎𝑙𝑙𝑆2 32 𝑓
𝑎𝑙𝑙𝑆3

11 𝛼𝐻𝐹 22 𝑚𝑐
𝑎𝑙𝑙𝑆

′
2 33 𝑓

𝑎𝑙𝑙𝜒2
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Table B.15: Features included in the randF-26 descriptor set.

1 𝑚𝑐
𝑎𝑙𝑙𝜒

′
1 11 𝛼𝐻𝐹 21 𝑓

𝑎𝑙𝑙𝑆2

2 ox 12 𝑙𝑐
𝑒𝑞𝑍

′
1 22 𝑚𝑐

𝑎𝑙𝑙𝑆
′
2

3 𝑚𝑐
𝑎𝑙𝑙𝑍

′
1 13 𝑙𝑐

𝑒𝑞𝜒
′
1 23 𝑓

𝑎𝑙𝑙𝜒3

4 𝑚𝑐
𝑎𝑙𝑙𝑍1 14 𝑙𝑐

𝑒𝑞𝑍0 24 𝑓
𝑎𝑙𝑙𝑆0

5 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1 15 𝑙𝑐

𝑒𝑞𝜒0 25 𝑚𝑐
𝑎𝑙𝑙𝜒2

6 𝑚𝑐
𝑎𝑙𝑙𝑆1 16 𝑚𝑐

𝑎𝑙𝑙𝜒1 26 𝑓
𝑎𝑙𝑙𝑍1

7 𝑚𝑐
𝑎𝑙𝑙𝑍0 17 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

8 𝑚𝑐
𝑎𝑙𝑙𝑍2 18 𝑚𝑐

𝑎𝑙𝑙𝑆2

9 𝑚𝑐
𝑎𝑙𝑙𝑆0 19 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2

10 𝑚𝑐
𝑎𝑙𝑙𝜒0 20 𝑓

𝑎𝑙𝑙𝑆1

Table B.16: KRR error metrics for different random forest importance cutoffs on spin
splitting energy in kcal/mol, showing test mean unsigned (MUE) and test and train root
mean square (RMSE) errors.

cuttoff dim train RMSE test RMSE test MUE
1.0% randF-41 41 0.40 1.87 1.01
1.5% randF-34 34 1.19 2.15 1.30
2.0% randF-26 26 1.18 2.12 1.28
3.0% randF-18 18 4.68 5.80 3.10
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Figure B-12: Test and train KRR error distributions in kcal/mol for predicting spin splitting
energy with different feature sets, indicating the maximum absolute test error for each
feature set. Blue dashed lines indicate training errors and red lines indicate test errors.

407



Table B.17: Features included in the common set of all descriptors selected by the feature
selection methods, RAC-12.

1 ox 7 𝑚𝑐
𝑎𝑙𝑙𝑆0

2 𝛼𝐻𝐹 8 𝑓
𝑎𝑙𝑙𝜒2

3 𝑙𝑐
𝑎𝑥𝜒0 9 𝑙𝑐

𝑎𝑥𝑍
′
1

4 𝑚𝑐
𝑎𝑙𝑙𝜒0 10 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1

5 𝑚𝑐
𝑎𝑙𝑙𝑍0 11 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

6 𝑚𝑐
𝑎𝑙𝑙𝑍1 12 𝑚𝑐

𝑎𝑙𝑙𝑆
′
1

Table B.18: Features in the proximal-only PROX-23 set.

1 ox 9 𝑙𝑐
𝑎𝑥𝑇 0 17 𝑚𝑐

𝑎𝑙𝑙𝑇 1

2 𝛼𝐻𝐹 10 𝑙𝑐
𝑒𝑞𝑇 0 18 𝑚𝑐

𝑎𝑙𝑙𝑆0

3 ax. denticity 11 𝑙𝑐
𝑎𝑥𝑆0 19 𝑚𝑐

𝑎𝑙𝑙𝑆1

4 eq. denticity 12 𝑙𝑐
𝑒𝑞𝑆0 20 𝑚𝑐

𝑎𝑙𝑙𝑇
′
1

5 𝑙𝑐
𝑎𝑥𝜒0 13 𝑚𝑐

𝑎𝑙𝑙𝜒0 21 𝑚𝑐
𝑎𝑙𝑙𝜒

′
1

6 𝑙𝑐
𝑒𝑞𝜒0 14 𝑚𝑐

𝑎𝑙𝑙𝜒1 22 𝑚𝑐
𝑎𝑙𝑙𝑍

′
1

7 𝑙𝑐
𝑎𝑥𝑍0 15 𝑚𝑐

𝑎𝑙𝑙𝑍0 23 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1

8 𝑙𝑐
𝑒𝑞𝑍0 16 𝑚𝑐

𝑎𝑙𝑙𝑍1
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Table B.19: Features in the bond-length-selected LASSO-83B descriptor set.

1 ox 22 𝑙𝑐
𝑎𝑥𝑆1 43 𝑓

𝑎𝑙𝑙𝑐ℎ𝑖2 64 𝑙𝑐
𝑎𝑥𝑇

′
3

2 𝛼𝐻𝐹 23 𝑙𝑐
𝑒𝑞𝜒0 44 𝑓

𝑎𝑙𝑙𝜒3 65 𝑙𝑐
𝑎𝑥𝑆

′
3

3 ax. denticity 24 𝑙𝑐
𝑒𝑞𝜒1 45 𝑓

𝑎𝑙𝑙𝑍0 66 𝑙𝑐
𝑒𝑞𝜒

′
1

4 eq. denticity 25 𝑙𝑐
𝑒𝑞𝑍0 46 𝑓

𝑎𝑙𝑙𝑍1 67 𝑙𝑐
𝑒𝑞𝜒

′
3

5 𝑓
𝑎𝑥𝑍0 26 𝑙𝑐

𝑒𝑞𝑍1 47 𝑓
𝑎𝑙𝑙𝑍2 68 𝑙𝑐

𝑒𝑞𝑍
′
2

6 𝑓
𝑎𝑥𝑍2 27 𝑙𝑐

𝑒𝑞𝑍2 48 𝑓
𝑎𝑙𝑙𝑍3 69 𝑙𝑐

𝑒𝑞𝑇
′
2

7 𝑓
𝑎𝑥𝐼0 28 𝑙𝑐

𝑒𝑞𝐼1 49 𝑓
𝑎𝑙𝑙𝐼0 70 𝑙𝑐

𝑒𝑞𝑇
′
3

8 𝑓
𝑎𝑥𝐼3 29 𝑙𝑐

𝑒𝑞𝑇 0 50 𝑓
𝑎𝑙𝑙𝐼1 71 𝑙𝑐

𝑒𝑞𝑆
′
1

9 𝑓
𝑎𝑥𝑇 3 30 𝑙𝑐

𝑒𝑞𝑇 3 51 𝑓
𝑎𝑙𝑙𝐼2 72 𝑙𝑐

𝑒𝑞𝑆
′
2

10 𝑓
𝑒𝑞𝜒0 31 𝑙𝑐

𝑒𝑞𝑆1 52 𝑓
𝑎𝑙𝑙𝐼3 73 𝑙𝑐

𝑒𝑞𝑆
′
3

11 𝑓
𝑒𝑞𝜒1 32 𝑙𝑐

𝑒𝑞𝑆2 53 𝑓
𝑎𝑙𝑙𝑇 2 74 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

12 𝑓
𝑒𝑞𝜒2 33 𝑚𝑐

𝑎𝑙𝑙𝜒0 54 𝑓
𝑎𝑙𝑙𝑇 3 75 𝑚𝑐

𝑎𝑙𝑙𝜒
′
3

13 𝑓
𝑒𝑞𝜒3 34 𝑚𝑐

𝑎𝑙𝑙𝜒1 55 𝑓
𝑎𝑙𝑙𝑆0 76 𝑚𝑐

𝑎𝑙𝑙𝑍
′
1

14 𝑓
𝑒𝑞𝑍1 35 𝑚𝑐

𝑎𝑙𝑙𝜒2 56 𝑓
𝑎𝑙𝑙𝑆1 77 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2

15 𝑓
𝑒𝑞𝑍2 36 𝑚𝑐

𝑎𝑙𝑙𝜒3 57 𝑓
𝑎𝑙𝑙𝑆2 78 𝑚𝑐

𝑎𝑙𝑙𝑍
′
3

16 𝑓
𝑒𝑞𝑍3 37 𝑚𝑐

𝑎𝑙𝑙𝑍1 58 𝑓
𝑎𝑙𝑙𝑆3 79 𝑚𝑐

𝑎𝑙𝑙𝑇
′
1

17 𝑙𝑐
𝑎𝑥𝜒0 38 𝑚𝑐

𝑎𝑙𝑙𝑍2 59 𝑙𝑐
𝑎𝑥𝜒

′
1 80 𝑚𝑐

𝑎𝑙𝑙𝑇
′
2

18 𝑙𝑐
𝑎𝑥𝑍0 39 𝑚𝑐

𝑎𝑙𝑙𝑍3 60 𝑙𝑐
𝑎𝑥𝜒

′
2 81 𝑚𝑐

𝑎𝑙𝑙𝑆
′
1

19 𝑙𝑐
𝑎𝑥𝑍2 40 𝑚𝑐

𝑎𝑙𝑙𝑆0 61 𝑙𝑐
𝑎𝑥𝜒

′
3 82 𝑚𝑐

𝑎𝑙𝑙𝑆
′
2

20 𝑙𝑐
𝑎𝑥𝑇 0 41 𝑚𝑐

𝑎𝑙𝑙𝑆2 62 𝑙𝑐
𝑎𝑥𝑍

′
1 83 𝑚𝑐

𝑎𝑙𝑙𝑆
′
3

21 𝑙𝑐
𝑎𝑥𝑇 3 42 𝑓

𝑎𝑙𝑙𝜒0 63 𝑙𝑐
𝑎𝑥𝑇

′
2
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Table B.20: Features in the randF-49B descriptor set, which was obtained by adding 𝛼𝐻𝐹

to the randF-48B set obtained from random forest applied to bond length data in the
spin-splitting data set, as described in the main text.

1 𝑚𝑐
𝑎𝑙𝑙𝑍

′
1 14 𝑓

𝑎𝑙𝑙𝜒3 27 𝑓
𝑎𝑙𝑙𝜒0 40 𝑓

𝑎𝑙𝑙𝑍2

2 𝑚𝑐
𝑎𝑙𝑙𝑆

′
1 15 𝑚𝑐

𝑎𝑙𝑙𝑇
′
1 28 𝑚𝑐

𝑎𝑙𝑙𝑇 1 41 𝑙𝑐
𝑒𝑞𝑆1

3 𝑚𝑐
𝑎𝑙𝑙𝑍1 16 𝑚𝑐

𝑎𝑙𝑙𝜒2 29 𝑓
𝑎𝑙𝑙𝑆0 42 𝑚𝑐

𝑎𝑙𝑙𝜒
′
3

4 𝑚𝑐
𝑎𝑙𝑙𝑍0 17 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2 30 𝑚𝑐

𝑎𝑙𝑙𝜒1 43 𝑓
𝑎𝑙𝑙𝑆3

5 𝑚𝑐
𝑎𝑙𝑙𝑆1 18 𝑓

𝑎𝑙𝑙𝑍0 31 𝑙𝑐
𝑎𝑥𝑇 1 44 𝑙𝑐

𝑎𝑥𝜒1

6 𝑚𝑐
𝑎𝑙𝑙𝑆

′
2 19 𝑙𝑐

𝑎𝑥𝜒
′
1 32 𝑙𝑐

𝑒𝑞𝑆0 45 𝑓
𝑎𝑙𝑙𝑆2

7 𝑚𝑐
𝑎𝑙𝑙𝜒0 20 𝑓

𝑎𝑙𝑙𝜒1 33 𝑙𝑐
𝑒𝑞𝜒0 46 𝑚𝑐

𝑎𝑙𝑙𝑍3

8 ox 21 𝑚𝑐
𝑎𝑙𝑙𝑍2 34 𝑙𝑐

𝑎𝑥𝑇 0 47 𝑙𝑐
𝑎𝑥𝑆

′
1

9 𝑚𝑐
𝑎𝑙𝑙𝑆0 22 𝑓

𝑎𝑙𝑙𝑍1 35 𝑓
𝑎𝑙𝑙𝜒2 48 𝑙𝑐

𝑎𝑥𝑍0

10 𝑚𝑐
𝑎𝑙𝑙𝑆2 23 𝑓

𝑎𝑙𝑙𝑍3 36 𝑓
𝑎𝑙𝑙𝑆1 49 𝛼𝐻𝐹

11 𝑚𝑐
𝑎𝑙𝑙𝜒

′
2 24 𝑙𝑐

𝑒𝑞𝑍0 37 𝑙𝑐
𝑎𝑥𝐼1

12 𝑚𝑐
𝑎𝑙𝑙𝑇

′
2 25 𝑚𝑐

𝑎𝑙𝑙𝐼2 38 𝑙𝑐
𝑒𝑞𝑆

′
2

13 𝑙𝑐
𝑎𝑥𝑍

′
1 26 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1 39 𝑚𝑐

𝑎𝑙𝑙𝑆3
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Figure B-13: Error response of elastic net model on bond lengths with varying 𝛼 parameter
from 0 (ridge regression) to 1 (LASSO). Colors indicate the number of selected variables at
each value.

410



D_mc.Z.1.all

alpha

lc.Z.0.ax
D_mc.S.3.all

0.001

0.010

0.100

features

in
cr

ea
se

 in
 M

S
E

1%
no

Figure B-14: Out-of-sample mean squared error (MSE) increase for bond length prediction
by the random forest model on spin-splitting data set in normalized units. Lines indicate
1% (red) cutoff values. The points in the selected for the randF-51B set described in
the main text (1% cutoff) are shown in green. Never-selected points are colored red. Some
representative features are labeled, including the fraction of Hartree-Fock exchange, labeled
as alpha.
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Table B.21: Neighborhoods for Fe(III)(pisc)6 in different feature sets. The neighborhood is
defined as the 10 closest structurally-unique complexes in the spin-splitting data set. These
complexes are sorted by Euclidean distance in the normalized feature space. Here, pisc =
phenyl isocyanide, tbuc = t-butylphenyl catecholate, phen = phenanthroline. Hartree-Fock
exchange re-sampling (i.e., the closest complex at any HF exchange value is shown once
but not more than once for more exchange values) and test/train partitioning is ignored in
this analysis (i.e., neighbors can come from test or train). The set of ten closest complexes
for randF-41 and randF-49B are identical and only have 2 minor order inversions (shown
in italics) for neighbors of comparable distance, while in six cases the order is unchanged
(indicated in bold). The set is largely different for RAC-12 and PROX-23, as described in
the main text.

randF-41 randF-49B
1 Co(3)_ax_pisc_eq_pisc 1.1 Co(3)_ax_pisc_eq_pisc 1.1
2 Ni(2)_ax_pisc_eq_pisc 3.0 Ni(2)_ax_pisc_eq_pisc 3.1
3 cr(2)_ax_pisc_eq_pisc 3.2 cr(2)_ax_pisc_eq_pisc 3.2
4 Mn(3)_ax_pisc_eq_pisc 4.5 Fe(3)_ax_NCS_eq_pisc 4.4
5 Fe(3)_ax_NCS_eq_pisc 4.7 Mn(3)_ax_pisc_eq_pisc 4.5
6 Fe(2)_ax_NCS_eq_pisc 5.1 Fe(2)_ax_NCS_eq_pisc 4.8
7 Fe(2)_ax_CN_eq_pisc 5.4 Fe(2)_ax_CN_eq_pisc 5.2
8 cr(2)_ax_NCS_eq_pisc 5.7 cr(2)_ax_NCS_eq_pisc 5.5
9 Fe(3)_ax_H2O_eq_pisc 6.2 Co(3)_ax_pisc_eq_tbuc 6.4
10 Co(3)_ax_pisc_eq_tbuc 6.6 Fe(3)_ax_H2O_eq_pisc 6.7

RAC-12 PROX-23
1 Co(3)_ax_pisc_eq_pisc 1.0 Fe(3)_ax_misc_eq_misc 0.0
2 Fe(3)_ax_NCS_eq_pisc 2.1 Fe(3)_ax_pisc_eq_pisc 0.0
3 Fe(2)_ax_CN_eq_pisc 2.5 Fe(3)_ax_CN_eq_CN 0.0
4 Co(3)_ax_pisc_eq_tbuc 2.7 Co(3)_ax_misc_eq_misc 1.1
5 Ni(2)_ax_pisc_eq_pisc 2.8 Co(3)_ax_CN_eq_CN 1.1
6 Fe(2)_ax_NCS_eq_pisc 2.9 Co(3)_ax_pisc_eq_pisc 1.1
7 cr(2)_ax_pisc_eq_pisc 3.0 Co(3)_ax_co_eq_co 1.1
8 Fe(3)_ax_phen_eq_phen 3.1 Fe(3)_ax_NCS_eq_pisc 1.5
9 Co(3)_ax_phen_eq_phen 3.2 Fe(2)_ax_co_eq_co 2.0
10 Co(2)_ax_pisc_eq_en 3.3 Fe(2)_ax_misc_eq_misc 2.0
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Text B.4: Prediction and feature selection for ionization potential

For ionization potential, a single outlier in the redox data set, a homoleptic Fe-
nitrogen complex with three bidentate 2-(4,5-dinitro-1H-imidazol-2-yl)pyridinyl lig-
ands from prior work (Figure B-19), skews predictions (Figure B-18 and Table B.24).
Eliminating this 2.0 eV IP underestimation reduces RAC-151 RMSE and MUE to
0.46 (3% error of the mean) and 0.35 eV (2% error of the mean), respectively, and
we exclude this outlier from any further gas phase IP discussion (Table B.24). Gas
phase IPs in this data set range from 2.3 to 20.6 eV with a mean of 14.4 eV. Compar-
ison of gas phase IP errors for feature subsets selected on spin-splitting (LASSO-28,
randF-41, and randF-26) reveals comparable RMSE performance of all three ( 0.57
eV), but better MUE performance for the smaller LASSO-28 and randF-26 sets at
around 0.4 eV. Random forest trained on IP data (suffix “I”) from the redox data
set retain 28 features (i.e., randF-28I). Again, we observe no improvement in using
generalized elastic net over LASSO (Figure B-15) and LASSO selects only 19 fea-
tures (LASSO-19I, Table B.22). Both of these ionization-potential trained feature
sets perform consistently with and without the outlier with RMSEs of ∼ 0.7 eV, but
are not competitive with the other sets once the outlier is removed from considera-
tion (Table B.24). The proximal-only PROX-23 feature sets produce 3x larger errors
than any of the other sets, suggesting relevance of non-local effects, while the poor
performance of the distal/middle focused randF-28I/LASSO-19I sets motivate the
inclusion of at least ∼ 25% proximal features (Figure B-17).

Table B.22: Features in the LASSO selected on ionization potential in redox data set,
LASSO-19I.

1 𝑓
𝑎𝑥𝜒0 11 𝑙𝑐

𝑎𝑥𝜒
′
3

2 𝑓
𝑒𝑞𝜒0 12 𝑙𝑐

𝑎𝑥𝑇
′
3

3 𝑙𝑐
𝑎𝑥𝐼3 13 𝑙𝑐

𝑎𝑥𝑆
′
1

4 𝑙𝑐
𝑒𝑞𝜒3 14 𝑙𝑐

𝑎𝑥𝑆
′
2

5 𝑙𝑐
𝑒𝑞𝐼3 15 𝑙𝑐

𝑎𝑥𝑆
′
3

6 𝑙𝑐
𝑒𝑞𝑆3 16 𝑙𝑐

𝑒𝑞𝑇
′
3

7 𝑚𝑐
𝑎𝑙𝑙𝑍0 17 𝑙𝑐

𝑒𝑞𝑆
′
1

8 𝑚𝑐
𝑎𝑙𝑙𝑍1 18 𝑙𝑐

𝑒𝑞𝑆
′
3

9 𝑓
𝑎𝑙𝑙𝜒0 19 𝑚𝑐

𝑎𝑙𝑙𝑆
′
1

10 𝑓
𝑎𝑙𝑙𝐼0
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Table B.23: Features in the random forest selected on ionization potential descriptor set,
randF-28I.

1 𝑓
𝑎𝑙𝑙𝜒1 11 𝑓

𝑎𝑙𝑙𝑇 1 21 𝑙𝑐
𝑒𝑞𝐼3

2 𝑓
𝑎𝑙𝑙𝜒0 12 𝑙𝑐

𝑒𝑞𝑇 1 22 𝑙𝑐
𝑒𝑞𝑇

′
2

3 𝑓
𝑎𝑙𝑙𝜒2 13 𝑙𝑐

𝑎𝑥𝑇 1 23 𝑙𝑐
𝑎𝑥𝑇

′
3

4 𝑓
𝑎𝑙𝑙𝑇 0 14 𝑓

𝑎𝑥𝜒0 24 𝑓
𝑎𝑙𝑙𝜒3

5 𝑚𝑐
𝑎𝑙𝑙𝑇 3 15 𝑓

𝑒𝑞𝜒0 25 𝑙𝑐
𝑒𝑞𝑆3

6 𝑓
𝑎𝑙𝑙𝐼0 16 𝑓

𝑎𝑙𝑙𝑇 3 26 𝑚𝑐
𝑎𝑙𝑙𝑍3

7 𝑓
𝑎𝑙𝑙𝐼2 17 𝑙𝑐

𝑎𝑥𝑇
′
2 27 𝑓

𝑎𝑙𝑙𝐼3
8 𝑓

𝑎𝑙𝑙𝐼1 18 𝑓
𝑎𝑙𝑙𝑆0 28 𝑚𝑐

𝑎𝑙𝑙𝑆3

9 𝑙𝑐
𝑎𝑥𝜒3 19 𝑙𝑐

𝑒𝑞𝑇
′
3

10 𝑙𝑐
𝑒𝑞𝜒3 20 𝑓

𝑎𝑙𝑙𝑆1

Table B.24: KRR train and test prediction error for ionization potential with variable sets
from spin-state splitting feature selection (LASSO-28, randF-41, and randF-26) including
the common set among all spin splitting feature selection methods (RAC-12), from redox-
based feature selection (LASSO-19I and randF-28I), and both the full set (RAC-155) and
the proximal-only subset (PROX-23). Train and test root mean-squared errors (RMSE)
and test mean unsigned errors (MUE) are reported in eV. Test set values are also given
once a single outlier is excluded.

train test test, excluding outlier
RMSE RMSE MUE RMSE MUE

RAC-155 0.25 0.53 0.38 0.46 0.35
LASSO-28 0.07 0.62 0.44 0.55 0.40
randF-41 0.80 0.64 0.48 0.57 0.44
randF-26 0.84 0.57 0.40 0.55 0.38
LASSO-19I 0.57 0.67 0.45 0.57 0.40
randF-28I 0.72 0.71 0.59 0.72 0.60
C-12 1.06 0.79 0.55 0.77 0.53
PROX-23 1.72 1.62 1.37 1.63 1.37
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Figure B-15: Error response of elastic net model on ionization potential with varying 𝛼
parameter from 0 (ridge regression) to 1 (LASSO). Colors indicate the number of selected
variables at each value.
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Figure B-16: Out-of-sample mean squared error (MSE) increase for ionization potential
prediction by random forest model on the redox data set in normalized units. Lines indicate
1% (red) cutoff values and corresponding points which correspond to randF-29I (green)
feature sets in the main text. Never-selected points are colored red. Some representative
features are labeled.
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Figure B-17: Fraction of selected descriptors that are proximal (red), middle (green), or
distal (blue), as defined in the main text and depicted in main text Figure 4-3. All subsets
are compared against a RAC-155 reference (dark red and green horizontal lines). The
normalized relative test set ionization potential MUE from a KRR model is shown in dark
grey for each subset, and the lowest test MUE is indicated with an asterisk. Sets are
sorted left to right with decreasing distal fraction: random forest on ionization potential
(rf29I), LASSO on ionization potential (L19I) or spin-splitting (L28), random forest on
spin-splitting (1%, rF41 or 2%, rF26), spin-splitting common set (C12), and proximal-only
(Prx23). HF exchange and oxidation state are not used in any models.
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Figure B-18: Histogram of prediction errors for RAC-155 on ionization (red) and redox
(blue) potentials in eV for an identical test set, as described in the main text.

Figure B-19: Outlier iron-nitrogen complex for ionization potential prediction but not redox
potential prediction.
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Figure B-20: Error response of elastic net model on redox potential with varying 𝛼 parame-
ter from 0 (ridge regression) to 1 (LASSO). Colors indicate the number of selected variables
at each value.

Table B.25: Features in the LASSO trained on redox potential descriptor set, LASSO-19G.

1 𝑙𝑐
𝑎𝑥𝐼3 11 𝑙𝑐

𝑎𝑥𝑆
′
1

2 𝑙𝑐
𝑒𝑞𝑍1 12 𝑙𝑐

𝑎𝑥𝑆
′
2

3 𝑙𝑐
𝑒𝑞𝐼3 13 𝑙𝑐

𝑎𝑥𝑆
′
3

4 𝑙𝑐
𝑒𝑞𝑆3 14 𝑙𝑐

𝑒𝑞𝜒
′
2

5 𝑚𝑐
𝑎𝑙𝑙𝑍0 15 𝑙𝑐

𝑒𝑞𝑆
′
1

6 𝑚𝑐
𝑎𝑙𝑙𝑆0 16 𝑙𝑐

𝑒𝑞𝑆
′
3

7 𝑚𝑐
𝑎𝑙𝑙𝑆1 17 𝑚𝑐

𝑎𝑙𝑙𝜒
′
2

8 𝑓
𝑎𝑙𝑙𝜒0 18 𝑚𝑐

𝑎𝑙𝑙𝑍
′
1

9 𝑓
𝑎𝑙𝑙𝐼0 19 𝑚𝑐

𝑎𝑙𝑙𝑆
′
2

10 𝑙𝑐
𝑎𝑥𝜒

′
3
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Figure B-21: Out-of-sample mean square error (MSE) increase for redox prediction by
random forest model on redox data set in normalized units. Lines indicate 1% (red) cutoff
values and corresponding points which correspond to randF-38G (green) feature sets in the
main text. Never-selected points are colored red. Some representative features are labeled.

Table B.26: Features in the random forest on redox potential data descriptor set, randF-
38G.

1 𝑓
𝑎𝑙𝑙𝜒2 11 𝑙𝑐

𝑒𝑞𝑇 1 21 𝑙𝑐
𝑒𝑞𝜒3 31 𝑙𝑐

𝑎𝑥𝑇
′
3

2 𝑓
𝑎𝑙𝑙𝐼3 12 𝑓

𝑎𝑙𝑙𝑇 3 22 𝑙𝑐
𝑒𝑞𝑍

′
2 32 𝑚𝑐

𝑎𝑙𝑙𝑍
′
2

3 𝑓
𝑎𝑙𝑙𝑇 2 13 𝑓

𝑎𝑙𝑙𝐼1 23 𝑚𝑐
𝑎𝑙𝑙𝑆2 33 𝑓

𝑎𝑙𝑙𝜒0

4 𝑓
𝑎𝑙𝑙𝜒1 14 𝑚𝑐

𝑎𝑙𝑙𝑇 2 24 𝑙𝑐
𝑎𝑥𝜒3 34 𝑚𝑐

𝑎𝑙𝑙𝜒
′
1

5 𝑚𝑐
𝑎𝑙𝑙𝑍

′
1 15 𝑙𝑐

𝑎𝑥𝑇 1 25 𝑚𝑐
𝑎𝑙𝑙𝑍2 35 𝑓

𝑎𝑙𝑙𝑍1

6 𝑓
𝑎𝑙𝑙𝑇 1 16 𝑙𝑐

𝑒𝑞𝑍3 26 𝑓
𝑒𝑞𝜒0 36 𝑙𝑐

𝑎𝑥𝑆3

7 𝑚𝑐
𝑎𝑙𝑙𝑍0 17 𝑓

𝑎𝑙𝑙𝑍0 27 𝑙𝑐
𝑒𝑞𝑍

′
1 37 𝑓

𝑒𝑞𝜒1

8 𝑓
𝑎𝑙𝑙𝜒3 18 𝑓

𝑎𝑙𝑙𝐼0 28 𝑚𝑐
𝑎𝑙𝑙𝑍1 38 𝑓

𝑎𝑙𝑙𝑍2

9 𝑓
𝑎𝑙𝑙𝑇 0 19 𝑙𝑐

𝑒𝑞𝑆3 29 𝑚𝑐
𝑎𝑙𝑙𝜒

′
2

10 𝑓
𝑎𝑙𝑙𝐼2 20 𝑙𝑐

𝑒𝑞𝑇
′
3 30 𝑚𝑐

𝑎𝑙𝑙𝑇 3
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Table B.27: Comparison of redox potential predictions using RAC-155 modeled by a one-
electron ionization from the ground state of the reduced species (GS), high-spin state of
the reduced species (HS), or low spin state of the reduced species (LS). Note the number
of points is different in each case owing to missing values from some high-spin structures.
Train and test partitions are divided to be roughly 80-20 in all cases and the GS set is
selected to be comparable in size to the HS or LS cases.

GS LS HS
train RMSE (eV) 0.23 0.16 0.29
test RMSE (eV) 0.41 0.46 0.35
test MUE (eV) 0.31 0.32 0.27

train size 148 157 143
test size 37 39 35

N

N

NH

N

N

NH

N

N

N
NH

N

N

8 9 23

Figure B-22: Three triazolyl-pyridine ligands from the redox data set with differ-
ent substituents and orientations: ligand 8 (SMILES:c1(nn[nH]c1)c1ncccc1C), ligand 9
(SMILES:c1(nn[nH]c1)c1nc(ccc1)C) and ligand 23 (SMILES:c1(cccc(n1)C)c1n[nH]cn1).
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Text B.5: Effect of triazolyl-pyridine substituents on similarity in feature sets

We calculated the Euclidean distance in normalized feature space between the com-
plexes with ligands 8, 9 and 23 (Figure B-22) and determined the nearest-neighbors
for ligand 9 complex with randF-26, randF-41, and randF-38G. These ligand 8, 9,
and 23 complexes have redox potentials of 5.5 eV, 6.1 eV, and 6.0 eV, respectively.
Using randF-41 or randF-26, the nearest neighbor to the ligand 9 complex is the lig-
and 8 complex, with a distance of 0.38 and 0.03 for randF-26, whereas the complex
with ligand 23 is at a distance of 1.24 or 0.93 under randF-26. With randF-38G, the
nearest neighbor to ligand 9 is ligand 23, with the 9–23 distance being 1.11 compared
to the 8–9 distance ∼ 4.8. This large difference in intercomplex distances is caused
by the distal metal-centered topological descriptors in randF-38G that relate ligand
9 and ligand 23 complexes by the position of the substituent.

Figure B-23: Schematic of relative proximity and electronic (blue) or topological (yellow)
of feature sets on an iron-porphyrin complex. Feature sets are designated by their training
data: spin splitting (randF-41 and LASSO-28, top), bond length (randF-49B, bottom left),
and redox potential (randF-38G, bottom right). Atom sizes are scaled relative to the
number of descriptor dimensions involving that atom (divided into first shell, second shell
and other), scaled, with iron kept the same size in all sets. The color bar and absolute
percentages of electronic and topological descriptors, as defined in the main text, is shown
in inset right.
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Appendix C

Design of spin crossover materials

with ANNs and DFT
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Figure C-1: Structures of design space ligands. The metal-coordinating atom is surrounded
by a box in each case and ligands are ordered as in Table C.1.
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Table C.1: Design space of ligands used in current work. Ligands occurring in ANN training
data308 are shown in boldface. The ANN pool also included Cl− and SCN ligands which
are not included in the design space. Equivalent ligands are coded as "EC" with those
with the same letter in that column corresponding to cases that are seen as identical by the
MCDL-25 descriptor set.

index name dent. nat CA EC SMILES
1 pisc 1 25 C a [C][N]c1ccc(C(C)(C)C)cc1
2 misc 1 6 C [C][N]C
3 tbisc 1 15 C [C][N]C(C)(C)C
4 benzisc 1 16 C [C][N]Cc1ccccc1
5 phenisc 1 13 C a [C][N]c1ccccc1
6 pyridine 1 11 N c1ccncc1
7 chloropyr 1 11 N b c1c(cncc1)Cl
8 cyanopyr 1 12 N b c1(ccncc1)C# N
9 thiopyr 1 12 N b c1(ccncc1)S
10 cyanide 1 2 C [C]# N
11 carbonyl 1 2 C [C]=O
12 isothiocyanate 1 3 N [N]C#[S]
13 ammonia 1 4 N c N
14 water 1 3 O O
15 furan 1 9 O o1cccc1
16 methylamine 1 7 N c CN
17 cat 2 12 O d [O]c1c(cccc1)[O]
18 mec 2 15 O d [O]c1c(cc(cc1)C)[O]
19 tbuc 2 24 O d [O]c1c(cc(C(C)(C)C)cc1)[O]
20 bpy 2 20 N n1ccccc1c1ncccc1
21 phosacidbpy 2 30 N e n1ccc(cc1c1nccc(c1)P(=O)(O)O)P(=O)(O)O
22 aceticacidbpy 2 32 N e n1ccc(cc1c1nccc(c1)CC(=O)O)CC(=O)O
23 ethbpy 2 32 N e n1ccc(cc1c1nccc(c1)CC)CC
24 mebpy 2 26 N e n1ccc(cc1c1nccc(c1)C)C
25 diaminomethyl 2 7 N [NH]C[NH]
26 sulfacidbpy 2 28 N e n1ccc(cc1c1nccc(c1)S(=O)(=O)O)S(=O)(=O)O
27 phen 2 22 N c1cc2ccc3cccnc3c2nc1
28 en 2 12 N NCCN
29 acac 2 14 O O=C(C)[CH]C(=O)C
30 ox 2 6 O C(=O)([O])C(=O)[O]
31 porph 4 36 N f N1C2=CC3=NC(=CC4=CC=C(N4)C=C5C=CC

(=N5)C=C1C=C2)C=C3
32 cyanoaceticporph 4 52 N f N1C2C=CC1=C(c1[n]c(cc1)C=C1N=C(C(

=c3[n]c(=C2)cc3)C=C(C(=O)O)C#
N)C=C1)C=C(C(=O)O)C#N
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Table C.2: Allowed ligand combinations.

class allowed ax allowed eq total
monodentates 16 16 256
bidentates 14 14 196
monodenate ax. +
bidentate eq.

16 14 224

monodenate ax. +
tetradentate eq.

16 2 32

Table C.3: Spin multiplicities for each metal and oxidation state.

M(II) spin M(III) spin

Cr
LS 3 2
HS 5 4

Mn
LS 2 3
HS 6 5

Fe
LS 1 2
HS 5 6

Co
LS 2 1
HS 4 5
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Figure C-2: Response of fitness function 𝐹𝑠(𝑥) to changing splitting energy, Δ𝐸H-L for
different values of the parameter 𝑝Δ𝐸H-L

. The default value 𝑝Δ𝐸H-L
= 15 is shown in black.
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Text C.1: Standard GA parameters

The following conditions were used for the 50 repeats of ANN-GA under each control condition as
well as the DFT-SP-GA:
A pool size of 20, which are chosen randomly in each repeat run by randomly selecting a metal,
oxidation state and ligand from their respective pools with equal probability. Incompatible ligand
combinations (e.g. porphyrin and a bidentate) are rejected, as are duplicates, and this is continued
until the pool is full. This pool is size affects the maximum number of simultaneous evaluations
needed and hence the parallelizability of the run, and is similar to that used in Ref14 and in the
typical range for evolutionary algorithms514.
The GA was run for 21 generations. This is considerably shorter than Ref.14, where 200 gen-
erations are used. However, we observe that the average diversity of complexes in the pool falls
sharply by this stage (see Figure 5-2, main text), which is possibly due to the much smaller design
space used (∼ 5600 compared to 1.3× 106 in Ref.14).Therefore, we conduct more repeat runs with
random starting populations instead of running longer generations which will only conduct localized
candidate searches which can be sparse.
A mutation probability of 0.15 was used. This is on the high end of the range tested in Ref.14

and higher than the recommendations in Ref.514. The general impact of mutation rate is to drive
exploration of the design space at the expense of fitness515, but again our choice is motivated by
the practical observation that high fitness and low diversity situations arise rapidly in this design
space (see the main text Figure 5-2).
5 crossovers where used, meaning that at most 25% of the pool at each stage are combinations of
parents, a similar ratio to Ref.14. The split and distance parameters ( 𝑝ΔEH−L and 𝑝𝑑 in Equations
C.1 and C.2) are set to 15 kcal/mol and 1.0 respectively:

𝐹𝑠(𝑥) := exp

[︃
−
(︂
Δ𝐸H-L(𝑥)

𝑝Δ𝐸H-L

)︂2
]︃

(C.1)

This function depends only a parameter 𝑝Δ𝐸H-L
, which determines how aggressively the fitness value

decays as |Δ𝐸H-L| increases (see Figure C-2). We take a default value of 𝑝Δ𝐸H-L
= 15 kcal/mol.

In our modified form of (C.1), the splitting + distance fitness function:

𝐹𝑠+𝑑(𝑥) := exp

[︃
−
(︂
Δ𝐸H-L(𝑥)

𝑝Δ𝐸H-L

)︂2
]︃
exp

[︃
−
(︂
𝑑(𝑥)

𝑝𝑑

)︂2
]︃

(C.2)

we set 𝑝𝑑 = 1 by default. Since our original publication308, we have changed from a [0, 1] descrip-
tor normalization (dividing by the maximum value) to a normalization to unit variance, meaning
descriptors are divided by the standard deviation of that descriptor on training data. This change
alters the scale of the normalized distances, so we apply a constant scaling factor of 3 to all distances
in order to better match our previous scale.
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Algorithm C.1: Genetic algorithm optimization

Algorithm 1 Basic Genetic Algorithm based on based on14

Require: 𝑥 ∈ 𝑋 are possible allowed complexes, 𝐹 (𝑥) → [0, 1] fitness function,
𝑁𝑔𝑒𝑛, 𝑁𝑝𝑜𝑜𝑙, 𝑁𝑐𝑟𝑜𝑠𝑠 ∈ N0, 𝑝𝑚𝑢𝑡 ∈ [0, 1]

1: 𝑋𝑝𝑜𝑜𝑙 ← 𝑁𝑝𝑜𝑜𝑙 random combinations 𝑥𝑖, 𝑓𝑖 ← 𝐹 (𝑥𝑖), 𝑖 = 0
2: while 𝑖 ≤ 𝑁𝑔𝑒𝑛 do
3: 𝑋𝑠𝑒𝑙𝑒𝑐𝑡 ← ∅
4: while |𝑋𝑠𝑒𝑙𝑒𝑐𝑡| ≤ |𝑋𝑝𝑜𝑜𝑙| do
5: choose random 𝑥𝑖 ∈ 𝑋𝑝𝑜𝑜𝑙, 𝜂 ← 𝒰 (0, 1)
6: if 𝑓𝑖 ≥ 𝜂 then
7: 𝑋𝑠𝑒𝑙𝑒𝑐𝑡 ← 𝑋𝑠𝑒𝑙𝑒𝑐𝑡 ∩ 𝑥𝑖

8: end if
9: end while
10: for 𝑗 = 1 to 𝑁𝑐𝑟𝑜𝑠𝑠 do
11: choose random 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑠𝑒𝑙𝑒𝑐𝑡, and perform crossover operation
12: end for
13: for 𝑗 = 1 to 𝑁𝑝𝑜𝑜𝑙 do
14: 𝜂 ← 𝒰 (0, 1)
15: if 𝑝𝑚𝑢𝑡 ≥ 𝜂 then
16: perform mutation operation 𝑥𝑗

17: end if
18: end for
19: 𝑓𝑖 ← 𝐹 (𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋𝑠𝑒𝑙𝑒𝑐

20: 𝑋𝑝𝑜𝑜𝑙 ← fittest 𝑁𝑝𝑜𝑜𝑙 from 𝑋𝑝𝑜𝑜𝑙 ∩𝑋𝑠𝑒𝑙𝑒𝑐𝑡

21: end while
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Text C.2: Timing information for DFT and ANN

ANN Timing: The combinatorial design space of 5664 complexes (11328 geometries) is amenable
to full enumeration, which took 7.25 hours (2.3 secs/geometry) using molSimplify on a standard
workstation. The main component of the run time is the constrained force field optimization of
each complex. A typical GA run requires 40x2.3s steps to start followed by additional runs at each
generation, producing a usual ANN-GA runtime of around 5 minutes total.
DFT Timing: All DFT timing data is collected on local computing resources, with DFT calculations
conducted on single NVidia Geforce 970 GTX consumer-grade GPU.
The mean time to complete one DFT-SP evaluation is∼ 1.0 hours (Figure C-8), and if all evaluations
took the mean time one SP-GA run would complete in 21 hours assuming sufficient parallel resources
(40 GPUs peak, being one dedicated GPU for running the high and low spin geometry optimization
calculations in parallel). However, we observe that the mean time to complete one SP-GA in
practice is ∼ 100 hours (Figure C-10) because each step is limited by the slowest calculation in that
generation, requiring 100

21 ≈ 5 hours per GA generation. Based on the mean run time, evaluation
of the full design space at the SP level would require ∼ 460 GPU-days.
Based on a mean time of 13 hours per DFT geometry optimization (GO, Figure C-9), one GA
of 21 generations would require ≈ 11 days based on DFT geometry optimizations with sufficient
parallel resources (40 GPUs peak as above). However, as above the SP-GA runs take 5

1.5 = 3.3

times longer than expected due to the long tail in run times (Figure C-8). Assuming the same
scaling applies to geometry optimizations, GO-GA runs would take 33 days with optimal parallel
resources. In practice adaptations could be made to GA algorithm to prevent these bottlenecks but
even removing the dead-time waiting entirely the computational costs of geometry optimizations
remain prohibitively expensive. Conducting geometry optimizations on the full design space based
on a mean time would require ∼ 6000 GPU-days.
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Text C.3: Explanation of mAD syntax

All of the genetic algorithms presented in this work were executed by molSimplify Automatic
Design (mAD) https://github.com/hjkgrp/AutomaticDesign, an open source python module
that uses molSimplify(https://github.com/hjkgrp/molSimplify) to conduct inorganic molec-
ular design. The only requirement to use mAD with the ANN model is a working molSimplify
installation.
mAD runs require two steps: run creation using the -new command and run execution using the
-resume command. A default instance of the neural network guided genetic algorithm can be run
as follows:

$ mad -new

$ mad -resume GA_run -reps 21

This will perform the default 21 generations of evolution using the ligands list used in this work along
with the default parameters given in Text C.1 including both control types, and should complete in
5-7 minutes on a standard workstation. The parameters of the run can be extensively customized
and run parameters are stored in an input file that can be passed to mAD using -new. mAD
can also create, submit and monitor TeraChem DFT jobs on remote resources. Full instructions
are available in the readme file https://github.com/hjkgrp/AutomaticDesign/blob/master/

molSimplifyAD/readme.docx .
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Figure C-3: Number of unique complexes sampled during 50 repeats of a 21-generation GA
using an ANN under different control schemes.
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Figure C-4: 2D histogram showing the density of points in the full space partitioned by
ANN-predicted spin splitting energy and distance to nearest training point (the frequency
of complexes in each bin are shown in gray squares), with initial, middle and final retained
complexes over 50 repeats of the GA with ‘both’ control shown in increasingly opaque
circles for generations 0, 10 and 20 in blue, purple, and red, respectively. The size of the
circles indicates the frequency at which a given point appears in the retained set.

Table C.4: Number of complexes and hits (points with |ΔEH−L(𝐴𝑁𝑁)| ≤ 5 and dist
∈ [0.3, 1]) sampled or missed during 50 repeats of the ANN-GA using different control
modes

complexes sampled hits sampled % hits missed
both 3297 372 21.5
dist 2639 300 36.7
div 3400 379 20.0
none 2794 327 31.0
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Figure C-5: Number of unique complexes sampled during 50 repeats of a 21-generation GA
using an ANN under different control schemes
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Figure C-6: Number of complexes explored by 50 repeats of the ANN-GA shown distributed
by predicted splitting energy (top row) and distance (bottom row), for no control (left),
distance control (middle) and diversity control (right). Both controls are shown in the main
text. Sampled complexes are shown in blue, unsampled compounds in blue, and unsampled
hits (points with |ΔEANNH−L | ≤ 5 and dist ∈ [0.3, 1]) are marked in red.
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Text C.4: Dimensionality reduction with t-SNE

In order to plot how the predicted spin splitting energy and distance to training
parameters vary throughout the ∼ 5600 element design space, we describe the com-
plexes with a fully continuous 41-descriptor set previously shown to be comparable
in nature to the MCDL-25 set511. To visualize this space, we use t-stochastic net-
work embedding528 (t-SNE), a visualization technique that attempts to preserve the
distribution of pairwise distances in the full space in a 2D representation. We use
a perplexity value of 20, but the result is not sensitive to small (5±) perturbations
about this value. The t-SNE assigns each complex a unique set of coordinates in
arbitrary units based on structure alone, and we color these points by predicted
splitting energy and use linear smoothing to draw the surface. In order to represent
uncertainty, as measured by the distance to training data, we superimpose increas-
ingly large black regions set to 10% opacity corresponding to distances greater than
0.8 to 1.5 in 0.1 increments. Convex hulls are determined based on the 2D t-SNE
representation using the R function chull, and consist of minimal linear enclosures
of all points with only the specific ligand class.
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Table C.5: Comparison of ANN predictions (ANN) and DFT energies on initial geometries
(single points, SP) or optimized geometries (GO) all at the B3LYP/LACVP* level of theory.
Two thermochemical calculations did not converge and are marked with ‘-’.

metal ox ax. lig. eq. lig. Δ𝐸H-L (kcal/mol) Δ𝐺H-L

(kcal/mol)
dist. to
train

GO SP ANN GO
Cr 2 2 13 -3.52 -2.45 0.51 -1.03 0.72
Mn 3 20 28 -1.22 75.17 -0.26 -3.70 0.47
Mn 3 24 28 -0.72 15.60 -0.26 -4.54 0.47
Mn 3 22 22 -0.65 14.81 -0.26 -5.81 0.47
Mn 3 16 5 9.51 12.64 -0.64 10.46 0.66
Cr 2 2 16 -4.76 -17.75 0.51 -7.72 0.72
Mn 3 13 3 5.40 10.44 -2.10 14.07 0.57
Mn 3 13 2 5.63 12.21 -1.23 11.91 0.62
Mn 3 21 28 -1.13 14.47 -0.26 -4.69 0.47
Fe 2 27 28 -2.76 2.03 0.81 -3.25 0.42
Co 2 27 20 -6.44 -1.32 -2.40 -10.65 0.09
Co 3 14 14 2.45 -9.52 0.79 12.74 0.17
Mn 3 16 3 9.65 13.31 -2.10 6.22 0.57
Mn 3 8 3 8.59 80.27 0.91 5.23 0.88
Cr 2 3 16 -5.62 -17.51 -0.87 -7.83 0.67
Cr 2 30 29 -3.22 15.12 0.10 -1.53 0.51
Mn 3 27 27 -0.60 16.40 1.05 -4.39 0.00
Mn 3 13 5 6.14 15.34 -0.64 14.38 0.66
Co 2 2 7 -1.69 -141.38 0.21 -1.48 0.91
Mn 3 13 4 6.03 26.72 0.60 18.73 0.78
Co 2 3 8 -1.23 37.03 -0.32 -0.98 0.91
Mn 3 23 28 -0.46 13.22 -0.26 -2.37 0.47
Co 2 3 28 0.54 -100.07 1.62 0.08 0.14
Mn 2 2 11 4.69 4.85 1.56 1.43 0.48
Co 2 14 28 1.35 -13.59 0.81 -0.53 0.00
Co 2 15 23 -1.88 -87.51 -2.29 0.32 0.54
Cr 2 1 9 -3.42 5.53 -1.90 -10.69 0.72
Fe 3 11 12 9.08 -4.58 4.67 1.26 0.94
Mn 2 11 5 20.94 17.29 2.02 11.54 0.50
Mn 3 8 2 7.93 79.01 2.90 9.04 0.91
Fe 3 12 20 -3.01 -71.83 4.22 0.38 0.87
Fe 3 1 8 4.01 -29.62 3.07 19.32 0.89
Mn 3 6 2 7.13 90.77 2.90 8.84 0.91
Cr 2 5 7 -2.75 13.08 -2.25 - 0.72
Fe 3 3 24 14.69 -44.10 2.78 9.38 0.68
Fe 3 1 24 12.40 -38.24 3.78 14.11 0.77
Fe 2 2 12 2.11 -36.53 -2.55 8.37 0.56
Mn 3 6 5 10.72 28.60 4.61 4.04 0.94
Mn 3 6 1 7.68 35.72 4.61 - 0.94
Cr 2 19 29 -4.13 13.46 0.39 -3.81 0.63
Fe 2 3 29 -1.29 -0.58 2.70 -7.12 0.51
Co 2 13 2 7.61 -17.04 -2.76 5.43 0.81
Cr 2 1 13 -3.41 -3.08 1.23 -1.97 0.76
Co 2 4 29 -5.81 47.55 -3.89 -9.83 0.93
Fe 2 5 16 3.59 -82.41 4.93 3.27 0.79
Co 2 16 29 -9.26 -34.21 -0.38 -12.87 0.81
Mn 3 12 20 -5.24 47.39 -4.20 -5.09 0.84
Fe 3 12 24 -1.67 -0.11 4.22 -2.04 0.87
Co 2 15 16 0.55 -97.45 -4.76 1.93 0.53
Cr 2 4 16 -2.49 -21.07 1.36 -5.45 0.81
Co 2 2 29 -6.38 -45.64 -0.75 -10.54 0.84
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Figure C-7: Plot of error in ANN predictions with respect to DFT optimization compared
to distance to closest training point for 51 molecule subset. Isocyanides are shaded in a
gray square, excluding the single Mn(II) outlier.
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Figure C-8: Wall time in hours (left) and cumulative completion rates (right) for all DFT
single point energies conducted during 10 repeat runs of 21 generations of the genetic
algorithm. The mean time for high- and low-spin complexes are indicated with diamonds,
the median time is indicated by horizontal bar and the interquartile range is boxed (left)
while the mean overall time is indicated with a dashed vertical line (right)
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Figure C-9: Wall time in hours (left) and cumulative completion rates (right) for all DFT
geometry optimizations conducted on 51 leads from the ANN-driven genetic algorithm.
The mean time for high- and low-spin complexes are indicated with diamonds, while the
median time is indicated by horizontal bar and the interquartile range is boxed (left) while
the mean overall time is indicated with a dashed vertical line (right)
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Figure C-10: Wall time in hours for 10 repeat runs of 21 generations of the genetic algorithm
based on DFT-SP evaluation . The median time of 76 hours is indicated with a bar. The
interquartile range is boxed.
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Table C.6: Evaluation of DFT-SP-GA hits with full geometry optimization

metal ox ax. Lig. eq. lig. Δ𝐸H−L (kcal/mol) error (kcal/mol)
SP GO

Cr 2 9 24 -3.69 -11.06 7.38
Co 3 11 12 1.00 0.12 0.89
Fe 3 11 30 -1.91 4.92 -6.83
Fe 3 10 29 2.47 9.77 -7.30
Fe 3 10 28 -1.54 25.07 -26.61
Fe 3 2 12 -1.63 3.67 -5.30
Fe 3 14 30 -0.40 -4.98 4.58
Co 2 23 22 -0.52 -5.58 5.06
Fe 3 7 3 -0.16 26.96 -27.13
Co 3 12 21 1.21 -0.35 1.56
Co 3 12 19 -1.30 -10.17 8.87
Cr 2 9 27 -1.65 -10.20 8.55
Co 3 10 8 -1.57 44.63 -46.20
Co 3 12 7 0.20 7.32 -7.12
Fe 3 7 11 -1.89 11.87 -13.76
Co 2 24 20 -0.69 -6.05 5.36
Co 3 12 12 -0.94 6.82 -7.76
Fe 3 6 1 -0.63 18.83 -19.46
Fe 3 5 13 1.66 4.03 -2.37
Cr 2 4 24 -2.36 0.16 -2.52
Fe 3 3 12 -2.68 4.01 -6.70
Mn 2 23 27 -0.65 -22.03 21.38
Co 2 14 3 1.02 12.72 -11.70
Cr 2 14 5 -2.14 -2.34 0.21
Cr 2 7 24 1.01 -5.84 6.85
Fe 3 7 5 0.24 20.40 -20.16
Fe 3 14 31 -1.26 6.18 -7.45
Fe 3 1 13 0.48 4.05 -3.57
Fe 3 30 30 1.66 -11.79 13.44
Fe 3 2 13 0.09 13.85 -13.76
Cr 2 9 28 2.15 -11.13 13.27
Fe 3 16 1 -1.92 18.64 -20.56
Fe 3 8 1 1.69 18.00 -16.31
Cr 2 5 6 1.79 -3.91 5.70
Cr 2 14 1 1.06 -2.25 3.31
Mn 2 29 27 -0.27 -23.67 23.40
Co 3 9 22 2.59 8.66 -6.07
Co 3 12 17 -2.75 -12.29 9.55
Co 2 10 3 2.05 23.38 -21.34
Fe 3 5 12 -0.34 3.92 -4.27
Co 3 14 16 1.82 24.61 -22.79
Co 2 27 22 -0.57 -5.25 4.68
Fe 3 7 4 -1.22 17.74 -18.96

MAE (kcal/mol) 11.49

437



cyanide
misc
tbisc

benzisc
phenisc

pisc
carbonyl
ammonia

methylamine
isothiocyanate

pyridine
chloropyridine
cyanopyridine
thiopyridine

bipy
mebipy
ethbipy

aceticacidbpy
phosacidbipy
sulfacidbipy

phen
en

diaminomethyl
porphyrin

cyan.acet.porph.
water
furan
cat

mec
tbuc
acac
ox

0.000 0.025 0.050 0.075 0.100
frequency in final generation

% HFX
15
20
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Table C.7: Evaluation of high-spin to low-spin splitting with different basis sets. In all
cases, metal atoms use the LANL2DZ effective core potentials.

metal ox eq. lig. ax. lig. Δ𝐸H−L (kcal/mol) absolute change (kcal/mol)
6-31g* 6-31g+*

Cr 2 13 2 -3.52 -4.61 1.08
Co 2 28 14 1.35 1.91 0.56
Mn 3 28 20 -1.22 -2.14 0.92
Mn 3 28 24 -0.72 -1.47 0.74
Mn 2 11 2 4.69 4.22 0.47
Mn 3 28 23 -0.46 -1.21 0.75
Mn 3 5 16 9.51 10.76 1.26
Cr 2 16 2 -4.76 -5.76 1.01
Mn 3 2 8 7.93 6.97 0.96
Mn 3 2 13 5.63 6.57 0.95
Mn 3 28 21 -1.13 -1.11 0.02
Fe 2 28 27 -2.76 -3.62 0.85
Co 3 14 14 2.45 0.51 1.94
Co 2 28 3 0.54 -3.59 4.13
Mn 3 3 16 9.65 7.99 1.65
Cr 2 29 30 -3.22 -0.03 3.19
Mn 3 3 13 5.40 4.60 0.80
Mn 3 2 6 7.13 6.72 0.41

mean abs. difference (kcal/mol) 1.21
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Appendix D

Uncertainty and extrapolation of

ANNs for chemical discovery

441



Text D.1: Details of ensemble and mc-dropout

Ensembles: One common approach to assign uncertainty estimates to predictions from data-driven
models is to generate an ensemble of 𝐽 different models. The mean of the predictions of these
models is used as the predicted value at a new point and the variance in these predictions is used
as a metric for model confidence. If 𝑥* is a new trial point, and 𝜎𝑥* is the standard deviation
associated with this prediction, the ensemble prediction is given as:

¯̂𝑦(𝑥*) =
1

𝑛ens

𝑛ens∑︁
𝑗=1

𝑦𝑗(𝑥
*) (D.1)

with a variance of:

𝜎2
𝑥* =

1

𝑛ens

𝑛ens∑︁
𝑗=1

(︀
𝑦(𝑥*)− 𝑦𝑗(𝑥

*)
)︀2

(D.2)

The prediction mean could be expected to have lower generalization error with respect to individual
models. Typically, ensembles are generated by partitioning data to generate submodels, where
each is trained on distinct subsets of data. Detection of uncertain points with ensemble models
relies on the submodels being incorrect in different ways (i.e., high variance), which can occur
when the model is evaluated for molecules dissimilar to training examples, where the behavior is
only weakly constrained.

Monte-Carlo dropout: A lower cost framework for deriving uncertainty estimates for dropout
regularized neural networks has recently been suggested459 in analogy to Gaussian processes. In
practice, this entails running the model 𝐽 times with the dropout mask kept on, removing random
notes from the network each time. The average of these predictions are used as in the case with
ensembles. The predictive uncertainty is estimated from:

𝜎2
𝑥* =

1

𝐽

𝐽∑︁
𝑗=1

(︀
𝑦(𝑥*)− 𝑦𝑗(𝑥

*)
)︀2

+ 𝜏−1𝐼 (D.3)

This expression differs from the ensemble expression by also including a learned baseline uncertainty
term, 𝜏−1, which must be estimated from training data. In comparison to ensemble models, the
cost of this approach is lower because the model only needs to be trained once. For mc-dropout,
we determine a representative value of 𝜏 by maximizing the log predictive likelihood of the corre-
sponding GP based on the training data. This is a measure of how likely the observed data are
under the GP, and is approximated459 by

log 𝑝 (y (x𝑛) |x𝑛,X,Y) ≈ log

⎡⎣ 𝐽∑︁
𝑗=1

𝑒−
1
2 𝜏‖ỹ(x𝑛)−ỹ𝑗(x𝑛)‖2

2

⎤⎦− log 𝐽 − 1

2
log 2𝜋 − 1

2
log 𝜏−1 (D.4)

In the application here (i.e., for the fully connected spin splitting neural network), we have scalar
output and we use the training data to optimize equation D.4 with respect to 𝜏 numerically. We
use 𝐽 = 100 repeats, as in the network itself. The determined value of 𝜏 based on the training data
is 3.6× 108 in dimensionless units.

442



Table D.1: Ligand identity and occurrence among 654 unique metal-ligand combinations
in the inorganic complex training set. Occurrence sums over all instances of the ligand in
either axial site and the equatorial site. SMILES are given in the final column with the
connection atom(s) shown in red.

Ligand Cumulative total SMILES Charge Formula
1 misc 293 C[N]#[C] 0 C2H3N
2 water 292 O 0 H2O
3 carbonyl 275 CO 0 CO
4 pyr 267 c1ccncc1 0 C5H5N
5 furan 168 o1cccc1 0 C4H4O
6 ammonia 91 N 0 NH3

7 pisc 64 CC(C)(C)C1=CC=C(C=C1)[N]#[C] 0 (CH3)3CC6H4NC
8 isothiocyanate 57 [N-]=C=S -1 NCS–

9 cyanide 52 [C-]#N -1 CN–

10 en 42 NCCN 0 NCH2CH2N
11 acac 38 CC(=O)C=C(-O-)C -1 C5H8O

–
21

12 chloride 36 Cl -1 Cl–

13 phen 35 C1=CC2=CC=C3C=CC=NC3=C2N=C1 0 C12H8N2

14 ox 28 [O-]C(=O)C([O-])=O -2 C2O
2–
4

15 tbuc 27 CC(C)(C)C1=CC(=C([O-])C=C1)[O-
]

-2 (CH3)3CC6H3O
2–
2

16 bipy 26 C1ccnc(c1)c2ccccn2 0 C10H8N2

17 tbisc 22 [C]#[N]C(C)(C)C 0 (CH3)CCN
18 etesacac 21 O=C(C)/C(=C(\[O])/C)/CC(=O)OCC -1 C9H13O

–
41

19 cat 18 [O]c1c(cccc1)[O] -2 C6H4O
2–
2

20 methylamine 18 NC 0 NH2CH3

21 phenacac 18 C1=CC=C(C=C1)C(=O)C
C(=O)C2=CC=CC=C2

-1 (C6H5CO)2[CH]
–
1

22 phenisc 14 [C][N]c1ccccc1 0 C6H5NC
23 pyrrole 12 C1=C[N]C=C1 -1 C4H4N

–

24 cyanopyr 10 c1(ccncc1)C#N 0 NCC5H4N
25 benzisc 8 [C][N]Cc1ccccc1 0 C6H5CH2NC
26 mebpy 8 n1ccc(cc1c1nccc(c1)C)C 0 C12H12N2

27 porphyrin 7 [N-]1C2=CC3=NC(=CC4=CC=C([N-
]4) C=C5C=CC(=N5)C=C1C=C2)C=C3

-2 C20H12N
2–
4

28 ethbpy 4 n1ccc(cc1c1nccc(c1)CC)CC 0 C14H16N2

29 phosacidbpy 4 n1ccc(cc1c1nccc(c1)P(=O)(O)O)P(=O)
(O)O

0 C10P2O6H10

30 aceticacidbpy 2 n1ccc(cc1c1nccc(c1)CC(=O)O)CC(=O)O 0 C14H14O4N2

31 chloropyr 2 c1c(cncc1)Cl 0 ClC5H4N

32 mec 2 [O-]c1c(cc(cc1)C)[O-] 2- CH3C6H4O
2–
2

33 thiopyr 1 c1(cc|ncc1)S 0 SC5H4N
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Text D.2: Simulation details for inorganic complexes and CSD test set

In this work, we primarily use 1901 spin splitting energies from DFT data sets generated
over several prior works308,511,533,543 to train new machine learning models. We also
generate new DFT data on a 116-molecule CSD data set. We concisely summarize some
of the details of these efforts here but refer the reader to the original work for more detail.
788 of the compounds are from Ref.308, 286 of the compounds are from Ref.511, 19 of the
compounds are from Ref.543, 87 of the compounds had revised spin states first published
in Ref.533, and 721 of the compounds had not been previously published, including revised
spins for compounds from previous sets.
Despite originating from several original sources, a consistent workflow has been employed,
with distinctions noted as follows. The molSimplify181 toolkit was used to generate
octahedral transition metal complex structures from a pool of organic ligands common in
inorganic chemistry (listed in Table D.1) with enforced equatorial symmetry but allowing
up to two distinct axial ligands. DFT geometry optimizations were then carried out using
TeraChem105 with the B3LYP hybrid DFT functional, varying the fraction of Hartree-Fock
(HF) exchange from its default 20% value in 5% increments over the range of 0-30% HF
exchange. Thus, the 1901 data points corresponds to 564 unique chemical structures, with
additional repeats at varied exchange fractions. The LANL2DZ effective core potential
was employed for transition metals and heavy elements (i.e., Br) with the 6-31G* basis
for all other atoms. The effect of using a modest basis set, which enables larger data set
generation for ML models, was found to be limited in prior work on the relative energies
of interest482. The metals studied throughout were Cr, Mn, Fe, and Co in M(II) and
M(III) oxidation states. The high-spin/low-spin definitions used to calculate the adiabatic
electronic energy spin splitting were: quintet-singlet for both 𝑑4 Mn(III)/Cr(II) and 𝑑6

Co(III)/Fe(II), sextet-doublet for 𝑑5 Fe(III)/Mn(II), and quartet-doublet for both 𝑑3

Cr(III) and 𝑑7 Co(II). These spin states are a revision from initial work308 that employed
a triplet ground state for Cr(II) and Mn(III).
All open-shell complexes (i.e., all non-singlets) are treated with spin-unrestricted DFT
with virtual and occupied orbitals level-shifted448 by 1.0 and 0.1 Ha. respectively, to aid
convergence to an unrestricted solution. Geometry optimizations were conducted for 788
cases with DL-FIND449 in Cartesian coordinates. The protocol was shifted to employ the
TRIC (translation rotation internal coordinates)498 optimizer for the 1113 most recent
cases. Both optimizers are available in TeraChem, and the same default tolerances were
employed of 4.5𝑥10−4 hartree/bohr for the maximum gradient and 1𝑥10−6 hartree for the
change in energy between steps.
Prior to their use in model training, structures are filtered and removed if they fail
metrics of quality geometries we recently introduced533. Specifically, these metrics include
preserved coordination number of 6 with reasonable bond lengths and no ligand distortions.
Additionally we removed any complexes with large (i.e., 1.0 𝜇B or larger) deviation of

⟨︀
𝑆2
⟩︀

from the expected value based on the assigned spin.
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For the CSD data set, we searched for diverse octahedral transition metal complexes with
M(II)/M(III) M = Cr, Mn, Fe, or Co transition metals. For the geometry optimization,
the same method, basis, and optimization approach was followed. Geometry checks and⟨︀
𝑆2
⟩︀
deviations were used to eliminate structures. Additionally, we manually screened the

collected points to exclude any that were duplicates within each other as judged through
comparable connectivity but differing accession codes. We also removed those that were
duplicates of data in the original data set, as judged through the assigned connectivity
in RAC-155. As an additional constraint, we filtered out any complexes with evidence of
ligand non-innocence. Specifically, we computed the Mulliken spin of the metal center and
discarded complexes with Mulliken spin that was more than 1.0 𝜇B less than the expected
spin from the overall spin assigned to the complex.

Figure D-1: Ligands used to train inorganic complex spin splitting ANN, metal connection
atoms highlighted, with the highlight corresponding to the element: oxygen in red, nitrogen
in blue, chlorine in red, carbon in gray, and sulfur in yellow. Charges are also shown on
relevant atoms.
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Figure D-2: Visualization of CSD structures used in this work at DFT-optimized ground
spin states. CSD accession codes shown below each structure. Non-metal atoms are colored
as follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is
green, bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is
pink and arsenic is purple. Metal centers are shown as large spheres and colored as follows:
iron is orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure D-3: Visualization of CSD structures used in this work at DFT-optimized ground
spin states. CSD accession codes shown below each structure. Non-metal atoms are colored
as follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is
green, bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is
pink and arsenic is purple. Metal centers are shown as large spheres and colored as follows:
iron is orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure D-4: Visualization of CSD structures used in this work at DFT-optimized ground
spin states. CSD accession codes shown below each structure. Non-metal atoms are colored
as follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is
green, bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is
pink and arsenic is purple. Metal centers are shown as large spheres and colored as follows:
iron is orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure D-5: Visualization of CSD structures used in this work at DFT-optimized ground
spin states. CSD accession codes shown below each structure. Non-metal atoms are colored
as follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is
green, bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is
pink and arsenic is purple. Metal centers are shown as large spheres and colored as follows:
iron is orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure D-6: Decay of variance (left) and cumulative relative explained variance of dimen-
sions from principal component analysis of 1901 inorganic training points with RAC-155
representation (red) and the final model latent space (green).

Table D.2: Mean absolute error (MAE) and root-mean square error (RMSE) metrics for
inorganic spin splitting ANN on training data and out of sample CSD prediction task.
Errors are shown from a single model, the average of an ensemble of 10 models and the
average of 100 Monte-Carlo dropout realizations of the single model. All error units are
kcal/mol. This performance is comparable to a similar test in which we trained on 1400
transition metal complexes with the MCDL-25 descriptor set in a 2-hidden layer ANN. In
that work308, we studied a set of 35 CSD test structures. In those cases, we observed an
increase from 2.5 kcal/mol test set MAE to 9.78 kcal/mol MAE and 13.26 kcal/mol RMSE
on the 35 CSD test structures.

model training MAE CSD MAE CSD RMSE
(kcal/mol)

single ANN 1.52 8.55 13.61
10-model ensemble - 8.95 14.76
100-model mc-dropout - 8.53 13.45
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Figure D-7: Parity plots of DFT-calculated splitting energy of CSD structures and pre-
dictions from a 10-model ensemble (left) and a single model (green), the average of the
10-model ensemble (blue) and the average of 100 mc-dropout realizations (charcoal) com-
pared (right). The parity line is shown as a dashed gray line, while the CSD codes for high
error (≥ 30 kcal/mol) points are shown in red. All units are kcal/mol.
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Figure D-10: Distribution of average distance to nearest training data as a function of number
of neighbors over which the distance is averaged for 1 to 300 neighbors (as labeled on each graph)
for the CSD prediction task, showing three different distance metrics: RAC-155, random forest 41-
feature subset of RAC-155 (rF-41), and latent. Distances are normalized to [0, 1] for comparison and
truncated to the region [0, 0.5]. Similarity of complexes in feature space (e.g., the simple Euclidean
distance in feature space or a cheminformatic similarity metric such as the Tanimoto distance)
can be measured to the nearest training point or averaged over multiple training points. Using
nearest neighbor data only is likely sensitive to outlier training data, whereas using all training
data will likely overestimate distances for new molecules supported by a relatively small amount of
training data. Although we previously found good success in both using a single nearest neighbor
or over 5-10 nearest neighbors, we now compare potential effects of nearest neighbor averaging on
distance distributions. Feature space distances may not be a good proxy for chemical similarity
and this approach also ignores automatic feature-engineering that occurs in complex models (e.g.,
multi-layer neural networks). Furthermore, high-dimensional feature spaces may contain weakly
informative features that can "pollute" isotropic distance metrics.
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Figure D-11: Mean absolute spin splitting error (MAE) as a function of number of retained
points for thresholds set using different distances: RAC-155 (top),41-feature subset of RAC-155
selected with random forest (i.e., rF-41, middle), and latent (bottom), averaged over different
numbers of nearest neighbors from 1 to 300 (in panels). Depending on how conservatively the
boundary between trustworthy chemical space and untrustworthy chemical space is set, we include
more or less test data. we therefore consider using each distance and the number of neighbors it is
averaged over as a decision boundary and examine how error of retained points varies. Using feature
space distances, the effect of nearest neighbors used in the average is most significant for highly
conservative decisions that retain less than 20 of the 116 CSD cases. Feature space distances are
generally poor at effectively classifying low error points. For intermediate data retention, feature-
space-derived models are less sensitive to number of nearest neighbors and general in agreement
with each other. Latent space distance shows the least nearest neighbor dependence. Distances are
normalized to [0, 1] for comparison. The horizontal black line represents a nominal error tolerance
of 6 kcal/mol.
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Figure D-12: Mean absolute spin splitting error (MAE) on retained data and number of
retained candidates as a function of threshold latent distance to nearest training points,
averaged over 1 to 100 nearest neighbors. Distances are normalized to [0, 1] for comparison.
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Figure D-13: Correlation between different uncertainty metrics (panels) and absolute model
errors on CSD data (left), showing the correlation coefficient inset along with best fit line
and (right) showing all pairwise cross-correlations and distributions of uncertainty metrics.
Metrics shown are the standard deviations from 10-model ensemble, 10-neighbor average
latent distance, standard deviation of of 100 mc-dropout realizations, 10-neighbor average
feature space distance using RAC-155 and rF-41 representations. All units are kcal/mol and
all metrics are normalized to [0, 1] for comparison. We truncate the plot at 0.75 to remove
the few outlying points at extreme distances for clarity, excluding 1 ensemble point, 1 latent
distance point, 7 mc-dropout points, 6 RAC-155 distance points, and 2 rF-41 points.
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Figure D-14: Variation in the maximum ANN error (in kcal/mol) for retained points on CSD
data as a function of thresholds in different uncertainty metrics, showing that the largest
errors can be effectively avoided by truncating with respect to latent distance and ensemble
metrtics but not raw distances. Compared metrics are the 10-neighbor average distance to
training data in both feature (RAC-155) and latent spaces, the standard deviation of a 10-
model ensemble and the standard deviation of a 100 realizations of a mc-dropout ensemble.
All metrics are normalized to [0, 1] for comparison. Vertical lines indicate the median of
each scaled metric.
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Figure D-15: Variation in the mean absolute error (MAE, in kcal/mol) from ANN models
for retained points on CSD data as a function of thresholds in different uncertainty metrics,
showing that 1) average retained errors can be controlled with all metrics and 2) different
metrics show different sharpness in response to chaging thresholds, as indicated by the an-
notation showing the length of the interval from MAE= 2 kcal/mol to MAE= 8 kcal/mol
with a horizontal line. The interval for each model is also marked with solid vertical lines.
Metrics compared are the 10-neighbor average distance in both feature (RAC-155) and la-
tent spaces, the standard deviation of a 10-model ensemble and the standard deviation of
100 realizations of a mc-dropout ensemble. All metrics are normalized to [0, 1] for com-
parison. Annotation is not provided for RAC-155 owing to non-monotonic behavior at low
thresholds.

Table D.3: CSD accession codes for points used to calibrate latent-distance uncertainty
model.

ABORIU ADEQAE AGUDOW ‘CAKCIA CEFDIC
CERZEE CICHEC CIGTET COAQAC01 COMTED02
DEDKII DEFWUJ DUCBIN EBUSEB ECADOB
ECOWEZ EKOTUV ELAHII EZIROU FEHPYO
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Table D.4: Values for 𝜎1 and 𝜎2 in latent-distance uncertainty model calibrated using
maximum likelihood estimation on 5 different random samples of 20 CSD points. The bold
values in the first row indicate those used in the rest of this work, corresponding to accession
codes given in Table D.3.

repeat 𝜎1 𝜎2

(kcal/mol)
1 4.57× 10−9 3.20
2 2.24× 10−8 3.12
3 1.61× 10−8 2.95
4 8.93× 10−9 3.22
5 2.58× 10−8 4.16
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Figure D-16: Comparison of type I error rate, defined as the fraction of retained points
with absolute errors > 12 kcal/mol from ANN models, as a function of the mean absolute
retained error when setting thresholds in different uncertainty metrics. Compared metrics
are the 10-neighbor average distance to training data in both feature (RAC-155) and latent
spaces, the standard deviation of a 10-model ensemble and the standard deviation of 100
realizations of mc-dropout. A smoothing spline is shown for each metric. Higher error rates
are observed for 10-model ensemble for retained MAEs between 5 and 7 kcal/mol.
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ReLU Layer
(20→ 100)

+

ReLU Layer
(120→ 100)

+
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(120→ 1)

output

Figure D-17: Neural network architecture used for QM9 prediction task, showing two fully-
connected layers with input pass-through connections. The size of each mapping is shown
in parentheses under the layer name. The ⊕ symbol represents concatenation. Dropout
and batch normalization are applied to the ReLU layers.

461



Table D.5: Hyperparameters and topology for organic atomization energy ANN on QM9
benchmark.

parameter value
layer 1 size 100
layer 2 size 100

activation function relu
learning rate 0.00033
optimizer adam

𝛽1 0.9945
𝛽2 0.9936

decay 0
dropout (all hidden) 0.053

batch size 128
epochs 800

𝐿2 regularization 1.32818E-8
semibatch normalization yes

early stopping none

Table D.6: Comparison of single-model performance of QM9 atomization ANNs with two
hidden layers of 100 nodes, using residual archietcture (original), without residual links at
the same hyperparameters and without residual links after reoptimizing hyperparameters
using hyperopt. The reoptimized hyperparameters are the same as in Table D.5 except
for learning rate = 0.00196, 𝛽1 = 0.9694, 𝛽2 = 0.9779, decay= 0, 𝐿2 regularization =
2.33317× 10−9.

model training RMSE test MAE test RMSE
(kcal/mol)

original 6.24 6.79 9.97
no residual links 18.32 15.28 19.60
hyperparameter reoptimized 6.97 8.58 11.80
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Table D.7: Repetition test showing train and test mean absolute errors (MAE) for atom-
ization energy prediction on QM9 data using 100 different 5% training data samples. In all
cases, all points not in the training set are used as test. Average and standard deviations
are given at the end of the table.

train MAE test MAE train MAE test MAE train MAE test MAE train MAE test MAE
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

0 4.84 7.06 1 4.83 7.10 2 4.60 6.95 3 4.68 6.84
4 4.37 6.73 5 4.44 6.76 6 4.44 6.89 7 4.77 7.11
8 4.17 6.75 9 4.57 6.71 10 4.55 6.9 11 4.82 6.94
12 4.44 6.80 13 4.53 6.79 14 4.59 7.04 15 4.55 6.92
16 4.80 7.15 17 4.84 7.0 18 4.32 6.72 19 4.69 7.03
20 4.39 6.77 21 5.00 7.08 22 4.98 7.0 23 5.05 6.94
24 4.52 6.93 25 4.62 6.94 26 4.63 6.79 27 4.34 6.55
28 4.54 6.96 29 4.50 6.79 30 4.99 7.03 31 4.30 6.69
32 4.56 7.02 33 4.70 6.83 34 4.78 6.87 35 4.50 6.69
36 4.59 7.02 37 4.27 6.78 38 4.43 6.96 39 4.34 6.84
40 4.59 6.96 41 4.83 6.87 42 4.46 6.68 43 4.82 7.13
44 4.59 6.99 45 4.72 6.84 46 4.38 6.7 47 4.63 7.07
48 4.52 6.97 49 4.81 6.93 50 4.49 6.95 51 4.41 6.73
52 4.38 6.81 53 5.57 6.95 54 4.30 6.67 55 5.08 7.05
56 4.35 6.81 57 4.80 7.02 58 4.65 6.96 59 4.32 6.78
60 4.41 6.87 61 4.73 7.20 62 4.76 7.21 63 4.77 7.08
64 4.23 6.63 65 4.76 6.86 66 4.42 6.82 67 4.49 6.91
68 4.77 6.96 69 4.41 6.81 70 5.06 7.19 71 4.85 7.23
72 4.54 6.78 73 4.52 6.80 74 4.57 6.96 75 4.56 7.00
76 4.46 6.77 77 4.99 7.11 78 4.63 6.79 79 4.26 6.84
80 4.63 7.01 81 4.48 6.75 82 4.55 6.86 83 4.68 6.90
84 4.31 6.60 85 4.42 6.85 86 4.53 6.86 87 4.30 6.68
88 4.34 6.84 89 4.24 6.65 90 4.33 6.58 91 4.57 6.85
92 4.34 6.77 93 4.54 7.07 94 4.36 6.8 95 4.65 7.07
96 4.56 6.79 97 4.73 6.85 98 4.66 6.89 99 5.08 7.10

average train MAE = 4.59 kcal/mol average test MAE = 6.89 kcal/mol
sd train MAE = 0.23 kcal/mol sd test MAE = 0.15 kcal/mol

Table D.8: Mean absolute error (MAE) and root-mean square error (RMSE) metrics for
QM9 atomization energy ANN trained on a random 5% of data tested on the remaining
127217 points. Errors are shown from a single model and the average of an ensemble of 10
models. All error units are kcal/mol.

model training RMSE test MAE test RMSE
(kcal/mol)

single ANN 6.24 6.79 9.97
10-model ensemble - 6.13 9.14
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Figure D-18: Distribution of a errors for QM9 atomization prediction task from a single
model and the average of an ensemble of 10 models. All error units are kcal/mol and counts
are shown on a log y-axis. The maximum error for a single model is 119.97 kcal/mol and
124.10 kcal/mol for the ensemble model. These large errors are observed on the SMILES
strings FC(F)(F)CC(F)(F)F (hexafluoropropane) and CC1N2C3C4=CCC13C24 (a cyclic
tertiary amine), respectively.
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Figure D-19: Correlation between different uncertainty metrics (panels) and absolute model
errors on QM9 atomization energy test data (left), showing the correlation coefficient inset
along with best fit line and (right) showing all pairwise cross-correlations and distributions
of uncertainty metrics. Metrics shown are the standard deviations from 10-model ensemble
and 10-neighbor average latent distance and 10-neighbor average feature space distance
using AC representations. All units are kcal/mol and all metrics are normalized to [0, 1]
for comparison. We truncate the plot at 0.75 to remove the few outlying points at extreme
distances for clarity, excluding 8 ensemble point, 3 latent distance point and 6 AC distance
points.
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Figure D-20: Variation in the mean absolute error (MAE, in kcal/mol) on retained points
from ANN models on QM9 atomization energy data as a function of (left) the thresholds
in different uncertainty metrics and (right) the number of points retained. The metrics
compared are the 10-neighbor average distance in both feature (AC) and latent spaces
and the standard deviation of a 10-model ensemble. We also plot the maximum number of
retained points before the retained MAE (right) crosses a 3.5 kcal/mol threshold (horizontal
gray line) with solid vertical lines at 2, 74 and 4299 points for AC distances, ensembles and
latent distances respectively. All metrics are normalized to [0, 1] for comparison. Dashed
vertical lines show the median of each metric (left).
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Table D.9: Values for 𝜎1 and 𝜎2 in latent-distance uncertainty model calibrated using
maximum likelihood estimation on different numbers of random samples of QM9 test points.
For each number of points, we present the mean and standard deviation over 10 random
samples. The bold values in the last row indicate the single sample with 500 points used
in the rest of this work. Thus, the conclusion is that only 500 points from > 120k are
needed to calibrate parameters, indicating the proposed model learns this mapping easily
from sparse data.

# of points
𝜎1 𝜎2

mean std mean std
(kcal/mol)

100 0.325 0.0053 15.70 0.528
500 1.71× 10−7 3.43× 10−7 4.54 0.313
1000 1.39× 10−7 2.20× 10−7 4.40 0.120
5000 8.08× 10−7 1.28× 10−6 4.41 0.0787
10000 2.04× 10−7 3.23× 10−7 4.45 0.0446
25000 6.93× 10−7 1.49× 10−6 4.45 0.0284
50000 7.02× 10−7 1.84× 10−6 4.45 0.0289
100000 3.36× 10−7 6.61× 10−7 4.46 0.011
500 1.79× 10−6 4.45
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Figure D-21: Relationship between model errors and different uncertainty metrics for QM9
atomization energy ANN on test-set points. Standard deviations from calibrated latent
distance model using 500 points (left) and 10-model ensemble (right) are compared, with
points lying in one (two) sd colored green (yellow). Points outside two sd are colored red.
Dotted lines indicate one and two standard deviations. Error units are kcal/mol.

Table D.10: CSD active learning experiment: mean absolute error (MAE) and root-mean
square error (RMSE) metrics for out-of-sample CSD prediction task with a single model
for the original 116 points, after removing the 10 points with lowest model confidence
determined with different metrics and then after retraining with the 10 excluded points.
Uncertainty metrics compared are the latent distance of 10-model ensemble metrics. All
errors are in kcal/mol.

original single ANN data selection method 10 removed retrained
MAE RMSE MAE RMSE MAE RMSE

(kcal/mol) (kcal/mol)

8.55 13.61
latent distance 7.73 12.22 7.10 10.62
10-model ensemble 7.61 11.65 7.56 10.87
mcd-ensemble 7.57 11.79 7.46 11.39
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Table D.11: Hyperparameters and topology for inorganic spin splitting ANN.

parameter value
layer 1 size 200
layer 2 size 200
layer 3 size 200

activation function relu
learning rate 0.00163
optimizer sgd
momentum 0.998

decay 0.0015719
Nesterov acceleration yes
dropout (all hidden) 0.0825

batch size 128
epochs 2000

𝐿2 regularization 7.101148E-14
semibatch normalization yes

early stopping none
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Figure D-22: Variation in the mean absolute error (MAE, in kcal/mol) on retained points
from ANN models on CSD splitting energy prediction task as a function of (left) the thresh-
olds in different uncertainty metrics and (right) the number of points retained. The metrics
compared are the minimum of the combination of the 10-neighbor average distance in latent

space and the standard deviation of a 10-model ensemble and 100 realizations mc-dropout

and as well as the 10-neighbor average distance in latent space alone. All metrics are nor-
malized to [0, 1] for comparison. Dashed vertical lines show the median of each metric
(left). Errors are taken from single-ANN predictions only. It is apparent the minimum of
the combined metrics can provide marginally better error control over some of the range,
though latent distances alone perform better or equivalent for retained MAE values ' 4.00
kcal/mol.
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Figure D-23: Relationship between spin-splitting ANN model errors (in kcal/mol) on a 116
molecule CSD set and a calibrated distance-based uncertainty model using feature space
distances. The model is fit using eq. (1) from the main text with 𝜎1 = 0, 𝜎2 = 3.42. The
translucent green region corresponds to one std. dev. and translucent yellow to two std.
dev.. The points with model errors that lie inside either of these two bounds are shown in
black, and the percentage within the green or yellow regions are annotated in each graph
in green and yellow, respectively. The points outside two std. dev. are colored red.

Table D.12: Spearman (rank) correlation between distances from CSD points and nearest
training data in the full spin splitting ANN latent space and low dimensional spaces from
principal component analysis (PCA) and uniform manifold approximation (UMAP). In all
cases the dimensionality reduction is conducted based on training data only.

method Spearman correlation
2D PCA 0.32
4D PCA 0.68
16D PCA 0.93
32D PCA 0.97
2D UMAP 0.32
8D UMAP 0.17
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Text D.3: Application to MNIST and Fashion-MNIST classification task

In order to test the application of out proposed method to other tasks, we consider
two standard benchmark test image classification tasks, MNIST320 and Fashion-
MNIST575. Both consist of 60k training and 10k test grayscale images of size 28×28
pixels divided into 10 classes. We use a convolutional neural network (CNN) with
the same hyperparameters for each task, trained with cross entropy loss and no
explicit regularization (Table D.13).
Training on MNIST gives a train/test accuracy (top-1) of 100.00%/99.06% (0/94
errors), while training on Fashion-MNIST gives a train/test accuracy (top-1) of
99.87%/91.51% (77/849 errors).
As before, we average the distance of each test point to the nearest 10 training points
to generate a confidence metric (Figure D-25). Comparison of the distribution
of correctly and incorrectly classified points reveals a shift towards high distance
for the incorrectly classified points, with an increase in mean distance of the
incorrect points of 66.64% for MNIST and 11.90% for Fashion-MNIST. We perform
a Mann–Whitney test to estimate if the difference in distances is significant and find
𝑝 = 9.3 × 10−47 and 𝑝 = 1.12 × 10−36 for MNIST and Fashion-MNIST respectively,
although in both cases the number incorrect samples is low.This suggests that the
methods proposed could be applied to other types of the neural networks (CNNs),
datasets (images) and tasks (classification).
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Figure D-24: Distance to nearest training point for CSD points in the full spin splitting
ANN latent space and low dimensional spaces from principal component analysis (PCA)
and uniform manifold approximation (UMAP). In all cases the dimensionality reduction
is conducted based on the training data only. All distances are normalized by the largest
value and the gray line shows parity. 472



Table D.13: Hyperparameters and topology for image classification CNN

parameter value
layer 1 64 filter 3× 3 2D convolution
layer 2 32 3× 3 2D convolution
layer 3 64 unit dense
layer 4 64 unit dense
layer 5 10 unit softmax

activation function relu
learning rate 0.01
optimizer adam

𝛽1 0.9
𝛽2 0.999

decay 0
dropout (all hidden) none

batch size 128
epochs 50

𝐿2 regularization none
semibatch normalization no

early stopping none
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Figure D-25: Comparison of kernel density estimates for 10-neighbor average latent distance
to training data for image classification task using a CNN, showing correctly (blue) and
incorrectly (red) classified points for MNIST (top) and Fashion-MNIST (bottom) bench-
marks. The dashed vertical lines represent the median values for each curve.
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Appendix E

Multiobjective, multifidelity redox

couple design
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Table E.1: Spin multiplicities selected for ionization processes. The M(II) ground state eval-
uated from solvent-corrected gas phase geometry optimizations is determined first. Once
that is identified, the oxidation process is evaluated by a single electron ionization from
that M(II) ground state with spin multiplicities as follows for the M(III) state chosen based
on the electron configurations of the M(II) ion also indicated below.

M(II)/M(III) electron configuration M(II) ground state M(II) spin M(III) spin

Cr [𝐴𝑟]3𝑑4/[𝐴𝑟]3𝑑3
LS 1 2
HS 5 4

Mn [𝐴𝑟]3𝑑5/[𝐴𝑟]3𝑑4
LS 2 1
HS 6 5

Fe [𝐴𝑟]3𝑑6/[𝐴𝑟]3𝑑5
LS 1 2
HS 5 6

Co [𝐴𝑟]3𝑑7/[𝐴𝑟]3𝑑6
LS 2 1
HS 4 5
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Figure E-1: Comparison of solvent (red) and thermodynamic (blue) free energy corrections
to DFT calculated ionization potentials. Data on transition metal complexs taken from
Ref511.
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Text E.1: Description of hierarchical ligand construction approach

A series of hierarchical rules were used to combinatorially enumerate a large space
of monodentate and bidentate ligands. These consist of i) heterocycle and metal-
coordinating atom selection, ii) modification of non-metal-coordinating portions of
the ring, iii) (optional) ring fusion to form symmetric or asymmetric bidentate lig-
ands, and iv) hierarchical functionalization of a single ring site. Specific rules are as
follows:

� Eight core five- or six-membered rings are first defined (labels: A-D for six-
membered rings, E-H for five-member rings), each with O- or N-atom coordi-
nation to the metal defined as position 1 on the ring. In the O-atom cases (C,
D, G, and H), the oxygen always forms single bonds with neighboring carbon
atoms in positions 2 and 6, whereas for the N-atom cases (A, B, E, and F),
nitrogen forms one single bond and one double bond (between positions 1 and
2) in all heterocycles. Pairs of rings of the same size and coordinating atom are
distinguished by the presence or absence of a double bond at the C(𝑛−1)-C(𝑛)
position.

� Five modifications to the core rings (labels: a-e) are carried out centered on C3
and influence the C2-C3-C4 bonds for both five- and six-membered rings (A-H)
to form two-letter-coded ring structures (i.e., Aa-He). These modifications of
C2-C3-C4 include: two single bonds with a carbon atom (a), a single (2-3) and
double (3-4) bond (b), insertion of an oxygen atom at the C3 site (c), insertion
of an amine nitrogen (NH) at the C3 site (d), or insertion of a sulfur atom at
the C3 site (e). In some cases, modification with a does not modify the core
heterocycle (e.g., Aa is A unchanged).

� From these combinations, Fb or Hb would create a C center with two double
bonds at both 3-4 and 4-5. After these two combinations are excluded, we
obtain a total of 38 modified, core ring structures that can be used as scaffolds
for forming functionalized monodentate ligands.

� Bidentate ligands are also formed by joining the two rings at the 2nd position
to form a 2-2’ bond. Both symmetric and asymmetric bidentate ligands are
formed through every possible pairwise permutation of the 38 unique core rings
for a total of

(︀
38+2−1

2

)︀
= 741 bidentate ligand scaffolds.

� Both monodentate and bidentate ligands are then functionalized hierarchically
at the C4 site for both five- and six-membered rings through four steps de-
scribed next.
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� Methylene or phenyl groups are added either once or twice at the C4 site
(referred to as B1 and B2 for the first and second addition). In the case of
methylene group addition, the two hydrogen atoms can be further replaced with
a functional group (i.e., S1 or S2) either by a doubly bonded functional group
(=CH2, =O) or by any two singly bonded groups (-CH3, -H, -OH, and -NH2).
For phenyl group addition, this functionalization step is not carried out (i.e., S1
= H). These changes are referred to as S1 when they occur on the B1 functional
group chain or S2 for B2. In total, each B1 or B2 site can have 13 chemical
identities: 1 phenyl group, 2 doubly-bonded S1 choices, 4 symmetric singly-
bonded S1 choices, and 6 asymmetric singly-bonded S1 choices. Combining all
possible choices of B1-S1 with B2-S2, as well as the cases where only B1-S1 are
generated, yields 14𝑡𝑖𝑚𝑒𝑠13 = 182 functional group cores.

� The final modification to the functional group cores is to terminate them with a
singly-bonded functional group modification (i.e., T) at either the para position
on the phenyl group or on a terminal hydrogen not involved in S1 or S2 in the
case of the methylene groups. The five terminating functional groups are H,
CH3, OH, NH2, and Cl, and their combination with the other functional group
modifications produces 182×5 = 910 total functional groups. This corresponds
to 897 unique functional groups after accounting for identical cases (i.e., no B2,
T = CH3 is the same as methylene B2 and T = H).

� In total, 741 bidentate and 38 monodentate ligand scaffolds combined with
897 functional groups produces 698,763 unique ligands distributed over our
design space. After combination with 4 metal identities, the total design space
contains 2,795,052 complexes.

� A note on stereochemistry: since the representation used for this design exercise
is based on the molecular graph, we do not distinguish seteroisomers at a design
level. When performing DFT simulations, an isomer is chosen with decoration
groups placed cis, where applicable.
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Figure E-2: Structures of eight core heterocycles (A-H, left) and corresponding C2-C3-C4
modifications (a-e, right) used to generate 38 monodentate ligands or for subsequent fusion
to form bidentate scaffolds.
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Figure E-3: Approach for functionalizing rings at the R group position centered on C4.
The backbone of the functional group consists of two sites, B1 and B2, which form a linear
chain and can either be alkyl carbons or phenyl groups. Hydrogen atoms are then replaced
symmetrically with so-called sidechain functionalization at the first backbone group site
(i.e., S1) or second backbone group site (i.e., S2). In practice, this only is done for the
alkyl chains, not the phenyl groups. Both alkyl and phenyl groups can then have a third
terminating functionaal group added, denoted T.

Table E.2: Original sources of ‘hot start’ data. In 123 cases from Refs.308,511,543, revised low
spin state definitions for Cr(III) and Mn(II) (i.e., singlet instead of triplet) were published
in Ref593 and used where relevant.

# complexes description original ref.

177
ligands CO, pyridine, water, furan, and methyl

isocyanide
511

20 spectrochemical series complexes 308

33 spin crossover complex discovery leads 543

5 diverse complexes from uncertainty quantification 593
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Text E.2: Details of initial sample of constructed design space from clustering

The 698, 763 ligands are combined with four transition metals (i.e., Cr, Mn, Fe,
and Co) to produce a design space of 2, 795, 052(𝑖.𝑒.,∼ 2.8 million) transition metal
complexes. The transition metal complexes are an average of 141 atoms in size
(minimum: 55, maximum: 235 atoms) and evenly divided over the four transition
metals by definition (Table E.5). In order to select a number of initial candidates to
simulate, we obtained 300 cluster centroids from the design space using 𝑘-medoids
clustering in the RAC-155 representation. We employed the clustering large appli-
cations (CLARA) algorithm633, as implemented in the R package ‘Cluster’600. We
used Euclidean feature space (i.e., RAC-155) distance as the dissimilarity metric for
clustering. The resulting clusters ranged from 738 to 35, 466 complexes in size with
an average size of 9, 317 (Figure E-6). We judged cluster quality by the isolation
ratio, which is the maximum in-cluster dissimilarity divided by the average distance
between centroids. Most clusters (i.e., 285 of 300) have good characteristics, with
isolation ratios below 2.5, whereas a minority (15 of 300) exhibit large intra-cluster
dissimilarity (Figure E-7). Silhouette analysis assigns each cluster a score ranging
from −1 to 1 representing how well separated each cluster is, with 1 being perfect
and 0.5 being well separated. Silhouette values near zero arise when data is on the
border of two or more clusters. When accounting for cluster size, we observe that
the majority of data is assigned to a cluster with a score of at least 0.25 (Figure
E-6). The full design space characteristics are preserved in the clustered set of 300
unique complexes, including an even distribution over metals as well as the range of
complex sizes (Table E.5).
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Figure E-6: Characteristics of 300 clusters obtained with k-medoids clustering using
CLARA. (left) Unnormalized distribution of number of complexes in the clusters (i.e.,
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by the Euclidean distance to the medoid in RAC-155 feature space (i.e., lower means a
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legend.
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Figure E-7: Silhouette analysis for points in initial 300 clusters. From left to right on the
x-axis shows the proportion of the total design space that is assigned to clusters with a
given silhouette score. Scores have a theoretical range from −1 (worst) to 1 (best). The
practical range observed across this data set is predominantly from around 0.0 to just under
0.75. The value 0.5 corresponds to good separation between clusters.

Table E.3: Design space and cluster population analysis. The total number of ligands,
complexes, and fraction of each metal type is compared for the whole design space vs.
those in the resulting clustered subset. The number of atoms in the assembled complex is
shown across both the full design space and clustered subset, including the minimum and
maximum complex sizes as well as the average (avg.) and standard deviation (std. dev.)
of the complex size.

# distinct metal fraction # atoms
set ligands complexes Cr/Mn/Fe/Co min max avg. std. dev.

design space 698, 763 2, 795, 052 0.25/0.25/0.25/0.25 55 235 141.0 23.54
clustered set 300 300 0.27/0.26/0.21/0.25 73 217 142.4 27.50
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Figure E-8: Schematic of active learning workflow shown for four initial generations. The
‘hot start’ data is used to train an initial ANN, ANN0. Initial, diversity-orientated clustering
is used to extract 300 medoids from the design space which are simulated to give the
generation 1 data, GEN1. This data is combined with the hot start data and used to train
the ANN1 model, which is used to calculate E[𝐼] for the design space, and the top 10k
complexes are used to extract 100 high-E[𝐼] leads for simulation, GEN2. The results of
these DFT calculations are combined with the previous datasets and used to train the next
generation ANN, ANN2. This model is used to recalculate the E[𝐼] scores for the design
spaceo, and the process is repeated. DFT calculations are shown in red, model tanning
steps are shown in green and clustering steps are shown in blue. The generation the model
or data belong to is indicated in a superscripted number.
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Table E.4: Prediction error metrics of initially trained models. The mean absolute error
(MAE) and root-mean-square error (RMSE) are reported for different machine learning
(ML) models that predict redox potential (in eV) and logP: single-task ANNs, multitask
ANN, and a Gaussian-kernel gaussian process, or GP, model. Errors are reported on both
train and a 10% uniformly-selected test partition from ‘hot start’ data used for initial ML
model training. Errors are also reported on 107 complexes converged from generation 1
cluster medoids as an out-of-distribution set. The lowest errors across the three models for
a given data partition are indicated in bold.

multitask ANN single-task ANN GP
logP

train
MAE 1.45E-04 1.45E-04 1.05E-04
RMSE 2.46E-04 2.53E-04 1.40E-04

test
MAE 2.40E-04 1.49E-04 1.74E-04
RMSE 3.13E-04 1.90E-04 2.59E-04

generation 1
MAE 3.04E-03 5.92E-03 1.31E-02
RMSE 3.74E-03 6.81E-03 1.62E-02

redox (eV)

train
MAE 0.15 0.11 0.13
RMSE 0.20 0.14 0.20

test
MAE 0.32 0.36 0.44
RMSE 0.51 0.57 0.59

generation 1
MAE 0.71 0.80 1.47
RMSE 0.90 1.03 1.70

Table E.5: Relationship (i.e., linear correlation coefficient) between absolute test errors
evaluated on 10% uniformly-selected test data partition across several ML models for both
redox and logP. The ML models compared are a multitask ANN that predicts both proper-
ties and independent single-task ANNs as well as a Gaussian-kernel Gaussian process (GP)
model. By definition, the linear correlation of model errors for the model with itself is 1.0.

redox logP
GP multitask single task GP multitask single task

redox
GP 1.00 0.81 0.79 0.64 0.14 0.44

multitask 1.00 0.95 0.71 0.20 0.39
single task 1.00 0.70 0.26 0.42

logP
GP 1.00 -0.08 0.28

multitask 1.00 0.34
single task 1.00
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Figure E-9: Mean absolute error (MAE) on retained data with lower uncertainty than a
given threshold as a function of this threshold (top) and showing the fraction of retained
complexes over which the MAE is obtained at that threshold (bottom) for redox potential
(eV, left) and logP (right) errors on uniformly-selected test data. Three approaches are
compared: independent Gaussian processes (GP), a pair of single task ANNs and a mul-
titask ANN. The GPs use their posterior standard deviations as uncertainty metrics while
the ANNs use the average distance to the ten nearest training points in their final latent
spaces as in Ref.593. All uncertainty measures are normalized to have a maximum of 1 for
comparison.
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Table E.6: Relationship (i.e., linear correlation coefficient) between absolute errors of model
trained on ‘hot start’ data and evaluated on out-of-distribution, generation 1 set for both
redox and logP. The out-of-distribution set consists of 107 complexes obtained from con-
verged results on 300 initial cluster medoids of the full space.The ML models compared are
a multitask ANN that predicts both properties and independent single-task ANNs as well
as a Gaussian-kernel Gaussian process (GP) model. By definition, the linear correlation of
model errors for the model with itself is 1.0.

redox logP
GP multitask single task GP multitask single task

redox
GP 1.00 0.60 0.82 -0.04 -0.14 0.01

multitask 1.00 0.83 0.02 -0.10 -0.05
single task 1.00 -0.07 -0.09 -0.09

logP
GP 1.00 0.41 0.52

multitask 1.00 0.57
single task 1.00
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Figure E-12: Mean absolute error (MAE) on retained data with lower uncertainty than a
given threshold as a function of this threshold (top) or the fraction of retained complexes
at that threshold (bottom) for redox potential (eV, left) and logP (right) errors on out-of-
distribution medoid data. Three approaches are compared: independent Gaussian processes
(GP), a pair of single task ANNs and a multitask ANN. The GPs use their posterior
standard deviations as uncertainty metrics while the ANNs use the average distance to
the ten nearest training points in their final latent spaces as in Ref.593. All uncertainty
measures are normalized to have a maximum of 1 for comparison.
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Table E.7: Data sets used in this work: initial step, name of data set, number of complexes
converged in the data set, total attempted, and additional details on the data set.

step name number attempted details
0 hot start 235 N/A data from previous studies
1 generation 1 107 300 selected from k-medoids of

full space
2 generation 2 34 100 selected from k-medoids of

top 10k 2D EI leads
3 generation 3 24 100 selected from k-medoids of

top 10k 2D EI leads
4 generation 4 15 100 selected from k-medoids of

top 10k 2D EI leads
5 generation 5 14 100 selected from k-medoids of

top 10k 2D EI leads
- random test 122 300 uniform random selection
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Figure E-13: Evolution of E[I] and P[I] distributions over different generations of active
learning, colored as indicated in inset legend by the generation used to train the model.
Distributions are estimated by kernel density estimates for the 100 selected medoids at each
generation.
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Table E.8: Mean absolute error (MAE) and root-mean-square error (RMSE) (both in eV) for
Δ𝐺solv prediction on training data (train), 10% uniform held out data (held out), lookahead
errors to subsequently-acquired data sets, and performance on randomly-selected test data
(random test).

data set model generation MAE (eV) RMSE (eV)

train

0 0.15 0.20
1 0.14 0.19
2 0.14 0.21
3 0.15 0.22
4 0.15 0.22
5 0.24 0.33

held out

0 0.32 0.51
1 0.32 0.48
2 0.19 0.26
3 0.18 0.25
4 0.22 0.30
5 0.36 0.49

lookahead errors
generation 1 0 0.71 0.90

generation 2
0 0.76 0.97
1 0.46 0.56

generation 3
0 1.67 1.75
1 0.67 0.75
2 0.51 0.58

generation 4

0 1.99 2.07
1 0.96 0.99
2 0.65 0.72
3 0.37 0.54

generation 5

0 1.64 1.72
1 0.67 0.74
2 0.42 0.52
3 0.41 0.50
4 0.42 0.49

random test

0 0.70 0.90
1 0.41 0.51
2 0.41 0.52
3 0.40 0.52
4 0.39 0.51
5 0.38 0.49

492



MAE RMSE

1 2 3 4 5 random 1 2 3 4 5 random
0e+00

2e-03

4e-03

6e-03

data generation

lo
g

P
 e

rr
o

r

ANN generation

0
1
2
3
4
5

Figure E-14: Lookahead and random-test MAE (left) and RMSE (right) error metrics for
logP predictions from sequential generations of multitask ANN models on all data sets
gathered subsequent to training each model.
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Table E.9: Mean absolute error (MAE) and root-mean-square error (RMSE) (both in eV) for
logP prediction on training data (train), 10% uniform held out data (held out), lookahead
errors to subsequently-acquired data sets, and performance on randomly-selected test data
(random test).

data set model generation MAE RMSE

train

0 1.45E-04 2.46E-04
1 2.51E-04 3.80E-04
2 3.73E-04 6.99E-04
3 4.40E-04 8.56E-04
4 4.58E-04 8.90E-04
5 6.78E-04 1.10E-03

held out

0 2.40E-04 3.13E-04
1 1.10E-03 1.64E-03
2 5.29E-04 7.50E-04
3 4.07E-04 7.64E-04
4 5.37E-04 8.07E-04
5 7.15E-04 1.29E-03

lookahead errors
generation 1 0 3.04E-03 3.74E-03

generation 2
0 3.85E-03 4.42E-03
1 2.36E-03 2.77E-03

generation 3
0 4.90E-03 5.78E-03
1 2.57E-03 3.17E-03
2 2.42E-03 2.99E-03

generation 4

0 4.87E-03 5.57E-03
1 2.23E-03 2.87E-03
2 2.23E-03 2.78E-03
3 2.29E-03 2.72E-03

generation 5

0 5.98E-03 6.79E-03
1 2.36E-03 2.76E-03
2 2.12E-03 2.46E-03
3 1.78E-03 2.02E-03
4 1.77E-03 2.01E-03

random test

0 2.93E-03 3.77E-03
1 1.71E-03 2.15E-03
2 1.64E-03 2.08E-03
3 1.59E-03 2.03E-03
4 1.60E-03 2.06E-03
5 1.64E-03 2.04E-03
494



0

10

20

30

40

50

60

70

80

90

100

Cr Mn Fe Co
metal

co
u
n
t

outcome

attempted
succeeded

gen

1
2
3
4
5
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Figure E-16: Skeleton structure of a bidentate ligand selected for complexation with both
Co and Mn during design space exploration. The oxygen atoms on the upper left of the
skeleton structure both coordinate the relevant metal.
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Figure E-17: Most commonly selected unfunctionalized bidentate ligands selected by the
multiobjective optimization. Both the skeleton structure and associated naming convention
are indicated, with the ring at the top corresponding to the first two-letter code and the
ring at the bottom corresponding to the second two-letter code.
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Figure E-18: Histogram of base heterocycle occurrence in ligands during five generations
of the active learning process. Bidentate ligands are broken down into their constituent
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of similar heterocycles, with the detailed functionalization of the heterocycles indicated on
the x-axis. Illustrations of the most common motifs are inset beside their counts.
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Table E.10: The most commonly-selected functional groups on ligands from the multi-
objective optimization sorted by their frequency and indicated by SMILES strings.

SMILES frequency
C(N)C(N)Cl 3
C(N)C(=O)Cl 3

C(N)(O)C(N)(O)Cl 3
C(O)(C)C(=O)Cl 3
C(O)C(N)(O)Cl 3
C(O)C(=O)C 3

C(=O)C(O)(C)O 3
C(=C) 2

C(C)C(=C)O 2
C(C)Cl 2

C(=C)C(O)(C)O 2
C(=C)N 2
CC(=O) 2
CC(=O)C 2
CC(O)(O)Cl 2
C(N)C(=O)C 2

C(N)O 2
C(O)(C)C(N)(N)Cl 2

C(=O)C(N)Cl 2
C(=O)C(N)(O)N 2

C(=O)CO 2
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Table E.11: Properties of complexes at the Pareto front after each generation (Pareto gen.)
including the generation the complex originates from (source gen.), metal center, ligand
identity following naming convention, Δ𝐺solv (in eV), and logP. The spin-state splitting
(i.e., ΔEH−L, in kcal/mol), and the resulting selected M(II) ground state (G.S.) for the
redox process is also indicated as well as the size of the complex in # atoms (# at.). The
mean of the properties of the Pareto front after each generation are also indicated.

Pareto source metal ligand Δ𝐺solv logP ΔEH−L M(II) size
gen. gen. (eV) (kcal/mol) G.S. (# at.)

1

1 Fe AeFd_896_896 6.36 -5.31E-02 62.55 LS 82
1 Fe CdGe_102_102 6.50 -5.17E-02 -24.20 HS 172
1 Mn BbHc_833_833 6.75 -5.02E-02 -35.63 HS 106
1 Co AeCa_142_142 6.79 -4.95E-02 -7.98 HS 118
1 Co EaGe_442_442 7.12 -4.60E-02 3.08 LS 118
1 Mn DeHc_460_460 7.37 -4.38E-02 -51.51 HS 145

mean 6.82 -4.91E-02 -8.95 123.5

2

1 Fe AeFd_896_896 6.36 -5.31E-02 62.55 LS 82
2 Co CcCc_275_275 6.68 -5.22E-02 -23.72 HS 151
1 Mn BbHc_833_833 6.75 -5.02E-02 -35.63 HS 106
1 Co AeCa_142_142 6.79 -4.95E-02 -7.98 HS 118
2 Mn DcGb_832_832 7.03 -4.86E-02 -48.78 HS 79
2 Co DdGa_48_48 7.06 -4.81E-02 -16.38 HS 136
2 Co CbEb_854_854 7.10 -4.65E-02 -4.31 HS 109
2 Mn DcHe_834_834 8.24 -4.63E-02 -53.46 HS 97
2 Mn DeGb_790_790 8.33 -4.59E-02 -48.43 HS 136

mean 7.15 -4.90E-02 -19.57 118

3

3 Mn DbHe_829_829 8.05 -5.52E-02 -53.58 HS 88
3 Mn DeGb_551_551 8.21 -4.96E-02 -50.28 HS 106
2 Mn DcHe_834_834 8.24 -4.63E-02 -53.46 HS 97
3 Mn DeGd_884_884 8.24 -4.61E-02 -51.06 HS 124
2 Mn DeGb_790_790 8.33 -4.59E-02 -48.43 HS 136

mean 7.89 -4.87E-02 -46.45 110.2

4

3 Mn DbHe_829_829 8.05 -5.52E-02 -53.58 HS 88
4 Mn DbHe_341_341 8.11 -5.22E-02 -56.31 HS 112
4 Mn DeHe_487_487 8.13 -4.99E-02 -53.54 HS 88
3 Mn DeGb_551_551 8.21 -4.96E-02 -50.28 HS 106
4 Mn DcHe_887_887 8.36 -4.80E-02 -54.42 HS 97
4 Mn DeGb_64_64 8.50 -4.49E-02 -47.66 HS 94
4 Mn DeGe_2_2 8.51 -4.46E-02 -51.17 HS 88

mean 8.27 -4.92E-02 -52.42 94.5

5

5 Fe DeGb_82_82 5.70 -5.60E-02 -28.42 HS 184
3 Mn DbHe_829_829 8.05 -5.52E-02 -53.58 HS 88
4 Mn DbHe_341_341 8.11 -5.22E-02 -56.31 HS 112
4 Mn DeHe_487_487 8.13 -4.99E-02 -53.54 HS 88
3 Mn DeGb_551_551 8.21 -4.96E-02 -50.28 HS 106
5 Mn DcHe_828_828 8.37 -4.84E-02 -57.53 HS 73
4 Mn DeGb_64_64 8.50 -4.49E-02 -47.66 HS 94
4 Mn DeGe_2_2 8.51 -4.46E-02 -51.17 HS 88

mean 7.95 -5.01E-02 -49.81 106.5
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Table E.12: Final, complexes along the Pareto front after generation 5. The source gen-
eration (source gen.), metal center, and ligand identity following naming convention are
all indicated. The DFT-computed values of Δ𝐺solv (in EV) and logP are also provided.
Chemical structures of the component heterocycles as well as the SMILES string for relevant
functional groups (F.G.) are provided.

source metal ligand Δ𝐺solv logP heterocycle heterocycle F.G.
gen. (eV) 1 2 (SMILES)

5 Fe DeGb_82_82 5.70 -5.60E-02 S
O O

c1ccc(c2ccc(Cl)cc2)cc1

3 Mn DbHe_829_829 8.05 -5.52E-02 O
S

O

C(=O)C

4 Mn DbHe_341_341 8.11 -5.22E-02 O
S

O

C(O)C(=O)C

4 Mn DeHe_487_487 8.13 -4.99E-02 S
O

S
O

C(N)Cl

3 Mn DeGb_551_551 8.21 -4.96E-02 S
O O

C(N)C(=O)Cl

5 Mn DcHe_828_828 8.37 -4.84E-02 O
O

S
O

C(=O)

4 Mn DeGb_64_64 8.50 -4.49E-02 S
O O

CC(=O)

4 Mn DeGe_2_2 8.51 -4.46E-02 S
O

S
O

CO
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Figure E-20: Distributions of redox potentials (in eV, left) and log P values (right) for a
subset of randomly-sampled complexes (red). Vertical green lines represent the respective
values of the eight complexes in the final set that describes the Pareto front.
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Figure E-21: Quantile-quantile plot comparing the distributions of redox potential (left) and
logP (right) from the set of randomly sampled complexes (points) to a normal distribution
(black line). The y-axis corresponds to the absolute value, and the x-axis corresponds
to the distribution of points. The shaded region represents 95% confidence for a normal
distribution, and the mean values in the sampled points are indicated by horizontal blue
lines.

Table E.13: Revised geometry check tolerances used to screen complexes in this work com-
pared to the originally-proposed values533. Tight thresholds are used on final geometries
and loose tolerances are used to determine if an incomplete optimization should be resub-
mitted.

metric setting original revised

maximum ligand connection atom angular deviation
tight 30° 22.5°

loose 35° 27°

average ligand connection atom angular deviation
tight 15° 12°
loose 20° 16°

RMSD difference from initial structure tight 3.0 Å 0.3 Å
loose 4.0 Å 0.4 Å
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Table E.14: ANN model hyperparameters selected for single-task networks for logP and
redox potential as well as a multitask network that predicts both logP and redox potential.
The range of hyperparameters considered during optimization is shown at left. Parameters
used during retraining on newly acquired data are indicated in blue. All other parameters
are otherwise kept the same.

range logP redox multitask
activation ReLU, tanh ReLU tanh tanh
hidden layers 1,2,3 2 3 2
nodes 50,100,200,300 50 100 100
bypass True, False True False False
residual True, False True False False
semibatch True, False False True True

decay rate -, 0.5, 0.75, 0.9 - -
-

(0.5)

decay interval -,10,50,75,100,200 - -
-

(200)
dropout rate [0,0.10] 0.01 0.012 0.092
epochs 500,1000,1500 1000 1500 1500
L2 reg. exp([-16,-8]) 7.0e-11 4.8e-14 1.05e-11

batch size [16, 32, 64, 128] 128 16
16
(64)

learning rate exp([-5, -2]) 0.003 0.004 0.004
early stopping on? True, False True False False
early stopping patience [01,50,100,500] 100 - -
early stopping min 𝛿 [0.0005, 0.001] 0.00075 - -
momentum [0, 1.0] 0.96 0.50 0.76
nesterov True, False True False False
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Figure E-22: Neural network architectures for single task prediction of redox potential (left)
and logP (center) along with a multitask network for simultaneous prediction of both logP
and redox potential (right). The number of input nodes in the input layer is the same for
all models (153), and the number of input and output nodes is indicated in inset of each
hidden or output layer. As shown schematically, the logP single task ANN is optimized to
contain skip connections.
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Figure E-23: The distribution of 𝜎1 (solid lines) and 𝜎2 (dashed lines) for maximum likeli-
hood estimation for error bars. The two parameters are computed from 10% of test data
from the multitask ANN for redox (red) and logP (blue) at each of 5 generations starting
with generation 0 of EI-guided design. The parameters are fit to dimensionless errors with
the model 𝜀(𝑑) ∼ 𝒩

(︀
0, 𝜎2

1 + 𝑑𝜎2
2

)︀
.

Table E.15: Gaussian process (GP) hyperparameters including the inverse kernel width,
𝛾, and regularization strength/GP baseline variance, 𝜆. Hyperparameters were selected
through 10-fold cross validation (CV) for predicting logP and redox independently. The
hyperparameters are shown for five generations (0 through 4). The mean CV error in
dimensionless units is given for each row.

𝛾 𝜆 CV error generation task
5.18E-03 3.24E-03 0.33 0 redox
5.18E-03 1.15E-02 0.27 1 redox
5.18E-03 7.54E-03 0.29 2 redox
7.20E-03 7.54E-03 0.29 3 redox
5.18E-03 4.94E-03 0.29 4 redox
3.73E-06 3.56E-08 0.21 0 logP
5.18E-04 3.24E-03 0.26 1 logP
7.20E-06 4.50E-07 0.29 2 logP
1.93E-05 8.69E-06 0.31 3 logP
5.18E-06 6.87E-07 0.29 4 logP
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Figure E-24: Error surface showing cross-validation (CV) mean absolute error (MAE) for
10-fold CV used to selected GP hyperparameters 𝛾 and 𝜆 across generations 0 to 4 (left to
right, top to bottom) grouped by redox and then logP (i.e., row 1, left to right: redox gen-0,
logP gen-0, and redox gen-1; row 2, left to right: logP gen-1, redox gen-2, and logP gen-2;
row 3, left to right: redox gen-3, logP gen-3, and redox gen-4; and row 4: logP gen-4). The
green circles indicate the minimum values reported in Table E.15.
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