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Abstract

Generative audio models offer a scalable solution for producing a rich variety of
sounds. This can be useful for practical tasks, like sound design in music, film,
and other media. However, these models overwhelmingly rely on deep neural
networks, and their massive complexity hinders our ability to fully leverage
them in many scenarios, as they are not easily controllable or interpretable. In
this thesis, I propose an alternate approach that relies on a virtual modular
synthesizer; a computational model with modules for controlling, generating,
and processing sound that connect together to produce diverse sounds. This ap-
proach has the advantage of using only a small number of physically-motivated
parameters, each of which is intuitively controllable and causally interpretable
in terms of its influence on the output sound. This design takes inspiration
from devices long used in sound design and combines it with state-of-the-art
machine learning techniques. In this thesis, I present three projects that use this
formulation. The first is SynthAX, an accelerated virtual modular synthesizer
that implements the core computational elements in an accelerated framework.
The second, CTAG, combines the synthesizer with an audio-language model into
a novel method for text-to-audio synthesis via parameter inference. This method
produces more abstract sketch-like sounds that are distinctive, perceived as
artistic, and yet similarly identifiable to recent neural audio synthesis models.
The third is audio doppelgängers, sounds generated by randomly perturbing the
parameters of the synthesizer to create positive pairs for contrastive learning,
encompassing more of the variety found in real-world recordings, with con-
trolled variations in timbre, pitch, and temporal envelopes. This method offers
an efficient alternative to collecting real-world data, producing robust audio
representations that compete with real data on established audio classification
benchmarks. This thesis contributes tools for understandably generating rich
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and diverse sounds, using them and their parameters for sound design and
understanding at scale.
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“I may not find, but I seek.”
— Vera Molnár
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L I S T O F F I G U R E S

Figure 1 Structure of the API. We separate the synthesis mod-

ules into Python modules which group related elements.

These modules are shown in lower-case letters above the

relevant classes. The class inheritance structure, which

mirrors torchsynth [1], is indicated by the TitleCase names.

Inner boxes are subclasses of the larger boxes they are

embedded in. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Figure 2 Results from performance evaluation, compared with

torchsynth, on (Left) a 2017 iMac with an Intel Core i7-

7700K CPU @ 4.20GHz, and (Right) an NVIDIA Tesla

V100 GPU. Values shown are averaged over 10 runs. We

use the Voice synthesizer in both SynthAX and torch-

synth, randomizing parameters each batch. (Top) Time to

synthesize 100 batches of sound at different batch sizes

(given in seconds). (Middle) Time reinterpreted as speed

× realtime, i.e. seconds of sound generated per second

of computation time (see Section 3.3.1 for details). (Bot-

tom) Memory utilization in GB. Overall, SynthAX shows

significantly faster performance while retaining a similar

memory utilization profile. . . . . . . . . . . . . . . . . . . 40

Figure 3 A direct comparison showing speedups relative to torch-

synth [1] per batch size, again for 100-batch total times

averaged across 10 runs. Error bars here show min/max

results. Overall, SynthAX is more than double the speed

in all cases, and peaks at almost 9× the speed of the

already accelerated torchsynth implementation. As pre-

viously, these results are on the Voice synthesizer, a 78-

parameter synthesizer, where parameters are randomized

for each batch. . . . . . . . . . . . . . . . . . . . . . . . . . 41
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Figure 4 Spectrograms for the examples in torchsynth (Top) and the

replication in SynthAX (Bottom). From left to right, we

show a simple sine wave, a sine wave with an ADSR en-

velope modulating the frequency, a square wave, and an

ADSR envelope-modulated FM patch. The results show

clear replication of the output spectrotemporal features. . 41

Figure 5 CTAG leverages a virtual modular synthesizer to gen-

erate sounds capturing the semantics of user-provided

text prompts in a sketch-like way, rather than being

acoustically literal. Spectrograms of auditory outputs

corresponding to six text prompts showcase the range of

sounds this approach can yield, accompanied by a fully

interpretable and controllable parameter space. . . . . . . 45

Figure 6 High-level overview: we use the LAION-CLAP model [2]

to compute the similarity between a user-provided text

prompt and SynthAX’s [3] output. The optimization

procedure iteratively adjusts the parameter settings. . . . 48
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Figure 7 Results from our ablation study; all experiments are con-

ducted with ESC-50. (Top) CLAP similarity maximization

curves, averaged across 10 iterations for each of the 50

prompts. Colored bands show 95% confidence intervals.

(Bottom) Classification accuracy, with error bars showing

95% confidence intervals. Top and bottom plots share

colors. (Left) Performance of different algorithms, with

hyperparameters tuned on ESC-10. LES is strongest in

both optimization and downstream classification. (Cen-

ter) Different sound durations; we find 2 seconds to be

strongest. (Right) Impact of synthesizer architecture,

finding strongest results from the Voice model. Parameter

counts are given in parenthesis, such as (78) for Voice. . . 55

Figure 8 Spectrogram series as the result of linear interpolation

of the synthesizer’s parameters (1) from “Spray” (left) to

“Machine gun” (right), (2) from “Train horn” to “Chain-

saw”, and (3) from “Train wagon” to “Engine revving”.

Each spectrogram in the sequence represents a step in the

interpolation, highlighting the systematic shift in acoustic

properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 9 User study classification accuracy per prompt, for CTAG,

AudioGen, and AudioLDM. . . . . . . . . . . . . . . . . . . 67
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Figure 10 Dimensionality reduction of the Voice synthesizer param-

eters using UMAP applied to 10 sounds from each of the

10 classes from the user study. It distinctly reveals clus-

ters corresponding to individual sounds, and it shows

how conceptually similar sounds such as “water tap” and

“liquid slosh” are closer in space. . . . . . . . . . . . . . . 68

Figure 11 (Left) Standard data augmentation techniques for con-

trastive learning applied to audio spectrograms (Right)

Audio Doppelgängers, our approach synthesizing sounds

that are controllably different using perturbed synthesis

parameters, shown for different factors δ. These sounds

can vary in causally controllable ways beyond what data

augmentations can achieve. . . . . . . . . . . . . . . . . . 74

Figure 12 (A: Top) Average CLAP [2] embedding cosine similarity

between positive pairs for different architectures and dif-

ferent values of δ. (B: Bottom) PCA of CLAP embeddings

for sounds generated with the Voice architecture, with

line segments showing distances between paired exam-

ples. Red and blue points are paired positive instances.

Across both plots, as δ increases, the positive pairs sys-

tematically become more perceptually dissimilar (via the

CLAP embedding proxy). . . . . . . . . . . . . . . . . . . 85
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Figure 13 Comparisons of synthetic and real sound data (VGGSound [4])

on (A: Top) spectral features and (B: Bottom) causal un-

certainty. Spectral features of synthetic sounds partially

replicate real sounds, but exhibit differences in complex-

ity and flux. Synthetic sounds are also more causally

ambiguous, indicating a distribution shift. Using dense

mixtures of real sounds partially closes these gaps, sug-

gesting the synthetic sounds are different in part due to

their density of auditory information. . . . . . . . . . . . 87

Figure 14 Scores with the Voice architecture and different values

of δ for evaluation tasks in Table 10 with and without

augmentations. δ = 0.25 tends to give the best results

overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 15 Scores with a fixed δ = 0.25 and different synthesizer ar-

chitectures for a suite of tasks including (from left to right)

UrbanSound8k [5], ESC-50 [6], LibriCount [7], CREMA-

D [8], VIVAE [9], NSynth Pitch 5h [10], FSD50k [11], and

Vocal Imitation [12] . . . . . . . . . . . . . . . . . . . . . . 93

Figure 16 Final validation scores showing the effect of δ on Lalign

and Luni f . Lalign increases monotonically with δ, since

the difficulty of aligning more distinct samples goes up.

Luni f , on the other hand, shows an inverse-U-shaped

relationship with δ. . . . . . . . . . . . . . . . . . . . . . . 93
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being perceived as more artistic. . . . . . . . . . . . . . . . 62
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1 I N T R O D U C T I O N

The extensive range of sounds that can be synthesized by generative audio

models suggests the potential to revolutionize not only creative applications

like sound design, but also to supply vast amounts of training data for increas-

ingly complex systems [14]. These models predominantly rely on deep neural

networks, often with billions of parameters and large latent spaces. While

undeniably powerful, this complexity poses significant challenges. Their black-

box nature obscures interpretability, as parameters lack physically plausible

interpretations, and direct manipulation of their latent spaces for precise control

remains difficult.

For example, two of the state-of-the-art solutions for text-to-audio synthesis,

namely AudioGen [15] and AudioLDM [16], employ different architectures

reaching up to over a billion parameters. As an alternative, I propose virtual

synthesizers as lightweight, interpretable, and controllable generative audio

models. Synthesizers have been used for years by sound designers—and

musicians alike—to achieve more evocative and expressive effects in music,

film, and other media. However, bridging the gap between this tool and

modern computational paradigms is challenging. Though virtual, software-

based versions have been built, they have not been suitable for this kind of work.

For example, they may be computationally inefficient and designed for real-time

20



use, which limits the rate at which they can be automatically programmed.

Instead, to get all the benefits of the synthesizer with the capabilities of a

generative audio model we developed SynthAX [3], a fast modular synthesizer

built for accelerators, which generates over 90,000 seconds of audio in just one

second.

Synthesizer programming—that is, the act of creating new sounds through

the careful analysis and modulation of synthesizer parameters—is a complex

task. This process is especially non-intuitive for users without training, but

it still takes hours for expert sound designers. For general sounds, this is a

non-trivial task due to the complex relationship between the parameter space,

the perceptual space, and the semantic space [17]. This has therefore animated

the field of automatic synthesizer programming for decades. In a visionary

conversation as part of the I Love Quincy (1984) documentary [18], Herbie

Hancock—jazz musician and pioneer in the use of synthesizers—notes, “The

machine doesn’t do anything but sit there until we plug it in. It doesn’t plug

itself in. It doesn’t program itself, yet!”, to which Quincy Jones—legendary

producer—responds, “It’s on the way though!”

In this thesis, I introduce CTAG [19], a text-to-parameter method taking a

text prompt to iteratively refine the parameters of our synthesizer to produce

sounds that align semantically with the prompt, guided by a pre-trained audio-

language model [2]. Contrary to the abovementioned state-of-the-art models

with over a billion parameters, CTAG achieves high-quality results with only

78 physically-motivated variables. Sounds produced this way are also more

abstract, capturing essential conceptual features over fine-grained acoustic

details, akin to how simple sketches can vividly convey visual concepts. Results
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show how CTAG produces sounds that are distinctive, perceived as artistic, and

yet similarly identifiable to recent neural audio synthesis models, positioning

it as a valuable and complementary tool. We also observe that conceptually

similar sounds such as “gargling” and “boiling water” cluster together in this

parameter space with semantic-preserving meaning, which also extends to

interpolating sounds, providing access to intermediate acoustic transitions. This

holds value for creativity, wherein users can continuously explore the space

between concepts, and for scientific understanding, wherein we can probe

behavior in response to stable variations in sound between established concepts.

CTAG shows that synthesizer programming is capable of recovering semanti-

cally recognizable sounds. If synthesizers can model such sounds, can we train

models to learn to listen from them? Doing this would be useful because we

could generate synthetic audio data at scale, which has emerged as a valuable

tool since learning robust audio representations currently demands extensive

datasets of real-world sound recordings. By applying artificial transformations

to these recordings, models can learn to recognize similarities despite subtle

variations through techniques like contrastive learning. However, these trans-

formations are only approximations of the true diversity found in real-world

sounds, which are generated by complex interactions of physical processes,

from vocal cord vibrations to the resonance of musical instruments. Using

CTAG would first require generating sounds with prompts corresponding to

realistic sounds, which would be time-consuming. Instead, I present a solu-

tion by randomly perturbing the parameters of our synthesizer, generating

audio doppelgängers—synthetic positive pairs with causally manipulated vari-

ations in timbre, pitch, and temporal envelopes. These variations, difficult to
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achieve through transformations of existing audio, provide a rich source of

contrastive information. Despite the shift to randomly generated synthetic data,

this method produces strong representations, competitive with real data on

standard audio classification benchmarks.

In summary, this thesis explores the development and application of a

fast virtual synthesizer, demonstrating its controllability to generate sounds

from text descriptions and sounds for creating robust audio representations

via contrastive learning. As an underlying principle, we observe that even

with a small number of parameters, virtual synthesizers can be surprisingly

powerful, achieving results comparable to state-of-the-art neural networks

in certain tasks. This research has been co-led with my co-first author. We

worked closely throughout the research process, jointly developing concepts,

engineering systems, and designing experiments through extensive collaborative

sessions. The work has culminated in three papers:

• In Chapter 3: SynthAX: A Fast Modular Synthesizer in JAX, AES 2023 [3]

• In Chapter 4: Creative Text-to-Audio Generation via Synthesizer Program-

ming, ICML 2024 [19]

• In Chapter 5: Contrastive Learning from Synthetic Audio Doppelgängers,

Under Review [20]
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2 R E L AT E D W O R K

2.1 programmatic synthesis

One important element of a synthesizer is allowing programmatic control.

Indeed, many software synthesizers are ultimately written to be controllable

by other software, such as VST plugins by DAW automation. However, not

many synthesizers are designed to be fully specifiable and controllable in

code written by end-users. Some well-known options include Surge XT1 and

torchsynth [1]. The former is written as a plugin that offers an API, and the latter

is written as a library for non-realtime synthesis. In Chapter 3, we introduce

SynthAX, implemented following the latter example, which means that there

is not a direct application of our method to realtime synthesis. However, since

JAX [21] compiles code to XLA, it is likely possible to implement SynthAX in a

realtime synthesizer plugin to have it bridge these two different approaches to

programmatic synthesis. In Chapter 4, we use SynthAX to generate semantically

recognizable sounds guided by text descriptions, and in Chapter 5, we leverage

SynthAX to rapidly produce diverse training data with controllable similarity

between examples.

1 https://surge-synthesizer.github.io/
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Developed for audio synthesis, torchsynth [1] serves as a modular synthesizer

that is capable of generating audio on a single GPU at ≥16200× faster than

realtime. It consists of a variety of audio and control modules. The default

synthesizer in torchsynth is Voice, which the authors used to generate a dataset

containing a billion audio clips. We base SynthAX on torchsynth as it provides

an existing and familiar reference point. We also compare to torchsynth in our

experiments studying the performance.

2.2 sound synthesis

The earliest inroads in digital sound synthesis were made at the Bell Telephone

Labs throughout the 1950s and 60s, culminating in the development of the

open-source MUSIC V software [22]. Back then, analog synthesizers remained

accessible primarily only to a handful of research institutions, recording studios,

and experimental musicians due to their prohibitive size and cost [23]. It

wasn’t until the advent of mass-produced digital synthesizers, like the Yamaha

DX7 in 1983 and the Roland D-50 in 1987, that less-established artists and

amateurs could readily explore and contribute to the increasingly complex

landscape of sounds [24]. Rapid advancements in digital signal processing

and the explosion of personal computing made possible the widespread use of

software synthesizers in the 2000s. Sound synthesis is now not only an integral

component of live and recorded music, from popular to experimental styles,
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but also a cornerstone of sound design for video games, film, advertising, and

more.

Neural audio synthesis [10]—the combination of neural networks with audio

processing techniques—consists of two main strands: approaches that generate

audio waveforms directly in the time domain, and those that do so in the fre-

quency domain. WaveNet [25] notably introduced an autoregressive approach

to audio synthesis by predicting one sample at a time. This slow iterative sam-

pling approach, later refined in SampleRNN [26] and WaveRNN [27], reflects

the sequential nature of audio data, in contrast to images wherein GANs with

global latent conditioning and efficient parallel sampling quickly became a

dominant method for synthesis. Later, WaveGAN [28] and GANSynth [29]

demonstrated that GANs could in fact be used to synthesize locally-coherent

audio, outperforming sequential models’ speed by several orders of magnitude

while maintaining a focus on high-fidelity, natural-sounding audio.

A third strand of so-called oscillator models, largely propelled by Differ-

entiable Digital Signal Processing (DDSP) [30] is physically and perceptually

motivated by the rich history of synthesis and signal processing techniques.

Our approach for generating semantically recognizable sounds, introduced in

Chapter 4, is motivated by this direction, but relies on a simple synthesizer

architecture, CLAP [2], for text-conditioning, and gradient-free optimization to

provide a simple, training-free solution.
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2.3 language-sound correspondence

Advances in multi-modal sound-language models have been partly motivated

by CLIP [31] for images. Wav2CLIP [32] builds directly onto CLIP by adding

an audio encoder, and VQGAN+CLIP [33] generates and edits images guided

by text prompts. Audio representation models, such as Microsoft’s CLAP [34]

and LAION-CLAP [2], emulate CLIP’s approach by using contrastive learning

on audio-text pairs. We use LAION-CLAP as our audio-language model in this

work.

Other recent approaches cast audio generation as a language modeling

task. AudioGen [15] is an autoregressive model conditioned on text inputs.

AudioLM [35] uses a multi-stage Transformer-based language model. WavJour-

ney [36] uses text instructions to create scripts, which are then used for com-

positional audio creation. Make-An-Audio 1 and 2 [37, 38] offer text-to-audio

synthesis with prompt-enhanced diffusion models, using CLAP to map text to

latent representations with a spectrogram autoencoder. AudioLDM [16] learns

continuous audio representations from CLAP latents and can perform text-

guided audio manipulations. In Chapter 4, we compare to two state-of-the-art

solutions, namely AudioGen and AudioLDM, in our experiments. Our goals

differ significantly from those of these models, as we seek to generate abstract

yet high-quality sounds, rather than literal recording-like renditions.
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2.4 abstract synthesis

Visual sketching offers an intuitive analog to abstract sound synthesis. Minimal

representations like monochromatic line drawings might use only straight lines

and curves with no additional shading or color. These renderings are non-

photorealistic; they evocatively convey meaning while emphasizing a subject’s

essence over its real-world presentation. They can also reveal insights about

a subject’s underlying geometry, proportions, and symbolism that may be

obscured in more realistic depictions.

The problem of computing recognizable and insightful abstract renderings

has seen more progress in the visual than the audio domain. CLIPasso [39]

leverages CLIP to distill semantic meanings from images and sketches alike

and thereby guide text-to-image generation, varying the number of strokes

according to the desired level of abstraction. CLIPTexture [40] enables a user

to manipulate a simple sketch or layout through textual descriptions. CLIPVG

[41] follows the same progressive optimization approach, but performs image

manipulation using vector graphics rather than pixels. ES-CLIP [42] tackles the

problem via evolution strategies, generating configurations of colored triangles

on a canvas, then assessing their fitness for further iteration. We were inspired

by this approach for generating sketch-like sounds in Chapter 4, though we

rely on the well-established, easily interpretable, and tweakable paradigm of

modular synthesis.

In the auditory domain, the Sound Sketchpad [43] combines sounds together

using audio-visual sketches, and the SkAT-VG project [44] applies vocal and
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gestural manipulation as natural sketching tools. In our approach, we focus on

language input and synthesis rather than the composition of existing sounds.

2.5 interpretable & controllable synthesis

Interpretability and controllability of results are essential to human-machine

co-creation, in which it is often desirable to closely examine, understand, and

fine-tune an artifact. For creative sound design using neural synthesis methods,

it can be impossible to retrace decisions made by a complex neural synthesis

model en route to synthesizing an output. The model may also not provide

any opportunity to iteratively refine the output. Some prior work [45] high-

lights the potential of program synthesis for interpretability in sequence data,

including music. Some neural synthesis models integrate techniques like timbre-

regularization [46] to bridge powerful synthesis methods with perceptually-

motivated organization of latent spaces. By contrast, we are able to synthesize

semantically recognizable sounds in Chapter 4 with a fully interpretable and

controllable parameter space without requiring us to develop additional neural

infrastructure. In Chapter 5, this controllable parameter space allows us to

produce pairs of sounds with controllable similarity between them.
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2.6 the synthesizer programming problem

Despite the near-ubiquitous presence of synthesized sound in modern music,

synthesizer programming—that is, the act of creating new sounds through

careful analysis and modulation of synthesizer parameters—is a complex task

that can often impede the creative process, if not bar entry entirely. In particu-

lar, the conceptual disconnect between parameter settings and the associated

auditory output [47] makes synthesizer programming especially non-intuitive

without special training. Recent work has investigated techniques for inverse

synthesis—given a target sound, infer the parameter setting that will emulate

the sound to the closest extent possible—on both musical sounds [48] and

real-world sounds, such as animal vocalizations [49], including deep learning

methods to learn invertible mappings [50]. However, this task still requires a

specific audio clip to start. In Chapter 4, we provide text-to-parameter inference

to bridge this gap, generalizing beyond specific audio files to broader semantic

notions of arbitrary sounds.

2.7 learning from synthetic data

Synthetic data, artificially generated information rather than collected from

real-world sources, has emerged as a valuable tool for learning across various

domains [51, 52, 53, 54]. By addressing data scarcity, privacy concerns [55,

56], or removing biases [57, 58], synthetic data offers a promising avenue to
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complement scarce [59] real-world data and further drive progress in machine

learning research.

Audio presents unique challenges due to the complexity of waveforms and

temporal dependencies. Synthetic data has found applications in subareas

like speech recognition [60, 61, 62, 63, 64] leveraging text-to-speech systems

for detecting unspoken punctuation [65], recognizing low-resource languages

[66], increasing acoustic diversity [67] or detecting out-of-vocabulary words [68].

However, non-speech audio domains can be highly diverse, requiring more

complex approaches to data synthesis. In this domain, synthetic data has been

used for specific tasks like timbre-text alignment [69] and vocoding [70]. The

partially synthetic NSynth [10] dataset has also been used for pitch estimation

and instrument classification. In our work, we tackle the general audio domain,

proposing a synthetic data approach that can produce diverse sounds for

general-purpose audio representation learning.

In computer vision, synthetic data is more popular and has been employed

in different tasks to improve performance [71, 72, 73, 74, 75, 76, 77, 78]. While

initially focused on using graphics engines to generate photorealistic scenes,

recent work has investigated sampling synthetic data from deep generative

models [79, 80, 81, 82, 83, 84, 85, 86, 87, 14, 88, 89, 90]. However, these mod-

els aim to produce realistic images and still depend on real image datasets

for training or synthesis. Thus, recent work has pushed away from realism,

generating synthetic data such as fractals [91], or through other procedural

noise models [92, 93] to use as training data for visual representation learners.

In Chapter 5 we leverage synthetic data while also abandoning realism by
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leveraging randomly generated synthetic sounds to learn audio representations

for downstream tasks.

2.8 contrastive learning

A common strategy for learning from unlabeled data is contrastive learning. In

this technique, we seek representations that are invariant to minor differences, i.e.

they encode a space in which similar objects are closer together, and dissimilar

objects are further. A classic strategy for this is to use data augmentations,

transformations which noticeably alter a datapoint (for example, randomly

cropping an image) without changing its essential content (e.g. what the image

is of, such as a cat). These transformed versions then become a positive pair, while

other examples (e.g. an image of a dog) become negatives. In audio, contrastive

learning has been used extensively to produce high-quality representations for

downstream tasks [94, 95, 96, 97, 98]. However, contrastive learning typically

relies on augmentations with limited variation, by effecting already-existing

material or sampling with offsets. Instead, in Chapter 5 we introduce a method

that produces synthetic positive pairs that deviate through randomly perturbed

parameters which causally influence acoustic properties of the output, such as

the pitch of oscillators, or the temporal envelope of signals in a mixture. This

allows us to mimic more naturalistic variation in auditory features without (or

in addition to) applying post-hoc effects.
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3 S Y N T H A X : A FA S T M O D U L A R

S Y N T H E S I Z E R I N J A X

3.1 introduction

“It’s hardware that makes a machine fast. It’s software that makes a fast

machine slow.”

— Craig Bruce [99]

Realtime sound synthesis is a cornerstone of modern audio production. It

affords producers the ability to tweak sounds and hear them change; a loop

of perception and action that results in diverse auditory creations to support

music, film, and other media. Modern audio technologies increasingly employ

techniques that benefit from automatically tweaking synthesizers, such as opti-

mization and machine learning. In these scenarios, the ability to rapidly tweak

sounds and compute with them at scale offers a vast space of opportunities

for designing and developing powerful new audio technologies. As such, fast

sound synthesis can be an essential tool. We define faster-than-realtime as

generating more than one second of audio per second of processing time. In

particular, we deal with cases where the processing is a lot faster than this (i.e.

>1000x).
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In this paper, we introduce SynthAX, a fast modular synthesizer written

using the JAX [21] framework for accelerated and differentiable computing.

By offering synthesis at speeds that peak at over 80,000× realtime, SynthAX

provides a high-performance, flexible virtual modular synthesizer in the form of

an expanding and easily extensible open source Python library. Additionally, we

implement an API based on torchsynth [1], a recent high-performing synthesizer

written in PyTorch, to allow for an easy substitution for end-users. Our results

in this paper show considerable speedups over torchsynth, ranging up to just

under 9× depending on the hardware configuration and batch size.

3.2 system design

The design of the API is inspired by the inherent modularity of hardware

synthesizers. SynthAX leverages the power of JAX [21] to build on torchsynth [1],

which is a state-of-the-art high-throughput synthesizer implemented in PyTorch

to take advantage of its accelerated computational routines. Maintaining a

similar API makes the transition for end-users seamless without any major

rewriting or learning curve.

Each module serves a different function but can be connected together to

create a synthesizer. SynthAX modules mimic their counterparts in analog

and digital synthesizers, consisting of amplifiers, envelopes, filters, keyboards,

low-frequency oscillators (LFOs), mixers, and voltage-controlled oscillators

1 https://github.com/PapayaResearch/synthax
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Figure 1: Structure of the API. We separate the synthesis modules into Python modules
which group related elements. These modules are shown in lower-case letters
above the relevant classes. The class inheritance structure, which mirrors
torchsynth [1], is indicated by the TitleCase names. Inner boxes are subclasses
of the larger boxes they are embedded in.

(VCOs). The output from these modules can represent audio signals or control

voltages, depending on the module’s intended function. Audio modules, such

as VCOs, produce audio signals. Control modules, such as LFOs, produce

“control voltages” that modulate the parameters of other modules. The keyboard

outputs parameters that are used as input for other modules. All modules follow

the Flax [100] module system known as Linen to organize the modules into

independent components. Figure 1 shows the structure of the API, where a

synthesizer consists of modules and a configuration.

In our implementation, we aim for allowing users flexibility in how they

specify synthesizers. Modules with parameters can be initialized in a few

different ways. If only initial values are given, they are expected to be in human-

readable (i.e. unnormalized, e.g. frequency in Hz) range within the default

ranges of the parameters. Alternatively, the modules also accept range objects,

which specify only a range within which parameter values are initialized
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1 import jax

2 from synthax.config import SynthConfig

3 from synthax.synth import ParametricSynth

4

5 # Generate PRNG key

6 config = SynthConfig(

7 batch_size=16,

8 sample_rate=44100,

9 buffer_size_seconds=4.0

10 )

11 # Instantiate synthesizer

12 synth = ParametricSynth(

13 config=config,

14 sine=1,

15 square_saw=1,

16 fm_sine=1,

17 fm_square_saw=0

18 )

19 # Initialize and run

20 key = jax.random.PRNGKey(42)

21 params = synth.init(key)

22 audio = jax.jit(synth.apply)(params)

Listing 1: Code snippet for generating audio with a ParametricSynth. This synthesizer
supports a user-configured architecture, in contrast to the Voice synthesizer
which encodes a fixed topology design (78 parameters). This allows control
of the degrees of freedom available to manipulate the sound synthesis.

uniformly randomly. Finally, users can also provide the initial values and

ranges together as an object. In all cases, the parameters store the values in the

(normalized) interval [0, 1].

In addition to the differences between SynthAX and torchsynth that arise

from JAX features such as easy and flexible vectorization, parallelization, and

just-in-time (JIT) compilation, we introduce these additional features: a filter

module, currently containing a simple low-pass filter that can be shaped by
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control modules; a parametric definition of a synthesizer to easily explore

different synthesizer topologies; functions to write and load a synthesizer

including its hyperparameters and parameters, in the human- and machine-

readable YAML format. This also means that synth specifications can, in

principle, be directly composed in YAML and loaded to a synth with a matching

parameter architecture.

We adhere to JAX’s explicit randomness handling in our design. JAX

uses a pseudo-random number generator (PRNG), an algorithm that produces

sequences of numbers that approximate true randomness given an initial key

(i.e. value). Therefore, users need to provide such random keys to their

synthesizers. Though this adds an extra consideration, it also ensures better

reproducibility. Listing 1 shows how to define a configuration, instantiate a

parametric synthesizer and, finally, synthesize audio.

JAX supports a wide variety of hardware and leverages powerful function

transformations such as just-in-time compilation (JIT), auto-vectorization, and

hardware parallelism. We can vectorize (jax.vmap) and parallelize (jax.pmap)

in a single line of code. It also conforms to the Single-Program, Multiple-Data

(SPMD) model, which means that the same computation for different input

data runs in parallel on multiple devices. In order to maximize performance

and throughput when using JAX, SynthAX renders audio in batches.

Extending SynthAX can be done seamlessly due to its modularity, since the

API is designed to easily integrate other synthesizers or modules. SynthAX

joins the JAX ecosystem and can be easily integrated with other well-known

libraries such as Optax [101], evosax [102], EvoJAX [103], and QDax [104].
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3.3 results

3.3.1 Performance Evaluation

First, we characterized the speed and memory performance of SynthAX. We

used torchsynth [1] as a strong baseline to compare against, since it is the de facto

state-of-the-art fast synthesizer and can take advantage of similar hardware

acceleration capabilities (e.g. GPUs). For both synthesis libraries, we use the

Voice synthesizer with 78 parameters. In our setup, we computed the time

needed to synthesize 100 batches of sounds at different batch sizes (powers of 2

from 2 to 1024). We randomized the synthesis parameters for each batch. As

torchsynth does, we also report the speed as compared with realtime synthesis.

We calculated this as

Num. Batches× Batch Size× Sound Duration
t

where t denotes the time taken for one loop of 100 batches. Finally, we also

report memory usage in GB after each 100-batch loop.

We report averages over 10 100-batch loops for all three quantities (time,

speed × realtime, and memory), to account for variance. Additionally, we

computed a full set of results for a GPU and a CPU, although we expect GPUs

to be the primary usage platform. To account for the effect of JAX’s [21] JIT

compilation, we produced one batch of sounds (for both SynthAX and the

torchsynth baseline) at the very beginning, outside the evaluation loop. This is

38



so that we measure the typical performance, as the JIT compilation only needs

to occur once.

These results are given in Figure 2. We do not show error bars as the results

are generally stable, resulting in very small variance. Overall, we see that

SynthAX substantially outperforms torchsynth on time-based metrics for both

CPU and GPU. At peak performance within this evaluation, SynthAX shows

more than 80,000× realtime synthesis speed. SynthAX shows a comparable

memory utilization profile to torchsynth, especially lower at higher batch sizes

on GPU and CPU. We disabled JAX’s memory preallocation for our experiments

to measure the real memory footprint.

For direct comparison, Figure 3 plots the speedup over torchsynth. This is

computed as the ratio of time taken to synthesize 100 batches, computed per

100-batch loop, and then averaged across the 10 runs. We provide min/max

error bars to show the full range. This figure shows that the speedups range

from just over 2× (some batch sizes on CPU and very large batches on GPU) to

almost 9× at the peak speedup level (batch of 32 sounds on GPU).

3.3.2 torchsynth Replication

We replicated the examples from torchsynth [1] for reproducibility. These include

instantiating ADSR envelopes both randomly and with set parameters, VCOs,

LFOs, VCAs, mixers, and their synthesizer architecture Voice. Figure 4 shows

some of the resulting spectrograms considering different VCOs and setups in

torchsynth and corresponding match in SynthAX.
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Figure 2: Results from performance evaluation, compared with torchsynth, on (Left)
a 2017 iMac with an Intel Core i7-7700K CPU @ 4.20GHz, and (Right) an
NVIDIA Tesla V100 GPU. Values shown are averaged over 10 runs. We
use the Voice synthesizer in both SynthAX and torchsynth, randomizing
parameters each batch. (Top) Time to synthesize 100 batches of sound at
different batch sizes (given in seconds). (Middle) Time reinterpreted as speed
× realtime, i.e. seconds of sound generated per second of computation time
(see Section 3.3.1 for details). (Bottom) Memory utilization in GB. Overall,
SynthAX shows significantly faster performance while retaining a similar
memory utilization profile.
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Figure 3: A direct comparison showing speedups relative to torchsynth [1] per batch
size, again for 100-batch total times averaged across 10 runs. Error bars here
show min/max results. Overall, SynthAX is more than double the speed
in all cases, and peaks at almost 9× the speed of the already accelerated
torchsynth implementation. As previously, these results are on the Voice
synthesizer, a 78-parameter synthesizer, where parameters are randomized
for each batch.

Figure 4: Spectrograms for the examples in torchsynth (Top) and the replication in
SynthAX (Bottom). From left to right, we show a simple sine wave, a sine
wave with an ADSR envelope modulating the frequency, a square wave, and
an ADSR envelope-modulated FM patch. The results show clear replication
of the output spectrotemporal features.
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3.4 applications

3.4.1 Audio Representations

An advantage of synthesized sounds is that they also contain the associated

synthesis parameters. In self-supervised representation learning problems,

datasets that result from synthesis can be used to formulate parameter pre-

diction problems. For instance, pitch recognition is a prominent auditory

processing problem for which synthesized datasets hold significant promise.

Recent work on audio representation learning has employed the Surge XT pitch

dataset [1] to evaluate representations on such a task [105, 106]. Many other

such prediction problems could be formulated for both training and evaluation,

as they expose ground truth information as labels. A synthesizer can generate

a large variety of sounds that vary in timbre while holding pitch constant, or

conversely which vary in pitch but hold timbre constant for a task such as

instrument recognition.

3.4.2 The Synthesizer Programming Problem

One particular area where SynthAX can be useful is in the synthesizer pro-

gramming problem [47], and specifically the task of parameter inference [107].

A canonical formulation of this asks an algorithm to program a synthesizer

to match a given sound. The difficulties of manually programming com-

plex synthesizers are well-established [108], and as such a variety of tech-
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niques [109, 49, 110, 111, 112, 113, 114, 107] and even software libraries [115]

have been developed to approach this through the lens of automatic matching.

Typically, algorithms used are those common to other search and optimiza-

tion problems, such as genetic algorithms and even gradient-based optimiz-

ers. Given a sound, these algorithms seek to minimize some measure (often

perceptually-motivated) of the "distance" between the target sound and a synthe-

sized candidate by tweaking the synthesis parameters. SynthAX can accelerate

such applications by speeding up the synthesis, often the most costly step in

these problems. Additionally, SynthAX can be combined with other parts of

the pipeline written in JAX [21] (such as evosax [102]) to provide a broader

speedup for synthesizer programming by matching target sounds.

3.5 conclusion

In this chapter, we presented SynthAX, a fast modular synthesizer implemented

in JAX. We showed that SynthAX generates sounds orders of magnitude faster

than realtime, and significantly faster than existing solutions to accelerated

sound synthesis. We discussed the possible applications of this synthesizer

in research and production problems involving intelligent sound processing

and synthesis. In the future, we intend to expand it with more modules and a

user interface. By open sourcing this library, we invite contributions towards a

high-performance, robust, and well-documented synthesizer that we hope will

eventually parallel commercial software synthesizers in the range of possible
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sounds producible, while retaining the performance benefits which we observe

in our experiments on this initial implementation.
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4 C R E AT I V E T E X T-TO - A U D I O

G E N E R AT I O N V I A S Y N T H E S I Z E R

P R O G R A M M I N G

Figure 5: CTAG leverages a virtual modular synthesizer to generate sounds capturing
the semantics of user-provided text prompts in a sketch-like way, rather than
being acoustically literal. Spectrograms of auditory outputs corresponding
to six text prompts showcase the range of sounds this approach can yield,
accompanied by a fully interpretable and controllable parameter space.

4.1 introduction

“Of course, bubbles don’t make sound, but this is the magic of sound

design...you can create the concept of a sound and it seems real.”

— Suzanne Ciani [116]
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In creative sound design, realism isn’t everything. In the late 1970s, composer

Suzanne Ciani famously demonstrated this principle with her iconic Coca Cola

pop and pour sound effect. This sound, which has become synonymous with the

refreshing experience of opening a soda, was not recorded from an actual soda

bottle, but skillfully crafted using a Buchla synthesizer. Ciani’s work illustrates

the immense power of abstraction in auditory representation, where the essence

of a concept can be expressed without mimicking real-world acoustic details,

while achieving greater impact.

This approach extends beyond single examples into the domain of proce-

dural sound design: creating sounds algorithmically using parameters that

can be manipulated to achieve desired sonic effects. By applying procedural

techniques, sound designers can often transcend what’s physically plausible to

obtain by recording real-world events. These methods can lead to highly evoca-

tive and expressive sounds in music, film, video games, advertising, product

design, and other media.

Neural audio synthesis methods have transformed the state of sound design,

enabling specifying sound ideas using intuitive inputs like textual prompts.

However, there remains unrealized potential in integrating expressive sound de-

sign principles into neural audio synthesis. Current techniques prioritize acous-

tic recreation and end-to-end application, often overlooking creative possibilities

for evoking emotions or concepts, and interactive aspects like manipulating,

iterating, and interpolating between sounds. While recent advances showcase

remarkable capabilities in replicating real-world sounds, this emphasis can limit

the creative palette and expressive potential of generated audio. We propose a

method to bridge this gap.
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Overall, this work contributes:

• A novel method that integrates a virtual modular synthesizer with a

pretrained audio-language model for generating sounds that resonate

with human intuition without being literal representations.

• A lightweight, fully interpretable, and controllable synthesizer resulting

from our approach, allowing for easy inspection and tweaking for creative

purposes.

• Experiments evaluating different approaches to solving this problem, vary-

ing optimization algorithms, sound durations, and synthesis architectures.

• Qualitative and quantitative results that highlight how sounds from our

method have distinct features from those produced by other neural audio

generators, while still being identified at similar rates. We conduct a user

study as a gold standard evaluation, given the novelty of the task, which

shows the identifiability and potential artistic value of CTAG’s sounds.

• Examples of this approach generating several datasets of sounds with

their synthesis parameters, and interpolating between different sounds in

the parameter space.

We open-source our approach1, both to provide a tool for novices and

experts alike to realize their ideas, as well as to provoke future audio genera-

tion paradigms that recognize abstraction as an important factor for creative

expression.

1 ctag.media.mit.edu
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Figure 6: High-level overview: we use the LAION-CLAP model [2] to compute the
similarity between a user-provided text prompt and SynthAX’s [3] output.
The optimization procedure iteratively adjusts the parameter settings.

4.2 methods

Our methodology hinges on three pillars: a synthesizer, implemented via

SynthAX [3], gradient-free optimization methods, implemented via the Evosax

[117] evolutionary optimization library, and an objective function based on the

LAION-CLAP [2] model, which we use to estimate semantic alignment between

the synthesized audio and its corresponding text prompt (see Figure 6 for an

overview of the pipeline).

4.2.1 Synthesizer

We use a simple synthesizer implementation available in SynthAX, a fast mod-

ular synthesizer written in JAX [21]. We specifically use the Voice synthesizer

architecture, adapted from torchsynth [1], which has already been used for

programmatic resynthesis of sounds [49]. It consists of 78 parameters for a

monophonic keyboard, two low-frequency oscillators (LFOs), six ADSR en-

velopes, a sine voltage-controlled oscillator (VCO), a square-saw VCO, a noise
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generator, voltage-controlled amplifiers (VCAs), a modulation mixer and an

audio mixer. All parameters are initialized uniformly, θi ∼ U(0, 1).

In addition to this architecture, we evaluate the following variants in increas-

ing order of architectural complexity:

• ShapedNoise: An 18-parameter synthesizer consisting of a noise generator,

and two control elements to shape the noise amplitude over time: an ADSR

envelope, and a low-frequency oscillator (LFO). These are combined into a

modulation signal through a modulation matrix, which itself has learnable

weights for this combination.

• OneOsc: A 23-parameter synthesizer consisting of a sine wave voltage-

controlled oscillator (VCO), and the same two control elements as above.

These elements are combined into two signals through a modulation

matrix, one each for frequency and amplitude.

• NoLFO: A 29-parameter two-VCO synthesizer, where one is a sine wave

oscillator and the other is a square-saw wave oscillator with a “shape”

parameter which controls the degree of “square-ness” vs. “saw-ness”.

This synthesizer has no LFO components, all modulation is conducted

by two ADSR envelopes combined into four separate modulation signals

(pitch and amplitude controls for each of the two VCOs).

• NoNoise: A 51-parameter synthesizer with two VCOs (as before), and a

more complex modulation structure. Here, there is a single LFO, but there

are additional ADSRs to modulate the frequency and amplitude of this
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LFO. The modulated LFO and two ADSR envelopes comprise the inputs

to the modulation matrix.

• Voice+FM: A 130-parameter synthesizer which adds a frequency modula-

tion (FM) component to the original Voice architecture.

For reference, an ADSR envelope is a piecewise control signal consisting of

linear or exponential segments: Attack, Decay, and Release, which specify the

duration of each envelope segment. The Sustain parameter is the level of the

control signal after the decay phase. An LFO is an oscillator whose frequencies

are typically lower than audible frequencies, i.e. below 20-40 Hz. These are

used for periodic control of synthesis parameters.

In all our experiments, the synthesizer has a control rate of 480 Hz and the

audio is generated in batches at a sample rate of 48 kHz. This sample rate

is much higher than that commonly used for neural audio synthesis systems

(often 16 kHz) and therefore admits much more high-frequency content to be

generated.

4.2.2 Optimization

During initial experiments, we found the gradients of our differentiable

synthesizer to be highly unstable. This instability hindered optimization per-

formance even after attempting mitigation strategies. Recent works in abstract

visual synthesis have shown that non-gradient methods can achieve state-of-the-

art results without relying on gradient information [42]. Given these findings,

we decided to explore non-gradient approaches which are more suitable for
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Algorithm 1 Our optimization procedure for producing sounds in CTAG. Note:
d is the number of parameters of the synthesizer S; for simplicity we omit
batches.
Require: Text prompt p
Require: Population/batch size N
Require: Iterations M

Components:
CLAP text embedding model Ct(p)→ Ep

SynthAX synthesizer S(Θ)→ Xa

CLAP audio embedding model Ca(Xa)→ EXa

Optimization Strategy: O

Initialize:
Synthesis parameters Θ = {θ1, . . . , θN}, θi ∼ U(0, 1)
Flattened parameters Θ f ∈ [0, 1]N×d = Flatten(Θ)

for i = 1 to M do
Θ fnew ← Oask(Θ) Generate candidates
Θnew ← Reshape(Θ fnew) Reshape
Xa ← S(Θnew) Synthesize audio
EXa ← Ca(Xa) Get audio embeddings
F ← −EXa

EpT Compute fitness
Otell(Θnew, F) Update optimizer state
Θ← Θnew

end for

θ∗ = arg minθ F Select optimal parameters

our synthesizer’s instability and have demonstrated effectiveness for this task.

Focusing efforts here allowed us to sidestep gradient issues while leveraging

successful techniques from related synthesis domains.

We experimented with several non-gradient optimization algorithms, using

implementations from Evosax [117]. Specifically, we examined simple baselines

like random search and a simple genetic algorithm [118], well-known methods

like CMA-ES [119] and Particle Swarm Optimization [120], and state-of-the-art

methods like Learned and Discovered Evolution Strategies [121]. For each
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algorithm, we first tuned hyperparameters using Bayesian optimization via the

Adaptive Experimentation (AX) platform [122]. We tuned for 50 trials on the

ESC-10 dataset, a subset of ESC-50 [123]. Note that the hyperparameter tuning

uses no privileged information and can easily be applied downstream on new

prompt sets to maximize the performance.

The optimization procedure is specified in Algorithm 1.

4.2.3 Objective Function

We use LAION-CLAP [2] with an HTSAT-based audio encoder [124] and a

RoBERTa-based text encoder [125]. We used the audioset-best checkpoint for

general audio less than 10 seconds long.

The encoders process the audio data Xa
i in batches of size B where B

corresponds to the optimizer’s population size, along with a prompt p. Note

that (Xa
i , p) is one particular pair of synthesized audio with input text prompt.

We extract the audio embeddings Ea
B ∈ RB×512 and the text embeddings Ep ∈

R1×512 with the encoders and use them to calculate the similarity score ∈ [0, 1]

between a batch of audio data and a specific prompt.

Xa
i = S(θi) (1)

θ∗ = arg min
θ

−ES(θi)
i EpT (2)
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Equation (1) shows how the synthesizer S takes parameters θi and produces

a sound (in practice, this is done batched). Then Equation (2) formulates the

optimization problem to optimize the similarity score between each audio in

the batch and one given text prompt using their corresponding embeddings.

4.2.4 Evaluation Metrics

Since we propose a novel synthesis task without existing evaluation metrics, we

devise a principled evaluation suite that allows us to quantitatively assess our

contributions, in addition to qualitatively reviewing synthesized examples.

classification experiments To determine whether our generated sounds

are more abstract than neural synthesis methods, we compared results on pre-

trained classifiers with sounds generated from their class labels. Lower scores

can indicate a distribution shift from real audio, despite explicitly optimizing

for similarity to the label. We complement with human listener ratings.

Without a perfect synthesis engine, any methods to generate sound will

introduce a distribution shift from real audio. In our case, there is a deliberate

domain shift to abstract audio. We evaluate on two well-known datasets.

The first is ESC-50, a 50-class canonical environmental sound classification

dataset [123]. The second is a subset of AudioSet [126]; the full ontology of

classes is very large (over 500). We consider classes from “sounds of things”

given that this category contains the most sub-classes and sub-selected the

top 50 classes by number of annotations, removing duplicates or equivalent

53



classes. We use a pretrained Audio Spectrogram Transformer (AST) model

for AudioSet-50, and fine-tune an AST for ESC-50 classification [127]. When

evaluating on AudioSet-50, we mask the remaining logits to effectively make it

a 50-class classifier.

synthesis quality A significant benefit of our approach is synthesiz-

ing clean audio using signal generators while keeping attributes like sample

rate flexible. We find synthesized sounds also often exaggerate aspects of the

prompts, resulting in large variations in acoustic properties over time. Evaluat-

ing audio quality reference-free is challenging, so we examine acoustic features

that correlate with these aspects (such as high-frequency content and spectral

variation).

user study We conduct a listening test with human evaluators. We ask

them to classify sounds, rate their confidence, and rate sounds along a scale

from realistic portrayal to artistic interpretation. This offers us the most direct

signal of our abstraction-related goal. We share details on this study in the

next subsection. We compared against the recent neural generation methods

AudioLDM [16] and AudioGen [15].

From our 50-prompt subset of AudioSet [126] classes, we randomly selected

10 for this study. We used text embeddings of the labels with a facility location

submodular optimization algorithm from the apricot package [128] to select

a modest-sized semantically representative subset. Within each prompt, we

randomly sampled two of 10 available CTAG sounds. The prompts were: Truck

air brake, Water tap, Train horn, Motorcycle, Microwave oven, Liquid slosh, Chainsaw,
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Figure 7: Results from our ablation study; all experiments are conducted with ESC-50.
(Top) CLAP similarity maximization curves, averaged across 10 iterations
for each of the 50 prompts. Colored bands show 95% confidence intervals.
(Bottom) Classification accuracy, with error bars showing 95% confidence
intervals. Top and bottom plots share colors. (Left) Performance of different
algorithms, with hyperparameters tuned on ESC-10. LES is strongest in
both optimization and downstream classification. (Center) Different sound
durations; we find 2 seconds to be strongest. (Right) Impact of synthesizer
architecture, finding strongest results from the Voice model. Parameter counts
are given in parenthesis, such as (78) for Voice.

Airplane, Bicycle bell, and Machine gun. For AudioLDM and AudioGen, we used

their default parameters to generate two sounds per prompt.

This study was determined to be exempt by our institution’s IRB. Each

participant rated 60 sounds (20 per method) in random order. To examine

category-level recognition, participants were asked to select one category given

a list of ten options and rate their confidence. To determine whether our

generated sounds were perceived as (abstract) artistic interpretations, we posed

the question: “Would you associate this sound more with a realistic portrayal or
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an artistic interpretation of the label that you selected?” with options on a scale

from 1 (realistic portrayal) to 5 (artistic interpretation). We modeled participant

responses with mixed-effects logistic and linear regression models and post-hoc

contrasts.

4.3 results

4.3.1 Ablation Studies

Figure 7 shows results from our ablation studies, including, from left to right,

(1) optimization algorithms with tuned hyperparameters, (2) sound durations,

and (3) synthesis architectures. Overall, we observe that the LES algorithm

significantly outperforms our other options within the computation budget

of 300 iterations (more than needed for several prompts). This experiment

was conducted with 2-second long sounds, which we observe in the Durations

experiment to yield a higher overall CLAP score and classification accuracy than

1, 3, or 4-second long generations. Finally, we see that the Voice architecture

yields the best results, offering a balance of flexibility in its parameters and

modular structure, as well as ease of optimization. However, we note that

expanding to larger architectures like VoiceFM could be useful for future work

to explore, with more work on the optimization strategy to obtain the best

results.
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Based on these results, we conduct all additional experiments discussed with

the LES optimizer, 2-second sounds, and the Voice architecture. We conducted a

full hyperparameter tuning run with 50 trials of all ESC-50 prompts to obtain

the final optimization hyperparameters.

4.3.2 Qualitative Results

Examples

Figure 5 shows spectrograms of synthesized sounds corresponding to six text

prompts. The “spray” shows bands of noisy bursts, reflecting the short, sharp

sound of aerosol being expelled. The “bees buzzing” presents a band of low

to high frequencies, encapsulating the vibrant hum of a bee. The “police car

siren” is characterized by high-frequency oscillations that sharply rise and fall.

The “machine gun” reveals rapid, staccato bursts of energy across a broad

frequency range. The “train horn” displays horizontal bands across mid to high

frequencies, illustrating the horn’s fundamental tone and its partials. Lastly,

the “chainsaw” spectrogram is dominated by intense, continuous mid-range

frequencies, punctuated by peaks corresponding to the engine’s roaring and

cutting action.

Interpolation

In sound synthesis, interpretable parameters offer a unique opportunity for

deeper insight. Our method provides a fixed set of parameters that possess

this property—a salient distinction from contemporary models equipped with
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high-dimensional latent spaces. This interpretability extends to interpolation

between parameters of distinct sounds, granting auditory access to intermediate

acoustical transitions. In Figure 8, we present a systematic series of spectrograms

between pairs of prompts: (1) “Spray” to “Machine gun”, (2) “Train horn” to

“Chainsaw”, and (3) “Train wagon” to “Engine revving,” with three intermediary

steps linearly interpolated. This discernible gradation corroborates the capacity

of our parameter space to retain congruence.

Spray Machine gun

Train horn Chainsaw

Train wagon Engine revving

Figure 8: Spectrogram series as the result of linear interpolation of the synthesizer’s
parameters (1) from “Spray” (left) to “Machine gun” (right), (2) from “Train
horn” to “Chainsaw”, and (3) from “Train wagon” to “Engine revving”.
Each spectrogram in the sequence represents a step in the interpolation,
highlighting the systematic shift in acoustic properties.
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4.3.3 Classification Results

Results are shown in Table 2. On AudioSet-50, our results are higher than Audi-

oLDM. On ESC-50, the classifier recognizes CTAG’s sounds the least, showcasing

the distribution shift from its training on realistic sounds. We experimented

with constructing concise and descriptive prompts from each sound class from

both ESC-50 and AudioSet-50. We used GPT-4 [129] to automatically produce

caption-style prompts. We also tried a simple template (i.e. “Sound of a/an

...”) to compare. Table 2 also shows results for these template (CTAG+T) and

caption-style prompts (CTAG+C). Introducing such strategies does not appear to

greatly influence classifier identification. However, in a few cases, we observed

the elaborated prompts helped to produce qualitatively more accurate results.

Overall, CTAG sounds are classified correctly significantly higher than chance,

and competitively with AudioLDM.

4.3.4 Synthesis Quality and Variation

Evaluating the quality of generated examples is challenging for two reasons.

First, we lack auditory references to compare against, as we generate from text

directly and never use text-audio reference pairs. Most audio quality metrics

are reference-based. Second, distance-based metrics such as the Fréchet Audio

Distance (FAD) will likely be confounded by realism. CTAG’s sounds are high-

quality in that they can be generated at high sample rates and are free of noise

or artifacts owing to real-world recording environments or neural synthesis.
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To evaluate, we use auditory descriptors (implemented using Essentia [130])

that are plausible correlates of these notions of quality, shown in Table 1.

Spectral complexity highlights the presence of more peaks, signaling diversity

in the timbral components, while flux shows greater variation of timbre over

time for CTAG compared with other methods. Following these, HFC (high-

frequency content), spectral rolloff, and spectral centroid provide signals of

“brightness” or high-frequency presence in the sounds. All of these results show

our method’s ability to introduce high-frequency content into generated sounds,

likely in part due to the higher sample rate we use.

AudioSet-50 ESC-50
AudioGen AudioLDM CTAG AudioGen AudioLDM CTAG

Complexity 16.50 17.65 18.06 9.60 12.94 17.76

Flux 0.08 0.11 0.18 0.06 0.09 0.15

HFC 53.25 152.06 427.03 34.49 101.32 380.74

Rolloff 2,487.71 1,628.55 7,031.67 2,254.98 1,647.51 6,996.19

Centroid 1,629.95 1,096.16 4,139.99 1,512.55 1,108.42 4,227.08

Comp. Ratio 6.42 7.09 9.51 6.46 7.58 9.57

Table 1: Comparison of spectral descriptors—complexity, flux, HFC, rolloff, centroid—
and audio compression ratio, across ESC-50 and AudioSet-50. Results are
grouped by the evaluation of three methods: AudioGen, AudioLDM, and our
method, CTAG.

We also report compression ratio, under variable bit rate (VBR) MP3 compres-

sion (quality = 4). Interestingly, CTAG achieves a higher average compression

ratio. VBR generally works by applying lower ratios to more perceptually

complex input. Whether related to high-frequency content or other factors, this

suggests CTAG sounds contain more perceptual redundancy or are perceptually

“simpler”.
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Note that none of these measures are validated as perceptual metrics of

audio quality, and we do not intend to use them as such. Rather, they help us

to quantify the qualitative differences we observe between CTAG-synthesized

sounds and other text-to-audio generation models’ results.

Dataset Model Top-1 Acc. Top-5 Acc.

AudioSet-50

AudioGen 51.6 77.4
AudioLDM 17.4 44.2
CTAG 26.2 45.2
CTAG+T 25.2 52.2
CTAG+C 23.6 51.6

ESC-50

AudioGen 54.0 71.8
AudioLDM 23.0 49.4
CTAG 16.4 30.4
CTAG+T 11.4 26.4
CTAG+C 13.8 31.0

Table 2: Top-1 and Top-5 classification accuracies (%) for pre-trained classifiers with
AudioSet-50 and ESC-50. We evaluated both models on results collected using
AudioGen, AudioLDM, and our method with just the class labels (CTAG), a
simple template (i.e. “Sound of a ...”) for each sound (CTAG+T) and finally
using an LLM for prompt engineering (CTAG+C).

4.3.5 User Study

We recruited 10 participants via Prolific at $12/h for a total of $53.33, resulting

in a total of 600 observations per outcome variable (i.e. accuracy, confidence,

and artistic interpretiveness). Table 3 contains the results, which show that our

sounds were identified by listeners substantially more accurately than those

from AudioLDM (odds ratio = 2.72, 95% CI [1.61, 4.58], p < .0001), and only

slightly less than AudioGen on average (odds ratio = 0.85, 95% CI [0.51, 1.42],
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p = 1). Interestingly, though the confidence ratings replicate the ordering

of the accuracy results, respondents were significantly more confident rating

AudioGen sounds, and reported similar, lower confidence levels for both CTAG

and AudioLDM. This underscores the abstractness of CTAG’s sounds; despite

being identified more correctly, they still create uncertainty.

AudioGen AudioLDM CTAG

Accuracy 59.5 34.0 56.0
Confidence 3.48 2.95 2.99

Artistic Interpretation 2.32 2.90 3.54

Table 3: User study results for sounds from AudioGen, AudioLDM, and our method,
CTAG. We report accuracy percentage and confidence (1–5) on label identifi-
cation, and average rating of the artistic interpretiveness (1–5) of the sound.
Overall, CTAG retains competitive identifiability while being perceived as
more artistic.

Results also show CTAG sounds were perceived to be significantly more

artistically interpretive than both AudioGen (contrast = 1.22, 95% CI [0.93, 1.51],

t(579) = 10.20, p < .0001) and AudioLDM (contrast = 0.65, 95% CI [0.36, 0.93],

t(579) = 5.39, p < .0001).

These findings highlight our approach’s benefits in capturing artistic inter-

pretation compared to both the existing approaches. All p-values are Bonferroni-

adjusted. Full results for post-hoc contrasts are available in the Appendix.

4.3.6 Additional Analyses

In Section 4.6 we provide additional analyses relating to generation time, CLAP

scores, prompting strategies for the baseline models, user study results, and a

visualization of the parameter space of CTAG-generated sounds.
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4.4 limitations

Our method requires iterating for each prompt from random initialization, but

techniques like semantic caching to initialize to similar prompts’ parameters,

predictive methods for prompt-to-parameter derivation, and a user interface

extension for tweaking parameters are all potential extensions to make our

method more useful in real-world settings. We also focus on brief, non-mixture

sounds as these are what the synthesizer is suited to modeling. Future work

could explore strategies to extend the duration and complexity of sounds that

can be synthesized this way.

4.5 conclusion

In this work, we proposed a method for text-to-audio generation that offers

a fresh perspective on neural audio synthesis by using a virtual modular

synthesizer. This approach emphasizes the meaningful abstraction of auditory

phenomena, contrary to prevalent methods that prioritize acoustic realism. Our

results position this approach as a distinctive tool in the field of audio synthesis,

capable of both expanding the toolkit of novices and experts, and stimulating

new directions in audio generation research.
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4.6 supplementary analyses

4.6.1 Generation Time

Iter/Popsize 25 50 100

50 5.49 ± 0.154 9.62 ± 0.452 18.43 ± 0.752

100 10.01 ± 0.194 18.05 ± 0.605 33.40 ± 0.331

300 27.61 ± 0.703 49.94 ± 0.424 97.23 ± 0.469

Table 4: Time (in seconds) for different population sizes (columns) and iteration counts
(rows).

In Table 4 we illustrate the optimization times, in seconds, for different

numbers of iterations (rows) and optimizer population sizes (columns) below,

on a modest GPU, i.e. single V100. Note that the necessary number of iterations

varies for different prompts, from 50 to 300+ to get optimal results.

4.6.2 CLAP Scores

Model AudioSet-50 ESC-50

AudioGen 0.249 ± 0.160 0.277 ± 0.180

AudioLDM 0.166 ± 0.128 0.173 ± 0.142

CTAG 0.573 ± 0.126 0.585 ± 0.130

Real – 0.416 ± 0.139

Table 5: Comparison of CLAP scores between CTAG and other generative models on
AudioSet-50 and ESC-50 datasets

Table 5 shows the CLAP [2] evaluations for each model with AudioSet-50

and ESC-50 prompts, as well as for the actual ESC-50 dataset of real sounds.
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CLAP is the objective that we optimize (see Equation (2)) in our synthesis-by-

optimization approach, and these results show how CTAG trivially achieves a

higher score compared to all other models and even the real data. This highlights

the ability of our optimization strategy to effectively maximize the CLAP score,

and also the importance of finding alternative and distinct evaluation metrics

as we showed in Section 4.2.4.

4.6.3 Prompting Strategies for All Tested Models

Dataset Metric Model Sounds Template Caption

AudioSet-50

Top-1
AudioGen 51.6 57.0 48.8
AudioLDM 17.4 21.0 16.6
CTAG 26.2 25.2 23.6

Top-5
AudioGen 77.4 84.8 80.8
AudioLDM 44.2 49.8 48.0
CTAG 45.2 52.2 51.6

ESC-50

Top-1
AudioGen 54.0 69.0 62.0
AudioLDM 23.0 20.2 29.4
CTAG 16.4 11.4 13.8

Top-5
AudioGen 71.8 85.2 81.8
AudioLDM 49.4 47.0 58.4
CTAG 30.4 26.4 31.0

Table 6: Performance comparison, with different prompting strategies, of models on
AudioSet-50 and ESC-50 datasets

For completeness, Table 6 provides all the results for all different models

with templates and captions as we showed for CTAG in Section 4.3.3. The

performance of AudioGen shows a notable boost when using the +T (Template)

strategy. However, the impact of these strategies on the other models and
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datasets is less consistent, with some cases showing modest improvements

and others exhibiting a decrease in performance (e.g., AudioLDM ESC-50 +T,

AudioLDM AudioSet-50 +C). Given the variability in results, it is difficult to

make a definitive statement about the effectiveness of these strategies across all

baselines. While they may prove beneficial in certain scenarios, their impact

appears to be context-dependent.

4.6.4 User Study Statistical Models

We report post-hoc contrasts for the user study results in Tables 7 to 9.

contrast odds.ratio SE asymp.LCL asymp.UCL z.ratio p.value

AudioLDM / AudioGen 0.31 0.07 0.19 0.53 -5.28 <1e-04

CTAG / AudioGen 0.85 0.18 0.51 1.42 -0.75 1

CTAG / AudioLDM 2.72 0.59 1.61 4.58 4.59 <1e-04

Table 7: Post-hoc contrasts from a mixed-effects logistic regression for accuracy.

contrast estimate SE df lower.CL upper.CL t.ratio p.value

AudioLDM - AudioGen -0.53 0.12 579 -0.82 -0.24 -4.34 <1e-04

CTAG - AudioGen -0.48 0.12 579 -0.78 -0.19 -3.97 0.00024

CTAG - AudioLDM 0.04 0.12 579 -0.25 0.34 0.37 1

Table 8: Post-hoc contrasts from a mixed-effects linear regression for confidence ratings.

contrast estimate SE df lower.CL upper.CL t.ratio p.value

AudioLDM - AudioGen 0.57 0.12 579 0.29 0.86 4.81 <1e-04

CTAG - AudioGen 1.22 0.12 579 0.93 1.51 10.20 <1e-04

CTAG - AudioLDM 0.65 0.12 579 0.36 0.93 5.39 <1e-04

Table 9: Post-hoc contrasts from a mixed-effects linear regression for artistic interpreta-
tiveness.

66



4.6.5 User Study Per-Prompt Accuracy

Figure 9 shows the accuracy of our user study participants at classifying sounds

generated with CTAG, AudioGen, and AudioLDM. Reviewing these differences

shows that some sounds are overall more difficult to identify, for instance;

“Truck air brake”. This may be due to the ambiguity in what this can sound like,

as it is not as common a sound as “Bicycle bell”.

Figure 9: User study classification accuracy per prompt, for CTAG, AudioGen, and
AudioLDM.

4.6.6 Dimensionality Reduction

Having access to the parameters of the synthesizer also allows us to project

them into a two-dimensional space to explore the relationship between sounds.

Leveraging the Uniform Manifold Approximation and Projection (UMAP) [131]

algorithm for dimensionality reduction of the synthesizer parameters, Figure 10

shows how the representation delineates clusters for each distinct sound class
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Train Horn

Liquid Slosh

Motorcycle

Microwave Oven

Airplane

Bicycle Bell

Water Tap

Truck Air Brake

Chainsaw

Machine Gun

Figure 10: Dimensionality reduction of the Voice synthesizer parameters using UMAP
applied to 10 sounds from each of the 10 classes from the user study. It
distinctly reveals clusters corresponding to individual sounds, and it shows
how conceptually similar sounds such as “water tap” and “liquid slosh” are
closer in space.

while retaining semantic meaning—sounds with similar acoustic properties

cluster together.

4.6.7 Caption Prompt

We used the following instructions to generate caption-like prompts from class

labels:

“Write a simple one-sentence audio caption that describes objectively each

sound itself in a real scenario without making up any extra details about

other possible sounds or places. You should define the most common

68



action for such an entity when multiple options are available. Avoid using

templates such as ‘A sound of’ or ‘The sound of’. Sounds: [List]”

This method results in prompts such as “A basketball bounce resonates

with a rhythmic thud as it hits the floor”, “An engine idling gives off a steady,

low rumble, signifying readiness but inactivity”, or “A printer emits a series of

mechanical whirs and clicks as it processes a document”.

4.6.8 Listener Survey

In this section, we provide information about the survey design we used to

collect human ratings.

Survey Flow

• Standard: Introduction (3 Questions)

• Block: Audio (4 Questions)

• Standard: Additional (2 Questions)

Start of Block: Introduction

Q1: We are conducting a survey to assess the quality of a novel method for

text-to-audio generation. You will be presented with a series of short sounds,

and asked to select the closest category from a given list, the confidence in

your prediction, and how artistically designed the sound is compared to a more

realistic interpretation.
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Q2: I consent to participate. I understand that my participation is voluntary

and I may withdraw my consent at any time.

• Yes (1)

• No (2)

Q3: I am at least 18 years old.

• Yes (1)

• No (2)

Q4: Do you have any hearing loss or hearing difficulties?

• Yes (1)

• No (2)

Q5: Are you fluent in English?

• Yes (1)

• No (2)

Q5: What is your Prolific ID? Please note that this response should auto-fill

with the correct ID

Start of Block: Audio

We use Qualtrics’ Loop & Merge functionality to loop through the sounds.

A: Select the closest category for the following sound: [Audio Clip]

• Truck air brake (1)
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• Water tap (2)

• Train horn (3)

• Motorcycle (4)

• Microwave oven (5)

• Liquid slosh (6)

• Chainsaw (7)

• Airplane (8)

• Bicycle bell (9)

• Machine gun (10)

B: How confident are you in your selected answer?

• Completely confident (1)

• Fairly confident (2)

• Somewhat confident (3)

• Slightly confident (4)

• Not confident at all (5)

C: Would you associate this sound more with a realistic portrayal or an artistic

interpretation of the category that you selected?

• 1 (1) Realistic Portrayal
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• 2 (2) •

• 3 (3) •

• 4 (4) •

• 5 (5) Artistic Interpretation

Start of Block: Additional

We have two questions to check that participants were paying attention, which

all participants passed.

A1 Please select "Chainsaw" from the options below:

• Truck air brake (1)

• Water tap (2)

• Train horn (3)

• Motorcycle (4)

• Microwave oven (5)

• Liquid slosh (6)

• Chainsaw (7)

• Airplane (8)

• Bicycle bell (9)

• Machine gun (10)
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A2: All of the sounds you heard during this survey were the same.

• Yes (1)

• No (2)

Completion Message: Thank you for taking part in this study. Please click the

button below to be redirected back to Prolific and register your submission.
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5 C O N T R A S T I V E L E A R N I N G F R O M

S Y N T H E T I C A U D I O

D O P P E LG Ä N G E R S

Figure 11: (Left) Standard data augmentation techniques for contrastive learning ap-
plied to audio spectrograms (Right) Audio Doppelgängers, our approach
synthesizing sounds that are controllably different using perturbed syn-
thesis parameters, shown for different factors δ. These sounds can vary in
causally controllable ways beyond what data augmentations can achieve.

5.1 introduction

“Noises have generally been thought of as indistinct, but this is not true.”

— Pierre Schaeffer [132]

The success of modern machine learning algorithms for tasks like audio

understanding often hinges on both the quality and quantity of available data.

Self-supervised learning methods, like contrastive learning, have even been able

to leverage unlabeled data, enabling more human-like learning from patterns
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without needing explicit supervision. However, human perceptual processing

is remarkably robust beyond this: for example, the human auditory system can

easily recognize sounds across a wide range of variations, such as changes in

pitch, timbre, or background noise. Moreover, humans can quickly learn to

recognize novel sounds that they encounter in their environment. Replicating

this ability to learn from a diverse array of sounds—or "noises," as we might call

them—could significantly enhance the efficiency, scalability, and adaptability of

machine learning models.

Contrastive learning, which operates by recognizing similarities in the data

among negative distractors, often relies on augmentations: transformations of

input data that preserve content semantics. This method has been influential

in audio representation learning, with specific implementations ranging from

spectral masking to temporal jitter to cropping and other methods [133, 95, 134,

97, 94, 135, 136]. Data augmentations, though demonstrably useful, operate at

the level of the observed data, not the underlying data-generating process as

would be observed in real-world variation. They statistically alter data without

directly manipulating the causal mechanisms that produced it, resulting in

high correlation between augmented samples, as well as limited control and

interpretability.

In our work, we propose using a synthesizer to overcome this barrier, in

addition to providing the scalability required for modern pretraining regimes

through virtually unlimited data synthesis. A synthesizer can be understood

as a system where parameters (relating to psychophysical attributes like pitch,

timbre, and loudness) causally influence the generated sound. Modifying

these parameters allows us to intervene in the data-generating process in a
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controllable way to generate positive pairs that vary in terms of their underlying

synthesis parameters.

We formulate an approach1 in which we randomly synthesize sounds, and

then slightly perturb their parameters to generate positive pairs. We call these

audio doppelgängers (examples in Figure 11); they share a resemblance but are in

fact distinct enough to learn from the variation between them. In a way, this

approach uses an artificial data source effectively consisting of random synthetic

noises but more “natural” augmentations akin to variation in similar sounds;

as Pierre Schaeffer put it, noises are not indistinct. Through a comprehensive

set of experiments, we show that models trained this way can yield strong

performance on a wide range of downstream tasks, competitive with real audio

datasets.

Overall, this work contributes:

1. An approach to synthesizing paired audio examples with a continuously

controllable degree of dissimilarity, specified by a simple and interpretable

hyperparameter δ.

2. The first study, to our knowledge, of synthetic data methods for audio

representation learning.

3. Comprehensive experiments in which we train and compare over 20 model

variants across 8 downstream tasks to provide evidence that training with

our approach can yield strong results on a wide range of audio processing

tasks.
1 doppelgangers.media.mit.edu
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4. An analysis of how these synthetic datasets differ from realistic audio

datasets in terms of their auditory features, and how this might contribute

to learning effective representations.

5.2 methods

5.2.1 Data Generation

Our data generation pipeline uses virtual modular synthesizers implemented

by SynthAX [3] in JAX. By default, we use the Voice synthesizer architec-

ture [1], which has been shown to generate perceptually diverse sounds. This

synthesizer has 78 parameters: a monophonic keyboard; two low-frequency

oscillators and six ADSR temporal envelopes to generate control signals; sine

and square-saw oscillators and a noise generator; and additional amplitude-

and modulation-related components. In our experiments, we investigate two

further architectures: VoiceFM has 130 parameters and includes a frequency

modulation (FM) operator, and ParametricSynth has 2 sine and 2 square-saw

oscillators, 1 sine FM and 1 square-saw FM operator, 340 in total. Varying the

architecture allows us to investigate whether architectural complexity could

affect the quality of representations learned. We generate 1-second sounds by

default, for compatibility with most encoders (e.g. VGGish [137]). However,

this practice can be extended to longer sounds.
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synthesis perturbation factor (δ ) A key contribution of our work is

synthesizing paired positive samples that sound alike, but are dissimilar due to

their synthesis parameters and not only post-hoc effects (e.g. augmentations).

This draws on the canonical definition from contrastive learning of positives

that are sampled from the same latent class [138].

For a single positive pair, we first sample a parameter vector uniformly

randomly θ ∈ [0, 1]mS ∼ U (0, 1) from the normalized synthesis parameter space,

where mS ∈ {78, 130, 340} is the number of control parameters in the given

synthesizer. Then, we independently sample two isotropic Gaussian noise

vectors z1, z2 ∼ N (0, ImS×mS). We define a parameter δ that scales this noise,

and then produce two perturbed parameter vectors θi = θ + δzi ∀i ∈ {1, 2}.

From these, we clip values back into [0, 1] to synthesize two corresponding

sounds which serve as positives in the contrastive learning setup.

In principle, δ controls the distance between the positive pairs and therefore

the hardness of the contrastive learning task. Practically, we expect there

to be a sweet-spot for δ, considering prior work on mutual information and

redundancy in contrastive learning problems [139, 140] as with very high δ,

the parameter vectors may become dominated by noise, resulting in difficulty

effectively aligning their representations. Given this, we extensively study the

effect of δ on downstream results.
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5.2.2 Real Data

To compare to real audio data, we use sounds from VGGSound [4], a well-

known dataset taken from YouTube videos (we only use audio). We use a

random sample of 100,000 10-second files and select a random 1-second segment

from each file at each iteration to augment. This allows us to fairly compare

to our synthetic sounds by keeping duration constant, while still sampling

from a variety of real sounds by randomizing the 1-second segments. Though

VGGSound has labels included, we do not use them in training these models to

keep the self-supervised constraint.

5.2.3 Preprocessing, Data Augmentations, and Audio Encoder

In our experiments, we use VGGish frontend representations [137]. We resample

audio to 16kHz and obtain mel spectrograms with 64 mel bands and 96 time

steps. We use a chain of effects as augmentations (implemented in torch-

audiomentations2): a high-pass filter (cutoff frequency range 20–800Hz), a

low-pass filter (1.2–8kHz), pitch shift (-2 to 2 semitones), time shift (-25% to

25%, rollover enabled), and finally reverberation for which we sample randomly

from a set of impulse responses. All augmentations are applied with probability

0.5. We found that this yielded far stronger results than SpecAugment [141],

and so we use this as a comparison point in all our experiments. More details

on the augmentation are given in Section 5.6.4. We also test temporal jitter,

2 https://github.com/asteroid-team/torch-audiomentations
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wherein different 1-second segments are sampled from within the same source

clip and treated as positives [95, 134]. Our audio encoder is a ResNet18 [142],

where we replace the initial layer with a 1-channel convolution to account for

the effectively 1-channel spectrogram.

5.2.4 Contrastive Learning

We train for 200 epochs, generating (or sampling) 100,000 sounds per epoch,

with a 90%-10% train-validation split. We use a batch size of 768 per GPU with

two V100s. The training uses the alignment and uniformity objectives [143]

used in prior work on learning with synthetic data [92]. We adopt the default

parameters for these: unift = 2, alignα = 2, and equal weights λ1 = λ2 =

1 for both terms. Following this work, we use stochastic gradient descent

for optimization, with a maximum learning rate of 0.72 (calculated as 0.12

× total batch size
256

) and weight decay 10−6. The learning rate follows a multi-

step schedule with γ = 0.1, and milestones at 77.5%, 85%, and 92.5% of the

total learning epochs. Detailed steps are provided in Algorithm 2. Training

with our synthetic data takes approx. 1-2 hours, as the data is generated on the

fly in batches, whereas using on-disk datasets with effect chain augmentations

can extend training time up to 6-8+ hours.
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Algorithm 2 Our contrastive learning procedure with audio doppelgängers. In
the training loop, we drop the batch index i for simplicity.

Require: Batch size k
Require: Perturbation factor δ
Require: Virtual synthesizer S with mS ∈ {78, 130, 340} parameters
Require: Embedding model M with embedding size mM (512 in our case)
Require: Total number of training batches Nbatches

Require: ℓunif(X ∈ [0, 1]k×mM) ← log

[
1
k2 exp

(
−t

k
∑

j=1

k
∑

l=1
∥X[j]− X[l]∥2

2

)]
where t = 2

for i = 1 to Nbatches do
Θ ∈ [0, 1]k×mS ∼ U (0, 1) {Random batch of parameters}
Z1, Z2 ∈ Rk×mS ∼ N (0, I) {Isotropic Gaussian perturbation noise}
Θ̂1 ← max(0, min(Θ + δZ1, 1)) {Clipped perturbed parameters}
Θ̂2 ← max(0, min(Θ + δZ2, 1))
A1 ← S(Θ̂1), A2 ← S(Θ̂2) {Synthesize audio from parameters}
E1 ← M(A1), E2 ← M(A2) {Embedding from model}

Lalign ←
1
k

k
∑

j=1
∥E1[j]− E2[j]∥α

2 where α = 2 {Alignment cost}

Luni f orm ←
1
2
[ℓunif(E1) + ℓunif(E2)] {Uniformity cost}

Ltotal ← λ1Lalign + λ2Luni f orm {By default, we set λ1 = λ2 = 1}
Update model M using Ltotal

end for

5.2.5 Evaluation Tasks

To obtain a broad picture of the quality of our learned representations, we

conduct experiments on a range of audio classification tasks selected from the

HEAR [144] and ARCH [145] benchmarks. We are primarily interested in tasks

that focus on real-world sounds (for example, vs. speech or music audio).

We use a modified version of the HEAR evaluation setup to conduct linear

probing experiments (instead of using an MLP probe) for a more direct signal
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of representation quality. We use the Adam optimizer to train this linear probe

for the benchmark-specified number of epochs, with the default learning rate

of 0.001 and a batch size of 32.

We evaluate on tasks covering a wide range of capabilities including sound

classification tasks like ESC-50 [6], FSD-50k [11], and UrbanSound8K [5], vocal

affect tasks with and without speech like VIVAE [9] and CREMA-D [8], musical

pitch recognition via NSynth Pitch (5h) [10], vocal sound imitation recognition

using Vocal Imitations [12], and LibriCount [7] for a "cocktail party" style

speaker count estimation task.

5.3 results

5.3.1 Benchmark Results

In Table 10, we show results across 8 tasks. The top section features external

baselines from the HEAR [144] leaderboard and ARCH [145] benchmark results,

first the strongest overall and then only self-supervised. It also includes results

from MS-CLAP [146] linear probing experiments, GURA [147] (strongest overall

model on HEAR), and finally the original ResNet18 trained on VGGSound

(supervised) [4]. Note that HEAR leaderboard results may use MLP probes,

whereas ours are linear. We add additional internal baselines, including random

weights, synthetic data trained without δ but with augmentations, and variants

of ResNet18 we trained on VGGSound (with augmentations, and alternately
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with temporal jitter). Finally, we include a selection of our results; the best

overall score we achieve using our synthetic approach (first row), followed

by the best-performing model trained on data from each of the synthesizer

architectures (including Voice with augmentations). In Section 5.6.3, we provide

a full set of results from all model variants: all synthetic datasets for all values

of δ, and further baselines less performant than those we present here.

Overall, our best scores uniformly outperform training on VGGSound with

augmentations, and outperform training with temporal jitter (the strongest

internal baseline) in 6/8 cases. In some cases, these results are also competitive

with strong baselines, such as beating the supervised ResNet18 result on 3/8

tasks, CLAP on 2/5, and GURA on 1/6. Additionally, adding further augmenta-

tions to our audio doppelgänger-based training does not seem to hold significant

benefits, despite being highly beneficial when training with synthetic sounds

with no δ, suggesting the δ-based perturbations are already sufficiently strong.

All this is accomplished without these models seeing any real sounds during

pretraining. Finally, Voice with δ = 0.25 is the strongest synthetic-trained model

overall, being the top performer on 5/8 tasks, but we note that there is some

inter-task variability in the best synthesizer and delta.

5.3.2 Characterizing the Data Distribution

Here, we focus on understanding the distribution of synthetic sounds and

how they differ from natural sound properties. We primarily use our alternate

training set, VGGSound [4], for these measures. Unless specified otherwise, we
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Data/Model ESC US8K VIV NSyn C-D FSD VI LCount

External Baselines

HEAR/ARCH Top [144, 145] 96.65 79.09 44.28 87.80 75.21 65.48 22.69 78.53

HEAR/ARCH SSL 80.50 79.09 44.28 52.40 75.21 50.88 18.48 78.53

MS-CLAP Linear [146] 89.95 82.29 – – 23.15 50.24 – 54.51

GURA (HEAR) [147] 74.35 – – 38.20 75.21 41.32 18.48 68.34

VGGSound Sup. [4] 87.45 77.57 39.38 43.80 54.36 43.76 14.06 56.10

Internal Baselines

Random Init. 22.45 55.03 33.81 36.20 38.91 9.03 2.43 44.91

Voice (Ours, No-δ, Aug.) 48.65 59.46 36.31 32.80 46.32 16.88 7.12 47.64

VGGSound SSL (Aug.) 48.85 61.91 32.67 39.60 47.86 19.63 6.03 53.46

VGGSound SSL (Jitter) 52.95 63.82 38.12 14.20 50.03 24.02 3.43 69.77

Audio Doppelgängers (Ours)

Best Synthetic 58.90 66.71 39.45 44.40 48.43 24.12 9.15 58.60
Voice (δ = 0.25) 58.90 66.71 39.45 32.20 48.24 24.12 9.15 52.95

Voice (δ = 0.25, Aug.) 58.75 65.01 34.81 44.40 46.17 21.76 8.54 50.70

VoiceFM (δ = 0.25) 57.20 65.11 38.48 35.20 48.43 22.15 6.96 54.00

Parametric (δ = 0.25) 50.55 62.83 37.91 37.60 46.77 18.68 5.70 54.72

Table 10: Evaluation results on a suite of tasks including (from left to right) ESC-
50 [6], UrbanSound8k [5], VIVAE [9], NSynth Pitch 5h [10], CREMA-D [8],
FSD50k [11], Vocal Imitation [12], and LibriCount [7]. For internal baselines,
we only bold tasks where the baseline beats the best synthetically trained
result. Results for all synthetic variants are in Section 5.6.3.

use a randomly sampled (for VGGSound) or generated (for synthetic) set of

1000 sounds for each given dataset used for these characterizations. Our goal

is to help understand what properties of the synthetic data make it useful for

representation learning, given its strong performance.

Embedding Similarity

First, we look at the distribution of synthetic sound pairs and establish that

δ meaningfully controls (a proxy for) perceptual or semantic dissimilarity.

We operationalize this using LAION-CLAP embeddings [2], since they are

trained on a large variety of sounds with semantic descriptions associated.
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Figure 12: (A: Top) Average CLAP [2] embedding cosine similarity between positive
pairs for different architectures and different values of δ. (B: Bottom) PCA
of CLAP embeddings for sounds generated with the Voice architecture, with
line segments showing distances between paired examples. Red and blue
points are paired positive instances. Across both plots, as δ increases, the
positive pairs systematically become more perceptually dissimilar (via the
CLAP embedding proxy).

Figure 12A shows how the average cosine similarity decreases monotonically

with increasing δ for all 3 synthesizers. Figure 12B provides an alternate view

of the space of positive pairs, compared to negatives (other samples). Here,

we plot the first two principal components of the CLAP embeddings along

with the path length for each positive pair of synthesized samples from a Voice

synthesizer. As δ increases, the path lengths increase and overlap more resulting

in less clear separation of positive pairs from negatives. We view this as a signal

that we can effectively control the hardness of the contrastive task using δ, the

perturbation factor.
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Similarities and Differences from Real Data

Next, we compare the synthetic data distribution to VGGSound [4] data. Fig-

ure 13A compares a selection of features’ distributions between several dataset

variants. For synthetic datasets, we have Voice, VoiceFM, and ParametricSynth

variants. For real datasets, we have VGGSound. We first compare to randomly

sampled 1-second chunks. Here, the synthetic sounds match several feature dis-

tributions well, such as Inharmonicity [148], Odd-to-Even Harmonic Ratio [149],

Pitch Salience [150], and, to a lesser extent, Spectral Flatness [148]. However, the

synthetic sounds have higher Spectral Flux [151] and Complexity [152]. Note

that ParametricSynth also has lower pitch salience. We believe this is due to its

larger mixture of sound generators which reduce salience of particular pitches.

Based on these results, we hypothesize that one potential reason the synthetic

sounds could be useful for training is the informativeness of the samples. The

larger amount of spectral change and higher complexity in terms of peaks could

expose the model to more different kinds of sounds rapidly. To try to match

these attributes, we produce mixtures of VGGSound, since mixed sounds may

have more peaks and variation than individual samples. In VGGSound-Mix 5s,

we take 5 arbitrary seconds from each sound and layer them into a 1-second

sample. In VGGSound-Mix 10s, we do the same with all 10 seconds available.

We show (Figure 13) that these get closer to the synthetic distributions on these

features, without deviating on other features. These data distributions allow

us to assess whether the benefits of synthetic data are largely driven by the

change and informativeness of the signals. In Section 5.6.3, we present results

from models trained on these mixture distributions, and obtained mixed results,
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Figure 13: Comparisons of synthetic and real sound data (VGGSound [4]) on (A: Top)
spectral features and (B: Bottom) causal uncertainty. Spectral features of
synthetic sounds partially replicate real sounds, but exhibit differences in
complexity and flux. Synthetic sounds are also more causally ambiguous,
indicating a distribution shift. Using dense mixtures of real sounds partially
closes these gaps, suggesting the synthetic sounds are different in part due
to their density of auditory information.

suggesting other factors of the synthesized sounds may also be important

beyond this.

Causal Uncertainty

We also consider causal uncertainty [153, 154, 155], a factor that we intuitively

expect to be different for the synthetic sounds. Helmholtz famously discussed

perception in terms of unconscious causal inference from sensory input [156],

but the synthetic sounds have no physical causes and do not come from well-

understood categories. In Figure 13B, we plot 3 proxies for causal uncertainty

derived from probabilities of an AST classifier [157] trained on AudioSet. We

use the formulation from prior work of Hcu, the maximum predicted probabil-
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ity [154, 155]. We also propose two simple metrics to corroborate this: Hp the

(normalized) entropy of the output probability distribution, and a confidence

score Scon f , the difference in probability between the most and second-most

probable classes (log-scaled for the plot). Across all, the synthetic sounds are

more causally uncertain than the real sounds. However, as with the spectral

feature distributions, using mixtures of VGGSound [4] clips moves the real

distribution slightly closer to the synthetic distribution per Hcu and Hp. We

speculate that exposure to more causally uncertain sounds might be subtly help-

ful for representation learning; for example, they may contain diverse features

that aid generalization to more ambiguous sounds present in downstream tasks.

We characterize this as another important distributional difference between the

synthetic sounds and realistic sounds from datasets such as VGGSound.

Similarity to Target Distributions

Another lens we can use to understand the effectiveness of training on synthetic

data is in terms of the distribution of sounds in the target downstream tasks. A

common metric to compare sound distributions is the Fréchet Audio Distance

(FAD) [13]. For simplicity, we use the canonical formulation based on VGGish

embeddings, though there are some limitations of this [158, 159], and we use

either the validation sets or first multi-fold splits of the target task audio.

Table 11 shows that for ESC-50 [6], VGGSound is closer in distribution to the

target sounds, likely due to ESC-50’s focus on environmental sounds. For all

other tasks, however, the synthetic sounds achieve a lower FAD, suggesting they

may better capture task-relevant features for these tasks’ sounds. This finding

echoes a study of MMDs in torchsynth [1], where the Voice architecture shows

88



higher-than-expected similarity to FSD50k sounds. We hypothesize that the

synthetic training allows the model to see a wide variety of spectral behavior

rapidly, in a way that supports an array of tasks.

Dataset ESC-50 FSD50k LibriCount NSynth CREMA-D Vocal Imitation

Voice 17.39 13.37 16.67 12.83 18.55 11.64
VoiceFM 18.48 15.91 17.67 14.49 21.24 13.66

ParametricSynth 18.75 19.44 21.04 17.42 25.33 17.32

VGGSound 6.71 25.33 29.09 27.67 33.83 27.75

VGGSound-Mix 5s 8.81 26.17 30.02 28.70 34.35 29.05

VGGSound-Mix 10s 9.30 26.09 30.15 28.88 34.06 29.16

Table 11: FAD [13] scores between different synthetic/real datasets and target down-
stream task data distributions, computed using either validation sets or the
first fold (for multi-fold datasets). For 5/6 tasks, Voice achieves the lowest
FAD despite containing synthetic sounds. On ESC-50, however, the VG-
GSound distribution appears to be closest.

5.3.3 Ablations and Sensitivity Analysis

In Figure 14, we study the effect of the perturbation factor δ on downstream

task performance across all tasks for the strongest (Voice) architecture with and

without additional (FX chain based) augmentations. Overall, δ = 0.25 appears

to give the best result across tasks, with a few notable exceptions like NSynth

without augmentations, and LibriCount overall.
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Figure 14: Scores with the Voice architecture and different values of δ for evaluation
tasks in Table 10 with and without augmentations. δ = 0.25 tends to give
the best results overall.

5.4 limitations

We opted for small-scale, established architectures like ResNets due to com-

putational constraints and the desire for generalizable results. Scaling up to

larger architectures like AST [157] could further validate our approach in high-

compute environments (our attempts to train such models were infeasible).

Additionally, we focused on direct comparisons between synthetic and real

data, excluding hybrid approaches that might offer valuable insights, since the

design space of hybrid approaches (e.g. mixtures or fine-tuning) is large and

warrants a deeper exploration.

Our simple isometric Gaussian noise perturbation proved effective, but it

relies on a simplifying independence assumption (parameters are correlated

within components and component chains) and doesn’t account for parameter

semantics (e.g. octaves in pitch). Future work could explore fine-grained,

semantically-aware perturbations operationalized via the covariance structure
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of the perturbations. Scheduling or adapting the perturbation factor during

training could offer more challenging examples. It could also be learned, which

would require stable end-to-end auto-differentiation (challenging depending on

the synthesizer architecture). Our evaluation focused on standard classification

benchmarks, but incorporating aspects like representation disentanglement

could offer a richer view. Finally, while we explored various synthesis options,

the possibilities are vast, and future work could investigate variable architectures

for enhanced data augmentation.

On a broader note, we believe it’s important to examine synthetic data-

generating procedures for possible biases in the way that we do with datasets.

Though we think this procedure can mitigate some of the biases in collectible

real datasets, different synthesizer architectures, values of δ, and other decisions

might inadvertently produce performance gaps for different tasks, applications,

and downstream populations of use. We evaluated on a wide range of tasks

in part to explore this possibility, but further evaluations would be helpful to

assess these impacts.

5.5 conclusion

Further improvements in auditory understanding depend greatly on the data

underlying new models. In this work, we examined the value of synthetic data

for learning representations of sound. We presented a method that perturbs the

parameters of random synthetic sounds to generate audio doppelgängers, distinct
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yet similar sounds that provide a strong signal for contrastive learning. Through

a comprehensive set of experiments, we showed how this approach can yield

strong results on a wide range of tasks. We will release our code and models

to enable the community to experiment with synthetic data sources for audio

understanding, and hope this approach will help expand the machine learning

toolkit for audio processing.

5.6 supplementary analyses

5.6.1 Comparison of Different Architectures Across Tasks

In Figure 15 we show the relative performance of models trained with data

from different synthesizer architectures with δ = 0.25. These results illustrate

that, though Voice-generated sounds appear strongest overall, there is some

task specialization of these different synthesis approaches. For example, on

LibriCount and NSynth, Voice is the lowest performer here.

5.6.2 Effects of Increasing Perturbation Factor δ on Training

We seek to understand how increasing δ impacts the training dynamics. Fig-

ure 16 shows the impact of different δ on the final validation value of the

alignment and uniformity costs respectively. Alignment cost increases mono-

tonically with δ, which shows the increased difficulty of aligning increasingly

92



Figure 15: Scores with a fixed δ = 0.25 and different synthesizer architectures for a
suite of tasks including (from left to right) UrbanSound8k [5], ESC-50 [6],
LibriCount [7], CREMA-D [8], VIVAE [9], NSynth Pitch 5h [10], FSD50k [11],
and Vocal Imitation [12]

Figure 16: Final validation scores showing the effect of δ on Lalign and Luni f . Lalign
increases monotonically with δ, since the difficulty of aligning more distinct
samples goes up. Luni f , on the other hand, shows an inverse-U-shaped
relationship with δ.

distant pairs. Uniformity, interestingly, has an inverted-U-shaped relationship

with δ. This may be because as the model struggles to align positives with

moderate noise driven variation, it incurs a cost in uniformity in order to do so

(e.g. creating clusters). With large δ, the amount of noise present is significant,

alignment is difficult, and the representations may be able to be more spread

out.
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5.6.3 Results for all Variants

We give results for all synthetic model variants below, in Table 12.

Data/Model ESC US8K VIV NSyn C-D FSD VI LCount

External Baselines

HEAR/ARCH Top [144, 145] 96.65 79.09 44.28 87.80 75.21 65.48 22.69 78.53

HEAR/ARCH SSL 80.50 79.09 44.28 52.40 75.21 50.88 18.48 78.53

MS-CLAP Linear [146, 160] 89.95 82.29 – – 23.15 50.24 – 54.51

GURA (HEAR) [147] 74.35 – – 38.20 75.21 41.32 18.48 68.34

VGGSound Sup. [4] 87.45 77.57 39.38 43.80 54.36 43.76 14.06 56.10

Internal Baselines

Random Init. 22.45 55.03 33.81 36.20 38.91 9.03 2.43 44.91

Voice (Ours, No-δ, Aug.) 48.65 59.46 36.31 32.80 46.32 16.88 7.12 47.64

VGGSound SSL (Aug.) 48.85 61.91 32.67 39.60 47.86 19.63 6.03 53.46

VGGSound SSL (Jitter) 52.95 63.82 38.12 14.20 50.03 24.02 3.43 69.77
VGGSound-Mix 5s 43.95 59.69 33.31 40.80 46.10 14.71 5.95 52.57

VGGSound-Mix 10s 42.95 57.40 32.03 40.20 46.57 15.77 6.43 51.07

Audio Doppelgängers (Ours)

Best Synthetic 58.90 66.71 39.45 44.40 48.43 24.12 9.15 58.60
Voice (δ = 0.01) 47.55 59.56 38.62 11.40 47.53 17.15 6.67 55.56

Voice (δ = 0.05) 47.90 64.02 37.93 13.80 46.45 17.77 7.72 51.52

Voice (δ = 0.10) 48.40 63.92 38.74 11.40 45.13 18.40 7.67 49.32

Voice (δ = 0.25) 58.90 66.71 39.45 32.20 48.24 24.12 9.15 52.95

Voice (δ = 0.50) 41.85 54.03 28.54 40.60 45.78 17.14 4.69 43.85

VoiceFM (δ = 0.01) 42.40 59.89 36.58 9.20 44.31 15.34 5.15 57.13

VoiceFM (δ = 0.05) 42.90 62.96 36.54 14.20 44.93 15.64 5.79 50.61

VoiceFM (δ = 0.10) 44.80 62.03 35.73 14.80 43.99 15.67 5.60 50.56

VoiceFM (δ = 0.25) 57.20 65.11 38.48 35.20 48.43 22.15 6.96 54.00

VoiceFM (δ = 0.50) 43.50 60.98 39.04 12.20 44.17 15.25 6.06 51.07

Parametric (δ = 0.01) 39.50 58.95 36.87 12.20 42.16 13.92 4.53 58.60
Parametric (δ = 0.05) 40.15 57.22 35.11 14.60 42.65 12.87 4.78 55.37

Parametric (δ = 0.10) 42.50 59.65 34.12 14.20 43.01 13.41 4.97 53.43

Parametric (δ = 0.25) 50.55 62.83 37.91 37.60 46.77 18.68 5.70 54.72

Parametric (δ = 0.50) 41.15 56.86 35.41 10.40 41.73 12.76 4.48 54.27

Voice (δ = 0.01, Aug.) 52.55 62.92 34.82 23.60 46.96 18.18 8.17 51.01

Voice (δ = 0.05, Aug.) 53.00 65.17 34.49 19.40 45.39 19.79 8.32 49.84

Voice (δ = 0.10, Aug.) 54.20 65.89 33.78 23.40 45.71 20.38 8.50 50.42

Voice (δ = 0.25, Aug.) 58.75 65.01 34.81 44.40 46.17 21.76 8.54 50.70

Voice (δ = 0.50, Aug.) 32.25 48.40 25.41 36.20 41.38 11.82 3.26 44.74

Table 12: Complete results for all model variants.
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5.6.4 Additional Details on Training

Augmentation Batching

Due to practical considerations in batching and memory management, augmen-

tations are applied differently for real and synthetic data. In real data, aug-

mentations are applied per-example within distributed data-loading workers.

Synthetic data is batch-generated within the main process to avoid concurrency

issues between JAX’s multithreading and PyTorch’s data loading. Individu-

ally augmenting examples in this synthetic data environment is prohibitively

slow. As a solution, we mini-batched augmentations with a default size ≤ 100.

This allows us to memory-efficiently leverage GPU processing and introduces

variation within each training batch. While per-example augmentations might

further enhance performance of synthetic data with augmentations, we believe

our current approach is a conservative yet effective option and expect minimal

impact.
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6 F U T U R E W O R K

The research in this thesis shows how versatile small virtual synthesizers can

be, achieving results comparable to state-of-the-art large black-box models in

some tasks. However, there remain multiple exciting opportunities to extend

this work.

We developed SynthAX [3] to be the fastest synthesizer available in a

framework that would allow for programmatic manipulation of its parameters.

However, designing and developing a user interface for easy manipulation

would expand its accessibility in creative domains. For instance, an option

would be to make it compatible with common audio plugin formats. Moreover,

expanding functionality with diverse modules, architectures, and integrated

effects processing capabilities would enable the generation of more diverse

sounds. All these improvements would directly impact CTAG [19]. Simplifying

the process of transforming ideas into sounds via text descriptions, while

allowing manipulation and interpolation within one single interface, would

ultimately empower sound designers and musicians to explore new sonic

possibilities.

To further enhance the audio doppelgängers [20], future work could scale

to larger architectures like AST [127], which might significantly improve our

results. Additionally, investigating hybrid approaches that combine the advan-
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tages of synthetic and real data might offer a more comprehensive and effective

learning strategy. A deeper exploration of the specific features within the data

that contribute to its learnability could unveil valuable insights, and studying

the learning process from different modules or parameters in isolation, such as

focusing on pitch, could reveal nuanced relationships and interactions within

the audio data, leading to potentially improved performance on various tasks.

The work in this thesis mainly leverages the controllability of synthesiz-

ers, but interpretability remains one of the most important features. Future

research could explore this aspect further, particularly by studying the relation-

ship between sound and affective responses. While this connection has been

investigated for decades, it still isn’t fully understood. Employing interpretable

synthesis methods could allow examining causal relationships, and ultimately,

enable the synthesis of sounds conditioned on specific affective responses.
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7 C O N C L U S I O N

This thesis explores the potential of virtual synthesizers as lightweight, in-

terpretable, and controllable alternatives to complex neural network-based

generative audio models. Through the development of SynthAX [3], a fast

modular synthesizer built for accelerators, we have demonstrated the capability

to generate vast amounts of audio data efficiently.

We leveraged this synthesizer to develop CTAG [19], a text-to-parameter

method that allows for the creation of semantically aligned sounds from text

prompts using only 78 physically-motivated variables. This approach not only

achieves high-quality results comparable to state-of-the-art models with billions

of parameters but also provides a more abstract and conceptual representation

of sounds.

Finally, we show how this same synthesizer can be used in a novel approach

for contrastive learning using what we call audio doppelgängers [20]—synthetic

positive pairs generated by randomly perturbing the parameters of our syn-

thesizer. This method produces robust audio representations competitive with

those trained on real data, while offering richer contrastive information through

causally manipulated variations in timbre, pitch, and temporal envelopes.

This work highlights the surprising power and versatility of virtual synthe-

sizers as powerful tools in the field of audio machine learning, even with a
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relatively small number of parameters. Our work bridges the gap between tra-

ditional synthesizer technology and modern computational paradigms, offering

a complementary tool to neural network-based approaches in audio synthesis

and representation learning.
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Weissenberger, Julia Proskurnia, Bogdan Prisacari, Daniel Valcarce, Justin
Lu, Rohit Prabhavalkar, et al. Replacing human audio with synthetic
audio for on-device unspoken punctuation prediction. In ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7653–7657. IEEE, 2021.

[66] Martijn Bartelds, Nay San, Bradley McDonnell, Dan Jurafsky, and Mar-
tijn Wieling. Making more of little data: Improving low-resource au-
tomatic speech recognition using data augmentation. arXiv preprint
arXiv:2305.10951, 2023.

106



[67] Zhehuai Chen, Andrew Rosenberg, Yu Zhang, Gary Wang, Bhuvana
Ramabhadran, and Pedro J Moreno. Improving speech recognition using
gan-based speech synthesis and contrastive unspoken text selection. In
Interspeech, pages 556–560, 2020.

[68] Xianrui Zheng, Yulan Liu, Deniz Gunceler, and Daniel Willett. Using
synthetic audio to improve the recognition of out-of-vocabulary words in
end-to-end asr systems. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5674–5678. IEEE,
2021.

[69] Nicolas Jonason and Bob LT Sturm. Timbreclip: Connecting timbre to
text and images. arXiv preprint arXiv:2211.11225, 2022.

[70] Zilin Wang, Peng Liu, Jun Chen, Sipan Li, Jinfeng Bai, Gang He, Zhiyong
Wu, and Helen Meng. A synthetic corpus generation method for neural
vocoder training. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[71] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool. Learning semantic
segmentation from synthetic data: A geometrically guided input-output
adaptation approach. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1841–1850, 2019.

[72] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and
Antonio M Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3234–3243,
2016.

[73] Gul Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J
Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 109–117, 2017.

[74] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu.
Human3. 6m: Large scale datasets and predictive methods for 3d human
sensing in natural environments. IEEE transactions on pattern analysis and
machine intelligence, 36(7):1325–1339, 2013.

[75] Shakhnarovich, Viola, and Darrell. Fast pose estimation with parameter-
sensitive hashing. In Proceedings Ninth IEEE International Conference on
Computer Vision, pages 750–757. IEEE, 2003.

107



[76] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow estima-
tion. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4040–4048, 2016.

[77] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner
Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers,
and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015.

[78] Zhongzheng Ren and Yong Jae Lee. Cross-domain self-supervised multi-
task feature learning using synthetic imagery. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 762–771, 2018.

[79] Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick
Pérez. This dataset does not exist: training models from generated images.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE, 2020.

[80] Suman Ravuri and Oriol Vinyals. Classification accuracy score for condi-
tional generative models. Advances in neural information processing systems,
32, 2019.

[81] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative
models as a data source for multiview representation learning. arXiv
preprint arXiv:2106.05258, 2021.

[82] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche,
Adela Barriuso, Antonio Torralba, and Sanja Fidler. Datasetgan: Efficient
labeled data factory with minimal human effort. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10145–10155, 2021.

[83] Nontawat Tritrong, Pitchaporn Rewatbowornwong, and Supasorn Suwa-
janakorn. Repurposing gans for one-shot semantic part segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4475–4485, 2021.

[84] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler.
Semantic segmentation with generative models: Semi-supervised learning
and strong out-of-domain generalization. In Proceedings of the IEEE/CVF

108



Conference on Computer Vision and Pattern Recognition, pages 8300–8311,
2021.

[85] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda
Wang, and Russell Webb. Learning from simulated and unsupervised
images through adversarial training. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2107–2116, 2017.

[86] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola,
Kate Saenko, Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent
adversarial domain adaptation. In International conference on machine
learning, pages 1989–1998. Pmlr, 2018.

[87] Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan.
Stablerep: Synthetic images from text-to-image models make strong visual
representation learners. Advances in Neural Information Processing Systems,
36, 2024.

[88] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdi-
nov. Effective data augmentation with diffusion models. arXiv preprint
arXiv:2302.07944, 2023.

[89] Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient
instance generation from instance discrimination. Advances in Neural
Information Processing Systems, 34:9378–9390, 2021.

[90] Jongheon Jeong and Jinwoo Shin. Training gans with stronger augmenta-
tions via contrastive discriminator. arXiv preprint arXiv:2103.09742, 2021.

[91] Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yama-
gata, Ryosuke Yamada, Nakamasa Inoue, Akio Nakamura, and Yutaka
Satoh. Pre-training without natural images. In Proceedings of the Asian
Conference on Computer Vision, 2020.

[92] Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip Isola, and
Antonio Torralba. Learning to see by looking at noise. Advances in Neural
Information Processing Systems, 34:2556–2569, 2021.

[93] Manel Baradad, Richard Chen, Jonas Wulff, Tongzhou Wang, Rogerio
Feris, Antonio Torralba, and Phillip Isola. Procedural image programs for
representation learning. Advances in Neural Information Processing Systems,
35:6450–6462, 2022.

109



[94] Haider Al-Tahan and Yalda Mohsenzadeh. Clar: Contrastive learning of
auditory representations. In International Conference on Artificial Intelligence
and Statistics, pages 2530–2538. PMLR, 2021.

[95] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning
of general-purpose audio representations. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3875–3879. IEEE, 2021.

[96] Mirco Ravanelli and Yoshua Bengio. Learning speaker representations
with mutual information. In Interspeech, pages 1153–1157, 2019.

[97] Luyu Wang and Aaron van den Oord. Multi-format contrastive learning
of audio representations. arXiv preprint arXiv:2103.06508, 2021.

[98] Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E O’Connor,
and Xavier Serra. Unsupervised contrastive learning of sound event
representations. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 371–375. IEEE,
2021.

[99] Craig Bruce. http://www.csbruce.com/quotes/craig/, 1990. Accessed:
2024-07-27.

[100] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand
Rondepierre, Andreas Steiner, and Marc van Zee. Flax: A neural network
library and ecosystem for JAX, 2023.

[101] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce,
Peter Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka,
Antoine Dedieu, Claudio Fantacci, Jonathan Godwin, Chris Jones, Ross
Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kaptur-
owski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George
Papamakarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez,
Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan,
Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The
DeepMind JAX Ecosystem, 2020.

[102] Robert Tjarko Lange. evosax: Jax-based evolution strategies. arXiv preprint
arXiv:2212.04180, 2022.

[103] Yujin Tang, Yingtao Tian, and David Ha. Evojax: Hardware-accelerated
neuroevolution. arXiv preprint arXiv:2202.05008, 2022.

110

http://www.csbruce.com/quotes/craig/


[104] Bryan Lim, Maxime Allard, Luca Grillotti, and Antoine Cully. Accelerated
quality-diversity for robotics through massive parallelism. arXiv preprint
arXiv:2202.01258, 2022.

[105] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. Byol for audio: Exploring pre-trained general-purpose au-
dio representations. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 31:137–151, 2022.

[106] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. Masked modeling duo: Learning representations by
encouraging both networks to model the input. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023.

[107] Ricardo Antonio García. Automatic generation of sound synthesis techniques.
PhD thesis, Massachusetts Institute of Technology, 2001.

[108] Allan Seago, Simon Holland, and Paul Mulholland. A critical analysis of
synthesizer user interfaces for timbre. 2004.

[109] Naotake Masuda and Daisuke Saito. Synthesizer sound matching with
differentiable dsp. In ISMIR, pages 428–434, 2021.

[110] Harri Renney, Benedict Gaster, and Thomas J Mitchell. Survival of the
synthesis—gpu accelerating evolutionary sound matching. Concurrency
and Computation: Practice and Experience, 34(10):e6824, 2022.

[111] Naotake Masuda and Daisuke Saito. Quality-diversity for synthesizer
sound matching. Journal of Information Processing, 31:220–228, 2023.

[112] Philippe Esling, Naotake Masuda, and Axel Chemla-Romeu-Santos.
Flowsynth: simplifying complex audio generation through explorable
latent spaces with normalizing flows. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial Intelli-
gence, pages 5273–5275, 2021.

[113] Sebastian Löbbers, Louise Thorpe, and György Fazekas. Sketchsynth:
Cross-modal control of sound synthesis. In International Conference on
Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar),
pages 164–179. Springer, 2023.

[114] Hugo Scurto, Bavo Van Kerrebroeck, Baptiste Caramiaux, and Frédéric
Bevilacqua. Designing deep reinforcement learning for human parameter

111



exploration. ACM Transactions on Computer-Human Interaction (TOCHI),
28(1):1–35, 2021.

[115] Jordie Shier, George Tzanetakis, and Kirk McNally. Spiegelib: An au-
tomatic synthesizer programming library. In Audio Engineering Society
Convention 148. Audio Engineering Society, 2020.

[116] Hannah Nemer. ’Pop ’n Pour’: This Electronic Mu-
sic Pioneer Created the Sound of Coke’s Beloved
Bubbles. http://www.coca-colacompany.com/stories/
meet-suzanne-ciani-the-legendary-creator-of-cokes-pop-n-pour,
2017. Accessed: 2023-08-15.

[117] Robert Tjarko Lange. evosax: Jax-based evolution strategies. In Proceedings
of the Companion Conference on Genetic and Evolutionary Computation, pages
659–662, 2023.

[118] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman,
Kenneth O Stanley, and Jeff Clune. Deep neuroevolution: Genetic algo-
rithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[119] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation, 9(2):159–
195, 2001.

[120] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, volume 4,
pages 1942–1948. IEEE, 1995.

[121] Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin
Dalibard, and Sebastian Flennerhag. Discovering attention-based genetic
algorithms via meta-black-box optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 929–937, 2023.

[122] Eytan Bakshy, Lili Dworkin, Brian Karrer, Konstantin Kashin, Benjamin
Letham, Ashwin Murthy, and Shaun Singh. Ae: A domain-agnostic
platform for adaptive experimentation. In Conference on neural information
processing systems, pages 1–8, 2018.

[123] Karol J. Piczak. Esc: Dataset for environmental sound classification.
Proceedings of the 23rd ACM international conference on Multimedia, 2015.

112

http://www.coca-colacompany.com/stories/meet-suzanne-ciani-the-legendary-creator-of-cokes-pop-n-pour
http://www.coca-colacompany.com/stories/meet-suzanne-ciani-the-legendary-creator-of-cokes-pop-n-pour


[124] Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and
Shlomo Dubnov. Hts-at: A hierarchical token-semantic audio transformer
for sound classification and detection. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
646–650. IEEE, 2022.

[125] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[126] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio
set: An ontology and human-labeled dataset for audio events. 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 776–780, 2017.

[127] Yuan Gong, Yu-An Chung, and James R. Glass. Ast: Audio spectrogram
transformer. ArXiv, abs/2104.01778, 2021.

[128] Jacob Schreiber, Jeffrey Bilmes, and William Stafford Noble. apricot:
Submodular selection for data summarization in python. The Journal of
Machine Learning Research, 21(1):6474–6479, 2020.

[129] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[130] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez, Sankalp Gulati, Perfecto
Herrera, Oscar Mayor, Gerard Roma, Justin Salamon, José Ricardo Za-
pata, and Xavier Serra. Essentia: An audio analysis library for music
information retrieval. In International Society for Music Information Retrieval
Conference, 2013.

[131] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-
fold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[132] Tim Hodgkinson. Recommended Records Quarterly, 2(1), 1987. Accessed:
2024-07-27.

[133] Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti, Judith Yue Li,
and Daniel PW Ellis. Mulan: A joint embedding of music audio and
natural language. arXiv preprint arXiv:2208.12415, 2022.

113



[134] Janne Spijkervet and John Ashley Burgoyne. Contrastive learning of
musical representations. arXiv preprint arXiv:2103.09410, 2021.

[135] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. Byol for audio: Self-supervised learning for general-
purpose audio representation. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[136] Pranay Manocha, Zeyu Jin, Richard Zhang, and Adam Finkelstein. Cd-
pam: Contrastive learning for perceptual audio similarity. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 196–200. IEEE, 2021.

[137] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke,
Aren Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A Saurous,
Bryan Seybold, et al. Cnn architectures for large-scale audio classification.
In 2017 ieee international conference on acoustics, speech and signal processing
(icassp), pages 131–135. IEEE, 2017.

[138] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and
Hrishikesh Khandeparkar. A theoretical analysis of contrastive unsu-
pervised representation learning. In International Conference on Machine
Learning, pages 5628–5637. PMLR, 2019.

[139] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid,
and Phillip Isola. What makes for good views for contrastive learning?
Advances in neural information processing systems, 33:6827–6839, 2020.

[140] Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive
learning, multi-view redundancy, and linear models. In Algorithmic
Learning Theory, pages 1179–1206. PMLR, 2021.

[141] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret
Zoph, Ekin D Cubuk, and Quoc V Le. Specaugment: A simple data
augmentation method for automatic speech recognition. arXiv preprint
arXiv:1904.08779, 2019.

[142] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[143] Tongzhou Wang and Phillip Isola. Understanding contrastive representa-
tion learning through alignment and uniformity on the hypersphere. In
International conference on machine learning, pages 9929–9939. PMLR, 2020.

114



[144] Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W
Schuller, Christian J Steinmetz, Colin Malloy, George Tzanetakis, Gissel
Velarde, Kirk McNally, et al. Hear: Holistic evaluation of audio repre-
sentations. In NeurIPS 2021 Competitions and Demonstrations Track, pages
125–145. PMLR, 2022.

[145] Moreno La Quatra, Alkis Koudounas, Lorenzo Vaiani, Elena Baralis,
Paolo Garza, Luca Cagliero, and Sabato Marco Siniscalchi. Benchmarking
representations for speech, music, and acoustic events. In 2024 IEEE
International Conference on Acoustics, Speech, and Signal Processing Workshops
(ICASSPW), 2024.

[146] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming
Wang. Clap learning audio concepts from natural language supervision.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[147] Tung-Yu Wu, Tsu-Yuan Hsu, Chen-An Li, Tzu-Han Lin, and Hung-yi Lee.
The efficacy of self-supervised speech models for audio representations.
In HEAR: Holistic Evaluation of Audio Representations, pages 90–110. PMLR,
2022.

[148] Geoffroy Peeters. A large set of audio features for sound description
(similarity and classification) in the cuidado project. CUIDADO Ist Project
Report, 54(0):1–25, 2004.

[149] Keith D Martin and Youngmoo E Kim. 2pmu9. musical instrument
identification: A pattern-recognition approach. In Presented at the 136th
meeting of the Acoustical Society of America, 1998.

[150] Julien Ricard. Towards computational morphological description of sound.
DEA pre-thesis research work, Universitat Pompeu Fabra, Barcelona, 2004.

[151] George Tzanetakis and Perry Cook. Multifeature audio segmentation
for browsing and annotation. In Proceedings of the 1999 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics. WASPAA’99 (Cat.
No. 99TH8452), pages 103–106. IEEE, 1999.

[152] Cyril Laurier, Owen Meyers, Joan Serra, Martin Blech, Perfecto Herrera,
and Xavier Serra. Indexing music by mood: design and integration of
an automatic content-based annotator. Multimedia Tools and Applications,
48:161–184, 2010.

115



[153] JA Ballas and MJ Sliwinski. Causal uncertainty in the identification of
environmental sounds. Georgetown University, Washington, DC, 1986.

[154] Ishwarya Ananthabhotla, David B Ramsay, and Joseph A Paradiso.
Hcu400: An annotated dataset for exploring aural phenomenology
through causal uncertainty. In ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 920–924.
IEEE, 2019.

[155] Tal Boger, Ishwarya Ananthabhotla, and Joseph Paradiso. Manipulating
causal uncertainty in sound objects. In Proceedings of the 16th International
Audio Mostly Conference, pages 9–15, 2021.

[156] Hermann von Helmholtz. Concerning the perceptions in general. 1867.

[157] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram
transformer. arXiv preprint arXiv:2104.01778, 2021.

[158] Azalea Gui, Hannes Gamper, Sebastian Braun, and Dimitra Emmanouili-
dou. Adapting frechet audio distance for generative music evaluation. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1331–1335. IEEE, 2024.

[159] Modan Tailleur, Junwon Lee, Mathieu Lagrange, Keunwoo Choi, Laurie M
Heller, Keisuke Imoto, and Yuki Okamoto. Correlation of fr\’echet audio
distance with human perception of environmental audio is embedding
dependant. arXiv preprint arXiv:2403.17508, 2024.

[160] Benjamin Elizalde, Soham Deshmukh, and Huaming Wang. Natural
language supervision for general-purpose audio representations, 2023.

116


	Introduction
	Related Work
	Programmatic Synthesis
	Sound Synthesis
	Language-Sound Correspondence
	Abstract Synthesis
	Interpretable & Controllable Synthesis
	The Synthesizer Programming Problem
	Learning from Synthetic Data
	Contrastive Learning

	SynthAX: A Fast Modular Synthesizer in JAX
	Introduction
	System Design
	Results
	Performance Evaluation
	torchsynth Replication

	Applications
	Audio Representations
	The Synthesizer Programming Problem

	Conclusion

	Creative Text-to-Audio Generation via Synthesizer Programming
	Introduction
	Methods
	Synthesizer
	Optimization
	Objective Function
	Evaluation Metrics

	Results
	Ablation Studies
	Qualitative Results
	Classification Results
	Synthesis Quality and Variation
	User Study
	Additional Analyses

	Limitations
	Conclusion
	Supplementary Analyses
	Generation Time
	CLAP Scores
	Prompting Strategies for All Tested Models
	User Study Statistical Models
	User Study Per-Prompt Accuracy
	Dimensionality Reduction
	Caption Prompt
	Listener Survey


	Contrastive Learning from Synthetic Audio Doppelgängers
	Introduction
	Methods
	Data Generation
	Real Data
	Preprocessing, Data Augmentations, and Audio Encoder
	Contrastive Learning
	Evaluation Tasks

	Results
	Benchmark Results
	Characterizing the Data Distribution
	Ablations and Sensitivity Analysis

	Limitations
	Conclusion
	Supplementary Analyses
	Comparison of Different Architectures Across Tasks
	Effects of Increasing Perturbation Factor  on Training
	Results for all Variants
	Additional Details on Training


	Future Work
	Conclusion

