
Secure Computation in Decentralized Systems

by

Guy Zyskind
B.Sc., Tel-Aviv University (2012)

S.M., Massachusetts Institute of Technology (2016)

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Guy Zyskind. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Guy Zyskind
Program in Media Arts and Sciences
August 06, 2024

Certified by: Alex "Sandy" Pentland
Toshiba Professor of Media Arts and Sciences, Thesis Supervisor

Accepted by: Joseph Paradiso
Academic Head, Program in Media Arts and Sciences

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Secure Computation in Decentralized Systems
by

Guy Zyskind

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning,
on August 06, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Decentralized systems like Bitcoin and Ethereum are real-world examples of secure dis-
tributed systems deployed at scale. Over the past decade, these systems and others have
proven to provide a trust-minimized solution for computing. They ensure the correct exe-
cution of code (correctness), maintain the integrity of stored data, and remain consistently
available (availability). Additionally, they allow any user to interact without the risk of
censorship.

However, while decentralized systems guarantee security properties like integrity, correct-
ness, and availability, they do not provide privacy. In this regard, they are strictly worse
than assuming full trust in a centralized server, since any node in the network must see all
data. Furthermore, in many of these open systems (also known as ’permissionless’ networks),
there are no restrictions on who can operate a node. This means that decentralized systems,
and public blockchains in particular, cannot operate on private data, greatly limiting the
kinds of use-cases they can support.

This dissertation explores solutions to mitigate the privacy concerns associated with
modern decentralized systems, focusing particularly on blockchains. The research employs
Secure Multiparty Computation (MPC) techniques to address these issues, demonstrating
how MPC, which already shares a similar distributed trust threat model, can enhance privacy
in decentralized systems. More specifically, this thesis focuses on the following key areas in
decentralized systems:

Access Control Mechanisms and Confidential Smart Contracts: The thesis be-
gins by exploring access control mechanisms on blockchains, and from that builds up to the
concept of confidential smart contracts – arbitrary programs that execute both correctly and
privately.

Identity Management and Authentication: Building on access control and confi-
dential smart contracts, we examine identity management and authentication within decen-
tralized networks. We develop a highly efficient Threshold ECDSA protocol that runs in the
server-aided MPC model.

Perhaps more importantly, we revisit the server-aided MPC model itself, which sits
somewhere between the dishonest and honest-majority MPC paradigms, and show that a
confidential smart contract is a real-world realization of the server in this model. We thus
theorize that dishonest MPC protocols in general can be practically improved under this
model, and argue that because there is a real-world counterpart, this model is realistic.

3

An Improved Distributed Point Function (DPF) and ORAM: A major theo-
retical contribution of this work is a novel three-party Distributed Point Function (DPF)
construction. This leads to state-of-the-art Oblivious RAM (ORAM) and Distributed ORAM
(DORAM) protocols, which are important building blocks in MPC.

Privacy-Preserving Digital Currencies: Using this DPF construction, we revisit the
problem of privacy-preserving digital currencies, proposing a solution in the account model.
This approach challenges the current consensus that privacy in blockchains requires a UTXO
model.

Secure Inference with Private Retrieval: Lastly, the thesis explores how Large
Language Models (LLMs) can perform secure inference while retrieving data from private,
distributed databases. This method represents a step towards building secure decentralized
AI systems that respect user privacy.

Thesis supervisor: Alex "Sandy" Pentland
Title: Toshiba Professor of Media Arts and Sciences

4

Secure Computation in Decentralized Systems

by

Guy Zyskind

Thesis Reader .

Alex ’Sandy’ Pentland
Toshiba Professor of Media Arts and Sciences

MIT Program in Media Arts and Sciences

Thesis Reader .

Srini Devadas
Edwin Sibley Webster Professor of Electrical Engineering and Computer Science

MIT Computer Science and Artificial Intelligence Laboratory

Thesis Reader .

Thomas Hardjono
Chief Technology Officer

MIT Connection Science and Engineering

5

6

Acknowledgments

Completing this dissertation would not have been possible without the support, guidance,
and encouragement of many individuals to whom I am deeply grateful.

First and foremost, I would like to express my sincere gratitude to my advisor, Professor
Alex "Sandy" Pentland. His unwavering support, insightful guidance, and invaluable feed-
back have been instrumental in shaping both my research and my development as a scholar.
I am incredibly fortunate to have had the opportunity to learn from and work with such a
visionary mentor. Without Sandy, my professional career would have undoubtedly looked
very different. He encouraged me to take risks and explore this new and fascinating world of
decentralized systems, and he saw the potential in them (and in me) before so many others
did.

I would also like to extend my deepest gratitude to my other committee members. First,
to Professor Srini Devadas: your belief in my ability to do sound research, especially during
moments when my own confidence faltered, has been a cornerstone of my journey. You
taught me that successful research is not just about the work itself but about finding the
right niche and audience. Your guidance helped me find my path and instilled in me the
confidence to pursue it. For that, I will always be deeply thankful.

To Dr. Thomas Hardjono, I am profoundly grateful for the lessons you imparted on the
importance of building secure systems that go beyond theoretical research. You showed me
that real impact comes from navigating the complex landscape of stakeholders and practical
challenges. These lessons have guided me in academia and outside of it.

I am also immensely thankful to my colleagues, collaborators, and friends, who have
provided inspiration, motivation, and camaraderie throughout this journey. To Erez, Abdul-
lah, Avishay, Tobin, Rob, Itzik, Lior, Assaf, Yonatan, Tom, Sacha and many others – your
support and shared enthusiasm have made this experience both rewarding and enjoyable.

I am truly grateful for my one-of-a-kind family. To my parents, Orna and Yossi, my
older brother Nir and my twin sister Einat, your unwavering belief in my abilities and your
constant encouragement have been my foundation.

Most importantly, to my beloved wife, Rinat, and the beautiful children we brought into
this world, Maya, Alon, and Idan – I owe the deepest gratitude. Your love, patience, and
understanding have been my greatest source of strength and happiness. All triumphs and
failures pale in comparison to seeing you smile. Thank you for being the heart of my life.

This dissertation is a testament to the collective efforts and encouragement of all these
wonderful people. I am truly grateful for your presence in my life.

7

8

Contents

Title page 1

Abstract 3

Acknowledgments 7

List of Figures 13

List of Tables 15

1 Introduction 17
1.1 Research Questions . 19

2 Common Preliminaries 21
2.1 Notation . 21
2.2 Secret Sharing . 21

2.2.1 Schoenmakers’s Publicly Verifiable Random Sharing Scheme 22
2.3 Secure Multi-Party Computation (MPC) . 23
2.4 Encryption and Signature Schemes . 24

2.4.1 El-Gamal Encryption Scheme . 24
2.4.2 The Paillier Encryption Scheme . 24
2.4.3 The ECDSA Scheme and Functionality 24

2.5 Zero Knowledge Proof of Knowledge . 25
2.6 Distributed Point Functions (DPF) . 26

2.6.1 Private Information Retrieval (PIR) 27
2.6.2 Private Information Writing (PIW) 29
2.6.3 Oblivious RAM (ORAM) . 29

2.7 Blockchains . 30
2.7.1 Confidential Smart Contract Blockchains 30

3 Decentralized Access-control and Confidential Smart Contracts 31
3.1 Decentralized Access-Control . 31

3.1.1 Proposed Solution . 32
3.1.2 The Network Protocol . 33
3.1.3 Building Blocks . 33
3.1.4 Blockchain Protocols . 35

9

3.1.5 Privacy and Security Analysis . 37
3.1.6 Confidential Smart Contracts: From Storage to Processing 37
3.1.7 Trust and Decision-Making in Blockchains 38

3.2 FHE-Rollups: An EVM-compatiable Confidential Smart Contracts Platform 39
3.2.1 Main contributions . 40
3.2.2 Design Goals and Security Model . 40
3.2.3 Related Work . 41
3.2.4 Layer-2 Rollups . 42
3.2.5 Fully Homomorphic Encryption (FHE) 44
3.2.6 System Overview . 44
3.2.7 Threshold Services Network (TSN) 45
3.2.8 Security . 46
3.2.9 Fraud Proofs . 46
3.2.10 Evaluation . 47

4 Unstoppable Wallets: Chain-assisted Threshold ECDSA and its Applica-
tions 51
4.1 Revisiting the Server-aided Model of MPC 52
4.2 Main contributions . 55

4.2.1 Related Work . 55
4.3 Threshold ECDSA Protocol . 57

4.3.1 Key Generation . 58
4.3.2 Signing Protocol . 58

4.4 Robust Threshold ECDSA . 60
4.5 A Solution for a Single User . 62
4.6 Security Proofs . 63

4.6.1 Proof of Theorem 4.3.1 . 63
4.6.2 Proof of Theorem 4.4.1 . 65
4.6.3 Proof of Theorem 4.5.1 . 69

4.7 Applications . 71
4.7.1 Multisignature Wallet with Policy Checks 71
4.7.2 Wallet Exchange . 72

4.8 Implementation and Evaluation . 72
4.8.1 Implementation Details . 73
4.8.2 Cryptographic Primitives on Chain 73
4.8.3 Performance Evaluation . 74
4.8.4 Scalability across n and t . 83

5 High-throughput Three-Party DPF and its application to ORAM and Dig-
ital Currencies 85

5.0.1 Main Contributions . 87
5.0.2 Related Work . 88

5.1 MPC Functionalities . 90
5.1.1 Overview . 90
5.1.2 Access Policy ORAM Functionality 90

10

5.1.3 Sum-of-Products Functionalities . 90
5.1.4 Implementation of Known Functionalities 90

5.2 (2, 3)-Verifiable DPF . 93
5.2.1 Building Block: (2, 2)-VDPF+ . 94
5.2.2 Our (2, 3)-VDPF Construction . 95
5.2.3 Security analysis . 96
5.2.4 (2,3)-VDPF with sublinear PRF calls 97

5.3 ORAM with Policy . 98
5.3.1 Additional Functionalities . 98

5.4 Account-based Digital Currency . 99
5.4.1 Registration & Access Control for DPFs 99
5.4.2 The CBDC Protocol . 100

5.5 Efficient, Malicious Dot-Product . 103
5.5.1 Updatable (2, 3)-VDPF . 104
5.5.2 The Dot-Product Protocol . 105

5.6 Implementation, Evaluation and Applications 105
5.6.1 DPFs . 105
5.6.2 Account-based Privacy-preserving Cryptocurrency and CBDCs 106
5.6.3 Three-party Distributed ORAM (DORAM) 106

6 Private Retrieval Augmented Generation (PRAG) 119
6.1 Overview . 120
6.2 Exact Private Nearest Neighbors . 121

6.2.1 Distance calculations . 122
6.2.2 Fast secure dot product . 122
6.2.3 Relation to private information retrieval 123
6.2.4 Exact top-k for retrieval . 123

6.3 Approximate Nearest Neighbors and Inverted Files (IVF) 123
6.3.1 Efficient approximate vector nearest neighbor search in MPC 124
6.3.2 Sublinear Communication Complexity 126
6.3.3 Sacrificing Privacy for Speed in MPC IVF 126

6.4 Implementation and Evaluation . 127
6.4.1 Exact Search . 127
6.4.2 Approximate Search . 127

7 Discussion, Conclusions and Future work 131
7.1 Putting it All Together . 132

References 135

11

12

List of Figures

2.1 The (2, 2)-DPF of [20] . 28

3.1 Overview of the decentralized platform. 33
3.2 Example of a flow of secure computation in a blockchain network. The top left

block (EVote procedure) is the unsecure code, where the arguments marked in
(*) are private and stored as shares on the DHT. The network selects a subset
of nodes at random to compute a secure version of EVote and broadcasts the
results back to the entire network, that stores it on the ledger. 38

3.3 Overview of an FHE Rollup architecture . 49
3.4 Smart contract request to decrypt FHE-encrypted data on the rollup 50
3.5 Fraud proof engine for FHE instructions . 50
3.6 Excerpt of a Voting Contract. 50

4.1 Communication Model Illustrated . 54
4.2 Multisignature Wallet with Policy Checks . 81
4.3 Wallet Exchange Application Flow . 82
4.4 Gas Used vs. Number of Users (n) . 83
4.5 Gas Used vs. Threshold (t) for 15 users . 83

5.1 Functionality FAPORAM . 91
5.2 Functionality F .Product . 91
5.3 Functionality FSoP . 92
5.4 Protocol for (2, 2)-VDPF+ . 94
5.6 Protocol for (2, 3)-VDPF . 98
5.5 Our (2, 3)-VDPF construction . 109
5.7 Functionality FAP−ORAM . 110
5.8 Functionality F .Product . 110
5.9 Functionality FSoP . 111
5.10 Protocol ΠCBDC.register. 111
5.11 Protocol ΠCBDC.read. 112
5.12 Protocol ΠCBDC.update. 113
5.13 Functionality F+

(2,2)−UVDPF . 113
5.14 Functionality F+

(2,3)−UVDPF . 114
5.15 Protocol Π(2,3)−UVDPF+ . 115
5.16 Protocol ΠProduct . 116

13

5.17 Full domain evaluation of the various DPF constructions, compared to the
baseline (2,2) DPF. 116

5.18 Transaction throughput and memory usage. Side-by-side comparison with
Solidus. 117

5.19 Latency in processing a request under different channel latency for N = 220.
Requests can be parallelized so this is indicative, and bandwidth changes had
no effect thanks to the constant communication complexity. 117

6.1 Overview of PRAG architecture using a distributed, secret-shared inverted
file index (IVF), for retrieving document token vectors closely matching a
privately-generated query vector in LLM-based question answering. 121

6.2 Time taken to retrieve top-k closest vectors in the database for end-to-end
MPC exact search across increasing synthetic database sizes. 128

6.3 Information retrieval using IVF improves accuracy with increased nprobe (top
left) but increases query time as a larger proportion of the index (nprobe

nc
) must

be searched (bottom left). These retrieval approaches (both IVF and exact)
scale favorably across multiple servers (right). 129

7.1 An illustrative decentralized medical system combining elements from this
thesis to solve privacy . 134

14

List of Tables

3.1 FHE addition times using different VMs for 8-256bit plaintext integers. . . . 47
3.2 FHE multiplication times using different VMs for 8-256bit plaintext integers. 47
3.3 Benchmarking different Solidity Contracts using FHE 48

4.1 Comparison with related work. For protocols that support pre-signing – the
number of writes consists of both pre-sign and sign phase, ignoring amortization. 57

4.2 Benchmarks for Multiparty and Two-party ECDSA 74
4.3 Gas cost baselines . 75

5.1 Comparison of three-party ORAM protocols using DPFs. Key Size captures
client-server communication, Reads and Updates are non-interactive (except
for [127], [128]) and focus on overall computation costs. Results are for semi-
honest, but we remark that we and [149] provide malicious implementations. 88

5.2 Comparing key sizes (in bytes) of our constructions compared to the baseline
(2,2) DPF of [117] and (2,3) DPF of [148]. Since [148] does not provide an
implementation, we provide an analytical estimate. 106

15

16

Chapter 1

Introduction

The digital era has brought about significant technological advancements, transforming our
methods of interaction, transaction, and information exchange. In the last couple of decades
in particular, we have seen the rise of decentralized technologies, mainly (but not only)
in blockchains, which promise to minimize trust, enhance privacy, and bolster security in
digital interactions. Some examples of these systems, which have gained significant traction,
include blockchains like Bitcoin [1] and Ethereum [2], as well as storage networks such as
IPFS1. Thousands of other networks have since emerged and are continuing to gain adoption.
Most recently, decentralized AI systems are gaining popularity as well, with networks such
as Render2 allowing anyone to provide compute resources to others.

The main benefits these decentralized systems provide relate to data integrity and the
correctness of computations. Specifically, blockchains ensure through consensus protocols,
that all parties follow a strict set of programmed rules, and that honest nodes always maintain
the correct state of the system3. Another way to look at blockchains, from a Secure Multi-
Party Computation (MPC) lense, is that a blockchain provides a strong notion of correctness,
which also guarantees output delivery.

However, while these systems are correct, they provide no privacy. Thus, solving privacy
in decentralized systems, and blockchains more specifically, is the core problem this thesis
seeks to solve. Most of the techniques used and developed in this work rely on MPC. This
should come at no surprise, since MPC shares the same distributed trust mind-set and threat
model that decentralized networks do.

This work is motivated by the recognition that privacy must be foundational in the de-
velopment of decentralized technologies, rather than an afterthought. It must be an integral
component, woven into their very architecture, to foster trust, compliance with regulatory
standards, and user acceptance. Drawing from my own decade of academic and practical
experience in privacy-centric blockchain systems, I aim to address the following privacy and
security aspects of decentralized systems in this thesis: (i) user authentication; (ii) access-
control; (iii) secure (and private) computation. To maintain a reasonable scope, for each of

1https://ipfs.tech
2https://render.com
3In the case of permissionless blockchains, incentives are put in place to ensure all (rational) actors follow

the protocols, and also serve as a sybil resistance mechanism. In permissioned blockchains, the operators’
identity is known, so the focus remains only on consensus.

17

these aspects, I develop cryptographic constructions and applications that demonstrate their
applicability. The work itself is split into four main parts.

Firstly, the thesis explores access control mechanisms on blockchains, demonstrating how
blockchains can effectively implement specific access policies in a trust-minimized manner.
This analysis is based on my foundational work in the area [3], which, at the time of this
writing, has garnered more than 3,000 citations. This nearly decade-old work also introduced
the concept of confidential smart contracts. Though not originally termed as such, it has
since emerged as a vibrant field of study (e.g. [4]–[11]).

Confidential smart contracts enable the creation of arbitrary programs that operate in
a decentralized setting and are designed (under specific security conditions) to maintain
both the integrity of the computation and the confidentiality of the inputs. Access control
seamlessly integrates with confidential smart contracts because, without the latter, access
control is merely about determining which data is accessible to each party. However, with
the inclusion of confidential smart contracts, we can also selectively allow parties to gain
insights from data without accessing the raw data itself. For an instance, we can facilitate a
private election where approved parties can cast their votes, and while the individual votes
remain private, the overall tally is disclosed to all. Given their importance, and to provide
a more up-to-date perspective of my seminal work, I also explore in the same chapter a
new construction for a confidential smart contracts system based on Fully Homomorphic
Encryption (FHE).

Building on this, this thesis explores identity management and authentication within
decentralized networks. Interestingly, the protocols developed for authentication and key-
management leverage the very infrastructure of confidential smart contracts, illustrating a
symbiotic relationship between access control and identity verification. More concretely, I
explore how to improve the state-of-the-art in terms of custodying private keys, which is
one of the largest open problems in decentralized systems4, by developing a novel Threshold
ECDSA protocol.

The Threshold ECDSA protocol we develop operates in the server-aided MPC model,
which sits somewhere between the dishonest and honest-majority MPC paradigms. One
of our insights is that a confidential smart contract is a real-world realization of the server,
and we demonstrate this empirically as well through an implementation. We further theorize
that many other dishonest MPC protocols can be practically improved under the server-aided
model, and argue that because there is a real-world counterpart, this model is realistic.

The third part contains the most significant theoretical contribution of this work – a
novel three-party Distributed Point Function (DPF) construction, from which we demon-
strate state-of-the-art Oblivious RAM (ORAM) and Distributed ORAM (DORAM) proto-
cols. Both of these are well-studied core problems in the world of MPC: An ORAM hides
which items are accessed in a database, where a DORAM is an extension that allows run-
ning MPC over RAM programs (as opposed to circuits), which scales-up data-dependent
computations (e.g., sorting algorithms).

Expanding on this DPF-based ORAM construction, I define a new functionality called an
4To illustrate, in a 2017 study, Chainalysis, the largest data-analysis company in the cryptocur-

rency space, estimated that 17-23% of all Bitcoins are lost due to poor key-management practices
https://www.chainalysis.com/blog/money-supply

18

ORAM-with-Policy, connecting us back to access control concepts of decentralized systems.
From this, I show how to construct a privacy-preserving digital currency system in the
account-based model. The central motivation here is to revisit the longstanding problem
of private digital currencies, which are only efficient in the Unspent Transaction Output
(UTXO) blockchain model (for example, see the work of [12]). My goal is to challenge the
current general consensus in academia and industry that privacy in blockchains requires a
UTXO-model, which has some significant drawbacks compared to the much simpler account-
based model popularized by the likes of Ethereum. To do so, I show an instantiation of
a privacy-preserving digital currency system (based on the developed DPF and ORAM-
with-policy constructions) that operates in the account model. This construction is simple
and uses MPC end-to-end, which can therefore be easily extended to support arbitrary
confidential smart contracts, and not just simple transactions. The major limitation of this
work is a constraint of requiring exactly three-parties to operate the servers, which makes
it more suitable for the use case of a Central-Bank Digital Currency (CBDC) as opposed to
a permissionless blockchain. However, it is my hope that this rekindles interest in privacy-
preserving account-based cryptocurrencies, and opens up a route for future work.

Lastly, and somewhat separate from the rest of the work presented in this thesis, I explore
how Large Language Models (LLMs) can do secure inference even when retrieving data from
private, secret-shared, databases. Such a method could be the first step in building a secure
decentralized AI system that respects user privacy.

1.1 Research Questions

This thesis answers the following research questions:

• Primary Question. How can we leverage secure computation to mitigate the privacy
concerns associated with decentralized systems, such as blockchains and decentralized
AI?

• Is it possible to construct a privacy-preserving digital currency in the account model?

• Is there a secure key management solution for decentralized identity authentication
that balances security, robustness, and user-friendliness?

• Is the server-aided MPC model realistic?

• Could LLMs protect user-queries while securely searching private databases?

In addition to the above, and as part of the road to answer these questions, we also
affirmatively answer the following theoretical question regarding DPFs, which was open
before this work:

• Can we build a three-party DPF, secure against a single corruption, which has the
same asymptotic key-size and evaluation complexity as two-party DPFs?

19

20

Chapter 2

Common Preliminaries

2.1 Notation

We use κ as a computational security parameter. For x, y ∈ {0, 1}∗ the expression x||y is the
concatenation of x and y. Uniformly sampling a random value x from a set X is denoted by
x ← X or x

$← X. The result of a probabilistic algorithm A on inputs x1, x2, . . . is written
by x← A(x1, x2, . . .); in addition, when we want to explicitly mention the randomness used
in the algorithm we write x = A(x1, x2, . . . ; r). Vectors are formatted in bold, e.g., x or
in uppercase X, and the i-th index is denoted by x(i). The identity vector ei has zero in all
coordinates except in its i-th coordinate, which equals one.

To represent secret-shared values, we will normally use the common ’in-the-box’ notation
[x]. If the context requires it, we will often describe a specific party’s share by a subscript,
in which case party i’s share will either appear as [x]i or xi.

2.2 Secret Sharing

Secret sharing enables a dealer to split a secret x into n pieces or shares, such that only
a sufficiently large subset of shares can be used to recover the secret. Shamir t-out-of-n
secret sharing over the field F (where t < n ∈ N) is defined by a tuple of algorithms
SSF = (Share,Reconstruct), where [x] = ([x]1, . . . , [x]n) = Sharet,n(x; r) denotes a sharing of
x, and x = Reconstruct([x]i1 , . . . , [x]it+1) denotes the reconstruction using t+1 shares, which
may result with ⊥ if the shares are inconsistent.

• [x] = Sharet,n(x; r). Given a secret x ∈ F and a random tape r, pick a1, . . . , at ∈ F and
output [x] = {[x]1, . . . , [x]n}, where [x]i = P (i) and P (x) = x+ a1x+ a2x

2 + . . .+ atx
t.

• x = Reconstruct([x]i1 , . . . , [x]it+1). Given t+ 1 shares [x]i1 , . . . , [x]it+1 , where 1 ≤ i1 < i2 <
. . . < it+1 ≤ n, interpolate a polynomial P such that P (ij) = [x]ij for all j ∈ [1, t+ 1] and
output x = P (0).

Lagrange interpolation is used in order to get P (0) directly. In our protocol we use
Lagrange interpolation to get P (i) also for i ̸= 0, therefore, we describe below the general
case.

21

Given t + 1 points (i1, [x]i1), . . . , (it+1, [x]it+1), the polynomial that passes through them
is L(x) =

∑t+1
j=1[x]ij · ℓj(x), where

ℓj(x) =
∏

1≤k≤t+1

k ̸=j

x− ik
ij − ik

.

Now, for some value v, we define the coefficient λv
j = ℓj(v), then, we have L(v) =

∑t+1
j=1 λ

v
j ·

[x]ij .
In a typical use-case a dealer calls [x] = Sharet,n(x; r) on its secret x, and send [x]i to the

i-th receiver. In a later point, the receivers want to reconstruct x, so they gather t + 1 of
the shares and run x = Reconstruct([x]i1 , . . . , [x]it+1). It is a fact that Shamir secret sharing
has perfect secrecy, namely, t shares reveal nothing about the secret, whereas t + 1 shares
completely determine it. Shamir secret sharing is not protected from a malicious dealer,
that is, the dealer may use a polynomial P of degree higher than t, which may lead to
inconsistent reconstruction - different subset of shares reconstruct to different secrets. In
addition, Shamir secret sharing is not protected from a malicious receiver, that is, a receiver
may contribute a wrong share to make reconstruction output a wrong secret (not the one
dealt by the dealer). Verifiable secret sharing schemes solve those issues.

2.2.1 Schoenmakers’s Publicly Verifiable Random Sharing Scheme

Verifiable secret sharing (VSS) enables a receiver to (1) check in the dealing phase that the
share received from the dealer is consistent with a fully determined secret, and (2) check in
the reconstruction phase that the shares published by other receivers are correct. Publicly
VSS (PVSS) is a more powerful tool that enables a receiver to check consistency not only of
its own share, but also all receivers’ shares; furthermore, it enables an external party (who is
not even a receiver) to check that conditions (1) and (2) hold. While information theoretic
schemes for PVSS schemes have been proposed [13], we use Schoenmakers’s scheme that is
based on the hardness of discrete logarithm, as it is the minimal assumption in our context
anyway. Specifically, we use the special PVSS version in [14], in which the secret is random,
which allows using a simpler protocol.1 Thus, in the following we assume that x is uniformly
random from Zq.

Schoenmakers’s PVSS [14] over the group (G,G, q) is parameterized with the receivers’
encryption keys, namely, the i-th receiver is associated with El-Gamal key-pair (eki, dki) (see
definition in Section 2.4.1). While the scheme supports any encryption scheme, the El-Gamal
scheme leads to a very simple implementation and efficient proof. The dealer invokes the
zero-knowledge functionality (see definition in Section 2.5) with the relation

RPVSS,n,t =
{ (
{eki, ci}ni=1, {Aj}tj=0), ({ri}ni=1, {aj}tj=0

)
s.t.

∀ni=1 : ci = EG.Enc

(
t∑

j=0

ij · aj, ri

)
∧ ∀tj=1 : Aj = aj ·G

}
.

1When the secret x is random it is possible for the dealer to publish x ·G, whereas in case x is not random
the dealer has to publish a Pedersen commitment x ·G+ r ·H where H is another generator of G for which
logG H is unknown.

22

That is, the claim is that ci is an encryption of P (i) =
∑t

j=0 i
j · aj under the i-th public

key eki, where P ′s coefficients are logG(A0), . . . , logG(At). Note that given Aj’s anyone can
compute Qi = P (i) · G by

∑t
j=0 i

j · Aj, thus, interpretting ci = (Ci,1, Ci,2), this statement
is reduced to the statement that (Qi, X, Ci,2 · (Ci,1)

−1) is a Diffie-Helman tuple, for every i.
Indeed, the discrete logs are x, P (i) and x · P (i), respectively. There exists standard NIZK
for that statement.

Then, the Schoenmakers’s scheme is defined by the tuple of algorithms PVSS(G,G,q),{eki}i =
(Share,Reconstruct,CheckDealer,CheckShare):

• ({ci}ni=1, {Aj}tj=0, π) ← Sharet,n(x). Set a0 = x and pick a1, . . . , at ∈ F and compute
[x] = {[x]1, . . . , [x]n}, where [x]i = P (i) and P (x) =

∑j
j=0 aj · xj. Then, pick ri ←

Z∗q , compute ci = EG.Enceki([x]i, ri) for every i ∈ [1, n], and compute Aj = aj · G for
every j ∈ [0, t]. Then, send (prove, sid, {eki, ci, ri}i, {Aj, aj}) to FRPVSS

zk to obtain π =
(proof, sid, {eki, ci}i, {Aj}) and output ({ci}ni=1, {Aj}tj=0, π).

• x = Reconstruct([x]i1 , . . . , [x]it+1). Given t+ 1 shares [x]i1 , . . . , [x]it+1 , where 1 ≤ i1 < i2 <
. . . < it+1 ≤ n, for which CheckShare({Aj}, [x]ik) = 1 for all k ∈ [1, t + 1], interpolate a
polynomial P such that P (ik) = [x]ik for all k ∈ [1, t+ 1] and output x = P (0).

• b← CheckDealer({ci}ni=1, {Aj}tj=0π). Output b = 1 iff π = (proof, sid, {eki, ci}i, {Aj}), and
b = 0 otherwise.

• b ← CheckShare({Aj}tj=0, [x]k). For k ∈ Z∗q , output b = 1 iff [x]k · G =
∑t

j=0 k
j · Aj, and

b = 0 otherwise.

The scheme is a secure publicly verifiable secret sharing if the DDH problem is hard relative
to (G,G, q).

2.3 Secure Multi-Party Computation (MPC)

Secure Multiparty Computation (MPC) is a subfield of cryptography aimed at allowing
multiple parties to jointly compute a function over their inputs while keeping those inputs
private. The outcome of the computation reveals only the specific intended result, and
nothing else about the participants’ individual inputs is disclosed.

In this thesis, we focus on the variant based on secret-sharing, although other variants
based on Garbled Circuits (e.g., [15]) or GMW [16] exist. Our protocols tend to focus on
a static active adversary, although some protocols focus on a more niche adversarial model
which we introduce ad-hoc in the relevant chapters.

We prove security using the commonly used simulation paradigm [17], in which we show
by simulation that our real world protocol and adversary executions can be simulated by a
simulator in the ideal world.

23

2.4 Encryption and Signature Schemes

2.4.1 El-Gamal Encryption Scheme

The El-Gamal encryption scheme [18] over group (G,G, q) is defined by EG = (Gen,Enc,Dec):

• (ek, dk) ← Gen(). Pick x ← Z∗q and output (Y, x) where Y = x · G (i.e., pk = Y and
dk = x).

• C = Encek(m, r). For a uniformly random r ∈ Zq and arbitrary m ∈ Z∗q , output C =
(C1, C2) = (r ·G, (r · Y) ·m).

• m = Decdk(C). For C1, C2 ∈ G, interpret c = (C1, C2) and x = dk, and output C2·(x·C1)
−1.

The scheme is proven to be CPA-secure under the assumption that the decisional Diffie-
Helman is hard relative to (G,G, q).

2.4.2 The Paillier Encryption Scheme

The Paillier encryption scheme [19] is defined by the tuple of algorithms Paillier = (Gen,Enc,Dec)
described below.

• Gen(1κ, q). Given a security parameter 1κ and a prime q, sample poly(κ)-bit primes
p1 and p2 and output (N ; (p1, p2)) where N = p1 · p2 is the public encryption key and
sk = (p1, p2) is the secret key. Define P = (Zq,+), R = (Z∗N , ·) and C = Z∗N2 .

• Enc(pk, x; η). Given the public key N , a message x ∈ Zq and randomness η ∈ Z∗N ,
output

ct =
[
(1 +N)x · ηN mod N2

]
.

• Dec(sk, ct). Given the secret key (p1, p2) and a ciphertext ct, compute N = p1 · p2 and
output

pt =
[
[ctϕ(N) mod N2]− 1

N
· ϕ(N)−1 mod N

]
mod q.

2.4.3 The ECDSA Scheme and Functionality

The ECDSA scheme is defined by the following algorithms (the group G,G, q is an implicit
parameter in the algorithms):

• Gen(). Choose x ← Z∗q and compute X = x · G. Output x as the signing key and X as
the verification key.

• Sign(x,M). For a message M ∈ {0, 1}∗, choose k ← Z∗q and compute r = (k ·G).x mod q
and s = k−1(m + rx) mod q, where m = Hq(M) and Hq : {0, 1}∗ → Zq is modeled as a
random oracle. Output the signature (r, s).

24

• Verify(X,M, (r, s)). For a message M ∈ {0, 1}∗, compute m = Hq(M) and output 1 iff
(ms−1 ·G+ rs−1 ·X).x mod q = r, otherwise output 0.

Indeed, if (r, s) is computed correctly on M , then ms−1 ·G+rs−1 ·X = ms−1 ·G+rxs−1 ·G =
(m+ rx)s−1 ·G = (m+ rx) (k−1(m+ rx))

−1 ·G = (m+ rx)k(m+ rx)−1 ·G = k·G = R and
so, projection to the x coordinate results with R.x = r.

The (Threshold) ECDSA functionality (Functionality 1) supports two interfaces, the key-
generation interface is called once, followed by many, calls to the sign interface. Since we
are interested in both robust and non-robust version of this functionality, the robust version
should have the gray text omitted, as in that functionality the adversary does not get to
decide on whether to forward outputs to the parties or not.

FUNCTIONALITY 1.
(

The ECDSA Functionality: FECDSA
)

The functionality is parameterized with the ECDSA group description (G,G, q) as
well as a threshold parameter t, with 1 ≤ t < n. The functionality works with
parties P1, . . . , Pn, Pc, and an adversary S as follows.

• Upon receiving (keygen) from all parties:

1. Generate an ECDSA key-pair (X, x) by choosing a random x ← Z∗q and
computing X = x ·G.

2. Choose a hash function Hq : {0, 1} → {0, 1}⌊log q⌋.
3. If received (keygen, abort) from S then output ⊥ and halt; otherwise, if

received (keygen, continue) then continue.

4. Store (Hq, x), output X to all parties, and ignore future calls to keygen.

• Upon receiving (sign, sid,M) from Pc and t + 1 parties out of {P1, . . . , Pn}, if
keygen was already called and sid was not already used:

1. Choose a random k ∈ Z∗q , compute R← k ·G and let r = R.x mod q; then
send R to all parties.

2. Let m = Hq(M). Compute s← k−1(m+ rx) mod q.

3. If received (sign, sid, abort) from S then output ⊥ and halt; otherwise, if
received (sign, sid, continue) then continue.

4. Send (r, s) to all parties.

Similarly, the two-party variant of the functionality is presented in Functionality
2.

2.5 Zero Knowledge Proof of Knowledge

For an NP-relation R, we use the FR
zk functionality (Functionality 3 below). The protocols we

use to realize FR
zk are public coin, therefore they can be instantiated with a non-interactive

25

FUNCTIONALITY 2.
(

2P ECDSA Functionality: FECDSA
)

The functionality is parameterized with the ECDSA group description (G,G, q)
and works with parties Pu, Pc, and an adversary S as follows.

• Upon receiving (keygen) from Pu:

1. Generate an ECDSA key-pair (X, x) by choosing a random x ← Z∗q and
computing X = x ·G.

2. Choose a hash function Hq : {0, 1} → {0, 1}⌊log q⌋.
(a) Store (Hq, x).
(b) Output X to Pu and Pc.
(c) Ignore future calls to keygen.

• Upon receiving (sign, sid,M) from Pu, if keygen was already called and sid was
not already used:

1. Choose a random k ∈ Z∗q

2. Compute R← k ·G and let r = R.x mod q; then send R to Pu and Pc.

3. Let m = Hq(M). Compute s← k−1(m+ rx) mod q.

4. Send (r, s) to Pu and S.

version in the random oracle model via the Fiat-Shamir transform.

FUNCTIONALITY 3.
(

The ZKPoK Functionality: FR
zk

)
The functionality works with a prover P and verifiers V⃗ .

• Upon receiving (prove, sid, x, w) from P , if (x,w) ∈ R and sid has never been used
before, send (proof, sid, x) to V⃗ .

2.6 Distributed Point Functions (DPF)

We start off by presenting a definition for DPFs.

Definition 2.6.1. Let α ∈ {1, . . . , n} and β ∈ F , a (2, 2)-Distributed Point Function (DPF),
denoted F

(2,2)
α,β is defined by algorithms:

• (f0, f1)← DPF.Gen(1κ, α, β).

• yb = DPF.Eval(b, fb, x), where b ∈ {0, 1}.

Correctness. It must hold that DPF.Eval(0, f0, α)+Eval(1, f1, α) = β and DPF.Eval(0, f0, x)+
DPF.Eval(1, f1, x) = 0 for all x ̸= α.

26

Privacy. For every b ∈ {0, 1} there exists a simulator S such that

fb
c≡ S(1κ, b, n)

where (f0, f1)← DPF.Gen(1κ, α, β) and the distribution is over the coin tosses of algorithms
DPF.Gen and S.

Evaluation can also be defined on a vector x = (x1, . . . , xn), by:

yb = DPF.Eval(b, fb,x)
= (DPF.Eval(b, fb, x1), . . . ,DPF.Eval(b, fb, xn)).

By the correctness of the DPF, it holds that y = y0 + y1 = eα · β. When x covers the
entire domain of α this is called a full domain evaluation. The computational complexity of
a full domain evaluation is better than an individual evaluation on each xi ∈ x in isolation.

In Figure 2.1 we give the (2, 2)-DPF by Boyle et al. [20], which is the most efficient one
- it has keys (f0 and f1) of length O(log n), where n is the size of the domain and a full
domain evaluation incurs O(κ · n) computation. We note that the scheme in [20] describes
the DPF over a general group G whereas in the constructions presented in this thesis we use
either the binary field F2l where l = κ or a prime field Fq defined with the prime q ≈ 2κ. For
simplicity we denote the prime field by F , leaving the prime parameter implicit. Addition
of x, y ∈ F2l is computed by x⊕ y and addition of x, y ∈ F is computed by x+ y mod q.

We continue with a definition of verifiability, which enables the key holders to verify the
validity. Formally:

Definition 2.6.2. A verifiable DPF (VDPF) is a DPF (as per Definition 2.6.1) with the
following additional procedures:

• πb = VDPF.Prove(b, fb), where b ∈ {0, 1}.

• {accept,reject} ← VDPF.Verify(π0, π1)

Correctness is the same as in Definition 2.6.1; Privacy is enhanced to include the proof
generated by the other key, that is, there exists a simulator S such that

(fb, π1−b)
c≡ S(1κ, b, n)

where (f0, f1) ← VDPF.Gen(1κ, α, β) and πb = VDPF.Prove(b, fb), where b ∈ {0, 1}, and the
distribution is over the coin tosses of algorithms VDPF.Gen and S.

Verifiability. This ensures that the two keys are well formed, that is: Let yb = VDPF.Eval(b, fb,x),
then accept = VDPF.Verify(π0, π1) if and only if y0 + y1 = eα′ · β′ for some α′, β′.

2.6.1 Private Information Retrieval (PIR)

Private Information Retrieval (PIR) refers to privately reading an element i at a database
(a vector) D, without the server learning i (the access pattern). There are single-server
(e.g., simplepir) and multi-server PIR schemes [21]. In this work we are focused on the

27

Parameters: Let G : {0, 1}κ → {0, 1}2κ+2 be a PRG.

DPF.Gen(1κ, α, β)

1. Sample s00 ← {0, 1}κ and s01 ← {0, 1}κ. Set t00 = 0 and t01 = 1.

2. Let α1, . . . , αn be the bits of α.

3. For i from 1 to n do:

(a) (sLb , t
L
b , s

R
b , t

R
b)← G(s

(i−1)
b) for b ∈ {0, 1}.

(b) αi = 0Diff← L; Same← RDiff← R; Same← L

(c) scw ← sSame
0 ⊕ sSame

1

(d) tLcw ← tL0 ⊕ tL1 ⊕ αi ⊕ 1

(e) tRcw ← tR0 ⊕ tR1 ⊕ αi

(f) cwi ← scw||tLcw||tRcw
(g) s

(i)
b ← sDiff

b ⊕ t
(i−1)
b · scw for b ∈ {0, 1}.

(h) t
(i)
b ← tDiff

b ⊕ t
(i−1)
b · tDiff

cw for b ∈ {0, 1}.

4. Compute output correction word: ocw ← β ⊕ s
(n)
0 ⊕ s

(n)
1 .

5. Set fb ← (s0b , {cwi}ni=1, ocw) for b ∈ {0, 1}.

6. Output: (f0, f1).

DPF.Eval(b, fb, x)

1. Parse the DPF key (s0, {cwj}nj=1, ocw)← fb.

2. Let s← s0 and t← b.

3. Let x′1 = (xi), . . . , x
′
n = (xi) be the bits of xi.

4. For j from 1 to n do:

(a) Parse: (scw, t
L
cw, t

R
cw)← cwj

(b) τ ← G(s)⊕ (t · [scw||tLcw||scw||tRcw])
(c) Parse: (sL, tL, sR, tR)← τ

(d) x′j = 0(s, t)← (sL, tL)(s, t)← (sR, tR)

5. t = 0y ← sy ← s⊕ ocw

6. Output: y

Figure 2.1: The (2, 2)-DPF of [20]

28

latter. DPFs have gained a lot of popularity due to their efficiency in performing PIR in the
multi-server setting.

A well-established two-party PIR protocol assumes that a public DB D is replicated
across two servers. A client may then privately read the α-th database entry by sharing a
point function fα,1, and sending the shares f0 and f1 to the PIR servers. Then, the i-th
server computes di =

∑
x fi(x) ·D[x] and hands di back to the client. Finally, the client can

reconstruct the result by computing d = d0 + d1. Note that evaluating f(x) over the entire
domain |D| creates a shared one-hot-vector, so d correctly encodes D[α].

Note that this procedure does not work when the database itself is secret shared, as I
describe in more detail below.

2.6.2 Private Information Writing (PIW)

A related problem involves Private Information Writing (PIW). In this case, we wish to
privately write a value β at D[α], such that the server(s) do not learn either α or β. Clearly,
in the two-server setting, this only makes sense when the database is secret shared, i.e., there
are two databases D0 and D1 s.t. D[x] = D0[x] +D1[1]. Similar to PIR, a DPF can be used
in order to privately update an entry in that database. Specifically, a client sends the shares
f0 and f1 for some point function fα,β, and then the i-th server adds fi(x) to the value at
D[x], for all x in the domain. This way, the client can privately add β to the α-th entry of
the shared database.

2.6.3 Oblivious RAM (ORAM)

Observe that in the PIR setting, the database is replicated (and therefore public), and in
the PIW setting, the database has to be secret-shared. Therefore, supporting both private
information retrieval and writing operations, is more challenging. If we assume that the
database is secret-shared, then now the PIR protocol will require a dot product between two
vectors, which requires linear communication in the size of the database (as opposed to being
non-interactive). Supporting both PIR and PIW together in a single database are crucial,
as they form the basis for Oblivious RAM (ORAM).

ORAM, introduced by Goldreich and Ostrovsky [22] and followed by many works ([23]–
[26] to name a few), is a cryptographic protocol between a client and a server. Such a
protocol enables the client to upload its database to a server and access specific records
in that database while being protected from the server. Beside the usual confidentiality
guarantees (which are typically enabled by encryption schemes) an ORAM guarantees the
user that nothing about the access pattern is being leaked to the server; that is, the server
learns nothing about the entries being accessed or the actions being applied to those entries
(either read or update). As shown time and again (e.g., [27]), such access pattern leakage may
be devastating for a system that strives to preserve the user’s privacy, and may cause even to
breach confidentiality. Over the years, there were protocols that proposed to distribute the
server’s role into multiple (distrustful) entities in order to improve efficiency and to support
more than one client (where sections of the database may be accessed by many clients). Such
solutions are known as multi-client multi-server ORAM.

29

2.7 Blockchains

While there are several ways to define a Blockchain, the most apt definition for our needs
is as a decentralized system that simulates a trusted third party, which can run arbitrary
programs (known as smart contracts), while ensuring both correctness and availability. It
also records everything in a persistent ledger, and maintains its integrity. In other words,
a blockchain serves as a trusted, always online, general-purpose computing resource which
clients can interact with. While many blockchains exist today, two of the primary examples
are Bitcoin [1], which serves mostly as a single-purpose blockchain for facilitating financial
transactions between parties, and Ethereum [2], which can execute, in a trusted-manner,
arbitrary programs (i.e., smart contracts).

2.7.1 Confidential Smart Contract Blockchains

As mentioned, smart contracts are a fundamental component of many blockchain platforms,
enabling users to automate the execution of agreements and facilitate trustless interactions
between parties. These self-executing, deterministic programs provide correctness and avail-
ability by ensuring that the code executes exactly as programmed without downtime, cen-
sorship, fraud, or third-party interference. However, traditional smart contracts do not
inherently provide privacy, as their logic and data are visible to all network participants.

To address this issue, starting from their introduction in the work presented in the first
part of Chapter 3, published almost a decade ago, confidential smart contract blockchains
were developed (e.g., [4], [5], [9]–[11]).

This means that these blockchains inherently hide sensitive input data fed into contracts,
persistent state data, and depending on the use case, hide the output as well, even from
the nodes operating the chain. Confidential smart contract-enabled blockchains may employ
different privacy-preserving techniques, such as secret-sharing MPC (e.g., [4]), TEEs (e.g.,
[5]), or even HE ([10], [11]). To date, privacy-preserving blockchains that have been deployed
in production leverage Trusted Execution Environments (TEEs). Attesting to their useful-
ness in practice, a recent survey paper has identified and examined 17 such blockchains [5].
In their paper, the authors review different design choices regarding how these blockchains
are built in practice. They identify systems where the contract execution happens on-chain
(e.g., [28], [29]), or off-chain (e.g., [9], [30]), in a permissioned setting, or a permissionless
one. These design choices show that different trade-offs exists in terms of the guarantees
these systems provide (for example, in terms of liveness, correctness and privacy).

30

Chapter 3

Decentralized Access-control and
Confidential Smart Contracts

In this chapter, I cover two important aspects in the privacy of blockchains – decentralized
access control and confidential smart contracts.

Both of these concepts were first introduced almost a decade ago in a short paper we
published [3], which became a foundational work with over 3,000 citations at the time of
this writing. It is therefore useful to present it in full here, even though the technical details
themselves are somewhat dated at this point.

As a follow-up to this work, my Master’s thesis [31] and related paper [4] described
the first confidential smart contracts system, along with the seminal work of [7]. While
these works presented all kinds of novel ideas, they were incomplete in both definition and
implementation. For example, they suffered from high latency and were not integrated into
a proper smart-contract language like Solidity (because Ethereum was in its early days back
then).

Therefore, in this chapter, I will also introduce a modern variant of a confidential smart
contract system - in particular, one that is based on (threshold) Fully Homomorphic Encryp-
tion (FHE). While FHE is a heavier cryptographic primitive, unlike the work in [4], it does
not require the computing parties to communicate (beyond decryption). This, in practice,
is much preferable in a high-latency decentralized system like a blockchain. To somewhat
counteract the inefficiency associated with FHE, this work presents an FHE-Rollup variant.

Finally, in the next chapter, we will build on the existence of confidential smart contracts
and show how they can be used to improve user authentication, and MPC more generally.

3.1 Decentralized Access-Control

In this work, we discuss how we can leverage the availability and trust-minimized nature
of a blockchain-system as an access-control mechanism. We are motivated by the privacy
challenges users face when using third-party services. We focus specifically on mobile plat-
forms, where services deploy applications for users to install. These applications constantly
collect high-resolution personal data of which the user has no specific knowledge or control.
In our analysis, we assume that the services are honest-but-curious (i.e., they follow the

31

protocol), but they may not always be available or easily allow data mobility. Note that the
same system could be used for other data-privacy concerns, such as patients sharing their
medical data for scientific research, while having the means to monitor how it is used and
the ability to instantly opt-out. In light of this, our system protects against the following
common privacy issues:

Data Ownership. Our framework focuses on ensuring that users own and control their
personal data. As such, the system recognizes the users as the owners of the data and the
services as guests with delegated permissions.

Data Transparency and Auditability. Each user has complete transparency over
what data is being collected about her and how they are accessed.

Fine-grained Access Control. One major concern with mobile applications is that
users are required to grant a set of permissions upon sign-up. These permissions are granted
indefinitely and the only way to alter the agreement is by opting-out. Instead, in our frame-
work, at any given time the user may alter the set of permissions and revoke access to
previously collected data. One application of this mechanism would be to improve the ex-
isting permissions dialog in mobile applications. While the user-interface is likely to remain
the same, the access-control policies would be securely stored on a blockchain, where only
the user is allowed to change them.

3.1.1 Proposed Solution

We begin with an overview of our system. As illustrated in Figure 3.1, the three entities
comprising our system are mobile phone users, interested in downloading and using applica-
tions; services, the providers of such applications who require processing personal data for
operational and business-related reasons (e.g., targeted ads, personalized service); and nodes,
entities entrusted with maintaining the blockchain and a distributed private key-value data
store in return for incentives. Note that while users in the system normally remain (pseudo)
anonymous, we could store service profiles on the blockchain and verify their identity.

The system itself is designed as follows. The blockchain accepts two new types of transac-
tions: Taccess, used for access control management; and Tdata, for data storage and retrieval.
These network operations could be easily integrated into a mobile software development kit
(SDK) that services can use in their development process.

To illustrate, consider the following example: a user installs an application that uses our
platform for preserving her privacy. As the user signs up for the first time, a new shared
(user, service) identity is generated and sent, along with the associated permissions, to the
blockchain in a Taccess transaction. Data collected on the phone (e.g., sensor data such as
location) is encrypted using a shared encryption key and sent to the blockchain in a Tdata

transaction, which subsequently routes it to an off-blockchain key-value store, while retaining
only a pointer to the data on the public ledger (the pointer is the SHA-256 hash of the data).

Both the service and the user can now query the data using a Tdata transaction with
the pointer (key) associated to it. The blockchain then verifies that the digital signature
belongs to either the user or the service. For the service, its permissions to access the data
are checked as well. Finally, the user can change the permissions granted to a service at
any time by issuing a Taccess transaction with a new set of permissions, including revoking
access to previously stored data. Developing a web-based (or mobile) dashboard that allows

32

an overview of one’s data and the ability to change permissions is fairly trivial and is similar
to developing centralized-wallets, such as Coinbase for Bitcoin1.

The off-blockchain key-value store is an implementation of Kademilia [32], a distributed
hashtable (or DHT), with added persistence using LevelDB2 and an interface to the blockchain.
The DHT is maintained by a network of nodes (possibly disjoint from the blockchain net-
work), who fulfill approved read/write transactions. Data are sufficiently randomized across
the nodes and replicated to ensure high availability. It is instructive to note that alternative
off-blockchain solutions could be considered for storage. For example, a centralized cloud
might be used to store the data. While this requires some amount of trust in a third-party,
it has some advantages in terms of scalability and ease of deployment.

user

Taccess
 (u grants s Access)

encrypted response

service

blockchain

DHT

Figure 3.1: Overview of the decentralized platform.

3.1.2 The Network Protocol

We now describe in detail the underlying protocol used in the system. We utilize standard
cryptographic building blocks in our platform: a symmetric encryption scheme defined by the
3-tuple (Genc, Eenc,Denc) – the key generator, encryption and decryption algorithms respec-
tively; a digital signature scheme (DSS) described by the 3-tuple (Gsig,Ssig,Vsig) – the key
generation, signature and verification algorithms respectively, implemented using ECDSA
with secp256k1 curve [33]; and a cryptographic hash function H, instantiated by a SHA-256
[34] implementation.

3.1.3 Building Blocks

We now briefly introduce relevant building blocks that are used throughout this chapter. We
assume some familiarity with Bitcoin [1] and blockchains.

1Coinbase bitcoin wallet, http://www.coinbase.com
2LevelDB, http://github.com/google/leveldb

33

Identities

Blockchains utilize a pseudo-identity mechanism. Essentially a public-key, every user can
generate as many such pseudo-identities as she desires in order to increase privacy. We now
introduce compound identities, an extension of this model used in our system. A compound
identity is a shared identity for two or more parties, where some parties (at least one) own the
identity (owners), and the rest have restricted access to it (guests). Protocol 1 illustrates the
implementation for a single owner (the user) and a single guest (the service). As illustrated,
the identity is comprised of signing key-pairs for the owner and guest, as well as a symmetric
key used to encrypt (and decrypt) the data, so that the data is protected from all other
players in the system. Formally, a compound identity is externally (as seen by the network)
observed by the 2-tuple:

Compound(public)u,s = (pku,s
sig , pk

s,u
sig) (3.1)

Similarly, the entire identity (including the private keys) is the following 5-tuple:

Compoundu,s = (pku,s
sig , sk

u,s
sig , pk

s,u
sig , sk

s,u
sig , sk

u,s
enc) (3.2)

Protocol 1 Generating a compound identity
1: procedure CompoundIdentity(u, s)
2: u and s form a secure channel
3: u executes:
4: (pku,s

sig , sk
u,s
sig)← Gsig()

5: sku,s
enc ← Genc()

6: u shares sku,s
enc, pk

u,s
sig with s

7: s executes:
8: (pks,u

sig , sk
s,u
sig)← Gsig()

9: s shares pks,u
sig with s

10: // Both u and s have sku,s
enc, pk

u,s
sig , pk

s,u
sig

11: return pku,s
sig , pk

s,u
sig , sk

u,s
enc

12: end procedure

Blockchain Memory

We let L be the blockchain memory space, represented as the hastable L : {0, 1}256 →
{0, 1}N , where N >> 256 and can store sufficiently-large documents. We assume this
memory to be tamper-proof under the same adversarial model used in Bitcoin and other
blockchains. To intuitively explain why such a trusted data-store can be implemented on
any blockchain (including Bitcoin), consider the following simplified, albeit inefficient, imple-
mentation: A blockchain is a sequence of timestamped transactions, where each transaction
includes a variable number of output addresses (each address is a 160-bit number). L could
then be implemented as follows – the first two outputs in a transaction encode the 256-bit
memory address pointer, as well as some auxiliary meta-data. The rest of the outputs con-
struct the serialized document. When looking up L[k], only the most recent transaction is
returned, which allows update and delete operations in addition to inserts.

34

Policy

A set of permissions a user u grants service s, denoted by POLICYu,s. For example, if
u installs a mobile application requiring access to the user’s location and contacts, then
POLICYu,s = {location, contacts}. It is instructive to note that any type of data could be
stored safely this way, assuming the service will not subvert the protocol and label the data
incorrectly. Safeguards to partially prevent this could be introduced to the mobile SDK, but
in any case, the user could easily detect a service that cheats, as all changes are visible to
her.

Auxiliary Functions

Parse(x) de-seralizes the message sent to a transaction, which contains the arguments;
CheckPolicy(pkk

sig, xp), illustrated in Protocol 2, verifies that the originator has the appro-
priate permissions.

Protocol 2 Permissions check against the blockchain

1: procedure CheckPolicy(pkk
sig, xp)

2: s← 0
3: apolicy = H(pkk

sig)
4: if L[apolicy] ̸= ∅ then
5: pku,s

sig , pk
s,u
sig , POLICYu,s ← Parse(L[apolicy])

6: if pkk
sig = pku,s

sig or
7: (pkk

sig = pks,u
sig & xp ∈ POLICYu,s) then

8: s← 1
9: end if

10: end if
11: return s
12: end procedure

3.1.4 Blockchain Protocols

Here we provide a detailed description of the core protocols executed on the blockchain.
Protocol 3 is executed by nodes in the network when a Taccess transaction is received, and
similarly, Protocol 4 is executed for Tdata transactions.

As mentioned earlier, Taccess transactions allow users to change the set of permissions
granted to a service, by sending a POLICYu,s set. Sending the empty set revokes all access-
rights previously granted. Sending a Taccess transaction with a new compound identity for
the first time is interpreted as a user signing up to a service.

Similarly, Tdata transactions govern read/write operations. With the help of CheckPolicy,
only the user (always) or the service (if allowed) can access the data. Note that in lines 9 and
16 of Protocol 4 we used shorthand notation for accessing the DHT like a normal hashtable.
In practice, these instructions result in an off-blockchain network message (either read or
write) that is sent to the DHT.

35

Protocol 3 Access Control Protocol
1: procedure HandleAccessTX(pkk

sig,m)
2: s← 0
3: pku,s

sig , pk
s,u
sig , POLICYu,s = Parse(m)

4: if pkk
sig = pku,s

sig then
5: L[H(pkk

sig)] = m
6: s← 1
7: end if
8: return s
9: end procedure

Protocol 4 Storing or Loading Data

1: procedure HandleDataTX(pkk
sig,m)

2: c, xp, rw = Parse(m)
3: if CheckPolicy(pkk

sig, xp) = True then
4: pku,s

sig , pk
s,u
sig , POLICYu,s ← Parse(L[H(pku,s

sig)])
5: axp = H(pk

u,s
sig ∥ xp)

6: if rw = 0 then ▷ rw=0 for write, 1 for read
7: hc = H(c)
8: L[axp]← L[axp] ∪ hc

9: (DHT) ds[hc]← c
10: return hc

11: else if c ∈ L[axp] then
12: (DHT) return ds[hc]
13: end if
14: end if
15: return ∅
16: end procedure

36

3.1.5 Privacy and Security Analysis

We rely on the blockchain being tamper-proof, an assumption that requires a sufficiently
large network of untrusted peers. In addition, we assume that the user manages her keys
in a secure manner. Chapter 4 tackles this problem specifically. We now show how our
system protects against adversaries compromising nodes in the system. Currently, we are
less concerned about malicious services that change the protocol or record previously read
data, as they are likely to be reputable, but we provide a possible solution for such behavior
in section 3.1.6.

Given this model, only the user has control over her data. The decentralized nature of
the blockchain combined with digitally-signed transactions ensure that an adversary cannot
pose as the user, or corrupt the network, as that would imply the adversary forged a digital-
signature, or gained control over the majority of the network’s resources. Similarly, an
adversary cannot learn anything from the public ledger, as only hashed pointers are stored
on it.

An adversary controlling one or more DHT nodes cannot learn anything about the raw
data, as it is encrypted with keys that none of the nodes posses. Note that while data
integrity is not ensured in each node, since a single node can tamper with its local copy or
act in a byzantine way, we can still in practice minimize the risk with sufficient distribution
and replication of the data.

Finally, generating a new compound identity for each user-service pair guarantees that
only a small fraction of the data is compromised in the event of an adversary obtaining both
the signing and encryption keys. If the adversary obtains only one of the keys, then the data
is still safe. Note that in practice we could further split the identities to limit the exposure of
a single compromised compound identity. For example, we can generate new keys for every
hundred records stored.

3.1.6 Confidential Smart Contracts: From Storage to Processing

One of the major contributions of this work is demonstrating how to overcome the public
nature of the blockchain. So far, our analysis focused on storing pointers to encrypted data.
While this approach is suitable for storage and random retrieval, it is not very efficient for
processing data. More importantly, once a service queries a piece of raw data, it could store
it for future analysis.

A better approach might be to never let a service observe the raw data, but instead,
to allow it to run computations directly on the network, in a privacy-preserving manner,
and obtain the final results. While this term was not present at the time of publication,
over the years since this work was published, this idea of allowing arbitrary programs to
run over a blockchain while guaranteeing both the correctness of the computation and the
confidentiality of the underlying data became known as confidential smart contracts. Below
is a sketch of a solution using secret-sharing based MPC, which was further elaborated in
my subsequent work [4], [31].

A sketch of a Confidential Smart Contracts system. First, users can split data
into shares (e.g., using Shamir’s Secret Sharing [35]), rather than encrypting them, we could
then use secure Multi-party Computation (MPC) to securely evaluate any function [36].

37

In Figure 3.2, we illustrate how MPC might work with blockchains and specifically in
our framework. Consider a simple example in which a city holds an election and wishes to
allow online secret voting. It develops a mobile application for voting which makes use of
our system, now augmented with the proposed MPC capabilities. After the online elections
take place, the city subsequently submits their back-end code to aggregate the results. The
network selects a subset of nodes at random and an interpreter transforms the code into a
secure MPC protocol. Finally, the results are stored on the public ledger, where they are safe
against tampering. As a result, no one learns what the individual votes were, but everyone
can see the results of the elections.

procedure EVote((∗)v1, ..., (∗)vn)
s←

∑n
i=1 vi

if s < 0 then
L[aelection]← u1

else if s > 0 then
L[aelection]← u2

end if
end procedure

Select
MPC ⊂
NET

MPC Computes:
[s]pi ←

∑n
i=1[vi]pi

broadcast: [s]pi →MPC
s← reconstruct([s])
broadcast: s→ NET

NET Computes:
if s < 0 then

L[aelection]← u1

else if s > 0 then
L[aelection]← u2

end if

Figure 3.2: Example of a flow of secure computation in a blockchain network. The top
left block (EVote procedure) is the unsecure code, where the arguments marked in (*) are
private and stored as shares on the DHT. The network selects a subset of nodes at random
to compute a secure version of EVote and broadcasts the results back to the entire network,
that stores it on the ledger.

In the next Section (3.2), I will discuss our recent work on building a modern take on a
confidential smart contracts platform that uses threshold FHE.

3.1.7 Trust and Decision-Making in Blockchains

Bitcoin, or blockchains in general, assumes all nodes are equally untrusted and that their
proportion in the collective decision-making process is solely based on their computational
resources (known as the Proof-of-work algorithm) [1]. In other words – for every node n,
trustn ∝ resources(n) (probabilistically) decides the node’s weight in votes. This leads to
adverse effects, most notably vulnerability to sybil attacks, excessive energy consumption
and high-latency.

38

Intuitively, Proof-of-Work reasons that nodes which pour significant resources into the
system are less likely to cheat. Using similar reasoning we could define a new dynamic
measure of trust that is based on node behavior, such that good actors that follow the
protocol are rewarded. Specifically, we could set the trust of each node as the expected value
of it behaving well in the future. Equivalently, since we are dealing with a binary random
variable, the expected value is simply the probability p. A simple way to approximate this
probability is by counting the number of good and bad actions a node takes, then using
the sigmoid function to squash it into a probability. In practice, every block i we should
re-evaluate the trust score of every node as –

trust(i)n =
1

1 + e−α(#good−#bad)
, (3.3)

where α is simply the step size.
With this measure, the network could give more weight to trusted nodes and compute

blocks more efficiently. Since it takes time to earn trust in the system, it should be resistant
to sybil attacks. This mechanism could potentially attract other types of attacks, such as
nodes increasing their reputation just to act maliciously at a later time. This might be
mitigated by randomly selecting several nodes, weighted by their trust, to vote on each
block, then taking the equally-weighted majority vote. This should prevent single actors
from having too much influence, regardless of their trust-level.

3.2 FHE-Rollups: An EVM-compatiable Confidential Smart
Contracts Platform

As mentioned earlier, in recent years, researchers and practitioners have employed several
privacy-preserving technologies to solve the problem of confidentiality on the blockchain, in
a body of work that became known as confidential smart contracts (e.g., [3], [4], [8], [9], [11],
[28]). Of all of these techniques, Fully Homomorphic Encryption (FHE) is perhaps the most
ambitious, as it allows to directly compute over encrypted data without decrypting it.

FHE has improved by leaps and bounds since Gentry presented the first construct almost
a decade and a half ago [37]. Still, FHE requires significant computational overhead compared
to computing in plaintext, making it impractical for execution at the layer-1 (L1) level where
every node is required to replicate the entire computation, which is the approach that state-
of-the-art FHE-based confidential smart contracts frameworks are taking [11], [38].

Inspired by the recent movement towards layer-2 solutions in the Ethereum ecosystem
[39]–[41], we present the first architecture of an FHE-based rollup. We argue that while
for plaintext computation rollups are a needed solution, in the context of FHE, where the
computational overhead is orders of magnitude higher, they are a necessity.

In a rollup architecture, smart contract execution (the heavy-duty part of validating
blocks) is separated from verifying the execution and reaching consensus. This ensures that
only a single node (or a small number of nodes) is actually doing the computational heavy lift-
ing, without impairing security. Furthermore, this node can be vertically (and horizontally)
scaled as needed, including utilizing more expensive specialized hardware (GPUs, ASICs).

39

The latter is common with zero-knowledge (zk) based rollups 3, which like FHE also lever-
ages computationally-intensive cryptography, and can be leveraged in much the same way
for FHE computations.

However, in our design, we take an optimistic rollup approach as opposed to a zk-rollup
approach, allowing us to avoid the orders of magnitude penalty incurred by state-of-the-art
verifiable FHE techniques [42]. In fact, our framework can be seen as a cryptoeconomic
solution to solve the same problem of verifiability in FHE.

3.2.1 Main contributions

In this part, we make the following main contributions:

• We introduce the first layer-2 confidential smart contracts platform, enabling greater effi-
ciency and scalability.

• We demonstrate through a proof-of-concept implementation, that an optimistic FHE
rollup can be built on top of Ethereum, without making any changes to the base layer.
While our work extends beyond Ethereum and EVM chains, showing that this is possible
on Ethereum today implies that the most used smart-contract ecosystem can be augmented
with confidential smart contracts.

• We implement and benchmark three types of confidential smart contracts in Solidity: (i) a
confidential ERC-20 contract; (ii) a sealed-bid auction contract; (iii) and a private voting
contract. All of these examples can only operate in a blockchain with confidentiality. We
also demonstrate empirically that our solution is concretely efficient and practical.

• Outside the context of blockchains, our solution can be seen as a more efficient (cryptoe-
conomic) solution to the problem of verifiable FHE.

3.2.2 Design Goals and Security Model

Design Goals

Our system is built with the following objectives in mind:

• Correctness and Availability. A smart contract is executed correctly and with guaran-
teed output.

• Input Confidentiality. Nothing is learned about users’ inputs during the execution of
a smart contract. Since computations are reactive (i.e., stateful), the state can be
considered as another private input.

• Selective Output Confidentiality. Smart contract outputs can be re-encrypted and
selectively shared with the querying user, or with another with proper permissions. No
one else needs to learn anything about the output. Outputs can also be made public.

3e.g., https://www.ingonyama.com, https://www.risczero.com

40

• Efficiency. Execution efficiency is proportional to the computation complexity of the
underlying FHE execution. This captures the rollup’s efficiency property, which de-
notes that there is no need for consensus or replicating the computation.

In terms of confidentiality, we note that we do not try to hide the following: (i) identity of
the user initiating a transaction (e.g., for executing a smart contract); (ii) The smart contract
being called, and the method being called. In other words, there is no circuit privacy.

Security Model

We assume our Rollup is built on-top of a layer-1 that provides the usual properties of a
blockchain (i.e., correctness and availability).

For our Threshold Services Network (see Section 3.2.7), we assume nodes share pairwise
secure channels and a broadcast channel (for the latter, the Layer-1 can be used directly). We
also assume an honest majority between the nodes, as required by the underlying decryption
protocol we use. We note that our architecture generalizes to threshold decryption protocols
that support a dishonest majority, and that this assumption is not a hard requirement.

Finally, like other optimistic rollups, we assume at least a single honest validator (also
known as a verifier) exists.

3.2.3 Related Work

Our work builds upon the existing body of research and development of confidential smart
contract platforms. Unlike all other works, to the best of our knowledge this is the first work
that describes a solution that operates fully and natively as a layer-2. More specifically,
other confidential smart contract platforms usually differ by the kinds of privacy-preserving
technologies they use:

• Trusted Execution Environment (TEEs) Based. Currently, the only confidential
smart contracts networks in production are using TEEs (or secure enclaves) [5], [9], [28],
[30]. These networks simulate secure computation by allowing users to encrypt their
transactions with keys held inside of a secure enclave. Transactions then get decrypted
and executed inside of the enclave, which ensures confidentiality as long as we can trust the
security of the TEE. While TEEs are by far the most efficient solution, they are susceptible
to side-channel attacks and other vulnerabilities (e.g., [43]–[45]).

• Secure Multiparty Computation (MPC) Based. Since our work relies on Thresh-
old FHE, we share a similar threat model with these works (e.g., [3], [4], [8], [46]–[48]).
However, for the purpose of presentation, we separate these from FHE-based solutions, as
they often rely on linear secret-sharing [49], [50] and garbled circuits techniques [51]. The
main drawback in these techniques compared to our work is that MPC protocols need to
communicate data proportional to the circuit size in order to evaluate it. In the case of
secret-sharing-based MPC, all parties also need to sequentially communicate with all other
parties any time they evaluate a multiplication gate. In the context of public blockchains,
this is impractical, as the latency is quite high and the bandwidth is limited. Furthermore,
as these systems require multiple interacting nodes for every contract execution, they are
not amenable to a rollup architecture such as the one we are proposing.

41

• Zero-knowledge (ZK)-based. Different works have considered confidential smart con-
tracts using different ZK schemes. However, since ZK techniques are more suitable for
verifiable computation (e.g., [52]), their utility for confidential smart contracts is limited.
To overcome this, Hawk [7] suggested having a data-manager – an off-chain party that is
tasked with collecting inputs from different clients and is trusted with seeing everyone’s
data. Alternatively, other platforms impose limitations on developers [53]–[56].

• FHE-based. In the last couple of years, as a result of significant FHE performance
improvements, HE and FHE based solutions have started to emerge [10], [11], [38], [57],
[58]. These platforms are closest to our work, but none of them adopt a rollup architecture,
which limits their scalability in practice. Some of these works adopt a Threshold FHE
structure as we do (e.g., [38]), whereas others such as [10] allow only limited functionality,
and without a shared state.

3.2.4 Layer-2 Rollups

Rollups are a scaling solution designed to alleviate the congestion on the primary layer-1
chain, in particular Ethereum. With Ethereum’s growing user base, the need for scaling
solutions has become paramount. The primary goal of scalability is to enhance transaction
speed and throughput without compromising on decentralization or security. Rollups execute
transactions outside the base layer, posting back state-updates alongside proofs of correct
execution. Ultimately, the layer-1 reaches consensus on these state updates, but it does so
without re-executing the transactions on the base layer. In other words, transactions on the
rollup are secured by layer-1’s inherent security. There are two main types of rollups, which
differ by how proofs are created and verified:

• Optimistic Rollups. These assume transactions are valid unless challenged. They
move computation off-chain but post transaction data to the layer-1 (or another data
availability network), allowing anyone to re-run the transactions off-chain and verify
for themselves that the execution is correct. If any verifier detects malicious behavior,
they can submit a fraud-proof on-chain, in which case the layer-1 acts as the final
arbiter. For this reason, Optimistic Rollups require a dispute period (often of a few
days) [40].

• ZK Rollups. These rollups similarly execute contracts off-chain and submit valid-
ity proofs back when sending a state-update. Validity proofs are constructed using
advanced cryptographic techniques known as (succinct) ZK Proofs. They can be effi-
ciently verified on-chain directly, without posting the full transaction data or having a
dispute period (e.g., [59]).

Optimistic and ZK Rollups have inherently different trade-offs. Optimistic rollups suffer
from a dispute-period delay, making finality longer. They also require posting the transac-
tions themselves on-chain, which negates some of the scalability benefits 4.

On the other hand, ZK Rollups require significant computation power (and time) to
produce a proof, especially the closer you try to get to native EVM [60]. A related downside

4This is meant to be mitigated to an extent with EIP-4844 and Danksharding.

42

is that these rollups are much more complicated to build, resulting in large amounts of code.
The likelihood of critical vulnerabilities with zkEVMs is therefore much higher, at least until
they have been battle tested enough over time.

Optimistic Rollups in More Detail

Optimistic rollups bundle multiple off-chain transactions and submit them to the L1 chain,
reducing costs for users. They are termed "optimistic" because they assume transactions are
valid unless proven otherwise. If a transaction is challenged, a fraud proof is computed. If
proven fraudulent, penalties are applied. Today, optimistic rollups operate atop Ethereum,
managed by Ethereum-based smart contracts. They process transactions off-chain but post
data batches to an on-chain rollup contract. Ethereum ensures the correctness of rollup
computations and handles data availability, making rollups more secure than standalone
off-chain solutions or side-chains. They also create an inherent economic-security alignment
between the two layers, as the layer-2 receives security while paying for incurred fees at the
layer-1 level.

From an architectural perspective, optimistic rollups consist of the following:

• Transaction Execution. Users send transactions to operators or validators, who aggre-
gate and compress them for the layer-1.

• Submitting to the layer-1. Operators bundle transactions and send them to the layer-1
using calldata.

• State Commitments. The rollup’s state is represented as a Merkle tree. Operators
submit old and new state roots, ensuring the chain’s integrity.

• Fraud Proofs and Disputes. These allow anyone to challenge a transaction’s validity.
If a challenge is valid (arbitrated by the layer-1), the fraudulent party is penalized.

Fraud Proofs play a vital role in optimistic rollups, and they are at the root of how we
ensure that a rollup publishes a correct state update. Even in the face of malicious nodes
trying to delay or tamper with transactions, the chain’s integrity is preserved as long as
there’s a single honest node that observes state updates and checks that they are correct. In
the context of rollups built on Ethereum, because the actual data is posted onto Ethereum,
anyone in the world can act as a verifier. Once an honest verifier detects an incorrect state
update (e.g., by including a tampered-with transaction), it can submit a dispute, which
initiates the fraud proof game: a multi-round interactive protocol. Here, the asserter (the
node that produced the state update) and challenger (the verifier who issued a dispute) follow
a protocol overseen by a layer-1 verifier contract to ascertain the honest party. The protocol
proceeds recursively, each time dividing the computation into two equal parts. The challenger
chooses one part to challenge each time. This process, termed the bisection protocol, persists
until only one computational step is in question. Once the interactive protocol narrows down
to a single instruction, it is the layer-1 contract’s turn to resolve the dispute by evaluating
the instruction result as well as both the asserter’s and the challenger’s claims and their
respective results to determine which one is correct.

43

3.2.5 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) enables computations on ciphertexts that, when de-
crypted, match the results of those operations as if they were performed on the plaintext
directly.

In practice, ever since the original scheme by Gentry [37], several FHE schemes have been
developed, which are based on the original Learning With Errors (LWE) hardness problem,
or related algebraic constructs such as its ring variant [61]. Our implementation utilizes the
Torus FHE (TFHE) [62] scheme, but we note that our construct itself does not really matter
for the purpose of constructing an FHE-rollup, we describe FHE more generally below, in a
black-box manner.

A generic FHE scheme can be denoted by the tuple of algorithms FHE = (Gen,Enc,Dec,),
as follows:

• Gen(1κ). Given a security parameter 1κ, the algorithm outputs a pair of keys (pk, sk)
where pk is the public encryption key and sk is the secret decryption key. Define
domains P for plaintexts, R for randomness, and C for ciphertexts, as well as the set
of permissible functions F .

• Enc(pk,m; r). Given the public key pk, a message m ∈ P and randomness r ∈ R, the
encryption algorithm produces a ciphertext c ∈ C such that

c = Encpk(m; r).

• Dec(sk, c). With the secret key sk and a ciphertext c, the decryption algorithm retrieves
the original plaintext message m:

m = Decsk(c).

• (pk, f, {ci}ni=1). Given the public key pk, a function f ∈ F , and a set of ciphertexts
{ci}ni=1, this algorithm produces a ciphertext c′ ∈ C such that:

Decsk(c
′) = f({Decsk(ci)}ni=1).

This implies the function f is executed over encrypted data, and its result is encrypted
as c′.

3.2.6 System Overview

Our platform is built with modularity in mind. It includes the quintessential components
of a rollup, alongside new and specific components needed to support (Threshold) FHE. In
this section, we briefly describe the different components, as they are illustrated in Figure
3.3.

• Settlement and Data Availability (DA). These components are served by the
layer-1. In our implementation both will leverage Ethereum directly, but we note that
any other layer-1 would work, with the understanding that we inherit its security.

44

• Sequencer. Just like with other layer-2 architectures (e.g., [40]), transaction ordering
is done by an entity known as the sequencer. In our design, the same entity is also in
charge of transaction (and smart contract) execution, but we note that this two roles
could be separated. The sequencer is in-charge of submitting layer-2 state updates
periodically. A state update is the result of a batched execution of potentially many
transactions.

• Validators. These are other nodes in the layer-2 network which observe state-updates
submitted by the sequencer. If any validator observes an incorrect state-update (i.e.,
the sequencer cheated), they can trigger a dispute to the layer-1. In this case, the
parties engage in an interactive protocol between the sequencer, challenging validator
(the challenger) and the layer-1 which acts as an arbitrator (as described in [40], [63],
[64]). At the end of the protocol, there is consensus on whether the sequencer or
the challenger cheated. To further prevent cheating, it is common to impose financial
penalties on the cheating party. The fraud-proof mechanism is further described in
Section 3.2.9.

• Threshold Services Network. Our platform uses Threshold FHE under the hood,
which implies users can encrypt their transactions using a single public FHE key.
The secret key, however, is shared across a network of nodes we denote as the threshold
services network (TSN). The TSN is is also in charge of any decryption or re-encryption
operations that need to happen from time to time. We discuss this in more detail in
Section 3.2.7.

3.2.7 Threshold Services Network (TSN)

A key component in our design is the Threshold Services Network (TSN). This network
is separate from the layer-1 or other rollup components and plays several key roles. In
particular, we assume that in a setup phase the TSN generates the network’s Threshold FHE
key-pair (sk, pk) (using a distributed key-generation protocol), and that pk is published onto
the rollup’s first block, making it available to all users. In contrast, the secret key has to
remain private, and is secret-shared across the TSN participants. There are several threshold
decryption protocols to choose from, and our current implementation utilizes [65], which
uses Shamir secret-sharing to split sk into n shares, out of which t+ 1 shares are needed to
reconstruct.

Threshold Decryption and Re-encryption

Occasionally, the network will need to decrypt certain results, or re-encrypt them to a des-
ignated user. The TSN is in-charge of any such request coming from the rollup.

To illustrate why this is needed, consider the following two examples. First, imagine a
private voting contract deployed on the rollup. When users vote for a certain candidate, they
encrypt their votes, and the contract tallies these votes (all encrypted). At a certain point
in time, a functionality in the contract should be able to decrypt the tally and announce the
winner. This request is routed to the TSN, which decrypts it and returns the result to be
stored in the contract’s state. This flow is illustrated in Figure 3.4.

45

A similar example is that of a user who owns a NFT with private metadata only they
can see. Such metadata is stored in the contract’s state under the network’s key. When a
user tries to access that information, the contract should threshold re-encrypt it so only the
designated user would be able to decrypt and get access to the underlying data.

3.2.8 Security

It is important to note that the underlying confidentiality guarantees of the entire system
are closely related to the trust assumptions of the TSN. Anything that relates to keeping the
threshold decryption key safe, correctly decrypting/re-encrypting ciphertexts, etc., is under
the responsibility of the TSN.

Currently, the state-of-the-art protocols by [65] require the TSN to have at most t < n
3

malicious corruptions for a fast and robust protocol, or t < n
2

if we are willing to settle for
security with abort.

3.2.9 Fraud Proofs

The key to Optimistic Rollups lies in their fraud proof mechanism. But how do we fit that
mechanism, in particular Ethereum’s EVM, to work with smart contracts that execute FHE
circuits over encrypted data?

First, observe that FHE, unlike other encrypted computation techniques such as MPC,
natively allows anyone to verify that a computation was done correctly, without breaking the
privacy guarantees. This is because an adversary holding the encrypted inputs and outputs
learns nothing about the underlying encrypted data (if this were not the case, then the
encryption scheme would not be semantically secure).

This makes verifying FHE computations compatible with the idea of Optimistic Rollups,
at least in theory. As mentioned earlier, Optimistic Rollups are based on posting the full
transaction data on the layer-1 (or some other data availability service), alongside the output.
In this case, both are encrypted. Just like with plaintext data, any off-chain validator could
take the encrypted transaction data, re-execute the transactions, and make sure that they
receive the same encrypted output. If this is not the case, then an honest validator could
submit a dispute and start the arbitration process with the layer-1.

However, the whole fraud proving mechanism is rooted on the layer-1’s ability to deter-
mine unequivocally whether the layer-2 node that posted the state update or the disputing
verifier (i.e., the challenger) is cheating. To do this, the layer-1 needs to be able to run a
single computational step of the underlying computation. Since our solution relies on the
security of the layer-1, we wish to use Ethereum in our implementation as it is the most
secure smart-contract platform. But this introduces a new challenge: How can Ethereum, or
any other layer-1, validate execution on FHE primitives without inherent support for FHE
operations?

To overcome this challenge, we utilize Arbitrum’s Nitro fraud prover 5, which has an
Ethereum contract on-chain that can verify the correctness of a single WebAssembly (WASM)

5https://docs.arbitrum.io/inside-arbitrum-nitro

46

opcode. This is sufficient, as we can now compile the underlying FHE libraries (which are
written in Rust) to WebAssembly as well, and avoid requiring changes to the layer-1 itself.

Addressing performance concerns, it is rational to assume that if FHE computations are
inherently intensive, simulating them in a WASM runtime atop EVM might incur significant
performance penalties. While this is a valid concern, it is important to remember that
initiating these computations is only mandatory in a dispute scenario, and real-time speed is
not an absolute necessity given a sufficient dispute window. Considering that the standard
practice allocates approximately seven days for it, we estimate that this is more than sufficient
time to settle any such disputes. However, we did not empirically validate this hypothesis,
and we note that doing so in the future is important.

3.2.10 Evaluation

We implement a proof-of-concept of our layer-2 FHE rollup system 6. Our architecture is
based on the Arbitrum stack [40], and uses Ethereum as the layer-1. For FHE capabilities,
we use the tfhe-rs 7 library, which is written in Rust. We then implement a Solidity wrapper
on top, such that we can write standard Solidity smart contracts. Figure 3.6 is an example
of such a contract for private voting.

As a first step, we benchmarked elementary FHE addition and multiplication gates under
different VMs, and for (plaintext) integers between 8-256 bits. As can be seen in Table ??,
the performance gap between the VMs increases with the bit length. This is expected due
to the underlying TFHE scheme [62]. However, on a per dollar basis, choosing a stronger
VM does not justify the cost.

Table 3.1: FHE addition times using different VMs for 8-256bit plaintext integers.

System Addition (ms)
VM Cores Price/yr 8 16 32 64 128 256
I9-13900K 32 $1,000 47.527 71.752 122.07 202.26 440.57 975.29
R7i (x32) 32 $18,230 49 77.98 121.4 159.05 343.57 770.72
hpc7a.96xlarge 96 $62,208 63.201 83.203 102.75 120.27 145.52 192.26
m6id.metal 128 $52,790 70.5 100 132 186 249 334

Table 3.2: FHE multiplication times using different VMs for 8-256bit plaintext integers.

System Multiplication (ms)
VM Cores Price/yr 8 16 32 64 128 256
I9-13900K 32 $1,000 99.034 207.35 589.84 2084.2 7715.5 28946
R7i (x32) 32 $18,230 102.49 205.44 493.72 1587.2 5861.6 21777
hpc7a.96xlarge 96 $62,208 119.14 164.41 229.74 412.67 1059.4 3446.3
m6id.metal 128 $52,790 144 216 333 832 2500 8850

6https://github.com/FhenixProtocol/tfhewasm, https://github.com/FhenixProtocol/go-tfhe
7https://github.com/zama-ai/tfhe-rs

47

We also implemented three confidential Solidity smart contracts of real-world use cases.
These include a confidential ERC-20 token contract (allowing for private transactions), a
private voting contract, and a sealed-bid auction contract. For all contracts, we used 32-bit
encrypted integers. The results are summarized in Table 3.3, and they illustrate that our
solution is practical and concretely efficient.

Table 3.3: Benchmarking different Solidity Contracts using FHE

Contract Name Transaction Time (ms)
FHERC20 transfer() 832
Voting vote() 620
Auction bid() 3500

48

Figure 3.3: Overview of an FHE Rollup architecture

49

Figure 3.4: Smart contract request to decrypt FHE-encrypted data on the rollup

Figure 3.5: Fraud proof engine for FHE instructions

Figure 3.6: Excerpt of a Voting Contract.

50

Chapter 4

Unstoppable Wallets: Chain-assisted
Threshold ECDSA and its Applications

In the previous chapter, we discussed how a blockchain can implement a decentralized access-
control mechanism, and have shown how that idea extends to confidential smart contract
blockchains. In both of these cases, and in all blockchains more generally, there is a require-
ment for users to authenticate by digitally signing messages using a secret key that they
own. The most common digital signature scheme used in blockchains is ECDSA (Elliptic
Curve Digital Signature Algorithm). Securing a secret-key is potentially one of the biggest
challenges in decentralized systems today, because if you lose your key (or if it is stolen),
there is no trusted authority that can restore it for you. This chapter focuses on a novel
solution to this problem, by designing new threshold ECDSA protocols that leverage the
existence of a confidential smart contract blockchain, which we introduced earlier.

More specifically, threshold ECDSA is a cryptographic technique that enables multiple
parties to jointly sign a message using a shared secret key. It has gained increasing importance
in the custody of cryptocurrencies and Web3 due to its ability to improve security and control
over private key management. By enabling multiple parties to jointly control a single private
key, threshold ECDSA allows for the creation of multisignature (multisig) accounts that
require multiple approvals before a transaction can be signed. This enhances security by
reducing the risk of funds being stolen or lost due to a single point of failure. Additionally,
threshold ECDSA enables the creation of flexible and customizable access policies.

Current deployments of threshold ECDSA (e.g., Fireblocks, Coinbase Wallet, BitGo,
Zengo and others) rely on a third party service provider for availability and are often limited
by closed-sourced vendors [66]. In practice, relying on a service provider for availability has
proven itself inadequate, and in certain cases even disastrous, leading to significant loss of
funds (e.g., FTX1 and Prime Trust[67] incidents, to name a few). Furthermore, even be-
yond availability, trusting a service provider with correctness is difficult, as for example, a
compromised service provider may ignore a client’s policy and convince the client to sign an
unintended transaction (e.g., by changing the user interface). Such attacks are not theoret-
ical, see MyEtherWallet for example [68].

To overcome these challenges, we introduce unstoppable wallets as a novel concept that
1https://en.wikipedia.org/wiki/FTX

51

addresses the limitations of current threshold ECDSA systems. An unstoppable wallet is a
threshold ECDSA wallet where the counterparty co-signing transactions with the user (or
a set of users) is not a singular third-party, but rather a blockchain itself, which naturally
provides strong availability and correctness. This enables the creation of programmable
wallets that are controlled directly by a smart contract, such as those being explored through
the concept of account abstraction2. Unstoppable wallets push this idea further, as they can
operate cross-chain and are not limited to Ethereum or EVM chains only.

Since generally speaking, blockchains cannot keep a private state, we require the use of
blockchains that support confidential smart contracts, which we introduced earlier.

Unstoppable wallets also have other implied benefits. Similar to how smart contracts
eliminate the need for excessive trust in intermediaries, enabling novel applications like De-
centralized Finance, unstoppable wallets further enable new use-cases that require similar
levels of trust. To illustrate this, consider a decentralized lending protocol such as Com-
pound3. In Compound, the smart contract acts as a trusted escrow between lenders and
borrowers. In contrast, many centralized service providers offering the same functionality
have recently failed, leading to billions in customer funds lost. Similarly, with unstoppable
wallets, one can securely implement use-cases such as a wallet exchange, which allows users
to atomically trade wallets. With an unstoppable wallet construct, an underlying smart con-
tract atomically escrows and facilitates the process (just like lending in DeFi). Identifying
a wallet as an asset on its own rather than a vehicle to store assets has many advantages.
For example, one may transfer all its token portfolio in one transaction, even if part of it
is staked, locked or lent; in addition, wallets can accrue reputation according to their ac-
tivities, which may increase/decrease their value. In some sense, one may see a wallet as a
non-fungible token (NFT).

4.1 Revisiting the Server-aided Model of MPC

Another main contribution of this work is showing how confidential smart contract blockchains
are a pragmatic real-world realization of the server-aided MPC model. Cryptographic proto-
cols in the server-aided model are common in the literature and real-world deployments, for
both generic and application specific functionalities (see [69], [70] and references within). In
this section we take this model further and argue that replacing the server with a blockchain
serves as a better real-world realization of that model, in particular when availability is
necessary.

Designers of cryptographic protocols have been increasingly relying on blockchains as
their broadcast channel infrastructure [71]–[74], as they may assist in achieving desired prop-
erties (e.g., [73]), and work around known impossibility results (e.g., [74]). Such a transition
has prompted researchers to explore other benefits that can be derived from blockchains.

At their core, blockchains provide such benefits due to the strong availability and cor-
rectness properties that they provide. One might also wish for a blockchain that entirely
handles sensitive information, such as cryptographic keys, and is able to confidentially per-
form operations (like sign and decrypt) using the keys. Confidential smart contracts-enabled

2https://eips.ethereum.org/EIPS/eip-4337
3https://compound.finance/

52

blockchains aim to offer exactly that, by relying on an underlying MPC protocol or TEEs.
Whichever assumption is used, it is important to note that while active faults in crypto-
graphic multiparty protocols can be publicly detected and attributed, privacy breaches (in
general) are not. Consider, for instance, a publicly auditable MPC protocol (in short, a pro-
tocol in which everyone can determine if a party faithfully follows the protocol steps or not).
In case an attacker corrupts a sufficient number of parties it can "silently" break privacy;
however, even such an attacker is not able to break the correctness of the protocol.

While we can rely on blockchains for correctness and availability, In our case of threshold
signatures, we rely on the blockchain to store a partial secret, which is only a share of the
actual underlying signing key. By doing so, breaking the blockchain security layer only
reveals that share of the secret, and not the full key.

Equipped with this intuition, we present a Threshold ECDSA protocol for n parties, out
of which at most t < n are malicious and colluding, to generate an ECDSA key-pair and
sign messages, with the aid of a blockchain as described above. We assume the blockchain
supports confidential smart contracts, meaning that it uses privacy-preserving techniques to
protect a contract state from outside actors. To keep the model as general as possible, we
do not prescribe which technique the blockchain uses to achieve confidentiality. Instead, we
capture the properties described above by modeling the blockchain as an additional semi-
honest and non-colluding party, referred to as Pc. Such a party can easily play the role of a
broadcast channel (by simply relaying a message to all other parties) and hold and operate
on secrets.

Another benefit of this model, is that parties do not necessarily need to know each other
in advance, or set up complex ad-hoc communication networks with point-to-point channels
across each set of parties, or an underspecified broadcast channel, as is common with MPC
protocols. Moreover, parties can come and go as they please, even mid-execution of a
protocol, since all coordination is done on-chain, which is guaranteed to be robust. Finally,
our protocols support detection of cheating parties, which can be immediately translated to
a monetary punishment on-chain.

Lifting all communication on-chain is advantageous at a high level because it simplifies
protocol implementation in practice, as each node only reads and writes to a single endpoint,
regardless of the number of counterparties. Specifically, by relying on a blockchain, one does
not need to take care of network synchronization, and ‘proofs of silence’ (i.e., a proof that a
participant did not send a message) are taken for granted4. There are several other benefits
to this, such as pseudonimity, higher degree of censorship-resistance, public accountability
(e.g., in the context of DAO multi-sigs), etc. Finally, recall that in some settings, and in
the dishonest majority setting that we address in particular, implementation of a broad-
cast channel is impossible. Thus, this blockchain assisted model implicitly outsources the
broadcast channel operation to an external entity.

In this new communication model every message, either peer-to-peer or broadcast, is
translated to a blockchain transaction, which is inherently a broadcast message. On one
hand, broadcasting on chain may entail significantly larger latency than a plain broadcast

4This should not be interpreted as everything being perfect when using a blockchain; rather, we argue
that using a blockchain obscures these problems away from the developer. Indeed, a block lacking a message
from a user does not necessarily mean the user did not send that message; for example, the recent blockchain
block’s validator/miner may have censored that message.

53

that is implemented among the parties. On the other hand, in such model all messages are
permanently public, which allows for publicly verifiable protocols that encourages honesty
of the parties. In addition, On the other hand, all messages are available to the participants
whenever they are ready to consume them. This enables an easy recovery and auditability
by participants that experienced a temporary offline period.

This necessitates the reassessment of the concept of rounds – a crucial performance metric
used to evaluate protocols in the standard MPC model (without the aid of blockchains). The
number of rounds informally measures the longest sequence of interdependent messages sent
between parties. In this modified model, each round consists of one or more parties writing
to the blockchain, followed by all parties reading from it. Although one might assume
that this would typically involve decomposing each round into two separate rounds, we
must recognize that writing to a blockchain is significantly more costly than reading, as it
necessitates consensus and updating a replicated state.

As a result, our primary objective in this model is to minimize the total number of
messages, with a specific focus on reducing the number of sequential writes, simply referred
to as ’writes’ hereafter. While in previous works on threshold ECDSA the number of writes
is equivalent to the number of rounds, this does not hold for the protocols presented in this
work, highlighting the importance of identifying a common performance metric.

Figure 4.1 illustrates the model we described. All parties are connected via a slow write
channel to the blockchain party Pc, which also acts as a public bulletin board they can read
from (specifically, we assume Pc has a public state anyone can read from). Finally, being
one of the computing parties, Pc also maintains its own private state.

Figure 4.1: Communication Model Illustrated

54

4.2 Main contributions

In this chapter, we make the following main contributions:

• We revisit the problem of threshold ECDSA by considering a real-world ‘server-aided’
model, and construct new protocols for threshold ECDSA in that model. Defining mes-
sages to the server as ‘write’ and messages from the server as ‘read’, our protocols enjoy the
minimal number of ‘writes’, compared to previous works (see Table 4.1). In particular, our
robust threshold ECDSA incurs only a single write message from the parties, and another
one from the signature initiator, compared to previous protocols that incur at least four
writes. We also greatly reduce communication and computation, by avoiding the use of
expensive cryptographic primitives such as Paillier encryption and costly zero knowledge
proofs over Paillier ciphertexts. We provide a full proof of security of our protocols in the
server-aided model, treating the server as a semi-honest non-colluding party, and show
that the protocols offer both fairness and robustness. That is, we achieve robustness in
the sense that if t + 1 parties agree to sign on a message (and hence participate in the
protocol faithfully), then they will obtain the signed message.

• We implement these protocols as smart contracts and deploy them on a functioning
blockchain with confidential smart contract capabilities. By doing this, we introduce
the concept of unstoppable wallets - programmable threshold ECDSA wallets where the
counterparty co-signing transactions with the user (or a set of users) is not a singular
third-party we need to rely on, but rather a confidential smart contract.

• We ran benchmarks of our protocols, ranging from n = 2 to n = 15 signers, and prove their
real world applicability by reporting on their respective gas costs and fees. To show case
the importance of wallet programmability we develop two applications: a multisignature
wallet with policy checks and a wallet exchange.

• We revisit the server-aided MPC model and show that a confidential smart contract can
efficiently realize the server in this model. This should motivate more MPC protocols to
build in this model, since it is both more efficient than dishonest majority protocols and
has a real world implementation.

4.2.1 Related Work

Our work builds upon the existing body of research on concretely efficient threshold ECDSA
protocols in the dishonest majority setting. Previous works in this setting can be grouped
into several categories:

• Protocols using Paillier’s Homomorphic Encryption (HE) with a small number of rounds
but high computational cost [75]–[79]. These also require expensive zero-knowledge proofs
over Paillier ciphertexts. Optimized variants for the two-party variants also exist (e.g.,
[80], [81]).

55

• Replacing HE with class group-based schemes as in [82]–[84], which improves the effi-
ciency of zero-knowledge proofs but not the number of rounds, while introducing different
assumptions on class groups of imaginary quadratic fields.

• Oblivious transfer (OT)-based protocols [85], [86], that reduce cryptographic assumptions
and computational overhead but increases round complexity.

• Protocols that are based on generic MPC; in particular in such protocols multiplication
triplets are pre-processed [87], [88]. These protocols typically increase the overall number
of rounds (and hence, the number of writes) and in some cases introduce newer assumptions
such as LPN [88].

In contrast to prior work, our protocols are designed to be chain-friendly, by reducing the
number of writes without resorting to heavyweight cryptographic tools like HE and expensive
ZKP that are likely too inefficient to run in a constraint blockchain environment.

Our protocol also achieves two often overlooked properties for threshold ECDSA: fairness
and robustness. The current state-of-the-art honest majority threshold ECDSA protocol by
Damgard et al., [89] achieves fairness in six writes, as opposed to 1-2 writes in our work,
and by well-known impossibility results, dishonest majority protocols (without blockchain
assistance) cannot hope to achieve fairness at all [74], [90].

As to robustness, since the original work of Gennaro et al., on threshold (EC)DSA for
a super-honest majority (n ≥ 4t + 1) more than two decades ago [91], most known efficient
protocols in the dishonest majority setting (e.g., [75], [76], [78], [79]) sacrifice robustness for
additional efficiency gains. These protocols move from threshold to additive secret sharing
as soon as pre-signing starts, leaving no room to handle faults mid-execution. Recently,
attempts to partially address robustness have been proposed. Gagol et al. [92] suggested a
robust scheme which requires all parties to participate honestly in the pre-signature phase,
while others proposed schemes with identifiable aborts instead (e.g., [79] [84]). In a concur-
rent and independent work, Wong et al., [93] achieve a stronger notion of robustness they
call ’self-healing robustness’, where as long as the signers in the online-phase are a subset of
the signers in the pre-signature phase, their scheme is either robust (for an honest majority)
or gracefully falls back to identifiable aborts otherwise. In contrast, in this work we achieve
the standard plain notion of robustness, where signers in pre-signing and signing can be
disjoint.

For a comprehensive comparison of our work with the existing literature, please refer to
Table 4.1. Note that we also describe a scenario unique to our work, where there is a single
signing party involved (i.e., n = 1). This is an interesting scenario, as it allows a single
user to increase their wallet security by having Pc as a co-signer. Similarly, some use cases,
like wallet exchange, may make more sense under this setting. However, for this scenario,
we describe a modified version of [80] and show that while it is less efficient than our main
protocol, it can still run on-chain.

Other works address generic MPC with fairness and public verifiability via bulletin boards
(that can be implemented with blockchains). Bentov et. al, Kumerasen et. al, and Baum
et. al [47], [94]–[96] achieve a revised form called ‘fairness with penalties’ using gradual
release mechanisms and deposits using a blockchain. Choudhuri et al. [74] showed how to
use blockchains to achieve the standard notion of fairness (without penalties), by leveraging

56

either witness encryption, which is too expensive in practice, or off-chain TEEs. Baum et
al. and Rivinius et al. show how to achieve public verifiablity and robustness using a public
bulletin board [97]–[99]. Similarly, a long line of works of MPC-as-a-service systems inspired
by blockchains have emerged in recent years [3], [4], [48], [71]–[73], [100]–[104]. While they
address how a blockchain can help with the general MPC problem (or how MPC can add
confidentiality to blockchains), our work, as far as we know, showcases the first threshold
ECDSA protocol that effectively provides both fairness and robustness, by relying on an
external blockchain.

Finally, in contrast to all prior works solving threshold ECDSA, we are the first to consider
a model for MPC protocols that leverage a special non-colluding semi-honest party. We
show how such a model greatly increases efficiency, simplifies protocol design, and achieves
properties of interest – in our scenario, fairness and robustness. We further show how
this model is realized in practice through the use of a confidential smart contracts, which
have garnered significant interest in recent years [4], [5], [7]–[11], [29], [30], [46], [53], [54],
[105]–[111].

Protocol Parties Writes Messages Primitives Properties
LN18 [76] n 8 O(n2) Paillier
CGGMP20 [79] n 4 O(n2) Paillier IA
DKLS19 [86] n log(t) + 6 O(n2) OT
BMP22 [112] n 4 O(n) Paillier
CCLST20 [83] n 8 O(n2) CL-HE
CGCL+23 [84] n 7 O(n2) CL-HE IA, Fairness

(Honest
Majority)

WMYC23 [93] n 5 O(n2) Paillier Self-healing
Lindell17 [80] 2 2 O(1) Paillier
XAXYC21 [81] 2 3 O(1) HE/OT
CCLST19 [82] 2 3 O(1) CL-HE
DKLS18 [85] 2 7 O(1) OT
This work n 1-2 O(n) Group Fairness
This work n 1-2 O(n2) Group Robustness
This work 1 1 O(1) Paillier

Table 4.1: Comparison with related work. For protocols that support pre-signing – the
number of writes consists of both pre-sign and sign phase, ignoring amortization.

4.3 Threshold ECDSA Protocol

As explained in Section 5.0.2, current threshold ECDSA protocols require the use of expensive
primitives (like HE or OT) and require at the very least four rounds of interactions, which
in our model, translate to four consecutive writes to the blockchain. That kind of latency,
and more importantly, the implied requirement from each user to sign four transactions in
a row in order to produce a signature is too burdensome in practice.

In-line with our goals, we seek to construct a protocol that would be chain-friendly, and
would minimize the number of writes each party has to perform. For all parties except one,
we achieve the optimal of a single write per-party, which can be done non-interactively. A

57

designated party (the signature initiator) needs to write twice. . The blockchain is modeled
as an additional semi-honest and non-colluding party, denoted Pc. This enables us to take
a different approach and leverage techniques from honest-majority MPC, even though the
adversary may corrupt the majority of the parties P1, . . . , Pn. We do this by assigning n
shares to the parties, and t additional shares are held by Pc, for a total of N = n+ t shares.
Our protocol ensures that as long as there are t+1 honest signers they will generate a valid
signature; otherwise, no information is revealed.

In that sense, our protocol resembles the one by Damgard et al. [89], which is secure in
the honest majority setting; however, we make significant changes to their protocol, greatly
improving the number of writes and the communication costs. In particular, their proto-
col requires six writes (or four writes without fairness, which we obtain anyway), which is
significantly more than ours.

For readability reasons, in the protocols below we write that Pi sends Pj a message
although it is understood that Pi only communicates through Pc. That is, Pi sends a cipher-
text to Pc under Pj’s encryption key, and then Pj decrypts that message (implicitly implying
PKI).

4.3.1 Key Generation

Our key generation protocol (Protocol 4) begins with a standard joint random secret sharing
generation protocol having two dealers: P1 and Pc. Given that the blockchain is semi-honest
and non-colluding, we can avoid a more expensive coin-tossing protocol. This is a recurring
theme we use in all of our protocols. After both P1 and Pc deal their shares, each party
computes their final share of the secret key [x]i and sends their share of the public key
(Xi := [x]i ·G) to Pc. Finally, Pc ensures that all shares of the public key are consistent by
interpolating in the exponent. If any of the parties cheated, it aborts, otherwise it sends the
generated public key X to all parties, which concludes the protocol successfully.

4.3.2 Signing Protocol

Similarly to key generation, the signature protocol (Protocol 5) begins with a two-dealer
random secret-sharing protocol between P1 and Pc, who jointly generate all required ran-
domness for a single execution. These include t-sharings of fresh random values k, a, and
2t-sharings of zero, denoted as z, z′. Intuitively, k is the usual ECDSA nonce produced for
every signature, and the other values are used internally to mask 2t-shares that are the
product of two t-shares. For concrete efficiency, the protocol does not check consistency of
any of these values. In fact, it may even be that the parties hold inconsistent sharings, or
that R ̸= [k] · G. In the proof we show that the adversary cannot learn anything even if it
cheats, and so it can only cause an abort.

After the parties obtain these sharings and r := R.x, they can locally compute their share
of s1, s2, such that [s1]i := [a]i(m + r[x]i) − [z]i mod q and [s2]i := [k]i[a]i − [z′]i mod q.
Notice that each s1 and s2 has a multiplicative depth of one, meaning that the resulting
shares are lifted from a degree t polynomial to a degree 2t one. Furthermore, as these shares
may no longer be properly random, each party also uses their share of z, z′ to rerandomize
their resulting shares.

58

PROTOCOL 4.
(

Key-Generation: KeyGen
)

1. Users’ dealing:

(a) Party P1 samples a random xu ← Zq.

(b) Party P1 computes [xu]← SS.Share(xu, t, N).

(c) Party P1 sends [xu]i to Pi for all i ∈ [1, n] and [xu]i to Pc for all i ∈ [n+1, N].

2. Center’s dealing:

(a) Party Pc samples a random xc ← Zq.

(b) Party Pc computes [xc] ← SS.Share(xc, t, N), and sends [xc]i to Pi for i ∈
[1, n].

3. Compute key share:

(a) For each j ∈ n+ 1, ..., N , Pc computes [x]j = [xu]j + [xc]j mod q and
Xj ← [x]j ·G.

(b) Each party Pi (i ∈ [1, n]) computes [x]i = [xu]i + [xc]i mod q and Xi =
[x]i ·G.

(c) Each party Pi (i ∈ [1, n]) sends Xi to Pc.

4. Public key:

(a) Let P be the polynomial defined by the t + 1 points (n, [x]n), (n +
1, [x]n+1) . . . , (N, [x]N), and let λj

n, λ
j
n+1, . . . , λ

j
N be the Lagrange coefficients

s.t. P (j) =
∑N

k=n λ
j
k · [x]k.

(b) Party Pc verifies that the keys are consistent: For every j ∈ [1, n − 1]
compute X ′j = P (j) ·G =

∑N
k=n λ

j
k ·Xk, then, abort if X ′j ̸= Xj.

(c) Othrewise (if all key shares are consistent) Pc broadcasts the public key
X = P (0) ·G =

∑N
k=n λ

0
k ·Xk.

Finally, each party sends ([s1]i, [s2]i) to Pc. After receiving t + 1 shares, Pc can itself
generate additional t shares of these values, and having 2t+1 total shares of each, reconstruct
s1, s2 to obtain the final s := s1 · s−12 mod q. Finally, if (r, s) is a valid signature, Pc sends
it to all parties.

It should be clear that the protocol takes only a single write (for producing the signature)
by each party. The only exception is the dealer P1, who needs to write twice (and can be
pre-processed).

Fairness. Our protocol provides fairness, since we make sure that the first party to see
a valid signature is Pc, which we know follows the protocol. Therefore, if Pc releases the
signature to others, then we know it is indeed a valid signature. Another benefit of our
construction is that Pc, a de-facto smart contract, can use incentives (e.g., penalties) to
encourage parties to behave correctly and participate in the protocol [95], [96].

59

We prove the following theorem in Section 4.6.1.

Theorem 4.3.1. Protocols 4-5 securely compute the ECDSA functionality (Functionality 1)
with perfect security with abort, against a static malicious adversary who corrupts at most
t parties (which are the majority) of {P1, . . . , Pn} or a semi-honest adversary who corrupts
Pc.

Security follows since we can perfectly simulate the adversary’s view by picking random
values for its shares. One challenge is to align all parties’ shares (those of the adversary as
well as those of the honest parties) with the values obtained in from the ECDSA functionality
(like the public key X, the random nonce R and the signature s), in which case we first make
sure that the adversary’s shares are consistent with those values, and then ‘interpolate’ the
other parties’ shares to reside on the same, fully determined, polynomial. Another challenge
is that Pu picks a secret and shares it first (before this is done by Pc), however, when
simulating Pc we need to know Pc’s secret (be it xc in the key generation protocol or kc in
the signing protocol) before simulating Pu’s dealing. To this end, in the protocol we instruct
Pc to derive its secret from H, which is modeled as a random oracle that is programmable
by the simulator. Interestingly, since Pc is semi-honest (and follows the protocol) we can
program the random oracle apriori. That is, we can choose the secret values xc and kc on
behalf of Pc even before it queried the random oracle for them. This was not possible if Pc

is malicious, since Pc could have query the random oracle multiple times (or not at all), and
the simulator could not know which one was the right one.

From ROM to the standard model. We stress that the protocol can be described in a way
that is secure in the standard model, without the random oracle, by having Pc commit to a
PRF key as a first step in the key generation protocol, and then this PRF can be used as a
random oracle. The simulator extracts that PRF key, as it takes the role of the commitment
functionality, and can reproduce any value that Pc produces during the protocol.

4.4 Robust Threshold ECDSA

Note that Protocols 4 and 5 are fair, but not robust. They are fair because either all or
none of the parties P1, . . . , Pn obtain the result verification key X and signatures. However,
robustness is not guaranteed, that is, if P1 cheats in its dealing then the protocols abort and
the parties will not learn the public key or signatures. We can overcome that by using a
publicly verifiable secret sharing (cf. Section 2.2.1) in two different approaches: (1) Let P1

be the only dealer (apart from Pc) as before, and if it cheats, repeat with P2 as the dealer,
and so on. This process will end by at most t + 1 writes, as at least one of P1, . . . , Pt+1 is
honest; (2) Let all P1, . . . , Pt+1 be dealers simultaneously which ensures that by one write
this dealing is complete. While optimistically the first approach entails only one party to
write to the blockchain, and hence the overall protocol’s message complexity is O(n) (i.e., we
consider Pi sending a share to Pj as one message), in the worst case there are O(t) rounds
and O(n2) messages. In the second approach there is still O(n2) messages, but they are all
happen in parallel and so this approach is completed in one round. Protocols 6 and 7 follow
the second approach.

60

Note that ensuring correctness of sharing is not sufficient for robustness - one has to
make sure that the computation of s1 = a(m+ rx) and s2 = ka of the partial signatures by
each party are computed correctly. Since these values are the result of a non-linear function,
they could not be verified against existing values, m, r,A,K and X, that are already public.
To this end, the parties provide additional auxiliary information M1 and M2, such that
M1 = log(A) · log(X) ·G and M2 = log(A) · log(K) ·G, then, everyone can check that s1 and
s2 are computed correctly by verifying the equalities s1 ·G = r ·M1+m ·A and s2 ·G = M2.
The last piece is verifying that M1 and M2 are indeed computed correctly. This can be done
by having the parties provide a simple zero-knowledge proof that (A,X,M1) and (A,K,M2)
are Diffie-Helman tuples (DHT), where the DHT relation is defined by

RDHT = {(A,B,C) s.t. a = log(A), b = log(B), ab = log(C)} .

Note that we use PVSS for the computation of Pc even though it is not needed as Pc is
semi-honest, we do this as the interface already gives us the public values required for the
messages of parties 1, . . . , n to be publicly verified.

We prove the following in Section 4.6.2.

Theorem 4.4.1. Assuming the decisional Diffie-Helman (DDH) problem is hard relative
to (G,G, q), Protocols 6 and 7 securely compute the ECDSA functionality (Functionality 1)
with guaranteed outupt delivery, against a static malicious adversary who corrupts at most t
parties (which is the majority of) of {P1, . . . , Pn} or a semi-honest adversary who corrupts
Pc.

In addition to the challenges aforementioned above for the non-robust protocol, which
we solve in the same way here, simulating the robust protocol introduces a new challenge
because the use of Shoenmakers’s PVSS scheme, which involves El-Gamal encryptions. This
extra challenge is introduced only when Pc is corrupted, since when it is not (and we are in
the first case in which a subset of P1, . . . , Pn are corrupted, and so the simulator simulates
message arriving from Pc) the simulator has to simulate only Pc’s messages, which are not
publicly verifiable, but are guaranteed to be correct due to the fact that Pc behaves honestly,
thus, there is no need to simulate encryptions of unknown plaintexts. In contrast, when Pc

is corrupted, we need to simulate publicly verifiable messages from parties P1, . . . , Pt+1, let’s
focus on one of them, Pu. Then, in the key generation, the simulator knows the public key X
(as received from the ECDSA functionality) as well as the complementary part of the public
key Xc (which is extracted by the technique described above), therefore the simulator knows
Xu = X − Xc. However, for a perfect simulation the simulator has to share xu = log(Xu)
using the PVSS scheme. Now, in contrast to the non-publicly verifiable secret sharing in
which each receiver receives its own share only, in PVSS the dealer has to broadcast the
encryptions of all shares under their respective key, and prove that they are consistent with
the commitment of the polynomial. In our case, the simulator does not know xu and so it
cannot produce a polynomial P s.t. P (0) = xu. Instead of providing encryptions of the shares
P (1), . . . , P (N), which are obviously unknown to the simulator, the simulator picks random
shares [xu]n+1, . . . , [xu]N intended for Pc and encrypts those correctly. Then, the simulator
produces the commitment to the polynomial A0, . . . , At, where A0 = Xu since the polynomial
must evaluate to xu at 0, and the values A1, . . . , At are computed from the linear system with

61

t equations and t variables, where the j-th equation is
∑t

j=0 i
j ·Aj = [xu]i ·G. By solving that

system the simulator obtains A1, . . . , At and so it has all information required to make all Pc’s
values be consistent with X and Xc. Finally, for the encryptions of parties P1, . . . , Pn, that
are also sent to Pc, the simulator simply encrypts the value 0 ∈ Zq, which is indistinguishable
from an encryption of the actual value P (i) that should have been encrypted, from the CPA-
security of El-Gamal.

4.5 A Solution for a Single User

So far the chain-assisted protocols were designed to support a group of signers, but are not
extended to the case in which there is only one signer. To see this, observe that for the
smallest possible threshold t = 1, we need at least two parties that are not Pc. We therefore
need to utilize a different protocol between the user and Pc directly. This reduces to a
two-party ECDSA protocol between a user Pu and Pc. One of the current state of the art
protocols for two-party ECDSA is that of Lindell’s [80]. Luckily, when taking into account
that our model allows for one of the parties to be semi-honest, we can gain some performance
improvements for this setting as well, discussed shortly.

First note that the functionality is a bit different than a typical 2PC ECDSA: since Pc

is only an assistant, party Pu is the only one who can ask for key generation or signatures.
The formal description appears in Functionality 2. Second, note that we employ the same
technique for extracting Pc’s secret inputs xc, kc as done in the multiparty protocols above.
As explained, however, this technique can be replaced with a standard model technique
using a commitment on a PRF key. Third, since Pc is semi-honest in our model, and so
it is guaranteed to choose its nonce randomly and independently of Pu’s message, which is
not the case in Lindell’s protocol. This way, in our model the two-party protocol enjoys
non-interactive signing, or in other words, requires only one write. As briefly discussed
below, that fact also enables simulation of both parties without the additional non-standard
‘Paillier-EC’ assumption that is used in [80]. The reason for that is that we assign Pc the
role of the party who performs the linear evaluation on the encryption of Pu’s secret key
share (ckey). Now, since Pc follows the protocol’s description, it is guaranteed to not cheat
and produce an encryption of (kc)−1(m + xr) exactly as described. This removes the need
of (1) guessing whether Pc will abort or not, (2) adding an expensive zero-knowledge proof
on Pc’s last message, or (3) relying on a non-standard assumption as Paillier-EC. Except of
the changes mentioned above, our protocol resembles that of Lindell. See Section 2.4.2 for a
formal description of the Paillier encryption scheme.

We prove the following theorem in Section 4.6.3.

Theorem 4.5.1. Protocols 8 and 9 securely compute the ECDSA functionality (Functionality
2) against a static malicious adversary who corrupts Pu or a semi-honest adversary who
corrupts Pc.

62

4.6 Security Proofs

4.6.1 Proof of Theorem 4.3.1

The proof below is separated to the two cases mentioned in the Theorem, for each of which
we present a perfect simulation. Note that the use of H in the protocol is merely to easily
extract Pc’s randomly chosen xc. It is possible to remove this random oracle usage by
standard commitment techniques. In both cases it is easy to see that the joint distributions
of the honest parties’ output and the adversary’s view in the real and ideal worlds are
identically distributed.

Case 1. Let A be a malicious real world adversary who corrupts P1 and a subset of
{P2, . . . , Pn} of size t − 1. Denote the set of corrupted parties by C and the rest of the
parties by H = {P1, . . . , Pn} − C. We present an ideal world adversary S that does as
follows.

• Key Generation.

1. Send (keygen) to FECDSA.

2. Run A internally and simulates all other parties:

(a) Receive all shares [xu]i for all i ∈ H ∪ [n+ 1, N].
(b) Reconstruct xu using the above |H|+ t shares.
(c) If reconstruction fails then send (keygen, abort) to FECDSA and halt. Otherwise,

compute [xu]i for all Pi ∈ C.
(d) Compute [xc]← SS.Share(xc, t, N) for a random xc ← Zq, and send [xc]i to every

party Pi ∈ C.
(e) Compute secret key shares [x]i = [xu]i + [xc]i mod q for all i ∈ [1, N]. (Note

that this x is not the actual secret key logG(X) obtained by the functionality,
however, the simulator uses it in order to checks whether the adversary cheats
when computing the signature.)

(f) Receive Xi for all i ∈ C and compute Xi = [x]i · G = ([xu]i + [xc]i) · G for all
i ∈ H ∪ [n+ 1, N].

(g) Check consistency of all Xi as done in the protocol, if the check fails then send
(keygen, abort) to FECDSA and halt.

(h) Send (keygen, continue) to FECDSA and obtain X and Hq.
(i) Broadcasts X and Hq.
(j) Output whatever A outputs.

• Sign.

1. Send (sign, sid) to FECDSA and obtain R.

2. Run A internally and simulates all other parties:

(a) Receive all shares [ku]i and [au]i for all i ∈ H ∪ [n+ 1, N].

63

(b) Receive all shares [zu]i and [z′u]i for all i ∈ H ∪ [n+ 1, N].
(c) Receive Ru.
(d) Sample kc, ac ← Zq and compute [kc]← SS.Share(kc, t, N), [ac]← SS.Share(ac, t, N),

[zc]← SS.Share(0, 2t, N) and [z′c]← SS.Share(0, 2t, N)

(e) Send [kc]i, [ac]i, [zc]i, [z
′
c]i to Pi for all i ∈ C.

(f) Compute [k]i = [ku]i + [kc] mod q and [a]i = [au]i + [ac] mod q for all i ∈ H ∪
[n+ 1, N].

(g) Send R to all Pi ∈ C.
(h) Receive [s1]i and [s2]i from all Pi ∈ C.
(i) Compute [s1]i and [s2]i using values r,m and the shares [k]i, [a]i, [x]i for all Pi ∈

H ∪ [n+ 1, N].
(j) Reconstruct s1 and s2 using the the shares received from the adversary (for parties

in C) and the shares computed above (for the parties in H ∪ [n + 1, N]). If
reconstruction (of a 2t-degree polynomial) failed then send (sign, sid, abort) and
halt.

(k) Check whether r and s = s1 ·s−12 mod q is a valid signature on M using the secret
key x that was computed in the key-generation phase (recall, this is not the actual
secret key used by the functionality).

(l) If the check fails then send (sign, sid, abort) and halt.
(m) Send (sign, sid, continue) and obtain (r, s). Broadcast (r, s) and output whatever

A outputs.

Case 2. Let A be a semi-honest real world adversary who corrupts Pc. We present an ideal
world adversary S that does as follows:

• Key Generation.

1. Send (keygen) and (keygen, continue) to FECDSA, and obtain X.

2. Run A internally and simulate parties (P1, . . . , Pn):

(a) Sample xu ← Zq, compute [xu] ← SS.Share(xu, t, N) and send [xu]i to Pc, for all
i ∈ [n+ 1, N].

(b) Receive [xc]i from Pc for all i ∈ [1, n], reconstruct xc (always succeeds because A
follows the protocl) and compute [xc]i for all i ∈ [n+ 1, N].

(c) Let λj
0 and {λj

i}i∈[n+1,N] be the Lagrange coefficients for a polynomial evaluation
on j, using points at 0 and the indices in [n+ 1, N] (t+ 1 points in total).

(d) For every j ∈ [1, n] compute Xj = λj
0 ·X +

∑
i∈[n+1,N] λ

j
i ·Xi.

(e) Send Xj to Pc for every i ∈ [1, n]. (The above computation ensures that the
consistency verification goes through.)

(f) Output whatever A outputs.

• Sign.

1. Send (sign, sid) and (sign, sid, continue) to FECDSA and obtain R and (r, s).

64

2. Run A internally and simulates all other parties:

(a) Sample ku, au ← Zq and compute [ku]← SS.Share(ku, t, N), [au]← SS.Share(au, t, N),
[zu]← SS.Share(0, 2t, N) and [z′u]← SS.Share(0, 2t, N)

(b) Send [ku]i, [au]i, [zu]i, [z
′
u]i to Pc for all i ∈ [n+ 1, N].

(c) Sample kc ← Zq and program H(xc∥sid)← kc.
(d) Compute Rc = kc ·G and Ru = R−Rc.
(e) Send Ru to Pc.
(f) Receive all shares [kc]i and [ac]i for all i ∈ [1, n].
(g) Receive all shares [zc]i and [z′c]i for all i ∈ [1, n]].
(h) Receive R.
(i) Compute [α]i = [αu]i+[αc]i mod q for all i ∈ [n+1, N] and for all α ∈ {k, a, z, z′}.
(j) Compute [s1]i = [a]i(m+ r[x]i)− [z]i mod q and [s2]i = [k]i[a]i − [z′]i mod q for

all i ∈ [n+ 1, N].
(k) Sample random 2t-degree polynomials S1 and S2, such that Sb(0) = sb and Sb(i) =

[sb]i, for all i ∈ [n+ 1, N] and b ∈ {1, 2}.
(l) Send (m, [s1]i, [s2]i) to Pc for all i ∈ [1, n], where [s1]i = S1(i) and [s2]i = S2(i).

4.6.2 Proof of Theorem 4.4.1

The proof below is separated to the two cases mentioned in the Theorem, for each of which
we present a perfect simulation. As mentioned above, we use H as a random oracle in
order to easily extract Pc’s randomly chosen xc, but it is possible to replace it with standard
commitment techniques.

Case 1. Let A be a malicious real world adversary who corrupts P1 and a subset of
{P2, . . . , Pn} of size t − 1. Without loss of generality, let that subset be P1, . . . , Pt. We
present an ideal world adversary S that does as follows.

• Key Generation.

1. Send (keygen) to FECDSA, then send (keygen, continue) to FECDSA and obtain X and
Hq.

2. Run A internally and simulates all other parties (knowing their encryption key-pair, so
it is possible to decrypt ciphertexts under their key):

(a) Choose xt+1 ← Zq, and send

({cℓt+1}Ni=1, {At+1
j }tj=0, π

t+1)← PVSS.Sharet,N(xt+1),

to the adversary.
(b) Receive ({cℓℓ}Ni=1, {Aℓ

j}tj=0, π
ℓ) from the adversary for all ℓ ∈ [1, t].

65

(c) Let u ∈ [1, t+ 1] be the first index for which

1 = PVSS.CheckDealer({cui }Ni=1, {Au
j }tj=0, π

u).

Denote these values by {ci}Ni=1, {Aj}tj=0 (i.e., dropping the supertext u). Note that
there must be such u, as the above certainly holds for u = t + 1 (as this is the
honest party simulated here.

(d) Extract the secret xu by decrypting ci for t+ 1 parties (which is possible because
there are at least t+ 1 parties under the control of the simulator). Note that this
also enables obtaining log(Aj) for all j ∈ [0, t] sent by Pu.

(e) Compute [xc]← SS.Share(xc, t, N) for a random xc ← Zq.
(f) Send [xc]i to the adversary for every i ∈ [1, t].
(g) Set X0 = X and compute Xi = ([xu]i+[xc]i) ·G for every i ∈ [1, t]. Then compute

Xi =
∑t

j=0 i
j ·Xj for every i ∈ [t+ 1, n].

(h) Broadcast X and Xi for every i ∈ [1, n].
(i) Output whatever A outputs.

• Sign.

1. Send (sign, sid) to FECDSA and obtain R, then send (sign, sid, continue) and obtain (r, s).

2. Run A internally and simulates all other parties:

(a) Choose kt+1, at+1 ← Zq, and send to the adversary

({ct+1
k,i }

N
i=1, {Kt+1

j }tj=0, π
t+1
k)← PVSS.Sharet,N(kt+1),

({ct+1
a,i }Ni=1, {At+1

j }tj=0, π
t+1
a)← PVSS.Sharet,N(at+1),

({ct+1
z,i }Ni=1, {Zt+1

j }tj=0, π
t+1
z)← PVSS.Share2t,N(0),

({ct+1
z′,i }

N
i=1, {Z ′

t+1
j }tj=0, π

t+1
z′)← PVSS.Share2t,N(0).

(b) For every i ∈ [1, t], receive from the adversary

({cik,i}Ni=1, {Ki
j}tj=0, π

i
k)← PVSS.Sharet,N(ki),

({cia,i}Ni=1, {Ai
j}tj=0, π

i
a)← PVSS.Sharet,N(ai),

({ciz,i}Ni=1, {Zi
j}2tj=0, π

i
z)← PVSS.Share2t,N(0),

({ciz′,i}Ni=1, {Z ′
i
j}2tj=0, π

i
z′)← PVSS.Share2t,N(0).

(c) Let u ∈ [1, t+ 1] be the first index for which all sharings above are verified.
(d) Denote the public values of Pu by {Kj, Aj}tj=0 and {Zj, Z

′
j}2tj=0.

(e) Extract the values ku, au and zu, z
′
u (the values zu and z′u are extractable via the

zero knowledge functionality).
(f) Generate the sharings [kc], [ac], [zc] and [z′c] as in the protocol, and send the adver-

sary {[kc]i, [ac]i, [zc]i, [z′c]i} for every i ∈ [1, t].
(g) Broadcast R (as received from the ECDSA functionality).

66

(h) Set K0 = R and compute Ki = ([ku]i + [kc]i) ·G for every i ∈ [1, t]. Then compute
Ki =

∑t
j=0 i

j ·Kj for every i ∈ [t+ 1, n].
(i) Compute Ai = ([au]i + [ac]i) ·G, Zi = ([zu]i + [zc]i) ·G and Z ′i = ([z′u]i + [z′c]i) ·G

for every i ∈ [1, n].
(j) Broadcast (Ki, Ai, Zi, Z

′
i) for every i ∈ [1, n].

(k) Send (proof, sid∥1, At+1, Xt+1,Mt+1,1) and (proof, sid∥2, At+1, Kt+1,Mt+1,1) to the
adversary, in addition, receive and verify the adversary’s proof on its Mi,1,Mi,2 for
every i ∈ [1, t].

(l) When received t + 1 messages ([s1]i, [s2]i,Mi,1,Mi,2) for i for which the proof is
verified, broadcast the signature (r, s) as received from the ECDSA functionality.

(m) Output whatever A outputs.

First note that the honest parties’s output are identically distributed in both real and
ideal world. We now argue that the adversary’s views in both world are computationally
indistinguishable. The only difference between the views is that in the simulation the values
Xi and Ki for i ∈ [t + 1, n] that are observed by the adversary (since Pc broadcasts them)
are not computed correctly by ([xu]i + [xc]i) · G and ([ku]i + [kc]i) · G; rather, they are
computed (interpolated) directly from the values X0, . . . , Xt and K0, . . . , Kt (if they were
not interpolated this way then it would have been easy to detect this). Now, since the
adversary does not have any information about ([xu]i + [xc]i) or ([ku]i + [kc]i) it cannot tell
the difference and so the views are identically distributed.

Case 2. Let A be a semi-honest real world adversary who corrupts Pc. We present an ideal
world adversary S that does as follows:

• Key Generation.

1. Send (keygen) and (keygen, continue) to FECDSA, and obtain X.

2. Run A internally and simulate parties (P1, . . . , Pn):

(a) Choose xc ← Zq (on behalf of Pc).
(b) Compute Xu = X − xc ·G.
(c) Choose random values [xu]i ← Zq and compute ci ← EG.Enceki([xu]i) for i ∈

[n + 1, N]; and ci ←← EG.Enceki(1) for every other i ∈ [1, n]. Finally compute
A1, . . . , At such that

∑t
j=0 i

jAj = [xu]i ·G for every i ∈ [n + 1, N] (this is a linear
system of t equations with t variables).

(d) Broadcast {ci}Ni=1, {Aj}tj=0, and π, where π is generated by the HVZK simulator
associated with the zero-knowledge proof.

(e) Receive a call to H from the adversary and respond with xc chosen above.
(f) Receive [xc]i from the adversary for every i ∈ [1, n].
(g) Receive X and Xi for every i ∈ [1, n].
(h) Output whatever the adversary outputs.

• Sign.

67

1. Send (sign, sid) and (sign, sid, continue) to FECDSA and obtain R and (r, s).

2. Run A internally and simulates all other parties:

(a) Choose kc ← Zq (on behalf of Pc).
(b) Compute Ru = R− kc ·G.
(c) Choose random values [ku]i ← Zq and compute ci ← EG.Enceki([ku]i) for i ∈

[n + 1, N]; and ci ←← EG.Enceki(1) for every other i ∈ [1, n]. Finally compute
K1, . . . , Kt such that

∑t
j=0 i

jKj = [ku]i ·G for every i ∈ [n+ 1, N] (this is a linear
system of t equations with t variables).

(d) Broadcast {ck,i}Ni=1, {Kj}tj=0, and πk, where πk is generated by the HVZK simulator
associated with the zero-knowledge proof.

(e) Choose random au ← Zq and compute

({ca,i}Ni=1, {Aj}tj=0, πa)← PVSS.Sharet,N(au),

({cz,i}Ni=1, {Zj}tj=0, πz)← PVSS.Share2t,N(0),

({cz′,i}Ni=1, {Z ′uj}tj=0, πz′)← PVSS.Share2t,N(0).

(f) Broadcast the PVSS results above.
(g) Receive a call to H from the adversary and respond with kc chosen above.
(h) Receive ([kc]i, [ac]i, [zc]i, [z

′
c]i) from Pi for i ∈ [1, n], and extract ac (zc and z′c could

not be extracted since they are shared using a sharing of degree 2t).
(i) Receive K and (Ki, Ai, Zi, Z

′
i) for all i ∈ [1, n].

(j) At this point the simulator knows the values [s1]i, [s2]i for every i ∈ [n+1, N] that
are computed by the adversary in the local computation step.

(k) The simulator generates random sharings of degree 2t for random values s1, s2
such that: (1) the shares at points i ∈ [n + 1, N] are those computed by the
adversary; (2) it holds that s1 · s−12 = s and s is the value received from the
ECDSA functionality.

(l) The simulator also compute the values Mi,1,Mi,2 according to the constraints im-
plied in the protocol. Note that these values will not meet the constraints required
by the zero-knowledge proof, however, the proof will be successfully verified since
it is simulated using the HVZK simulator associated with it.

(m) The simulator sends [s1]i, [s2]i,Mi,1,Mi,2 to the adversary for all i ∈ [1, n].
(n) Receive s from the adversary and output whatever it outputs.

Note that here the view of the adversary under the simulation is identical to its view in
the real world, except the fact that the ciphertext that are published under the encryption
keys of parties P1, . . . , Pn are incorrect, that is, they encrypt 0 instead of the actual value.
That value that should have been encrypted is unknown to the simulator and hence could
not be used. This however is computationally indistinguishable by the adversary and hence
it will proceed with the protocol exactly as it would have proceed if these ciphertext were
encrypting the correct messages, as otherwise we could have used that adversary in order to
break the CPA-security of El-Gamal (which relies on the DDH assumption).

68

4.6.3 Proof of Theorem 4.5.1

The two-party FECDSA is slightly different than the one presented in Functionality 1. For
the two-party, the functionality works only with Pu, Pc and an adversary S, who cannot
abort the execution (but is mentioned in the functionality solely to emphasize this). This
is possible because the first (and only) message sent in the protocol from Pu to Pc fully
determines whether the adversary will abort or not (by verifying the zero-knowledge proofs),
and if so, the honest party refuses to participate. In the ideal world, such refusal is expressed
by not invoking FECDSA at all. Finally, since this case could not be translated to a honest
majority protocol we could not achieve fairness, and only Pu obtains the result signature
from the functionality. For completeness, the modified version is presented in Functionality
2.

We separately present a simulator to the case of malicious Pu and semi-honest Pc.

Case 1. Let A be a malicious real world adversary who corrupts Pu, consider an ideal
world adversary S that does as follows:

• Key Generation.

1. Run A internally and simulate the honest party Pc:

(a) Receive (Xu, pk, ckey) and (prove, ckey, pk,Xu, xu, P,Q) from Pu, set sk = (P −
1)(Q − 1) and verify that (1) Xu = xu · G, (2) P,Q are primes of length κ′,
(3) N = PQ, (4) xu = Dec(sk, ckey). If verification fails then halt, otherwise
continue.

(b) Send (keygen) to FECDSA and receive X.
(c) Compute Xc = (xu)

−1 ·Xu and send X to A.
(d) Output whatever A outputs.

• Sign.

1. Run A internally and simulate the honest party Pc:

(a) Receive Ru and (prove, sid, Ru, ku) from Pu, verify that Ru = ku ·G. If verification
fails then halt, otherwise continue.

(b) Send (sign, sid,M) to FECDSA and receive R and (r, s).
(c) Choose ρ ← Zq2 and r̃ ← Z∗N , and compute c2 = Enc(pk, ρq + [ku · s mod q]),

where s is the signature received from FECDSA.
(d) Send c2 to A and output whatever A outputs.

Observe that the view of Pu under simulation and in the real execution are identically
distributed, except of the value c2: in the simulation it is an encryption of z′1 = ρq + [ku · s
mod q] whereas in the real execution it is an encryption of z′2 = ρq + [(kc)

−1m mod q] +
[(kc)

−1rxc mod q] · xu, where ρ is a random value from {0, . . . , q2 − 1}. Denote by z1, z2
the values wihtout the addition of a random multiple of q, that is, z1 = ku · s mod q and
z2 = [(kc)

−1m mod q] + [(kc)
−1rxc mod q] · xu. Note that we consider z1 and z2 over the

integers, rather than over Zq. In [80] the values z′1 and z′2 are shown to be statistically close

69

(as long as all conditions on Xu, pk and ckey are met, which is guaranteed by using an ideal
functionality for zero-knowledge). We present this analysis here for completeness.

Consider the real world value z2, it is an integer result of the addition of an element
from Zq (namely (kc)

−1m mod q) with the product of of two elements from Zq (namely
[(kc)

−1rxc mod q] · xu), and we know that by reducing that integer modulo q we get ku · s
mod q (where (r, s) the ECDSA signature on M obtained by the functionality), thus there
exists some ℓ ∈ N such that [ku · s mod q] + ℓ · q = z2. Also, note that 0 ≤ ℓ < q since
z2 < q(q − 1), so the difference between the simulation and the real world is:

• Real: ciphertext c2 encrypts z′2 = [ku · s mod q] + ℓ · q + ρ · q, and

• Simulation: ciphertext c2 encrypts z′1 = [ku · s mod q] + ρ · q.

We show that with a random choice of ρ ∈ Zq2 the values z′1 and z′2 are statistically close.
Fix ku and s, then for every 0 ≤ ζ < q define v = [ku · s mod q] + ζ · q, we have:

• If 0 ≤ ζ < ℓ then Pr[z′1 = v] = 1/q2 but Pr[z′2 = v] = 0 (because z′2 > [ku · s
mod q] + ℓ · q).

• If q2 − 1 < ζ < ℓ + q2 then Pr[z′2 = v] = Pr[ρ = q2 − 1− ℓ] = 1/q2 but Pr[z′1 = v] = 0
(because z′1 ≤ [ku · s mod q] + (q2 − 1)q).

• If ℓ ≤ ζ ≤ q2 − 1 then Pr[z′1 = v] = Pr[ρ = ζ] = 1/q2 and Pr[z′2 = v] = Pr[ρ = ζ − ℓ] =
1/q2.

We get that ∆(z′1, z
′
2) =

∑ℓ+q2−1
ζ=0 |Pr[z′1 = v]− Pr[z′2 = v]| = 2ℓ

q2
, which is negligible.

Case 2. Let A be a semi-honest real world adversary who corrupts Pc, consider an ideal
world adversary S that does as follows:

• Key Generation.

1. Run A internally and simulate the honest party Pu:

(a) Receive the oracle call and obtain v, forward v to the RO and obtain vx, forward
vx back to A.

(b) Receive vx from A.
(c) Compute xc = H(v∥keygen), Xc = xc ·G and Xu = (xc)

−1 ·X.
(d) Generate a Paillier key-pair (pk, sk) where pk = N = P · Q, with κ′-bit primes

P,Q, and compute ckey = Enc(pk, 0).
(e) Send (Xu, pk, ckey) and (proof, ckey, N,Xu) to Pc.
(f) Send (proof,
(g) Receive X from A and output whatever A outputs.

• Sign.

1. Run A internally and simulate the honest party Pc:

(a) Receive R from FECDSA.

70

(b) Compute kc = H(v∥sid), and computes Ru = (kc)
−1 ·R.

(c) Send Ru and (proof, sid, Ru) to A.
(d) Receive c2 from A and output whatever A outputs.

The views of A in the real execution and under the simulation of the key generation
protocol are computationally indistinguishable: the value Xu (and therefore X) are identi-
cally distributed in G and the key-pairs generated in both worlds are identically distributed.
The only difference is in the generation of ciphertext ckey: in the real execution this is
an encryption of xu and in the simulation this is an encryption of zero, and since Paillier
encryption scheme is CPA-secure it follows that that the two views are computationally
indistinguishable.

In addition the views of A in the real execution and under the simulation of the signing
protocol are identically distributed, in both cases it only receives Ru and (proof, sid, Ru),
such that kc ·Ru = R, with R chosen by the functionality. Note that unlike in [80], since we
assume A is semi-honest it always reply with a ciphertext that holds a correct evaluation
on ckey and so we do not need to guess whether to abort or not, neither to rely on the
‘Paillier-EC’ assumption [80, Def. 5.2].

4.7 Applications

Unstoppable wallets serve as a foundational component for a diverse array of applications.
To demonstrate their applicability, we developed and implemented two examples of appli-
cations that possess real-world value. These applications were deployed to Secret Network’s
mainnet under contract addresses: (1) secret1lge6kdh078u7yc778whz8wjdc39ce78knqjfjh; (2)
secret1lkvhyg4723fxreeyrm0mk7pkzgd4qaztmx4ztw. At their core, these wallets are governed
by a smart contract, meaning that they may have all kinds of other use-cases as well.

4.7.1 Multisignature Wallet with Policy Checks

In the traditional banking system, accounts often have various checks and limits on spending
to enhance security and control. One can imagine a similar use case for cryptocurrency
transactions, integrating such checks and constraints within a multisignature wallet.

Threshold ECDSA inherently supports a multisignature transaction approval structure
already, necessitating (t + 1)-out-of-n parties to endorse signing a transaction. On top of
this, with unstoppable wallets, we can introduce further layers of spending policies into the
smart-contract component of the protocol, such as per-transaction spending limits, daily
spending limits, or a combination of both. These policies offer increased control and security
over transactions involving cryptocurrency.

One can think of more elaborate schemes and use-cases as well, that clearly benefit from
the blockchain’s role as a public bulletin board. For example, decentralized autonomous
organizations (DAOs) are often assumed to be governed by all token holders, but their trea-
suries are in practice controlled by a small committee of signers5. By leveraging unstoppable

5As a concrete example, as of Sep, 2022, Frax treasury of 1.2B USD was unilaterally controlled by the
team’s multisig (https://www.blockworksresearch.com/research/risk-assessment-frax-governance).

71

wallets, the community could define clear spending limits in a smart contract to prevent a
DAO committee from abusing their mandate.

To demonstrate the concept of a multisig wallet with policy checks, we developed a
contract that not only requires a quorum of at least t + 1 approvals, but also verifies the
transaction as a valid Ethereum transaction with a spending limit of 1 ETH. We detail the
contract flow in Diagram 4.2.

4.7.2 Wallet Exchange

Typically, users exchange cryptocurrencies, such as swapping BTC for ETH between two
parties. However, here we propose an alternative model: instead of exchanging assets, what
if we could exchange the wallet itself directly? This concept, a wallet exchange, is not merely
theoretical. For instance, venture capital funds often enter illiquid deals for tokens that do
not yet exist or have a certain lockup, making selling the asset itself infeasible.

One could envision a wallet exchange platform that allows sellers to list their wallets
instead of their assets, and sell these to buyers, who can be reassured that the seller provably
loses access after the transaction concludes. In light of the recent collapse of large exchanges
and centralized lenders like FTX and Celsius, an exchange that allows creditors to sell their
claims (likely at a discount) becomes more appealing. Such exchanges have already started
to emerge6, and a wallet exchange mechanism could provide a more secure way to facilitate
this process.

Equipped with this motivation, we present an implementation of a contract that enables
selling a wallet from the current owner (the seller) to an interested buyer. Initially, the
wallet is jointly held by the seller and the chain. A prospective buyer can send a bid to the
contract governing the wallet, which the seller can either accept or ignore. The buyer can
set a timeout to release their deposited bid if they have not received a response from the
seller after some time.

If the seller accepts the bid, they must re-encrypt their share of the key with the buyer’s
key and send it to the contract in a separate transaction that concludes the sale. The chain,
after verifying that neither party has cheated, assists in refreshing the shares and revoking
the seller’s share. The contract also atomically finalizes the payment, completing the wallet
exchange process securely. We detail the contract flow in Diagram 4.3.

4.8 Implementation and Evaluation

In this section, we provide an overview of the implementation and evaluation of our proposed
underlying threshold ECDSA protocols. We implement the main threshold ECDSA protocol
in 4, 5, and the protocol for a single user. Using these as building blocks, we implement the
applications discussed in Section 4.7. We also discuss the practical aspects of implementing
cryptographic primitives on a confidential smart-contract enabled blockchain and delve
into the performance analysis of our approach in terms of gas costs associated with on-
chain transactions, which is the main performance bottleneck in addition to the number of
consecutive writes (i.e., transactions) each user has to perform.

6https://opnx.com/

72

4.8.1 Implementation Details

Our implementation is tied and optimized for the secp256k1 curve, as that is the most
commonly used curve related to cryptocurrencies. However, our protocols are generic and
our implementation can be extended to support other curves as well. The implementation
is divided into two main parts: the local execution by users, and the on-chain execution on
the blockchain. Our code is written in Rust, but it is important to note that any language
could be used for the client.

For the on-chain part of our proposed protocols, the spectrum of options is more con-
strained, as we needed a blockchain that supports confidential smart contracts. We chose
the Secret Network [28], a blockchain platform that relies on TEEs for confidentiality and
has been running in production for several years. Another benefit of choosing Secret Net-
work is that it exemplifies a blockchain that guarantees correctness, availability and privacy
with different levels of confidence. Namely, while the system’s correctness and availability
guarantees have never been broken, its privacy guarantees were broken multiple times due
to attacks on the underlying hardware (e.g., [113], [114]). Attacks on privacy (but not on
the availability nor the correctness) may happen even when confidential smart contracts are
implemented using (publicly auditable) MPC protocols. In such cases corrupted parties may
‘silently’ break privacy, but cannot break correctness or availability. This is the source for
our motivation to not store the entire signing key within the smart contract.

Secret Network is built on top of Cosmos SDK and Tendermint consensus algorithm
[115], and it features a smart contract framework based on CosmWasm, which enables de-
velopers to write and deploy smart contracts using Rust, ensuring compatibility with the
local execution part of our protocols. Communication between users and the blockchain is
established directly through transactions, which are used for broadcasting data and writing
it into the chain’s state, and queries, which facilitate data retrieval from the chain’s current
state. Compared to our formal terminology, transactions are writes (and are therefore slow),
and queries are reads.

Our entire implementation is open-source 7, fostering transparency and allowing for peer
review. In total and including our modifications below to existing repositories, our imple-
mentation comprises roughly 6,500 lines of code.

4.8.2 Cryptographic Primitives on Chain

In order to allow our protocols to run inside of a smart contract, we needed to implement
several cryptographic building blocks in a way that allows them to run on-chain. In particu-
lar, we needed libraries that support secret sharing (over secp256k1’s specified field), elliptic
curve operations (over the same curve), and Paillier encryption.

This turned out to be especially challenging, since we had to make sure these building
blocks are efficient, do not use randomness generated by the operating system, and do not
use floating-point types. The last two are practical constraints present in any blockchain
environment, which needs to be deterministic due to consensus. Porting existing crypto-
graphic libraries was especially challenging, since practically all libraries need to generate
randomness at one point, and this issue propagates up the dependency tree. We modified all

7https://github.com/anonauthors01001/unstoppable-wallets

73

relevant libraries to take in a custom PRG instead, and we used that as a hook to plug in a
deterministic PRG that is purpose-built for Secret Network contracts. Overall, we modified
approximately 1,350 lines of code across five open-source repositories.

4.8.3 Performance Evaluation

In this subsection, we assess the performance of our proposed threshold ECDSA protocols
by focusing on the gas costs associated with on-chain transactions. Gas costs represent
the computational resources necessary to execute a transaction on a blockchain, and are
a popular cost metric on all smart-contracts chains, starting with Ethereum [2]. These
costs not only impact users monetarily but also impose limitations on the number of gas-
intensive transactions a blockchain can process in a single block, as blockchains have inherent
constraints in terms of computational resources.

Multiparty Protocol Evaluation

In Table 4.2a we show an evaluation for n = 5, t = 4. init marks the contract’s initialization
(for each wallet we deploy a different contract), keygen is the dealing portion of the key
generation protocol, presig marks the dealing part of the signing protocol where shared
randomness and the nonce are produced, and sign_i marks the cost for each signing party.
On a per user basis, the costs are negligible at the time of writing, and amount to roughly
one-tenth of a cent per user (with the exception of the dealer who pays roughly three-tenths
of a cent). Since the actual cost was calculated based on the price of SCRT, a volatile
asset used to pay fees in Secret Network, it is also useful to compare the unitless gas used
metric between threshold wallets and other common types of smart contract executions. We
reference these in Table 4.3 and note that surprisingly our results are very appealing given
that we have essentially implemented an MPC protocol on-chain.

Table 4.2: Benchmarks for Multiparty and Two-party ECDSA

(a) Table (a)

Tx Type Time (ms) Tx size (bytes) Gas Used Tx Cost (¢)
init 0.07 43 45,227 0.04¢
Keygen 7.93 1,206 132,792 0.11¢
Presig 11.65 4,335 237,195 0.19¢
Sign_1 1.62 295 138,865 0.11¢
Sign_2 1.55 295 140,599 0.11¢
Sign_3 1.51 295 142,328 0.11¢
Sign_4 1.85 295 144,046 0.12¢
Sign_5 12.95 295 187,238 0.15¢

(b) Table (b)

Tx Type Time (ms) Tx size (bytes) Gas Used Tx Cost (¢)
Keygen 175.35 2,707 856,051 0.68¢
Sign 313.75 287 1,882,619 1.51¢

We also found that costs scale very well (practically linearly, as expected) with the number
of parties, making this scheme highly efficient in terms of scalability. We capture this close-

74

Table 4.3: Gas cost baselines

Tx Type Gas Used
Token transfer 55,877
NFT Mint/Transfer 150,833
Token Swap (direct) 595,916
Token Swap (2-hops) 1,553,937

to-linear relation in Figure 4.4, which examines how the average gas expenditure changes
(on average) per party, as we increase the number of parties (and assume the maximum
corruption threshold of n = t− 1). We make the same comparison for a fixed n = 15 and a
dynamic threshold in Figure 4.5, and reach a similar result.

Two-Party Protocol Evaluation

Interestingly, as shown in 4.2b, our performance evaluation reveals that the multiparty pro-
tocol, even when accommodating numerous parties, incurs significantly lower costs per party
compared to the two-party protocol. This finding can be attributed to the relatively resource-
intensive Paillier Encryption used in the two-party protocol, which is used for a single user.
It is also worth mentioning that we have not implemented the expensive zero-knowledge
proofs necessary for this protocol on-chain, which would undoubtedly widen the gap even
more. Based on our results, and assuming the maximum amount of corruptions, we extrap-
olate that it would take around n = 82 users for the gas costs of the multiparty protocol to
match the two party one.

Also, given current gas limits in Secret Network, and given that state-of-the-art multi-
party threshold ECDSA protocols (e.g., [79]) requires even more homomorphic operations
and many more zero-knowledge proofs, it is fair to assume any existing multiparty vari-
ant would not even run on-chain. These results support the need of devising chain-friendly
threshold ECDSA protocols, as demonstrated in this work.

75

PROTOCOL 5.
(

Signing: Sign (M, (G,G, q), sid)
)

Inputs.

1. Each party Pi, i ∈ [1, n], holds ([x]i, X).

2. Party Pc holds X and [x]i for all i ∈ [n+ 1, N].

3. The parties Compute m = Hq(M) and verify that sid has not been used before
(otherwise the protocol is not executed).

The protocol.

1. Users’ dealing:

(a) Party P1 samples a random ku, au ← Zq.

(b) Party P1 computes [ku]← SS.Share(ku, t, N) and [au]← SS.Share(au, t, N).

(c) Party P1 computes [zu]← SS.Share(0, 2t, N) and [z′u]← SS.Share(0, 2t, N).

(d) Party P1 sends ([ku]i, [au]i, [zu]i, [z′u]i) to party Pi where i ∈ [1, n] and to Pc

where i ∈ [n+ 1, N].

(e) Party P1 sends Ru = ku ·G to Pc.

2. Center’s dealing:

(a) Party Pc computes kc = H(xc∥sid).
(b) Party Pc samples a random ac ← Zq.

(c) Party Pc computes [kc]← SS.Share(kc, t, N) and [ac]← SS.Share(ac, t, N).

(d) Party Pc computes [zc]← SS.Share(0, 2t, N) and [z′c]← SS.Share(0, 2t, N).

(e) Pc sends ([kc]i, [ac]i, [zc]i, [z
′
c]i) to party Pi for i ∈ [1, n].

(f) Pc sends R = kc ·G+Ru to everyone.

3. Partial signature.

(a) Every party Pi for i ∈ [1, n], and Pc for i ∈ [n+ 1, N]:

i. Computes [α]i = [αu]i + [αc]i mod q, for α ∈ {k, a, z, z′}.
ii. Computes [s1]i = [a]i(m+ r[x]i)− [z]i mod q and [s2]i = [k]i[a]i− [z′]i

mod q.

(b) Pi for i ∈ [1, n] sends (m, [s1]i, [s2]i) to Pc.

4. Finalization. Upon receiving t+ 1 messages, {(m, [s1]ij , [s2]ij)}t+1
j=1, party Pc:

(a) Computes s1 = SS.Reconstruct({[s1]ij}t+1
j=1, {[s1]j}Nj=n+1) and s2 =

SS.Reconstruct({[s2]ij}t+1
j=1, {[s2]j}Nj=n+1).

(b) Computes s = s1 · s−12 mod q.

(c) Broadcasts (r, s) if it is a valid signature on MSG, otherwise it broadcasts ⊥.

76

PROTOCOL 6.
(

Robust Key-Generation: KeyGen
)

1. User’s dealing: Every Pℓ, (ℓ ∈ {1, . . . , t+ 1}):

(a) Samples xℓ ← Zq and computes and broadcasts

({cℓi}Ni=1, {Aℓ
j}tj=0, π

ℓ)← PVSS.Sharet,N(xℓ).

(b) Let u ∈ [1, t+ 1] be the first index for which

1 = PVSS.CheckDealer({cui }Ni=1, {Au
j }tj=0, π

u).

Denote these values by {ci}Ni=1, {Aj}tj=0 (i.e., dropping the supertext u)

2. Center’s dealing:

(a) Pc computes [xc]← SS.Sharet,N(xc) for xc ← H(x̃) where x̃← {0, 1}κ.
(b) Pc sends [xc]i to Pi for i ∈ [1, n].

(c) Pc broadcasts X = xc ·G+A0 and Xi = [xc]i ·G+
∑t

j=0 i
j ·Aj for i ∈ [1, n].

3. Compute secret key shares: Each party Pi computes [xu]i = EG.Decdki(ci)
and [x]i = [xu]i + [xc]i mod q.

77

PROTOCOL 7.
(

Robust Signing: Sign (M, (G,G, q), sid)
)

Inputs.

1. Each party Pi, i ∈ [1, n], holds ([x]i, X).

2. Party Pc holds X and [x]i for all i ∈ [n+ 1, N].

3. The parties Compute m = Hq(M) and verify that sid has not been used before (otherwise the protocol is
not executed).

The protocol.

1. User’s dealing: Every Pℓ, (ℓ ∈ {1, . . . , t+ 1}):

(a) Samples kℓ, aℓ ← Zq and computes and broadcasts

({cℓk,i}
N
i=1, {Kℓ

j}tj=0, π
ℓ
k)← PVSS.Sharet,N (kℓ),

({cℓa,i}Ni=1, {Aℓ
j}tj=0, π

ℓ
a)← PVSS.Sharet,N (aℓ),

({cℓz,i}Ni=1, {Zℓ
j}tj=0, π

ℓ
z)← PVSS.Share2t,N (0),

({cℓz′,i}
N
i=1, {Z′ℓ

j}tj=0, π
ℓ
z′)← PVSS.Share2t,N (0).

(b) Let u ∈ [1, t+ 1] be the first index for which

1 = PVSS.CheckDealer({cuα,i}Ni=1, {αu
j }tj=0, π

u
α)

for all α ∈ {k, a, z, z′}.

2. Center’s dealing:

(a) Pc computes kc = H(xc∥sid), samples ac ← Zq and computes [kc] ← SS.ShareN,t(kc), [ac] ←
SS.ShareN,t(ac), [zc]← SS.ShareN,2t(0), and [z′c]← SS.ShareN,2t(0)

(b) Pc sends ([kc]i, [ac]i, [zc]i, [z
′
c]i) to Pi for i ∈ [1, n]

(c) Pc broadcasts K = kc ·G+Ku
0 and (Ki, Ai, Zi, Z

′
i) for all i ∈ [1, n], where Ei = [ec]i ·G+

∑t
j=0 i

j ·Ej

for every (E, e) ∈ {(K, k), (A, a), (Z, z), (Z′, z′)}.

3. Local computation.

(a) Pi (i ∈ [1, N]) computes [α]i = [αu]i + [αc]i mod q for α ∈ {k, a, z, z′}, where [αu]i = EG.Decdki (c
u
α,i).

(b) Pi (i ∈ [1, N]) computes [s1]i = [a]i(m+ r[x]i)− [z]i mod q and [s2]i = [k]i[a]i − [z′]i mod q.

(c) Pi (i ∈ [1, n]) computes Mi,1 = ([a]i · [x]i) ·G and Mi,2 = ([a]i · [k]i) ·G.

(d) Everyone computes r = K.x mod q.

4. Partial signature.

(a) Pi (i ∈ [1, n]) sends (prove, sid∥1, Ai, Xi,Mi,1, ai, xi) and (prove, sid∥2, Ai,Ki,Mi,2, ai, ki) to FRDHT
zk .

(b) Pi (i ∈ [1, n]) sends (m, [s1]i, [s2]i,M1,M2) to Pc.

5. Finalization. Upon receiving at least t+1 messages (m, [s1]i, [s2]i,Mi,1,Mi,2) for which [s1]i ·G = r ·Mi,1 +
m · Ai − Zi, [s2]i · G = Mi,2 − Z′

i, and proofs (proof, sid∥1, Ai, Xi,Mi,1) and (proof, sid∥2, Ai,Ki,Mi,2) were
received from FRDHT

zk , denote these indices by I. Then party Pc:

(a) Computes s1 = SS.Reconstruct({[s1]i}i∈I , {[s1]j}Nj=n+1) and s2 =

SS.Reconstruct({[s2]i}i∈I , {[s2]j}Nj=n+1).

(b) Broadcasts s = s1 · s−1
2 mod q.

78

PROTOCOL 8.
(

Two-Party Key-Generation: KeyGen
)

1. Pc’s randomness setup.

(a) Pc picks a random value v ← {0, 1}κ and computes vx = H(v).
(b) Pc sends vx to Pu.

2. Party Pu’s message:

(a) Pu samples a random xu ← Z∗q and computes Xu = xu ·G.

(b) Pu generates a Paillier key-pair (pk, sk) where pk = N = P ·Q with κ′-bit
primes P,Q, and computes ckey = Encpk(xu). (κ′ is the bit-length of the
factors of N for the Paillier encryption scheme to be secure).

(c) Pu sends Xu, pk = N and ckey to Pc.

(d) Pu proves in zero-knowledge that N ∈ LP and that it knows
a witness (xu, P,Q) such that (ckey, N,Xu) ∈ LPDL, by sending
(prove, ckey, N,Xu, xu, P,Q) to Fkeygen

zk .

3. Party Pc’s message: Upon receiving (proof, ckey, N,Xu) from Fkeygen
zk :

(a) Verify that ckey ∈ Z∗N2 and that N is of length at least 2κ′.

(b) Pc computes xc = H(v∥keygen), and Xc = xc ·G and X = xc ·Xu.

(c) Send X to Pu.

4. Output:

(a) Pu outputs (pk, sk, xu, X).

(b) Pc outputs (pk, xc, X, ckey).

79

PROTOCOL 9.
(

2P Signing: Sign (M, (G,G, q), sid)
)

Inputs.

1. Party Pu holds (pk, sk, xu, X).

2. Party Pc holds (pk, xc, X, ckey).

3. The parties Compute m = Hq(M) and verify that sid has not been used before
(otherwise the protocol is not executed).

The protocol.

1. Party Pu’s message:

(a) Pu chooses ku ← Zq and computes Ru = ku ·G.

(b) Pu sends Ru to Pc.

(c) Pu sends (prove, sid, Ru, ku) to FDL
zk to proves knowledge of ku.

2. Pc’s message: Upon receiving (proof, sid, Ru) from FDL
zk :

(a) Pc computes kc = H(v∥sid) and computes R = kc ·Ru and r = R.x mod q.

(b) Pc chooses ρ← Zq2 and r̃ ← Z∗N .

(c) Pc computes:

i. c1 = Encpk(ρq + [(kc)
−1m mod q], r̃),

ii. v = (kc)
−1 · r · xc mod q,

iii. c2 = c1 ⊕ (v ⊙ ckey)

(d) Pc sends R and c2 to Pu.

3. Output:

(a) Pu computes s′ = (ku)
−1 · Dec(sk, c2) mod q and r = R.x mod q.

(b) Pu outputs (r, s) where s = min(s′, q − s′).

80

Figure 4.2: Multisignature Wallet with Policy Checks

81

(a) Step 1: Buyer initiates a bid for the wallet

(b) Step 2: Seller approves the sale

Figure 4.3: Wallet Exchange Application Flow

82

4.8.4 Scalability across n and t

Figure 4.4: Gas Used vs. Number of Users (n)

Figure 4.5: Gas Used vs. Threshold (t) for 15 users

83

84

Chapter 5

High-throughput Three-Party DPF and
its application to ORAM and Digital
Currencies

As described in Section 2.6, a point function fα,β is a function that evaluates to zero every-
where, except for one point, α, at which it evaluates to a (possibly) non-zero value β. A
DPF, introduced by [116], [117], is a cryptographic technique to share a point function to
multiple receivers, such that each receiver can locally obtain a share of the evaluation of the
function at the point of interest. In the two receiver setting, a DPF scheme allows one to
generate two additive shares of fα,β, called f0 and f1, such that for every x in the domain it
holds that f0(x) + f1(x) = f(x). The performance of a DPF scheme is measured by the size
of the shares (also known as ‘keys’) fi given to the receivers and the incurred computational
complexity to evaluate f(x) for some x in the domain. In the two-party case (i.e., when the
point function is shared toward two receivers) the shares size as well as the time to evaluate
are logarithmic in the domain size.

The DPF primitive is increasingly recognized as a fundamental tool in various appli-
cations, including private information retrieval (PIR), anonymous communication, privacy-
preserving machine learning (PPML) and even as a building block for general secure com-
putation for RAM programs [118]–[126]. Having said that, the DPF constructions today are
practical in the setting of two receivers, therefore, most of the applications mentioned above
were demonstrated efficient when employing a two-party construction of a DPF; leaving the
challenge of extending them to a larger number of parties unlocked.

A natural and important milestone is to efficiently extend DPFs to three receivers with
honest majority. While a few works have addressed this setting, none of them reached a
performance that matches that of the two receivers.1 In this work we present the first DPF
construction with three-receivers that accomplishes that goal, and as shortly explained, even
surpasses the performance of the two receivers setting.

1The works in [127], [128] achieve a three-party protocol with a matching performance, however, we still
consider it in the two receivers domain as one of the parties plays as a non-colluding server.

85

Database operations via DPFs We quickly revisit the importance of DPFs for PIR,
PIW and ORAM. Most of the applications that use DPFs as building blocks focus on either
reading from or writing to a database. Specifically, consider the ‘replicated database’ private
information retrieval (PIR) setting with a (public) database D. In that setting, a client may
privately read the α-th database entry by sharing a point function fα,1, and sending the
shares f0 and f1 to the PIR servers. Then, the i-th server computes di =

∑
x fi(x) · D[x]

and hands di back to the client. Finally, the client can reconstruct the result by computing
d = d0 + d1. Note that evaluating f(x) over the entire domain |D| creates a shared one-
hot-vector, so d correctly encodes D[α]. Obviously, this procedure does not work when the
database itself is secret shared.

On the other hand, when the database is secret shared among the two servers, i.e., there
are two databases D0 and D1 s.t. D[x] = D0[x] + D1[1], a DPF can be used in order to
privately update an entry in that database (also known as private information writing, or
PIW). Specifically, a client sends the shares f0 and f1 for some point function fα,β, and then
the i-th server adds fi(x) to the value at D[x], for all x in the domain. This way, the client
can privately add β to the α-th entry of the shared database.

Supporting both private information retrieval and writing operations, however, is more
challenging, as privately reading an entry requires multiplication between the shared entries
of the one-hot vector to those of the database, which is achieved via communication in the
information theoretic setting, or via expensive public-key primitives; both approaches limit
the size of the databases that a system may support. For example, the FLORAM system
by Doerner and Shelat [129] requires O(

√
|D|) communication per private operation (read

or write).
In contrast, given a DPF construction for three receivers, where sharing fα,β results in

f1, f2, f3 s.t. f1(x), f2(x) and f3(x) form a 2-out-of-3 sharing of f(x), we can efficiently
achieve both private retrieval and update operations. This is due to the fact that the shares
now have redundancy and have one degree of multiplicative homomorphism. The only work
that proposed such a construction is [130], where the resulting shares form a replicated
sharing. However, their construction achieves sub-optimal performance, both concretely
and asymptotically. That is, their shares size as well as the computational complexity per
evaluation is O(log2 |D|). Furthermore, it does not protect against a malicious adversary.
In this work, we propose the first three party DPF construction that matches (and even
concretely improves) the two party one; additionally, it offers security against a malicious
adversary. On its own, our three party DPF lends itself as the main tool for our efficient
three-server ORAM, which has state-of-the-art performance compared to previous DPF-
based ORAM constructions. Also, to the best of our knowledge, ours is the only maliciously
secure construction.

Revisiting private and account-based digital currencies The UTXO (Unspent Trans-
action Output) model (as used by Bitcoin) tracks individual unspent coins from previous
transactions. In contrast, the account model (as used by Ethereum) resembles traditional
banking, with each user having an account and a clear balance. Transactions adjust these
balances directly, simplifying operations for complex programs like smart contracts.

Existing works on account-based privacy-preserving digital currencies have typically been

86

constrained by a limited anonymity set size [54], [131]–[135]. Consequently, the focus has
predominantly been on the UTXO model, as evidenced by the plethora of works ([12], [53],
[136]–[139] to name a few). However, the UTXO model has several significant shortcomings.
For example, it limits programmability and auditability [140], [141], which are crucial for
building financial applications and fraud-prevention. Additionally, in the privacy-preserving
setting, the UTXO set infinitely grows, which poses scalability issues.

In light of this, using our DPF-based ORAM construction, we aim to rekindle interest
in account-based privacy-preserving digital currencies, addressing its inherent limitations
and proposing a viable alternative to private UTXO-based systems. We place a particular
emphasis on the application of our techniques to Central Bank Digital Currencies (CBDCs).
Given their rising prominence [137], [141]–[144] and the ongoing debate around their privacy
[138], [139], [145], [146], our goal is to demonstrate the potential of our methods in developing
a privacy-centric CBDC. Such a system would not only safeguard individual privacy but also
remain conducive to necessary auditability.

5.0.1 Main Contributions

We summarize our main contributions below.

• We present a novel three-party verifiable DPF (VDPF) construction in the honest ma-
jority setting that is secure against a malicious server who may collude with the client.
Our construction maintains the same asymptotic and concrete overheads (share size and
evaluation time) as the state-of-the-art two-party DPF of Boyle et al. [20]. Compared to
the state-of-the-art three-party DPF, our construction improves the DPF’s shares size and
evaluation by a factor of O(log n) asymptotically, translating to 48 − 120× improvement
for domains between 216 − 240.

• As the lion share of the overhead in a three-server ORAM is incurred by the DPF, we get
the most efficient DPF-based three-server ORAM construction, in both communication
and computation. We analytically compare ourselves against state of the art three-party
protocols using DPF and ORAM [128], [130], [147]–[149]. We analyze all with respect to a
semi-honest ORAM application and observe that we have better client-server communica-
tion, overall computation and storage costs, and our model does not have the limitations
of [127], [128] (server-aided), and [149] (writes are not supported; only appends). Our
comparison results are summarized in Table 5.1 2,3.

• Expanding on our main construction, we introduce a three-party VDPF with semi-honest
security, that uses a sublinear amount of PRF calls in full-domain evaluation. This con-
struction is ∼ 2.2× faster than the leading two-party DPF during full-domain evaluation,
with potential for further improvement using GPU acceleration due to CPU-optimized
AES instructions. However, similar to two-party DPFs, this construction is confined to
separate read or update operations and is not suitable as a complete ORAM construction.
2For readability, we ignore constants related to the security parameter or the output group size.
3We estimate our results generalize to DORAM as well, but we leave exploring that to future work.

87

• Motivated by the need for privacy-preserving account-based digital currencies [138], [139],
[145], [146], we apply our DPF-based ORAM to a three-party private CBDC protocol. Our
implementation demonstrates substantial improvements in throughput over prior works
in the account model. Specifically, our implementation supports 500, 200 and 58 (resp.
825, 300 and 105) transactions per second (tps) for anonymity sets of 216, 218, and 220

accounts, with protection against a malicious adversary (resp. a semi-honest adversary).
We compare to the previous state-of-the-art, Solidus [131], and find that for these settings
our protocol’s throughput is 11− 141× higher.

• One building block in our maliciously secure DPF construction is a newly introduced prim-
itive we call updatable VDPF (or UVDPF). An efficient UVDPF construction is used in
order to directly compute a dot-product between (the compressed) full-domain evaluation
of a point function and a vector (or of two point functions). Our dot-product protocol
is constant-round and incurs communication overhead that is sub-linear in the functions’
domain (compared to linear in a naive implementation). We believe that the UVDPF
primitive and the DPFs dot-product protocol will find interest in other applications as
well.

Protocol Key Size Read Update DB Copies Malicious Model
[130] 3

√
n 4n 4n 2 No 3-party

[148] 12 log2 n O(n log n) O(n log n) 2 No 3-party
[149] 3 log n 2n Appends only 2 Yes 3-party

[127], [128] 3 log n 2n+ Interaction 3n 3 No Server-aided
Ours 2 log n 2n 2n 1 Yes 3-party

Best Neutral Poor Worst

Table 5.1: Comparison of three-party ORAM protocols using DPFs. Key Size captures
client-server communication, Reads and Updates are non-interactive (except for [127], [128])
and focus on overall computation costs. Results are for semi-honest, but we remark that we
and [149] provide malicious implementations.

5.0.2 Related Work

DPF Constructions and three-party ORAM As observed by previous works [130],
[148], [149], (2, 3)-DPFs are better suited for applications that combine PIR with PIW
(ORAM), as they offer one degree of multiplicative homomorphism. Also, all (3, 3)-DPFs
(withstanding two corruptions) are significantly less efficient, as they require O(

√
n)-sized

keys, and either have much higher constants or require public-key (or lattice-based) opera-
tions [20], [120], [121], [130], [150].

The state-of-the-art for (2, 3)-DPF [127], [128], [148], [149] combines replicated secret
sharing (RPSS) with (2, 2)-DPFs, and then uses these to build different ORAM-related
applications. Bunn et al., [148] proposes a (2, 3)-DPF similar to us, but their construction
has asymptotically larger keys and evaluation time, which makes it 48− 120× less efficient,

88

in both computation and communication, for domains between 216−240 (and this gap widens
further for larger domains). Alternatively, Waldo, Duoram and PRAC [127], [128], [149] take
a different approach and use (2,2)-DPFs to construct their ORAM application (a private
time-series database and DORAM respectively), but their solutions are more limited as they
do not develop new dedicated three-party DPFs. Waldo cannot do writes or updates (only
appends), while Duoram and PRAC operates in the server-aided model. Only Waldo offers
malicious security as we do, but they rely on public access control, rather than the privacy
preserving authentication that our protocol offers.

A different line of work focused on verifiable DPFs, essentially achieving security for
DPFs against potentially malicious clients (dealers). [20], [119] suggested to use sketch-
ing techniques, and more recently [151] presented a lightweight solution based on hashing.
Similarly, [120], [152] show how to do private access-control for DPFs. We similarly build
verifiability and access-control capabilities into our (2,3)-DPF construct. Our construction
protects against both malicious clients and servers, whereas prior work only protected against
semi-honest servers.

Privacy-preserving digital currency A large body of work has been dedicated to ensur-
ing transaction-privacy in blockchains. The majority of works [12], [53], [136], [137], [153]–
[156] focused on the UTXO-model, which offers a limited programmability and auditability
[140], add end-user and developer complexity [12], [141], and cause an infinite growth of the
permanent database (the nullifiers). This led to the transition into the account-based model
(e.g., Ethereum), which we follow in this work. Solutions in this model mostly build upon
general MPC techniques that enable the addition of additional layers on top of it (like smart
contracts, auditability, etc.) [3], [4], [6], [157].

The challenge for account-based ledgers with private transactions Solving privacy
for account-based cryptocurrencies remains a challenge, and prior work has significant lim-
itations compared to UTXO-based solutions. QuisQuis [134] and Zether [54], [135] operate
in the account-model but are limited to extremely low k-anonymity sets (64-256) 4. Very
recently, [158] presented a theoretical solution using Fully Homomorphic Encryption (FHE),
but they neither provide an implementation or an evaluation. The heavyweight cryptography
used indicates it might not be concretely efficient.

An increasing body of research is focused on constructing CBDCs [137]–[139], [141]–
[144]. Yet, to the best of our knowledge, we are the first to provide a private account-based
solution. Most similar to our research, several works have proposed building private bank-to-
bank cryptocurrencies (e.g., [131]–[133]). In these works, banks transact with each other on
behalf of users, but the number of banks in all of these models is very small (10-100). While
Solidus is more scalable, zkLedger and MiniLedger are geared more towards auditability. We
compare against Solidus which is the state-of-the-art and show that our work has 11− 141×
higher throughput up to an anonymity set of 220. Additionally, while our protocol provides
full anonymity, the rest of these works only provides bank-level anonymity, which is orders
of magnitude smaller (equal to the total number of banks). Conversely, compared to these
other systems, our system is not publicly verifiable and relies on MPC assumptions.

4Estimates from [158]

89

5.1 MPC Functionalities

5.1.1 Overview

We use of the following well-established ideal functionalities in this work.

• F .Rand(), F .DRand(), and F .Zero(), which return a shared random value, shared
random with degree t and 2t, and a sharing of zero, respectively.

• F .A2B([x]). Converts an arithmetic shamir sharing to a binary Shamir sharing.

• F .Mult([x], [y]). Returns a (t, n)-Shamir sharing of the product x · y.

• F .CheckZero([x]). Returns 1 if [x] = 0, or 0 otherwise.

• F .LTE([x], [y]). Returns 1 if [x] ≤ [y] and 0 otherwise.

In addition, we define a procedure, Open([x]) as a one-round (assuming broadcast) pro-
tocol where all parties send their shares to each other and reconstruct a secret.

5.1.2 Access Policy ORAM Functionality

We define an application called an ORAM with Access Policy, and define the corresponding
Functionality F .APORAM, in Figure 5.7

5.1.3 Sum-of-Products Functionalities

We use two Sum-of-Products functionalities to compute the dot product. F .Product refers
to the maliciously secure functionality, whereas F .SoP refers to a dot-product functionality
in which the adversary can add an additive error. Both are defined in Figures 5.8 and 5.9,
respectively.

5.1.4 Implementation of Known Functionalities

Here we provide implementation details for the (well established) MPC functionalities we
use in this work. We focus on semi-honest implementations, since they can be transformed
to malicious security using MACs [159].

Protocols for F .Rand, F .DRand, and F .Zero

In the 3-party setting, these functionalities are implemented using PRSS and PRZS re-
spectively as shown in [160]. The functionalities can be implemented with any PRF (e.g.,
AES) and require no communication and O(1) computation.

90

Setting: The functionality interacts with servers S1, S2, S3, clients c1, . . . , cn, and an adversary
S.

Parameters: The functionality is initialized with a zero-initialized array D = (D1, . . . , DN) ∈
FN , and is parameterized with a policy verification function: PVerify that is given the request’s
arguments and returns accept or reject. Parameter m refers to the number of entries read-
/update commands support.

• On input (ci, register) from client ci, mark ci as ‘registered’.

• On input (ci, read, (ℓ1 . . . , ℓm)) from a registered client ci:

– Send (read,m) to S and wait to its response; if S returns abort then send ⊥ to S and all
servers, otherwise (if S returns continue) continue.

– If accept = PVerify(ci, read, (ℓ1 . . . , ℓm)) then output (Dℓ1 , . . . , Dℓm) to ci.

• On input (ci, update, (ℓ1, v1), . . . , (ℓm, vm)) from a registered ci:

– Send (update,m) to S and wait to its response; if S returns abort then send ⊥ to S and
all servers, otherwise (if S returns continue) continue.

– If accept = PVerify(ci, update, ((ℓ1, v1), . . . , (ℓm, vm))) then, update Dℓj = Dℓj+vj for every
j ∈ {1, . . . ,m}.

Figure 5.1: Functionality FAPORAM

Setting: The functionality interacts with parties P1, P2, P3 and an adversary S.

Inputs: Pi inputs [V]i, fi, for i ∈ {1, 2, 3}.

• For j ∈ {1, 2, 3}, Expand [F]j ← VDPF.Eval(j, fj).

• For all i ∈ {1, 2, ..., N}:

– Fi ← Reconstruct1,3([Fi])

– Vi ← Reconstruct1,3([Vi])

– Zi ← Fi · Vi.

– Store in [Z] the i-th sharing: [Zi]← Share1, 3(Zi).

• Wait for an input from S, if it is ⊥ then output ⊥ to all parties, otherwise continue.

• Output [Z]j to Pj , for j ∈ {1, 2, 3}.

Figure 5.2: Functionality F .Product

91

Upon receiving [Xi]j , [Yi]j from the honest parties Pj , as their shares of Xi, Yi, for every i ∈
{1, . . . , N} and an additive error ε from the adversary: Compute z = ε +

∑N
k=1Xi · Yi, then,

output [z]← Share2,3(z) to the parties.

Figure 5.3: Functionality FSoP

Protocols for F .Mult and F .SoP

We use the DN multiplication scheme of [161] and its sum-of-products variant. Both of these
schemes allow to efficiently realize F .Mult and F .Product. We present the sum-of-products
protocol below. Multiplication is the same, but involves scalar values instead of vectors.

Protocol ΠSoP :

• Public parameters: Prime field F or a binary field ; n parties; t the corruption
threshold.

• Inputs: [x], [y].

• Each party computes:

– [rt], [r2t]← F .DRand()
– [c]← [x] · [y]− [r2t]

– c← Open([c])

– Output [z] = c+ [rt]

Protocol for F .CheckZero

We use a known protocol for realizing the functionality F .CheckZero (e.g., [159]):

Protocol ΠCheckZero:

• Public parameters: Prime field F or a binary field ; n parties; t the corruption
threshold.

• Inputs: [x].

• Each party computes:

– [r]← F .Rand()
– [c]← F .Mult([x], [r])

– c← Open([c])

– Output c
?
= 0

92

Protocols for F .LTE and F .A2B

There are many protocols in the literature that realize F .LTE and F .A2B [162]–[166]. As
we stated in Section 5.6, bandwidth is not a major concern in our scheme, so we prioritize
minimizing rounds over communication. Luckily, many of these protocols (e.g., [162]–[164])
offer constant-round protocols. For example, in [163], a 3 (online) rounds and (k + 1)q-bits
of communication protocol is provided. To illustrate, for 32-bit representations, k = 32 and
⌈log2(q)⌉ = 64, we would only need 264B of communication per party per comparison gate,
which is marginal. F .A2B is somewhat more expensive but follows a similar analysis.

5.2 (2, 3)-Verifiable DPF

In this section, we formally define the notion of a (2, 3)-VDPF, and provide our construction
as well as a security proof. To this end, we move away from additive shares and require
that the individual evaluations by keys f1, f2, f3 on input α form a valid Shamir sharing of
the target value β. This is in contrast to other works [148], [149] where those values form a
replicated secret sharing. We start by defining a (2,3)-VDPF:

Definition 5.2.1. A (2, 3)-VDPF, denoted F
(2,3)
α,β , is defined by algorithms:

• (f1, f2, f3)← VDPF.Gen(1κ, α, β) and

• yb ← VDPF.Eval(b, fb, x) (b ∈ {1, 2, 3}),

• πb = VDPF.Prove(b, fb, r), (b ∈ {1, 2, 3}),

• {accept,reject} ← VDPF.Verify(π1, π2, π3)

such that:
Correctness. Similar to the (2, 2) case, except that we use Shamir’s reconstruction rather

than mere group addition. Let yb(x) = Eval(b, fb, x), then:

• SS.Reconstruct(y1(x), y2(x), y3(x)) = β for x = α, and

• SS.Reconstruct(y1(x), y2(x), y3(x)) = 0 for all x ̸= α.

Privacy. For every b ∈ {1, 2, 3} there exists a simulator S such that

(fb, πb′ , πb′′)
c≡ S(1κ, b, n)

where {b, b′, b′′} = {1, 2, 3}, (f1, f2, f3)← VDPF.Gen(1κ, α, β) and the distribution is over the
coin tosses of algorithms VDPF.Gen and S.

Verifiability. Let yx = SS.Reconstruct(y1(x), y2(x), y3(x)), then accept = VDPF.Verify(π1, π2, π3)
iff y = eα′ · β′ for some α′, β′.

We note that in the above definition β as well as the outputs of algorithm Eval are drawn
from a prime field F .

In Section 5.2.2 we present our construction for (2, 3)-VDPF, which uses (2, 2)-VDPF+

from Section 5.2.1 as a building block. In Section 5.2.3 we provide a security proof for our
VDPF construction.

93

5.2.1 Building Block: (2, 2)-VDPF+

One tool we use in order to construct our (2, 3)-VDPF is a (2, 2)-VDPF+ (or an enhanced
VDPF); its non-verifiable version was introduced in [148] and our addition of verifiability is
straightforward, assuming we use (2,2)-VDPFs of [151] internally.

Definition 5.2.2. A (2, 2)-VDPF+, denoted F
(2,2)
α,β0,β1

, is a (2, 2)-VDPF, as defined in Section
2.6, with the following additional constraint: It must hold that VDPF.Eval(b, fb, α) = βb for
b ∈ {0, 1}.

The additional constraint ensures that at the special point α, party b = 0 receives β0 and
party b = 1 receives β1. In Figure 5.4 we provide the construction for F

(2,2)
α,β0,β1

from [148],
given a ‘normal’ DPF construction. Note that the resulting VDPF is a normal VDPF for
parameters α, β, where all individual evaluations are shifted by z. Then, obviously since
both parties XOR their evaluation with z, this does not change the combined evaluation on
any point (as it simply adds z ⊕ z = 0l; while on point x = α, it causes f0’s (resp. f1’s)
evaluation be β0 (resp. β1), which is easy to verify.

VDPF+.Gen(1κ, α, β0, β1)

1. β ← β0 ⊕ β1

2. (f0, f1)← VDPF.Gen(1κ, α, β)

3. z ← β0 ⊕ VDPF.Eval(0, f0, α)

4. fb ← (z, fb) for b ∈ {0, 1}

5. Output: (f0, f1).

VDPF+.Eval(b, fb, x)

1. (z, f ′b)← fb.

2. y ← VDPF.Eval(b, f ′b, x)⊕ z.

3. Output: y

VDPF+.Prove(b, fb)

1. (z, f ′b)← fb.

2. π′b ← VDPF.Prove(b, f ′b).

3. Output πb = (π′b, z)

VDPF+.Verify(π0, π1)

1. Output accept iff π0 = π1.

Figure 5.4: Protocol for (2, 2)-VDPF+

94

5.2.2 Our (2, 3)-VDPF Construction

Our (2, 3)-VDPF construction is formally given in Figure 5.5.
We use two independent instantiations of a (2, 2)-VDPF+ (of Section 5.2.1) and output

three keys f1, f2, f3 where fi is a pair of (2, 2)-VDPF+ keys, one from each instance. Specif-
ically, denote the first and second (2, 2)-VDPF+ keys by (g0, g1) and (k0, k1), respectively,
then our three (2, 3)-VDPF keys are f1 = (g0, k0), f2 = (g1, k0) and f3 = (g1, k1). Evaluating
fi on input x is done by first interpreting it as the keys g and k of a (2, 2)-VDPF+; then,
evaluating g and k independently on x and adding the results (over F2l).

The (2, 2)-VDPF+ instances above are adjusted so that evaluating g0 and g1 on α results
with v0 and v1, respectively; similarly, evaluating k0 and k1 on α results with v2 and v3,
respectively. It is required that the three values (1) β1 = v0 ⊕ v2, (2) β2 = v1 ⊕ v2 and (3)
β3 = v1 ⊕ v3 be valid Shamir sharing of the target value β0 = β; namely, that there is a
degree-1 polynomial P s.t. P (i) = βi for i ∈ {0, 1, 2, 3}. Fixing a random Shamir sharing
(β1, β2, β3) of β, equations (1)-(3) above always have a solution (assignments to v0, v1, v2, v3);
moreover, since the sharing is random, by drawing a random v0 we get that the two values
obtained by evaluating fi (i.e., (v0, v2), (v1, v2) and (v1, v3)) are distributed uniformly in
F2l × F2l .

A subtle issue in the construction is that the shares β1, β2, β3 are from a prime field F
whereas v0, v1, v2, v3 are from F2l , thus, equations (1)-(3) above do not ‘compile’. To reconcile
that, we define the operation that takes an element x from a prime field F and an element
y from a binary field F2l , ‘embeds’ x into F2l by simply using its binary representation to
form x′, and outputs x′ ⊕ y. In addition, for x and y as above, we define the operation ⊙
that embeds y into F to form y′ and outputs x · y′ over F .

For these operations to work as expected, and to not raise a security concern, we must
have that the binary representation of an element in F be well defined over F2l and that the
arithmetic representation of an element in F2l be well defined over F . This is not true in
general, however, we can pick a prime and binary fields for which the above almost always
holds. Concretely, using l = κ and F with a prime very close to 2κ will achieve the desired
result. In this manner, we get 2κ−|F |

2κ
≈ 2−κ and so values are drawn (either at random or as

a result of a computation) from the gap between the fields only with negligible probability.
The above establishes that evaluation of keys f1, f2, f3 on input x = α results with a

Shamir sharing of the target value β. For completeness, we now show that evaluation on
every other input (i.e., x ̸= α) results with a Shamir sharing of zero. Since the (2, 2)-VDPF+

is defined over a binary field F2l , evaluation of g0 and g1 (respectively of k0 and k1) on
x ̸= α results with the same value (so adding them results with 0l). Thus, evaluation of
fi = (gig , kik) (i ∈ {1, 2, 3}, ig, ik ∈ {0, 1}) results with the same value for all i’s; let that value
be y. Then, an interpolation using the points (1, y), (2, y), (3, y) results with an horizontal
line at height y, which leads to the secret y. To get a secret 0 instead, we multiply the result,
y, by the index of the key, which now results with the points (1, y), (2, 2y), (3, 3y), resulting
with a line that crosses through (0, 0) and so hides the secret 0.

Finally, that multiplication by i requires fixing the target values we give to the VDPF+

instances: instead of working with the shares β1, β2, β3, we work with the values β′1 =
β1 · 1−1 = β1, β

′
2 = β2 · 2−1 and β′3 = β3 · 3−1.

95

5.2.3 Security analysis

Correctness can be verified from the protocol, in the following we prove verifiability and
privacy.

Theorem 5.2.3. The construction in Figure 5.5 is a VDPF (Def. 5.2.1), secure against a
malicious client and a single malicious server.

Proof. Verifiability. We show that if the verification function outputs accept then the
functions f1, f2, f3 are well formed (e.g., they evaluate to a Shamir sharing of zero at all
points except of at most one, where they evaluate to a non-zero value). Since the VDPF+

outputs accept in both verifications, this means that the functions (g0, g1) and (k0, k1) are
well formed (g0, g1, k0 and k1 have only one non-zero value).

Denote by ygb(x) (resp. ykb(x)) the result of evaluation of gb (resp. kb) at point x. The
above guarantees that yg0 and yg1 differ on at most one point. Let that point be αg and
denote the evaluation by yg0 = βg,0 and yg1 = βg,1, respectively. Similarly, let αk be the
point at which yk0 and yk1 differ, and denote the evaluation by yk0 = βk,0 and yk1 = βk,1,
respectively.

We show that if αg ̸= αk then our verification rejects. Assume αg ̸= αk, that the parties
partially exchanged H(tb), where H is a collision-resistant hash function, before exchanging
the rest of their proof (this serves as a commitment and is needed for malicious servers),
and that the verification procedure accepted. This implies that the vector y has two non-
zero positions, as it the result of adding (over) two vectors with a single non-zero value.
Assume these values are βαg and βαk

. From this, we get that the calculation of t in line
7 of Prove yields: t = (βαguαg + βαk

uαk
)2 − (βαg + βαk

)
(
βαgu

2
αg

+ βαk
u2
αk

)
= 0. This is

since we assumed the verification accepts. After re-arranging, this equation is simplified to
(uαg − uαk

)2 = 0, which implies uαg = uαk
, in contradiction.

Privacy Per Definition 5.2.1, the view of each server b is: (fb, πb′ , πb′′), where fb consists
of two different VDPF+ keys, each of which is further composed of a (2,2) VDPF key and
a value z. The underlying (2,2) VDPF keys are all indistinguishable from random by the
privacy of those VDPF keys.

It is also easy to see that for each VDPF+ key, z is pseudorandom, given that our
selection of v0, v1, v2, v3 is pseudorandom. However, recall that our construction evaluates
two (2,2)-VDPF+ keys, and then adds (over) their result together. At every point x ̸= α,
we are adding two pseudorandom shares together, but at the point x = α, by construction,
we obtain β′b ∈ F . We therefore need to ensure that β′b is indistinguishable from a random
in . Otherwise, an adversary controlling b could run a full domain evaluation of its key, and
look for a value that is distinguishable from all others (which are pseudorandom in). This
potentially leaks both β′b and α, so the simulation would fail.

Thus, to conclude the proof, we focus on showing that β′b is indistinguishable from a
random in . W.l.o.g., we will assume we are looking at the view of party b = 0, which holds
β′0. We note that the analysis for party b = 1 and b = 2 is similar. First, observe that
β′0 itself is random in F , from the security of Shamir sharing. Then, by our assumption,
the probability that a randomly generated value falls in the gap between the two fields is:
||FF |−2κ|

2κ
≈ 2−κ, which implies that β′0 also appears random in , since l = κ as well.

96

5.2.4 (2,3)-VDPF with sublinear PRF calls

The first application of our (2,3)-VDPF construction is to build, in a black-box manner,
a (2,3)-VDPF with sublinear PRF calls (the main computational bottleneck in evaluating
DPFs). Note that in this construction, calling Eval on x produces a degree-2 sharing of
y = F (x). This has two implications: first, is that this construction can still withstand
malicious clients (due to verifiability), but only semi-honest servers; second, we lose our one
free multiplication, so we can no longer combine PIR with PIW in a simple way, similar
to (2,2) VDPFs. In other words, this DPF is a potential (faster) drop-in replacement for
applications using (2,2) VDPFs (e.g., [118], [120], [121], [124]), designed for the three-party
model.

Our construction is described in Figure 5.6. The main idea is to re-interpret each DPF as
a square matrix (instead of a vector), where α is defined by αrow, αcol. Then, for a DPF with
domain of size n = |D|, we can share two DPFs that have a domain of size

√
n instead. One

for the row and one for the column. A similar idea was used in prior works (e.g. [148], [150]).
To perform a full-domain evaluation efficiently, we can first run a full-domain evaluation on
the row and column DPFs. We then obtain two one-hot-vectors, which we use to expand the
full DPF. This is done by taking each value in the row vector, and multiplying it with each
value in the column vector. It is easy to see that the result is a sharing of a vector yn, with
a sharing of β in index αrow ·

√
n+ αcol = α, and 0 everywhere else. The full construction is

described in Figure 5.6. We only show Eval in its full-domain version, to illustrate that we
only need O(

√
n) PRF calls5.

5We remark that for security, each party should additionally re-randomize its final vector share, but in
practice this can be deferred until there is a communication round for greater efficiency.

97

VDPF.Gen(1κ, α, β)

1. Parse α as (αi, αj), which represents the (row, column) index of α in a (
√
n,
√
n)-square

matrix.

2. (g1, g2, g3)← VDPF.Gen(1κ, αi, 1)

3. (k1, k2, k3)← VDPF.Gen(1κ, αj , β)

4. Output: ((g1, k1), (g2, k2), (g3, k3)).

VDPF.Eval(b, fb)

1. (gb, kb)← fb.

2. yg ← VDPF.Eval(b, gb).

3. yk ← VDPF.Eval(b, kb).

4. y ← {}.

5. For every yi ∈ yg:

• ∀yj ∈ yk: y ← y ∪ {yi · yj}.

6. Output: y

VDPF.Prove(b, fb)

1. (gb, kb)← fb.

2. Output: πb = (V DPF.Prove(b, gb), V DPF.Prove(b, kb))

VDPF.Verify(π1, π2, π3)

1. Parse each proof as the two underlying proofs and verify them both. Output accept if
both accept.

Figure 5.6: Protocol for (2, 3)-VDPF

5.3 ORAM with Policy

We define an ORAM with Policy functionality, which our CBDC protocol below instantiates.
We note that this functionality may have other applications as well, but we do not explore
them in this work. The main functionality is described in Figure 5.7.

5.3.1 Additional Functionalities

We define the remaining functionalities we use in this chapter: F .Product and F .SoP in
Figures 5.8 and 5.9, respectively.

98

5.4 Account-based Digital Currency

A specific application of the functionality FAPORAM is a privacy-preserving account-based
digital currency system. We maintain that our construction is specifically relevant to CBDCs,
which are growing in popularity [137], [141]–[144]. CBDCs have the potential to greatly
improve the efficiency of our financial system, as well as assist with preventing fraud and
money-laundering. On the other hand, this raises concerns around individual privacy [138],
[139], [145], [146]. Thus, a system like ours that can achieve both is highly desirable.

We note that systems that distribute trust to two (or three) parties, such as Prio [118],
have seen real-world deployment at scale 6. Similarly, a Central Bank can use our solution
to build a private CBDC by distributing its management to three different trust zones
(e.g., by having the parties be the Central Bank itself, the Department of Treasury, and a
nonprofit focused on privacy rights7). Other deployment models are possible, as we explore
in Appendix ??.

We formalize the CBDC application using the AP-ORAM functionality (See Function-
ality 5.7), with the following parameters: The number of locations to read is mread = 1 and
the number of locations to update is mupdate = 2; these values replace the single parameter
m used in the functionality. In addition, the PVerify parameter function is defined by:

PVerify(ci, read, ℓ1) = (5.1){
accept if i = ℓ1

reject otherwise

PVerify(ci, update,ℓ1, v1, ℓ2, v2) = (5.2){
accept if i = ℓ1 and v1 = v2 and Di ≥ v1

reject otherwise

where Di is part of the state held by the functionality, see Figure 5.7. That is, the procedures
of interest in a CBDC application are "moving" funds from one account to the other (a
transfer), or reading a balance. Reading a balance is allowed to the account owner and so
the function verifies that the client ID (index) matches the row to be read. Moving funds is
translated into two memory updates, the first subtract the value in one entry and the second
increase the value in another (possibly same, if one is paying itself) entry. It is required that
one can pay only from its own account, and so the same matching verification is done as
in the balance check procedure; additionally, it is required that the subtracted value at the
payer’s account and the added value at the payee account are equal. In the rest of this work,
we denote FAP−ORAM with the above parameters by FCBDC.

5.4.1 Registration & Access Control for DPFs

Recently, Servan-Schreiber et al., [120], [152] presented a mechanism called private access
control lists (PACL) to verify that a private access to a database (or a vector) D succeeds

6https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio
7For example, EFF: https://www.eff.org

99

only if the client requesting that access is permissioned. The privacy of such access, as
in our case, is provided via a DPF which enables hiding the location and the value to be
written (in case of an update). One drawback of their scheme is that it requires the servers to
perform O(N) (N = |D|) public-key operations per check, as each server requires to compute
an inner-product in-the-exponent. Although their scheme incurs only O(1) communication,
performing so many public-key operations per check (in case N is large) is prohibitive.

Instead, we make the observation that since we are in an honest-majority setting, we can
modify their protocol to use secret-shared values (instead of values in the exponent) and
still compute inner-products with O(1) complexity, and with cheap information-theoretic
operations, using the sum-of-products trick (e.g., [150], [167]). We describe the protocol and
notation below. Security follows from the same arguments as in [152] and the security of
sum-of-products.

The registration procedure, as described in Figure 5.10, is very simple: each new client
receives a random value, λ, from the servers; this random value is known only to the client
(and is secret shared at the servers). This value is used by the client each time it wishes
to access the servers. The servers maintain a database, denoted Λ, for those secret shared
values [λ1], [λ2], . . ., where λi is known to client ci.

Access control for CBDC. In the CBDC application, the i-th entry of the database D
‘belongs’ to the i-th client, ci, which means that ci is the only one who can read it, and
decrease the value stored there (up to zero). Suppose that client ci wants to read Di (recall
that all entries in D are secret shared by the servers). Client ci now sends a new secret
sharing of λi, namely ([λi]1, [λi]2, [λi]3), to the servers, as well as a VDPF (f1, f2, f3) that
encodes the value 1 at location i. This way, the servers can evaluate the DPF to obtain a
new shared database, denoted T , that hides 1 at location i and 0 elsewhere. The servers
can compute the dot-product between Λ and T , which results with the secret authentication
value stored for the client at location i, call that value λ̃i. If the client indeed has access to
location i then it must hold that λi that is shared by the client at the time of the protocol is
equal to λ̃i that is already stored at location i in Λ. This is a proof that the request sender
knows the required authentication secret for some location i that is ‘one-hot’ encoded in the
database T . Then, computing a dot-product between T and D results with the balance b of
that exact location that the client proved it knows the authentication secret for.

5.4.2 The CBDC Protocol

The protocol is described in Figures 5.10-5.12. If the underlying MPC protocols realizing
the well-known functionalities we use (e.g., F .Mult,F .CheckZero,F .Product) are maliciously
secure (resp. semi-honest), then our entire protocol protects against malicious servers (resp.
semi-honest). Except for the protocol F .Product, we can use semi-honest protocols and turn
them maliciously-secure by running them over authenticated inputs (i.e., using MACs) [159],
[168], which is exactly what we do in practice. However, doing so for F .Product would require
O(N) communication per requrest, which is prohibitively expensive. We solve that problem
via a novel maliciously-secure protocol for a dot-product between DPFs (see Section 5.5).

The protocol is described in the ORAM language, with Read and Update requests. In
the CBDC context, the Read request is actually only used by a client ci to get its balance.

100

Since the client does not reveal which database entry it reads, yet it proves (using the
authentication secret described above) that it is allowed to read that entry, this action is
anonymous. This is important, as it reduces the attack surface of network correlation attacks
that may exist if requesting the balance would not be anonymous. Then, the Update request
is actually only used by a client in order to pay another client. For a client ci to pay amount
v to another client cj, the client runs the ORAM protocol with inputs (ℓ1, v1) and (ℓ2, v2)
with ℓ1 = i, ℓ2 = j and v1 = v2 = v. Security against a corrupted server follows the fact
that the underlying building blocks and functionality are secure; a formal simulation based
proof is given below. Security against a corrupted client follows the authentication technique
described above, which we briefly expound on now. The client sends two VDPFs, each is
verifiable on its own and therefore it is guaranteed that each represents a vector with at
most one entry that is non-zero. To verify that the two non-zero values are the same, the
hidden values are ‘extracted’ (these are values a and b) and their difference is later handed
to F .CheckZero. Note that in contrast to the Read operation, where the client provided a
sharing of its authentication secret λ, in Update the client provides a sharing of λ · v1 (i.e.,
the authentication secret times the amount to transfer). Then, the protocol obtains another
instance of that value by computing a dot-product between Λ and f (the vector shared by
(f1, f2, f3)), and again, the difference between these results is checked using F .CheckZero.
Finally, to check that the amount to transfer is no greater than the balance of the user, the
protocol computes v′ – the user’s balance times the amount to transfer, and a2 the amount
to transfer squared. Obviously, it must hold that the latter is no greater than the former,
which is checked via a call to FLTE. We note that because of that check, it is must be ensured
that the balances in the system do not exceed the square root of the underlying field size
(i.e.

√
|F |).

Security An intuition to the security of the protocol was given above; in this section we
give a formal simulation-based proof of security. We prove the following:

Theorem 5.4.1. Given a verifiable enhanced distributed point function scheme VDPF+,
protocol Π = (ΠCBDC.register, ΠCBDC.read, ΠCBDC.update) (from Figures 5.10-5.12) securely
computes F .CBDC (Figure 5.7 with PVerify from Equations 5.1-5.2) in the FX-hybrid model,
for all X ∈ {Rand,Zero,Mult,Product,CheckZero, LTE}.
Proof. We show a proof against a malicious adversary. Let be an adversary who corrupts
server Sc (c ∈ {1, 2, 3}) and any subset of the clients. We present a simulator S that runs
internally and produce’s a simulated adversarial view and output set associated with the
honest parties (the servers Sh1 , Sh2 s.t. {h1, h2, c} = {1, 2, 3}). The resulting adversarial
view and the honest parties’ outputs are computationally indistinguishable from those in
the real execution of the protocol.

In the following we simulate the commands as if the adversary controls the client as well,
and later we discuss what is changed in the simulation in case the client is honest. Whenever
the simulator halts in the below description, it sends abort to the FCBDC functionality, with
which it interacts.

Register. On input (c, register), if ctr = N send full to the client and halt, otherwise
increment ctr and continue. Simulate F .Rand by computing [λ]← Share2,3(λ) for a uniform

101

λ ∈ F , hand [λ]c to Sc and [λ]h1 , [λ]h2 to the client.

Read. Given, fh1 , fh2 , [λ]h1 , [λ]h2 , simulate F .Zero by computing [z] ← Share2,3(0) and
hand [z]c to Sc; then, do exactly as in the protocol, for b ∈ {1, 2}:

• Compute T hb ← VDPF+.Eval(hb, fhb
).

• Compute [t]hb
=
∑

k = 1NT hb
k .

• Compute πhb
= VDPF+.Prove(hb, fhb

, [z]hb
), send πhb

to Sc and receive πc from Sc.

Then, simulate F .Product by receiving [Λ]c and fc from Sc, then, halt if [Λ]c together with
[Λ]h1 and [Λ]h2 do not form a valid Shamir sharing for a vector (note that the secrets in Λ
are completely determined by [Λ]h1 and [Λ]h2 and so the secrets could not be adversarially
changed), or fc together with fh1 and fh2 do not form a valid point function (there exists at
most one entry α at which the shared value is non-zero, and all entries form valid Shamir
sharings), or reject = VDPF+.Verify(π1, π2, π3). Otherwise (the above checks pass), compute
λ̃ = Λ · T and hand [λ̃]c to Sc where [λ̃] ← Share2,3(λ̃). Simulate the first instance of
F .CheckZero by receiving [t]c from Sc, checking that it is consistent with [t]h1 , [t]h2 computed
above and verifying that t = 1. Similarly, simulate the second instance of F .CheckZero by
receiving [λ− λ̃]c from Sc, checking that it is consistent with [λ− λ̃]h1 , [λ− λ̃]h2 and verifying
that λ − λ̃ = 0. Finally, simulate F .Product by computing b = D · T and [b] ← Share2,3(b),
then sending [b]h1 , [b]h2 to the client and [b]c to Sc.

Update Given, fhb
, ghb

, [λ]hb
for b ∈ {1, 2}, simulate F .Zero by computing [z]← Share2,3(0),

[z′]← Share2,3(0), and hand [z]c, [z
′]c to Sc; then, do exactly as in the protocol, for b ∈ {1, 2}:

• Compute F hb ← VDPF+.Eval(hb, fhb
)

and Ghb ← VDPF+.Eval(hb, ghb
).

• Compute [a]hb
=
∑

k = 1NF hb
k and [b]hb

=
∑

k = 1NGhb
k .

• Simulate F .Mult by receiving [a]c from Sc; if it is consistent with the [a]hb
’s then

compute [a2]← Share2,3(a
2) and hand [a2]c to Sc.

• Compute πhb
= VDPF+.Prove(hb, fhb

, [z]hb
) and π′hb

= VDPF+.Prove(hb, ghb
, [z′]hb

),
send (πhb

, π′hb
) to Sc and receive πc, π

′
c from Sc.

• Simulate F .Product twice by receiving [Λ]c and fc from Sc, then, halt if [Λ]c, when
combined with the [Λ]hb

’s, does not form a valid Shamir sharing for a vector, or fc
together with fh1 and fh2 do not form a valid point function, or reject is returned
when computing VDPF+.Verify(π1, π2, π3) or VDPF+.Verify(π′1, π

′
2, π

′
3). If not halted,

compute [λ′] ← Share2,3(Λ · F) and [v′] ← Share2,3(D · F), and hand [λ′]c and [v′]c to
Sc.

Simulate the first instance of F .CheckZero by receiving [λ − λ′]c from Sc, checking that it
is consistent with the [λ − λ′]hb

’s and verifying that λ − λ′ = 0. Then, simulate the second
instance of F .CheckZero by receiving [a − b]c from Sc, checking that it is consistent with

102

the [a − b]hb
’s computed above and verifying that a − b = 0. Finally, simulate F .LTE by

receiving [a2]c, [v
′]c from Sc, checking that they are consistent with the [a2]hb

’s and [v′]hb
’s,

and verifying that a2 ≤ v′ (which is equivalent to verifying that a ≤ Di). If any of the above
verifications fail then halt, otherwise, update Dhb = Dhb − F hb +Ghb send Ok to the client.

The resulting view of the adversary and the output for the honest servers are perfectly
simulated, that is, these views under the simulation and in the real execution of the protocol
are identically distributed. We note that this is a perfect simulation even though the DPF
construction is only computationally secure; this is due to the fact that when the client is
corrupted then the adversary itself produces it, and so the VDPF’s simulator does not come
into play.

The probability that the adversary’s client succeeds in submitting a malformed VDPF
and still pass the verification, or pass the authentication verification without submitting a
correct λ = Λi (for some i ∈ {1, . . . , N} equals in the simulation and real execution, and are
both negligible in κ (the former is computationally negligible and the latter is statistically
negligible).

Simulating an honest client. Here we use the VDPF’s simulator (see Definition 5.2.1).
The only difference between this case and the above (when the client is under the control
of) is that now S has to produce fc in the simulation of read (or fc, gc in the simulation of
update). This is done by invoking the VDPF’s simulator, and then sending Sc the simulated
point function’s share fc ← VDPF+.S(1κ, c, N). Combining with the rest of the simulation,
the views under real execution and simulation become computationally indistinguishable
(rather than identical as they were in the case the client was corrupted). It is easy to see
that we can reduce the security of protocol Π to that of the VDPF+ construction.

5.5 Efficient, Malicious Dot-Product

The functionality F .Product (Figure 5.8) is an important one in the above CBDC protocol;
it receives shares of a vector [V] and a point functions f = (f1, f2, f3) (alternatively, it can
receive two point functions f, g and expand g into [V]) from the parties, and returns the
dot product of V and F , where F is the result of a full-domain evaluation of f , that is the
sharings [F] = [F1], . . . , [FN].

A naive implementation of F .Product would call F .Mult on the pairs ([Vi], [Fi]) for every
i ∈ {1, . . . , N}. This, however, incurs O(N) communication between the parties, a cost
we highly wish to avoid (otherwise the protocol could not scale well with the number of
clients). Our goal is to achieve a secure implementation of F .Product with communication
sub-linear in N , namely, with O(logN) or even constant communication. In this section
we show how to do that using a new primitive we call updatable VDPF (or UVDPF). An
updatable VDPF allows the parties who already hold some VDPF f = (f1, f2, f3) for some
point function Fα,β, to update the target value at entry α; that is, to produce an updated
VDPF f ′ = (f ′1, f

′
2, f

′
3) for the point function Fα,β′ for some β′ that is also secret shared by

them. If an implementation of that primitive can be done in sub-linear communication in
N , then so can the dot product. We remark that for simplicity and better generalization,
we present a protocol that only has black-box access to (2,2)-VDPFs. This protocol has

103

O(logN) communication. For our implementation, we make an optimization that achieves
O(1) communication but without black-box access.

In Section 5.5.1 we formalize the functionality for a UVDPF, for both the (2, 2) and
the (2, 3) cases. Then, in Section 5.5.2 we show how to use a UVDPF to implement the
dot-product functionality.

5.5.1 Updatable (2, 3)-VDPF

In Figure 5.13 we present the updatable (2, 2)-VDPF+ functionality, denoted F+
(2,2)−UVDPF.

A secure implementation of (a slightly different version) of that functionality was proposed
in [147] (we note that in that paper this primitive is called ‘deferred DPF’).

Then, in Figure 5.14 we present the (2, 3)-threshold variant of that functionality, denoted,
F+

(2,3)−UVDPF. Finally, using F+
(2,2)−UVDPF, we construct, in Figure 5.15, a protocol to securely

compute F+
(2,3)−UVDPF.

The (2, 2)-updatable VDPF+ functionality (Figure 5.13), is a two-party functionality
that, given VDPF+ shares f0 from the first party and f1 from the second party, for point
function Fα,β0,β1 , and the sharings of new target values [β′0], [β

′
1] (these are (2, 2) sharings),

outputs updated shares f ′0 to the first party and f ′1 to the second party for a new point
function Fα,β′

0,β
′
1
.

Similarly, the (2, 3)-updatable VDPF+ functionality (Figure 5.14), is a three-party func-
tionality that, given VDPF+ shares f1, f2, f3 from P1, P2, P3, respectively, for a point function
Fα,β, and the sharings of a new target value [β′] (a Shamir (2, 3) sharing), outputs updated
shares f ′1, f

′
2, f

′
3 to point function Fα,β′ .

We note that the three-party functionality gives the adversary the opportunity to abort
whereas the two-party one does not. This is due to the fact that our realization of the
three-party functionality can work with a protocol for the two-party functionality that is
only secure against semi-honest adversaries, as a verification is performed in the three-party
protocol.

The construction begins when the servers hold shares for a (2, 3)-VDPF, which, in our
construction each share is essentially composed of two (2, 2)-UVDPF+ shares (note that our
construction in Figure 5.5 uses VDPF, however, the same construction could work with an
updatable VDPF). Specifically, there are two UVDPF+s that are already shared, namely,
(f0, f1) encode (α, β0, β1) and (g0, g1) encode (α, γ0, γ1). Recall that each party Pi (i ∈
{1, 2, 3}) has shares of two (2, 2)-UVDPF+s, that is, P1 has (f0, g0), P2 has (f1, g0) and P3

has (f1, g1). It holds that (β0 ⊕ γ0), (β1 ⊕ γ0)⊙ 2, (β1 ⊕ γ1)⊙ 3 form a valid Shamir sharing
of β.

Let δ be the value that the parties wish to plug at location α instead of β, we as-
sume that the parties hold the (2, 3)-sharing [δ]. The parties’ goal is to obtain the sharings
[β′0], [β

′
1], [γ

′
0], [γ

′
1] s.t.

[δ]1 = (β′0 ⊕ γ′0), [δ]2 = (β′1 ⊕ γ′0)⊙ 2, [δ]3 = (β′1 ⊕ γ′1)⊙ 3 (5.3)

form a valid Shamir sharing of δ, and hand those sharings to the two instances of F(2,2)−UVDPF+ .
That is, the first (f0, f1) should be updated with [β′0], [β

′
1] and (g0, g1) should be updated

with [γ′0], [γ
′
1]. In protocol Π(2,3)−UVDPF+ (Figure 5.15) the parties obtain the appropriate

104

(2, 2)-sharings of [β′0], [β′1], [γ′0], [γ′1] that are later fed to the two instances of F(2,2)−UVDPF+

and obtain the new shares of the (2, 3)-VDPF+.

5.5.2 The Dot-Product Protocol

Given a (2, 3)-UVDPF, the construction of our maliciously secure dot-product is presented
in Figure 5.16. It accepts a vector and a DPF, expands the DPF, and computes a sharing
of their dot product. We note that the protocol relies on an additional functionality, F .SoP
(Figure 5.9) for computation of sum-of-products. We note that F .SoP only needs to be a
semi-honest functionality that allows the adversary to inject an additive error to the result,
but this is not of concern in our larger protocol as we achieve the MAC’ed result using another
invocation and compare the results. Since the MAC value is random and independent, the
adversary cannot inject additive errors to both results such that they match (i.e., one is a
MAC’ed version of the other). This technique was used in previous works for maliciously
secure MPC (e.g., [159]).

5.6 Implementation, Evaluation and Applications

In this section, we implement prototypes of our VDPF constructions and a basic three-server
ORAM scheme that builds on top of it. We then use these tools to construct our private
ΠCBDC protocol presented in Figures 5.10, 5.11, 5.12. Our code is written in C++ and
consists of approximately 7,000 lines of new code8. Our DPF implementation leverages the
highly efficient (2,2)-DPF implementation from [169], but we extend their code9 to allow for
larger than 1-bit DPFs.

We ran all benchmarks on a single Azure Standard E32s (v5) VM server, which has 16
physical cores (32 vCPUs) and 256GB of RAM. We simulated network latency and bandwidth
using the tc command.

In addition, to further illustrate the applicability of our VDPF construction, we sketch
in Section 5.6.3 how it can be extended to the application of building a Distributed ORAM
(DORAM), and qualitatively compare it with the state-of-the-art.

5.6.1 DPFs

We implement both verifiable and non-verifiable versions of the state-of-the-art (2,2)-DPF
from [20], and our two (2,3) DPF constructions (Sections 5.2.2, 5.2.4). We also compare
analytically to the (2,3)-DPF from [148].

For all of these constructions, we measure the time it takes to evaluate the entire domain
for different domain sizes (shown in Figure 5.17), as well as key sizes (in Table 5.2). As
expected, our constructions have key sizes that are 2x bigger than the baseline10, but this is
marginal even for very large domains (∼ 2KB keys for N = 250). Similarly, for evaluation,
our (2,3)-DPF construction is only 2x slower than the baseline, and similarly, the VDPF

8An anonymized version of the code is attached to this submission.
9https://github.com/dkales/dpf-cpp

10A (2,3) DPF has two (2,2) keys, and a (3,3) DPF has 4 half-sized such keys.

105

construction has an additional estimated 2x overhead, since we are effectively evaluating
another level.

Our (2,3)-DPF from Section 5.2.4 is ∼ 2.2× faster for n > 220 compared to a (2, 2)-DPF.
We estimate that this gap will increase (in our favor) using GPUs, for two reasons: (i) AES is
hardware-accelerated in CPU, but not in GPU; (ii) In contrast, GPUs are massively parallel
and can perform vector operations well.

220 230 240 250

(2,2)-VDPF [20] 357 537 717 897
(2,3)-VDPF [148] (Analytical) 51024 120804 188664 289824

(2,3)-VDPF (Section 5.2.2) 850 1210 1570 1930
(2,3)-VDPF (Section 5.2.4) 980 1340 1700 2060

Table 5.2: Comparing key sizes (in bytes) of our constructions compared to the baseline
(2,2) DPF of [117] and (2,3) DPF of [148]. Since [148] does not provide an implementation,
we provide an analytical estimate.

5.6.2 Account-based Privacy-preserving Cryptocurrency and CB-
DCs

We now benchmark our main CBDC protocol. Our results support our hypothesis that we
can scale to large anonymity sets, including those exceeding a million accounts. This vastly
surpasses previous systems, which only provided a k-anonymity set between 10-256. We
benchmark our system against Solidus [131], the closest existing model, which also uses an
ORAM for privacy in an account-based ledger and marks the current state-of-the-art.

We conducted end-to-end transaction tests comparing Solidus and our protocols (semi-
honest and malicious ΠCBDC .Update protocols). To create a fair comparison, we optimized
Solidus parameters to leverage all available cores and system memory. Our findings, detailed
in Figure 5.18, reveal that our protocols significantly outperform Solidus in transaction
throughput and memory efficiency for up to N = 218 accounts, and continue to outperform
it up to N = 222 accounts. While Solidus manages to close the gap at N = 224 accounts,
it fails to offer complete anonymity like our system and it is less efficient in memory usage.
Beyond N = 224, Solidus exhausts memory, whereas our protocols remain scalable.

Additionally, we believe our system has the potential for horizontal scaling across multiple
servers, as it exhibits minimal bandwidth requirements and DPF evaluations and inner
product computations (which are the bottlenecks) could be run in parallel. Furthermore,
end-to-end latency, as shown in Figure 5.19, remains low across various network conditions,
with acceptable delays even on slower networks.

5.6.3 Three-party Distributed ORAM (DORAM)

A closely related problem to an ORAM scheme, which our CBDC protocol above implements,
is that of a Distributed ORAM (DORAM). DORAM is a fundamental building block in

106

MPC, as it allows securely running RAM programs directly, as opposed to converting them
first to circuits, which can yield meaningful performance gains. Thus, a significant body
of research was dedicated to optimizing DORAM for the two-party and three-party cases
braun2023ramen, falk2023gigadoram, noble2024metadoram, [127]–[130], [148], with
three-party DORAMs being the most efficient. There are two major branches of DORAMs
in the literature: (i) those based on classical sublinear-computation ORAM constructions,
with logarithmic overhead (e.g., falk2023gigadoram, noble2024metadoram), or with
square-root overhead (e.g., braun2023ramen); (ii) and those based on DPFs [127]–[130],
[148]. While the latter require linear computation, they are extremely lightweight, having
sublinear communication and a very low number of rounds in comparison. For that reason,
they tend to scale better for mid-to-large memory sizes (e.g., up to 226 records [127], [129]),
or are suited for higher-latency environments, for example when the parties communicate
over the internet and are not co-located in the same data center.

Given our (2,3)-VDPF construction, our work fits in the second bucket of research tar-
geting DPF-based DORAMs. We have already shown how our construction enables building
an efficient three-server ORAM. To turn it into a DORAM, we also need the servers to gen-
erate the VDPF in MPC, since there is no client. We illustrate this process in the following
protocol sketch which builds a DORAM from our DPF construction.

(2,3)-VDPF DORAM protocol:

• Input. The three parties start with a shamir-sharing over of the secret DPF param-
eters [α], [β]. As shown in Figure 5.5, Line 1 of VDPF.Gen, the parties need to obtain
shares (of shares) of β which they can achieve through a constant-round re-sharing
protocol.

• Recall that in Figure 5.5, VDPF.Gen constructs two underlying VDPF+ instances,
each of which is composed of a single two-party VDPF with auxiliary data z. Gener-
ating a VDPF in a distributed manner can be done with the well-known protocol of
[129], and it takes O(logN) rounds and server communication and O(N) computation.
After this, the parties have generated two VDPFs and have evaluated them at the same
time over the entire domain.

• However, in order to turn these into VDPFs+, we also need the parties to obtain the
auxiliary data z ← β0 ⊕ VDPF.Eval(0, f0, α). The parties already have a sharing of
β0, but to obtain VDPF.Eval(0, f0, α), they need to somehow privately evaluate each
VDPF at the point α. recall that P1, P2 both have the first key of the second DPF,
and similarly P2, P3 have the second key of the first DPF. This redundancy allows
the third party to perform a PIR query to privately obtain the necessary value. For
example, for the second VDPF, P3 can read VDPF.Eval(0, f0, α) by generating a DPF
(locally) and performing a 2-server PIR to read the value at α from P1 and P2. Because
P3 does not actually know α, P1 and P2 first shift α by some randomness r and open
the result towards P3. They also shift their own vector by r positions locally, ensuring
that P3 reads the correct value. Treatment of the other DPF is symmetrical. Note
that this takes only a (small) constant number of rounds, O(logN) communication and
O(N) computation, so it does not significantly add to the protocolâs overhead.

107

• To complete the evaluation of the (2,3)-VDPF, the parties perform local operations
and obtain their final share. With this, they can perform either a private read or write
over the secret-shared memory, in the same way we described for our ORAM scheme.

Overall, this protocol has O(logN) communication and round-complexity, and most of
the overhead is in the distributed generation of [129], which is already quite efficient and has
small constants.

Comparing to the state-of-the-art. Several recent works tried to construct an efficient
three-party DORAM using DPFs. In [130], [148], the authors construct three-party DPFs
that are significantly less efficient than ours. Therefore, their overall communication overhead
between the servers is worse. In the first, communication is O(

√
N) per-query (but with a

constant number of rounds), while in the latter, it is O(log2N) for both communication and
rounds, with high constants. More similar to our work, [127], [128] presented a O(logN)
communication/rounds protocol for a three-party DORAM, but their protocol is in the
server-aided model and therefore not a true three-party protocol. We thus estimate that a
DORAM protocol based on our VDPF would yield the most efficient three-party DPF-based
DORAM protocol to date, and that compared to other DORAMs, ours would be the most
efficient for mid-sized memories or in high-latency environments. We leave implementing
and benchmarking such a system for future work.

108

Parameters: A prime field F and a hash function H. Inverses are computed over the prime field F .
VDPF.Gen(1κ, α, β)

1. (β1, β2, β3)← SS2,3.Share(β)

2. β′
i ← βi · (i)−1, for i ∈ {1, 2, 3}.

3. v0
$← F2l

4. v2 ← β′
1v0

5. v1 ← β′
2v2

6. v3 ← β′
3v1

7. (g0, g1)← VDPF+.Gen(1κ, α, v0, v1)

8. (k0, k1)← VDPF+.Gen(1κ, α, v2, v3)

9. Set f1 = (g0, k0), f2 = (g1, k0) and f3 = (g1, k1)

10. Output: (f1, f2, f3).

VDPF.Eval(b, fb, x)

1. Parse (g, k)← fb.

2. Set (bg, bk) to (0, 0), (1, 0) or (1, 1) if b equals 1, 2 or 3, respectively.

3. Compute yg = VDPF+.Eval(bg, g, x)

4. Compute yk = VDPF+.Eval(bk, k, x)

5. Compute y = (yg ⊕ yk)⊙ b.

6. Output y.

VDPF.Prove(b, fb, rb)

1. Parse (g, k)← fb.

2. Set (bg, bk) to (0, 0), (1, 0) or (1, 1) if b equals 1, 2 or 3, respectively.

3. πg = VDPF+.Prove(bg, g) and πk = VDPF+.Prove(bk, k)

4. Initialize yb = {}, u = {}.

5. For xi ∈ {x1, . . . , xn}:

(a) Compute yg(xi) = VDPF+.Eval(bg, g, xi)

(b) Compute yk(xi) = VDPF+.Eval(bk, k, xi)

(c) yi ← (yg(xi)⊕ yk(xi))⊙ b

(d) yb ← yb ∪ {yi}

(e) Generate (the same) ui
$← F and let u← u ∪ {ui}

6. βb ←
∑n

i=1 yb[i]

7. tb ← (yb · u)2 − βb(yb · u2)− rb (over F)

8. Output πb = (πg, πk, tb, H(tb))

VDPF.Verify(π1, π2, π3)

1. Parse πb = (πg,b, πk,b, tb, hb)

2. Compute t = Reconstruct(t1, t2, t3)

3. Output accept iff πg,2 = πg,3 and πk,1 = πk,2 and accept = VDPF+.Verify(πg,1, πg,2) and
accept = VDPF+.Verify(πk,1, πk,3), and t = 0 and ∀i ∈ {0, 1, 2} H(tb) = hb.

Figure 5.5: Our (2, 3)-VDPF construction

109

Setting: The functionality interacts with servers S1, S2, S3, clients c1, . . . , cn, and an adversary
S.

Parameters: The functionality is initialized with a zero-initialized array D = (D1, . . . , DN) ∈
FN , and is parameterized with a policy verification function: PVerify that is given the request’s
arguments and returns accept or reject. Parameter m refers to the number of entries read-
/update commands support.

• On input (ci, register) from client ci, mark ci as ‘registered’.

• On input (ci, read, (ℓ1 . . . , ℓm)) from a registered client ci:

– Send (read,m) to S and wait to its response; if S returns abort then send ⊥ to S and all
servers, otherwise (if S returns continue) continue.

– If accept = PVerify(ci, read, (ℓ1 . . . , ℓm)) then output (Dℓ1 , . . . , Dℓm) to ci.

• On input (ci, update, (ℓ1, v1), . . . , (ℓm, vm)) from a registered ci:

– Send (update,m) to S and wait to its response; if S returns abort then send ⊥ to S and
all servers, otherwise (if S returns continue) continue.

– If accept = PVerify(ci, update, ((ℓ1, v1), . . . , (ℓm, vm))) then, update Dℓj = Dℓj+vj for every
j ∈ {1, . . . ,m}.

Figure 5.7: Functionality FAP−ORAM

Setting: The functionality interacts with parties P1, P2, P3 and an adversary S.

Inputs: Pi inputs [V]i, fi, for i ∈ {1, 2, 3}.

• For j ∈ {1, 2, 3}, Expand [F]j ← VDPF.Eval(j, fj).

• For all i ∈ {1, 2, ..., N}:

– Fi ← Reconstruct1,3([Fi])

– Vi ← Reconstruct1,3([Vi])

– Zi ← Fi · Vi.

– Store in [Z] the i-th sharing: [Zi]← Share1, 3(Zi).

• Wait for an input from S, if it is ⊥ then output ⊥ to all parties, otherwise continue.

• Output [Z]j to Pj , for j ∈ {1, 2, 3}.

Figure 5.8: Functionality F .Product

110

Upon receiving [Xi]j , [Yi]j from the honest parties Pj , as their shares of Xi, Yi, for every i ∈
{1, . . . , N} and an additive error ε from the adversary: Compute z = ε +

∑N
k=1Xi · Yi, then,

output [z]← Share2,3(z) to the parties.

Figure 5.9: Functionality FSoP

Initialization. The servers initialize a zero-shared database D = (D1, . . . , DN). Denote the
i-th share of the database by Di = (Di

1, . . . , D
i
N). Similarly, the servers maintain a sharing

of Λ = (Λ1, . . . ,ΛN), which is used for access control. In addition, the servers maintain a
zero-initialized counter ctr, which keeps track on the number of registered clients.

1. Register. On input (c, register) to the servers: if ctr = N then send full to the client and
halt, otherwise:

(a) The servers increment ctr and invoke [λ]← FRand; then, each server Sj stores Λj
ctr ← [λ]j

and sends ctr and [λ]j to the client c. From this point and on, c is indexed cctr.

(b) Client computes λ = SS.Reconstruct([λ]1, [λ]2, [λ]3) and stores (ctr, λ).

Figure 5.10: Protocol ΠCBDC.register.

111

Read. On input (read, ℓ) to client ci:

1. Client: The client ci sends (fi, [λ]i) to server Si, where:

(a) (f1, f2, f3)← VDPF+.Gen(1κ, ℓ, 1).

(b) ([λ]1, [λ]2, [λ]3)← SS.Share2,3(λi).

2. Servers: Given (fi, [λ]i), the servers invoke [z]← F .Zero; and then, server Sj computes:

(a) T j ← VDPF+.Eval(j, fj) (this is a full-domain evaluation).

(b) [t]j =
∑N

k=1 T
j
k .

(c) πj ← VDPF+.Prove(j, fj , [z]j).

(d) [λ̃]← F .Product([Λ], f).

3. Servers verification:

(a) Server Sj exchanges hj from πj , then exchanges the rest of the proof.

(b) The servers halt if:

i. The DPF is not valid, i.e., reject = VDPF+.Verify(π1, π2, π3),
ii. The DPF hides a value different than 1, i.e., F .CheckZero([t]− 1) returns false.
iii. Client authentication fails, i.e., F .CheckZero([λ]− [λ̃]) returns false.

4. Balance retrieval:

(a) The servers compute [b]← F .Product([D], f) and then server Sj sends [b]j to the client.

5. Client: The client outputs b = SS.Reconstruct([b]1, [b]2, [b]3).

Figure 5.11: Protocol ΠCBDC.read.

112

Update. On input (update, (ℓ1, v1), (ℓ2, v2) to client ci:

1. Client: The client ci sends (fi, gi, [λ]i) to server Si, where:

(a) (f1, f2, f3)← VDPF+.Gen(1κ, ℓ1, v1).

(b) (g1, g2, g3)← VDPF+.Gen(1κ, ℓ2, v2).

(c) ([λ]1, [λ]2, [λ]3)← SS.Share2,3(λi · v1).

2. Servers: Given (fi, gi, [λ]i), the servers invoke FZero twice to get [z] and [z′]; then, server Sj

computes:

(a) F j = VDPF+.Eval(j, fj) and Gj = VDPF+.Eval(j, gj);

(b) [a]j =
∑N

k=1 F
j
k and [b]j =

∑N
k=1G

j
k.

(c) πj = VDPF+.Prove(j, fj , [z]j), π′j = VDPF+.Prove(j, gj , [z
′]j).

(d) [a2]← F .Mult([a], [a]).

(e) [λ′]← F .Product([Λ], f).
(f) [v′]← F .Product([D], f).

3. Sj exchanges (h′j , h
′′
j) from π′j , π

′′
j , then exchanges the rest of the proofs.

4. Servers halt if:

(a) VDPF+.Verify(π1, π2, π3) or VDPF+.Verify(π′1, π
′
2, π
′
3) return reject.

(b) F .CheckZero([λ]− [λ′]) or F .CheckZero([a]− [b]) return false.

(c) F .LTE([a2], [v′]) and F .LTE([a],
√
|F |) returns false.

5. Each server Sj updates Dj = Dj − F j +Gj and sends Ok to the client.

Figure 5.12: Protocol ΠCBDC.update.

Setting: The functionality interacts with parties P0 and P1 and an adversary S. The function-
ality is initialized with a VDPF+ scheme.

Inputs: Pi inputs fi, for i ∈ {0, 1}. The parties input the (2, 2)-sharings of β′0, β′1 ∈ F2κ .

• ‘Reconstruct’ the function hidden by (f0, f1) and obtain α, β0, β1.

• Reconstruct the secrets β′0 and β′1 from their shares.

• Compute (f ′0, f
′
1)← VDPF+(α, β′0, β

′
1).

• Output f ′i to Pi, for i ∈ {0, 1}.

Figure 5.13: Functionality F+
(2,2)−UVDPF

113

Setting: The functionality interacts with parties P1, P2, P3 and an adversary S. The function-
ality is initialized with a VDPF+ scheme.

Inputs: Pi inputs fi, for i ∈ {1, 2, 3}. The parties input a (2, 3)-Shamir sharing of β′ ∈ F .

• ‘Reconstruct’ Fα,β using (f1, f2, f3) and obtain α and β.

• Reconstruct the secret β′.

• Compute (f ′1, f
′
2, f
′
3)← VDPF+(α, β′).

• Wait for an input from S, if it is ⊥ then output ⊥ to all parties, otherwise continue.

• Output f ′i to Pi, for i ∈ {1, 2, 3}.

Figure 5.14: Functionality F+
(2,3)−UVDPF

114

Inputs: Pi inputs fi, for i ∈ {1, 2, 3}. The parties input a (2, 3)-Shamir sharing of β′ ∈ F .

Protocol: If, at any of the following steps, any party receives ⊥ from a functionality invocation,
then it aborts.

1. Pick random bit sharings:

• ([β′0,κ−1], . . . , [β
′
0,0]).

• ([γ′0,κ−1], . . . , [γ
′
0,0]).

2. For every i ∈ [0, κ− 1], compute [δ1,i] = [β′0,i]⊕ [γ′0,i].

3. Compute: [δ1] =
∑κ−1

i=0 2i · [δ1,i].

Note that δ1 = (β′0⊕γ′0) is S1’s share; together with δ, they completely define the degree-1
polynomial P (x) = δ + ax s.t. P (1) = δ1 = δ + a, meaning that a = δ − δ1. Given δ and
a, it follows that δ2 = P (2) = δ + 2a and δ3 = P (3) = δ + 3a. Thus:

4. Compute ([δ2,κ−1], . . . , [δ2,0]) ← F .A2B([δ2]) and ([δ3,κ−1], . . . , [δ3,0]) ← F .A2B([δ3]),
where [δ2] = [δ] + 2[a] and [δ3] = [δ] + 3[a].

5. For every i ∈ [0, κ− 1], compute [β′1,i] = [δ2,i]⊕ [γ′0,i] and [γ′1,i] = [β′1,i]⊕ [δ3,i].

6. Generate random sharings of bits, denoted [xi], [yi], [zi], [wi] for every i ∈ [0, κ− 1].

7. Open to S1 the values xi, yi, zi, wi, for every i ∈ [0, κ− 1]. Denote x = (xκ−1, . . . , x0) and
similarly for y, z, w.

8. Open to S3 the value xi ⊕ β′0,i, yi ⊕ β′1,i, zi ⊕ γ′0,i, wi ⊕ γ′1,i. Denote x′ = (xκ−1 ⊕
β′0,κ−1, . . . , x0 ⊕ β′0,0) and similarly y′, z′, w′.

9. S1 and S3 call the updatable VDPF+ functionality twice:

(a) S1 inputs f0, x, y and S3 inputs f1, x
′, y′. S1 receives f ′0 and S3 receives f ′1.

(b) S1 inputs g0, z, w and S3 inputs g1, z
′, w′. S1 receives g′0 and S3 receives g′1.

10. S1 sends g′0 to S2 and S3 sends f ′1 to S2.

11. The three servers obtain [r]← F .Rand; then they run Prove and Verify on the new shares
(f ′0, g

′
0), (f

′
1, g
′
0) and (f ′1, g

′
1) using their shares of [r].

Figure 5.15: Protocol Π(2,3)−UVDPF+

115

Inputs: Pi has V i and fi as inputs, for i ∈ {1, 2, 3}, where V i are shares of a vector and fi are
shares for a VDPF. We assume that the VDPF was already proven valid.

Protocol:

1. The parties invoke [m]← F .Rand().

2. Party Pi computes Ai = VDPF.Eval(i, fi) and then [a]i =
∑N

k=1A
i
k.

3. The parties compute [ma]← F .Mult([m], [a]).

4. The parties compute g′ ← F(2,3)−UVDPF(f, [ma]), which results with shares f ′1, f ′2, f ′3 for a
point function Fα,ma.

5. Party Pi computes Bi = VDPF.Eval(i, f ′i) and then [b]i =
∑N

k=1B
i
k.

6. The parties compute [va]← FSoP([V], [A]) and [vb]← FSoP([V], [B]).

7. Compute [vam]← F .Mult([va], [m]).

8. Call F .CheckZero([vam]− [vb]), if the result is false then halt, otherwise output [va].

Figure 5.16: Protocol ΠProduct

210 212 214 216 218 220 222 224 226 228 230

Domain Size
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ti
m

e
(

s)

(2, 2) DPF (baseline)
(2, 3) DPF (Sec. 3.4)
(2, 3) DPF
(2, 3) VDPF

Figure 5.17: Full domain evaluation of the various DPF constructions, compared to the
baseline (2,2) DPF.

116

28 210 212 214 216 218 220 222 224 226

Accounts

10
0

10
1

10
2

10
3

10
4

Th
ro

ug
hp

ut
 (t

x/
se

c)

Solidus
Update (Malicious)
Update (Semi-honest)

2
3

2
1

2
1

2
3

2
5

2
7

2
9

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

Solidus
Update (Malicious)

Figure 5.18: Transaction throughput and memory usage. Side-by-side comparison with
Solidus.

R
ea

d

R
ea

d
(M

al
ic

io
us

)

U
pd

at
e

U
pd

at
e

(M
al

ic
io

us
)0

10

20

30

40

La
te

nc
y

(m
s)

(a) RTT = 1ms

R
ea

d

R
ea

d
(M

al
ic

io
us

)

U
pd

at
e

U
pd

at
e

(M
al

ic
io

us
)0

100

200

300

400

500

La
te

nc
y

(m
s)

(b) RTT = 10ms

R
ea

d

R
ea

d
(M

al
ic

io
us

)

U
pd

at
e

U
pd

at
e

(M
al

ic
io

us
)0

500

1000

1500

2000

2500

La
te

nc
y

(m
s)

(c) RTT = 100ms

Figure 5.19: Latency in processing a request under different channel latency for N = 220.
Requests can be parallelized so this is indicative, and bandwidth changes had no effect thanks
to the constant communication complexity.

117

118

Chapter 6

Private Retrieval Augmented Generation
(PRAG)

Heavily pre-trained and fine-tuned Large Language Models (LLMs) have demonstrated ex-
ceptional performance on zero-shot [170] and few-shot tasks [171]. The ability of these models
to generalize, combined with their costly pretraining, has shifted the focus from training ad-
hoc models to perform specific tasks to utilizing these general-purpose foundational models
for a wide variety of use-cases [172], [173]. These pre-trained models lack knowledge of
private contexts or recent events.

To provide these LLMs with up-to-date or relevant information, methods such as Retrieval
Augmented Generation (RAG) [174]–[176] are used to include external information into a
generation process without needing fine-tuning on new data. This process allows LLMs to
first query an external data source, retrieve relevant information (with respect to a given
prompt), and then use both the prompt and the retrieved data as input to the inference
phase of the LLM.

Similar to the problem of federated learning [177], it is valuable to aggregate sensitive
data from multiple (perhaps many) data owners. To do that, each party should be able
to guarantee that their own private data remains private even when it is utilized. On the
other hand, model users should be able to query these data from many data owners without
needing to share what questions they are asking.

In this work we argue that LLMs require a new model for sharing data for AI tasks.
Compared to federated learning, which focuses on the training phase, LLMs should focus
on the (i) retrieval phase; (ii) inference phase. Guaranteeing privacy of both the query and
any private documents residing in the retrieval database require that both phases utilize
privacy-preserving techniques and are chained together.

Alas, to the best of our knowledge all existing works only tackle the LLM inference
problem [178]–[181], but provide no secure solution when retrieval is involved. In this work,
we close this gap by introducing Private Retrieval Augmented Generation (PRAG). PRAG
allows users to privately search a database, which in itself is private, then send the augmented
query privately to any secure (or otherwise trusted) LLM, creating an end-to-end secure
solution.

Our approach and contributions. We propose Private Retrieval Augmented Gen-
eration (PRAG), a secure approach to augment neural information retrieval that hides both

119

query vectors and the retrieval database. We use a retrieval database split across a set of
servers, and we ensure data remains private by using secure multi-party computation (MPC)
techniques. To the best of our knowledge, we are the first to consider the problem of secure
distributed retrieval in the context of LLMs, and more broadly, are the first to propose a
solution for private similarity search that can protect both the query and a secret-shared
(or encrypted) database. This approach can be deployed with any standard neural infor-
mation retrieval (IR) embedding model to augment distance calculations (e.g., cosine, dot,
euclidean) and top-k retrieval over federated vector stores, scaling to medium-size databases
with very little accuracy loss (99% accuracy on real data).

We further scale the approach to much larger databases using an approximate k-nearest-
neighbors approach inside MPC, replicating the accuracy of the state of the art in approxi-
mate retrieval using a first-of-its kind inverted files index inside MPC, providing significant
speed improvements for retrieval. Our approach provides both theoretical and empirical im-
provements of value. We achieve constant communication on the clientâs side and sublinear
communication on the serversâ side ââ the bottleneck in MPC approaches. This work is the
first IR approach to work across more than two servers with minimal additional costs. We
further present a ‘leakyâ version of the protocol that allows for partial privacy of queries
under a privacy budget with significant improvements to speed.

We evaluate PRAG across a range of data distributions, both real and synthetic, to
show it broadly maintains the performance characteristics of non-secure IR approaches. We
provide a pytorch-native implementation of our system using the Crypten MPC engine and
retrieval hooks for langchain and BEIR.

6.1 Overview

In this section, we present the Private Retrieval Augment Generation (PRAG) framework.
The method builds from secret sharing and MPC friendly exact top-k calculations to a new
MPC design of an inverted file index for efficient approximate top-k calculation.

Although a wide array of approaches exist for training document embedding models and
augmenting generation with retrieved models, most neural information retrieval methods
are underpinned by a step where a querier sends a query embedding to a server to calculate
the distance / similarity between the query vector and the database, in order to return a
document either as an embedding vector for concatenation or with the document tokens for
use in LLM inference. This setup offloads the storage of large databases and their associated
calculations to a more powerful server.

Recently, a significant body of research has been focusing on the problem of secure
inference, which ensures that a query remains private at all times. Whether secure inference
is achieved through cryptographic techniques (e.g., [178], [179], [182]–[184]), or by running
the model locally [185], if the inference pipeline includes an external retrieval phase (as is
often the case), then security does not hold as the query itself is leaked to the database
operator.

Similarly, the database may itself hold private information, collected by many different
data owners. The only way to protect their data is by making sure both the client and the
vector database server(s) remain oblivious to its content.

120

Figure 6.1: Overview of PRAG architecture using a distributed, secret-shared inverted file
index (IVF), for retrieving document token vectors closely matching a privately-generated
query vector in LLM-based question answering.

To formalize this, we assume our system has nclients clients sending queries and nowners

data owners. Both clients and data owners interact with a set of nservers vector database
operators. We assume that all parties in the system are semi-honest (i.e., they follow the
protocol) and that at most t < nservers

2
of the servers are corrupt (the honest majority setting).

In this work, we do not focus on the nowners data owners privately building the server, and
we assume that at some point in the past these data owners have secret-shared their data
to the servers. Instead, we are focused on the inference stage, a much more frequent and
real-time operation.

6.2 Exact Private Nearest Neighbors

We assume all values are shared using Shamir secret sharing [35] over a prime field Fp where
p =̃ 32 or 64 bits. We note that our protocols could work using other secret sharing schemes
suitable for the honest-majority setting (e.g., replicated secret sharing [186] over the ring
Z232 or Z264), but Shamir is the ideal choice in our setting, as it requires the least amount of
space and scales well to a large number of servers.

We further assume, as is common in secure machine learning literature [187], [188], that
there is a trusted dealer that generates shared random values. However, other techniques
could distribute this [166], [168], [189]. As in other works, since these protocols happen
offline in a preprocessing phase and do not impact the online performance of serving a query,
we do not benchmark their performance.

121

We denote arithmetic secret-shared values by [x]. A share for a specific server i is denoted
as [x]i. When sharings may appear once as a t-degree sharing and another as a 2t-degree
sharing, we occasionally distinguish these sharings with a superscript (e.g., [x](2t)). We use
[x] := SS.Share(x) and x := SS.Reveal([x]) for sharing and revealing secret shared items.

As is well known, all linear operations over secret-shared values require no interaction
between the servers. For multiplication, a single round of interaction is required. Given our
setting, we find the multiplication protocol by Damgård and Nielsen [161] to be the most
suitable.

Since in this work we operate in the semi-honest, honest-majority setting, we encode real
numbers into a field, we use the common technique of representing all underlying values
as fixed-point integers [190]. In practice, this means that for any real value x̃ ∈ R, we
encode it as a fixed-point integer ⌊x̃2f⌋ ∈ Z with precision f . Note that multiplying two
encoded values results in a value with 2f -precision. Therefore, truncation is needed after
every multiplication to avoid causing an overflow inside the field, which would distort results.

6.2.1 Distance calculations

While there is some heterogeneity in distance measures used in neural information retrieval,
the majority use dot products, cosine similarity, or L2 norms (euclidean distance). We
provide MPC friendly implementations of all three.

A naive implementation of a dot product between a vector and a matrix can be provided
by running the secure multiplication protocol in parallel. Both the communication and
the computation complexity scale linearly with the size of the database N and embedding
dimension size de, the latter of which is fixed in almost all cases. Round complexity remains
the same (constant) regardless.

Extending the dot product gives us cosine similarity, the predominant distance measure
in sentence transformer style models [191]. To save on expensive MPC computations, we
pre-normalize the input vectors and matrices prior to secret sharing into MPC, allowing
for cosine similarity to reduce to a simple dot product. Computing Euclidean distance can
also be achieved directly through MPC, but we observe that this is a much more expensive
operation, as it requires computing square roots inside the MPC circuit. For example,
Crypten [188], which we use in our implementation, uses a slow Newton-Raphson approach
for computing square roots, requiring multiple rounds of communication.

However, we make the observation that given that top-k calculations are the end goal
of distance calculations, the monotonic square root step in L2 can be ignored completely
before looking for the top-k elements in the distance vector, removing the need to compute
the square root securely.

6.2.2 Fast secure dot product

We re-use the same trick as in Chapter 5, where in the honest-majority setting we can
efficiently multiply two secret-shared vectors together in O(1) communication cost.

122

6.2.3 Relation to private information retrieval

As before, we can use PIR to extract any top-k elements from a database matrix that has
been secret shared, by getting a one-hot encoded secret-shared vector of the top-k indices.
This allows us to extract either database embedding vectors or token arrays from inside the
distributed database for return. In essence, rather than securely returning top-k indices and
asking the user to separately extract them, we can return the original tokens from a secret
shared database directly in MPC. This oblivious retrieval is used extensively throughout our
protocols below, such as in extracting candidate vectors from clusters.

6.2.4 Exact top-k for retrieval

Retrieving the most similar documents to a query requires first ranking all documents by
some similarity metric (as above) and then picking the top k documents that are closest to
the query.

Our solution is conceptually similar to secure top-k circuits designed in other works [192],
where O(kN) comparisons are needed. These circuits operate by successively keeping an
ordered list of k items, and then computing each value in the array with the minimum value
in the (much smaller) sorted list. Unfortunately, this solution also requires O(N) rounds for
MPC based on secret-sharing.

Instead, our protocol iterates k times over a secret-shared vector [x]. In each iteration, we
run argmax([x]) to extract the current minimum’s index in the vector. We then obliviously
scale down the selected value enough so it will be ignored in future iterations.

There are many ways to implement an MPC protocol for argmax([x]). Our descrip-
tion above assumes a recursive tree-reduction based protocol as in Crypten [188], having
O(log2(N)) rounds and O(N log2(N)) total communication. This leads to an exact top-k
round complexity of O(k log2(N)) and O(kN log2(N)) overall communication.

By combining this with distance calculations and oblivious private retrieval from a
database we can provide an end-to-end exhaustive exact algorithm to return the top-k near-
est documents to a query from a database of embeddings (and a database of tokens for exact
document return).

6.3 Approximate Nearest Neighbors and Inverted Files
(IVF)

At its core, the information retrieval task of top-k closest points is exactly the task of solving
the k-nearest-neighbors (kNN) problem, which requires finding the k points in a database
that are nearest to the given data point (the query). While the above exact approach
achieves this, it does so at a significant speed cost (both with or without MPC), motivating
the creation of approximate nearest neighbors algorithms, which only require a sublinear
amount of work.

These algorithms operate by first computing a compact representation of the dataset
called the index, and then executing queries on the index. Many approximate nearest neigh-

123

bors techniques exist, and one that is particularly amenable to MPC is the inverted files
index (IVF) [193], [194]. This technique works by first using a clustering algorithm (e.g.,
k-means) over the data set to find its nc centroids. Then, each centroid represents a clus-
ter holding all points associated with that cluster. In other words, this process splits the
database into nc buckets.

After this one-time step, querying the data starts by computing the nearest neighbors of
the query with respect to all centroids. Then, the nprobe nearest inverted files are searched,
looking for the k nearest neighbors among them.

During IVF generation, parameter choices in how the index is built affect the downstream
performance of the queries. We choose the number of clusters to be nc = α

√
N to get

sublinear complexity, where α is a free parameter that can be tuned. During query time, we
find the distance to all nc centroids, and select the top nprobe clusters to inspect further. As
we will see during experiments, this choice of nprobe increases the recall performance of the
model, and indeed at nprobe = nc, all clusters are inspected and the search becomes exact.
However, the nature of the IVF clustering allows a smaller nprobe to be chosen while still
achieving high accuracy.

6.3.1 Efficient approximate vector nearest neighbor search in MPC

Bringing this into MPC, the protocol ΠIVFQuery securely computes the approximate nearest
neighbors using an inverted file index. The protocol assumes the servers pre-computed the
secret-shared inverted index [IVF], which consists of nc lists of size m, both of which are of
size O(

√
N), ensuring the overall communication complexity is sublinear. We use the MPC

distance measures established above to calculate the distance between the query vector and
each of the nc cluster means.

The parties then run a secure protocol of exact top k as described earlier to identify the
nprobe most similar clusters. Unlike non-MPC protocols, it is critical that the servers remain
oblivious as to which are the top clusters for this query. Otherwise, information about both
the query and database would leak. For this reason, we require the top-k protocol to return
each index as a one-hot-vector of size nc which are collectively stored in [closest buckets].

Then, the parties perform an exact-match private information retrieval to get all the
vectors in the closest buckets. These [candidates] can be obliviously found through a product
of [closest buckets], a mapping of centroids indices to cluster indices in the database, [IVF
indices], and the entire [IVF] vector database. By obliviously reducing the entire vector
database into a much smaller search space that only includes vectors from the nprobe nearest
clusters, we are able to achieve sublinear overall communication.

At this stage, [candidates] holds a reduced (nprobe × m) × d vector matrix (where d is
the embedding dimension). [candidates indices] will similarly store the mapping from each
candidate to the original database index. We proceed by running an exact nearest neighbor
search again, which computes the distances between the query and all candidates and then
securely gets the top-k entries. Using [candidates indices], these top-k entries are mapped
back to the original database records, where documents can be obviously retrieved.

124

Protocol 5 ΠIVFQuery

Public Parameters: n, k, nc, nprobe, m, d
Client: query x ∈ Rd

Server: Secret-shared inverted file clusters [IVF clusters]∈ Rnc×d, Inverted file index values
[IVF] ∈ Rnc×m×d, Inverted file index indices [IVF indices] ∈ Rnc×m k-nearest-neighbors
(approximate)
Client computation:

• [x] := SS.Share(x)

• Send each server i its share [x]i

Servers computation:

• In parallel Iterate over [cluster] ∈ [IVF clusters]

• [centroid distancei] := SumProd([x], [cluster])

• [centroid distances] := {[centroid distance1](t), . . . , [centroid distancenc]
(t)}

• Compute [closest buckets] := ExactTopk([centroid distances], nprobe)

• Compute [candidates] := MatMult([closest buckets], [IVF]) and [candidates indices] :=
MatMult([closest buckets], [IVF indices])

• in parallel Iterate over [candidate] ∈ [candidates]

• Compute distance using SumProd and store as [candidate distances] Compute
[candidate top-k indices] := ExactTopk([candidate distances], k)

• Compute [database top-k indices] via private exact-match retrieval of
[candidate top-k indices] from [candidates indices]

• Return [database top-k indices] documents via private retrieval.

125

6.3.2 Sublinear Communication Complexity

The client maintains an optimal communication complexity of O(1), as it only needs to
communicate a share of the query vector to each server.

As to the servers, in lines 5-7 a total of nc := O(
√
N) elements are communicated.

Computing the exact top-k over these nc distances requires O(k · log2(nc)) communication.
Reducing the dataset obliviously costs O(nprobe

N
m
d). With our choice of parameters, nprobe

and d are constant, and m =
√
N , yielding O(

√
N) communication. This gives a candidate

dataset that is approximately of size nprobe

√
N . Finally, we can compute the distances

and exact top-k on this reduced dataset, but as it now only contains O(
√
N), the overall

communication of that step is O(k · log2(
√
N)).

Overall, we see that end-to-end the servers communicate O(
√
N + log2(

√
N)) field el-

ements while the client communicates O(1) elements (in fact, she communicates exactly d
elements, as is the size of the input vector). This holds true so long as nprobe remains small
enough to be considered a constant. As the number of candidate clusters to be probed be-
comes nc, the overall complexity of the approach becomes O(

√
N ·
√
N) = O(N), which is

no better than exact search but with additional overhead operations. Hence, nprobe should
be kept low as we will see in the experimental settings.

6.3.3 Sacrificing Privacy for Speed in MPC IVF

The fast secure dot product trick above helps significantly improve the speed of the step
wherein we reduce the full database to only the nprobe clusters vectors relevant to the query.
However, this step is still extremely costly, requiring the manipulation of a large database
of vectors for lookup when the clusters are stored in a large matrix.

Instead, we can take an alternate approach, where each cluster is stored in its own secret
shared database, with an exposed lookup table. The centroids of the database still remain
secret shared and private, but during query time, the nprobe closest clusters (shuffled to avoid
exposing order) are decrypted by each server to retrieve the relevant secret shared cluster
matrices, which can then be concatenated before passing into the second distance-top-k
calculation. This has large speed implications, dramatically decreasing the data access time
and allowing for speed more competitive with non-MPC IVF.

However, this does come at the cost of privacy. Each server will now know the nprobe

closest clusters to the query, which leaks the area in the embedding space where the query
is coming from. Indeed, while the centroids are secret shared, knowing the lookup table
and what a user accesses would allow an actor to determine an average point across those
centroids with more queries.

To mitigate this, a query could be noised according to a privacy budget similar to differ-
ential privacy, as for sufficiently large nprobe, even a high noised query would likely contain
the relevant closest clusters nearby. One slight advantage here is that larger choices of
nprobe provide more privacy (and more capacity for noising), while also increasing the overall
accuracy of the search (as we see in Figure 6.3).

In general, this final methodological change differs from above by no longer being fully
private, but is presented as part of the spectrum from slow but exact private search to fast
approximate search, and finally to fastest but leaky approximate search.

126

6.4 Implementation and Evaluation

To demonstrate the performance of these models we run a series of experiments on both
synthetic and real data to determine performance properties of the implementations of these
methods above.

We benchmark the retrieval accuracy and speed across a range of embedding sizes (256
to 8192), synthetic embedding distributions (N(0, 0.05), N(0, 1), U(−1, 1), Binary), distance
functions (cosine, dot product, euclidean), top-k values, IVF parameters, and database sizes.
We perform MPC experiments on a single 2.2GHz Intel Xeon Silver CPU using Crypten’s
built-in communication code to spawn processes for each server.

Further to this, we test the approaches on retrieval of real neural embedding datasets
from BEIR [195] using the same environment, this collection of datasets uses a range of
textual document types and sizes, all of which we use a standard off-the-shelf embedding on.
While there are several parallelization improvements that can be made locally within each
server for MPC, our implementations of each algorithm above remain unoptimized.

6.4.1 Exact Search

Each step of the exact search approach is extremely accurate, with small numerical errors
introduced during MPC. For distance measures, MPC vectors have a mean squared error
difference from pytorch calculated distances of less than 10−5 for euclidean and 10−8 for
cosine, going as low as 10−11 for euclidean distance on N(0, 0.05). These errors do not
change with database size, and are introduced at the numerical level of the elements.

The exact top-k approach using tree reduction applied interactive k times suffers from
similar small numerical errors. For distance vectors drawn N(0, 0.05), where outliers are
often standalone, top-k elements are picked out with 0.99 or above recall and precision. For
uniform distributions (unrealistic for embedding distance vectors) the f1 accuracy is lower
for top-1 (0.842) and top-k (0.96) with recall and precision climbing for higher k. This
is explained by the small distances present between the max and its nearest value when
drawn from a uniform distribution, leading numerical errors to induce a loss of accuracy.
Fortunately, the nature of real distance distributions means performance is high in real
contexts. For small values of k, this approach can be relatively fast but increasing the choice
of k dramatically increases the time cost due to communication complexity in the interactive
argmax looping.

Putting distance calculations, top-k, and oblivious retrieval together, the exact search
approach in MPC can identify the top-1 (argmax) most similar vector to a query with 97.5%
accuracy and top-50 with 98.6% F1 score, with accuracy independent of database sizes tested
up to 5 × 105. The constraint on the use of this MPC exact approach is the speed, taking
up to 10 seconds for top-1 and top-5 for a 105 size database, and increasing dramatically for
larger k as in Figure 6.2.

6.4.2 Approximate Search

Our MPC IVF implementation, using both fully secure and partially leaky clustering, returns
the elements as the standard IVF implementation with an average of over 99% recall on both

127

0 2 4

N ×106

0

50

100

150

200

250

300
Q

ue
ry

tim
e

(s
),

M
PC

ex
ac

t

20000 40000 60000 80000 100000

Database size (N)

0

10

20

30

40

50

60 Top-k
1
5
10
20
50

Figure 6.2: Time taken to retrieve top-k closest vectors in the database for end-to-end MPC
exact search across increasing synthetic database sizes.

synthetic and real embedding data, with errors explained by numerical errors at runtime.
For real data, we use embeddings from msmarco-distilbert-base-v3 from SBERT [191]. These
numerical errors partly flow through from the exact search above, which is used at various
points in the IVF MPC algorithm. This accuracy of the MPC IVF to non-IVF is stable
across choices of nprobe and nc.

While the MPC IVF matches the recall performance of the standard IVF, the underlying
approximate nature of the IVF provides tradeoffs between accuracy and speed. As shown in
Figure 6.2, increasing the value of nprobe increases the proportion of the full database that is
inspected at query time, in turn increasing the overall runtime. The benefit of IVF is that
we can achieve high accuracy for even a low value of nprobe, dramatically reducing query time
at the cost of accuracy.

128

2 3 4 5 6 7 8 9 10 11 12

Number of Servers

10

15

20

25

30

Q
ue

ry
tim

e
(s

)

MPC IVF Search, k =1
MPC IVF Leaky, k =1
MPC Exact Search, k =1
MPC Exact Search, k =10

0.2

0.4

0.6

0.8

1.0

IV
F

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

Proportion of IVF index searched, for k = 100

5

10

15

20

Q
ue

ry
tim

e
(s

)

Figure 6.3: Information retrieval using IVF improves accuracy with increased nprobe (top left)
but increases query time as a larger proportion of the index (nprobe

nc
) must be searched (bottom

left). These retrieval approaches (both IVF and exact) scale favorably across multiple servers
(right).

129

130

Chapter 7

Discussion, Conclusions and Future work

While research into distributed systems has been ongoing for several decades, the last two
decades have seen the emergence of massively open decentralized systems in the wild, pri-
marily through the use of blockchains. These systems are not operated by a single entity, but
require the coordination of many parties. These parties can be known and well-established
(in the permissioned setting), or pseudononymous (in the permissionless setting).

Blockchains and decentralized systems in general, have shown us that these systems have
the potential to minimize trust and provide us with unparalleled integrity and availability,
even in a highly adversarial environment with minimal trust assumptions. As a motivating
example, the Bitcoin blockchain has been running (almost) non-stop for the last fifteen years,
while maintaining an alternative financial system valued at more than a trillion dollars. This
is despite the fact that there are no trust assumptions in regards to node operators, and in
fact, it is assumed that if it is in the operators’ best interest to cheat – they will.

A second emerging trend is that of Large Language Models (LLMs) that are trained over
the entire internet, and which users can interact with using natural language. These systems
are quickly changing the way we use technology, but also pose grave questions regarding
our own data privacy and safety. To counter this, Decentralized Physical Infrastructure
Networks (DePIN) promise to crowd-source the development and access to LLMs.

All of these decentralized systems suffer from the same problem - they lack data confi-
dentiality. In this thesis, I attempted to tackle this problem head on from several different
angles. First, in Chapter 3 I defined an access-control method for decentralized systems,
using the same PKI mechanism that is already baked into all blockchains. Evolving from
purely read-or-write access control over blockchains, I moved to introduce the concept of
confidential smart contracts, which allows running arbitrary programs on a blockchain in a
way that provides both integrity and confidentiality. These two concepts work well together,
since they allow us to write programs that selectively reveal digested data to specific par-
ties, without unnecessarily giving full access to the underlying data. An example for this is
private voting, where specific parties should be allowed to vote, but all parties should not
be able to discern individual votes, and should only be able to view the final result.

Second, in Chapter 4, I introduced how confidential smart contracts can be viewed as a
real-world manifestation of the server-aided MPC model. In this model, we assume there
is a semi-honest and non-colluding server, which the (confidential) blockchain effectively
realizes. We then used this mechanism to build fair and robust server-aided Threshold

131

ECDSA protocols. Given the interesting results we obtained for Threshold ECDSA, it is
worthwhile asking whether confidential smart contracts can be beneficial in many other
server-aided MPC protocols. I leave exploring this avenue further for future work.

Third, in Chapter 5, I addressed the problem of building a scalable and private ledger
that allows users to transact privately. Our approach is specifically targeted to the use case of
a CBDC, which is gaining popularity, but raises significant privacy concerns. Perhaps more
importantly, we were able to show that building a private ledger system in the account-model
is feasible, at least with a small number of servers. Because the system uses MPC throughout,
it allows us to add arbitrary functionality such as auditing against illicit activity. This is
in contrast to systems based on zero-knowledge and inclusion proofs (e.g., [12]). While this
work scales very well to many users in the three-server setting, extending it to more servers
is an important future endeavor. Additionally, extending our work to the publicly-verifiable
model, which is common in blockchains, would also be significant. This can likely be done
with publicly-auditable MPC techniques such as [97].

Through the exploration of Chapter 5, we have also developed a new three-party (verifi-
able) DPF secure against a single corruption. We have shown for the first time that these
DPFs are asymptotically (and concretely) as efficient as their two-party counterpart of [20].
While this has been hypothesized, previous works such as [196], were significantly less effi-
cient both asymptotically and in practice. We also showed that honest-majority DPFs are
interesting for efficient ORAM and DORAM applications. Solving a similar problem for
honest-majority DPFs with more than three parties remains an open question, and the best
techniques still require keys of size O(

√
n), or at best O(n

1
4) [196], but the latter are not

applicable to our efficient (D)ORAM schemes.
Finally, in Chapter 6, I have shown how LLMs in the RAG setting can protect the privacy

of a user’s query, as well as a private retrieval database. Prior to our work, all others have
focused on protecting user privacy in models without RAG.

7.1 Putting it All Together

To summarize, this thesis explored many different themes and components critical to adding
privacy to decentralized systems. While there are many ways to use each part of this work
individually or in some combination, it is useful to conclude by showing a hypothetical
example where all of these pieces come together. Ideally, this hypothetical system can be
viewed as a concrete way to build a privacy-first decentralized system, or at the very least,
inspire future work.

In order to illustrate, we will focus on a hypothetical decentralized healthcare system.
Healthcare systems and databases today are fragmented across many local and siloed sys-
tems, so combining all of these into a single (decentralized) system accessible by both patients
and providers is meaningful. However, this naturally raises a lot of privacy, security and reg-
ulatory concerns. Our goal here is not to solve all of these one-by-one, but rather to show the
potential of the tools developed throughout this work in addressing some of these challenges.

Our imagined healthcare system consists of several components, all of which are run by
a set of operators. The specific components of the system are:

• A confidential smart contracts blockchain. This blockchain is used to authenticate

132

against the healthcare system, verify access control, and pay operators (by the users)
for services.

• An open-source LLM1 deployed on the operators. Note that the operators can perform
secure inference using a technique like in [179]. This is out of scope and we treat it as
a black box.

• A secret-shared vector DB containing medical information, coming from a multitude
of sources (hospitals, healthcare providers, etc.). For our use-case, you can imagine
this vector DB includes all medical records, personnel reports, patient surveys, etc.,
relevant to the patients and providers who have been on-boarded into the platform.

To further illustrate, Figure 7.1 shows a patient querying the system. In this example,
the patient asks: How do my { blood test results } compare with other diabetic patients?.
Before the system proceeds to serve the patient’s query, it needs to verify she is indeed a
registered patient. This is where the work in Chapters 3 and 4 come into play. The patient
co-signs her query with the blockchain itself (which holds the second share of the key), and
the blockchain then proceeds to ensure that the combined sig := sig1 + sig2 correspond to
an authorized patient.

In this case, the system proceeds to respond to the query. We assume that the query is
secret-shared between the operators, and retrieval is done privately as in Chapter 6. The
most relevant documents are retrieved, also in secret-shared form, from the secret-shared
medical vector database. They are then appended to the original query, and an augmented
query is fed into the LLM, which runs a secure inference protocol (not developed as part
of this thesis, but solutions exist in the literature [179]). Finally, the fee provided by the
patient is paid to the operators for all their work, and the answer is sent to the patient.

We note that the hypothesized system still leaks some metadata. For example, a patient
asking multiple questions will be linked to the same identity. To an extent, the work in
Chapter 5 addresses that, as it tackles the problem of hiding meta-data. It would therefore
allow a patient to privately pay a fee to the operators, as well as to privately authenticate
as a real patient, without linking themselves to any specific patient.

But, as that scheme operates differently than your run-of-the-mill blockchain, it does
not compose with the proposed systems in Chapters 3 and 4. If hiding meta-data is a
requirement, some more work is needed in order to combine these ideas together.

While the decentralized medical system discussed is theoretical, it effectively highlights
the critical importance of privacy in decentralized systems and demonstrates how the var-
ious components developed throughout this thesis interconnect. By employing advanced
techniques such as confidential smart contracts, server-aided multi-party computation, and
privacy-preserving data retrieval, we can create systems that not only maintain the integrity
and availability of user data but also protect the fundamental right to privacy in our dig-
ital era. As decentralized technologies progress, they possess the potential to reshape our
interaction with digital services, fostering a more secure and privacy-focused future. The
advancements presented in this thesis provide a solid foundation for ongoing research and in-
novation, encouraging the community to continue pushing boundaries. Ultimately, this work
aspires to contribute to a digital ecosystem where privacy is integral, not an afterthought.

1Many open-source LLM models, such as LLama 2 and 3 are available through https://huggingface.co.

133

Figure 7.1: An illustrative decentralized medical system combining elements from this thesis
to solve privacy

134

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, vol. 1,
no. 2012, p. 28, 2008.

[2] V. Buterin, Ethereum: A next-generation smart contract and decentralized application
platform, https://ethereum.org/en/whitepaper/, 2014.

[3] G. Zyskind, O. Nathan, et al., “Decentralizing privacy: Using blockchain to protect
personal data,” in 2015 IEEE security and privacy workshops, IEEE, 2015, pp. 180–
184.

[4] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation plat-
form with guaranteed privacy,” arXiv preprint arXiv:1506.03471, 2015.

[5] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan, “Sok: Tee-assisted confidential
smart contract,” arXiv preprint arXiv:2203.08548, 2022.

[6] S. Dolev and Z. Wang, “Sodsmpc: Fsm based anonymous and private quantum-safe
smart contracts,” in 2020 IEEE 19th International Symposium on Network Computing
and Applications (NCA), IEEE, 2020, pp. 1–10.

[7] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts,” in 2016 IEEE sym-
posium on security and privacy (SP), IEEE, 2016, pp. 839–858.

[8] A. Banerjee, M. Clear, and H. Tewari, “Zkhawk: Practical private smart contracts
from mpc-based hawk,” in 2021 3rd Conference on Blockchain Research & Applica-
tions for Innovative Networks and Services (BRAINS), IEEE, 2021, pp. 245–248.

[9] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller,
and D. Song, “Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), IEEE, 2019, pp. 185–200.

[10] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar: Private smart con-
tracts by homomorphic encryption and zero-knowledge proofs,” in 2022 IEEE Sym-
posium on Security and Privacy (SP), IEEE, 2022, pp. 179–197.

[11] R. Solomon and G. Almashaqbeh, “Smartfhe: Privacy-preserving smart contracts from
fully homomorphic encryption,” Cryptology ePrint Archive, 2021.

[12] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE sympo-
sium on security and privacy, IEEE, 2014, pp. 459–474.

135

https://ethereum.org/en/whitepaper/

[13] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in Advances in
CryptologyâEUROCRYPTâ91, Springer, 1991, pp. 522–526.

[14] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme and its applica-
tion to electronic,” in CRYPTO, vol. 1666, Springer, 1999, pp. 148–164.

[15] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,” in Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
2012, pp. 784–796.

[16] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game, or a
completeness theorem for protocols with honest majority,” in Providing Sound Foun-
dations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, 2019,
pp. 307–328.

[17] Y. Lindell, “How to simulate it–a tutorial on the simulation proof technique,” Tutorials
on the Foundations of Cryptography: Dedicated to Oded Goldreich, pp. 277–346, 2017.

[18] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” in Advances in CryptologyâCRYPTOâ84, Springer, 1985, pp. 10–18.

[19] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
EUROCRYPT, pp. 223–238, 1999.

[20] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing: Improvements and ex-
tensions,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1292–1303.

[21] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,”
Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981, 1998.

[22] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp. 431–473, 1996.

[23] S. Lu and R. Ostrovsky, “Distributed oblivious ram for secure two-party computa-
tion,” in Theory of Cryptography Conference, Springer, 2013, pp. 377–396.

[24] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of the goldreich-ostrovsky
lower bound,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 850–861.

[25] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and J. Katz,
“Revisiting square-root oram: Efficient random access in multi-party computation,”
in 2016 IEEE Symposium on Security and Privacy (SP), IEEE, 2016, pp. 218–234.

[26] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and S.
Devadas, “Path oram: An extremely simple oblivious ram protocol,” Journal of the
ACM (JACM), vol. 65, no. 4, pp. 1–26, 2018.

[27] N. Jean-Louis, Y. Li, Y. Ji, H. Malvai, T. Yurek, S. Bellemare, and A. Miller, “Sgx-
onerated: Finding (and partially fixing) privacy flaws in tee-based smart contract
platforms without breaking the tee,” Cryptology ePrint Archive, 2023.

[28] SCRT, The secret network graypaper, https://scrt.network/graypaper, 2021.

136

https://scrt.network/graypaper

[29] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and trusted
computing: Problems, pitfalls, and a solution for hyperledger fabric,” arXiv preprint
arXiv:1805.08541, 2018.

[30] H. Yin, S. Zhou, and J. Jiang, Phala network: A confidential smart contract network
based on polkadot, 2019.

[31] G. Zyskind, “Efficient secure computation enabled by blockchain technology,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2016.

[32] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system
based on the xor metric,” in Peer-to-Peer Systems, Springer, 2002, pp. 53–65.

[33] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature algo-
rithm (ecdsa),” International Journal of Information Security, vol. 1, no. 1, pp. 36–63,
2001.

[34] F. Information and P. Standards, “FIPS PUB 180-4 Secure Hash Standard (SHS),”
no. March, 2012.

[35] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[36] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing, ACM, 1988, pp. 1–10.

[37] C. Gentry, “Fully homomorphic encryption using ideal lattices.,” in STOC, vol. 9,
2009, pp. 169–178.

[38] Z. AI, Fhevm whitepaper, https://github.com/zama-ai/fhevm/blob/main/fhevm-
whitepaper.pdf, Accessed: 27-10-2023, 2023.

[39] J. Poon and V. Buterin, Plasma: Scalable autonomous smart contracts, https : / /
plasma.io/plasma.pdf, Accessed: dd-mm-yyyy, 2017.

[40] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, “Arbitrum:
Scalable, private smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18), Accessed: dd-mm-yyyy, USENIX Association, 2018, pp. 1353–1370. url:
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner.

[41] O. PBC, Optimism: Optimistic ethereum, https://optimism.io/, Accessed: 27-10-2023,
2022.

[42] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable fully homomorphic encryp-
tion,” arXiv preprint arXiv:2301.07041, 2023.

[43] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing
intel secrets from sgx enclaves via speculative execution,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2019, pp. 142–157.

[44] S. Van Schaik, A. Kwong, D. Genkin, and Y. Yarom, Sgaxe: How sgx fails in practice,
2020. url: https://sgaxe.com/files/SGAxe.pdf.

137

https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://optimism.io/
https://sgaxe.com/files/SGAxe.pdf

[45] P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and M. Schwarz, “{Æpic}
leak: Architecturally leaking uninitialized data from the microarchitecture,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3917–3934.

[46] C. Baum, J. H.-y. Chiang, B. David, and T. K. Frederiksen, “Eagle: Efficient privacy
preserving smart contracts,” Cryptology ePrint Archive, 2022.

[47] C. Baum, B. David, and R. Dowsley, “Insured mpc: Efficient secure computation
with financial penalties,” in Financial Cryptography and Data Security: 24th Interna-
tional Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised
Selected Papers 24, Springer, 2020, pp. 404–420.

[48] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yak-
oubov, “Yoso: You only speak once: Secure mpc with stateless ephemeral roles,” in
Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II,
Springer, 2021, pp. 64–93.

[49] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” Proceed-
ings of the nineteenth annual ACM symposium on Theory of computing, pp. 218–229,
1987.

[50] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing, ACM, 1988, pp. 1–10.

[51] A. C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), IEEE, 1986, pp. 162–167.

[52] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical verifi-
able computation,” in 2013 IEEE Symposium on Security and Privacy, IEEE, 2013,
pp. 238–252.

[53] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe: Enabling de-
centralized private computation,” in 2020 IEEE Symposium on Security and Privacy
(SP), IEEE, 2020, pp. 947–964.

[54] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards privacy in a smart
contract world,” in International Conference on Financial Cryptography and Data
Security, Springer, 2020, pp. 423–443.

[55] A. S. Inc., Aleo: A zero-knowledge operating system, https ://aleo .org/, Accessed:
dd-mm-yyyy, 2022.

[56] Z. J. Williamson, “The aztec protocol,” URL: https://github. com/AztecProtocol/AZTEC,
2018.

[57] W. Dai, “Pesca: A privacy-enhancing smart-contract architecture,” Cryptology ePrint
Archive, 2022.

[58] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, and M. Vechev, “Zkay:
Specifying and enforcing data privacy in smart contracts,” in Proceedings of the 2019
ACM SIGSAC conference on computer and communications security, 2019, pp. 1759–
1776.

138

https://aleo.org/

[59] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable zero knowledge with
no trusted setup,” in Advances in Cryptology–CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Pro-
ceedings, Part III 39, Springer, 2019, pp. 701–732.

[60] V. Buterin, Zkevm and zkrollup, https://vitalik.ca/general/2022/08/04/zkevm.html,
Accessed: dd-mm-yyyy, 2022.

[61] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”
Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

[62] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast fully homo-
morphic encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91,
2020.

[63] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of computation us-
ing multiple servers,” in Proceedings of the 18th ACM conference on Computer and
communications security, 2011, pp. 445–454.

[64] R. Canetti, B. Riva, and G. N. Rothblum, “Refereed delegation of computation,”
Information and Computation, vol. 226, pp. 16–36, 2013.

[65] M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. P. Smart,
S. Tap, and M. Walter, “Noah’s ark: Efficient threshold-fhe using noise flooding,”
Cryptology ePrint Archive, 2023.

[66] U. Kirstein, S. Grossman, M. Mirkin, J. Wilcox, I. Eyal, and M. Sagiv, “Phoenix: A
formally verified regenerating vault,” arXiv preprint arXiv:2106.01240, 2021.

[67] S. Sharma, Crypto custodian prime trust frozen amid massive fund deficits and miss-
ing keys. url: https://beincrypto.com/crypto-custodian-prime-trust-missing-keys.

[68] R. Brandom, Impersonation attack on myetherwallet. url: https://www.theverge.
com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum.

[69] B. Karmakar, N. Koti, A. Patra, S. Patranabis, P. Paul, and D. Ravi, “Sfasterisk:
Super-fast MPC with a friend,” IACR Cryptol. ePrint Arch., p. 1098, 2023.

[70] O. Nevo, N. Trieu, and A. Yanai, “Simple, fast malicious multiparty private set inter-
section,” in CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Y. Kim,
J. Kim, G. Vigna, and E. Shi, Eds., ACM, 2021, pp. 1151–1165.

[71] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song,
“Churp: Dynamic-committee proactive secret sharing,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 2369–
2386.

[72] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Storing and retrieving
secrets on a blockchain,” in Public-Key Cryptography–PKC 2022: 25th IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,
March 8–11, 2022, Proceedings, Part I, Springer, 2022, pp. 252–282.

139

https://vitalik.ca/general/2022/08/04/zkevm.html
https://beincrypto.com/crypto-custodian-prime-trust-missing-keys
https://www.theverge.com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum
https://www.theverge.com/2018/4/24/17275982/myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum

[73] V. Goyal, E. Masserova, B. Parno, and Y. Song, “Blockchains enable non-interactive
mpc,” in Theory of Cryptography: 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8–11, 2021, Proceedings, Part II 19, Springer, 2021, pp. 162–
193.

[74] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers, “Fairness in an unfair
world: Fair multiparty computation from public bulletin boards,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 719–728.

[75] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast trustless
setup,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, 2018, pp. 1179–1194.

[76] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, 2018, pp. 1837–
1854.

[77] D. Boneh, R. Gennaro, and S. Goldfeder, “Using level-1 homomorphic encryption to
improve threshold dsa signatures for bitcoin wallet security,” in Progress in Cryptology–
LATINCRYPT 2017: 5th International Conference on Cryptology and Information
Security in Latin America, Havana, Cuba, September 20–22, 2017, Revised Selected
Papers, Springer, 2019, pp. 352–377.

[78] R. Gennaro and S. Goldfeder, “One round threshold ecdsa with identifiable abort,”
Cryptology ePrint Archive, 2020.

[79] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled, “Uc non-
interactive, proactive, threshold ecdsa with identifiable aborts,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, 2020,
pp. 1769–1787.

[80] Y. Lindell, “Fast secure two-party ECDSA signing,” in CRYPTO, 2017, ser. Lecture
Notes in Computer Science, vol. 10402, pp. 613–644.

[81] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, “Efficient online-friendly two-party
ecdsa signature,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021, pp. 558–573.

[82] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker, “Two-party
ecdsa from hash proof systems and efficient instantiations,” in Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part III 39, Springer, 2019, pp. 191–
221.

[83] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker, “Bandwidth-
efficient threshold ec-dsa,” in Public-Key Cryptography–PKC 2020: 23rd IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography, Edinburgh,
UK, May 4–7, 2020, Proceedings, Part II, Springer, 2020, pp. 266–296.

140

[84] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker, “Bandwidth-
efficient threshold ec-dsa revisited: Online/offline extensions, identifiable aborts proac-
tive and adaptive security,” Theoretical Computer Science, vol. 939, pp. 78–104, 2023.

[85] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Secure two-party threshold ecdsa from
ecdsa assumptions,” in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,
2018, pp. 980–997.

[86] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Threshold ecdsa from ecdsa assump-
tions: The multiparty case,” in 2019 IEEE Symposium on Security and Privacy (SP),
IEEE, 2019, pp. 1051–1066.

[87] A. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman, “Securing dnssec keys
via threshold ecdsa from generic mpc,” in Computer Security–ESORICS 2020: 25th
European Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14–18, 2020, Proceedings, Part II 25, Springer, 2020, pp. 654–673.

[88] D. Abram, A. Nof, C. Orlandi, P. Scholl, and O. Shlomovits, “Low-bandwidth thresh-
old ecdsa via pseudorandom correlation generators,” in 2022 IEEE Symposium on
Security and Privacy (SP), IEEE, 2022, pp. 2554–2572.

[89] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergaard, “Fast
threshold ecdsa with honest majority,” Journal of Computer Security, vol. 30, no. 1,
pp. 167–196, 2022.

[90] R. Cleve, “Limits on the security of coin flips when half the processors are faulty
(extended abstract),” in STOC, J. Hartmanis, Ed., 1986.

[91] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold dss signa-
tures,” in Advances in CryptologyâEUROCRYPTâ96: International Conference on
the Theory and Application of Cryptographic Techniques Saragossa, Spain, May 12–
16, 1996 Proceedings 15, Springer, 1996, pp. 354–371.

[92] A. Gągol, J. Kula, D. Straszak, and M. Świętek, “Threshold ecdsa for decentralized
asset custody,” Cryptology ePrint Archive, 2020.

[93] H. W. Wong, J. P. Ma, H. H. Yin, and S. S. Chow, “Real threshold ecdsa,”

[94] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair protocols,” in Advances
in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part II 34, Springer, 2014, pp. 421–439.

[95] R. Kumaresan and I. Bentov, “Amortizing secure computation with penalties,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 418–429.

[96] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan, “Improvements to secure
computation with penalties,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 406–417.

[97] C. Baum, I. Damgård, and C. Orlandi, “Publicly auditable secure multi-party com-
putation,” in Security and Cryptography for Networks: 9th International Conference,
SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings 9, Springer, 2014, pp. 175–
196.

141

[98] C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez, “Efficient constant-round mpc
with identifiable abort and public verifiability,” in Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17–21, 2020, Proceedings, Part II, Springer, 2020, pp. 562–
592.

[99] M. Rivinius, P. Reisert, D. Rausch, and R. Küsters, “Publicly accountable robust
multi-party computation,” in 2022 IEEE Symposium on Security and Privacy (SP),
IEEE, 2022, pp. 2430–2449.

[100] A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk, “Fluid mpc: Se-
cure multiparty computation with dynamic participants,” in Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part II 41, Springer, 2021, pp. 94–
123.

[101] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller, “Honeybad-
germpc and asynchromix: Practical asynchronous mpc and its application to anony-
mous communication,” in Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, 2019, pp. 887–903.

[102] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin,
and L. Reyzin, “Can a public blockchain keep a secret?” In Theory of Cryptogra-
phy: 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19,
2020, Proceedings, Part I 18, Springer, 2020, pp. 260–290.

[103] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra: Dynamic proactive
secret sharing for confidential bft services,” in 2022 IEEE symposium on security and
privacy (SP), IEEE, 2022, pp. 1335–1353.

[104] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren, “Practical
asynchronous distributed key generation,” in 2022 IEEE Symposium on Security and
Privacy (SP), IEEE, 2022, pp. 2518–2534.

[105] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and A.-R.
Sadeghi, “Pose: Practical off-chain smart contract execution,” arXiv preprint arXiv:2210.07110,
2022.

[106] D. Demirag and J. Clark, “Absentia: Secure multiparty computation on ethereum,”
in Financial Cryptography and Data Security. FC 2021 International Workshops:
CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Se-
lected Papers 25, Springer, 2021, pp. 381–396.

[107] A. L. Xiong, B. Chen, Z. Zhang, B. Bünz, B. Fisch, F. Krell, and P. Camacho, “Veri-
zexe: Decentralized private computation with universal setup,” Cryptology ePrint
Archive, 2022.

[108] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch, “Teechain: A
secure payment network with asynchronous blockchain access,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, 2019, pp. 63–79.

142

[109] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels, “Tesseract:
Real-time cryptocurrency exchange using trusted hardware,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1521–1538.

[110] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An authenti-
cated data feed for smart contracts,” in Proceedings of the 2016 aCM sIGSAC con-
ference on computer and communications security, 2016, pp. 270–282.

[111] S. Steffen, B. Bichsel, and M. Vechev, “Zapper: Smart contracts with data and identity
privacy,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 2735–2749.

[112] C. Blokh, N. Makriyannis, and U. Peled, “Efficient asymmetric threshold ECDSA for
mpc-based cold storage,” IACR Cryptol. ePrint Arch., p. 1296, 2022.

[113] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the
intel SGX kingdom with transient out-of-order execution,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, W.
Enck and A. P. Felt, Eds., USENIX Association, 2018, pp. 991–1008. url: https :
//www.usenix.org/conference/usenixsecurity18/presentation/bulck.

[114] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, C. Garman, D. Genkin,
A. Miller, E. Ronen, and Y. Yarom, Sok: Sgx. fail: How stuff get exposed, 2022.

[115] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of blockchains,” in
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, ACM,
2019, pp. 49–61.

[116] N. Gilboa and Y. Ishai, “Distributed point functions and their applications,” in Ad-
vances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings 33, Springer, 2014, pp. 640–658.

[117] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Annual international
conference on the theory and applications of cryptographic techniques, Springer, 2015,
pp. 337–367.

[118] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable computation of
aggregate statistics,” in 14th USENIX symposium on networked systems design and
implementation (NSDI 17), 2017, pp. 259–282.

[119] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai, “Lightweight tech-
niques for private heavy hitters,” in 2021 IEEE Symposium on Security and Privacy
(SP), IEEE, 2021, pp. 762–776.

[120] Z. Newman, S. Servan-Schreiber, and S. Devadas, “Spectrum: High-bandwidth anony-
mous broadcast with malicious security.,” IACR Cryptol. ePrint Arch., vol. 2021,
p. 325, 2021.

143

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[121] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anonymous messaging
system handling millions of users,” in 2015 IEEE Symposium on Security and Privacy,
IEEE, 2015, pp. 321–338.

[122] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. Bach, “Ariann: Low-interaction privacy-
preserving deep learning via function secret sharing,” arXiv preprint arXiv:2006.04593,
2020.

[123] G. Kaissis, A. Ziller, J. Passerat-Palmbach, T. Ryffel, D. Usynin, A. Trask, I. Lima Jr,
J. Mancuso, F. Jungmann, M.-M. Steinborn, et al., “End-to-end privacy preserving
deep learning on multi-institutional medical imaging,” Nature Machine Intelligence,
vol. 3, no. 6, pp. 473–484, 2021.

[124] S. Servan-Schreiber, S. Langowski, and S. Devadas, “Private approximate nearest
neighbor search with sublinear communication,” in 2022 IEEE Symposium on Security
and Privacy (SP), IEEE, 2022, pp. 911–929.

[125] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryp-
tographic inference system for neural networks,” in Proceedings of the 2020 Workshop
on Privacy-Preserving Machine Learning in Practice, 2020, pp. 27–30.

[126] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song, “Epione: Lightweight contact
tracing with strong privacy,” arXiv preprint arXiv:2004.13293, 2020.

[127] A. Vadapalli, R. Henry, and I. Goldberg, “Duoram: A bandwidth-efficient distributed
oram for 2-and 3-party computation,” in 32nd USENIX Security Symposium, 2023.

[128] S. Sasy, A. Vadapalli, and I. Goldberg, “Prac: Round-efficient 3-party mpc for dy-
namic data structures,” Cryptology ePrint Archive, 2023.

[129] J. Doerner and A. Shelat, “Scaling oram for secure computation,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 523–535.

[130] P. Bunn, J. Katz, E. Kushilevitz, and R. Ostrovsky, “Efficient 3-party distributed
oram,” in Security and Cryptography for Networks: 12th International Conference,
SCN 2020, Amalfi, Italy, September 14–16, 2020, Proceedings 12, Springer, 2020,
pp. 215–232.

[131] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus: Confidential
distributed ledger transactions via pvorm,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 701–717.

[132] N. Narula, W. Vasquez, and M. Virza, “{Zkledger}:{privacy-preserving} auditing for
distributed ledgers,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 65–80.

[133] P. Chatzigiannis and F. Baldimtsi, “Miniledger: Compact-sized anonymous and au-
ditable distributed payments,” in European Symposium on Research in Computer
Security, Springer, 2021, pp. 407–429.

144

[134] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new design for
anonymous cryptocurrencies,” in Advances in Cryptology–ASIACRYPT 2019: 25th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I 25, Springer,
2019, pp. 649–678.

[135] B. E. Diamond, “Many-out-of-many proofs and applications to anonymous zether,”
in 2021 IEEE Symposium on Security and Privacy (SP), IEEE, 2021, pp. 1800–1817.

[136] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed
e-cash from bitcoin,” in 2013 IEEE Symposium on Security and Privacy, IEEE, 2013,
pp. 397–411.

[137] A. Tomescu, A. Bhat, B. Applebaum, I. Abraham, G. Gueta, B. Pinkas, and A. Yanai,
“Utt: Decentralized ecash with accountable privacy,” Cryptology ePrint Archive, 2022.

[138] E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, A. Filios, L. Funaro,
Y. Manevich, S. Natarajan, and M. Sethi, “A framework for resilient, transparent,
high-throughput, privacy-enabled central bank digital currencies,” Cryptology ePrint
Archive, 2023.

[139] C. W. M. Tikvah, “A privacy-preserving central bank ledger for central bank digital
currency,” Cryptology ePrint Archive, 2023.

[140] J. Lovejoy, A. Brownworth, M. Virza, and N. Narula, “Parsec: Executing smart con-
tracts in parallel,”

[141] J. Lovejoy, M. Virza, C. Fields, K. Karwaski, A. Brownworth, and N. Narula, “Hamil-
ton: A {high-performance} transaction processor for central bank digital curren-
cies,” in 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 901–915.

[142] M. K. BRUNNERMEIER and J.-P. Landau, “The digital euro: Policy implications
and perspectives,” 2022.

[143] J. Xu, “Developments and implications of central bank digital currency: The case of
china e-cny,” Asian Economic Policy Review, vol. 17, no. 2, pp. 235–250, 2022.

[144] P. K. Ozili, “Central bank digital currency in nigeria: Opportunities and risks,” in The
new digital era: digitalisation, emerging risks and opportunities, Emerald Publishing
Limited, 2022, pp. 125–133.

[145] K. Wenker, “Retail central bank digital currencies (cbdc), disintermediation and fi-
nancial privacy: The case of the bahamian sand dollar,” FinTech, vol. 1, no. 4, pp. 345–
361, 2022.

[146] T. Ahnert, P. Hoffmann, and C. Monnet, “The digital economy, privacy, and cbdc,”
2022.

[147] A. Vadapalli, F. Bayatbabolghani, and R. Henry, “You may also like... privacy: Rec-
ommendation systems meet pir.,” Proc. Priv. Enhancing Technol., vol. 2021, no. 4,
pp. 30–53, 2021.

145

[148] P. Bunn, E. Kushilevitz, and R. Ostrovsky, “Cnf-fss and its applications,” in IACR
International Conference on Public-Key Cryptography, Springer, 2022, pp. 283–314.

[149] E. Dauterman, M. Rathee, R. A. Popa, and I. Stoica, “Waldo: A private time-series
database from function secret sharing,” in 2022 IEEE Symposium on Security and
Privacy (SP), IEEE, 2022, pp. 2450–2468.

[150] I. Abraham, B. Pinkas, and A. Yanai, “Blinder–scalable, robust anonymous committed
broadcast,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1233–1252.

[151] L. de Castro and A. Polychroniadou, “Lightweight, maliciously secure verifiable func-
tion secret sharing,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Springer, 2022, pp. 150–179.

[152] S. Servan-Schreiber, S. Beyzerov, E. Yablon, and H. Park, “Private access control for
function secret sharing,” in 2023 IEEE Symposium on Security and Privacy (SP),
IEEE, 2023, pp. 809–828.

[153] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J.
Hennessey, A. Miller, A. Narayanan, et al., “An empirical analysis of traceability in
the monero blockchain,” arXiv preprint arXiv:1704.04299, 2017.

[154] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A cryptographic
investigation of mimblewimble,” in Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38, Springer,
2019, pp. 657–689.

[155] M. Campanelli and M. Hall-Andersen, “Veksel: Simple, efficient, anonymous payments
with large anonymity sets from well-studied assumptions,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security, 2022, pp. 652–
666.

[156] A. Ranchal-Pedrosa and V. Gramoli, “Platypus: A partially synchronous offchain
protocol for blockchains,” arXiv preprint arXiv:1907.03730, 2019.

[157] Y. Li, K. Soska, Z. Huang, S. Bellemare, M. Quintyne-Collins, L. Wang, X. Liu, D.
Song, and A. Miller, “Ratel: Mpc-extensions for smart contracts,” Cryptology ePrint
Archive, 2023.

[158] V. Madathil and A. Scafuro, “Prifhete: Achieving full-privacy in account-based cryp-
tocurrencies is possible,” Cryptology ePrint Archive, 2023.

[159] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof,
“Fast large-scale honest-majority MPC for malicious adversaries,” in CRYPTO, H.
Shacham and A. Boldyreva, Eds., 2018.

[160] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion, pseudorandom secret-sharing
and applications to secure computation,” in Theory of Cryptography: Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005.
Proceedings 2, Springer, 2005, pp. 342–362.

146

[161] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure multiparty com-
putation,” in Annual International Cryptology Conference, Springer, 2007, pp. 572–
590.

[162] T. Nishide and K. Ohta, “Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol,” in Public Key Cryptography–PKC 2007:
10th International Conference on Practice and Theory in Public-Key Cryptography
Beijing, China, April 16-20, 2007. Proceedings 10, Springer, 2007, pp. 343–360.

[163] O. Catrina and S. De Hoogh, “Improved primitives for secure multiparty integer
computation,” in Security and Cryptography for Networks: 7th International Confer-
ence, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings 7, Springer, 2010,
pp. 182–199.

[164] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and exponen-
tiation,” in Theory of Cryptography Conference, Springer, 2006, pp. 285–304.

[165] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, “Rabbit: Efficient comparison for
secure multi-party computation,” in International Conference on Financial Cryptog-
raphy and Data Security, Springer, 2021, pp. 249–270.

[166] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved primitives
for mpc over mixed arithmetic-binary circuits,” in Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17–21, 2020, Proceedings, Part II 40, Springer, 2020, pp. 823–
852.

[167] G. Zyskind, T. South, and A. Pentland, “Don’t forget private retrieval: Distributed
private similarity search for large language models,” arXiv preprint arXiv:2311.12955,
2023.

[168] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: Breaking the spdz limits,” in Com-
puter Security–ESORICS 2013: 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings 18, Springer, 2013, pp. 1–
18.

[169] D. Kales, O. Omolola, and S. Ramacher, “Revisiting user privacy for certificate trans-
parency,” in 2019 IEEE European Symposium on Security and Privacy (EuroS&P),
IEEE, 2019, pp. 432–447.

[170] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models
are zero-shot reasoners,” ArXiv, 2022.

[171] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” in
Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin, Eds., Curran Associates, Inc., 2020, pp. 1877–1901.

[172] T. Eloundou, S. Manning, P. Mishkin, and D. Rock, “Gpts are gpts: An early look at
the labor market impact potential of large language models,” ArXiv, 2023.

[173] OpenAI, “Gpt-4 technical report,” ArXiv, 2023.

147

[174] P. Lewis, E. Perez, A. Piktus, et al., “Retrieval-augmented generation for knowledge-
intensive nlp tasks,” ArXiv, 2020.

[175] V. Karpukhin, B. OÄuz, S. Min, P. Lewis, L. Y. Wu, S. Edunov, D. Chen, and W.-t.
Yih, “Dense passage retrieval for open-domain question answering,” in Conference on
Empirical Methods in Natural Language Processing, 2020.

[176] Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han, and W. Chen, “Generation-augmented
retrieval for open-domain question answering,” in Annual Meeting of the Association
for Computational Linguistics, 2020.

[177] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems in fed-
erated learning,” Found. Trends Mach. Learn., vol. 14, pp. 1–210, 2019.

[178] D. Li, R. Shao, H. Wang, H. Guo, E. P. Xing, and H. Zhang, “Mpcformer: Fast,
performant and private transformer inference with mpc,” ArXiv, 2022.

[179] Y. Dong, W.-j. Lu, Y. Zheng, H. Wu, D. Zhao, J. Tan, Z. Huang, C. Hong, T. Wei,
and W.-C. Cheng, “Puma: Secure inference of llama-7b in five minutes,” ArXiv, 2023.

[180] T. South, G. Zuskind, R. Mahari, and T. Hardjono, “Secure community transformers:
Private pooled data for llms,” 2023.

[181] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and
H. Haddadi, “Darknetz: Towards model privacy at the edge using trusted execution
environments,” Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services, 2020.

[182] Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma, “Privformer: Privacy-preserving
transformer with mpc,” in 2023 IEEE 8th European Symposium on Security and Pri-
vacy (EuroS&P), IEEE, 2023, pp. 392–410.

[183] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou, J. Li, and F.
Wei, “The-x: Privacy-preserving transformer inference with homomorphic encryp-
tion,” arXiv preprint arXiv:2206.00216, 2022.

[184] K. Gupta, N. Jawalkar, A. Mukherjee, N. Chandran, D. Gupta, A. Panwar, and R.
Sharma, “Sigma: Secure gpt inference with function secret sharing,” Cryptology ePrint
Archive, 2023.

[185] S. Arora and C. RÃ©, Can foundation models help us achieve perfect secrecy? 2022.

[186] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing general access
structure,” Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science), vol. 72, no. 9, pp. 56–64, 1989.

[187] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushan-
far, “Chameleon: A hybrid secure computation framework for machine learning ap-
plications,” in Proceedings of the 2018 on Asia conference on computer and commu-
nications security, 2018, pp. 707–721.

[188] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der
Maaten, “Crypten: Secure multi-party computation meets machine learning,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 4961–4973, 2021.

148

[189] E. Orsini, N. P. Smart, and F. Vercauteren, “Overdrive2k: Efficient secure mpc over
from somewhat homomorphic encryption,” in Cryptographersâ Track at the RSA Con-
ference, Springer, 2020, pp. 254–283.

[190] O. Catrina and A. Saxena, “Secure computation with fixed-point numbers,” in Fi-
nancial Cryptography and Data Security: 14th International Conference, FC 2010,
Tenerife, Canary Islands, January 25-28, 2010, Revised Selected Papers 14, Springer,
2010, pp. 35–50.

[191] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese
BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing, Association for Computational Linguistics, Nov. 2019.

[192] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and M. S. Ri-
azi, “{Sanns}: Scaling up secure approximate {k-nearest} neighbors search,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 2111–2128.

[193] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE
Transactions on Big Data, vol. 7, pp. 535–547, 2017.

[194] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor
search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 117–
128, 2011.

[195] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych, “BEIR: A heteroge-
neous benchmark for zero-shot evaluation of information retrieval models,” in Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[196] P. Bunn, E. Kushilevitz, and R. Ostrovsky, “Cnf-fss and its applications,” in IACR
International Conference on Public-Key Cryptography, Springer, 2022, pp. 283–314.

149

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Questions

	2 Common Preliminaries
	2.1 Notation
	2.2 Secret Sharing
	2.2.1 Schoenmakers's Publicly Verifiable Random Sharing Scheme

	2.3 Secure Multi-Party Computation (MPC)
	2.4 Encryption and Signature Schemes
	2.4.1 El-Gamal Encryption Scheme
	2.4.2 The Paillier Encryption Scheme
	2.4.3 The ECDSA Scheme and Functionality

	2.5 Zero Knowledge Proof of Knowledge
	2.6 Distributed Point Functions (DPF)
	2.6.1 Private Information Retrieval (PIR)
	2.6.2 Private Information Writing (PIW)
	2.6.3 Oblivious RAM (ORAM)

	2.7 Blockchains
	2.7.1 Confidential Smart Contract Blockchains

	3 Decentralized Access-control and Confidential Smart Contracts
	3.1 Decentralized Access-Control
	3.1.1 Proposed Solution
	3.1.2 The Network Protocol
	3.1.3 Building Blocks
	3.1.4 Blockchain Protocols
	3.1.5 Privacy and Security Analysis
	3.1.6 Confidential Smart Contracts: From Storage to Processing
	3.1.7 Trust and Decision-Making in Blockchains

	3.2 FHE-Rollups: An EVM-compatiable Confidential Smart Contracts Platform
	3.2.1 Main contributions
	3.2.2 Design Goals and Security Model
	3.2.3 Related Work
	3.2.4 Layer-2 Rollups
	3.2.5 Fully Homomorphic Encryption (FHE)
	3.2.6 System Overview
	3.2.7 Threshold Services Network (TSN)
	3.2.8 Security
	3.2.9 Fraud Proofs
	3.2.10 Evaluation

	4 Unstoppable Wallets: Chain-assisted Threshold ECDSA and its Applications
	4.1 Revisiting the Server-aided Model of MPC
	4.2 Main contributions
	4.2.1 Related Work

	4.3 Threshold ECDSA Protocol
	4.3.1 Key Generation
	4.3.2 Signing Protocol

	4.4 Robust Threshold ECDSA
	4.5 A Solution for a Single User
	4.6 Security Proofs
	4.6.1 Proof of Theorem 4.3.1
	4.6.2 Proof of Theorem 4.4.1
	4.6.3 Proof of Theorem 4.5.1

	4.7 Applications
	4.7.1 Multisignature Wallet with Policy Checks
	4.7.2 Wallet Exchange

	4.8 Implementation and Evaluation
	4.8.1 Implementation Details
	4.8.2 Cryptographic Primitives on Chain
	4.8.3 Performance Evaluation
	4.8.4 Scalability across n and t

	5 High-throughput Three-Party DPF and its application to ORAM and Digital Currencies
	5.0.1 Main Contributions
	5.0.2 Related Work
	5.1 MPC Functionalities
	5.1.1 Overview
	5.1.2 Access Policy ORAM Functionality
	5.1.3 Sum-of-Products Functionalities
	5.1.4 Implementation of Known Functionalities

	5.2 (2,3)-Verifiable DPF
	5.2.1 Building Block: (2,2)-VDPF+
	5.2.2 Our (2,3)-VDPF Construction
	5.2.3 Security analysis
	5.2.4 (2,3)-VDPF with sublinear PRF calls

	5.3 ORAM with Policy
	5.3.1 Additional Functionalities

	5.4 Account-based Digital Currency
	5.4.1 Registration & Access Control for DPFs
	5.4.2 The CBDC Protocol

	5.5 Efficient, Malicious Dot-Product
	5.5.1 Updatable (2,3)-VDPF
	5.5.2 The Dot-Product Protocol

	5.6 Implementation, Evaluation and Applications
	5.6.1 DPFs
	5.6.2 Account-based Privacy-preserving Cryptocurrency and CBDCs
	5.6.3 Three-party Distributed ORAM (DORAM)

	6 Private Retrieval Augmented Generation (PRAG)
	6.1 Overview
	6.2 Exact Private Nearest Neighbors
	6.2.1 Distance calculations
	6.2.2 Fast secure dot product
	6.2.3 Relation to private information retrieval
	6.2.4 Exact top-k for retrieval

	6.3 Approximate Nearest Neighbors and Inverted Files (IVF)
	6.3.1 Efficient approximate vector nearest neighbor search in MPC
	6.3.2 Sublinear Communication Complexity
	6.3.3 Sacrificing Privacy for Speed in MPC IVF

	6.4 Implementation and Evaluation
	6.4.1 Exact Search
	6.4.2 Approximate Search

	7 Discussion, Conclusions and Future work
	7.1 Putting it All Together

	References

