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ABSTRACT

The asymptotic approximation of the electromagnetic

interference fringes due to a time-harmonic dipole source on top

of two-layer media is derived from integral representations of

the solutions. An introduction on past analysis and its limi-

tation is presented. The geometrical-optics approximation (GOA),
where the reflections from the subsurface layer are approximated

by a series of image-source contributions, 1s used throughout the

analyses. Difficulties are encountered in obtaining asymptotic

expansion of the integral representation of each term of the

GOA series using ordinary saddle-point analysis due to the pro-

ximity of algebraic singularities to the saddle-point. For

transverse electric (TE) waves, the singularity is a branch-point.

This difficulty is surmounted by three different approaches:

(1) numerical integration of each term in the GOA series, (2)

modified saddle-point method where the singularity is factored out

in the integrand to facilitate approximation of the integrand, and

(3) multiple-saddle-point method where the singularity is removed

by a transformation resulting in three saddle-points on the com-

plex plane. The first approach is numerical whereas the latter

two approaches are asymptotic-approximation analyses making use

of parabolic cylinder functions. All three approaches give con-

sistent results for TE waves. For transverse magnetic (TM) waves,

in addition to a branch-point singularity, there is a Sommer-

feld pole which can be near the saddle-point. The use of Gen-

eralized Weber's function results in a satisfactory asymptotic

approximation of the TM waves. Multiple-saddle-point method, used

in deriving an asymptotic expansion of an integral where an al-

gebraic branch-point of any fractional order is in the neighbor-

hood of a saddle-point, is also discussed.

Thesis Supervisor: Jin Au Kong

Title: Associate Professor of Electrical Engineering



Page 3

ACKNOWLEDGEMENT

I would like to thank Professor J. A. Kong for his

constant and careful guidance, advice and support without

which this research would not be possible.

I am indebted to Dr. L. Tsang for his timely suggest-

ions in our discussions which have helped me crystallize

my ideas on several occassions in this research, and to

Ms. Cindy Kopf for her excellent typing of this thesis.

A special word of thanks is due the Mathlab Group,

MIT Laboratory for Computer Science, for the use of the

Macsyma Consortium machine for some of my computations.

I also wish to express my gratitude to my family,

especially my parents and Chew Chin, for their unflagging

encouragement and moral support.

Finally, special mention must be made of my colleagues,

in particular Howard Dyckman, for rendering help in

inexpected quarters.



Page 4

TABLE OF CONTENTS

Page

TITLE PAGE —---—-

ABSTRACT —m mmmmmm mom meme me mtn 2 amenSAiUMSp5 — ———

ACKNOWLEDGEMENT —-—-=-—~

TABLE OF CONTENTS === —emem—me meme rm mmm me —

LIST OF FIGURES —=———emee—————

Chapter 1. INTRODUCTION =---

EE eam EEWu Wa wand AW WONG Gen AED aad GENE EEN WEY EE S—

1.1 Historical Perspective =———-=-

1.2 Field Solution of a Horizontal

Dipole ==-—-

1.3 Geometrical -Optics Approximation =—-—-—-—---

Conclusions =—==--—-1.4

Chapter 2. GOA by NUMERICAL METHOD — ——an WE —

2.1 Introduction -—-==—-=-

2.2 LIOR, emssinitsesso lk EyS——

2.3 Integration Program --- a wm am

2.4 Conclusions =-——--

MODIFIED SADDLE-POINT METHOD ==——=——--

Introduction =----

Asymptotic Expansions of Integrals =—-—---

An Example of the Asymptotic Expansions

Chapter 3.

3.1

3.2

3.3

of Integrals =—---

3.4 Interference Fringes of a Dipole

Antenna Over Two-Layer Media =—-=——=—=———-

3.5 Bleistein's Approach ---. Er

3.6 Conclusions -—-

1

?

3

4

A

g

Q

11

17

31

32

32

34

46

49

53

53

54

67

77

37

~~



Page 5

Chapter 4. MULTIPLE-SADDLE-POINT METHOD —-=-—==——=—-— 97

4.1 Introduction —==———=——- aNUEam. 97

4.2 Asymptotic Expansions of Integrals

with Three Colinear Saddle-Points ----- 98

4.3 Application to Evaluating Interference

Fringes of Dipole Antenna =—--—-—--- 107

4.4 Conclusions =--—-- 125

Appendix to Chapter 4 —-—=————=w-- a AE Ant woh Wai GaltGa camel Swan — at mam cw 127

4A.1 Uniform Asymptotic Expansions of

Integrals with an Algebraic Singu-

larity of Any Fractional Order ---—-=—---

The Steepest-Descent Paths That Pass

127

Through the Saddle~-Points ----

GENERALIZED WEBER'S FUNCTION ====we—e—-

Introduction ——=——m—m——————-

Asymptotic Expansions of Integrals

137

Chapter 5. 142

5.1 re mm mee 142

5.2

with a Singularity Near Three Colinear

5.3

5.4

References

Saddle-Points ————=—mmmmm

Application to Evaluating Interference

Fringes of Dipole Antennas =-———=:—————-

Conclusions —=—=—=—- —-— a

143

150

160

163



Page ©

LISTS OF FIGURES

Figure Page

i. 1.2.1 12

J 1.3.1 19eat

3. 1.3.2 EM GS EEEGM GE WED Ba a GE MAAEAD Em UESmAD GADwR GO ink AEM Wa ms SEED WARA EMD WS MEE | WE ED WM SES eee SEE Dame) GEO WANSGMD meme SRW mmsSM 20

1 1.3.3 - dm mow oe. =m - om ww 22

3, 1.3.4 27

5. 1.3.5 Sm GES WEE WDMME WASwn GE wet WOM wm WesWLM VOSS Mm Tne SEED mad Wma WS Em Ged mA a WG EN)Gd YAMS WON) WEES wee emt SUNS Sent MameGE haat WOR WWW mE We 28

7. 2.2.1 37

8B. 2.2.2 39Mm um pmme

 J) 2.2.3 41

10. 2.2.4 - 42o— - _—

11. 2.2.5(a) =—=—mmem———— 43le aaaeh—— TE pe CUE mm EGMM wm arm

12. 2.2.5 (Db) ——mmm mmm mmm mmm mmm mem 44

13. 2.4.1(a) ---

2.4.1(D) ——mm—————————

Sow. 51

14. 52

15. 3.2.1 ———m—e  al a hi — —— I —— TDwi GIT i SOUT Sa A a uh DEDSh A a. wD. A AO A a WN a— 64

16. 3.3.1 — 68

17. 3.3.2 69

18. 3.4.1 —— EE wtf Swe WUD EMD ~ WWE GUNS FES SD wm WR Wh WtSUS pd GEES Gag GEMS wav | Ba WET bul Whatbt Me Gabe Semi ude Wd TEASwp Sadfh Wovhd WUE GUMS Ema MOUS peas SMES 86

19. 3.5.1 92rE RT Eg —

20. 3.6.1 95EE GELGEA WE TET SEE SE Sm map Gm MEE Gem am GE pe a pOSS—————Sp—

21. 4.2.1 ———————————emmemmm——————](]

22. 4.2.2 - 1 N4



Page 7

23. 4.3.1 (a) EEEEEly109

24. 4.3.1 (b) 110— a ——-— TW w—— meee ~ylh WOE SEE WEED TCE - re — br

25. 4.3.2 116— - WE - — wo

DG, BaFTweenscnommom ot oS eS 5 SS

27. 4.3.4

28, 4.3.5 =———ee—-

29. 4.3.6(a)

30. 4.3.6 (b)

31. 4.3.6(c)

32. 4A.1.1 ~=—w.-=-

33. 4A.1.2 =e eo

34. 4A.2.1 -=--—

35. 5.2.1] —m—mm eee meme eaecme=148

117

120

121

122

123

 EACH FE A SE, Sa “nmapsin re sommes. 1 35

36, 5.3.1 mmm ie 154

37. 5.3.2(a) =——m— mm mmmmem me mm eee — i wa eminem SAN CEE GM mmm 156

38. 5.3.2(b) ———————m 157— EES gpg SME mem Wa lh a — oe C—O Tw S——

39. 5.3.3  ee —— 158

10. 5.3.4 Jr———————— i ge a — ————— C—O 159



Page 8

CHAPTER 1. INTRODUCTION

1.1 Historical Perspective

In electromagnetic-int=rference-fringe method, a dipole

antenna is placed over a stratified medium, possibly on top

of the lunar surface, glacier, desert, etc. A receiver is

placed at a distance from the source and the intensity of the

electromagnetic field is measured as a function of distance

from the source. An interference pattern of the electromag-

netic field is obtained and this provides subsurface informa-

tion about the area surveyed. This method was first used by

El-Said" in the prospection of underground water in the desert.

Its application to geophysical probing of lunar surface is

described by Simmons et 12 and by Rossiter et a1.37% Appli-

cation to the study of terrestial glaciers is described by

Strangway et a1.&gt; The main thrust of interest lies in the

geophysical probing of high resistivity media.

Electromagnetic-interference field of a dipole antenna

over a stratified medium has been studied for decades (Banos,

Brekhovskikh, ’ ott, and Sonmerfeld®) and recently been pur-

sued by severals authors (Wait, 0712 rong, 23-15 vaang, 4?

ginha, 2S Annan, 21:22 etc ). Propagation of electromagnetic

waves along a half-space medium was first studied by Sommer-
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feld as it would be important to the propagation of radio

wave along the earth surface. He employed the Hertzian po-

tential function and formulated the solution in terms of an

integral representation. The complex nature of the solution

is exemplified by a sign error committed by Sommerfeld in his

original memoir (1909). His sign error resulted in an extra

spurious term that caused the validity of his solution to be

assailed for decades. ® A number of writers?3™2%&gt; have attempted

to disqualify the existence of Sommerfeld's electromagnetic

surface wave. Other writers noted that Sommerfeld's solution

was in error but failed to pin-point the exact reason for the

occurrence of a spurious term. This celebrated controversy,

having been assailed by numerous writers for more than half a

century after it was published, was finally settled once and

for all by Banos? (1966).

Past studies, as did Sommerfeld, have employed the

Hertzian potential functions in the formulation of the solu-

tion. Kong (1972) abandoned the conventional use of the po-

tential functions and expressed the field components directly

in term of integral representations. This elegant approach

simplifies the evaluation of the integral analytically and

numerically. Tsang? did a numerical integration of the in-

tegral representation of the solution. Due to fast oscilla-

tion of the integrand, the integration consumes a lot of
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computer time. However, numerical integration serves as the

most convenient method of solving the integral. An analytical

solution using both the normal-mode expansion and geometrical

optic approximation was done by several authors.13+17,20,21

The normal-mode approach and GOA method proved to be good

for thin and thick stratified media respectively. Chan?®

applied analysis of Tsang’’ to a horizontal magnetic dipole

and found sharp peaks in field intensity at the critical angle.

We shall see that the peaks are not justified physically, but

rather due to the inadequacy of the mathematical analysis.
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1.2 Field Solution of a Horizontal Dipole

Horizontal dipoles are used more effectively in geophysi-

cal probing as more energy from the broadside radiation of

the dipoles are coupled into the lower half-space as compared

to vertical dipoles. Moreover, when a dipole is placed hori-

zontally on the interface of a half-space, the radiation pat-

tern shows high directivity in the direction of the critical

angle for the two media. The integral representations of the

field components of horizontal electric dipole and horizontal

magnetic dipole will be presented here. (A dipole in this

case refers to a Hertzian dipole. Physically, it is a dipole

antenna whose effective length is much smaller than the wave-

length of the operating frequency. A magnetic dipole can be

represented by a small current loop.) The dipoles assume a

position on the interface of the upper half-space and the

first medium. It points in the positive direction [Fig.

1.2.11.

(a) Horizontal Electric Dipole (HED)

on
{oo

y

: oo ik _z

11% dk _ k * (1 - rTM) o 2 nil) (kp) cos ¢
8mwe J = ~

(1.2.1)
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Fig. 1.2.1. A dipole antenna over stratified

n—-1aver medium.
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_ oo ik z ‘

EB, = — dk k k_ (1 - rTM, e 2 ait) (k p) cos
- 8twe J =x pp 2 0

 db

 wp IQR
] ak =

—co bx

00

(1 +

ik=z

TE, e 2 ri (x po) cos
30

¢

(1.2.2)

5, i - J dk k_(1 - rTM pit) (k po) sin ¢
oO 2 0

8mTwep J —&gt;

1
= k TE, . (1)

wu | dk £2 (1 + r™™) Hy (k 0) sin ¢
37 —~o0 k_

(1.2.3)

: oo Ek 2 ik =z

Hw SLE dk 2 (1+ RE) e 2% gM) (x 5) sin ¢ (1.2.4)
7 Sr Co Pox 1 0

oo ik z
H = 21% ak (1 - =™ oo 2 gl) 4) sin

0 Bey Aw 0 1 0
3

oo 1

| dk kx (1 + °F) B(x 0) sin
3m 4 —c0 oO ~

¢ (1.2.5)

“IZ | dk k (1 - r™™; pd) (k_o) cos ¢
8 —-_n oo

19 =

id | ak (1 + TE, pl) (k p) cos ¢
8m 0 J =o 0

(1.2.6)



Page 14

(b) Horizontal Magnetic Dipole (HMD)

ES_

i
~

E, =

1) LA
 oo k 2 ik z

ak 2 (1 + r™) o zg) (x 4) sin (1.2.7)
0 K 1 oP ¢

3

1 )

A oo ik z

LWUIA dk (1 - RTE) o 2 -00 (x _o) sin ¢
gro J =o

(1.2.8)

. co ik =z

LuuIn | ak_(1 + r™ eZ ult)(x0)cos¢
ano J-w

co ik =z '

LWIA ak k. (1 - RP) e 7? r(x 0) cos 0 (1.2.9)
ATT — 00 :

H =

7

H

=f dk k ?5 B x, (1 - RTE) ark (1q. ) (x P)
5 cos ¢

i 2 oc ik z

~dTAk" dk 1 (1 + rTM e 2 g (1) (kp) cos ¢
8D -00 Oo

1.
ik =z .

” TE z (1) (k p) cos
1 - R 7) e H 0| dk kk, ( A ao

(1.2.10)

(1.2.11)
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i 2 0 k i

gq = iIAk | dk 0 T™ Lk, = (1)
&amp; Ta. BB 0 - (1 + R77) e Hy (kp) sin ¢

kL

SS ik _z

LES | dk k_(1 - R'®) &amp; 2
Bmp 4-0 o =

“(x p) sin ¢. (1.2.12)

The above results are derived by Kong. 13 For a two-

layer medium, the reflection coefficients are given by

L + R
] % Ris exp (12k, d) Cy

. 01

1 + RyRy exp (i2k, _d)

(1.2.13)

where Ry and 249 are reflection coefficient and trans-

mission coefficient respectively between media i and 3.

R..
1"

K. - b. .k.

iz 1] jz

k. + b. .k.
1z 1] Jz

1

2k.
1Z

k. +
iz + Piikiz

(1.2.14)

. T

N 1 .
 pe

k
3

[

Hs us for TE waves

(1.2.15)

JF

&gt;

x

e./¢€. for TM
\

= J _ x 2

no !

waves.

(1.2.16)
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(For Lp we omit the subscript i when i = 0.) and

is the thickness of medium 1.

a

In the normal-mode approach, the poles of 1 £ R on the

complex ke ~plane is found by solving for roots of 1 + Ry1Ryo

exp (12k, d) = 0. The original path of integration is deformed

to the steepest-descent path passing through the saddle-point.

The contribution of the original integral is the sum of the

saddle-point contribution and the contribution from all the

singularities enclosed in the course of deforming the path of

integration. When d is large, 1 * R as can be seen from

(1.2.13) is rapidly varying with respect to k This makes

the calculation of the saddle-point contribution aifficuly. 8

The geometrical-optics approximation serves as a complement

of normal-mode approach for large d, a fact that we shall

see later.
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1.3 Geometrical-Optics Approximation (GOA)

In the geometrical-optics approximation, the reflection

coefficient is expanded in a power series. It can be shown

casily that

XO

1 J

R

N

11

m- 1 _m
+ X R R xp (12k, md

‘1 L 1 10 "10 12 e (12 1z ) 1
(1.3.1a)

o m-1 _m ;

X10! - _ z . X51 Rio Ri, exp (12k, md) ].
(1L.3.1b)

For a typical integral

T [
KR (1) ik 2
£1 + Rr) HW (kp) e dk _

substitution of (1.3.1a) into T yields

n
1

 pr © k 1
0 (1)

| = Xo; Hy (kp) e
dk

YY

- x, m-1 _m ik,2
. | . Y01*10 ®1o © Faz ©

&gt;

rg

m

(1.3.2)
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ik. 2md
lz (1)

o HJ (kp) ak... (1 .3.3)

ik, ,2md
The series in (1.3.1) converge for [Ry gR1 5 e | &lt; 1.

This criterion is satisfied over the range of integration of

kK,- Thus the interchanging of the summation and integral sign

in (1.3.3) is valid. The series converges quickly for large

d, as we shall see.

Physically, the first term of (1.3.3) corresponds to the

half-space solution without the subsurface layer. The second

term which is a summation of series corresponds to waves which

have reached the surface through multiple reflections from the

subsurface layer. It can also be thought of as field radiating

from the image sources of the dipole source (Fig. 1.3.1].

The integration path in (1.3.3) is taken to be the Sommer-

feld integration path, which is above the real axis when LW &lt;

0, passes above the origin and is below the real axis when

k, &gt; 0. This avoids the branch-point singularities at k, = 0,

tk, + kK, and + k,, and the integral is well defined [Fig.

1.3.21.

(a) Half-Space Solution

To obtain the asymptotic expansion of the half-space

solution, a transformation of k_ = k sin 8 is done to sim-
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e
a Pu

£1 Hi

= 2 M2

image

o

dipole
source

2

1

L

receiver

SSA c—i——

4

image 2

Fig. 1.3.1. Dipole source and its images for

= two-laver medium.
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Im[k ]

k + k
A * 2

sox *—Re[k,]
-k_

Fig.1.3.2. Sommerfeld path of integration.
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(1) ~ (1) kop
plify the analysis. We replace HJ (ko) by HJ LI e

~ -ik ©

where 11) x p) = gr) (x p) e P*. After the k -plane to
0 0 0 0 n

B-plane transformation, the integral becomes

Tus
k sin 8 #'Y) (kp sin B)

T O

X, 1 (8) o1kR cos (RB - a) adr

(1 ,3.4)

where

,
~1

= tan 0 R = (p? + 22y1/2

7

The path of integration TI on the g-plane is shown in

Fig. 1.3.3. There is a saddle-point at 8 = a, the angle of

observation. The steepest-descent path passing through a is

as shown. The path of integration can be deformed to the

steepest-descent path and the saddle-point mechod +18 can be

employed to approximate (1.3.4) if k sin B 1) (ko sin B)

X41 (8B) is slowly varying in the neighborhood of the saddle-

point compared to o BR cos (f ~ o) when kR + «. This can be

shown to be true if the argument of a (x) is large in the

neighborhood of the saddle-point by using the asymptotic expan-

sion of 1 (x) when x &gt; ©,

Note that the branch-point at ®, = k does not exist on

the R-plane but the branch-point at k = ky is mapped to

34 = aint k, 7k. As shown in Fig. 1.3.3, the branch=-point
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Im [8]

}

y

SDP

3

P

/

N «J

T
5

re

$
1

 2»

* Re[B]

Re lk,

0 -

Fig. 1.3.3. B-plane showing I the original path of

integration and SDP, the steepest-descent path

passing through ao.
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~ontribution will have to be included if

X
 Nn

 Td

= Sin  KX

k

In actual experiment, the receiver is placed near the surface.

Thus, ao = 7/2 &gt; Or and the branch-point contribution cannot

be neglected. The asymptotic approximation of Ths including

the branch-point contribution, and neglecting terms of o0(R™3)

. 14,17
1s

ikR

HS — . 3g

Ac_

a

Cala
IN LF aoo

f

Xn. (a) + — —

{ 01 21kR
[cot a Xn (a) 4 Xpq (@)]

-az + ik.o

r

e

k, cot wt 32

kR ie

1 + 1

(1.3.5a)

’

44/1 for TE waves

(1.3.5Db)

e,/€ for TM waves,

\

~ (k. 2 - k? \ L/2

rhe first term is the saddle-point contribution and it
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corresponds to the direct wave. The second term is the

branch-point contribution and is identified as the lateral

wave or inhomogeneous wave decaying away from the surface.

When =z = 0, Xyq (0) = 0. Thus the direct wave becomes

a term of 0p”2) and propagates with a phase velocity of

w/k. The lateral wave, also of 0(p~ 2%) propagates with a

phase velocity of w/kq The two waves give rise to a spatial

beat frequency of ky - k¥ which can be used to determine the

electrical properties of the lower half-space. When Db &gt; |

there is a Sommerfeld pole of order 1 at

3
rd

= S1n

2 _ 2

(ky /k) b
i = nh’

) 1/2

but it is not enclosed when the path of integration is def-

ormed to the steepest-descent path.

(b) Reflected-Wave Contribution

: : -2

Since when z = 0, the half-space solution is of O(p 7)

when po -&gt; «©, the reflected-wave contribution becomes important.

As in the case of half-space solution, the analysis of the re-

flected-wave contribution is done by performing a transformation.

If we let k = k. sin 6, the expression for reflected waves

1a
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_ = : ~ (1) m- 1

Py = _ z . [ ky sin © H_ (kypsin 6) X51 (6) X10 (6) Rig (6)

2
~1

A LR

8!
m

m

Ry, (6) e

= tan~?!

lk_(6)z

P

2mada

~

a

1

a. 7 I

~
“x

20S [ A “

m
]E

R= [p? + (2ma) 21172

(1.3.6)

There is a saddle-point at 06 = oy due to exp [ik, R

cos (6 - al. Thus, we can use the saddle-point analysis if

the coefficient function of exp [ik, Ro cos (6 = a) ] is slowly

varying in the neighborhood of the saddle-point when kiR, is

large. This is true if the argument of a (x) is large

in the neighborhood of the saddle-point, and z &lt;&lt; A, the

free space wavelength.

The transformation from k -plane to 6-plane removes

the branch-point at k, = SE The branch-point at k, = k

maps into 4 = sin~l k/ky while the branch-point at ®, = k,

maps into 6, = sin"! ky/kyq There is a Sommerfeld pole of

order m + 1 at

) = sin”!
1 = (k/kq b) 2}

1 - b? |
i

iL /  Zz

where b is defined in (1.3.5b).
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When the path of integration is deformed from TI to the

steepest-descent path through the saddle-point a contribu-

tions from singularities enclosed have to be included. When

k, &gt; ky the branch-point at 6, gives rise to a lateral

wave which decays exponentially away from the boundary between

media 1 and 2. So if the thickness of medium 1 is large,

it can be safely neglected. When a, &lt; 6, the branch-point

at 8, is not enclosed (see Fig. 1.3.4). The Sommerfeld pole

is not enclosed too since it is on the upper Riemann sheet

which is different from that on which the steepest-descent

path passes through. When oy &gt; CI as can be seen from

Fig. 1.3.5, we have to include the branch-point contribution.

To understand why the Sommerfeld pole does not contribute,

we draw the steepest-descent path around the branch-point

on the two different Riemann sheets of k,. Since the

asymptotic approximation to the branch-point contribution is

derived by performing the integration along this path, we can

deform the original path TI to the path around the branch-

point along the steepest-descent path and then to the steepest-

descent path through the saddle-point. We see that the Sommer-

feld pole, which is on the upper Riemann sheet, is not enclosed.

Using the ordinary saddle-point analysis, it can be shown

that the m-th term of Tn for o, &lt; 6, and for large R

 v ©
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ik,Ry
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Tp VT To
1 R

m

1 [11 ¥

A (a) + —— (A (a) + cot a A (a )) |
21k Ro

(1.3.7a)

where

_ m - 1 m

A (a) = Xyp (a) X19 la) Rio (a) Ry, (a).

When ao &gt; 6 _,
m 0

cluded. It is

the branch-point contribution has to be in-

i a ~ ©

1m cos ( L, a) k m A 2mb| T (3/2)

cyG0,12-202)LGA12' 70 a rR 3/2
=-16

/ TT

cog 2 6

 °°
[sin(a - 0 1132

(1.3.7b)

In arriving at the above, terms of 0 (R_&gt;) has been

neglected. The large-argument approximation to a) (x) is

used. The saddle-point contribution in this case corresponds

to spherical waves which have been reflected off from the sub-

surface medium through multiple reflections. The branch-point

contribution is a lateral wave in medium 1 leaving the first
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boundary and is reflected back to the upper half-space due

to the presence of subsurface medium. Note that the lateral

wave has a conical wave-front. Also, the waves have a propaga-

tion constant of ky and R is the distance travelled by

the waves in medium 1. Thus, if kq is lossy, and R is

large (which is true for thick layer and large m),the wave

reaching the surface is vanishing small. Thus the first few

terms of Tr form a good approximation to it if d 1s large

and Kq is lossy.
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1.4 Conclusions

We saw, in the previous sections, the analysis of the

half-space solution and the reflected waves as it existed in

the past literatures. In the analysis of the reflected waves,

usually, only the term of oR is considered.’

The half-space solution is of 0(p~2%) when z=0., Since there

is no singularities in the neighborhood of the saddle-point

unless b &gt;&gt; 1, the requirement that the coefficient function

be slowly varying is satisfied. Thus (1.3.5) is a good appro-

ximation to the half-space solution for large p and small b.

For slightly lossy media, the dominant field comes from

the reflected wave. However, the reflected-wave approximation

as given by (1.3.7) has several inadequacies. When o is

near 6,7 the coefficient function becomes rapidly varying

and thus the saddle-point analysis breaks down. The steepest-

descent method used in obtaining the branch-point contribution

also breaks down. In fact, the branch-point contribution is

infinitely large when 6, =a. Furthermore, when b is

large, 85 = Oe The proximity of the Sommerfeld pole of

order m + 1 for the m-th image to the branch-point cannot

be ignored. We will see in subsequent chapters how these

difficulties can be overcome.
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CHAPTER 2. GOA BY NUMERICAL METHOD

2.1 Introduction

Numerical integration of the integral representations

of the field components of a dipole antenna over stratified

media was carried out by Tsang. 1° The integration was achieved

without replacing the reflection coefficient with its geometri-

cal-optics series. Using the Hankel transformation formulation,

the range of integration is halved; that is from zero to in-

finity. For example, in the broadside direction, the H

component of an HED has as its integral representation

1
7z

. wo k 2 ic 2

HL | 0 (1 + rTE ait) (x 0) e 2 ak . (2.1.1)
n 0

81m —-00 k,

3y noting that gi) (elm xX) = ul?) (xy, this can be reduced

—

i ow k 2 ik =z

1, = iIg £1 +R") J (ko) e ? dk
am ‘0 k_ ?

(2.1.2)

The fast oscillating Bessel function when pop 1s large,

coupled with the presence of 1 in the denominator which
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results in a singularity of order -1/2 at k, = k, makes

the numerical integration of this integral difficult.’® More-

over, 2z has to be greater than zero for the integral to

converge near the real axis. Thus when z = 0, the solution

of this integral cannot be obtained by numerical integration

along the real axis.

However, for a two-layer stratified medium, when the

thickness of the first layer is large, the field solution is

dominated by the first few terms of the geometrical-optics

series. Physically, it means that the first few images con-

tribute to the field solution in the upper half-space. More-

over, when (2.1.1) is expressed in terms of the geometrical-

optics series, each term has a distinct stationary point.

This is advantageous since the integrand is varying slowly in

the neighborhood of a stationary point.
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2.2 GOA

The substitution of the geometrical optics series (1.8.1)

into (2.1.2) yields

q = iIg

z 41

[ k 2 ik _zwe I J. (k p) e dk

] 0k, 01 “1p

2 wo k 2 o 1 m ik, ,2md ik _z
- P = a g dk

Z |  Yor¥i0 Fro Fiz © Jp (koe) ,
mT

(2.2.1)

(a) Half-Space Solution

The first term, which is the half-space solution, can be

approximated sufficiently well by its asymptotic approximation

when the Sommerfeld pole is far from the saddle-point (see

Section 1.3(a)).

&gt; HG
n, =

ke

Ig o1KR
a4 R

sin o
== X"_ (a)

30 01

[

ein o ix - Y X.. (a) +
o 01

3 cos a X4q (a)
7R

1 4 e

41 bp?a?

-az + ik, po

1

Jd

1 +

k

2 sot
Y3/2

1

(2.2.2)
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This can be derived from (1.3.5a) by noting that

Nhen

J LIL 3 on
8m 920

Z J, this reduces to terms of 0(p"2) for large op.

2

us v 5 o

21 p?a?

Kk 2 o1kp _ ki ikip
-— e

Hh?
(2.2.3)

when b » «, this approximation of H us becomes infinitely

large. This is because that the Sommerfeld pole coalesces

with the saddle-point when b = « (see Section 1.3(a)). Thus

the effect of the Sommerfeld pole cannot be neglected when Db

is tavge.2? However, for our application, Db = Hy ug = 1 for

TE waves propagating in non-magnetic materials. For TM waves,

b = €1/¢€4 ~ 3 for glacial ice. The Sommerfeld pole, which is

of order 1, is at BR =o and PB = 150° respectively for

the two cases. It can be shown by numerical integration that

(2.2.3) is a good approximation to the half-space solution for

7 = 0. The half-space solution for H, is given by

. ow k 2? ik
_ iI 0 (1) z

Ions = Xo1 Hyp (Kye) ©
8m -o kk

dk (2.2.4)
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When =z = 0, the above integral does not converge near

the real axis but its solution can be obtained by deforming

the path of integration to + i~. The contribution comes

solely from the two branch points at k, = k and kq (see

Fig. 2.2.1). The first branch point gives rise to the first

term of (2.2.3) .14 The Sommerfeld pole is at

K =Kk
d. 1

:
1

(las yd
he1 -

1 J
S —~

and on the region of a Riemann sheet where Re [k, | &gt; 0 and

Relk_] &lt; 0. Thus, it can only be near the first branch-point

when b + «. This means that the second term but not the first

term of (2.2.3) is a good approximation to the contribution of

branch point kq for all 1 &lt; b &lt; »., The locus of the Somer-

feld pole when b increases from 1 to « is shown in Fig.

2.2.1.

By using the asymptotic approximation of a (x po) for

large argument, and noting that k, assumes opposite signs

on different sides of the branch-cut, the integration around

the branch-point k can be reduced to

. 7

-1 —

3/2
4 k + io Kk k ik ©

15a n td 1 pe pz oF dk =~ (2.2.5)
% r /20 k kK? - b’k_?
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Fig. 2.2.1. The deformed path of integration and the

Sommerfeld pole's locus when b increases from 1 to «=.
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where Re [k | &gt; 0 and k/2 assumes its priciple value along

this path of integration. The integrand varies slowly along

this path of integration and thus numerical integration can

be readily performed. The result is shown in Fig. 2.2.2. Note

that for Fig. 2.2.2(b), the vertical scale is exaggerated and

thus the error is relatively small, considering the fact that

most of the field intensity would come from the reflected wave

for our applications.

(b) The Reflected-Wave Contribution

The dominant field of a dipole antenna over a stratified

medium comes from the reflected wave when the medium is slightly

lossy, e.g. glacial ice. For large d and lossy ky the

first few terms of the series in (2.2.1) will be sufficient

to approximate H. Note that k, in the denominator of the

integrand now cancels with the k, in the numerator of Xq7

The convergence of the integral now depends on exp (ik, 2md)

rather than exp (ik _z). Thus when =z = 0, the solution can

be obtained by numerical integration of the reflected-wave

terms near the real axis.

To study the oscillatory behavior of the Bessel function,

we replace it by its asymptotic form for large argument

ko

Ff

m -

-ik ©

4X nm oO 4

i
I.

4] (2.2.6)3 17g 0) no — V1/2mk _p
A
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---- Asymptotic approximation.
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Ly 208 in the in-
The product of the first term with e

tegrand results in a stationary point (or saddle point) at

k, = k, sin a where o_ = tan" 1 (p/2md). The product of
0 1 m m

1k, 2md
e with the second term in (2.2.4) does not give rise

to a stationary point within the range of integration. There-

fore, the second term causes the integrand to oscillate rapidly

for large p while the product of the first term and the rest

of the integrand have a region of slow variation in the neigh-

borhood of the stationary point. Thus if the path of integra-

tion is deformed to one such that the second term in (2.2.6)

is much smaller than the first term, computation time can be

reduced. The deformed path of integration is shown in Fig.

2.2.3.

Along such a path, the ratio of the magnitude of the first

term to that of the second term is g2Ps &gt;&gt; 1 for A &gt;&gt; 1/2p.

As such, the rapid variation of the integrand is reduced. The

deformed integration path has an added advantage in that it is

far from Kk, ki and k,. Though these are mild singularities,

they are still points where the derivatives of the integrand

vary rapidly. Also A should not be chosen too large lest

the first term of (2.2.6) becomes exponentially large which is

undesirable in numerical integration. The constant-phase curves

i(k, ,2md + k p)
a p is shown in Fig. 2.2.4.

Fig. 2.2.5 (a) shows the integrand as a function of Re [k 1/k
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&gt; —a—real part of integrand.

imaginary part of

integrand.
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Fig. 2.2.5(a). Integrand of (2.1.2) as a function of

k '/k when A = 0.06 (2m1/A).
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Fig. 2.2.5(b). Integrand of (2.1.2) as a function of

k '/k for A= 0.001(2m/X). The other parameters remains

the same as (a). Note that the horizontal scale has

been expanded c.f. (a).
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For A = 0.06k. Note that the integrand varies slowly around

the stationary point, and that the period of oscillation is

much bigger than that of oof (which has a period of kK, =

0.25k). Fig. 2.2.5(b) shows the rapid variation of the inte-

grand as a function of Re[k 1/k for A = 0.001lk. Note that

the horizontal scale has been expanded. Thus a judicious choice

A is 3/2p, which is the value chosen in Fig. 2.2.5(a).~f
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2.3 Integration Program

It was shown earlier that computation time can be saved

by deforming the path of integration. The value of each re-

flected-wave term in (2.2.1) can be obtained by first inte-

grating from k, = 0 to =iA and then from ®, = =-1A to

-iA + ». The second range of integration need not be to

-iA + » as the integrand diminishes quickly after k,’ passes

the branch point k,. This is because of the presence of
. 1

1k, 2md
8 factor in the integrand (see 2.2.1).

As the integrand is still oscillating, it is advisable

to section the range of integration to subsections of length

2n/p. This length is chosen because the period of oscillation

is always greater than 27m/p, the period of oscillation of

the Bessel function. Within each subsection, the function

is slow varying, but there are occassional "wiggles" as can

be seen from Fig. 2.2.5(a). As the occurrence of the wiggles

is a local phenomenon, we want to design a program that can

intelligently detect such wiggles, and apply a more accurate

routine, e.g. by sectioning the subsection into smaller sec-

tions. This can be achieved with a recursive program written

in a high level programming language. For example, by using

Simpson's role, 2? it is
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INTEGRATE (F(x) FROM x = a to x = b): =

A = SIMPSON (F(x) FROM x = a to x = b),

B = SIMPSON (F(x) FROM x = a to x = (a+b) /2)

SIMPSON (F(x) FROM x = (a+b) /2 to x = b),

IF |A - B| &lt; TOLERANCE THEN B

FILSE INTEGRATE (F(x) FROM x = a to x = (a+b) /2)

5 INTEGRATE (F(x) FROM x = (a+b)/2 to x = b)

The above program is written in a comprehensive form and

can be translated to high level programming languages easily.

It says that when integrating a function from a to b,

Simpson's rule can be applied to the interval (a, b) to obtain

A and to the halved intervals (a, (a+b)/2) and ((a+b)/2, Db)

to obtain B respectively. If the difference of A and B is

less than the tolerance, it indicates that B is a good appro-

ximation to the integration of F(x) from x =a to x = Db,

or else, the INTEGRATE function can be applied recursively

to the halved intervals again until a good approximation is

obtained.

Simpson's rule is used here because the number of func-

tional evaulation needed for subsequent sectioning of the range

of integration does not increase as fast as say if Gaussian

. . 30 . ) .

integration formula is used. The use of recursion here 1s
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is important as it enables the numerical integrator to in-

telligently section ranges of rapid variation into smaller

subsections. Another kind of recursive method commonly used

is the Romberg's method. 2° Romberg's method has the disadvan-

tage that it indiscriminately sections the range of integration

by half even if some part of the integration range varies slowly.

thus causing unnecessary functional evaluations. However, the

concept of Richardson's extrapolation used in Romberg's method

can be applied here. The first iteration of Romberg's method

gives rise to Simpson's rule. The second iteration of Romberg's

method, which is equivalent to the use of Richardson's extra-

polation on Simpson's rule gives rise to a value of integration

which is exact for a polynomial of degree five. This more ac-

curate result is given by

8B 4 R 4 (B A) /15. (2.3.1)

This value of B' should replace B of the fifth line of the

program. So the fifth line should be

{FF | A B| &lt; TOLERANCE THEN B + (B - A) /15.
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2.4 Conclusions

The integration program presented in the previous section

was written in MACSYMA (Project MAC's Symbolic Manipulation

System) . 31 It was used to derive the numerical field solutions

&gt;f a dipole antenna over two-layer media. The results are

shown in Fig. 2.4.1 and in the next chapters alongside with

the analytical approach. They agree well for the values of

parameters within which the analysis is correct. However,

numerical integration provides only an unsophisticated approach

in deriving the field solutions. It does not improve our under-

standing of behaviors of the spherical wave generated by the

dipole antenna over stratified media. Its merit is that it

provides a counter-check for the correctness of an analytical

solution. We shall see in the next chapters the derivations

of the analytical solutions using various approaches.

It is to be noted that the numerical method presented

here is by no means the best. Though the use of recursion

has made the numerical integrator foolproof, it still consumes

much computer time. For computers with large storage, the

Fast Fourier Transform (FFT) method used by Taang ? and Kong

et a12’ is far superior in speed. In the FFT method, the

ingenious use of the Laplace transform of the Bessel function

removes the rapid variation of the integrand due to the Bessel



Page 50

function. It also removes the p dependence of the Discrete

Fourier Transform (DFT) of the integrand. However, the rapid

variation of the integrand due to explik, 2md] for large m

and d causes the number of sampling points for the DFT to

increase resulting in proportionately large storage requirement.
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Chapter 3. MODIFIED SADDLE-POINT METHOD

3.1 Introduction

We have seen the use of the ordinary saddle-point method

in the asymptotic expansions of integrals in Chapter 1. Its

use in deriving the asymptotic expansions of the integral

representations of the field solution becomes invalid when

there is a singularity in the coefficient function which is in

the neighborhood of the saddle-point, therefore a modified

saddle-point method has to be used for such cases. For singu-

larities which are poles® 7, they can be subtracted from the

integrand and ordinary saddle-point analysis can be performed

on the integral whose integrand is pole-free. The contributions

of the poles can then be expressed in terms of known functions.

But when the algebraic singularities are of fractional order,

the above method does not apply. The discussion here involves

a modified saddle-point analysis that is valid for an algebraic

singularity of finite, arbitrary order in the vicinity of the

saddle-point. This is important in the study of anomalous

wave behaviors in electromagnetic field problems.
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3.2 Asymptotic Expansions of Integrals

The asymptotic expansion of an integral with an exponen-

tial factor eM) 5a part of the integrand, and whose path

of integration lies on the complex plane is best facilitated by

the saddle-point method. In such method, the original path

of integration is deformed to the steepest-descent path passing

through the saddle-point. The contribution from the saddle-

point together with the contributions from singularities en-

closed in the course of deformation is equal to the original

integral. For integrals with finite end-points, the end-

point contributions have to be considered. There are two ad-

vantages in deforming the path of integration; firstly, the

asymptotic approximation of the contributions from the critical

points (i.e. saddle-points and singularities) can be obtained,

and secondly, physical interpretation can often be associated

with their contributions. A discussion of the asymptotic

expansions of the critical-point contributions when an algebraic

singularity which can be arbitrarily close to the saddle-point

is given here

(a) Saddle-Point Contribution

A typical integral where an algebraic singularity is in

the neighborhood of a saddle-point can be expressed as
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| £0 gt) e ME) g¢
Cc

(3.2.1)

where r can be fractional as well as negative integers and

A is a big parameter. We shall consider the case where CC,

the integration path, extends to infinity. Without loss of gen-

erality, the saddle-point is assumed to be at the origin, i.e.

£'(0) = 0. Thus ty measures the distance of the singularity

from the saddle-point.

To find the saddle-point contribution, the path of integra-

tion C is deformed to the steepest-descent path that passes

through the saddle-point. Contributions from singularities en-

closed have to be included according to Cauchy's theorem. With

the following transformation;

£(t) = £(0) - s?. (3.2.2)

the steepest-descent path that passes through the saddle-point

on the t-plane is mapped into the real axis on the s-plane.

Thus, the saddle-point contribution of (3.2.1) is given by

C.
—- ( ©
ME (0) (s - s )F G(s) e -\S

ds (3.2.3)

where

Gis) =

r r
t= t

|S = Sy ds
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G(s) is analytic in the neighborhood of the saddle-point

since t = ty when s = Sy 7 i.e. the singularity at t = t_

is mapped onto the singularity at s = s,. Therefore, from

(3.2.2)

+ E(t) - £(0) (3.2.4)

The branch of square-root of (3.2.4) can be determined as

follows. Since the mapping from the t-plane to the s-plane

is conformal, the angle between two lines is preserved. For

a straight line that joins the saddle point at t = 0 to the

branch point at t = ty the angle it makes with the steepest-

descent path passing through t = 0 is preserved on the s-

plane. When ty and s,, are small, this angle corresponds

to the argument of Sy, - Hence, we can decide the branch of

square-root of Sy, -

Note that as A &gt; «=, the dominant contribution of I,

comes from around s = 0; consequently, G(s) is Taylor-series

expanded around s = 0 to approximate I_. We let

I =ee
Af (0)

[
oo (n) - 2

CIR 7 G (0)  n is
D aN = 0 n't

ds.

(3.2.5)
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Strictly speaking, I # I since G(s) is replaced by a

power series, which is valid over a finite region in general,

while the range of integration extends to infinity. The series

I does not necessarily converge, but we will show that the

series I is asymptotic to I, in generalized Poincare's

32
sense.

A—th

With the change of variable to

term of I 1s

u JI ( =

— S the

: -BE . [£(0) +OEn &gt; |

+1 +r
+ rr 2 i

0) (°

n! | _ + YN sp)" ut

(2 )
2

(12

«2
17. (3.2.6)

(u + v2 s )" can be expanded binomially, and I. can be

expressed as

_ 2

. - &amp; HED Ts c™(0) 5 Nc (/2x y % W
n +1+r nl 2 = 0 2 Sh n - 2 +I § Y

”
J  1)

(v2) 3) (3.2.7)
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where

u?
= + V2) s uj

Cy 2 b") qu.

2X 5) =| Te
(3.2.8)

In (3.2.8), the path of integration is above the singularity

at the origin when the saddle-point is above the real axis, and

it is below the singularity at the origin when the saddle-point

is below the real axis. The location of the saddle-point on

the u-plane is at u = -/2) S,- BY taking the principle value

of uw" when u is on the positive real axis, and using the

linear relation of parabolic cylinder function33’34

W (/2) s, )

g 2

I+ y _P_
22m e e 2 D. (1V/2X s.).,

= b

Sbro.
ri A

 om a 2 e % D_(-i/2X s)

Im[s, ] &lt; 0

Imf[s, ] &gt; 0.

(3.2.9)

Using the small argument approximation of Dy (x), it is

seen that I~ O(I_ _ ,/A) when 2X |s,| &lt;&lt; 1 and A

large. Using the large argument approximation of Dy (x), it

is also noted that I~ O(I_ _ ,/A) when V2x|s &gt;&gt; 1 and

large. Since D, (x) is of finite order when its argument
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is moderately large, therefore I ny O(T, _ 5/2) when \ » ©

is always true. Thus 1f we let Sn, = Tom + Tom +1’ then

sv O(s_ _ 1/2) when MA &gt; ©», As a consequence, I of

(3.2.2) is asymptotic to the series % s.r OF
m= 0

in

L (Tom $ Lom + 1’
m= 0

A (3.2.10)

the generalized Poincare's sense for all values of Sy,«

tL, can also be evaluated by repeated integration by parts,

resulting in

~~ —A

- . [£(0) +
e.- — i 32So.

' Ler + n pg (0)
- A(n, r)

(3.2.11)

~y

(22)

where A(n, r) satisfies the recursion relation

A(n, r) = (n - 1) Aln je— 2 r)= 3

L
A(n =- iL, r

A(0, r) = W_(V2X s,)

1)

(3.2.12)

Jsing the above, we obtain
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-x[£(0) + 5,,°1
&gt; e

I = —— Ea G (0) w_(V2X Sy.) (3.2.13)

“\
4 =

-A[£(0) + s,°1

L = &amp; 5 5 G'(0) woo_ (V2) 8.1 -

(ZA )
?

(3.2.14)

From (3.2.3) and using

dt

ds
 gs = 0

= J2/7f" (0),

a’t _ _ 2 _£"'(0)

ds? 3 [£"(0)]2

. ' ; ; y 7,14

vhich are obtained from power series inversion, '

30) = (t, sa)
i.

dl

J

r

(0) = (t,/s,)

g(0) VZ/E" (0)

t

r 4(0) &gt;. /2Z7E (0) | /Z7ET(0)
ty Sy,

(3.2.15)
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4 g' (0) —%— - g(0)

£" (0)

2f"' (0) '

3[£" (0) 12 |
(3.2.16)

In the above expressions, the choice of the branch of

square-root for dt/ds is such that its argument gives the

correct rotation under the conformal mapping of a point on

the +t-plane to the s-plane. This is because that arg(dt/ds)

measures the angle of rotation of the mapping.

(b) Contribution from Algebraic Singularities

In (a), we have shown the approach to approximate the

saddle-point contribution with an asymptotic expansion. When

the original path of integration is deformed to the steepest-

descent path passing through the saddle-point, contributions

from singularities enclosed have to be included. For algebraic

singularities which are poles, their residue contributions are

included. For branch-points, the branch-cut integrals are in-

cluded. One can always choose a branch-cut so that it can be

deformed to the steepest-descent path passing through it. As

such, the asymptotic expansion of the branch-cut integral can

be obtained by the method of steepest descent. We will include

here a derivation of the asymptotic expansion of the branch-cut

integral which is uniformly valid when it is in the neighbor-

hood of a saddle-point.
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The general form of a branch-cut integral is

| m—y

A

h(t) e
a 4 =}

3 (3.2.17)

Without loss of generality, the branch-point is assumed to be

at the origin. C is the path of integration from zero to

complex infinity such that (3.2.17) converges. C can also be

deformed to the steepest-descent path passing through the

branch-point, ¢'(a) = 0 so that there is a simple saddle-point

at t = a where |a| can be arbitrarily small. With the

following transformation,

vs
- (0) = rs (3.2.18)

(3.2.17) becomes

1

LJ

= or (0) st H(s) e

-

2

5+ vs
2

J= (3.2.19)

Thon

i(s) = (t/s)F h(t) dt

ds

(3.2.20)
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dt _ s +v

ds o'(t)

The saddle-point is at s = -y. Thus from (3.2.18), the

relation between ao and vy is

210 (0) + ¢(a)] (3.2.21)

The branch of square-root for (3.2.21) is decided as

follows. On the s-plane, the constant-phase path passing

through the origin is given by

Im s?
2 '

ys] 0 (3.2.22)

Solving this, we obtain

Re [v] + Im[y] _ _ 1

Res] Im[s]

(3.2.23)

The branch-cut integral is from 0 to « on the s-plane.

For this path of integration to be deformable to the steepest-

descent path passing through the origin, largly1]| &lt; m/2. This

provides the criterion for choosing the branch of square-root

in (3.2.21).
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Im([s]

|
{

1

\ _rbranch-po int

——gm Re [ 5]

'saddle-point

bs

Fig. 3.2.1. The constant-phase path that passes through

the branch-point when |arglyl]| &lt; m/2.
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Since the path of integration is along the steepest-descent

path on the x-plane (which is the same as integrating from 0

to «), most of the contribution to the integral comes from

around s = 0 when XA » ©. Thus if H(s) in (3.2.19) is

Taylor-series expanded around s = 0, and the integration is

carried out for each term, we obtain a series which does not

necessarily converge but is asymptotic to T

-
-v_

_ 00 (n) 00

Nn e~ M0 (0) 5 H (0) not ro

n =20 nl! 0

= Syye
EE ds. (3.2.24)

Noting that the above integral is the integral representa-

-jon of parabolic cylinder function,

[

A 5 (0) - x2 i. (n)

4 . H (0) '(n+r+1)
a= 0 nl y(n +r + 1)/2

nD oe Lo

Dp r+ 1) AY (3.2.25)

Using the large-argument approximation of parabolic cylin-

der function, the n-th term of I,» we note that In av

on trot 1) when VX v &gt;&gt; 1 and J|arglyl| &lt; w/2. Using
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the small-argument approximation,

1

gM

( (n +r + 1)

\u ©
A

/

when VA y &lt;&lt; 1. Since the parabolic cylinder function is of

finite order when its argument is moderately large, In v

o (I. _ 1) for all y when X =&gt; ©. Thus, the series in

(3.2.27) is asymptotic to I, in generalized Poincare's sense.

The following formula is useful for evaluating the first

terms of the expansion:EwO

1(0) = = hi
o"' (0)

i

)) (3.2.26)

r -

(0) = h(0) | + | i i _y% 9" (0)
2 6' (0) | [6'(0)  [o'(0)]°3

!

4 ’
iL

L h' (0)

 VE

[61 (0) |
(3.2.27)
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3.3 An Example of the Asymptotic Expansions of Integrals

A commonly encountered example of a saddle-point analysis

in the field evaluation of a dipole antenna over stratified

media is

I

. oo iR(k sin a + LS cos a)

k, Ak) e e ak (3.3.1)

where k., = (k.?2 - x2)L/2 and A(k_) is an analytic function

There is a saddle-point at ko = kq sin a The branch-

point at , = k can be arbitrarily close to the saddle-point

for differing values of aq (see Fig. 3.3.1). Branch-cuts of

Im[k_] = 0 and Im(k,, | = 0 are chosen for the double-valued

function k, and ki, respectively. The original path of

integration is on the Riemann sheet where Im(k,] &gt; 0 and

Im(k, | &gt; 0. The path of integration can be deformed to the

steepest-descent path passing through the saddle-point as shown.

Nhrn

% &gt; sin} xk

i's

the branch-cut contribution, as shown in Fig. 3.3.2 has to be



2
C

I amlk 1] 0 ~—

id

tan Qo

Im! Kk]

TH

-

®
.

-

5
,(Im[k, 1=0

eg
A

iii

ra

~~ ——_steepest-o descent path
~~1 O

rennet [C2 [k ]

-

pi
eam

 |
original path
of integration

saddle-point
k.sin o

1 0 k,/sin a

Fig. 3.3.1. The original path of integration, steepest-descent path

and branch-cuts for integral I.
J
jul)
Q
®
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—
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»

,

x
0

TRE

x

aT

7

Aa
7

‘Re [k
[ %

~N

sadd1le-point original path of
integration

Fig. 3.3.2. The branch-cut contribution and saddle-point contribution

when o_ &gt; sin™t k/k
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0)
Q
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included. The branch-point ko does not contribute to the

integral as it is never enclosed.

(a) Saddle-Point Contribution

Fhe

We will first calculate the saddle-point contribution to

integral I. Letting

t+
Y t. =k-Kk,sin o

 Oo

(3.3.2)

i 3 wm ow ile 1) i[sin a k + (k,* - LS /2 cos a]
 +

1

_ 2

= ey(t) (k + k )172 Ak)

(3.3.3)

(3.3.4)

(3.3.1) becomes the form of (3.2.1). Hence, we can apply the

asymptotic analysis described in the previous section to the

integral (3.3.1). On the s-plane,

Sv + e 4 nx gin &amp; +
 0D

(k
" ~ x2)1/2 cos oo - k 11/2

O 1

(3.3.5)
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where Sy is the location of branch-point. Letting

3 $10 K
»

and with proper choice of signs, (3.3.5) becomes

3. z
4

v2k, sin
95 ~ %

2

(3.3.6)

aa

To find the asymptotic expansion to the integral (3.3.1),

make use of (3.2.13) and (3.2.14) with r = 1/2. In (3.2.13)we

5p
2

= ea v2
[ 4 _

e Dy 5 (7 ivV2x Sy)

6
oO

Wy 5 (Y2X S,

Y &lt;
OO

p’
mn

9
0

(3.3.7)

where the notation means that the upper sign is chosen when

a. &lt; 0. and the lower sign is chosen when o_ &gt; 6- Thus

OT

ik,R iL, a. 1/2

- _e rT 3 (k ky sin oa)
© [k.r13/4 (6 - a)

0 0

D

k cos o A (ky sin a)

} J
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-ik.R sin?
1 jo = )

o 0

2

 ”— i3L

Fe 4 2vk R sinD1 /2
|

In (3.2.14),

A

2 2

S

Hh

_ 2

W_q (V2 s,) =e 27

Jom
|

ad
i)

~

0 |
( 2 J

)
a &lt; 6

0 0

J a 0
oO

+ =~ i

RE ,
e D_; op (7 1V2) Sp)

(3.3.8)

o &lt; 6
 oO 0

o &gt; 0
oO oO

(3.3.9)

and from (3.2.16)

rd
“J (0) =

_y 2

'k - k., sin ao | 81 Oo e

_ 1/4

- 0 "2 (2k)sin |——

| 2

k — k. sin o
1 Oo

/2k. cos a |
1 oO

72k, sin

9-o
oO oO

2{

29 (0) sin 0

r

g (0) vk, cos Oy

/2 k - kq sin a

+ g'(0) 2k. cos?a_

(3.3.10)
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whe »

J

x

110) = e 2
i 1/2 A

(k + ky sin a) A (ky sin a) (3.3.11)

n

(0) = e 2
"y A(ky sin a )
~ rb Sor + (k + k; sin oa) A'(k; sin a)
2 (k + k,; sin a)

{3 3.12)

Therefore

. 3 «2

JR ik,R sin
I. = —m—e

I ogy 27/4

r

ay = 6]

Pp
\ J

10) 12 vk R sin:

G' (0) Vn/2

(6, - ag Oo © %

or]
a

9)
fA

0

(3.3.13)

The above expression for the saddle-point contribution is

uniformly valid for the saddle-point arbitrarily close to the

branch-point.
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(b) Branch-Point Contribution

Then

 Qo
~

&gt;
..~1 Kk

sin —

lr

the branch-point contribution has to be included (see Fig. 3.3.2).

The branch-cut integral is given by

Ir J Ge, - .- ) A(k.) e

iR(k, sin x + ki, cos a,
dk

0

(3.3.14)

where BC is a path of integration which starts from Ks = k,

and follows along the branch-cut to ©. k, means that k, is

evaluated to the left to the branch-cut and thus Re [k_] &lt;0.

k* implies the converse. On the branch-cut, k * = -

which means that (3.3.14) can be written as

[ J
+ iR(k. sin a +

2x, Al.) » . ; ky, cos a) ax

(3.3.15)

The path of integration BC can be deformed to the steepest-
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descent path that passes through the branch-point at k, = Kk.

With the following transformation,

H (t)

h(t)

»

9

= — i[sin a k + (k.°
0

2 cc
)

(k + «
: 1,2

A (ik

31n

~
2 a

}

a
~

1/2

|

cos a _

(3.3.16)

(3.3.17)

(3. 3.18)

(3.3.15) is cast into the form of (3.2.17). On the s-plane,

)

ih

4
o vk, sin (3.3.19)

 +L

Therefore, the leading term of the asymptotic expansion to I

(3.3.20)

: 2

ik.R cosla - 8) ITER 8p

v —e 1 Oo Oo

NO

(0 = 8 )
0 0

2 2 }
cos ©

 °° _

~ % ~ 651
cos —

2 J
iT r

* la - 0,"

2 e vVk.R sin —
| 5

- 3/2

ll

8 3/4
(k./R) /2km A(k) D_5,,

-
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The first correction term to the above, with H'(0)

by (3.2.27) where r = 1/2, is given by

i . 2

ik.R cos(o =- 0 ) Lis, RB Sin
- =a I oO oO
bl ’

a = 6

oO 0

| 2
H' (0) 3 JT
2/4

n

D_5/2 2 e 4 Vk.R sin
[og - 5] |

2 J]

given

(3.3.21)



Page 77

3.4 Interference Fringes of a Dipole Antenna Over Two-Layer Media

The evaluation of the field components of a dipole antenna

over two-layer media can be reduced to the evaluation of a typical

integral

T

r
oO

J _oo

K (1) ik z
— (1 + R) H (k p) e dk

K eo} 0 N
(3.4.1)

In geometical-optics approximation, (1 + R) is expanded

in terms of a series (see Section 1.3). Therefore

T

© k (1) ik z oo © k

| PL X51 Hg (ke) e dk + x | tr A_(k )
—o ¥_ 7om=1 Jo kk P

=)
i

_ 2md

(1)
H_ (k 0) dk | (3.4.2)

vhere

Kis m- 1 _m ik, z

But, = o X01%10 Rio Rio ©
(3.4.3)

As discussed previously (Section 1.3), the saddle-point in

the second integral, i.e. the reflected-wave term, can be
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arbitrarily close to branch-point. After replacing i (x 0)

by 1) (ko) oo” the exponential factor of the second

integrand is of the form (3.3.1). To cast it into the form of

(3.3.1), we have to factor out the k_-dependence in ALE,

since the branch-point at k, = 0 is in the vicinity of the

saddle-point. To do this, we expand CML in a power series

in Kk, - First we obtain, after some algebraic manipulation,

— 2 m- 1 _m

hn TP X yp Ry Rio e

1K Z
7

(3.4.4)

where b equals Hy/ug for TE wave and €,/¢, for TM

wave. By multiplying the denominators of X10 and Rip by

1, - Db k_+ k, in the denominator is not a double-valued

function anymore. Expanding the numerator using binomial ex-

pansion and the identity

a _(k

AL (k )

nd

)

0 n

 xX7 a——

n = 0 n!

can be written as

4p RT
12 2m

| Ir

k 21M + 1 - " C RE k "

1 - |p ~Z A "lk ’

- | 1z »

1z/ 4
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| : (iz)® x S
s = 0 Ss! 2

(3.4.5)

for kz &lt;&lt; 1. Multiplying out the series, and separating

terms with even and odd powers of k_, we obtain

A
m-—-even

A -0dd

7 min

4b Ry, oo on (2n, 2m) om

—TT T k, oy

= n= 0 r 9
x,

=)” (iz)? TT—_ i
Ky, (2n r)!

on min
4b R;5 co on (2n + 1, 2m) om

m+ 1 k 2 k, C

= 2 n = 01=

: 2" (iz) 2D + 1 ~~
- 1

Ky, (2n + 1 r)!

(3.4.6)

(3.4.7)

Thus it can be seen that only A odd has a branch-point

at k, = 0. Therefore ordinary saddle-point analysis can be

applied to Benmamran term. For the A odd term, we rewrite

it as
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A -odd = ®, Boo (3.4.8)

where A is branch-point free at k, = 0. Therefore, the

odd term can be cast into the form of (3.3.1). Consequently

the m-th reflected-wave term due to odd powers at k_

r™ (Tk a Se mW) a
R-odd wo Z WO o of’ °

17

(kp + 2md K.
LZ

dk_

18

(3.4.9)

_ 2 2,1/2 _ -1 m

Letting R= [p° + (2md)”] » a = tan “(p/2md), Tp_ 44

becomes

m co k, ~ (1) iR(k, sin a + ki, cos a)

Tp-cda = J. ke Puno or He (k,0) © ax,

(3.4.10)

which is of the form (3.3.1). From (3.3.8), the leading term

of the saddle-point contribution is

iT

m(0) _ ,m57— 8

TR-odd = 2/mp e

ee

ik R

(k RD
3/4

1

(k = k; sin a)?

8s - gq 1172 F (ky Sin op)
(0 = og

‘ 2

2 sin
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a. — 6

-ik.R cinz|n"ol
1 m 5

. = J v2T
Kq cos o_ e

mm

. 37

1 —————

4 D I e 4 2vk.R sin

1/2 |* 1m
i -y

[0 = onl

2
J

o &lt; 6
m oO

a &gt; 0
m C0

(3.4.11)

where

3

vk (k + k)

y= Dott
\ mo

of

1

7

The first correction to the above is given by (3.3.13).

Hence

" i 2

iT ikrR THRp SI
m(l) _ 4 e e

Tr—oaq = V2/To e Rr 5/4 — —

Tx i x f

| A 4 :

= D_1/2]

oT

re 4 JKR sin
 T1T m

[om = 0

2,

(0 -

=1]

G' (0) V2m

 oa &lt;6
m Oo

&gt; 6
An oO

(3.4.12)
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where

~ 1

“J (0) =

_; 27
: 1/2

'k - k; sin a] o 8 Ir cos oa

6, a (2k) H/% [sin 6 _ - sin o
sin |—— © m

2

A

sin © - sin ao
Oo m

it — = COSOo
m

0 = ag)- oO m

sin |——
2

{ ~

- 2 sinao
m F(k, sin a)

F i
: 2

(k, sin a) 2k4 cos —. (3.4.13)

When ordinary saddle-point analysis is applied to the

A term in the reflected-wave term, it gives rise to
m-even

leading terms of oR") and 0 (R_%) (see Section 1.3). The

modified saddle-point analysis when applied to A odd term

gives rise to leading terms of o (rR) and o (R774) for

the branch point in the vicinity of the saddle-point. Conse-

quently, the first two leading terms to the reflected-wave term

are of o(®_"1 and oR). In general, for the computation

of the field components of a dipole antenna, the terms of or")

and o(rR&gt;/*%) sufficiently approximate the reflected wave com-

ponent when the branch-point is close to the saddle-point. When
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the branch-point is far away from the saddle-point, the above

analysis is still correct but cumbersome, whereas the use of

(1.3.7a) saves computation time.

Furthermore, (3.4.9) gives rise to a branch-point contri-

bution when a &gt; 0q- In accordance with (3.3.20), the leading

term of the branch-point contribution of the reflected-wave term

L.-

3

—  ik.R cosa - 6)

Sl = - JI75 e 8 1m m Oo F (k) (ky/R) 3/4

| cos © ]
lo

a — 0 ]

‘cos Ry2?

r
n

o 4 2/k.R sin
1m

L

3/2
"ik. R [ - 0
lms ©o D_3,p
 2 | 2

X exp

i] (3.4.14)

The first correction to the branch-point contribution is

1

~~ ik. R_ cosf(a._ - 06)

LY 2 5 37m e 4 1m m Oo H' (0)m

rT.
7

3 va

4
R2/4

m
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~~

1k Ro ,
———— sin

9

(yy = 8
Om 9

i 2

D_5/0

I”

e 4 2vk,R_ sin
1 m

T
(o - 9 ]

Bl
(3.4.15)

wh

H!

Ta
3

im

(0) = e 8 i 1/4

a. — © 1/

[sin n=%| cos 9 |
5 0

1. _

&gt; sin(a 6.) .

D

roo 2
4

L

[6 - a,
_ 5 4 sin? ——

3 _ «3 _ m

sin(a 6.) sin (a 6.)

1 A (k)

oy)

ik, sin

~

~y

a. = 6

“n=% cos?p
, 5 0

N

ia
A

2
(a

m
6)

oO

(3.4.16)

In general, (3.4.14) sufficiently approximates the branch-point

contribution. It is of o(r&gt;/4) when a = 8, and is of

0(R_%) when o_ is not close to 6 _.
m m Oo

The asymptotic approximation to the typical integral T

can be used to evaluate various components of a dipole field
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over two-layer media. For example, for an HED (see Section

1.2), its H_-field component is given by

a_

© k 2 ik z

g 22 P_ (1 + RTE) &amp; 2 ait) (k_ po) sin ¢ dk
gn Jo k D ©

(3.4.17)

It is related to the typical integral as follows:

LX

Br

° T sin ¢.

30

(3.4.18)

Since we know that similar asymptotic approximation to H

exists, we can obtain such approximation to H, by differenti-

ating the asymptotic approximation to T, and neglecting higher

order terms. Fig. 3.4.1 shows the H, component of an HED as

compared with numerical integration and ordinary saddle-point

analysis. Only terms of oR) and o(rR&gt;/4) is included in

the reflected-wave terms. In the computation, (1.3.7a), is used

when the saddle-point is far away from the branch-point at

k = 0 in order to save computation time.
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3.5 Bleistein's Approach

ror AN

r

integral of the form of (3.2.1)

fe
A + 1) T g(t) e

ALC)
JL (3.5.1)

without deforming the path of integration to the steepest-

descent path, a transformation of (3.2.2) results in

I = © Af (0) (gs - 2.1% Gls) eTASY 4a

Ct

(3.5.2)

where

G(s) =

’ r

t - ¢

s — Sy ds

C' is the image of the integration path C on the s-plane

extending from -o to +,

For an asymptotic expansion of (3.5.2), gleisteinss suggests

that the leading order approximation to (3.5.2) can be obtained

by approximating G(s) by a first order polynomial that inter-

polates the critical points, i.e. the branch-point and the

saddle-point. For instance, G(s) can be written as
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G(s) = Yo + Yq (s - Sy) + s(s - Sy) Gy (8) (3.5.3)

where Gq (s) is analytic in a region around the saddle-point.

Solving for Yq and Yq gives

( r™ 5, )3 (3,

E (5, - G(0)

(3.5.4)

(3.5.5)

Consequently,

prone
(0)

ww) er 2

[ (s = 8) Iv + v,(s = 5) e AEE a

CF (0)
| (s = ss.’
ol

wl
 iL

3 G. (s) e
—AS”

as (3.5.6)

The second integral can be shown to be of O0(l1/)) smaller

than the original integral using integration by parts.

l
‘ ee

AE (0)
[ (s - s. 1 T+1 S

— 2

G, (s) e Ag as
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+ (s = s)%[(s = 5.) G '(s) + (xr +1) Gy(s)]
23 JC!

Cw
oy

In arriving at the above, we make use of the fact that the

integrand vanishes at the end-points of C', i.e. at s =

(3.5.7)

+00

When XA is large, (3.4.7) is of order 1/X smaller than

#
£L. For this reason,

{ ny, e
vi (0) Tr -\s?

(s - S.) [vg + Yq (s - sy.) |] e

With change of variable to u =  2A (s - S.

A t£(0) + s,.°] oo
a’ uF + 1

Tot ot
enI/? 0 on Er /2)

}. —

u?
— + /2)\ s ul

5 bIY

3.
A le

ds. (3.5.8)

(3.5.9)

In (3.5.9), the path of integration is above the singularity

at the origin if the original path is above the singularity at
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the origin, and it is below the singularity at the origin for

the converse. Using (3.2.8),

“

he 0) + Sy7

(V2 sy)

Yo "1

(20) T/? We (20 3p) (2x) (£1) 72 "r+ 1

(3.5.10)

whore

W, (V2X sy)

i sp”
- — ri x —/— Dy (=1iv2A sy)

V2m e 7 e 2

2
Ss

ri A _b

2
VT e

9

e D, (+iv2X Sy.)

for integration

path above the

origin,

for integration

path below the

origin.

(3.5.11)

Note that distinct difference in definition between (3.5.11)

and (3.2.9). In (3.5.11) the signs are decided by the original

path of integration whereas in (3.2.9), they are decided by the

location of the branch-point with respect to the saddle-point.

Once the signs in (3.5.11) is confirmed, they remain the same

for all possible values of S, In Bleistein's approach, there
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is no distinction between the saddle-point and branch-point

contributions as they are all inclusive in the expression

(3.5.10). The correspondence to the singularity contribution

in the author's earlier analysis is exhibited in the Stoke's

phenomenon of the parabolic cylinder function for various

arguments. &gt;&gt;’ 34 Bleistein's approach has the advantage that

the leading order approximation to I does not involve the

derivatives of G(s). This is particularly useful when G(s)

is a complicated expression.

Applying Bleistein's approach to obtain the asymptotic

approximation of (3.3.1) we obtain a solution which gives

numerically equivalent answer when compared with the author's

analysis as shown in Fig. 3.5.1.



) 0

8

|  6H

—— Bleistein's approach

--~--- author's approach

£4 = 3,3(1+0.011)¢

€, z= eo

d = 4)

z = 0

1

&amp;
aa ad

rill

k

1

\

NS
 §

1.0

~~

/
y

\
AN
:

\) J
[Fea

» ‘
\ 4

IA o
N

o

0.8]
i

KY

KN
N

\
a
\
\
\
\

R\
\ /
\ oe’

TL

0.4

11

elie

12

0 in free-space

wavelengths.

Fig. 3.5.1. Normalized H, component of an HED using Bleistein's approach

and the author's approach in the modified saddle-point analysis.

C

 Qo
Q
m

aA



Page 93

3.6 Conclusions

In Section 3.4, it is demonstrated that terms of 0 (RT)

and o(r:&gt;/4) in the author's analysis sufficiently approximate

the H -field component of an HED where b = Mg/ Hq = 1. The

above analysis also shows that the wave that is associated with

the saddle-point contribution has a spherical wavefront. Also

when oa &gt; 657 an additional kind of wave is observed; namely,

the lateral wave which has a conical wave-front. This is attri-

buted to the branch-point contribution. These properties of

the wave can be confirmed by using the small and large argument

approximation of the parabolic cylinder functions. As for

Bleistein's approach, these anomalous behavior of the wave is

associated with the Stoke's phenomenon in parabolic cylinder

function.

When the saddle-point is close to the branch-point, in

other words, a. = Or the spherical wave and lateral wave

that is due to AL —0dd becomes physically the same wave and

is indistinguishable from each other when a. = 0s Furthermore,

this wave diminishes with a rate of rR-&gt;/4 from the source.

This forms an important correction to the spherical wave gen-

erated by the A term which diminishes with a rate of
m-—even

2?
m

This analysis sheds light on the behavior of the wave
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when a spherical wave source is placed on top of a half-space.

The transmitted wave behaves just like the reflected wave for

the two-layer problem. A typical integral representation of the

transmitted wave can be written as

 on

00 2b k
-

OO 2 — 2

ki bk

. _ (1) ik. z

L, - bk) HY (kp) e lz dk_

(3.6.1)

This resembles the reflected-wave expression since there is also

a term even in k, and one which is odd in k_- The transmitted

wave is shown in Fig. 3.6.1. The lateral wave is observed only

when the angle of observation in the lower half-space is greater

than 04 the critical angle. The lateral wave is phase-matched

to the spherical wave at the place where it merges with the spher-

ical wave. At the boundary, the lateral wave is phase-matched

to the spherical wave in the upper half-space. In the upper

half-space, the inhomogeneous wave decays exponentially away from

the boundary. In the analysis discussed in Chapter 1, it is,

associated with the branch-point contribution. The fact that

it is observed only when the angle of observation is greater

than the critical angle is a requirement for phase matching as

this inhomogeneous wave has a wavelength Ay propagating

in the op-direction.
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The analysis presented in this chapter nevertheless has

its limitation. Having An (k,) in the form of (3.4.6) and

(3.4.7) introduces a pole at

or
K

1 - b? ]

which occurs on both the Riemann sheets of k,- When Db = 1,

LI = », but for TM waves, b = g,/¢&gt;1 and b? can be large

so that the pole, which is of order m + 1 for the m-th

image, will be close to the saddle-point. As such, the above

analysis cannot be applied to compute the field of TM waves.

The locus of the pole is the same as that of the Sommerfeld

poles shown in Fig. 2.2.1 except that now it is on both Riemann

sheets. The failure of the modified saddle-point analysis is

alluded to the proximity of two singularities in the vicinity

of the saddle-point.
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Chapter 4. MUILTIPLE-SADDLE-POINT METHOD

4.1 Introduction

The modified saddle-point method discussed in Chapter 3

presupposes that the singularity of the integrand exists in

the form of an algebraic factor which multiplies the rest of

the integrand. For singularities which are poles, the integrand

can always be expressed in such form. In the case of algebraic

singularities of fractional order, though it is possible to

put the integrand into the desired form, objectionable effects

often ensued. For instance, in its application to field analy-

sis of a dipole antenna over layered media, the introduction

of a pole is undesirable when it can be arbitrarily near the

saddle-point.

For an algebraic singularity of fractional order, the

singularity can be removed by a transformation. Such trans-

formation results in multiple saddle-points on the transformed

plane. In this chapter, we shall discuss the case of an alge-

braic singularity of order 1/2. On the transformed plane,

this corresponds to three colinear saddle-points. The case of

an algebraic singularity of general fractional order shall be

discussed in the appendix.
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4.2 Asymptotic Expansion of Integrals with Three Colinear

Saddle-Points

Ordinary saddle-point method only applies to the case of

one simple saddle-point without singularities and other saddle-

points in the vicinity of the saddle-point. For three colinear

saddle-points which can be arbitrarily close together or can

coalesce, the ordinary saddle-point method becomes invalid.

Thus a new analysis has to be used to treat such a case.

An integral with three colinear saddle-points is of the

Foom

| |. g(t) e~ MEE) a (4.2.1)

where g(t) is analytic in a region around the origin, C is

the contour of integration extending to infinity, and £'(t)

equals zero at +t = 0, -ty and ty Without loss of generality,

we have assumed one saddle-point to be at the origin. The saddle-

points coalesce when ty = 0 giving rise to a third-order saddle-

point. To facilitate an asymptotic expansion of (4.2.1) which

is uniformly valid for all ty the transformation,

L(s)

A (s,s)?
£(0) = S_ - _b (4.2.2)
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simplifies the exponential factor in (4.2.1). As such,

1

feo 2
AE (0) G(s) e 4 2eo de (4.2.3)

where

G(s) = g(t) dt

d=

(4.2.4)

and C' is the image of C on the s-plane. From (4.2.2),

differentiating with respect to ss, we obtain

2 _ 2

ae _ S(s7 = sp7)
ds £f'(t)

(4.2.5)

Since the saddle-points are mapped from the t-plane to the

s-plane, it follows from (4.2.2) that

s, = v2 [£(0) - £(t.)1%/* (4.2.6)

We can choose the branch of (4.2.6) so that Si. is in

the fourth guadrant. The steepest-descent paths that pass
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through the three saddle-points on the s-plane are shown in

Fig. 4.2.1. The asymptotic approximation of (4.2.3) can be ob-

tained in several ways. One way is to approximate G(s) with

a polynomial that interpolates the enddlo-poinks. 35 Another

approach is to approximate G(s) with its Taylor series expan-

sion about the saddle-points that contribute most. For instance,

if the original path of integration C' extends from s = -iw

to to s = «» as shown in Fig. 4.2.1, C' can be deformed to

the steepest-descent path that passes through Sy + Hence, the

saddle-point at s = Sy, contributes most to the integral. An

asymptotic approximation to I is obtained by approximating

G(s) by its Taylor-series expansion about Sy, - Consequently,

for large AX

L 2
Ss 2 S

(n) 1 [2 - Ss =_ co G (s ) oo b

noe AE£(0) % — | (s =~ s,)% e 4 2
n = 0 nl! —i

1 ds.

(4.2.7)

I is asymptotic to such a series only because the Taylor series

representation of G(s) 1s valid only within its radius of

convergence while the range of integration extends to infinity.

The integral in (4.2.7) can be expressed in terms of parabolic

cylinder functions by making use of the following identity [see
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Fig. 4.2.1. Steepest-descent paths passing through

the three saddle-points on the s-plane. The arrows

show directions of descent. C' is the original path

of integration.
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Appendix, eq. (4A.1.19)1];

on

|=2

— Jon

S L

s" 7 8° n - 1 n + 1 b
TE. n-1 _(n+1) , 5%

~ 4 27 45s = 2 2 (om) 4 e 8 7

7
(n - 1)i

Dn — 1)/2 (1VX72 5.2). (4.2.8)

Therefore, the n-th term of the series in (4.2.7) is given by

(n)
S,.) n oo

-2f (0) G ( b . nN. sf L
[ = e —_— ¢ :

" nt r = 0

1 -[E + H
&gt; 2 (23) 4

.

H (vr - 1) 1

8 V2T e
,
rx

2

It is of of[(2n)~(0+1/4

I can be approximated with

arror 1s of 0 "2/4 when

1  Lu i. + I, +I, + I,.

Dr - 1)/2 (i/2/2 s, 2). (4.2.9)

The asymptotic approximation to

I, + I + I, + I, so that the

A &gt; oo for all values of Sy. Hence

(4.2.10)
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We shall next consider the case where the original path

of integration C' ranges, from s = -» to s = -i~ as shown

in Fig. 4.2.2. C' can now be deformed to the steepest-descent

paths that pass through the saddle-points at s = 0 and s = Sh

As a consequence, (4.2.3) can be broken into the sum of two

integrals:

it
_ ~ME(0)

0

[2 —_ =|© 4 b

G(s) e

J oo

I 2

4 b 2
G(s) e ds

ds

(4.2.11)
&gt;

"YY

The asymptotic expansion to the above can be obtained by

Taylor series expanding G(s) around s = 0 for the first

integral and around s = S, for the second integral. Using

the following identity [see Appendix, eg. (4A.1.13)],

J

OO

— CY

4 2

A [&amp; 52
n 4 2

S e

n - 1 -[2 + L
5 2 (on) 4dg = [1 + (-1)™M |

As, *

in + 1 b -/N72 29 exp Q Pon + 1) /2 M2 sy) (4.2.12)
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integration ranges from s = -© to § = =i



Page 105

and that for large A,

1 ny e

(ob 2

oe (n) co |= - Sy 2}
vf (0) : G (0) J Me 4 2

n=20 n! —00

5 (n) 's

n! ~j L - s e 4 ° 2 |ds|

ds

(4.2.13)

the n-th term of this series is given by

[¢() — tt(0)
hs (-1)" ht, 1, : -[E +(2X) :

4
r _ o~AE(O)

As, *
fn + 1 b _ 2

1-4 exp | —2-] D_(n + 1) 72 1/2 Sy, )

1

(n) 1 [25 (s,.) n _

 bp 5 fc Sp r os i (2M) 4
n! r = 0 ’

1

8 Vo2T e

5

n

(r — 1)1i

D  _ 1y,p (1VA/2 i.
(4.2.14)
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To obtain the leading order asymptotic approximation of I such

that the error is of o(x"3/4) when XM =&gt; «©, we take the first

four terms of the series as in (4.2.10).

The discussion above will suffice for the analysis of a

dipole antenna interference field over layered media. In the

analysis, we have chosen the Taylor-series approximation of

G(s) as opposed to a polynomial approximation so that we can

associate different waves with different saddle-points. This

will enhance our physical understanding of the wave behaviors.
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4.3 Application to Evaluating Interference Fringes of Dipole

Antennas

We have shown earlier that in geometrical-optics approxima-

tion, complication arises in the evaluation of the reflected-

wave contribution, because of the proximity of a branch-point.

A typical reflected-wave contribution from (1.3.3) is

To
0 © kA ik, 2md

 3 £ B_(k ) e 9.7 (kp) dk
m=1 =o k_ 0 ©

(4.3.1)

where

B (k) = X..x. RM -1gm Hep?
mp 01°10 “10 12 © (4.3.2)

The definition of Rid and Ryd are given in (1.2.14).

There is a branch-point at kK, = k because k= vk? - LE

Since this branch-point can be arbitrarily close to the saddle-

point, a transformation of k, = k sin B 1s used to remove it.

After such transformation, the m-th reflected-wave term be-

2omes

boa

1

| k sin B B_ (B) H(BR)

2 _ 2 . 2 1/2 * 3

~lcos a(k k*sin®R) + k sin o_ sin Bl
dr.

(4.3.3)
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In the above,

Y,
mr

a 0

md

R
mn

[oO 1 (amd) 21172

8 (B) = B_(k sin RB),

1(B) I's
Vd 1 (kn win £) "ike sin B

and I 1s the image of the original integration path on the

3-plane. The contour I is shown in Fig. 4.3.1.

The transformation gives rise to three colinear saddle-

points at

311

3 12

2

m3

_1 (kK

= sin”! [Losin a],te m

== T/2  Ty

, —-1 = |S1ln — S1NnN .

1, m
= IT-—

The steepest-descent paths that pass through these saddle-points
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and the branch-cut for Re [k, 1 = 0 are shown in Fig. 4.3.1

{see Appendix also). The three saddle-points can be arbitrarily

close to each other and coalesce when sin o, = k/kq i.e.

3.1 = Bo = B3 = n/2. Hence, the method discussed in Section

4.2 can be used to derive the asymptotic approximation of To

Nith the following transformation,

-

r,
wy

™

Sml 5
(4.3.4)

J t) = H(B) k sin 8 B_(B) (4 3.5)

L

-y = 2 _ 1 2adn2 1/2 . g

2) = —=i[cos a (ky k“sin“R) + k sin a sin R]

(4.3.6)

(4.3.3) becomes the form of (4.2.1). From (4.2.6),

3
1 ,3/4 =i 31/8 , 1/4 sini’? 9 - a)

 EE

(4.3.7)

where 6s = sin" 1 k/kq In the above, the + sign is chosen

when on, &lt; 6, and the - sign is chosen for the converse. This

ensures that the saddle-points at Bl in Fig. 4.3.l1la and Fig.

4.3.1b are both mapped into s,_ such that s,_ is always in the
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fourth quadrant. This enables us to use the analysis of Section

4.2 directly to derive our approximations.

When a &lt; 67 we infer from Fig. 4.3.la that only the

saddle-point at Bl contributes, since the original path of

integration can be deformed to pass through Bn ® This is simi-

lar to the first case in Section 4.2. Hence, from (4.2.9) and

(4.2.10), the leading order approximation to 7. is given by

rr
an

\,
ttl

2A
+

HI
m+
Ri

m

Too +
m

Tx4 (4.3.8)

where

; (n) n
ik. R G Ssm 1m (sp) n n -r

T = e —_— z C s
Nn r b

n! r =0

r= 1

2

+ . _ . a 2

{r - 1)1i ik,R sin

(6, - on

L 2
/2m ~

6 = a_||

4 2(kqR_) 1/2 sin 2 n)

riersSemeterssei

(2R y (x + 1)/4
m

Dir — 1)/2

(4.3.9)

After replacing H(B) with its approximation when kp is

large, G(s,) is given by
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-7
nm

p _ 4 rsp—— dt

G(s) = V/2/7mp e 3 sin a_ B_ (8) ”
S =

—

2.

3

(4. 3.10)

In (4.3.9), the parabolic cylinder function has exponential

g «2 _ m

dependence of exp{ik, R sin [ (6, a )/21}. Therefore, Fos

has exp (ik, R) dependence which is that of a spherical wave.

When a &gt; Or we infer from Fig. 4.3.1b that both saddle-

. : m Co.

points at Bal and Bo contribute to Tn - This is similar

to the second case of Section 4.2 if we choose Sy, to be in

the fourth quadrant. Thus, the leading order approximations

are given by (4.3.8) where Be from (4.2.14), is

g =~
ik.R_cos(a_ = 6_) ~(n) , |

MM —e 1M m of 6 (0) 1 4 (-1)™ 2 2
Rn or

6. = ao

ik, R_ sin?| 20" omn

(n + 1)/4 4
(2R_]

mr

a, — 8

le 1 2(k,R y 1/2 sin|om "Ol
m 9

Pl

D
-(n + 1)/2

, (n)

ik R G (sy) n n n- r
— x Cs 2

r= 0 r Db

r=1
)

(2P )

errors

(r + 1)/4
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ii= (r - 1)i =-ik,R_ sin?

A 1'm

05 = Op]

\ 2
V2 €

| 4 1/2 _.

e 2 (kyR) sin

14

=]Dir = 1)/2
(4.3.11)

In the above, the first term, which is the contribution

from the saddle-point at w/2, is non-zero only for n = 2

since G(0) = 0. Its exponential dependence is exp[ik R

cos (a ~ 6.) 1 which is that of a conical wavefront. The second

term is similar to (4.3.9), giving rise to a spherical wave.

In fact the contribution due to the saddle-point at w/2 cor-

responds to the branch-point contribution discussed in Chapter

3, which gives rise to the lateral wave.

A remark is in order here on the sign of dt/ds. Since

arg (dt/ds) mresures the angle of rotation of the mapping from

the t-plane to the s-plane, the sign is chosen so that

arg (dt/ds) gives the correct rotation. Since

dt _ 2

— = Nf TT Spr

ds | — £" (t,)

For the correct rotation, we choose

. k

1 (m/4) kK] z_
Kz

. k

ol(m/4) ky Z ,
k

17

n 1/72 _

[£7 (t,)] =

XN,
m

x
m

Be J
oO

)
A

(4.3.12)

(4.3.13)
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Also,

dt

ds
s = 0

 ao

T 1/2
Sy, COS Be

. 1/2

sin (o - 6.)1[k

Ol
m

a e

oO
(4.3.14)

(4.3.12) and (4.3.13) are imperative in deciding the right

value of G(s) in (4.3.10) and subsequently c'™ (s,).

(4.3.14) when applied to G" (0) gives

3

a" (0) = g" (0)

-1
—_—,

4 3 3/2

Sy cos” 9
i _ 3/2

[k sin(a 6,)1

(4.3.15)

Having seen the application of the three-saddle-point

analysis on deriving the asymptotic approximation of a typical

reflected-wave integral, we can use it to derive the field

components of a dipole antenna over stratified media. We make

use of a similar concept exemplified by (3.4.17) and (3.4.18)

of Chapter 3. In Fig. 4.3.2, three-saddle-point analysis was

used to calculate the H, component of an HED, and compared

with the case of ordinary saddle-point and numerical integra-

tion. In Fig. 4.3.3a and b, E, component of an HED was

calculated and compared with ordinary saddle-point analysis.
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The result shows marked improvement when the thickness of the

first layer is 5 free-space wavelengths. When the thickness

is 2.5 A, there is improvement in the near field, but when

0 gets large, the result deteriorates. This is because that

when pop is large, the number of images that contribute to E,

is large. The saddle-point analysis is unsatisfactory for large

m since Bn 1B, is a rapidly varying function then.

In the above, the dominant-wave contributions are TE

waves. We saw excellent agreement between our analysis, ex-

permental result and numerical integration. This is because

the Sommerfeld pole is at infinity for TE waves propagating

in non-magnetic material. The location of the Sommerfeld pole

on R-plane is given by

. =1

3 = sin

’e)

(k,/K)? - p2]1/2

1 - b?% |

(4.3.16)

Fig. 4.3.4 shows the locus of this pole for different values

of b. When b &gt; ky/k, the pole can be near to the saddle-

point at B = mw/2, thus adversely affecting our analysis given

above. For TM waves, b = e,/eq &gt; k,/k for most media. Fig.

4.3.5 shows the failure of our analysis, when applied to calcu-

late the E_ component of an HMD. Fig. 4.3.6a-c shows the

effect of varying b, that is varying the location of the
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Sommerfeld pole on the computed value of "E_". It shows that

when the pole is far away, the argreement with numerical inte-

gration improves. The only singularities that are near the

saddle-points then are the branch-point singularities which

are relatively "mild"
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4.4 Conclusions

In Chapter 3, we saw that the use of modified saddle-point

analysis, when applied to field evaluation, gave rise to poles

on both Riemann Sheets. These poles can be arbitrarily close

to or coalesce with the saddle point. This is undesirable for

calculating interference fringes due to TM waves. In this

Chapter, the use of a transformation results in the need for

three-saddle-point analysis. In the three-saddle-point analysis,

the pole does not coalesce with the saddle-points. Hence, for

spacial cases, it can be used to analyze the field interference

fringes due to TM waves.

However, the analysis left much to be desired as the

approximation involves high derivatives of G(s). Therefore,

the effect of a high-order pole is easily felt as exemplified

by Fig. 4.3.6. We shall introduce the concept of generalized

Weber's function in the next chapter to take into account the

ole at ’

P Bo

In this Chapter, we also saw the same behavior of waves

generated by a spherical-wave source on top of a layered medium.

The waves are sufficiently characterized by parabolic cylinder

functions when they are TE waves. When a, = Or i.e.

s. = 0, and G(0) = 0, the largest term of 7" is given by
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ik. R
m I'm ., 1/2

Thy = e G (0) /(2R )

Since G' (0) ~ or), therefore Tp gv o (rh) for large

R_- The first correction to the above is of o(R&gt;/4). This

is similar to that obtained by modified saddle-point analysis.

However, the next correction term is of o(r7%/4) which does

not have a counterpart in the modified saddle-point analysis.

When a # Or the leading order approximation of Tp is of

o (rh) for charge R followed by correction terms of

0(R_%).
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Appendix to Chapter 4

4A.1 Uniform Asymptotic ExpansionsofIntegralswith an Algebraic

Singularity of Any Fractional Order

An integral with an algebraic singularity of any fractional

»rder can be represented by

 alte - £,) L/P) a MEE) ay (4A.1.1)

where p = 2, 3, 4, ..., g(z) is analytic in a region |z]| &lt; R

and the path of integration C extends to infinity. There is

a branch-point singularity at t = t, where | ty &lt; R. Assume

further that f'(0) = 0 so that there is a simple saddle-point

at t = 0. The branch-point at ty can be removed with the

following transformation

7 (t (42.1.2)

As auch.

1

J MEE +g)
gv) pvP ¢ av

®

(4A.1.3)

where C' is the image of C on the V-plane. The saddle-points
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occur at V where

£,)
vP — 1 _g (47.1.4)

Hence, there are simple saddle-points at locations where

+ ty = 0 and a saddle-point of order p - 1 at V = 0. Thus

there are p + 1 saddle-points at V = (-t,)1/P and at V = 0.

vP

To obtain an asymptotic expansion of I which is uniformly

valid for all ty we seek the following transformation

.

gE ts

t,)

2 s. s)P_ ge (sys)
- f(t,) = =— - —=

b
2D jo)

(4A.1.5)

AS a consequence,

1 €
“Aft,)

- Pn

og2P _ (sy,8)7

sP 71 gs) e L 2p p ds (4A.1.6)

where

3(s) = gv) p(v/s)P — 1 dv (4A.1.7)
da

10d C" is the image of C' on the s-plane. The transformation
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(4A.1.5) maps all the saddle-points on the V-plane to the

s-plane. From (4A.1.5)

~

1.

t 201£(t,) - £(0)1}1/2P (4A.1.8)

Furthermore,

- 1

av _ s® (s® - sp”)
(47.1.9)

The location of the saddle-points on the s-plane is given

MY,

Sg

. m

127 =

= 0 and s, e P m=20, +1, x2, +3, (4A.1.10)

where we have chosen the value of Sy, in (4A.1.8) to have its

principle value. Thus the saddle-points are as shown in Fig.

4A.1.1. Also the valleys of the exponential factor in (4A.1.6),

i.e. the asymptotes extending to infinity where the exponential

factor will vanish is given by

.

— (1 gd
LKT / Ww

K = 0, +1, +2, (4A.1.11)
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where o =&gt; ® along the asymptotes. For the integral I to

converge, the end-points of C" must at least be deformable

to two of these valleys.

To obtain the leading order approximation of T, we shall

approximate G(s) with a polynomial such that

53{g) =

2p=1
% ys" + sP(sP - s.P) G. (s).

n = 0

(4A.1.12)

Substituting (4A.1.12) into I, we obtain

- P

s2P _ (3, 8)

_ 2p p |
Pe

&amp;

-A f (ty) 2p - 1

JC" n =0 r

 -—

 qi

]
oO ds

r Po

5 2p _ (sys)

220 - 1s? - s,P) G, (s) e L 2p P
1

1]

1 ds

(4A.1.13)

The order of magnitude of the latter integral can be estimated

using integration by parts:
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K e

: Pp

[522 ] (5,8) F]

| 2p Pp 4 ds
-A E(t)

b 2p - 1
| EE Cs ACI

=A

 Pp

+ _ (58) ]
sP ~ pe,(s) + sG,'(s)] e Zp P

cn"

AEE)
ds.

(4A.1.14)

Since Gq (8) in (4A.1.12) is an analytic function in a

region around the origin, therefore K is of order 1/) smaller

than the original integral. Consequently, when A »&gt; «, the

leading order approximation of I 18

- f(t 2p -(tp) 2p - 1 n+p-1
x Yi S e

1 cr

v

\,

-

- Pq

¢2P _ (sy8)

2D P
L 1 ds.

(4A.1.15)

We can obtain higher-order approximation to I by repeating

the same procedure on K, thus obtaining an approximation to

K with an error term that is of 1/)? smaller than TI.

The integral in (4A.1.15) can be expressed in terms of

parabolic cylinder function uniquely if we know the original
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path of integration. Say CC" can be deformed to two valleys

given by (4A.1.11) where k = ky and Kye Thus the integra-

tion path C" in I can be replaced by one which ranges from

i(kym/p)
 Ss = 0 e to the origin and from the origin to s =

i(k,m/p)
a e where a is real and ao +» «, We shall assume

that no singularities are enclosed when CC" is deformed to the

above defined path as they only give rise to some additive terms.

As such, we let

D(n + p =n = | grtp-1

dnle, (T/P)
lim

~y &gt;» 00 “°  nN 4

  (m/p)

 _—
¢

e

P - 1

&gt;

P17
5 2P _ (sys)

2p P|L ds

r P-

2p _ (sys)

2p

=)

 oD L ds.

[el

(4A.1.16)

Fig. 4A.1.2 shows the paths of integration. To express D in

terms of parabolic cylinder function (4A.1.16) can be divided

ik, (1/p)
into two integration one ranges from e to 0 and

ik, (r/p)
the other one ranges from 0 to e

Hence

dn +p -1) =

+ : m

— / . rs, °P) ik, 5 (n + Pp)
(A/p) p [2B] exp|l———— |e

o) | 4p J
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D ik,m
D_(n + pal” MVPs, ee 7)

L { 2,

0)

(n+©
p ikgm

Pn + py/2 TMP Sy eT) (4A.1.17)

If the original path of integration in (4A.1.1) is on the

same or adjacent Riemann sheet or is deformable to it, then

| k, = ky| = 2 or 1. In evaluating |k, - kyl we have as-

sumed the least possible value of |, - ky| since adding

22p (where £ is an integer) to kq and k, does not change

the locations of the valleys they denote. If we let un = sgn

(k, - ky), and C in (4A.1.1) is on the same Riemann sheet

and | k, - k.] = 2, then (4A.1.17) simplifies to

dn +p -1) ==
-(n + p)/2 + AS 2p

(\/p) p)/2p r[2tp] exp|—P
p 4p |

3 ik.
_(n + p)/p"YA/P Pe 1

1k I (n + p)

~

Nhen |k, = k,| = 1,

re i 2m

o

(n + p)

0 |

(4A.1.17) simplifies to

(4A.1.18)
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AS “?)D(n + p - 1) = 1 (A/p) 2p V2T exp mers re

0 dp

n+p

1 i

2? p ikqm
Dp (=1VA/2 5,7 e un).

ik, + k

e 2p

(4A.1.19)

The above identity has been arrived at using the linear relations

of parabolic cylinder functions. Henceforth, we can write

 ' 4

.
t,) 2p

n

PpD(n +'n
 0D

1) (4A.1.20)

The values of Y, can be solved from (4A.1.12). By noting

that the first p -

S = 0, we know that

Y .

 (0)
ry

1 derivatives of the latter term vanish at

0 © n&lt;p-=-1. (4A.1.21)
Nn!

The values of Yq for p &lt;n &lt; 2p - 1 can be obtained by no-

ticing that the latter term in (4A.1.12) vanishes at p points

given by s = Sy el (2mn/p) m=20, 1, ..., p—- 1. Thus we can

set up p linear equations and solve for ¥ 4 for n =p, p + 1.

* eo Fr 20 - 1. Hence (4A.1.18) can be determined uniquely.



Page 137

4A.2 The Steepest-Descent Paths That Pass Through the Saddle-

Points

To show that the steepest-descent paths are asymptotic to

the asymptotes as shown in Fig. 4.3.1 and Fig. 4A.2.1 when

Im[B] =» zo, and that they are on the correct Riemann sheets,

: : . 2 so _._ 2.1/2

it suffices to show that exp{iR_[cos a (ky - k* sin“R) +

k sin a sin R]} vanishes along such paths at «, and that

its phases remain the same as that of the saddle-points along

such asymptotes.

We can show that the asymptotes are in fact those shown in

Fig. 4A.2.1. When Im[B] » #«, [sin B| + «, thus k, = (ky *

- k?2 sin2pg) 1/2 ~ + ik sin RB. Consequently, the exponential

factor can be approximated by exp{ik R_ sin B[sin a * 1 cos a 1}.

The positive sign is chosen when we are on the Riemann sheet

where Im[k, | &gt; 0 and conversely for the negative sign. Letting

BR = R' + iB" where R' and RR" are real, the exponential factor

~an be written as

expi{ik R cosh BR" [sin a sin B' : cos Q
m

cos R' tanh Bg"

Iml[kx, 1] &gt; 0
&gt;

1 + ltanh BRB" cos R+* gin 0,
m

+ sin 3' ~OQg Qo
WN / | I

Im[k. |] &lt; 0

(4A.2.1)
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The notation means that the upper sign is chosen when Im(k, 1]

&gt; 0 and the converse for Im[k, | &lt; 0. At the saddle-points

Bl and Bn” the phase of the exponential factor is exp (ik R

and at Bo’ it is exp[ik, R cos (a - 6,01. Thus for (4A.2.1)

to have the same phase when gf" &gt; fo, the following must be

true.

lim sin a_ sin B' + cos a_ cos RB ' tanh BRB" = 0

3" | 500 nm nm

When 8g" » +4+«, tanh RB" -

Ean R' = + cot
LE

1,

Inmk, 1] &gt; 0

Im[k. I &lt; 0.

as sdch,

Imlk,,] &gt; 0

Imlk, |] &lt; 0,

(4A.2.2)

(4A.2.3)

NY

m —

3 v

Ir
+ nm 4 ¥

m

where n = 0, +7, +

Imfk, | &gt; 0

(4A.2.4)

fm 0,

Hence the asymptotes of interest
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to us where (4A.2.1) would vanish when BB" -» +o are at B' =

n/2 - o and B' = -m/2 + a. Along the first asymptote, the

steepest-descent path has to be on the Riemann sheet where

Im[k,,] &gt; 0 and along the second asymptote, it has to be on

the Riemann sheet where Im(k,,] &lt; 0.

Similarly, when PB" »- -», the asymptotes of interest to

us are at RB' = 1/2 + a and B' = 3n/2 - a. Along the first

asymptote, the steepest-descent path has to be on the Riemann

sheet where Im[k, 1] &gt; 0 and along the second asymptote, it

has to be on the Riemann sheet where Im[k, | &lt; 0.

The choice of branch-cuts of Re lk, | = 0 are shown in

Fig. 4A.2.1. The loci of the points where Imlk, | = 0 are

shown as dashed lines joining the branch-cuts of Re [k, 1] = 0.

This is consistent with the observation that the locus of

Iml[k, | = 0 on the k,~plang is a hyperbolic curve that

the Re[k, | = 0 locus (see Fig. 3.3.1).

On the upper Riemann sheet, Re[k, 1] &gt; 0. To distinguish

the signs of Sp on the two sides of the branch-cut passing

throuah By we Taylor-series expand ka, around Bq - Hence,

for lg - B,| &lt;&lt; 1,

Ka, +ea
4

[2k. (k,? - x2) 2g - 3) 11/2 (4A.2.5)

Letting Rg - Bq = g et, the value of K,, on the top Riemann
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sheet is

WZ
| 7

r=

- a 4

: O

1 —

[2k. (k,? - k2)1/2 e11/2 e 2 -m/2 &lt; 0 &lt; 3n/2.

(4A.2.6)

By setting o = -n/2 and 3m/2 successively, we see that

Im(k, 1 &lt; 0 on the right side of the branch-cut and Im[k, |

&gt; 0 on the left side of the branch-cut. As such, on the upper

Riemann sheet, we can determine the region where Im[k, I &gt; 0.

It is a simply-connected region. The region where Iml[k, 1] &lt; 0

consists of disjoint regions. The boundaries between the two

regions are the branch cuts and the locus of Im[k, | = 0 (see

Fig. 4A.2.1). This verifies the locations of the steepest-

descent path when RB + +x» as shown in Fig. 4A.2.1. The shape

of the steepest-descent paths in the neighborhood of the saddle-

points can be determined by Taylor-series expanding the argument

of the exponential function around them.
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Chapter 5. GENERALIZED WEBER'S FUNCTION

5.1 Introduction

We have seen in the previous chapters that in finding

the asymptotic expansion of an integral, we expand the inte-

grals in terms of simpler integrals which can be expressed in

terms of known functions. For ordinary saddle-point analysis,

such functions are gamma functions. For modified saddle-point

and three-saddle-point analyses, they are parabolic cylinder

functions or Weber's functions.

However, when the number of saddle-points and singularities

increases, it is impossible to express our simplified integrals

in terms of known functions. The corresponding functions are

dubbed generalized Weber's functions by Bleistein.3® Uniform

asymptotic expansion of an integral where there are many sin-

gularities in the neighborhood of many saddle-points can be

represented in terms of such functions. In their applications

to wave propagation, they characterize the behaviors of the

waves just as Bessel functions characterize spherical and

cylindrical waves. We shall see their applications in deriving

the interference fringes of a dipole antenna over stratified

media.
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5.2 Asymptotic Expansions of Integrals with a Singularity

Near Three Colinear Saddle-Points

An integral with a singularity in the neighborhood of

three colinear saddle-points can be expressed as

|
— r

} (t t g(t) e

NL (tt)
dt (5.2.1)

where f'(t) = 0 at t = 0 and + ty r is fractional or

a negative integer, g(t) is analytic in a region around the

origin and ty is the location of the singularity. C is

the path of integration extending to infinity such that I

converges. If the above is obtained by a transformation to

remove a branch-point singularity, it is generally true that

g(t) has a zero at t = 0. We shall make use of this fact

in our analysis.

With a transformation of

S(t) - £(0) =

~ bL
-

(5,8) °

the following kind,

(5.2.2)

(5.2.1) becomes

AL (0) (

|

r -A[s"*/4 - (s,,8) */2]
(s - s_) sG(s) e ds (5.2.3)
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where

G(s) =

r

Et gee) at
Ss - 8 S ds

(5.2.4)

G(s) is analytic in a region around the origin. The steps

for finding dt/ds, Sy and 2 resembles that described in

Chapter 4. From (5.2.2)

z 2

ar _ S(s” = sp7)
ds fr(+)

5, = V2 [£(0) - £(t,)11/4

~

&gt; = J/2 [£(0) - £(t)11/4

(5.2.5)

(5.2.6a)

(5.2.6Db)

which means that the saddle-points and the singularity on the

t-plane are mapped into their counterparts on the s-plane.

To obtain the asymptotic approximation of I for all Se

and Sr We shall approximate G(s) with a polynomial that

interpolates the critical points; namely, the singularity and

the saddle-points. As such, we can write G(s) YA
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G(s) = 4 + 2 3 2 _ 2 -

(s) = vy, + v.s + v,8° + y,8" + s(s s,°) (s = s) G,(s).

(5.2.7)

Solving the above for Yr We obtain

J)

2s, * [G(s )= Yq = YS 2] - s PIG (sy) - Cl-5,3]

2s sys, ? - s ?1

 Jf

G(=sp) + G(s) — 2v,
,

(5.2.8a)

(5.2.8b)

(5.2.8c)
Dea

(

i ws 2 - - -

2s, [G(s) Yo Y,S ] s,[G(sy) G ( Sy)|
2 _ 2

2s 8, Is Sy, ]

(5.2.8d)

Substituting (5.2.7) into (5.2.3), we obtain

THEO) (s - s )" s(y, + v-s + v.,s?

st/4 - (s,,8) 2/2]
ds + |

pL (so-

| Ng os)

1
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-A[s*/4 - (s,_s)?/2]

s?(s? - s,%) G, (s) e b ds]. (5.2.9)

Using integration by parts, we can estimate the magnitude of

the latter integral.

Z ee -AE (0) (zs ~ s ¥ + 1 _2,.2 _ 2

ss‘ (s si,”) G(s)

A

2
-Af£ (0)

y
~

he3
hy

ds

(5.2.10)

wii —

L(s) = (r + 1)s G, (s) + (s ~- Ss) G, (s) + (s - s_)s G,'(s).

(5.2.11)

We see that K is of order 1/)X smaller than I 1 f
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g(t) does not vanish at t = 0. In the actual problem, g(t)

vanishes at t = 0, which means that the contribution of the

saddle-point at t = 0 is of lesser importance. However, we

shall see that the error in estimating I by the first integral

in (5.2.9) is tolerable. Otherwise, to derive an approximation

whose error is of order 1/)X smaller than I rigorously, we

have to use a fourth order polynomial approximation. This will

require finding derivative of G(s) which is a formidable task

if G(s) is a very complicated function. Thus when A

large,

I nN, e
Af (0)

3
(s - r n[ 5s) S z YS

n = 0

\|s*/4 - (s,s) 2/2]
ds.

(5.2.12)

If C' is as shown in Fig. 5.2.1, we can deform C' so that

it extends from =i» to 0 and then from 0 to «. We assume,

for this case, that S55 is in the second quadrant so that the

pole is not enclosed in the course of deforming the path of

integration. Letting s = au t’4, (5.2.12) becomes

r

1 \.

_-AE(0) 74 3 yu -[u*/4 - VX (spu)?/2]

(FD /E | _. uu - A s,) I nme

dd. (5.2.13)
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J
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1,

to. Ed
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—
_—TRels]

1
;

ff

J

Fig. 5.2.1. The original path of integration

with respect to saddle-points and pole on the s-plane.
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Tf we define

oo

WN (0, oi my, Tr) = |a Cie

[2 - u?to ~ §)E n 4 0 |
u e 2 du, (5.2.14)

which we shall call generalized Weber's function, then

] a

-A£ (0) 3 v
eSrg 2 1/4 . n

(£¥2) 7% z ) W_o(/X sp %, A si n+ 1, r) n/a (5.2.15)

when MN &gt; o

A subtle point need to be emphasized here. When the branch

of Sy and Bo in (5.2.5) is chosen such that C' extends

from -i» to +», the same branch has to be chosen for all

ty so that C' remains unchanged; that is it still extends

from -io» to +» on the s-plane. This will cause the gen-

eralized Weber's function to exhibit Stoke's phenomenon in its

asymptotic approximation similar to the parabolic cylinder

function when s, varies.



Page 150

5.3 Application to Evaluating Interference Fringes of Dipole

Antennas

An integral which has a singularity in the neighborhood

of three colinear saddle-points in the evaluation of interference

fringes is given by (4.3.3). It is the integral representation

of the reflected wave for a dipole antenna over two layer media.

Reproduced here, it is

Tn
iD

| k sin 8 BL (B) H(B)

LR [cos a (k.* - k2sin2g) 1/2 + k sin a sin RB]
dB (5.3.1la)

where

Y,
m

3
 ™m

- 1

= tan _pP R = [p? + (2md) 21172
2md

3) =
m- 1 _m ik,z

X01%10 Rio R,, ©

(5.3.1Db)

(5.3.1c)

x = k sin RB

H(R) = le (1) (ko sin RB)
ikp sin R

After some algebraic manipulation, we can write B_ (8) as

(5.3.14)



Page 151

2m _m

7 i} = = 4b k ky, (ky, - bk) R:5

m 2 - Flix x tl 4x yt l
nN 0 nN O..

+5

z

(5.3.2)

lk =k sin B
0

vhere

”

py

"b2k?2 - k 2 1/2

1

. b? -1

There is a pole of order m + 1 at

3
 =]

= Ss1n

2 - (ky/k) 21/2

. b* -1

which can be near to the saddle-points at Bl Brno and

8.13 as shown in Fig. 4.3.1. With the following transformation,

mn.

2 » ot

m = Bm
I

i

Be, &gt;

(5.3.3a)

"+ -e "mY ge) = B (5) (5.3. 2b)
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F(t) = -i[cos a (ki? - k?sintg) i’? + k sin a sin BR].

(5.3.1la) becomes the form of (5.2.1) where

obtain from (5.2.5) and (5.2.6) that

rr = -(m + 1).

Sm

/ 4
0

ol
8 x1? aint’? fo”

1 2 6 - o 6 - a 1 1/2

= 93/4 e B x17? sin 2m2 ~ cin)20]Tl 2 2

+

—-

(5.3.3c)

We

(5.3.4)

(5.3.5)

where

J. = sind = sin RB ’
* k. P

_ .. =1 k

84 = sin ded

k,

In the above, we have chosen the branch for Sy such

that it is in the fourth quadrant when 0, &gt; 0. This will

cause the image of TI on the s-plane to extend from -iw to

to. To leave the image of [I' unchanged on the s-plane when

3
0

&lt; asr we choose the branch for Si, such that

23/4 o 8 1/4 1/2

 ad

fo. — 6

m Oo

9

(5.3.6)
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This also causes B to correspond to s and B to
ml b m3

correspond to =Sy always.

Note that the above choice of branch for Sy is different

from that of (4.3.7). For clarification, Fig. 5.3.1 shows the

locus of Sy for real ky when a increases from 0 to

n/2. Cw is the path of integration for the generalized Weber's

function. It is immaterial to know the exact location of the

original path of integration on the s-plane as long as we can

deform it to Cw without enclosing By This is true for the

integral To which enables us to make use of (5.2.15).

Making use of (5.2.4) and the large pop approximation for

H(B), we obtain

~~

 =

. OT
1 — 2

Ss cos © B (B)

(0) = - (-s y+ Lome e 4 b ~~ oo_m °_

sin(a _ - 6) k cos B IB = m/2

(5.3.7a)

G(s)
_ _ m + 1

= (sy s_)

Tr
-y 7

k, sin ao

C2 [ATT mg (go)
m ml

 mT kK.0

ky cos a

k cos B 1

(5.3.7b)

i = k., sin a

+ 1 2 1 m
G(-s,) = (-s, - ss)" o 2 [——— B_(B_,)

b b 5 %.0 m “m3Nr

ky cos a

k cos B3

(5 .3.7¢)
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Im[s]

a =0
m

1

+ S

©

Y= y
} o_=T/2

-
—

_—
-

% =T/2 \ld  Ww

oa = 0
a1] 0

Re [s]

o =0
m

Fig. 5.3.1. The locus of Sy and =Sy when On increases

from 0 to mw/2. C. is the path of integration for the

generalized Weber's function.
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k cos RB
re . -

ik, =asin(6, a)
1 Pp

1

a _ -{(m + 1)

(s,) (k cos B,) 2 2

s_(s_ Sy, )

1 - B (8) (k, sin 0_ - k_)" +1

m

2/70

(5.3.74)

Using the above, we can obtain Yo from (5.2.8), and thus the

uniform asymptotic approximation from (5.2.15). The approxima-

tion will be valid for all values of Sy and Bs Similarly,

we can obtain the asymptotic approximation of all field compon-

ents, regardless of the fact that they arise from either TE

or TM waves. The value of generalized Weber's function can

be obtained by numerical integration.

Figure 5.3.2a shows the use of the above analysis to

compute the E, component of an HMD. The improvement is

remarkable compared with Fig. 4.3.5. Fig. 5.3.2b is similar

except that the subsurface reflector is metallic. Fig. 5.3.3

and Fig. 5.3.4 shows the effect of the location of the Sommer-

feld pole on the approximation. There is no noticeable effects

as in Fig. 4.3.6a and b. Note that the vertical scale for the la-

tter two diagrams are exaggerated; thus the larger discrepancies

with numerical GOA are artificial.
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5.4 Conclusions

We see in this chapter the analysis of the interference

fringes of an HMD. In previous chapters, we have pretended

to ignore the effect of the Sommerfeld pole on TM waves gen-

erated by an HMD. This is only true for cases when the Som-

merfeld pole is far away from the saddle-points of our interest,

i.e. when generalized Weber's function can be approximated by

parabolic cylinder function. For most cases, the effect of

the Sommerfeld pole cannot be neglected, and it affects the

angular dependence of the wave observed. However, the effect

of the Sommerfeld pole is peripheral, i.e. if we are to carry

out the saddle-point analysis similar to that of Chapter 4,

the pole is never enclosed when we deform the original path of

integration to the steepest-descent path passing through the

saddle-points. In other words, we cannot associate any charac-

teristic wave with the Sommerfeld pole. Moreover, generalized We-

ber 's function can be approximated by parabolic cylinder func-

tion always when A =&gt; «, Thus, the effect of the pole is not

noticeable in the far-field.

The generalized Weber's functions, like parabolic cylinder

functions also exhibit Stoke's phenomenon. Thus there is the

existence of the lateral wave and the spherical wave as before.

This is more apparent if we were to follow the analysis in the

line of Chapter 4. We also see that the use of polynomial ap-
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proximation for G(s) circumvents the difficulties of dif-

ferentiating G(s), which in our problem, is relatively com-

plicated and formidable.

Though we have shown that the field of a dipole source

over stratified media can be approximated by special functions,

one must be aware that this is not the same as the mode-expansion

method. Our approximation by a series is only true in the asym-

ptotic sense. This is because G(s) (the notation of which

we have used throughout our analysis) in general has other sin-

gularities on the finite complex plane which are distant from

the saddle-points. Thus the approximation of G(s) by polyno-

mials or Taylor series is only valid over a finite region. We

have previously emphasized that such an approximation of G(s)

for an integral whose range of integration extends to infinity

results in an asymptotic approximation. This also means that

all the singularities of the integrand on the complex plane have

some effects on our approximation. Some of these are of lesser

effect than the others. Thus, in our approximation, we have

taken into account only the singularities of immediate signifi-

cance. We can imagine that if we have taken into account all

the effects of the singularities, our series representation

would be exact.

We have seen in the above that the value of the integral

~
i is only determined by the values of the integrand at some
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critical points; namely, the saddle-points and singularities.

This is similar to the concept of singularity expansion. Our

original integral in our problem is complicated to the extent

of being intractable if we seek to derive from it physical

feelings for the behaviour of the wave. We see that by expanding

our original integral in terms of its critical point contribution,

we have gained physical insight in the behaviour of the wave.

This justifies our representation of the integral in terms of

a series of special or little-known functions.
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