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Abstract

The terahertz (THz) polaritonics platform is a compact, waveguide-based platform
for the generation, manipulation, and detection of THz waves. The platform uses
thin (<100µm) lithium niobate (LiNbO3, LN) and lithium tantalate (LiTaO3, LT)
slabs, which can be patterned to control THz propagation. One of the unique fea-
tures of the platform is that the THz fields can be imaged directly within the slab
with subwavelength spatial resolution and subcycle temporal resolution. Both the
amplitude and phase of the fields are recorded, which allows the full spatiotempo-
ral evolution of the fields to be visualized. This makes the platform appealing for
compact, waveguide-based THz experiments. The work in the thesis aims to develop
tools to enable robust, compact THz spectroscopy using the polaritonics platform.

The first phase of my research aims to develop methods for enhanced THz gener-
ation in the waveguides. In a typical polaritonics experiment, the optical pump light
is focused to a single line which launches THz fields with electric field strengths of
approximately 10 kV/cm. Although the fields are sufficiently strong for THz imaging,
any nonlinear spectroscopic applications would require the use of much larger THz
fields so that the much weaker THz transients that result from multiple interactions
with the sample could be reliably detected. To this end, I developed two methods.
The first method uses thin LN waveguides with a beveled edge for enhanced narrow-
band THz generation. The optical pump light is focused onto the bevel, after which
it refracts and becomes confined within the waveguide by total internal reflection.
This allows the pump beam to repeatedly drive the generated THz field during its
multiple back-and-forth traversals within the LN slab. Using this method, we ob-
serve a 10-fold enhancement of the THz spectral amplitude at the velocity-matched
frequency. The second method combines the tilted pulse front geometry with THz
focusing to generate a strong THz field in the time domain. A circular stair-step
“echelon” mirror is used to shape the pump pulse into a conical tilted pulse front
composed of a series of concentric rings of pump light. When the pump rings are
imaged onto a thin LT waveguide, coherent superposition of the focusing THz fields
excited individually by each pump ring results in a dramatically enhanced THz field
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at the focus. When optimized, the method generates THz fields with electric field
strengths up to 175 kV/cm, which is roughly 20× larger than what is generated by a
single line of pump light.

The second phase of my research focuses on methods for expanding the polari-
tonics toolset for spectroscopic applications. Previous experiments coupling the THz
phonon-polaritons in a LN waveguide to the quasi-antiferromagnetic magnon mode
in an adjacent slab of ErFeO3 took advantage of the fact that both materials have
similar refractive indices. Furthermore, the ErFeO3 layer complicates THz imaging
because it strongly absorbs the optical probe light. I investigated two experimen-
tal geometries to address these concerns. The first geometry uses a high-reflecting
coating sandwiched between the LN slab and the sample material. The coating is
designed to reflect the optical probe light, which enables THz imaging in LN by pre-
venting the probe light from entering the sample and greatly expands the range of
possible samples. The second geometry uses a slot waveguide to localize the THz field
within a low-index slot region, which results in much stronger interactions between
the THz fields and a sample inserted into the slot. Using this geometry, the linear
THz absorption spectrum of a test sample was measured with good sensitivity and
the complex dielectric function was recovered.

The work presented here describes methods for enabling robust integrated THz
spectroscopy in the polaritonics platform. The methods, when combined, should also
form the basis for future polaritonics experiments that interrogate the nonlinear THz
responses of materials.

Thesis Supervisor: Keith A. Nelson
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

The terahertz (THz) region of the electromagnetic spectrum, loosely defined as the

frequency range between 0.1-10 THz (vacuum wavelength = 30 µm to 3mm), is home

to a wide range of interesting physical phenomena. The vibrational and rotational

transitions of many molecules and the collective modes (e.g. phonons, magnons,

etc.) of solid state materials have frequencies in the few THz range, making it a

good fingerprinting region [1–5]. THz radiation is also an appealing choice for non-

invasive, non-destructive imaging applications because of its large penetration depth

and non-ionizing nature [6–9].

Despite the rich physics and wide array of potential applications in the THz fre-

quency range, the technologies operating at THz frequencies are immature compared

to other portions of the electromagnetic spectrum. The lack of reliable THz sources

and detectors, historically called the “THz gap,” resulted from the fact that THz fre-

quencies are too fast for conventional electronics (which typically operate at GHz or

lower frequencies) and are two orders of magnitude slower than visible light frequen-

cies which makes nonlinear optical processes generally inefficient. In the early years

of THz spectroscopy, studies were restricted primarily to spectroscopy of simple gas

molecules and crystals using thermal sources and detectors [10]. After many decades

of technological advances, THz spectroscopy took on its modern form due to the de-

velopment of the picosecond photoconductive switch (also called the Auston switch)

as a THz source and detector [11]. This led to the development of THz time-domain
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Figure 1-1: Schematic illustration of the polaritonics platform. A femtosecond
pump pulse (shown in red) is focused into a thin LN crystal. The pump launches a
THz wave (shown in blue), which propagates away from the excitation region. The
THz wave is confined to the LN slab, but can interact with materials deposited on the
slab surface through its evanescent field. A time-delayed probe pulse (shown in green)
is focused into the slab to read out the time-dependent THz field directly inside the
LN slab.

spectroscopy (THz-TDS) [12] which has proven to be a reliable method to extract am-

plitude and phase information of a THz field after interaction with a sample, yielding

the real and imaginary components of the THz frequency-dependent refractive index

of the sample. Around the same time, electro-optic crystals such as lithium niobate

(LiNbO3, LN) and lithium tantalate (LiTaO3, LT) were shown to enable reliable THz

generation through optical rectification [13, 14]. With the development of tilted-pulse

front excitation in lithium niobate [15], THz field strengths in the 1-MV/cm range

have been routinely generated [16, 17]. This has enabled many nonlinear spectro-

scopic studies in gases [18–20], liquids [21, 22], and solids [23–25]. Furthermore, the

strong THz fields have been used for control over the states of condensed matter in-

cluding recent examples of ferroelectric phase transitions [26, 27], magnetic domain

reorientations [28, 29], and electronic/structural phase transitions [30].

The Nelson group has developed the THz polaritonics platform, shown in Fig. 1-1,

in order to enable compact THz spectroscopy and photonics. The platform uses thin

(10 µm–100µm) LN and LT slab waveguides for the generation, manipulation, and
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detection of THz fields. It is named in reference to the phonon-polaritons that are

formed as a result of strong coupling between THz-frequency electromagnetic waves

and the polar lattice vibrations in LN and LT [31]. THz fields are generated using

a femtosecond laser pulse that is focused into the waveguide to launch THz waves

that propagate away from the pumping region. Various strategies have been used

to provide control over the THz waveform through the use of spatial and temporal

shaping of the pump light [32–35]. An ultrafast optical pulse can be used to directly

monitor the THz waveform within the slab with subwavelength spatial resolution and

subcycle temporal resolution [36]. Because the thickness of the slab is comparable

to the THz wavelength, the slab acts as a dielectric waveguide and modifies the

dispersion of the THz waves. The THz waves can interact with structures integrated

into the slab through chemically-assisted femtosecond laser machining [37, 38] or

couple to structures deposited on a slab surface [39–42] through the evanescent field

that extends outside of the slab. This allows studies of THz field interactions with

photonic crystals [43–46], cavities [47–49], topological defects [46, 50], metamaterial

structures [42, 51–53], and various other integrated photonics structures [39, 41, 53–

56]. There has also been some success coupling the THz fields to samples deposited

on top of the waveguide for spectroscopic applications [48, 57].

In this thesis, I discuss my work on expanding the polaritonics toolset. Although

many successful polaritonics experiments have already been performed, further de-

velopments are needed for the platform to realize its full potential for integrated THz

spectroscopy. One limitation is that the THz fields generated by a single line of pump

light reach up to 10 kV/cm amplitudes [31]. Although these field strengths are suf-

ficient for THz imaging, any nonlinear spectroscopic applications would require the

use of much larger THz fields so that the much weaker THz transients that result

from multiple field interactions with a sample could be reliably detected. Various

pumping schemes have been proposed to increase the generated THz field strength

[58, 59], but only modest improvements in the THz field strength have been achieved.

Another major hurdle is that there are difficulties imaging the THz fields while they

are coupled to a general sample. The simplest strategy would be to simply deposit
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the sample of interest directly onto the waveguide. This approach was successful in

coupling the THz fields in LN to the quasi-antiferromagnetic magnons in erbium or-

thoferrite (ErFeO3). However, due to the strong absorption of visible light in ErFeO3,

imaging the THz fields within the waveguide suffered from a poor signal-to-noise ratio.

Furthermore, it relied on the fact that LN and ErFeO3 have similar THz refractive

indices (𝑛 ≈ 5 in both materials) so that the THz fields could easily penetrate into

the ErFeO3 slab [48]. In most other samples, there would be some refractive index

mismatch that makes the coupling much weaker. The work presented in this thesis

attempts to address these issues in order to enable robust linear spectroscopy of gen-

eral samples in a compact waveguided geometry and potentially enable some compact

nonlinear spectroscopic studies.

Chapter 2 introduces the classical electromagnetic theory for describing light-

matter interactions. Starting from Maxwell’s equations in the form of an eigenequa-

tion, the planewave solution is derived and a simple model for describing linear light-

matter interactions is developed. Electric and magnetic field interactions are consid-

ered using simple toy models. The electric field interaction with charged particles is

described using the damped driven harmonic oscillator model. The magnetic field

interaction with spins is described using the Landau-Lifshitz-Gilbert equation. In

both cases, the form for the susceptibility is derived. Lastly, two tools for computing

approximate numerical solutions to Maxwell’s equations are discussed. The first tool

is perturbation theory which takes the solution for a simple, exactly-solvable geome-

try and extrapolates to a more complex geometry. The dielectric waveguides used in

polaritonics are simple enough that the mode profiles and dispersion are easily solved

analytically. Perturbation theory provides a simple way to quantitatively describe

how the mode profiles and dispersion change upon perturbations to the waveguide or

the surrounding cladding. It is also a useful tool for treating material absorption in

the waveguides, since calculation of the mode profiles and dispersion typically only

use the real part of the refractive index and neglect material absorption. The other

tool is numerical simulation using the finite-difference time-domain (FDTD) method.

This method propagates Maxwell’s equations in the time domain so that the full
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evolution of the THz fields can be calculated. This allows us to run simulations to

optimize the experiments and gain insight into the various physical processes present

in the system.

Chapter 3 focuses on the details of the polaritonics platform. The THz fields gen-

erated in LN and LT are not simply described as electromagnetic waves that prop-

agate through the slab. Rather, they strongly couple to the polar lattice vibrations

in the ferroelectric crystal to form phonon-polaritons. Furthermore, the polaritonics

platform uses ferroelectric slabs with thicknesses comparable to the THz wavelength,

so the slabs act like dielectric waveguides. The mode profiles and dispersion curves

for both the transverse electric (TE) and transverse magnetic (TM) modes of the

structure are calculated. THz generation occurs through the second-order nonlinear

optical process called optical rectification. During this process, the THz fields are

radiated from the nonlinear polarization in the ferroelectric crystal which follows the

intensity profile of the optical pump beam, subject to bandwidth limitations that

are discussed subsequently. For a femtosecond optical pump pulse, this excites a

bandwidth of a few THz. THz detection takes advantage of the electro-optic proper-

ties of LN and LT, so an optical probe beam passing through the slab can be used

to directly read out the fields within the slab. The electric field component of the

phonon-polaritons modifies the local birefringence in the ferroelectric crystal which

can be encoded as a change in polarization in a linearly polarized optical probe pulse.

A spatially-expanded probe beam can be used to sample the THz fields over a large

area with subwavelength spatial resolution and subcycle temporal resolution. Images

of the THz fields can be captured using a charge-coupled device (CCD) camera to

construct movies and directly visualize how the fields evolve over time.

In a typical polaritonics experiment, the optical pump beam is focused into a LN

waveguide, generates a THz field, and leaves the waveguide. Because the interaction

length is so small (<100 µm), most of the pump light remains unused. Chapter 4

discusses enhanced narrowband THz generation using a beveled LN waveguide. The

beveled edge allows an optical pump beam to refract and “bounce” back-and-forth

within the slab while being confined by total internal reflection. This allows for a
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Figure 1-2: Schematic illustration of THz generation using a beveled LN
slab. (a) The pump beam polarized along the LN 𝑐-axis enters the LN slab through
the beveled edge. The pump beam refracts and “bounces” back-and-forth within
the slab. The THz field is built up as the pump traverses the LN slab. A probe
beam is used to read out the THz field amplitude, which is recorded using balanced
photodiodes after passing through a quarter-wave plate (QWP) and Wollaston prism.
(b) Schematic illustration of a beveled LN slab with thickness 𝑑. The beveled edge
has angle 𝜃bev. Pump light (shown in red) enters through the bevel and refracts into
the crystal at the “bounce” angle 𝜃bnc. The pump beam continually drives the THz
field (shown in blue) as it propagates through the LN slab.

much longer interaction length for THz generation and allows the pump light to be

used more efficiently. The optical pump travels laterally through the waveguide with

the excited THz field and builds it up. When the lateral group velocity of the pump

beam matches the THz phase velocity, we observe 10× enhancement of the peak

THz spectral amplitude. Due to waveguide dispersion, the THz phase velocity has a

moderate frequency dependence. Thus, the center frequency of the THz buildup can

be selected by appropriate choice of the bevel angle. We perform FDTD simulations

of the THz fields including several pump depletion mechanisms to determine what

factors limit THz generation. These results suggest that beveled LN waveguides

provide a relatively simple method for generating larger THz spectral amplitudes
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Figure 1-3: Schematic illustration of the TREx scheme. (a,b) The circular
“echelon” mirror takes an input Gaussian pump pulse and shapes it into a discrete
conical tilted pulse front made up of a series of concentric rings of pump light. (c)
The pump rings are imaged onto a LT slab waveguide. The largest ring arrives first
and excites a weak, focusing THz field. The later pump rings arrive at the LT slab
in timed sequence and repeatedly drive the focusing THz field. This results in a
dramatic increase in the THz field at the focus.

within the waveguide, which could be useful for integrated spectroscopic applications

in cases where only a small THz bandwidth is needed.

Various strategies for enhanced THz generation have been demonstrated that do

not rely on recycling the pump light. One method is the well-known tilted pulse front

geometry commonly used for THz generation in bulk LN prisms [15]. Another method

is to shape the pump light into a ring using a conical “axicon” lens, which launches

THz fields in a focusing geometry [58]. Chapter 5 introduces the THz Ring Excitation

(TREx) method, illustrated in Fig. 1-3, for generating strong THz fields in the time

domain. The TREx method combines these two ideas by using a circular stair-step

“echelon” mirror to shape the pump pulse into a series of concentric rings of pump light
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which is imaged onto a thin LT waveguide. The pump rings arrive in timed sequence

such that the weak THz field excited by the largest pump ring (which arrives first) is

repeatedly driven by the subsequent pump rings as it focuses. When the lateral scan

speed of the pump rings matches the THz phase velocity, the THz generation process

is optimized and electric field strengths up to 175 kV/cm are observed at the focus.

This represents a roughly 20-fold increase over the 10 kV/cm field strengths routinely

generated by a single line of pump light and approaches the regime where materials

begin to exhibit a nonlinear response. An interesting detail about the TREx method

is that while the electric field components constructively interfere at the focus, the

magnetic field components destructively interfere. This means that the strong THz

electric field at the focus is accompanied by an extremely weak magnetic field, in

contrast to the typical behavior of an electromagnetic wave where the electric and

magnetic field components are always in phase with a ratio determined by the wave

impedance. Constructive interference of the magnetic field, along with destructive

interference of the electric field, could also be achieved by including a temporal delay

between the two sides of the optical pump light equal to half of the THz period. This

could have potential applications for selectively delivering a strong electric field or

magnetic field to a sample without the use of field enhancement structures.

The last chapter of this thesis focuses on methods for expanding the polaritonics

toolset for spectroscopic applications. Chapter 6 describes two experimental geome-

tries for monitoring the THz fields as they interact with a sample. The first geometry,

illustrated in Fig. 1-4a, uses a high-reflecting (HR) coating sandwiched between a thin

LN slab and the sample material to enable THz imaging in cases where the sample

would strongly absorb or scatter the probe light. The HR coating is designed to reflect

the probe light so that it picks up the THz signal in LN without entering the sample

region. Using this method, THz imaging is demonstrated in a hybrid waveguide slab

made of LN and ErFeO3. The avoided crossing at 0.67THz in the polariton disper-

sion, indicating strong coupling between the THz phonon-polaritons in LN and the

quasi-antiferromagnetic magnon mode in ErFeO3, is reproduced [48]. The HR-coated

LN slabs are also used to perform compact THz spectroscopy on the THz standard
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Figure 1-4: Schematic illustrations of experimental geometries for coupling
the waveguided THz fields to a sample. (a) Schematic illustration of the reflec-
tive imaging geometry. Sample is deposited directly onto a thin LN slab. There is a
dielectric high-reflecting (HR) coating between the LN and sample layers. Pump light
is focused onto the LN, which launches a THz field that can penetrate through the
HR coating and interact with the sample. An expanded probe beam enters the LN
slab from the uncoated side, reflects off the HR coating, and exits the slab through
the uncoated side. The probe beam passes through a non-polarizing beam splitter
(NPBS), quarter-wave plate (QWP), and Wollaston prism and is recorded using a
CCD camera. (b) Schematic illustration of the slot waveguide geometry. A pump
beam is used to launch a THz field that propagates through the slot waveguide and
interacts with a sample inserted into the slot. A probe beam is focused into one of the
thin LN strips around the slot, and then passes through a quarter-wave plate (QWP)
and Wollaston prism and the intensity is recorded using balanced photodiodes.

𝛼-lactose monohydrate, which was deposited directly onto the HR coating. Although

the sensitivity is poor, the technique is able to resolve the 0.53THz absorption peak

characteristic of lactose. This configuration enables experiments looking at the be-

havior of THz fields coupled to an adjacent material as they interact with structures

integrated into the waveguide. The second experimental geometry, illustrated in Fig.

1-4b, uses a slot waveguide which is composed of two parallel strips of high-index ma-

terial separated by a low-index slot. The slot waveguide is laser-machined into a LN

planar waveguide, and a thin slab of sample is inserted into the slot. As the THz fields
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travel through the slot waveguide, the structure localizes the electric field within the

low-index slot region and dramatically increases the coupling to the sample. Using

this technique, the absorption spectrum of the test sample 𝛼-lactose monohydrate

was measured with good sensitivity and the complex dielectric function was recov-

ered. This method opens up possibilities for waveguide-based THz spectroscopy with

much better sensitivities than before.

The results of this work provide methods to enable robust integrated THz spec-

troscopy in the polaritonics platform. They open up possibilities for compact THz

experiments, especially in cases where the sample is placed inside a specialized envi-

ronment (e.g. inside an XFEL chamber or inside the bore of a cryomagnet) where

accommodating a traditional free-space THz-TDS setup would be cumbersome. I

hope that this work helps form the basis for future Nelson group members and others

to routinely perform THz spectroscopy using thin LN waveguides and also provides

a foundation for future work to enable waveguide-based nonlinear THz spectroscopy.
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Chapter 2

Classical electromagnetic theory

One of the greatest advances in optics is the development of classical electromag-

netism. In 1862, James Clerk Maxwell wrote a manuscript that contained what

would eventually become Maxwell’s equations, a set of partial differential equations

that summarize the electromagnetic phenomena known at the time [60]. Among the

various predictions that the equations made, one of the most striking at the time

was that light is an electromagnetic wave that propagates with speed 𝑐 = 1/
√
𝜖0𝜇0,

where 𝜖0 is the vacuum permittivity and 𝜇0 is the vacuum permeability. The cal-

culated value agreed very well with previous experiments to determine the speed of

light [61, 62], which solidified the idea that light is an electromagnetic wave. Since

then, Maxwell’s Equations continue to be very successful in describing the behaviors

of electromagnetic systems and let us gain insight into the physical processes at play.

In this chapter, we use Maxwell’s equations to develop a mathematical framework

for describing electromagnetic radiation and derive a few basic properties. We also

introduce simple models to describe the interactions of an electromagnetic wave with

a point charge or a spin in order to develop a classical model for linear light-matter in-

teractions. Finally, we describe two computational tools (perturbation theory and the

finite-difference time-domain method) for obtaining approximate numerical solutions

to Maxwell’s equations.
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2.1 Maxwell’s equations

The modern form of Maxwell’s equations, as formulated by Oliver Heaviside in 1912

[63], for describing the electric field E and magnetic field H in macroscopic media is

given below

∇ ·D = 𝜌 (2.1)

∇ ·B = 0 (2.2)

∇× E = −𝜕B

𝜕𝑡
(2.3)

∇×H =
𝜕D

𝜕𝑡
+ J (2.4)

where 𝜌 is charge density and J is current density. The constitutive relations for

expressing the displacement field D and the magnetic field B in terms of E and H

are given by

D = 𝜖0𝜀E (2.5)

B = 𝜇0𝜇H (2.6)

where 𝜖0 and 𝜇0 are the electric permittivity and magnetic permeability, respectively,

in a vacuum. 𝜀 and 𝜇 are the relative permittivity and permeability tensors that

describe the material response to an electric or magnetic field, respectively. In general,

𝜀 and 𝜇 are described by the susceptibility tensors 𝜒e,m by the following relationship.

𝜀 = 1 + 𝜒e (2.7)

𝜇 = 1 + 𝜒m (2.8)

The form of 𝜒e,m is determined by the equation of motion used to describe the light-

matter interaction in a particular system.
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2.2 Eigenproblem form of Maxwell’s equations

To solve Maxwell’s equations in the frequency domain, it is convenient to recast the

equations as an eigenvalue problem in terms of electric field profile |E𝑛⟩ and the

mode frequency 𝜔𝑛. We assume that there are no free charges 𝜌 = 0 nor currents

J = 0 and that the relative permittivity 𝜀 and relative permeability 𝜇 are time-

independent. Starting with Faraday’s law (Eq. 2.3), we take the curl of both sides

and then substitute in Ampere’s law (Eq. 2.4) to get the following second-order linear

partial-differential equation.

∇×∇× |E𝑛⟩ = −𝜖0𝜇0𝜀𝜇
𝜕2

𝜕𝑡2
|E𝑛⟩ (2.9)

From here on, we assume that any materials under consideration are nonmagnetic

(𝜇 = 1), which is true for most materials. We also assume that |E𝑛⟩ is time-harmonic

with frequency 𝜔𝑛, so 𝜕2

𝜕𝑡2
|E𝑛⟩ = 𝜔2

𝑛 |E𝑛⟩. This gives us the eigenvalue equation

∇×∇× |E𝑛⟩ =
(︁𝜔𝑛

𝑐

)︁2
𝜀 |E𝑛⟩ (2.10)

We have substituted in the vacuum speed of light 𝑐 = 1/
√
𝜖0𝜇0. To calculate the

magnetic field profile |H𝑛⟩ from the |E𝑛⟩, we use Faraday’s law (Eq. 2.3), which when

written in the frequency domain is

|H𝑛⟩ = − 𝑖

𝜔𝜇0𝜇
∇× |E𝑛⟩ (2.11)

Alternatively, the eigenvalue problem could be formulated in terms of the magnetic

field |H𝑛⟩ following a similar procedure. Doing so gives the eigenequation

∇×
(︂
1

𝜀
∇× |H𝑛⟩

)︂
=
(︁𝜔
𝑐

)︁2
|H𝑛⟩ (2.12)

The electric field profile |E𝑛⟩ could be extracted using Ampere’s law (Eq. 2.4).

|E𝑛⟩ =
𝑖

𝜔𝜖0𝜀
∇× |H𝑛⟩ (2.13)
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For the rest of this thesis, we will choose Eq. 2.10 when using the eigenproblem

form of Maxwell’s equations. Here, we will assume that 𝜀 is diagonal for simplicity

(i.e. all materials are either isotropic or have their principle axes aligned with the lab

axes), which means that both 𝜀 and 𝜀−1 are Hermitian. We can derive several basic

properties of the eigenmodes and eigenvalues, following the proofs outlined in Ref.

[64]. The first step is to show that the operator Θ̂ = 𝜀−1∇×∇× is Hermitian. This

can be shown by taking two vectors F and G and showing that

⟨F|Θ̂G⟩ = ⟨Θ̂F|G⟩ (2.14)

is true. Using integration by parts and the vector identity

∇ · (A×B) = (∇×A) ·B−A · (∇×B) (2.15)

the braket can be evaluated as follows.

⟨F|Θ̂G⟩ =
∫︁

𝑑𝑉 F* · 𝜀−1∇×∇×G

=

∫︁
𝑑𝑉 𝜀−1

[︀
(∇× F*) · ∇ ×G−((((((((((

∇ · (F* ×∇×G)
]︀

=

∫︁
𝑑𝑉 𝜀−1

[︀
(∇×∇× F*) ·G−((((((((((

∇ · (∇× F* ×G)
]︀

= ⟨Θ̂F|G⟩

We made use of the Divergence Theorem and assumed that the eigenmodes must

decay to 0 when infinitely far away from the origin (which must be true for any bound

mode) in order to cancel some of the terms. Because the operator Θ̂ = 𝜀−1∇×∇ is

Hermitian, we expect the eigenvalues to be real-valued and the eigenmodes to form

an orthonormal basis set. A brief proof of these properties is given below.

To show that the eigenvalues are real-valued, we return to Eq. 2.10. For an

eigenmode |E𝑛⟩, it is trivial to show that

(︂
𝜔2
𝑛

𝑐2

)︂*

⟨E𝑛|E𝑛⟩ = ⟨Θ̂E𝑛|E𝑛⟩ = ⟨E𝑛|Θ̂E𝑛⟩ =
(︂
𝜔2
𝑛

𝑐2

)︂
⟨E𝑛|E𝑛⟩ (2.16)
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and therefore 𝜔2
𝑛 is real-valued. Note that this is not sufficient to deduce that 𝜔𝑛 is

real-valued because 𝜔2
𝑛 could be negative. To show that 𝜔2

𝑛 is positive semidefinite

(and therefore 𝜔𝑛 is real), we evaluate the braket

(︁𝜔𝑛

𝑐

)︁2
⟨E𝑛|E𝑛⟩ = ⟨E𝑛|Θ̂E𝑛⟩ =

∫︁
𝑑𝑉 E*

𝑛 · 𝜀−1∇×∇× E𝑛

=

∫︁
𝑑𝑉 𝜀−1 (∇× E*

𝑛) · (∇× E𝑛)

=

∫︁
𝑑𝑉 𝜀−1 |∇ × E𝑛|2

The integral is positive semidefinite given that 𝜀−1 is positive semidefinite, which is

true in most real systems. Therefore, 𝜔2
𝑛 and 𝜔𝑛 are both real and positive semidefi-

nite.

In order to show that the eigenmodes are orthogonal, we take two modes |E𝑛⟩ and

|E𝑚⟩ and evaluate the braket

(︁𝜔𝑚

𝑐

)︁2
⟨E𝑚|En⟩ = ⟨Θ̂E𝑚|E𝑛⟩ = ⟨E𝑚|Θ̂E𝑛⟩ =

(︁𝜔𝑛

𝑐

)︁2
⟨E𝑚|En⟩ (2.17)

which gives us the condition

𝜔2
𝑚 − 𝜔2

𝑛

𝑐2
⟨E𝑚|En⟩ = 0 (2.18)

This condition is only satisfied if the two modes are degenerate (𝜔𝑚 = 𝜔𝑛) or if the two

modes are orthogonal (⟨E𝑚|En⟩ = 0). Note that degenerate modes are not guaranteed

to be orthogonal. However, we can find linear combinations of the degenerate modes

that are orthogonal using the Gram-Schmidt orthogonalization procedure.

To normalize the eigenmodes, we scale the amplitude of the eigenmodes so that

the physical energy is equal to some unit value. The energy density 𝑢𝑛 of the electro-

magnetic mode |E𝑛⟩ is given by

𝑢𝑛 =
1

2
𝜖0𝜀 |E𝑛|2 (2.19)
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so to normalize the mode, we require

∫︁
𝑑𝑉

1

2
𝜖0𝜀 |E𝑛|2 = 1J (2.20)

For propagating modes (e.g. in a waveguide), it is sometimes convenient to normalize

by the power carried by the mode. The power flux density is given by the Poynting

vector S = E×H and the normalization condition is given by⃒⃒⃒⃒∫︁
𝑑𝑉 E×H

⃒⃒⃒⃒
= 1W (2.21)

2.2.1 Planewave solutions to Maxwell’s equations

One of the main achievements of Maxwell’s equations was the prediction of electro-

magnetic waves. Although the planewave solution in vacuum is treated in undergrad-

uate textbooks, it is still instructive to reproduce the calculation here because the

general conclusions are highly applicable to the work presented in this thesis. We can

start from Eq. 2.9 (rewritten here for convenience)

∇×∇× E (r, 𝑡) = −𝜖0𝜇0
𝜕2

𝜕𝑡2
E (r, 𝑡)

Here we assume vacuum, so 𝜀 = 1 and 𝜇 = 1. We apply the vector identity

∇× (∇×A) = ∇ (∇ ·A)− (∇ · ∇)A (2.22)

The first term on the right-hand side is 0 due to Gauss’s law (Eq. 2.1). This allows

us to rewrite Maxwell’s equations in a form reminiscent of the wave equation.

∇2E (r, 𝑡)− 𝜖0𝜇0
𝜕2

𝜕𝑡2
E (r, 𝑡) = 0 (2.23)

This equation has planewave solutions of the form

E (r, 𝑡) = 𝐸0 exp [𝑖 (k · r± 𝜔𝑡)] ê (2.24)
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where 𝐸0 is the electric field amplitude, ê is the electric polarization unit vector,

k is the wavevector, and 𝜔 is the angular frequency. The polarization vector ê is

perpendicular to k due to Gauss’s law (Eq. 2.1). The wave speed 𝑐 is given by

𝑐 =
1

√
𝜖0𝜇0

=
𝜔

𝑘
(2.25)

The magnetic field accompanying the electric field can be calculated using Faraday’s

law (Eq. 2.11), which gives a solution of the form

H (r, 𝑡) = 𝐻0 exp [𝑖 (k · r± 𝜔𝑡)] ĥ (2.26)

The magnetic field polarization ĥ fulfills the relationship ê × ĥ = k̂ (where k̂ is the

unit vector along k) and the magnetic field oscillates in phase with the electric field.

The amplitude 𝐻0 is given by the wave impedance 𝑍 defined as

𝑍 ≡ 𝐸0

𝐻0

=

√︂
𝜇0

𝜖0
= 𝜇0𝑐 (2.27)

To include electric field interactions with a material, we define the electric po-

larization P (r, 𝑡) which describes the electric dipole induced in the material. The

polarization field is defined as

P (r, 𝑡) = 𝜖0𝜒eE (r, 𝑡) (2.28)

For now we assume we only have a linear polarization response. The case where

a nonlinear polarization is used to generate a THz field is treated in Section 3.3.

Furthermore, we treat the electric susceptibility 𝜒e as a scalar for simplicity. P (r, 𝑡)

and E (r, 𝑡) together make up the electric displacement field D (r, 𝑡) through the

constitutive relation

D (r, 𝑡) = 𝜖0E (r, 𝑡) +P (r, 𝑡) (2.29)

This allows us to explicitly separate out P (r, 𝑡) to give the driven wave equation
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below.

∇2E (r, 𝑡)− 1

𝑐2
𝜕2

𝜕𝑡2
E (r, 𝑡) =

1

𝜖0𝑐2
𝜕2

𝜕𝑡2
P (r, 𝑡) (2.30)

The term on the right-hand side acts as a source term that generates a signal field

Esig (r, 𝑡). Assuming a polarization field P (r, 𝑡) = P0 (𝑧, 𝑡) exp [−𝑖 (𝑘𝑧 − 𝜔𝑡)], we get

a signal field Esig (r, 𝑡) = Esig (𝑧, 𝑡) exp [−𝑖 (𝑘sig𝑧 − 𝜔𝑡)]. Under the slowly-varying

envelope approximation 𝜕2

𝜕𝑧2
Esig (𝑧, 𝑡) ≪ 𝑖𝑘 𝜕

𝜕𝑧
Esig (𝑧, 𝑡), Eq. 2.30 becomes [65]

𝜕

𝜕𝑧
Esig (𝑧, 𝑡) =

𝑖𝜔

𝜖0𝑐
P0 (𝑧, 𝑡) (2.31)

The signal field is emitted 90∘ out of phase of the polarization field. Using the damped

driven harmonic oscillator model (with resonance frequency 𝜔0) described in Section

2.3.1 to model the polarization field, we can get a better idea of what happens when

light interacts with a material. We consider the following three cases.

• If 𝜔 ≪ 𝜔0, then P (𝑧, 𝑡) oscillates in phase with the driving field and emits

a signal field delayed by a quarter-cycle relative to the driving field. The net

effect is that the phase velocity of the electric field is effectively decreased.

Additionally if 𝜔0 ≫ Γ, the imaginary component of 𝜒e is negligibly small, so

𝜒e can be approximated as a positive real number.

• If 𝜔 ≫ 𝜔0, then P (𝑧, 𝑡) oscillates out of phase with the driving field and emits a

signal field that leads the driving field by a quarter-cycle. The net effect is that

the phase velocity of the electric field is effectively increased. Note that if 𝜔 is

far higher than all resonance frequencies in a medium (e.g. x-rays), then this

effect results in a phase velocity that is slightly faster than the vacuum speed

of light.

• If 𝜔 = 𝜔0, then P (𝑧, 𝑡) oscillates 90∘ out of phase of the driving field. The

emitted signal field is 180∘ out of phase with the driving field, which results in

the apparent decrease in field amplitude due to destructive interference. This

is the classical description for linear absorption in a material.
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For a mathematical description of the above phenomena, we can plug in the defi-

nition for the polarization field (Eq. 2.28) into Eq. 2.30 get the following equation.

∇2E (r, 𝑡)− 𝜀

𝑐2
𝜕2

𝜕𝑡2
E (r, 𝑡) = 0 (2.32)

where 𝜀 = 1 + 𝜒e. The solution to this equation is the same planewave solution

from before, but with the wave speed 𝑣 = 𝑐/
√
𝜀. (A similar conclusion can be drawn

for interactions with a magnetic field by introducing the magnetization M (r, 𝑡) =

𝜒mH (r, 𝑡) and defining the relative permeability 𝜇 = 1 + 𝜒m.) The wave speed is

typically reported using the refractive index 𝑛, defined as 𝑛 = 𝑐𝑘/𝜔 =
√
𝜀𝜇. Note

that, in general, 𝑛 = 𝑛r + 𝑖𝑛i is complex-valued. The physical interpretation of the

real and imaginary parts of 𝑛 can be deduced directly from Eq. 2.24.

E (𝑧, 𝑡) = 𝐸0ê exp [𝑖 (𝑘𝑧 − 𝜔𝑡)]

= 𝐸0ê exp
[︁
𝑖
(︁𝑛r𝜔

𝑐
𝑧 − 𝜔𝑡

)︁]︁
exp

(︁
−𝑛i𝜔

𝑐
𝑧
)︁

The real part 𝑛r determines the wave speed 𝑣 = 𝑐/𝑛r. The imaginary part 𝑛i describes

how quickly the wave amplitude decreases. 𝑛i is often converted to the absorption

coefficient 𝛼 = 4𝜋𝑛i/𝜆0, where 𝜆0 is the vacuum wavelength of the EM wave, which

describes the attenuation rate of the wave intensity.

2.3 Linear light-matter interactions

Here, we describe toy models for light-matter interactions. We treat interactions

with the electric field using the Drude-Lorentz oscillator model, which is typical for

describing charges (e.g. electrons, atomic nuclei) in an approximately parabolic po-

tential. For interactions with the magnetic field, we derive an approximate solution

to the Landau-Lifshitz-Gilbert equation in order to determine the trajectory of a spin

subject to a driving magnetic field.
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2.3.1 Electric field interactions

The interaction between a charged particle and an electric field is described by a

damped driven harmonic oscillator. The equation of motion for this system is as

follows.
𝜕2

𝜕𝑡2
𝑥 (𝑡)− Γ

𝜕

𝜕𝑡
𝑥 (𝑡) + 𝜔2

0𝑥 (𝑡) =
𝑞

𝑚
𝐸 (𝑡) (2.33)

Here, 𝑥 (𝑡) is the normalized displacement, 𝜔0 is the resonance (angular) frequency,

Γ is a phenomenological damping constant, and 𝑞 and 𝑚 are the charge and re-

duced mass of the oscillator. Assuming a sinusoidal driving field at frequency 𝜔, i.e.

𝐸 (𝑡) = 𝐸0 exp (𝑖𝜔𝑡), and that the resulting displacement is also sinusoidal at the

same frequency, i.e. 𝑥 (𝑡) = 𝑥0 exp (𝑖𝜔𝑡), the steady-state solution can be found in the

frequency domain to be

−𝜔2𝑥0 − 𝑖𝜔Γ𝑥0 + 𝜔2
0𝑥0 =

𝑞

𝑚
𝐸0 (2.34)

From here, it is simple to determine the frequency-dependent response of the system

due to the electric field. We define the electric susceptibility 𝜒e ≡ 𝑥0/𝐸0. For a simple

harmonic oscillator, this gives the familiar Lorentzian susceptibility

𝜒e (𝜔) =
𝑞

𝑚

1

𝜔2
0 − 𝜔2 − 𝑖𝜔Γ

(2.35)

In general, 𝜒e is complex-valued. The modulus of 𝜒e gives the amplitude of the

response and the argument gives the phase difference between the response and the

driving field, in this case ranging from 0 (𝜔 → 0) to 𝜋 (𝜔 → ∞). When 𝜔 = 𝜔0, then

𝜒e is purely imaginary.

Although we assumed that 𝜒e is a scalar, in general 𝜒e is a rank-2 tensor that

couples a driving field with arbitrary polarization to motion along the 𝑥, 𝑦, and 𝑧

axes. In addition, if the driving field couples to multiple independent oscillators,

we can invoke the superposition principle to write 𝜒e as the sum of the individual

contributions from each oscillator. Using this, we can build up the susceptibility

tensor for a material by considering interactions between the driving field and the
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various degrees of freedom in the material.

2.3.2 Magnetic field interactions

The magnetic field interacts with a material typically by coupling to the spins in the

lattice. The dynamics of a spin interacting with a magnetic field are described by the

Landau-Lifshitz-Gilbert (LLG) equation [66–68]

𝜕

𝜕𝑡
S (𝑡) = − 𝛾

1 + 𝛼2

[︂
S (𝑡)×Beff (𝑡) +

𝛼

|S (𝑡)|
S (𝑡)× [S (𝑡)×Beff (𝑡)]

]︂
(2.36)

where S (𝑡) is a vector describing the spin orientation, Beff (𝑡) is the effective magnetic

field experienced by the spin (including interactions with neighboring spins, static

magnetic anisotropy, an external magnetic field, etc.), 𝛾 is the gyromagnetic ratio,

and 𝛼 is the small phenomenological Gilbert damping parameter (𝛼 ≪ 1). Beff can

be calculated from the spin Hamiltonian Ĥ using the equation

Beff = −1

𝛾

𝜕

𝜕S
Ĥ (2.37)

The linear susceptibility 𝜒m can be calculated by introducing a weak time-harmonic

magnetic field b (𝑡) = (𝑏𝑥x̂+ 𝑏𝑦ŷ + 𝑏𝑧ẑ) exp (𝑖𝜔𝑡) and solving for the resulting spin

deflections from equilibrium 𝛿𝑆𝑥,𝑦,𝑧 ∝ exp (𝑖𝜔𝑡). Here, we will assume that Beff is

time-independent and oriented along the 𝑧-axis for simplicity, i.e. Beff = 𝐵0ẑ. After

adding b (𝑡) to Beff , the LLG equation in the frequency domain near equilibrium

becomes (keeping only first-order terms)

𝑖𝜔𝛿𝑆𝑥 = −𝛾′ [𝛿𝑆𝑦𝐵0 − |S| 𝑏𝑦 − 𝛼 (−𝛿𝑆𝑥𝐵0 + |S| 𝑏𝑥)]

𝑖𝜔𝛿𝑆𝑦 = −𝛾′ [−𝛿𝑆𝑥𝐵0 + |S| 𝑏𝑥 + 𝛼 (𝛿𝑆𝑦𝐵0 − |S| 𝑏𝑦)]

𝑖𝜔𝛿𝑆𝑧 = 0

(2.38)

where we defined 𝛾′ ≡ 𝛾/ (1 + 𝛼2). Using a bit of algebra, it is straightforward to
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decouple 𝛿𝑆𝑥 and 𝛿𝑆𝑦 to get the following equations.

𝛿𝑆𝑥 = 𝛾′ |S| 𝜔0 + 𝑖𝛼𝜔

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

𝑏𝑥 − 𝛾′ |S| Γ− 𝑖𝜔

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

𝑏𝑦

𝛿𝑆𝑦 = 𝛾′ |S| Γ− 𝑖𝜔

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

𝑏𝑥 + 𝛾′ |S| 𝜔0 + 𝑖𝛼𝜔

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

𝑏𝑦

(2.39)

where 𝜔0 = 𝛾′𝐵0 and Γ = 𝛼𝛾′𝐵0 = 𝛼𝜔0. This allows us to read off tensor elements of

the magnetic susceptibility 𝜒m.

𝜒m =

⎡⎢⎢⎢⎣
𝜒⊥ 𝑖𝜂 0

−𝑖𝜂 𝜒⊥ 0

0 0 0

⎤⎥⎥⎥⎦ (2.40)

where 𝜒⊥ and 𝜂 are given by

𝜒⊥ = 𝛾′ |S| 𝜔0 + 𝑖𝛼𝜔

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

𝜂 = 𝛾′ |S| 𝜔 + 𝑖Γ

𝜔2
0 − 𝜔2 + 𝑖Γ𝜔

(2.41)

This is the linear susceptibility tensor for the gyrotropic saturated dipole model. Note

the strong resemblance to the harmonic oscillator model. As a crude approximation,

the gyrotropic saturated dipole model can be thought of as two coupled harmonic

oscillators along perpendicular axes where motion along one axis drives motion along

the other.

2.4 Perturbation theory

Perturbation theory is a powerful tool that generates approximate solutions to com-

plex problems by extrapolating from the exact solution to a similar, much simpler

problem. The technique was first applied to celestial mechanics where it was used

to provide approximate solutions to the three-body problem [69]. The prototypical

example is the Sun-Earth-Moon system, where the exactly solvable problem is the

Sun-Earth two-body problem and the Moon is treated the third body that perturbs

40



the orbit of the Earth (hence the name “perturbation” theory). Since then, it has

been applied to quantum mechanics [70] as well as many other fields of study [71].

Perturbation theory, when applied to Maxwell’s equations, is a powerful tool to

investigate how a small change 𝛿𝜀 added to the dielectric map 𝜀 results in changes

to an electromagnetic mode |E𝑛⟩ and its frequency 𝜔𝑛. To calculate the first-order

corrections, we start from Eq. 2.10 and include a perturbation to the electric permit-

tivity, i.e. 𝜀 → 𝜀 + 𝛿𝜀. We also expand the eigenmode |E𝑛⟩ → |E(0)
𝑛 ⟩ + |E(1)

𝑛 ⟩ and

frequency 𝜔𝑛 → 𝜔
(0)
𝑛 +𝜔

(1)
𝑛 . In the notation used here, the superscript (0) denotes the

unperturbed value and (1) denotes the first-order correction. Inserting these into Eq.

2.10 gives

∇×∇×
(︀
|E(0)

𝑛 ⟩+ |E(1)
𝑛 ⟩
)︀
=

(︃
𝜔
(0)
𝑛 + 𝜔

(1)
𝑛

𝑐

)︃2

(𝜀+ 𝛿𝜀)
(︀
|E(0)

𝑛 ⟩+ |E(1)
𝑛 ⟩
)︀

(2.42)

Collecting the first-order terms gives the following equation.

∇×∇× |E(1)
𝑛 ⟩ = 2𝜔

(0)
𝑛 𝜔

(1)
𝑛

𝑐2
𝜀 |E(0)

𝑛 ⟩+

(︃
𝜔
(0)
𝑛

𝑐

)︃2

𝛿𝜀 |E(0)
𝑛 ⟩+

(︃
𝜔
(0)
𝑛

𝑐

)︃2

𝜀 |E(1)
𝑛 ⟩ (2.43)

To solve for 𝜔(1)
𝑛 , we left-multiply by ⟨E(0)

𝑛 | and assume quasinormalization ⟨E𝑛|𝜀|E(0)
𝑛 ⟩ =

1 → ⟨E(1)
𝑛 |𝜀|E(0)

𝑛 ⟩ = 0. This gives us

𝜔(1)
𝑛 = −𝜔

(0)
𝑛

2

⟨E(0)
𝑛 |𝛿𝜀|E(0)

𝑛 ⟩
⟨E(0)

𝑛 |𝜀|E(0)
𝑛 ⟩

(2.44)

Note that contributions to the braket ⟨E(0)
𝑛 |𝛿𝜀|E(0)

𝑛 ⟩ are only nonzero within the per-

turbed volume 𝑉pert. Assuming that both 𝛿𝜀 and 𝜀 can be treated as scalars within

𝑉pert, we can rewrite 𝜔
(1)
𝑛 as

𝜔(1)
𝑛 = −𝜔

(0)
𝑛

2

𝛿𝜀

𝜀
𝑓 (2.45)

where the fill fraction 𝑓 is defined as

𝑓 =
⟨E(0)

𝑛 |𝜀|E(0)
𝑛 ⟩𝑉pert

⟨E(0)
𝑛 |𝜀|E(0)

𝑛 ⟩𝑉
(2.46)
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The subscripts denote integration over all space (𝑉 ) or over the perturbed region only

(𝑉pert). Physically, 𝑓 represents the fraction of the mode’s integrated electric energy

density that is contained within the perturbed region. This equation predicts several

intuitive behaviors. If the permittivity is increased (𝛿𝜀 > 0), then the mode frequency

decreases. The relative change in frequency is proportional to the relative change in

permittivity, i.e. 𝜔
(1)
𝑛 /𝜔

(0)
𝑛 ∝ 𝛿𝜀/𝜀. In addition, a larger fill fraction corresponds to

a larger shift in frequency. Note that while 𝜀 must be Hermitian, 𝛿𝜀 does not have

the same requirement. Thus, one could use an imaginary-valued perturbation to

calculate an imaginary-valued frequency shift which would correspond to attenuation

(Im (𝛿𝜀) > 0) or gain (Im (𝛿𝜀) < 0). Perturbation theory is also useful for calculating

the effect of weak nonlinearities such as a Kerr nonlinearity where 𝛿𝜀 ∝ E2 [64].

It is sometimes convenient to convert 𝜔(1)
𝑛 to a shift in wavevector 𝑘(1)

𝑛 . By Taylor

expanding 𝑘𝑛 about 𝜔 = 𝜔
(0)
𝑛 , it is simple to relate 𝑘

(1)
𝑛 to 𝜔

(1)
𝑛 using

𝑘(1)
𝑛 = −𝜕𝑘

𝜕𝜔
𝜔(1)
𝑛 (2.47)

This equation holds for both real and imaginary 𝜔
(1)
𝑛 due to the Cauchy-Riemann

equations. Note the minus sign, which appears because a decrease in frequency corre-

sponds to an increase in wavevector. Recalling that the group velocity 𝑣gr = 𝜕𝜔/𝜕𝑘,

we get the equation for 𝑘
(1)
𝑛 .

𝑘(1)
𝑛 = − 1

𝑣gr
𝜔(1)
𝑛 =

𝜔
(0)
𝑛

2𝑣gr

𝛿𝜀

𝜀
𝑓 (2.48)

Note that unperturbed value for 𝑣gr should be used for this calculation.

Assuming that 𝛿𝜀 is imaginary-valued and that 𝜀 is real-valued, Eq. 2.48 gives

the rate of amplitude attenuation of an electromagnetic wave propagating through a

structure with permittivity map 𝜀. This can be converted to an effective absorption

coefficient 𝛼𝑛 of an electromagnetic wave propagating through a structure.

𝛼𝑛 = 2𝑘(1)
𝑛 =

𝜔
(0)
𝑛

𝑣gr

𝛿𝜀

𝜀
𝑓 (2.49)
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The extra factor of 2 comes from the fact that 𝑘(1)
𝑛 describes how quickly the amplitude

of the wave decays while 𝛼𝑛 describes how quickly the intensity (which is proportional

to the amplitude squared) decays.

We can recover the usual definition for the absorption coefficient in a bulk material

with permittivity 𝜀r+𝑖𝜀i using the perturbative solution. In the weak absorption limit,

we can set 𝜀 = 𝜀r ≈ 𝑛2
r and 𝛿𝜀 = 𝜀i ≈ 2𝑛r𝑛i. Also, because the we are treating 𝜀i as

the perturbation, we can treat 𝜀 as a real constant in order to satisfy the Kramers-

Kronig relations. Therefore, the unperturbed 𝑣gr is equal to 𝑣ph = 𝑐/𝑛r. Using these

approximations, we get the following equation.

𝛼 =
4𝜋𝑛i

𝜆0

(2.50)

where 𝜆0 = 2𝜋𝑐/𝜔 is the vacuum wavelength of the electromagnetic wave.

To solve for |E(1)
𝑛 ⟩, we return to Eq. 2.43 and left-multiply by ⟨E(0)

𝑚 | and invoke

the orthonormal property of the modes ⟨E(0)
𝑚 |𝜀|E(0)

𝑛 ⟩ = 𝛿𝑚𝑛.

⟨E(0)
𝑚 |𝜀|E(1)

𝑛 ⟩ = ⟨E(0)
𝑚 |𝛿𝜀|E(0)

𝑛 ⟩(︃
𝜔
(0)
𝑚

𝜔
(0)
𝑛

)︃2

− 1

(2.51)

This equation shows that the mode |E(0)
𝑛 ⟩ mixes with the other modes |E(0)

𝑚 ⟩ and

that the magnitude of the mixing is determined by the overlap between the modes

mediated by the perturbation as well as the relative frequencies (stronger mixing

occurs when the frequencies are closer together).

Qualitatively, the mathematics and results described here are very similar to those

derived for quantum mechanics [64, 72]. However, there is one important difference.

While the wavefunctions used in quantum mechanics are complex-valued, the electric

and magnetic fields used in electromagnetic theory are classical fields so they must be

real-valued. This results in some interesting behavior when using imaginary-valued

perturbations. Consider Eq. 2.51. Given an imaginary-valued perturbation and that

the eigenmodes are real-valued, the left-hand side evaluates to a real number while
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the right-hand side evaluates to an imaginary number. The only way that this could

be true is if both sides equal 0, so to first order an imaginary-valued perturbation

does not affect the mode profile |E𝑛⟩. This makes intuitive sense because |E𝑛⟩ should

be determined by the real part of the refractive index map 𝑛 =
√
𝜀. Writing out 𝑛r

in terms of 𝜀r and 𝜀i gives the equation (assuming 𝜀i < 𝜀r).

𝑛r =
√
𝜀r

[︃
1 +

1

8

(︂
𝜀i
𝜀r

)︂2

+𝑂

(︃(︂
𝜀i
𝜀r

)︂4
)︃]︃

(2.52)

Note that the lowest order term in 𝜀i/𝜀r is quadratic. This agrees with our previous

conclusion that to first oder |E𝑛⟩ is unaffected by an imaginary-valued perturbation.

2.5 Finite-difference time-domain schemes

In most geometries, Maxwell’s equations cannot be solved analytically. However,

very good approximate solutions can be found using numerical methods. A common

approach is to propagate Maxwell’s equations in the time domain using a finite-

difference scheme. The simulation space is discretized on a Yee cell [73], shown in

Fig. 2-1, and stepped through time. We approximate the partial derivatives in Eq.

2.3 and 2.4 using finite differences. For a function 𝑓 (𝑥), the first derivative at 𝑥 = 𝑥0

can by approximated by Taylor expanding the function about two nearby points

𝑥 = 𝑥0 ±∆𝑥/2.

𝑓

(︂
𝑥0 ±

∆𝑥

2

)︂
= 𝑓 (𝑥0)± 𝑓 ′ (𝑥0)

(︂
∆𝑥

2

)︂
+

1

2
𝑓 ′′ (𝑥0)

(︂
∆𝑥

2

)︂2

+𝒪
(︀
∆𝑥3

)︀
(2.53)

Taking the difference 𝑓 (𝑥0 +∆𝑥/2) − 𝑓 (𝑥0 −∆𝑥/2) and isolating 𝑓 ′ (𝑥0) gives the

following equation.

𝑓 ′ (𝑥0) =
𝑓 (𝑥0 +∆𝑥/2)− 𝑓 (𝑥0 −∆𝑥/2)

∆𝑥
+𝒪

(︀
∆𝑥3

)︀
(2.54)

This equation gives accuracy up to second order, which is usually sufficient for an

electromagnetic simulation. If higher-order accuracy is needed, the appropriate finite
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Figure 2-1: Diagram of the Yee cell. The simulation space is discretized into
voxels with dimensions ∆𝑥×∆𝑦×∆𝑧. The electric field components (red) are placed
on the edges of the unit cell while the magnetic field components (blue) are centered
on the faces of the unit cell.

difference equation can easily be derived by including more nearby points in the

calculation.

We use a leapfrog scheme to step the fields through time, alternating between

updating E (𝑡) at each time 𝑛 and H (𝑡) at each time 𝑛 + 1/2. Applying the finite-

differencing scheme to Eq. 2.3 and 2.4, we get update equations

𝐸𝑛+1
𝑥

(︂
𝑖+

1

2
, 𝑗, 𝑘

)︂
= 𝐸𝑛

𝑥

(︂
𝑖+

1

2
, 𝑗, 𝑘

)︂
+

∆𝑡

𝜖0𝜀

[︃
𝐻

𝑛+1/2
𝑧

(︀
𝑖+ 1

2
, 𝑗 + 1

2
, 𝑘
)︀
−𝐻

𝑛+1/2
𝑧

(︀
𝑖+ 1

2
, 𝑗 − 1

2
, 𝑘
)︀

∆𝑦

−
𝐻

𝑛+1/2
𝑦

(︀
𝑖+ 1

2
, 𝑗, 𝑘 + 1

2

)︀
−𝐻

𝑛+1/2
𝑦

(︀
𝑖+ 1

2
, 𝑗, 𝑘 − 1

2

)︀
∆𝑧

]︃

+ 𝐽𝑛
𝑥

(︂
𝑖+

1

2
, 𝑗, 𝑘

)︂
(2.55)
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𝐻𝑛+1/2
𝑥

(︂
𝑖, 𝑗 +

1

2
, 𝑘 +

1

2

)︂
= 𝐻𝑛−1/2

𝑥

(︂
𝑖, 𝑗 +

1

2
, 𝑘 +

1

2

)︂
− ∆𝑡

𝜇0𝜇

[︃
𝐸𝑛

𝑧

(︀
𝑖, 𝑗 + 1, 𝑘 + 1

2

)︀
− 𝐸𝑛

𝑧

(︀
𝑖, 𝑗, 𝑘 + 1

2

)︀
∆𝑦

−
𝐸𝑛

𝑦

(︀
𝑖, 𝑗 + 1

2
, 𝑘 + 1

)︀
− 𝐸𝑛

𝑦

(︀
𝑖, 𝑗 + 1

2
, 𝑘
)︀

∆𝑧

]︃ (2.56)

plus cyclic permutations. In the notation used here, the superscript on the field

variable denotes the time index, the subscript denotes the field component, and the

indices within parenthesis denote spatial indices. ∆𝑥, ∆𝑦, and ∆𝑧 are the grid spac-

ings along the 𝑥, 𝑦, and 𝑧 axes, respectively, and ∆𝑡 is the time step. For simplicity,

we will assume that the grid spacing is the same in all directions, i.e. ∆𝑥 = ∆𝑦 = ∆𝑧.

For the simulation to be numerically stable, over the entire simulation space ∆𝑡 must

fulfill the Courant-Friedrichs-Lewy condition [74]

𝑐
√
𝜀𝜇

∆𝑡 ≤ ∆𝑥 (2.57)

where 𝑐 is the vacuum speed of light. In addition, ∆𝑥 must be small enough to resolve

the smallest wavelength 𝜆 in the simulation. A general rule of thumb is that at least

10 voxels/wavelength should be used.

∆𝑥 ≤ 𝜆

10
(2.58)

In order to include the material response, we follow a similar methodology as was

done in Section 2.2.1. We introduce the polarization field P (𝑡) and magnetization field

M (𝑡) and propagate them together with E (𝑡) and H (𝑡). These fields are updated

according to their own equations of motion, determined by the model used for the

light-matter interactions. For P (𝑡), typically the damped driven oscillator model

(Eq. 2.33) is used. For the equation of motion

𝜕2

𝜕𝑡2
P (𝑡) + Γ

𝜕

𝜕𝑡
P (𝑡) + 𝜔2

0P (𝑡) = 𝜎𝜔2
0E (2.59)
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the corresponding update equations are

P𝑛+1 = P𝑛 +∆𝑡Ṗ𝑛 (2.60)

Ṗ𝑛+1 = (1− Γ∆𝑡) Ṗ𝑛 − 𝜔2
0∆𝑡 (P𝑛 − 𝜎E𝑛) (2.61)

where Ṗ = 𝜕P/𝜕𝑡, 𝜔0 is the resonance frequency, Γ is a phenomenological damping

parameter, and 𝜎 is the oscillator strength. Both P and Ṗ have the same spatial

discretization as E and get updated simultaneously with E. The polarization couples

back into Ampere’s law (Eq. 2.4) by generating a polarization current JP given by

JP =
𝜕

𝜕𝑡
P (2.62)

For M (𝑡) the Landau-Lifshitz-Gilbert (LLG) equation is typically used to model

the magnetic field interactions with atomic spins. The LLG equation is given by

𝜕

𝜕𝑡
M (𝑡) = − 𝛾

1 + 𝛼2

[︂
M (𝑡)×Beff (𝑡) +

𝛼

|M (𝑡)|
M (𝑡)× [M (𝑡)×Beff (𝑡)]

]︂
(2.63)

where Beff is the effective magnetic field experienced by the magnetic moments. Beff

can be calculated from the magnetic dipole Hamiltonian Ĥ using the equation

Beff = − 1

𝑉M

𝜕

𝜕M
Ĥ (2.64)

where 𝑉M is the volume of the magnetic unit cell. A common strategy for solving

the LLG equation is to apply a finite-difference scheme and propagate it in the time

domain. However, this approach requires a very fine time step ∆𝑡 ≤ 𝛾′𝐵eff/100

for the scheme to converge properly, which drastically increases the computational

cost of a multiphysics simulation where the LLG equation is coupled to Maxwell’s

equations. Alternatively, we can derive an approximate closed-form solution to the

LLG equation using perturbation theory for propagating in the time domain. We take

inspiration from the variation of parameters procedure commonly used in Celestial

mechanics for calculating the planetary orbits [75, 76]: First, calculate the Kepler
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orbit for an idealized system. Then, determine how a small perturbation modifies the

trajectory. Lastly, propagate the system through time using the modified trajectory

while updating the parameters during every time step. For the LLG equation, we

solve for the trajectory of M (𝑡) assuming a time-independent magnetic field Beff

and treat the damping as the perturbation (𝛼 ≪ 1). To find the trajectory for a

general system, we propagate the solution using a time-independent magnetic field

and update Beff at every time step.

To solve the unperturbed case, we set 𝛼 = 0. Without loss of generality, we define

our coordinate axes so that Beff is aligned along the 𝑧-axis, i.e. Beff = 𝐵0𝑧. To 0th

order, the equation of motion becomes

𝜕

𝜕𝑡
M (𝑡) = −𝛾𝐵0M (𝑡)× 𝑧 (2.65)

The solution to this set of coupled differential equations is given by

𝑀𝑥 (𝑡) = 𝑀𝑟 cos (𝜔0𝑡+ 𝜑)

𝑀𝑦 (𝑡) = 𝑀𝑟 sin (𝜔0𝑡+ 𝜑)

𝑀𝑧 (𝑡) =

√︁
|M|2 −𝑀2

𝑟

(2.66)

These equations describe spin precession about the 𝑧-axis at angular frequency 𝜔0 =

𝛾𝐵0. 𝜑 is a phase constant determined by the initial conditions.

Now we include the perturbation 𝛼 ≪ 1, substitute 𝛾/(1 + 𝛼2) → 𝛾′, and solve

the equation of motion to 1st order. Evaluating the cross-products, Eq. 2.63 becomes

𝜕

𝜕𝑡
𝑀𝑥 (𝑡) = −𝛾′𝐵0

[︂
𝑀𝑦 (𝑡)−

𝛼𝑀𝑧 (𝑡)

|M|
𝑀𝑥 (𝑡)

]︂
𝜕

𝜕𝑡
𝑀𝑦 (𝑡) = −𝛾′𝐵0

[︂
−𝑀𝑥 (𝑡) +

𝛼𝑀𝑧 (𝑡)

|M|
𝑀𝑦 (𝑡)

]︂
𝜕

𝜕𝑡
𝑀𝑧 (𝑡) = 𝛾′𝐵0

𝛼

|M|
[︀
𝑀2

𝑥 (𝑡) +𝑀2
𝑦 (𝑡)

]︀
(2.67)

We take the 0th order solution given in Eq. 2.66 and plug into the equation of motion
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given by Eq. 2.63. For 𝑀𝑥 (𝑡) and 𝑀𝑦 (𝑡), we get the matrix equation

𝜕

𝜕𝑡

⎡⎣𝑀𝑥 (𝑡)

𝑀𝑦 (𝑡)

⎤⎦ = 𝛾′𝐵0

⎡⎢⎣
𝛼𝑀𝑧

|M|
−1

1 −𝛼𝑀𝑧

|M|

⎤⎥⎦
⎡⎣𝑀𝑥 (𝑡)

𝑀𝑦 (𝑡)

⎤⎦ (2.68)

It is straightforward to show that unperturbed solutions for 𝑀𝑥 (𝑡) and 𝑀𝑦 (𝑡) satisfy

this matrix equation with eigenfrequency 𝜔0 given by

𝜔0 = 𝛾′𝐵0

√︃
1−

(︂
𝛼𝑀𝑧

|M|

)︂2

≈ 𝛾′𝐵0

[︃
1− 1

2

(︂
𝛼𝑀𝑧

|M|

)︂2
]︃

(2.69)

Plugging the solutions for 𝑀𝑥 (𝑡) and 𝑀𝑦 (𝑡) into the equation for 𝑀𝑧 (𝑡), we get the

equation
𝜕

𝜕𝑡
𝑀𝑧 (𝑡) = 𝛾′𝐵0

𝛼

|M|
[︀
|M|2 −𝑀2

𝑧 (𝑡)
]︀

(2.70)

which has the solution

𝑀𝑧 (𝑡) = − |M| tanh (𝛼𝛾′𝐵0𝑡+ 𝑐) (2.71)

where 𝑐 is a constant determined by the initial conditions. This also gives the time-

dependence for the amplitude for oscillations in the 𝑥𝑦-plane.

𝑀𝑟 (𝑡) =

√︁
|M|2 −𝑀2

𝑧 (𝑡) = |M| sech (𝛼𝛾′𝐵0𝑡+ 𝑐) (2.72)

Note that near equilibrium, the condition 𝛾′𝐵0
𝛼

|M|𝑡 + 𝑐 ≫ 1 holds, so the amplitude

of the oscillations decays approximately exponentially.

𝑀𝑟 (𝑡) = |M| sech (𝛼𝛾′𝐵0𝑡+ 𝑐) ≈ 2 |M| exp (−𝛼𝛾′𝐵0𝑡− 𝑐) (2.73)

indicating that at small displacements from equilibrium, the LLG equation behaves

similarly to the harmonic oscillator model, i.e. the system oscillates at a resonance

frequency 𝜔0 with the amplitude of the oscillations decreasing exponentially with a

rate constant Γ = 𝛼𝛾′𝐵0 = 𝛼𝜔0.
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To couple the LLG equation to Maxwell’s equations, we propagate M at each

time step assuming a time-independent Beff : M is updated by rotating M about Beff

by an angle 𝛾′𝐵eff∆𝑡 according to Eq. 2.66, followed by a reorientation of M towards

the equilibrium position according to Eq. 2.71. The magnetic dipole Hamiltonian

Ĥ and the effective magnetic field Beff are recalculated at each time step. In this

case, the external H propagated by Maxwell’s equations is converted to B using the

constitutive relation B = 𝜇0H. Note that the constitutive relation uses 𝜇 = 1 because

any magnetic behavior of the material is handled explicitly by propagating the LLG

equation. M has the same spatial discretization as H and is updated simultaneously

with H. The magnetization couples into Ampere’s law (Eq. 2.4) through the bound

current Jb, which is defined as

Jb = ∇×M (2.74)

Electromagnetic sources are typically defined as current sources and enter into

the simulation as an artificial contribution to J. An intuitive source function is

the Morlet (or Gabor) wavelet, which is composed of a Gaussian pulse envelope

multiplied by a sinusoidal oscillation at the desired center frequency. However, care

must be taken when using a Morlet wavelet because it can provide a significant

DC field if the bandwidth is comparable to the carrier frequency. Although a DC

field is not explicitly forbidden by Maxwell’s equations, it is not excited by most

excitation mechanisms and can result in large discrepancies between experiment and

calculations. A common solution is to use the first (or higher) time derivative of

the Gaussian function as the source function to eliminate the DC contribution. In

Section 3.3, we describe THz generation in LN via optical rectification, which makes

the Ricker wavelet (the second time derivative of a Gaussian function) a convenient

source term for THz simulations.

In order to terminate the simulation space, absorbing boundary conditions are

typically used to suppress reflections off of the simulation boundaries. This is typically

implemented by using perfectly matched layers [77], where the electric and magnetic

conductivities, 𝜎e and 𝜎m, are artificially increased towards the simulation boundary.

50



The ratio of 𝜎e to 𝜎m is chosen so that reflections off of the absorbing boundary are

suppressed. This is done by keeping the wave impedance 𝑍 constant. The complex

wave impedance is given by

𝑍 =

⎯⎸⎸⎸⎷𝜇+ 𝑖
𝜎m

𝜔

𝜀+ 𝑖
𝜎e

𝜔

(2.75)

where 𝜔 is the angular frequency. This gives the simple condition that 𝜎e/𝜎m = 𝜀/𝜇 to

minimize reflections off of the boundary layer. Perfectly matched layers are typically

implemented using the transformation

𝜕

𝜕𝑥
→ 1

1 + 𝑖
𝜎𝑥

𝜔

𝜕

𝜕𝑥
(2.76)

(plus cyclic permutations) for the spatial derivatives in Maxwell’s equations before

applying the finite difference scheme. Notes on how to implement perfectly matched

layers can be found in Ref. [78].
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Chapter 3

Phonon-polaritons in LN waveguides

The THz polaritonics platform, named in reference to the THz-frequency phonon-

polaritons that are formed as a result of strong coupling between the THz frequency

electromagetic waves and the polar lattice vibrations in LiNbO3 (LN) and LiTaO3,

uses thin <100 µm LN and LT slab waveguides for optical generation and detection

of THz fields. A femtosecond laser pulse is focused into the LN waveguide, which

launches polaritons away from the pumping region. The polaritons are confined to the

slab and propagate in the transverse electric (TE) dielectric waveguide modes. The

electric field component of the polaritons can be read out using a linearly polarized

femtosecond probe pulse via electro-optic sampling. In this way, the polaritons can be

monitored with sub-wavelength spatial resolution and sub-cycle temporal resolution

as they interact with structures or samples integrated into the waveguide or deposited

on the waveguide surface.

Here, we develop a framework for describing the phonon-polaritons used in our

experiments. We start with the classical model for phonon-polaritons in a bulk ma-

terial. The thickness of the LN and LT slabs is comparable to the THz wavelength

(1THz frequency = 300µm wavelength in free space), so the slab acts as a dielectric

waveguide. The mode profiles and dispersion for a free-standing LN slab are calcu-

lated. Lastly, we describe the nonlinear optical processes that allow for excitation

and detection of the THz fields.
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3.1 Phonon-polariton dispersion

Polaritons are quasiparticles that form as a result of strong-coupling between an elec-

tromagnetic wave and a material excitation through an electric-dipole (or magnetic-

dipole) interaction. Here, we follow the treatment previously used in literature [79–

82]. In LiNbO3 (LN) and LiTaO3 (LT), the THz electric field couples to the vibra-

tional modes of the ionic crystal lattice to form phonon-polaritons. The ionic motion

can be modeled as a harmonic oscillator, which has a linear susceptibility given by

𝜒 (𝜔) =
𝜎𝜔2

TO

𝜔2
TO − 𝜔2 + 𝑖𝜔Γ

(3.1)

where 𝜔TO is the transverse phonon frequency, 𝜎 is the oscillator strength, and Γ is

the phenomenological damping rate. Although LN and LT both have many THz-

frequency phonon modes, here we only consider the lowest frequency mode. The

THz bandwidth used in polaritonics experiments extends up to roughly 2THz, so the

lowest frequency mode, which has the largest oscillator strength, provides the main

contribution to the dispersion. The contribution from the rest of the vibrational

modes is summarized by the high-frequency permittivity 𝜀∞, which is simply the sum

of the oscillator strengths. Both LN and LT are uniaxial crystals where the unique

𝑐-axis is called the “extraordinary” axis and the equivalent 𝑎 and 𝑏 axes are called the

“ordinary” axes. Both materials have negative birefringence, meaning that extraordi-

nary rays experience a smaller refractive index than ordinary rays. The Lorentzian

dispersion parameters for LN and LT are summarized in Table 3.1. Normally, the

linear electric permittivity 𝜀 is a frequency-dependent rank-2 tensor. However, by

choosing a coordinate system where the extraordinary axis is aligned with one of the

principle coordinate axes, 𝜀 is diagonalized. This allows us to treat light polarized

along the 𝑥, 𝑦, and 𝑧 axes independently. The dielectric function can be written as

𝜀 (𝜔) = 𝜀∞ +
𝜎𝜔2

TO

𝜔2
TO − 𝜔2 + 𝑖𝜔Γ

(3.2)

In general, the dispersion can be determined from the dielectric function through
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LiNbO3 LiTaO3

eo o eo o
𝜖∞ 10.0 19.5 7.6 17.4
𝜎 16.0 22.0 30.0 24.1
𝜔TO/2𝜋 (THz) 7.4 4.6 6.0 4.3
Γ/2𝜋 (THz) 0.63 0.42 0.84 0.42

Table 3.1: Summary of material parameters for LN and LT. Values taken from
Ref. [83] for LN and Ref. [84] for LT. eo = extraordinary, o = ordinary

the relation

𝑘 =
𝜔
√
𝜀

𝑐
(3.3)

where 𝑘 is the wavevector, 𝜔 is the angular frequency, and 𝑐 is the vacuum speed of

light. We will neglect polariton damping (Γ = 0) for simplicity. Combining Eq. 3.2

and 3.3 gives the characteristic equation

𝜀∞𝜔4 −
(︀
𝜀0𝜔

2
TO + 𝑐2𝑘2

)︀
𝜔2 + 𝜔2

TO𝑐
2𝑘2 = 0 (3.4)

where 𝜀0 = 𝜀∞ + 𝜎 is the low-frequency permittivity. The solutions to this equation

are

𝜔± =

⎯⎸⎸⎷1

2

𝜀0𝜔2
TO + 𝑐2𝑘2

𝜀∞
± 1

2

√︃(︂
𝜀0𝜔2

TO + 𝑐2𝑘2

𝜀∞

)︂2

− 4𝜔2
TO𝑐

2𝑘2

𝜀∞
(3.5)

Here, we only keep the positive solutions. The two solutions, plotted in Fig. 3-1,

correspond to the upper polariton and lower polariton branches.

At high wavevectors (𝑐𝑘 ≫ 𝜔0), the dispersion is approximated by

𝜔+ =
𝑐𝑘

√
𝜀∞

(3.6)

𝜔− = 𝜔TO (3.7)

The lower polariton branch is “phonon-like” and is approximately constant at the

transverse optical phonon frequency. The upper polariton branch is “photon-like”

and has linear wavevector dependence.
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Figure 3-1: Phonon-polariton dispersion in LN (a) The real (blue) and imag-
inary (red) components of the electric permittivity in LN are plotted. Only the
lowest-frequency transverse optical phonon mode was considered for this calculation.
(b) Polariton dispersion calculated using Eq. 3.5. The upper polariton (blue) and
lower polariton (red) branches are shown. The dashed lines show the photon-like
dispersion in the high-frequency and low-frequency limits. The shaded region shows
the Reststrahlen band, which corresponds to the region in (a) where Re (𝜀) < 0.

At low wavevectors (𝑐𝑘 ≪ 𝜔0), the dispersion is approximated by

𝜔+ =

√︂
𝜀0
𝜀∞

𝜔TO (3.8)

𝜔− =
𝑐𝑘
√
𝜀0

(3.9)

Now, the lower polariton branch is “photon-like” with linear wavevector dependence

while the upper polariton branch is “phonon-like” and is approximately constant at the

longitudinal optical phonon frequency 𝜔LO. In a typical polaritonics experiment, the

excited THz bandwidth extends up to ∼2THz, so the relevant region of the polariton

dispersion is the linear portion of the lower polariton branch. The longitudinal phonon

frequency is given by the Lyddane-Sachs-Teller relation [85]

𝜔LO

𝜔TO

=

√︂
𝜀0
𝜀∞

(3.10)
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Note that we have 𝜀 (𝜔) < 0 in the region between 𝜔TO and 𝜔LO, which is known

as the “Reststrahlen band” [86]. In this region, there are no propagating modes and

incident light is strongly reflected.

At first glance, it may seem strange that a propagating electromagnetic wave can

couple to a longitudinal phonon mode. For a planewave travelling through a medium,

Gauss’s law (Eq. 2.1) imposes the requirement k ·D = k · 𝜀E = 0 on the electric field.

In most media, this leads to the requirement that k ·E = 0, and thus that light travels

as a transverse wave. However, the phonon-polariton dispersion gives 𝜀 (𝜔LO) = 0, so

we can support a longitudinal electric field (k ·E ̸= 0) without violating Gauss’s law.

It is important to emphasize that the phonon-polaritons in LN and LT are hybrid

quasiparticles formed by mixing a THz-frequency photon with the polar transverse

optical phonons in LN and LT. It is inaccurate to think of the polaritons in terms of

photons and phonons separately. In the classical picture, the travelling electromag-

netic wave drives lattice vibrations in LN and LT. Simultaneously, the oscillating ions

in the crystal lattice radiate out an electric field that interferes with the driving field.

Energy is transferred back and forth between the electric field and the ionic motions,

so both components are required to properly describe the mode.

3.2 Symmetric dielectric slab waveguides

The slabs used in the polaritonics platform have thickness comparable to the THz

wavelength, so the THz fields propagate as dielectric waveguide modes. Consider a

dielectric slab with the refractive index profile as shown in Fig. 3-2. The slab extends

infinitely along the 𝑦 and 𝑧 axes. The slab has refractive index 𝑛core and thickness

𝑑 along the 𝑥-axis and is surrounded on both sides by an infinitely thick dielectric

cladding with refractive index 𝑛clad. The refractive index profile is given by

𝑛 (𝑥) =

⎧⎪⎨⎪⎩
𝑛core |𝑥| ≤ 𝑑

2

𝑛clad |𝑥| > 𝑑

2

(3.11)
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Figure 3-2: The symmetric dielectric waveguide. (a) Refractive index profile for
a symmetric dielectric slab waveguide. The waveguide has a central high-index region
with thickness 𝑑 and refractive index 𝑛core. A low-index cladding with refractive index
𝑛clad surrounds the waveguide on both sides. (b) Transverse electric (TE) mode. The
electric field is polarized along the 𝑦-axis. The field propagates along the 𝑧-axis
with propagation constant 𝛽. ℎ is the component of 𝑛core𝑘0 perpendicular to the
propagation direction and 𝑘0 is the vacuum wavevector. (c) Transverse magnetic
(TM) mode. The electric field has components polarized along the 𝑥- and 𝑧-axes.

For convenience, we place the origin of our coordinate axes at the center of the

waveguide. Due to the mirror symmetry present in this geometry, we can separate

the modes into two families: transverse electric (TE; the electric field is perpendicular

to the propagation direction) and transverse magnetic (TM) modes. In the following

sections, we will calculate the mode profiles and dispersion for both the TE and TM

modes of the symmetric dielectric slab waveguide.

3.2.1 TE modes

For the TE mode, the electric field is polarized along the 𝑦-axis and the magnetic field

has components polarized along the 𝑥 and 𝑧 axes. To solve for the TE modes, we solve

the eigenproblem form of Maxwell’s equations (Eq. 2.10) subject to transversality

constraints Eq. 2.1 and Eq. 2.2. Within the high-index region, Eq. 2.10 produces

sinusoidal solutions. For the mode to be well-behaved, the electric field must decay
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exponentially to 0 at 𝑥 = ±∞. Thus, 𝐸𝑦 (𝑥) is given by

𝐸𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴 cos (ℎ𝑥) +𝐵 sin (ℎ𝑥) |𝑥| ≤ 𝑑

2

𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2

𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.12)

We can use Faraday’s law (Eq. 2.11) to calculate 𝐻𝑥 (𝑥) and 𝐻𝑧 (𝑥) from 𝐸𝑦 (𝑥).

𝐻𝑥 (𝑥) =
𝛽

𝜔𝜇0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴 cos (ℎ𝑥) +𝐵 sin (ℎ𝑥) |𝑥| ≤ 𝑑

2

𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2

𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.13)

𝐻𝑧 (𝑥) = − 𝑖

𝜔𝜇0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ℎ𝐴 sin (ℎ𝑥) + ℎ𝐵 cos (ℎ𝑥) |𝑥| ≤ 𝑑

2

𝑞𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2

−𝑞𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.14)

The parameters ℎ and 𝑞 are related to the propagation constant 𝛽 by the following

equalities.

𝛽2 = 𝑛2
core𝑘

2
0 − ℎ2 = 𝑛2

clad𝑘
2
0 + 𝑞2 (3.15)

This puts constraints on the possible values of 𝛽.

𝑛clad𝑘0 < 𝛽 < 𝑛core𝑘0 (3.16)

At the surface of the slab, the 𝐸𝑦 and 𝐻𝑧 must be continuous across the interface

due to Faraday’s law (Eq. 2.3) and Ampere’s law (Eq. 2.4) respectively. Due to

the symmetry of the waveguide, the modes either have even symmetry (𝐵 = 0 and

𝐶 = 𝐷) or odd symmetry (𝐴 = 0 and 𝐶 = −𝐷). For the even modes, we get the
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following system of equations

𝐴 cos

(︂
ℎ𝑑

2

)︂
= 𝐷 exp

(︂
−𝑞𝑑

2

)︂
ℎ𝐴 sin

(︂
ℎ𝑑

2

)︂
= 𝑞𝐷 exp

(︂
−𝑞𝑑

2

)︂ (3.17)

which gives the characteristic equation

ℎ tan

(︂
ℎ𝑑

2

)︂
= 𝑞 (3.18)

For the odd modes, we get the following system of equations

𝐵 sin

(︂
ℎ𝑑

2

)︂
= 𝐷 exp

(︂
−𝑞𝑑

2

)︂
ℎ𝐵 cos

(︂
ℎ𝑑

2

)︂
= −𝑞𝐷 exp

(︂
−𝑞𝑑

2

)︂ (3.19)

which gives the characteristic equation

ℎ cot

(︂
ℎ𝑑

2

)︂
= −𝑞 (3.20)

At this point, we have one equation and two unknowns (ℎ and 𝑞). To add a constraint,

we define the normalized frequency 𝑉 as

𝑉 2 =
(︀
ℎ2 + 𝑞2

)︀(︂𝑑

2

)︂2

=
(︀
𝑛2
core − 𝑛2

clad

)︀(︂𝜔𝑑

2𝑐

)︂2

(3.21)

This allows us to numerically solve the characteristic equation. The representative

dispersion for a 50-µm LN slab is shown in Fig. 3-3a. Representative 𝐸𝑦 field profiles

are also shown in Fig. 3-3b for the three lowest-order TE modes.

The cutoff frequency for each mode can be found by finding the minimum fre-

quency such that the characteristic equations still have a solution. For simplicity, we

combine the two characteristic equations together to get

tan (ℎ𝑑) =
2ℎ𝑞

ℎ2 − 𝑞2
(3.22)
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Figure 3-3: TE modes in a symmetric dielectric waveguide. (a) Calculated TE
dispersion curves for a 50-µm LN slab waveguide. The parameters used for the LN
bulk dispersion are taken from Table 3.1. The cladding material is air (𝑛clad = 1). (b)
TE mode profiles for a LN slab with thickness 𝑑 = 50 µm calculated at 1.5THz. (c)
Calculated fill fractions for the TE modes in a 50-µm LN waveguide. (d) Frequency-
dependent absorption coefficients for the TE modes in a 50-µm LN waveguide.

Substituting for ℎ and 𝑞 and setting 𝛽 to its minimum value (𝛽 = 𝜔𝑛clad/𝑐) results

in the equation

𝑓cutoff,𝑚 =
𝑚𝑐

2𝑑
√︀

𝑛2
core − 𝑛2

clad

(3.23)

where 𝑚 is an integer counting the TE𝑚 modes.

We can also calculate the fill fractions for the modes. The energy density inte-
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grated over the core region is

𝑈core = 𝐴2𝑛2
core

[︂
𝑑

2
+

1

2ℎ
sin (ℎ𝑑)

]︂
(even modes)

𝑈core = 𝐵2𝑛2
core

[︂
𝑑

2
− 1

2ℎ
sin (ℎ𝑑)

]︂
(odd modes)

(3.24)

and the energy density integrated over the cladding region (on both sides of the core)

is

𝑈clad =
𝐷2𝑛2

clad

𝑞
exp (−𝑞𝑑) (3.25)

The relationships between 𝐴, 𝐵, and 𝐷 are given by Eq. 3.17 and 3.19. The fill

fractions are calculated using the equations

𝑓core =
𝑈core

𝑈core + 𝑈clad

𝑓clad =
𝑈clad

𝑈core + 𝑈clad

(3.26)

Note that 𝑈core is proportional to 𝑛2
core while 𝑈clad is proportional to 𝑛2

clad. Therefore,

for waveguides with a large dielectric contract, such as LN (𝑛core/𝑛clad ≈ 5), 𝑓core

approaches unity very quickly. The core fill fractions for a 50-µm LN waveguide are

plotted in Fig. 3-3b.

In the previous calculations, THz absorption was neglected. We can use pertur-

bation theory to calculate the frequency-dependent absorption experienced by wave-

guided THz waves via Eq. 2.48, treating the imaginary part of the bulk LN and LT

dispersion as the perturbation. The results are plotted in Fig. 3-3c. The calculated

absorption coefficients are similar to the bulk absorption coefficients. The higher-

order modes experience stronger absorption due to their lower group velocities. Note

that there is a somewhat strong absorption feature near the cutoff frequency for each

mode. This is due to the sharp decrease in group velocity where the TE dispersion

starts to deviate from the vacuum light line.
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3.2.2 TM modes

Although we do not routinely excite the TM waveguide modes in our experiments, it

is still instructive to calculate the dispersion and properties of the modes. Following

the same procedure as before, we can deduce the form of 𝐻𝑦 (𝑥).

𝐻𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴 cos (ℎ𝑥) +𝐵 sin (ℎ𝑥) |𝑥| ≤ 𝑑

2

𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2

𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.27)

Using Ampere’s law (Eq. 2.13), we can calculate 𝐸𝑥 (𝑥) and 𝐸𝑧 (𝑥) from 𝐻𝑦 (𝑥).

𝐸𝑥 (𝑥) = − 𝛽

𝜔𝜖0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

𝑛2
core

𝐴 cos (ℎ𝑥) +
1

𝑛2
core

𝐵 sin (ℎ𝑥) |𝑥| ≤ 𝑑

2
1

𝑛2
clad

𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2
1

𝑛2
clad

𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.28)

𝐸𝑧 (𝑥) =
𝑖

𝜔𝜖0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1

𝑛2
core

ℎ𝐴 sin (ℎ𝑥) +
1

𝑛2
core

ℎ𝐵 cos (ℎ𝑥) |𝑥| ≤ 𝑑

2
1

𝑛2
clad

𝑞𝐶 exp (𝑞𝑥) 𝑥 < −𝑑

2

− 1

𝑛2
clad

𝑞𝐷 exp (−𝑞𝑥) 𝑥 >
𝑑

2

(3.29)

Applying the corresponding interface conditions, we get the characteristic equations

ℎ tan

(︂
ℎ𝑑

2

)︂
=

(︂
𝑛core

𝑛clad

)︂2

𝑞 (even modes)

ℎ cot

(︂
ℎ𝑑

2

)︂
= −

(︂
𝑛core

𝑛clad

)︂2

𝑞 (odd modes)

(3.30)

The TM dispersion in a 50-µm LN waveguide is plotted in Fig. 3-4a. Representative

𝐸𝑥 and 𝐸𝑧 field profiles are also shown in Fig. 3-4b for the three lowest-order TM

modes.

Like before, we can calculate the cutoff frequency from the condensed character-
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Figure 3-4: TM modes in a symmetric dielectric waveguide. (a) Calculated
TM dispersion curves for a 50-µm LN slab waveguide. The parameters used for the LN
bulk dispersion are taken from Table 3.1. The cladding material is air (𝑛clad = 1). (b)
TM mode profiles for a LN slab with thickness 𝑑 = 50 µm calculated at 1.5THz. Both
the 𝐸𝑥 annd 𝐸𝑧 field components are plotted. (c) Calculated fill fractions for the TM
modes in a 50-µm LN waveguide. (d) Frequency-dependent absorption coefficients
for the TM modes in a 50-µm LN waveguide.

istic equation

tan (ℎ𝑑) =
2ℎ𝑞

ℎ2 − 𝑞2
(3.31)

where 𝑞 = (𝑛core/𝑛clad)
2 𝑞. Setting 𝛽 = 𝜔𝑛clad/𝑐 gives

𝑓cutoff,𝑚 =
𝑚𝑐

2𝑑
√︀

𝑛2
core − 𝑛2

clad

(3.32)

where 𝑚 is an integer counting the TM𝑚 modes. Note that for the symmetric wave-

guide, both the TE and TM modes have the same cutoff frequencies.

The fill fraction is calculated the same way as before. The energy density inte-
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grated over the core region is

𝑈core = 𝐴2

[︂
(𝛽2 + ℎ2) 𝑑

2
+

(𝛽2 − ℎ2)

2ℎ
sin (ℎ𝑑)

]︂
(even modes)

𝑈core = 𝐵2

[︂
(𝛽2 + ℎ2) 𝑑

2
− (𝛽2 − ℎ2)

2ℎ
sin (ℎ𝑑)

]︂
(odd modes)

(3.33)

and the energy density integrated over the cladding region (on both sides of the core)

is

𝑈clad =
𝐷2 (𝛽2 + 𝑞2)

𝑞
exp (−𝑞𝑑) (3.34)

where the coefficients 𝐴, 𝐵, and 𝐷 are related by

𝐴 cos

(︂
ℎ𝑑

2

)︂
= 𝐷 exp

(︂
−𝑞𝑑

2

)︂
𝐵 sin

(︂
ℎ𝑑

2

)︂
= 𝐷 exp

(︂
−𝑞𝑑

2

)︂ (3.35)

The fill fractions are

𝑓core =
𝑈core

𝑈core + 𝑈clad

𝑓clad =
𝑈clad

𝑈core + 𝑈clad

(3.36)

Note that 𝑈core and 𝑈clad are not scaled by the square of the refractive index, so 𝑓core

does not increase as sharply as it does for the TE modes. The fill fractions for a

50-µm LN waveguide are plotted in Fig. 3-4b.

Like with the TE modes, we treat absorption using perturbation theory. The

results are plotted in Fig. 3-4c and are similar to the results for the TE modes. Note

that the spikes in the absorption coefficient are larger for the TM modes due to the

sharper drop in group velocity where the dispersion deviates from the vacuum light

line.
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3.3 THz generation – Optical rectification

THz fields are excited in LN and LT through the second-order nonlinear process

optical rectification, in which an ultrafast optical laser pulse enters the crystal and

generates a nonlinear polarization proportional to the intensity of the driving field.

To develop a simple model for THz generation, we start from Eq. 2.28 and Taylor

expand the polarization P (r, 𝑡) in orders of the electric field E (r, 𝑡).

P (r.𝑡) = 𝜖0
[︀
𝜒(1)
e E (r, 𝑡) + 𝜒(2)

e E2 (r, 𝑡) + · · ·
]︀

(3.37)

The first-order term is the linear polarization which was already treated in Section

2.2.1. All the higher-order terms collectively make up the nonlinear polarization

PNL (r, 𝑡) and describe higher-order effects that become apparent at sufficiently large

electric field strengths (a rough estimate gives E >∼ 1011 V/m) [87, 88]. Note that

although the susceptibilities are written as scalars here for convenience, in general

𝜒
(𝑛)
e is a tensor of rank 𝑛+ 1. By explicitly separating out PNL (r, 𝑡) in Eq. 2.30, we

arrive at the equation

∇2E (r, 𝑡)− 𝑛2

𝑐2
𝜕2

𝜕𝑡2
E (r, 𝑡) =

1

𝜖0𝑐2
𝜕2

𝜕𝑡2
PNL (r, 𝑡) (3.38)

The nonlinear process relevant for THz generation is optical rectification, which is a

second-order nonlinear process where the generated polarization 𝑃OR
𝑖 is proportional

to the intensity of the input pulse.

𝑃OR
𝑖 = 𝜖0𝑑𝑖𝑗𝑘𝐸𝑗𝐸

*
𝑘 (3.39)

where 𝐸𝑗 and 𝐸𝑘 are the input electric fields and 𝑑𝑖𝑗𝑘 = 1
2
𝜒
(2)
𝑖𝑗𝑘 is the corresponding

element of the effective nonlinear tensor. The superscript * denotes complex conju-

gate. From Eq. 2.30, we can show that the signal field radiated by the polarization

is proportional to the second time-derivative of the polarization [89, 90]. Suppose we

focus a Gaussian pump pulse with duration 𝜏 = 100 fs into a bulk LN crystal. The

66



𝑗𝑘 11 22 33 23,32 13,31 12,21
𝑙 1 2 3 4 5 6

Table 3.2: Voigt notation. Convention used for converting between the uncon-
tracted indices 𝑗𝑘 and the Voigt indices 𝑙.

excited THz waveform and spectrum are approximately given by

𝐸 (𝑡) =
4𝐸0

𝜏 2

(︂
−1

2
+

𝑡2

𝜏 2

)︂
exp

(︂
− 𝑡2

𝜏 2

)︂
(3.40)

𝐸̃ (𝜔) = 𝐸̃0𝜔
2 exp

(︂
−𝜔2𝜏 2

4

)︂
(3.41)

The waveform 𝐸 (𝑡) is known as a Ricker wavelet and is a commonly used source

term for electromagnetic simulations. Using a 100 fs pump pulse, the generated THz

pulse is predicted to have bandwidth up to 10THz. This estimate only considers

the bandwidth limitation due to the pump pulse duration and neglects other limiting

factors such as the finite spot size of the pump beam and coupling to the TO phonon

mode which has a resonance frequency below 10THz. In practice, the spot size of

the optical pump limits the excited range of wavevectors which in turn limits the

bandwidth to approximately 2THz.

The form of the effective nonlinear tensor 𝑑𝑖𝑗𝑘 is determined by the crystal sym-

metry. Due to Kleinman symmetry, 𝑑𝑖𝑗𝑘 is symmetric upon exchanging the last two

indices, so we can use Voigt notation rewrite the nonlinear tensor as a more compact

rank-2 tensor 𝑑𝑖𝑙 using the convention given in Table 3.2 [87, 91]. LN and LT have

crystal lattices belonging to the 3𝑚 point group, so 𝑑𝑖𝑙 takes the form [87]

𝑑 =

⎡⎢⎢⎢⎣
0 0 0 0 𝑑15 −𝑑22

−𝑑22 𝑑22 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0

⎤⎥⎥⎥⎦ (3.42)

The nonlinear coefficients for LN and LT at optical frequencies are summarized in

Table 3.3. Note that in general, the nonlinear coefficients vary slightly depending on

the optical wavelength and the crystal composition (e.g. doping). In both LN and LT,
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LiNbO3 LiTaO3

𝑑22 (pm/V) 2.5 1.7
𝑑31 (pm/V) 4.6 1.0
𝑑33 (pm/V) 32.4 15.6
𝑑15 (pm/V) 4.6 1.0

Table 3.3: Summary of effective nonlinear coefficients for LN and LT. Values
taken from Refs. [92, 93].

the largest nonlinear coefficient is 𝑑33, so THz generation is the most efficient when

the pump is polarized along the extraordinary 𝑐-axis and the emitted THz fields are

also polarized along the 𝑐-axis.

THz generation in LN and LT is noncollinear due to the large difference in extraor-

dinary refractive index at optical and THz frequencies (𝑛opt ≈ 2.2 and 𝑛THz ≈ 5.1

in LN; 𝑛opt ≈ 2.2 and 𝑛THz ≈ 6.2 in LT). We can treat the optical pump pulse as

a moving THz source in LN and LT. At any instant in time, the pump pulse emits

a spherical THz wave. Using Huygen’s principle, constructive inference between the

spherical wave gives a conical THz field propagating away from the pump region, as

shown in Fig. 3-5a. The emitted cone of THz radiation is referred to as a Cherenkov

cone [94] in reference to Cherenkov radiation observed in nuclear sciences which is

emitted in a very similar geometry [95, 96]. The Cherenkov angle 𝜃𝑐 can be calculated

using simple geometry to give the equation

cos (𝜃𝑐) =
𝑛opt

𝑛THz

(3.43)

In LN and LT, this gives 𝜃𝑐 = 64∘ and 69∘, respectively, so the THz fields are excited

with a predominant lateral wavevector component.

If a pump pulse is focused into a thin LN or LT slab, the emitted THz fields

are launched laterally and couple very efficiently to the dielectric waveguide modes as

shown in Fig. 3-5b. In our experiments, the optical pump pulse and the generated THz

fields are both polarized along the in-plane 𝑐-axis, so the THz fields couple into the

transverse electric (TE) waveguide modes. We can estimate the frequency-dependent

THz generation efficiency for the different waveguide modes by first calculating the
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Figure 3-5: THz generation in LN. (a) Illustration of the Cherenkov cone. At
any instant in time, the pump beam (red) excites a spherical wave of THz radiation.
The THz wavefront resulting from constructive interference of the spherical waves
propagates away from the pump region at the Cherenkov angle 𝜃𝑐. (b) Ray optics
diagram of the THz waves in a LN waveguide. The excited THz waves are launched
with a large lateral wavevector component and are confined within the waveguide via
total internal reflection. (c) Calculated relative THz generation efficiency for the TE
modes in a 50-µm LN slab using a 100 fs pump pulse focused to a line 30 µm wide.
The curves are calculated using Eq. 3.47.

THz field profile excited by a Gaussian pulse passing through the slab, then projecting

the THz field pattern onto the waveguide mode profiles. We model the pump pulse

using a Gaussian function that travels along the +𝑥 direction with speed 𝑣pump.

𝐼pump (𝑥, 𝑧, 𝑡) = 𝐼0 exp

[︃
−(𝑧 − 𝑧0)

2

𝜎2
𝑧

]︃
exp

[︃
−(𝑥− 𝑥0 − 𝑣pump𝑡)

2

𝜎2
𝑥

]︃
(3.44)

where 𝜎𝑧 is the width along the 𝑧-axis and 𝜎𝑥 is pulse extent along the 𝑥-axis which
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is related to the pulse duration 𝜏 = 𝜎𝑥/𝑣pump. 𝑥0 and 𝑧0 are the coordinates of the

center of the Gaussian pulse at 𝑡 = 0. Here, we use the same coordinate system as in

Fig. 3-2 and assume that there is negligible variation of the pump profile along the

𝑦-axis. Using the TE mode profiles of the form

𝐸THz (𝑥, 𝑧, 𝑡) = 𝐸𝑚 (𝑥) exp [𝑖 (𝛽𝑧 − 𝜔𝑡)] (3.45)

the excitation efficiency 𝜂𝑚 (𝜔) for the TE𝑚 mode at the frequency 𝜔 can be estimated

using the following integral.

𝜂𝑚 (𝜔) ∝ 𝜔2

∫︁ 𝑑/2

−𝑑/2

𝑑𝑥

∫︁ ∞

−∞
𝑑𝑧

∫︁ ∞

−∞
𝑑𝑡 exp

(︂
− 𝑧2

𝜎2
𝑧

)︂
exp

[︃
−(𝑥− 𝑣pump𝑡)

2

𝜎2
𝑥

]︃
𝐸𝑚 (𝑥) exp [𝑖 (𝛽𝑧 − 𝜔𝑡)]

(3.46)

Because the THz fields are generated through optical rectification, the phase of the

excited THz fields is independent of the phase of the optical pump, so the only phase

factor to consider is that of the propagating waveguide mode. The factor of 𝜔2

accounts for the fact that the emitted THz field follows the second time derivative of

the pump pulse intensity. Solving this integral gives

𝜂𝑚 (𝜔) ∝ 𝜔2 exp

(︂
−1

4
𝛽2𝜎2

𝑧

)︂
exp

(︂
−1

4
𝜔2𝜏 2

)︂∫︁ 𝑑/2

−𝑑/2

𝐸𝑚 (𝑥) exp

(︂
− 𝑖𝜔𝑥

𝑣pump

)︂
𝑑𝑥 (3.47)

The results of this equation are plotted in Fig. 3-5c for a 100 fs pump pulse focused

to 30 µm width. Although we might expect a 100 fs pump pulse to generate THz

fields with bandwidth up to 10THz, the THz generation efficiency quickly drops past

∼2THz. This is primarily due to the finite width of the pump beam, which limits

the range of 𝛽 that can be excited.

Interestingly, the complex exponential in the integral in Eq. 3.47 results in larger

generation efficiencies for higher-order waveguide modes at higher frequencies. For

example, consider the TE0 and TE1 modes at 1.5THz. The pump pulse requires a

time ∆𝑡 = 𝑑𝑛opt/𝑐 ≈ 370 fs to traverse the thickness of the slab, so the 1.5 THz field
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generated at the front face of the slab ends up being out of phase with the THz field

generated at the back face. For the TE0 mode where the sign of the THz field is

the same over the thickness of the slab, this results in a decreased THz generation

efficiency. In contrast, this results in a larger generation efficiency for the TE1 mode

where the signs of the field profile are opposite at the front and back faces of the slab.

When using multiple pump pulses, we can use the superposition principle to cal-

culate the total THz generation efficiency by considering the interference between the

THz fields excited by the individual pump pulses. For example, consider a series of

𝑁 pulses separated spatially by ∆𝑧 and temporally by ∆𝑡, as one might expect when

using a stair-step “echelon” mirror to shape the pump pulse into a discrete tilted pulse

front (such as in Ref. [97]). The generation efficiency can be estimated as

𝜂𝑚 (𝜔) ∝
𝑁∑︁

𝑛=1

𝜔2

∫︁ 𝑑/2

−𝑑/2

𝑑𝑥

∫︁ ∞

−∞
𝑑𝑧

∫︁ ∞

−∞
𝑑𝑡 exp

[︃
−(𝑧 − 𝑛∆𝑧)2

𝜎2
𝑧

]︃

exp

[︃
−(𝑥− 𝑛𝑣pump∆𝑡− 𝑣pump𝑡)

2

𝜎2
𝑥

]︃
𝐸𝑚 (𝑥) exp [𝑖 (𝛽𝑧 − 𝜔𝑡)]

(3.48)

Carrying out the integral gives the following equation.

𝜂𝑚 (𝜔) ∝ 𝜔2 exp

(︂
−1

4
𝛽2𝜎2

𝑧

)︂
exp

(︂
−1

4
𝜔2𝜏 2

)︂
𝑁∑︁

𝑛=1

exp [𝑖𝑛 (𝛽∆𝑧 − 𝜔∆𝑡)]

∫︁ 𝑑/2

−𝑑/2

𝐸𝑚 (𝑥) exp

(︂
− 𝑖𝜔𝑥

𝑣pump

)︂
𝑑𝑥

(3.49)

The result looks similar to before, but now there is a summation over the phasors

that gives the velocity matching condition. For perfect velocity matching, we require

𝜔/𝛽 = ∆𝑧/∆𝑡. In other words, the laterial scan speed of the series of pump pulses

𝑣scan = ∆𝑧/∆𝑡 must match the phase velocity of the THz fields 𝑣ph = 𝜔/𝛽.

3.4 THz detection – Electro-optic sampling

The electric field component of the phonon-polaritons can be measured through

electro-optic sampling. As the THz field propagates through the LN or LT waveg-
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LiNbO3 LiTaO3

𝑟22 (pm/V) 3.4 1
𝑟13 (pm/V) 8.6 7.9
𝑟33 (pm/V) 30.8 35.8
𝑟51 (pm/V) 28 20

Table 3.4: Summary of electro-optic coefficients. These values are for a 633 nm
probe beam in LiNbO3 and LiTaO3 assuming a DC voltage. Values taken from Ref.
[100].

uide, it modifies the local optical refractive index through the Pockels effect. The

THz electric field perturbs the crystal lattice, which results in a small change in the

electronic susceptibility [98, 99]. This results in a small modulation in the refractive

index ∆𝑛 given by [87]

∆𝑛𝑖 = −1

2
𝑛3
𝑖 𝑟𝑖𝑗𝐸𝑗 (3.50)

Similar to effective nonlinear tensor, the non-zero elements of the electro-optic tensor

are determined by the crystal symmetry. For LN and LT, which belong to the 3𝑚

point group, 𝑟𝑖𝑗 takes the form (again using Voigt notation)

𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −𝑟22 𝑟13

0 𝑟22 𝑟13

0 0 𝑟33

0 𝑟51 0

𝑟51 0 0

−𝑟22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.51)

The values for the electro-optic tensor elements in LN and LT are given in Table 3.4.

In LN and LT, the main contribution to the electro-optic response comes from the

THz electric field coupling to the lowest-frequency transverse optical phonon [99, 101].

In our experiments, we use THz frequencies < 2THz, so the atomic displacement is

approximately in phase with the THz electric field. This means that we can safely

neglect any lag time in the electro-optic response.
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The THz-induced change in refractive index can be read out by taking a linearly

polarized ultrafast probe pulse and measuring the change in polarization after pass-

ing through the LN or LT waveguide. We can model the probe polarization using

the Jones matrix formalism where the light polarization is described by a 2-element

complex-valued column vector [102]. Each element is a phasor describing the am-

plitude and phase of the corresponding polarization. Here, we will use the linearly

polarized basis with basis vectors |𝑉 ⟩ and |𝐻⟩ representing vertically polarized and

horizontally polarized light, respectively. The corresponding Jones vectors are

|𝑉 ⟩ =

⎡⎣1
0

⎤⎦ |𝐻⟩ =

⎡⎣0
1

⎤⎦ (3.52)

Optical elements modify the phase of the two polarization components and are de-

scribed by 2-by-2 matrices that act on the state vector. For example, suppose we

have a generic birefringent material that induces a relative phase delay of 𝜑 for the

horizontal polarization. The corresponding Jones matrix is⎡⎣1 0

0 exp (𝑖𝜑)

⎤⎦ (3.53)

The detection geometry for our experiments is shown in Fig. 3-6. The probe light

is initially polarized at a 45∘ angle relative to the LN 𝑐-axis, which is vertical. The

probe passes through the LN slab, followed by a compensating crystal (a LN slab

identical to the sample LN slab but rotated by 90∘) and a quarter-wave plate with

its fast axis aligned along the vertical axis. A Wollaston prism is used to decompose

the probe pulse into two beams polarized parallel and perpendicular to the initial

polarization. For convenience, we define the following Jones vectors.

|+45∘⟩ = 1√
2

⎡⎣1
1

⎤⎦ |−45∘⟩ = 1√
2

⎡⎣ 1

−1

⎤⎦ (3.54)

We take |+45∘⟩ to describe the initial probe polarization.
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Figure 3-6: Schematic illustration of polariton detection. The linearly polar-
ized probe beam passes through the LN waveguide and a compensating crystal (an
identical LN waveguide rotated by 90∘). The THz-induced birefringence in the LN
slab is encoded as a change in probe polarization. A quarter-wave plate (QWP) and
Wollaston prism are used to convert the change in polarization into an intensity mod-
ulation, which is measured using a balanced pair of photodiodes (PD).

The LN slab is treated as a birefringent slab of material where the phase delay ex-

perienced by vertically polarized light is dependent on the THz electric field strength.

This gives the Jones matrix

LNTHz =

⎡⎢⎢⎣exp
(︂
𝑖𝑛e𝜔𝑑

𝑐

)︂
exp (𝑖∆𝜑e) 0

0 exp

(︂
𝑖𝑛o𝜔𝑑

𝑐

)︂
exp (𝑖∆𝜑o)

⎤⎥⎥⎦ (3.55)

where 𝑛e,o is the extraordinary/ordinary optical refractive index, 𝑐 is the vacuum

speed of light, 𝑑 is the thickness of the LN slab, and ∆𝜑e,o = 2𝜋∆𝑛e,o𝑑/𝜆0 is the

THz-induced phase delay for extraordinary/ordinary rays. For each element, the first

exponential term describes the phase delay caused by the static birefringence in LN.

The contribution from the static birefringence in LN can be eliminated by including

a compensating LN crystal, which is a second LN crystal that is identical to the first

except rotated by 90∘, in the beam path. The Jones matrix for the compensating
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crystal is

LNcomp =

⎡⎢⎢⎣exp
(︂
𝑖𝑛o𝜔𝑑

𝑐

)︂
0

0 exp

(︂
𝑖𝑛e𝜔𝑑

𝑐

)︂
⎤⎥⎥⎦ (3.56)

The probe then passes through a quarter-wave plate with the fast axis aligned

with the vertical axis, which has the following Jones matrix.

QWP =

⎡⎣1 0

0 𝑖

⎤⎦ (3.57)

Electro-optic sampling uses a Wollaston prism to separate the probe light into two

linear polarizations oriented ±45∘ relative to vertical. The intensities of each polar-

ization are read out using balanced photodiodes. Assuming ideal optics, the measured

intensities 𝐼± are given by

𝐼+ = |⟨+45∘| (QWP) (LNcomp) (LNTHz) |+45∘⟩|2 = 1

2
[1 + sin (∆𝜑e −∆𝜑o)]

𝐼− = |⟨−45∘| (QWP) (LNcomp) (LNTHz) |+45∘⟩|2 = 1

2
[1− sin (∆𝜑e −∆𝜑o)]

(3.58)

The balanced signal is calculated as follows

∆𝐼

𝐼0
=

𝐼+ − 𝐼−
𝐼+ + 𝐼−

= sin (∆𝜑e −∆𝜑o) (3.59)

In the low field limit, we can linearize the sine function and get the following equation.

We assume that the THz field is polarized along the 𝑧-axis, which is typical for our

experiments.
∆𝐼

𝐼0
≈ ∆𝜑 = −𝜋𝑑

𝜆0

(︀
𝑛3
e𝑟33 − 𝑛3

o𝑟13
)︀
𝐸𝑧 (3.60)

Using a 400-nm probe pulse in a 50-µm LN slab, this equation becomes approximately

∆𝐼

𝐼0
≈ − (0.0104 cm/kV)𝐸𝑧 (3.61)

so a 1 kV/cm THz field gives about 1% ∆𝐼/𝐼0 signal.

So far, we have assumed that the electric field is static. However, the waveguided
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Figure 3-7: THz detection efficiency in a LN slab. Calculated THz detection
efficiency for the TE modes in a 50-µm LN slab using a 100 fs probe pulse focused to
a point 10 µm wide. The curves are calculated using Eq. 3.62.

THz field travels laterally as the optical probe passes through the slab, so the opti-

cal probe samples a time-varying THz field. The average THz-induced phase delay

experienced by a probe beam passing through the LN slab with thickness 𝑑 can be

calculated using the following equation.

∆𝜑 ∝ exp

(︂
−1

4
𝛽2𝜎2

𝑧

)︂
exp

(︂
−1

4
𝜔2𝜏 2

)︂∫︁ 𝑑/2

−𝑑/2

𝐸𝑚 (𝑥) exp

(︂
−𝑖

𝜔𝑥

𝑣probe

)︂
𝑑𝑥 (3.62)

where 𝜎𝑧 is the width of the probe pulse and 𝜏 is the pulse duration, 𝐸𝑚 (𝑥) is the TE

dielectric waveguide mode profile, and 𝑣probe is the group velocity of the probe beam

in LN. Evaluating this integral numerically, we can calculate the frequency-dependent

detection efficiency, which is defined as ∆𝜑 normalized by the phase delay that would

result from a DC electric field. The results are plotted in Fig. 3-7. The detection

efficiency is the highest at low frequencies and decreases at higher frequencies. This

makes intuitive sense because at higher frequencies, the probe pulse samples a rapidly

varying electric field.
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3.5 Time-resolved polariton imaging

The THz fields in the waveguides can be imaged via polarization gating imaging

using a collimated probe beam [103, 104]. A charge-coupled device (CCD) camera

captures images of the two polarization components separated out by the Wollaston

prism. The polarization gating imaging setup is shown in Fig. 3-8a. The imaging

setup uses a self-compensating geometry to account for small variations in the LN

slab thickness. The probe beam passes through the LN slab and is imaged onto a

retroreflecting mirror. A quarter-wave plate is placed just before the mirror in order

to exchange the amplitudes of the horizontal and vertical polarization components of

the probe beam. As a result, each portion of the probe beam is imaged back onto

the same part of the LN waveguide and any change in polarization due to the LN

static birefringence is eliminated. The pump beam arrives at the LN waveguide after

the probe passes through the waveguide the first time, so the THz-induced signal is

only recorded on the return trip. Fig. 3-8b shows representative THz images captured

using this technique.
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Figure 3-8: Polariton imaging. (a) Schematic illustration of the polarization gating
imaging setup. A linearly polarized probe beam passes through the LN waveguide and
is imaged onto a retroreflecting mirror using a 4𝑓 -imaging system. A quarter-wave
plate (QWP) is placed in the 4𝑓 -imaging system. The probe beam is then imaged
back onto the LN waveguide. The pump beam is focused onto the LN waveguide
through a dichroic mirror (DCHR; reflects 532 nm, transmits 800 nm) and arrives
after the probe reflects off of the mirror, so the THz signal is only measured on the
return trip. The probe beam is then directed into the detection arm using a non-
polarizing beam splitter (NPBS) and is imaged onto a charged-coupled device (CCD)
camera. A quarter-wave plate and Wollaston prism are used to convert the change
in probe polarization into an intensity modulation. (b) Representative images of the
THz fields at various pump-probe delays. The THz field amplitude is proportional to
the image contrast.
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Chapter 4

Enhancement of THz generation

using bounce crystals

This work was done in close collaboration with Blake Dastrup (Nelson Group) from

MIT. Content adapted from (Ref. [105]): B. S. Dastrup*, E. R. Sung*, F. Wulf, C.

Saraceno, K. A. Nelson. “Enhancement of THz generation in LiNbO3 waveguides via

multi-bounce velocity matching,” Light Sci. Appl. 11, 335 (2022).

A key tool for high-field THz generation in LN is the use of a spatiotemprally

shaped optical tilted pulse front (TPF). The large refractive index mismatch at optical

and THz frequencies results in noncollinear propagation of the optical pump and the

generated THz field. This results in a Cherenkov cone of THz radiation that emanates

away from the pump region [94]. In the TPF technique, the optical pump is shaped

to have an angled intensity front that matches the Cherenkov angle, which leads

to constructive buildup of the THz pulse [15]. TPF pumping has enabled routine

generation of THz pulses with electric field strengths reaching the MV/cm range [16,

17], which has opened the way for nonlinear THz spectroscopy [28, 106–109], electron

acceleration for coherent x-ray generation [110], and THz-induced phase transitions

[26, 29, 30].

Many studies have been devoted to optimizing generation efficiency, reaching

optical-to-THz conversion efficiencies in the few % range [111–113], and on under-
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standing the physical mechanisms that limit the efficiency [114, 115] of TPF THz

generation. In particular, angular dispersion introduced by the grating used to create

the pulse front tilt limits the spatial extent over which THz generation can occur.

To minimize the effect of angular dispersion, stair-step “echelon” mirrors have been

used in place of an optical grating to generate a discrete TPF [97, 116]. Many other

variations to improve upon the traditional TPF pumping scheme have also been

demonstrated [117–121].

In this chapter, we demonstrate a novel velocity-matching scheme in LN in which

the optical pump beam undergoes repeated total internal reflection (TIR) between

the parallel faces of a slab of LN, following a back-and-forth trajectory with an in-

plane wavevector that satisfies the velocity-matching condition such that the optical

beam progresses laterally within the slab at the same speed as the THz wave that it

generates. We demonstrate this scheme using thin (50-100 µm) LN slabs with beveled

edges through which pump light is coupled into the crystal as illustrated in Fig. 4-

1a. We use the LN waveguide to confine both the THz field and the optical pump

field. This allows us to effectively reuse the pump light through its many traversals

back and forth through the LN slab, resulting in a THz field buildup similar to that

achieved using the separate parts of a tilted pulse front beam to pump successive LN

regions. The resulting enhanced field is highly encouraging for the development of a

robust chip-based THz spectroscopy and signal processing platform within the scope

of THz polaritonics using relatively low optical pump pulse energy.

4.1 Velocity-matching condition

THz generation by optical rectification (OR) in LN is a second-order nonlinear optical

process with the phase-matching relation,

kΩ = k𝜔 − k𝜔−Ω (4.1)

80



Figure 4-1: Experimental “bounce” geometry and beveled LN images. (a)
Schematic illustration of a beveled LN slab with thickness 𝑑. Pump light is incident
at the bevel angle 𝜃bev with respect to the bevel normal and refracts into the crystal
at “bounce” angle 𝜃bnc. Buildup distance for the THz generation is denoted as 𝐿.
(b) Diagram of the experimental geometry. The LN slab is oriented with the optic
axis (𝑐-axis) parallel to the beveled edge. The 𝑐-polarized pump pulse is focused on
the bevel and the THz field is sampled at multiple distances from the bevel. After
passing through the sample, the probe pulse is sent through a quarter-wave plate
(QWP) and a Wollaston prism and then measured on balanced photodiodes (PDs).
(c) SEM images of the beveled edge of the LN slab at two different scales. The slab
is viewed from the top down (the 𝑦-direction as defined in (b)). The light gray region
shows the beveled edge and the dark gray region below it showes the face of the LN
slab.

where kΩ is the wavevector at the THz frequency Ω, and k𝜔 and k𝜔−Ω are the

wavevectors at the optical frequencies 𝜔 and 𝜔 − Ω respectively. Considering only

the projection along the direction of optical pump propagation allows us to express

the Cherenkov angle 𝜃c between kΩ and k𝜔 in terms of the THz and optical wave

parameters,

cos (𝜃c) =
𝑐

Ω𝑛THz

(k𝜔 − k𝜔−Ω) (4.2)

where 𝑛THz is the THz refractive index and 𝑐 is the vacuum speed of light. We assume

that the angle between k𝜔 and k𝜔−Ω is small because Ω ≪ 𝜔. Recognizing the right-

hand side as the discrete derivative (k𝜔 − k𝜔−Ω) /Ω ≈ 𝜕𝑘/𝜕𝜔 = 1/𝑣optgr multiplied by

𝑐/𝑛THz = 𝑣THz
ph , we arrive at the expression,

cos (𝜃c) =
𝑣THz
ph

𝑣optgr

(4.3)

where 𝑣optgr is the optical group velocity and 𝑣THz
ph is the THz phase velocity.
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In the case of an optical pump beam focused to a round spot, the THz field

emanates from the pump as a cone of light at the Cherenkov angle 𝜃c, so called in

reference to Cherenkov radiation, which is isomorphic to the THz generation process

described here [94]. In our scheme, the in-plane projection of the pump velocity is

given by,

𝑣optgr,𝑧 = 𝑣optgr sin (𝜃bnc) (4.4)

where 𝑣optgr,𝑧 is the component of the optical group velocity along the 𝑧-direction and

𝜃bnc is the bounce angle defined in Fig. 4-1a. When 𝜃bnc−𝜃c = 𝜋/2, substitution of Eq.

4.4 into Eq. 4.3 gives 𝑣optgr,𝑧 = 𝑣THz
ph . In other words, the THz phase velocity is matched

to the group velocity of the optical pump in the positive 𝑧-direction. Waveguide

dispersion effectively introduces frequency dependence (beyond the weak frequency

dependence due to material dispersion in LN) into the THz phase velocity 𝑣THz
ph (Ω).

In this case, the velocity-matching condition becomes

sin [𝜃bnc (Ω)] =
𝑣THz
ph (Ω)

𝑣optgr

(4.5)

which indicates that for a given bounce angle, the velocity-matching condition will

be satisfied optimally for a particular THz frequency.

The bounce angle 𝜃bnc can be written in terms of the bevel angle 𝜃bev using Snell’s

law. In these experiments, the pump beam is incident on the bevel at an angle 𝜃bev

relative to the bevel normal and refracts into the crystal at an angle 𝜃bnc. Using the

geometry shown in Fig. 4-1a, this gives the relationship

sin (𝜃bev) = 𝑛THz sin (𝜃bev − 𝜃bnc) (4.6)

Isolating 𝜃bnc gives the equation

𝜃bnc = 𝜃bev − arcsin

[︂
1

𝑛THz

sin (𝜃bev)

]︂
(4.7)
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while isolating 𝜃bev gives the equation

tan (𝜃bev) =
𝑛THz sin (𝜃bnc)

𝑛THz cos (𝜃bnc)− 1
(4.8)

Backward-propagating THz signal (i.e. propagating in the negative 𝑧-direction)

is also generated and while not contributing to the buildup, can be observed in the

experiment and leads to an interference effect that is described later.

4.2 Fabrication of beveled LN crystals

The starting materials were 𝑥-cut 5% MgO-doped LN slabs with 50 µm and 100µm

thicknesses (NanoLN). To create the beveled edge, the slabs were mounted using

Scotch tape onto the angled face of a negative epoxy mold (𝑐-axis parallel to polish-

ing plane) which was then filled with prototyping wax (McMaster-Carr). The entire

assembly was polished with silicon-carbide grinding paper with a minimum grit size

of 9 µm at which point the beveled surface of the crystal appeared optically smooth

under an optical microscope. The polished LN slabs were slowly heated to 200∘C in a

box furnace, at which point the melted prototyping wax was drained from the mold.

The LN slab was removed from the epoxy mold and then submerged in SP-28 wax

remover (MachinableWax.com) at 200∘C for a few hours to remove any residual pro-

totyping wax and tape adhesive. The LN slabs were left to cool to room temperature

under ambient conditions and then rinsed with isopropyl alcohol to clean off the wave

remover. Representative SEM images of the final beveled LN slab are shown in Fig.

4-1c. For the THz measurements, the LN slabs were fixed at the edges to a copper

mount with a rectangular aperture such that the slabs were effectively free standing.

4.3 Measuring the THz buildup

Optical measurements were made using the 1 kHz repetition rate output of a

Ti:Sapphire regenerative amplifier providing 1.5mJ pulses centered at 800 nm with

100 fs duration. The output was split 95:5 into pump and probe respectively. The
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pump was attenuated to an overall pulse energy of 200µJ and an optical chopper run-

ning at 500Hz was used to modulate the pump for electro-optic (EO) sampling. Fig.

4-1b shows an illustration of the experimental geometry at the LN slab. The pump

was polarized parallel to the LN 𝑐-axis and focused onto the bevel with a 20-cm cylin-

drical lens. The pump was incident normal to the slab face (oblique to the beveled

face) at an angle 𝜃bev and refracted into the crystal at an angle 𝜃bnc. The THz field

was measured by EO sampling directly in the LN slab. This method of detection

is typical for LN waveguide THz measurements, and has been described elsewhere

[48]. The probe beam was frequency-doubled in a 𝛽-barium borate (BBO) crystal

and then polarized 45∘ relative to the optic axis of LN before being focused onto the

back face of the sample with a 15-cm lens. After passing through the sample, the

probe was separated from the pump beam path with a dichroic mirror, then directed

through a quarter-wave plate and a Wollaston prism and detected on two balanced

photodiodes. A delay stage in the pump line was used to scan the pump-probe delay.

To measure the THz buildup, the probe position was shifted in the 𝑧-direction in

25 µm increments from a starting distance of 100µm to a maximum distance of 3mm

away from the bevel.

Because the thickness of the LN slabs used in our experiments is comparable

to the wavelengths of THz light confined in the slabs, the THz field propagates in

dielectric waveguide modes which are the electromagnetic eigenmodes for a high-index

core (LN) sandwiched between layers of a low-index cladding (air). Both transverse

electric (TE) and transverse magnetic (TM) modes are supported. (See Section 3.2 for

more details.) Since OR is mediated by the 𝑑33 element of the second-order nonlinear

tensor of LN, the optical pump and the excited THz field are both polarized along

the optic axis (𝑐-axis) of LN, which results in efficient excitation of TE modes for our

geometry.

Dielectric waveguide modes are characterized by dispersion that transitions

smoothly from cladding-like to core-like as the wavelength decreases (as depicted

in Fig. 4-2b). As it propagates through the slab, the broadband THz pulse disperses

with low frequencies leading high frequencies. Over the course of their interaction,
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Figure 4-2: THz buildup using a beveled LN slab. Data and buildup plots ob-
tained for Sample III. (a) Space-time plot of raw data. (b) Dispersion plot obtained
by 2D Fourier transform of data in (a). Calculated dispersion curves for TE0, TE1,
and TE2 dielectric waveguide modes are shown by the dashed curves. White arrows
indicate spectral modulations caused by backward-propagating THz waves. (c) Sur-
face plot of THz buildup. (d) 2D plot of THz buildup with selected probe positions
shown. Reference spectrum is shown in black.

waveguide dispersion creates a velocity mismatch between the optical pump and THz

frequency components that either lag behind or lead it. The result is a narrowing of

the THz bandwidth over the course of the buildup. By changing 𝜃bnc, the buildup

center frequency can be tuned. For our experiments, 𝜃bnc was chosen to match a se-

lected frequency in the TE0 mode since this is where the majority of the THz energy

resides.

To measure the THz buildup, the probe position was shifted in the 𝑧-direction in

25 µm increments from a starting distance of 100µm to a maximum distance of 3mm
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Sample 𝑑 (µm) 𝜃bev (deg) 𝑓 theo
0 (THz) 𝑓meas

0 (THz) 𝐿max(mm) 𝜂 𝜂0
I 50 59 0.52 0.50 1.4 35.9 10.8
II 50 53 0.78 0.61 0.9 98.4 13.7
III 100 59 0.26 0.23 1.0 79.2 29.2
VI 100 53 0.40 0.38 0.5 69.9 12.8
V 100 50 0.57 0.46 0.6 113.8 13.4

Table 4.1: Enhancement values and buildup center frequencies.

away from the bevel. Fig. 4-2a shows a representative raw space-time plot, with

the corresponding dispersion plot shown in Fig. 4-2b. In order to better visualize

the buildup in the TE0 mode, we isolated the portion of the dispersion curve that

corresponds to the TE0 mode using a super-Gaussian window function 𝑊𝛽 of the

form

𝑊𝛽 (𝑓) = exp

[︃
−
(︂

𝑓 − 𝑓0
2.25ΓFWHM

)︂20
]︃

(4.9)

where 𝑓0 is the center frequency of the Lorentzian fit and ΓFWHM is the full width

at half maximum of the Lorentzian fit. The parameters for 𝑊𝛽 were determined by

fitting the TE0 peak to a Lorentzian function for each constant wavenumber slice

of the dispersion curve to extract the width ΓFWHM and center frequency 𝑓0. A

representative wavenumber slice showing the Lorentzian fit and the super-Gaussian

window function is shown in Fig. 4-3. The windowed dispersion was then obtained by

multiplying the raw THz spectrum at each constant wavenumber slice by the window

function 𝑊𝛽 (𝑓). The spatial buildup plot shown in Fig. 4-2c was then obtained by

inverse Fourier transforming over the 𝛽-axis of the isolated TE0 dispersion. Fig. 4-2d

shows THz spectra at selected probe locations from the data in Fig. 4-2c. The THz

buildup was measured in five samples with different combinations of thickness and

bevel angle chosen to match a particular THz frequency. In each case, the pump

bounce angle was matched to a frequency of the TE0 mode. Sample parameters and

experimental results are summarized in Table 4.1.

Room-temperature buildup plots for each of the five samples are shown in Fig. 4-4.

For each sample, there is a monotonic increase in the THz spectral amplitude over

an average buildup distance of 𝐿 ≈ 1.1mm, with an average amplitude enhancement
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Figure 4-3: Isolation of the TE0 mode dispersion. (a) Constant wavenumber
slice of THz dispersion at 𝛽 = 21.5 rad/mm (blue). Lorentzian fit is indicated by the
red dashed line, and the super-Gaussian window function is shown in green. Note: For
viewing convenience, the window function has been scaled to the TE0 peak maximum,
but the actual peak value of the window function is 1. (b) Dispersion plot obtained
by 2D Fourier transformation of raw space-time data. (c) Cropped TE0 dispersion
obtained by multiplying the dispersion plot in (b) by the window function obtained
from the Lorentzian fitting procedure shown in (a) for every wavenumber.

of 11× relative to the reference trace at the buildup center frequency.

For each sample configuration, we see significant buildup of spectral amplitude

in the TE0 waveguide mode of the LN slab, which we attribute to a prolonged in-

teraction with the pump beam facilitated by the TIR geometry. For 50-µm thick

samples I and II, the pump bounces 48 times (24 back-and-forth traversals) on av-

erage before reaching the peak buildup, while for 100-µm thick samples III–V, the

peak buildup occurs after 29 bounces of the pump on average. The buildup center

frequency is determined by the bevel angle and the sample thickness and generally

agrees with the value expected from velocity-matching considerations. However, we

see a slight deviation for samples II and V from the predicted buildup center frequency

𝑓 theo
0 in both simulation and experiment. We attribute this difference to interference

with backward-propagating THz waves, which gives rise to sharp modulations in the

buildup spectra that overlap with 𝑓 theo
0 , thereby shifting the observed buildup fre-

quency. A further discrepancy could also arise due to the increasing THz absorption

in LN with increasing frequency. In this case, the buildup process is balanced against

the frequency-dependent THz absorption. This would explain the observation that
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Figure 4-4: Room temperature THz buildup. Buildup of THz spectral ampli-
tude from both experiment and simulation at room temperature. The corresponding
sample for each row of plots is shown on the right. The theoretical buildup frequency
is marked by the vertical grey dotted line in each plot. The legend for each plot gives
the selected buildup distances 𝐿 from 𝐿 = 100 µm to 𝐿 = 𝐿max.

as 𝑓meas
0 increases, the disagreement between 𝑓meas

0 and 𝑓 theo
0 generally increases.

Sharp spectral modulations that appear in the THz spectra can be seen at ∼0.75THz

in samples I and II and at ∼0.37THz and ∼0.75THz in samples III–V. The modula-

tions are present even after isolating the TE0 mode. In the FDTD simulation, it can

be seen that backward-propagating THz waves (THz waves generated by the optical

pump but traveling initially in the opposite direction of the optical pump) form a
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zig-zag pattern that reflects from the bevel, creating a train of reflected pulses that

follow the main pulse shown in Fig. 4-5. The periodicity of this pulse train gives rise

to the sharp modulations in the spectrum that can be seen in Fig. 4-4, and which are

indicated by the white arrows in Fig. 4-2b. The pulse train gives rise to a relatively

flat (constant frequency) dispersion feature that crosses the TE0 mode dispersion at

the frequencies indicated above. This dispersion feature results from the fact that the

periodicity of the pulse train is not a function of the actual THz frequency content of

the THz waves forming the pulse train, but rather of the geometry of the optical pump

trajectory. The pulse train can be represented by a Fourier series with frequencies

given by

𝑓𝑚 =
𝑚

𝑇
(4.10)

where 𝑇 is the temporal spacing between successive reflections (labeled R1, R2, and

R3 in Fig. 4-5) and 𝑚 is an integer. 𝑇 can be calculated using

𝑇 =
∆𝑥

𝑣𝑥
(4.11)

where ∆𝑥 the pump lateral displacement after one back-and-forth traversal and 𝑣𝑥 is

the lateral velocity of the backward-propagating THz. ∆𝑥 and 𝑣𝑥 can be related to

the bounce angle 𝜃bnc using

∆𝑥 = 2𝑑 sin (𝜃bnc) (4.12)

𝑣𝑥 =
𝑐

𝑛LN

cos (2𝜃bnc) (4.13)

The frequencies of the first and second-order terms of the Fourier series for a sample

with 100µm thickness are found in this way to be 𝑓1 = 0.36THz and 𝑓2 = 0.72THz,

For samples with 50 µm thickness, the period 𝑇 is halved giving first and second-order

terms 𝑓1 = 0.72THz and 𝑓2 = 1.43THz. These calculated frequencies match well with

the observed frequency dips 𝑓1 = 0.37THz and 𝑓2 = 0.75THz for the 100µm thick

samples and 𝑓1 = 0.75THz for the 50 µm thick samples.

Further narrowing of the THz spectrum continues even after the buildup peaks.

This can be seen clearly in Fig. 4-2c and Fig. 4-4. The narrowing indicates that
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Figure 4-5: Pulse train simulation. Pulse train formed from reflections of backward
traveling THz waves from the beveled edge of the LN slab shown at three selected
time points. Reflections from successive upward slanting portions of the backward
traveling wavefront are denoted as R1, R2, R3, which can be seen lagging behind the
main pulse.

although the pump continues to generate new cycles of the THz field, the conversion

efficiency has diminished to the point that THz absorption reduces the overall THz

energy at a higher rate than new THz signal is generated.

To quantify the extent of the enhancement, the buildup traces are compared to a

reference that was collected by line-focusing the pump onto a portion of the LN slab

that was not beveled and measuring the THz signal generated by a single pass of the

pump through the slab. The reference was measured in this way to match previous

THz polaritonics experiments [31, 48]. Note that the reference was collected with the

pump at normal incidence to the face of the sample, while the sample measurements

were collected with the pump at an angle of incidence on the bevel equal to 𝜃bev.

To correct for the resulting differences in Fresnel reflection and pump fluence, the
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reference THz spectrum is scaled using

𝐸̃ref (𝜔) = 𝛼Fresnel𝛼fluence𝐸ref (𝜔) (4.14)

where 𝐸̃ref (𝜔) is the corrected reference spectrum, 𝐸ref (𝜔) is the raw reference spec-

trum, and 𝛼Fresnel and 𝛼fluence is the scaling factor for Fresnel reflection and pump

fluence considerations respectively. These can then be expressed as

𝛼Fresnel =
1−𝑅𝜃bev

1−𝑅0

(4.15)

𝛼fluence =
𝐴0

𝐴𝜃bev

=
cos (𝜃bev)√︂

1− 1

𝑛2
LN

sin2 (𝜃bev)

(4.16)

where 𝑅𝜃bev (𝑅0) is the power reflection coefficient and 𝐴𝜃bev (𝐴0) is the pump spot

size at 𝜃inc = 𝜃bev(0
∘). 𝑛800 is the extraordinary refractive index of LN at 800 nm.

The reference spectrum is shown in Fig. 4-4 as the solid black curve in each of the

experimental plots. In calculating the enhancement, we consider both the integrated

enhancement,

𝜂 =

∫︀∞
0

𝑛800 (𝑓) |𝐸 (𝑓)|2 𝑑𝑓∫︀∞
0

𝑛800 (𝑓) |𝐸ref (𝑓)|2 𝑑𝑓
(4.17)

as well as the maximum amplitude enhancement,

𝜂0 =
𝐸 (𝑓meas

0 )

𝐸ref (𝑓meas
0 )

(4.18)

where 𝑓meas
0 is the experimental buildup center frequency. 𝜂 measures the enhance-

ment in total THz energy over all frequencies and is approximately proportional to

the overall THz generation efficiency (see Fig. 4-8), while 𝜂0 measures the enhance-

ment in amplitude at the buildup center frequency. Maximum values of 𝜂 and 𝜂0

are reported for each sample in Table 4.1 and are plotted as a function of buildup

distance 𝐿 in Fig. 4-6. The peak buildup distance 𝐿max as given in Table 4.1 is the

distance at which 𝜂0 is maximized.
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Figure 4-6: Integrated enhancement and enhancement at the buildup fre-
quency. Integrated enhancement (𝜂) in blue and enhancement at the buildup center
frequency (𝜂0) in red plotted for each sample as a function of buildup distance (𝐿).
Sample thickness and angle are shown in the diagram to the right of each plot.

4.4 Simulating the THz buildup

Saturation of the THz buildup occurs as a result of pump depletion, dispersion, and

THz absorption [114]. In order to better understand the roles of these processes in the

multi-bounce THz generation method, finite-difference time-domain (FDTD) simula-
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tions were performed. The optical pump was treated as a moving point source that

followed the back-and-forth trajectory shown in Fig 4-1a. The THz field emitted by

each point source at each time step was calculated using a one-dimensional numerical

simulation of the coupled optical/THz wave equations, following the method of Ravi

et al. [115]. The coupled THz and optical wave equations were solved in one spatial

dimension (the direction of THz propagation) while accounting for the different de-

pletion mechanisms at play (optical rectification, 2,3-photon absorption, etc.) using

the Runge-Kutta method. The integrated enhancement 𝜂 is plotted as a function of

buildup distance 𝐿 in Fig. 4-7, along with calculated generation efficiency curves with

progressing levels of included depletion mechanisms. As can be seen from the plot,

the processes that limit THz generation most strongly are pump beam divergence

and 3-photon absorption. The Rayleigh range for the pump beam (assuming a beam

waist of 15 µm) is ∼0.9mm. Initially, divergence of the pump beam results in a drop

in the pump intensity, which reduces the OR efficiency. After many reflections of

the pump, some wavevector components of the diverging beam deviate significantly

from the bounce trajectory, which leads to further degeneration of the nonlinear pro-

cess. In contrast, the limiting mechanism for the classic TPF generation scheme is

a combination of grating-induced angular dispersion and OR-induced repeated red-

shifting of the pump spectrum [115]. One reason that pump red-shifting plays a less

significant role here is THz spectral narrowing due to waveguide dispersion described

earlier. Narrowing of the THz spectrum leads to a field with multiple cycles that is

spatially more delocalized than a single-cycle field, and therefore interacts with the

pump less strongly. The fact that pump beam divergence is a primary limiting factor

in saturation of THz buildup suggests that improvements could be made by focusing

the beam less tightly (while keeping pump fluence constant). This, in turn, is limited

by the bevel aperture. The effective aperture width could be enlarged by directing

the pump light into the bevel at normal incidence, though this is more difficult to

execute in practice than using refraction as in the present work. Ultimately the pump

beam width would be limited by wavevector considerations, i.e. the wavevector con-

tent should include the desired wavevector range in the dispersion curves shown in
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Figure 4-7: Comparison of generation efficiency for different combinations of
depletion mechanisms. The following mechanisms were considered: linear absorp-
tion (LA), optical rectification (OR), self-phase modulation (SPM), pump beam di-
vergence (BD), and 3-photon absorption (3PA). Simulated curves are plotted against
the left axis while the experimental integrated enhancement curve is plotted against
the right axis. Data shown here are for Sample II (𝑑 = 50 µm, 𝜃bev = 53∘).

Fig. 4-2d. Further improvements could be made by using a longer pump wavelength

such as the output of an Yb-based femtosecond system to reduce 3-photon absorption

[122, 123].

Using the simulations, the optical-to-THz conversion efficiency can be calculated.

The overall THz energy was estimated as a function of the distance 𝐿 using the

equation

𝑈THz (𝐿) =
𝜖0𝑐

2

∫︁ ∞

−∞
𝑑𝑥

∫︁ ∞

−∞
𝑑𝑦

∫︁ ∞

−∞
𝑑𝑧 𝑛THz (𝜔) |𝐸 (𝑥, 𝑦, 𝜔, 𝐿)|2 (4.19)

𝐸 (𝑥, 𝑦, 𝜔, 𝐿) = 𝐸EO (𝜔, 𝐿)𝐸pump (𝑥)𝐸wvg (𝜔, 𝑦) (4.20)

where 𝑐 is the vacuum speed of light, 𝜖0 is the vacuum permittivity, 𝑛THz is the THz

refractive index in LN, 𝐸EO(𝜔, 𝐿) is the Fourier transform of the EO-sampling trace at

position 𝐿, 𝐸pump (𝑥) is spatial profile of the generated THz (which is proportional to

the intensity profile of the optical pump in the 𝑥-direction), and 𝐸wvg (𝜔, 𝑦) is the TE0

dielectric waveguide mode profile at frequency 𝜔. The coordinate system used here is
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defined in Fig. 4-1b. Here, we assume that the THz wave does not diverge significantly

along the 𝑐-axis over the course of the buildup and that the instantaneous profile of

the THz electric field is proportional to the intensity profile of the optical pump during

the generation process. The generation efficiency is calculated by dividing the THz

pulse energy 𝑈THz (𝐿) by the optical pump pulse energy (200µJ). The calculated

values for the generation efficiency for each sample are shown in Fig. 4-8 along with

the experimental values of 𝜂. Although the numerical values do not match, the

qualitative shape of the curves match remarkably well, which means 𝜂 can be used

as a proxy for the generation efficiency.

4.5 Summary and future directions

In summary, we have demonstrated 11-fold enhancement of the peak THz spectral

amplitude in LN waveguides by using a velocity-matched THz generation scheme

based on total internal reflection of the optical pump. The center frequency of the

THz buildup can be tuned by changing the bounce angle of the pump. Simulations of

experimental results indicate that the primary mechanisms that lead to THz buildup

saturation are divergence of the pump beam, which may be improved by focusing the

pump beam into the LN slab at normal incidence to the bevel to make full use of the

bevel aperture, and three-photon absorption, which could be eliminated by using a

longer pump wavelength.

These results represent a relatively simple method for accessing greatly enhanced

THz spectral amplitudes for THz polaritonics applications. This could prove useful for

enabling linear and nonlinear THz signal processing and spectroscopic measurements

in compact experimental geometries. Further enhancement may be possible through

the use of optical pump fields that are tailored for difference-frequency mixing at a

selected THz frequency [35].
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Figure 4-8: Estimated generation efficiency as a function of buildup distance.
Comparison with the integrated enhancement factor 𝜂 shows that these quantities can
be reasonably treated as proportional to each other. Sample parameters for each of
the plots are given by the corresponding diagram on the right.
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Chapter 5

Enhanced THz generation using a

conical tilted pulse front

Content adapted from: E. R. Sung, Y. Kai, T. Pezeril, K. A. Nelson. “Amplification

of terahertz fields in LiTaO3 waveguides using a conical pulse front,” in preparation.

The THz region of the electromagnetic spectrum has gained much interest due to

the access it provides to a wide range of physical processes such as molecular rotations

and spin precessions as well as responses of collective modes in solid-state materials

[3, 5]. Nonlinear spectroscopic studies in gases [18–20], liquids [21, 22], and solids

[23–25] have been conducted. THz fields have been used for control over the states of

condensed matter including recent examples of ferroelectric phase transitions [26, 27],

magnetic domain reorientations [28, 29], and electronic/structural phase transitions

[30].

The development of tabletop THz sources has been instrumental in the study

and control of these phenomena. In the 0.1-1 THz range, the robust electro-optic

material lithium niobate (LiNbO3, LN) has been used for generation of intense free-

space THz fields at kHz repetition rates which, when focused, reach or approach

amplitudes of 1 MV/cm. High field strengths are reached using pump laser light that

is spatiotemporally shaped to form a tilted pulse front [15–17, 97] with the tilt angle

adjusted to match the THz phase velocity in order to optimally drive the THz field.
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The utility of the THz polaritonics platform for applications in spectroscopy has

been limited by the field strengths (roughly 5-10 kV/cm [31]) that can be routinely

generated in the waveguide. Several methods have been developed to generate larger

field strengths in waveguides. In one study, a tilted pulse front was used, resulting in

a 3-fold increase in multi-cycle field strengths [59]. In another study, a conical prism

(axicon) was used to shape the pump light into a “circular ring” pattern to generate

THz fields that focused to give 6-fold increased single-cycle field strengths in LT [58].

In this chapter, we describe the Terahertz Ring Excitation (TREx) scheme which

combines these two approaches by pumping a LT waveguide with a timed sequence

of concentric optical rings to generate superposed, converging THz fields. The TREx

scheme yields strong fields in a configuration that is compatible with most environ-

ments that permit optical access to the waveguide. The method also permits selection

of either a strong THz electric or magnetic field component.

5.1 Terahertz Ring Excitation (TREx) scheme

The TREx scheme is illustrated in Fig. 5-1. A concave circular stair-step “echelon”

mirror is used to transform an incident pump pulse with a Gaussian spatial profile

into a conical discrete tilted pulse front consisting of concentric rings of light which

propagate in timed sequence, with the largest-diameter ring first and the smallest-

diameter ring last. There is a circular hole at the center of the echelon mirror, which

results in a ∼15 µm diameter circular region at the center of the rings where there is

no pump light. The time between successive rings is determined by the echelon step

height. For an echelon mirror with step width 𝑊 and step height 𝐻, the tilt angle 𝜙

of the resulting conical tilted pulse front reflected off the echelon mirror is given by

tan (𝜙) =
𝑊

2𝐻
(5.1)

The pump light reflected off the echelon is imaged onto a 50-µm LT waveguide using a

zoom lens. After traveling through the zoom lens and entering the LT substrate, the
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Figure 5-1: Illustration of the working principles of the TREx scheme. (a)
The echelon mirror transforms a Gaussian pulse into a sequence of concentric rings
that form a conical discrete tilted pulse front. (b) Each ring excites a converging and
diverging THz field in the LT slab. The converging field is superposed constructively
with those generated in succession by the conical pulse front. At the THz focus, the
contributions from all the pump rings interfere constructively to give a dramatically
enhanced THz electric field amplitude.

tilt angle changes. The zoom lens modifies the radial spacing between rings according

to the demagnification 𝑀 , i.e. 𝑊 → 𝑊/𝑀 . In addition, the refractive index 𝑛800 of

LT at the 800 nm pump wavelength modifies the axial spacing between the rings, i.e.

2𝐻 → 2𝐻/𝑛800. These two effects give a new tilt angle 𝜃 in the LT slab given by

tan (𝜃) =
𝑊𝑛800

2𝐻𝑀
(5.2)

Each individual pump ring generates converging and diverging single-cycle THz fields.

The initial THz field is launched by the largest ring, which arrives at the LT slab first,
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and the later pump rings repeatedly drive the converging THz field as it focuses. The

driving force is proportional to the pump light intensity (independent of the optical

phase) [31], so the speed at which pump light in the conical pulse front moves across

the sample, i.e. the lateral scan speed 𝑣scan, must match the THz phase velocity 𝑣ph

to achieve the maximum THz field amplitude. The velocity-matching condition is

𝑣scan =
∆𝑥

∆𝑡
= 𝑣ph (5.3)

where ∆𝑥 is the spatial shift between successive rings, i.e. the difference between

successive ring radii, at the LT slab and ∆𝑡 is the difference in arrival time between

successive rings. As in the usual tilted pulse front geometry, when the velocity-

matching condition is satisfied, the same lobe of the THz field is driven by each

pump intensity maximum. Constructive interference along with the enhancement

from focusing leads to a dramatic buildup of the THz electric field strength.

The free-space delay between successive pump rings is ∆𝑡 = 2𝐻/𝑐 where 𝐻 is the

echelon step height and 𝑐 is the vacuum speed of light. The spatial shift between

successive rings inside the LT slab is ∆𝑥 = 𝑊/𝑀 where 𝑊 is the echelon step width

and 𝑀 is the demagnification of the imaging system which is adjusted using a zoom

lens. Thus, the velocity-matching condition can be rewritten in terms of the echelon

parameters and the demagnification as

𝑣ph =
𝑊𝑐

2𝐻𝑀
(5.4)

Using the echelon parameters 𝑊 = 150µm and 𝐻 = 37.5 µm and the THz extraor-

dinary refractive index in LT 𝑛e ≈ 6.2 [31], the demagnification required for effective

buildup of the THz fields is approximately 12.4.

5.2 Zoom lens

The pump rings are imaged using a zoom lens, which is a three-lens telescope which

allows the demagnification 𝑀 to be tuned over a wide range by moving one of the

100



Figure 5-2: Zoom lens telescope. (a) Schematic illustration of the zoom lens
design. L1 and L2 are achromatic lenses. L3 is a 5× objective lens. The red shaded
area represents the beam width as it travels through the zoom lens. In this study, the
demagnification was varied by moving the second lens (L2). (b) Image of the pump
rings at the image plane. A close-up image near the center of the rings is also shown.

lenses (L2 in this case) without significantly shifting the image position [124]. The

configuration used here is illustrated in Fig. 5-2a with initial parameters listed in

Table 5.1. In order to minimize aberrations in the imaging system, we used achromatic

lenses for L1 and L2 and an objective lens for L3. A representative experimental image

of the pump rings taken with a CCD camera placed at the image plane is shown in

Fig. 5-2b. A close-up of the image near the center of the rings is also shown. The

image shows that a very clear series of concentric rings is formed at the image plane,

indicating that any aberrations and distortions in the imaging system that would

degrade the quality of the rings are negligible. The echelon mirror has a 200-µm

diameter circular hole in the middle which results in a small circular region at the

center of the rings where there is no pump light.

The demagnification 𝑀 of the zoom lens was determined experimentally by imag-

ing the pump rings at the image plane and measuring the spacing between the rings.

𝑀 was measured at several positions of L2 while keeping the positions of all other

optics fixed. For each position of L2, the position of the camera was adjusted to com-

pensate for the slight shift in image position. The experimentally measured values of
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parameter value (mm) optic
𝑓1 −100 L1 (concave achromatic lens)
𝑓2 +150 L2 (convex achromatic lens)
𝑓3 +40 L3 (5× objective lens)
𝑑01 300 –
𝑑12 100 –
𝑑23 350 –
𝑑3i 37.8 –

Table 5.1: Summary of zoom lens parameters. The zoom lens was initialized
using these values to give a demagnification 𝑀 = 12.3, then adjusted to obtain the
desired 𝑀 .

𝑀 are plotted in Fig. 5-3c as a function of the distance 𝑑12. By varying 𝑑12 between

92 and 105 mm, 𝑀 covers a range from 11.9 to 13.1 (velocity matched to a refractive

index range 𝑛 = 5.9 to 6.5). This range includes the optimal value of 𝑀 predicted

by Eq. 5.4, so the velocity-matching condition required for optimal THz generation

in LT can be satisfied. In this study we controlled the demagnification by moving

L2 and then adjusted the sample position to correct for the slight shift of the image

plane. However, any two distances could be used to control the demagnification and

image position.

Ray tracing simulations were performed using the ABCD matrix formalism in a

home-built MATLAB code to verify the behavior of the zoom lens. In these sim-

ulations, principal rays are propagated in the paraxial limit through the telescope,

and the image position is determined by calculating where the rays intersect. The

individual lenses are treated as ideal lenses. A representative ray tracing diagram

output by the program is shown in Fig. 5-3a. A close-up of the ray tracing diagram

near the image plane is shown in Fig. 5-3b. Note that the principal rays do not cross

the optic axis except in the vicinity of the image plane. Therefore, a beam going

through the zoom lens does not focus near any of the lenses, minimizing the risk of

damage to the optics.

The demagnification ratio 𝑀 is calculated from the simulations by comparing the

object and image heights. Fig. 5-3c shows the results of the ray tracing simulations

calculating the positions of L2 (𝑑12) and the image plane (𝑑3i) for a range of 𝑀 .
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Figure 5-3: Zoom lens demagnification calculations. (a) Ray tracing simulation
of the zoom lens using the parameters listed in Table 5.1. The calculated demagni-
fication is 12.3. red lines = object/image, black dashed lines = principle rays, blue
lines = (ideal) lenses, black solid line = optic axis. (b) Close-up of the ray tracing
simulation near the image plane. (c) Plot showing how the distances 𝑑12 and 𝑑3i vary
with the target demagnification. lines = simulation, circles = experiment.

The positions of the other elements (echelon mirror, L1, L3) were kept fixed. The

simulations agree well with experimentally measured L2 positions and values of 𝑀 .

The simulations show that over the investigated range of 𝑑12, the image plane shifts

by about 1mm. The LT position was shifted to remain in the image plane when THz

field measurements were made with different demagnification values.

5.3 Imaging the THz buildup

The performance of the TREx method is characterized by imaging the THz fields as

they converge. A schematic illustration of the experimental setup is shown in Fig. 5-4.

The output of a Ti:sapphire amplifier system (800 nm center wavelength, 100 fs pulse

duration, 4mJ pulse energy, 1 kHz repetition rate) was split in a 90/10 ratio for the

pump and probe pulses. The pump pulse energy was controlled using a half waveplate

103



Figure 5-4: Schematic illustration of the TREx setup. Abbreviations:
PBS = polarizing beam splitter, QWP = quarter-wave plate, HWP = half-wave
plate, lin. pol. = linear polarizer, DCHR = dichroic mirror, NOPA = noncollinear
optical parametric amplifier.

and linear polarizer. The pump pulses were reflected off of a circular “echelon” mirror

(manufactured by Sodick) made of Stavax nickel-phosphorus. The resulting series of

pump rings were redirected into the zoom lens using a quarter-wave plate (QWP) and

polarizing beam splitter (PBS) and then imaged onto the lithium tantalate (LT) slab.

The probe pulses were generated using a noncollinear optical parametric amplifier

(NOPA) tuned to output 532 nm pulses. The (collimated) probe pulses were linearly

polarized 45∘ relative to the in-plane LT 𝑐-axis, sent through the backside of the

LT slab, and then imaged onto a CCD camera using an objective lens (same as

used in the zoom lens). A quarter-wave plate and Wollaston prism were placed

before the camera to enable electro-optic sampling with balanced detection. A 50-µm

LT compensating crystal was also placed before the camera to compensate for the

static optical birefringence of LT. The THz electric field strength was quantitatively

determined from the electro-optic sampling signal [36] using the calculations described

in Section 3.4. A delay stage was used to control the timing between the pump and
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Figure 5-5: Images of the THz fields. Top row: Images of the THz field at various
times. Scale bar = 200µm. Bottom row: Line-out plots of the THz field amplitude
along a horizontal dashed line going through the THz focus. All line-out plots have
the same vertical scale. The arrows indicate the direction of THz field propagation.
The time when the THz field is focused is defined as 𝑡 = 0ps.

probe pulses.

To corroborate the experimental results, simulations of the THz fields were per-

formed with the finite-difference time-domain (FDTD) method using the open-source

software package MEEP [125]. The LT slab was treated as an infinite slab in the 𝑥

and 𝑦 directions with finite extent in the 𝑧 direction. Material dispersion was included

by using a Lorentzian susceptibility with parameters taken from literature [126]. The

in-plane LT 𝑐-axis is set along the 𝑦-axis in the simulation. Absorbing boundary con-

ditions were used to suppress reflections off the edges of the simulation space. Each

pump ring was modeled as a current source with an annular spatial profile. The start

time of each pump ring was adjusted to emulate the discrete tilted pulse front in the

LT slab.

Fig. 5-5 shows the THz electric field at various times during focusing. At early

times, the outer rings launch single-cycle THz fields which increase in amplitude

while traveling toward the focus. When the pump light and optical probe overlap

in the LT slab, a hyperpolarizability signal appears in the images. This in addition

to measurement noise obscures the THz waveform at early times while the peak

amplitude is small, resulting in what appears to be a half-cycle THz field. The

amplitude of the excited THz fields follow a cos2 (𝜃) angular dependence due to the

THz electric field being excited parallel to the LT crystallographic 𝑐-axis over the

entire ring. When the THz fields reach the focus, there is constructive interference
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Figure 5-6: THz field at the focus. (a) Time traces of the THz field at various
distances from the focus. The THz fields reach the focus at t = 0 ps. The pump
energy was 225µJ. Saturation of the THz signal was not observed. (b) THz spectra
at the same positions as in (a). For the time traces away from the focus (𝑟 ̸= 0 µm),
only the converging THz wave is considered when calculating the spectrum. The plots
in (a) and (b) have been vertically offset for clarity. (c) Space-time plot constructed
from lineout plots taken through the center of the focus. (d) Dispersion plot obtained
from a 2D Fourier transform of (c). The calculated TE0 (red solid line) and TE1

(dashed red line) dielectric waveguide dispersion curves are overlaid.

resulting in a dramatically increased THz field amplitude, and the single-cycle THz

waveform becomes apparent. The full width at half maximum dimensions of the THz

spot at the focus are 30 µm horizontally and 60 µm vertically. After passing through

the focus, the THz field diverges and the peak field strength decreases.

Figs. 5-6a,b show the time traces and spectra, respectively, of the focusing THz

field at several distances 𝑟 from the focus. As the THz field focuses, the peak field

strength increases due to the individual responses from the multiple pump rings in-
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terfering constructively. In addition, the THz spectrum narrows about broad peaks

at 0.7THz and 1.3THz, suggesting optimal velocity-matching at the two different fre-

quencies. The origin of these two frequencies is clarified by the space-time plot and

dispersion plot shown in Figs. 5-6c,d respectively. The space-time plot shows that

the pump rings excite two sets of focusing THz fields. The main THz field arrives at

the focus at t = 0 ps and a second weaker THz field arrives about 1 ps afterward. The

dispersion plot reveals that spectral peaks at 0.7THz and 1.3THz correspond to THz

fields in the TE0 and TE1 dielectric waveguide modes respectively. Due to the slightly

different group velocities of the TE0 and TE1 waveguide modes, the TE0 and TE1

waveguided THz fields focus at slightly different times. Note that the propagation

time of the pump light from front to back of the LT slab is 𝑑𝑛800/𝑐 = 360 fs, where

𝑑 = 50 µm is the slab thickness and 𝑛800 = 2.157 is the LT optical refractive index at

the 800-nm pump wavelength [127]. The TE0 mode has no nodes in the plane of the

slab, while the TE1 mode has a node in the center. For frequencies below 1THz, i.e.

field cycles longer than 1 ps, the pump pulse traverses the slab in less than half of a

cycle, so the THz response generated by the pump pulse is approximately in phase

throughout the slab thickness. For higher frequencies, the THz field generated by the

pump pulse near the front of the slab is significantly out of phase with the THz field

generated near the back, so the response has a significant TE1 mode component. A

thinner slab would have a TE0 response that would extend to higher frequencies and

a smaller TE1 mode response. Note also that the imaging of the THz fields depends

on the field-induced phase delay of the 532-nm probe light (𝑛532 = 2.207) [127], inte-

grated through the slab thickness. The opposite signs of the TE1 mode field in the

front and back of the slab diminish the contributions of this mode to the images we

record.

5.4 Optimization

In order to optimize the performance of the TREx scheme, we investigated how the

THz focusing depends on various parameters. Simulations were performed using the
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finite-difference time-domain (FDTD) method with the open-source software package

MEEP [125] to determine how material anisotropy and ring ellipticity affect focusing.

Experiments were then performed and corroborated by simulations to determine the

peak field dependence on the scan speed of the pump rings and the number of pump

rings used to excite THz fields.

5.4.1 THz focusing

Simulations were performed to investigate the effect of material anisotropy on the THz

focusing. In this study, LT was used due to its very low anisotropy (𝑛e ≈ 6.2, 𝑛o ≈ 6.4)

compared to LN (𝑛e ≈ 5.1, 𝑛o ≈ 6.2) [31]. This means that a circular ring-shaped THz

field will focus much better in LT than in LN. In order to determine how the slight

anisotropy of LT affects focusing, simulations were performed by varying the ordinary

refractive index 𝑛o while keeping the extraordinary refractive index 𝑛e constant at

6.2. Material dispersion was ignored. A single ring with radius 400µm was used and

the peak THz field strength at the center was recorded.

Fig. 5-7a shows the simulated peak field strength at the focus as the ordinary

refractive index 𝑛o is varied. The peak field strength appears to be insensitive to

𝑛o over a range of values from about 6.2 to 6.5. Outside this range, the peak field

strength drops quickly due to poor focusing. Contrary to what one might expect, the

maximum does not occur at 𝑛o = 6.2 (perfectly isotropic). This behavior is due to the

Gouy phase shift that occurs for a focusing beam and has been observed previously

in focusing THz fields [58]. When each THz half-ring reaches the focus, the phase

increases by 𝜋/4. As a result, the THz half-cycle with the maximum field strength

becomes slightly offset from the THz focus. When a small amount of anisotropy

(𝑛o > 𝑛e) is introduced, the two half rings focus slightly past each other which

compensates for the shift from the Gouy phase and improves the overlap between the

THz half-cycles. This behavior is illustrated in Fig. 5-7b,c.

In order to compensate for material anisotropy in the waveguide slab, cylindrical

lenses can be placed in the zoom lens to shape the pump rings into ellipses rather

than circles. The simulations in the previous section were repeated, but with the
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Figure 5-7: Simulations of THz focusing with varying material anisotropy.
(a) Simulated peak E field strength at varying values of 𝑛o. (b,c) Sketch showing
the effect of the Gouy phase on the overlap between the two focusing half-rings. (b)
When the half-rings focus in an isotropic medium, the Gouy phase offsets the field
maxima at the focus. (c) When the half-rings focus in a slightly anisotropic medium
where 𝑛o > 𝑛e, the overlap of the two half-rings is improved.

pump rings scaled linearly by a factor 𝛿 along the 𝑦-direction. (𝛿 > 1 corresponds to

stretching the rings.) The pump rings were left unstretched along the 𝑥-direction. A

sketch of the simulation geometry is shown in Fig. 5-8a.

The simulation results are summarized in Fig. 5-8b. For every value of 𝑛o, the

value of 𝛿 that gives the largest THz electric field at the focus is extracted. As the

ratio 𝑛o/𝑛e is increased, 𝛿 monotonically increases with a slope of approximately

1. This makes intuitive sense because one would expect that the pump rings would

need to be stretched by the ratio of refractive indices to compensate for the material
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Figure 5-8: Simulations of THz focusing with varying pump ring ellipticity.
(a) Illustration of the elliptical ring excitation profile. The red ellipse represents the
pump ring after being scaled by a factor of 𝛿 along the 𝑦-direction. (The dashed black
circle is the pump ring without scaling.) (b) Plot showing the optimal value of 𝛿 at
various ratios of 𝑛o/𝑛e.

anisotropy and focus at the center of the elliptical pump region. Deviations from a

perfect 𝛿 = 𝑛o/𝑛e relationship can be explained by the Gouy phase shift, which causes

the THz focusing to be optimized when the half-ellipses focus slightly past each other.

Therefore, the value for 𝛿 should be slightly smaller than 𝑛o/𝑛e. For LT (𝑛e ≈ 6.2,

𝑛o ≈ 6.4), we get an optimal 𝛿 = 0.99, which means that the circular pump rings

used are very close to optimal. Thus, during the laser experiments we did not insert

cylindrical lenses into the zoom lens and simply used the circular rings provided by

the echelon mirror. For LN (𝑛e ≈ 5.1, 𝑛o ≈ 6.2), we get 𝛿 = 0.82 which indicates

that focusing can be significantly improved by adding cylindrical lenses to the zoom

lens to shrink the pump rings by 17% along the 𝑦-direction.

5.4.2 Scan speed

The peak THz field strength was measured at various pump scan speeds, which were

controlled by adjusting the demagnification 𝑀 of the zoom lens, while the number

of rings used was held constant at 30. The demagnification of the zoom lens was

adjusted by moving the position of the second lens. The position of the LT slab was

then adjusted to place it in the image plane of the zoom lens. The experimental and
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Figure 5-9: Optimizing TREx performance. (a) Plot of THz field strength at the
focus at varying zoom lens demagnification ratios. (b,c) Dispersion plots showing the
spectral content of the THz pulse at the data points labeled in (a). (d) Plot of the
THz field strength at the focus at varying numbers of pump rings. (e,f) Simulated
space-time plots of the focusing THz field at the data points labeled in (d).

simulated results are shown in Fig. 5-9a. The THz field strength reaches a maxi-

mum at 𝑀 = 12.4, which is in good agreement with the predicted demagnification

ratio. This behavior can be explained by comparing the dispersion plots at differ-

ent scan speeds shown in Fig. 5-9b,c (M = 12.4 and 11.6). The velocity-matching

condition described by Eq. 5.3 is graphically represented in the dispersion plots by

the overlaid TREx light line. At optimal velocity-matching, the TREx light line ap-

proaches the TE0 waveguide dispersion curve over a wide frequency range. Although

perfect velocity-matching is not achieved for all frequencies, THz fields are still ex-

cited over a large frequency range and constructive interference between the many

frequency components results in a large peak field strength. When a faster scan speed

is used (lower demagnification), the slope of the TREx light line increases and the

excited bandwidth is significantly smaller, leading to a lower peak field strength. In
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both dispersion plots, the TREx scheme also excites TE1 waveguided THz fields at

higher frequencies. However, the curvature of the TE1 dispersion prevents broadband

velocity-matching. Thus, the optimal scan speed is that which optimizes the overlap

between the TREx light line and the TE0 dispersion, which in turn maximizes the

excited THz bandwidth.

5.4.3 Number of rings

Next, we optimize the number of pump rings used at constant pump fluence while

keeping the demagnification at the optimized value (12.4). The pump beam was

expanded using a 3× telescope to illuminate the entire echelon mirror with an ap-

proximately flat beam profile. An iris was used to set the beam diameter and the

number of pump rings. The iris was placed right before the echelon mirror to min-

imize diffraction effects. The experimental and simulated results are shown in Fig.

5-9d. The peak THz field strength increases roughly linearly with the number of rings

and flattens at 35 rings. Simulated space-time plots of the focusing THz fields using

30 and 80 pump rings are shown in Fig. 5-9e,f respectively. When 35 pump rings

are used, the THz field at the focus is single-cycle. However, when using 80 pump

rings, more THz cycles appear. This suggests that spatial walkoff limits the number

of pump rings that could be used. The walkoff originates from the nonlinear shape

of the TE0 dispersion curve, resulting in a slight difference between the THz phase

and group velocities. Because the THz phase velocity is slightly faster than the group

velocity, the pump rings (which are velocity-matched to the THz phase velocity) scan

slightly faster than the THz pulse speed. As the THz pulse lags behind the pump

light, additional lobes appear, with the pump light always driving the leading lobe of

the THz field. The optimal number of pump rings can be estimated by considering

the walkoff between the pump rings and the excited THz field. Assuming that pump

rings only contribute to buildup if they are spatially within one wavelength of the

peak of the THz field, we get the condition

2𝐻

𝑐
(𝑣ph − 𝑣gr)𝑛rings = 𝜆THz (5.5)
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where 𝑛rings is the optimal number of pump rings, 𝜆THz is the THz wavelength in

the LT slab, and 𝑣ph and 𝑣gr are the THz phase and group velocities, respectively.

Plugging in the values for 𝑣ph and 𝑣gr in a 50-µm LT waveguide at 𝜆THz = 48 µm

(1THz) gives an estimate of 35 rings, which matches well with the experimental and

simulated data.

5.5 Calculating enhancement from focusing

Using the observations from the experimental data, we can build a simple model

to estimate the field enhancement when using the TREx scheme. For a single THz

ring, the increase in field strength due to focusing can be estimated using a simple

argument based on conservation of energy. The energy of a pulse of electromagnetic

radiation is given by

𝑈 =

∫︁
1

2
𝜀 (𝑥, 𝑦, 𝑧) |𝐸 (𝑥, 𝑦, 𝑧)|2 𝑑𝑉 (5.6)

where 𝜀 (𝑥, 𝑦, 𝑧) is the dielectric function, 𝐸 (𝑥, 𝑦, 𝑧) is the electric field strength, and

𝑑𝑉 is the volume element. Here, we assume that 𝜀 is isotropic, which is approximately

true for LT.

Suppose a ring of pump light with radius 𝑟0 and width 𝜎r launches a focusing THz

wave. The generated THz electric field is described by the equation

𝐸ring(𝑟, 𝜃) = 𝐸0,ring exp

(︃
−(𝑟 − 𝑟0)

2

2𝜎2
r

)︃[︀
− sin (𝜃) cos (𝜃) 𝑥̂+ cos2 (𝜃) 𝑦

]︀
(5.7)

where 𝐸0,ring is the peak THz electric field amplitude, and 𝑟 and 𝜃 are the radial and

angular coordinates. Assuming 𝑟0 ≫ 𝜎r, the energy approximately is given by

𝑈ring ∝ 𝑟0𝜎r𝐸
2
0,ring (5.8)

A similar calculation can be done at the THz focus. Assuming that the THz fields

form a Gaussian spot at the focus with peak electric field amplitude 𝐸0,focus and spot

dimensions 𝜎𝑥 and 𝜎𝑦 along the 𝑥 and 𝑦 Cartesian coordinates, the electric field profile
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and energy are approximated as

𝐸focus (𝑥, 𝑦) = 𝐸0,focus exp

(︂
− 𝑥2

2𝜎2
𝑥

)︂
exp

(︂
− 𝑦2

2𝜎2
𝑦

)︂
(5.9)

𝑈focus ∝ 𝜎𝑥𝜎𝑦𝐸
2
0,focus (5.10)

Assuming the THz pulse energy decreases exponentially as it propagates, we can

write the ratio
𝑈focus

𝑈ring

= exp (−𝛼𝑟0) (5.11)

where 𝛼 is the absorption coefficient. Rearranging gives the following relationship.

𝐸0,focus

𝐸0,ring

∝
√︂

𝑟0𝜎r

𝜎𝑥𝜎𝑦

exp
(︁
−𝛼𝑟0

2

)︁
(5.12)

𝜎𝑥 can be estimated using

𝜎𝑥 ≈ 𝜎r +𝐷𝑟0 (5.13)

assuming that the THz pulse broadens at a linear rate 𝐷, which can be written in

terms of the THz phase and group velocities, 𝑣ph and 𝑣gr, as follows.

𝐷 = 1− 𝑣gr
𝑣ph

(5.14)

The parameter 𝜎𝑦 is a constant determined by the angular dependence of the excited

THz fields. The spatial profile of the THz field at the focus can be obtained by

decomposing the initially excited THz fields into a sum of planewaves and calculating

the interference pattern at the focus. Due to the nearly isotropic THz refractive

index in LT, the THz fields propagate directly toward the focus and all arrive with

approximately the same phase. The THz field component polarized along the 𝑥-axis

cancels due symmetry. The 𝑦-polarized THz field profile can be calculated as

𝐸𝑦 (𝑦) =

∫︁ 𝜋
2

−𝜋
2

cos2 (𝜃) cos (𝑘0𝑦 sin (𝜃)) 𝑑𝜃 = 𝜋
𝐽1 (𝑘0𝑦)

𝑘0𝑦
(5.15)

where 𝑘0 is the peak THz wavevector and 𝐽𝑛 denotes a Bessel function of the first
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kind. 𝜎𝑦 is found by solving

𝜋
𝐽1

(︁
𝑘0𝜎𝑦

2

)︁
(︁

𝑘0𝜎𝑦

2

)︁ =
1

2
(5.16)

which gives 𝜎𝑦 = 60 µm, which agrees very well with the experimentally measured

value.

We can estimate the enhancement 𝛾 (𝑟0) from ring focusing with the following

equation.

𝛾 (𝑟0) =
𝐸0,focus

𝐸0,ring

∝
√︃

𝑟0

1 + 𝐷
𝜎r
𝑟0

exp
(︁
−𝛼𝑟0

2

)︁
(5.17)

For a single ring, the radius that gives the largest enhancement 𝑟optimal is then given

by

𝑟optimal =
𝜎r

2𝐷

(︃√︂
1 +

4𝐷

𝛼𝜎r

− 1

)︃
(5.18)

Note that in the limit 4𝐷/𝛼𝜎r ≪ 1, the optimal ring radius is approximately the

polariton propagation length 𝛼−1.

The enhancement gained by using multiple rings (assuming optimal velocity-

matching) can be estimated using a summation weighted by a Gaussian factor to

account for walkoff.

𝐸THz =
∑︁
𝑛

𝛾 (𝑟𝑛) exp

[︃
−
(︂
2
|𝑣ph − 𝑣gr|

𝑣scan

(𝑟𝑛 − 𝑟optimal)

𝜆THz

)︂2
]︃

(5.19)

where 𝑟𝑛 is the radius of the 𝑛th ring.

Fig. 5-10 shows the simulated enhancement for a single ring and a series of rings

along with the predictions from Equations 5.17 and 5.19. The curves were calculated

using values for the THz refractive index in a 50-µm LT slab (𝑣ph = 𝑐/5.77, 𝑣gr =

𝑐/6.58) and absorption coefficient (𝛼 = 46 cm−1) [126] at 1THz (𝜆THz = 50 µm). The

curves agree very well with the simulated results. Furthermore, the curves predict

up to a 20-fold increase in the THz field amplitude that saturates at 35 rings, which

agrees well with the experimentally observed 18-fold increase.
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Figure 5-10: Calculation of THz field enhancement from focusing. Simulated
results of the field enhancement for (a) a single ring and (b) a series of rings. The
predictions from Equations 5.17 and 5.19 are overlaid.

5.6 Pump pulse energy dependence

The THz fields were imaged quantitatively via EO sampling following methods pre-

viously used with LN waveguides [36]. The relevant equations are summarized in

Section 3.4. When the THz field strength is sufficiently large, the signal saturates.

Further increasing the THz field strength results in an apparent decrease in signal.

Extreme saturation occurs when ∆𝜑 = 𝜋/2, which corresponds to a threshold field

strength 𝐸 ′ of approximately 160 kV/cm.

Overrotation in the EO sampling signal becomes apparent when comparing the

THz focus at high and low pump energies, shown in Fig. 5-11a,b. At higher pump

energies, a small amplitude modulation appears in the center of the THz focus as

shown in Fig. 5-11b. Note that the dimensions of this modulation are much smaller

than the THz wavelength in LT (𝜆THz ≈ 50 µm), so it cannot correspond to any real

variation in the THz field strength. To correct for overrotation in the experimental

power dependence plot, the field strength at the focus is extracted at the same position

in the focus and fit according to 𝐸 (𝐼) ∝
√
𝐼 tanh

(︁
𝑎
√
𝐼
)︁

[128], where 𝐼 is the pump

intensity and 𝑎 is a scaling constant. At the overrotation threshold, the slope of

the curve will suddenly change sign. Thus, the form of 𝐸 (𝐼) after accounting for
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overrotation would become

𝐸 (𝐼) → 𝐸 ′ − |𝐸 (𝐼)− 𝐸 ′| (5.20)

Once the experimental overrotation threshold is determined this way, the data are

corrected by inverting the transformation in Equation 5.20. The uncorrected and cor-

rected field strengths are plotted in Fig. 5-11c. The overrotation threshold determined

this way is 131 kV/cm, which agrees reasonably well with the predicted value.

Using the optimized parameters for demagnification (𝑀 = 12.4) and number of

pump rings (𝑛rings = 35), the pump energy was increased to determine the maximum

observable field strength. The pump energy was adjusted using a half waveplate and

linear polarizer. When the pump fluence was above the optical damage threshold

of LT at 1 kHz (approximately 96mJ/cm2), the laser repetition rate was reduced

to 10Hz. Fig. 5-12 shows the pump pulse energy-dependence results at room tem-

perature. The peak THz field strength increases monotonically with pump energy,

with a decreasing slope at higher pump energies. The optical-to-THz generation ef-

ficiency shows a linear increase before saturating at higher pump energies due to

self-phase modulation [129] and three-photon absorption [130]. The largest observed

field strength achieved with no damage to the LT slab was 175 kV/cm using 0.56mJ

of pump energy, corresponding to a 0.0055% conversion efficiency. Since the THz

field is generated in a thin LT slab, the total THz pulse energy (and corresponding

conversion efficiency) is low compared to what is routinely achieved in a bulk LN

crystal [130]. At higher pump energies, there was gradual damage to the surface of

the slab. The damage threshold can be increased by lowering the laser repetition rate,

which may allow photoexcited carriers to relax between laser shots [131]. When the

laser repetition rate was decreased to 10Hz, we observed several small damage spots

that slowly grew with each laser shot at pulse energies >0.70mJ. The rate of damage

accumulation was slow enough that we could image the THz fields prior to severe

damage. The largest observed field strength under these conditions was 300 kV/cm

using 1.3mJ of pump energy (0.007% conversion efficiency). We expect that various
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Figure 5-11: Overrotation in THz signal. (a,b) Image of the THz focus using (a)
0.30mJ and (b) 0.52mJ of pump energy. Below each image is a lineout plot showing
the THz field profile along a horizontal line going through the center of the focus. (c)
Plot of the pump energy dependence data before (blue) and after (red) correcting for
overrotation. The horizontal grey line indicates the estimated overrotation threshold
(131 kV/cm). Crosses = experimental data, dashed lines = fit

steps could be taken to further improve the maximum field strength, such as ensur-

ing a dust-proof environment, pumping with a longer wavelength such as 1030 nm at

which 3-photon absorption does not take place in LT [123], and using MgO-doped LT

which would likely have a higher damage threshold than the undoped LT used here

as is well known to be the case for lithium niobate [132].
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Figure 5-12: TREx pump pulse energy dependence. (a) Measured THz field
strength at varying pump pulse energies. (b) Calculated optical-to-THz conversion
efficiency. The black dashed line represents the field strength and conversion efficiency
obtained from a single line-focused pump beam. The grey shaded region indicates
pump fluences where the laser repetition rate was reduced to 10Hz to slow down
optical damage to the LT slab.

The TREx results are compared against a reference measurement performed by

using a cylindrical lens to focus the pump beam as a line of pump light on the LT slab,

as is typically done in a polaritonics experiment. This method generates THz electric

field strengths up to 10 kV/cm, measured 100µm away from the line pump, when the

pump fluence is just below the damage threshold [31]. The line pump reference data

are represented in Fig. 5-12 as horizontal dashed lines. The TREx scheme produces

much larger electric field amplitudes using much lower pump fluences. At the same

pump fluence, we observe an 18-fold increase in the THz field strength, a notable

increase compared to previous works.

From Fig. 5-9 and 5-12, we see that the peak THz field strength depends approxi-

mately linearly on both the number of pump rings and the pump fluence. If the total

pump energy is fixed, then a linear increase in the number of pump rings is accom-

panied by a quadratic decrease in the pump fluence, leading to an overall decrease in

peak field strength. Thus, the maximum field strength is found by maximizing the
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Figure 5-13: Imaging the electric fields in a normal and “split” LT slab. (a,c)
Space-time plots of the THz electric field excited in the geometries shown in (b) and
(d). The sign of the electric field shown in (c) is inverted on one side of the cut due
to the reversed LT 𝑐-axis orientation. The position of the THz focus is marked by
an arrow in both plots. (b,d) Schematic illustrations the electric and magnetic field
polarizations of the excited THz fields in (b) a normal LT slab and (d) a modified LT
slab where the 𝑐-axis is reversed on opposite sides of the THz focus. The dashed line
in (d) indicates the cut in the “split” LT slab.

pump fluence. In practice, this means choosing the number of rings such that the

pump fluence is just below the optical damage threshold.

5.7 Magnetic field behavior

Unlike most experimental geometries, the TREx scheme generates two counter-

propagating focusing THz fields. This means that while the THz electric field com-

ponents interfere constructively at the focus, the magnetic field components interfere

destructively to reach nearly zero amplitude. Although the magnetic field cannot be
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imaged directly in our experimental geometry, its behavior can be inferred by imaging

the electric field in a “split” LT slab where the LT 𝑐-axis is reversed on one side of the

THz focus. The “split” slab was constructed from a single LT slab. The slab was cut

parallel to the 𝑐-axis using femtosecond laser machining [37] and one half was flipped

over to reverse the 𝑐-axis orientation. The two pieces were then rotated 180 degrees

so that their edges at the interface were pristine (i.e. not laser cut), brought as close

together as possible on a flat surface, and then glued together at the corners using

nail polish. In order to facilitate imaging of the THz field at the focus, the center

of the pump rings was shifted slightly away from the cut so that the THz signal was

not obscured. Fig. 5-13b,d show the electric and magnetic field polarizations in both

a normal uncut LT slab and a “split” slab. By reversing the 𝑐-axis in half of the

slab, the polarity of the electric (magnetic) fields is reversed, resulting in destructive

(constructive) interference in the new slab.

Experimental space-time plots for both the normal and “split” slabs are shown

in Fig. 5-13a,c respectively. The normal slab shows constructive interference of the

electric fields at the focus. In contrast, the “split” slab shows destructive interference,

reducing the THz field strength at the center of the focus by a factor of 6. By

observing destructive interference in the electric field in the “split” slab, we deduce

that the magnetic field destructively interferes in the normal slab. There are a few

reasons that could explain why the destructive interference was not perfect in the

experiment. Inhomogeneities in the intensity profile of the pump beam prevent the

destructive interference from perfectly cancelling the electric fields in the “split” slab.

In addition, the TREx focus was slightly offset from the cut, which leads to a small

imbalance in the THz field strength generated on either side of the cut. The air

gap in the cut was measured to be <5 µm wide, which is extremely small compared

to the THz wavelength in air, so we expect negligible losses in THz field amplitude

due to tunneling through the air gap. However, slight out-of-plane misalignment

of the two slabs could diminish how efficiently the THz field tunnels through the

gap. We note that constructive interference of the THz magnetic field could also be

achieved in a single LT slab by including a temporal delay between the two sides
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of the optical pump light, for example by inserting different thicknesses of glass in

front of the left and right-hand sides of the circular echelon. A shift of one-half of

the peak THz wavelength would optimize the magnetic field superposition. Although

the superposition is not optimized for the entire THz bandwidth, this approach could

permit switching between enhanced electric or magnetic field components at the focus.

Unlike in the experiments where we can only directly measure the THz electric

fields, the magnetic fields could be directly observed in simulations. Fig. 5-14 shows

the electric and magnetic field profiles in the normal and “split” slabs. In the normal

slab, the electric (magnetic) field interferes constructively (destructively) at the focus

as expected. In the “split” slab, the behavior is reversed and the electric (magnetic)

field interferes destructively (constructively). Note that the focusing patterns of the

magnetic field in the normal slab and the electric field in “split” slab are virtually

identical. This confirms that imaging the electric field in the “split” slab gives quali-

tative insight into the magnetic field behavior in a normal slab. The peak magnetic

field strength achieved in the “split” slab can be estimated from the corresponding

peak electric field strength in the normal slab using

𝐵peak =
1

𝑣ph
𝐸peak ≈

(︂
1.92mT

1 kV/cm

)︂
𝐸peak (5.21)

If a normal slab generates a peak electric field strength of 175 kV/cm, then a “split”

slab would generate a peak magnetic field strength of 337mT under the same exper-

imental conditions.

5.8 Summary and future directions

To conclude, we have demonstrated a novel compact scheme for generating large THz

field strengths in thin LT waveguide slabs using a conical pulse front. The largest

THz field strengths recorded using this technique without damage to the LT were

175 kV/cm at a 1 kHz laser repetition rate. Higher field strengths up to 300 kV/cm

were observed at 10Hz repetition rate. We expect that the peak THz field strength
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Figure 5-14: Simulations of electric and magnetic field behavior. Simulated
electric and magnetic field profiles for a normal slab (top row) and “split” slab (bottom
row).

could be further increased by pumping at a longer wavelength such as 1030 nm where

THz generation is more efficient [123]. This method enables versatile waveguide-

based THz spectroscopy and photonics by allowing strong THz fields to be delivered

without any free-space THz generation or propagation to samples that could be on

the LT surface or in a laser-machined hole at the focus and perhaps located inside a

cryostat, cryomagnet, or XFEL chamber. Furthermore, we showed that the magnetic

field component of the focusing THz field is significantly diminished at the focus

ordinarily, and that measures can be taken to reverse the enhancement to generate a

strong magnetic field and a diminished electric field. This method could be useful for

studying materials that respond to both a THz electric and magnetic field, such as

multiferroics, without using THz enhancement structures to selectively enhance one

of the field components.
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Chapter 6

THz spectroscopy using thin LN

waveguides

The polaritonics platform has enabled many compact, detailed studies of integrated

photonics structures, such as photonic crystals [43, 45, 133], cavities [47, 48, 134], and

many more [54] during which the THz fields are directly monitored as they interact

with the structures. However, the platform’s utility as an integrated spectroscopy

platform to probe light-matter interactions has remained largely unexplored. This is

primarily because the large THz refractive index in LN results in a large LN fill frac-

tion and, consequently, limited interaction between the THz fields and most samples

deposited on the waveguide surface. In other words, only a very limited amount of

the THz energy interacts with the deposited sample, resulting in small signals that

can be hard to detect. Even in cases where the refractive index of the sample matches

that of LN, these materials tend to be optically opaque which complicates imaging of

the THz fields.

In this chapter, we describe two geometries aimed to expand the range of poten-

tial samples for compact, integrated THz spectroscopy using LN waveguides. The

first geometry uses LN waveguides with a high-reflecting (HR) dielectric coating de-

posited on one face of the waveguide with the sample of interest deposited directly

onto the HR coating. The waveguided THz fields penetrate through the HR coating

and couple evanescently to the sample. The optical probe enters the LN and picks
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up the THz signal, reflects off the the HR coating, and is subsequently imaged, all

without entering the sample. This method is useful when the deposited material

would strongly scatter or absorb the probe light, which severely hinders the usual po-

laritonics imaging techniques where the probe beam would need to pass through the

sample layer. The second geometry uses a slot waveguide structure which consists of

two thin strips of high-index material separated by a low-index slot [135, 136]. When

the THz field enters the slot waveguide structure, the electric field is enhanced in the

low-index region. This allows for efficient coupling to a low-index sample inserted

into the slot.

6.1 THz imaging using HR-coated LN

In these experiments, we use an unpatterned 50 µm thick LN waveguide with a high-

reflecting (HR) dielectric coating deposited on the backside designed to reflect the

532-nm probe wavelength. The thickness of the dielectric coating is much smaller

than the THz wavelength, so the coating does not perturb the waveguide modes or

THz propagation. Because the optical probe only picks up THz signal within the LN

layer, the HR coating allows the THz fields to be imaged without the optical probe

ever entering the sample layer. This enables experiments where the sample is strongly

absorptive in the visible range as well as powdered samples which would scatter the

probe beam.

THz imaging is performed using the polarization gating imaging method typically

used for polaritonics experiments [104]. The pump beam is polarized parallel to the

LN 𝑐-axis and focused to a line using a cylindrical lens, like usual. A collimated

probe beam is polarized at a 45∘ angle relative to the LN 𝑐-axis and enters the LN

slab from the uncoated side. Because the probe does not transmit through the LN

slab, we cannot use the self-compensating geometry to eliminate the change in probe

polarization due to the static birefringence in LN. Instead, we place a compensating

crystal before the Wollaston prism. The probe passes through the 50 µm thick LN

slab twice, so we use a 100µm thick compensating crystal. Note that doing so does
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Figure 6-1: Reflective imaging geometry. (a) Schematic illustration of the reflec-
tive imaging geometry. The geometry is similar to the polarization gating imaging
geometry shown in Fig. 3-8a. The LN waveguide has a 532-nm high-reflecting coating
(HR) on the back side. The sample is adhered directly to the HR coating. Because
the self-compensating imaging geometry cannot be used with the reflective LN waveg-
uides, a 100-µm compensating crystal is used instead. (b) Representative images of
the THz fields in a 50-µm LN slab obtained using the reflective geometry.

not compensate for local variations in the birefringence (e.g. due to stresses caused

by laser machined structures) or thickness of the LN slab. The reflective imaging

geometry is shown in Fig. 6-1a. Representative THz images obtained using this

method in a LN slab without a deposited sample are shown in Fig. 6-1b.

6.1.1 Polariton imaging in a LN/EFO hybrid slab

In order to demonstrate the utility of the the reflective imaging geometry, we image

the THz fields in a hybrid slab made of a HR-coated 50-µm LN slab and an 80-µm

ErFeO3 (EFO) slab, similar to what was studied previously [48]. Note that the THz

refractive index of EFO is nearly the same as in LN (𝑛 ≈ 5), so the hybrid waveguide

is expected to behave like a single dielectric slab waveguide that is 130µm thick. The
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Figure 6-2: Reflective polariton imaging in a LN/EFO hybrid waveguide
slab. (a) Images of the THz fields in the LN/EFO hybrid waveguide slab at various
pump-probe delays. (b) Dispersion plot of the polaritons propagating in the LN/EFO
hybrid waveguide slab obtained using the reflective polarization gating imaging tech-
nique. An avoided crossing is present at 0.67THz. The uncoupled TE0 and bare
magnon dispersion curves (white dashed lines) and the upper and lower magnon po-
lariton dispersion curves (red solid lines) are also plotted.

HR coating was placed between the LN and EFO pieces. Due to the strong absorption

of light with wavelength less than 1.2µm in EFO [137], imaging the THz fields in a

hybrid LN/EFO waveguide slab using the usual transmissive imaging technique with

an optical probe suffers from very poor signal-to-noise. The advantage of the reflective

geometry is that the probe never passes through the EFO layer, so the THz fields can

be easily imaged despite the strong absorption at the probe wavelength.

The pump beam was focused to a line on the bare LN region and the fields were

imaged as they propagate through the LN/EFO portion of the hybrid slab. The THz

fields are very clearly visible in the images, as shown in Fig. 6-2a. The dispersion plot

shown in Fig. 6-2b was calculated from images taken at many different pump-probe

delays. The dispersion follows the expected TE0 waveguide dispersion for a 130-µm

thick slab waveguide with refractive index 𝑛 = 5 and also shows an avoided crossing at

0.67THz, which indicates strong coupling between the phonon-polaritons in LN and

the quasi-antiferromagnetic magnon modes in EFO. The extracted splitting frequency

is Ω = 15GHz, which is similar to the previously measured value of 20GHz [48]. This

confirms that the dielectric coating is effectively invisible to the THz fields and does

not affect coupling into the adjacent EFO slab.
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6.1.2 Estimation of material parameters of lactose

Although the reflective imaging geometry is not ideal for compact THz spectroscopy

due to the poor coupling between the waveguided THz fields and a sample (except

in special cases like EFO where the THz refractive index is similar to that in LN),

the technique could be used to get a rough measure of the material properties of a

sample. As a test sample, we use powdered 𝛼-lactose monohydrate (Sigma-Aldrich,

99% purity, CAS 5989-81-1) which has a strong, sharp absorption peak centered at

0.53THz which corresponds to a hindered rotation of the lactose molecules in the

crystal [138, 139]. The powdered lactose was pressed into a 500µm thick pellet and

adhered to the HR-coated side of the thin LN to form an asymmetric waveguide slab.

A small droplet of water was used to partially dissolve the pellet and recrystallize it

on the LN surface to provide better adhesion.

Images of the THz fields were recorded in the LN slab using the reflective imaging

geometry. The pump beam is line focused on a bare LN region (without lactose) and

the THz field is propagated into the region covered in lactose. The imaging region,

shown in Fig. 6-3a, includes both a region with lactose and a region without lactose

so that the “signal” (with lactose) and “reference” (without lactose) measurements

could be performed simultaneously. Space-time plots of the THz fields in the signal

and reference regions are shown in Fig. 6-3b,c. Dispersion plots, shown in Fig. 6-3d,e,

are calculated from the space-time plots via a 2D Fourier transform. The interactions

between the THz field and the deposited sample are very weak, which results in space-

time and dispersion plots that qualitatively appear very similar. There is a very small

dip in the signal dispersion intensity at 0.53THz, indicated by the arrow in Fig. 6-3e,

which matches the center frequency of the absorption peak.

We can extract the complex dielectric function of lactose from the dispersion plots

using perturbation theory. (See Section 2.4 for more details.) Here, we treat the

change in cladding refractive index due to the deposited lactose as the perturbation.

The symmetric LN waveguide (air cladding on both sides) is taken as the unperturbed

structure. As observed in the LN/EFO hybrid slab, the HR coating does not interact
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Figure 6-3: Reflective polariton imaging in a LN slab with lactose deposited.
(a) Experimental image of the THz fields in the LN slab. The black rectangle indicates
the approximate region where lactose was deposited on top of the waveguide. The
solid boxes indicate the region used the signal (red) and reference (blue) space-time
plots and dispersion. The dashed boxes indicate the regions used to normalized the
THz fields for quantitative comparison. (b,c) Representative space-time plots of the
THz fields in the reference region (b) and the region with lactose (c). The time-
dependent field profile is determined by vertically averaging the THz signal within
the corresponding region. 𝑥 is the distance away from the line pump. (d,e) Dispersion
plots in the reference region (d) and the region with lactose (e). The dispersion plot
in (e) shows a very faint absorption feature at 0.53THz (marked with a white arrow).
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with the THz fields and can be ignored. To first order, the shift in propagation

constant is proportional to the change in dielectric function in the waveguide cladding.

Suppose that the unperturbed mode has propagation constant 𝛽(0) = 𝛽 + 𝑖𝛾 and

that the perturbation introduces a first-order correction 𝛽(1) = 𝜅 + 𝑖𝛼. Along the

propagation direction (𝑧), the waveguide has continuous translational symmetry and

the electric field profile 𝐸 (𝑥, 𝑧) can be described as a harmonic wave with propagation

constant 𝛽 + 𝜅 subject to attenuation proportional to 𝛾 + 𝛼.

𝐸 (𝑥, 𝑧) = 𝐸0𝐸𝑚 (𝑥) exp [𝑖 (𝛽 + 𝜅) 𝑧] exp [− (𝛾 + 𝛼) 𝑧] (6.1)

where 𝐸𝑚 (𝑥) is the (normalized) TE mode profile for the unperturbed slab waveguide

with confinement along the 𝑥-axis. Taking the modulus squared of the Fourier trans-

form of 𝐸 (𝑥, 𝑧) and integrating the THz field over the thickness of the waveguide

gives the intensity spectrum

⃒⃒⃒
𝐸̃ (𝑘)

⃒⃒⃒2
=

|𝐸0|2

[𝑘 − (𝛽 + 𝜅)]2 + (𝛾 + 𝛼)2

⃒⃒⃒⃒∫︁ 𝑑

0

𝐸𝑚 (𝑥) 𝑑𝑥

⃒⃒⃒⃒2
(6.2)

which yields a Lorentzian function centered at 𝛽+𝜅 with a linewidth given by 𝛾+𝛼.

The real part of the dielectric function for the perturbation leads to a shift in the dis-

persion to higher wavevectors. We can extract the real part of the dielectric function

by comparing the two experimentally measured dispersion plots. The wavevector shift

obtained from the experimental dispersion plots is shown in Fig. 6-4a. The imaginary

part of the dielectric function leads to an increase in the effective absorption coeffi-

cient, which leads to two changes in the dispersion. First, an increase in damping

rate leads to a increase in the width of the Lorentzian function. Second, for the same

initial THz field strength 𝐸0, the increase in damping also results in a decrease in the

spectral intensity. In principle, 𝛼 could be extracted using either method. However,

the linewidth is dominated by absorption in LN (which allows easy extraction of 𝛾)

and the experimental resolution is not good enough to reliably resolve 𝛼 from the

change in linewidth. Instead, we must rely on the change in peak intensity to deduce
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Figure 6-4: Comparison of TE0 dispersion with and without lactose. (a) The
shift in propagation constant ∆𝛽 calculated from the signal and reference dispersion
plots. (b) TE0 spectra in the signal and reference regions. There is a small dip in
the signal spectrum at 0.53THz, which corresponds to the well-known absorption
feature in lactose. (c) Extracted values for the complex-valued 𝜀. The Lorentzian fit
is overlaid. The 6-µm air gap was not included when calculating these values.

𝛼 using ⃒⃒⃒
𝐸̃sig (𝛽 + 𝜅)

⃒⃒⃒2
⃒⃒⃒
𝐸̃ref (𝛽)

⃒⃒⃒2 =
𝛾2

(𝛾 + 𝛼)2

⃒⃒⃒⃒
⃒
∫︀ 𝑑

0
𝐸sig

𝑚 (𝑥) 𝑑𝑥∫︀ 𝑑

0
𝐸ref

𝑚 (𝑥) 𝑑𝑥

⃒⃒⃒⃒
⃒
2

(6.3)

where 𝐸̃sig (𝛽) and 𝐸̃ref (𝛽 + 𝜅) are the peak spectral amplitudes in signal and refer-

ence dispersion, respectively. 𝐸sig
𝑚 (𝑥) and 𝐸ref

𝑚 (𝑥) are the TE mode profiles for the

(asymmetric) LN waveguide with sample and the (symmetric) LN waveguide without

sample, respectively. A brief discussion of the mode profiles and dispersion for an

asymmetric slab waveguide is given in the appendix of this chapter. Because we are

in the perturbative regime, the ratio of the integrals in Eq. 6.3 is nearly equal to 1

except at frequencies near the mode cutoff frequency. In this analysis, we assumed

that the THz field excited by the line-focused pump is identical over the pump region.

To correct for variations in the THz fields in the experiment (e.g. due to variations

in the pump intensity profile), we normalize the signal and reference spectra using

THz spectra taken in a small portion of the imaging region near the excitation region,

shown in Fig. 6-3a. The corrected TE0 spectra are shown in Fig. 6-4b.

After 𝛽(1)
𝑚 is determined, the sample permittivity 𝜀samp = 𝜀+𝛿𝜀 can be determined
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using

𝛽(1)
𝑚 =

𝜔
(0)
𝑚

2𝑣gr

𝛿𝜀

𝜀
𝑓 (6.4)

where 𝜔
(0)
𝑚 is the unperturbed angular frequency, 𝑣gr is the group velocity, 𝑓 is the fill

fraction, 𝜀 is the unperturbed permittivity (= 1), and 𝛿𝜀 is the change in permittivity

due to the perturbation. Both the real and imaginary parts of the extracted 𝜀samp are

plotted in Fig. 6-4c. To determine the material parameters for lactose, we fit 𝜀samp to

a Lorentzian oscillator model of the form

𝜀samp = 𝜀r + 𝑖𝜀i = 𝜀∞ +
𝜎𝜔2

0

𝜔2
0 − 𝜔2 + 𝑖𝜔Γ

(6.5)

The extracted values are shown in Table 6.1 and the fit is plotted on top of the data

shown in Fig. 6-4c. Although the data are noisy, the fit does a good job extracting the

center frequency for the lactose resonance. The other parameters are also decently

extracted. Interestingly, looking at the the experimentally determined 𝜀i alone would

suggest a much larger value for 𝜎 than what was extracted. However, 𝜀r does not

show any correspondingly large variations near 𝜔0, so it acts as a penalizing term

during the fitting procedure. Discrepancies in the values for 𝜀∞ and 𝜎 may be due to

imperfect contact between the LN waveguide and the sample. Previous studies using

LN/EFO hybrid slabs noted that there is a small air gap <10 µm thick between the

two slabs [48]. In that study, the gap was much smaller than the THz wavelength

and both materials have similar THz refractive indices, so coupling between the THz

phonon-polaritons in LN and the magnons in EFO was not significantly hindered.

However, in this case coupling to the sample takes place through the evanescent

field extending into the cladding. A 6-µm gap between the LN slab and the lactose

pellet results in an effective 35% decrease in the fill fraction, which accounts for the

discrepancies between the extracted material values and the literature values. The

material parameters extracted after accounting for the 6-µm air gap are reported in

Table 6.1.

We can also estimate 𝜀r directly from the cutoff frequencies in the experimental

dispersion. From Fig. 6-3e, the TE1 cutoff frequency for the asymmetric slab is
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Extracted values
(no air gap)

Extracted values
(6-µm air gap) Literature values

𝜀∞ 2.5 3.3 3.35
𝜎 0.031 0.078 0.0524
𝜔0/2𝜋 (THz) 0.54 0.54 0.5303
Γ/2𝜋 (GHz) 19 37 25.8

Table 6.1: Extracted material parameters for lactose using a 50 µm thick
asymmetric LN waveguide. Literature values taken from Ref. [140].

0.67THz. Assuming that the original LN waveguides (𝑛 ≈ 5.1) are 50 µm thick,

using Eq. 6.20 we get an approximate refractive index 𝑛 ≈ 1.6 (𝜀 ≈ 2.5) for lactose

which matches with the value determined using perturbation theory ignoring the air

gap.

It should be noted that 𝛼-lactose monohydrate has a relatively strong THz absorp-

tion feature which facilitated extraction of material parameters. Most other samples

would show much weaker signals, so this method may only be useful for obtaining a

crude estimate of the material parameters, namely the low-frequency dielectric con-

stant, or studies looking at shifts in a clear resonance feature. One way to improve

the sensitivity of this method is to use a thinner LN slab, which would increase the

sample fill fraction. Another possibility would be to use a photonic crystal structure

with slow-light dispersion [141, 142]. Note that this would also increase the contri-

bution to the effective absorption coefficient from LN, so one of the higher-frequency

photonic bands (where the LN fill fraction is lower) would need to be used to have

any benefit.

6.2 THz spectroscopy using a slot waveguide

In a typical polaritonics experiment, the optical pump beam is polarized along the

LN 𝑐-axis which excites the TE modes of the waveguide. Although the THz fields can

interact with the cladding material through the evanescent field, the coupling to the

cladding is very weak because of the low cladding fill fraction. Alternatively, the opti-

cal pump could be polarized along the LN 𝑏-axis to excite the TM modes which have
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a larger cladding fill fraction. However, the generation and detection efficiency for the

TM modes is much weaker. This means that although a bare LN waveguide could

theoretically be used to measure a sample placed in direct contact with the surface of

the waveguide, the sensitivity would be very weak in either case and thus unappeal-

ing for most experiments (as shown in the previous section). Various strategies have

been employed to try to improve the sensitivity of waveguide-based spectroscopy. In

the infrared frequency range, long interaction lengths and group-velocity engineering

have been used to increase the sensitivity [141–143]. However, these methods typi-

cally require processing areas with dimensions roughly >100× larger than the target

wavelength which makes scaling these techniques to THz frequencies very difficult.

An alternate strategy is to use plasmonic structures to localize an electromagnetic

field in a small region where the sample is placed. Enhanced sensitivity has been

demonstrated in the THz frequency range [42, 57, 144–146], but they relied on a

somewhat narrow plasmonic resonance to target a specific frequency range around a

known resonance in a sample. Using these techniques to investigate new materials

with unknown absorption spectra would be cumbersome and time-consuming because

only a small bandwidth could be interrogated at a time.

The slot waveguide is a structure used to localize the electric field in a low-index

region over a relatively large bandwidth [135, 136]. The slot waveguide, shown in

Fig. 6-5a, is composed to two parallel strips of high-index material with refractive

index 𝑛core surrounded by a low-index cladding with refractive index 𝑛clad. There

is a small sub-wavelength gap with width 𝑊slot between the two high-index strips.

Maxwell’s equations require that the component of the electric displacement field

𝐷 = 𝜀𝐸 that is polarized normal to a surface must be continuous when crossing a

dielectric interface. Therefore, at the core/slot interface there is a discontinuity in 𝐸

where the field strength jumps by a factor of 𝑛2
core/𝑛

2
slot, with the larger 𝐸 field being

within the slot. This results in an enhanced electric field in the low-index slot along

with increased sensitivity to a sample placed within the slot.

The experimental geometry is shown in Fig. 6-5b. The slot waveguide structure

was fabricated in a 50-µm LN slab waveguide (NanoLN) using chemically-assisted fem-
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Figure 6-5: Slot waveguide geometry. (a) Schematic illustration of the slot waveg-
uide structure. Two parallel strips of material with lateral dimensions 𝑊core and 𝐻core

and refractive index 𝑛core are separated by a distance 𝑊slot. A slab of sample mate-
rial with refractive index 𝑛slot is inserted between the two strips. The sample slab
extends outside of the slot. The entire assembly is surrounded by cladding with re-
fractive index 𝑛clad. (b) Schematic illustration of the experimental geometry. The slot
waveguide structure is fabricated in a 50 µm thick LN slab waveguide (𝐻core = 50 µm).
A thin slab of sample is inserted into the slot. (The sample height along the 𝑧-axis is
truncated for clarity.) The optical pump beam is polarized along the LN 𝑐-axis and
is line-focused outside of the slot waveguide structure, and launches a THz wave that
propagates along the 𝑥-axis. The optical probe beam passes through one of the LN
strips, followed by a quarter-wave plate (QWP) and a Wollaston prism. The probe
intensity is measured using balanced photodiodes. The parameters used for the slot
waveguide are: 𝑊core = 50 µm, 𝑊slot = 50 µm.
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tosecond laser machining [37]. The slot and LN strips were 50 µm wide (𝑊slot = 50 µm,

𝑊core = 50 µm). The entire slot waveguide structure was 2.5mm long. The experi-

ments were performed using the output from a Ti:sapphire laser (center wavelength

= 800 nm, pulse duration = 100 fs, repetition rate = 1 kHz). The output was split in

a 95:5 ratio into the pump and probe beams. The pump pulses were attenuated to

200µJ and focused onto the LN slab to a line 100µm away from the edge of the slot

waveguide structure using a 25-cm cylindrical lens. The pump was linearly polar-

ized along the LN 𝑐-axis (𝑦-axis in Fig. 6-5b). An optical chopper was used to chop

the pump beam at 500Hz. The THz fields were measured directly within the LN

waveguide using methods described elsewhere [36]. The probe beam was frequency-

doubled using a 𝛽-barium borate (BBO) crystal. The 400-nm output from the BBO

was linearly polarized 45∘ relative to the LN optic axis and was focused into one of

the LN strips in the slot waveguide using a 15-cm lens. The probe beam was then

passed through a quarter-wave plate and Wollaston prism and the intensities of the

two polarization components were measured using balanced photodiodes. A delay

stage was used to control the pump-probe delay.

As a test sample, we used 𝛼-lactose monohydrate (Sigma-Aldrich, 99% purity,

CAS 5989-81-1) due to its strong, sharp absorption peak centered at 0.53THz which

corresponds to a hindered rotation of the lactose molecules in the crystal [138, 139].

The lactose was dissolved in deionized water to make a saturated solution. The

solution was then poured into a crystallizing dish and the solvent was allowed to

evaporate under ambient conditions to form a ∼500µm thick layer of polycrystalline

lactose. Femtosecond laser machining was used to cut a 40 µm by 1.5mm slice of

the lactose. The lactose slab was purposely cut to be slightly smaller than 𝑊slot to

facilitate inserting the slab into the slot. To load the sample into the slot, the thin

lactose slab was placed on a stage with manual 𝑥, 𝑦, 𝑧 control. The stage was aligned

to the slot and the lactose slab was then gently pushed into the slot using a razor

blade.
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6.2.1 Experimental results

In order to measure THz absorption due to the inserted sample, the THz fields were

measured along the LN strips with the lactose inserted (“signal” experiment) and in

a reference experiment using an empty slot waveguide. The probe beam was stepped

along the slot waveguide in 25-µm increments. For the reference experiments, the

probe started 100µm away from the edge of the slot waveguide. For the experiments

with lactose inserted, the probe started at the edge of the lactose slab and scanned

over the extent of the filled region.

The reference space-time and dispersion plots are shown in Fig. 6-6a,b. The space-

time plot shows a weak THz field with high group velocity and another stronger THz

field with low group velocity. The dispersion plot shows features that agree with

these observations. Below 0.6THz, the THz fields have nearly linear dispersion that

approaches the vacuum light line. In this regime, the THz wavelength (𝜆 ≈ 100 µm at

0.6THz) is significantly larger than the LN strip dimensions, so the core fill fraction

is relatively low and the effective refractive index for the mode is roughly 1. Above

0.6THz, the dispersion plot becomes much more intense and deviates significantly

from the vacuum light line. In this regime, the THz wavelength becomes smaller than

the LN strip dimensions and the effective refractive index correspondingly increases.

The space-time and dispersion plots with the slot waveguide with the lactose

sample inserted are shown in Fig. 6-6c,d. The space-time plot shows features similar

to those of the reference space-time plot. In order to better visualize the effect of the

lactose slab, a window function was used to isolate the weak, fast-moving THz feature

in Fig. 6-6c when calculating the dispersion plot shown in Fig. 6-6d. A dip appears

in the dispersion at around 0.53THz, which matches the frequency of the well-known

absorption peak in lactose. In addition, the dispersion below 0.6THz shifts to larger

wavevectors corresponding to an increase in effective refractive index.

The absorption spectrum of lactose can be determined by observing how the THz

spectrum evolves as it propagates through the slot waveguide. Fig. 6-7a shows the

THz spectrum as a function of propagation distance obtained by applying an inverse
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Figure 6-6: THz field propagation through the slot waveguide. Representative
space-time (a,c) and dispersion (b,d) plots for the slot waveguide measurements. The
reference measurements (a,b) were done with an empty slot waveguide. The “signal”
measurements (c,d) were done with a lactose slab inserted into the slot.
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Figure 6-7: Spectral evolution with lactose inserted into the slot waveguide.
(a) THz spectrum as a function of propagation distance. (b) A slice of the plot in (a)
taken at 0.53THz. The data are fit to an exponental decay, which is overlaid.

Fourier transform to the dispersion shown in Fig. 6-6d along the 𝛽-axis. A clear

absorption feature appears in the spectrum starting from around 1mm into the filled

slot region and becomes stronger as the propagation distance is increased. Note that

in order to facilitate inserting the lactose slab into the slot, the lactose was inserted

at a small angle. This results in part of the lactose slab hanging out of the slot, which

effectively makes the slot empty at probe positions less than 1mm. Fig. 6-7b shows

the spectral amplitude at 0.53THz as a function of propagation distance within the

filled slot region. There is a clear decrease in spectral amplitude that agrees well with

an exponential fit. From the fit, the absorption coefficient 𝛼slot was determined to be

30.8 cm−1.

6.2.2 Extraction of bulk material parameters

We can use perturbation theory to calculate the bulk absorption coefficient 𝛼bulk from

the experimental absorption coefficient 𝛼slot for the sample inserted in the slot. Using

a first-order calculation, the increase in absorption coefficient due to the sample is

given by (see Section 2.4 for details)

𝛼slot =
𝜔

𝑣gr,slot

𝜀i
𝜀r
𝑓slot (6.6)
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where 𝜔 is the THz angular frequency, 𝑣gr,slot is the group velocity of the unperturbed

slot waveguide, 𝜀r is the unperturbed permittivity in the slot, and 𝑓slot is the slot fill

fraction. Here, we treat absorption (i.e. Im (𝜀) ≡ 𝜀i) as the perturbation. Similarly,

the bulk absorption coefficient is given by

𝛼bulk =
𝜔

𝑣ph,bulk

𝜀i
𝜀r

(6.7)

where 𝑣ph,bulk is the bulk phase velocity, and 𝜀r and 𝜀i are the real and imaginary

parts of the bulk permittivity, respectively. Using these two equations, we get the

formula for calculating the bulk absorption coefficient from the experimental absorp-

tion coefficient
𝛼slot

𝛼bulk

=
𝑣ph,bulk
𝑣gr,slot

𝑓slot (6.8)

The group velocity 𝑣gr,slot can be determined from the slope of the experimental

dispersion. Note that because we are only treating absorption as the perturbation,

the group velocity should be taken for the slot waveguide structure with the sample

inserted. From Fig. 6-6d, we get 𝑣gr,slot = 150 µm/ps. The refractive index of lactose

is 𝑛r = 1.86 [140], so the bulk phase velocity 𝑣ph,bulk = 𝑐/𝑛r = 161 µm/ps.

The fill fraction 𝑓 is calculated using the definition

𝑓slot =
⟨E(0)

𝑛 |𝜀r|E(0)
𝑛 ⟩𝑉slot

⟨E(0)
𝑛 |𝜀r|E(0)

𝑛 ⟩𝑉
(6.9)

where |E(0)
𝑛 ⟩ is the electric field mode profile for the unperturbed structure and 𝜀 is

the (unperturbed) permittivity map. The subscripts denote integration over all space

(𝑉 ) and over the slot region (𝑉slot). To determine |E(0)
𝑛 ⟩, we run EM simulations

using the finite-different time-domain method using the open-source software MEEP

[125]. We use a monochromatic THz source and propagate the simulation until the

transient signals die out. The slot waveguide only supports one guided mode at low

frequencies (<0.8THz), so |E(0)
𝑛 ⟩ is taken simply as the electric field pattern at long

times. Representative 𝑧-polarized THz electric field profiles are shown in Fig. 6-8a,b.

Fig. 6-8a shows clear localization of the electric field within the slot. A slice of the

141



electric field profile through the middle of the structure (𝑦 = 0) is shown in Fig.

6-8b. Inside the high-index LN strips, the mode follows the typical sinusoidal spatial

dependence and in the low-index regions, the electric field decays exponentially. Due

to the electric displacement continuity condition, there is a discontinuous jump in

the electric field strength at each interface which results in a relatively low electric

field strength in the LN strips. This is consistent with the relatively weak THz fields

observed in the experiment at lower frequencies. The calculated energy density of the

slot waveguide mode is shown in Fig. 6-8c. Due to the large electric field strength

in the slot, a significant portion of the energy density is localized within the slot,

which results in efficient light-matter interactions. The calculated fill fractions in the

slot and in the LN strips are shown in Fig. 6-8d. In the region between 0.35THz

and 0.50THz, 𝑓slot is approximately 50%, indicating efficient coupling to the sample

placed in the slot in that frequency range. On the other hand, the LN fill fraction

𝑓LN is quite low (<10%). Above 0.50THz, 𝑓slot drops and 𝑓LN increases rapidly. This

behavior is consistent with the experimental dispersion where the effective refractive

index is nearly unity at low frequencies and rapidly increases at frequencies above

0.6THz.

In order to calculate the bulk absorption coefficient, we return to Eq. 6.8 and

plug in the corresponding values (𝑣ph,bulk = 161 µm/ps, 𝑣gr,slot = 150 µm/ps, 𝑓slot =

0.537×0.8 = 0.427). Note that the values for 𝑓slot in Fig. 6-8d should be multiplied by

0.8 to account for the fact that the slot is 50 µm wide while the inserted lactose slab

is only 40 µm wide. This gives a peak bulk absorption coefficient 𝛼bulk = 65.1 cm−1,

which agrees very well with the literature value 𝛼 = 66.84 cm−1 [140].

Fig. 6-9a shows the calculated values for 𝛼bulk for a range of frequencies around

0.53THz. 𝛼bulk can be converted to an imaginary refractive index 𝑛i using the rela-

tionship

𝛼bulk =
4𝜋𝑛i

𝜆0

(6.10)

where 𝜆0 is the vacuum wavelength. The calculated values for 𝑛i are shown in Fig.
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Figure 6-8: Fill fraction calculation. (a) Simulated 𝐸𝑦 field profile at 0.53THz.
The black lines indicate the dielectric interfaces of the slot waveguide cross-section.
The refractive index of the slot region was 𝑛slot = 1.86. Because the sample used in
our experiments was semi-infinitely long along the 𝑧-axis, the slot region extended
infinitely along the 𝑧-axis as opposed to only containing the region between the two
LN strips. (b) THz field profile along a horizontal slice through the center of the
structure (𝑧 = 0) extracted from (a). The vertical black lines indicate the slot/LN and
LN/cladding interfaces. (c) Calculated energy density profile for the EM mode shown
in (a). The white lines indicate the dielectric interfaces of the slot waveguide cross-
section. All field components were included when calculating the energy distribution.
(d) Calculated fill fractions in LN (blue) and in the slot (red).

6-9b. We can fit 𝑛i to the Lorentzian oscillator model using the equation

𝜀 (𝜔) = [𝑛r (𝜔) + 𝑖𝑛i (𝜔)]
2 = 𝜀∞ +

𝜎𝜔2
0

𝜔2
0 − 𝜔2 + 𝑖𝜔Γ

(6.11)

where 𝜀∞ is the high-frequency permittivity, 𝜔0 is the resonance frequency of the

oscillator, Γ is the damping rate, and 𝜎 is the oscillator strength. The extracted
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Figure 6-9: Extracting parameters for bulk lactose. (a) Values for 𝛼bulk calcu-
lated using Eq. 6.8. (b) Values for imaginary refractive index 𝑛i calculated using Eq.
6.10. The Lorentzian fit (dashed line) using the parameters output by the iterative
procedure is also plotted in (a) and (b).

values are given in Table 6.2. Literature values are also tabulated for comparison.

The fit recovers values that agree quite well with literature values.

It should be noted that lactose is a well-studied material in the THz frequency

range, so the material parameters (notably the high-frequency permittivity 𝜀∞) are

readily available and could be used for the calculation. For an novel material, 𝜀∞ is

not necessarily known beforehand so there would be no value for 𝑣ph,bulk to use in Eq.

6.8 to calculate 𝛼bulk from 𝛼slot. To extract 𝜀∞ without prior knowledge, we use the

following iterative process.

1. Choose an initial guess 𝜀
(1)
∞ > 1.

2. Calculate 𝛼bulk using 𝑣ph,bulk =
𝑐

√
𝜀∞

.

3. Calculate 𝑛i from 𝛼bulk using Eq. 6.8 and fit to Eq. 6.11.

4. Calculate the refined value 𝜀
(𝑛+1)
∞ as the average value between 𝜀

(𝑛)
∞ and the

value for 𝜀∞ output by the fit.

5. Repeat steps 2–4 until 𝜀(𝑛)∞ converges with the output from the fit.

Starting with an initial guess 𝜀
(1)
∞ = 2.0 (𝑛r = 1.4, 𝑣ph,bulk = 210 µm/ps), this proce-

dure converges after 5 iterations to 𝜀∞ = 3.3, which agrees well with the literature
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Extracted values
(using literature 𝜀∞)

Extracted values
(using iterative procedure) Literature values

𝜀∞ 3.35* 3.3 3.35
𝜎 0.054 0.055 0.0524
𝜔0/2𝜋 (THz) 0.53 0.53 0.5303
Γ/2𝜋 (GHz) 34 34 25.8

Table 6.2: Extracted material parameters for lactose using a LN slot waveg-
uide. Literature values taken from Ref. [140]. * indicates that the parameter was
fixed to this value during fitting.

value. The material parameters output by the iterative procedure are given in Table

6.2.

6.3 Summary and future directions

In this chapter, we discussed two techniques that improve the capabilities of the

polaritonics platform for compact THz spectroscopy.

The first method uses an HR-coated LN slab to facilitate imaging the THz fields

as they interact with a sample that is incompatible with the usual polarization gating

imaging geometry. The technique was used to image magnon-polaritons in a hybrid

LN/EFO hybrid slab. The measured dispersion showed an avoided crossing indicative

of strong coupling between the THz-frequency phonon-polaritons in LN and the quasi-

antiferromagnetic magnon mode in EFO, as reported before. The technique was also

used to measure the dielectric function of 𝛼-lactose monohydrate. Perturbation theory

was used to extract the complex dielectric function of lactose. Although the sensitivity

is poor, the technique could be used to extract the center frequency of a material

resonance and also provide a rough estimate for the refractive index. In general, this

technique could be leveraged to observe the THz fields in a hybrid waveguide as they

interact with a strcture, e.g. observing magnon-polaritons that are confined within a

cavity or are scattered off of a structure.

The second method uses a slot waveguide to localize the THz electric field inside

a low-index region for improved coupling to a sample. A thin slab of 𝛼-lactose mono-

hydrate was inserted into the slot and the absorption spectrum was measured over
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a relatively large bandwidth with good sensitivity. The bulk absorption spectrum

was calculated using perturbation theory and fit to a Lorentzian oscillator model to

yield material parameters that agree very well with literature. The fitting procedure

does not depend on any prior knowledge about the sample, so it could be used to

characterize novel materials. These results open up a lot of potential for compact

THz spectroscopy, especially in cases where specialized sample environments make it

difficult to use a traditional THz-TDS setup, e.g. samples located inside the bore of

a cryomagnet.

Lastly, the slot waveguide structure is particularly compatible with the TREx

method described in Chapter 5 and has the potential to enable compact nonlinear THz

experiments. Although the TREx method can generate THz electric field strengths

up to 175 kV/cm at the TREx focus, the field strength rapidly diminishes as the fields

diverge which limits the interaction length between the THz fields and a potential

sample. Furthermore, 175 kV/cm is the average field strength measured in the LT

slab. The field strength at the LT/air interface for the TE0 mode at 0.7THz is about

half of the maximum value. This means that a sample placed at the surface of the LT

slab would experience around 85 kV/cm which generally is too low to efficiently drive

nonlinear behavior in many materials of interest. The slot waveguide address both of

these problems. Fig. 6-10a shows one possible configuration for a compact nonlinear

THz experiment using TREx excitation together with a slot waveguide. The TREx

method is used with only half of the echelon mirror illuminated so that the pump

beam is shaped into a series of half-rings that excite a converging THz field in a thin

LT crystal. The pump half-rings are positioned so that the THz fields focus into the

slot waveguide. A nonlinear crystal is inserted into the slot and an optical probe beam

is used to read out the nonlinear response of the sample. In order to estimate the

THz electric field strengths in the slot, an FDTD simulation of the proposed geometry

was performed and the peak electric field strength was recorded along the center of

the slot waveguide. Fig. 6-10b shows the extracted field strengths. The peak field

strength is approximately 100 kV/cm right at the entrance of the slot waveguide and

it diminishes to about 60 kV/cm over 200µm of propagation. Potential samples that
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Figure 6-10: Integrated nonlinear THz spectroscopy using the polaritonics
platform. (a) Schematic illustration of a potential nonlinear THz experimental ge-
ometry. The TREx pump half-rings are used to excite a converging THz field that
focuses into the slot waveguide that is laser machined in a thin LT slab. A sample
(e.g. nonlinear crystal) is inserted into the slot. An optical probe is used to read out
the nonlinear response of the sample. (b) Plot of the maximum THz electric field
strength within the slot.

should show a nonlinear response at these field strengths include nonlinear crystals

such as ZnTe [147] and 𝛽-barium borate [148] and also monolayer transition metal

dichalcogenides [149]. The decrease in peak field strength is due to strong dispersion

of the slot waveguide. This suggests that using the TREx method with a narrowband

pumping scheme, such as chirp-and-delay [35], would maintain a high field level for a

longer propagation distance. Note that the nonlinear THz-induced sample response

may be measured optically, as shown in Fig. 6-10a, or by measurement of a coherent

THz signal emitted in a direction out of the waveguide plane. In these cases the path

length in the sample may be unimportant, and it could be possible to irradiate the

sample with THz fields excited via two sets of TREx pump half-rings that focus from

both sides. This would increase the field strength and also allow for the selection of

an optimized THz electric or magnetic field component as described earlier.
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6.4 Appendix: TE modes of an asymmetric dielec-

tric waveguide

In the reflective imaging geometry, the cladding on one side of the waveguide is

replaced with the sample. In some cases (e.g. EFO), both the LN and sample

slabs have similar refractive indices, so the hybrid slab should be treated as a single

waveguide with increased thickness. However, in most cases the sample has a much

lower refractive index than the LN slab, so we treat the structure as an asymmetric

slab waveguide. Here, we will assume that the high-index core with refractive index

𝑛core is surrounded by an air cladding (refractive index 𝑛air = 1) on one side and some

homogeneous sample (refractive index 𝑛samp) on the other side. The refractive index

profile, shown in Fig. 6-11a, is given by

𝑛 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑛core 0 ≤ 𝑥 ≤ 𝑑

𝑛air 𝑥 < 0

𝑛samp 𝑥 > 𝑑

(6.12)

where 𝑛core > 𝑛samp > 𝑛air.

To solve for the TE mode profiles and mode dispersion, we follow a procedure

similar to that described in Section 3.2.1 for a symmetric waveguide. We start by

writing the general form of the 𝐸𝑦 (𝑥) given by Maxwell’s equations. For guided

modes, the electric field profile is sinusoidal within the high-index core and decays

exponentially in the low-index cladding.

𝐸𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴 cos (ℎ𝑥) +𝐵 sin (ℎ𝑥) 0 ≤ 𝑥 ≤ 𝑑

𝐶 exp (𝑞air𝑥) 𝑥 < 0

𝐷 exp (−𝑞samp𝑥) 𝑥 > 𝑑

(6.13)
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Figure 6-11: The asymmetric dielectric slab waveguide. (a) Refractive index
profile for the asymmetric waveguide. (b) Calculated TE dispersion curves for an
asymmetric 50-µm LN slab waveguide where 𝑛samp = 1.7. The dispersion for a sym-
metric 50-µm LN slab waveguide (with air cladding on both sides) is also plotted
(black dashed lines) for reference. (c) Calculated wavevector shift (blue line) for the
TE0 mode in (b) for an asymmetric slab waveguide relative to a symmetric waveg-
uide. The values calculated from first-order perturbation theory (orange line) are also
plotted for comparison.
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where ℎ, 𝑞air, and 𝑞samp are related to the propagation constant 𝛽 by

𝛽2 = 𝑛2
core𝑘

2
0 − ℎ2 = 𝑛2

air𝑘
2
0 + 𝑞2air = 𝑛2

samp𝑘
2
0 + 𝑞2samp (6.14)

This puts constraints on the possible values of 𝛽 for the guided modes.

𝑛2
samp𝑘

2
0 < 𝛽 < 𝑛2

core𝑘
2
0 (6.15)

By invoking the field continuity conditions at each dielectric interface, we get the

following functions for 𝐸𝑦 (𝑥), 𝐻𝑥 (𝑥), and 𝐻𝑧 (𝑥).

𝐸𝑦 (𝑥) = 𝐶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos (ℎ𝑥) +

𝑞air
ℎ

sin (ℎ𝑥) 0 < 𝑥 < 𝑑

exp (𝑞air𝑥) 𝑥 < 0[︁
cos (ℎ𝑑) +

𝑞air
ℎ

sin (ℎ𝑑)
]︁
exp [−𝑞samp (𝑥− 𝑑)] 𝑥 > 𝑑

(6.16)

𝐻𝑥 (𝑥) =
𝛽𝐶

𝜔𝜇0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos (ℎ𝑥) +

𝑞air
ℎ

sin (ℎ𝑥) 0 < 𝑥 < 𝑑

exp (𝑞air𝑥) 𝑥 < 0[︁
cos (ℎ𝑑) +

𝑞air
ℎ

sin (ℎ𝑑)
]︁
exp [−𝑞samp (𝑥− 𝑑)] 𝑥 > 𝑑

(6.17)

𝐻𝑧 (𝑥) = − 𝑖𝐶

𝜔𝜇0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ℎ sin (ℎ𝑥) + 𝑞air cos (ℎ𝑥) 0 < 𝑥 < 𝑑

𝑞air exp (𝑞air𝑥) 𝑥 < 0

−𝑞samp

[︁
cos (ℎ𝑑) +

𝑞air
ℎ

sin (ℎ𝑑)
]︁
exp [−𝑞samp (𝑥− 𝑑)] 𝑥 > 𝑑

(6.18)

Using these equations, we get the characteristic equation

tan (ℎ𝑑) =
ℎ (𝑞air + 𝑞samp)

ℎ2 − 𝑞air𝑞samp

(6.19)

Note that setting 𝑞air = 𝑞samp recovers the characteristic equation (Eq. 3.22) for the

symmetric waveguide. Using this equation, we can numerically solve for the dispersion

𝛽 (𝜔). A representative dispersion plot for an asymmetric waveguide is shown in
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Fig. 6-11b. Compared to the dispersion for a symmetric waveguide, the asymmetric

waveguide dispersion is very similar. In general, there is a slight increase in the

propagation constant 𝛽 due to the increase in cladding refractive index. The cutoff

frequencies for the TE modes are also increased. The difference in TE0 propagation

constant ∆𝛽 between the symmetric and asymmetric waveguides is plotted in Fig.

6-11c.

The cutoff frequencies for the modes can be found by setting 𝛽 to its minimum

value (𝛽 = 𝑛samp𝜔/𝑐) and plugging into Eq. 6.19. This gives the equation

𝑓cutoff,𝑚 =
𝑐

2𝜋𝑑
√︀
𝑛2
core − 𝑛2

samp

[︃
𝑚𝜋 + arctan

(︃√︃
𝑛2
samp − 𝑛2

air

𝑛2
core − 𝑛2

samp

)︃]︃
(6.20)

where 𝑚 is an integer denoting the TE𝑚 waveguide modes. Note that compared

to Eq. 3.23 for a symmetric waveguide, there is an additional arctan (·) term that

contributes a small increase to the cutoff frequencies. This causes the TE0 mode to

have a nonzero cutoff frequency, unlike for a symmetric waveguide where the TE0

cutoff frequency is always 0.

The asymmetric waveguide dispersion can also be estimated from perturbation

theory. (See Section 2.4 for details.) The first-order shift in wavevector 𝛽
(1)
𝑚 is given

by

𝛽(1)
𝑚 =

𝜔𝑚

2𝑣gr

𝛿𝜀

𝜀
𝑓clad (6.21)

where 𝜔 is the angular frequency, 𝑣gr is the group velocity of the unperturbed mode at

𝜔𝑚, 𝛿𝜀 is the change in cladding permittivity, 𝜀 is the unperturbed cladding permittiv-

ity, and 𝑓clad is the cladding fill fraction. The calculated 𝛽
(1)
𝑚 is compared against the

values from an exact calculation in Fig. 6-11c. There is excellent agreement between

the two plots. At low frequencies, there is moderate disagreement between the calcu-

lated values. This is because 𝑓clad rapidly increases near the cutoff frequency, so the

perturbation theory calculation should be carried out to higher orders for the calcula-

tion to converge. At higher frequencies 𝑓clad is quite small, so first-order perturbation

theory is sufficient.
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