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ABSTRACT

We would like to enable a team of robots to navigate quickly and efficiently in large
and uncertain outdoor environments. We hypothesize that in such environments, global,
uncertainty-aware information is necessary to enable high-quality planning. However, most
existing systems do not model or plan using global, uncertainty-aware information. For
example, many planners assume access to complete global information in the form of full
environment maps, or they assume that locally good planning decisions under uncertainty
will result in globally good planning outcomes. To enable the use of global information
for planning in large and uncertain environments, we must develop models that concisely
represent key navigation features of the environment, and build planners that are capable of
reasoning efficiently about global information. In this thesis, we design models and planners
that use global information in large and uncertain environments to increase the efficiency
and quality of planning for navigation.

We present four contributions towards using global information for efficient navigation.
First, we propose a high-level planning representation that can be learned from previous
plans considered in the environment and used online during hierarchical, multi-query robot
navigation. Second, we propose a planner for collaborative multiagent navigation in an
uncertain environment; the approach uses macro-actions and value function approximations
to maintain computational tractability. Third, we develop a robust hierarchical planning
system to enable the deployment of the collaborative multiagent planner on a real-world
team navigating in a structured, uncertain outdoor environment. Finally, we develop a
method for learning uncertainty-aware, single agent value function-based approximations
from graph data to increase the efficiency of the collaborative multiagent planner.

Thesis supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

We would like to enable a team of robots to navigate quickly and efficiently in large, uncertain

outdoor environments, such as those in Fig. 1.1. Efficient outdoor navigation is a core

capability for many robotic teams, including those completing search and rescue and scouting

missions. However, many traditional planning approaches were not designed for use in long

length scale environments, where reasoning over all global structure can be computationally

infeasible, or for use in unknown environments, where global structure is not available. For

robots planning long length scale navigation tasks, or for teams of robots navigating in

uncertain environments, traditional planning approaches that do not take into account the

global structure of the environment can lead to low-quality plans.

For example, consider the air vehicle and ground vehicle team navigating in the unmapped

outdoor environment in Fig. 1.2-a, given only goal coordinates and an overhead image. The

ground vehicle is tasked with navigating from start SG to goal GG and the air vehicle is

tasked with navigating from start SA to goal GA while minimizing team makespan. If the

vehicles were to adopt the common robotics assumption that all unmapped regions of the

environment are unoccupied, the ground vehicle would likely attempt to navigate to the goal

through the untraversable trees and buildings in the center of the image, resulting in poor

team planning performance or even team planning failure.
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a) b)

c)

Figure 1.1: Example deployment environments. (a) A kilometer-scale simulated city
and outpost. (b) An outdoor park. (c) A semi-structured outdoor environment.

One method for improving team planning performance in this example is to generate

models of global environment information and use the models for robot planning. For ex-

ample, given the overhead image, a human can generate a high-level idea of the navigation

properties of the environment, such as difficult navigation in the dense forest surrounding

the buildings in Fig. 1.2-a, and efficient navigation on the roads. The human can then use

the global information to identify low expected cost candidate paths for the agents. For

example, the air vehicle can likely navigate directly to the goal using roads, and there are

two possible low cost paths for the ground vehicle — one path through the sparse trees at

the top of the image (Fig. 1.2-b), and one path that avoids all areas with trees and uses only

roads to navigate to the goal (Fig. 1.2-d).

However, enabling robots to autonomously generate and plan in global environment mod-

els is non-trivial. Good global models for planning must be both representative and sparse

— they must capture key navigation features of environments, such as traversable roads and

impassable dense forests, but they also must be efficient for global planning. Unfortunately,

these two objectives are at odds with one another; capturing navigation features of environ-

ments requires an agent to model many specific environment details, yet planning is most

18
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Figure 1.2: Motivating example. Consider an air vehicle/ground vehicle team navigating
in a real-world structured outdoor environment. (a) From only an overhead image, it is
not obvious if the forested region is traversable (purple). A ground vehicle starting at SG
and navigating to GG with no additional information has to select between an unknown
trajectory that could lead to either a short path (b, green) or a long detour (c, green) and
a medium-length, known trajectory (d, dark blue), either of which can be suboptimal given
the unknown traversability of the forest. By taking a small diversion to the gold star, the air
vehicle (with start SA and goal GA) can sense and share the traversability of the forest with
the ground vehicle (e, light blue), allowing the ground vehicle to select the best available
path to GG for every forest state (e, green and f, dark blue), reducing the total expected
team navigation cost.
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efficient when the environment models are small and sparse. The challenge of generating

sparse, representative models is even greater in uncertain environments, as uncertainty often

increases model complexity.

Hierarchical and abstract environment models are a promising method for incorporating

long length scale and uncertainty-aware planning structure into robot planning decisions.

High-level models have the potential to represent key navigation information in a compact

way that is compatible with efficient robot planning. For example, high-level models can be

used to summarize key environment information when it is computationally intractable to

represent all environment information at robot execution time, or they can be used to model

environment information that is beyond the horizon of traditional local planning models.

For example, in Fig. 1.2, an abstract model based on environment semantics may represent

the untraversable water at the top left of the environment coarsely, as it is not important to

maintain detailed information about the untraversable lake. At the same time, the abstract

model may represent the roads in finer detail, as detailed road information is likely to be

important for generating good plans in the environment. Similarly, an abstract model based

on metric task information may include information about roads near the ground vehicle’s

goal that are not otherwise captured by the vehicle’s local map or planner, enabling better

decision-making about paths that avoid the central cluster of buildings and trees.

Unfortunately, it is not obvious how to automatically generate the sparse, representative

models that are most useful for efficient navigation planning in large, possibly unknown

outdoor environments, especially prior to planning. While it is intuitive that outdoor en-

vironmental structure, like the presence or absence of a path or a forest, or the existence

of a traversable bridge in an impacted city, can change an agent’s ability to navigate effi-

ciently, the usefulness of environmental information for planning is dependent on the agent

or team task, environmental uncertainty, and the history of prior (team) actions, among

others. However, most models must decide the trade off between the completeness of infor-

mation they retain about the environment and the efficiency of the planning process prior to

20



having any task- or timestep-relevant context, which can significantly impact the usefulness

of specific environmental information. Therefore, it is fundamentally challenging to generate

sparse, representative models of large and uncertain environments that capture important

environment features for general navigation tasks.

Additionally, the usefulness of an abstract representation is dependent on the planner

that uses the model. In this work, we define high-quality planners as planners that are able

to efficiently find low cost, risk-aware solutions to planning problems using abstract models.

High-quality planners must be capable of using the abstract models to quickly reduce the

number of plans or policies considered during online planning, either by directly identifying

good plans and policies, or by identifying uncertain information that must be resolved to

enable low-cost, risk-aware planning. In uncertain environments, the planners must be able

to use the abstract models to balance between exploring regions of the environment that

may lead to low cost plans, and exploiting known low cost plans in the environment. For

example, in Fig. 1.2, a planner must be able to decide between navigating to sense the

traversability of the sparse forest in the top right of the image, which results in either

navigating directly to the goal (Fig. 1.2-b) or a long detour (Fig. 1.2-c), or navigating to

the goal via a conservative path on roads that is longer but known to be traversable (Fig.

1.2-d). Multiagent planners under uncertainty also have the flexibility to use different agents

to reduce team environmental uncertainty. For example, in Fig. 1.2-e-f, a multiagent planner

that sends the air vehicle to the gold star to sense the traversability of the forest and share

the information with the ground vehicle will reduce expected team makespan.

Unfortunately, generating informed planners that are capable of taking advantage of

abstract environment models is also challenging. Planners that use global environmental

information for decision-making must be capable of reasoning about planning at long time

horizons, as global navigation information that is important for planning often exists at long

length scales and time horizons. Additionally, these planners must be capable of trading

off between exploration and exploitation in uncertain environments, which is known to be a
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challenging problem. Finally, multiagent planners must be able to plan with delayed rewards,

as the benefit of a teammate’s action may not be realized until later in an agent’s plan.

In this thesis, we develop models and planners that are updated online based on past

and current planning information to more efficiently represent and reason about long length

scale, uncertain global information for navigation in large, outdoor environments. We use

a combination of prior domain knowledge and online observations to generate sparse, rep-

resentative abstractions for planning. We explicitly model and reason about environmental

uncertainty in our planning algorithms, enabling agents to make risk-aware planning de-

cisions, and enabling multiagent teams to collaborate in the face of uncertainty, all while

maintaining computational tractability. Finally, we develop methods to increase the effi-

ciency of our planners, enabling their deployment for complex teams navigating in large and

uncertain outdoor environments.

1.1 Online Hierarchical Model Generation for Multi-Query

Planning

In our first contribution, we propose an abstract model for planning that can be learned

from previous plans considered in the environment and used online during hierarchical, multi-

query robot navigation. While existing hierarchical planners can plan efficiently using static,

coarse, often hand-selected abstractions that are sparse and representative in select environ-

ments, these planners often fail to capture the lossy nature of plan abstraction for planning

in complex environments. Rather than generating an abstraction tailored to a specific envi-

ronment, we select a simple environmental decomposition to generate an abstract model of

the planning problem, and explicitly represent uncertainty caused by imperfect abstraction

in the abstract model. Then, we recognize that we can treat previous planning results in

the environment as noisy measurements of the navigation properties of the abstract model.

We use the measurements to update the navigation properties of the abstract model on-
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line during multi-query planning using recursive estimation. Finally, we use a hierarchical,

uncertainty-aware planner that is capable of using the high-level model to generate plans

over the course of a multi-query planning trial.

We tested our approach in a simulated long length scale outdoor environment using

standard and risk-aware planning schemes, and demonstrated up to an 86% decrease in the

number of nodes expanded and a 66% decrease in wallclock time as compared to a baseline

A* planner while finding plans that were only 2-10% more expensive.

1.2 Models and Approximations for Collaborative Mul-

tiagent Planning under Uncertainty

In our second contribution, we develop a planner for collaborative multiagent navigation in

an uncertain environment, represented as a stochastic graph, where some edges may be un-

traversable. We model collaborative team policies on stochastic graphs using macro-actions,

where each macro-action for a given agent can consist of a sequence of movements, sensing

actions, and actions of waiting to receive information from other agents. To reduce the num-

ber of macro-actions considered during planning, we generate optimistic approximations of

the value functions of candidate future team states, and then restrict the planning domain to

a small policy class that consists of only macro-actions that are likely to lead to high-reward

future team states. Then, we optimize team plans over the small policy class.

We demonstrated our approach in simulated toy graph and island road network domains,

and showed that our approach found up to 21.0% and 18.1% better plans, respectively,

than other planning methods that did not reason about collaborative multiagent plans.

Additionally, in the toy environment, we showed that our approach found plans up to 43.0%

more quickly than a collaborative planner that did not use approximations to generate a

small policy class for collaborative team planning.
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1.3 Real-World Collaborative Multiagent Planning un-

der Uncertainty

In our third contribution, we deployed the collaborative multiagent planner for a real-world,

two-agents team navigating in one structured, uncertain outdoor environment and in one

semi-structured, uncertain outdoor environment. While enabling tractable planning requires

the development of abstract models that can represent complex, high-quality plans, such

models often abstract away information needed to generate directly executable plans for

real-world agents in real-world environments, as planning in such detail, especially in the

presence of real-world uncertainty, would be computationally intractable. We describe the

deployment of a planning system that used a hierarchy of planners to execute collaborative

multiagent navigation tasks in real-world, unknown environments. By developing a planning

system that was robust to failures at every level of the planning hierarchy, we enabled the

team to complete collaborative navigation tasks, even in the presence of imperfect planning

abstractions and real-world uncertainty.

1.4 Learned Value Functions for Planning under Uncer-

tainty

In our fourth contribution, we introduce a method for learning uncertainty-aware, single-

agent value functions from graph data to enable more efficient collaborative multiagent plan-

ning under uncertainty. While information-gathering actions, such as sensing the traversabil-

ity of a route, can have a large impact on aggregate team performance for collaborative

agents navigating through an unknown environment, planning over the full space of joint

team actions is generally computationally intractable. The approach described in Section 1.2

developed multi-agent macro-actions for navigation on stochastic graphs and a value func-
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tion approximation-based planner that enabled us to find high-quality collaborative plans

for small environments and teams, but the approach was computationally limited, especially

as the size of the environment and team increased. We propose learning a value function

approximator to increase the efficiency of the uncertainty-aware collaborative multiagent

planner. Specifically, we develop a method for learning belief-dependent value function ap-

proximations on uncertain graphs.

We demonstrate the approximations in the collaborative planner in toy graph and island

road network domains, and demonstrate a 36.6% improvement in planning time as compared

to a Monte Carlo (MC) rollout-based approximation approach for team planning in the toy

domain, while finding plans of similar quality.

1.5 Statement of Contributions

The contributions of this thesis are as follows:

1. A high-level planning representation that can be learned from previous plans considered

in the environment and used online during hierarchical, multi-query robot navigation

(Chapter 3).

2. A planner for collaborative multiagent navigation in an uncertain environment that is

represented as a stochastic graph with edges with uncertain traversabilities (Chapter

4).

3. A robust hierarchical planning system for deploying the planner from Chapter 4 on a

real-world team navigating in a structured, uncertain outdoor environment, and the

results of two real-world deployments of the system (Chapter 5).

4. A method for learning uncertainty-aware, single-agent value functions from graph data

to enable more efficient collaborative multiagent planning under uncertainty (Chapter

6).
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A subset of the ideas in Chapter 2 were previously presented in [134]. The works described

in Chapter 3, Chapter 4, and Chapter 5 were originally presented in Stadler et al. [135],

Stadler et al. [136], and Kurtz et al. [75], respectively.
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Chapter 2

Background

2.1 Overview

In this section, we review the point-to-point single-agent and collaborative multiagent nav-

igation problems. We review models for planning in large and unknown environments, and

discuss the challenges associated with generating high-quality (e.g., low-cost and risk-aware)

plans and policies in such domains.

2.2 The Continuous Single-agent Optimal Planning Prob-

lem

Consider a robot with state x defined in some continuous configuration space X ∈ Rd,

where d is the dimensionality of the state. Let ζ be a continuous mapping through X , i.e.,

ζ : [0, 1] → Rd. The goal of the motion planning problem is to find a valid (i.e., non-colliding

and dynamically feasible) plan that takes the robot from an initial state xs to a goal state xg,
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where xs, xg ∈ X , while minimizing a cost function c of the plan, such as time or distance:

ζ∗ = argmin
ζ

c(ζ; Γ)

s.t. f(ζ(t); Γ) = 1 ∀t ∈ [0, 1]

ζ∗(0) = xs, ζ
∗(1) = xg,

(2.1)

where, formally, c : ζ → R≥0 is a function that maps continuous trajectories to positive scalar

costs, f is a feasibility function, f : X → {0, 1}, that indicates if a state is non-colliding and

dynamically feasible, and Γ is additional inputs, such as the kinematic model and the map.

While the complexity of the optimization in Eq. 2.1 is dependent on problem details,

the most general forms of the problem have been shown to be PSPACE-complete [122, 23,

82]. In general, there are two main approaches for solving the optimization: trajectory

optimization and discrete planning. While trajectory optimization has been an effective

tool for generating plans locally [158, 127], where problem structure restricts the set of ζ

that must be considered by the optimizer, most solvers can be computationally expensive to

deploy and prone to local minima, especially in large, potentially uncertain environments, like

those encountered during outdoor navigation. Recently, a number of approaches have been

developed to improve trajectory optimization methods for long length scale, high dimensional

planning [94, 95]; however, these approaches are still limited in the environment and robot

motion models that they can reason about, and have not been demonstrated in complex,

uncertain environments. For this reason, in this thesis, we focus on discrete planning methods

for solving the optimization in Eq. 2.1 in large and uncertain environments.

2.3 The Discrete Single-agent Optimal Planning Problem

One common approach for mitigating the complexity of the optimization in Eq. 2.1 is to

approximate the continuous plan ζ as a sequence of discrete primitive actions a ∈ A, where

we define each action as an explicitly encoded trajectory with a specific beginning state b(a)
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and a specific ending state e(a), where b(a), e(a) ∈ X . Formally, we define a sequence of

primitive actions as a primitive plan, p = {a0, a1, ..., an−1}, where n is the number of actions

in the plan, and p ∈ P , where P is the space of all possible discretized primitive plans.

We also refer to the sequence of actions in a plan as a0:n−1. We define the discrete optimal

planning problem,

p∗ = argmin
p∈P

n−1∑
j=0

c(aj; Γ)

s.t. f(aj; Γ) = 1 ∀j ∈ {0, 1, ..., n− 1}

b(aj) = e(aj−1) ∀j ∈ {1, ..., n− 1}

b(a0) = xs, e(an−1) = xg,

(2.2)

where f is a partition function that maps every a ∈ A to feasibility, f : A → {0, 1}, where

f(a; Γ) = 0 indicates that it is not feasible to execute the action a from action start state

b(a), and c is a scalar cost function defined over primitive actions, c(a; Γ) ∈ R. Throughout

this work, we will refer to c(aj; Γ) and f(aj; Γ) as primitive navigation properties of action

aj.

Given a planning problem, there are two key questions that must be answered in order

to solve the optimization in Eq. 2.2:

1. Modeling the Problem: What is the right discrete model of the environment for plan-

ning?

2. Solving the Problem: How should an algorithm search for a solution to the problem,

given an environment model?

In the following sections, we review common approaches for answering both questions.

2.3.1 Modeling the Problem

First, we discuss approaches for generating a discrete model of the environment that can be

used for planning. Common approaches to discrete model generation include regular and
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sampling-based discretizations of the state and action spaces. Both approaches require us

to define a state mapping function [55], which maps (a subset of) the continuous state space

into discrete objects (e.g., nodes) that can be ingested by a planning algorithm, and an

action space, which defines a set of actions that can be applied to objects in the discrete

state space, and that result in an updated agent state.

First, we discuss regular discretization techniques, which apply the state mapping func-

tion and action space at consistent intervals in the continuous state space. One of the earliest

forms of regular modeling was the occupancy grid [38], which represented agent states as

discrete locations in a grid-based model of the environment, and agent actions as holonomic

movements to adjacent, unoccupied grid cells (i.e., up, down, left, right). Today, occupancy

grids are still extremely common in robotics applications, and various modifications have

been proposed, including to increase the efficiency of the representation (e.g., by using an

octree data structure to represent occupancy [54], or by compressing the octree using in-

formation theoretic metrics [76]), and to represent other environmental features in the grid

(e.g., semantics [5]). However, grid-aligned, holonomic representations of robot movement

can result in poor planning for agents with complex dynamics, or for agents operating in

environments with complex obstacles, especially when local adaptations to a holonomic plan

(e.g., to obey the kinodynamic constraints of an agent attempting to execute the plan) can

result in plan infeasibility. To mitigate this issue, methods that adapt occupancy grids

(e.g., by using local trajectory optimizers to smooth grid based-plans [143], or by gener-

ating environment and agent-aware state lattices [118]) were developed to model feasible,

low-cost trajectories for complex robots and environments while maintaining the benefits

of a regularly-applied action set. Since their introduction, various state lattice adaptations

have been proposed to increase plan expressivity and reduce plan costs, including updating

action end points to better model low-cost paths in the environment [143, 55], and various

approaches to reduce the computational cost of state lattice adaptation, including heuristic

approaches [106], learned approaches [107], and memoization-based approaches [52].

30



Unfortunately, existing regular discretization-based planning models can be insufficient

to enable low cost, computationally tractable navigation in large, outdoor environments.

Methods that directly discretize the configuration space can be inefficient in large environ-

ments, as the number of discrete entities required to naively represent the environment scales

polynomially in the length scale of the environment and exponentially in the dimension of

the environment. While current methods attempt to balance between the fidelity of the

environment model and computational tractability for planning, model resolution is often

hand-tuned from expert knowledge. Poor resolution selection can result in computational

intractability if the representation is too detailed, or can result in high-cost or infeasible

plans if the representation is not detailed enough to represent key features of the environ-

ment, like a narrow passageway on the shortest path to the goal. When combined with an

optimal search strategy, regular discretization-based planning models are resolution com-

plete and resolution optimal. They are guaranteed to find a valid plan if one exists given

the selected discretization resolution r, and they are guaranteed to find an optimal plan in

the r-discretized environment model. However, while regular discretization-based models

can be effective in environments where it is easy to select a good planning resolution r, it is

not obvious how to select a good r for outdoor navigation, as the resolutions of important

navigational features vary significantly (e.g., tree stump, bush, lake, field).

One approach to mitigating the challenge of selecting a discretization resolution for plan-

ning is sampling-based discretization. In sampling-based discretization, discrete planning

nodes are generated by sampling states from a distribution over valid agent configurations.

Then, a planning graph is generated by connecting nodes using a deterministic edge genera-

tion function. Common connection functions include connecting each state to its k nearest

neighbors [66], or connecting each state to all neighbors that lie within a d-ball of the state

[65]. Because they do not require a planner to exhaustively consider many states at a given

planning resolution, sampling-based planning graphs can often represent long length scale

and high dimensional environments with fewer nodes and edges than regular planning graphs;

31



for example, in an outdoor environment, a sampled graph may contain few samples in a large,

open field, but many samples in a forest with dense obstacles. However, to generate these

efficient graphs, an agent must encode information about the environment (e.g., the exis-

tence of a field or forest) in its sampling distribution. Significant effort has been invested

in generating informed sampling strategies for sampling based-motion planning, including

using heuristics to improve modeling in narrow passageways and near obstacles [56, 3], using

heuristics to quickly find an initial path [155, 130], using heuristics to refine an existing

path [44, 62], and learning sampling distributions that are conditioned on environment in-

formation [58, 59, 101, 92, 150]; however, these approaches largely require access to global

occupancy information. One notable exception is Liu et al. [92]; which developed a sampling

distribution for planning in uncertain environments using local, online-generated occupancy

and semantic maps; however, the approach only generated a sampling distribution in a local

region around the robot, and only considered coarse global information, such as whether

a goal was indoors or outdoors, when generating the sampling distribution. While the ap-

proach enabled improved local planning, the sampling distribution did not capture globally

relevant information for planning. Concurrently, sampling-based approaches have been ex-

tended to generate kinodynamically feasible motion graphs, for example, by constraining

tree expansion to kinematically feasible paths [47], and by generating new nodes by forward

simulating vehicle dynamics from existing nodes [90]. However, while sampling-based mo-

tion planners can be an effective tool for planning with complex teams in large and high

dimensional known environments, existing approaches are not well suited for long-horizon

navigation in long-length scale outdoor environments, where planners must reason about

coarse and uncertain global information at long length scales.

2.3.2 Solving the Problem

Given a discrete representation of the environment, various graph-based search methods can

be applied to optimally search in the planning representation. The most commonly used
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graph search method is A* [119], an optimal algorithm that guides search to low cost nodes

in the state space using an admissible heuristic, or a heuristic that underestimates future plan

costs. Unfortunately, the computational complexity of the A* algorithm scales linearly in the

number of actions considered by the agent at any planning step, or the search breadth, and

exponentially in the the number of planning steps in the plan, or the search depth; formally,

search complexity is O(breadthdepth). Therefore, in practice, optimizing Eq. 2.2 over all

plans p ∈ P can be intractable as the length of the largest dimension of the configuration

space and the potential number of planning steps in any plan increases, as discrete planning

complexity scales exponentially with the number of steps in a plan.

2.3.3 Multi-Query Planning

Multi-query planners reduce the computational cost of planning over multiple planning tri-

als by precomputing, recording and reusing planning artifacts during online planning. For

instance, Berenson et al. [12] designed a planner that generated and used a library of gen-

eral manipulation plans over multiple planning queries. When a new query was received,

the planner simultaneously attempted to directly solve the query and attempted to retrieve

and repair a plan from the existing plan library. Under this paradigm, the agent found,

repaired, and executed similar solutions from the plan library when such plans were avail-

able, but used directly-calculated plans when no similar solutions existed in the plan library.

Phillips et al. [117] developed the experience graph method, which recorded solutions to

previous planning queries in a sparse experience graph, and then guided agents planning for

novel queries to solutions that overlapped with existing solutions. However, these and other

multi-query planners are mainly focused on minimizing duplicate computations locally and

do not fundamentally reduce the dimensionality of the planning problem or enable enhanced

reasoning about the global quality of candidate plans. In Chapter 3, we develop a model

that uses online planing results to update a coarse model of global navigation properties in

an environment, and then use the model to improve planning efficiency over the course of a
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multi-query planning trial.

In the next sections, we introduce two planning paradigms that can be used to re-

duce the complexity of planning in large, outdoor environments, hierarchical planning and

uncertainty-aware planning.

2.4 The Hierarchical Discrete Single-agent Optimal Plan-

ning Problem

One method for decreasing the computational complexity of planning at long length scales

is hierarchical planning. Hierarchical planning algorithms increase the tractability of solving

the optimization in Eq. 2.2 at long length scales by representing the plan space using a

combination of primitive and high-level actions a ∈ A, which are actions based on simplified

models of the planning problem that do not necessarily capture all planning constraints, but

that can be used to guide a search process towards low cost primitive plans1. While various

hierarchical planning methods have been proposed (e.g., [143, 18, 11, 20]), one approach is to

use high-level actions to generate high-level plans p ∈ P that approximate solutions to Eq.

2.2, where p = {a0, a1, ..., an−1}, n denotes the number of high-level actions in the high-level

plan, and P denotes the high-level plan space. Formally, we write the high-level planning

problem,

p∗ = argmin
p∈P

n−1∑
j=0

c(aj;Γ)

s.t. f(aj;Γ) = 1 ∀j ∈ {0, 1, ...,n − 1}

e(aj−1)♢b(aj) ∀j ∈ {1, ...,n − 1}

xs ∈ b(a0), xg ∈ e(an−1),

(2.3)

where f is a partition function that maps every high-level action in A to its validity, f :

A → {0, 1}, c is a scalar cost function defined over high-level actions, c(a;Γ) ∈ R, Γ is
1Throughout this work, we use italic type to denote primitive variables and functions, and bold type to

denote high-level variables and functions.
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additional inputs, b(aj) and e(aj) denote the set of valid start states and terminal states for

high-level action aj, and ♢ is a function that tests the connectivity of two high-level actions

in a high-level plan2.

While there are multiple ways to solve the optimizations in Eq. 2.2 and Eq. 2.3, one

common approach is to represent the optimizations as two separate graph search problems:

a high-level graph search problem and a primitive graph search problem, where graph nodes

represent states and weighted, directed graph edges represent actions in the respective op-

timizations. Planning begins with high-level graph search, and continues until a low-cost

high-level plan p is found. The high-level plan is then used to increase the efficiency of

primitive graph search by guiding planning to primitive subgraphs that are likely to con-

tain low-cost primitive solutions (e.g., by using high-level plan costs as heuristics [68], or by

constraining primitive search to subgraphs that are consistent with the high-level plan [18]),

reducing the total computation required to find such solutions. When a search process uses

a high-level plan p to guide the search for a primitive plan p, we call the resulting primitive

plan p a primitive refinement. In the following sections, we discuss four types of hierarchical

planning paradigms, multi-resolution planning, task-based planning, correct abstractions,

and learned abstractions, with a focus on hierarchical model generation and techniques for

solving the optimization in Eq. 2.3.

2.4.1 Multi-Resolution Planning

As discussed in Section 2.3.1, one common challenge when developing a model for robot

planning is determining the right resolution for planning. Often, robot decision-making is

conditioned on multi-resolution environmental information; for example, a robot may only

require coarse environment information to navigate across an open field, but would require

a more detailed environment model to navigate across a narrow stream using a small bridge.
2Note that different hierarchical planning approaches have different high-level plan connectivity require-

ments. For example, when ♢ =⊆, this ensures that high-level action aj can be executed from all terminal
states of action aj−1.
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One approach for enabling intelligent yet efficient path planning in such environments is to

generate multi-resolution environment models that provide different levels of environment

details in different environmental regions. Some simple versions of the approach focus on

maintaining detailed information in regions near the robot; for example, Behnke [11] de-

veloped an approach that maintained a fine resolution map in a local window around the

robot, and a coarse resolution map in the rest of the environment. This technique provided

an agent with a sufficiently detailed map to make local planning decisions (e.g., to avoid

local obstacles, like navigating around a rock), while enabling computationally inexpensive

high-level planning at longer length scales (e.g., by planning to avoid large obstacle regions,

like lakes). More recent approaches have used robot-centric polar maps to model an agent’s

local environment in a way that captures sensor uncertainty [156]; specifically, polar grid cells

increase in volume as distance from the robot increases, so they naturally model increases

in sensor uncertainty at long distances from the robot.

While robot-centric multi-resolution mapping approaches have been effective for local

planning tasks, like collision avoidance, they reduce the amount of global information avail-

able to the robot. To efficiently represent and plan over global information, a number of

approaches have developed environment-centric multi-resolution map representations. These

approaches have the explicit goal of representing key global environmental features at a fine

resolution, while abstracting away other information when possible to maintain computa-

tional tractability. Botea et al. [20] used environment topology to define regions for plan-

ning, then precomputed local trajectories in the regions. Then, they defined an abstract

graph based on the topology of the regions, generated plans in the abstract graph, and

refined the plans using the precomputed trajectories during online planning [20]. Addition-

ally, some approaches have used occupancy maps to develop multi-resolution, environment-

based cell decompositions for planning (e.g., using octrees [64] and wavelet decompositions

[31, 146, 8, 147]). Recently, the Information Bottleneck (IB) has been used to compress an

environment model (e.g., an occupancy map, a cost map) in way that minimizes information
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loss. Such representations can be used directly for planning [76, 77, 78] (e.g., by directly

converting the multi-resolution representation into a planning graph), or they can be used to

augment other planning representations. For example, Nelson et al. [108] used an IB method

to generate an reduced environment representation over which to calculate an environmen-

tal coverage metric, and then used the metric to guide high-level coverage planning. While

the metric was computationally expensive to calculate in the original environment model, it

was efficient to calculate in the compressed environment representation, and the compressed

representation was sufficient to guide the coverage planner to better solutions.

2.4.2 Task-Based Planning

While multi-resolution hierarchical planning approaches can increase planning efficiency by

clustering regions of the environment that have similar planning properties, they are funda-

mentally focused on representing the entire planning space in a way that enables efficient

discrete planning. However, even with intelligent clustering strategies, generating compressed

representations of large and complex environments can be computationally prohibitive. One

approach to mitigating this complexity is task-based planning. The goal of task planning is

to generate a sequence of actions, modeled as changes to predicates about the world, that

result in predicates about the goal state being satisfied. Importantly, this form of planning

does not require the high-level planner to have knowledge about the entire state of the world;

it only needs to reason about the partial state relevant to satisfying the goal predicates. In

general, we assume access to a high-level model of the planning environment that is capable

of representing relevant predicates about the environment in a high-level state, and that

contains actions that result in predicate changes. Notably, the actions do not need to map

to primitive refinements prior to planning; most task planning-based approaches generate

a high-level plan that satisfies the goal predicates using a heuristic, and then attempt to

generate a primitive refinement of the high-level plan. One early example of the approach

was developed by Kaelbling and Lozano-Pérez [63], which interleaved task planning and task
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execution in an online fashion, and maintained completeness guarantees by assuming that all

state changes were reversible via (a sequence of) action(s) in the high-level planning domain.

More recent work has demonstrated the ability to learn high-level planning abstractions

based on sets of primitive skills [71], factored MDPs [27], and even learned planning models

[28, 26]; notably, Chitnis et al. [28] developed an abstract planning representation that com-

bined symbolic state abstractions and jointly learned abstract actions, abstract transition

models, primitive transition models, and samplers in a unified framework. For more detailed

treatments of task and task and motion planning problems, we refer the reader to recent

surveys [45, 49]. Finally, task planners have been developed in parallel with formalisms for

defining task-based planning problems; currently, the Planning Domain Definition Language

(PDDL) [1] and its variants are most commonly used in robotics applications. PDDL and

similar languages have been invaluable as a standardization method for TAMP problems,

enabling easier testing and benchmarking of algorithms and domains.

While task planning has most commonly been applied to (mobile) manipulation prob-

lems in environments with conventional objects (e.g., kitchens and homes, where common

actions may include opening a drawer, picking up an object, and placing the object in a

specified location), task planning can be applied to navigation tasks. Task-based models

for navigation are most common when high-level navigation plans can be represented us-

ing logical primitives, such as navigating to a room, or merging to the left. For example,

Ding et al. [35] modeled complex autonomous driving actions, like merging and turning, as

high-level actions, approximated their cost and safety, and used the approximations during

high-level planning to find safe trajectories. Other approaches for indoor navigation used

similar high-level plan cost and feasibility calculations to prune a task-based action space

for planning [49, 93, 142, 121]. Finally, Edelkamp et al. [37] combined high-level actions

and temporal PDDL to solve multi-goal navigation problems with temporal constraints in a

warehouse domain.
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2.4.3 Correct Abstractions

In non-adversarial settings, it can be overly restrictive to require all or even most refinements

of a high-level action to be feasible and low cost. If a planning agent is presented with any

feasible, low cost refinement, it can simply select that refinement. Marthi et al. [96, 97, 98]

formalized this idea as angelic abstractions, or abstractions for which at least one valid

primitive refinement exists. Then, they developed hierarchically optimal planning algorithms

using angelic abstractions. This work was extended by Vega-Brown and Roy [148], who

developed angelic abstractions that were guaranteed to produce optimal or near-optimal

primitive solutions for some limited problem types. Specifically, they developed abstractions

for navigation in worlds that could be modeled as compositions of convex and ϵ-convex

regions3, and for navigation in a door puzzle, a navigation problem where an agent must to

navigate to buttons (specific locations) to open doors that lie between the agent and the goal.

While angelic abstractions have been demonstrated to enable efficient, optimal planning in

some planning domains, unfortunately, it is not obvious how to generate coarse, informative

angelic abstractions in large, real-world environments in the presence of non-convex obstacles

and geometric uncertainty.

2.4.4 Learned Abstractions

Recently, a number of approaches for learned hierarchical navigation have been proposed.

Some approaches use occupancy maps or other overhead representations, such as street maps

and satellite images, to learn the properties of high-level subgoals, which can be viewed as an

implicit high-level action space. Stein et al. [137] used a partial occupancy map to identify

boundaries between known and unknown space as subgoals during goal-directed navigation

under uncertainty, and then learned the navigation properties of the subgoals (i.e., the cost of
3Intuitively, ϵ-convex regions are regions in which obstacles do not have a significant impact on path

costs. Formally, ϵ-convex regions are regions in which the shortest valid path between any two points in the
region is no greater than (1 + ϵ) times the Euclidean distance between the points.
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navigating to the goal via the subgoal, the probability of navigation success via the subgoal,

and the cost of failing to reach the goal via the subgoal). The learned subgoal properties

were used to order the subgoals during planning. The approach has also been modified for

temporally extended tasks by applying the idea of a subgoal to product automata [21]. Shah

and Levine [128] combined local subgoals, proposed by a local planner, with global geographic

‘hints’, such as an overhead image, to learn a subgoal heuristic function for guiding low-

level subgoal selection. Other approaches generate explicit state- or state- and action-based

abstract planning representations, and then learn the navigation properties of the high-level

states or state-action pairs. Some approaches calculate high-level navigation properties,

like cost and feasibility [69], or transition dynamics [152], that can be incorporated into

high-level planning models, while other approaches directly learn a high-level value function

[39, 140, 126]. For example, Everett et al. [39] learned an agent cost-to-go function, given a

semantic map, as an image-to-image translation problem, and Tamar et al. [140] and Schleich

et al. [126] approximated value functions at various levels in abstraction hierarchies using

the value iteration network (VIN), a type of neural network that was designed to encode the

value iteration algorithm in a differentiable computation [140].

2.5 The Discrete Single-agent Optimal Planning Problem

under Uncertainty

The previous formulations assumed that an agent had full knowledge of the planning envi-

ronment and its own dynamics. In practice, complete information is unlikely to be available

for robots operating in novel, natural environments. An agent’s local information is limited

by the range of its onboard sensing, and while the agent may have some sparse global in-

formation (e.g., from remote sensing, like overhead images collected from a satellite or air

vehicle), this information is unlikely to provide exact occupancy information for the full envi-

ronment. While many robots simply assume that unknown areas are free space to maintain
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single-step planner admissibility, this assumption can lead to overly optimistic planning and

poor online outcomes in uncertain environments.

To avoid such outcomes, robots must be capable of modeling environment uncertainty

and using the models of uncertainty during planning. Prior to modeling uncertainty, it is

important to understand the different types of uncertainty and their impacts on planning.

Here, we discuss epistemic uncertainty and aleatoric uncertainty. Epistemic uncertainty is

uncertainty caused by a lack of information about the true state of an environment; this

type of uncertainty can be reduced by observing the environment. For example, uncertainty

caused by an agent not having a dense occupancy map of an environment is epistemic un-

certainty. While the agent is uncertain about the environment state, the true environment

state is static, and the state could be observed by, in this case, building a larger map. In

contrast, aleatoric uncertainty is uncertainty caused by random chance, and cannot be re-

duced by observation. For example, consider an environment where a rainstorm occurs with

some probability at each timestep and renders all paths muddy and untraversable. Here,

uncertainty due to rainstorms is aleatoric, as no information from the current timestep can

be used to reduce uncertainty about rain in future timesteps. For a more careful treatment

of uncertainty types, we refer the reader to Hüllermeier and Waegeman [57]. In this work, we

focus on modeling and planning in environments subject to epistemic uncertainty. Specifi-

cally, we would like to enable agents to navigate quickly and efficiently in static environments

based on partial, high-level environment information.

In this work, we assume that we have access to a probabilistic model of environmental

uncertainty. Formally, we define a world ω as a specific instantiation of environmental

uncertainty, where ω ∈ Ω, and Ω is the space of all possible instantiations of environment

uncertainty; for example, in a city subject to a natural disaster, ω could be an assignment

of impacted bridges to their true traversabilities. Additionally, we assume that we have

access to a prior distribution, P(Ω), that describes the likelihood of a given world occurring,

ω ∼ P(Ω); we can then combine the prior model and online observations to generate a belief b,
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or a posterior probability distribution over possible worlds, given environment observations.

Given the model of environmental uncertainty, we now develop a method for planning

using the model. Because the environment is uncertain, we can no longer optimize a planning

objective to minimize agent cost, as the true cost of the plan is only revealed at execution

time. Instead, we optimize a policy π ∈ Π, where π : X × B → A, that maps agent states

and beliefs to actions, and action quality is calculated in expectation over the agent belief:

π∗(x, b) = argmin
π∈Π

E
ω∼b

[ n−1∑
j=0

cω(πj; Γ)

]
s.t. f(πj; Γ) = 1 ∀j ∈ {0, 1, ..., n− 1}

b(πj) = e(πj−1) ∀j ∈ {1, ..., n− 1}

b(π0) = xs, e(πn−1) = xg,

(2.4)

where cω is a world-specific cost function, and Π is the space of all valid single-agent policies.

In general, planning under uncertainty is at least as hard as planning in deterministic

environments, and it is often much harder. To make planning tractable, many algorithms for

planning under uncertainty are tailored to a specific planning task and environment model.

In the following sections, we review recent models and assumptions for navigation under

uncertainty.

2.5.1 Learning Properties of Unknown Spaces

One common assumption in the motion planning literature is that unknown or unmapped

regions of an environment are free space. In practice, unknown regions are often far more

complex, and optimistic assumptions about region costs and traversabilities can lead to poor

global planning outcomes once an agent explores the unknown region. Recently, a number

of works have been developed to predict the planning properties of environmental regions for

which agents do not have dense geometric maps. Specifically, these approaches used offline

datasets, generated using complete map information, to learn correlations between partial
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maps and planning properties. Stein et al. [137] developed a subgoal-based representation

for navigation in unknown indoor environments, where subgoals were defined as boundaries

between known and unknown space, and then learned to predict the expected cost of navi-

gating to the goal via a subgoal, the expected cost of failing to reach the goal via a subgoal,

and the probability of reaching the goal via the subgoal. The learned properties were used

to evaluate the Bellman equation for each subgoal, and the subgoal with the lowest expected

cost was selected as the next agent waypoint. Everett et al. [39] learned a cost-to-go function

for unmapped regions of an environment as an image-to-image translation problem. The in-

put image was a partially observed semantic map, and the network output, the predicted

cost-to-go function, was used in a discrete planner for the last-mile delivery task. Finally, Liu

et al. [92] learned a sampling distribution for sampling-based motion planning, conditioned

on partially observed occupancy and semantic maps, as well as coarse global information,

and demonstrated improved planning performance as compared to a sampling-based motion

planner using a uniform sampling strategy. While these examples clearly demonstrate that

partial environment structure can be used to predict navigation properties beyond an agent’s

geometric map, it is unlikely that the approaches would be effective for predicting navigation

strategies far from the agent and the partially observed occupancy map, as local environment

information is unlikely to be predictive of global environment structure and global planning

properties at large length scales.

2.5.2 Modeling Cost Uncertainty on Environment Graphs/Roadmaps

To enable intelligent global navigation under uncertainty, a number of approaches have

proposed to model uncertain environments as stochastic graphs. Murphy and Newman [103]

used overhead images to generate probabilistic costmaps of unmapped environments [102],

and then converted the costmaps into stochastic planning graphs, where uncertain edge

costs were modeled as Gaussian distributions; extensions of the work also used prior vehicle

experiences in the costmap generation process [105]. The authors then used uncertainty-
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aware planning algorithms [116, 104] to generate trajectories that traded off between planning

efficiency and expected plan quality in a principled manner. Similar approaches have been

extended to the online setting, where dynamically discovered plan costs influence future risk-

based planning decisions [29]. Dey et. al. [33] used a Monte Carlo planning approach to

generate agent policies for navigation on a graph with uncertain, correlated edge costs, which

were modeled as Gaussian distributions drawn from an underlying Gaussian Process (GP) of

environment traversability. By explicitly modeling environmental uncertainty and using the

information in a planning algorithm, these approaches improved global planning performance

as compared to baseline approaches that did not consider environmental uncertainty during

planning. However, the approaches made simplifying assumptions about the distributions of

path costs (i.e., they assumed costs were Gaussian), which can be a limiting assumption for

some problem types, as described in the next section.

2.6 Modeling Traversability Uncertainty on Graphs: The

Canadian Traveller’s Problem

While Gaussian cost uncertainty can be used to model various real-world planning phenom-

ena, including terrain uncertainty and delays, other uncertainty types, such as traversability

uncertainty, cannot be modeled using Gaussian distributions. Consider a robot attempting

to navigate in a region under a tree canopy in an overhead image. The unobservable terrain

under the canopy may be flat, grassy, and traversable, or it may be rocky, littered with

branches, and untraversable. If the terrain is traversable, navigating along the path will be

low cost; otherwise, the same action will have high cost. In practice, traversability uncer-

tainty often results in multimodal distributions over plan costs. To model such uncertainty

in unknown environments, we adopt the Canadian Traveller’s Problem (CTP) formulation

[114], a stochastic graph-based planning model with unknown edge traversabilities. This

well-known problem was originally designed to model route finding in Canada, where roads
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were assumed to be snowed in and impassable with some probability. In the graph, nodes

indicated locations, edges indicated possible paths, and each edge was assigned a traversabil-

ity probability, or a probability that the edge was traversable, during a given planning trial.

Formally, the planning model is defined as follows: let G be an undirected graph with ver-

tices V and m edges E, G = ⟨V,E⟩, where the cost of traversing edge e by agent λ is given

by a known scalar cost function4, cλ : E → R+; we assume cλ is agent finishing time. Ad-

ditionally, we assume that the traversability (weather) of each edge we is initially unknown

but takes a binary value, we ∈ {0, 1}, and an environment weather w = {w1, w2, ..., wm}

is defined as a joint assignment of graph edges to weathers we. At the beginning of each

planning instance, w is drawn from m independent Bernoulli distributions with parameters

1 − ρe, where ρe ∈ [0, 1) is the probability that an edge is blocked, or untraversable, such

that p(w) =
∏

e∈E Bern(1 − ρe). We assume that the weather changes slowly relative to

the timescale of team navigation (e.g., in the aftermath of a single event that changed the

environment, like a climate disaster, or due to long timescale infrastructure wear or environ-

mental change), so we assume w is constant during planning and policy execution. We also

assume that each agent has a local, noiseless sensor that can acquire ground truth observa-

tions ze = we of the traversability of edges incident to the agent’s current vertex. These two

assumptions mean that the only nondeterminism in the problem is caused by the initially

unknown weather, and once the traversability of an edge is (noiselessly) observed, it does

not change, allowing agents to act deterministically on the observed subgraph. The goal of

the CTP is to find the minimum expected cost policy π for navigating from a start node s

to a goal node G in the uncertain graph:

π∗(v, b) = argmax
π∈Π

V π(v, b), (2.5)

4For notational convenience, we overload the cost function to take the endpoints of an edge as input:
cλ : V × V → R+.
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where S is the discrete state space, s ∈ S, and Π is the space of single-agent policies,

π : S ×B → A,

V π(va, ba) = E
w∼ba

[ ∞∑
t=a

c(vπt , v
π
t+1)

]
, (2.6)

and vπt is the vertex reached by the agent at time t when executing policy π from time a

until time t.

Additionally, various extensions to the CTP have been proposed, including CTPs with

uncertain edge traversal costs instead of stochastic edges [112] and disjoint-path CTPs [15,

16]. Bnaya et al. [16] and Bnaya et al. [15] consider multiagent planning and remote sensing

on CTPs, respectively, yet both approaches have limited scope; Bnaya et al. [16] considered

the special multiagent planning case when there is no cost for an agent to remain at its current

vertex, reducing the approach to a series of sequential CTP problems, and Bnaya et al. [15]

developed solutions for a sensing agent with limited dynamics and no independent planning

task. Additionally, policies have been developed for multi-trial CTPs [17]. In Chapter 4,

we develop an approach for generating multiagent policies for CTPs that minimize team

makespans for one ground vehicle/n air vehicle teams [136].

Unfortunately, calculating exact solutions for most CTP formulations has been shown

to be PSPACE-Complete [114, 42]. While exact solutions have been developed for small

subclasses of stochastic graphs [112, 15, 41], general state of the art solvers reformulate the

CTP as a Partially Observable Markov Decision Process (POMDP), and then use Monte

Carlo simulation, a common POMDP solution technique, to generate uncertainty-aware

agent policies [2, 40]. In the following section, we introduce POMDPs, and then introduce

the POMDP formulation of the CTP.
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2.7 Partially Observable Markov Decision Processes

(POMDPs)

Partially Observable Markov Decision Processes (POMDPs) are a general model for decision

making problems under uncertainty. A POMDP is a 7-tuple (S,A, T,R, Z,O, b0):

1. States S: The set of all valid configurations of the system; the state may be partially

unknown.

2. Actions A: The set of all actions that can be applied to the system.

3. Transition function T : S×A×S → [0, 1]: A function that determines the probability

that an agent will reach system state s′ after applying action a at state s.

4. Rewards R : S × A → R: The reward received after applying action a at state s.

5. Observations Z: The set of all valid observations that can be received during system

execution.

6. Observation function O : S×A×Z → [0, 1]: A function that determines the probability

of receiving observation z after applying action a at state s.

7. Initial belief b0: An initial belief, or probability distribution, over the unknown state

variables.

The goal of the POMDP is to find a policy π that maximizes the value function V , or

expected future reward, of reaching a goal state from the current state s with belief b:

π∗(s, b) = argmax
π∈Π

V π(s, b), (2.7)

where in this work we explicitly differentiate between the known state s and the belief

over the unknown state b, as in a Mixed-Observability Markov Decision Process (MOMDP)
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formulation [113], although some other works include the known state in the belief variable

b.

2.7.1 Types of POMDPs

POMDPs are an extremely general formulation with many different subclasses, and the

specific variant of the problem has a large impact on computational tractability and possible

solution methods. For example, POMDPs can model problems with discrete or continuous

action and observation spaces, long time horizons, and delayed rewards, and various solution

techniques have been developed for different model types [131, 139, 132, 141, 51, 91, 85, 4];

see Kurniawati [74] for a comprehensive review. The structure of the CTP problem, which

has small, discrete action and observation spaces, enables the CTP to be modeled as a special

type of POMDP – a Deterministic POMDP (DetPOMDP) [19] – in which it is feasible to

consider long-horizon actions with delayed rewards. Specifically, Deterministic POMDPs

are POMDPs that model epistemic uncertainty only; they assume that there is an initially

hidden state (e.g., due to traversability uncertainty in a forest) that does not change during

the course of a planning trial. While this is not true of all Deterministic POMDPs, in the

CTP case, the uncertain state can be observed using sensing during a planning trial. Note

that the absence of aleatoric uncertainty, such as action stochasticity that could lead an

agent to an imprecise state in the environment, or observation stochasticity, such as noisy

sensor readings that could result in incorrect traversability estimates, ensures that the total

problem uncertainty only decreases during a planning trial. This fact ensures that the size

of the search space for planning is both finite and relatively small, and that the problem is

tractable to solve.

2.8 The CTP as a POMDP

Formally, we model the CTP problem as a POMDP [2]:
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• Fully observable states S: The set of graph vertices V .

• Partially observable states: The set of graph weathers W .

• Actions: The set of incident, traversable graph edges for the agent at each vertex,

including self-loops.

• Observations: The traversability we of an edge, ze = we ∈ {0, 1}.

• Observable state transition function: Deterministic transitions along observed, inci-

dent, traversable graph edges to adjacent vertices.

• Partially observable state transition function: No transition, as the weather w is as-

sumed to be constant during a trial.

• Observation function: Deterministic observations of the traversability we of graph edges

incident to the agent.

• Reward R: The negative agent cost, R = −
∑∞

t=0 c(vt, vt+1), where, by assuming the

reward of the agent remaining in its goal state is zero, we ensure the stationary policy

has zero reward and the infinite sum is well defined.

• Initial belief b0: The prior belief over the weather, b0 = {Bern(1 − ρ0), ...,Bern(1 −

ρm−1)}, where b0 ∈ B.

While individual agents can generate uncertainty-aware policies that trade off between

exploration and exploitation in novel environments, their long-range planning capabilities

are largely constrained by the range and quality of their local sensing. Collaborative multia-

gent teams have the potential to increase team planning performance by providing non-local

information to teammates, for example, by exploring the local environment and sharing

traversability observations with teammates. In the following sections, we review the dis-

crete multiagent planning problem and solution techniques generally, and then discuss the

collaborative multiagent planning problem in uncertain environments.
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2.9 The Discrete Optimal Multiagent Planning Problem

Multiagent planning describes a broad class of algorithms and techniques used to generate

plans for more than one agent, and methods vary drastically for different problems and teams.

In fact, significant effort has been devoted to categorizing multiagent planning problems

based on problem characteristics [46, 72]; some key characteristics include agent objectives

(competing, independent, collaborative), planning locations (centralized, distributed), and

communication types (no communication, limited communication, full communication). For

example, in adversarial settings, agents or teams have competing objectives and often do not

communicate, and common solutions include game-theoretic analyses (e.g., pursuit-evasion

games, [30]). In Multi-Agent Path Finding (MAPF) [138], agents may be centralized and may

communicate, but they largely cooperate to avoid collision (i.e., local collision constraints

require agents to plan jointly); the problem is most commonly formulated as conflict-based

search, where the planner identifies potential agent collisions and reroutes agents to optimize

team performance [129, 86]. In this work, we focus on the problem of collaborative planning,

where agents complete individual or collaborative tasks to enable problem completion via

teaming or to decrease problem completion time. For example, two agents may lift a heavy

object, a mobile manipulator may open a door for a ground vehicle, and a firefighting robot

may put out a fire to enable a medic robot to rescue survivors [157].

Formally, we define a collaborative team Λ as a set of l (possibly heterogeneous) robots

λ, Λ = {λ0, ..., λl−1}. Let a team plan pma be a sequence of tuples of individual agent actions

at each timestep,

pma = {(aλ0,0, aλ1,0, ..., aλl−1,0), (aλ0,1, aλ1,1, ..., aλl−1,1), ..., (aλ0,n−1, aλ1,n−1, ..., aλl−1,n−1)},

(2.8)

where aλi,j is the action taken by agent λi at timestep j, and pma ∈ Pma, where Pma is the

joint space of team plans. We additionally assume access to a no-op action at each agent’s
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the terminal state that has a duration of 1 timestep and a reward of 0, which enables us to

model agent plans of various durations (i.e., when an agent reaches a goal before a teammate)

in a single team plan. Then, we can formalize the collaborative multiagent planning problem

as an optimization over team plans subject to agent feasibility constraints:

p∗ma = argmin
pma∈Pma

n−1∑
j=0

c((aλ0,j, aλ1,j, ..., aλl−1,j); Γ)

s.t. f(aλi,j; Γ) = 1 ∀i ∈ {0, 1, ..., l − 1} ∀j ∈ {0, 1, ..., n− 1}

b(aλi,j) = e(aλi,j−1) ∀i ∈ {0, 1, ..., l − 1} ∀j ∈ {1, ..., n− 1}

b(aλi,0) = xλi,s, e(aλi,n−1) = xλi,G ∀i ∈ {0, 1, ..., l − 1},

(2.9)

where xλi,s and xλi,G denote the start and goal states of agent λi, and we assume that each

agent is equipped with a low-level controller capable of avoiding collisions, so we do not

explicitly model non-collision constraints between teammates.

Within collaborative planning, there are four commonly studied subproblems used to

generate solutions to the optimization in Eq. 2.9: task planning, task assignment, schedul-

ing, and motion planning. The problems have been studied individually, and have been

combined in various ways to solve subsets of the full collaborative planning problem, includ-

ing task and motion planning (task planning and motion planning), multiagent planning

(task planning, task allocation, and scheduling), and multi-vehicle routing (task allocation

and motion planning) [99]; see Messing et al. [99] for a review.

Current state-of-the-art solution techniques for the problems are as varied as the prob-

lems themselves; in this work, we focus on search-based solution methods. For tasks with

few or no inter-agent constraints, task planning as described in Section 2.4.2, followed by in-

dependent task allocation, scheduling, and motion planning, can lead to high-quality plans.

However, in complex domains, it is difficult to develop abstractions that capture all low-level

planning constraints, and solvers that assume the downward refinement property [7], or that

all high-level plans have valid primitive refinements, tend to fail or be inefficient. Conversely,
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for tasks with significant inter-agent constraints that can cause local adjustment-based tech-

niques to fail, treating the system as a single high-dimensional robot and solving for all robot

plans simultaneously can be a way to find a satisficing solution. For example, Crosby et al.

[32] generated a factorization by assigning specific agents to specific task that reduced the

multiagent planning problem into sets of single-agent planning problems with temporal con-

straints that could be combined to recover a full solution, and Kottinger et al. [73] developed

a variant of conflict-based search that jointly optimized trajectories for agents with conflicts

that could not be resolved using simple heuristics.

Recently, a number of hierarchial, interleaved, search-based planners have been developed

to efficiently balance between exploring new high-level plans and exploiting existing high-

level plans that are likely to have valid and/or low cost primitive refinements during the

search process. For example, the GRSTAPS framework is a hierarchical, interleaved planner

that attempts to ground partial task plans and prune infeasible branches early during search.

The method also uses heuristics to guide planning at each stage in the planning process [99].

The Task Allocation, Scheduling, and Motion planning modules of GRSTAPS, originally

presented as ITAGS [109], have been extended for plan repair in dynamic environments

[110], for robust plan selection under agent trait and task requirement uncertainty [115],

and for quality-based task allocations [111], which reformulates the binary objective of task

completion during task allocation to a performance maximization objective, given makespan

constraints.

While many collaborative planning approaches have demonstrated improvements over

non-collaborative baselines in known environments, they are not designed to reason about

environmental uncertainty. However, for the problem of navigation at long length scales,

it is likely that an environment will be at least partially uncertain prior to planning. In

the following section, we formalize the discrete optimal multiagent planning problem under

uncertainty.
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2.10 The Discrete Optimal Multiagent Planning Problem

Under Uncertainty

Finally, we consider the multiagent planning problem under uncertainty. Let a team policy

πma be a sequence of tuples of individual agent policies at each timestep,

πma = {(πλ0,0, πλ1,0, ..., πλl−1,0), (πλ0,1, πλ1,1, ..., πλl−1,1), ..., (πλ0,n−1, πλ1,n−1, ..., πλl−1,n−1)}, (2.10)

where πλi,j is the policy for agent λi at timestep j, and πma ∈ Πma, where Πma is the joint

team policy space. We additionally assume access to a no-op action at each agent’s the

terminal state that has a duration of 1 timestep and a reward of 0, which ensures that the

stationary policy of an agent remaining in its goal state has zero cost. Then, we can formalize

the collaborative multiagent planning problem under uncertainty as an optimization over

team policies:

π∗
ma(x, b) = argmin

πma∈Πma

E
ω∼b

[n−1∑
j=0

c((πλ0,j, πλ1,j, ..., πλl−1,j); Γ)

]
s.t. f(πλi,j; Γ) = 1 ∀i ∈ {0, 1, ..., l − 1} ∀j ∈ {0, 1, ..., n− 1}

b(πλi,j) = e(πλi,j−1) ∀i ∈ {0, 1, ..., l − 1} ∀j ∈ {1, ..., n− 1}

b(aλi,0) = xλi,s, e(aλi,n−1) = xλi,G ∀i ∈ {0, 1, ..., l − 1}.

(2.11)

Methods for collaborative multiagent planning under uncertainty are highly dependent

on the type of uncertainty present in the planning problem and the team objective. While

a multitude of solutions exist for different problem types, for teams operating in environ-

ments with aleatoric uncertainty, planning methods are largely focused on generating robust

plans to maintain plan satisfiability or to optimize a planning objective in expectation. For

instance, Messing et al. [100] developed an approach for risk-bounded scheduling in the pres-

ence of uncertain action durations; the approach used sampled environment realizations to
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generate a plan, and then iteratively guaranteed the robustness of the plan makespan using

the Sequential Probability Ratio Test (SPRT). Other approaches developed uncertainty-

aware task allocation algorithms; for example, Park et al. [115] used the SPRT to generate

risk-bounded task allocations for environments with task requirement and agent capabil-

ity uncertainties, Neville et al. [110] developed a method for efficient task allocation repair

in dynamic scenes, and Prorok [120] developed a bounded-suboptimal greedy approach for

redundant task allocation in uncertain environments for cases when maximizing expected

plan quality at the expense of additional robot effort is paramount. While these approaches

mitigated the effects of uncertainty on planning, they did not use robot actions as a method

for reducing problem uncertainty.

Conversely, for problems with epistemic uncertainty, multiagent teams often explicitly

plan to reduce environmental uncertainty using exploration-based objectives. For example,

solutions have been proposed for centralized [133] and decentralized [53, 80, 81] teams, for

teams with full [25] and reduced [53, 6, 79, 80, 81, 14, 13] communication, and for various

tasks, including the observation of static [53, 14, 13], dynamic [125, 79], or static and dy-

namic [80, 81] environments and objects. However, these approaches are largely focused on

minimizing a specific type of environmental uncertainty (e.g., minimizing model uncertainty

of an environmental phenomenon [53, 14], or minimizing positional uncertainty of a target

[125]), and do not attempt to minimize uncertainty that is relevant to future robotics tasks

in the environment.

One notable exception is Lee et al. [83], which developed an approach for joint explo-

ration and exploitation in a scout-task tracking problem. In their problem setting, a team

of scout, task, and scout-task robots receive reward when task robots observe targets, which

have initially unknown positions. Scout robots, which can have a large sensor range, are

deployed to find and relay target information to task robots, and task robots use target in-

formation to guide planning. The authors developed a mutual-information upper confidence

bound for use in a decentralized Monte Carlo tree search, which was used to generate team
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plans. They demonstrated high-quality planning as compared to an expecti+max planning

approach in a simplified simulation, demonstrated the planner for a four-agent team in two

simulated environments, and deployed the planner for a four-agent team in a real-world base

environment [83, 84].

In Chapter 4, we develop a method for generating team plans that reduce task-relevant

planning uncertainty for the long-horizon navigation task. Specifically, by optimizing a

team makespan objective in an environment modeled as a stochastic graph, we generate

team plans where agents trade off between individual goal-directed navigation and team-

oriented exploration, which improves teammate planning performance by sensing to reduce

teammate-task-relevant environment uncertainty.

55



56



Chapter 3

Online High-Level Model Estimation for

Efficient Hierarchical Robot Navigation

In this chapter, we address the problem of how to enable a robot to navigate efficiently and

robustly in large, structured environments during multi-query planning. We formulate the

problem as a hierarchical planning problem that uses agent trajectories, computed online, to

build an abstract representation of the navigation problem that can be generalized to other

planning problems in the same environment. Finally, we discuss two variants of a hierarchical

planner that can be used to solve new planning queries using the abstract representation.

An example showing the motivation for our approach is shown in Fig. 3.1.

3.1 Motivation

We would like to generate abstract models of global planning information that can be used to

enable efficient and robust robot navigation in known, structured environments that are large

enough to cause traditional planning approaches to incur considerable computational cost.

Hierarchical planners can minimize the curse of scale, or the exponential relationship between

plan length and planning complexity in regular discrete environments, by generating coarse

representations of the planning problem whose solutions can be used to guide a detailed
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Figure 3.1: Online high-level model estimation for efficient hierarchical robot nav-
igation. Rather than planning at a single fine resolution (a), we present an approach that
estimates high-level navigation properties (b) online, using only previous planning computa-
tions, to find high-level plans (c) in a coarse representation of the planning problem. Then,
we use high-level plans to constrain planning in the fine resolution planning problem (d). We
demonstrate that our approach increases planner efficiency while ensuring planner robustness
over the course of multiple queries to the planner.

planner to regions of the environment that are likely to contain low-cost detailed solutions.

However, coarse planning is only useful if the coarse planning problem efficiently captures

properties of the environment necessary to inform intelligent detailed planning. Existing

hierarchial planning approaches that are guaranteed to accurately summarize plans in the

environment [148] can be overly restrictive when the geometry of the environment (e.g., the

set of convex regions) is poorly aligned with the geometric features of the environment needed
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to compute a feasible motion plan efficiently. Other approaches that use information-based

techniques to compress environment representations [147, 76] do not explicitly capture the

structure of good plans that agents use to traverse in the environments. Learned approaches

for generating abstract representations rely on offline datasets, and often require additional

environmental cues, such as semantically segmented overhead images [39] and height maps

[69], to enable efficient abstraction.

Additionally, existing hierarchical planners plan using static, coarse representations that

are high quality and a good approximation of select environments, but these planners fail to

model the lossy nature of plan abstraction for planning in large, complex environments.

Fortunately, a number of risk-aware planners have been developed to improve planning

performance when the model of a planning problem is known to be incomplete or noisy, such

as both offline [103] and online [29] planning over probabilistic costmaps. We hypothesize

that explicitly representing uncertainty in coarse or hierarchical representations can enable

efficient, robust planning, even when the coarse representation is not initially well aligned

with the true costs of plans in the underlying detailed planning environment.

In this chapter, we propose a hierarchical planning model that updates properties of a

coarse representation using planning results generated in a detailed representation of the

planning problem, and that can be used during uncertainty-aware hierarchical multi-query

robot navigation. We select a simple environmental decomposition to generate a coarse plan-

ning representation, and then recognize that previous planning results in the environment

can be treated as noisy measurements of coarse navigation properties. We use the measure-

ments to improve estimates of the navigation properties over time. We test our approach

in standard and risk-aware hierarchical planning schemes, and demonstrate increased plan-

ning efficiency over time as compared to a baseline A* planner, while maintaining planner

robustness.
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3.2 Approach

3.2.1 Models for Hierarchical Planning

Recall that in Sect. 2.4, we defined the hierarchical discrete single-agent optimal planning

problem as an optimization over abstract plans p, where abstract plans were defined as

sequences of abstract actions a ∈ A, p = {a0, a1, ..., an−1}, and the objective of the problem

was to minimize the abstract cost c(a;Γ) of the abstract plan subject to constraints on an

abstract feasibility function f(a;Γ) and the agent start and goal:

p∗ = argmin
p∈P

n−1∑
j=0

c(aj;Γ)

s.t. f(aj;Γ) = 1 ∀j ∈ {0, 1, ...,n − 1}

e(aj−1)♢b(aj) ∀j ∈ {1, ...,n − 1}

xs ∈ b(a0), xg ∈ e(an−1),

(3.1)

where Γ are additional inputs, b(aj) and e(aj) are the set of valid start states and terminal

states for high-level action aj, and ♢ is a function that tests the connectivity of two high-level

actions in a high-level plan.

While the hierarchical planning formulation defined in Eq. 3.1 can result in efficient

planning, it is obvious that the quality of the high-level planning model, or the combination

of A, c(a;Γ), and f(a;Γ), dictates the ability of the high-level search process to effectively

guide primitive planning. Intuitively, a good choice of representation is one that ensures plan

similarity1, or that low-cost, feasible plans in P have low-cost, feasible primitive refinements

in P . Unfortunately, generating planning representations that exhibit plan similarity can

be challenging, and in practice such representations are often hand-designed for specific

problems [68], or require significant prior domain knowledge to be generated [69, 39, 148].
1This is an extension of cost similarity [69] which considers plan feasibility.
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Figure 3.2: Overview of the approach. Rather than planning at a single resolution in
a large primitive state space (a), we partition primitive state spaces into high-level regions
using a grid (b) and define high-level actions as transitions between high-level regions (c).
Then, we can treat primitive plans in the environment as example measurements of high-
level function properties, like the partial primitive plan in green (d), which shows the left
high-level action is feasible and has a cost equal to the plan length in the region. Finally, we
use online datasets of primitive navigation properties to estimate high-level functions over
time using two recursive estimation techniques, Averaging (not shown) and Bayes Filtering
(e). Results are shown for the Medium-Risk planner (see Section 3.3.2).

Instead, we define a simple A and use online planning results to infer estimates of high-level

navigation properties, c(a;Γ) and f(a;Γ), over the course of a multi-query planning trial.

An overview of our approach is shown in Fig. 3.2.

3.2.2 The High-Level Action Space

The goal of the high-level action space is to generate a small (i.e., low-resolution) represen-

tation of the planning problem that enables efficient planning without compromising plan

quality. In this work, we recognize that different optimal primitive plans in structured envi-

ronments often share common primitive subplans, or partial sequences of primitive actions
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Figure 3.3: Example regions, actions, primitive subplans, and functions in a sim-
ulated outdoor domain. Our approach generates a simple (a) state- and (b) action-based
abstraction, and then treats the properties of primitive subplans in the environment (c-d) as
samples of (e) high-level function properties. Over time, the high-level functions are updated
to increase plan similarity ; here we show the high-level cost function for the right action,
generated using the Medium-risk planner (see Section 3.3.2).

al:m, when navigating through the same region in the environment. By grouping these sub-

plans into high-level actions a, we can generate a compact, flexible high-level action space A

that uses the primitive navigation properties of similar, past planning queries to improve the

high-level estimates of navigation properties for use in current and future planning queries.

Formally, we define the high-level action space by assuming that the configuration space

X can be decomposed into a finite set of regions2 R that an agent can traverse between, and

we define a high-level action aij as the set of primitive subplans that begin in and remain in

region Ri until terminating in region Rj, similar to the definition given by Vega-Brown and

Roy3 [148],

aij = {p|p ∈ P, ak ∈ p, b(ak) ∈ Ri ∀k ∈ {0, 1, ..., n− 1}, e(an−1) ∈ Rj}. (3.2)
2For simplicity of implementation, we assume that regions are defined by decomposing the environment

into low-resolution grid cells, but we note that other decomposition functions could be used.
3This definition implies that aij is a set of sequences of primitive actions.
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Example regions and high-level actions are visualized in Fig. 3.3-a-b.

3.2.3 Primitive Subplans as Instances of High-Level Actions

By representing high-level actions as sets of primitive plans, we can use results of planning

in the primitive action space A (e.g., the occupancy map) to induce costmaps over the high-

level action space A. When we generate a primitive refinement p of high-level plan p, where

p ∈ P , we observe a sequence of primitive actions in the environment, p = {a0, a1, ..., an},

where ai ∈ A, subject to the high-level planning constraints, and we also observe whether or

not the refinement satisfies the primitive planning constraints in Eq. 2.2. However, because

we define high-level actions a ∈ A as sets of primitive subplans, we can also post-process a

primitive refinement p into a sequence of primitive subplans, p = {ps0, ps1, ..., psn}, where each

subplan ps is a sequence4 of primitive actions al:m that obeys the constraints of a high-level

action a as defined in Eq. 3.2,

psij = {al:m|ak ∈ p, b(ak) ∈ Ri ∀k ∈ {l, l + 1, ...,m}, e(am) ∈ Rj}. (3.3)

We visualize two example primitive subplans in Fig. 3.3-c-d. Our formulation allows us to

treat a primitive subplan psij collected in an environment as an example high-level action aij

that transitions from region Ri to Rj. We can then consolidate example high-level actions

into a dataset for inference of high-level function values. We will also refer to the primitive

subplan psij as an instance of a high-level action5 aij.

Once instances psij of high-level actions aij are identified, we can calculate the navigation

properties of the instances using the known primitive cost and traversability functions, c(a)

and f(a). We calculate the cost c(psij) of instance psij by summing the primitive cost function

4In a mild abuse of notation, each aij is an unordered set of plans aij = {pij}. Each pij is an ordered
sequence of actions pij = {al:m}.

5In environments that induce regions Ri that are not internally fully connected, an agent may enter and
exit Ri multiple times to access the disconnected subsets of Ri. This can result in the agent executing
the same high-level action aij more than once in a single optimal trajectory. In this case, we record each
execution of the high-level action separately.

63



over all primitive a in example action psij,

c(psij) =
∑
a∈psij

c(a). (3.4)

Similarly, we can calculate the feasibility of a high-level action instance by evaluating

the feasibility of each primitive action in the instance. If any of the primitive actions in

the instance are infeasible, the instance cannot be executed in the environment, and the

instance is labeled as infeasible. Formally, we calculate the feasibility f(psij) of a high-level

action instance psij as the minimum feasibility of the primitive actions in the instance,

f(psij) = min
a∈psij

f(a), (3.5)

where we note that f(psij) is a binary value.

Using this technique, each time that a primitive refinement is generated in an envi-

ronment, we can generate a dataset D of high-level action instances and their navigation

properties,

D = {(psij, c(psij), f(psij)), (psjk, c(psjk), f(psjk)), ...}. (3.6)

3.2.4 The High-Level Functions

While high-level action instances and their navigation properties provide information about

previous plans in the environment, it is not obvious how to incorporate a dataset of example

action instances and navigation properties Dij = {(psij, c(psij), f(psij))0, (psij, c(psij), f(psij))1, ...} ⊆

D for a high-level action aij into approximations of high-level navigation properties that

improve planning performance in novel queries over time. In this work, we would like to gen-

erate compact high-level functions c(aij) and f(aij) that estimate the navigation properties

of high-level actions aij over the course of a multi-query planning trial,

c(aij|c((psij)1:q)) = gc(Dij) (3.7)
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f(aij|f((psij)1:q)) = gf (Dij), (3.8)

where gc and gf are cost- and feasibility-specific functions and q is the number of observed

instances of a high-level action aij. We recognize that we can treat the plan cost and

feasibility results c(psij) and f(psij) in dataset Dij as streamed measurements zcij and zfij of

the high-level functions,

zcij = c(psij) (3.9)

zfij = f(psij), (3.10)

where for computational efficiency we assume that measurements of different high-level ac-

tions in a plan are independent (i.e., zcij ⊥ zcjk). By treating the navigation properties of

high-level action instances as streamed measurements, we can reduce the multi-query high-

level function construction problem to a recursive estimation problem.

3.2.5 Online High-Level Function Updating as Recursive Estima-

tion

The goal of the recursive estimation problem is to use streaming measurements to approxi-

mate the current value of a function. However, recursive estimation approaches often rely on

a model of the data collection process to define a measurement update function, and a prior

to determine an initial, uncertain belief over the function value. While agents with additional

environmental information, such as data from a perception system, may have the necessary

information to approximate such models, other agents with less information may not be

able to use the models. In this work, we consider two approaches to recursive estimation.

The first assumes no information about the data collection process or initial belief and uses

online averaging to update function values. The second assumes a user can make informed

guesses about the data collection process and can generate uninformative prior beliefs for

the functions, and uses a Bayes filter to improve function value estimates over time.
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Averaging

When we cannot make any assumptions about the data collection process or prior func-

tion values, we approximate high-level function values as a rolling average of the observed

measurements,

c(ai|zcij,1:q) = c(ai|zcij,1:q−1) +
zcij − c(ai|zcij,1:q−1)

q
(3.11)

f(ai|zfij,1:q) = f(ai|zfij,1:q−1) +
zfij,q − f(ai|zfij,1:q−1)

q
(3.12)

where c(ai|zcij,1:q) and f(ai|zfij,1:q) are scalars, and q is the number of observed measurements

of the high-level functions of abstract action ai.

Bayes Filtering

The averaging approach is simple, but it is unable to represent uncertainty in high-level

action values. Representing uncertainty is important for high-level online estimation, as

high-level representations of primitive planning problems are often lossy and initial high-

level function value estimates can be inaccurate. However, accurately describing uncertainty

from streaming measurements often requires additional information about the measurement

process and environment. When we know or can approximate properties of the measurement

process and prior beliefs over high-level navigation properties, we can explicitly represent

uncertainty in high-level function values over time by maintaining a belief over each function

value. Then, we can apply Bayes filtering to recover the belief update equations,

Pr(c(aij)|zc1:q) ∝ Pr(zcq|c(aij))Pr(c(aij)|zc1:q−1) (3.13)

Pr(f(aij)|zf1:q) ∝ Pr(zfq |f(aij))Pr(f(aij)|zf1:q−1). (3.14)

In practice, we find that simple modeling decisions can lead to uncertainty-aware high-

level functions that enable robust planning. In the experiments that follow, we model the
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cost function belief distribution and cost measurement probability distribution as Gaussian

distributions, an approach used by the planning under uncertainty community [116, 103].

We also model the feasibility function belief distribution as a Beta distribution, and the

feasibility function measurement probability distribution as a Bernoulli distribution. By

selecting distributions that are conjugate, we ensure the computational efficiency of the

update step. Additionally, we assume that the variance σs of the cost measurement process

for the measurement zc can be modeled as a hand-tuned constant. We note that we initially

assume uninformative priors for c(aij) and f(aij) (high-variance and uniform, respectively).

3.2.6 Hierarchical Planning using High-Level Functions Estimated

Online

Finally, we discuss the hierarchical planner used to find primitive solutions to the discrete

single-agent planning problem in Eq. 2.2, guided by solutions to the hierarchical planning

problem in Eq. 3.1, which are calculated using the high-level representation developed in

Sections 3.2.2 to 3.2.5. At its core, the hierarchical planner is a multi-level graph-based

forward search algorithm that iterates between uncertainty-aware planning to generate low-

cost solutions to the high-level optimization and primitive planning to optimize the primitive

optimization. Planning begins in the high-level graph, where we use forward search to

optimize the objective in Eq. 3.1. If the high-level cost function is modeled by a distribution,

we use the expected cost of the high-level actions in the optimization. Similarly, the high-

level traversability function returns 1 if the probability of a high-level action being traversable

is greater than a threshold γ, and 0 otherwise. Nodes are expanded according to a priority

queue until a goal node is expanded and a high-level plan p is recovered. Once p is found, we

constrain the search space of the primitive graph to contain only the subgraph of primitive

edges that could be possible refinements of the high-level plan p by temporarily marking

all other edges as infeasible. We search in the constrained graph until a primitive plan p is

found, or until all reachable nodes in the subgraph have been expanded. If the primitive
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plan is feasible and lower cost than existing primitive plans, it is stored. Then, the result

of the constrained primitive planning problem is converted into the dataset in Eq. 3.6 using

the method in Section 3.2.3, and the high-level functions are updated according to Section

3.2.5. Planning returns to the high level graph, and continues until a termination condition is

met. However, because the costs of high-level graph edges can change over time and may be

probabilistic, some modifications to standard forward search are required for the high-level

planner.

Queue Prioritization

For both the averaging and filtering approaches, we order nodes v on the high-level queue

according to the A* evaluation function f † [50],

f †(v) = hcc(v) + hcg(v) (3.15)

where v = e(an−1) is the terminal node of the last action an−1 in high-level subplan p, and

hcc and hcg are the cost-to-come and Euclidean cost-to-go of node v. However, when the

properties of graph edges are probabilistic (i.e., for the filtering approach), it is not obvious

how to determine the current cost of the subplan p that terminates in node v on the queue.

We choose to approximate the cost-to-come of v as the expected cost of the subplan p,

hcc(v) = E[c(p)] =
∑
aij∈p

µij, (3.16)

where µij is the mean of c(aij), subject to the constraint that the subplan feasibility is above

a hand-tuned threshold γ,

f(p) = argmin
aij∈p

f(aij) ≥ γ (3.17)

Plans with feasibility values less than γ are deferred (see Section 3.2.6).
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Termination Conditions

Because the costs and feasibilities of high-level graph-edges are uncertain, we cannot assume

that we have found the lowest cost high-level plan after expanding a goal node in the high-

level graph. For the averaging approach, we choose to terminate when the known cost of the

current best primitive plan p is lower than the A* evaluation function value of the lowest-

cost node on the high-level queue, f †(v). For the filtering approach, we use the risk-aware

termination condition defined by Pearl and Kim [116], which terminates when the expected

risk of terminating with the current best primitive plan p with cost c(p) is less than a risk

threshold δ. We calculate the expected risk of terminating with a primitive plan cost c(p)

and an unexpanded node corresponding to high-level plan pi on the queue,

R(c(p),pi) =

∫ c(p)

τ=−∞
(c(p)− τ)p(τ |µi, σi)dτ, (3.18)

where µi and σi are the mean and variance of the high-level plan pi. Then, rather than se-

lecting an absolute maximum risk threshold, which may vary with plan length, we normalize

the risk value based on the current best primitive plan cost and select a risk threshold δ as

a percentage of the normalized risk value, as in Pearl and Kim [116]. Finally, we terminate

planning when the maximum normalized risk of terminating with any of the unexpanded

high-level plans pi on the queue is less than δ,

R(c(p),pi)

c(p)
< δ. (3.19)

Soft Pruning of Dominated Nodes from a Priority Queue with Uncertain Costs

In deterministic graph search, planners rely on admissible heuristics and visited lists to

ensure that graph nodes are expanded exactly once, and that when a node is expanded,

the optimal cost-to-come for the node is recorded. However, when the costs of nodes on a
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Figure 3.4: Planning in graphs with known and unknown edge costs. The goal of the
problem is to generate a path from the red start node to the green goal node using Dijkstra’s
algorithm. The true costs of navigating in the environment are given in the primitive graph
(a), and the high-level graph (b) represents planning in the proposed high-level action space,
where each region is a node and each high-level action is an edge. When the costs of high-level
actions are known, edge costs are deterministic (c), and expanding nodes (blue shading) in
order of cost-to-come ensures that the first expansion of the goal node is optimal (d). When
the costs of high-level actions are unknown and therefore approximated (represented by the
ˆ symbol, as in (e)), the first expansion of the goal node (f) may not be optimal after plan
refinement ((g), where the refined plan is shaded purple). Instead, additional paths to the
goal must be expanded and refined (h-i) to ensure search optimality.

queue are uncertain, we cannot assume that the first expansion of a node is optimal (or even

feasible) in terms of cost-to-come, as demonstrated in Fig. 3.4. In uncertain environments,

this implies that we must maintain all possible paths to all possible nodes in a queue to

avoid pruning a path that may be optimal, but this is computationally infeasible. Instead,

we introduce the notion of a dominated plan, or a plan that is suboptimal given the current

beliefs of plan costs and feasibilities, and store dominated plans in a list of deferred plans,

similar to Vega-Brown and Roy [148], from which plans are not considered for expansion.

Then, when the high-level functions are updated, we reevaluate the navigation properties of

plans on the priority queue and in the dominated list, and move plans between the queue and

the list as necessary. This technique allows the priority queue to focus search on plans in the

environment that are likely to lead to low cost high-level solutions, without compromising

the ability to reconsider previously high-cost high-level plans, if high-level function values

change.
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Figure 3.5: Example overhead images and occupancy maps from the simulated
outdoor environment. Note that the overhead images are used for visualization only, and
are not considered during planning.

3.3 Experiments

In this section, we describe the experimental procedure used to benchmark our hierarchical

representations and planners against a primitive planner running the A* algorithm in a

simulated outdoor environment, and report aggregate metrics.

3.3.1 Experimental Setup

We demonstrated our approach in a simulated outdoor environment composed of 100 1024x1024

pixel maps of randomly generated environments consisting of four terrain elements: pave-

ment, sand, forest, and water. Each terrain element was associated with a 64x64 pixel

2D occupancy map, resulting in environments with 256 terrain elements. Terrain element

occupancy maps were randomly rotated and flipped to create more diverse scenes.

The environment was modeled such that all terrain elements except water were traversable,

and on average, due to the geometric structure of the environment, it was least expensive to

navigate in a pavement element and most expensive to navigate in a forest element. Example
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occupancy maps and simulated overhead images of the environments are shown in Fig. 3.5;

note that the overhead images are for visualization only, and are not used during planning.

We assumed a holonomic vehicle with a discrete action set: {up, down, left, right} one

pixel with no pose estimate noise. To generate the hierarchical action space, we discretized

each environment into 256 equally sized, non-overlapping regions (64x64 pixels per region),

resulting in a high-level action space with 1024 actions.

3.3.2 Simulation Evaluation Results

To evaluate our approach, we simulated a robot completing sequences of 500 randomly

generated feasible planning tasks in each of the 100 environments using three variants of the

hierarchical approach. The first variant (Average) used the averaging approach in Section

3.2.5 to update the high-level functions, and used the averaging termination condition in

Section 3.2.6. The second (Medium-Risk) and third (High-Risk) variants of the approach

used the Bayes filtering approach in Section 3.2.5 to update the high-level functions, and

used the risk-aware termination condition in Section 3.2.6 with medium (δ = 0.5) and high

(δ = 1.0) risk thresholds, respectively. All hierarchical planners used the feasibility threshold

γ = 0.5, and the risk-aware planners used the constant variance σs = 0.1. If any of the

hierarchical planners expanded 10,000 high-level nodes during the course of a planning trial,

the planner timed out and the current lowest cost primitive plan was returned; this occurred

for a single Average trial. Additionally, one High-Risk planning trial failed to find a plan;

this trial was removed from aggregate metrics. We compared each variant of our approach

to a non-hierarchical planner (Primitive) which generated optimal plans by running the A*

search algorithm over the primitive, unconstrained occupancy map. We evaluated planner

efficiency by comparing the total number of high-level and primitive nodes expanded and

the wallclock time taken by the different planners, and we evaluated planner robustness by

comparing the final plan costs of the different planners.

We demonstrated that the online hierarchical planners were capable of increasing plan-
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Figure 3.6: Planning metrics for the hierarchical planners over time as a per-
centage of Primitive planning metrics. Mean values are plotted as solid lines, and
the 5th-95th interquartile range, smoothed using a 4-iteration sliding window for improved
visualization, is shaded. We show that all hierarchical planners resulted in increased plan-
ning efficiency over time, demonstrated by a decreased number of nodes expanded (a) and
decreased wallclock time (b) as compared to the Primitive baseline (black dashed line). We
also demonstrate that the approaches achieved planner robustness over time, demonstrated
by a reduction in plan costs or a maintenance of low-cost plans over time (c). Finally,
we show that the risk-based planning formulation enabled risk-aware planning during early
planning; for example, the conservative Average planner (red) was inefficient during early
trials but found low-cost plans, while the High-Risk planner (blue) was efficient but found
high-cost plans.

ning efficiency while minimizing loss of plan robustness for multi-query planning problems.

Planning performance metrics for the hierarchical planners are compared over time in Fig.

3.6 as percentages of Primitive performance metrics6. In Table 3.1, we compare the total

number of nodes expanded, the total wallclock time, and the total plan cost accumulated

by the planners during all trials. Across all planning trials, planning with the online rep-

resentations and hierarchical planners resulted in a 77-86% decrease in the total number of

nodes expanded and a 45-66% decrease in the total wallclock planning time as compared to

the Primitive baseline while incurring only a 2-10% increase in plan costs. In Fig. 3.7, we

visually compare high-level cost functions and solutions over time for each of the high-level

planners.

We also showed that the risk-based formulation enabled the planner to balance between

planning efficiency and robustness in a principled manner during early planning, which we
6The planners approach steady state around the 150th trial in the test environments; additional trials

are excluded for visual clarity.
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Figure 3.7: High-level cost functions for the ‘right’ action and planning solutions
for the hierarchical planners over time. For lower risk trials, agent cost functions
exhibit a higher degree of plan similarity and planners expand more high-level nodes (pink
squares) during early planning, as the agent explores the environment to reduce uncertainty,
and therefore risk. Over time, all planners generate plan similar cost functions, and the
agents expand a small number of high-level nodes while finding low-cost solutions (green
line).
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Planner Average Medium-
Risk

High-
Risk

Nodes Expanded, Early Planning 40% 36% 17%
Nodes Expanded, Late Planning 19% 19% 13%
Total Nodes Expanded 23% 22% 14%
Wallclock Time, Early Planning 106% 112% 51%
Wallclock Time, Late Planning 37% 41% 30%
Total Wallclock Time 51% 55% 34%
Plan Cost, Early Planning 102% 104% 131%
Plan Cost, Late Planning 102% 103% 104%
Total Plan Cost 102% 103% 110%

Table 3.1: Planning performance for the hierarchical planners during different
stages of planning. Metrics were calculated by summing the nodes expanded, wallclock
time, and plan costs for all trials in a planning stage; early planning was defined as the
first 100 iterations, while late planning was defined as the remaining 400 iterations. Total
metrics were the sum of plan metrics for all planning iterations. We demonstrated that the
hierarchical planners were efficient and robust over time, and that the risk-aware planner
could be used to elicit different balances between planner efficiency and robustness during
early planning.

defined as the first 100 planning iterations. We computed planning metrics for early planning

only; results are shown in Table 3.1. As expected, the Average planner demonstrated the

most conservative behavior of the planners, while the High-Risk planner demonstrated the

most risky behavior. For example, the High-Risk planner was most efficient, and expanded

17% of the nodes and took 51% of the time as the Primitive planner during early planning,

but found plans that were 31% more expensive. Conversely, the average planner was the

most robust of the hierarchical planners during early planning, and found plans that were

only 2% more expensive than the optimal Primitive planner; however, Average was less

efficient, expanding 40% of the nodes and taking 106% of the time as compared to Primitive

during early planning. The Medium-Risk planner achieved an intermediate risk profile as

compared to the other high-level planners, and expanded 36% of the nodes as compared to

Primitive, while incurring 104% of the plan cost. However, due to the cost of maintaining

and using the risk-based representation in a risk-averse way, Medium-Risk was slower than

the other planners, finding plans in 112% of the time as Primitive.
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Figure 3.8: Scatter plots of steady state planning results. Scatter plots of nodes
expanded, wallclock time in milliseconds, and plan cost in simulation units for (a-c) Medium-
Risk vs. Primitive, (d-f) Medium-Risk vs. Primitive and (g-i) High-Risk vs. Primitive (blue
circles) for the last 10 queries in each of the 100 environments. The black dotted line is an
equal value reference.

We also analyzed the late planning performance of the high-level planners, which we de-

fined as planner performance for the last 400 queries of a 500 query trial. Performance metrics

are given in Table 3.1; Fig. 3.8 includes example scatter plots comparing nodes expanded,

wallclock time, and plan costs for the Average, Medium-Risk, and High-Risk planners as

compared to the Primitive planner for the last 10 queries in each of the 100 planning en-

vironments. Additionally, example solutions found using the Medium-Risk planner during
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Figure 3.9: Example Medium-Risk solutions during late planning. At this stage of
planning, the high-level functions exhibit a high degree of plan similarity, and the agents
quickly find low-cost high-level plans and primitive solutions that navigate around un-
traversable water regions, avoid high-cost forest regions, and use low-cost road regions to
reduce traversal costs. High-level nodes expanded during the planning trials are visualized
in pink, and final primitive solutions are shown as green lines.

the last 11 queries in 4 planning environments are shown in Fig. 3.9. We demonstrated that

the hierarchical approaches expanded 13-19% of the nodes and executed in 30-41% of the

wallclock time as compared to the Primitive baseline while incurring only a 2-4% increase

in plan cost during late planning. These results indicate that the online representations

and hierarchical planners are capable of significantly improving planning efficiency during

late planning as compared to the baseline while minimizing loss of planner robustness, as

demonstrated by the minimal increase in plan cost.

Finally, we directly evaluated the plan similarity of high-level and primitive plans over

time to analyze the ability of the high-level representation to accurately represent primitive

navigation properties. When a high-level plan was refined using the primitive planner, we
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Figure 3.10: Plan similarity between high-level and primitive plans over time.
Average absolute error between predicted high-level plan costs and primitive plan costs and
the average number of failed refinements over time for the three hierarchical planners. Mean
values are plotted as solid lines, and the 5th-95th interquartile range, smoothed using a
4-trial sliding window, is shaded. Average absolute error and the average number of failed
refinements decreased over time for all planners, indicating that the online planners were
capable of learning useful high-level representations over time; High-Risk converged least
quickly, as it prioritized efficient termination over exploration in the environment.

compared the predicted navigation properties of each high-level action aij to the measured

navigation properties psij of the resulting example primitive plan. We compared the average

absolute error per high-level action and the number of incorrect feasibility assignments for

the different planners in Fig. 3.10. All planners demonstrated a decrease in average absolute

cost error and number of incorrect feasibility assignments over time. Additionally, we noted

that high-level function error decreased most slowly for the High-Risk planner, which was

expected given that High-Risk prioritizes efficient planning over planner robustness during

early planning. Overall, we demonstrated that the high-level representations were able to

use online planning results to increase plan similarity over multi-query planning trials. In

Figs. 3.11, 3.12, and 3.13, we visualize the high-level functions for the Average, Medium-Risk

and High-Risk planners over time, respectively.
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Figure 3.11: Visualizations of the Average high-level functions for the ‘right’ ac-
tion over multiple planning queries. The functions quickly converged to a plan similar
representation.
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Figure 3.12: Visualizations of the Medium-Risk high-level functions for the ‘right’
action over multiple planning queries. The functions quickly converged to a plan
similar, uncertainty-aware representation.
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Figure 3.13: Visualizations of the High-Risk high-level functions for the ‘right’
action over multiple planning queries. The functions slowly converged to a plan similar,
uncertainty-aware representation.
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3.4 Conclusion

In this chapter, we presented a novel method for improving hierarchical planning efficiency

over a multi-query planning trial by estimating properties of high-level representations on-

line using only previous primitive planning computations. We demonstrated that using the

estimated functions increased hierarchical planning efficiency over time as compared to a

primitive planner running the A* search algorithm when navigating in a simulated outdoor

environment, while only slightly increasing average plan cost. We introduced average-based

and risk-aware versions of our approach, and showed that the risk-aware estimated functions

allowed an agent to trade off between planning efficiency and robustness during multi-query

planning trials. Ultimately, the approach demonstrated that learning global, high-level plan-

ning information online in hierarchical planners can improve navigation outcomes for plan-

ning at long length scales.
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Chapter 4

Approximating the Value of

Collaborative Team Actions for Efficient

Multiagent Navigation in Uncertain

Graphs

While the hierarchical planning representation presented in Chapter 3 was efficient for multi-

query planning in known environments, it required an agent to have access to a global oc-

cupancy map. In practice, such a map is likely intractable to generate prior to planning in

large, uncertain environments. Additionally, the approach relied on a grid-based discretiza-

tion of the environment. These limitations minimized the applicability of the approach to

planning in uncertain environments.

In this chapter, we develop a collaborative multiagent planning formulation for navigation

on CTP graphs to solve the multiagent planning under uncertainty optimization in Eq. 2.11.

The CTP graph represents global traversability uncertainty, and our approach is designed

to enable efficient, uncertainty-aware collaborative multiagent planning on the CTP graph.

Specifically, we modeled collaborative team policies for CTPs using macro-actions. We
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reduced the number of macro-actions considered during planning for some team types by

generating optimistic approximations of candidate future team states, and then generated

a small policy class for planning that only included likely high-reward macro-actions. We

evaluated our approach in toy and island road network domains, and demonstrated that

our approach enabled multiagent teams to find policies with up to 21.0% and 18.1% lower

makespans than a baseline approach in which agents planned independently.

4.1 Motivation

We would like to model uncertain global traversability information in a roadmap or mo-

tion graph, where some edges may be untraversable, and then develop a planner to enable

collaborative multiagent team navigation using the graph. For a single agent, the problem

of navigation in a roadmap with uncertain edge traversabilities is known as the Canadian

Traveller’s Problem (CTP), which can be formulated as a Partially Observable Markov De-

cision Process (POMDP), where the optimal policy trades off between exploiting paths that

are traversable with high probability, but with potentially higher cost, against exploration

actions that determine the traversability of potentially lower-cost paths (see Section 2.8 for

additional details). A collaborative multiagent team considers the same problem, but has

additional flexibility to explore the environment with different team members. This flexi-

bility is especially interesting for teams of agents with heterogeneous capabilities (e.g., an

air vehicle (AV)/ground vehicle (GV) team), or for tasks where agents are not co-located in

the environment (and can provide non-local information to their teammates). For example,

consider a team of air and ground vehicles entering an urban environment after a climate

disaster, as in Fig. 4.1. The weather may have rendered some of the routes through the city

untraversable for some of the agents (e.g., the GVs), and some of the agents may be able to

sense the true state of some paths more quickly than others (e.g., the AVs). A collaborative

plan that tasks some of the agents with determining which roadways are impassable due to
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Figure 4.1: Motivating Example. Consider an air vehicle/ground vehicle team navigating
in a city environment (a) subject to a climate disaster that has impacted the traversability
of city infrastructure, like pedestrian bridges (purple). A ground vehicle starting at SG
and navigating to GG with no additional information has to select between an unknown
trajectory that could lead to either a short path (b, green) or a long detour (c, green) and
a medium-length, known trajectory (d, blue), either of which can be suboptimal given the
unknown state of the pedestrian bridge. By taking a small diversion to the gold star, the
air vehicle (with start SA and goal GA) can sense and share the state of the bridge with the
ground vehicle, allowing the ground vehicle to select the best available path to GG for every
environmental state (e, green and f, blue) and reducing expected total team navigation cost.
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weather will lead to better overall team performance.

While the flexibility of multiagent teams can improve navigation outcomes in unknown

environments, generating team plans in this domain requires answering three questions: what

is useful to explore given the team objective(s), by when does the team need the explored

information to improve planning performance, and who should explore. Answering these

questions can require a multiagent team to reason over a POMDP with large action and

observation spaces, long time horizons, and delayed rewards, each of which are individually

studied as difficult problems in the POMDP literature (e.g., [131, 139, 132, 141, 51, 91, 85, 4];

see Kurniawati [74] for a comprehensive review). We choose to simplify our multiagent plan-

ning model by relying on improved terrain scoring algorithms, such as cost-to-go prediction

from satellite imagery [39] and traversability prediction from onboard sensors [48], to com-

pactly represent perceptual uncertainty using a sparse graph, enabling us to focus on the

challenge of finding good collaborative team plans at long time horizons with delayed re-

wards.

In this chapter, we model collaborative team policies on stochastic graphs using macro-

actions, where each macro-action can consist of multi-step movement actions, sensing ac-

tions, and actions to wait for sensor data from other teammates. To reduce the number of

macro-actions considered during planning, we generate optimistic approximations of candi-

date future team states, then generate a small policy class for planning that only includes

macro-actions that are likely to lead to high-reward future team states. We optimize team

plans over the small policy class. Our approach enables a team to find policies that balance

between reducing task-relevant environmental uncertainty and efficiently navigating to goals

in toy graph and island road network domains.
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4.2 Approach

4.2.1 The Canadian Traveller’s Problem

We would like to model a team Λ of l (possibly heterogeneous) robots λ, Λ = {λ0, ..., λl−1},

tasked with goal-directed navigation in a static environment using an imperfect roadmap.

The problem of single-agent navigation on uncertain roadmaps is well captured by the prob-

abilistic graph formulation proposed in the Canadian Traveller’s Problem (CTP) described

in Sect. 2.6. Recall that the CTP is defined as a 5-tuple (G, c, ρ, vs, vg):

1. A graph G with vertices V and edges E.

2. Scalar edge costs c : E → R+.

3. Edge blocking probabilities ρ : E → [0, 1).

4. An initial vertex vs.

5. A goal vertex vg.

Additionally, the ground truth, binary traversability of each edge in the CTP is encoded in

an edge weather we ∈ {0, 1}, which is constant throughout a planning trial, and it is assumed

that an agent can noiselessly sense the traversabilities of edges incident to the agent’s current

vertex. The goal of the CTP is to find the minimum expected cost policy π for navigating

from a start node s to a goal node G in the uncertain graph:

π∗(v, b) = argmax
π∈Π

V π(v, b), (4.1)

where S is the discrete state space, s ∈ S, and Π is the space of single-agent policies,

π : S ×B → A,

V π(va, ba) = E
w∼ba

[ ∞∑
t=a

c(vπt , v
π
t+1)

]
, (4.2)
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where vπt is the vertex reached by the agent at time t when executing policy π from time a

until time t.

4.2.2 Multiagent Planning on Unknown Graphs

While the CTP formulation effectively models the global characteristics of an environment

with uncertain traversabilities, the formulation was not designed to model navigation for

more than one agent. To enable high-quality (e.g., low cost and uncertainty-aware) team

planning, we modify the CTP formulation to model collaborative multiagent navigation

under uncertainty. Specifically, we modify the objective function defined in Eqs. 4.1 and

4.2 to generate a team policy π that takes each robot in the team from its initial vertex vsi

to its goal vertex vgi , where vsi , v
g
i ∈ V ∀i ∈ {0, ..., l − 1}, and that maximizes a scalar team

reward function R (e.g., makespan) in expectation over weathers. Formally, we can model

the problem of multiagent planning on a stochastic graph as a specific type of POMDP, the

Multi-Agent Deterministic Mixed Observability Markov Decision Process (MADMOMDP),

with the following properties:

• Team: The team Λ of l agents, {λ0, ..., λl−1}.

• Fully observable state S: The set of graph vertices for each agent V l.

• Partially observable state: The set of weathers W .

• Actions: The set of incident, traversable graph edges for each agent from each vertex,

including self-loops.

• Observations: The traversability we of an edge, ze = we ∈ {0, 1}.

• Observable state transition function: Deterministic transitions along observed, inci-

dent, traversable graph edges to adjacent vertices.

• Partially observable state transition function: No transition, as weather w is assumed

constant during a trial.
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• Observation function: Deterministic observations of the traversability we of sensed,

incident graph edges.

• Reward R: The negative team makespan, or the negative maximum completion time

of any agent in the team, R = −maxλ∈Λ
∑∞

t=0 cλ(vλ,t, vλ,t+1), where, by assuming the

reward of an agent remaining in its goal state is zero, we ensure the stationary policy

has zero reward and the infinite sum is well defined.

• Initial belief b0: The prior belief over the weather, b0 = {Bern(1 − ρ0), ...,Bern(1 −

ρm−1)}.

We can write the multiagent planning objective as the maximization of the MADMOMDP

value function V π(v, b) over multiagent policies π ∈ Π,

π∗(v, b) = argmax
π∈Π

V π(v, b), (4.3)

where Π is the space of multiagent policies, π : S ×B → A,

V π(va, ba) = E
w∼ba

[
−max

λ∈Λ

∞∑
t=a

cλ(v
π
λ,t, v

π
λ,t+1)

]
, (4.4)

and vπλ,t is the vertex reached by agent λ at time t when executing policy π from time a until

time t.

4.2.3 Macro-actions for Information-gathering Teams

In practice, optimizing Eq. 4.3 over the space of all collaborative team policies Π is in-

tractable due to the size of the team action space and the length of team plans [16]. One

approach to increasing planning tractability is using macro-actions a ∈ A, or multi-step

actions, which are often selected using domain knowledge, to reduce the effective planning

depth. For the single-agent CTP, optimal plans can be generated by optimizing over single-

agent macro-action policies π ∈ Πsa that consist of only two different types of macro-actions:

89



1) optimal navigation in the observed subgraph to vertices adjacent to an unknown edge and

2) navigation to the goal [40], where Πsa is the set of policies that can be represented using

the two single-agent macro-action types. Intuitively, the single-agent macro-action based

polices are optimal because single-agent MADMOMDP policies depend only on the agent’s

belief b about the unknown weather w. By construction, an agent’s belief is constant during

the execution of a single-agent macro-action a, so the highest reward agent policy π does

not change. Planning using macro-actions reduces policy search depth and breadth, as they

reduce the number of timesteps to the goal, and they eliminate policies with suboptimal

known-graph traversals from the policy space.

We would like to apply macro-actions to multiagent CTPs to increase the tractability

of solving Eq. 4.3. The collaborative nature of multiagent systems means that we need

to consider additional macro-actions, specifically 1) sensing an edge and 2) waiting for the

edge to be sensed and the result transmitted. However, remote team sensing invalidates the

optimality of the single-agent macro-action set, as teammates can update the team belief

during one agent’s macro-action execution. Additionally, waiting actions can increase the

branching factor of macro-action based search, as optimal wait durations are not known

before planning, so wait actions with multiple durations must be considered. For example,

consider the ground vehicle (GV) in Fig. 4.1; the GV should combine waiting and moving

so that it is positioned at the fork in the road where the green and blue paths diverge when

the air vehicle (AV) senses the bridge.

Fortunately, while good team policies can be spatially and temporally complex, in many

problems of interest, only a small number of collaborative macro-action policies are useful for

a specific team planning task. For example, in Fig. 4.1, the only useful collaborative macro-

action for the AV is to sense the traversability of the purple bridge on the potentially low

cost (green) GV path to the goal; all other sensing actions will not improve team planning

performance. Our key realization is that we can use the structure of the MADMOMDP belief

space to approximate the value of a hypothetical team belief without explicitly planning
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the collaborative actions that lead to the belief. This approximation allows us to focus

computation on the (often small) set of collaborative team policies Π̂ that are likely to lead

to high-reward team beliefs, while pruning collaborative team policies that are likely to lead

to low-reward team beliefs and are therefore unlikely to improve team planning performance.

4.2.4 Policy Class Augmentation for Planning

In this work, we assume that we are given a small base class of single-agent macro-action

policies Πsa that involve moving agents to graph vertices and a much larger class of complex

multiagent macro-action policies Πma that include sensing and waiting actions. We would like

to generate a small, high quality policy class Π̂ for planning by augmenting the base policy

class Πsa with a small number of candidate policy classes Πc ⊂ Πma that are likely to improve

team planning performance. While Πc can in principle be any subset of Πma, it can be useful

when each candidate policy class has a meaningful interpretation in policy space (e.g., Πc is

the set of team policies where an AV senses edge e). In this work, we define candidate policy

classes as the set of macro-action policies that include a specific macro-action. The value

of a candidate policy class Πc for planning is the expected increase in planning performance

when planning using Π̂ as compared to planning using the single-agent macro-action policy

class Πsa:

∆(Πsa,Πc, v, b) = max
π∈Πsa∪Πc

V π(v, b)− max
π∈Πsa

V π(v, b). (4.5)

We include a candidate policy class Πc in Π̂ if planning using the augmented class results in

an improvement in planning performance ∆(Πsa,Πc, v, b):

Π̂(v, b) = Πsa ∪ {Πc|Πc ∈ Πma; ∆(Πsa,Πc, v, b) > γ}, (4.6)

where γ ≥ 0 is a tunable parameter. When γ is low, collaborative actions are added to

the policy class if they can lead to any improvement in total team cost; when γ is high,

collaborative actions are only added to the policy class if they can lead to a significant
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improvement in total team cost. In our experiments, we use a low γ that reduces the

impact of floating point errors on policy class selection, but does not otherwise impact

action selection.

While the defined policy class Π̂ is likely to contain a small number of high-reward collab-

orative team policies and result in efficient, high-reward planning, unfortunately, computing

∆(Πsa,Πc, v, b) for all Πc ∈ Πma can be expensive, as evaluating each ∆(Πsa,Πc, v, b) may

require calculating value functions based on complex multiagent macro-action policies. Next,

we 1) discuss the structure of the MADMOMDP belief space, which results from determin-

istic actions and observations, and 2) discuss team compositions for which we can efficiently

generate good approximations of ∆(Πsa,Πc, v, b), and therefore efficiently generate good Π̂.

4.2.5 Approximations for Policy Selection with One Stochastic Agent

Preliminaries: Belief-based Value Functions

First, we discuss the structure of the MADMOMDP belief space. Consider the beliefs b and

bz, where bz is the updated team belief after receiving observation z, i.e., bz = h(b, z) given

belief update function h. Note that the observation z is independent of the sensing agent.

Because the team operates in a MADMOMDP where the hidden environment weather is

constant during planning, the (deterministic) agent observations never increase team envi-

ronmental uncertainty, i.e., the size of the support of the team belief decreases monotonically

over the planning trial [19]. Under the assumption of rational planning [124], or that each

agent maximizes its reward given its knowledge of the environment, additional environmen-

tal information does not decrease planning performance, and the value function for a policy

generated using bz will be at least as good as the value function for a policy generated using

b:

V π(v, bz) ≥ V π(v, b). (4.7)
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We use the assumption of rational planning to generate accurate approximations of the

values of collaborative team actions while incurring low computational costs for some teams.

Specifically, we develop approximations for teams where one agent acts on the CTP graph

with unknown edge traversabilities, like a ground vehicle (GV) navigating on a damaged

road network, and one or more agents act on a fully traversable graph of the environment1,

like an air vehicle (AV) flying over damaged terrain. In the remainder of the exposition, we

will use the terms stochastic agent/GV and deterministic agent/AV interchangeably.

We focus on the team composition of one GV and multiple AVs because, for a given

team plan, the time at which the team belief will change is known – it is the earliest time

at which any AV reaches an edge to sense, or when the GV navigates to a vertex with

an unknown incident edge. Knowing the team sensing time enables us to use the rational

planning assumption to generate efficient approximations of the quality of collaborative team

actions during online planning. In future work, we are interested in developing efficient

approximations for other team compositions, such as those with multiple agents operating

on stochastic graphs.

Value Function Approximations for a 1-GV/n-AV Team

Consider a 1-GV/n-AV team navigating on a CTP graph. We assume that AVs do not

observe the traversability of edges while navigating unless specifically tasked to sense, and

that the GV immediately observes the traversability of all incident edges of its current vertex.

We would like to generate an augmented policy class Π̂ that is likely to contain high-

quality solutions to the optimization in Eq. 4.1. We begin by identifying the types of

macro-action classes Πc ∈ Πma to consider for planning, assuming a base class Πsa of single-

agent, non-collaborative macro-action policies. The first is collaborative sensing macro-

action policies Πcs , in which one or more AV(s) travel to a vertex and sense an incident

edge’s traversability and transmit the information to the GV. The second is collaborative
1The fully traversable graph may include vertices and edges that are never reachable or traversable for

the stochastic agent, respectively, and are therefore not included in the CTP graph.
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waiting macro-actions Πcw , in which one or more AV(s) travel to a vertex to sense the

environment, and the GV combines movement and waiting macro-actions to optimally take

advantage of the sensed information. For example, the GV may select movement and waiting

actions to arrive at a fork between two paths just as additional information about the paths

is sensed and communicated.

In the following sections, we develop approximations for ∆(Πsa,Πc, v, b) for sensing and

waiting macro-actions.

Approximating ∆(Πsa,Πcs, v, b) for Sensing Actions

First, we discuss approximations for sensing policies Πcs . Each sensing action can be thought

of as two separate single-agent actions: an AV sensing the desired edge e with a corresponding

cost of traveling to sense the edge, and the GV planning using the sensed information with

a potential reduction in overall plan cost resulting from knowing edge traversabilities, both

of which can impact team makespan. Because all graph edges are traversable for the AV,

the cost cs of detouring from the optimal AV path (with cost c(v,G)) to sense edge e before

continuing to the goal can be computed exactly using a shortest paths algorithm,

cs = argmin
v′∈{ve0 ,ve1}

c(v, v′) + c(v′, G), (4.8)

where we assume an edge can be sensed at either of its endpoints ve0 and ve1 , and that if

either ve0 or ve1 is on the AV’s shortest path to the goal, the expected loss due to sensing is

zero. We also recover the deterministic edge sensing time,

ts = c(v, v′), (4.9)

where v′ is the minimizing vertex in Eq. 4.8.

We can now consider how the sensing action reduces the GV cost. To directly calculate

the benefit of the sensing action for the GV, we would need to find an optimal joint GV/AV
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policy, which may contain a combination of movement, sensing, and waiting actions, and

may be computationally intractable to generate. However, we can use Eq. 4.7 to generate

bounds for the joint policy that are inexpensive to compute, based on the value functions of

an agent that does not receive sensed information and an agent that does receive the sensed

information. First, we consider an agent at vertex v with traversability belief b that does not

receive additional sensing information and acts using a single-agent policy πsa, with value

function V πsa(v, b). This value function can be well-approximated using a single-agent CTP

policy.

Second, we consider an agent at vertex v with traversability belief b that receives an

observation of edge e at time ts and acts using policy πma, a multiagent sensing policy, with

value function V πma(v, b, e, ts). Calculating this value function exactly requires reasoning over

multiagent sensing policies. To avoid solving this complex planning problem, we instead find

an upper bound for the expression by observing that Eq. 4.7 implies that

V πma(v, b, e, ts) ≤ V πma(v, b, e, 0), (4.10)

or that the value of plan generated by immediately sensing the unknown edge will be at

least as good as the value of a plan where the edge is sensed later during planning. Next,

we realize that the value of a multiagent policy with immediate sensing is equivalent to the

value of a single-agent policy calculated using the updated belief after sensing, bz,

V πma(v, b, e, 0) =
∑

z∈Z
p(z)V πsa(v, bz|z = z), (4.11)

where bz is the agent’s traversability belief after receiving an observation of edge e. Com-

bining Eqs. 4.10 and 4.11, we recover the following upper bound,

V πma(v, b, e, ts) ≤
∑

z∈Z
p(z)V πsa(v, bz|z = z), (4.12)
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which can be well-approximated using a rollout-based single-agent CTP policy. Using Eqs.

4.8 and 4.12, we recover an upper bound for ∆, the expected change in team makespan

caused by using sensing actions, that is efficient to compute,

∆(Πsa,Πcs , v, b) ≤ max
{∑

z∈Z
p(z)V πsa(v, bz|z = z), cs

}
−max

{
V πsa(v, b), c(v,G)

}
. (4.13)

Approximating ∆(Πsa,Πcw , v, b) for Waiting Actions

Next, we consider waiting policies Πcw . Each waiting action can be thought of as two separate

single-agent actions taken by the GV: 1) waiting to begin moving, and 2) following a policy

to the goal. First, we consider the wait-to-move action. Because determining the optimal

waiting time requires solving the multiagent problem, we can compute a lower bound of the

cost of the wait-to-move action by assuming that the agent does not wait to move, and the

wait cost is zero. Second, we approximate the value of planning to the goal after waiting.

We can again use Eq. 4.7 to develop efficiently computable bounds for the joint policy. To

generate the bound, we consider the value functions of two agents: one that waits, and one

that does not wait. First, we consider the value function of an agent that receives a new edge

observation at ts and that cannot select wait-to-move actions at any time during planning,

V πma(v, b, e, ts). The value of this policy is equivalent to the value of a two-step single-agent

policy that first navigates until the sensing horizon with no information about e or the AV’s

sensing action, and then replans using the updated belief and navigates from the sensing

horizon to the goal:

V πma(v, b, e, ts) = V πsa
ts (v, b) + V πsa(vts , b

z
ts), (4.14)

where Vts indicates the value function for navigating until time ts with belief b, and vts

and bzts are the vertex and belief of the agent at ts, assuming πsa was followed until ts and

observation z was received. Second, we consider the value function of an agent that receives
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a new edge observation from the AV executing the sensing action at macro-action sensing

time ts, and that can select wait-to-move actions until some waiting time tw before or during

sensing, V πma(v, b, e, ts, tw), where tw ≤ ts. Determining this value function can require

considering waiting team actions; we again avoid this computation by generating an upper

bound. First, we note that Eq. 4.7 implies that waiting for additional sensing information

can only improve the value of future policies (assuming no wait cost):

V πma(v, b, e, ts, tw) ≤ V πma(v, b, e, ts, ts). (4.15)

Next, we realize that the value of a policy that waits until the sensing time to take an action

is equivalent to the value of a policy that senses the edge immediately and does not wait,

again assuming no wait cost.

V πma(v, b, e, ts, ts) = V πma(v, b, e, 0). (4.16)

Using Eqs. 4.11, 4.15, and 4.16, we recover a bound for V πma(v, b, e, ts, tw),

V πma(v, b, e, ts, tw) ≤
∑

z∈Z
p(z)V πsa(v, bz|z = z), (4.17)

which can be well-approximated using a rollout-based single-agent CTP policy. We recover

the tractable ∆ bound:

∆(Πsa,Πcw , v, b) ≤ max
{∑

z∈Z
p(z)V πsa(v, bz|z = z), cs

}
−max

{
V πsa
ts (v, b) + V πsa(vts , b

z
ts), cs

}
. (4.18)
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4.2.6 Using Problem Structure to Reduce the Number of Candidate

Policy Classes

Unfortunately, even calculating approximations of policy quality ∆ for all candidate policy

classes Πc to generate Π̂ can be computationally expensive. However, in many structured

environments, there exists a macro-action ordering property that can be used to select an

order in which to try to add Πc to Π̂, and to prune some candidate policies Πc without

approximation. For example, a policy class with a waiting action can only improve planning

performance if it also includes a sensing action that was useful for planning; otherwise,

the agent will consider waiting for information that will never come or is not useful. For

the single AV case, we first calculate ∆(Πsa,Πcs , v, b) for a sensing policy class Πcs . If the

sensing action does not improve performance, the action is not included in Π̂, and we do not

approximate the value of the corresponding waiting candidate policy class Πcw . Otherwise,

we calculate ∆(Πsa,Πcw , v, b) for waiting macro-action policy class Πcw to determine if it is

beneficial to sense and wait. If waiting improves performance, the waiting macro-action is

added to Π̂; otherwise, only the sensing macro-action is added to Π̂. For the n-AV case, we

calculate ∆(Πsa,Πcs , v, b) for every edge, then greedily assign an edge to each agent (note

that the improvement due to sensing is sensing-agent independent, while the cost of the

sensing action is sensing-agent dependent). Given the assignment, we calculate the value of

sensing and the value of waiting for the multi-agent action, as in the single-agent case, and

generate Π̂. While we consider a single greedy edge assignment per timestep, more complex

assignment and approximation strategies could be used.

4.2.7 Planning using ∆ and Multiagent Macro-Actions on CTPs

Finally, we discuss a planner that uses a macro-action policy class Π̂ to optimize Eq. 4.1 in

an online, centralized multiagent CTP solver with perfect communication. As input, we take

a MADMOMDP, a baseline policy class to use in all planning instances, like single-agent
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macro-action policies Πsa, and a set of multiagent macro-action policies to consider, Πma. In

some cases, we are also given an ordering property. We assume that edges incident to GVs

at the start of an instance are observed.

Planning begins by approximating ∆(Πsa,Πc, vGV , bGV ) for every Πc for the GV (unless

previous computations combined with policy orderings guarantee that ∆(Πsa,Πc, vGV , bGV ) <

γ) and generating a Π̂ according to Eq. 4.6. Then, we optimize Eq. 4.1 over Π̂ to generate a

team macro-action policy π, which may include collaborative macro-actions. Team policies

are executed as follows: first, each agent begins to execute its current macro-action. When

any subset of agents finishes their current macro-actions, they update their belief and com-

municate their belief with each other and the central planner. The central planner replans,

and the finished agents begin their next macro-actions. Additionally, non-finishing agents

truncate their macro-actions as soon as possible (i.e., at the end of their current primitive

action, or graph edge), communicate with the central planner to get the updated team belief,

and replan. This process repeats until all agents reach their respective goals.

4.3 Experiments

We benchmarked our informed, policy-class aware multiagent planner, Comms+Approx,

against three multiagent planners, Independent, Passive Comms, and Comms+No Approx.

In Comms+Approx planning, the multiagent team planned using the described approach,

and the GV sensed all incident edges during plan execution, while the AV(s) sensed only

requested edges. In Independent planning, each agent planned independently, and did not

share information with the team; for this case, we assumed that the GV sensed all incident

edges during plan execution, and the AV(s) did not sense. In Passive Comms planning, each

agent planned independently, but the agents shared, updated, and planned using a joint belief

space; for this case, we assumed that the GV sensed all incident edges during plan execution,

and the AV(s) sensed all traversed edges during plan execution. In Comms+No Approx, the
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team planned using a modified version of Comms+Approx that did not generate approxi-

mations and planned over the full multiagent macro-action policy class, Π̂ = Πsa ∪Πma. We

also compared our approach to an oracle, Oracle, which planned using Dijkstra’s algorithm

[34] on a fully observed graph.

We used Monte Carlo simulation to generate value function approximations for planning.

As in Eyerich et al. [40], we use the same names to refer to algorithms and policies for plan-

ning, where executing an algorithm corresponds to optimizing the corresponding policy at

each timestep, and a policy is generated online by selecting the macro-action that maximizes

the value function of the macro-action successor, or the terminal state of the macro-action.

Independent macro-actions were evaluated using the optimistic rollout policy (ORO) [40],

which calculated successor value functions by simulating optimistic planning (assuming un-

known edges were traversable) from each successor for r different weathers, where r is the

number of rollouts used. We also modified ORO to approximate the sensing value functions

by revealing information sensed by other agents during optimistic planning, and by trigger-

ing replanning when the team belief was updated. Waiting value functions were evaluated

using a combined policy, Greedy Rollout - Greedy policy (GR-G), where value functions

were calculated for all navigation-based successors and the current state, which is the result

of taking the single timestep wait action. The GR-G policy approximated successor costs

by averaging the costs of Greedy policy (G) executions for r rollout weathers; the Greedy

policy (G) calculated macro-action values by simulating execution of the optimistic policy in

a given rollout weather for each successor and the current state. We planned using r = 100

rollouts for all policies, as this provided a good trade-off between computation time and

solution quality in preliminary experiments, and γ = 1 × 10−10. When evaluating value

functions to calculate ∆, we used the same rollout weathers to evaluate each term in the

approximation, as this reduced errors in ∆ caused by rollout weather stochasticity. Note that

because the value functions used to generate the bounds in Sect. 4.2.5 are approximated,

we cannot guarantee that our implementation does not prune macro-actions that could lead
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Figure 4.2: Visual Plan Comparison in the Toy Graph. Plans executed by the AV
(blue) and GV (green) navigating from their respective starts (SA/SG) to goals (GA/GG) in
the toy graph (a, b), where edge costs and blocking probabilities are labeled in red and blue,
respectively. Solid lines represent traversable edges and dotted lines represent edges with
uncertain traversability. In the Independent plan, the AV navigated directly to the goal, and
the GV selected the plan that minimized the expected makespan over all weathers, resulting
in highly variable planning performance in some weathers (e, f). In the Comms+Approx
plan, the AV diverted to sense the unknown edge (purple) on the short path to the goal,
while the GV combined waiting and moving and arrived at the fork between paths when the
AV sensed the edge on the short path (c). Then, the GV took the shortest traversable path
to the goal (d).

to high-reward plans due to poor value function approximation. While the OPT, ORO,

and GR-G rollout policies were selected due to their good performance for low r, a rollout

policy with a regret bound, such as UCT [70], could be used to bound the regret of pruning

macro-actions using the proposed value function bounds.

4.3.1 Toy Environment

We demonstrated our approach by planning for a 1-GV/1-AV team for 100 trials in the toy

scenario in Fig. 4.2-a-b . In all trials, the ground vehicle navigated from start SG to goal GG,
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Metric
↓ better

Oracle Indep-
endent

Passive
Comms

Comms
+ Ap-
prox

Comms
+No
Ap-
prox

Avg % Regret 0 81.82 81.07 4.00 4.00
Avg
Makespan

80.27 104.10 103.30 82.27 82.27

SEM Cost 3.86 3.08 3.02 3.86 3.86
Avg GV Cost 80.27 104.10 103.30 82.27 82.27
SEM GV
Cost

3.86 3.08 3.02 3.86 3.86

Avg AV Cost 1.0 1.0 1.0 7.0 7.0
SEM AV Cost 0.0 0.0 0.0 0.0 0.0
Avg Time (s) - 1.18 1.18 24.29 42.62
SEM Time (s) - 0.01 0.01 0.06 0.15

Table 4.1: Toy graph results. We report the average (Avg) normalized percent regret from
optimal, average team makespans, AV costs, and GV costs in simulation units (u), algorithm
execution times, and standard errors of the mean (SEM). Our approach, Comms+Approx,
generated lower makespan plans than the single-agent planning approaches, Independent and
Passive Comms, and was more time efficient than Comms+No Approx, which did not use
approximations to generate a small policy class Π̂.

and the air vehicle navigated from start SA to goal GA. A weather was drawn randomly from

the distribution over weathers p(w) at the start of each trial, and the GV and AV navigated

at the same speed. The GV had three possible paths to the goal: one long, likely traversable

path, one medium-length, traversable path, and one short-length, likely untraversable path.

The non-collaborative planners selected a GV plan without knowledge of the state of the

unknown edge on the short path to the goal, which resulted in highly variable GV planning

performance given the weather. The performance in (e) matched what the planner expected,

but in (f) the unknown edge on the short path was in fact not traversable and the GV had to

backtrack in a way the planner did not anticipate, leading to higher overall cost. In contrast,

the collaborative planners predicted the potential cost of the unknown edge and used the

AV to sense it, while the GV combined waiting and movement macro-actions to arrive at

the decision point between paths when the AV sensed and shared the traversability of the

edge (c). This enabled the GV to select the shortest path to the goal for every weather (d).
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While the sensing and waiting actions incurred small constant GV and AV costs in all trials,

they resulted in more consistent, ultimately lower makespan team plans across weathers.

Additionally, the AV did not sense the uncertain edge on the long GV path to the goal,

indicating that our approach distinguished between task-relevant and task-irrelevant team

sensing macro-actions.

Quantitative results for the trials are shown in Table 4.1. We demonstrated that our

approach found plans with 21.0% and 20.4% lower average makespans as compared to the

single-agent baselines, Independent and Passive Comms, respectively, indicating that collab-

orative planning improved navigation outcomes in the environment. We also showed that

our approach found similar makespan plans to Comms+No Approx while planning for 43.0%

less time on average, demonstrating that the proposed approximations increased planning

efficiency without reducing plan quality.

4.3.2 Islands Environment

Next, we demonstrated our approach for a 1-GV/2-AV team navigating in a simulated is-

land environment, modeled as a CTP graph with 90 vertices and 166 edges with Euclidean

distance edge costs, shown in Fig. 4.3. We generated 100 environments by sampling edge

blocking probabilities uniformly from an allowable range based on edge type. We modeled

four different types of edges: highway and on-ramp edges with ρ ∈ [0.0, 0.001), and local

road and bridge edges with ρ = 0.5. We generated 10 trials per environment by randomly

sampling a start and goal in every graph, then sampling 10 individual trial weathers per

graph and start/goal pair, discarding and re-sampling if the start and goal were not con-

nected in the weather. We also discarded and resampled start/goal pairs if the GV trajectory

generated by the first weather was not at least 8 edges long to remove short, high traversal

probability trajectories from our dataset that were unlikely to benefit from collaborative

planning. We also assumed that the AVs moved 8x faster than the GVs.

We quantitatively assessed the Independent, Passive Comms, and Comms+Approx plan-
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Metric
↓ better

Oracle Indep-
endent

Passive
Comms

Comms+
Ap-
prox

Avg % Regret 0 35.02 29.33 12.81
Avg
Makespan

1151.34 1595.42 1519.35 1306.94

SEM
Makespan

12.39 26.62 23.55 17.04

Avg GV Cost 1151.34 1595.42 1519.35 1306.29
SEM GV
Cost

12.39 26.62 23.55 17.06

Avg AV Cost 181.89 181.89 181.89 1011.05
SEM AV Cost 1.04 1.04 1.04 15.7
Avg Time (s) - 31.13 27.26 5203.42
SEM Time (s) - 0.75 0.55 199.09

Table 4.2: Islands domain results. We report the average (Avg) normalized percent
regret, average team makespans, AV costs, and GV costs in simulation units (u), algorithm
execution times (s), and standard errors of the mean (SEM). Our approach, Comms+Approx,
resulted in lower makespan plans than Independent and Passive Comms, often by diverting
the AV to sense, resulting in larger AV costs but smaller GV costs, reducing team makespan.

ners in Table 4.2; results for the Comms+No Approx approach were omitted due to com-

putational limitations. We also compared to an oracle planner that ran a shortest path

algorithm on the fully observed graph for each agent. Our approach found 18.1% and 14.0%

lower makespan plans than the Independent and Passive Comms planners on average. Our

approach frequently resulted in shorter GV plans and longer AV plans, indicating that it

used AV sensing actions to reduce GV planning uncertainty, which resulted in shorter GV

plans and shorter team makespans overall. However, as our approach solved a multiagent

POMDP, rather than three independent single-agent POMDPs, it was less time efficient:

167x and 191x slower than Independent and Passive Comms, respectively.

Example plans generated by the Independent and Comms+Approx approaches are shown

in Fig. 4.3. In Independent planning, the GV attempted to reach the goal using an un-

traversable candidate plan and had to backtrack, while the AVs navigated directly to the

goals. In Comms+Approx planning, the GV waited while the AVs sensed various candidate

paths in the environment, and then took a low cost path to the goal, resulting in a 26.8%
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Figure 4.3: Visual Plan Comparison in the Islands Domain. Example plans ex-
ecuted by the GV (green) and AVs (blue/orange) navigating from their respective starts
(SG/SA) to goals (GG/GA) in the islands domain. Dotted, solid, and dashed lines represent
untraversable, traversable, and unknown edges at trial termination. (a) The Independent
planner selected an untraversable GV path (highlighted green), and the GV backtracked
after reaching the dead end. (b) In the Comms+Approx plan, the AVs navigated to and
sensed uncertain edges, and determined the candidate path in (a) was untraversable. The
GV waited for information about the candidate path, then navigated to the goal. Note that
the AVs did considerable additional sensing work, traversing a large part of the graph to
sense edge traversability for the GV, which drove down the team makespan (e.g., by 26.8%
here).
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lower team makespan.

4.4 Conclusion

In this chapter, we presented a novel method for improving collaborative team navigation in

stochastic, unknown environments. Our approach used a sparse, uncertainty aware graph as

a global environment model for planning. Then, we developed uncertainty-aware multiagent

macro-actions for the sparse graph, and devised value function approximations, based on the

macro-actions, to quickly identify a small set of high-quality collaborative multiagent poli-

cies. By explicitly modeling global environmental uncertainty and developing a multiagent

planner capable of reasoning about the uncertainty, our approach enabled multiagent teams

to collaboratively reduce global task-relevant environmental uncertainty during multiagent

navigation. We demonstrated that our planner reduced team navigation costs as compared

to agents that planned independently in the uncertain environment, and increased team plan-

ning efficiency as compared to teams that optimized the collaborative multiagent planning

under uncertainty objective naively over all possible collaborative multiagent policies.
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Chapter 5

Real-World Deployment of a Hierarchical

Uncertainty-Aware Collaborative

Multiagent Planning System

The research described in this chapter was performed jointly with Samuel Pren-

tice and Yasmin Veys.

In Chapter 4, we developed a method for collaborative multiagent planning on abstract

roadmaps, or motion graphs, where some graph edges were assumed to be probabilistically

traversable [136]. We demonstrated that the approach enabled a collaborative multiagent

team to find low-cost team policies that actively balanced between reducing task-relevant

environmental uncertainty and efficiently navigating to goals. However, the approach used

known, abstract models of the problem to generate high-level solutions for complex teams

that were not directly executable in real-world environments.

In this chapter, we develop a hierarchical planning system to deploy our collaborative

multiagent planner on a real-world team operating in two different large, outdoor environ-

ments. Our system was designed to handle both the theoretical and practical challenges

of field robotics deployments, including abstract model generation and alignment, robust
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solution execution under uncertainty, and team coordination. Additionally, by developing a

planning system that was robust to model mismatch and robot failures at every level of the

planning hierarchy, we enabled the team to complete collaborative navigation tasks, even

in the presence of imperfect planning abstractions and real-world uncertainty. We demon-

strated our approach on a Clearpath Husky-Jackal team navigating in two large, outdoor

environments over the course of 18 collaborative and baseline planning trials, and showed

that our system resulted in real-world collaborative team planning.

5.1 Motivation

We would like to enable a team of robots to carry out collaborative missions autonomously

in unknown environments. Unfortunately, abstract models that are used to generate col-

laborative team plans are often very different from low-level models that enable agents to

execute plans in real-world environments. When selecting an environment model for plan-

ning, there is a trade-off to make between model and planner complexity and real-world plan

executability; as our models become more abstract or use additional assumptions to enable

more efficient high-level planning, model properties that are needed to represent the details

of plan execution can become abstracted away. This is especially true when solving complex

robotics tasks, as models and planners that are sparse, representative, and efficient for such

tasks often abstract away details that do not impact high-level decision making, but these

details are often critical for real-world deployments. For example, consider a ground vehicle

team collaborating in the semi-structured outdoor environment shown in Fig. 5.1-a. While

the presence of an overgrown bush on a path is unlikely to impact high-level decisions about

team collaboration, an agent that improperly models the bush could become stuck during

low-level navigation, or could mistakenly report that the topology of the environment has

changed relative to the abstract graph, when in reality the geometry of the bush is unlikely

to cause more than a minor detour. Additionally, other characteristics of real-world de-
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Figure 5.1: Real-world deployment of a collaborative multiagent planner. a) In
this chapter, we discuss the deployment of a collaborative multiagent planner for a two agent
team consisting of a Clearpath Jackal and a Clearpath Husky in a real-world semi-structured
outdoor environment. b) Consider the Jackal and Husky navigating from starts SJ and SH
to goals GJ and GH, respectively, given a navigation graph (green), where one edge has
unknown traversability (red). c) When the agents plan independently, the Husky attempts
to navigate to the goal via the unknown edge, senses that the edge is untraversable, and
then backtracks to the goal via a long, traversable path (trajectory shown in yellow-orange);
meanwhile, the Jackal navigates directly to its goal (trajectory shown in blue-green). d)
When the agents plan to collaboratively minimize team makespan, the quicker Jackal diverts
from the shortest path to its goal to sense the traversability of the unknown edge for the
Husky, while the Husky waits in place for additional information. After sensing that the
edge is untraversable, both the Jackal and the Husky navigate to their respective goals.
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ployments, such as timing delays and robot failures, further stress the relationship between

planning abstractions and real-world robot actions.

One method for overcoming the challenges of model mismatch for real-world planning

is hierarchical planning. In hierarchical planning, high-level environment models are used

to efficiently generate solutions to complex planning problems. Then, in lower levels of the

planning hierarchy, the abstract solutions can be refined to reincorporate environment details

that are necessary for plan execution. Hierarchical planning approaches can reduce total

team computation by enabling agents to use different models for planning when generating

different types of plans, and by focusing planning computation on task-relevant information,

such as teammate locations during collaborative team planning and detailed occupancy

maps during single-agent trajectory execution. Finally, robust planning models at each

level in the planning hierarchy often enable agents to recover from unexpected outcomes or

incompatible models at lower levels in the planning hierarchy, which can reduce instances of

global replanning.

In this chapter, we develop a hierarchical planning system capable of overcoming model

mismatch to execute collaborative multiagent planning in real-world environments. Our

three-level system generates abstract, collaborative team plans using a sparse, global, uncertainty-

aware graph-based representation of the environment, processes single-agent macro-actions

using a robust macro-action planner, and executes commands on the robots using primitive

action planners, all while maintaining plan consistency throughout the hierarchy and being

robust to real-world uncertainty and disturbances. We deployed our approach on a Clearpath

Husky-Jackal team navigating in the large, structured outdoor environment shown in Fig.

5.1 and in the large, semi-structured outdoor environment shown in Fig. 5.8, and showed

that our system resulted in real-world team collaboration that reduced team total times and

execution times by up to 3.5% and 24.6%, respectively.
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Figure 5.2: Overview of the hierarchical planning system. Multiagent planning, which
occurred at a centralized base station, generated macro-actions for each agent in the team.
The macro-actions were then sent to the individual agents, where they were processed and
executed as sequences of primitive actions, using information from each agent’s individual
core autonomy pipelines.

5.2 Approach

In this section, we discuss the hierarchical planner developed for online, collaborative team

planning in the real-world, and highlight challenges and opportunities from deploying the

system.

5.2.1 Real-World Planning System Overview

An overview of our hierarchical planning system is shown in Fig. 5.2. Our planner had

three levels: a collaborative, multiagent CTP graph-based planning module, a macro-action
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execution module, and a primitive action execution module. At the most abstract level of the

hierarchy, the collaborative multiagent graph-based planner described in Chapter 4 was used

to generate collaborative macro-action-based team plans, given a stochastic navigation graph

and agent goals as input; this planner was run at a centralized base station. Then, the macro-

action plans were sent to the individual agents for lower-level planning and action execution.

At the second level of the planner, macro-action planners running on each robot parsed single-

agent macro-action-based plans into sequences of primitive actions, and managed primitive

action failures and early termination due to teammates sensing and sharing environment

information. Finally, at the lowest level of planning hierarchy, primitive action planners

generated executable primitive plans for the agents, including navigation along a graph

edge, sensing the traversability of an edge, and waiting in place for information from a

teammate. Finally, each agent also used a core autonomy pipeline, which included GPS-

based state estimation, GPS-enabled local mapping, and a low-level controller capable of

executing motor commands, for primitive action execution. In the following sections, we

discuss each of the system components and associated challenges in more detail.

5.2.2 Level 1: Collaborative Multiagent Planning on Abstract Graphs

The first level of the hierarchical planning system was collaborative team planning, which

used an abstract motion graph of the environment and pre-specified agent starts and goals

to generate collaborative team plans; an example collaborative plan is shown in Fig. 5.3.

However, the high-level planner assumed access to an uncertainty-aware route graph prior to

planning, and also assumed perfect agent state estimation in the graph-based model for the

duration of the planning trial. Unfortunately, in real-world deployments, it can be difficult

to build sparse, representative planning models, such as route graphs, prior to planning,

and it can be challenging to maintain consistency in different representations in a hierarchy,

such as aligning abstract navigation graphs, agents, and environmental features in a common

reference frame during trial execution.
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a) The planer diverts the Jackal to 
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b) When the edge is traversable, 
the planner selects the short 
Husky path to the goal.

GH
SH

c) When the edge is untraversable, 
the planner selects the long Husky 
path to the goal.

Figure 5.3: An example collaborative team plan. The Jackal and Husky were tasked
with navigating from SJ and SH to GJ and GH, respectively, by executing actions on a pre-
defined abstract motion graph (green) where some edges had unknown traversabilities (red).
In collaborative plans, agents took actions that were individually suboptimal to reduce the
expected team makespan. Here, the Jackal diverted from its optimal path to the goal to
sense and share the traversability of the unknown edge (a), while the Husky waited for the
edge traversability information. Then, the Husky used the information to select the best
traversable path to its goal, which reduced its expected plan cost (b-c).

In this work, we used two methods to generate sparse, representative abstract route

graphs for deployments. In the first deployment, we hand-generated an initial graph of the

environment based on overhead imagery, where each node was associated with a GPS coor-

dinate. Additionally, we added deterministic edges between nodes where we expected that a

valid, real-world traversal existed (e.g., when nodes were connected via roads), and we also

added probabilistically traversable edges (with probability of being untraversable ρ) where

we expected that a valid, real-world traversal may exist (e.g., when nodes were connected via

a forested area). In the second deployment, we auto-generated motion graphs from hand-

generated polygonal environment models, which were derived from overhead imagery, using

the technique developed by Veys et al. [149]. In both deployments, we fine-tuned the motion

graphs in the field to account for offsets and errors resulting from stale, low-fidelity overhead

imagery.

Additionally, throughout the deployments, we used GPS to generate alignments between

the route graph, the environment, and the multiagent team, and to establish a global ref-

erence frame. While using GPS was effective in our GPS-enabled environment, we are
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Figure 5.4: An example macro-action. An example macro-action (orange) that represents
an agent first navigating from node A to B to C, and then sensing the traversability of the
unknown edge C-D (gold star). The inlay depicts goal adjustment, which enables an agent
to navigate to a location close to the original GPS location associated with the target node,
if navigation to the target GPS location is deemed infeasible. This adjustment enables the
agent to be robust to various types of uncertainty during planning, including minor pose
drift, minor map noise, and small changes in the environment structure.

interested in exploring GPS-denied planning in the future. For example, it may be possi-

ble to generate a common team reference frame based on co-observed features at startup,

or during planning using a distributed multiagent SLAM pipeline (e.g., using the approach

proposed by Tian et al. [144]).

5.2.3 Level 2: Executing Macro-actions for Collaborative Planning

The second level of the hierarchical planner was the macro-action planner, which translated

agent macro-actions into subgoals that could be executed in the real world. The planner

processed macro-actions into sequences of executable primitive actions, monitored primitive

action results, and combined the results of primitive action sequences into macro-action

results (i.e., success or failure) that could be processed by the high-level collaborative planner.

An example macro-action is shown in Fig. 5.4; the agent navigates from its current location,
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node A, to nodes B and C, and then observes the traversability of the edge, C-D.

Unfortunately, naive macro-action planners can result in poor planning performance when

macro-action assumptions do not hold in the real world. For example, in the simulated

planner, macro-actions were guaranteed to succeed, as they modeled deterministic actions

in the known graph. However, in the presence of real-world environmental uncertainty,

it is not possible to guarantee that macro-actions will succeed as intended. Additionally,

the asynchronous graph-based planner relied on deterministic macro-action completion to

determine when agents should stop to share and receive information; however, it is not

realistic to pre-plan such interactions in real-world, uncertain environments, as macro-action

execution times can vary due to unmodeled environmental uncertainty. In this section,

we develop a robust macro-action execution module and a semi-synchronous macro-action

planner to enable the robust execution of macro-actions for real-world teams.

Robust Macro-action Execution

First, we address the issue of primitive action failures. For example, agents commonly

failed to navigate along edges to reach nodes during primitive navigation actions. However,

identifying the cause of an agent failure is important to responding to the failure properly.

For example, if a primitive action failure is caused by a significant discrepancy between the

graph-based model and the true environment topology, the team should record the failure,

update the environment model as necessary, and replan. However, if the primitive plan

failure was simply caused by a noisy environment, like a noisy local occupancy map, or a

poorly chosen GPS coordinate (e.g., a coordinate that is in an overgrown bush), we would

like to avoid the complexity of updating the environment model and replanning.

To mitigate unnecessary replanning due to primitive waypoint-navigation failures, we

updated the macro-action planner to be robust to failures caused by small, insignificant

differences between the model and environment geometry. Specifically, we modified the

macro-action planner to re-attempt similar primitive navigation actions upon primitive ac-
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tion failure, rather than directly marking the macro-action as failed and reporting the failure

to the abstract planner. The macro-action planner defined four alternative navigation goals

for each location (x, y): (x+ δ, y), (x− δ, y), (x, y + δ), and (x, y − δ). If the agent failed to

navigate to the original and all alternative goals, we assumed the primitive navigation action

was unsuccessful, and the macro-action failed. However, if the agent successfully navigated

to the original goal or any of the alternative goals, then the primitive action was considered

successful, and the macro-action continued1. In the experiments, we let δ = 0.5m. While

this macro-action planner modification was simple, it reduced the number of catastrophic

failures experienced by the system, and demonstrated the importance of robustness across

planning layers in hierarchical planning systems.

Variable-Duration Macro-Actions

Additionally, we developed a semi-synchronous planning method for coordinating teammates

executing variable-duration macro-actions, such as executing macro-actions that represent

traversals of graph edges with different weights, or executing macro-actions in the presence

of real-world environment uncertainty that can impact action completion time. Unfortu-

nately, it is not obvious how the team should proceed when one agent successfully completes

a macro-action, but another teammate is in the process of executing a macro-action. While

our simulated planner operated entirely asynchronously, the planner relied on being able to

precisely calculate action termination times, which is not realistic during real-world deploy-

ments in uncertain environments. The goal of the semi-synchronous planner is to enable

the agents to stop and replan as quickly as possible when sharing information, while also

ensuring that the agents remain in valid configurations in the abstract CTP graph.

We developed a planning approach that enabled the team to execute variable-length

macro-actions online. Specifically, when any agent completed a macro-action, it sent the

result of the macro-action (navigation success or failure, current state, and any traversability
1While this modification is similar to increasing the radius of the navigation goal region, we found that

it resulted in more stable primitive navigation.
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Figure 5.5: Examples of macro-action interrupts and their impacts on planning.
Examples of macro-action interrupts (received when the agents are at the red Xs) and their
impacts on planning. When an agent received an interrupt message during primitive action
execution, it completed its current primitive navigation action and any directly succeeding
sensing actions, then terminated the current macro-action, communicated with the base
station, and waited to receive an updated plan.

observations) to the centralized planner at the base station. Then, all other agents received an

interrupt, or a message indicating that the agent should terminate its current action as soon

as possible, send action results to the base station, and wait to receive a new plan. If an agent

received an interrupt message at the terminal state of a primitive action, then the macro-

action terminated immediately, and the agent sent the macro-action result to the planner.

Otherwise, the agent completed its current primitive navigation action and any observation

actions that directly succeeded the navigation action in the macro-action plan, and then

terminated the current macro-action and sent the action result to the centralized planner. For

example, consider the agent in Fig. 5.5 executing the macro-action of navigating from node

A to node C, with the goal of sensing edge C-D. If the agent received an interrupt message

when navigating between nodes A and B, the agent completed the primitive navigation

action to node B, then terminated the macro-action, communicated with the base station,
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and waited for a replan. However, if the agent received an interrupt message when navigating

between nodes B and C, the agent completed the primitive navigation action to node C,

sensed the traversability of edge C-D, and then terminated the macro-action, communicated

with the base station (including the traversability observation of edge C-D), and waited for

a replan. Finally, once all agents terminated their current macro-actions, the centralized

planner replanned for the entire team and sent new macro-actions to each agent.

The interrupt scheme enabled the team to quickly react to new information while en-

suring that each agent remained in a valid configuration in the abstract graph. If an agent

terminated its current action immediately after receiving an interrupt, its state may not be

valid in the graph, and it would not be obvious how to generate a new graph-based plan

for the agent. In future work, we are interested in developing methods that modify the

abstract graph representation based on agent locations during interrupts. For example, if

an agent is interrupted while navigating along a graph edge to a waypoint, it may be pos-

sible to add a node to the abstract graph at the agent interrupt location, and to split the

current graph edge into two edges that represent the traversed and untraversed portions of

the current edge, respectively. Finally, while this work does not directly aim to address the

research problem of intermittent communications, the interrupt-based planner is robust to

minor communication delays, and its lightweight messaging is tolerant of non-catastrophic

outages.

5.2.4 Level 3: Primitive Actions

Finally, the lowest level of the planner consisted of primitive action planners that generated

executable robot commands. Specifically, the planners enabled robots to navigate along

graph edges, sense the traversabilities of edges, and wait in place for a specific amount of

time.
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Navigation Actions

First, we developed a planner for navigating along a graph edge. Given the GPS coordinates

corresponding to the source and target nodes of the edge, we set the agent navigation goal

to be a region around the GPS coordinate of the target node; in the field trials, we used

a circular region with a 3 meter radius. Then, we used a global planner, the Efficiently

Adaptive State Lattice (EASL) planner [52], to generate a 2D plan between the agent’s

current location and the goal, where the planner used the agent’s local occupancy map to

avoid obstacles. Finally, we used a Model Predictive Path Integral (MPPI) controller [151]

to generate agent motor commands to follow the EASL plan to the goal.

The primitive navigation planner was designed to be robust to various forms of real-world

environmental uncertainty. By not constraining the agent to directly navigate along the

graph edge (i.e., using a Euclidean path), we enabled the agent to react to local environment

changes that did not impact global planning. For example, during field trials, an agent was

able to navigate around an overgrown bush on the Euclidean path to its next node without

impacting other levels of the planner. Additionally, the hierarchical approach enabled us to

tune low-level planner parameters for individual agents without impacting the higher levels

of the planning pipeline. This was especially useful for the MPPI planner, which used various

parameters related to agent dynamics that varied across our vehicles.

Observation Actions

Second, we developed an observation action that enabled an agent to sense the local traversabil-

ity of an adjacent edge. We used the current agent occupancy map and the EASL planner

to generate a 2D plan from the current agent location to a point 20 meters along the un-

known edge. Then, we the compared the EASL plan cost to the Euclidean distance between

the two points. If the EASL plan cost exceeded 120% of the Euclidean distance cost, the

edge was marked untraversable; otherwise, the edge was marked traversable. Intuitively, this

method tested if an agent could navigate along a graph edge without taking a significant
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detour, based on its local occupancy map. While the edge observation function used in our

tests was primitive, other functions that report binary edge traversability based on local

observations could be used in our pipeline. In future work, we are interested in generating

binary observations based on other local traversability observation functions (e.g. [48]). We

are also interested in exploring semantically informed observation functions (e.g., a function

that marks an edge as traversable unless a suspicious barrel is present in the local map or

agent camera images).

Wait Actions

Finally, we developed a wait action, which caused an agent to wait in place for a specified

duration. This enabled an agent to wait in place to receive traversability observations from a

teammate before making a decision about its next action. The wait action prevented costly

backtracking when an agent did not have sufficient information to immediately make a good

planning decision, but a teammate was able to inexpensively sense the relevant information.

5.3 Deployments and Results

We evaluated the system in real-world deployments in one semi-structured outdoor environ-

ment (Camp Buckner) and one outdoor park environment (Magazine Beach) over 18 trials

and three configurations; images of the deployment environments are shown in Fig. 5.1-a

and Fig. 5.8-c, respectively. We evaluated our approach on a heterogeneous, two agent

team consisting of a Clearpath Jackal and a Clearpath Husky. Both agents were equipped

with an Intel NUC11PH computer, a Microstrain 3DM-GX5-AHRS IMU, and a u-blox M8U

GPS module, which provided GPS-based agent position estimates during the trials. Ad-

ditionally, the Jackal was equipped with an Ouster OS1-32 LIDAR sensor, and the Husky

was equipped with a Velodyne VLP-16 LIDAR sensor. Both agents were equipped with a

core autonomy pipeline, which included GPS-based state estimation and an Omnimapper-
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based [145], GPS-enabled local mapping pipeline. All multiagent planning occurred on a

centralized base station laptop, and the base station and agents communicated using a ROS

multimaster system over a Silvus radio network. Finally, in the Camp Buckner experiments,

it was assumed that the Jackal speed was 8x faster than the Husky speed. In the Magazine

Beach experiments, it was assumed that the Jackal speed was 2x faster than the Husky

speed, as this value more accurately modeled our experiences with relative agent speeds in

the grassy Magazine Beach terrain.

5.3.1 Deployment Results: Camp Buckner

In the Camp Buckner environment, we evaluated qualitative planning performance for the

agents when planning using the hierarchical planning system in a semi-structured outdoor

environment. In Fig. 5.6, we compare the graph-based macro-actions selected by the col-

laborative and baseline planners during two successful planning trials. In the baseline, non-

collaborative planning trial, the Jackal navigated directly to its goal, while the Husky at-

tempted to navigate to its goal via the unknown edge (red). After the Husky arrived at the

edge and sensed that it was untraversable, the Husky backtracked and navigated to its goal

via a long, traversable path. In the collaborative planning trial, the Jackal diverted from

the shortest path to the goal to sense the traversability of the unknown edge (red) at the

gold star and relay the information to the Husky, while the Husky waited for information

about the edge. After receiving the Jackal observation that the edge was not traversable,

the Husky navigated directly to its goal via the long, traversable path. In Fig. 5.7, we plot

the trajectories traversed by the agents while executing the macro-action plans; trajectories,

starts, and goals are approximately scaled and hand-aligned over the overhead image. Note

that in the baseline trial, the Husky became stuck navigating up a steep hill while attempting

to execute the final two edges to the goal. Also, in some trials, MPPI became stuck while

trying to navigate around an obstacle (e.g., a car or a bush), and an operator briefly teleop-

erated the robot to enable the robot to continue to make progress towards completing the
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Figure 5.6: Graph-based planning results, Camp Buckner. a) Graph-based plans
selected by the non-collaborative baseline planner, visualized over the abstract navigation
graph. The Jackal (blue) with start SJ and goal GJ navigated directly to its goal, while
the Husky (orange) with start SH and goal GH navigated to the unknown edge, sensed
that it was untraversable, and then backtracked to the goal via the long, traversable path.
b) Graph-based plans selected by the collaborative planner, visualized over the abstract
navigation graph. The Jackal (blue) with start SJ and goal GJ diverted to the gold star
to sense the unknown edge, and shared the untraversable edge observation with the Husky.
Then, the Jackal navigated to its goal. The Husky (orange) with start SH and goal GH
waited to receive the edge observation from the Jackal, then navigated directly to its goal
via the long, traversable path. Note that some trajectories were hand-annotated from raw
agent outputs for clarity and due to agent/ground station communication drops.
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Figure 5.7: Executed trajectories, Camp Buckner. Trajectories traversed by the Jackal
(blue-green) and Husky (yellow-orange) while executing the graph-based plans described in
Fig. 5.6. Real-world trajectories are similar to the graph-based plans. Trajectories, starts,
and goals are approximately scaled and hand-aligned on the overhead image.

primitive action. For these reasons, we do not report the total execution times or distances

traveled for the agents. However, it is possible to compare the plan costs for the agents in

the abstract graph; we report the graph distance of each agent’s planned trajectory, as well

as the durations of planned wait actions, in Table 5.1. In the collaborative trial, the Jackal

traveled further to sense the edge for the Husky, significantly reducing the graph distance

traveled by the Husky. In the non-collaborative trials, the Jackal graph distance traveled

was very low, but at the expense of a longer Husky trajectory. The results are consistent

with the intuition that optimizing a team makespan requires a planner to trade off between

the performances of the different agents.

While we were able to demonstrate successful collaborative multiagent planning, we also

observed various failures during testing. In Table 5.2, we summarize different failure types

that resulted in trial termination and their frequencies.
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Graph Distance
traveled, Husky
(m)

Graph Distance
traveled, Jackal
(m)

Husky
Wait
Time (s)

Jackal
Wait
Time (s)

Collaborative
Planner

156.71 100.04 10.0 0.0

Non-
Collaborative
Planner

257.97 25.83 0.0 0.0

Table 5.1: Comparison of collaborative and baseline plans, Camp Buckner. Agent
wait times in seconds and plan costs in meters in the abstract graph when planning using
the Collaborative and Non-Collaborative planners.

Quantity Type
4 Low-level (EASL/MPPI) navigation failure
1 Incorrect observation function output

Table 5.2: Summary of failed trials, Camp Buckner.

5.3.2 Deployment Results: Magazine Beach

In the Magazine Beach environment, we evaluated the qualitative and quantitative team

planning performance of the agents over 16 collaborative and non-collaborative trials in two

different planning scenarios. We demonstrated that our collaborative approach reduced team

execution times by 13.3% and 24.6% as compared to the non-collaborative baseline in the

scenarios, respectively.

Scenario 1

First, we tested our approach for a scenario where the Husky and Jackal started in the same

region of the environment, and the faster Jackal sensed and shared the traversability of an

unknown forest edge with the Husky. A diagram of the scenario, named Scenario 1, is shown

in Fig. 5.8-a. We executed planning in the scenario five times for both the collaborative and

non-collaborative planners, resulting in ten total trials.

We qualitatively evaluated the collaborative and non-collaborative agent plans generated

for the scenario. In Figs. 5.9 and 5.10, we compare the graph-based macro-actions selected
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Figure 5.8: The Magazine Beach environment. Overhead images of the Magazine Beach
deployment environment, overlaid with the automatically generated route graph used during
all Magazine Beach planning trials, where green edges are known traversable, and blue edges
are probabilistically traversable. a) The task executed in Scenario 1. b) The task executed
in Scenario 2. c) Examples of Husky onboard imagery at key locations in the trials; images
correspond to the locations labeled in (b).

by the baseline and collaborative planners during a representative planning trial. In the

baseline trial, the Jackal navigated directly to its goal, while the Husky attempted to navigate

to the goal via the unknown edge through the forest, and then backtracked to the goal after

sensing that the edge was untraversable. In the collaborative planning trial, the fast Jackal

navigated to and sensed the unknown forest edge while the Husky waited for additional

information. After receiving the observation that the forest edge was untraversable, the

Husky then navigated directly to the goal via the long but traversable pedestrian pathway.

In Fig. 5.11, we plot the executed agent trajectories for the five collaborative trials and

the five baseline trials; note that significant pose drift occurred in some trials. The agent

execution traces indicate that the agents successfully completed the macro-action based plans

described in Figs. 5.9 and 5.10.

We also quantitatively evaluated total trial times, execution times, and planning times

for the five collaborative and non-collaborative trials in the scenario, where total trial times
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Figure 5.9: Non-collaborative graph-based planning results, Magazine Beach, Sce-
nario 1. Graph-based plans selected by the non-collaborative baseline planner, visualized
over the abstract navigation graph. The Jackal (blue) with start SJ and goal GJ navigated
directly to its goal, while the Husky (orange) with start SH and goal GH navigated to the
unknown forest edge, sensed that the edge was untraversable, and then turned around and
navigated to the goal via the pedestrian pathway.

were defined as the total elapsed time from the start to the end of the trial, planning times

were defined as the time spent computing abstract plans, and execution time was defined as

the difference between the total trial time and the planning time. In Table 5.3, we report

average times, standard deviations, and standard errors of the mean for the collaborative

and non-collaborative planning trials. Scatter plots of total trial times, execution times, and

planning times are shown in Fig. 5.12. While the collaborative planning approach resulted

in a 13.3% decrease in execution time as compared to the baseline planning approach, the

planner generated plans 7.8x more slowly than the non-collaborative planner, and resulted
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iii) Final Jackal trajectory.
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Scenario 1, Collaborative planning

Figure 5.10: Collaborative graph-based planning results, Magazine Beach, Sce-
nario 1. Graph-based plans selected by the collaborative planner, visualized over the ab-
stract navigation graph. The Jackal (blue) with start SJ and goal GJ diverted to the gold
star to sense the traversability of the unknown forest edge, and then shared the untraversable
edge observation with the Husky. Then, the Jackal navigated directly to its goal. The Husky
(orange) with start SH and goal GH waited to receive the edge observation from the Jackal,
and then navigated directly to its goal via the pedestrian pathway.

in a 0.5% increase in total trial times as compared to the baseline.
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a) All non-collaborative 
trajectories

b) All collaborative 
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Figure 5.11: Executed trajectories, Magazine Beach, Scenario 1. Trajectories ex-
ecuted by the Jackal (blues) and the Husky (reds) while executing the graph-based plans
described in Figs. 5.9 and 5.10. Despite significant pose drift in some trials, the shapes
of the trajectories indicate that the agents successfully completed the graph-based plans.
Trajectories were plotted in the GPS frame, then approximately scaled and hand-aligned on
the overhead image.

Non-Collaborative Collaborative
Trial Times Execution

Times
Planning
Times

Trial Times Execution
Times

Planning
Times

Average
Time (s)

261.9 256.74 5.16 263.18 222.51 40.66

STD Time
(s)

20.14 20.16 0.09 12.23 11.34 6.24

SEM Time
(s)

10.07 10.08 0.04 6.12 5.67 3.12

Table 5.3: Aggregate timing results, Magazine Beach, Scenario 1. Results were
calculated for 5 collaborative and 5 non-collaborative trials. While the collaborative planner
resulted in lower team execution times, collaborative planning times were slower than baseline
planning times, resulting in similar total trial times for both planners.
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Figure 5.12: Scatter plots of timing results, Magazine Beach, Scenario 1. Scatter
plots of individual trial times, execution times, and planning times for the five collaborative
and five non-collaborative trials in Scenario 1.
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i) Jackal navigated directly to its goal. ii) Final Jackal trajectory.

iii) Husky navigated to and sensed 
the unknown edge.

iv) After sensing the untraversable 
edge, the Husky navigated to its 
goal via the long, traversable path.

v) Final Husky trajectory. 
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Scenario 2, Non-collaborative planning

Figure 5.13: Non-collaborative graph-based planning results, Magazine Beach,
Scenario 2. Graph-based plans selected by the non-collaborative baseline planner, visu-
alized over the abstract navigation graph. The Jackal (blue) with start SJ and goal GJ
navigated directly to its goal, while the Husky (orange) with start SH and goal GH navi-
gated to the unknown forest edge, sensed that it was untraversable, then turned around and
navigated to the goal via the pedestrian pathway.

Scenario 2

In Scenario 2, the Husky and the Jackal started on opposite sides of a forest, and the Jackal

took a small detour to sense the far side of the forest for the Husky; a diagram of the scenario

is shown in Fig. 5.8-b. This scenario is especially interesting because it demonstrates the

ability of our planner to model and use global information in collaborative planning; in

the scenario, the agents did not have line-of-sight to each other while planning for and

executing collaborative plans. We executed planning in the scenario three times for both the
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i) Jackal diverted to sense the 
unknown edge.

ii) Jackal sensed and shared 
untraversable edge observation, 
then navigated to its goal.

iii) Final Jackal trajectory.

iv) Husky waited for the unknown 
edge observation.

v) Husky navigated directly to its 
goal via the long, traversable path.

vi) Final Husky trajectory. 
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Scenario 2, Collaborative planning

Figure 5.14: Collaborative graph-based planning results, Magazine Beach, Sce-
nario 2. Graph-based plans selected by the collaborative planner, visualized over the ab-
stract navigation graph. The Jackal (blue) with start SJ and goal GJ diverted to sense the
traversability of the unknown forest edge at the goal star, and then shared the untraversable
edge observation with the Husky. Note that the global representation of the uncertain edge
enabled the Jackal to sense and share useful environment information from the side of the
forest opposite the Husky. Then, the Jackal navigated directly to its goal. The Husky (or-
ange) with start SH and goal GH waited to receive the edge observation from the Jackal,
then navigated directly to its goal via the pedestrian pathway.

collaborative and non-collaborative planners, resulting in six total trials.

We qualitatively evaluated collaborative and non-collaborative agent plans in the sce-

nario. In Figs. 5.13 and 5.14, we compare the graph-based macro-actions selected by the

baseline and collaborative planners during a representative planning trial. In the baseline

trial, the Jackal navigated directly to its goal, while the Husky attempted to navigate to the

goal via the unknown edge through the forest, and then backtracked to the goal after sensing
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a) All non-collaborative 
trajectories

b) All collaborative 
trajectories

Figure 5.15: Executed trajectories, Magazine Beach, Scenario 2. Trajectories ex-
ecuted by the Jackal (blues) and the Husky (reds) while executing the graph-based plans
described in Figs. 5.13 and 5.14. Despite significant pose drift in some trials, the shapes of
the trajectories indicate that the agents successfully completed the graph-based plans. Tra-
jectories were plotted in the GPS frame, then approximately scaled and hand-aligned on the
overhead image. Note that due to a data collection error, only two of the three collaborative
trajectories are visualized.

that the edge was untraversable. In the collaborative planning trial, the Jackal navigated

to the far side of the forest to sense and share information about the unknown forest edge

while the Husky waited for additional information. After sensing the untraversable forest

edge, the Jackal navigated directly to its goal, and the Husky navigated via the pedestrian

pathway to its goal.

In Fig. 5.15, we plot the executed agent trajectories for two collaborative trials and three

baseline trials; note that significant pose drift occurred in some trials, and that due to a data

collection error, pose information was only collected during two of the three collaborative

trials. The agent execution traces indicate that the agents successfully executed the macro-

action based plans described in Figs. 5.13 and 5.14.

Finally, we quantitatively evaluated total trial times, execution times, and planning times
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Non-Collaborative Collaborative
Trial Times Execution

Times
Planning
Times

Trial Times Execution
Times

Planning
Times

Average
Time (s)

308.7 303.1 5.6 298.01 228.41 69.6

STD Time
(s)

6.08 5.94 0.14 5.25 4.79 0.93

SEM Time
(s)

4.3 4.2 0.1 3.71 3.38 0.66

Table 5.4: Aggregate timing results, Scenario 2. Results were calculated for 3 collabo-
rative and 3 non-collaborative trials. The collaborative planner resulted in lower execution
times and marginally lower total trial times as compared to the non-collaborative baseline.

Figure 5.16: Scatter plots of timing results, Magazine Beach, Scenario 2. Scatter
plots of individual trial times, execution times, and planning times for the three collaborative
and three non-collaborative trials in Scenario 2.

over the three collaborative and three non-collaborative trials. In Table 5.4, we report average

times, standard deviations, and standard errors of the mean for the trials. Scatter plots of

total trial times, execution times, and planning times are shown in Fig. 5.16. In this

scenario, the collaborative planning approach resulted in a 3.5% decrease in total trial times,

and a 24.6% decrease in total execution times as compared to the non-collaborative baseline;

however, the collaborative planner was 12.4x slower than the baseline.
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5.4 Discussion

While abstract planning representations are often necessary for efficiently solving complex

planning problems, like problems in large or uncertain environments, or problems that in-

volve teams of agents, significant challenges arise when executing abstract plans on real

agents in real-world environments. First, building a representative abstraction of a real-

world environment that is efficient for high-level planning, but that produces plans that can

be translated into real-world executions, is an open research question. We are exploring

methods for automatically generating abstract navigation graphs from polygonal environ-

ment models [149] and overhead images. While this will reduce operator burden, it is unlikely

that the auto-generated graphs, like our hand-drawn graphs, will be fully representative of

planning environments unless they have access to additional environment information, some

of which may only be available during planning. We are exploring techniques to modify the

navigation graph abstraction online based on local sensor data.

This work also demonstrated that robust hierarchical planning systems can overcome

some of the challenges that arise from imperfect planning abstractions. Specifically, by

increasing the robustness of planners at different levels of the planning hierarchy, we were

able to overcome small discrepancies in the planning abstraction (like having a navigation

waypoint in a bush next to a road, instead of on the road itself) without causing catastrophic

planning failures. In future work, we are interested in exploring other ways to make our

hierarchical planning system more robust, including reconsidering traditional definitions of

plan failure at each level in the planning hierarchy.

Finally, the proposed approach was developed for a centralized team with full communi-

cation. While our macro-action message passing scheme was lightweight, and our interrupt

planner was capable of handling minor communication delays, in future work, we would like

to modify the approach to explicitly handle more challenging communication environments.
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5.5 Conclusion

As roboticists move towards deployments of bigger teams in larger, more complex uncertain

environments, it will be necessary to develop abstract representations for complex planning

problems that efficiently model long length scale, uncertainty-aware global information for

planning, but that are still amenable to robust plan execution in real-world environments. In

this work, we demonstrated the ability of a global, uncertainty-aware hierarchical planning

system to bridge the gap between abstract planning and real-world execution. We deployed

a collaborative, uncertainty-aware multiagent planner on a Jackal and Husky team using the

hierarchical planning system, and demonstrated collaborative planning performance in two

complex, real-world outdoor environments.
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Chapter 6

Learned Value Function Approximations

for Efficient Collaborative Multiagent

Planning on Uncertain Graphs

In Chapter 4, we developed a planner that used multiagent macro-actions and single-agent

value function approximations for efficient multiagent collaboration in unknown graphs.

However, we used Monte Carlo (MC) simulations to calculate the single-agent value functions

used in our approximations, which were calculated for each macro-action at each planning

step. Unfortunately, generating MC-based approximations is expensive for large teams and

environments, and can lead to computational intractability, especially when the approxima-

tions are used as a subroutine in a complex planning algorithm.

In this chapter, we present a preliminary method for learning a single-agent value function

approximator to increase the efficiency of the uncertainty-aware collaborative multiagent

planner described in Chapter 4. We develop a method for learning belief-dependent value

function approximations on uncertain graphs. We demonstrate the approximations in the

collaborative planner in toy graph and island road network domains, and demonstrate a

36.6% improvement in planning time as compared to a Monte Carlo (MC) rollout-based
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approximation approach for team planning in the toy domain, while finding plans of similar

quality.

6.1 Motivation

We would like to enable a collaborative multiagent team to navigate efficiently in an uncertain

environment, modeled as a roadmap or a stochastic motion graph where some edges may be

untraversable. In Chapter 4, we enabled more tractable collaborative planning for such a

team by showing how specific kinds of multiagent macro-actions could reduce the planning

depth at which multiagent collaborations occurred. We designed approximations, based on

single-agent value functions with and without information gained through collaboration, to

quickly identify a small set of multiagent macro-actions that were likely to improve team

planning performance.

We used Monte Carlo (MC) simulations to calculate the single-agent value functions used

in our approximations, which were calculated for each macro-action at each planning step.

However, generating MC-based approximations is expensive for large teams and can lead

to computational intractability, especially when used as a subroutine in a complex planning

algorithm. Recently, approximation techniques that explicitly reason about environment

structure, rather than implicitly discovering the structure via planning in rollouts, have

been used to calculate value functions in structured environments [39, 140].

We hypothesize that our graph-based problem representation is suitable for learning

single-agent value functions, and that learned value function approximators are more ef-

ficient for planning than other simulation-based approximation techniques in domains of

interest. We propose to learn single-agent value functions on stochastic graphs, and then

use the learned value functions in the multiagent macro-action selection step of the collab-

orative multiagent planner under uncertainty described in Chapter 4. The learned value

functions capture the benefit of sensing information for individual agents, which can be used
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to prioritize collaborative sensing actions for the team. Our approach uses an inefficient,

simulation-based approximator to generate a dataset of graph and value function pairs, and

then uses supervised learning to train a learned value function approximator for use in online

planning. Finally, we demonstrate the learned approximations in the collaborative planner

described in Chapter 4.

6.2 Problem Statement

In Chapter 4, we used single-agent value function approximations to quickly identify collab-

orative macro-actions that were likely to improve collaborative team navigation in uncertain

environments. The macro-actions and approximations enabled a planner to quickly identify

collaborative sensing behaviors that were likely to improve team planning performance. Un-

fortunately, computing the single-agent value functions required by the multiagent planner in

Eq. 4.13, which approximate planning performance with and without immediate traversabil-

ity information about an edge e, V bze =
∑

ze∈Z p(ze)V
πsa(v, bze |z = ze) and V b = V πsa(v, b),

was computationally expensive1. Monte Carlo (MC) simulation was used to calculate the

approximate value functions, V̂ bze ≈ V bze and V̂ b ≈ V b. However, generating V̂ bze and V̂ b

required the planner to simulate multi-step planning in many environment realizations. The

computational burden of MC simulation increased as the size of the environment and team

increased, since the number of value function approximations computed per planning itera-

tion scales linearly with both the number of unknown edges and the number of stochastic

agents in the problem.
1For notational simplicity, we adopt value function shorthands for the remainder of the section. We

additionally assume that observations are of edge traversabilities, and use the shorthand ze to represent such
observations.
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6.3 Learned Approximations for Multiagent Planning Un-

der Uncertainty

To increase planning efficiency and enable scaling to larger environments and teams, we

propose to learn the single-agent value functions used in the approximation of Eq. 4.5. In

many environments of interest, the structure of the planning problem, such as the structure

of the underlying graph G, the agent’s current belief b, location v, and goal vG, and other

problem properties Γ (e.g., graph edge costs c and traversability probabilities ρ), correlate

with the single-agent value function approximations with and without access to observations

ze of the traversability of edge e, V̂ bze and V̂ b,

V̂ bze , V̂ b = f(G, b, v, vG,Γ), (6.1)

where the agent’s belief b over edge weathers captures the history of prior edge observations.

Prior work indicates that it may be possible to learn value functions from data [39].

For our problem, we can use expensive MC simulation during offline planning to generate a

dataset D of planning information and value function pairs,

D = {(G, v, vG,Γ, V̂
bze , V̂ b)1, (G, v, vG,Γ, V̂

bze , V̂ b)2, ..., (G, v, vG,Γ, V̂
bze , V̂ b)d}, (6.2)

where d is the number of examples in the dataset. Then, we use the dataset to learn a value

function predictor ϕ that is efficient for use during online planning:

Ṽ bze , Ṽ b ≈ ϕ(G, v, vG,Γ, α), (6.3)

where Ṽ bze and Ṽ b are the predictions of the approximations V̂ bze and V̂ b, respectively, and α

are the parameters of the learned predictor. The learned predictions then replace the Monte

Carlo-based predictions in the multiagent planner.
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6.3.1 Graph Neural Networks for Stochastic Motion Planning

Graph Neural Networks

In this work, we select a Graph Neural Network as the form of ϕ. Graph Neural Networks

(GNNs) are a powerful deep learning tool that have been demonstrated to effectively capture

relationships in graph-based data [153, 36]. Since their introduction, GNNs have been used to

model correlations on graphs for problems in chemistry and materials science (e.g. predicting

formation energy of bulk crystals [43], absorption energy of alloy surfaces [43], chemical

toxicity [123], and adverse drug side effects [123]), physics (e.g., predicting future states and

estimating potential energy of n-body systems, and predicting future states and mass for

bouncing balls [24, 9, 10]), social network modeling [89], planning [67, 88, 87, 61, 36], and

more.

The flow of information in GNNs is built on message passing, which can be thought of as

a generalization of an image-space convolutional filter to graph data. Each iteration of mes-

sage passing includes two distinct steps, a feature generation step and feature aggregation

step. In the feature generation step, a function is applied to node embeddings to generate

a message, or a low-dimensional representation of information to share with neighbors; one

common feature function is linear projection [36]. In the feature aggregation step, nodes

receive messages from their neighbors, and apply an aggregation function to incorporate the

new messages into the current node embedding; some common aggregation functions include

summation, minimization, and maximization [36]. By iteratively sharing messages over mul-

tiple layers in the GNN, nodes send and receive information within an ℓ-hop neighborhood,

where ℓ is the number of graph layers. In practice, a number of more complex feature and

aggregation functions have been proposed; we refer the reader to [36] for a detailed discussion

of different GNN layers.

GNNs have been demonstrated to be particularly effective in the context of navigation.

GNNs have been used to solve routing and routing-adjacent problems on graphs, like the
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shortest paths problem and the Travelling Salesman Problem (TSP) [61, 36]. Additionally,

the internal structure of the GNN has been shown to align well with the computational struc-

ture of dynamic programming, an algorithm that is commonly used to calculate solutions to

the shortest paths problem [154].

Graph Neural Networks for Value Function Approximation

To solve the problem of value function approximation on stochastic graphs, we select a Gated

Graph Convolutional Network (GatedGCN) [22] as the structure of ϕ, as this GNN variant

maintains graph edge features, which enables the network to explicitly represent and reason

about edge properties such as edge traversability and cost. Additionally, we take advantage

of the ability of GNNs to apply graph node and edge operations in parallel to parallelize

our value function computations. Our objective is to learn value functions when agents do

or do not have access to information about a specific edge, and the GNN can parallelize

calculations of the approximations for each edge. Formally, we can model the parallel value

function approximation procedure:

Ṽbze
, Ṽb ≈ ϕ(G, v, vG,Γ, α), (6.4)

where Ṽbze
= (Ṽ bze0 , Ṽ bze1 , ..., Ṽ bzem−1 ), and Ṽb = (Ṽ b

0 , Ṽ
b
1 , ..., Ṽ

b
m−1). Note that with perfect

prediction, all value function approximations that do not have access to additional informa-

tion will have equal value, i.e., Ṽ b = Ṽ b
0 = Ṽ b

1 = ... = Ṽ b
m−1.

6.3.2 Neural Network Structure and Optimization

Network Structure

The network inputs are encoded as an undirected graph with the structure of G. Each vertex

and edge is augmented with a feature vector that encodes the additional network inputs Γ.

Vertex feature vectors encode the metric x and y locations of the current vertex, the agent
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Figure 6.1: GNN structure. The model conducts message passing using gated graph
convolutional layers, and then outputs per-edge value functions by passing local node and
edge features into an output MLP. Image of GNN layers adapted from Joshi et al. [60].

start, and the agent goal, Γv = {xv, yv, xvs , yvs , xvG , yvG}. Edge feature vectors encode the

edge cost, edge traversability belief, and an indicator denoting whether or not the edge has

been sensed, Γe = {ce, bρe ,1sensed
e }. Network inputs are projected into feature space, then

passed into an ℓ-layer GatedGCN, which applies ℓ graph convolutions to generate updated

node and edge feature vectors. Then, a 1-layer Multilayer Perceptron (MLP) is applied to

edge and adjacent-node feature vectors to recover per-edge value functions. Our network

structure is visualized in Fig. 6.1.

Loss Function

Our network optimizes α to minimize the mean squared error between predicted and ground

truth value functions via back-propagation and stochastic gradient descent with mini-batches.

Additionally, to encourage the network to generate predictions that accurately model the dif-

ferences between value functions with different beliefs, we introduce an additional term in

the lost function that penalizes inaccuracies in the difference between value functions for
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planning with and without additional information. Formally, we optimize the loss function:

L = [Ṽ bze − V̂ bze ]2 + [Ṽ b − V̂ b]2 + β ×
[
[Ṽ bze − Ṽ b]− [V̂ bze − V̂ b]

]2
, (6.5)

where β is a weighting factor.

6.3.3 Using Value Function Approximations for Online Planning

The learned value function approximations can be used in two ways for planning. First,

we can use the approximations to identify high-value information-gathering policies from

the space of policies considered during multiagent planning by calculating approximations

of ∆, selecting a threshold γ, and using only macro-actions where ∆ > γ. Second, we can

interpret the learned functions as heuristics for greedy multiagent planning. Here, the learned

functions are used to approximate expected team makespans with and without each of the

information-gathering macro-actions, and the information-gathering macro-actions that most

reduce makespan, if any, are greedily selected. We also used Monte Carlo approximations

to determine whether or not the agents should wait for more information, and compared

planning results when using the approximations to generate a policy class for replanning

and when using the approximations to greedily decide whether or not an agent should wait

for more information.2

6.4 Experiments

In this section, we describe the experimental procedure used to benchmark our learned value

function approximator against a Monte Carlo simulation-based value function approximator

in two domains, demonstrate the use of the learned functions in multiagent CTP planners,

and report aggregate metrics.
2While these functions could also be learned, the number of wait actions scales linearly with the number

of stochastic agents in the environment, and does not scale with the size of the environment, so learning
these approximations was not prioritized.
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6.4.1 Clusters Environment Setup

First, we demonstrated our approach for a 1-GV/2-AV team navigating in a simulated graph

dataset, where each graph consisted of 1-7 clusters, and each cluster consisted of 5-11 parallel

paths. Each path consisted of a traversable edge with cost c = 10 from the cluster start to

an intermediate vertex, an uncertain edge to a second intermediate vertex, and a traversable,

c = 1 path from the second intermediate vertex to the goal vertex. The uncertain edge costs

c and traversability probabilities ρ were randomly drawn from the intervals c ∼ [50, 100] and

ρ ∼ [0.0, 0.5]. We generated 16,000 total graphs, and split the dataset into 15,000 training

problems and 1,000 test problems. An example problem is shown in Fig. 6.2-a.

6.4.2 Dataset Generation

Next, we describe the process of generating the dataset of problem and value function pairs

in Eq. 6.2. For each of the 15,000 training problems, we ran the computationally expensive

MC approximation-based multiagent planner [136] for a 1GV/1AV team to generate train-

ing examples. At each planning step in each trial, we recorded a data point, which included

the current problem information (graph structure, agent states, and the team traversability

belief) and the MC-based value function approximations, V̂ bze and V̂ b, for each collaborative

action considered at the planning step. Then, we selected 130,000 data points to use during

neural network training (of 135,875 total generated), split the data into 100,000 train exam-

ples, 15,000 test examples, and 15,000 validation examples, and trained the value function

approximation model in Eq. 6.4 with ℓ = 16 using the loss function in Eq. 6.5 with β = 100.

6.4.3 Clusters Environment Results

First, we evaluated the accuracy of the learned value functions as compared to the value

functions approximated using MC simulation. In Fig. 6.2-b, we directly compare learned

and MC-based value functions, where the black dashed line indicates equal value. Overall,
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Figure 6.2: Learning results in the cluster dataset. a) Example problems in the cluster
dataset. (b-c) Comparison of the Monte Carlo and Learned approximations on the test
dataset. We plot both (b) the approximation values and (c) the difference between the
values, or ∆. Values are similar, indicating that our learned network is capable of predicting
value functions.

the learned value functions are similar to the MC-based value functions, and the average

difference between the learned and predicted values in the test set was 1.73 units. The

absolute accuracy of the value function is important because it enables the planner to directly

compare value functions for different agents in the team; note that because the planner

optimizes a makespan objective, the macro-action that most minimizes an individual agent’s

cost many not be the macro-action that most improves team planning performance. In

Fig. 6.2-c, we compare the difference between the two value functions, ∆, for the learned

and MC-based approximations, and demonstrate some correlation between the values. This

metric is important for high-quality planning because it enables the planner to determine

the relative importance of sensing different edges for an agent.

Next, we tested our learned value functions in the loop during online multiagent plan-

ning for a 1-GV/2-AV team navigating in the simulated toy environment. We compared

our collaborative approach, Learned, to two baselines – a non-collaborative planner Non-

Collaborative where agents planned independently but sensed and shared the traversability

of traversed edges in a centralized team belief, and the collaborative MC-based planner used

during training data generation [136], Monte Carlo. Both of the collaborative approaches
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Oracle Non-
Collab-
orative

Monte
Carlo

Learned Greedy
Monte
Carlo

Greedy
Learned

Avg % Regret 0.0 11.56 6.02 5.08 6.05 5.08
Average Makespan, MA
(units)

117.08 135.5 127.49 125.24 127.55 125.24

SEM Cost, MA (units) 3.14 3.82 3.54 3.42 3.55 3.42
Average Time (s) 0.0 1.75 5088.01 3224.49 260.37 49.21
SEM Time (s) 0.0 0.07 551.67 381.92 14.03 2.8
Num examples 0.0 1000.0 1000.0 1000.0 1000.0 1000.0

Table 6.1: Planning results in the cluster domain. Comparison of planning results using
non-collaborative, Monte Carlo based, and learning based planners in the cluster domain.

used the approximated value functions to greedily select which edges to sense with γ = 0.5,

but conservatively replanned to decide if any agent should wait for additional information.

We quantitatively assess the Non-Collaborative, Monte Carlo and Learned approaches in Ta-

ble 6.1. The Monte Carlo and Learned approaches found 6.02% and 5.08% lower cost plans

than the Non-Collaborative approach on average, although the performance improvements

caused significant increases in computation time (2907x and 1842x, respectively). However,

the Learned approach was more efficient than the Monte Carlo approach, finding plans 36.6%

more quickly than Monte Carlo on average; this is a significant improvement in a small en-

vironment that does not stress the scale of the environment or team. Overall, the Learned

approach found low cost, uncertainty-aware collaborative plans while being more efficient

than the Monte Carlo approach.

Additionally, we compared the Monte Carlo and learned approaches when greedily select-

ing both sensing and waiting actions, Greedy Monte Carlo and Greedy Learned, respectively;

results are shown in Table 6.1. The Greedy Monte Carlo and Greedy Learned approaches

found 6.05% and 5.08% lower cost plans than the Non-Collaborative approach on average,

demonstrating that even greedy collaborative planning results in lower cost plans than non-

collaborative planning. However, the greedy planners were 94.9% and 98.5% faster than

their non-greedy counterparts while finding similar cost plans. The Greedy Learned planner

was the most efficient of the collaborative planners, with an average planning time of only
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49.21 seconds. Overall, the greedy approaches found low cost, uncertainty-aware collabora-

tive plans in a fraction of the planning time as compared to the non-greedy collaborative

planning approaches.

6.4.4 Islands Experiment Setup

Next, we demonstrated our approach for a 1-GV/2-AV team navigating in the simulated

islands environment presented in [136], which consisted of a CTP graph with 90 vertices and

166 edges (not including self-loops). Graph edges were classified into to one of four classes:

highway and highway bridge edges, and local road and local bridge edges. All edges had

Euclidean costs, highway edge traversability probabilities were drawn from the distribution

ρ ∼ (0.0, 0.001], and local edge probabilities were 0.5. We generated 16,000 total graphs,

and split the dataset into 15,000 train problems and 1,000 test problems. An example

problem is shown in Fig. 6.3-a. Then, we ran the expensive MC approximation planner

on the train graphs to generate the dataset in Eq. 6.2, selected 90,000 data points to use

during neural network training (from 96,818 generated total), split the data into 72,000 train

examples, 9,000 test examples, and 9,000 validation examples, and trained the value function

approximation model in Eq. 6.4 with ℓ = 20 using the loss function in Eq. 6.5 with β = 100.

Note that due to computational constraints, not all training problems ran to completion,

and we selected the training data points from completed and partially completed trials.

6.4.5 Islands Environment Results

First, we evaluated the accuracy of the learned value functions as compared to the MC value

functions. In Fig. 6.3-b, we directly compare learned and MC-based value functions, where

the black dashed line indicates equal value. Some of the learned value functions are similar

to the MC-based value functions, but there are significant outliers that must be studied

further. In Fig. 6.3-c, we compare the difference between the two value functions, ∆, for

the learned and MC-based approximations; the values are significantly different, and require
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Figure 6.3: Learning results in the islands dataset. a) Example problems in the islands
dataset. (b-c) Comparison of the Monte Carlo and Learned approximations on the test
dataset. We plot both (b) the approximation values and (c) the difference between the
values, or ∆. While some learned approximations are accurate, others are significantly
different than the ground truth approximations and require further study.

Oracle Non-
Collab-
orative

Monte
Carlo

Greedy
Monte
Carlo

Learned Greedy
Learned

Avg Percent Regret 0.0 25.19 16.47 16.47 25.18 25.18
Average Makespan, MA
(units)

955.53 1214.55 1134.12 1134.14 1197.05 1197.05

SEM Cost, MA (units) 15.53 28.09 20.83 20.83 21.83 21.83
Average Time (s) 0.0 3.16 11903.5 6910.8 3147.32 166.99
SEM Time (s) 0.0 0.08 336.45 163.46 138.72 4.21
Num examples 0.0 1000.0 1000.0 1000.0 1000.0 1000.0

Table 6.2: Planning results in the islands domain. Comparison of planning results using
non-collaborative, Monte Carlo based, and learning based planners in the islands domain.

additional analysis.

We also evaluated the performance of the multiagent planners with γ = 0.5 for all collabo-

rative planners. While the Monte Carlo and Greedy Monte Carlo planners resulted in signifi-

cantly lower plan costs than the Non-Collaborative planner, the Learned and Greedy Learned

planners did not improve planning performance as compared to the non-collaborative base-

line. However, in the large environment, the learned planners were significantly more time

efficient than the MC-based planners (73% and 97.6% more efficient, respectively). This sup-

ports our hypothesis that the learned value functions could significantly reduce collaborative

multiagent planning times, if made more accurate.
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6.5 Conclusion

In this work, we developed a method for learning single-agent value functions approximations

on stochastic graphs that contained long length scale, uncertainty-aware global information,

and applied the learned approximations to uncertainty-aware collaborative multiagent plan-

ning. Our approach used expensive Monte Carlo approximations, calculated offline, to train

an efficient online value function approximator. We demonstrated our approach in a toy

graph domain, and showed a 36.6% improvement in planning time as compared to a state-

of-the-art collaborative planner, while finding plans of similar quality. However, additional

work is required to scale the learned approximations to larger domains. In future work, we

would like to apply the approach to larger multiagent teams, and to deploy the approach in

a real-world environment.
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Chapter 7

Conclusion

In this thesis, we developed models and planners that used global information to improve the

efficiency of single-agent and multiagent navigation in large and uncertain environments. Our

modeling methods focused on representing global information for navigation to reduce com-

putation time and increase plan quality, on representing global environmental uncertainty

to enable risk-aware planning, and on using environment and team structure to generate

high-quality problem abstractions and reduce model complexity. Our planning methods

focused on developing planners that were able to generate high-quality collaborative team

plans by quickly identifying and resolving task-relevant environmental uncertainty during the

planning process. In each method, we took advantage of problem structure and global infor-

mation to improve navigation quality, and to reduce the computation required to generate

high-quality plans.

In Chapter 3, we presented a novel hierarchical model for multi-query planning at long

length scales. We developed a simple state- and action-based abstraction of the planning

environment, and then used prior planning experience in the environment to calculate the

navigation properties of the abstraction. Specifically, we calculated the navigation proper-

ties of prior primitive plans when the agent was operating in regions that corresponded to

our abstraction, treated the properties as samples drawn from uncertain distributions over
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abstract planning properties in the abstract representation, and used recursive estimation

to update the abstract representation over the course of multi-query planning trials. During

planning, we used the model in a hierarchical, uncertainty-aware planner, and demonstrated

that our approach reduced nodes expanded and wallclock planning time as compared to non-

hierarchical approaches, while finding similar quality plans. We also demonstrated the ability

to use a risk parameter in the planner to trade off between planner between computation

time and plan quality.

In Chapter 4, we presented a novel collaborative multiagent planner for team navigation

on graphs with uncertain edge traversabilities, modeled as Canadian Traveller’s Problem

graphs. We developed a set of collaboration-aware multiagent macro-actions that reduced

the planning horizon at which collaborative multiagent team actions occurred, therefore re-

ducing the computation required to reason about the collaborative actions. Additionally, we

developed single-agent value function approximations when agents had or did not have access

to information gained from potential future sensing actions, and used the approximations to

quickly identify collaborative actions that were likely to improve team planning performance.

We demonstrated that our approach generated lower makespan plans than planners that did

not explicitly collaborate, and generated plans more quickly than planners that did not use

approximations to reduce the size of the collaborative policy space for planning.

In Chapter 5, we presented a system for deploying the collaborative multiagent planner

in a real-world outdoor environment. While the abstract CTP-graph-based planner was ef-

ficient and enabled planning for collaboration, it generated abstract team plans that were

not directly executable in a real-world environment. We developed a three-level hierarchi-

cal system to deploy the planner; the system included an abstract CTP graph planner, a

macro-action planner that sequenced and monitored primitive actions, and primitive action

planners that generated directly executable plans for the robot team. Our system maintained

plan consistency throughout the planning hierarchy, and used robust planning modules to

minimize the impact of minor low-level model misspecifications on abstract planning. We
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deployed the system in two large, outdoor environments, and demonstrated collaborative

team navigation.

In Chapter 6, we presented preliminary results of a novel technique for learning single-

agent value functions from graph data to increase the efficiency of collaborative multiagent

planning. While the approach in Chapter 4 enabled collaborative team behaviors, the com-

putation required to calculate the single-agent value function approximations increased as

the number of uncertain edges and uncertain agents in the environment increased. To enable

our approach to be scaled to larger teams and environments, we proposed to learn the single-

agent value function approximations from data. Specifically, we generated a dataset of value

function approximations using an expensive Monte Carlo simulation-based planner offline,

and then trained a graph neural network to predict the approximations during online plan-

ning. Our approach demonstrated the efficiency of a learned value function approximation

approach, and demonstrated similar plan quality in some domains.

7.1 Future Work: Hierarchical Model Estimation for Multi-

Query Planning

In Chapter 3, we developed a discretization-based hierarchical planning model, learned the

properties of the model online, and applied the model for risk-aware planning.

While the approach enabled efficient, high-quality planning over the course of a multi-

query planning trial, the abstract navigation properties of the model were initially set to an

uninformative prior. This resulted in myopic planning during early stages of planning, as

the abstract navigation properties did not accurately model the true costs of navigating in

the environment. While the uncertainty-aware model and planner were able to identify the

model uncertainty and use additional computation to find high-quality plans in the face of

uncertainty, this resulted in significant additional computational cost during early planning.

To mitigate this effect, it may be possible to use other types of global information, such
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as overhead imagery, to generate an informed prior for the high-level model. For example,

it may be possible to learn a prior over navigation properties in an abstract representation

based on prior planning experience in similar environments.

Additionally, the approach required the environment to be discretized at a hand-defined

resolution. Environment discretization can be computationally expensive in large environ-

ments, as the size of a discretized abstraction scales with the size of the environment. Ad-

ditionally, selecting a good resolution for discretization for navigation can be challenging,

as important features for navigation in an environment exist at various scales (e.g., roads,

rivers, fields, forests, trees, bridges). Single-resolution discretizations must trade off between

representing small navigation cues in detail and reducing model complexity to maintain com-

putational tractability. To mitigate these issues, it may be possible to generate a variable-

resolution abstraction, for example, by compressing the abstraction using information-aware

compression techniques; however, a high-quality compression method would need to be

uncertainty-aware, to enable the model to avoid over-compression when an agent does not

have sufficient information about an abstract state. Additionally, it may be possible to apply

recursive estimation for online updating of abstract navigation properties in other hierar-

chical planning representations that are not discretization-based. However, one challenge

of this approach is generating a mapping between real-world planning experiences and the

abstract model.

7.2 Future Work: Collaborative Multiagent Planning un-

der Uncertainty

In Chapter 4, we developed multiagent macro-actions and macro-action based value func-

tion approximations to enable collaborative multiagent planning on stochastic graphs with

uncertain edge traversabilities.

While our approach enabled efficient team collaboration on stochastic graphs, in practice,
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the stochastic graphs were hand-generated. In Veys et al. [149], we developed a method for

automatically generating high-quality stochastic graphs from polygonal environment repre-

sentations, where each polygon was assigned a traversability probability. While the approach

is a step towards automatically generating route graphs for planning under uncertainty, there

are still a number of open questions in the space. For example, we are interested in automat-

ically generating the polygonal representation from overhead imagery and other environment

databases. Additionally, we are interested in generating efficient information-based approx-

imations for planning with additional stochastic agents, and for teams with delayed and

otherwise imperfect communication. It may also be interesting to explore multiagent collab-

oration on CTP-like graphs with uncertain edge costs. Finally, we are interested in extending

the approach to agents with more complex capabilities that can change the state of the en-

vironment for a teammate. For example, a mobile manipulator may be capable of opening a

door for a teammate, making a previously untraversable route traversable, or an inspection

robot may be able to inspect and, if necessary, disarm a suspicious object on a low-cost path

to the goal, enabling a teammate to navigate along the path.

7.3 Future Work: Real-World Deployments of Collabo-

rative Multiagent Planning under Uncertainty

In Chapter 5, we developed a hierarchical planning system to enable the deployment of the

collaborative multiagent planner in a real-world environment. In future work, we would like

to test the system in deployments with larger teams and environments with more uncertain

edges; this will likely require additional techniques to reduce the computational complexity

of the existing planner. Additionally, we are interested in using the uncertainty-aware col-

laborative multiagent planner as the first phase of a larger team operation. For example,

maps built and traversability observations detected during CTP-guided navigation could be

used as preliminary models for executing more complex tasks in the environment, such as
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suspicious region coverage, suspicious object identification and removal, and more. Finally,

we are interested in techniques for identifying and correcting model mismatch in the ab-

stract CTP graph representation during online planning. For example, it may be desirable

to adjust the abstract representation of a specific vertex slightly to avoid collision with an

unmapped obstacle.

7.4 Future Work: Learned Value Function Approxima-

tions on Uncertain Graphs

In Chapter 6, we developed a preliminary method for learning single-agent value functions

for navigation under uncertainty on CTP graphs. In future work, we would like to reduce

the error in the value function predictions, especially in larger graphs. Additionally, we

would like to improve the generalization of the approach to unseen graphs. Finally, we are

interested in exploring alternative learning methods for the problem, such as reinforcement

learning, to improve system performance.
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