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Abstract
Natural language, while central to human experience, is not uniquely the domain of hu-
mans. AI systems, typically neural networks, exhibit startling language processing capa-
bilities from generating plausible text to modeling simplified language evolution. To what
extent are such AI models learning language in a “human-like” way?

Defining “human-like” generally may be an impossible problem, but narrower defi-
nitions of aspects of human-like language processing, borrowed from cognitive science
literature, afford metrics for evaluating AI models. In this thesis, I borrow two theories
about human language processing for such analysis. First, human naming systems (e.g., a
language’s words for colors such as “red” or “blue”) appear near-optimal in an information-
theoretic sense of compressing meaning into a small number of words; I ask how one might
train AI systems that behave similarly. Second, people understand and produce language
according to hierarchical representations of structure; I study whether large language mod-
els use similar representations in predicting text. Thus, in this thesis, I show how to train
and analyze neural networks according to cognitive theories of human language processing.

In my first branch of work, I introduce a method for neural network agents to communi-
cate according to cognitively-motivated pressures for utility, informativeness, and complex-
ity. Utility represents a measure of task success and induces task-specific communication;
informativeness is a task-agnostic measure of how well listeners understand speakers and
leads to generalizable communication; complexity captures how many bits are allocated for
communication and can lead to simpler communication systems. All three terms are im-
portant for human-like communication. In experiments, training artificial agents according
to different tradeoffs between these properties led them to learn different naming systems
that closely aligned with existing natural languages.

In my second branch of work, rather than training neural agents from scratch, I probe
pre-trained language models and found that some use representations of syntax in making
predictions. Humans use hierarchical representations of sentence structure in understand-
ing and producing language, but it is unclear if large language models, trained on simple
tasks like next-word-prediction, should learn similar representations. I introduce a causal
probing method that sheds light on this topic. By creating counterfactual representations
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of syntactically ambiguous sentences, I measured how model predictions changed for dif-
ferent structural interpretations of the same sentence. For example, I recorded model pre-
dictions to ambiguous inputs like “The girl saw the boy with the telescope. Who had the
telescope?” with different syntactic structures. For some (but not all) models, I found that
models use representations of syntax (e.g., change their answers to the previous question).
Thus, I offer novel insight into pre-trained models and a new method for studying such
models for other properties.

The two halves of my thesis represent complementary approaches towards more human-
like AI; training new models and analyzing pre-trained ones closes an AI development
feedback loop. In this thesis, I explain my contributions to both parts of this loop and
identify promising directions for future research.
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Chapter 1

Introduction

Natural language, while central to human experience, is not uniquely the domain of hu-

mans. In recent years, AI models, often parameterized as neural networks, have demon-

strated impressive language capabilities. For example, AI agents, trained in cooperative set-

tings, can learn their own communication systems that serve as a simplified language [Lowe

et al., 2017, Wang et al., 2020, Sukhbaatar et al., 2016a]. At the same, other AI models,

trained on natural language corpora, exhibit impressive word prediction and generalization

capabilities and can seemingly converse with humans [Devlin et al., 2019, Brown et al.,

2020].

What are such AI models learning about language? Just as linguists and pyscholinguists

consider fundamental properties of language and how humans process it, I seek to better

understand AI language processing, especially compared to theories of human cognition.

In this thesis, I contribute to two areas within the field of language AI systems (Figure 1-1).

First, I show how cognitively motivated pressures for simple but useful lexicons can induce

more “human-like” communication among AI agents. Second, I develop tools to analyze

pre-trained large language models (LLMs) and show that some models use representations

of sentence structure in making predictions. Thus, my two contributions in this thesis are

complementary, offering on the one hand control over training new systems, and on the

other hand insight into studying existing systems.

The remainder of this chapter includes a brief summary of relevant aspects of computa-

tional linguistics (Section 1.1) and executive summaries of the contributions I have made in
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“I saw the girl and the boy [MASK] tall.”

LLM
Probe

“were”

“was”

𝑧′

Causal Syntactic Probes

Analyzing Pre-trained Models

Information Bottleneck in 
Emergent Communication

Ifugao

Agent, Low Complexity

Chiquitano

Agent, High Complexity

Training Human-Like Models

Figure 1-1: I seek to induce more human-like communication (left; Chapter 2) and analyze
pre-trained language models for human-like processing (right; Chapter 3). Each high-
level field of training or analyzing contains many specific problems; I focus on training
information-theoretic methods in emergent communication and analyzing the use of syntax
in pre-trained models.

this field (Sections 1.2 and 1.3). Each executive summary is then expanded into technical

chapters on information-theoretic emergent communication (Chapter 2) and causal prob-

ing of LLMs (Chapter 3). I conclude with a brief summary of my work and directions for

future research.

1.1 Related Works

In this thesis, I seek to train and analyze language-related neural networks, using principles

from cognitive science. This work is situated within the broader fields of computational

linguistics and AI, wherein researchers seek to develop computational models for produc-

ing and processing language. On the one hand, some researchers consider how to build

new AI tools to act, at least in some way, like humans in language processing tasks. Large

Language Models (LLMs), for example, are a type of AI model trained on next-word pre-

diction tasks to produce human-like language [Brown et al., 2020, Touvron et al., 2023].

On the other hand, other researchers analyze pre-trained models to assess how they behave,

often in comparison to humans [Linzen et al., 2016, Giulianelli et al., 2018]. For example,

one may ask whether a model trained on a next-word prediction objective inherently learns

rules governing syntax. These two sub-areas of research are complementary: affording new

techniques to train models and new tools to understand them. Here, I explore some of the
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major trends in these sub-areas of research that I build upon in the remainder of the thesis.

1.1.1 Developing Computational Models of Language

A longstanding goal in computational cognitive science has been the development of com-

puter models that replicate important aspects of human language processing. Beyond

simply observing how people use language, computational models distill predictions into

testable mathematical theories of language. If a computational model accurately predicts

human behavior, it may reveal important insights into human mental processes – conscious

or unconscious. Of course, depending upon the linguistic behavior being predicted (e.g.,

word production, phonetic classification, etc.) different computational models or data may

be used.

While classical computational modeling research has explored a variety of modeling

methods, neural networks have become broadly popular in recent years. In general, neural

networks, comprising a large number of artificial “neurons” made up of learnable weights

and functions, are over-parametrized function approximators that, with enough training

data, can at least in theory approximate diverse functions. Typically, neural networks are

initialized with random parameter values that are updated according to training data. In

practice, different neural network implementations tend to learn some behaviors from data

better than others. For example, recurrent neural networks (e.g., [GRUs Cho et al., 2014],

[LSTMs Hochreiter and Schmidhuber, 1997], etc.) generate fixed-size representations of

lengthy inputs by iteratively incorporating more context into a hidden representation. While

in some ways cognitively plausible (after all, humans remember a long series of input in a

fixed representation space – the brain), such recurrent neural networks often fail to represent

information over very long contexts. More recently, transformer-based neural networks,

using self-attention mechanisms that support efficient and selective contextualization, have

supplanted recurrent neural networks [Vaswani et al., 2017, Devlin et al., 2019]. Thus,

while the exact form may vary, neural networks, and in particular large, transformer-based

neural networks, are the current standard model to train using linguistic data.

Complementing model choice, the training data and objectives used in conjunction with
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learning-based models play important roles in inducing human-like language processing.

An untrained neural network alone is a poor model for language processing; models are

trained to learn desired behaviors by optimizing the weights of neural nets to minimize the

expected loss over some dataset. Depending upon the desired behavior, the training data

and objective may vary. For example, some models may be trained using carefully curated

text pulled from articles in the Wall Street Journal [Marcus et al., 1993], while others exploit

the benefits of large data sources by using hundreds of billions of words [Devlin et al., 2019,

Brown et al., 2020]. Similarly, the training objective may vary: some models are trained

to predict a hidden word in the middle of a sentence while others may be trained to answer

questions by highlighting a portion of text [Rajpurkar et al., 2016]. Next-word prediction,

wherein models are trained to predict the next word, given previous words, is a particularly

common training objective [Brown et al., 2020, Touvron et al., 2023]. Some methods

appear to improve language model performance according to computational metrics but

are clearly not cognitively plausible (e.g., infants learn the rudiments of language from

far fewer linguistic inputs than the language models use during training). Such variation in

training data and objective reveal the open nature of current research in language modeling.

Complementing standard language modeling approaches such as next-word prediction,

and of particular relevance to this thesis, research in Emergent Communication (EC) con-

siders an alternative training objective to encourage agents to learn grounded communi-

cation that may not align with natural language [Lowe et al., 2017, Havrylov and Titov,

2017]. In standard EC work, artificial agents, parametrized as neural networks, are trained

in simulated settings and, by training to maximize a shared reward function, learn to com-

municate. Just as two humans who do not speak any languages in common may learn a

simple vocabulary for cooperating towards a common goal, agents their own communica-

tion. As in standard language modeling research, EC research must consider the important

role of model class (e.g., type of neural net), data (e.g., training environment), and objective

(e.g., task reward). Emergent communication differs substantially from language model-

ing, however, by inducing fundamentally grounded communication: agents communicate

about (simulated) objects. At the same time, EC agents necessarily do not communicate

via natural language, as they lack human data. Thus, emergent communication research
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offers an alternative computational model of communication.

In Chapter 2, I explain a framework for developing more “human-like” communica-

tive agents by expanding traditional EC approaches with cognitively-motivated training

objectives. My work is broadly similar to many of the works summarized in this section

(developing computational models of language) and more narrowly related to grounded

emergent communication research.

1.1.2 Analyzing LLMs with Interpretability Tools

Complementing the work described in the prior section, some researchers seek to better un-

derstand pre-trained LLMs from a human-centered perspective. This work falls under the

broad umbrella of AI interpretability or explainability, wherein researchers develop meth-

ods for understanding AI models (typically, neural networks) in human-understandable

terms. Generally, interpretability research complements model design research much as a

sensor does an actuator; interpretability tools can be applied to trained AI models to re-

veal what behaviors they have learned. Here, I broadly characterize LLM analysis in two

categories depending upon whether analysis is based upon surface level features or latent

representations.

Using feature-level explanations, researchers seek to explain model behavior with re-

spect to the raw inputs fed into models. Generally, feature-attribution methods reveal how

model decisions would change as individual features change [Ribeiro et al., 2016, Lund-

berg and Lee, 2017, Selvaraju et al., 2017]. For example, natural language classification

decisions may be explained via linear combinations of words (e.g. the word “good” may

contribute to a model classifying a review positively), or image classifications may be

explained by highlighting pixels that, if altered, would change the classifier’s prediction.

While the utility of such feature-attribution explanations for human understanding remains

debatable [Zhou et al., 2022a,b], it is generally true that such explanations are by definition

limited to only provide explanations with respect to input features.

In contrast to feature-level explanations, other works seek to explain model behavior

with respect to latent concepts. Many “interpretable-by-design” neural networks, for ex-

19



ample, embed inputs into learnable prototypes that capture high-level concepts that a single

pixel or word cannot express (e.g., a beak of a bird). To the extent prototypes align with

human-interpretable concepts, these prototypes therefore provide latent-concept explana-

tions. When faced with traditional black-box models that do not use such interpretable

representations, researchers may nevertheless still employ latent-space explanations by ex-

ploring what information models encode and (optionally) how model decisions change with

respect to such information. Latent concept explanations are inherently generalizations of

feature-space explanations and can, in theory, provide more meaningful explanations by

invoking high level concepts. This flexibility comes at the cost, however, of difficulty in

identifying how latent concepts are encoded in high-dimensional latent spaces.

In Chapter 3, I describe my work that falls within the broad field of LLM analysis,

in which I consider how representations of syntactic structure mediate pre-trained model

predictions. I consider standard pre-trained LLM models (thus, I do not assume I can

train an interpretable-by-design language model) and analyze them with respect to a latent

structure (syntax).

1.2 Training Communicative Agents: Emergent Commu-

nication

1.2.1 Goal: Human-Like Emergent Communication

In emergent communication literature, cooperative AI agents are often trained to in partially-

observable environments to maximize a shared reward function specifying a desired goal or

behavior [Lowe et al., 2017, Lazaridou et al., 2018, Kottur et al., 2017, Havrylov and Titov,

2017]. By learning to optimize this reward function, agents automatically learn grounded

communication with no supervision. Unfortunately, even in simple settings, such emergent

communication is quite different from human languages or communication [Chaabouni

et al., 2019, Eccles et al., 2019, Lin et al., 2021, Kottur et al., 2017].

Emergent communication and human naming systems often differ in their complexity

– a measure of how much information in bits speakers encode in words. Across languages
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and semantic domains, human naming systems appear at least partially guided by a pres-

sure for lower complexity in an information-theoretic sense [Zaslavsky et al., 2018, 2021,

Mollica et al., 2021, Zaslavsky et al., 2019]. For example, while people could in theory

communicate about colors by describing precise RGB values, natural languages typically

employ high-level words (e.g., “red” or “blue” in English). Such behavior of using high-

level words to represent complex inputs is consistent with Information-Bottleneck (IB)

pressures driving human language evolution. Unlike humans, traditional emergent com-

munication agents are rarely trained with such pressures.

In my work, presented in Chapter 2, I seek to build AI agents that automatically learn

human-like emergent communication by including cognitively motivated pressures. Train-

ing with such pressures provides a computational testbed for theories of language evolu-

tion: if certain pressures lead to human-like naming systems among artificial agents, that

provides some evidence that such pressures may guide human language evolution.

1.2.2 Approach: Information-Theoretic Emergent Communication

To train human-like emergent communication systems, I make two technical contributions:

1) I describe an Information-Theoretic Emergent Communication (ITEC) framework and

2) I propose a family of neural network methods that perform well within this framework.

In my first contribution, I describe a cognitively-motivated ITEC training framework

that trades off utility, informativeness, and complexity. Utility corresponds to how well a

team of agents can accomplish a task using learned communication; traditional emergent

communication literature often uses utility or reward maximization to drive communica-

tion. Unlike utility, informativeness is a task-agnostic measure of how well a listener can

understand a speaker, regardless of context. Lastly, complexity, which we measure as the

mutual information between a speaker’s meaning and its communication, reflects roughly

how many bits are allocated for communication. Prior studies indicate that the IB tradeoff

of maximizing informativeness while minimizing complexity explains aspects of human

naming systems.

In my framework, I explore how different relative pressures for utility, informativeness,
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and complexity lead to different communication systems. Broadly, I seek to maximize

utility, maximize informativeness, and minimize complexity, regulated by scalar tradeoff

parameters. Just as different human naming systems in different languages appear to corre-

spond to different tradeoffs between informativeness and complexity, my framework allows

me to train agents according to different tradeoffs among the three terms I consider.

While one can train a variety of neural network agents within my ITEC framework,

in my second contribution, I propose a family of neural network methods for learning

complexity-limited discrete emergent communication. My method, dubbed the Vector

Quantized Variational Information Bottleneck (or VQ-VIB), combines notions of an Infor-

mation Bottleneck (to limit complexity) with vector quantization (which supports learning

a finite set of representations, embedded in a continuous space). Compared to other neural

networks designs, VQ-VIB agents more naturally support variational bounds on complex-

ity while learning meaningful embeddings spaces.

1.2.3 Results

I found that the ITEC framework afforded control over important characteristics of commu-

nication, and VQ-VIB models outperformed other neural network methods. Experiments

were conducted in three domains (a color reference game, an open-domain image refer-

ence game, and a grounded communication game in a simulated 2D world), motivated by

prior studies in human naming systems and emergent communication. Results were largely

consistent across domains, indicating the wide applicability of my technical contributions.

First, the ITEC framework allowed direct tuning of the utility, informativeness, and com-

plexity of communication, which led to indirect control over high level properties such as

convergence rate (how long it took for agents to learn a shared protocol) and similarity to

human naming systems. Second, VQ-VIB models, by embedding discrete communication

vectors within a continuous space, consistently outperformed other strong baselines trained

in the ITEC framework.

Across domains, the ITEC framework allowed for direct and indirect control over im-

portant communication properties. Most directly, varying the tradeoffs between utility,
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informativeness, and complexity in the ITEC optimization caused agents to learn commu-

nication systems with varying utility, informativeness, and complexity measures. Given

the importance of these terms in human language evolution, it is important to control them

in inducing human-like emergent communication. Beyond such direct goals, training in

the ITEC framework allowed for indirect control over other aspects of communication.

For example, increasing the pressure for informativeness caused agents to converge more

quickly to successful communication that generalized well to novel inputs, while limiting

the complexity of communication to match human-like levels was important for aligning

with representations of natural language. Such results that link information-theoretic pres-

sures to behavioral communicative changes reveal important computational evidence for

how hypothesized pressures on human naming systems lead to observed natural languages.

Within the ITEC framework, I found that VQ-VIB models tended to outperform other

neural network methods, likely due to the continuous embedding space VQ-VIB models

use. Prior emergent communication literature has typically employed onehot vectors to

represent discrete communication vectors that are all orthogonal and equidistant from each

other. Conversely, VQ-VIB models embed learnable discrete tokens in a continuous space;

in experiments, the relative positions of different tokens within this space suggests a se-

mantic interpretation of the learned embeddings. The continuous embedding space also

supported behavioral improvements for VQ-VIB models such as greater informativeness

and more human-aligned representations.

1.3 Analyzing Pre-trained Language Models: Causal Prob-

ing for Syntax

1.3.1 Goal: Analyzing Pre-trained Models

Complementing research on training methods to induce more human-like communica-

tion, other researchers analyze pre-trained models. In recent years, large neural networks,

trained to predict a word given that word’s context (e.g., preceding words in a sentence),

have demonstrated impressive human-like performance at many tasks. Despite some be-
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havioral similarities, however, it is unclear if such trained models use similar representa-

tions of language to those that humans do.

Recent works in probing pre-trained models indicate that large language models (LLMs)

encode some syntactic information in their internal representations, but it is unclear if such

representations mediate model predictions. Generally, probing literature seeks to expose

learned patterns of a neural language model by training small neural networks to map from

model representations to human-interpretable properties [Alain and Bengio, 2017, Conneau

et al., 2018, Reif et al., 2019, Giulianelli et al., 2018, Stanczak et al., 2023, Tenney et al.,

2019]; syntactic probes are trained to predict syntactic properties such as plurality from

an embedding [Giulianelli et al., 2018] or positions in a dependency structure [Hewitt and

Manning, 2019]. Probes are often intentionally parametrized as simple models to prevent

probes from “doing too much;” this reflects a fundamental desire to only probe for salient

properties in representations rather than building entirely separate models [Hall Maudslay

et al., 2020a, Belinkov, 2021]. Unfortunately, such probes are fundamentally limited to

only perform correlative, as opposed to causal, analysis [Amini et al., 2023]. That is,

probes can reveal what information is present in model representations but now how such

information is used in making predictions.

In Chapter 3, I seek to answer how (and if) representations of syntax in mediate model

predictions. Answering this question would provide important insight into the narrow topic

of how hierarchical representations of syntactic structure, which are thought to be fun-

damental to human language processing [Chomsky, 1965], are used in language models.

More generally, syntactic structure may be viewed as a latent property of language; the

techniques I develop to study representations of syntax may be broadly applied to a variety

of other latent properties such as tone or intent.

1.3.2 Approach: Causal Probing via Dropout Probes

To assess how representations of syntax mediate model predictions, I develop a gradient-

based intervention method to create counterfactual latent representations, and I introduce a

new type of probe for improved causal analysis. Overall, my causal analysis comprises
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three steps: 1) generating a syntactically-ambiguous input, 2) using a probe to create

counterfactual representations corresponding to different parses of the same input, and 3)

recording model predictions for the counterfactual representations. While one can use ex-

isting probing methods within the second step of my framework, I propose a novel type of

“dropout probe” to address aspects of redundancy in model representations.

Causal Probing In the first step, I design ambiguous test suites that support multiple

syntactic interpretations, which should induce different model predictions. For example,

consider a sentence, “I saw the girl and the boy [MASK] tall,” where “[MASK]” is a

special token that denotes a masked word the model must predicted. This sentence supports

different structural interpretations: should one treat “the girl and the boy” as one joint

noun phrase, or should one treat “I saw the girl” as a standalone phrase, with “the boy”

starting a new phrase? Depending upon ones structural interpretation, one should predict

different verbs in the [MASK] spot: “I saw (the girl and the boy) were tall” vs. “(I saw the

girl) and (the boy was tall).” More generally, I generate sentences with different structural

ambiguities that should therefore affect model predictions.

In the second step, I generate counterfactual latent representations corresponding to dif-

ferent syntactic interpretations of a single sentence. I assume access to a language model,

a trained syntactic probe (I propose a new family of probes inspired by those introduced

by Hewitt and Manning [2019]), and two syntactic structures for each sentence. Using

the model, probe, and desired structures, I create a latent representation for each sentence

at model layer 𝑘, from which I generate two counterfactual representations. Each coun-

terfactual is generated via gradient descent in the latent space: starting with the original

latent representation of a sentence, the latent is updated according to the gradient of the

loss between the probe’s prediction and a desired syntactic structure. In the example from

the previous paragraph, one desired structure would correspond to “the girl and the boy”

being a single noun phrase, whereas the other structure would be a coordination of sentence

phrases. (This gradient-descent process is explained more fully in Section 3.3.2.) Using

the two syntactic structures generates two distinct latent representations, each correspond-

ing to, intuitively, what the model’s representation of a sentence would be if the syntactic
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structure were specified.

In the third and final step, I record model predictions for each of the counterfactual

representations generated in the previous step. To assess model predictions for counter-

factual representations, I passed each counterfactual through the remaining layers of the

pre-trained model. By design, different syntactic interpretations of the sentence afford

different valid predictions (e.g., “was” or “were” in the running example). I therefore mea-

sured whether model predictions systematically shifted in valid ways for one counterfactual

representation of another.

Dropout Probes The causal probing framework described above uses probes to generate

counterfactual representations; while one can use probes introduced in prior art (e.g., [He-

witt and Manning, 2019]), I introduce a novel type of probe to better detect redundantly

encoded syntactic information. For example, if a language model encodes the same syntac-

tic information in multiple neuron activations, a probe may only learn to use a single copy

of that information, which would lead to (gradient-based) counterfactual representations

only updating some representations of syntax. I introduce “dropout probes” to mitigate this

risk. By pre-pending a dropout layer that randomly masks probe inputs with probability 𝛼

during training, I force high-𝛼 dropout probes to use all representations of syntactic struc-

ture in a model’s latent representation. In causal probing experiments, therefore, I used

dropout probes, trained with varying 𝛼 values, to create counterfactual representations.

1.3.3 Results

Representations of syntax appear to mediate model predictions, although there is important

variation across syntactic structure and language model. Furthermore, I found that models

appear to redundantly encode syntactic information in their representations, validating the

importance of dropout probes in causal probing.

The primary findings in Chapter 3 indicate that several models use representations of

syntax in making predictions. For example, given the input “I saw the girl and the boy

[MASK] tall,” models tended to shift their predictions from “were” to “was” when using

counterfactual representations to favor singular, rather than plural, verbs. Such behavior is
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consistent with using representations of syntax in understanding and producing language.

Beyond that specific sentence, I tested BERT-based models on a series of syntactic ambi-

guities and prediction tasks (e.g., predicting a masked word or answering a question). Al-

though the magnitude of effects varied somewhat, for several models and syntactic suites, I

found that models systematically changed their predictions in syntactically-expected ways.

My experiments further indicate the importance of dropout probes in causally probing

language models. When using standard probes that lack dropout, as described in prior

literature, the counterfactual representations tended to reveal only small changes in model

predictions. Conversely, model predictions changes by over an order of magnitude more

when using high-dropout probes (e.g., 𝛼 = 0.8) to create counterfactuals. Such results,

in conjunction with further analysis confirming that models encode syntactic information

redundantly, confirm the importance of using dropout probes.

1.4 Thesis Findings

While the two technical chapters in this thesis consider separate problems, they jointly

indicate important progress towards more human-like AI systems.

First, in Chapter 2, I show how to train AI systems that communicate via human-

like lexicons. An information-theoretic emergent communication framework, represent-

ing cognitively-motivated pressures for language evolution, leads to naming systems that

closely resemble aspects of human communication. This is important evidence that such

pressures could drive human language evolution. Beyond this broad framework, I also find

value in a suite of neural network architectures that I propose – the Vector Quantized Varia-

tional Information Bottleneck – that outperforms standard neural networks. This technical

contribution should inform future AI research.

Second, in Chapter 3, I find that some pre-trained language models automatically learn

to use human-like latent concepts in reasoning about language. In particular, the BERT lan-

guage model [Devlin et al., 2019], trained to predict randomly-masked words in a sentence,

uses representations of syntactic structure in predicting such words. This is a novel find-

ing that, beyond implications for syntactic processing alone, provides evidence that neural
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networks can learn to use human-like representations.

Considered jointly, the findings in this thesis present two views of the best way to

create more human-like AI systems. On the one hand, in some domains, carefully-designed

losses based on cognitive insights are required to induce desired behaviors. On the other

hand, with enough human-generated data, some models appear to already conform to some

theories of human cognition. The tension between these terms underpins the generality of

many of the ideas presented in this thesis. Training or analyzing human-like AI systems

need not be restricted to language domains; ongoing and future research extend some of the

core tools I propose in this thesis to new areas. In Chapter 4, I briefly discuss such efforts

in inducing multi-task abstractions (training) or enforcing in-distribution causal probing

mechanisms (analyzing). I am excited to see how the ideas I explore in this thesis inform

and transform within future human-like AI research.
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Chapter 2

Training New Models:

Information-Theoretic Emergent

Communication

In this chapter, I consider how to train communicative models to learn aspects of human-

like communication using cognitive theories for driving human communication. Two fun-

damentally contrasting theoretical views are available to characterize optimization in lin-

guistic communication and the resulting pressures on language evolution: on the one hand,

task-specific utility maximization; on the other hand, a task-agnostic cognitive pressure for

maximizing informativeness (how well a listener can understand a speaker) while minimiz-

ing complexity (roughly, how many bits are allocated for communication). Here, I integrate

these two views (a utility-based framing for accomplishing tasks, with an IB pressure for ef-

ficiency) and propose a new information-theoretic framework for emergent communication

that trades off utility, informativeness, and complexity. To train agents within my frame-

work, I develop a method, called Vector-Quantized Variational Information Bottleneck

(VQ-VIB), that allows agents to interact using information-constrained discrete commu-

nication embedded in a continuous vector space. I test this approach in three domains and

show that pressure for informativeness facilitates faster learning and task-agnostic commu-

nication, which generalizes better to novel domains. At the same time, limiting complexity

yields better alignment with actual human languages. Lastly, I find that VQ-VIB outper-
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forms previously proposed emergent communication methods; I posit that this is due to the

semantically-meaningful communication space that VQ-VIB affords. Overall, my work

considers the role of cognitively-motivated pressures in inducing aspects of human-like

communication among artificial agents. 1

2.1 Introduction

How can language emerge from local interactions? One common answer to this question

stems from a game-theoretic approach of language evolution that emphasizes utility max-

imization [Steels and Belpaeme, 2005, Still and Precup, 2012, Chaabouni et al., 2021b].

In this view, agents interact to increase a task-specific utility or reward function. For ex-

ample, a passenger in a car who wishes to avoid crashing (low utility for crashing, high

utility for driving safely) might learn to communicate to an inattentive driver about red,

yellow, or green traffic lights. In computational experiments modeling language emer-

gence, this utility-based framework has been shown to capture several important aspects of

language [Lowe et al., 2017, Chaabouni et al., 2021a]; however, this framework is limited

in several ways. Notably, while a utility pressure can induce task-specific communication,

it is unlikely to lead to communication systems that generalize across different tasks. For

example, a communication system that is tailored specifically to my traffic light setting

might not necessarily support the emergence of a more general notion of “yellow” that can

be generalized for productive use in other tasks, such as determining whether a banana

is ripe; nor will optimization in the traffic-light scenario alone support communication of

other colors (e.g., “blue”), which are irrelevant for traffic lights but are useful in other

settings.

Complementing a utility-based framing of language evolution, others propose that lan-

guage is driven by a pressure for more task-agnostic efficient communication [for reviews

see Kemp et al., 2018, Gibson et al., 2019]. Most relevant to my work is a recent body

of literature that shows that human language is characterized by near-optimal compression

of meanings into words [Zaslavsky et al., 2018]. Necessarily, languages that employ a

1Much of the work in this chapter is described in Tucker et al. [2022b, Under Review].

30



finite set of words to describe infinite items lose information. For example, when catego-

rizing colors, a language that employs 10 words to describe all colors will discard subtle

information about shades or brightness; at the same time, the 10 color words retain more

salient information, such as distinguishing between yellow and black. Thus, whether de-

scribing colors or other attributes, human naming systems are a form of lossy compression.

Zaslavsky et al. [2018] have characterized this lossy compression mechanism in human

languages as an information bottleneck (IB) tradeoff [Tishby et al., 1999] between the in-

formativeness (roughly, how well a listener can understand a speaker, regardless of context)

and complexity (roughly, how many bits are allocated for communication) of the lexicon.

Increasing informativeness can lead to more specific naming systems (e.g., color words

like “crimson” or “vermillion”) but comes at the cost of greater complexity (e.g., having

to learn a larger lexicon). More generally, in any domain, there is a theoretical maximum

informativeness that is achievable for a given complexity; in a wide variety of human lan-

guages and semantic domains, languages approach this maximum informativeness value

for their complexity levels [Zaslavsky et al., 2018, Mollica et al., 2021, Zaslavsky et al.,

2019, 2021]. In other words, for a fixed complexity budget, languages convey as much

information as possible. At the same time, different languages exhibit different complexity

levels, representing different tradeoffs between complexity and informativeness.

These two frameworks for communication – utility maximization and IB efficiency –

represent different interpretations of what drives language: I emphasize that utility and

informativeness are distinct concepts. Utility is a task-specific measure, while informa-

tiveness represents a task-agnostic pressure for conveying meanings. In my traffic light

example, a utility-driven speaker might refer to yellow lights as “red” to force a driver to

slow down; this accomplishes the desired goal of avoiding crashes (high utility) but may

lead the driver to think the traffic light is actually red (low informativeness). Conversely, an

IB-optimal speaker might refer to yellow and green lights as a single word, given the visual

similarity between their shades; such communication might be IB-efficient, but it ignores

safe driving goals.

While prior investigations into utility and IB pressures on naming systems illustrate

important aspects on human communication, several important questions remain largely
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unaddressed. First, it is unclear what type of agent utility functions and learning dynamics

may lead to naming systems that are near-optimal in the IB sense. Small changes in the

training environment can lead to large differences in learned communication [Chaabouni

et al., 2021a] and even in the same environment agents often randomly converge to different

communication protocols corresponding to different complexity levels [Kågebäck et al.,

2020, Carlsson et al., 2021]. More dramatic changes in training, such as iterated learning

to simulate cultural transmission, likewise tend to alter information-theoretic aspects of

communication in unclear ways [Carlsson et al., 2023]. Second, applications of the IB

framework to naming systems have focused on finite domains in which exact calculations

of the IB tradeoff is tractable. Therefore, it has been unclear how to apply this framework

at scale, and in particular, in large open domains.

In this chapter, I address these open questions by integrating utility-based and IB-

based approaches to language evolution. Specifically, I develop a scalable computational

framework for training artificial intelligence systems to communicate while guided by pres-

sures for communicative utility, informativeness, and complexity. This framework builds

upon prior literature in Emergent Communication (EC). In traditional EC work, artificial

agents (typically, neural networks) are trained in cooperative settings to accomplish some

goal and, by endowing agents with the ability to broadcast vectors to each other, agents

learn to communicate with each other. For example, in a simulated driving environment,

agents learn to warn other agents when they approach an intersection, thus preventing col-

lisions [Sukhbaatar et al., 2016a]. Critically, communication emerges only due to a utility-

based framing (e.g., avoid crashes while driving) rather than direct supervision of how to

communicate.

In contrast to the utility-based framework of prior EC works, I adopt the cognitively-

motivated terms for informativeness and complexity while training EC agents and propose

a utility-informativeness-complexity framework for emergent communication. Agents are

trained to simultaneously maximize utility (how well they do at a task), maximize infor-

mativeness, and minimize complexity. As in classic IB, these terms may be in conflict, so

agents optimize a tradeoff between these three quantities. This general framework captures

important notions of communication, such as goal-directedness, context-independent in-
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formation transfer, and limited computation. Unlike exact IB calculations, training agents

according to this framework is highly scalable.

I propose a novel neural network method to train within my framework: the Vector-

Quantized Variational Information Bottleneck (VQ-VIB), for complexity-limited discrete

communication. Deterministic neural networks are incompatible with the information-

theoretic notions of complexity or informativeness in my framework. Conversely, VQ-

VIB and other stochastic methods support variational bounds on these quantities, which

allow us to reward or penalize complexity and informativeness. In experiments, VQ-VIB

methods outperform other neural architectures by generating a discrete set of representa-

tions in a continuous space, much like word embeddings in Natural Language Processing

literature [Pennington et al., 2014].

Beyond the specifics of VQ-VIB, I demonstrate the flexibility of my framework and the

importance of each term it contains. Utility-based training enables agents to solve particular

tasks but fails to generalize to novel settings (e.g., when trained and tested on semantically

distinct inputs). Highly informative communication allows agents to learn faster and gen-

eralize better to harder tasks, but such communication is often overly-complex compared

to human communication. Thus, limiting the complexity of communication is necessary to

induce aspects of human-like communication.

2.2 Background

In this chapter, I present an information-theoretic emergent communication (ITEC) frame-

work that combines task-specific utility with task-agnostic informativeness and complexity

pressures. Furthermore, I develop VQ-VIB, a method that fits within my framework. In

this section, I review the relevant technical background. First, I review IB systems, includ-

ing IB analysis measuring the tradeoff between complexity and informativeness in human

naming systems, and variational methods for training neural nets with the IB objective.

Second, I explain the technical details of the Vector-Quantized Variational Autoencoder

(VQ-VAE), a neural network architecture for learning discrete representations in a contin-

uous space; my VQ-VIB method combines ideas from VQ-VAE with concepts from IB.
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Third, I summarize related literature in Emergent Communication, highlighting how prior

literature often uses a utility-based framework for inducing communication.

2.2.1 The Information Bottleneck for Semantic Systems

My work extends Zaslavsky et al. [2018]’s information-bottleneck framework for semantic

systems, which I review in this section. In this framework, a speaker and listener optimize

the IB tradeoff between informativeness and complexity of communication. 2

In IB semantic systems, I assume a probabilistic source over meanings that a speaker

wishes to encode: 𝑚 ∼ P(𝑚). A speaker is characterized as a probabilistic encoder map-

ping from 𝑚 to communication 𝑤: 𝑞(𝑤|𝑚). Conversely, a listener seeks to recover a

reconstructed meaning from communication: 𝑚̂ = 𝑞(𝑚|𝑤).

Within this framework, one may measure the complexity and informativeness of com-

munication. Complexity is measured as the mutual information between the speaker’s

inputs and communication: 𝐼(𝑚;𝑤). Intuitively, this corresponds to the number of bits al-

located for communication, although it is more general than deterministic discrete coding

schemes. Simultaneously, informativeness corresponds to notions of similarity between

the speaker’s and listener’s belief states and can be measured via the negative expected

Kullback-Leibler (KL) divergence: −E[𝐷KL[𝑚‖𝑚̂]]. Lower KL divergence values arise

from more similar distributions, so decreasing the KL divergence leads to a listener “un-

derstanding” a speaker better.

Zaslavsky et al. [2018] propose that, in natural language naming systems, the speaker

and listener jointly optimize the encoder and decoder functions, 𝑞(𝑤|𝑚) and 𝑞(𝑚|𝑤), ac-

cording to a tradeoff between complexity and informativeness, modulated by a scalar pa-

rameter 𝛽 > 0:

minimize 𝐼𝑆(𝑚;𝑤) + 𝛽E𝑆[𝐷KL[𝑚‖𝑚̂]] (2.1)

The tradeoff parameter, 𝛽, represents the importance afforded to the informativeness

2Zaslavsky et al. [2018] use the term “accuracy” where I use the term “informativeness;” in some of my
experiments in which I train agents, there is a notion of team accuracy that is measured by a utility function,
so “informativeness” better illustrates the distinction between these terms.
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term relative to the complexity term. For small 𝛽, systems converge to low-complexity and

low-informativeness communication; for large 𝛽, speakers and listeners tolerate greater

complexity to achieve increased informativeness.

This theoretical IB tradeoff for semantic systems yields two important insights: 1) at

least in simple systems, one can derive optimal communication schemes for varying 𝛽,

and 2) one can compare human naming systems to IB-optimal systems by measuring their

informativeness and complexity values. In a variety of works, covering diverse semantic

domains (e.g., colors, pronouns, containers, etc.) and hundreds of languages, human lan-

guages are consistently near-optimal in the IB sense, while exhibiting different 𝛽 tradeoff

values [Zaslavsky et al., 2018, 2021, Mollica et al., 2021, Zaslavsky et al., 2019]. That is,

each language achieves near-maximal informativeness for its complexity level, but different

languages settle on different complexity levels.

2.2.2 The Variational Information Bottleneck

While exact computation of IB tradeoffs is possible in simple systems, typical approaches

fail to scale to complex settings; the Variational Information Bottleneck (VIB) is a scal-

able variational approximation method for IB. As introduced by Alemi et al. [2017], VIB

comprises a stochastic neural network encoder and decoder. In VIB, a neural encoder with

weights 𝜃, 𝑞𝜃(𝑧|𝑥), maps input 𝑥 to parameters of a 𝑑−dimensional Gaussian distribution

– 𝜇(𝑥) and Σ(𝑥) – from which a continuous latent variable, 𝑧 ∈ R𝑑, is sampled. A neural

decoder with weights 𝜑, 𝑞𝜑(𝑦|𝑧), reconstructs a target feature, 𝑦, from 𝑧. In standard VIB

literature, the encoder and decoder are jointly trained according to a tradeoff between de-

coder accuracy and the complexity of representations but, rather than using 𝐼(𝑥; 𝑧) directly,

VIB uses a variational bound on complexity:

𝐼𝑞𝜃(𝑥; 𝑧) ≤ E [𝐷KL[𝑞𝜃(𝑧|𝑥)‖𝑟(𝑧)]] (2.2)

which holds for any distribution 𝑟(𝑧) (typically set to 𝒩 (0, 𝐼𝑑)). Overall, therefore, the

VIB objective is:
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maximize𝜑,𝜃 𝐼𝑞𝜑(𝑧; 𝑦)− 𝛽𝐼𝑞𝜃(𝑥; 𝑧) (2.3)

≤ 𝐼𝑞𝜑(𝑧; 𝑦)− 𝛽E [𝐷KL[𝑞𝜃(𝑧|𝑥)‖𝑟(𝑧)]] (2.4)

(2.5)

This closely resembles Zaslavsky et al. [2018]’s IB framework for semantic systems,

with tradeoffs between complexity and informativeness (although note some flipped signs

and the role of 𝛽, due to terms for informativeness vs. distortion, and maximization vs.

minimization). Unlike in standard IB, however, VIB uses variational bounds for com-

plexity and, depending upon the predicted feature, 𝑦, for informativeness as well. The

flexibility of VIB has in turn supported applications of Information Bottleneck methods

across disciplines, including economics [Aridor et al., 2024] and modeling of human intel-

ligence [Malloy, 2022] .

2.2.3 Vector-Quantized Variational Autoencoder

While VIB generates complexity-limited continuous representations, the Vector-Quantized

Variational Autoencoder [VQ-VAE, van den Oord et al., 2017] generates discrete, but po-

tentially highly complex, representations. VQ-VAE models comprise a neural network en-

coder and decoder, mediated by a 𝑑−dimensional latent space. A codebook of 𝐾 vectors,

𝜁𝑖 ∈ R𝑑, 𝑖 ∈ [1, ..., 𝐾], defines a set of learnable discrete representations within the latent

space. To generate a latent representation of an input, 𝑥, a deterministic encoder maps from

𝑥 to a continuous latent representation 𝑧(𝑥) ∈ R𝑑, which it then discretizes by selecting the

index of the closest element of the codebook: 𝑖 = argmin𝑗 ||𝑧(𝑥)− 𝜁𝑗||2. The final discrete

representation is this closest element, 𝜁𝑖(𝑥). Given 𝜁𝑖(𝑥), a deterministic decoder network

seeks to reconstruct the encoder’s input.

During training, the weights of the encoder, the decoder, and the codebook are updated

using gradient descent; I represent these weights as Θ. Passing gradients through the non-

differentiable discretization process (specifically, the argmin operation) is challenging;

VQ-VAE uses a straight-through estimator, a common method for estimating gradients
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through non-differentiable processes. VQ-VAE is trained according to the loss function in

Equation 2.6, combining the evidence lower bound (ELBO) with two vector-quantization

terms that encourage continuous embeddings and codebook elements to cluster.

𝑙VQ-VAE = log 𝑝(𝑥|𝜁𝑖(𝑥); Θ) + ‖sg[𝑧(𝑥)]− 𝜁𝑖(𝑥)‖2 + 𝛼‖𝑧(𝑥)− sg[𝜁𝑖(𝑥)]‖2 (2.6)

Here, the first term represents the evidence lower bound (ELBO), a measure of the

estimated likelihood of training data. The second and third terms are clustering losses

(using sg to stand for the stopgradient operator) that cause continuous embeddings

and codebook elements to move closer together in the latent space. Lastly, 𝛼 is a scalar

tradeoff hyperparameter controlling the relative importance of clustering terms, typically

set to 0.25 [van den Oord et al., 2017].

Overall, VQ-VAE models learn discrete representations in a continuous space (the

codebook elements) that enable high-quality reconstructions of inputs. My work builds

upon aspects of the VQ-VAE architecture but differs both in training objective and im-

plementation. By introducing complexity bounds in training and using a different neural

architecture to support such bounds, my VQ-VIB methods allow me to vary the complexity

of communication, which I show enables more human-like communication.

2.2.4 Emergent Communication

My work combines ideas of IB and discrete representation learning (reviewed in the previ-

ous two sections) with the utility-based framing of emergent communication. In traditional

EC work, agents are trained in cooperative multi-agent environments to maximize a utility

function (sometimes called the reward) [Lowe et al., 2017, Lazaridou et al., 2018, Kottur

et al., 2017, Havrylov and Titov, 2017]. In partially-observable environments, endowed

with “cheap-talk” channels that allow agents to broadcast vectors to each other, agents of-

ten learn to communicate relevant information to each other. For example, if one agent

can see a goal location in a 2D world, and another agent can move in the world (with util-

ity based on proximity of the second agent to the goal), communication may “emerge” by
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the first agent learning to broadcast information about goal location and the second agent

simultaneously learning to interpret such communication [Lowe et al., 2017, Wang et al.,

2020]. Crucially, communication emerges based only upon task performance rather than

explicit supervision of how to communicate or what to communicate about.

The utility-based EC framework is a powerful mechanism for inducing task-specific

communication: in various settings, agents may coordinate in simulated environments to

find target locations [Lowe et al., 2017], to avoid collisions in simulated road intersections

[Sukhbaatar et al., 2016b], or to refer to a specific photo among a set of images of faces

[Chaabouni et al., 2021b]. Despite the flexibility of such methods, traditional EC agents of-

ten exhibit undesirable properties, such as being overly-complex [Chaabouni et al., 2019],

slow to converge [Eccles et al., 2019, Lin et al., 2021], or unable to generalize to novel

inputs [Kottur et al., 2017]. As an example of overly-complex communication, whereas

humans might use only a small number of words to categorize colors, agents might output

a distinct communication vector for each color.

Based in part by the desire to create more “human-like” EC, some recent works seek to

induce complexity-limited discrete communication (much as words are complexity-limited

discrete communication in natural languages) [Kottur et al., 2017]. In recent discrete EC

works, agents communicate via onehot vectors, and the dimensionality of these vectors

specifies the maximum vocabulary size [Lowe et al., 2017, Chaabouni et al., 2021b, Rita

et al., 2020]. In some works, therefore, authors decrease the vocabulary size to a small

number 𝑘, which sets a maximum communication complexity limit of log2(𝑘) bits. Beyond

such hard-coded limits on complexity, two recent studies of discrete EC add corrupting

noise to communication which affects communication complexity through environmental,

rather than agent architecture, choices [Tucker et al., 2021a, Kuciński et al., 2021].

Lastly, Lin et al. [2021] indirectly explores the role of informativeness in guiding emer-

gent communication, by using a reconstruction loss to generate communication encodings.

This reconstruction loss encourages communication to contain more decodable informa-

tion and is closely aligned with notions of informativeness. The authors find that their

method tends to induce faster convergence (i.e., the team performs well at a task faster)

using their method, but they note that their method might induce unnecessarily complex
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communication.

2.3 Technical Approach

My technical contributions are twofold: first, I introduce an information-theoretic emer-

gent communication (ITEC) framework that incorporates a utility-based loss into the IB

informativeness-complexity tradeoff; second, I propose a neural network method, named

the Vector Quantized Variational Information Bottleneck (VQ-VIB), which may be trained

within my framework.

2.3.1 Information-Theoretic Emergent Communication Framework

I propose the ITEC framework that extends traditional utility-based EC to include terms for

informativeness and complexity. Consider a simple EC setting with two agents: a speaker

and a listener (𝑆 and 𝐿), depicted in Figure 2-1 a. Given a global state, 𝑥, the speaker

receives a (potentially noisy) partial observation of the state and encodes it as a meaning,

𝑚, representing a belief state or probability distribution over 𝑥. The speaker stochastically

maps 𝑚 to an output communication vector, 𝑤: 𝑤 ∼ 𝑆(𝑤|𝑚). Based on 𝑤 and its own

partial observation of the state (𝑜𝑙), the listener simultaneously reconstructs the meaning

(𝑚̂) and takes an action 𝑦 ∈ 𝑌 : 𝑦 ∼ 𝐿(𝑦|𝑤, 𝑜𝑙). The utility of actions is measured as a

function of the state and the listener’s action, 𝑈(𝑥, 𝑦).

Figure 2-1 a shows not only how a speaker and listener can coordinate to learn a com-

munication protocol, but also how functions of different terms in the communication pro-

cess reflect important quantities like informativeness and complexity. Just as IB optimiza-

tion depends upon the tradeoff between informativeness and complexity, regulated by a

scalar parameter 𝛽, I consider a maximization of three terms: utility, informativeness, and

complexity. Thus, the ITEC objective is:

maximize 𝜆𝑈E[𝑈(𝑥, 𝑦)]− 𝜆𝐼E[𝐷KL[𝑚‖𝑚̂]]− 𝜆𝐶𝐼𝑆(𝑚;𝑤) , (2.7)

where 𝜆𝑈 represents the scalar weight for increasing utility, 𝜆𝐼 for increasing informa-
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Figure 2-1: a) Measuring utility, informativeness, and complexity for a speaker and lis-
tener. b) Tradeoffs between these three terms control a variety of important communicative
behaviors, and describe a region of human-like communication that balances competing
pressures.

tiveness (or, equivalently, minimizing distortion), and 𝜆𝐶 for minimizing complexity.

The relative weights of these three scalar terms dictate important properties of optimal

emergent communication, as depicted in Figure 2-1 b. For example, setting 𝜆𝐶 too high

might lead to uninformative communication, but setting 𝜆𝐶 = 0 might lead to overly com-

plex communication. Similarly, 𝜆𝑈 controls the task specificity of communication, and 𝜆𝐼

controls a task-agnostic measure of informative communication. Human communication

likely optimizes a tradeoff between these three terms.

2.3.2 Vector-Quantized Variational Information Bottleneck

Equation 2.7 trades off terms for utility, informativeness, and complexity, but directly solv-

ing this maximization is intractable in large domains [Alemi et al., 2017]. Therefore, I train

neural network agents to maximize a tractable variational bound of the same objective.

My method, named the Vector-Quantized Variational Information Bottleneck, or VQ-

VIB, is a variational method for learning complexity-limited discrete representations in a

continuous space. I was inspired by word embeddings: words in natural languages are

complexity-limited, and word embedding methods represent words as a finite set of points

in a semantically-meaningful space [Pennington et al., 2014, Mikolov et al., 2013].

Intuitively, VQ-VIB combine notions from the variational information bottleneck to
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Figure 2-2: a) VQ-VIB employs a stochastic embedder (𝑃𝜃) that samples a continuous
embedding, 𝑧, based on parameters extracted from a meaning, 𝑚, and a stochastic quantizer
(𝑄𝜓) that maps 𝑧 to a discrete word, 𝑤, using a codebook, 𝜁. The neural net mapping from
𝑚 to 𝜃, and the codebook 𝜁 are learnable parameters. b) The two-stage process first maps
from a potentially high-dimensional input space into an embedding space, where discrete
vectors, 𝜁 , are used for quantization. In this chapter, I propose two implementations of
VQ-VIB by providing different 𝑃𝜃 and 𝑄𝜓.

limit complexity with vector quantization for discretization. While VQ-VIB borrows from

prior art, it is distinct in several important ways. Unlike VQ-VAE, it uses a stochastic

encoder, which is necessary for variational bounds on complexity, and unlike VIB, it gen-

erates discrete representations.

My general VQ-VIB method combines a stochastic embedding mechanism with stochas-

tic discretization, as depicted in Figure 2-2 a. First, given a meaning, 𝑚, I generate pa-

rameters of a probability distribution, 𝜃, from which a continuous latent embedding, 𝑧 is

sampled: 𝑧 ∼ 𝑃𝜃(𝑚). Next, 𝑧 is quantized (i.e., set to a discrete vector) via a stochastic

process to generate a discrete embedding, 𝑤 ∼ 𝑄𝜓(𝑧). The neural network to produce 𝜃,

as well as the set of discrete embeddings, 𝜁, are parametrized by learnable weights.

The changes in representation formats in VQ-VIB are depicted graphically in Figure 2-

2 b. First 𝑃𝜃 maps from a high-dimensional input space into the EC space. Within the EC

space, I assume VQ-VIB models have 𝐾 learnable codebook elements: 𝜁𝑖, 𝑖 ∈ [1, 𝐾]; 𝜁 =

[𝜁1, 𝜁2, ..., 𝜁𝐾 ]. (In the diagram, 𝐾 = 3.) Lastly 𝑄𝜓 stochastically maps from the continuous

representation, 𝑧, to one of 𝜁𝑖, to produce the final output 𝑤. In this chapter, I propose two

different implementations of VQ-VIB, which differ by providing different implementations

of 𝑃𝜃 or 𝑄𝜓.
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Vector-Quantized Variational Information Bottleneck – Normal Distribution

My first encoder architecture, named the Vector-Quantized Variational Information Bottle-

neck – Normal, or VQ-VIB𝒩 , draws its name from the normal distribution it uses for 𝑃𝜃.

That is, 𝑧 ∼ 𝒩 (𝜇(𝑚),Σ(𝑚)) ∈ R𝑑. This stochastic encoding process via a normal distri-

bution is similar to standard VIB parametrizations [Alemi et al., 2017]. Next, VQ-VIB𝒩

deterministically discretizes 𝑧 by selecting the closest element of the codebook, 𝜁. That

is, 𝑄𝜓 is set to the argmin operation over distance in the EC space. This quantization step

is borrowed from VQ-VAE literature. Overall, the VQ-VIB𝒩 encoder is a probabilistic

function given by:

𝑆𝒩 (𝑤|𝑚) = P(𝑤 = argmin
𝜁𝑖∈𝜁

||𝑧(𝑚)− 𝜁𝑖||2) (2.8)

where 𝑤 is a discrete communication vector, 𝑚 is the speaker’s meaning, 𝑧(𝑚) is the

continuous latent variable sampled from the Gaussian distribution, and 𝜁 is the codebook,

Vector-Quantized Variational Information Bottleneck – Categorical Distribution

My second encoder architecture, named the Vector-Quantized Variational Information Bot-

tleneck – Categorical, or VQ-VIB𝒞 , differs from VQ-VIB𝒩 by its implementations of 𝑃𝜃

and 𝑄𝜓. First, 𝑃𝜃 is a deterministic function based on a feedforward encoder, rather than

sampling from a Gaussian: 𝑧(𝑚) = 𝑃𝜃(𝑚). VQ-VIB𝒞 uses a stochastic 𝑄𝜓, however,

by sampling a discrete representation according to probabilities based on the negative Eu-

clidean distance from 𝑧 to each 𝜁𝑖. That is,

𝑆𝒞(𝑤 = 𝜁𝑖|𝑚) ∝ 𝑒−||𝑧(𝑚)−𝜁𝑖||2 , (2.9)

which generates a probability distribution by normalizing for all 𝜁𝑖 ∈ 𝜁.

Overall, VQ-VIB𝒩 and VQ-VIB𝒞 reflect two different interpretations and implementa-

tions of the same overall idea. Both fit within the general VQ-VIB method by providing

implementations of 𝑃𝜃 and 𝑄𝜓. The difference in sampling mechanisms can be interpreted

as uncertainty over a continuous semantic space (for VQ-VIB𝒩 ) that is deterministically
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discretized, or uncertainty over how to discretize a deterministically-generated continuous

embedding (for VQ-VIB𝒞). I note that future work may propose alternate VQ-VIB imple-

mentations that provide different sampling mechanisms; such methods still fit within my

broader framework.

Lastly, I note that both VQ-VIB𝒩 and VQ-VIB𝒞 support a combinatorial token architec-

ture that increases the effective codebook size of models without increasing the number of

parameters in the network. Intuitively, rather than generating a single continuous represen-

tation in R𝑑, an encoder can generate 𝑛 representations in R 𝑑
𝑛 and discretize each of those

representations. Full discussion of this method, and diagrams of specific implementation

architectures, are included in Appendix 5.1; conceptually this change in architecture does

not alter the underlying variational bounds or discrete nature of encodings, it only changes

the neural net implementation to support a greater number of discrete representations. Sup-

porting a greater number of representations enables more complex and informative com-

munication but, as I show in experiments, leads to less “human-like” communication.

Learning Objective

Regardless of the specific architecture, VQ-VIB agents can be trained according to varia-

tional bounds of the ITEC objective defined in Equation 2.7.

I used the same bound on informativeness (the second term in Equation 2.7) for both

VQ-VIB architectures. Assuming that true states, 𝑥 ∈ R𝑛, are corrupted by zero-mean

Gaussian noise with some variance Σ, belief states, 𝑚, are given by 𝑚 = 𝒩 (𝑥,Σ). Under

this assumption, E[𝐷KL[𝑚‖𝑚̂]] ≤ 1
2
E[||𝑚−𝑚̂||2]+const. Thus, training a simple decoder,

𝐷, that outputs a reconstructed meaning based on communication, 𝑚̂ = 𝐷(𝑤), provides

an upper bound on informativeness.

For complexity (the third term in Equation 2.7), I used architecture-specific variational

bounds. For VQ-VIB𝒩 ,

𝐼𝑆(𝑚;𝑤) ≤ 𝐼𝑆(𝑚; 𝑧) ≤ E[𝐷KL[𝑞𝜃(𝑧|𝑚)‖𝑟(𝑧)]]] (2.10)

The first inequality follows from the data-processing inequality, and the second follows
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standard VIB bounds for any marginal distribution, 𝑟(𝑧). In my implementations, I set

𝑟(𝑧) = 𝒩 (0, 𝐼). Intuitively, therefore, for VQ-VIB𝒩 , I bottleneck the sampling process

prior to discretization, which in turn limits the complexity of the downstream, discrete

representation.

For VQ-VIB𝒞 , complexity is bounded via

𝐼𝑆(𝑚;𝑤) ≤ E[𝐷KL[𝑞𝜃(𝑤|𝑚)‖𝑟(𝑤)]] (2.11)

Note that this bound differs from the one for VQ-VIB𝒩 by measuring the stochasticity

the discretization process via 𝑄𝜓, whereas VQ-VIB𝒞 uses 𝑃𝜃. Given the categorical dis-

tribution for 𝑞𝜃(𝑤|𝑚), 𝑟(𝑤) represented a categorical prior over codebook elements, set in

my experiments to a uniform distribution.

Combining terms for informativeness and complexity, the overall variational bound of

the ITEC optimization in Equation 2.7 is

maximize ℒvar = 𝜆𝑈E[𝑈(𝑥, 𝑦)]− 𝜆𝐼E[||𝑚− 𝑚̂||2]− 𝜆𝐶𝐼var(𝑚;𝑤) , (2.12)

where 𝐼var is the architecture-specific variational bound on complexity, defined in Equa-

tion 2.10 for VQ-VIB𝒩 and Equation 2.11 for VQ-VIB𝒞 .

Lastly, I actually trained VQ-VIB models by combining the ITEC variational bound,

ℒvar. with prototype clustering losses from VQ-VAE methods (as introduced in Equation 2.6)

and a tie-breaking entropy loss:

maximize ℒvar − ‖sg[𝑧(𝑚)]− 𝜁𝑖(𝑚)‖2 − 𝛼‖𝑧(𝑚)− sg[𝜁𝑖(𝑚)]‖2 − 𝜖𝜆𝐶H(𝑤) (2.13)

The final entropy term, H(𝑤) represents the estimated entropy over the codebook; pe-

nalizing high-entropy communication (weighted by a small scalar value, 𝜖, times 𝜆𝐶) biased

agents towards more human-like naming systems for a given complexity class. Further dis-

cussion of the entropy term is included in Appendix 5.2.
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Figure 2-3: I conducted experiments in 3 domains: a color-naming reference game (a), a
reference game of natural images, accompanied by human-provided names (b), and a 2D
navigation environment (c).

2.4 Experiment Design

In a series of experiments, presented in the subsequent sections, I sought to character-

ize important aspects of information-theoretic emergent communication and my VQ-VIB

method. First, could VQ-VIB agents learn IB-optimal communication, as in human naming

systems in simple domains? Second, in open-domain communication, with an unbounded

set of possible objects to refer to, what are the roles of informativeness and complexity

pressures on generalization (the ability to refer to novel objects) and similarity to human

languages? Third, beyond object-naming experiments, could artificial agents learn similar

IB tradeoffs in simulated grounded settings?

I studied these questions in three experimental domains, depicted in Figure 2-3. Over-

all, I found that VQ-VIB agents, trained within the ITEC framework, learned similar

complexity-informativeness tradeoffs to humans. In all domains, encouraging informative-

ness led to faster convergence (agents learning meaningful communication), but penalizing

complexity was important for inducing more human-like communication. Lastly, I ob-

served consistent trends across all three domains, indicating the generality and robustness

of the ITEC training framework.
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2.5 Experiment 1: Learning IB Naming Systems

In my first experiment, I considered whether VQ-VIB agents could learn IB-optimal com-

munication systems in a color reference game, depicted in Figure 2-3 a, and whether doing

so would induce aspects of human-like communication. Color-naming has been central

to many cognitive theories of semantics, as languages must encode the continuous color

spectrum into a finite set of words [Steels and Belpaeme, 2005, Berlin and Kay, 1969,

Regier et al., 2007]. Data in the World Color Survey (WCS) demonstrate how 110 non-

industrialized societies name color, providing a large corpus of human data [Kay et al.,

2009]. Thus, I tested the ITEC framework for training agents to communicate about color,

and compared the resulting EC agents to human naming systems and analytically-computed

IB systems.

2.5.1 Experiment Setup

I trained a team of agents, comprising a speaker and a listener, in a reference game, or Lewis

signalling game, as depicted in Figure 2-4 [Lewis, 2008]. In the game, a speaker observed a

randomly-drawn target color (in the figure, a reddish-orange color), corrupted by Gaussian

noise, and emitted communication, 𝑤. (The CIELAB representation of colors, as well

as parameters for the observation noise, were motivated by prior work in human color

perception [Mokrzycki and Tatol, 2012, Zaslavsky et al., 2018, Chaabouni et al., 2021a].)

That communication vector was passed to a listener agent, comprising a decoder, 𝐷, that

reconstructed the speaker’s observation, and an actor, 𝐴, that observed the reconstruction

as well as the target and a distractor color. The listener had to predict which of the two

candidates was the target color.

Achieving high team accuracy (correctly identifying the target color) requires the speaker

and listener to develop a shared understanding of communication about color. Given a

complexity-limited discrete communication channel, agents should learn discretizations of

the color space that maintain high accuracy for a given complexity level.

Throughout the experiments, I set 𝜆𝑈 = 1.0, 𝜆𝐼 = 1.0; this tended to lead to highly

accurate team performance for low 𝜆𝐶 . After team convergence, I then incrementally in-
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Figure 2-4: Reference game setup for the color experiment. Given a noisily-observed target
color, the speaker communicated to a listener, which predicted, from a set of the target and
a distractor color, the target. Utility was based on team accuracy.

creased 𝜆𝐶 by a fixed step size every training episode, which induced a spectrum of com-

munication complexity levels.

2.5.2 Results

I found that controlling the complexity of communication enabled EC agents to learn

human-like color naming systems, and that VQ-VIB agents learned semantically-meaningful

communication spaces. Visualizations of the results, for VQ-VIB𝒩 , are included in Fig-

ure 2-5.

Figure 2-5 a shows how VQ-VIB𝒩 EC messages were nearly optimally-efficient, just

under the IB-optimal curve for informativeness vs. complexity. Furthermore, by varying

𝜆𝐶 during training, VQ-VIB𝒩 communication spanned the range of complexities observed

in human color naming systems recorded in the WCS dataset. Crucially, this shows that

VQ-VIB agents can learn IB-optimal communication and can be controlled similarly to

analytical IB methods.

Snapshots of VQ-VIB𝒩 naming systems, at different complexity levels, are shown in

Figure 2-5 c-f. At low complexity (c and d), agents used only 5 communication vectors,

representing high-level color categories. At high complexity (e and f), agents used more

communication vectors and partitioned the color space more finely. By changing the com-

plexity of EC, VQ-VIB𝒩 agents learned communication systems similar to different hu-
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Color results
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Figure 2-5: Color reference game results. Within the ITEC framework, I annealed 𝜆𝐶
to generate a spectrum of near-IB-optimal naming systems, closely matching human-like
diversity (a). Within the range of human-like complexities, VQ-VIB𝒩 tended to achieve
greater utility, for the same complexity, as other methods (b). At low (c - d) and high
(e - f) complexity levels, VQ-VIB𝒩 used fewer or more distinct tokens for colors, and
closely aligned with human languages at similar complexity levels. Notably, the tokens
were embedded in a semantically-meaningful communication space, as visualized using
2D PCA (c, e).

man naming systems (e.g., Ifugao at low complexity and Chiquitano at high complexity).
3 Videos of communication evolution, for VQ-VIB𝒩 and VQ-VIB𝒞 are available online,

showing similar behavior for both model types, and smooth interpolation of behavior across

complexity levels.

Beyond matching human languages, VQ-VIB𝒩 learned a meaningful communication

space. 2-dimensional principle component analysis (PCA) of the communication space

at different complexity levels (Figure 2-5 c and e) show how vectors representing similar

colors were located in similar locations in the communication space. For example, the em-

bedding for orange-like colors is close to the embedding for yellow colors, and far from the

embedding for blue colors. This embedding space likely supported VQ-VIB𝒩 ’s improved

utility relative to other methods (Figure 2-5 b).

In addition to comparing different variational methods within the ITEC framework, I

trained baseline non-variational onehot and VQ-VAE models without informativeness or
3For completeness, I repeated these experiments using a REINFORCE training mechanism in which gra-

dients were not passed between the listener and speaker. Results were largely unchanged; details are included
in Appendix 5.5.
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VQ-VIB𝒩 Onehot VQ-VAE IB-optimal
Human-agent gNID 0.151 (0.00) 0.42 (0.16) 0.38 (0.15) 0.18 (0.10)
Efficiency loss 0.024 (0.00) 0.06 (0.01) 0.08 (0.01) NA, 0 by definition

Table 2.1: Quantitative evaluation of artificial color communication systems, compared
to human naming data and an IB-optimal bound. VQ-VIB𝒩 models, trained in the ITEC
framework, were closer to human languages (lower gNID - generalization of Normalized
Information Distance) and closer to the IB bound (lower efficiency loss) than utility-only
methods (onehot and VQ-VAE). Compared to the IB-optimal color naming system (from
Zaslavsky et al. [2018]), VQ-VIB𝒩 was more human-like, suggesting an important role of
utility language development.

complexity losses. (Recall that VQ-VAE is a non-variational discrete representation learn-

ing mechanism similar to VQ-VIB methods but without a stochastic encoder or variational

bounds on complexity.) Without variational methods and information-theoretic pressures, I

was only able to induce variations among agents by explicitly encoding different codebook

sizes. Figure 5-4 in Appendix 5.5 shows plots of resulting behavior.

Quantitative evaluation of these non-variational models showed that they were both less

optimal (in the IB sense) and less “human-like” than my variational approaches. Table 2.1

includes results for comparing EC communication to the WCS languages (measured via the

generalized Normalized Information Distance, or gNID) and deviation from the IB theoret-

ical bound; lower values are better for both metrics. VQ-VIB𝒩 was both more human-like

and more efficient than utility-based Onehot or VQ-VAE agents. Furthermore VQ-VIB𝒩

agents were more human-like (lower gNID) than standard IB methods which ignore utility

measures [Zaslavsky et al., 2018]. For completeness, I include these metrics for VQ-VIB𝒞

and a variational extension of traditional onehot communication in Table 5.1. These meth-

ods achieve similar results to VQ-VIB𝒩 and confirm that variational methods, trained in

the ITEC framework, are more efficient and human-like than traditional EC methods.

Overall, results from this domain indicate that agents, trained in the ITEC framework,

learn to communicate according to similar IB tradeoffs found in human naming systems.

Furthermore, VQ-VIB models in particular learn meaningful embedding spaces that repre-

sent semantic relationships.
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2.6 Experiment 2: Open-Domain Communication

Beyond studying communication a color-naming domain, I considered how the ITEC frame-

work influenced learned communication in a broader and richer domain. Specifically, I

used the ManyNames dataset to study aspects of generalization and alignment with natural

language embeddings [Silberer et al., 2020]. In training agents, I found that encourag-

ing informativeness led to higher self-play rewards (evaluating teams of agents that have

trained together), including in harder evaluation settings in which agents communicated

about types of images never seen during training. At the same time, limiting the complex-

ity of communication was important for optimal human-agent alignment.

2.6.1 Experiment Setup

I trained agents in a reference game using the ManyNames dataset [Silberer et al., 2020],

which is particularly appropriate for studying alignment of EC and natural languages. It is

composed of 25,000 images, each of which is annotated with roughly 36 English responses.

(The varying number of annotations is an artifact of the filtering process applied during

collection of the dataset; I refer to Silberer et al. [2020] for further details.) Unlike most

labeled image datasets with a closed set of prescribed labels, therefore, ManyNames reflects

open-domain communication and captures important aspects of the probabilistic nature of

human naming [Gualdoni et al., 2022, Mädebach et al., 2022]. Examples of images in the

dataset, with associated responses, are included in Figure 2-3 b.

The images in Figure 2-3 b reflect important characteristics of the dataset. First, there

is a wide variety of the types of images: from outdoor scenes of wildlife to indoor scenes

of furniture [Silberer et al., 2020]. Second, there is important variation in the naming

data [Gualdoni et al., 2022, Mädebach et al., 2022]. For example, while most participants

labeled the top image in Figure 2-3 b as a “bird,” others used the label “duck.” Both labels

are correct but reflect different complexity levels. I hoped that, in training EC agents on

this dataset and controlling the complexity of communication, I could induce human-like

EC.

Beyond inducing similarities between EC and natural language, I was interested in how
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well EC generalized to novel inputs. Thus, rather than training on the full ManyNames

dataset, I constructed semantically-distinct training- and test-sets from the full dataset. Be-

fore training, I recorded the most common response for each image (named the topname,

and shown in bold in Figure 2-3). There were 442 topnames in the full dataset; I selected

a random 20% of those names for the training set. All images with the matching topname

were selected for the training set, while the test set was generated by finding all images for

which no response matched a training-set topname. For example, if “duck” were a training-

set topname, the top image in Figure 2-3 b would be in neither the training set (because it’s

topname is “bird”) nor the test set (because “duck” is in the responses). This train-test split

procedure tended to produce semantically-distinct sets of similar sizes.

I trained agents in the reference game setup shown in Figure 2-6. As in the color

reference game, a speaker agent observed a noisy version of a target input image drawn

from the ManyNames dataset, and a listener agent had to identify the target among a set

of 𝐶 candidate images. During training, I set 𝐶 = 2, but in some evaluation settings,

I increased 𝐶 to increase the difficulty of the task. Because of the high-dimensionality

of the images, I used a pre-trained ResNet feature extractor to generate 512-dimensional

representations for each images [He et al., 2016]. These 512-dimensional vectors were

passed through a pre-trained Variational Autoencoder (VAE) to simulate perceptual noise.

Thus, agents observed noisy version of the features extracted from each image. Lastly, I

note that during training candidate images were selected, by design, to always have distinct

topname labels; this introduced an important distinction between utility (which could

be maximized via unique words for each possible topname) and informativeness (which

would be maximized at a much higher complexity level, representing fine-grained details

in the target image).

Agents were trained via the ITEC losses, setting 𝜆𝑈 = 1 and 𝜆𝐶 = 0.01, with dif-

ferent 𝜆𝐼 across trials to investigate the effect of informativeness pressures on communi-

cation. I found that these 𝜆 values tended to cover a range of interesting behaviors from

at-chance accuracy (reflecting uninformative communication) to accuracy and complex-

ity surpassing estimates based on English naming data. Additional studies with 𝜆𝑈 = 1

and 𝜆𝐶 ∈ {0.001, 0.0001} led to similar results, confirming that in these experiments the
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Manynames setup
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Figure 2-6: Reference game setup for ManyNames domain. The speaker observed a
randomly-drawn candidate image and communicated to a listener, which decoded the
speaker’s meaning and predicted which candidate image was the target.

pressure for low complexity was quite small.

In evaluation, I studied both agent generalizability and aspects of EC-English align-

ment. To test generalizability, I measured team accuracy when evaluated on the held-out

test set. Recall that these out-of-distribution (OOD) inputs were semantically distinct from

the training images used by the team during training; by measuring the listener’s accu-

racy in identifying the target image from a set of candidates, I captured one aspect of how

generalizable the EC was to novel inputs.

Beyond generalization, I sought to measure alignment between pre-trained EC agents

and GloVe embeddings [Pennington et al., 2014]. Notions of “alignment” typically corre-

spond to representational similarity of some sort: two aligned representation spaces might

encode the same inputs in similar locations, for example [Sucholutsky and Griffiths, 2023,

Moschella et al., 2023]. In this work, I used two specific measures of alignment: functional

alignment and relative representation alignment.

The first metric, functional alignment, captured how well EC and GloVe embedding

spaces could be aligned to perform well on a reference game. Intuitively, this corresponded

to ideas of translation between the two spaces. Using a pre-trained EC speaker, I fit a lin-

ear mapping from EC vectors for images to GloVe embeddings of an English label for the

image (drawn from the responses associated with each image in the dataset). I then evalu-

ated team accuracy on the ManyNames reference game using a simulated English speaker

(again, drawing responses associated with each image) and the pre-trained EC listener, me-
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(a) OOD Utility vs. 𝜆𝐼 (b) OOD Utility vs. Informativeness

Figure 2-7: Team accuracy on OOD inputs as a function of 𝜆𝐼 (a) or informativeness (b).
By increasing 𝜆𝐼 , I increased the communicative informativeness for all models, which in
turn increased utility on OOD inputs.

diated by the linear mapping. High team accuracy indicated that a linear mapping could

capture important similarities between EC and GloVe embedding spaces, at least for the

purposes of the reference game task.

The second metric, relative representation alignment, reflected similarities in distances

between encodings in different latent spaces [Moschella et al., 2023]. Concretely, O sam-

pled 100 random images (and for each image, a sampled English response, as before) to

generate EC and GloVe embeddings. I then measured the pairwise distance between each

embedding in each space; this generated 10000 distances in each space (counting dupli-

cates of distances from A to B and B to A, for example). Lastly, to generate a final value, O

computed the Spearman correlation coefficient between these distances across the spaces.

A large positive value would indicate that points that were close together in one space were

close together in another space. Conversely, completely “unaligned” spaces should have

correlation coefficients of 0.

2.6.2 Generalization Results

In generalization experiments, increased informativeness led to greater team accuracy on

OOD inputs. Figure 2-7 shows team accuracy as a function of 𝜆𝐼 and informativeness.

Jointly, the plots indicate how informativeness pressure induced greater OOD utility.

Figure 2-7 a shows that by increasing 𝜆𝐼 , I increased OOD scores. Given different inductive

biases, some model architectures increased their OOD scores more quickly as a function
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of 𝜆𝐼 (e.g., VQ-VIB𝒩 ) and some architectures’ utility values plateaued as 𝜆𝐼 grew larger.4

However, in general, all architectures tended to achieve greater utility with greater 𝜆𝐼 .

Recall that agents were evaluated on OOD inputs; increased scores from greater 𝜆𝐼 indicate

an important generalization benefit of informativeness pressures.

Figure 2-7 b reveals an even closer relationship between informativeness and OOD

utility. Each point represents the mean distortion (inversely related to informativeness)

and utility for a particular model architecture and 𝜆𝐼 . By increasing 𝜆𝐼 , distortion tended

to decrease (left along the 𝑥 axis) and utility increased (up along the 𝑦 axis). The close

relationship between informativeness and utility across architectures also explains model

performance differences: while all models tended to achieve similar utility for the same

informativeness, some models were not able to learn highly-informative communication,

which limited performance.

Lastly, visualization of VQ-VIB𝒩 communication space in Figure 2-8 indicates how

agents generalized well to OOD inputs, and why increasing informativeness increased util-

ity. For each token in the EC agent, I recorded which images caused the speaker to generate

that token, and labeled the token with the most common topname among that set of im-

ages. I then selected all tokens with greater than 1% likelihood of being emitted by the

speaker and plotted them in blue using 2D PCA. This is similar to the modal coloring

scheme used in prior visualizations. I then repeated this process, using the same PCA

projection, for OOD inputs, which I plotted in red.

These visualizations reveal two important characteristics of VQ-VIB𝒩 tokens. First,

increasing the informativeness of communication increased the number of tokens used and

the specificity of their meanings. For example, for 𝜆𝐼 = 0.1, many of the tokens were

most associated with images of shirts – this indicates a relatively stochastic sampling pro-

cess that emitted different tokens for the same input. At high informativeness, however,

tokens for more specific types of images (e.g., “donut” or “horse”) emerged that had not

been distinctly encoded at low informativeness. Second, the tokens formed a semantically-

meaningful space that extended to OOD inputs. For example, in Figure 2-8 b, the OOD

4In experiments, onehot agents never converged to greater than 50% utility for 𝜆𝐶 = 0.01, as was used
for other models. I therefore set 𝜆𝐶 = 0.0 for onehot, which biased communication to have higher utility and
informativeness, for the same 𝜆𝐼 and 𝜆𝑈 .
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(a) VQ-VIB𝒩 , 𝜆𝐼 = 0.1
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(b) VQ-VIB𝒩 , 𝜆𝐼 = 100

Figure 2-8: Visualization of VQ-VIB𝒩 communication spaces at low (a) or high (b) in-
formativeness. Each point represents the 2D PCA projection of the EC token for training
inputs (blue) or OOD inputs (red). At low informativeness, there were few commonly-used
tokens, and the meanings associated with each token was highly stochastic. At higher infor-
mativeness, distinct images were more often encoded differently, and the communication
space was semantically-interpretable, which often generalized to OOD inputs.

input of an image of a sheep was located near training-set images of dogs and horses.

Similarly, food-related images clustered near images of tables and donuts. This seman-

tic embedding space, learned by both the speaker and the listener, supports generalization

to novel inputs, similarly to how word embeddings improve natural language processing

generalization to new words.

For the results plotted in Figure 2-7, I evaluated OOD generalization with 2 candidate

images at test time. As motivated by Chaabouni et al. [2021b], who advocate for evaluation

in more challenging settings with more candidate images, I repeated such evaluations for

𝐶 = 16 and 𝐶 = 32. Generalization results in such settings are included in Appendix 5.6.

In general, I found that increasing 𝐶 worsened team performance, as expected, and that

VQ-VIB agents continued to outperform other architectures.

Lastly, I note that similar generalization trends hold, and are more obvious, for VQ-

VIB agents with combinatorial codebooks. Recall that VQ-VIB𝒩 and VQ-VIB𝒞 support

multiple discretizations that are concatenated together for a final communication vector.

Increasing the number of concatenated vectors (𝑛) decreased communication distortion,

which improved OOD utility (see Appendix 5.6, Figure 5-5). For example, VQ-VIB𝒩 for

𝑛 = 4 achieved OOD accuracy for 𝐶 = 32 of roughly 60%, more than three times better

than onehot or prototype agents in similar evaluation. Thus, I combinatorial codebook
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(a) Functional alignment vs. distortion
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Figure 2-9: Functional alignment (a) and visualization of embeddings (b) for GloVe and
EC models. Functional alignment improved as distortion decreased until reaching the esti-
mated English informativeness, at which point performance plateaued.

results corroborate trends from the main paper and show how combining tokens allows

agents to develop more complex communication.

2.6.3 Alignment Results

Using the same pre-trained agents from the prior experiments, I evaluated the functional

alignment and relative representation alignment of EC agents with GloVe embeddings. In

functional alignment experiments, I fit a linear transform from EC tokens to GloVe em-

beddings and then evaluated the team accuracy for a simulated English speaker and an EC

listener, mediated by this linear “translator.” In relative representation alignment experi-

ments, I computed the Spearman correlation coefficient between EC embedding distances

and GloVe embedding distances.

Functional alignment, for different models as a function of informativeness, is plotted

in Figure 2-9 a. At high distortion (low informativeness), functional alignment improves

as distortion decreases. This closely matches OOD trends. However, unlike in the gener-

alization experiments, performance largely plateaued once EC informativeness decreased

below English response informativeness. That is, there was no benefit to training more

informative EC agents beyond a distortion value around 0.16. This indicates that perfor-

mance was bottlenecked by the English speaker, and further informativeness simply added

unnecessary complexity to the EC communication.

Visualization of translated GloVe embeddings in Figure 2-9 b show similarities between
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Figure 2-10: Relative representation alignment (𝜌) between EC and GloVe embedding
spaces. VQ-VIB𝒩 models had greater alignment than other models, and alignment peaked
when EC model informativeness matched English response informativeness.

the EC and GloVe embedding spaces. As before, each blue point represents an EC embed-

ding for images from the training set. The green points show the embeddings generated

by passing a GloVe embedding through the linear transformation. The semantic structure

of the GloVe embeddings was largely preserved through this linear mapping, indicating

substantial similarities between the EC embedding space and the semantically-meaningful

GloVe space.

Lastly, I measured relative representation alignment as a function of distortion and plot-

ted results in Figure 2-10. This alignment metric demonstrates the importance of tuning

EC informativeness to the right level even more starkly than the functional alignment ex-

periments. At high distortion, all relative representation alignment values (𝜌) were roughly

0, indicating no consistent relationship between EC spaces and GloVe embeddings. As in

the functional alignment experiments, as distortion decreases, 𝜌 increases for VQ-VIB𝒩 ,

until reaching English response levels. At that point, 𝜌 decreases, reflecting a worsening

alignment between the spaces as informativeness increases further. (Similar trends hold for

VQ-VIB𝒞 and are plotted in Figure 5-8, omitted here for clarity.) Thus, VQ-VIB models

achieve peak relative representation alignment by matching the informativeness of the sim-

ulated English speaker. This is a key result in the experiments, highlighting the importance

of matching information-theoretic properties of EC and natural language for the greatest
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alignment.

2.7 Experiment 3: Generalizing to 2D Navigation

In the first two experiments, I showed how agents could learn to communicate in reference

games, and how terms in the ITEC framework regulated important aspects of communica-

tion; in my final experiment, I showed how the same framework can be applied to training

agents in (simulated) grounded environments. As before, I found that penalizing com-

plexity led to simpler systems. At the same time, encouraging informativeness improved

the convergence of communication to more meaningful protocols, suggesting an important

pressure for language emergence.

2.7.1 Experiment Setup

I developed a two-dimensional simulated world, depicted in Figure 2-3 c. In the world,

a speaker agent observed a target, spawned at a location generated uniformly at random

in the map, while a listener agent only observed its own location in the map (but not the

target location). Both agents achieved reward equal to the negative Euclidean distance

from the listener to the target, so utility was maximized if the listener moved straight to

the target. Given that the listener could not observe the target location, the speaker and

listener had to jointly learn to use the environment’s communication channel, in which

the speaker could broadcast communication at the first timestep in the environment, which

the listener could observe. Thus, the optimal policy to maximize reward would consist of

the speaker communicating about the location of the target. Agents were trained using a

standard policy-gradient method (Multi-Agent Deep Deterministic Policy Gradient [MAD-

DPG, Lowe et al. [2017]]), as well as the informativeness and complexity terms introduced

in the ITEC framework.

I conducted two types of experiments in this domain by varying 𝜆𝐼 or 𝜆𝐶 . In the first

experiment, I trained new teams of agents from scratch with 𝜆𝑈 = 1.0 and 𝜆𝐶 = 0.01 while

varying 𝜆𝐼 across trials. (I found largely similar results for other small values of 𝜆𝐶 ∈

{0.001, 0.0001}.) This exposed how different informativeness pressures led to different
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(a) VQ-VIB𝒩 (b) VQ-VIB𝒞

Figure 2-11: Training curves for VQ-VIB𝒩 and VQ-VIB𝒞 . During training, mean reward
increased for all methods, but increasing 𝜆𝐼 led to faster convergence and higher mean
rewards.

training speeds. In the second experiment, I fixed 𝜆𝑈 = 1.0 and 𝜆𝐼 = 1.0 while slowly

increasing 𝜆𝐶 within a trial. This revealed how decreasing complexity led to different

communication strategies.

2.7.2 Results

I observed three main trends in the 2D Navigation experiments: 1) increasing 𝜆𝐼 led to

faster convergence to higher reward for all agent architectures, 2) increasing 𝜆𝐶 led to less

complex communication and coarser discretizations of the 2D space, and 3) VQ-VIB meth-

ods outperformed other agent architectures in achieving greater utility, for the same com-

plexity, as other agents, likely due to the semantically-meaningful communication space

that VQ-VIB agents learned.

As shown in Figure 2-11, greater 𝜆𝐼 led to faster convergence of team performance to

higher rewards. Each curve in Figure 2-11 represents the team utility (calculated as the av-

erage distance from the listener to the goal) over the course of training VQ-VIB𝒩 and VQ-

VIB𝐶 teams with different 𝜆𝐼 values, averaged over 5 random trials. As shown for these

VQ-VIB architectures, and for baselines architectures included in Appendix 5.4, which

showed similar trends, increasing 𝜆𝐼 led to faster convergence to higher mean rewards.

This demonstrates an important benefit of informativeness pressures in the emergence of

communication among intelligent systems.

In the next experiment, I trained teams with 𝜆𝑈 = 1.0, 𝜆𝐼 = 1.0 and slowly increased
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Uniform results
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Figure 2-12: Varying complexity solutions in the 2D world environments. (a) Utility vs.
complexity for different architectures reflect tradeoffs between referring to specific target
locations (high utility) and using less complex communication. For a given complexity
level, continuous communication represents an optimal upper bound for utility. Among
discrete methods, VQ-VIB methods outperformed other architectures. Visualizations of
VQ-VIB𝒞 agent traces and end locations at high (c) and low (e) complexity show how
agents discretized the space into increasingly large regions. Visualization of the commu-
nication for these agents (b and d) show that communication vectors were embedded in a
meaningful space: nearby tokens (in communication space) referred to nearby targets (in
physical space). A video of communication evolution for VQ-VIB𝒩 shows smooth evolu-
tion between high and low complexity solutions.

𝜆𝐶 over the course of training. This smoothly decreased the complexity of communication

for all agents. Results from that experiment are shown in Figure 2-12.

Comparing across architectures, I found that both VQ-VIB models achieved greater

utility, for the same complexity, than other methods. Figure 2-12 a plots team utility for

different architectures and random trials, recorded while annealing 𝜆𝐶 . (The plotted com-

plexity metric is calculated via the variational bound used during training, providing an

upper bound on true complexity.) Increasing 𝜆𝐶 led to less-complex communication (mov-

ing to the left along the 𝑥 axis) and lower utility (moving down along the 𝑦 axis). All agent

architectures demonstrated the expected decrease in utility as complexity decreased, but

some architectures (VQ-VIB) achieved greater utility than others for the same complexity

value. The black curve for continuous communication represents a theoretical upper bound

on utility, which the VQ-VIB agents nearly match despite being a discrete communication
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method.

Visualizations of the VQ-VIB𝒞 communication space, and discretizations of the 2D

space, suggests that VQ-VIB agents outperformed other discrete methods due to their

semantically-meaningful communication space (similar to in the reference games in prior

experiments). Figure 2-12 (c and e) depict how VQ-VIB𝒞 agents discretized the 2D space at

high and low communicative complexity values, respectively. Each background color rep-

resents the set of locations referred to by the same communication vector, and each point

represents the mean location of the listener agent, based on that communication vector

(with actual paths traced in black). Thus, Figure 2-12 shows that high-complexity commu-

nication led to fine-grained discretization of the continuous space, while low-complexity

communication led to much cruder discretizations. This aligns with intuitions of humans

modulating the complexity of spatial navigation from highly complex (e.g., GPS coordi-

nates when navigating to a precise location) to crude (e.g., “North,” “South,” “East,” or

“West” for high-level directions).

Visualizations of the VQ-VIB𝒞 communication space, included in Figure 2-12 (b and

d), suggest that VQ-VIB agents achieved greater utility than other methods by communicat-

ing via a discrete set of symbols embedded in a semantically-meaningful space. Figures 2-

12 (b and d) show the learned communication vectors at high and low complexity. (Agents

were trained to communicate via 2D tokens to support direct visualization of the communi-

cation vectors.) Each token is visualized as a point in the communication space, colored by

the mean location it referred. At both high and low complexity levels, the communication

tokens clearly reflect a semantically-meaningful space: nearby tokens (in communication

space) referred to nearby targets (in the simulated world). These results closely parallel

the findings from the color and ManyNames reference games, wherein VQ-VIB agents

learned semantically-meaningful embeddings, thus demonstrating consistent trends across

domains.
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2.8 Discussion

Across experiments, two trends emerged: 1) controlling complexity and informativeness,

within the ITEC framework, enabled faster learning, greater generalization, and more

human-like communication than standard EC methods, and 2) VQ-VIB methods were par-

ticularly adept at learning semantically-meaningful complexity-limited communication.

In all experiments, for all neural network architectures, I found that controls over in-

formativeness and complexity regulated important aspects of communication. Increasing

pressure for informativeness (by increasing 𝜆𝐼) tended to induce faster convergence and

greater communicative generalization, as evidenced in the 2D world and ManyNames re-

sults. Simultaneously, limiting the complexity of communication (by increasing 𝜆𝐶) was

important for aspects of human-like communication, as shown via comparisons to color-

naming systems and natural language word embeddings. These findings suggest that in-

formativeness and complexity, thought to regulate aspects of human naming systems, can

play important roles in EC settings.

Beyond establishing general characteristics of terms in the ITEC framework, I specif-

ically found that VQ-VIB methods outperformed other neural agent architectures, likely

due to a semantically-meaningful communication embedding space. In all experiments,

VQ-VIB tended to achieve greater utility, for the same complexity, as other discrete EC

methods. At the same time, all methods exhibited similar informativeness-complexity

tradeoffs. This is unsurprising: the IB informativeness-complexity tradeoff makes no as-

sumptions about how information is encoded. However for high task performance, using

a task-appropriate representation space can be important. Unlike onehot agents, for which

all communication vectors were equidistant and orthogonal, VQ-VIB agents embedded dis-

crete communication in a continuous space and, through visualization in all experimental

domains, I found that this space encoded important semantic properties of the inputs.

These findings raise important questions for future work, including how communicative

pressures are instantiated in the real world. First, while utility may be reasonably modeled

via the success of actions in the world, it is unclear a priori how human speakers and listen-

ers could estimate the informativeness of communication without direct access to others’
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mental states. New research inspired by Theory of Mind (ToM) capabilities could shed im-

portant light on such questions. At the same time, while I trained emergent communication

agents with a single utility function, one might also consider a multi-task framework in

which agents must accomplish many rewards. The relationship between multi-task utility

and informativeness appears particularly interesting.

2.9 Conclusion

In this work, I combined cognitively-motivated terms with utility-based rewards to pro-

duce information-theoretic emergent communication. While human languages are thought

to be guided by pressures on informativeness and complexity, prior art in emergent com-

munication often adopts a task-specific training mechanism. Using my framework, I found

that explicit informativeness and complexity losses yielded important human-like benefits

to emergent communication. Increased pressure for informativeness, for example, led to

greater generalization of EC agents, while decreasing complexity was necessary for better

alignment with natural language representations.

Within the context of my information theoretic emergent communication framework,

I found that a novel neural network method, the Vector Quantized Variational Informa-

tion Bottleneck, outperformed other discrete communication mechanisms. Unlike prior

methods, it supports complexity-limited discrete representations embedded in a continuous

space. Across experiments, I found that this embedding space reflected important semantic

properties, which in turn supported high team performance and better human-agent align-

ment.

Overall, I believe that emergent communication is a powerful in silico testbed for mea-

suring the effect of different pressures on language evolution. Therefore, I hope future

work extends my studies by considering the role of other cognitively-motivated pressures,

beyond complexity and informativeness, on emergent communication.
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Chapter 3

Analyzing Pre-trained Models: Causal

Probing for Syntax

In the prior chapter, I considered how to train more human-like emergent communica-

tion systems. That work represents a “bottom-up” approach towards building cognitively-

plausible AI systems. In contrast to such work, a different, and recently successful, ap-

proach to AI development has been to train Large Language Models (LLMs) on vast quan-

tities of data. Subtle tuning of cognitively-motivated pressures plays less of a role in train-

ing such massive models – instead, they are often trained on simple tasks such as next-word

prediction. What do such LLMs learn about language?

Answering the above question in general is challenging, but one can consider more

narrow questions about how LLMs represent specific aspects of language. In particular,

humans naturally learn to use latent concepts such as syntactic structure, plurality, or gender

to understand and produce language. Do LLMs learn to use similar latent concepts?

I propose a method for causal analysis of latent concepts in model representations and

conduct experiments showing that some models use representations of syntax in making

predictions. First, inspired by prior work, I train a small model, dubbed a probe, that pre-

dicts aspects of a sentence’s syntactic structure from an LLM’s embedding. Second, I use

a gradient descent mechanism to create counterfactual embeddings that change probe deci-

sions. Third, I record model predictions using the counterfactual embeddings. A simplified

schematic of this approach is depicted in Figure 3-1. Subject to some variation across
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model and probe types, I find important evidence that some models use representations of

syntax in making their predictions.1

3.1 Introduction

Large neural models like BERT and GPT-3 have established a new state of the art in a

variety of challenging linguistic tasks [Devlin et al., 2019, Brown et al., 2020]. These

connectionist models, trained on large corpora in a largely unsupervised manner, learn to

map words into numerical representations, or embeddings, that support language-reasoning

tasks. Fine-tuning these models on tasks like extractive question answering specializes

these generic models into performant, task-specific models [Wolf et al., 2019].

In conjunction with the rise of these powerful neural models, researchers have inves-

tigated what the models have learned. Probes, tools built to reveal properties of a trained

model, are a favored approach [Hall Maudslay et al., 2020b, Conneau et al., 2018]. For

example, Hewitt and Manning [2019] have uncovered compelling evidence that several

models encode syntactic information in their embeddings. That is, by passing embeddings

through a trained probe, one may recover information about a sentence’s syntax.

Although these results are impressive, they fall short of clearly demonstrating what

linguistic information the language models actually use. Syntactic information is present in

sentences; that embeddings also encode syntax does not imply that a model uses syntactic

knowledge.

In order to truly query a model’s understanding, one must use causal analysis. Recently,

several authors have done so by generating counterfactual data to test models [Kaushik

et al., 2020, Goyal et al., 2019, Elazar et al., 2020]. They either create new input data or

ablate parts of embeddings and study how model outputs change. I extend this prior art

via a new technique for generating counterfactual embeddings by using structural probes

to manipulate embeddings according to syntactic principles, as depicted in Figure 3-1. Be-

cause I conduct experiments with syntactically ambiguous inputs, I am able to measure

how models respond to different valid parses of the same sentence instead of, for exam-

1Much of the work in this chapter is described in Tucker et al. [2021b, 2022a].
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𝑧′

Probe

“I saw the girl and the boy [MASK] tall.”

𝑧

“were”

“was”

𝑀𝑘+

𝑀𝑘−

Figure 3-1: A language model, 𝑀 , generates latent representations at layer 𝑘. These repre-
sentations are used to output model predictions (e.g., “were”) and probe predictions (e.g.,
a dependency structure). I use probes to generate counterfactual representations, 𝑧′, based
on syntactic manipulations, to reveal aspects of the model’s causal structure.

ple, removing all syntactic information. Thus, my technique uncovers not only what parts

of its embeddings a model uses to represent syntax, but also how those parts influence

downstream behavior.

In this chapter, I make three contributions. First, I develop a gradient-based algorithm

to generate counterfactual embeddings, informed by trained probes. Second, I show how

standard probes likely use only a subset of the syntactic information in model embeddings,

indicating a disconnect between the information probes and models use; I introduce a novel

type of “dropout” probe to address this limitation. Third, in experiments using my tech-

nique and dropout probes, I find that some BERT-based models, trained on word-masking

tasks, appears to leverage features of syntax in making predictions.

3.2 Related Work

3.2.1 Neural Language Model Probes

Transformer-based models like GPT-3 and BERT have recently advanced the state of the

art in numerous language-related problems [Brown et al., 2020, Devlin et al., 2019, Wolf
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et al., 2019]. These large models appear to learn meaningful representations of words and

sentences, enabling high performance when fine-tuned for a specific task.

In conjunction with these models, probes have been developed to uncover what princi-

ples models have learned. Such probes have been used in a wide variety of contexts, from

image structure to syntax and semantics in language models ([Alain and Bengio, 2018,

Conneau et al., 2018, Hewitt and Manning, 2019, Reif et al., 2019], among others). In

standard probing literature, a neural network probe, 𝑝, is trained to map from embeddings,

𝑍, to a predicted property, 𝑆: 𝑆 = 𝑝(𝑍). For example, Hewitt and Manning [2019] de-

fine two types of probes that map from 𝑍 to representations of a sentence’s syntax. Their

“depth” probe predicts words’ depths in a parse tree; “distance” probes predict the distance

between pairs of words in a parse tree. In my work, I assume 𝑆 refers to syntactic informa-

tion, but probing techniques are general. Given a corpus comprising (𝑍, 𝑆) pairs, probes

are trained using supervised learning to minimize some supervised loss.

Recent work considers how to properly parametrize probe models. On the one hand,

if probes are too expressive, they may reveal their own learning instead of a model’s [Liu

et al., 2019, Hewitt and Liang, 2019a]. Out of caution of over-interpreting trained probe

results, Li et al. [2022] avoiding probes altogether and instead seek to find prompts (i.e.,

additional tokens concatenated to standard inputs) to reveal model reasoning. On the other

hand, Pimentel et al. [2020] argue from an information-theoretical perspective that more

expressive probes are always preferable. Regardless of exact parametrization, some re-

cent works seek to contextualize probe performance by reporting aspects of probe uncer-

tainty [Wang et al., 2023] or comparing probe performance for different test suites [Hewitt

and Liang, 2019b].

My work differs from much prior art in probe design by leveraging causal analysis,

which uses counterfactual data to test probes and models. This provides direct evidence

of whether a model uses the same features as a probe, allowing me to experiment beyond

linear probes (and indeed, I found that more complex probes offered an advantage in some

cases).
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3.2.2 Causal Analysis of Language Models

Motivated by the limitations of traditional, correlative probes, researchers have recently

turned to causal analysis to better understand language models. Goyal et al. [2019] and

Kaushik et al. [2020] generate counterfactual inputs to language models, while Vig et al.

[2020] study individual neurons and attention heads to uncover gender biases in pre-trained

networks.

My work is most closely related to that of Elazar et al. [2020], who, as in this work, used

probes to generate counterfactual embeddings within a network. Their amnesiac counter-

factuals are generated by suppressing features in embeddings that a linear probe uses. In

contrast, I use a continuous, gradient-based approach to generate counterfactuals, yielding

insight into how features are used, as opposed to if they are used at all.

3.3 Technical Approach

Here, I propose a causal framework for understanding how representations of syntax me-

diate model predictions (Section 3.3.1), design a method for generating counterfactual

representations within this framework (Section 3.3.2), and show how care must be taken

in creating counterfactual representations when information is redundantly encoded (Sec-

tion 3.3.3).

3.3.1 Causal Problem Formulation

One may characterize a transformer-based language model, 𝑀 , trained on a specific task,

as a function mapping from an input string, 𝑥, to an output 𝑦: 𝑀(𝑥) = 𝑦. In order to reveal

embeddings for analysis by probes, one may decompose 𝑀 into two functions: 𝑀𝑘− and

𝑀𝑘+. 𝑀𝑘− represents the first 𝑘 layers of the model; 𝑀𝑘+ represents the layers of 𝑀 after

layer 𝑘; 𝑀 is the composition of these functions: 𝑀 = 𝑀𝑘+ ∘𝑀𝑘−. I label the embeddings

output by 𝑀𝑘− as 𝑧. This decomposition of models to reveal internal embeddings mirrors

the formulation for layer-specific probes [Hewitt and Manning, 2019]. As noted earlier,

a probe may be defined as a function 𝑝 that maps from an embedding, 𝑍, to a property
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𝑆 about the input, 𝑥: 𝑝(𝑀𝑘−(𝑥)) = 𝑆. (For the remainder of this chapter, I focus on

syntactic probes, but my reasoning may be extended to other linguistic properties.) The

relationships between model inputs, probe inputs, and model and probe outputs are depicted

in the structural causal diagram in Figure 3-2.

Figure 3-2 further reveals important decompositions of the information in model em-

beddings, 𝑍. In particular, in this chapter, I consider whether latent representations of

syntactic structure mediate model predictions. Therefore, 𝑍 is decomposed into four, non-

overlapping parts to isolate the parts of 𝑍 that encode different information about 𝑆 (syn-

tactic structure) and 𝑌 (model predictions). Specifically, 𝑍 comprises 1) 𝑍𝑆 , the part of 𝑍

that only mediates predictions of 𝑆, 2) 𝑍𝑆⋀︀
𝑌 , the part of 𝑍 that mediates predictions of

𝑆 and predictions of 𝑌 , 3) 𝑍𝑌 , the part of 𝑍 that only mediates predictions of 𝑌 , and 4)

𝑍𝑆⋀︀
𝑌 that does not mediate predictions of 𝑆 or 𝑌 . Each of these four components support

intuitive interpretations: 𝑍𝑆 encodes syntactic information that does not affect word pre-

dictions, 𝑍𝑆⋀︀
𝑌 encodes syntactic information that is important for predicting words, 𝑍𝑌

encodes semantic information independent of syntax, and 𝑍𝑆
⋀︀
𝑌 encodes irrelevant infor-

mation for word or syntactic predictions (e.g., capitalization of words). In standard probing

approaches, training a neural network probe that predicts 𝑆 accurately is insufficient evi-

dence for determining whether syntactic information does mediate model predictions (in

𝑍𝑆
⋀︀
𝑌 ) or does not (only in 𝑍𝑆).

In this chapter, I seek to uncover whether representations of syntax mediates model

predictions.2 Borrowing notation from Figure 3-2, I consider the link between 𝑍𝑆
⋀︀
𝑌 and

𝑌 to show if there is any part of 𝑍 that mediates both probe predictions and model predic-

tions. In Pearl’s do-calculus notation, I ask if 𝑃 (𝑌 |do(𝑍𝑆⋀︀
𝑌 )) = 𝑃 (𝑌 |do(𝑍𝑆′ ⋀︀𝑌 )): do

predictions of 𝑌 change for different syntactic structures 𝑆 and 𝑆 ′ [Pearl and Mackenzie,

2018]?

2More specifically, I ask whether representations of syntax mediate model predictions in linguistically
consistent ways. Merely mediating predictions but in an unexpected or a-grammatical way is less relevant to
questions of human-like language processing.

70



𝑍𝑋
𝑀𝑘−

𝑍𝑆

𝑍𝑆∧𝑌

𝑍𝑌𝑍𝑆∧𝑌

𝑆

𝑌
𝑀𝑘+

Probe

Figure 3-2: The structural casual diagram describing probed models. A language model,
𝑀 , generates latent representations 𝑍 at layer 𝑘. Given a probed property, 𝑆, and a model
prediction, 𝑌 , 𝑍 may be decomposed into the part of 𝑍 that only mediates predictions of
𝑆 (𝑍𝑆), the part of 𝑍 that mediates predictions of both 𝑆 and 𝑌 (𝑍𝑆⋀︀

𝑌 ), the part of 𝑍 that
only mediates predictions of 𝑌 (𝑍𝑌 ), and 4) the part of 𝑍 that mediates neither predictions
𝑆 nor 𝑌 (𝑍𝑆⋀︀

𝑌 ). (Figure partially inspired by Veitch et al. [2021].)

3.3.2 Probe-Based Counterfactuals

To study such a causal question, I generate counterfactual embeddings, 𝑍 ′, that modify

probe outputs, starting from standard embeddings 𝑍. I borrow the term “counterfactual”

from causal literature because 𝑍 ′ represents what 𝑍 would have been if 𝑍𝑆 and 𝑍𝑆
⋀︀
𝑌

had been different [Pearl and Mackenzie, 2018]. I am particularly interested in finding 𝑍 ′

that changed both probe and model outputs; if 𝑍 ′ only changes probe outputs, that could

indicate that the probe was acting as an independent parser instead of reflecting model

reasoning (more formally, that 𝑍𝑆 exists, but 𝑍𝑆⋀︀
𝑌 does not) [Hall Maudslay et al., 2020b].

In typical counterfactual literature, one might seek to find minimally-different 𝑍 ′ from

𝑍 that change probe predictions. More formally, given a sentence embedding, 𝑍, a probe,

𝑝, a probe loss function, 𝐿, a desired syntactic structure, 𝑆, and a “threshold loss”, 𝑇 , one

can find the closest 𝑍 ′ in latent space according to the following optimization problem:

𝑍 ′ = argmin
𝑍′

||𝑍 − 𝑍 ′||22 s.t. 𝐿(𝑝(𝑍 ′), 𝑆) ≤ 𝑇 (3.1)

That is, the counterfactual embedding 𝑍 ′ is the closest (via Euclidean distance) embed-

ding to 𝑍 such that the loss between the probe’s prediction of 𝑍 ′ and the desired probe
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prediction is less than or equal to 𝑇 . Intuitively, this corresponds to the minimal change to

𝑍 to make the probe predict the desired property value.

While well-formulated, the optimization in Equation 3.1 is challenging to solve in prac-

tice. In particular, given non-linear probes, small changes in 𝑍 ′ may induce large changes

in 𝑝(𝑍 ′), so direction optimization of Equation 3.1 would require exhaustive exploration of

the (continuous) embedding space.

Instead, I developed an approximate but tractable gradient-based method to generate 𝑍 ′.

Assuming a differentiable probe (e.g., a neural network) and loss function, one can compute

the gradient of the loss with respect to the embeddings: ∇𝑍′𝐿(𝑝(𝑍 ′), 𝑆). Standard gradient

descent methods may then be employed to decrease the probe loss (barring failures from

converging to local minima). Given 𝑍 and 𝑝, I constructed a counterfactual embedding,

𝑍 ′, by initializing 𝑍 ′ as 𝑍 and updating 𝑍 ′ via gradient descent of the loss. Updating 𝑍 ′

may be terminated based on various stopping criteria (e.g., local optimality, loss below a

threshold 𝑇 , etc.), yielding the final counterfactual 𝑍 ′.3 In experiments, I studied how 𝑍 ′s

changed model outputs when passed through 𝑀𝑘+.

Although my technique bears some resemblance to gradient-based adversarial attacks [Szegedy

et al., 2014], it may more broadly be thought of as guided search in a latent space. Adversar-

ial images are often characterized by changes that are imperceptible to humans but change

model behaviors to be incorrect. In contrast, I seek to find embeddings that change both

probe and language model outputs. Furthermore, by design, I use syntactically ambiguous

sentences in experiments and generate counterfactuals according to valid parses. Thus, un-

like adversarial attacks on images that seek to switch model classification to an incorrect

class, I merely guide embeddings among a set of valid interpretations. Lastly, even uncov-

ering instances of embeddings that change a probe’s outputs but not a model’s is important

as it indicates a misalignment of probe and model reasoning.

3Note: this gradient-based optimization decreases the probe loss from Equation 3.1 but does not consider
that equation’s measure of distance between 𝑍 and 𝑍 ′. Future work may wish to use gradient methods to
optimize a different objective that combines both counterfactual distance and probe predictions via, e.g.,
Lagrange multipliers to enforce distance constraints.
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(a) (b) (c)

Figure 3-3: If a model encodes the dependency structure of a sentence twice its embedding,
a probe, 𝑝, may learn to ignore one copy of the information (indicated by learned weight
0) and only use the other (via learned weight 1) to predict 𝑠 (a). In such cases, the gradient
of 𝑠 with respect to the embedding (dashed orange) only flows from one of the copies, so
only that copy will be updated in counterfactual embeddings (b). However, by introducing
a dropout layer that masks random inputs to the probe, dropout probes learn to use all in-
formative parts of embeddings, which distributes the gradient across the whole embedding
(c).

3.3.3 Addressing Limitations from Redundancy: Dropout Probes

The previous section introduces a method for generating counterfactual embeddings to test

whether models use representations of syntax in making predictions, but such an approach

could yield false negatives for particular model and probe architectures. In particular, in this

section, I show how if models redundantly encode syntactic information in embeddings,

probes and models could use different representations of the same information, which in

turn could lead to uninformative causal analysis results. I propose a new probe architecture,

dubbed “dropout probes,” that addresses this limitation by encouraging probes to use all

sources of information in embeddings.

Challenges from Redundancy

I show by example how standard causal probing methods may fail to reveal causal uses of

syntactic information in language models. Here, I use a simplified example; in experiments

I demonstrate that trained models exhibit similar phenomena.

I assume access to a trained model, 𝑀 , and probe, 𝑝, using the same notation depicted

in Figure 3-2. That is, the model generates an embedding, 𝑍, from an input, 𝑋 , and

𝑍 is used for probe predictions, 𝑆, and model predictions, 𝑌 . For the purposes of this

example, I state that 𝑀 uses syntactic information and specifically that 𝑍 is informative of

the syntactic structure of 𝑋 .
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Let us assume that the dependency structure of 𝑋 may be represented within a vector,

𝑍𝐷, and that 𝑀𝑘− produces embeddings, 𝑍, which are two identical copies of 𝑍𝐷. Using

pythonic notation, 𝑍 = [𝑍𝐷] + [𝑍𝐷]. Thus, 𝑍 contains syntactic information and, when I

state that 𝑀 “uses” syntactic information, I formally mean that ∇𝑍𝐷
𝑀𝑘+(𝑧) ̸= 0.

Building upon this example, let us label the two copies of 𝑍𝐷 as 𝑍𝐷1 and 𝑍𝐷2 , although

the two vectors remain identical. If one trains a probe to predict syntactic forms from 𝑍, it

may arbitrarily learn to use any aspects of 𝑍 that are informative of its prediction, 𝑆. Let

us say that the probe learns to use only 𝑍𝐷2 , again defined as ∇𝑍𝐷2𝑝(𝑍) ̸= 0. At the same

time, the rest of the model, 𝑀𝑘+ may only use 𝑍𝐷1: the copy that the probe does not use.

This example, while simplified, demonstrates a potential scenario in which causal prob-

ing techniques could return false negative results. Specifically, if one generates counterfac-

tual embeddings, 𝑍 ′, by changing 𝑍 according to the activations that change the probe’s

outputs, only 𝑍𝐷2 will change. Because 𝑀𝑘+ uses only 𝑍𝐷1 for predictions, the model’s

output will not change. This example is depicted in Figure 3-3.

Figure 3-2 also reveals, from a theoretical perspective, how redundant embeddings may

lead to false negative causal results. Note that the probe makes predictions of 𝑆 based upon

𝑍𝑆 and 𝑍𝑆
⋀︀
𝑌 . If there is identical syntactic information in 𝑍𝑆 and 𝑍𝑆

⋀︀
𝑌 , the probe could

learn to use either copy in making predictions. If the probe does not use the information

in 𝑍𝑆⋀︀
𝑌 (i.e., ∇𝑍𝑆

⋀︀
𝑌
𝑝(𝑍) = 0), then gradient-based counterfactuals generated via the

probe will necessarily not change model predictions. Ultimately, without considering the

redundancy in a model’s internal representation, standard methods could fail to uncover the

fact that 𝑀 uses representations of syntax causally.

Dropout Probes

In this section, I propose a neural probe architecture to address the limitations of standard

probe design by encouraging probes to use all syntactic information present in 𝑍. The

desired behavior is depicted in Figure 3-3 c: if the probe uses all activations that are infor-

mative of syntax, that will necessarily be a superset of the activations that the model uses

for downstream processing (if the model uses syntax). Therefore, when generating coun-

terfactual embeddings using such probes, every activation encoding syntactic information
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would be updated, which in turn would change the model’s output.

My approach was inspired by an idea of creating a mixture of probes, each trained to

use a different masked subset of activations in 𝑍. The full set of such probes would have to

learn to use all activations in 𝑍 that are informative of 𝑆. One may approximate creating

such a set by introducing a dropout layer as the first layer to a single probe. At training

time, the dropout layer masks a random subset of the input; the mask itself changes with

every training batch. I dub such probes “dropout probes.”

3.4 Experiments

Here, I report the results from three types of experiments. First, I find evidence of redundantly-

encoded syntactic information in model embeddings by calculating the mutual information

between various activations in trained networks. This motivates using dropout probes. Sec-

ond, I used dropout probes to investigate the role of representations of syntax in mediating

model predictions. For some models, I did find evidence supporting the causal role of

syntax, particularly when using dropout probes. Lastly, given my finding that models use

syntax causally, I demonstrated how one could “inject” syntactic information into models

to improve performance in syntactically-challenging tasks.

Experiments were conducted on four models, all based on huggingface’s bert-base-uncased

[Wolf et al., 2019]. The Mask model was the original model, trained on a masked language

modeling task and next-sentence prediction [Devlin et al., 2019]. The QA model was fine-

tuned on the Stanford Question Answering Dataset 2.0 [Rajpurkar et al., 2016].4 Lastly, I

trained two models, dubbed NLI and NLI-HANS, that were finetuned on the Multi-Genre

Natural Language Inference dataset or that dataset augmented with the Heuristic Analy-

sis for NLI Systems (HANS) dataset, respectively [Williams et al., 2018, McCoy et al.,

2019]. I conducted analysis across multiple pre-trained models to account for variation

in how different training objectives and data may influence each model’s causal structure.

Indeed, prior literature indicates that finetuning models can cause them to be less aligned

4The QA model was downloaded from huggingface model repository under “twmkn9/bert-base-uncased-
squad2”

75



𝐼(𝑍1, 𝐷) 𝐼(𝑍2, 𝐷) 𝐼(𝑍,𝐷)
Mask 2.2 2.6 2.7
QA 2.7 2.8 2.8
NLI 2.3 2.7 2.8

Table 3.1: The mean in nats of 𝐼(𝑍,𝐷) is less than 𝐼(𝑍1, 𝐷) + 𝐼(𝑍2, 𝐷), indicating that
information about 𝐷 is redundantly encoded in embeddings. Standard deviation under 0.2
for all values over 5 trials.

with human representations of language [Gauthier and Levy, 2019].

3.4.1 Measuring Redundancy in Embeddings

First, I found that language models redundantly encoded syntactic information in their

embeddings, which motivated using dropout probes.

I used a technique from prior art, Mutual Information Neural Estimator (MINE), which

is a neural-network based approach for estimating the mutual information between two

random variables [Belghazi et al., 2018]. It does so by computing a lower bound of mutual

information and training a neural network to maximize that value. This provides a conser-

vative but tight estimate of mutual information. I refer readers to Appendix 6.1 for further

details of my implementation.

In using MINE, I defined four random variables of interest. The first, 𝐷, was the depth

of each word in a sentence’s parse tree; in other words, the labels used to train depth probes

in prior literature [Hewitt and Manning, 2019]. The second random variable, 𝑍, was the

768-dimensional embeddings generated by a language model for each token in an input

sentence. Lastly, the third and fourth random variables (𝑍1 and 𝑍2) corresponded to the

first and second halves of 𝑍 for each token. That is, these variables comprised the starting

and ending 384 units for each token’s embedding. By measuring the mutual information

between different pairs of these variables, one may formalize my redundancy hypothesis

into the following test: 𝐼(𝑍,𝐷) < 𝐼(𝑍1, 𝐷) + 𝐼(𝑍2, 𝐷). Intuitively, if the test holds, there

is shared syntactic information between 𝑍1 and 𝑍2.

I trained a MINE neural network on the first 5,000 examples from the Penn TreeBank to

estimate mutual information between random variables [Marcus et al., 1993]. Embeddings
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were taken from the fourth layer of the MASK, QA, and NLI models, although they may

be generated elsewhere. Results are presented in Table 3.1. For all models, 𝐼(𝐷,𝑍) <

𝐼(𝐷,𝑍1) + 𝐼(𝐷,𝑍2); i.e., one gains little to no information for predicting 𝐷 from the full

𝑍 instead of from just 𝑍1 or just 𝑍2. For example, for the Masked Language Model, there

were 2.7 nats of mutual information between the full embedding and 𝐷 (𝐼(𝑍,𝐷) = 2.7),

and 2.6 of those 2.7 nats were present just in 𝑍2; thus, 𝑍1 only contained 0.1 additional nats

of information about 𝐷. This is evidence of highly redundant syntactic information in 𝑍.

In these experiments using MINE, I demonstrated how 𝑍1 and 𝑍2 could be defined as

the subsets of redundant activations depicted in Figure 3-3. One could define other 𝑍1 and

𝑍2 to better characterize redundancy by choosing other subsets of 𝑍; here, I merely claim

that at least some redundancy is present in the model embeddings. Indeed, in independent

work, published subsequent to these experiments, researchers have found evidence of re-

dundant encodings in other large language [Nanda et al., 2023] and vision [Doimo et al.,

2022] models.

3.4.2 Causal Probing for Syntax

The prior section established that language models encode syntactic information redun-

dantly; here, I show that my gradient-based counterfactual update method, in conjunction

with dropout probes, reveals that some models use representations of syntax in making

predictions.

I trained both distance- and depth-based probes, the two types of syntactic probes pro-

posed by Hewitt and Manning [2019]. I trained a new probe for each layer of each model,

conducting 5 trials with random seeds 0 through 4. All probes were implemented as 3-layer,

non-linear neural nets that mapped from model embeddings (of dimension 768) through 2

ReLU layers of dimension 1024, to a final layer to predict a word’s depth or distance in the

parse tree from other words. Probes were trained for up to 100 epochs, with early stopping

based on validation set loss, using the Penn TreeBank dataset [Marcus et al., 1993]. I found

that these hyperparameters produced more accurate probes than typically used in prior art,

which capped training at 30 epochs and used single-layer probes.
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Each probe was prefixed by a dropout layer with a parameter, 𝛼, that specified the pro-

portion of inputs that were masked before being fed to the probe. At one extreme, probes

with no dropout (𝛼 = 0) might work if syntactic information was not redundantly encoded.

Given results of such redundancy in the prior section, however, a positive value of 𝛼 would

likely reveal greater causal effects. (I tested the other extreme with 𝛼 = 1, corresponding

to default probes that could not observe model embeddings; unsurprisingly, counterfactuals

generated by such probes had no systematic effect on model predictions.) Counterfactual

embeddings were created via gradient descent through trained probes (with dropout dis-

abled), as described in Section 3.3.2. That is, new embeddings, 𝑍 ′, were generated to

decrease the loss between 𝑝(𝑍 ′) and a desired parse. This loss is dubbed the counterfactual

loss.

I recorded two types of results from my experiments. First, I visualized the effect of

interventions, by layer, for a particular dropout rate and counterfactual loss. This revealed

that, typically, earlier layers in models were more susceptible to interventions. Second, I

devised an aggregate metric for the average difference, across all layers, in model outputs

for counterfactuals generated with different parses. This showed how lower counterfactual

losses (i.e., more interventions) and higher dropout typically revealed larger effects.

Additionally, I note that the probes were trained to parse single sentences, but two of the

models (QA and NLI) accepted two sentences as inputs. For both models, counterfactual

embeddings were creating by only updating the syntactically-ambiguous sentence and then

concatenating it to the unaltered other embeddings.

Masked Language Model

I found the Mask model uses representations of syntax causally. I tested the model with

two test suites exhibiting different forms of structural ambiguity. In the Coordination suite,

exhibiting ambiguous coordination, one sentence reads, “The man saw the girl and the dog

[MASK] tall.” One may plausibly insert either a plural or singular noun in the masked

location, depending upon the syntactic interpretation of the sentence. In the NP/Z suite,

masked words could be either adverbs or nouns, depending upon syntactic interpretations

of the sentence. For example, one such sentence read, “As the author wrote the book
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Mask Model Likelihood of Plural Candidates in Coordination Suite
Dropout 0.0 Dropout 0.4
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Figure 3-4: Mean and standard deviation probabilities over 5 trials for plural candidates us-
ing the original embeddings (green) or counterfactual embeddings favoring plural (dashed
red) or singular (solid blue) parses. Counterfactual embeddings generated by both depth-
and distance-based probes with greater dropout rates caused the greatest shift in model
predictions.

[MASK] grew” where acceptable predictions might include “it” or “quickly.” I generated

test suite sentences using a template-based method; details of the prompts (and all prompts

in this work) are included in Appendix 6.2.

The results of passing 𝑍 ′ generated from different parses in the Coordination suite

through the rest of the Mask model are plotted in Figure 3-4. The three plotted lines cor-

respond to the model output using the normal embeddings (green), using 𝑍 ′ generated

according to a parse favoring plural verbs (red dashed), or using 𝑍 ′ generated using parses

implying singular verbs (blue solid). The 𝑦 axis corresponds to the probability the model

assigned to words implying a plural interpretation (“were,” “are,” and “as”) fitting in the

masked location, normalized by the sum of probabilities assigned to those plural words or

singular words (“was” and “is”). If the Mask model uses syntactic representations correctly,

counterfactuals from plural parses should increase the probability of plural words.

I indeed found that effect, although it is clearest when using dropout probes. The

causal effects using standard probes with no dropout are plotted in the left column; no-

tably, distance-based probes revealed the desired effect, but depth-based probes had little

to no effect. Conversely, when using dropout probes with 𝛼 = 0.4 (right column), I found

much larger effects.

Averaging across all layers, I also measured the mean difference in output when using

counterfactual embeddings generated according to different parses. Intuitively, this gener-

ated a single number that captured the average difference between the red and blue lines in
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the plots in Figure 3-4.
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Figure 3-5: For the Coordination (left) and NP/Z (right) suites, interventions to a lower
counterfactual loss (𝑥 axis) and with higher-dropout probes (different curves) revealed the
greatest causal effects. Means and standard errors.

For a range of dropout values and counterfactual losses, I plotted the mean causal effect

for the Coordination and NP/Z suites in Figure 3-5, using distance probes. For a given

counterfactual loss, using higher dropout probes produced larger effects. In addition, lower

counterfactual losses (corresponding to more gradient steps) induced greater effects. These

trends also held true for depth-based probes (Appendix 6.4). Overall, using the Mask

model, I found important evidence that models use redundant representations of syntax in

making predictions.

QA Model

I also found that, to varying degrees depending upon the syntactic structure, the QA model

used representations of syntax causally through a series of similar causal analysis experi-

ments using syntactically-ambiguous inputs. The QA model is a BERT-based model fine-

tuned on a question-answering task to map from context and a question to a continuous

span of the context that answered the question [Rajpurkar et al., 2016].

I performed experiments using depth- and distance-based probes, using dropout val-

ues at increments of 0.1 from 0 to 0.9. I used three test suites for analyzing the causal

use of syntax in the QA model: “Coordination”, “Relative Clause” (RC), and a “Noun

Phrase/Verb Phrase” (NP/VP) suite. The Coordination suite consisted of 256 prompts with

coordination ambiguity like, “I saw the men and the women were tall. Who was tall?” The
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QA Model Causal Effect on Coordination Suite by Layer
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Figure 3-6: Causal effects for the QA model using depth- (top row) and distance- (bottom
row) based probes with dropout of 0 (left column) or 0.4 (right column) on the Coordination
corpus to counterfactual loss 0.05. Dropout probes produce more stable and larger effect
sizes. Means and standard deviations over 5 trials plotted.

RC suite consisted of 193 prompts with attachment ambiguity of a relative clause like, “I

saw the women and the men who were tall. Who was tall?” The NP/VP suite consisted

of 256 prompts like, “The girl saw the boy with the telescope. Who had the telescope?”

Prompts were designed such that answers were dictated by syntactic interpretations.

Findings for the Coordination suite are plotted in Figure 3-6. On the 𝑦 axis, I plotted

the model’s prediction of words in the first noun phrase (NP1) starting the answer. Correct

causal use of representations of syntax would move the red line (corresponding to parses

indicating NP1) above the original outputs, in green, and the blue line (for the other parse)

below.

As in the Mask model experiments, I found evidence that QA models use representa-

tions of syntax causally. For zero-dropout probes, plotted in the left column of Figure 3-6,

I found that depth probes produced noisy results and distance-based probes had only small

effects. In contrast to the standard probes, higher-dropout probes, plotted in the right col-

umn, revealed much larger effects of syntactic interventions.

More systematic analysis for all dropout rates, using distance and depth-based probes

for all 3 test suites confirmed these trends. I plotted the aggregate metrics for all suites

using depth probes in Figure 3-7. The causal effects were smaller in the RC and NP/VP

suites than in the Coordination suite, indicating that the model may have learned a weaker

causal link for these syntactic relations. Nevertheless, all suites demonstrate the importance

of using dropout in probes: without dropout (solid black curve), the causal effects were
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smaller than for any positive dropout rate.
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Figure 3-7: Mean causal effects when using depth-based probes for the QA test suites.
Smaller counterfactual losses and higher dropout rates typically induced greater effects,
although the scale of the effects varied by suite (note different axis scales). Means and
standard deviations over 5 trials.

I note briefly that the causal effects uncovered by dropout probes may not be solely

attributed to dropout probes performing better at their parsing task. In fact, adding dropout

worsened probe performance according to typical probe performance metrics (Appendix 6.5).

NLI Model

Lastly, I performed similar causal analysis on the NLI and NLI-HANS models and, in

contrast to the Mask and QA models, I found no evidence for the causal use of syntax

using any probes for either model. The NLI model was finetuned on just the MNLI corpus,

and the NLI-HANS model was finetuned with both the MNLI and HANS corpora, based

on code from Gao et al. [2021]. The NLI model had a test set accuracy of 86%, and the

NLI-HANS model had test set accuracy of 93%.

I used a test suite based on the Coordination suite already introduced in this work: an

example prompt was “The person saw the keys in the cabinets which are green. The keys

are green.” The models had to classify these inputs among the three classes of entailment,

contradiction, or neutrality.

Ultimately, I failed to find any evidence that either the NLI or the NLI-HANS model

used syntactic information causally. The models always predicted entailment for all prompts,

whether using original embeddings or counterfactuals generated for different parses. I used

distance probes with dropout values from 0 to 0.9 and created counterfactuals for losses
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Figure 3-8: Using higher dropout probes (different curves) and lower counterfactual losses
(𝑥 axis) allowed me to inject structural information into model embeddings, boosting model
F1 scores. Care must be taken, however, to not perturb embeddings too much (high dropout
with low counterfactual loss). Means and standard deviations plotted over 5 trials.

from 0.05 to 0.3 and never observed a shift in predicted probability mass of more than 1%

when using counterfactuals. Unfortunately, this suggests that simply augmenting the MNLI

dataset with HANS may not be enough to produce a model that uses syntactic information

causally.

3.4.3 Boosting Performance with Probes

Earlier, I demonstrated that the QA model causally used representations of syntax for pre-

dictions; here, I show that one can improve QA model performance at test time by “inject-

ing” syntactic information into embeddings.

I designed a new, syntactically challenging “Intervene” test suite of 288 prompts for

the QA model. Example prompts include “The person saw the keys by the cabinet which

was green. What was green?” and “The person saw the keys by the cabinet which were

green. What was green?” Answering correctly (“the cabinet” first and “the keys” second)

depends upon using noun-verb agreement. I used template-generated parse trees for each

sentence and distance probes to create counterfactual embeddings for each sentence at layer

4 of the QA model. Layer 4 was chosen based on performance on a validation dataset

(Appendix 6.3).

I passed the original and counterfactual embeddings through the QA model and mea-

sured performance on a test suite. F1 performance is plotted in Figure 3-8; exact match

metrics had similar trends. Typically, higher-dropout probes improved performance more,
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although the highest-dropout probes deteriorated for the lowest counterfactual losses. I

hypothesize that this deterioration corresponded to generating out-of-distribution embed-

dings, but this topic warrants further study.

Lastly, I performed a similar experiment using the NLI and NLI-HANS models using

486 prompts drawn from the HANS dataset like “The doctor near the actor danced. The

actor danced” [McCoy et al., 2019]. The NLI model achieved 50% accuracy (always pre-

dicting entailment) and the NLI-HANS model achieved 99% accuracy. Neither model’s

accuracy changed significantly when using counterfactuals with the correct parse for the

first sentence, yet again indicating that these models may not use representations of syntax

causally.

3.5 Contributions and Conclusion

In this chapter, I designed and evaluated a method for causal analysis of trained language

models. A series of technical contributions combined to inform my method: 1) using

causal, rather than correlative, methods enables novel insight into model behavior and 2)

intuitions of redundantly encoded information in model embeddings motivated “dropout

probes” a new neural probing architecture. Results from experiments confirm such in-

tuitions and reveal important directions for future research. First, I showed that models

indeed encode syntactic information redundantly. Second, dropout probes, unlike standard

probes proposed in prior literature, reveal the large role representations of syntax can play

in mediating model predictions Lastly, by injecting syntactic information at test time in

syntactically-challenging domains, I showed how to increase model performance without

retraining.

Despite this step towards better understanding of pretrained models, important future

work remains. Natural extensions include studying pretrained models beyond those consid-

ered in this work. (In ongoing preliminary work, I have found some evidence that represen-

tations of syntax mediate Mistral-7B predictions, although the effect size appears smaller

than for BERT.) Further analysis of the probe-based interventions is also warranted. How

much do embeddings change during gradient updates? Do other interventions, such as
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Elazar et al. [2020] induce similar effects, both in embedding and prediction spaces? I

leave such questions to future research that can build upon my particular method using

gradient-based updates and dropout probes.
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Chapter 4

Contributions

In this thesis, I have explored two broad areas of research. In Chapter 2, I investigated how

cognitively motivated losses could induce neural network agents to learn more human-like

communication systems; in Chapter 3, I developed a causal probing method to test whether

pre-trained models used human-like representations of language. While both chapters con-

sidered language-related domains, the underlying computational methods of many of these

works apply to many settings, which fall outside the scope of this thesis (Figure 4-1). I

have begun investigating such extensions, but important future work, both in language and

other domains, remains.

4.1 Summary of Contributions

In each of the two technical chapters of this thesis, I introduced novel technical methods

that, when applied, shed some light on human-like AI systems.

4.1.1 Chapter 2 - Information Theoretic Emergent Communication

In Chapter 2, I introduced a Information Theoretic Emergent Communication (ITEC) frame-

work to induce more human-like communication among artificial agents. The framework

combines cognitively-motivated terms for utility, informativeness, and complexity when

training agents. Utility reflects a pressure for task-specific communication, informative-
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Figure 4-1: In this thesis, I discuss an Information Bottleneck method for inducing more
human-like emergent communication (Chapter 2; left in diagram) and a causal probing
mechanism for studying the role of syntax in model predictions (Chapter 3; right in dia-
gram). These are particular instances of broader research directions towards training more
human-like models or analyzing pre-trained models, some of which I have pursued in pa-
pers not included in this thesis (bottom).

ness a pressure for task-agnostic communication, and complexity for simpler lexicons. The

ITEC allows one to control the relative importance of each of the three terms.

I proposed a novel method that can be trained within the ITEC framework to induce

complexity-limited discrete communication, embedded in a continuous space. My method,

dubbed the Vector Quantized Variational Information Bottleneck (VQ-VIB), supports vari-

ational bounds on complexity, which is used to penalize complexity in training. Unlike

prior Variational Information Bottleneck methods, VQ-VIB employs vector quantization to

produce discrete representations, reflecting a desire to match the discrete nature of words

in natural language. The VQ-VIB methods is a general framework that extends beyond

a single implementation, and indeed we experiment with several, subtly different, neural

network architectures.

Overall, the ITEC framework allows one to directly control the utility, informative-

ness, and complexity of communication, which indirectly control high-level properties

such as generalization and alignment. In three experiment domains, I showed how tun-
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ing the weights for each of the ITEC terms led to expected changes such as simpler lex-

icons as complexity decreased. Furthermore, in domains with human data, I showed that

controlling the complexity of emergent communication was necessary to achieve optimal

alignment with natural language representations. Lastly, across domains, VQ-VIB mod-

els outperformed even strengthened baselines, likely due to its ability to represent discrete

meanings in a continuous vector space.

4.1.2 Chapter 3 - Causal Probing for Syntax

In Chapter 3, I developed a causal probing method for establishing whether representa-

tions of syntax mediate language model predictions. Using this causal probing technique, I

found that some model predictions appeared to be affected by representations of syntactic

structure, much as human language understand is. My contributions are thus twofold: a

causal probing technique and the findings from applying this technique.

The causal probing technique addresses limitations of correlative probing methods by

intervening in a pre-trained model’s latent representation. At a high level, my method uses

a gradient-descent approach and pre-trained probes to change latent representations ac-

cording to probe predictions. This method generates counterfactual representations, which

can be passed through the remainder of the pre-trained model. Unlike correlative probing

methods, therefore, my method reveals how models actually use representations.

In applying my technique to pre-trained BERT models with syntactic probes, I found

that some, but not all, models appeared to use representations of syntax in mediating their

predictions. This is an interesting, if slightly mixed, result. While humans use representa-

tions of syntax in understanding and producing language, it is unclear why some models

may or may not learn to do so.

4.2 Limitations and Extensions

While I have made some contributions towards guiding and analyzing language-related

neural networks in this thesis, many important questions, even in the narrow domains I

consider, remain. These questions indicate limits of the current work, as well as excit-
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ing directions for the future. Here, I include discussion of only a subset of such myriad

questions.

4.2.1 Utility and Informativeness

How do tradeoffs between utility and informativeness regulate abstractions in neural net-

work and natural language communication?

In Chapter 2, I explain the ITEC framework, which maximizes utility, maximizes infor-

mativeness, and minimizes complexity. Clearly, complexity is in tension with high utility

or high informativeness. The relationship between utility and informativeness, however, is

less clear. For fixed complexity level, increasing pressures for utility or informativeness

would likely shift the nature of communicated information to be more about actions or

inputs, respectively.

Although the ITEC framework exposes the dials to control the tradeoff between utility

and informativeness, the experiments do not fully explore the effects of such tradeoffs. In

both the color and 2D world domains, utility and informativeness are nearly identical. In the

ManyNames domain, however, utility and informativeness are distinct because the target

and distractor colors are selected from different categories by design. Nevertheless, further

experiments in domains in which utility and informativeness are more clearly different

could shed important new light on this complex tradeoff. In preliminary experiments in

highly simplified domains, I have found that utility and informativeness pressures indeed

induce expected effects on VQ-VIB𝒞 communication. In future experiments, one could

better explore how varying task-specific vs. task-agnostic information in communication

(modulated via informativeness and utility losses) aligns with human representations.

4.2.2 Multi-task Abstractions

How do multi-task frameworks affect (complexity-limited) representations?

The ITEC framework models utility as a task-specific reward function to maximize;

this corresponds to a notion of humans communicating in order to accomplish a goal. In

practice, humans often seek to accomplish many goals, and speakers and listeners must
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reason jointly about the distribution over tasks. A natural extension of the ITEC framework,

as yet unexplored in this thesis, would be to train agents according to a distribution of

utility functions. Such multi-task training will likely change the types of representations

that agents learn, which in turn could raise important questions about meta-learning or

task-conditioned efficient representations. Of course, care must be taken in justifying a

cognitively-plausible distribution of training tasks.

4.2.3 In-Distribution Causal Probing

Can probe-based interventions remain in-distribution?

The probe-based interventions in Chapter 3 are designed to modify representations of a

sentence’s syntactic structure; it is important to ask if such interventions modify any other

parts of the sentence’s representation. Ideally, the counterfactual representations should

correspond to “what would the representation of this sentence be if the syntactic struc-

ture change?” In traditional causal literature, therefore, such counterfactual representations

would therefore correspond to minimal changes to the original representations.

Unfortunately, ascertaining what constitutes a minimal change to a representation, or

even if it remains in-distribution, is challenging. Syntax is a fundamentally latent concept,

so counterfactual generation must occur in the largely uninterpretable latent space. In the

experiments presented in this thesis, model behavior was largely consistent with most in-

terventions being in-distribution: if the counterfactual representations were out of distribu-

tion, one might expect random changes in model predictions rather than the syntactically-

consistent shifts in predictions that I observed. Nevertheless, further advances in coun-

terfactual evaluation, as well as theoretical advances in causal problem framings, would

strengthen my results.

In ongoing work, I have begun exploring one method of evaluation the probe-based

counterfactual method. Instruction-tuned models are trained to respond appropriately to

explicit user instructions or prompts, and in early testing of simple cases, they appear

somewhat sensitive to syntactic prompts. For example, one may input to a model, “In

the following sentence, ‘telescope’ modifies the seeing. The girl saw the boy with the tele-
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scope. Who had the telescope?’ Varying prompts tends to change model predictions. This

prompt-based intervention method offers an important alternative to generate counterfac-

tual representations that are, by definition, in distribution. Comparing such representations

to probe-based counterfactual representations is an important direction for calibrating both

methods and better understanding model behavior.

4.2.4 Probing beyond Syntax

Can probe-based counterfactuals be used for non-syntactic analysis?

In this thesis, I explored how probe-based counterfactuals can change representations

of syntax in pre-trained language models, but one may also ask if the same technique may

be applied to different domains. Indeed, it can. Dropout probes and a gradient-based inter-

vention method, can be generally used to modify different neural network representations

in a variety of human-interpretable ways. In early experiments, I showed how dropout

probes may be used to modify an image-classifier’s predictions according to semantic traits

(animal vs. vehicle) and the actions of neural network policies in a simulated 2D world. In

general, to apply my method, one needs a pre-trained neural model and a probe trained to

predict the desired property to manipulate. Because the probes modify latent concepts, in

theory this technique is widely applicable; I note, however, that applications must consider

the same limitations listed in the prior section of remaining in-distribution.
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Chapter 5

Appendix: Emergent Communication:

5.1 Combinatorial codebook

In Chapter 2, I proposed two VQ-VIB architectures, VQ-VIB𝒩 and VQ-VIB𝒞 , both of

which use a learnable codebook to discretize communication. In this section, I show how

simple changes to the neural network architectures support dramatic increases in the code-

book sizes while retaining support for the variational bounds on complexity from the orig-

inal architectures. Diagrams of both updates architectures are included in Figure 5-1.

In VQ-VIB𝒩 , a feedforward encoder outputs [𝜇1, ..., 𝜇𝑛] and [Σ1, ...,Σ𝑛] for 𝜇𝑖,Σ𝑖 ∈

R𝑑/𝑛. That is, rather than producing the mean and variance for a single 𝑑−dimensional

normal distribution, the encoder outputs the parameters for 𝑛 normal distributions, each

in R𝑑/𝑛. The learnable codebook, 𭟋≈⅁ = 𝜁𝑖 ∈ R𝑑/𝑛; 𝑖 ∈ [1, 𝐾] is similarly updated so

that each codebook element is in R𝑑/𝑛. Thus, each 𝑧𝑖 ∼ 𝒩 (𝜇𝑖,Σ𝑖) is discretized via the

standard discretization process of snapping to the nearest element of the codebook. Lastly,

the overall discrete communication is generated by concatenating all discrete subtokens,

generating a final discrete communication vector 𝑤 ∈ R𝑑

In VQ-VIB𝒞 , the feedforward encoder and codebook are similarly updated to generate

𝑛, 𝑑
𝑛
−dimensional discrete representations that are concatenated together. As shown in

Figure 5-1 b, the encoder generates 𝑛 continuous representations: 𝑧𝑖 ∈ R𝑑/𝑛, 𝑖 ∈ [1, 𝑛].

As in VQ-VIB𝒩 , the learnable codebook defines 𝐾 vectors: 𭟋≈⅁ = 𝜁𝑖 ∈ R𝑑/𝑛; 𝑖 ∈ [1, 𝐾].

Each 𝑧𝑖 is discretized using the VQ-VIB𝒞 sampling process based on negative distance from
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Multitoken combined

𝑃 𝑤1 = 𝜁𝑖|𝑧1 = ቊ
1
0
if 𝜁𝑖 = argmin 𝑧1 − 𝜁𝑖

2

else
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…
𝜁1 𝜁𝑘

Figure 5-1: VQ-VIB𝒩 (a) and VQ-VIB𝒞 (b) speaker architectures for combinatorial code-
books.

𝑧𝑖 to each element of the codebook. Lastly, these discrete representations are concatenated

into 𝑤 ∈ R𝑑.

Conceptually, updating VQ-VIB𝒩 and VQ-VIB𝒞 to support concatenations of discrete

tokens only differs from the prior architecture by expanding the finite set of possible com-

munication vectors. The architectures presented in Chapter 2 may be thought of as a special

case of this more general combinatorial setup by setting 𝑛 = 1. By increasing 𝑛, however,

one can dramatically increase the effective codebook size of agents: e.g., for 𝐾 = 1024,

as used in the ManyNames experiments, 𝑛 = 1 generates 1024 discrete representations,

whereas 𝑛 = 4 generates 10244 ≈ 1012 representations, without increasing the number

of weights in the neural nets. This increased codebook size in turn supported more com-

plex and informative representations which in some cases improved model performance

(e.g., for OOD generalization) but in others was unnecessary (e.g., maximum representa-

tion alignment was achieved at low complexity, so increasing 𝑛 did not help alignment).

5.2 Penalizing Entropy

In Chapter 2, I defined the VQ-VIB training objective in Equation 2.13, which included a

tie-breaking entropy loss. Here, I explain the motivation behind this term and how it was

calculated for VQ-VIB𝒩 and VQ-VIB𝒞 models.
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Prior art shows that, for any given complexity level, there are many possible IB-optimal

solutions with different effective codebook sizes 𝑘 = |{𝜁𝑖 ∈ 𝜁 :
∑︀

𝑚 P(𝑚)𝑞(𝜁𝑖|𝑚) >

0| [Zaslavsky, 2020]. This measurement of effective codebook size captures how many

distinct tokens are used by a speaker. Intuitively, for the same complexity level, a speaker

may use relatively few tokens (each token encoding a quite distinct meaning), or use many

different tokens that are sampled quite stochastically (e.g., two tokens might encode the

same meaning, and the speaker randomly chooses between the tokens).

I was interested in EC systems with the minimal 𝑘, for a given complexity level, as

they encode the same amount of information with the smallest effective codebook size.

Therefore, to bias EC agents towards small 𝑘, I wished to penalize the entropy of the

categorical distribution over tokens, breaking the tie within a complexity equivalence class

to favor small-codebook solutions.

For VQ-VIB𝒞 , I could directly measure and penalize the entropy of the categorical

distribution, as it was calculated while sampling tokens: P(𝜁𝑖|𝑚) ∝ 𝑒||𝜁𝑖−𝑧(𝑚)||2 . VQ-VIB𝒩 ,

however, does not support exact calculation of the categorical distribution over tokens. I

therefore approximated the categorical distribution by using the same probability function

as for VQ-VIB𝒞: proportional to 𝑒||𝜁𝑖−𝑧(𝑚)||2 .

As shown in Equation 2.13, I weighted the entropy loss term by a small scalar value:

𝜖 * 𝜆𝐶 . Given that I merely sought to penalize entropy within a complexity equivalence

class, rather than use this term directly to control agents, I typically set 𝜖 to small values: in

the 2D world environments, 𝜖 = 0.01, and in the color and ManyNames domains, 𝜖 = 0.05.

These values were chosen by training teams to low complexity solutions and evaluating

how many tokens were used. 𝜖 was increased until the number of tokens shrank to roughly

log2 of the complexity.

5.3 Baseline architectures

Here, I elaborate upon some of the neural network architectures used in experiments other

than the VQ-VIB methods.

The two discrete EC architectures I started with were onehot and Proto.. As discussed
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in the main text, onehot agents mapped inputs to a onehot vector. Proto. agents, introduced

by Tucker et al. [2021a], internally compute a onehot vector, which is then multiplied by a

“prototype matrix” to generate discrete representations in a continuous space. While both

methods generate discrete communication, neither supports variational bounds on com-

plexity. Thus, I adapted these methods to generate strengthened baselines that fit within the

ITEC framework.

My updated onehot baseline used a variational bound on the categorical distribution

over the communication dimension. As in VQ-VIB𝒞 , onehot agents generated a categor-

ical distribution over which token to emit and sampled from this distribution using the

gumbel-softmax trick [Maddison et al., 2017]. I therefore similarly bounded complexity

via 𝐼(𝑚; 𝑧) ≤ E[𝐷KL[𝑞𝜃(𝑤|𝑚)‖𝑟(𝑤)]] where I set 𝑟(𝑤) to a uniform categorical distribu-

tion.

My updated Proto. baseline used a variational bound on complexity based on normal

distributions. Variational Proto. agents used a standard Proto. speaker, which generates a

discrete representation, 𝑧, in a continuous space. Agents also produced Σ, representing the

variance of a normal distribution. Lastly, the Proto. agent’s communication was generated

by sampling from a normal, centered at the discrete representation, with variance Σ: 𝑤 ∼

𝒩 (𝑧,Σ). Thus, Proto. agent communication passed through a discrete bottleneck but was

ultimately continuous. Given this sampling mechanism, I used the variational bound on

complexity often used in VAEs: 𝐼(𝑚;𝑤) ≤ E[𝐷KL[𝑞𝜃(𝑤|𝑚)‖𝑟(𝑤)]], which is tractable for

a unit normal prior, 𝑟(𝑤).

5.4 Training curves

In Figure 2-11, I showed training curves in the 2D simulated word for VQ-VIB𝒩 and VQ-

VIB𝒞 agents. Increasing 𝜆𝐼 , the pressure for informativeness, caused both model types to

converge faster and to a higher mean reward. For completeness, I include similar training

curve results for onehot and Proto. agents in Figure 5-2.

As before, I found that, for all architecture types, increasing 𝜆𝐼 continued to induce

higher-reward policies earlier in training. This indicates that informativeness can be a pow-
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(a) Onehot (b) Prototype

(c) VQ-VIB𝒩 (d) VQ-VIB𝒞

Figure 5-2: Team utility over as a function of training episode for different model archi-
tectures (different plots) and different 𝜆𝐼 values (different curves). Increasing 𝜆𝐼 improved
performance for all model types.
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(a) (b)

Figure 5-3: Informativeness vs. complexity (a) and utility vs. complexity (b) in the color
reference game for models trained with REINFORCE. I observed similar trends as when
training via backpropagation: all models were similarly IB-optimal (a), and VQ-VIB𝒩
tended to achieve higher utility, for the same complexity, as other models.

erful indirect pressure towards high-utility policies, especially in multi-agent reinforcement

learning settings, which are notoriously hard to train models in [Eccles et al., 2019].

5.5 Color Reference Game Further Results

In the main color reference game experiments, I trained agents via a supervision loss, which

I backpropagated through the speaker and listener.

Here, I briefly present results from a similar setup but with a different training method:

REINFORCE [Williams, 1992] Using this reinforcement-based training mechanism, the

speaker was only indirectly trained to maximize team accuracy, without the ability to back-

propagate through the listener. Prior art in EC has employed both REINFORCE and super-

visory methods for reference games (including, in particular, color) and found that training

with REINFORCE was less stable and led to communication with lower communicative

complexity [Chaabouni et al., 2021a].

Results from my agents, trained with REINFORCE, are depicted in Figure 5-3. As

before, I found that all models achieved near optimal informativeness and that VQ-VIBnorm

achieved greater utility than other methods (for a given complexity level).

Furthermore, I note that training with positive 𝜆𝐼 consistently induced more complex
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communication than cases with 𝜆𝐼 = 0, as done in prior art. Chaabouni et al. [2021a]

trained 180 teams from scratch to overcome random failures of model training; in my re-

sults I trained 5 teams from scratch and each team converged to useful communication. In

addition, whereas the 180 teams trained by Chaabouni et al. [2021a] never learned commu-

nication more complex than 2.4 bits, I found that VQ-VIB models consistently surpassed

2.5 bits.

Thus, I found that the results in Chapter 2 generalized to different training mechanisms

and, moreover, the ITEC framework appeared capable of addressing important limitations

identified in earlier work.

Lastly, when training agents with a supervision loss (not REINFORCE), I found, yet

again, the importance of the ITEC framework in generating human-like naming systems. I

compared to onehot and VQ-VAE agents trained with only utility rather than the full ITEC

framework (𝜆𝐼 = 𝜆𝐶 = 0). Results for such agents are depicted in Figure 5-4.

Each point in Figure 5-4 corresponds to the behavior for an agent with a hardcoded

codebook size from 2 to 10. By varying the codebook size, I could indirectly control

the resulting complexity of communication. This indirect control, however, affords less

finegrained control than the ITEC framework, and is cognitively less plausible.

Therefore, in the final set of color experiments, I trained a variational version of onehot

communication. Training within the ITEC framework, I reproduced important behaviors of

smoothly modifying the complexity of communication. Metrics of efficiency and similarity

to human languages for this improved onehot baseline, as well as VQ-VIB𝒞 (and results

already reported in the main paper) are included in Table 5.1. I note that, even as the One-

hot - Variational efficiency metrics are similar to VQ-VIB models, VQ-VIB𝒩 continued

to achieve greater utility than onehot, due to the semantically-meaningful communication

space.

5.6 ManyNames further results

In Chapter 2, I included OOD utility, functional alignment, and relative representation

alignment results for some of the models in the ManyNames reference game. Here, I
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(a) Onehot Informativeness (b) Onehot Utility

(c) VQ-VAE Informativeness (d) VQ-VAE Utility

Figure 5-4: Informativeness and utility vs. complexity for onehot and VQ-VAE models,
for different hardcoded codebook sizes. Without informativeness or complexity pressures,
varying the architecture was the only way to indirectly control important model behaviors.

VQ-VIB𝒩 VQ-VIB𝒞 Onehot - Var. Onehot VQ-VAE
gNID 0.151 (0.00) 0.153 (0.01) 0.154 (0.00) 0.42 (0.16) 0.38 (0.15)
Efficiency loss 0.024 (0.00) 0.022 (0.00) 0.023 (0.01) 0.06 (0.01) 0.08 (0.01)

Table 5.1: Quantitative evaluation of artificial color communication systems, compared
to human naming data and an IB-optimal bound. The three variational methods (VQ-
VIB𝒩 , VQ-VIB𝒞 , and Onehot - Var.), trained in the ITEC framework were closer to human
languages (lower human-agent gNID - generalization of Normalized Information Distance)
and closer to the IB bound (lower efficiency loss) than utility-only methods (Onehot and
VQ-VAE).
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include results from varying 𝑛 and varying 𝐶 at test time.

5.6.1 Generalization

Trends from the main generalization experiments indicated that increasing 𝜆𝐼 and infor-

mativeness tended to enable greater generalization performance across models. Here, I

examine such trends as I varied important task and model parameters.

First, by varying the number of candidate images used at test time, 𝐶, I exposed im-

portant differences between model capabilities. Chaabouni et al. [2021b] found that such

analysis was important for uncovering differences in generalization capabilities. Therefore,

I tested agents with 𝐶 ∈ [2, 16, 32]; note, however, that all models were trained with 𝐶 = 2.

Thus, increasing 𝐶 tested a different sort of generalization to a harder task setting. Second,

I evaluated VQ-VIB models for 𝑛 ∈ [1, 2, 4]. Recall that 𝑛 is the combinatorial parameter

that set how many codebook elements to concatenate into a single message.

OOD generalization results, for varying 𝐶 and 𝑛, are included in Figure 5-5. As ex-

pected, increasing 𝐶 decreased utility, as the task became substantially more challenging.

Notably, for all 𝐶, the trend from Chapter 2 of lower distortion supporting greater utility

continued to hold.

Examining results for 𝑛 > 1, one sees that this trend held even as distortion continued

to decrease further. Increasing 𝑛 clearly decreased distortion (note how curves shifted to the

left along the 𝑥 axis as 𝑛 increased) which in turn was associated with greater utility. These

improvements are particularly notable in comparison to onehot or Proto. performance,

plotted in Figure 5-6. For example, for 𝐶 = 32, VQ-VIB𝒩 achieves up to 60% accuracy

for 𝑛 = 4, whereas onehot and Proto. accuracy peaks at approximately 17% and 13%,

respectively.

Overall, I found a strong trend between informativeness and OOD utility across archi-

tectures. This trend also explains, to a large degree, inter-architecture differences: VQ-VIB

models tended to achieve lower distortion, which in turn led to greater utility.
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(a) VQ-VIB𝒩 𝑛 = 1 (b) VQ-VIB𝒞 𝑛 = 1

(c) VQ-VIB𝒩 𝑛 = 2 (d) VQ-VIB𝒞 𝑛 = 2

(e) VQ-VIB𝒩 𝑛 = 4 (f) VQ-VIB𝒞 𝑛 = 4

Figure 5-5: OOD accuracy vs. distortion for VQ-VIB𝒩 and VQ-VIB𝒞 (different columns)
for different combinatorial codebook factors (different rows). For all architectures, OOD
accuracy as distortion decreased, and using greater 𝑛 supported lower distortion. Note how
increasing 𝑛 shifted all curves to the left, corresponding to lower MSE.

(a) Onehot (b) Proto.

Figure 5-6: OOD accuracy vs. distortion for onehot and Proto. architectures, and vary-
ing 𝐶. As in Figure 5-5 for VQ-VIB models, decreasing distortion was associated with
increased OOD utility.
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(a) Onehot (b) Proto.

(c) VQ-VIB𝒩 (d) VQ-VIB𝒞

Figure 5-7: Functional alignment for different architectures for varying amounts of align-
ment data, 𝑁 . Increasing 𝑁 improved alignment slightly, but performance typically
plateaued after reaching English response informativeness.

5.6.2 Functional alignment analysis

In some of the ManyNames experiments, I trained a linear model to map from GloVe

embeddings to EC vectors. In Chapter 2, I reported results based on fitting this model with

𝑁 = 100 randomly-selected images and associated labels. In Figure 5-7, I present results

for different 𝑁 .

As expected, increasing 𝑁 increases translation performance, but only up to a point.

More importantly, regardless of 𝑁 , all plots exhibit similar plateauing behavior: at high

distortion (low informativeness), performance improved as distortion decreased, but only

up to the estimated English informativeness level, at which point performance roughly

plateaued. Lastly, VQ-VIB architectures tended to outperform the other architectures, both

by achieving greater alignment for the same distortion and by reaching lower distortion

values.
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Figure 5-8: Relative representation alignment (𝜌) between EC and GloVe embedding
spaces. Results for VQ-VIB𝒞 models are overlayed over data from Figure 2-10. VQ-VIB𝒞
exhibits similar, although slightly worse, alignment trends to VQ-VIB𝒩 .

5.6.3 Relative representation alignment

Just as I conducted further analysis for functional alignment in the previous section, in this

section I examined relative representation alignment trends for different neural architec-

tures. In Chapter 2, I found that alignment peaked when EC distortion roughly matched

English distortion, and that VQ-VIB𝒩 models tended to achieve greater alignment than

other models.

First, complementing Figure 2-10, I plotted relative representation alignment for all

model architectures, including VQ-VIB𝒞 in Figure 5-8. Notably, both VQ-VIB methods

achieve greater alignment than other models, and both achieve greatest alignment near the

estimated distortion from English responses.

Next, I examined alignment for both VQ-VIB models for varying 𝑛, the parameter

specifying how to combine codebook elements into discrete communication. Results are

plotted in Figure 5-9.

Two main trends are apparent in Figure 5-9. First, as identified in the OOD experi-

ments for varying 𝑛, increasing 𝑛 led to lower distortion (higher informativeness). Second,

and most importantly, despite the increased informativeness, increasing 𝑛 tended to result

in lower relative representation alignment. This reinforces the importance of setting the
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(a) VQ-VIB𝒩 (b) VQ-VIB𝒞

Figure 5-9: Relative representation alignment for VQ-VIB𝒩 and VQ-VIB𝒞 , for varying
combinatorial token settings (𝑛). Increasing 𝑛 decreased the distortion for both model
types (note the changed 𝑥 axis scale) but worsened alignment.

“right” informativeness to match the English data, and that simple architectures can, at

least in this domain, learn the most human-like representation space.
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Chapter 6

Appendix: Causal Probing

6.1 MINE Details

The Mutual Information Neural Estimator technique works by training a neural net to

compute and maximize a lower bound on mutual information between two random vari-

ables [Belghazi et al., 2018]. I describe the intuition of the technique, as well as my im-

plementation, in this section; I refer readers to the full paper for theoretical analysis of

MINE.

The mutual information between two variables is defined via the KL Divergence be-

tween the joint distribution of the variables and the product of their marginals: 𝐼(𝑋, 𝑌 ) =

𝐷𝐾𝐿(𝑃 (𝑋𝑌 )||𝑃 (𝑋)𝑃 (𝑌 )). For notational simplicity, I describe the joint distribution as

𝑃 and the product of the marginals as 𝑄. Let me further state that 𝑃 and 𝑄 define outputs

that are jointly in 𝑅𝐷.

A lower-bound for the KL divergence is as follows, setting 𝐹 as any class of functions

that maps from 𝑅𝐷 to 𝑅:

𝐷𝐾𝐿(𝑃 ||𝑄) ≥ sup𝑇∈𝐹 E𝑃 [𝑇 ]− (E𝑄[𝑒𝑇 ]) (6.1)

In other words, one can calculate a lower bound for the mutual information by find-

ing a function, 𝑇 , that maximizes the difference between the two terms in Equation 6.1.

Belghazi et al. [2018] do so with functions parametrized as a neural net that maps from
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the concatenation of two inputs (one for each random variable) to a single-valued output.

Training the neural net is conducted to maximize the value described by Equation 6.1.

In my experiments, I create neural networks with separate, linear layers of size 64 for

each input. The embeddings from those two layers are concatenated, passed through two

1024-dimensional layers with ReLU activations, and then passed through a linear layer

with a single output. I thus map from the two inputs to a single, real-valued output.

Training was performed using batch size 32 over 50 epochs, at which point the mutual

information estimates appeared to have converged.

6.2 Test Suite Creation

Here, I specify the details of the test suites used to evaluate models for reproducibility.

The Mask model Coordination test suite comprised sentences like “The man saw the

girl and the dog [MASK] tall.” More generally, sentences followed the following template:

“The NN1 V the NN2 and the NN3 [MASK] ADJ.” I created all sentences by iterating

through the combinations of the words described in Table 6.1. This generated 243 sen-

tences, and each sentence was associated with 2 parses: one described as a conjunction of

sentences (e.g., “(The man saw the girl) and (the dog [MASK] tall.)”) and one as a single

sentence with a conjunction of noun phrases (e.g., “The man saw (the girl and the dog)

[MASK] tall.”).

Category Words
NN1 man, woman, child
NN2 boy, building, cat
NN3 dog, girl, truck

V saw, feared, heard
ADJ tall, falling, orange

Table 6.1: Words used for sentence generation in the Mask Coordination test suite.

The mask model NP/Z test suite comprised sentences like, “When the dog scratched the

vet [MASK] ran.” More generally, sentences followed the following template: “When the

NN1 V1 the NN2 [MASK] V2.” Each sentence was associated with two parses, favoring

either adverbs (e.g., ”When the dog scratched the vet quickly ran” or nouns, “When the
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dog scratch the vet she ran”). I used the word tuples described in Table 6.2 to generate 150

sentences.

NN1 V1 NN2 V2
(dog/child) (scratched/bit) (vet/girl/boy) (ran/screamed/smiled)
author wrote book grew
(doctor/professor) lectured student listened
(girls/boys) raced (kids/children) (watched/cheered)
(people/spectators) watched (show/movie) (stopped/paused)
(lawyers/judges) (studied/considered) case (languished/proceeded)
(people/viewers) (notice/spot) actor (departs/stays)
(band/conventions) left (hotel/stalls) closed

Table 6.2: Words used for sentence generation in the Mask NP/Z test suite.

The QA model Coordination test suite comprised prompts like “Who was tall? The

happy stranger saw the angry men and the angry women were tall.” More generally, the

prompts followed the following template: “Who was ADJ1? The ADJ2 NN1 V the ADJ3

NN3 and the ADJ4 NN4 were ADJ1.” I created 256 prompts by iterating through combi-

nations of the words in Table 6.3. “None” adjectives were excluded from the text.

Category Words
ADJ1 tall, short
ADJ2 happy, None
ADJ3 angry, None
ADJ4 angry, None
NN1 stranger, child
NN2 men, women
NN3 women, men

V saw, believed

Table 6.3: Words used for sentence generation in the QA Coordination test suite.

The QA model NP/VP suite comprised prompts like “Who had the telescope? The girl

saw the boy with the telescope.” The prompts followed the following template: “Who had

the NN1? The ADJ1 NN2 ADV V the ADJ2 NN3 with the ADJ3 NN4.” In this suite, the

choice of V and NN4 was tightly coupled - one may see with a telescope but not see with a

stick, for example. Table 6.4 details the combinations of words used to fill out the template,

including V-NN4 pairs. Overall, I generated 256 prompts.
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Category Words
V - NN4 (saw, telescope), (poked, stick)

ADJ1 tall, None
ADJ2 short, None
ADJ3 special, None
NN1 man, woman
NN2 boy, girl

Table 6.4: Words used for sentence generation in the QA NP/VP test suite.

The QA model RC suite comprised prompts like “Who was desperate? The women and

the men who were desperate bribed the politician.” The prompts followed the following

template: “Who was ADJ1? The ADJ2 NN1 and the ADJ3 NN2 who were ADJ1 V the

NN3.” I generated 192 example prompts by iterating over combinations of the words listed

in Table 6.5, excluding sentences in which NN1 and NN2 or ADJ2 and ADJ3 would have

been the same.

Category Words
ADJ1 corrupt, desperate
ADJ2 tall, smart, rich
ADJ3 tall, smart, rich
NN1 men, women
NN2 men, women
NN3 judge, politician

Table 6.5: Words used for sentence generation in the QA RC test suite.

The Intervention suite for the QA model comprised prompts like “What was green?

The human saw the keys by the cabinet which were green.” More generally, prompts were

created via the following template: “What was ADJ1? The NN1 V the NN2 by the NN3

which was/were ADJ1.” By changing the plurality of NN2 or NN3 and replacing “was”

with “were,” the correct answer should change. Overall, I generated 288 sentences by

iterating over all combinations of the words listed in Table 6.6, such that exactly one of

NN1 and NN2 was plural at a time.

122



Category Words
ADJ1 green, large, dirty
NN1 human, stranger, child
NN2 key, keys, gadget, gadgets
NN3 cabinet, cabinets, vase, vases

Table 6.6: Words used for sentence generation in the QA intervention experiments.

6.3 Hyperparameter Selection

In the intervention experiments in Section 3.4.3, I performed interventions at layer 4, based

on results of a validation study shown below. I reported the results for probes with different

dropout rates and for varying counterfactual losses, but I had to choose the layer of the QA

model at which to perform interventions.

Therefore, I created a validation suite based on the Intervention template, using new

nouns, verbs, and adjectives. For dropout rates from 0.0 to 0.3, ranging over counterfactual

losses, and layers from 1 to 7, I computed the QA model’s F1 and Exact Match scores

on the validation suite. These results are included in Table 6.7, and strongly suggest that

performance, for all probes, was most increased via interventions at layer 4.

6.4 Varying Dropout Rates

In the main paper, I reported only some of the results for distance- and depth-based probe

interventions. Here, I first show, in more detail, how increasing the dropout rate grows

the causal effect with the QA attachment suite and distance probes of varying 𝛼. Next, I

include the mean causal effect plots for Mask and QA models using both types of probes

on the 5 total suites.

First, I plotted an example of how increasing the dropout rate grew the causal effect in

the QA attachment suite in Figure 6-1. I found that positive dropout values consistently

outperformed probes with no dropout. Furthermore, for 𝛼 ranging from 0.1 to 0.4, increas-

ing the dropout rate seemed to increase the effect size. Considering only interventions at

layer 2, for example, normal probes shifted model predictions by at most 2% for different

parses; for probes with dropout 0.5, probabilities shifted by roughly 20%.
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𝛼/Loss Layer 0.05 0.1 0.2 0.3

Dist. 0.0

1 71.9/59.4 72.7/60.9 73.4/60.9 73.4/60.9
2 69.5/56.3 71.9/60.9 71.9/60.9 71.9/59.4
3 71.1/60.9 71.1/59.4 71.9/59.4 71.9/59.4
4 71.9/62.5 72.6/60.4 71.9/59.4 73.4/60.9
5 68.8/57.8 68.8/56.3 72.7/60.9 73.4/62.5
6 68.8/57.8 69.5/59.4 71.9/60.9 72.7/62.5
7 70.3/60.9 70.3/60.9 72.6/62.5 72.6/62.5

Dist. 0.1

1 69.5/56.3 71.1/59.4 71.9/59.4 71.9/59.4
2 68.8/60.9 70.3/60.9 69.3/59.4 71.1/59.4
3 67.2/56.4 69.5/60.9 72.7/60.9 73.4/62.5
4 75.8/64.1 72.7/60.9 72.7/60.9 72.7/60.9
5 68.8/56.3 70.3/59.4 71.9/57.8 71.1/56.3
6 75.0/59.4 72.7/60.9 73.4/62.5 73.4/62.5
7 72.7/60.9 72.7/62.5 72.7/62.5 72.7/60.9

Dist. 0.2

1 69.5/54.7 70.3/56.3 72.7/59.4 73.4/60.9
2 73.4/60.9 74.2/59.4 74.2/62.5 74.2/62.5
3 70.3/59.4 69.5/56.3 71.1/57.8 71.9/57.8
4 74.2/65.6 75.0/65.6 75.8/65.6 75.0/64.1
5 71.1/62.5 71.9/64.1 71.1/62.5 71.9/60.9
6 73.4/62.5 71.8/59.4 74.2/62.5 74.2/62.5
7 71.9/59.4 73.4/62.5 72.7/62.5 72.7/60.9

Dist. 0.3

1 67.2/54.7 70.3/59.4 73.4/62.5 72.7/60.9
2 68.8/60.9 71.1/60.9 72.7/62.5 71.9/60.9
3 61.7/53.1 64.8/56.3 71.9/64.1 72.3/65.6
4 67.2/59.4 71.9/64.1 75.0/65.6 75.8/65.6
5 62.5/56.3 68.8/59.4 70.3/62.5 70.3/62.5
6 71.1/62.5 711/64.1 70.3/60.9 71.1/60.9
7 75.0/64.1 72.7/62.5 71.9/62.5 73.4/62.5

Table 6.7: Validation Coord. suite results (F1/Exact Match) using distance probes. For
each probe type, I iterated over intervention layer and counterfactual loss value. The small
validation suite was useful for rapid identification of good hyperparameter settings. All
probes had the best performance at layer 4 (in bold).

124



QA Model Causal Effect on Attachment Suites Using Dropout Distance Probes
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Figure 6-1: Dropout distance probes with dropout rates from 0.0 to 0.5 showed how, to a
point, increasing the dropout rate increased the effect size for QA models on the Coord.
suite.
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Finally, I included results for all dropout rates and counterfactual losses in Figures 6-2

and 6-3.
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Figure 6-2: Mask mean causal effects using depth- (top) or distance-based (bottom) probes.
Depth probes revealed smaller effects than distance-based probes, but a similar pattern of
benefiting from lower counterfactual loss and higher dropout.

6.5 Probe Performance Metrics

In the main paper, I demonstrated the benefits of using dropout probes for creating counter-

factual embeddings. One could hypothesize that the dropout enables better counterfactuals

because the probes are prevented from overfitting to the training data. I found that that was

not the case.

In Figure 6-4, I plotted probe performance metrics for the distance- and depth-based

probes. For the distance probe, I reported the spearman correlation coefficient between

predicted and actual pairwise distances between words in a sentence’s parse tree. For the

depth probe, I reported the accuracy of the probe in predicting the word at the root of the

syntax tree. Both metrics were used in prior probing literature [Hewitt and Manning, 2019].
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Figure 6-3: QA mean causal effects using depth-based (top) or distance-based (bottom)
probes.

I found that, while using non-linear probes boosted probe performance compared to

linear probes, adding dropout actually worsened probe performance. This suggests that the

benefits from dropout in counterfactual generation arose from a phenomenon other than

higher-performing probes.
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Figure 6-4: Metrics for the distance (left) and depth (right) probes showed that introducing
dropout worsened probe performance as measured on the probe prediction tasks. Means
over 5 trials plotted. All standard deviations less than 0.01.
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