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Abstract

Increased investments and technological advances in satellite manufacturing and launch services have led
to a newly vitalized Low Earth Orbit (LEO) environment. Megaconstellations consisting of hundreds to
hundreds of thousands of satellites have been proposed, with SpaceX’s Starlink satellite constellation now
reaching more than 5400 operational satellites. This denser LEO environment underscores the urgent need
for models to predict and manage the risk of collisions and the sustainable use of space. Many models have
been proposed over the years to quantify the risk of collisions between resident space objects, including the
seminal paper by Kessler that described the runaway conditions for which LEO could become unusable.

In this thesis, the development of the MIT Orbital Capacity Analysis Tool (MOCAT) is described along
with conclusions and insights. MOCAT is a novel open-source approach to evaluating the LEO environment
and comprises of a Source Sink Evolutionary Model (SSEM) and a Monte Carlo (MC) method. The SSEM
simplifies the complex dynamics of space-object interactions into deterministic equations, focusing on the
long-term evolution of orbital populations across different altitude shells. The simplified nature of the SSEM
allows for computational efficiency, which enables optimization routines such as the exploration of equilibrium
solutions for LEO carrying capacity. The improvements to the SSEM in this work through binning in the
physical dimension as well as inclusion of Delta-V dynamics from the collision dynamics increases the fidelity
of the SSEM.

In comparison, MOCAT-MC offers a comprehensive means to simulate the individual interactions between
RSOs. The MOCAT-MC tool propagates the orbits of low-earth orbit objects and models their interactions
including collisions and explosions, and provides insights into the evolving trends of the LEO population. Of
particular note is the computational efficiency of the model, which is essential for managing the complexities
inherent in orbital dynamics and the potential large number of objects centuries into the future. Valida-
tion results and a range of simulations, including no-future launch scenarios and the launch of proposed
megaconstellations totaling more than 80,000 active payloads are explored, resulting in millions of trackable
objects. Despite the much fewer megaconstellations planned at the higher altitudes, even a small fraction of
failures in post-mission disposal or collision avoidance maneuvers result in an outsized effect on orbital debris
accumulation. MOCAT-MC is able to simulate Lethal Non-Trackable (LNT) objects, which comprise the
vast majority of the orbital population today. These lethal non-trackable object population will only grow as
more payloads and debris are launched into orbit and increase the collision rate. The effect of these objects
are modeled and discussed.

These two models offer different approaches to modeling the future orbital environment each with its
strengths and weaknesses. Validation against existing models in literature shows the utility of MOCAT in
informing future space traffic management and constellation design. The MOCAT tool has been created such
that researchers can use a common model that is validated, robust, and efficient, allowing for advancement in
our ability to forecast and mitigate the risks associated with the increasing density of LEO while advocating
for a more sustainable approach to space exploration and utilization.
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Chapter 1

Introduction

Since the dawn of the Space Age in 1957, the number of space objects residing in space has increased

exponentially. Especially in the last decade, there has been an abrupt increase in space activity also due

to the increasing presence of the private companies. This general growth of space economy has led to

the overcrowding of specific orbital regions around the Earth, such as the Low Earth Orbit (LEO) region,

intensified by the presence of a considerable number of space debris.

Several challenges, first and foremost the increasing density of objects in orbit, is threatening the ability

of space activities of benefit of Earth and its people. Some experts predict the population will reach a level

at which it becomes self-sustaining, the so-called “Kessler syndrome” [60], where collisions would continue

to increase the amount of debris in orbit, even without any new launches. The orbital environment around

Earth is a limited resource just as the Earth’s non-renewable resources. Various guidelines and policies to

minimize the creation of debris have been developed within and between governments.

Over the years, with the purpose of assessing the criticality of individual objects with respect to their

contribution to the space debris environment, several formulations of space debris indices have been developed.

They are defined in such a way as to start from the knowledge of high-level information about the space

object, such as its mass and the orbital parameters, in order to evaluate their potential detrimental effects on

the debris environment over both the short-term and the long-term. The space debris indices could be used

to scale the requirements for a mission such that a certain environment criticality is not achieved. However,

this is not sufficient to control the overall environmental effect.

1.1 Motivation

The topic of sustainability of limited resources has been a topic of importance, though viewing the space

environment as a limited resource and research into this has been relatively recent. As the recent investments

and technological advances in satellite manufacturing and launch services have ushered in a newly vitalized

Low Earth Orbit (LEO) environment, the need for a better understanding of this resource is paramount.
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Megaconstellations consisting of hundreds to hundreds of thousands of satellites have been proposed, with

SpaceX’s Starlink satellite reaching more than 5000 satellites launched since 2018.

The resident space objects (RSO) orbiting the Earth consist of not only active payload but also debris

objects. These objects consist of derelict satellites that are intact but uncontrollable and often incommuni-

cable payloads, rocket bodies that are spent stages of a launch vehicle, and other smaller debris that may

come from the launch process or from fragmentation events. With the increased launch cadence and more

satellites and masses put up into LEO, the debris population has grown significantly in the recent years.

With the increased number of LEO objects so does the collision risk. Uncontrollable derelict satellites and

debris objects force active satellites to maneuver to avoid conjunction. When such measures fail, collisions,

such as the Iridium-Cosmos collision in 2009, can occur with higher frequency, causing more debris pieces,

many of which are too small to be tracked by space surveillance sensors. It is critical to reduce the number

of uncontrolled objects in LEO to avoid saturating the sensor capacity and to reduce orbital conjunction

risk; however, many obstacles exist. The new space age has brought with it a congested LEO, where new

commercial and government mega constellations are being proposed at a faster rate that require strict man-

agement of the orbital architecture along with deorbiting measures to remove payloads that are past their

lifetimes. ASAT tests such as the destruction of Cosmos-1408 in 2021 produced thousands of debris pieces

and led the crew of the International Space Station to take emergency measures due to the risk of collision

with an approaching debris cloud. Around 300 on-orbit fragmentation events have occurred to date, many

of them from natural conjunction between orbiting objects. In the year 2021 alone, there have been several

fragmentation events, which are organized in Table 1.1 with data from DISCOSweb [62]. The November 18

and 26 fragmentation events occurred soon after the ASAT test on November 15, allowing for some possibility

that a chain collision event took place. This also shows the difficulty in confirming collisions after the fact,

and understanding the source of such objects.

Date Object Name Altitude Event Type SATNO Int. designator
3/10 NOAA 17 800 km Battery 27453 2022-032A
3/18 Yunhai 1-02 780 km Collision 44547 2019-063A
10/24 Cosmos-2499 1300 km Unknown 39765 2014-028E
11/15 Cosmos-1408 480 km ASAT 13552 1982-092A
11/18 Orbcomm FM05 760 km Unknown 25114 1997-084F
11/26 ORION 38 (Pegasus XL) 570 km Unknown 45877 2020-046E

Table 1.1: LEO fragmentation events in 2021 as reported on DISCOSweb

A runaway phenomenon of collisions that create debris that cause more collisions to a point where the space

environment is no longer usable for payloads was first described in the seminal paper [2]. The Department

of Defense originally performed the tracking and conjunction assessment of space objects with data from

the Space Surveillance Network for Space Situational Awareness (SSA). Since 2005, the NASA Conjunction
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Name Int. designator Breakup epoch Fragments
Fengyun 1C 1999-025A 11 Jan 2007 3431
Cosmos-2251 1993-036A 10 Feb 2009 1667
HAPS 1994-029B 03 Jun 1996 753
Iridium 33 1997-051C 10 Feb 2009 627
Cosmos-2421 2006-026A 14 Mar 2008 509
H8 1986-019C 13 Nov 1986 497
Cosmos-1275 1981-053A 24 Jul 1981 478
Titan Transtage 0-000None 15 Oct 1965 473
NOAA 16 2000-055A 25 Nov 2015 458
Centaur-5 SEC 2014-055B 30 Aug 2018 455

Table 1.2: Top 10 fragmentation events by number of fragments

Assessment Risk Analysis (CARA) program has been performing routine on-orbit satellite conjunction risk

analysis.

Another challenge to the space-debris problem is the existence of lethal non-trackable (LNT) objects.

Several organizations and institutions around the world track objects in orbit, focusing primarily on larger

objects such as satellites and space debris. Tracking resident space objects (RSOs) in orbit typically involves

using a combination of ground-based radar systems and optical telescopes. Radar systems can provide

precise measurements of an object’s position, velocity, and trajectory by detecting the radar signals reflected

off the object. Optical telescopes, on the other hand, rely on capturing light reflected by the object to

track its position. Advancements in technology have enabled better tracking capabilities. Radar systems

have improved in sensitivity and resolution, allowing the detection and tracking of smaller objects. Optical

telescopes have also benefited from more advanced imaging techniques and larger telescope sizes, aiding in

the detection of faint objects.

Additionally, organizations such as the U.S. Space Surveillance Network (SSN) and other international

space agencies work toward cataloging and monitoring objects in space. They maintain extensive databases

that contain information on known objects in orbit, including their orbital parameters and characteristics.

These databases help track and predict the movements of objects in space, helping to avoid collisions with

operational satellites.

Although there have been considerable improvements in technology to support searching and tracking of

orbital objects, tracking small objects remains a challenging task. Tracking smaller objects, such as fragments

or debris that measure a few centimeters or less, remains difficult because of their size and limited reflectivity

in the visible spectrum as well as radar frequencies.

From in situ measurements and terrestrial testing of orbital collision dynamics, it is understood that every

collision event causes fragments that can be vanishingly small even down to the micrometer level.

There has been a greater understanding that the space environment is a common good and that all

stakeholders have a vested interest in mitigating the space debris problem. Commercial companies of mega-

constellations such as SpaceX and OneWeb have incorporated debris mitigation strategies such as launching
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a batch of payloads into a lower launch, whereby the individual payloads would perform checkout then raise

their orbits to insert into the final operational orbit. The derelict satellites will then decay much faster than

had they initially been placed in the higher operational orbit. Such a traffic pattern is something unique to

the megaconstellations, and the steady-state traffic pattern due to these maneuvering satellites will need to

be modeled along with the associated risks due to the increased volume that is traversing through multiple

altitude regimes.

Space debris has emerged as a critical environmental and political issue because of the substantial increase

in objects orbiting Earth, especially in the Low Earth Orbit (LEO). Several factors contribute to this recent

increase in the number of objects, including cost-efficient launches, increased commercial activity, and many

debris-creating events in space, such as explosions and collisions, including antisatellite weapon tests. In

particular, recent advances in orbital launch technologies and growth of the commercial launch providers

have made launches to LEO much cheaper and more reliable leading to a new space age. Until recently, the

increase in object number in space was around 300 objects per year; however, increased launch cadence and

the rise of large LEO constellations (LLC) has led to a marked increase in LEO population. For example,

from 2019 to 2023, SpaceX alone has launched more than 5,500 satellites. The US Federal Communications

Commission (FCC) and the United Nation International Telecommunication Union (ITU) filings show that

companies or governments are getting approvals for constellations that are greater than the current number of

objects in space. Although now defunct, in 2021 the government of Rwanda filed with the ITU a constellation

of 327,230 satellites, and a Canadian company Aether filed for a constellation with 115,000 satellites [5, 4].

The accumulation of these operational payloads and uncontrolled debris poses a growing collision risk

to operational satellites and disrupts crucial communication, weather forecasting, navigation, and scientific

observation capabilities, as well as human space-flight missions. As the debris from fragmentation events

create much more debris from collisions, it may be possible to create a cascading effect of chain reaction,

which is a phenomenon known as the Kessler syndrome, which may render certain altitudes unusable and

threaten the sustainability of space operations. The only natural sink to remove space debris from LEO is

the upper atmosphere’s low density; there is a limit to how many collisions can be tolerated in LEO, which

is highly dependent on the orbital altitude.

Recent advances in technologies and policies addressing the space debris problem encompass several key

areas. Active Debris Removal (ADR) technologies are being developed, including systems such as harpoons,

nets, robotic arms, and space tugs, to capture, deorbit, or mitigate the effects of space debris [75, 88, 150, 43,

127, 23]. Several international organizations have established guidelines and standards for debris mitigation,

with the aim of minimizing debris generation and improving spacecraft design. Efforts in space traffic

management (STM) seek to enhance situational awareness, collision avoidance, and coordination among

satellite operators [11, 86, 84]. Improved tracking and surveillance technologies have helped to monitor and

catalog space debris, improving space situational awareness. International collaboration and agreements are

crucial for promoting information sharing, joint research efforts, and coordinated actions on a global scale.

24



These technologies and policies collectively aim to mitigate space debris growth, minimize collision risks, and

ensure the sustainability of space activities. Continued advances in technology, international cooperation, and

regulatory frameworks are essential to effectively address the challenges posed by space debris. Multi-national

studies have shown the dangers of this increased population, and policies and metrics have been proposed to

counteract the increased risk in the space environment [7, 54, 131, 133, 36, 34]. Recently, debris-mitigation

policies such as the ‘5-year rule’ [37] have been enacted, and tesolutions to limit debris-causing antisatellite

tests have come from the UN as well as the commercial space industry [141, 8].

Orbital environment modeling shares several similarities with environmental modeling in fields such as

global warming. Complex systems with numerous interconnected variables and interactions need to be

modeled and predictions must be made with the best estimate of future inputs from controllable factors such as

human activity and mitigation efforts, as well as natural phenomena such as sequestration. Modeling is heavily

based on data collection, analysis, and simulation. For data on space debris, numerous in-situ measurements

and observational techniques have been deployed over the years. These methods include space-based sensors,

laser ranging, radar observations, spacecraft inspections and retrieval missions, impact studies on spacecraft

surfaces, particle detectors, and laboratory analysis of collected debris. These techniques play a vital role

in understanding the characteristics, distribution, and behavior of space debris, significantly contributing

to efforts aimed at mitigating risks and managing the space environment. Continuous advancements in

observational technologies and missions remain critical for further improving our understanding of the space

debris environment.

Ultimately, these models are often used to create sustainable policy and can have significant policy

implications. Such modeling efforts and global consensus led to the Paris Accord, an international treaty

developed within the United Nations Framework Convention on Climate Change to address climate change

by limiting global warming to well below 2 degrees Celsius. Similarly, addressing the space debris problem

will require global collaboration, responsible space practices, effective debris mitigation strategies, and the

advancement of technologies for active debris removal and improved space situational awareness. Space debris

models guide policies and strategies for space traffic management, debris mitigation, and spacecraft design

to ensure sustainability of space activities.

1.1.1 Modeling the LEO environment

Ever-increasing launch-rate due to proposed LLCs pose an unprecedented increase in the risk of conjunction,

as collision probability scales as 𝑁2 where 𝑁 is the number of orbital objects. To understand the complex

dynamics of space debris, multiple sophisticated modeling approaches have been developed. Kessler’s paper

in 1978 originally described the potential for runaway growth of orbital debris due to debris that causes

more debris through collisions, which could lead to an unusable orbital environment [60]. Since then, several

analytical methods have been proposed in the literature to better quantify this risk, which can be divided

into a few categories. There are largely two methods to model the evolution of the LEO RSO population
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and collision risk: statistical sampling methods such as Monte Carlo methods, and source-sink models, also

known as particle-in-box models. There are also heuristic metrics to quantify the risk per object for any

particular composition of the LEO environment.

The sensitivity analysis performed through these models evaluates the efficacy of the proposed mitigation

measures. They examine the impact of debris removal strategies, spacecraft design alterations, and oper-

ational changes on reducing debris generation and collision risks. These modeling efforts serve the critical

purpose of enhancing our understanding of the space debris environment, facilitating predictions of future

scenarios, evaluating risks posed to space assets, and guiding policymakers in formulating effective mitigation

strategies. Given the increasing concern surrounding space debris, continuous advancements in modeling

techniques are imperative to develop robust strategies that mitigate its adverse effects on space operations

and sustainability.

Heuristic-based metrics

Space agencies and organizations often use heuristic methods and metrics for decision making when planning

missions or strategies to ensure space sustainability. These indexes are a metric used to assess the potential

danger posed by an orbital object and help prioritize the management and mitigation of space debris by

assessing the risk associated with individual debris objects. In the literature, some indexes have been proposed

to quantify this risk.

The Criticality of Spacecraft Index (CSI) ranks the environmental criticality of abandoned objects in LEO

[123]. It takes into account the physical characteristics of a given object, its orbit and the environment where

this is located. Environmental Consequences of Orbital Breakups (ECOB) is based on the evaluation of the

consequences of the fragmentation of the studied object in terms of the increase in the collision probability for

operational satellites. This index considers the likelihood and consequence of fragmentation and end-of-life

mitigation strategies [67].

The concept of environment capacity has been proposed as an index where the number and type of

missions that are compatible with a stable evolution of the orbital environment are quantified by considering

the evolution of the environment [64]. The yearly average number of fragments above an assigned size

threshold expected as a result of accidental collisions.

In [108] numerous international space organizations contributed lists of the top 50 concerning objects,

which were compared using multiple algorithms to create a ranked composite list. Factors such as mass,

encounter rates, orbital lifetime, and proximity to operational satellites were shown to be crucial. This list

aims to improve space safety and long-term sustainability by highlighting the most hazardous objects in LEO

that need to be removed. Similarly, MITRI is an index to help identify the most dangerous debris that can be

removed considering the requirements of the chaser spacecraft and the constraints of the mission [127]. The

index considers the proximity of the debris to highly populated regions, its persistence in orbit, its likelihood

to collide, and the estimated number and mass of debris it can generate.

26



By combining these factors, the criticality index aims to prioritize which debris objects need immediate

attention for removal or mitigation strategies. Objects with a higher criticality index are typically targeted

for potential remediation or collision avoidance maneuvers to reduce the risk they pose to active satellites

and spacecraft.

Using the modeling technique listed above, two types of orbital capacity can be defined: deterministic

capacity as well as probabilistic capacity. Deterministic capacity refers to the orbital capacity without un-

known and uncontrolled objects. This is analogous to the theoretical maximum capacity of the environment,

given some minimum permitted separation distance between objects. In this case, no collisions are assumed.

Probabilistic capacity refers to the opposite end of the spectrum, where collisions are modeled as a Poisson

random process, and the capacity is determined with some criteria with regard to stability or number of

collisions. Some examples include [140, 59, 72].

Indexing the debris environment has also been considered as a possible measure to enact policies or levy

economic incentives. These range from giving some metric on the critical orbits for debris [22, 67, 56] to

measuring individual RSO’s contribution to the debris risk [71, 113, 123, 70, 56, 42]. Such criticality indexes

can serve as a good validation for any capacity definitions and analysis of the trade-off between cumulative

environmental criticality to maximum capacity. Similarly, the effect of physically repositioning key debris

and its effect on the risk of orbital collisions was analyzed in [16]. The effect of the quality of SSA data on

the Space Sustainability Rating has also been analyzed [73]. Many policy-level analysis on capacity building

ranging from SSA data sharing to debris mitigation tech development and legal hurdles are described also in

the book [98].

Constellation design and slotting methods

Geosynchronous Earth orbit (GEO) has long been a highly coveted yet scarce real estate. Starting as

a measure for spectrum management, the international community agreed in the 1960s to regulate the

assignment of slots in the GEO belt through the International Telecommunications Union (ITU) such that

any company or nation planning to launch a satellite to GEO must apply to the ITU for an orbital slot. The

slotting mechanism for such a low-inclination and specific altitude orbit has been easy to understand and

implement.

In the LEO environment, however, the RSOs span many intersecting orbits with a wide range of altitudes,

inclinations, and eccentricities. The complexity of staking a particular orbit in LEO has meant that no

internationally recognized governing body administers the LEO regime. This has also meant that the burden

of predicting collisions between objects is much more complex and often falls on the payload owner. This

has given rise to commercial Space Situational Awareness (SSA) companies that sell high-fidelity ephemeris

data to the satellite owners.

Other slotting schemes for LEO has been proposed. Sun-synchronous Orbit (SSO) is a type of LEO

orbit that is useful for remote sensing, and slotting architectures for those particular set of orbits has been
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proposed [15, 111, 147]. Lattice Flower Constellation (LFC) theory has been applied to efficiently stack

constellations for constellations with varying eccentricities and inclinations [11, 84]. The typical FCC filings

for LEO often claim ±30 km orbital tolerances, although with slotting methods, a 5 km or less spacing may

be possible, allowing for a denser use of LEO. Note that all slotting methods require reasonable knowledge

of the spacecraft orbital state as well as controllability. These attributes will guarantee a passively-safe RSO

population within the constellation.

Source-Sink Models

Source-Sink evolutionary models describe the interactions between populations of objects with ordinary differ-

ential equations. These types of models are based upon predator-prey models, also known as Lotka–Volterra

Dynamical Systems [95, 145], in which a pair of first-order nonlinear differential equations are used to describe

the dynamics of biological or ecological systems. In the case of space debris, all space objects of interest could

be categorized as payloads, derelict satellites, or debris, three ordinary differential equations can describe the

interaction between these populations. Average values are often used to describe the population’s charac-

teristics, such as a population’s size, velocity, rate of launch and failure-rate. This simplification removes

the need for computationally expensive propagation of individual object states to estimate a future debris

environment. Gross populations are propagated forward according to the governing differential equations,

which allows for fast solutions even far into the future. The exploration of a wide set of initial conditions and

parameters is much more approachable using such methods. These methods are also usually deterministic

in that given a set of input variables, a consistent output can be expected as the variables interact in a

formalized manner.

Kessler and Cour-Palais first described the feedback runaway phenomena and identified the risk of an

exponential increase in the number of space debris, and since then, a few evolutionary models have been

proposed in the literature. Talent introduces the particles-in-box (PIB) model where a population within

an orbital shell is assumed to have some average characteristic and interactions. Fast Debris Evolution

(FADE) used simplified first-order differential equations to describe the population interaction. JASON

describes a three-population model for one shell and a given launch cadence [75]. Many models have expanded

the evolutionary model to analyze multiple shells, optimal control schemes and economic equilibrium for

maximum policy intake. The MIT Orbital Capacity Tool Source-Sink Evolutionary Model (MOCAT-SSEM)

is able to create a flexible and modular multi-fidelity model to model the evolution of the LEO population

quickly [83]. The low computational cost demonstrates the ability to optimize over user-defined cost functions

for policy-making and governance, and calculate the risk-based space-environment capacity [26].

Monte-Carlo Methods

Statistical sampling methods propagate every RSO’s orbital states with high fidelity propagators to estimate

the future space environment at some small time steps, much like a particle filter. This method allows accurate
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near-future predictions of potential collisions and is used operationally today for conjunction avoidance.

Several such sampling-based models have been developed by space agencies and private entities due to the

large-scale development needed. Examples include NASA’s Orbital Debris Engineering Model (ORDEM)

and LEO to Geosynchronous Orbit Debris model (LEGEND)[89], European Space Agency’s Orbital Debris

Evolutionary Model (ODEM), Chinese Academy of Sciences’ SOLEM (Space Objects Long-term Evolution

Model), University of Southampton and United Kingdom Space Agency’s Debris Analysis and Monitoring

Architecture for the Geosynchronous Environment (DAMAGE)[76, 80], MEDEE model from Centre National

d’Etudes Spatiales [30], DELTA model from European Space Agency [100], LUCA model from Technische

University at Braunschweig [116], NEODEEM model from Kyushu University and the Japan Aerospace

Exploration Agency, IMPACT [130], and others [146, 31, 121].

For each of these models, the debris population and densities are outputted given some input initial

conditions and assumptions. Computing a debris environment with different sets of assumptions, however,

requires high computational cost, as each object must be propagated. Sampling over a distribution of

uncertainties on the states and parameters would require an exponential number of propagations. The high

cost is due to the small time steps required to accurately model a collision and semi-analytical propagators

requiring high compute cost to propagate far into the future. For each collision or fragmentation event,

some breakup model such as NASA Standard Breakup Model is used to model the debris cloud generation.

Although the outputted debris distribution for some assumed initial condition and future traffic model exist,

all of these models are closed-source and inputting arbitrary assumptions is difficult if not impossible.

Collision detection is an essential part of modeling the future growth of debris. It can also become the most

computationally taxing part of any model. To model the long-term evolution of the space environment, there

is a spectrum of methods to determine whether a collision has occurred. In general, they can be divided

into deterministic methods and stochastic sampling-based methods. Deterministic methods calculate the

actual point of closest approach for each pair of satellites that are nearby. Adaptive propagation time steps

are needed to calculate the precise moment and distance between two objects, which imposes a significantly

higher computational cost, and typically the computational scaling of these PCA methods to 𝑛 objects would

be 𝒪(𝑛2); however, methods that filter pairs of comparisons have been proposed in the literature that allow

for complexity of 𝒪(𝑛1.5) [10, 41, 96].

Though the collision and atmospheric sink dynamics as well as various orbital perturbation forces can be

modeled well, propagation of tens of thousands of orbital objects and a high-dimensional parameter space

make these calculations untenable for centennial scale modeling of the debris environment. For example, in

[121] a set of roughly 19 million orbits was propagated for 120 years, which took an equivalent of 24 years of

CPU time.

These deterministic methods are used mainly by operational groups such as the NASA Conjunction

Assessment Risk Analysis (CARA) team and the 18th Space Control Squadron (18 SPCS) to perform routine

on-orbit satellite conjunction assessment [44, 46, 53]. These collision probabilities are calculated for each close
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encounter, and as an example, NASA CARA calculates the probability of collision (𝑃𝑐) as

𝑃𝑐 =
1

2𝜋
√
𝐶

∫︁∫︁
𝐴

𝑒−
1
2 𝑟

𝑇𝐶−1𝑟𝑑𝑥𝑑𝑧, (1.1)

where 𝐴 is the cross-sectional with the defined hard body radius, 𝑟 is the distance between objects at the

point of closest approach, and 𝐶 is the total covariance between the two objects.

An example of the stochastic sampling-based method is the Cube method, which has been proposed to

estimate collision rates using sampling methods to reduce the computational complexity at the expense of

fidelity [87]. This method has been used in numerous MC tools due to its scalability and simple implementa-

tion [92, 89], although some care is needed to tune the algorithm parameters for realistic collision probability

[78]. The computational scaling of Cube to 𝑛 objects is 𝒪(𝑛). These stochastic methods are typically used

for long-term modeling that requires enough fidelity to scale with the population of the orbiting objects.

The creation of debris objects after an on-orbit collision is done through the fragmentation model. On-

orbit collisions typically have very high energy content, and most historic approaches modeled the mass

distribution that followed the power law, starting with [14]. The propagation of debris clouds has also been

an active area of research. Nominally, a covariance propagation model may be adapted, though the log-

normal distribution of the number of objects and imparted ∆𝑉 in a collision is ill-suited to the multivariate

Gaussian assumption for covariances. The evolution of the debris cloud and its effect on key LEO orbits have

been formulated and analyzed in [45, 24, 39]. Efficient cloud propagation has been explored using DAMAGE

and other MC approaches [122, 74, 66]. The specific contribution of explosion and future collision fragments

to the orbital debris environment showed the importance of mitigating fragmentation events [135, 125].

The probabilistic uncertainty of debris lifetime was analyzed in [28, 97, 77]. The effect of thomospheric

contraction on debris reentry has been modeled [80]. Emperical modeling from fragmentation events such

as the Iridium-Cosmos collision and the 2013 ASAT test has validated some models [149, 58, 134]. As such,

many fragmentation models have existed since the early days of the Space Age, many of which are detailed

in [49].

NASA’s Standard Breakup Model (SBM) [55, 63] is a semiempirical model based on evidence compiled

from historical orbital data and terrestrial hypervelocity tests such as the Satellite Orbital Debris Character-

ization Impact Test (SOCIT). With updates to the model from many tests and on-orbit data, it has become

a popular choice as a fragmentation model. The model is deterministic and sample-based, and the samples

are described by 𝐿 the characteristic length, 𝐴/𝑚 the area-to-mass ratio, and ∆𝑣 the ejection velocity in a

random direction from the parent velocity.

The SBM specifies that the impact energy per target mass is

𝜖 =
1

2

𝑚𝑐

𝑚𝑡
𝑣2𝑐 , (1.2)

where 𝑚𝑐 is the mass of the chaser and 𝑚𝑡 is the mass of the target, and impact velocity is 𝑣𝑐. The mass of
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the target is assumed to be greater than the mass of the chaser. A collision is considered to be catastrophic

where the chaser and the target are completely fragmented when 𝜖 > 40 J/g and non-catastrophic if not. A

completely fragmented object follows the SBM in creating debris down to the given minimum 𝐿𝐶 size and

follows the power-law distribution up to 1 meter size. During a noncatastrophic collision, only the smaller

object completely fragments, while the mass of the larger parent object stays intact as one object. In this

case, the intact parent object may lose some mass or gain some mass, depending on the closing velocity and

mass of the projectile.

Although many of the long-term evolutionary models are proprietary, the Inter-Agency Space Debris

Coordination Committee (IADC) routinely compares several models and has published comparisons [94, 12].

As noted, most of these models use the same assumptions, break-up models, etc. which may contribute to

bias on the results, but it is also seen that even for very simple scenarios such as No Future Launches (NFL)

or business as usual (BAU) the models can vary in their outputs. The randomized initial sampling of the

initial distribution of Resident Space Objects (RSOs) used by these MC methods proves to be important, as

seen by the fact that, for all of the models, the results span a wide range.

1.2 MOCAT

The establishment of a common, validated, and open-source model for space debris is imperative for sev-

eral reasons. Firstly, such a model ensures standardization and consistency between stakeholders, creating

a shared language and methodology for analyzing space debris. This framework facilitates effective com-

munication and information sharing among governments, space agencies, researchers, and industry players.

In addition, a validated model improves accuracy in assessing collision risks and predicting debris behavior,

crucial for ensuring the safety of spacecraft, satellites, and astronauts in orbit. Policymakers benefit from this

shared understanding to develop regulations and policies, foster international agreements, and make informed

decisions on space activities. Furthermore, resource allocation becomes more efficient with a validated open

source model, allowing stakeholders to prioritize investments in proven technologies and strategies. Collabo-

ration and knowledge sharing are encouraged, leading to continuous improvements in space debris modeling

techniques. Finally, such a model helps to raise public awareness of the challenges of space debris, edu-

cate stakeholders about responsible space activities, and garner support for relevant policies and initiatives.

Ultimately, it contributes to the sustainable use of outer space and the preservation of critical space assets.

To address the challenges and needs mentioned above, the MIT Orbital Capacity Assessment Tool (MO-

CAT) was created, which consists of two methods: a source-sink evolutionary model (MOCAT-SSEM) and

a Monte Carlo approach (MOCAT-MC). MOCAT-SSEM is a multibin multishell generalizable SSEM model

that is flexible in its object definitions. MOCAT-MC is a full-scale three-dimensional debris evolution-

ary model which propagates individual objects and models the interactions between objects at each time

step, with the aim of assessing the LEO RSO population. In this thesis the development and validation of
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MOCAT-MC is described and a summary of analysis of the LEO environment in the past and future, along

with improvements to MOCAT-SSEM for a higher-fidelity model. MOCAT is developed in Matlab and is

open source, available in https://github.com/ARCLab-MIT.

1.3 Thesis Contributions

This section describes the main contributions of this thesis that close the technical gap in modeling the

population evolution in LEO with variable-fidelity models. This section also includes a roadmap of the

chapters found in this thesis.

This thesis makes several contributions to the literature, including:

• Development of the first open-source MC-based evolutionary orbital population model

• Simulation of tens of millions of orbital objects including Lethal Non-Trackable objects centuries into

the future using single processing thread

• Demonstration that analytical propagation can be used to scale MC simulations

• First analysis of future constellation traffic as filed with ITU and FCC, reaching 82,000 operational

satellites in LEO from the megaconstellations alone

• Increased fidelity of the Source-Sink Evolutionary Model (SSEM) through the use of multi-binned

objects

• Novel inclusion of the Delta-V dynamics to SSEM formulation allowing for shell-to-shell interactivity

in debris deposition.

1.3.1 Thesis Organization

The research motivation, introduction and literature review are described in Chapter 1. Chapter 2 describes

the MC methods for evolutionary modeling of the LEO population that exist in the literature. Gaps in the

literature are identified and MOCAT-MC is described, validated, and used to analyze several future scenarios.

Chapter 3 describes the inclusion of Lethal Non-Trackable objects into MOCAT-MC and the effect of LNT

on future space environment modeling and space sustainability. Chapter 4 describes the SSEM models and

the development of the multi-bin model and Delta-V dynamics to increase its fidelity. Chapter 5 summarizes

the work and explores potential future work.
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Chapter 2

A New Monte-Carlo model for the Space

Environment and its Prediction for

Planned Missions

2.1 Introduction to MOCAT-MC

The MIT Orbital Capacity Tool (MOCAT) consists of a Monte Carlo approach called MOCAT-MC to

simulate the long-term evolution of LEO orbital objects. The development of MOCAT-MC provides an open

source validated tool that can be accessed and used by the scientific community, and particular attention

is given to the computational speed of all the blocks of the tool. It is a full-scale three-dimensional debris

evolutionary model which propagates individual objects and models the interactions between objects at each

time step, with the aim of assessing the LEO RSO population. The tool is developed in Matlab.

One of the drawbacks of MC methods is the high computational time required to run the simulations,

which prevents these software from being tested against many different scenarios in terms of initial population,

launch rate, collision and explosion event occurrences, etc. Additionally, several catalogs are considered and

merged to obtain the current initial population. For what concerns the main core of the MOCAT-MC, several

phenomena are considered, such as the atmospheric model and the propagator fidelity, active satellite station-

keeping, new launches, reentry, post-mission disposal (PMD), explosions, and collisions. In particular, the last

two events are modeled via the NASA standard break-up model (SBM). Finally, the proposed MOCAT-MC

is tested with different launch rate scenarios, including the no future launches scenario.

Though this Monte Carlo approach is computationally expensive, it is capable of modeling and tracking

individual objects’ orbital and interaction history. Individual objects’ parameters and trajectories at each

time-step are adjustable, allowing for specific orbital maneuvers or change of physical parameters for each
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satellite.

A simulation consisting of many episodes is run with sampling of one or more random variables with

associated probability distribution functions (PDF). The random variables to be sampled and the PDFs can

vary depending on the analysis to be performed.

The MOCAT-MC simulation setup involves several critical inputs to establish the scenario. These include

the choice of the propagator, scenario duration, propagation time steps, atmospheric model, and parameters

for collision detection. Additionally, initialization requires defining the initial population of space objects,

specifying their properties, and incorporating a launch traffic model. This initial population may involve sam-

pling from a probability distribution function (PDF) of the debris population. Furthermore, the methodology

for orbit control and the post-mission disposal rate are chosen for each type of space object.

Throughout each time step in the simulation, all objects undergo propagation, and the probability of

collision is calculated for pairs of objects situated closer than a specified Cube parameter. Collision events

are randomly sampled, and debris is generated based on determinations from the NASA Standard Breakup

Model (SBM). The simulation also includes modeling explosions according to the SBM, with preset explosion

probabilities at the beginning of the simulation.

Subsequent to the initialization phase, MOCAT-MC enters a propagation loop. At each subsequent time

step several key actions are executed. Active Resident Space Objects (RSOs) actively maintain their orbital

altitude to counteract the effects of atmospheric drag. New launches are introduced into the simulation,

either based on predetermined launch dates and orbital profiles or sampled from a probability distribution

function (PDF) representing launch rates and final orbits.

Certain RSOs are deliberately deorbited and removed from the simulation as a result of atmospheric

reentry. In addition, active satellites reaching the end of their designated lifetime undergo post-misssion

disposal (PMD). However, some satellites may fail to execute PMD with some probability, transitioning into

an inactive state and remaining in its orbit as an derelict object.

Explosions are simulated with a predefined probability, leading to the creation of smaller debris as de-

scribed by the NASA Standard Breakup Model (EVOLVE 4) [55]. The characteristics of these newly gener-

ated objects, such as quantity, direction, and size, are determined by the model. The Cube method is used

to determine collisions between two objects [92, 87], and results in the generation of numerous debris objects

within the simulation as dictated by the NASA SBM. Depending on several factors including closing velocity

and the mass of the colliding objects, the collision is deemed to be a catastrophic collision or a noncatastrophic

collision. This distinction will determine the number of debris generated as well as the profile.

To validate this new model, comparison can be done to published results from other existing Monte Carlo

methods. Numerous models have been developed by space agencies and private entities, as described earlier.

Although all other codebases are proprietary, an IADC study in 2013 compared several of the models in

[94]. Most of these models use the same assumptions, breakup models, and other submodules, which may

contribute to some bias; however, the general agreement in the final results and conclusions shows that
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comparisons against other models may be a good first step in establishing validity in a new model. It is seen

that even for very simple scenarios such as No Future Launches or Business As Usual the models can vary

in output. The randomized initial sampling of the initial distribution of RSOs used by these MC methods

proves to be important, as seen by the fact that for all of the models, the results span a wide range. Note that

validation of these models against historical data is difficult, as the collision rate – which largely determines

the population growth in long-term simulations – has been a very low-probability event. To date, only four

accidental collisions between two orbital objects have been documented, of which only one produced more

than 5 fragments [61]. Validation of these models and their predictive power will be observed as more data

on on-orbit collision events are observed.

2.2 Methodology

MOCAT-MC has multiple submodules, which is shown in the functional diagram in Figure 2-1. The descrip-

tion of each of these components is described in this section. Note that MOCAT is architected so that the

submodules are modular and are easily adjusted or changed to an alternative method.

Figure 2-1: Schematic of the Monte Carlo tool MOCAT-MC

2.2.1 Analytical Propagator

Commonly, the SGP4 propagator is implemented to propagate the orbital motion of RSOs. However, other

semianalytical and analytical propagators could represent a better choice in terms of a compromise between

fidelity and computational time. Therefore, in MOCAT-MC, an analytical approximation of the solution for

the motion of RSOs in LEO is used, considering the atmospheric drag and the J2 perturbation. The initial

ephemeris is also loaded, which can be seeded with an existing catalog such as the Two Line Element (TLE)

catalog provided publicly by the 18th Space Defense Squadron.

In MOCAT-MC, a time-explicit analytic approximate solution for the motion of low-Earth orbiting satel-
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lites is used. The main perturbations that act on space objects in LEO are the oblateness of the planet and

the presence of atmospheric drag. An averaging perturbation technique has been employed to obtain the

variational equations for the orbital elements with the combined effect of J2 and drag as described in [101].

Implementation of other propagators such as the Draper Semi-analytical Satellite Theory (DSST) [21] and

SGP4 [142] is reserved for future work, though these will require a higher computational burden compared to

the analytical propagator. The propagator is based on two assumptions: the atmospheric density is constant

and the orbit eccentricity is small. However, in the implementation of the analytical propagator, a time-

varying atmospheric model is modeled with a piecewise continuous formulation with a mean solar activity

[143] rather than a static atmospheric density. This allows for effects of geomagnetic storms and solar cycles

to be modeled, which can strongly affect the atmospheric density.

Let us define
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where [�̄�, 𝑒, �̄�, Ω̄, �̄�, �̄� ]𝑇 represents the state vector at the current time 𝑡: semi-major axis, eccentricity, incli-

nation, right ascension of the ascending node, argument of periapsis, and mean anomaly, respectively. The

subscript 0 denotes state variables at the initial time of propagation 𝑡0, and 𝑘2 = 𝜇J2𝑅2
𝐸/2 and 𝐶0 = 1

2𝐶𝑑
𝐴
𝑚𝜌0,

with 𝜇 and 𝑅𝐸 representing the gravitational parameter and radius of the Earth, respectively, 𝜌 the atmo-

spheric density, and 𝐶𝑑, 𝐴, and 𝑚 representing the drag coefficient, area, and mass, respectively.

A static exponential atmospheric model is used to test the validity of the analytical equations of motion in

Eq. (2.2) compared to a numerical propagator that includes drag and J2 effects. For a given initial population

of objects between 200 and 2,000 km altitudes and a one-year propagation time, several relevant metrics are

used for validation purposes: number of objects still in orbit depending on initial altitude ℎ0; reduction in

the semi-major axis depending on ℎ0 and decay in right ascension depending on ℎ0; and finally the time to
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decay depending on ℎ0. Figures 2-2 to 2-5 show the validation results.

Figure 2-2, for instance, illustrates the number of objects as a function of altitude, in the initial population

and after the one-year propagation. It can be observed that the distributions of objects obtained by the

analytical propagator and by the numerical propagator show strong agreement. The analytical propagator

can effectively approximate the number of objects expected as a function of altitude. From Figure 2-3, it is

shown that the analytical propagator typically underestimates the decay in the semi-major axis due to drag,

but the overall distribution of semi-major decay as a function of altitude resembles that of the numerical

propagator. On the contrary, in Figure 2-4, it is observed that the decrease in right ascension is usually

overestimated by the analytical propagator, but the overall distribution of the decrease in right ascension

as a function of altitude is also similar to that displayed by the numerical propagator. Lastly, and related

to the results in Figure 2-3, it is observed in Figure 2-5 that the time to decay is usually overestimated

by the analytical propagator, but the distribution of time to decay as a function of altitude produced by

the analytical propagation also resembles that produced by the numerical propagator. Although certain

quantitative discrepancies appear between the analytical and numerical propagators, the analytical solution

is able to capture the overall effects of drag and J2 as a function of time, while achieving orders of magnitude

shorter computational times: which is particularly meaningful when propagating tens of thousands to millions

of resident space objects.

(a) Analytical propagator (b) Numerical propagator

Figure 2-2: Number of objects in orbit depending on initial altitude. Altitude is binned at 12.5 km.

2.2.2 Initial Population and Data Sources

Simulations that have a basis in today’s orbital environment require some data to seed the initial population.

A range of orbital parameters can be provided to the simulation, which can be sampled to seed the initial

orbital distribution. Each object can have a unique lifetime, station-keeping methods, failure rate, size, etc.

to characterize its behavior and potential interaction with other objects. The initial debris environment is

determined. Depending on the analysis, the size, number, and orbital parameters of these objects can be set.

The minimum size debris to be considered in the model will also be an input parameter, which will affect
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(a) Analytical propagator (b) Numerical propagator

Figure 2-3: Decay in semi-major axis depending on initial altitude.

(a) Analytical propagator (b) Numerical propagator

Figure 2-4: Decay in right ascension depending on initial altitude

(a) Analytical propagator (b) Numerical propagator

Figure 2-5: Time to decay depending on initial altitude

the number of objects in the simulation. The PDF of the debris population parameters can be supplied from

LEO debris models such as ESA’s MASTER model [49] and the current space catalog.

Two Line Element sets (TLEs) are used to identify objects that are currently in orbit around Earth. The
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model considers a total of around 24,000 space objects obtained from Space-Track (as of September 2022)1.

In order to have a complete dataset, some other information such as mass, diameter, status, object-class,

and launch date need to be gathered. The physical characteristics, the date of launch, and the object-class

are retrieved through DISCOS2 developed by the European Space Agency. For up-to-date active/inactive

status of payloads CelesTrak 3 is used. This may be important, as active payloads are able to perform

station keeping and collision avoidance maneuvers and may attempt to dispose after their mission is over.

After processing the data, MIT’s catalog with an epoch of January 1 2022 consists of 21,014 TLEs, out of

which 10,869 are debris, 7,015 payloads of which 5,129 active and 1,886 inactive, 1,421 rocket bodies, and

the remaining 1,709 Mission Related Objects (MRO).

Table 2.1: Definition of parameters for each orbital object in MOCAT-MC

Column 1 - 6 7 8 9 10 11 12

Description �̄�, 𝑒, �̄�, Ω̄, �̄�, �̄� 𝐵* mass radius error
flag

control
flag 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑

Column 13 14 15 - 16 17 - 19 20 - 22 23 24

Description Mission
duration

Contel
Num

Date created,
Date launched 𝑟𝑥,𝑦,𝑧 𝑣𝑥,𝑦,𝑧

object
class ID

Parameters that are defined and tracked for each object throughout the simulation are defined in Table

2.1. The mean osculating orbital elements are defined with semimajor-axis, eccentricity, inclination, RAAN,

argument of perigee, and mean anomaly as: [�̄�, 𝑒, �̄�, Ω̄, �̄�, �̄� ]. 𝐵* is an adjusted value of the ballistic coefficient

of the satellite. Mass is denoted in kg, and radius is denoted in meters. The error flag is used for the internal

propagation error state. The control flag denotes whether the object has control to stay at the desired

semi-major axis 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 for the mission duration after launch. The constellation number denotes which

constellation the object is part of, as defined in the constellation input file. The date created and the date

launched are defined in modified Julian day (MJD). 𝑟𝑥,𝑦,𝑧, 𝑣𝑥,𝑦,𝑧 are cartesian states in inertial frame (ECI).

The object class denotes the type of object, as described in Table 2.2. These definitions are consistent with

those of the ESA MASTER database [49]. The satellite ID is defined for the purpose of tracking individual

objects throughout the simulation.

Table 2.2: Definition of object-class in MOCAT-MC

Class 1 2 3 4 5 6 7 8 9 10 11

Definition PL PL MRO PL FD PL D RB RB MRO RB FD RB D D Other D Ukn

Although all TLE objects are represented in the DISCOS database, some data entries may be omitted. For

MOCAT-MC, DISCOS dataset is used for the physical parameters, launch date (or creation date for debris)

1https://www.space-track.org
2https://discosweb.esoc.esa.int
3https://celestrak.org
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and the type of object as one of eleven categories defined by ESA. As the SatCat TLEs provide orbital

parameters and type of object divided into Payload, Rocket Body, Debris, and Unknown, the objects with

missing DISCOS data are sampled randomly from the PDF produced by the data from existing equivalent

object type using a 2-D Gaussian fit. ESA’s DELTA model resamples the by assuming an aluminum sphere

for the density to calulate the mass from the radius and vice versa, which often overestimates the density of

fragmentation debris.

2.2.3 Launch Rate

The launch profile of new objects can be defined arbitrarily. Historical launch rates and object parameters

can be used, such as the past 𝑛 years of launches, where those objects are launched into the same orbits with

the same object parameters, such as mass and shape. Some other studies have divided the types of objects

into constellation objects, which have a constant launch rate for replenishment level launches assuming some

constant desired constellation size, while nonconstellation objects would be launched at the historical rate

over the 𝑛 year period. Another method of launching would be completely arbitrary, where payloads with

some lifetime are launched into the orbit of interest with randomized orbital parameters. Debris and rocket

bodies can also be introduced per launch, as desired. For both of these scenarios, an assumed increase in

launch rate per year can be specified, modeling some linear increase in launch activity with respect to time.

The FCC and ITU filings for future megaconstellation have been compiled and are discussed in Sec. 2.4.5.

2.2.4 Atmospheric Density Modeling

RSOs in the LEO regime are strongly perturbed by the Earth’s upper atmosphere. Hence, accurate propaga-

tion of LEO RSOs requires an accurate estimate of the drag force caused by the Earth’s upper atmosphere.

However, the ionosphere-thermosphere system is highly dynamic and is strongly influenced by solar and

geomagnetic activities.

In lieu of a static exponential density model, the Jacchia-Bowman 2008 (JB2008) density model is used

in this work [17]. The JB2008 density model is an empirical density model that is extrapolated based on past

historical atmospheric density data to capture the statistically average behavior of the atmosphere under

different solar and geomagnetic forcing. The main drivers for the JB2008 density model are a set of solar

fluxes measured at different wavelengths and the temperature change due to the Disturbance Storm Time

(DSTDTC) index. The set of solar fluxes captures the effects of solar activities; the DSTDTC index, on the

other hand, captures the effect of geomagnetic activities on the thermospheric density field.

The difficulties in accurately predicting the long-term solar and geomagnetic indices are one of the main

challenges with using the JB2008 density model for long-term prediction. The solar fluxes closely correlate

to the solar cycle. A solar cycle lasts approximately 11 years and corresponds to the Sun’s magnetic field

cycle. Here, a moderately active solar cycle is assumed for all future solar cycles, using the observed solar

indices for a moderately active solar cycle taken from [139]. At each propagation instance, the solar indices
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are sampled as independent Gaussian variables around the mean observed values, depending on the relative

month in the solar cycle. On the other hand, a fixed DSTDTC value of 58k is used, which corresponds to

the historical long-term mean DSTDTC value. Note, however, that the strength of the solar cycle tends to

vary across different solar cycles and cycles over periods of high activities and low activities, and this is not

reflected in our current assumption of consistently moderately active solar cycles.

Note that controlled payloads are propagated such that the semi-major axis will stay relatively constant.

When 𝑎 of such an object deviates by some defined amount from 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑎 is simply updated to become

𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 to simulate station-keeping at the desired altitude.

The 𝐵* value can be defined in several ways. When TLEs are supplied, the 𝐵* value supplied from the

catalog can be used. Note that the provided value may be negative and nonphysical, as this parameter is

often a free parameter that is fitted to the sensor data to fit an orbit to create the TLEs. Figure 2-6 shows

the distribution of some TLE sampling over a period of several days, showing the prevalence of negative

𝐵* values and the magnitude with which the value varies from epoch to epoch. Horizontal lines denote the

values of 𝐵* that span more than the limits of the axis. This shows a wide range of the 𝐵* values even for

the same object within a week as reported by the TLE. For non-SGP4 propagators, B-star or AMR should

be calculated separately. MOCAT-MC calculates the AMR from the physical properties of the objects, as

noted in the ESA DISCOS database. A snapshot of the 𝐵* values from TLEs from January 2023 is shown

in Figure A.1 in the appendix.
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Figure 2-6: Variability of 𝐵* values from Space-track.org TLE’s across a 5 day span

Alternatively, 𝐵* can be recalculated from the physical characteristics of the satellite. This method

calculates the parameter as:

𝐵* =
𝐶𝐷 · 𝑟2

2𝑚
· 0.157 (2.3)
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where 𝐶𝐷 is the ballistic coefficient and is simply defined as 𝐶𝐷 = 2.2. The unit for 𝐵* is 𝑅−1
𝐸 .

To include the effects of the space weather, in terms of solar and geomagnetic activities, on the atmospheric

density, the static exponential density model can be replaced by the following density model [9]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑇 = 900 + 2.5 (𝐹10.7 − 70) + 1.5𝐴𝑝

𝑚 = 27− 0.012 (ℎ− 200)

𝐻 = 𝑇/𝑚

𝜌 = 6 · 10−10 exp (−(ℎ− 175)/𝐻)

(2.4)

where 𝐹10.7 is the solar radio flux, measured in solar flux units (SFUs), with one SFU equal to 10−22 W/m2Hz,

𝐴𝑝 is the geomagnetic planetary index, and 𝑇 is the temperature in Kelvin. In periods of strong solar and

geomagnetic activity, both the values of 𝐹10.7 and 𝐴𝑝 increase, heating the atmosphere and increasing the

atmospheric density with a consequent stronger drag sinking mechanism.

Since the above model is valid within the range 150-1100 km, the reference altitude in Eq. (2.4) is assumed

to be fixed at 150 km, for altitudes below 150 km, and at 1100 km, for altitudes above 1100 km.
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Figure 2-7: Comparison between the two atmospheric models

2.2.5 Collision detection

Sensors and algorithms were quickly developed to track orbiting objects soon after the first satellites were

launched. As the number of objects began to increase, and especially so with human activity in LEO,

prediction of the collisions between these objects has become even more important. There has always been

debris associated with launches, be it rocket bodies or small pieces coming from the launch process.

In MOCAT-MC, a stochastic sampling-based method called the Cube method is used as described in
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[92, 87]. In this method, the orbital volume is divided into equally sized cubes and the RSO states are

propagated arbitrarily to see how often RSOs end up in the same volume, which can then count towards an

interaction. For accuracy, the cube volume must become small to the extent where computation for a large

number of satellites also becomes untenable [78].

(a) Divide the space into cubes at each timestep (b) If two or more objects occupy the same cube,
approximate the objects as gas particles in the cube
volume

Figure 2-8: The Cube collision detection scheme involves a two-step process: proximity filter prior to em-
ploying the gas particle collision model

This method estimates the long-term collision probability by uniformly sampling the objects in time. The

method treats any pair of objects to have a static probability of collision over a long period of time, and

the collision probability is calculated for a particular moment in time when the objects are near each other.

This is determined by discretizing the orbital space into cubes and flagging the two objects as close when

they are in the same cube. At this point, the kinetic theory of gas is applied to determine the probability of

collision. The probability of collision is calculated for any two objects that reside within a discretized cube

concurrently as

𝑃𝑖,𝑗 = 𝑠𝑖𝑠𝑗𝑉 𝜎𝑑𝑈 (2.5)

where 𝑠𝑖 and 𝑠𝑗 are the spatial densities of objects 𝑖 and 𝑗 in the cube, respectively, 𝑉 is the relative velocity

between the two objects, 𝜎 is the collision cross-sectional area, and 𝑑𝑈 is the volume of the cube. Note that

this probability is the probability of collision per time, and the aggregate collision for the time step ∆𝑡 is

calculated at that time step as 𝑃𝑖,𝑗∆𝑡. The length of a cube for the proximity filter is often taken as 1% or

less of the mean semimajor axis of objects [92], which is around 70 km for a population of LEO RSOs. The 10

km cube length is often used to exclude collisions between objects that are well controlled within its altitude

region. This two-step algorithm is described graphically in Fig. 2-8. The sensitivity and validity of using

the Cube algorithm with various discretized time steps and cube size for collision detection modeling has

previously been explored in the literature [77]. The relationship between cube resolution and 𝑃𝑖,𝑗 estimation

is explored later in the paper to describe MOCAT-MC and its collision probability parameters. One benefit

of the Cube approach is that the computational complexity is 𝒪(𝑛) as opposed to the exhaustive pairwise

comparison that yields 𝒪(𝑛2) for 𝑛 objects. The Cube method is used in MOCAT-MC as the primary collision
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detection model, as it has been well validated in the literature and due to its computational efficiency.

A comparison between the deterministic method and the stochastic methods is shown later in the results

section. Once a collision is detected, fragmentation dynamics using the NASA Standard Breakup Model

(EVOLVE4) is used as described in the next section.

2.2.6 Fragmentation Model

NASA’s Standard Breakup Model (SBM) [55] is a semiempirical model based on evidence compiled from

historical orbital data and terrestrial hypervelocity tests such as the Satellite Orbital Debris Characterization

Impact Test (SOCIT). The model is deterministic and sample-based, and the samples are described by 𝐿 the

characteristic length, 𝐴/𝑚 the area-to-mass ratio, and ∆𝑣 the ejection velocity in a random direction from

the parent velocity.

The propagation of debris clouds has also been an active area of research. Nominally, a covariance

propagation model may be adapted, though the log-normal distribution of the number of objects and imparted

∆𝑉 in a collision is ill-suited to the multivariate Gaussian assumption for covariances. The evolution of debris

clouds and their effect on key LEO orbits have been formulated and analyzed in [45, 24, 39]. Efficient cloud

propagation has been done using DAMAGE and other MC approaches. [122, 74, 66] The specific contribution

of explosion and future collision fragments to the orbital debris environment showed the importance of

mitigating fragmentation events [135, 125]. The probabilistic uncertainty of the lifetime of the debris was

analyzed in [28, 97, 77]. The effect of thermospheric contraction on debris reentry has been modeled [80].

Emperical modeling from fragmentation events such as the Iridium-Cosmos collision and the 2013 ASAT test

has validated some models [149, 58, 134].

Fragmentation events in MOCAT-MC are simulated with the NASA standard breakdown model (SBM)

[55, 63]. The NASA SBM is a semi-empirical model based on evidence compiled from historical orbital

data measured in-situ on-orbit as well as terrestrial radar measurements and terrestrial hypervelocity impact

experiments. The model is deterministic and sample-based, and samples are described by 𝐿 the characteristic

length, 𝐴/𝑚 the area-to-mass ratio, and ∆𝑣 the ejection velocity in a random direction from the parent

velocity.

Ref. [40] reformulates the model into a probability distribution function, where the number of objects

produced with 𝐿 that is greater than some lower bound 𝐿0 is

𝑁𝐿(𝐿0) = 𝑘𝐿−𝛽
0 𝑘, 𝛽 > 0. (2.6)

𝑘 and 𝛽 are unitless parameters that depend on the type of fragmentation and the physical characteristics of

the objects involved. Although the SBM does not inherently conserve physical quantities such as mass and

kinetic energy [38], this formulation of the breakup model into a probability distribution function allows the

conservation of mass and energy to be enforced.
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The model takes as input the smallest characteristic length 𝐿𝐶 for the generation of debris objects. The

characteristic length is defined as the mean of the three maximum orthogonal projected dimensions of the

object as 𝐿𝐶 = (𝐿𝑥 + 𝐿𝑦 + 𝐿𝑧)/3.

This is an input variable that can be adjusted, though MOCAT-MC’s default value is 0.1 m. Note that

𝐿𝐶 will be treated as an equivalent diameter 𝑑. The number of fragments 𝑛𝑓 of diameter 𝑑 > 𝐿𝐶 can be

computed as

𝑛𝑓 =

⎧⎪⎨⎪⎩6 𝑐𝑠 �̂�
−1.6
𝑐 for explosions

0.1 �̂�0.75 �̂�−1.71
𝑐 for collisions

(2.7)

where

�̂� =

⎧⎪⎪⎨⎪⎪⎩
𝑚𝑡 +𝑚𝑝

[kg]
for �̃�𝑝 ≥ �̃�*

𝑝

𝑚𝑝 𝑣
2
𝑖

1000[kg (m/s)2]
for �̃�𝑝 < �̃�*

𝑝

with �̃�𝑝 =
𝑚𝑝 𝑣

2
𝑖

2𝑚𝑡
(2.8)

Note that the symbol ˆ indicates normalized quantities, 𝑚𝑡 and 𝑚𝑝 are, respectively, the target (mostly

derelicts or rocket bodies) and the projectile mass, 𝑣𝑖 the relative velocity, �̃�𝑝 the specific energy of the

projectile, and �̃�*
𝑝 = 40 [kJ/kg] the specific energy threshold for a catastrophic collision.

The scaling parameter 𝑐𝑠 in Eq. 2.7 is an event-specific calibration constant based on historic events and

an empirical correction for certain classes of fragmentation events (with 0.1 ≤ 𝑐𝑠 ≤ 1.0). For a mass between

600 kg and 1000 kg, the calibration factor is 𝑐𝑠 = 1.0. However, past fragmentation events showed very

different characteristics, thus the break-up models need to be calibrated.

2.2.7 Area to Mass Ratio Calculation

According to the NASA standard break-up model, the area-to-mass ratio 𝐴/𝑚 for new fragments is assigned

according to a bimodal probability density function 𝑝(𝜒, 𝜗).

𝑝(𝜒, 𝜗) = 𝛼(𝜗) 𝑝1(𝜒) + (1− 𝛼(𝜗)) 𝑝2(𝜒) (2.9)

where 𝜒 = log10({𝐴/𝑚}/[m2/kg]) is the area-to-mass parameter, 𝜗 = 𝑙𝑜𝑔10(𝑑/[m]), and 𝑝1,2 indicates the

normally distributed density functions. The parameter 𝛼, the means 𝜇1,2, and the standard deviations 𝜎1,2

are calculated as stated in the NASA’s new EVOLVE 4.0 breakup model [55]. According to which, the

effective cross-section 𝐴, function of the fragment diameter d is

𝐴/[m2] =

⎧⎪⎨⎪⎩0.540424(𝑑/[m])2 for 𝑑 < 1.67mm

0.556945(𝑑/[m])2.0047077 for 𝑑 ≥ 1.67mm
(2.10)
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Figure 2-9: NASA Standard Breakup Model as implemented in MOCAT-MC

The fragment mass is thus determined as

𝑚 =
𝐴

𝐴/𝑚
(2.11)

The model requires also to assign the imparted fragmentation velocities, which are sampled from a normal

distribution characterised by the following mean value and standard deviation

𝜇𝜈 = 0.2𝜒+ 1.85 𝜎𝜈 = 0.4 for explosions

𝜇𝜈 = 0.9𝜒+ 2.90 𝜎𝜈 = 0.4 for collisions
(2.12)

where 𝜈 = log10(∆𝑣/[m/s]).

The generation and propagation of the debris at various times is shown in Fig. 2-10. The 3d plot of the

fragments shows 3 epochs: immediately after the collision, one revolution after, and two revolutions after

the collision. The fragments are generated by MOCAT-MC using the NASA Standard Breakup Model with

𝐿𝐶 = 10 cm. The propagated locations of the original two objects are shown as red circles. As implemented

in the NASA SBM, the magnitude of the ∆𝑉 imparted to each of the debris is stochastically assigned as

a magnitude. For momentum conservation, it is assumed that the direction of the magnitude is uniformly

distributed spherically, as is also implemented in the literature [20, 40, 126].
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Figure 2-10: Time-series graphical view of the debris generated from a collision between two payloads

2.2.8 Active Payload Orbit Control

During propagation, each object is subjected to the effects of atmospheric drag, which causes the reduction

of the semi-major axis 𝑎. On the one hand, this consequence is beneficial for LEO safety because it removes

derelicts and debris, but on the other hand, it has to be counteracted by active satellites. Depending on the

mission altitude and the solar activity level, perturbations, mostly drag effects, could require a satellite to

perform station-keeping maneuvers even once per orbit. For current and future satellites, in particular those

composing megaconstellations, electric propulsion seems to be the adopted hardware solution. This kind

of propulsion system can provide a small level of thrust for a limited amount of time due to limitations in

the available electric power. All of these factors, hardware solution, mission design and mission constraints,

could yield a satellite to split a maneuver into a small set of successive sub-maneuvers over each or a few

orbits. Since the orbit control modeling is not the main focus of the current paper, the solution here adopted

consists of considering the active satellite semi-major axis variation null. In fact, at each time step, all the

Keplerian orbital elements, except 𝑎, are propagated forward in time. More accurate models are planned to

be included in future works.

During propagation, each satellite is subjected to the effects of atmospheric drag. To model station

keeping maneuvers for active satellites, a threshold on the semi-major axis variation ∆𝑎𝑡ℎ𝑟 has been set. The

simplified maneuver consists of adjusting the current semi-major axis 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡) (time dependent) to the

initial and desired value 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 whenever, during propagation, the following condition is verified.

𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡) > ∆𝑎𝑡ℎ𝑟 (2.13)

Moreover, active satellites are supposed to perform collision avoidance maneuvers with a certain prob-

ability of failure, indicated by 𝛼 in case the satellite encounters a noncooperative species (rocket bodies,

derelict or debris), while with 𝛼𝑎 if the encounter is between two active satellites. The resulting probability
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of collision, computed with Eq. 2.5 is therefore pre-multiplied by one of these two factors as:

𝑃𝑖,𝑗 =

⎧⎪⎨⎪⎩𝛼𝑎 𝑃𝑖,𝑗 active-on-active encounter

𝛼 𝑃𝑖,𝑗 otherwise
(2.14)

Although these terms are user-defined, realistically 𝛼𝑎 < 𝛼, as a pair of satellites are assumed to have

a higher chance to successfully perform a collision avoidance maneuver through coordination compared to

an active satellite against a debris. For constellation objects, distinction is often made to differentiate the

effectiveness of collision avoidance within the constellation operator (𝛼𝑖𝑛𝑡𝑟𝑎) and for two different operators

(𝛼𝑖𝑛𝑡𝑒𝑟). Typically, 0 ≈ 𝛼𝑖𝑛𝑡𝑟𝑎 < 𝛼𝑖𝑛𝑡𝑒𝑟 = 𝛼𝑎.

Near-conjunctions for active satellites are a daily occurrence. SpaceX reported that their Starlink con-

stellation has had to maneuver more than 25,000 times in a 6-month span between December 1, 2022 and

May 31, 2023 to perform collision avoidance maneuvers. The 18th and 19th Space Defense Squadrons have

noted that they have issued more than 170 million conjunction data messages (CDM) for more than 3 million

conjunction events between January 2016 and December 2021 [109]. At the current launch rate, the Starlink

satellites will have to maneuver more than a million times in a half-year period by 2028 [115].

Despite the large number of potential conjunction events, there has never been an active-on-active collision,

leading to a historical trend of 𝛼𝑎 = 0. Even an active-on-derelict conjunction is quite rare with such safeguard

and warnings in place. The first collision between satellites was the Iridium-Cosmos collision in 2009, although

the policy of issuing CDMs using high-quality data had not been implemented then [148]. With many more

active satellites and potential debris, this rate may increase.

2.2.9 Future Constellation Traffic

Future constellation traffic is described by specifying a few parameters per constellation in an external file

that is ingested by the simulation during the setup phase. Several parameters must be provided for each

constellation. The altitude and inclination are given for each shell or generation of the constellation, and the

number of satellites already in orbit at the start of the epoch. Satellite parameters such as mass, radius, and

mission life are also required, though missing information will default to using Starlink Gen 1 specifications.

The start and end dates of the build-up phase must be supplied to calculate the launch rate during the build-

up phase, where a linear build-up phase is assumed. Throughout the operational phase of the constellation,

the appropriate amount of replenishment satellites are launched for the satellite that has reached the end

of life. The end-of-operation date can be supplied for the constellation, after which no more replenishment

satellites are launched. The constellation company index can be supplied to group the separate shells and

phases into the same constellation. As described in the previous section, the intra-constellation collision

avoidance efficacy can be specified such that the collision within a company’s constellation is different from

that of inter-constellation collision avoidance efficacy.
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2.3 Validation

2.3.1 Validation against the IADC study

The Inter-Agency Space Debris Coordination Committee (IADC) in 2009 had several space agencies use

their MC tools to compare the performance for a strict future scenario [94]. Six models were involved: ASI:

Space Debris Mitigation long-term analysis program (SDM), ESA: Debris Environment Long-Term Analysis

model (DELTA), ISRO: KS Canonical Propagation model (KSCPROP), JAXA: LEO Debris Evolutionary

Model (LEODEEM), NASA: LEO-to-GEO Environment Debris model (LEGEND), UKSA: Debris Analysis

and Monitoring Architecture for the Geosynchronous Environment (DAMAGE).

A 2009 baseline environment for debris 10 cm and larger was provided by ESA. The future space traffic

model was based on a repetition of the historic 2001-2009 space traffic. Each participating member used its

own solar flux projection model. A catastrophic collision was defined as one characterized by an impacter

kinetic energy to target mass ratio of 40 J/g or greater. A future post-mission disposal (PMD) compliance

level of 90% was assumed for both the spacecraft and launch vehicle stages. The initial simulation epoch was

2009 and was simulated for 200 years. The initial object count was 17070 based on the MASTER database,

which included payloads, derelict objects, rocket bodies, and debris. Launches were repeated for launches

between the years 2002 and 2008. The payload lifetime was assumed to be 8 years, and no collision maneuvers

for any objects were assumed. No explosions were assumed as well.

The six models yielded similar qualitative results and confirmed the instability of the current LEO object

population. The six member models revealed a steady increase in the > 10 cm population, despite an assumed

global PMD level of 90%, with a catastrophic collision rate varying from once every 5 to 10 years. Most

catastrophic collisions occurred near the 800 km and 1000 km altitudes due to high concentrations of space

objects there. The study concludes by noting that compliance with existing national and international space

debris mitigation measures will not be sufficient to constrain the future LEO object population. To stabilize

the LEO environment, more aggressive measures, especially the removal of the more massive nonfunctional

spacecraft and launch vehicle stages, should be considered and implemented in a cost-effective manner.

MOCAT-MC was used to run the same scenario to validate its results against the six models used in

the IADC study. Although the specifics of the simulation data were not available, the best estimates were

used to emulate the same scenario. For example, the initial population of the IADC study starts with 17074

objects in LEO, though the TLEs available for the same epoch yielded around 9874 objects. To start with

the same number of objects with a similar altitude density profile, a total of 7,200 debris were added with

the orbital and physical properties randomly selected from existing debris. The altitude of the additional

debris was selected to match the initial spatial density of the initial population provided in the study, as seen

in Fig. 2-11. Although the study was limited to trackable objects, the additional population was likely in

the smaller objects compared to the tracked objects with orbits in the TLE catalog. To account for this size

discrepancy in debris sampling, the characteristic length of the expanded initial population of TLE/DISCOS
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Figure 2-11: Initial population spatial density for IADC study vs TLE for scenario epoch May 2009. Altitude
is binned at 50 km.

was reduced by a factor of 1.5. In addition, the PMD scheme assumed within MOCAT removes the object

from the simulation when PMD is successful.

The summary of the MOCAT-MC validation exercise using the IADC study scenario is shown in Table

2.3. The comparison of the total population between MOCAT-MC and the models used in the IADC study

is shown in Fig. 2-12, and the cumulative catastrophic collisions and the altitude of catastrophic collisions

are shown in 2-13 and 2-14 respectively. MOCAT-MC performed similarly to those of the IADC study for

these key metrics.

The details of this MOCAT-MC validation scenario are shown in Fig. 2-15. The population per object

class shows that the number of debris dominates the > 10 cm population and contributes as the main source

for the increase in total object count. The total population for some individual simulation is shown in gray

for the population. The intact objects (payload + rocket body) are relatively stable. The collision number

shows the relative occurrence between catastrophic collisions and all collisions.

The bottom portion shows the cumulative number of collisions, with the solid line denoting any collisions,

whereas the dotted line shows only catastrophic collisions. In this scenario, most of the collisions are deemed

catastrophic.
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Figure 2-12: Comparison of total population between MOCAT-MC and IADC models [94]
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Figure 2-13: Comparison of cumulative catastrophic collisions between MOCAT-MC and IADC models

Table 2.3: Comparison between IADC study results and MOCAT-MC runs of the same NFL scenario

Agency ASI ESA ISRO JAXA NASA UKSA All IADC MIT
Model SDM DELTA KSCPROP LEODEEM LEGEND DAMAGE - MOCAT-MC

Runs with 𝑁2209 > 𝑁2009 88% 75% 90% 88% 89% 94% 87% 92%

Change in Population +29% +22% +19% +36% +33% +33% +30% +35%
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Figure 2-14: Comparison of altitude of catastrophic collisions between MOCAT-MC and IADC models.
Altitude is binned at 50 km.
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Figure 2-15: Details of the MOCAT-MC results for the IADC scenario
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2.4 Results and Discussion

Many of the sub-functions were varied to understand the sensitivity of the simulation results on the various

input parameters to the model.

2.4.1 Cube method Verification

The dependence of collision probability and collision statistics on the cube resolution was investigated. The

use of small cube sizes would only consider objects that are close together to calculate a probability of collision,

but the probability of collision would be higher as the volume of cube considered is smaller, as described in

Eq. 2.5. The computational cost for both the propagation and the cube algorithm scales as 𝒪(𝑛), yet the

cube algorithm is typically an order of magnitude or two more computationally expensive compared to the

analytical propagation.
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Figure 2-16: Number of objects in orbit depending on initial altitude

2.4.2 Convergence for Monte Carlo samples

Sampling-based simulations such as Monte Carlo models require a sufficient number of runs for a stable

solution to be achieved. The rate of convergence is described by the central limit theorem, and more samples

of the MC will converge to the true population mean. As 𝑛→∞,

̂︀𝐶𝑛 − 𝐶

𝜎/
√
𝑛
∼ 𝑁(0 , 1). (2.15)

The variance of a Monte Carlo estimate of the population mean follows 𝜎�̄� =
𝜎√
𝑛
, where 𝜎 is the

standard deviation of the population and 𝑛 is the sample size. The rate at which the standard deviation

of the distribution of means decreases with the number of samples is
√
𝑛. Thus, the rate of convergence is

𝒪(
√
𝑛). Note that the variance 𝜎2

�̄�
is the mean squared error, which varies linearly with 𝑛, since the standard
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Figure 2-17: Convergence test for the number of Monte Carlo runs

deviation is the square root of the variance. For a precision of order 𝜖, approximately 𝑚 samples are needed,

where 𝜖 ≈ 𝜎/
√
𝑚.

The variance of the distribution of the results can be used to determine the convergence rate of a MOCAT-

MC scenario and get a sense of the number of MC runs needed for a high-confidence simulation. A 100-year

simulation with 274 launches per year was run for 400 MC simulations. The sampling mean �̄�𝑛 and the mean

standard error 𝜎�̄� are shown for the mean of the total number of objects in the 𝑛 samples in Fig. 2-17. The

mean standard error follows the expected convergence rate
√
𝑛 and reaches 0.16% of the population mean at

𝑛 > 50. This shows that a sample size of around 20 yields a mean standard error 𝜎�̄� < 1% of the sample

mean.

The convergence of the final population of the 200-year MC runs was also analyzed using a two-sample

Kolmogorov-Smirnov (KS) test. Subsample sizes of 𝑛𝑠 = {8, 16, 32, 64, 128, 256, 512} samples were used to

test the convergence of the CDF of the subset of samples, which was compared to the final CDF consisting

of all 1000 samples. The KS test is a non-parametric statistical test to assess whether two sample sets are of

the same continuous distribution, by comparing the CDF of each set. The KS test statistic 𝐷* is computed

as the maximum absolute difference between the CDFs as:

𝐷* = max
𝑥

(︁
|𝐹 (𝑥)− 𝐹 (𝑥)|

)︁
, (2.16)

where 𝐹 (𝑥) is the proportion of the subsampled values less than or equal to 𝑥 and 𝐹 (𝑥) is the proportion

of the all 1000 values less than or equal to 𝑥. The KS test statistic 𝐷* is a measure of how well a subset

approaches the full set. For each subsampling, a different 𝐹 is obtained. Therefore, for each subsample size

𝑛𝑠, the test can be performed 𝑁𝑟 times, providing an estimate of the 𝐷* value. Figure 2-18 shows boxplots

of 𝐷* as a function of 𝑛𝑠. As expected, the variability and mean decrease with increasing number of samples.

These values asymptotically approach zero as the number of samples reaches infinity. The trend suggests
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that an exponentially increasing number of samples is required for a linear increase in accuracy. A 5% error

in the CDF would result in a maximum error of 400 objects or 1% of TTD near the median. This error is

considered acceptable. Although not necessary, 𝑛𝑠 = 512 exceeds the maximum error exactly once.
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Figure 2-18: Two-sided KS test for the final population value after a series of 200-year simulation with
𝑛𝑀𝐶 = 1000

It is difficult to compare the computational duration required by MC models, as they are not typically

disclosed in the literature. Through discussions with the researchers using these other models, some take days

to weeks to run using a typical computational setup. However, a comparison of the maximum population

modeled is disclosed in the published literature. Some comparison and references are shown in Fig. 2-19,

which demonstrates the computational efficiency of MOCAT-MC.

2.4.3 Evolution of the future debris population

Two scenarios are run with MOCAT-MC to compare the effect of future launches on the trackable orbital

population in LEO with scenario epoch at Jan 1 2023:

• Extrapolation of the recent launch traffic, explosion rates, and post-mission disposal rates

• No future launches scenario where no launches take place after 2022.

The SatCat TLEs were used for the orbital parameters of the trackable debris population with reference

epoch Aug 1 2022, while the ESA DISCOS database was used for parameters such as the objects’ size, mass,
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Figure 2-19: Comparison of population modeled in MC simulation tools

object type and launch date. Only objects with perigee between 200 km and 2000 km were considered. This

initial population profile is shown in the Appendix Table A.1 and Fig. A.3.

Table 2.4: Parameters for NFL and extrapolated scenarios with 2023 epoch

Scenario Launch profile E[𝑃𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛] 𝑃𝑃𝑀𝐷 PL lifetime

NFL n/a n/a n/a n/a

Extrapolated repeat
2018-2022 RB: 2.3 / yr 0.4 8 years

All simulations were run for 𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 100 years, ∆𝑡 of 5 days and 𝑎 limit. 50 Monte Carlo simulations

on the MIT Supercloud High Performance Computing cluster [120]. The explosion rate for rocket bodies and

payload lifetimes is taken from the ESA Annual Report [34].

Figure 2-20 shows the evolution of the total population from the simulation, as well as the cumulative col-

lisions over the 100-year simulations. The dotted lines above and below denote the 10th and 90th percentiles.

The growth of objects can be seen even for the NFL case. Note that the PMD level for recent constellation

objects have improved compared to the historic 40% level. This value is varied for further analysis in the

future launch case section.

2.4.4 No Future Launch Cases from the Past

The No Future Launch case shown in the Validation section shows growth in the number of objects and in

the number of collisions despite no new launches occurring. The literature has shown that MC methods point

to the fact that the LEO environment was in an era of unabated growth for decades prior [34, 89, 100]. Using

the same methodology as in the previous section with the combined dataset between the TLE catalog and the

56



0 20 40 60 80 100

Time (year)

0

0.5

1

1.5

2

2.5

3

P
o
p
u
la

ti
o
n

105

Ext

NFL

(a) Population

0 20 40 60 80 100

Time (year)

0

500

1000

1500

2000

2500

C
u
m

u
la

ti
v
e
 C

o
lli

s
io

n
s

Ext

NFL

(b) Cumulative collisions

Figure 2-20: Extrapolated and No Future Launch Scenarios for Epoch 2023

DISCOS database, the future LEO environment is simulated at different epochs in the past. The NFL case

is run for every year starting in the year 2000 with the cataloged objects at those epochs and removing all

future launches to see the growth or decay in the number of objects. January 1 of each scenario epoch year is

used for the initial population of objects for the LEO objects, which inherently limited the initial population

to the tracked objects. All payloads were assumed to have a mission lifetime of 8 years, after which they

undergo PMD with a success rate of 90%. Collision avoidance failure rate of 𝛼 = 0.01 and cube resolution of

10 km. No new objects were introduced into the environment other than through collision dynamics.

The results are summarized in Figs. 2-21 and 2-22. All of the simulations show a substantial growth from

the initial population, which indicates that even without future launches, the unabated growth of objects is

seen at least as far back as the year 2000 when there were 5000 tracked objects in orbit.

The results show that the growth in the number of objects is consistently present even with epoch in

the year 2000, showing the importance of debris mitigation with any population. Of note are the more

recent years, where the total count of trackable objects remain roughly steady compared to previous years

despite the higher initial population count – in these scenarios, the Starlink satellites have begun to populate,

taking up a significant portion of the initial population for those epochs. These active satellites will have

been removed entirely from the environment within 8 years of the epoch, other than the few that remain

as derelict satellites after failed PMDs. Compared to other satellites, the average lifetime for these active

payloads at the simulation epoch are much shorter, therefore the effect on the space environment is much

less. For two scenarios with the same number of population, the one with a greater proportion of active

satellites that can CAM and PMD will yield a safer and sustainable long-term LEO environment.

The population divided into altitude is shown for the 2023 NFL case in Fig. 2-23. The dense region in the

first few years around 550 km denotes the numerous Starlink satellites which mostly PMD after its mission

lifetime, which is also seen in the payload population in Fig. A.5. The number of objects above the 700 km

range continues to grow, though most objects below deorbit relatively quickly. The growth in the 1000 km
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Figure 2-21: Object count for NFL cases starting at different epochs simluated for 100 years
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Figure 2-22: Cumulative collisions over 200 years at various epoch for the NFL cases

and 1400 km altitude region is seen, where many derelict and debris exist and are relatively unaffected by

atmospheric drag. The altitude regions with higher density start to merge as collisions increase the number

of objects and adds objects to a range of altitudes around the collision.
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Figure 2-23: Total population per altitude for the NFL case with epoch at 2023. Altitude is binned at 50
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Figure 2-24: NFL case with epoch at 2023. Altitude is binned at 50 km.

2.4.5 Future Traffic with Megaconstellations

Megaconstellations are large networks of interconnected satellites that are designed to provide various services,

including global broadband internet coverage, Earth observation, and communication capabilities. Two

prominent examples of proposed megaconstellations are SpaceX’s Starlink and OneWeb. The race to deploy

megaconstellations is driven by the potential benefits of widespread internet access, improved communication

infrastructure, and enhanced Earth observation capabilities.

It is impossible to forecast the exact state of LEO traffic and launches in the upcoming decades. The

best estimate of megaconstellation data can be compiled from various sources, particularly governmental and

regulatory bodies such as the FCC and ITU as well as press releases. As of writing, there are more than 50

megaconstellations – defined as constellations comprising more than 1000 satellites – that have been credibly
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proposed [106, 48, 29]. Of these, only a few have operational satellites at the time of writing. As these

are all commercial ventures, the technology roadmap, market conditions, and consumer demand make the

forecasting of successful launch and operation of megaconstellations difficult.

A few examples of megaconstellations are described below. These examples highlight the growing interest

in megaconstellation projects across various countries and industries, notably in the internet connectivity

and remote sensing applications. Even in the past few years, many prominent megaconstellation projects

that have filed with the ITU and/or FCC have been canceled or merged with other efforts. Future launches

and traffic due to megaconstellation should be taken as estimates at best; however, this list gives a general

overview of launches to expect.

SpaceX’s Starlink SpaceX initiated the Starlink project in 2015 with the goal of creating a satellite

network capable of delivering high-speed, low-latency internet access worldwide. The primary motivation

behind Starlink was to bridge the digital divide and provide reliable internet connectivity to underserved

regions. The constellation would consist of thousands of small, low-Earth orbit (LEO) satellites that creates

a mesh network. SpaceX began launching Starlink satellites in batches, starting in May 2019. As of September

2021, SpaceX had already deployed thousands of satellites, and beta testing of the Starlink service had begun

in select regions.

OneWeb OneWeb is another megaconstellation project that aims to provide global broadband internet

coverage. Founded in 2012, OneWeb intended to build a network of LEO satellites that could deliver internet

services to remote and underserved areas. The project was supported by several notable investors, including

SoftBank, Qualcomm, and the Government of the United Kingdom. OneWeb faced financial challenges and

had to file for bankruptcy in March 2020. However, the company was subsequently acquired by a consortium

consisting of the British government and the Indian company Bharti Global. This acquisition provided the

necessary funding to continue the project. OneWeb resumed satellite launches in December 2020 and has

since progressed with its deployment plans.

Amazon’s Project Kuiper Project Kuiper is Amazon’s ambitious venture to create a megaconstellation

of satellites to provide global broadband internet coverage. Announced in 2019, the project aims to deploy a

network of over 3,200 LEO satellites. Like other megaconstellations, Project Kuiper’s objective is to deliver

affordable, low-latency internet services to underserved communities around the world.

Telesat LEO Telesat, a Canadian satellite operator, is working on its own megaconstellation known as

Telesat LEO. The project aims to provide broadband connectivity worldwide using a network of approximately

300 LEO satellites. Telesat LEO’s focus is on serving both residential and commercial markets, offering high-

speed internet access, enterprise connectivity, and government services.

E-space’s Semaphore-C Greg Wyler’s company E-space made headlines when it registered 327,000

satellites using Rwanda as the registration authority through the ITU in 2021. In June 2023, the company

filed another constellation Semaphore-C, which is a constellation of 116,540 satellites orbiting between 414

and 600 km altitude, registered in France. Due to the recency of this addition, E-Space’s constellation will not
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be part of this analysis. Note that numerous other studies and literature have ignored this constellation due

to the perceived lack of credibility that the constellation will launch in its entirety. The proposed constellation

of more than 400,000 satellites would dwarf the total number of the other proposed megaconstellations. This

highlights the academic and industry sentiment that regulatory filings are necessary but not sufficient to be

used as credible sources for future LEO traffic.

The future launch model used in this case is listed in Table A.2, and totals more than 82,000 satellites

in operation just from the megaconstellations alone. The missing mass and radius represented with a ‘-’

used the Starlink satellite as the surrogate (260 kg and 2 m radius), while the start and finish years were

set to be the latest dates for the other constellations with some data (2035 to 2055 for Guanwang). Fig.

2-25 visualizes the launches. Note that the replenishment launches are not shown in this figure. An average

of 𝑛/𝑦𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑙𝑖𝑓𝑒 satellites per year will be required to launch in order to maintain the current number of

satellites 𝑛.

Three subsets of these megaconstellation launch scenarios are also chosen to be simulated.

Case 1 : all of the filed megaconstellations as shown in Fig. 2-25, which totals 84139 operational megacon-

stellation satellites.

Case 2 : just the constellations filed by Starlink, Kuiper and OneWeb, all of which have some constellation

presence as of Jan 2024. This totals 44716 operational megaconstellation satellites.

Lastly, Case 3 : which comprises of just Starlink v1, v1.5, Kuiper and OneWeb. Compared to Case 2, this

case removes the largest megaconstellation proposed considered, which is Starlink v2. This totals 22228

megaconstellation satellites.
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Figure 2-25: Modeled total operational population per megaconstellation

The simulation results for the three cases along with the no future launches case are shown in Fig. 2-26.

Growth in the number of objects is clearly seen for all cases. Notable are the S (payload) and D (derelict)
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Figure 2-26: Total population in LEO with future megaconstellation launches
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Figure 2-27: Payload and derelict population with various future megaconstellation launch models

plots in Fig. 2-27 – the number of objects grows with increasing launch scenarios, but at the highest number

of launches, the number of payloads start to decrease, despite the 1% probability of failure to avoid a collision.

That effect is more pronounced in the derelict class where such avoidance is not possible, and the number of

derelict objects start to dwindle after 100 years. It is also seen in these charts that the number of objects

likely will grow even without new launches. This is in line with the findings from literature and highlights

the urgent need to limit the creation of derelict objects through higher PMD rates, and effective collision

avoidance maneuvers to limit fragmentation events. The temporal population evolution per altitude is shown

in Fig. 2-28. This clearly shows the large amount of accumulation above 1000 km region.

The population difference between objects above and below 700 km shows the accumulation rate between
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Figure 2-28: Total population per altitude for the all future megaconstellations case. Altitude is binned at
50 km and time is binned yearly.

the higher and lower altitudes. Figure 2-29 shows the comparison for each of the four cases, with the dashed

line denoting the below 700 km population, and solid lines denoting the above 700 km population. Despite

the much higher launches occuring below 700 km, the population below 700 km remain largely steady and

low, while the higher altitudes grow continuously. This is pronounced even for the No Future Launch case.

The lower altitude also exhibits population undulation due to the thermospheric expansion and contraction

that follow the solar cycle. The comparison of only launching into lower altitude shells is explored in the

next section.
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Figure 2-29: Total population below and above 700 km altitude for the four future launch cases
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2.4.6 Megaconstellation case with limited altitudes

To see the effect of higher-altitude megaconstellation launches, a subset of the total megaconstellation case

was launched and analyzed. Altitude limits of < 600 km (total 59336 operational), < 700 km (65408), < 900

km (66598) were chosen. The launch altitudes of the considered megaconstellations can be found in Fig. 2-25

and Table A.2. The same parameters as the previous section were used, other than the launched subset.
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Figure 2-30: Megaconstellation launches limited to < 700 km

The collision and population statistics from the < 700 km constellation case is shown in Fig. 2-30. The

comparisons involving the other cases are shown in the Appendix Figs. A.10 and A.11. It is clearly seen that

the debris population growth and the collision rates are dominated by the higher orbits. Despite the much

fewer of objects launched > 700 km, the total collision number across the 200 year simulation is more than

halved. Note that for this analysis, the same PMD efficacy rate is used for all constellations. That is, the

frequency of successful removal from the environment after the active payload’s mission life is the same for

all payloads of the same type no matter the altitude of the constellation. The more numerous population for

the > 700 km launch scenario is due to the derelict satellites in higher orbits that remain in the environment

for much longer due to lower atmospheric drag.

As a comparison, Fig. 2-31 shows the population when the > 700 km constellations are launched.

Although the operational satellites for the > 700 km megaconstellations number around 1/4 of the < 700 km

case, the population growth is much more pronounced. The reduced drag effect is clearly seen, with the debris

population from the 800 km region persisting throughout the simulation duration. In Fig. 2-31(b), the dotted

lines denote the uncontrolled objects, which includes derelict and debris objects. The solid line is the total

number of objects. The difference between the solid and the dotted line is the controlled payload population,

where Starlink’s contribution to the current population from the initial population is clear around 500 km.

This comparison shows the relative difference between the debris population and the payload population.

The low altitude constellations are able to have a much higher payload to debris ratio, enjoying a lower

debris environment due to the atmosphere while also lowering the collision avoidance operational burden.
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The higher orbits, despite having the same PMD and 𝛼 collision avoidance efficacy, must live with a much

higher debris to payload ratio as the debris accumulates. This shows that debris mitigation efforts through

higher PMD and effective collision avoidance will be crucial to maintaining a viable orbit regime for the

higher altitudes.
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Figure 2-31: Megaconstellation launches limited to > 700 km
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2.5 Conclusion

This chapter describes a novel Monte Carlo-based method to simulate the evolution of the LEO population.

The tool is able to efficiently model the evolution of the orbital population characterized by dynamics such

as launches, collisions, explosions, deorbit methods, and more. This Monte Carlo tool is flexible in its

modeling fidelity with several options for the propagator, initial simulation population and launch profiles.

A sampling-based collision model is used and its sensitivity to input parameters is explored. Statistical

convergence is tested, and the output result has been validated against six other models in the literature

with which MOCAT-MC shows good agreement. Historical look at the no-future launch cases shows that the

LEO population without any new launches since 2000 may have continued to grow and has only accelerated

with the increased population since then. A future launch case involving all megaconstellations filed with the

ITU and FCC is explored, where the number of objects > 10 cm grows to tens of millions of objects. These

results underscore the importance of a multitude of debris mitigation strategies that include international

policies and technological solutions.

The simulation results from this section also show some important conclusions: the higher–altitude ac-

cumulation of orbital debris is much faster than that of the lower altitudes, and warrants careful planning.

In addition, the accumulation of debris in the higher orbits is not only affected by payload launches into the

lower altitudes; collisions in any orbital regime will deposit debris into any other orbital altitudes due to the

∆𝑉 imparted during the fragmentation event. Despite the much fewer megaconstellations planned at higher

altitudes, their failure in PMD or CAM will result in an outsized effect on orbital debris accumulation.

Limitations exist to the current MOCAT-MC model and the submodules. Future work will include the

inclusion of other semianalytical propagators and other breakup models, along with sensitivity assessment of

the use of different submodules and assumptions. Economic variables can be layered into the simulation as

an on-line feedback mechanism. Gaming scenarios with multiple competing or cooperative actors can also be

layered in with a different context for national and international policies.
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Chapter 3

Effect of Lethal Non-Trackable Objects

on Space Sustainability

3.1 Background

Our knowledge of the orbital objects in LEO is best understood for those objects that are measured reguarly.

This usually means that the objects are tracked and have orbits attributed to them with some fidelity such

that sensors are able to reacquire and constantly update the state. Characterization of such objects can

be done using various phenomenologies such as multispectral imaging, radar imaging, and even passive RF

tracking for objects that are emitting in the RF spectrum. Ever since the launch of Sputnik in 1957, the US

government has led the effort to track orbital objects. The Millstone Hill radar under development for the

planned Ballistic Missile Early Warning System (BMEWS) by Lincoln Laboratory in Massachusetts was the

first U.S. radar to detect and track Sputnik 1.

Searching and tracking objects in orbit has historically been done using terrestrial active and passive

sensors, such as radars and telescopes. Technological progress since then has expanded measurement methods

to also include passive radio frequency (RF) and remote sensing from space. Due to the resources needed

to keep custody of these objects, government entities such as the US Space Surveillance Network (SSN), the

18th Space Defense Squadron, and the European Space Operations Centre in ESA have traditionally tracked

the RSOs. In the past couple of decades, a thriving commercial SSA sector has been introduced. The global

space situational awareness market is projected to grow from $1.3 billion in 2022 to nearly $2 billion in 2028

within the US alone [6].

Although tracking intact payloads and rocket bodies in LEO has largely become routine, tracking small

debris remains a challenge. Not only is detection itself difficult for small objects due to sensitivity limitations

of the SSA sensors, the number of objects grows exponentially as the limit of detectable size gets smaller,

which leads to difficulties with identifying the detected object to create a track and an orbit - an association
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Figure 3-1: Measurement data used by the NASA ODPO to describe the orbital debris populations in the
near-Earth space environment [65]

problem. The US Space Surveillance Network is understood to have orbital information for 10 cm and larger

objects.

Tracking and keeping custody of small debris to keep an orbit may be difficult; however, routing mea-

surements of the density of debris have been made over the years. For example, radar measurement data

from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) is provided to the NASA Orbital Debris

Program Office for measurements of objects as small as 3 mm [110]. The radar operates in a “beam-park”

mode with a fixed elevation and azimuth pointing direction to obtain the number of objects, RCS and doppler

measurement of the objects that cross through the field of view. This provides a fixed detection volume that

simplifies calculations of the debris flux, or number of objects detected per unit area, per unit time. The

effects of collision events and ASAT tests have been seen by measuring the statistics of the objects.

In situ measurements of the small debris population have been made in LEO as well. Debris as small as

several micrometers in size have been measured by impact craters into space-exposed materials from satellites

and specific missions with sensors to measure on-orbitdebris impacts. Although specific orbital information

for individual debris is difficult to measure, the statistical distribution of objects with respect to their orbital

parameters and physical characteristics can be estimated. The Long-Duration Exposure Facility was launched

in April 1984 by the Space Shuttle mission STS-41-C into an altitude of about 480 km, where it sampled

the LEO environment for more than 2000 days. The LDEF mission showed that by 1990 there was a large

amount of debris in the LEO environment with a population following the power law and showed the large

amount of debris that eludes current sensor technology for tracking [103, 32]. The solar arrays replaced on
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the Hubble Space Telescope (HST) Service Missions SM-1 and SM-3B in 1993 and 2002, respectively, have

provided the space community with solar arrays that have been exposed to the space environment at about

600 km for more than seven years. Other in-situ measurements have been conducted since then, including

the Space Debris Sensor (SDS) currently mounted on the exterior of the International Space Station. The

LDEF mission has sampled for the longest duration as well as sampling from a diverse set of altitudes, as

seen in Fig. 3-2.

Figure 3-2: History of in-situ measurement missions for small debris [34]

Many models have been created using these data for the past and future LEO orbital debris environment,

including NASA’s ORDEM [102, 99] and ESA’s MASTER [49]. The debris population from these databases

for some initial simulation epoch can be used to seed the initial population with randomized orbits. The

difficulty lies in the fact that for smaller object sizes, the number grows rapidly. ESA estimates that there

are more than 1 million fragments between 1 and 10 cm, and around 130 million objects between 1 mm and 1

cm in orbit around Earth as of June 2023. Any impact with one of these objects threatens to at least impair

the functioning of a working spacecraft, or at worst destroy it altogether, creating ever more debris. The

computational power needed to simulate an environment with that many objects is difficult, and thus most

MC models have limited analysis to > 10 cm objects, or run specific cases with smaller objects. Not only

does the initial population need to be propagated, with a smaller size threshold for simulations, the debris

generated from collisions will also produce objects down to that size.

3.2 Modeling the effect of Lethal Non-Trackable Objects

Lethal Non-Trackable Objects (LNT) are defined here as objects that are sufficiently small to not be reliably

detected in a way that is actionable for collision avoidance maneuvers by the satellite operators and the

payload. The LNT population is quickly populated from any simulation that allows small objects to be
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created from collisions. With MOCAT-MC the LNT population below the 10 cm region can effectively be

explored, as it is able to simulate millions of objects with ease as shown in Ch. 2.

Collision Avoidance Maneuver Modeling

In MOCAT-MC, the LNT population is defined as objects with 𝐿𝐶 < 10 cm. The model takes into account

𝛼, 𝛼𝑎 terms that modify the probability of collision between an active payload and a nonactive object, and

between two active payloads, respectively. These account for the efficacy of the collision avoidance maneuver

(CAM), since the maneuver can be planned. Although this is a static value effective for all tracked objects,

it is modified for LNTs whose orbital states are either not known, or are tracked with larger uncertainties.

The efficacy of CAMs against LNT objects is assumed to follow a logistic curve. With this modifier, the

𝛼 term is modified such that 𝛼 effectively becomes 1 as the radius of the nonactive object nears 0, effectively

eliminating any reduction of the probability of collision. The modified 𝛼 for LNT objects is as follows:

𝛼𝐿𝑁𝑇 =

(︂
1− 1

1 + exp (−25(𝑟𝑗 − 0.3))

)︂
(1− 𝛼) + 𝛼, (3.1)

where 𝑟𝑗 is the radius of the non-active object and 𝛼 is the original collision avoidance term. A range of

𝛼𝑚𝑜𝑑 is shown in Fig. 3-3 using Eq. 3.1 as the modifier. The 𝛼 term is maintained for large objects and

approaches 1 as the radius of the object decreases and evades detection.
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Figure 3-3: The collision avoidance efficacy term 𝛼𝐿𝑁𝑇 for LNT objects for a range of baseline efficacy 𝛼

Note that all payloads are assumed to be well-tracked; therefore, the 𝛼𝑎 term is not modified. At the time

of writing, two maneuverable and controlled active satellites have never collided so effectively that 𝛼𝑎 = 0.
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3.2.1 Henize factor for incomplete measurements

The Henize factor has been used in the literature to estimate the true number of objects at certain altitudes.

This attempts to inflate the number of smaller objects, noting that SSA sensors do not have a sharp sensitivity

cutoff and the number of small tracked objects may not be representative.

In this method, 𝑑𝑡𝑟 is defined as the trackable diameter computed for an object at altitude 𝐻, which is

assumed to be the perigee altitude of the parent object ℎ𝑝 = 𝐻. To determine the trackable diameter, an

empirical formula is used

𝑑𝑡𝑟 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.9 cm 𝐻 ≤ 620 km

1.0 cm · 10−0.736748+0.604 log(𝐻) 620 km < 𝐻 ≤ 1300 km

1.0 cm · 10−4.417+1.8186 log(𝐻) 1300 km < 𝐻 ≤ 3800 km

1.0 m 𝐻 > 3800 km

(3.2)

The true number of objects larger than the trackable diameter is computed applying a correction through

the Henize factor 𝑓𝐻𝑧 which is computed as

𝑓𝐻𝑧 =

⎧⎪⎨⎪⎩
√︁

10 𝑒

(︂
− log10 (𝑑𝑡𝑟)−0.78

0.637

)︂2

if 𝑑𝑡𝑟 > 100.78 cm
√
10 otherwise

(3.3)

The Henize factor considers the lack of sensor availability to track all the debris generated from a fragmen-

tation event. In fact, usually only a part of the debris could be observed; thus, the Henize factor solves for

the incompleteness of the radar catalog for objects larger than a given diameter [49]. The resulting value 𝑛𝑓

can now be considered as the true number of objects larger than 𝑑𝑡𝑟 generated by an event on an orbit with

perigee altitude 𝐻.
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3.3 Validation with ADEPT dataset

Aerospace Corpopration’s evolutionary model called Aerospace Debris Environment Projection Tool (ADEPT)

[47] is used as a benchmark for the validation of MOCAT-MC’s LNT performance. ADEPT is capable of

propagating objects between LEO and GEO, and uses the Orbit Crossing method for collision calculation and

an internal fragmentation model called IMPACT [130]. ADEPT is also able to group homogeneous objects in

similar orbits into one object with some weighting factor to represent multiple objects, sometimes numbering

in the thousands. This method allows ADEPT to propagate one representative object instead of having to

do so for all the represented objects. An initial population is given (popZero), and the Future Launch Model

(FLM ) can be specified with a mix of Continuously Replenishing Constellations (CRC ), non-replenishing

constellations (Non-CRCs), and Future Constellation Models (FCM ). All objects simulated in ADEPT are

defined by 16 attributes, as described in Table 3.1.

Table 3.1: Definition of parameters for each orbital object in ADEPT

Column 1 2 3-8 9 10

Description ID Start epoch �̄�, 𝑒, �̄�, Ω̄, �̄�, �̄� End epoch Object type

Column 11 12-13 14 15 16

Description Disposal flag Stationkeeping flag Area and mass Diameter Weighting

“Historical” PMD success rates were used, where PMD = 90% for CRC LEO, GEO, MEO, and LLC

satellites and PMD = 70% for nonCRC LEO satellites. A successful PMD results in the object being

removed from the environment; whereas a failed PMD would leave it in the simulation. Operational satellites

were assumed to avoid collisions with >10cm fragments with 100% efficacy.

A dataset of input and output populations and statistics was obtained for the use of MOCAT-MC vali-

dation. The simulation for the dataset had a starting epoch of December 1, 2022, and the outputs for 100

runs were provided. The initial population given had 399,399 objects, and the operational payload count was

steady at 18,006 objects. In the given ADEPT dataset, many objects could be represented by one object

where the weighting is > 1. For example, after a fragmentation event, ADEPT’s collision model IMPACT

creates a few representative object sizes with multiple weighting factors that span down to 2 cm objects.

This weighting factor can also be a decimal. In conversion to MOCAT simulation, all of these objects are

independently represented with a randomized mean anomaly. For the cases of non-integer weighting factors,

a random value is used between the floor and the ceiling of that factor. The SBM for MOCAT was run with

𝐿𝐶 = 2 cm.

The comparison of the initial population reduction between the two models for this scenario is shown in

Fig. 3-4. For MOCAT, the mean of 10 runs is shown for all the results. This shows good agreement between

the two models, which validates the propagator and the drag model used in MOCAT-MC. The waviness of

the population is due to the time-varying atmospheric density, and the phasing difference between the two
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Figure 3-4: Population comparison for ADEPT vs MOCAT-MC.

models. The active payload count is also shown in the figure, which shows good agreement for the launch

and PMD model. The launch traffic varied between 5500 and 8000 objects per year after 2030, and included

payloads (controlled and uncontrolled), rocket bodies, and debris.

This validation exercise shows that MOCAT and ADEPT agree well in the propagation module, atmo-

spheric model, and launch model even for LNT objects down to the 2 cm objects.
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3.4 Results with Lethal Non-Trackable Objects

3.4.1 No Future Launch scenarios

The No Future Launch case described in the previous chapter is run while allowing for LNT debris to exist.

The 3cm cases are shown here, while the details of the 1 and 5cm limits can be found in the Appendix.

Even if objects below 10 cm did not interact with any other objects, the number of objects in that region

produced by collisions would show a higher number compared to a scenario that allows only objects > of 10

cm. Of note is the number of collisions that grow with the introduction of LNTs. Fig. 3-5 shows the difference

in the cumulative number of collisions between two independent sets of scenarios: one allowing objects to

exist above 10 cm and another for objects above 3 cm. For both of these cases, the previous scenario No

Future Launch is assumed and simulated for 200 years. Each of the thinner lines represents one of the 50

MC runs for that scenario, while the thicker line shows the mean value of those runs. It can be seen that the

number of collisions continues to grow even without any new launches into the LEO environment. For the >

3 cm case, the number of collisions increases faster. Since collisions beget more collisions, the slopes of these

lines have an exponential growth factor for the population.

Although it is expected that there are more collisions with a population that has more objects, an analysis

of the object types involved in the collisions along with relative frequencies is needed. For example, with the

addition of 3-10 cm objects, the > 3 cm scenario will have many more LNT-on-LNT collisions, which does

not directly affect the intact RSOs. The collision probability is affected by the combined cross-sectional area

of the two objects as described in Eq. 4.9, and thus a given pair of LNT objects will not collide as frequently

as it would against another larger object.
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Figure 3-5: No Future Launches scenarios for 𝐿𝐶 = 3 cm and 10 cm

Fig. 3-5 compares the distribution of the final population at the end of each of the scenarios. The red

outline also shows the initial population distribution. Since both are for the No Future Launch cases, the

initial population’s larger objects are slowly deorbited or removed due to collision attrition. The small-object
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population grows quickly over the 200-year simulation as the debris generated from these collisions, especially

below the 10 cm region. It is notable that some bin sizes have fewer population in the > 3 cm case compared

to the > 10cm case, especially closer to 10 cm, as these objects also undergo fragmentation events from smaller

objects for the > 3 cm scenarios. In the > 10cm scenario, these objects would not collide with other smaller

objects simply because they do not exist in the scenario. This example shows that lowering the characteristic

length limit for a simulation would replace the population of trackable objects with LNTs. Thus, limiting

the simulations to only trackable objects gives an incomplete understanding of the LEO environment. It is

also shown here that due to the interaction between the LNTs and smaller-sized objects, a simulation run

with LNTs that has been cropped to show the non-LNT objects is not equivalent to a simulation run without

considering LNTs.
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Figure 3-6: Total population count with no future launches over a 200-year span for various minimum LNT
sizes (𝐿𝐶). The altitude bins are 50 km.

3.4.2 Megaconstellation launches

The scenario with launches of future megaconstellations described in Chap. 2 is repeated. The scenarios

with a subset of future megaconstellation launches are explored here for the varying levels of 𝐿𝐶 . PMD

success rates were derived from the historical rates given by ESA, with 40% for active (non-constellation)

payloads, 55% for rocket bodies, and 90% for constellation satellites. Collision avoidance efficacy was chosen

to be 𝛼 = 0.01 for actively controlled satellites, while all other cases with two active satellites were set at

𝛼𝑎 = 𝛼𝑖𝑛𝑡𝑒𝑟 = 𝛼𝑖𝑛𝑡𝑟𝑎 = 0.

The launch scenario considers all < 700 km constellations that total 65,408 operational constellation

satellites. The launch traffic is run with 𝐿𝐶 = 0.2, 0.5, 0.7, 1, 3 and 10 cm. The initial epoch is January 1

2023 with a scenario duration of 200 years. For each of the 𝐿𝐶 values, 20 MC simulations are run. With

smaller 𝐿𝐶 , the cumulative number of objects per collision increases exponentially following the NASA SBM.

Similarly, in this scenario, the number of objects grows as the population in the simulation consists of smaller
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objects. The mean values of the MC simulations for each 𝐿𝐶 scenario are shown in Fig. 3-7. Figure 3-8

shows the population per altitude for 𝐿𝐶 = 2 mm and 7 cm. The 𝐿𝐶 = 7 cm case clearly shows each of

the megaconstellation launches, as the vast majority of the objects are constellation objects. Although no

launches are made to > 700 km altitudes in this scenario, higher altitudes also show an increase in population.

This is due to the energy imparted to each debris object during a collision, which reduces and increases some

of the fragments. With 𝐿𝐶 = 2 mm, the smaller debris objects are tracked, which are much more numerous

compared to the consetllation objects. The increase in the higher altitudes is shown more clearly and shows

up earlier than in the case where smaller objects are omitted. The atmospheric sink effect is also clearly

shown with an orders of magnitude difference in the debris population between high and low solar activity

periods for lower altitudes.
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Figure 3-7: The total population count with megaconstellation launches limited to < 700 km over a 200-year
span for simulations with 𝐿𝐶 between 2 mm and 10 cm. The altitude bins are 50 km.
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Figure 3-8: Population growth per altitude with megaconstellations launches limited to < 700 km over a
200-year span for various LNT sizes (𝐿𝐶). Time binned at 2 years and altitude binned at 50 km.

The catastrophic and total collision statistics for the three cases are shown in Fig. 3-9, where several
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conclusions can be drawn. The catastrophic collisions show that there are more total collisions with the

inclusion of LNTs, as expected. However, the number of catastrophic collisions increases much more slowly

as the minimum size of the object decreases. For most altitudes, the catastrophic collision rates are similar.

The altitude with the greatest difference is around 800 km, where the 𝐿𝐶 = 0.2 cm and the 𝐿𝐶 = 10 cm

cases differ by approximately a factor of 2. This is also despite the fact that launches are limited to altitudes

< 700 km, with the highest concentration around 350 km and 550 km as shown by the launch rate by altitude

in Fig. 2-25. Note that the number of catastrophic collisions is much fewer compared to the number of non-

catastrophic collisions for all 𝐿𝐶 , but unlike the catastrophic collision rate, the non-catastrophic collision rate

increases much more rapidly with smaller 𝐿𝐶 . Orders of magnitude difference is seen in the total number of

collisions.
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Figure 3-9: Cumulative number of collisions with megaconstellations launches limited to < 700 km over a
200-year span for a range of 𝐿𝐶 . Altitude is binned at 50 km.

The NASA SBM categorizes a collision as catastrophic or non-catastrophic with a simple specific energy

threshold as described in Eq. 1.2. For a typical collision geometry with 𝑣𝑖𝑚𝑝 ≈ 11 km/s, this specific energy

threshold is reached when the ratio of the two masses is greater than ≈ 1500:1. Therefore, for a catastrophic

collision to occur given an LEO payload mass, the colliding object must have some minimum mass. This

means that the LNTs generally only produce noncatastrophic collisions, and the cascading effect of on-orbit

collisions is reduced. This effect is more clearly seen when the collision energy histogram is shown for a range

of 𝐿𝐶 , as shown in Fig. 3-10. In this figure, the collision types are divided into three groups: object vs.

object, object vs. debris, and debris vs. debris. The object here is defined as all intact objects, which includes

derelict and rocket body objects. Active payloads are not represented in these collisions as 𝛼𝑎 = 0 for these

simulations. Debris is defined as all other objects. The red line denotes the 40 J/g threshold for catastrophic

collision, as defined by the NASA SBM. As shown before, smaller 𝐿𝐶 simulations show more collisions, and

the collision rate for non-catastrophic collisions grows much more quickly. When simulations only consider

objects greater than 10 cm, the collision rate between noncatastrophic and catastrophic collisions may seem

comparable, but a higher fidelity simulation shows that the number of noncatastrophic collisions may be
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much higher and is sensitive to the 𝐿𝐶 considered in the simulation.
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Figure 3-10: Histogram of the specific energy of all collisions for megaconstellation launches < 700 km for a
range of 𝐿𝐶 . Each scenario is an average value of 20 MC runs of a 100-year simulation. The red line denotes
the �̃�*

𝑝 = 40 J/g threshold.

The distinct difference in the peaks of the object vs debris and debris vs debris collision energy is explained

by the definition of the specific energy. The specific energy in a collision is soley determined by the impact

velocity and the ratio of masses between the two parent objects. The specific energy of a collision between

two identical masses – whether for a pair of 10 g debris or a pair of 1000 kg payload – yields the same specific

energy. The peaks of the histograms therefore correspond to the ratio of the collision masses when that pair

of objects collide. Intact objects such as payloads, derelicts and rocket bodies tend to be much more massive

than debris objects. This results in a much lower specific energy of collisions between an intact object and

a debris object than that of an object-on-object collision. This phenomena is also seen by the peak of the

debris-on-debris collisions reducing in its specific energy as 𝐿𝐶 is reduced – there are far more collisions

between two unequal masses within the debris class as smaller debris are simulated in an MC environment.

𝐿𝐶 = 10 cm on average had 316.7 catastrophic collisions out of 409.9 total collisions, 𝐿𝐶 = 1 cm had 480.4

of 6760.0, and 𝐿𝐶 = 0.2 cm had 405.1 of 23773.1 collisions that were catastrophic. This relationship is

summarized in Fig. 3-11. A more realistic simulation allowing for simulations against

Note that while it is true that a catastrophic collision would produce more objects compared to a non-

catastrophic collision between the same pair of objects, not all of the catastrophic collisions shown in these

histograms would necessarily produce more debris than the non-catastrophic collision. The number of debris

is ultimately determined by the masses of the parent objects, and an catastrophic collision betwen two objects

would produce more debris than one between two debris. Consequently, it is possible that a noncatastrophic

collision between an object and debris yields more debris than a catastrophic debris-on-debris collision. As a

comparison, a 50 g golf ball hit at 42 m/s will yield 44 Joules. Such golf ball hitting another stationary golf

ball would produce a specific energy of around 0.9 J/g.
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Figure 3-11: Cumulative number of collision for the 700 km megaconstellation launch case after 100 years
for 𝐿𝐶 values from 0.2 cm to 10 cm

3.4.3 Effect of improved PMD

The effect of improved PMD is explored for the various 𝐿𝐶 from in the previous section. The PMD failure

rate has been halved, as indicated in Table 3.2.

Table 3.2: Historical and Improved PMD Rates

Historical PMD [34] Improved PMD

Active (non-constellation) 40% 70%
Active (constellation) 90% 95%

Rocket Body 55% 77.5%

Note that the vast majority of the launches in this scenario comprise constellation payloads. The reduction

in the total orbital population due to this is shown in Fig. 3-12. Because the LNT population depends heavily

on the number of collisions, there is a greater effect in controlling the LNT population with the reduction of

derelict objects. The reduction in collision rate is also seen in Fig. 3-13. With the amount of derelict produced

per year effectively halved, the number of catastrophic collisions for the altitudes with launches (< 700 km)

is halved. This is seen for both the scenario with 𝐿𝐶 = 1 cm and 10 cm. The effect on non-catastrophic

collision is even greater, as the opportunity for debris-on-debris collision is also reduced. However, note that

for any type of collision, improved PMD can only effectively reduce the collisions in the altitude regions

where the launches occur. The altitude regions without launches do see some reduction due to the reduction

in eccentric debris created from collisions. These findings are in line with the literature, where larger and

higher objects seem to be the most polluting. [108, 127]
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Figure 3-12: Total population count with megaconstellations launches limited to < 700 km over a 200-year
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Figure 3-13: Cumulative number of collisions with megaconstellations launches limited to < 700 km over a
200-year span for various LNT sizes (𝐿𝐶) and with improved PMD. Altitude is binned at 50 km.
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Figure 3-14: Effect of improved PMD on specific energy of collisions for limited to < 700 km megaconstellation
launch scenario with 𝐿𝐶 = 3 cm.
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Figure 3-15: Effect of improved PMD on catastrophic collision rates of collisions for limited to < 700 km
megaconstellation launch scenario with 𝐿𝐶 = 3 cm.
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3.5 Conclusion

Most orbital objects today are untracked or untrackable due to the limitations of the sensors. Attribution of

these objects to specific launches or fragmentation events is difficult; however, ground-based sensors and in

situ sensors on-orbit have been used to characterize the spatial density of debris into altitude and inclination.

Even with such debris density models, the population of these models can easily reach millions of objects,

making it difficult to use high-fidelity evolutionary models using Monte-Carlo-based methods. MOCAT-MC

is able to efficiently model the LEO environment and thus able to model the numerous LNT objects.

It is shown through several scenarios that while the population of LNTs follows the power-law distribution,

the number of catastrophic collisions does not grow linearly with the LNT population, as most of these objects

do not collide with larger rocket bodies, derelict and payload objects with sufficient specific energy. However,

the impact on payload survivability is pronounced, and the creation of derelict objects can cause secondary

catastrophic collisions. Similarly to debris in 10 cm ranges, the LNT population also shows a steep dropoff

in pouplation density below 500 km altitudes due to the atmospheric drag.
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Chapter 4

Source-Sink Evolutionary Model

Approach and Methodology

4.1 Introduction

There is a need to calculate long-term collision risk and debris population evolution without propagating all

objects. One method to model population dynamics without propagating individual objects is through source-

sink models, where the interaction between species is described by differential equations. These source-sink

models are also known as evolutionary, predator-prey, and Lotka-Volterra models. A particle-in-box (PIB)

assumption can be made within an enclosed domain within which the species can interact. An uncontrolled

group of satellites is modeled by following the kinetic theory of gas within the enclosed domain. Several

such models have been proposed in the literature, starting with [136] where the LEO domain is modeled as

a series of spherical shells binned by altitude [117, 137, 112, 123, 75, 52, 138]. All use this spherical altitude

discretization as a basis as most objects are circular and as objects’ interaction with atmospheric drag and

with other objects can be easily modeled in parallel. The LEO RSO population is often divided into three

species: payloads, derelict satellites, and debris, though other or additional species may be used such as

rocket bodies, untracked debris, etc.

Eccentricity can be modeled by binning the population and by a fractional contribution of the population

to the corresponding shells. Not all models have eccentricity, although some have discretized eccentricity as

well, such as in [56, 57] and the fractional contribution of each species to the corresponding altitude bins

[129]. In CiELO the fragmentation cloud is described in terms of its spatial density and is propagated as a

function of the semi-major axis (𝑎) and eccentricity (𝑒) [68, 69].

Although orbital propagation of states is circumvented in a PIB model, the interaction between the species

and between the environment and the species must be modeled carefully and validated for an accurate model.

The natural sink of the LEO environment is the atmospheric drag and the primary means to reduce the RSO
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population. The lifetime of satellites may depend on the altitude, solar cycle, and ballistic coefficient of the

orbiting object, and the binned altitude parameter captures the drag dynamics well.

The space debris problem has enormous political and economic implications, spanning topics such as equi-

table use of space, first movers advantage, tragedy of the commons, and game theory. PIB and SSEM models

can be used to model such aspects. For example, economic analysis of LEO management was performed

in [124], and the evaluation of the statistical model for adaptable debris control strategies was explored in

[128, 82]. In [13], a game-theoretic view of cooperative and non-cooperative satellite launch policies as well as

taxation schemes for sustainable developments was analyzed. The development of a higher-fidelity medium-

term LEO population model will aid in such policy developments. The shared risk and responsibility of

the debris problem was modeled and the level of cooperation in a competitive environment was assessed in

[19, 1], and the consequences of an unfettered open access model to space were shown to result in the growth

of runaway space debris [119]. MOCAT-SSEM aims to aid in such questions by leveraging its higher-fidelity

space environment modeling and modularity in defining the species of interest.

4.2 LEO population and collision risk modeling

MOCAT-SSEM is a family of multi-bin, multi-species source sink models with multiple revisions and updates

[26, 27, 85, 25, 51]. In MOCAT-3, the LEO RSO population is divided into three species: payload (𝑆), derelict

satellites (𝐷), and debris (𝑁). Derelict satellites represent intact satellites that fail to meet the post-mission

disposal guidelines and remain on-orbit, but without the ability to perform collision avoidance maneuvers or

station-keeping maneuvers. All objects of the same species have the same characteristics, and the domain of

collision interaction is limited by altitude shells.

There are many unique aspects to the MIT Orbital Capacity Assessment Tool (MOCAT), which has been

used to estimate LEO orbital capacity using stability criteria to maximize launch rate while keeping the

environment stable and for varying degrees of payload failure rates [26, 114]. MOCAT-4S models the use of

concentric specially phased orbital shells of “slots” for large constellations that inherently avoid collisions and

was used to demonstrate a method to estimate benefits to space sustainability and spaceflight safety from

slotting [85, 25]. MOCAT-4N subdivides debris into a trackable and lethal population of untracked debris

and includes a radar model to model debris custody and detectability [27]. More recently, the model has

been used to assess the possibility of using adaptive governance for safe space allocation [86], as well as to

evaluate the economic impact of orbital debris and other policies [118].

Fundamentally, MOCAT-SSEM uses the PIB formulation, where the interactions between species are

defined by ordinary differential equations. The base ordinary differential equations used in the 3-species

model (typically for payload 𝑆, derelict satellites 𝐷 and lethal debris 𝑁) has been modified from the simple

model in [52]. The modifications include the addition of altitude shells with drag interaction and the inclusion

of multiple bins per species type. At the core, the governing dynamics is shown in Eq. 4.1.
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�̇� = 𝜆− 𝑆

∆𝑡
− 𝜑(𝛿 + 𝛼)(𝑁 +𝐷)𝑆 − 𝛼𝑎𝜑𝑆

2, (4.1)

�̇� =
(1− 𝑃 )𝑆

∆𝑡
+ 𝜑𝛿𝐷𝑆 − 𝜑(𝑁 +𝐷)𝐷 +

𝑛+𝑣+
𝐷ℎ𝑢

+
𝐷𝑣−
𝐷ℎ𝑙

, (4.2)

�̇� = 𝐾0𝜑(𝑁 +𝐷)(𝛼𝑆 +𝐷) + 𝛼𝑎𝜑𝑆
2 + 𝜑𝑁2 − 𝑛0𝑣+

𝐷ℎ𝑢
− 𝑛0𝑣+

𝐷ℎ𝑢
+

𝑁+𝑣−
𝐷ℎ𝑙

, (4.3)

where 𝜆 is the launch rate, ∆𝑡 is the average operational lifetime of a payload until post-mission disposal, 𝜑 is

the characteristic length occupied by the satellite, 𝛼 is the fraction of collisions that an active satellite fails to

avoid, 𝛼𝑎 is the fraction of collisions that an active satellite fails to avoid against another active satellite, 𝑃 is

the successful post mission disposal rate, 𝑣+ and 𝑣− are the flux from the shell above and below respectively,

and 𝐾0 is the number of fragments produced per collision.

Once the model is set and the species defined, the input variables to the model include 𝜆 the launch rate

and initial populations such as 𝑆0, 𝐷0, 𝑁0 for each shell. Active debris removal methods would affect the

terms �̇� and �̇� and to some extent �̇� but are not modeled here. The atmospheric drag term is assumed to

be constant per altitude shell according to the static CIRA-72 model. All objects are confined to be within

each shell and interact only with those in that shell.

Similar to other SSEM models, MOCAT generalizes population parameters such as mass and diameter

to some average value. For example, previous MOCAT iterations modeled payload and derelict populations

as featuring an average size of 1.49 m and average mass of 223 kg as chosen in [129]. In this dissertation, we

introduce new functionalities and parameters to expand the species definition and compare their contribution

to the orbital capacity by analyzing 4 and 5-population models different properties from the original species.

This will show how the discretization of parameters for each species can allow for modeling a range of

parameters for a population species, especially for parameters that exhibit nonlinear effects on the population

derivatives.

The dynamics for the SSEM from Eq. 4.1 can also be described by a system of ordinary differential

equations as such:

�̇� = Λ̇+ �̇�𝑃𝑀𝐷 + �̇� + �̇� (4.4)

where each term is meant to be function of time and altitude shell. For example, in a model with at least

three species of payload (𝑆), derelict (𝐷), and debris (𝑁) populations, the population vector can be described

as 𝑃 (ℎ, 𝑡) = [𝑆(ℎ, 𝑡), 𝐷(ℎ, 𝑡), 𝑁(ℎ, 𝑡), ...] where ℎ is the shell number and 𝑡 describes the time index. For a

model with a larger number of species, additional elements are appended to 𝑃 (ℎ, 𝑡).

Λ̇ is the launch rate in objects per year. For a scenario in which only the payload class has launches,

Λ̇ = [𝜆𝑠, 0, 0, ...] where 𝜆𝑠 is the yearly launch rate for the payload species.

�̇�𝑃𝑀𝐷 describes the effect of post-mission disposal, which is the controlled process of removing an active

satellite after its useful lifetime has ended. Most LEO satellites with enough propellant will have such a plan
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to remove themselves from the space environment safely [34]. A failed PMD will contribute to the space

debris problem, and the model will then categorize the payload 𝑆 as a derelict object 𝐷, and the rate at

which this occurs is described by �̇�𝑃𝑀𝐷. The PMD success rate is described by 𝑃𝑀 and the operational

lifetime of the payload population is ∆𝑡 years. This results in the payload class increasing by − 𝑆
Δ𝑡 every time

step, and the derelict class increasing by 1−𝑃𝑀

Δ𝑡 𝑆 every time step.

�̇� describes the population changes within a shell due to atmospheric drag and the consequent decay

of the altitude. Active satellites are assumed not to be subject to the decay effects, since they can perform

station-keeping maneuvers to remain in their orbit. Therefore, only derelicts and debris experience the effects

of orbital decay.

�̇� =
[︁
0, �̇�𝑑,𝐷, �̇�𝑑,𝑁 , ...

]︁
(4.5)

Indicating with 𝑄 the number of objects belonging to a generic species, �̇�𝑑,𝑄 can be written as follows:

�̇�𝑑,𝑄 = −𝑄+𝑣+
𝑑

+
𝑄𝑣

𝑑
(4.6)

where 𝑑 is the thickness of the shell, and the subscript + refers to the quantities related to the shell right

above the current one. 𝑣 is the rate of change of the semi-major axis, expressed as:

𝑣 = −𝜌𝐵
√︀

𝜇𝑅 (4.7)

In Eq. (4.7), 𝜇 is the Earth gravitational parameter; 𝑅 is the radial distance of objects with respect to

the center of the Earth (the assumption of near-circular orbits is here carried out, so that the semi-major

axis corresponds to the radial distance); 𝐵 = 𝑐𝐷
𝐴
𝑚 is related to the ballistic coefficient with 𝑐𝐷 = 2.2 [18]. 𝐴

is the area of the object, and 𝑚 is the mass of the object. 𝜌 is the atmospheric density, calculated as a static

exponential model from CIRA-72 [3].

𝜌 = 𝜌0 exp

(︂
−ℎ− ℎ0

𝐻

)︂
(4.8)

where ℎ is the altitude of the object, 𝜌0 is the atmospheric density at reference altitude ℎ0, and 𝐻 is the

atmospheric scale height [143]. �̇� describes the population change due to collision dynamics between species

as

�̇� = [�̇�𝑆 , �̇�𝐷, �̇�𝑁 , ...]. (4.9)

The number of fragments generated by each type of collisions 𝑛 is derived from the NASA standard break-up

model [55], where the collisions are classified as catastrophic and non-catastrophic depending on the released

energy of the impact. The number of fragments caused by catastrophic and noncatastrophic collisions is

denoted as 𝑛𝑐 and (𝑛𝑛𝑐 respectively. In MOCAT, collisions are considered catastrophic between intact

objects (e.g. 𝑆,𝐷) and noncatastrophic for collisions involving debris.

where 𝑀𝑖,𝑀𝑗 are the mass of the object 𝑖 and 𝑗, respectively, 𝑀𝑝 is the mass of the lighter object, 𝐿𝐶 is
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the characteristic length, and 𝑣𝑖𝑚𝑝 is the impact velocity assumed to be for all collisions 10 km/s, which is

accurate for the vast majority of collisions between two random LEO objects [129].

To organize the collision interactions and input parameters, a particular species’ population changes due

to collisions can be described with:

�̇�𝑖 =

𝑁𝑠∑︁
𝑗=1

Γ𝑖𝑗𝜑𝑖𝑗𝑄𝑖𝑄𝑗 (4.10)

where 𝑁𝑠 is the number of species considered (in this work 𝑁𝑠 = 4), 𝑖, 𝑗 = 1, ..., 𝑁𝑠 are the subscripts

indicating each generic species 𝑄, and Γ𝑖𝑗 stores the various coefficients. A detailed description is found in

[26, 27, 85] and is expanded in the following section.

The unique attributes of the MOCAT model are organized in the next section.

4.2.1 Inclusion of additional classical orbital elements

On long timescales, the evolution of a fragment cloud in LEO can be considered in three phases [107, 40, 69].

In the short term, the particles remain close to each other and form an ellipsoid. In the medium term, the

different semimajor axis of the particles (𝑎) induces a difference in anomaly and a ring is formed in the

orbit. At this point, which usually occurs within several orbits, the true anomaly (𝑓) about the original

orbit becomes distributed. In the long term, the difference in 𝑎 induces differential precession due to the

Earth’s oblateness (J2 term) and distribution across the RAAN (Ω) takes shape. Timescales on the order of

months allow the fragments to be distributed over Ω. At this point, the fragments’ orbital elements can be

well-defined by just the 𝑎 and 𝑒.

Since source-sink models allow only for average value per species to be used, continuous parameters that

contribute significantly to the dynamics can be discretized and made into separate populations for a higher-

fidelity model. While all source-sink models shown in the literature use spherical shells to discritize the

altitudes of the LEO orbital domain, there are only a handful that model the different orbital elements such

as eccentricity, inclination, ballistic coefficients, and more. Adding these other binned parameters would

result in a much larger set of ODEs to be solved. Due to this trade-off between complexity and fidelity, a

judicious set of parameters must be chosen for discretization. It should be noted that the source-sink models

that assume circular orbits and discretization of altitudes limit the interaction of objects with other objects

within the shell, greatly reducing the complexity of the ODEs. Allowing for interaction between shells with

binned eccentricity or orbital plane orientation would quickly increase the computational demand.

A survey of the current LEO environment was performed to see the number of objects residing in different

regimes. A TLE catalog from space-track.org in December 2021 was used to populate the initial conditions.

Most LEO objects are near-circular, with 90% of objects having less than 10 km differences between their

apogee and perigee. This can inform a suitable size for the altitude binning of the shells, as too large a shell

may lead to discritization errors and less sensitivity, while too small may result in too few objects in each

bin that results in over counting the effect of small samples [40].
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4.2.2 Launch traffic

Currently, the largest satellite constellation operator is SpaceX with more than 5000 operational satellites in

LEO. The company has implemented launch strategies for their satellites to combat the space debris problem

by launching into lower orbits and then using propulsion to raise its orbit to operational altitude [132].

System failures often occur at orbit insertion, and any orbital insertion anomaly would allow the derelict

satellites to reenter the atmosphere far more quickly than a direct injection into their target orbits. OneWeb

also implements orbit raising maneuvers, launching into 450 km altitude, then each payload raises its orbit

to the final orbit of 1200 km. These maneuvers are shown in Fig. 4-1. The initial launch altitude, parking

orbits, and the final orbital insertion are shown. Starlink has a higher failure rate at 5% and the green plot

shows the altitude decay for deployment rods (debris). Starlink also uses its parking orbit to distribute the

satellites into a range of RAAN using nodal precession. OneWeb instead uses one launch for one batch of

satellites in one plane.

(a) Starlink (b) OneWeb

Figure 4-1: Example launch and transfer maneuver profiles [105] [104]

If the currently proposed megaconstellations are all successfully launched, the vast majority of the source

of collisions will come from payloads, much of which will be in transit to the parking or operational orbit

after launch or to a lower altitude for post-mission disposal. The additional flux between orbits caused by

this traffic will be modeled via MOCAT. In addition, past launch rates and future planned constellations will

model the realistic scenarios as the source of RSOs for the model.

4.2.3 Fragmentation model

Most LEO collisions occur in regions of high spatial density, around 800 and 1000 km altitudes, with collisions

occurring with impact velocities of 10 km/s on average [89]. A range of collision velocity for two circular

orbits with a difference in Ω and ß are shown in Fig. 4-2.

In MOCAT, the probability distribution function of the NASA SBM is sampled for the parameter value

used for each species, as described in Eq. 2.6. According to the SBM, the imparted velocity on a sizable

debris population often exceeds 10 km/s [55], which is enough ∆𝑉 to reach escape velocity or deorbit within

an orbit due to its low perigee. Of note is the inclusion of non-self-interacting constellations such as satellites
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(b) 𝑣𝑐 for a range of Δ𝑖 and ΔΩ

Figure 4-2: Collision velocity 𝑣𝑐 between two circular 500 km orbits

within a megaconstellation. However, 𝛼𝑎 in Eq. 4.1 describes the COLA efficacy of a controlled payload

and its chance of a collision against another controlled payload, a satellite as part of a megaconstellation

would have a much lower probability of a collision against another satellite within the same constellation. As

more LEO RSOs are a part of a bigger megaconstellation, the chance of collision should be reduced for those

satellites in relation to other satellites, assuming coordination within the constellation is not an issue.

4.3 Differences between MC and SSEM approaches

There are many differences in how the SSEM method approaches modeling the future LEO population

compared to how the MC method models the population, resulting in distinct pros and cons for both. This

section aims to explain the differences between the two.

Fundamentally, the SSEM model simplifies the population of LEO objects into a few species. The popu-

lation within a species is assumed to be homogeneous, and only the population of each species is propagated.

Therefore, every object of the same species experiences the same dynamics and interacts with other species

in the same manner. This allows one set of coefficients to describe the entire population’s dynamics. The

orbital environment can be divided into concentric altitude shells to keep account of each shell’s population

as well as limit the collision interaction of populations to within the shell. The model can then be propagated

with a set of ODEs to describe the interaction between the population, as shown in Eq. 4.1.

There are three main interactions in the population dynamics: 1) launches into the system as the source,

2) drag forces acting on the objects ultimately leading to removal of the object from orbit, and 3) collision

dynamics that creates more debris and removes the parent objects. MOCAT-SSEM does not assume inclusion

of graveyard orbits for the LEO payloads.

The limitations of having one debris species in the SSEM are shown in Fig. 4-3, where the debris created

from a collision is shown for a model using the MC model compared to the SSEM. The Gabbard plot of the
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generated debris after a collision would contain eccentric orbits with a range of orbital periods; however, the

simplified SSEM model assumes discretized circular altitudes as well as drag as the only force reducing the

SMA of the objects.

Table 4.1: Summary of the fundamental differences between MC and SSEM models

SSEM MC

Propagated variable Number of objects per
Species (𝑆,𝐷,𝑁, ...)

Orbital element per
object

Orbital states tracked per
object or species

𝑎 𝑎, 𝑒, 𝑖,Ω, 𝑛, 𝑝

Object parameters
tracked

Mass, area, 𝐶𝐷, all
uniform within each

species

Mass, area, 𝐶𝐷 for
individual objects

Collision event Deterministic - average
number determined by

input

Stochastic

Collision domain for gas
particle assumption

Spherical shells
(≈ 6× 1010 km3)

Cubes (≈ 5× 105 km3)

Debris generation from
collision

Deterministic - averages
used

Stochastic, sampled at
discrete collision event

Debris mass conservation Unenforced - limited by
species’ parameters

Enforced

Atmospheric model Static or time-varying Static or time-varying

Drag dynamics Objects are uniformly
distributed within a shell,

and some ratio move
between shells determined

by lifetime in shell

Drag force affect objects
independently
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Figure 4-3: Gabbard plot of debris 15 years after a collision
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The computational resources required to run the SSEM and MC tools are shown in Fig. 4-4 for a range

of 100-year simulations. For the SSEM case, the number of species determines the computataionl cost rather

than the total population. The SSEM cases were all run with 106 to 107 poopulation. For the MC case,

both the collision detection algorithm through Cube and the propagator scale as 𝒪(𝑛), which is shown in the

resulting computational duration required. Populations of 17,000 to 107 were run on the Supercloud HPC

system [120] with Intel Xeon Platinum 8260 processors. MOCAT-MC is created as a single-thread process

– multiple threads and cores would allow for simultaneous runs of different MC simulations, but it will not

inherently improve the run time for a particular MC simulation.
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Figure 4-4: Compuatational requirement between MOCAT-SSEM and MOCAT-MC

4.4 Expanding the SSEM species parameters

The inherent architecture of SSEM models requires the use of a value associated with each parameter of a

population, typically an average. For example, all payloads and derelict objects in the previous MOCAT

models were generalized to objects with mass 𝑚 = 223 kg and cross-sectional area 𝐴 = 1.741 m2 [26, 27,

85, 25]. The generalized approach of SSEM models allows for faster computation, though with lower fidelity,

and the number of species is limited to capture the evolution of the population dynamics with limited

computational cost. In reality, objects in space vary wildly in size and shape, and the effect of generalizing

these into singular average values has not been studied. Debris objects in particular can range multiple orders

of magnitude in size and number [130]. To address this gap, population parameters can be discretized and

sampled at a higher rate rather than using an average value. One such parameter that has been discretized

for all MOCAT models and most other SSEM models has been the altitude parameter, which is usually

discretized into equi-spaced shells. This limits interaction between species to intrashell populations, which is

more realistic, and it more closely models the vastly different role the atmospheric sink plays at each altitude.

A finer discretization scale may seem to allow for higher fidelity simulations, though it has been shown that
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after 30 or so LEO altitude bins, the fidelity gain is limited [129].
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Figure 4-5: Notional physical attribute scaling 𝜖 for constant mean mass and density. Red line corresponds
to the smaller mass, while the blue line signifies the larger mass.
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Figure 4-6: Decay of RSOs from 400 km circular altitude for F10.7 index between 70 to 200 sfu for various
AMR and 𝜖 of 0 and 0.5. High solar flux results in greater atmospheric drag and a faster decay rate.

The effect of different area-to-mass ratio (AMR) on the deorbit duration for low to high solar activity

periods ranging from 70 to 200 solar flux units is shown in Fig. 4-6. Density of the debris object is assumed

to be constant, no matter how the population’s mass is divided. This leads to a varied AMR for the different

sizes of the object, as seen in the debris catalogs [49].

4.4.1 Expanded debris population for a 4-species model

The collision interaction between species contributes to the overall population via �̇� in Eq. 4.4. The pairwise

interactive term for the expanded 4-species model is broken down into each interactive element in Table 4.2.

The debris population is divided into an additional population with a different physical characteristic – in

this case, the mass of the object is additionally sampled.

The parameter 𝜖 is introduced to divide the population into two populations. In this model, we divide

the mass of the original debris population into two species of differing mean masses, although the mass of
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the ensemble debris population is fixed at �̄�𝑁0 = 0.64 kg. For a given �̄�𝑁0, the 𝜖 parameter allows the

mean of the two new species to grow apart until the smaller debris mass 𝑚𝑀 = 0 and the larger debris

mean mass 𝑚𝑁 = 2�̄�𝑁0. There are non-linear effects to the orbital lifetime when the ensemble debris

population’s mean mass is kept constant, since 𝑚 ∼ 𝑏1/3 ∼ 𝐴2/3. While keeping the mean mass equivalent to

a model with fewer species, the subdivided population will experience different population dynamics such as

collision probability, atmospheric drag effects, collision fragmentation dynamics, etc. Rather than describing

the entire debris population with one mass, this will allow a finer sampling, and its implications explored.

The fragmentation dynamics is described in Eq. 2.7, where the number of noncatastrophic fragments is

𝑛𝑛𝑐 ∼𝑀0.75.

The 3-species model is expanded such that the debris species is further divided into a small and a large

debris species (𝑁 and 𝑀 respectively) to create a 4-species model. The only difference between the properties

of the N and M classes is in the masses as described in Table 4.2. For 𝜖 = 0, this 4-species model behaves

identically to the 3-species model when the two debris populations are summed.

Figure 4-7: Schematic for the 4-population model that includes an expanded debris population.

Table 4.2: Pairwise interactions between the species for the expanded debris model (4-species model)

Species S D N M
(Active satellites) (Derelicts) (Larger Debris) (Smaller Debris)

Ċ
Collision
Source

S −𝛼𝑎𝜑11𝑆2
𝛿𝑆(𝜑12𝐷
+𝜑13𝑁
+𝜑14𝑀)

𝑛11𝜑11𝛼𝑎𝑆2

+𝑛12𝜑12𝛼𝑆𝐷
+𝑛13𝜑13𝛼𝑆𝑁
+𝑛14𝜑14𝛼𝑆𝑀

𝑛11𝜑11𝛼𝑎𝑆2

+𝑛12𝜑12𝛼𝑆𝐷
+𝑛13𝜑13𝛼𝑆𝑁
+𝑛14𝜑14𝛼𝑆𝑀

D -𝜑12(𝛿 + 𝛼)𝑆𝐷 -𝜑22𝐷2 𝑛22𝜑22𝐷2

+𝑛23𝜑23𝐷𝑁
𝑛22𝜑22𝐷2

+𝑛23𝜑24𝐷𝑀
N -𝜑13(𝛿 + 𝛼)𝑆𝑁 -𝜑23𝑁𝐷 𝑛33𝜑33𝑁2 𝑛34𝜑34𝑁𝑀
M -𝜑13(𝛿 + 𝛼)𝑆𝑀 -𝜑24𝑀𝐷 𝑛34𝜑34𝑁𝑀 𝑛44𝜑44𝑀2

m
Mass [kg] - 223 223 (1 + 𝜖)�̄�𝑁0 (1− 𝜖)�̄�𝑁0

b
Diameter [m] - 1.5 1.5 (1 + 𝜖)1/3𝑏𝑁0 (1− 𝜖)1/3𝑏𝑁0

A
Area [m2] - 1.77 1.77 (1 + 𝜖)2/3𝐴𝑁0 (1− 𝜖)2/3𝐴𝑁0
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Table 4.3: Simulation input parameters

ℎ𝑚𝑖𝑛 ℎ𝑚𝑎𝑥 𝑁𝑏𝑖𝑛𝑠 𝑑 Δ𝑡 𝑣𝑟 𝛼 𝛿 �̄�𝑁0 𝑏𝑁0

200 km 1700 km 50 30 km 5 years 10 km/s 0.2 10 0.64 kg 0.18 m

4.4.2 Expanded payload and derelict populations for a 5-species model

As the payload and derelict satellite classes are inherently related, expanding the payload species will require

expanding the derelict species. The additional payload and derelict populations result in a 5-species model,

which is described in this section. The interaction of species per shell is visualized in Fig. 4-8. Note that

there are now two payload classes (S+ for the large payloads and S− for small payloads) as well as derelict

classes (D+ and D− for large and small derelict objects, respectively). The population interaction coefficients

(Ċ) are described in Table 4.4. Note that this sampling over size or mass of the species can be extended into

any number of bins, and a schema is shown for expansion into two classes per species.

Figure 4-8: Schematic for the 5-population model that includes an expanded debris population.

4.4.3 Variance reduction of SSEM species parameters through binning

As mentioned in Sec. 4.4, one of the fundamental assumptions in the SSEM model is the fact that all objects

within a species are homogeneous and therefore have the same parameters and characteristics. While this

allows for SSEM models to simplify the problem, the reality is that even within the same species, there can

be a large variation in the objects such as the mission lifetime, area, mass, probability of failure, etc. To

model a particular scenario without bias, the mean or median value for the parameter within a species is

often used. Because of the non-linear effect of parameters – such as the area-to-mass ratio on the deorbit

duration – even if the averages are used to represent the species’ generalized parameters, the result may show

bias.

There are many assumptions in categorizing orbital objects into SSEM species. For each species, the

physical parameters such as size, mass and area are uniform within each species. Or, at the very least,

96



Table 4.4: Pairwise interactions between the species for the expanded payload model (5-species model)

Species S+ S− D+ D− N
(Large satellites) (Small satellites) (Large derelict) (Small derelict) (Debris)

Ċ
Collision
Source

S+ −𝛼𝑎𝜑11𝑆2
+ −𝛼𝑎𝜑12𝑆+

𝛿𝑆(𝜑12𝐷+

+𝜑13𝑁
+𝜑14𝑁)

𝛿𝑆+(𝜑12𝐷+

+𝜑13𝑁
+𝜑14𝑁)

𝑛11𝜑11𝛼𝑎𝑆2
+

+𝑛12𝜑12𝛼𝑆+𝐷
+𝑛11𝜑11𝛼𝑆+𝑁
+𝑛12𝜑14𝛼𝑆+𝑁

S− −𝛼𝑎𝜑11𝑆+𝑆− −𝛼𝑎𝜑11𝑆2
−

𝛿𝑆−(𝜑12𝐷+

+𝜑13𝑁
+𝜑14𝑁)

𝛿𝑆+(𝜑12𝐷−
+𝜑13𝑁
+𝜑14𝑁)

𝑛11𝜑11𝛼𝑎𝑆2
−

+𝑛12𝜑12𝛼𝑆−𝐷
+𝑛11𝜑11𝛼𝑆−𝑁
+𝑛12𝜑14𝛼𝑆−𝑁

D+ -𝜑12(𝛿 + 𝛼)𝑆+𝐷+ -𝜑12(𝛿 + 𝛼)𝑆−𝐷+ -𝜑22𝐷2
+ -𝜑22𝐷+𝐷−

𝑛22𝜑22𝐷2
+

+𝑛23𝜑24𝐷+𝑁
D− -𝜑13(𝛿 + 𝛼)𝑆+𝑁 -𝜑13(𝛿 + 𝛼)𝑆−𝑁 -𝜑23𝑁𝐷+ -𝜑23𝐷2

− 𝑛34𝜑34𝐷−𝑁
N -𝜑13(𝛿 + 𝛼)𝑆+𝑁 -𝜑13(𝛿 + 𝛼)𝑆−𝑁 -𝜑24𝑁𝐷+ -𝜑24𝑁𝐷− 𝑛34𝜑34𝑁2

m
Mass [kg] - (1− 𝜖)�̄�𝑆0 (1 + 𝜖)�̄�𝑆0 (1 + 𝜖)�̄�𝐷0 (1− 𝜖)�̄�𝐷0 0.64

b
Diameter [m] - (1 + 𝜖)1/3�̄�𝑆0 (1 + 𝜖)1/3�̄�𝑆0 (1− 𝜖)1/3�̄�𝐷0 (1− 𝜖)1/3�̄�𝐷0 0.18

A
Area [m2] - (1 + 𝜖)2/3𝐴𝑆0 (1 + 𝜖)2/3𝐴𝑆0 (1 + 𝜖)2/3𝐴𝐷0 (1− 𝜖)2/3𝐴𝐷0 0.25

uniform enough so that a given value is representative in the model, usually chosen as some mean or median

of a distribution from the actual population. This is immutable throughout the SSEM simulation. In real

life, there may be distinctions in these physical parameters, notably for debris objects. Payloads and derelict

objects are by definition intact source populations that are clearly defined; the assumption of a uniform

population can be valid. However, for debris objects that are created by some fragmentation event, there

is a large variety of physical parameters that interact with other objects differently through collisions, and

deorbit at different timelines. A set of MC simulations is run with collision debris at multiple altitudes and

propagated to see the changes to some of these parameters. The results are shown in Fig. 4-9, where the

collision for each scenario is between 100 pairs of objects with masses of 200 kg and 20 kg. The simulation

had no other initial population and 𝐿𝐶 = 10 cm. In Fig. 4-9(a), the 𝐵* values are shown with dotted lines

that denote the 25th and 75th percentiles, while the solid line denotes the median value. The 𝐵* values are

shown to have a large variability within each scenario, and from altitude to altitude. Since 𝐵* is inversely

proportional to the AMR of the object, this behavior is explained by the fact that higher AMR objects are

quickly removed from the simulation due to drag, while low AMR and high 𝐵* objects remain. This causes

an upward trend for 𝐵* over time, and this behavior occurs rapidly for collision debris at low altitudes. The

population change also shows this behavior, as shown in Fig. 4-9(b).

The debris class is binned into various masses with roughly equal numbers of objects at the onset of

collision debris generation. The evolution of the binned model 𝐵* evolution for the 800 km scenario is shown

in Fig. 4-10. Binning into the various masses shows remarkably consistent 𝐵* parameters. This shows the

strong correlation between the dynamics of the population, the mass and 𝐵*. Dividing the debris population

into these mass bins result in better uniformity within each binned debris class than when using one parameter

to represent the entire class.

A simple launch case is simulated using MOCAT-MC to illustrate the use of a global median value for
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Figure 4-9: Scenario with collisions seeded at various altitudes
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Figure 4-10: 𝐵* values of the binned debris class in mass for the 800 km collision scenario

debris and binned median values. In the simple launch case, no initial population is modeled and a constant

launch rate is applied per altitude shell, ranging from 360 per 50-km shell near 200 km to 10 per year at

2000 km. PMD is set at 90%, and 𝐿𝐶 is set at 10 cm. The duration of the scenario was 150 years. The

relationship between the mass of the debris objects and 𝐿𝐶 at the end of the 150 year scenario is shown in

Fig. 4-11. Since the limit of the scenario 𝐿𝐶 was 10 cm, the limit is shown on the left, while there is a clear

relationship between 𝐿𝐶 and mass, as expected. The discontinuity in the number of objects at 𝐿𝐶 = 1 m is

due to the SBM creating objects following two different methods. Objects below 1 m are created by following

the strict power law CDF, whereas larger objects are created by combining the remaining mass into “a few”

of the larger objects.

The histograms for each of the axes show the debris distribution for mass and 𝐿𝐶 . If a median were used

from this timestep, the median mass would be 0.152 kg, while the median 𝐿𝐶 would be 15.1 cm. In terms
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of mass conservation, the true total mass of the debris at this timestep was 135.4 metric tons. If the median

mass value were used for the number of debris objects (141049), as would be the assumption in an SSEM,

the total mass would come to 21.4 mt. This descrepancy is one of the reasons for binning the SSEM species

in size (𝐿𝐶), as there is a clear relationship between size and mass, which would affect the deorbit property

through AMR as well as secondary collision numbers.

The right subplot shows the distribution using the NASA SBM. Note that the SBM ascribes a bimodal

AMR to each of the debris given its 𝐿𝐶 , from which the mass can be derived.
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Figure 4-11: Distribution of 𝐿𝐶 and mass of debris objects
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Figure 4-12: Distribution of masses after simple launch case

The simple launch scenario’s payload count per time step is shown in Fig. 4-12. With a 8-year mission

lifetime, the steady-state number of active payloads at the 200 km altitude bin is 2880 while at 2000 km it

is 80. The median mass value per altitude bin every 2 years is shown in Fig. 4-12(b). The median is only

taken if the population is >6. A clear dependence on altitude is also shown where the lower-altitude debris

objects consist primarily of more massive objects that remain longer in the denser lower orbits.

It is clear that treating the entire debris species as a uniform class using the median physical parameters
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will introduce a large loss of fidelity. The lack of mass conservation, deorbit profile, and secondary collisions

would skew the result. By allowing multiple bins of the physical parameters, the variance of the parameters

for the binned species can be reduced, allowing for a higher-fidelity and lower-bias SSEM model. By allowing

for multiple bins of the physical parameters, the variance of the parameters for the binned species can be

reduced, allowing for a higher-fidelity and lowered-bias SSEM model.

4.4.4 Binned SSEM Parameters

The fundamental difference between the number of objects and the relationship between 𝐿𝐶 and the mass

of debris objects from the NASA SBM means that with few bins, mass conservation and number of debris

population cannot both be fulfilled with the generalized binned model as described in the previous section.

The optimal location for binning in 𝐿𝐶 for the debris class was found using the mass conservation factor as

the cost function. The cost function is defined as:

min
𝑥

𝑓(𝑥) =

(︃
𝑛∑︁

𝑖=1

�̃�𝑖𝑐𝑖 −𝑚𝑡𝑜𝑡

)︃2

, (4.11)

where �̃�𝑖 is the median mass of the objects in bin 𝑖 and 𝑐𝑖 is the number of objects in that bin for 𝑛

total bins, and 𝑚𝑡𝑜𝑡 is the total mass of the debris objects. Bin numbers 𝑛 = 1 through 50 were run, with

optimal edges and the resulting error shown in Fig. 4-13. The edges of the bins are chosen as the extrema

of the debris 𝐿𝐶 , which in this case ranges from 10 cm to 6.1 m. The optimal bins are shown to largely

follow a log-linear pattern, though often with some bias toward denser spacing below 1 m. This can also be

attributed to the SBM creating objects with two different methods at that size.
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Figure 4-13: Optimization of binning for debris class depending on a range of number of bins in 𝐿𝐶

The error is defined as the ratio between the difference in the total debris mass calculated in the binned

model and the total debris mass. As expected, as the number of bins grows, the error decreases, although not

all the way to 0. With the singular bin, the mass error is around 86% of the total mass of the parent objects
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and reduces to 14% with 8 bins. The SSEM calculation yields less mass than the expected mass due to the

skewness of each bin toward smaller objects which contribute less in aggregate compared to the larger objects,

as shown in Fig. 4-11. The trade between fidelity of mass conservation from collision and compuatational

cost shown in Fig. 4-4 will be needed when setting up the SSEM model. A more detailed analysis of the

mass conservation effect, an alternative method of calculating the representative physical parameters of the

bin, and the effect of minimum 𝐿𝐶 is explored in Appendix G.

The result of a similar simple launch case is run within the SSEM environment with a range of binning

for the debris class. The unbinned case similar to the MOCAT-3 model is run, and a range of optimized bins

calculated earlier is run for up to 9 debris classes to see the differences in the final result. No initial population

is given, and the launched payloads have mass of 260 kg, radius of 0.7 m and area of 1.7 m2, and collision

avoidance efficacy of 𝛼 = 𝛼𝑎 = 10−5. Mission life is 8 years, and PMD efficacy is 0.65. The launch model

tapers off around 800 km and totals 6588 launches per year, as illustrated in Fig. 4-14. The environment is

divided into 50 km shells ranging from 200 km to 1400 km with the static exponential atmospheric model,

and is simulated for 200 years.
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Figure 4-14: Simple launch case

The results comparing the various binning are shown in Fig. 4-15, where the debris mass profile at 𝑡 = 200

years is shown along with the total debris population over time. As shown earlier, the marginal benefit of

adding more bins is reduced. The error for the unbinned case can be explained by the skewness of the debris

parameters. For the unbinned case, the median mass value is much higher.

4.5 Addition of Delta-V Dynamics from Collisions

The debris generated in a collision in orbit typically have a distribution of velocities added to them, dispersing

them from the original parent objects. In a hyper-velocity catastrophic collision, the collision is much like an

explosion, where the velocity is generally uniform around the object. The NASA SBM describes this delta-v

distribution in a 1-D velocity derived from the area-to-mass ratio of the object. The debris with any velocity
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Figure 4-15: Comparison between binning amount for the debris class

added to the in-track direction would attain a higher semi-major axis, while debris with velocity added in the

opposite direction would lose the semi-major axis. This change in altitude has not been added in the SSEM

in the literature nor has it been present in the previous versions of MOCAT-SSEM. Without the dynamics

implemented to add velocity to the debris, it was assumed that all of the created debris would stay within the

altitude shell of the collision, preventing any debris from spreading into lower and higher shells. The number

of debris created from collisions is described earlier in Eq. 4.10, which implicitly describes the generation of

collision debris into the shell in which the collision occurs. Expanding the collision term for the debris class

for a 3-species MOCAT-3 model (𝑁𝑠 = 3) for the 𝑘th shell yields:

�̇�𝑁,𝑘 =

𝑁𝑠∑︁
𝑖,𝑗=1

Γ𝑖𝑗𝜑𝑖𝑗𝑄𝑖𝑄𝑗

⃒⃒⃒⃒
⃒⃒
𝑘

(4.12)

= 𝑛𝑆𝑆𝛼𝑎𝜑𝑆𝑆𝑆
2
𝑘 + 𝑛𝑆𝐷𝛼𝜑𝑆𝐷𝑆𝑘𝐷𝑘 + 𝑛𝑆𝑁𝛼𝜑𝑆𝐷𝑆𝑘𝑁𝑘 (4.13)

+ 𝑛𝐷𝐷𝜑𝐷𝐷𝐷2
𝑘 + 𝑛𝐷𝑁𝜑𝐷𝑁𝐷𝑘𝑁𝑘 + 𝑛𝑁𝑁𝜑𝑁𝑁𝑁2

𝑘 , (4.14)

where the variables are defined consistently with the MC variables, with 𝑛𝑖𝑗 denoting the number of debris

generated from a collision between 𝑖 and 𝑗 objects, 𝑆𝑘, 𝐷𝑘, 𝑁𝑘 noting the population of 𝑆,𝐷,𝑁 in shell 𝑘,

𝛼𝑎 the collision avoidance factor for payload-on-payload collisions, 𝛼 the collision avoidance factor between

a payload and any other object, and 𝜑𝑖𝑗 the collision probability defined in Eq. 4.10. As noted earlier, the

collision is independetly assessed for each shell, and all of the collision debris remains in the shell.

In this section, a spreading function is implemented to allow the debris from a collision in a shell to deposit

the debris in another shell to introduce the Delta-V dynamics to the collision debris with the spreading

function Γ𝑖𝑗,𝑚𝑘, and the number of objects increased for the debris class in shell 𝑘 can be written as:
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�̇�𝑁,𝑘 =

𝑁𝑠ℎ∑︁
𝑚=1

𝑁𝑠∑︁
𝑖,𝑗=1

Γ𝑖𝑗,𝑚𝑘𝜑𝑖𝑗𝑄𝑖,𝑚𝑄𝑗,𝑚, (4.15)

where Γ𝑖𝑗,𝑚𝑘 represents the expected number of debris generated per collision between object pair 𝑖, 𝑗 mul-

tiplied by collision probability modifiers such as 𝛼 for objects in shell 𝑚 depositing in shell 𝑘. 𝑁𝑠ℎ denotes

the number of shells, 𝑄𝑖,𝑚 denotes the pouplation of object type 𝑖 in shell 𝑚. This formulation allows for

collisions from shells to affect the population of debris deposited into another shell.

The expected number of objects created from a pair of species types remains the same, so Γ𝑖𝑗,𝑚𝑘 is defined

such that

Γ𝑖𝑗 =

∞∑︁
𝑚=0

Γ𝑖𝑗,𝑚, (4.16)

where the summation of 𝑚 from 0 to ∞ denotes that the sum of debris produced into all shells including

those that deorbit up to reaching escape velocity. Because a number of debris from catastrophic collisions do

in fact produce debris that deorbit or reach escape velocity, it is often the case that Γ𝑖𝑗 >
∑︀𝑁𝑠ℎ

𝑚=1 Γ𝑖𝑗,𝑚.

Calculating the number of debris deposited into different shells from a collision is simplified to the average

case. For a circular orbit at 200 km to raise its semi-major axis to 250 km, it takes 29.4 m/s of Delta-V,

while for a circular orbit at 1950 km orbit to raise to 2000 km it takes 20.7 m/s. The average shell between

200 and 2000 km requires 24.6 m/s to raise 50 km, as shown in Fig. 4-16(a). Using this mean value, a

spreading function can be calculated that allocates the debris from a collision. Using the NASA SBM and

the resulting Delta-V, a collision in a typical shell will impart debris that follows the distribution shown in

Fig. 4-16(b). The case shown is between two 260 kg objects resulting in a catastrophic collision, and the

count is an average of 20 runs allowing for fractional counts. The highest deposition of debris is in the shell

of the collision, as expected, though some objects – particularly light objects with high AMR – go below the

lowest shell or above the highest shell. Larger masses with low AMR tend to gain little Delta-V and largely

remain in the collision shell. This spreading function defines Γ𝑖𝑗,𝑚.

With this addition, the Delta-V dynamics from collisions is captured in the SSEM model. The number

of equations remains the same, with more terms for each of the equations. This allows higher fidelity to be

achieved at scale. In comparison to Fig. 4-3, the DV dynamics adds fidelity to the breakup dynamics as

shown in the Gabbard plots in Fig. 4-17. The collision’s interaction with the higher shells is clearly seen.

The circular orbit assumption and altitude shell environment are present, hence the similar set of preigees

and apogees and discretized periods.
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Figure 4-16: Delta-V dynamics applied to SSEM using a spreading function
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Figure 4-17: Gabbard plot of debris 15 years after a collision
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4.6 Validation of SSEM with MC using equilibrium solutions

SSEM formulation is useful in obtaining equilibrium solutions where, for a given launch rate and initial

population, all population rate of change is zero. As described in [26], this is when

0 =
[︁
�̇�, �̇�, �̇� , ...

]︁𝑇
= �̇� = Λ̇+ �̇�𝑃𝑀𝐷 + �̇� + �̇�. (4.17)

In [26] the SSEM model lacked the Delta-V dynamics, resulting in an equilibrium solution that allowed

more launches in the higher orbits. With no mechanism to deposit debris into lower and higher orbits from

the collision orbit, the higher orbits simply had to limit its own collisions and balance derelict accumulation

with drag forces. With the inclusion of Delta-V collision dynamics, a dense lower orbit regime will also

deposit debris into the higher orbits, accumulating debris faster. A comparison between the two equilibrium

solutions is shown in Fig. 4-18.
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Figure 4-18: Comparison of equilibrium solutions with and without Delta-V dynamics

The equilibrium solution is run with SSEM only up to 900 km where there is some atmosphere to

counteract some amount of accumulation. The comparison makes it clear how the accumulation of debris

at higher orbits is the expected equilibrium. The launch rate difference is also seen, where the amount of

payloads launched into the higher orbits is markedly lower. However, an overall increase in capacity is seen,

with a higher total number of launches for MOCAT3-DV. Previously, all debris was generated and deposited

in the same shell, which meant a rapid growth in collisions, which scales as ∝ 𝑁2 within the shell. With

the spreading factor, the number of debris generated per collision is spread amongst neighboring shells, with

some objects being removed from the simulation immediately or very quickly. Linear scale plots are shown

in Figs. A.13 in the Appendix.

For comparison to MC runs using these equilibrium solutions, care must be taken in assigning the type of

object, namely, for the debris class. In MC simulations, debris sizes down to 𝐿𝐶 will be created, whereas in

SSEM there may only be one debris size. How to bin when counting the population is explored by comparing
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the MC runs using the equilibrium solution launch rate and initial condition.
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Figure 4-19: Debris Count from MC runs vs SSEM for equilibrum solution

The size of the debris class objects in MOCAT3-DV was 40 cm. The debris object count from the MC

run with 𝐿𝐶 = 10 cm is shown in Fig. 4-19, where the simulation was also limited to altitudes between 200

and 900 km. The plots show the evolution of the debris count depending on the smallest debris to count,

ranging from 𝑟 > 5 cm to 𝑟 > 60 cm. This shows a near-equilibrium at 𝑟 > 40 cm, not deviating far from

the original equilibrium solution of 24833.62 total debris objects at 40 cm. The number of debris between

the SSEM debris size and 𝐿𝐶 dominates the number of objects; however, the equilibrium solution is found

when looking at the appropriate radius and larger.

Additional analysis will need to be done with multibinned model and the Delta-V dynamics and finding

the optimal population binning to translate the equilibrium solution from SSEM to MC. However, the models

show good agreement, and the additional improvements to SSEM have shown to be important in producing

a higher-fidelity model with mass conservation and collision debris dynamics.
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Chapter 5

Conclusion

5.1 Summary

As access to space is becoming easier and with the accelerated pace of launches into LEO, it is imperative

to be able to model the future space environment and understand the various inputs that can shape the

future. This thesis presents a novel evolutionary model called MOCAT-MC which is described and validated.

Various future scenarios and historical scenarios are analyzed using the tool.

MOCAT-MC efficiently models the evolution of the orbital population that is characterized by dynamics

such as launches, collisions, explosions, deorbits, and more. This Monte Carlo tools is flexible in its modeling

fidelity with several options for the propagator, initial simulation population, and launch profiles. A sampling-

based collision model is used and its sensitivity to input parameters is explored. This tool can be used to

model the effect various future launches scenario to the orbital population evolution, and help answer key

questions around LEO orbital capacity and sustainable usage of the space environment. The efficiency of

this model is able to extend analysis to small lethal non-trackable objects, which is an important enabler in

understanding the future LEO environment.

The comparatively simpler SSEM model is explored in this thesis as well, and its fidelity increased through

novel addition of binning and collision dynamics. Though lower fidelity than MC, these SSEM models

compute the long-term future environment in seconds and allows for optimization to find high capacity

equilibrium solutions. Several challenges with the extendibility and validity of this model are identified and

the exploration of options to increase its fidelity. This model has been used by several economic and policy

studies, and is continuing to improve its usability.

In summary, the main contributions and findings of this thesis include the following:

• Development of an open-source MC-based evolutionary orbital population model that can simulate

tens of millions of orbital objects on a single-thread. This allows for Lethal Non-Trackable objects to

be analyzed, where the inclusion of such small objects leads to a much increase in non-catastrophic
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collisions and to a lesser degree catastrophic collisions.

• Demonstration that analytical propagation can be used to scale MC simulations

• Analysis of future constellation traffic as filed with ITU and FCC, reaching more than 80,000 operational

satellites in LEO from the filed constellations alone, where the contribution from higher orbit satellites

are shown to be much more long-lasting compared despite fewer launches.

• Increased fidelity of the Source-Sink Evolutionary Model (SSEM) through the use of multi-binned ob-

jects and inclusion of the Delta-V dynamics to SSEM formulation allowing for shell-to-shell interactivity

in debris deposition, where the model shows a closer match to the MC models.

We currently live in an inflection point in terms of amount of investment and number of objects launched

into space. It is very possible that more objects will be launched in the next few years than was launched

previously. The analogous period with global warming would be the industrial age, and the summer of

2020 for the COVID pandemic. It is imperative then that stakeholders, such as policy makers and the

interested public, be able to use open models for which the assumptions are clearly laid out with realistic

parameters. MOCAT was produced with such vision in mind to understand the future space environment

and sustainability.

5.2 Future work

The models described in this thesis, as well as the analysis, are limited in scope. Future work for the

MOCAT-MC model includes expansion of the model capability such as deterministic collision modeling and

semi-analytical propagators. Other fragmentation models and the ability to seed the initial population with

existing debris density models would also allow for a higher-fidelity initial population. The addition of these

modules will allow even more flexibility in trading fidelity for computational cost, so that the appropriate

fidelity can be used for the desired analysis. Additional analysis using the tool can include the long-term

effect of different policies and one-off events such as geomagnetic storms, the relative PMD levels at various

densities and altitudes, and actuarial analysis for satellite operators in various debris environments. Though

LNT objects were included, the collision effect from these objects are static - even collisions with low specific

energy renders an active payload into a derelict or debris objects. This effect could be tuned such that a

more realistic effect such as probabilistic creation of a derelict object can be modeled.

The fidelity of the SSEM model can increase with eccentricity and inclination binning, though at a much

higher compuatational cost. Other layers of optimization can be added, along with continued validation

against MC and ML models, especially in finding equilibrium solutions which can aid in orbital capacity

analysis. The model can be used to measure the effect of federal and economic policies on space debris

generation and gaming between multiple actors to explore the multi-polar future environement as well.
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Appendix

A Variability in B* in TLEs

A snapshot of the B* values from TLEs from January 2023 is shown in this figure. The B* value is a fitted

parameter, hence the non-physical negative values for a large number of objects.
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Figure A.1: Distribution B* values from TLEs (Jan 2023)

B Resampling for mass and radius of objects

Fig. A.2 compares the different methods for resampling the physical parameters of the missing objects.
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Figure A.2: Parameter resampling for various object classes
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C No Future Launch scenarios

The data used for the No Future Launches and Extrapolated scenarios with January 2023 epoch are described

here. Table A.1 shows the breakdown of each object as described by DISCOS, where MRO represents Mission

Related Objects, FD represents Fragmentation Debris, and D represents Debris as defined by ESA [34].

Figure A.3 shows the altitude distribution of the objects at the beginning of the epoch. The total number

of objects at the start of the epoch is 18065. In this figure, all objects not considered Payload or Rocket Body

are considered to be part of the All Debris class. The large contribution from Starlink since 2019 in the 500

km altitude bin is notable.

Table A.1: Breakdown of object type in the initial population for January 2023

Payload Payload MRO Payload Frag. Debris Payload Debris Rocket Body
7866 233 5573 95 971

Rocket Body MRO Rocket Frag. Debris Rocket Debris Other Debris Uknown
609 2808 25 253 1
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Figure A.3: Semi-major axis of objects used for initial population at Jan 1, 2023

111



0 20 40 60 80 100

Time (years since epoch)

0

0.5

1

1.5

2

2.5

P
o
p
u
la

ti
o
n

104

2001

2003

2005

2007

2009

2011

2013

2015

2017

2019

2021

2023

Figure A.4: Total population for No Future Launches cases with varying epochs
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Figure A.5: Number of objects per object type for the No Future Launch cases with varying epochs
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D Megaconstellation future traffic model

Table A.2 describes the future megaconstellation modeled in this work compiled from various sources including

[106] as of March 2023. Total num column denotes the final operational constellation size without spares,

Start Year and Finish Year denotes the start and end of the ramp-up phase to get to the final operational

number per constellation. Some constellations are missing some information such as the launch year and

physical attributes. Launch dates were estimated for the purposes of the scenarios as shown in Fig. A.7, and

the physical attributes were set equal to the Starlink constellation.

Table A.2: Modeled future traffic for megaconstellations

Constellation
Alt

(km)

Inc

(deg)

Total

Num

Start

Year

Finish

Year

Mass

(kg)

Radius

(m)

Starlink 550 53 1584 2018 2027 260 2.0

Starlink 570 70 720 2018 2027 260 2.0

Starlink 560 97.6 348 2018 2027 260 2.0

Starlink 540 53.2 1584 2018 2027 260 2.0

Starlink 560 97.6 172 2018 2027 260 2.0

Starlink2A 530 43 2500 2023 2031 800 2.0

Starlink2A 525 53 2500 2023 2031 800 2.0

Starlink2A 535 33 2500 2023 2031 800 2.0

Starlink2 340 53 5280 2023 2031 1250 4.0

Starlink2 345 46 5280 2023 2031 1250 4.0

Starlink2 350 38 5280 2023 2031 1250 4.0

Starlink2 360 96.9 3600 2023 2031 1250 4.0

Starlink2 530 43 860 2023 2031 1250 4.0

Starlink2 525 53 860 2023 2031 1250 4.0

Starlink2 535 33 860 2023 2031 1250 4.0

Starlink2 604 148 144 2023 2031 1250 4.0

Starlink2 614 115.7 324 2023 2031 1250 4.0

OneWeb 1200 87.9 588 2019 2023 150 0.5

OneWeb 1200 55 128 2019 2023 150 0.5

OneWeb 1200 87.9 1764 2025 2028 150 0.5

OneWeb 1200 40 2304 2025 2028 150 0.5

OneWeb 1200 55 2304 2025 2028 150 0.5

Kuiper 590 33 782 2024 2029 700 1.5

Kuiper 590 30 2 2024 2029 700 1.5

Kuiper 610 42 1292 2024 2029 700 1.5

Kuiper 630 51.9 1156 2024 2029 700 1.5
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Table A.2 Continued: Modeled future traffic for megaconstellations

Constellation
Alt

(km)

Inc

(deg)

Total

Num

Start

Year

Finish

Year

Mass

(kg)

Radius

(m)

Guanwang 590 85.0 480 2035 2055 - -

Guanwang 600 50.0 2000 2035 2055 - -

Guanwang 508 60.0 3600 2035 2055 - -

Guanwang 1145 30.0 1728 2035 2055 - -

Guanwang 1145 40.0 1728 2035 2055 - -

Guanwang 1145 50.0 1728 2035 2055 - -

Guanwang 1145 60.0 1728 2035 2055 - -

Yinhe 511 63.5 1000 - - 230 0.7

Hanwha 500 97.5 2000 2025 2035 - -

Lynk 500 97.5 2000 - - 125 0.5

Astra 700 0 40 - - 500 -

Astra 690 98.0 504 - - 500 -

Astra 700 55.0 1792 - - 500 -

Astra 380 97.0 2240 - - 500 -

Astra 390 30.0 4896 - - 500 -

Astra 400 55.0 4148 - - 500 -

Boeing 1056 54.0 132 2025 2030 - -

Telesat 1015 99.0 78 2023 - - -

Telesat 1325 50.9 220 2023 - - -

Telesat 1015 99.0 351 2023 - - -

Telesat 1325 50.9 1320 2023 - - -

HVNET 1150 55.0 1440 - - - -

SpinLaunch 830 55.0 1190 - - 150 -

Globalstar3 485 55.0 1260 - - - -

Globalstar3 515 70.0 100 - - - -

Globalstar3 600 55.0 900 - - - -

Globalstar3 620 98.0 100 - - - -

Globalstar3 700 55.0 720 - - - -

Fig. A.6 shows the unifed launch population per time broken into individual constellation planes. The

constellation name denotes the altitude in km and inclination in degrees in the parenthesis. Note that Kuiper

(590/30) includes just 2 operational satellites.

Fig. A.8 shows the population of active satellite growth for each constellation in a log scale for comparison.

The black dashed line shows the total number of constellation. The vertical red dashed line notes the year

2023. Data preceding this line is from actual launch data, showing population from Starlink and OneWeb.

The population modeled after 2023 is modeled from the information from Table A.2.
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Figure A.6: Megaconstellation population assumption
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Figure A.7: Assumed future megaconstellation launch rate during ramp-up phase
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Figure A.8: Future megaconstellation launch model
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E Megaconstellation future traffic model results
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(a) Starlink (v1, 1.5), Kuiper, OneWeb
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(b) Starlink (v1, 1.5, 2), Kuiper, OneWeb

Figure A.9: Total population per altitude for future launches
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Figure A.10: Population and collisions statistics for megaconstellation launches limited to < 600 km (total
59336 operational). Altitude bin of 50 km, time bin of 1 year.
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Figure A.11: Population and collisions statistics for megaconstellation launches limited to < 900 km (total
66598 operational). Altitude bin of 50 km, time bin of 1 year.
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Figure A.12: Cumulative catastrophic vs non-catastrophic collisions for the altitude limited megaconstellation
scenarios over a 200-year scenario. Altitude bin of 50 km.
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F Equilibrium solution comparison

Equilibrium solutions are introduced in Sec. 4.6. An overall increase in the capacity is seen, with a higher

total number of launches for MOCAT3-DV. Figures A.13 show the linear plot zoomed in to show the difference

between the MOCAT3 and MOCAT3-DV solutions. Allowing for DV dynamics changes the SSEM equilibrium

solution such that more debris is allowed to accumulate at the higher altitudes. At equilibrium, these

populations will slowly deorbit into the lower shells where they are more quickly removed from orbit.

200 300 400 500 600 700 800 900

Altitude (km)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
ou

nt

105

S
D
N
lambda

(a) MOCAT3

200 300 400 500 600 700 800 900

Altitude (km)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
ou

nt

104

S
D
N
lambda

(b) MOCAT3 with DV dynamics

Figure A.13: Comparison of equilibrium solutions with and without Delta-V dynamics

G Mass conservation from SSEM debris binning

Mass conservation error and its relation to binning introduced in Sec. 4.4.3 is expanded in this section.

Strictly speaking, any number of debris classes would exhibit mass conservation if the mean value of the

mass is used as the representative debris class. This extends to unbinned class, which is equivalent to

binning into one class. This would mean that given a minimum 𝐿𝐶 used for the SSEM simulation, a collision

between representative objects (such as payload and derelict) would produce a certain number of debris

following the NASA SBM formulation. Using the mean mass value and summing the number of objects

would mathematically produce the valid amount of mass produced from the colliding pair of parent objects.

However, the representative mass and size would not be a realistic debris as the mean value is skewed by the

power law distribution that contains more objects in the smaller regime within any size-binned debris class,

as well as skew heavier due to the log-normal distribution of the AMR.

Figure A.14 shows the mass and density distribution of the resulting debris after ten catastrophic collisions

between two 260 kg payloads with minimum 𝐿𝐶 = 10 cm. The effect of binning is shown with the dotted

red lines to show the bin edges, and the four different methods to calculate the representative mass and

characteristic length for the bin using either means or medians. When the mean value is used for both the

mass and length for each bin, it is often the case that the resulting definition for the binned species is too
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dense. The skewness resulting from the power-law distribution shows that the mean value may not be the

best representation for the debris class. Also note the increasing debris density for the smaller debris objects

– this is noted in [49] as a “deficiency” in the NASA SBM that will be corrected in the future for very small

objects less than 1 mm.
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Figure A.14: Mass and density distribution for SSEM debris class binning with minimum 𝐿𝐶 = 10 cm

Though the use of median values may be more representative of a typical debris within the debris species,

there is a limitation to the mass-conservation property per collision, as seen from Sec. 4.4.3. This is further

explored in Fig. A.15 by comparing the reduction in error as the number of bin increases. This adds a few

more cases to Fig. 4-13. As expected, the mean values of mass produces no error, however, the values tend

to represent debris with greater density than is seen in the debris population.

Note that the mass error shows that the total debris mass in SSEM is always less than the total mass of

the parent objects. Though the smaller debris tend to be higher density, they are quite small volumetrically.

Thus, the total mass contribution of the smaller objects is low. Representing any debris species will skew

the mass towards the smaller objects, and thus the total mass of the SSEM debris class being less than the

parent objects total mass.

A similar distribution is seen when the minimum 𝐿𝐶 = 1 cm. In this case, two collisions between the
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Figure A.15: Error in mass conservation from binning - 10 cm case

same 260 kg objects are binned and shown in Figs. A.16 and A.17.
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Figure A.16: Mass and density distribution for SSEM debris class binning with minimum 𝐿𝐶 = 1 cm
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H MOCAT-MC Subroutines

NASA Standard Breakup Model Implementation

Algorithm 1 outlines the major steps involved in simulating space debris generation following a collision

according to the NASA Standard Breakup Model. It involves:

• Calculation of collision specific energy to determine collision type (catastrophic or non-catastrophic).

• Generating debris pieces based on a power-law distribution, tailored to the collision type.

• Adding large fragments if necessary to ensure mass conservation.

• Assigning generated debris to the two original objects based on size and mass.

• Creating the final debris objects with specific orbital parameters.

Algorithm 1 NASA Standard Breakup Model

1: function CollisionSBM(𝑒𝑝, 𝑝1, 𝑝2, 𝑝𝑎𝑟𝑎𝑚, 𝐿𝐵)
2: Ensure 𝑝1 is larger than 𝑝2
3: 𝑑𝑣 ← CalculateRelativeVelocity(𝑝1.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑝2.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
4: 𝑐𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑅𝑎𝑡𝑖𝑜← CalculateCatastrophicRatio(𝑝1.𝑚𝑎𝑠𝑠, 𝑝2.𝑚𝑎𝑠𝑠, 𝑑𝑣)
5: if 𝑐𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑅𝑎𝑡𝑖𝑜 < 40 then
6: 𝑀 ← 𝑝2.𝑚𝑎𝑠𝑠 · 𝑑𝑣2
7: 𝑖𝑠𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐← False
8: else
9: 𝑀 ← 𝑝1.𝑚𝑎𝑠𝑠+ 𝑝2.𝑚𝑎𝑠𝑠

10: 𝑖𝑠𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐← True
11: end if
12: 𝑛𝑢𝑚𝐷𝑒𝑏𝑟𝑖𝑠← CalculateDebrisNumber(𝑀 , 𝐿𝐵)
13: 𝑑𝑒𝑏𝑟𝑖𝑠𝑆𝑖𝑧𝑒𝑠← SampleDebrisSizes(𝐿𝐵, 𝑛𝑢𝑚𝐷𝑒𝑏𝑟𝑖𝑠, 𝑝1.𝑟𝑎𝑑𝑖𝑢𝑠)
14: 𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠← CalculateDebrisMasses(𝑑𝑒𝑏𝑟𝑖𝑠𝑆𝑖𝑧𝑒𝑠, 𝑝1.𝑜𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠)
15: if Sum(𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠) < 𝑀 then
16: if 𝑖𝑠𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 then
17: AddLargeFragments(𝑑𝑒𝑏𝑟𝑖𝑠𝑆𝑖𝑧𝑒𝑠, 𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠, 𝑀 , 𝑝1, 𝑝2)
18: else
19: AddSingleLargeFragment(𝑑𝑒𝑏𝑟𝑖𝑠𝑆𝑖𝑧𝑒𝑠, 𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠, 𝑀 , 𝑝1)
20: end if
21: end if
22: 𝑑𝑒𝑏𝑟𝑖𝑠𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠← CalculateDebrisVelocities(𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠, 𝐴𝑚, 𝑑𝑣)
23: [𝑓𝑟𝑎𝑔1, 𝑓𝑟𝑎𝑔2]←AssignDebris(𝑑𝑒𝑏𝑟𝑖𝑠𝑆𝑖𝑧𝑒𝑠, 𝑑𝑒𝑏𝑟𝑖𝑠𝑀𝑎𝑠𝑠𝑒𝑠, 𝑝1, 𝑝2)
24: ValidateMassBudget(𝑓𝑟𝑎𝑔1, 𝑓𝑟𝑎𝑔2, 𝑝1, 𝑝2)
25: [𝑑𝑒𝑏𝑟𝑖𝑠1, 𝑑𝑒𝑏𝑟𝑖𝑠2]← CreateDebris(𝑓𝑟𝑎𝑔1,𝑓𝑟𝑎𝑔2, 𝑝1, 𝑝2)
26: return 𝑑𝑒𝑏𝑟𝑖𝑠1, 𝑑𝑒𝑏𝑟𝑖𝑠2, 𝑖𝑠𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐
27: end function

Cube Method Implmentation

Algorithm 2 describes the Cube method as implemented in MOCAT-MC, from filtering out objects above

the altitude limit, discretizing the 3D space into a grid of cubes, identifying which objects fall into the same
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cube, and finally, if requested, creating pairs of these objects to potentially check for collisions or proximity

within that cube. Cube resolution that determines the size of the cube is an input parameter denoted as res.

Algorithm 2 Cube method

1: function DetermineObjectsInSameCube(𝑋, 𝑟𝑒𝑠, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑎𝑙𝑡_𝑙𝑖𝑚𝑖𝑡)
2: for each object in 𝑋 do
3: if any position of object > 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑎𝑙𝑡_𝑙𝑖𝑚𝑖𝑡 then
4: Invalidate object
5: end if
6: end for
7: for each valid object position in 𝑋 do
8: Assign discrete cube index for each dimension by flooring the position divided by 𝑟𝑒𝑠
9: end for

10: Adjust all indices to be positive by adding this maximum value plus offset
11: for each object’s discrete position do
12: Calculate a unique identifier (𝑋_𝑖𝑑𝑥) for the cube it occupies
13: end for
14: Find duplicated identifiers
15: if duplicates exist then
16: for each set of objects in the same cube do
17: Generate pairs of indices of these objects
18: end for
19: Store these pairs as the result
20: else
21: Return empty set
22: end if
23: return result
24: end function
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I MOCAT-SSEM Subroutines

Algorithm 3 MOCAT3 Simulation Process

1: function MOCAT3(inputs)
2: Define Scenario Properties
3: Define initial conditions, simulation parameters, and species definitions.
4: Generate Species Pairs
5: Use generate_species_pairs to create pairs of species for simulation interactions.
6: For MOCAT3 specific scenarios, use make_collision_pairs_MOCAT3.
7: Alternatively, for SBM models within MOCAT3, use make_collision_pairs_SBM.
8: Prepare Debris Bins
9: Initialize bins for tracking debris by size, altitude, and other characteristics.

10: For each Simulation Time Step do
11: For each Pair of Species do
12: Determine if collision occurs based on scenario properties.
13: If Collision Detected then
14: Calculate Collision Outcome using EVOLVEbinsDV
15: Input masses, radii, relative velocity (dv), and bin distributions.
16: Determine if the collision is catastrophic.
17: Distribute resulting debris into bins.
18: Calculate Drag Effects for each species at each altitude shell
19: Adjust bin distributions based on drag decay models.
20: Update Scenario Properties based on outcomes.
21: Collect and Analyze Results
22: Aggregate data on debris populations, collision frequencies, and drag effects.
23: Analyze trends in debris evolution.
24: End MOCAT3 Simulation
25: end function
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Algorithm 4 MOCAT-SSEM Simulation Process
1: Setup MOCAT-SSEM Simulation
2: Define Scenario Properties
3: Define simulation parameters (simulation length, time step, altitude shells, solver etc).
4: Define species definitions (𝑆,𝐷,𝑁 , etc).
5: Generate Species Pairs
6: for each pair of objects within each altitude bin do
7: Calculate collision cross section probability
8: Calculate number of debris created from SBM
9: Calculate spreading function to deposit into neighboring shells

10: end for
11: Create ODEs
12: Add in launch and drag effects to ODEs
13: Create coupled equations for each species for each altitude bin
14: Solve systems of equations
15: Propagate with given input parameters such as initial population and launch rate 𝜆
16: Collect and Analyze Results
17: Aggregate evolution of debris populations, collision frequencies, and drag effects.
18: Analyze debris evolution.
19: End Simulation
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