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ABSTRACT

The growing field of collaborative robotics has the potential to enable and improve the
execution of many challenging robot applications. For instance, with teamwork between
multiple agents, dynamic object tracking can more completely cover an environment and
trajectory planning becomes safer. However, for robots to share the quickly changing spatial
information involved in these tasks, robots need to be able to express information originally
sensed or planned in their own frame into the frame of neighboring agents. This can be
challenging in cases where robots have no global pose information resulting in steady ac-
cumulation of error, or drift, in their local pose estimates. To mitigate the effects of drift,
neighboring agents must make up-to-date estimates of the alignment between their frames,
which can be difficult due to ambiguous alignments and the presence of outlier measurements.
To address these issues, the first contribution of this thesis is a method for performing fast
incremental frame alignment between pairs of robots, enabling collaborative multiple object
tracking (MOT), the task of monitoring the locations of dynamic objects in an environment.
To perform frame alignment, robots build up maps of recently seen static objects and use
these maps and the detections of tracked dynamic objects to correct for frame drift. Using
frame alignment estimates, agents share object detection information and account for addi-
tional uncertainty associated with the alignment estimate. The second contribution of this
thesis presents a method to perform frame alignment with no initial guess. Many potential
frame alignments are computed and we develop a filter that uses temporal consistency to
reject outlier alignments and only accept a series of alignments that are consistent over time.
We demonstrate in hardware experiments our ability to perform frame alignment in difficult
scenarios and improve the quality of collaborative object tracking onboard real robots.

Thesis supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Overview

The current capabilities of robotic systems are expanding rapidly with the development of

methods for multi-robot collaboration. Intuitively, robotic tasks like monitoring the loca-

tions of nearby dynamic objects for surveillance or collision avoidance [1], planning safe

trajectories around other traveling neighbors [2], and creating a globally consistent map of

an environment [3] can be completed more effectively when performed by a team of collabo-

rating robots. However, by involving multiple decision-making agents with limited commu-

nication bandwidth, additional complications must be algorithmically addressed to achieve

the enhanced performance that cooperative robotics promises. Among these challenges is

the problem of communicating precise spatial information (e.g., current locations of dynamic

objects or positions of planned trajectory waypoints) accurately to neighbors.

Accurately sharing geometric information is difficult because, in many instances, commu-

nicating robots do not share the same coordinate frame, which means a robot needs a way to

transform coordinates and rotations from its own frame into the frame of its neighbors. This

transformation from one robot frame to another can be achieved through frame alignment,

or estimating the rotation and translation between the origins of a pair of robots’ coordi-
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nate frames. Frame alignment is further complicated by the fact that robot localization

is susceptible to drift if no global information is available [4] (e.g., from GPS). Because of

drift, the true alignment between two frames may be constantly changing, so collaborative

tasks require frame alignment estimates to be continuously updated so that time-sensitive

information can be communicated in real-time.

This thesis introduces a method to iteratively correct frame alignment as drift is accumu-

lated in local frames by creating object-level maps of the environment and aligning collections

of recently observed objects. Additionally, we introduce an approach that considers multiple

potential map alignments to perform frame alignment when no initial localization informa-

tion is available. We demonstrate the use of these frame alignment methods in a system

for performing collaborative multiple object tracking (MOT), the task of estimating the

locations of dynamic objects in a scene.

The challenges involved in performing frame alignment for collaborative robotics are

discussed in Section 1.2. Section 1.3 outlines the contributions of this thesis, Section 1.4 lists

relevant publications, and Section 1.5 gives an overview of the remaining chapters.

1.2 Problem Statement

In mobile robotics, estimating ego state, including position and rotation, is necessary for fun-

damental tasks like path following and obstacle location estimation. Local state estimation

approaches vary depending on available sensors, but state-of-the-art methods commonly fuse

noisy IMU acceleration and angular rate measurements with wheel odometry, visual odom-

etry, or lidar odometry. Local state estimation methods generally use the robot’s ‘wake-up’

pose (i.e., initial position and rotation) as the origin of the world frame, Fworld. Then, small

incremental changes in the vehicle’s position and rotation are estimated and chained together

over time to estimate the vehicle’s current pose [5]. This incremental method is known as

dead reckoning, and in the absence of global pose information (e.g., from GPS or a motion

16



Fworld

Fodom
frame misalignment
due to drift

Fworld

robot’s true pose

robot’s estimated pose, due to drift

Figure 1.1: Two alternative views of drift. Drift can be visualized as causing errors in a
robot’s pose estimate in the world frame (left) and it can be visualized as causing a frame
misalignment between the world frame Fworld and the robot’s odometry frame Fodom.

capture system), small incremental errors in odometry chain together to grow into larger

and larger errors, a phenomenon that is called drift and is visualized in Fig. 1.1.

Drift is essentially a frame alignment problem—while a robot’s local odometry frame

initially corresponds with the world frame, as drift accumulates, the odometry frame develops

errors separating it from the world frame. The classic approach to eliminating drift is to

perform simultaneous localization and mapping (SLAM) [6]. SLAM attempts to minimize

the effects of drift by using measurements between the robots’ pose and landmarks in the

world (e.g., pixel location of visual features or 3D position of LiDAR features) to inform

robot state estimation. SLAM further introduces the concept of loop closure, which is an

instantaneous frame alignment that involves recognizing when a robot revisits a previously

perceived location, allowing its state estimate to snap back into place and mitigate the effects

of drift. In visual SLAM, loop closures are typically found using visual place recognition

(VPR) technology [7] by attempting to match the currently observed image with a set of

17



previously seen images.

In this thesis, we are primarily concerned with relating quantities (e.g., planned tra-

jectories or perceived object locations) between multiple robots’ drifted odometry frames.

To accurately share geometric information, frame alignment must be constantly updated

to overcome the effects of drift, Performing frame alignment between two different robots’

frames is particularly difficult since multi-robot scenarios often do not offer any prior infor-

mation about the locations of other robots, meaning incorrect frame alignments are difficult

to recognize and reject. Additionally, solving collaborative SLAM problems involves solving

a large optimization problem and which can require communicating large amounts of data,

making collaborative SLAM problems difficult to solve quickly. This means we need some-

thing more than collaborative SLAM for robots to communicate about time-sensitive and

dynamic elements of collaborative tasks in real-time. Furthermore, VPR for loop closure

tends to fail when a scene is viewed from large viewpoint differences.

To this end, this thesis seeks to develop frame alignment strategies that enable collabo-

rative multi-robot tasks by:

• Performing frame alignment in real-time, thus mitigating the effects of drift when

communicating about dynamic information.

• Operating without depending on initial frame alignment information.

• Aligning frames in difficult scenarios, in particular instances when robots perceive a

scene from opposite views.

• Incorporating uncertainty associated with frame alignment when sharing information

with neighboring robots.

18



1.3 Contributions

An overview of the main technical contributions of this thesis are now given. The main

objective of this thesis is to build algorithms for performing frame alignment between pairs

of robots enabling the accurate communication of geometric information used in real-time,

collaborative tasks. The key principle that guides these algorithms is that frame alignment

can be computed by matching the perceived geometry of an environment between two robots’

distinct maps. Additionally, this thesis asserts that coarse abstractions of both static and

dynamic objects in the world can be used to create sparse and low-size world representations

for performing frame alignment accurately.

1.3.1 Contribution 1: Collaborative MOT Enabled by Incremental

Frame Alignment Corrections

Multi-Object Tracking with Localization Error Elimination (MOTLEE) [8] addresses the

problem of performing frame alignment in real-time to mitigate the effects of drift for col-

laborative object tracking. In this contribution, we give a complete, distributed system for

incrementally realigning drifting frames and performing collaborative MOT. Frame align-

ment is performed by creating maps of static objects in the environment and aligning these

maps using the iterative closest point (ICP) method [9]. Additionally, we show that given

an initial frame alignment with low enough errors, tracked dynamic objects (e.g., pedestri-

ans) can be used to assist in frame alignment. Finally, we use our frame alignment method

to properly account for measurement uncertainty due to localization and frame alignment

errors, preventing failed data association and over-confident estimation.
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1.3.2 Contribution 2: Frame Alignment without an Initial Guess

Leveraging Temporal Consistency

This contribution [10] relaxes the assumption that robots begin with initial frame alignment

knowledge. To accomplish this, robots use open-set image segmentation [11] to map generic

objects (i.e., objects that are not recognized using a detector pre-trained on specific classes of

objects) in their environment. Our algorithm, Temporally Consistent Alignment of Frames

Filter (TCAFF), extracts multiple likely frame alignments from aligning mapped objects

leveraging a no-initial-guess data association algorithm [12]. A frame alignment estimate is

only made when a series of alignments over time demonstrate high temporal consistency.

Using this method, incorrect alignments are rejected, and robots are able to align frames in

challenging scenarios in which no initial alignment information is available.

1.4 Related Publications

This work of this thesis is based on the following publications:

• M. B. Peterson, P. C. Lusk, and J. P. How, “Motlee: Distributed mobile multi-object

tracking with localization error elimination,” in 2023 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), IEEE, 2023, pp. 719–726

• M. B. Peterson, P. C. Lusk, A. Avila, and J. P. How, “Motlee: Collaborative multi-

object tracking using temporal consistency for neighboring robot frame alignment,”

arXiv preprint arXiv:2405.05210, 2024

• K. Kondo, C. T. Tewari, M. B. Peterson, A. Thomas, J. Kinnari, A. Tagliabue,

and J. P. How, “Puma: Fully decentralized uncertainty-aware multiagent trajectory

planner with real-time image segmentation-based frame alignment,” arXiv preprint

arXiv:2311.03655, 2023
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1.5 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 gives a review of related work

in multi-robot localization and collaborative object tracking. Contribution 1, collaborative

MOT enabled by incremental frame alignment corrections, is detailed in Chapter 3. Contri-

bution 2, frame alignment without an initial guess using temporal consistency is described

in Chapter 4. Finally, Chapter 5 concludes this thesis and gives directions for future work.
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Chapter 2

Related Work

This thesis is primarily concerned with performing frame alignment in collaborative multi-

robot tasks, in particular, collaborative MOT. In this chapter, we review the literature on

these topics. In Section 2.1, we discuss work related to first performing single robot visual

localization and then performing multi-robot localization including visual frame alignment.

Section 2.2 gives an overview of work in MOT, in particular, works addressing the additional

challenges of fusing information from collaborating agents.

2.1 Visual Localization

Often detached from the MOT community, SLAM approaches the problem of robot local-

ization by building a map of the robot’s static surroundings and then using mapped ele-

ments to estimate the motion of the robot [4]. SLAM approaches are often differentiated

by map representation used by the algorithm. Maps can be represented by dense voxel or

surfel maps [14], 3D Gaussian splats [15], sparse visual-feature-based landmarks [16], [17],

abstract objects [18]–[22], hierarchical scene graphs [23], or implicit neural radiance fields

(NERFs) [24]. While dense SLAM representations can often produce detailed maps, the

computation and memory burden of these methods is often ill-suited for platforms with low
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compute or bandwidth constraints when collaboratively mapping.

A key component of SLAM that differentiates it from visual intertial odometry (VIO)

is the concept of loop closures or frame alignment. Loop closure involves first recognizing

that a robot is perceiving a scene it has already visited and then finding the transformation

that relates the robot’s current pose to its pose when the scene was first observed. Visual

loop closure is enabled by VPR technology [7], which determines whether scenes captured

in two images overlap by finding images with highly similar visual features [16], [17]. Single-

agent loop closure detection benefits from the ability to validate loop closures by checking

whether a robot’s estimated current location geometrically agrees with the pose of the robot

associated with the original image of the scene. If the robot is confident that these two

matched locations are in fact very far away, the robot can use this information to reject this

loop closure as incorrect.

Unlike single-agent SLAM, in collaborative SLAM (CSLAM), robots often have no prior

information about the locations of other robots. This makes the problem of loop closure

detection and verification much more challenging. To overcome this hurdle, recent CSLAM

research has focused on developing algorithms for robustly rejecting outlier loop closures

based on consistency with odometry measurements [3], [25], [26]. Complimentary to the

problem of rejecting incorrect loop closures, CSLAM is also faced with the unsolved challenge

of detecting loop closures in visually different scenarios, including matching images that view

a scene from very different viewpoints [27], [28].

To this end, this thesis focuses on developing robot frame alignment methods that are

viewpoint invariant by creating abstract and sparse representations of environments (e.g.,

object-level representations) that are not dependent on the viewpoint from which the scene

is perceived. Additionally, this thesis proposes a method to reject incorrect frame alignments

by measuring the temporal consistency of series of alignments and only accepting alignment

sequences with high temporal consistency.
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2.2 Multiple Object Tracking

Multiple object tracking (MOT) or multiple target tracking is the dynamic counterpart of

SLAM. Where SLAM seeks to map static objects, MOT is the task of monitoring the lo-

cations of dynamic objects through time and predicting their future paths. While much

of the classic MOT work focused on range and bearing sensors like radar, as image pro-

cessing techniques improved, a great deal of literature shifted to revolve around the task

of tracking dynamic objects seen by a single camera. Motivated by the need for robots to

operate autonomously in environments alongside people, much of recent literature focuses

specifically on tracking pedestrians [29]. An early work in this field, [30] emphasized that

pedestrian motion is tightly influenced by the motion of other nearby people. More recent

works like SimFuse [31], Deep-SORT [32], and Centertrack [33] incorporate recent learning

advancements to make improvements to trajectory prediction and object-to-measurement

data association.

Data association between existing object tracks and newly received measurements re-

mains one of the fundamental challenges of MOT. Cues of data association often include

comparing the newly detected position of an object with its predicted location from pre-

viously filtered measurements. Data association can be especially challenging in cluttered

environments or in scenarios with high noise levels. A classic method for dealing with the

data association problem is Multiple Hypothesis Tracking, which was developed and im-

proved in early works including [34], [35]. Multiple Hypothesis Tracking delays making

hard data association decisions by considering many different possible associations. These

are managed as a tree, with each branch representing a different combination of combined

measurements and states. By delaying hard associations until further information makes

data association clearer, tracking improvement can be improved greatly at the cost of extra

computation. To address the combinatorial nature of creating hypothesis trees, [36] and [37]

develop systematic algorithms for empirically shown methods to save computation while still
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maintaining the benefits of considering multiple hypotheses. In contrast to these methods

that use multiple-hypothesis tracking for performing MOT, in this thesis we show that sim-

ilar concepts can be used to reject outlier frame alignments when performing relative robot

localization. Furthermore, while these works focus on single-agent MOT, the focus of this

thesis is on performing tasks like MOT collaboratively with a team of robots.

2.2.1 Collaborative MOT

Collaborative MOT can be centralized [38], [39] or distributed [40]–[44]. In a centralized

system, all measurement information is sent from robots to a central server, which fuses the

measurement information and handles data association with access to all measurement and

track information at once. In distributed systems, agents share measurement and estimation

information directly with neighbors in their communication network and track estimates are

computed collaboratively and in a distributed way.

Because tracks’ estimated state information is often one of the biggest informers in cross-

view data association, many works consider performing collaborative MOT with known

relative sensor poses. The Multi-Target Multi-Camera Tracking (MTMCT) community often

focuses on solving a maximum a posteriori optimization problem on a set of recorded videos

offline to jointly optimize track estimates over all time [38], [39], [45], [46]. Methods for

fusing static sensor information include tracking in the 2D image plane and then associating

2D tracks across views [38], [45], associating detections based on projected 3D locations [42],

[46], and using learning-based ReID features [38], [42].

Conversely, in a mobile robot scenario, robots require real-time knowledge about the

whereabouts of moving objects in their environment (i.e., optimizing objects’ tracks using

recorded videos does not suffice). Real-time object tracking onboard moving sensors is com-

monly approached by incrementally estimating objects’ states as new detections are made.

Ong et al. [47] proposed a decentralized particle filtering approach for tracking onboard mul-

tiple flight vehicles using global localization information from GPS for vehicles. Shorinwa et
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al. [40] presented a distributed target tracking method based on consensus ADMM for use

on autonomous cars with ground truth localization.

2.2.2 Collaborative MOT with Unknown Localization

Because teams of robots are necessarily going to experience localization drift in their ego-

pose estimates, robots cannot accurately share track information with their neighbors in a

common coordinate frame without some method to compensate for drift. To address this,

recent work has begun to emerge that tackles both simultaneous localization and object

tracking [22], [48]–[51]. Tian et al. [22] introduce a method for performing simultaneous

SLAM and MOT on mobile agents with LiDAR sensors by performing data association on

objects using similarity scoring on a sliding window of object tracks. Ahmad et al. [52] for-

mulated a joint, collaborative MOT and localization problem as a pose graph optimization

for robot soccer. They make the limiting assumption of known data association of measure-

ments with static landmarks and tracked dynamic objects. Taghavi et al. [50] introduced a

method for estimating static sensor bias in a multisensor MOT framework in a centralized

system. Dames [51] proposed a distributed MOT algorithm based on random finite sets

(RFS) and the probability hypothesis density (PHD) with the assumption that localization

uncertainty is constant everywhere along the robot’s path. In contrast, this thesis introduces

TCAFF, a multiple hypothesis frame alignment filter, to determine the correct alignment

of robot coordinate frames using temporally consistent frame alignment measurements used

for communicating information in our distributed MOT system.
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Chapter 3

Collaborative Multiple Object Tracking

Under Localization Uncertainty

In this chapter, we outline a system for performing collaborative MOT while performing

frame alignment to iteratively correct for the effects of drift. First, the objective of frame

alignment is described in Section 3.1. We then describe our full MOT system in Section 3.2.

This importantly includes a method to incorporate the uncertainty from frame alignment

when sharing information with neighbors. In Section 3.3, our iterative frame realignment is

described and finally, experimental results are shown in Section 3.4.

3.1 Background

Coordinated, multi-robot tasks require each robot to know the transformations to their

neighboring robots’ coordinate frames for collaboration about perceived information. Addi-

tionally, a robot must estimate its own pose within a local frame, which is usually referred

to as the odometry frame. We write the i-th robot’s pose in its own odometry frame Fodomi

at time k as Todomi
ri (k). Since the robot’s pose estimate can be susceptible to drift, we also

consider the robot’s pose in a world frame, Tworld
ri (k). The two frames Fodomi

and Fworldi
are

illustrated in Fig. 1.1. Because of drift, the transform between the two coordinate frames,
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Todomi
world (k), may not remain static. We formulate frame alignment as the problem of comput-

ing the relative transform between two robots’ odometry frames Todomi
odomj

, which can be used

to express spatial information in a neighboring robot’s frame.

3.2 Collaborative MOT

The objective of MOT is to estimate x(k), the state of each dynamic object in an environment

at time k, using measurements z(k) and modeled by a discrete-time linear dynamic system

x(k + 1) = Ax(k) +w(k), z(k) = Hx(k) + v(k), (3.1)

where A and H are the transition and measurement matrices, respectively, and w(k) ∼

N (0,Q(k)) and v(k) ∼ N (0,R(k)) are zero-mean independent Gaussian process and mea-

surement noise with covariance matrices Q and R, respectively. Each robot keeps a local

bank of state estimates of dynamic objects, x̂(k), also referred to as tracks.

We adopt the distributed track management system of [42] to handle sharing track in-

formation between robots, and shared track information is incorporated using the Kalman

Consensus Filter (KCF) [53], [54], as described in the remainder of this section.

At each timestep, each robot obtains dynamic object measurements z(k) from sensory

input and then executes three tasks to collaboratively track objects: (1) perform local data

association between new measurements and the tracks in robot i’s local bank, (2) share

updated KCF information with neighboring robots, and (3) perform KCF updates.

3.2.1 Local Data Association

Local Data Association (LDA) is the process of determining whether each measurement

should be assigned to an existing track or whether it belongs to a new object that is not

being tracked. This association decision is made by evaluating the negative logarithm of the
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matching likelihood (NLML) [55] between each measurement z(k) and each existing track

prediction as

NLML(x̂+(k), z(k + 1)) = ∥z(k)−Hx̂+(k)∥2S + dz log 2π + log (|S|) . (3.2)

where x̂+(k) = Ax̂(k), dz is the dimension of the measurement vector, and S = HPH⊤ +R

is the innovation covariance. We solve the LDA using a global nearest neighbor (GNN)

approach [1] where the measurement-to-track association is formulated as a linear assign-

ment problem and the NLML of each association is minimized using the Hungarian algo-

rithm [56]. We apply a gate, τ , such that a track x̂(k) cannot be matched with a z(k) if

NLML(x̂+(k), z(k + 1)) > τ . Any unmatched measurements are set aside as part of a trial

database where after ν sequential measurements, the trial track is accepted as a new track.

3.2.2 Information Sharing

Once measurements and tracks have been associated, robot i sends the message containing

KCF update information to each neighboring robot j. It is important to note that because

the robots’ coordinate frames differ, quantities expressed in Fodomi
must be transformed into

Fodomj
and the uncertainty associated with that transformation must also be reflected in the

uncertainty associated with shared measurements and state estimates. We use the notation

pji to designate a quantity p that originated from robot i, and is now expressed in robot j’s

odometry frame Fodomj
using the estimated frame transformation Todomi

odomj
. For each track,

the information (ID, x̂j+
i ,uj

i ,U
j
i ) is shared, where ID is a unique ID for the track, u and U

are the information vector and information matrix associated with the track respectively.

The information vector and matrix are formed with

uj
i = H⊤(Rj

i )
−1zji , Uj

i = H⊤(Rj
i )

−1H, (3.3)
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where Rj
i is computed by propagating the measurement covariance through the uncertain

frame transformation Todomi
odomj

(k), which will be discussed in Section 3.2.4.

3.2.3 Kalman Consensus Filter

Once robot i has received messages from each of its neighbors, the information is aggregated

as

yi =
∑

j∈Ni∪i

ui
j, Yi =

∑
j∈Ni∪i

Ui
j, (3.4)

where Ni represents the set of robot i’s neighbors. Track estimates are then obtained by

fusing together all shared information using the KCF update,

x̂i(k + 1) = x̂i+
i (k) +Mi(k)

[
yi(k)−Yi(k)x̂i+

i (k)
]

+
Mi(k)

1 + ∥Mi(k)∥
∑
j∈Ni

(
x̂i+
j (k)− x̂i+

i (k)
)
,

(3.5)

where Mi(k) = (Pi(k)
−1

+Yi(k))−1 is the Kalman gain in information form, and Pi(k) is

the estimation covariance. Finally, Pi(k) is updated with AMi(k)A⊤ +Qi(k).

3.2.4 Uncertainty Propagation

To share the measurement zii, robot i must transform zii into the frame Fodomj
, and the

frame alignment uncertainty Ps must be properly incorporated with the initial measurement

uncertainty Ri
i. We parameterize the frame alignment and its associated uncertainty using

Euler angles, following Smith, Self, and Cheeseman (SSC) [57]. Then, Rj
i can be found by

combining the uncertainty in the object measurement and the frame alignment with

Rj
i = Idz×dyJPsJ

⊤I⊤dz×dy +Codomi
odomj

Ri
i(C

odomi
odomj

)⊤. (3.6)

where J is the left half of the Jacobian of the compounding (relative head-to-tail) relation,

Ps is the covariance of the current frame alignment estimate, and Codomi
odomj

is the right half of
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the Jacobian of the compounding relation, which is also the rotation matrix component of

the frame alignment estimate.

3.3 Incremental Frame Alignment

In this section, we present a distributed method for eliminating error between robot frames

using local maps of static landmarks and past dynamic object detections. Aligning these

values, allows robots to compute an estimate T̂odomi
odomj

(k), correcting for drift in real-time.

3.3.1 Realignment with Static Landmarks

The key concept is that frame alignment drift can be accounted for and eliminated by aligning

objects observed by pairs of robots. Because drift can accumulate and change quickly, our

method aims to promptly correct for drift online by creating small, local maps of recently

observed static landmarks. With two local maps in hand, performing frame realignment

with each neighbor involves three steps: first, associating landmarks between maps; second,

applying a weighting to pairs of landmarks; and finally, performing point registration to

compute T̂odomi
odomj

(k).

To perform data association between two maps, we use iterative closest point (ICP)

registration [9]. As ICP is a local method that requires a good initial guess, we use the

previous estimate T̂odomi
odomj

(k−1) as a starting solution. Weights are applied to the associations

found by ICP using the following weighting function to prioritize recent detections over old

detections,

W (ℓi, ℓj) = (ℓiℓj)
−1, (3.7)

where a larger weight corresponds to a greater influence in the point registration and ℓi and

ℓj are the number of frames since the corresponding static landmarks were last detected by

robots i or j respectively. This is done to help account for drift that may have accumulated

in older parts of the static local map.
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The final step of the algorithm is to compute T̂odomi
odomj

(k) using Arun’s method [58] on

the associated landmarks and respective weights. The transformation T̂odomi
odomj

(k) should be

applied to all outgoing detections sent to robot j to place the measurements properly in

robot j’s frame.

3.3.2 Realignment with Tracked Objects

When a large enough number of dynamic objects are co-visible, robots can use these already

tracked objects and their measurements to perform frame alignment. To determine whether

dynamic object detections can be used to perform frame realignment, we define η to be the

number of concurrent, same-object detections between two agents and τη to be a threshold

such that frame realignment is only performed with dynamic object detections when η ≥ τη.

If η < τη, then, static landmark realignment should be performed. Thus, with enough co-

visibility for robots i and j to achieve a large η, determining the realignment transformation

can be done without performing any additional mapping and by only exchanging information

about tracked objects.

One important difference between aligning static landmarks and tracked object measure-

ments is that measurements from tracked objects have already been associated during the

KCF information exchange. So, given two pairs of already-associated dynamic object mea-

surements, Z i
i and Z i

j, we only need to find all pairs of detections zii(k), zij(k) that occurred

at the same time k to perform realignment.

To realign frames with greater accuracy, we assign pairs of detections a weight that

reflects the knowledge the agents have about the accuracy of the detection. We define the

weighting function

W (x̂i
i, z

i
i, z

i
j) = ((Hx̂i

i − zii)
⊤(Hx̂i

i − zij))
−1, (3.8)

which prioritizes aligning pairs of detections where both are consistent with the estimated

state of the object, thus rejecting noisy detections and even detections that may have been
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associated incorrectly.

Once this step has been performed, a transformation is found using Arun’s method for

registration [58]. Since aligned measurements zii(k), zij(k) were already placed into robot

i’s odometry frame, alignment of these measurements results in an intermediate correc-

tion transformation, Trealign. So, to conclude frame realignment, T̂odomi
odomj

(k) is updated with

T̂odomi
odomj

(k) = TrealignT̂
odomi
odomj

(k − 1).

One problem that may arise with this algorithm is that it assumes that frame alignment

between two robots is accurate enough that robots can associate detections of common

objects. This will not be the case under severe frame misalignment. To address this issue

and to give robots the ability to make correct data associations when frame error is large, we

make τ (see Section 3.2.1) reactive to the amount of detected frame misalignment, indicated

by the magnitude of Trealign. The data association tolerance τ is scaled up when frame

realignment yields a large Trealign and τ is returned back to its original value when frame

realignment begins to yield a small Trealign.

3.4 Experiments

We evaluate our distributed mobile MOT system using two self-collected datasets generated

using a team of ground robots in a 10× 10m room. Each robot was equipped with an Intel

RealSense T265 Tracking Camera and an Intel RealSense L515 LiDAR Camera. A VICON

motion capture system was used to collect ground truth pose information of robots, mov-

ing objects (pedestrians), and static landmarks (cones). For simplicity, we assume objects

evolve according to (3.1) with a constant velocity motion model—thus the state of an object

is defined to be x(k)
def
= [px, py, vx, vy]

⊤ ∈ R4. Each robot makes noisy 2D position observa-

tions in the ground plane so that the measurement model is defined as z(k) def
= [p̃x, p̃y]

⊤ ∈ R2,

where object measurements are made by processing CenterTrack [59] trained on the JRDB

dataset [60], [61] on T265 left fisheye images. Although CenterTrack additionally provides
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Figure 3.1: MOT hardware experiment in our motion capture room. We use this setup to
demonstrate our MOTLEE algorithm’s ability to perform distributed MOT onboard moving
robots with localization uncertainty.

IDs associated with detections (i.e., the CenterTrack network attempts to infer data associ-

ation), we find these to be too noisy for practical use.

In addition to providing images used for person detection, the T265 stereo camera

provides each robot with ego-motion estimation based on stereo visual odometry. Al-

though each robot begins with knowledge of relative frame alignments (e.g., by initializing

T̂odomi
odomj

(k0) = Todomi
odomj

(k0)), odometry drift quickly grows resulting in frame misalignments

that cause failure of distributed data association and fusion of incoherent data in the KCF.

Using our MOTLEE algorithm, we address these challenges by performing frame alignment

and appropriately incorporating odometry and frame alignment uncertainty into shared mea-

surement uncertainty.

We use MOTA [62] as the performance metric, given by

MOTA = 1− Σk(m(k) + fp(k) +mme(k))

Σkg(k)
, (3.9)
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where m(k) is the number of ground truth objects missed in frame k, fp(k) is the number of

false positives (i.e., perceived objects that are not found in frame k), mme(k) is the number

of mismatches, or objects that were reported under a different ID at time k than the ID

previously used for that object, and g(k) is the number of ground-truth objects in the scene.

The components of MOTA are highly sensitive to the system’s ability to correctly perform

data association and report the correct location of objects. This makes it a good candidate

for measuring the effects of frame misalignment which causes data association errors and

corrupts shared object detection measurements.

3.4.1 Effects of Localization Error

We now demonstrate the performance of MOTLEE’s resilience to frame misalignment and

localization error. First, we present our results in the context of a dataset taken with

5 pedestrians walking around our motion capture room with 4 stationary robots located

around the perimeter. We use this dataset to artificially alter the localization error of each

robot by initializing robot frame alignments with incorrect T̂odomi
odomj

(k0). In this way, we isolate

the effects of localization error directly, without also introducing other error associated with

performing mobile MOT, e.g., poor object detection from motion blur.

To represent the effects of inter-robot frame misalignment, artificial error is introduced

into the system by adding a random, constant bias to the robot pose estimates at the start

of a run by initializing T̂odomi
odomj

(k0) = TerrorT
odomi
odomj

(k0), where Terror is composed of random

heading error θerror ∼ N (0, σθ) and random translation error in the x, y plane with magnitude

terror ∼ N (0, σt). We then capture the performance of the system for varying levels of σt

and σθ representing varying levels of localization uncertainty. We correlate the standard

deviations σθ and σt at a ratio of 8.12 deg heading error per 1m translation error. This ratio

is the amount of heading error that would produce 1m of error in the estimated position

of a tracked object that is a distance of 7m away from the robot, the approximate average

distance between tracked objects and each robot in this dataset. To produce the following
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Figure 3.2: Performance of distributed MOT from Casao et al. [42] under varying levels of
artificially introduced localization uncertainty. Each of the plotted values directly affects
tracking accuracy as defined by MOTA (see (3.9)). Without accounting for localization
uncertainty, tracking accuracy degrades as error increases. Misses and particularly false
positives are the dominating part of the degradation in performance. False positive tracks
occur because each robot within the multi-view system shares incorrect information about
tracked objects, causing the network to report many different tracks of objects that do not
exist.

results, we run our full dataset through our MOT framework over 5 different samples at each

uncertainty level to represent the average performance of the system as error is introduced.

Fig. 3.2 and Fig. 3.3 show studies on the isolated effects of localization error. Fig. 3.2 de-

composes the different pieces of MOTA and shows how misses and particularly false positives

break a system’s MOT performance as localization error is introduced. Fig. 3.3 demonstrates

that while Casao et al.’s [42] MOT algorithm rapidly breaks down with frame alignment error

in the system, our MOTLEE algorithm is robust to localization error. Frame realignment is

performed here by only aligning detections of dynamic objects.

3.4.2 Mobile Experiment

In this section, we evaluate MOTLEE using a team of three mobile ground robots moving

along pre-determined trajectories while four pedestrians walk among the robots. By nature
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Figure 3.3: MOT performance results as localization error is introduced. Two lines at
MOTA = 0.5 and MOTA = 0.0 are given as references for understanding the performance
degradation. An example scenario that would earn a MOTA of 0.5 is tracking only half of
the visible objects and missing the other half. For a MOTA of 0.0, a system could similarly
miss half of all visible objects but additionally predict that each of those objects are in some
other location. MOT performance rapidly degrades with the introduction of localization
error (navy line). Performing realignment with dynamic object tracks (pink line) realigns
frames successfully in low-uncertainty regimes, and performing realignment with a reactive
data association tolerance τgate (green line) makes the system robust to even greater amounts
of error.

of the small room that the experiment is run in, each robot follows a circular path in its

assigned region of the room. Because of this, cameras have limited co-visibility of objects

for approximately half of the time while they face the walls. In this experiment, there

are too few shared dynamic detections to be used for frame realignment (η < τη), so static

landmarks are used to realign frames. These landmarks are detected and mapped by each

robot using the L515 camera. Detections of cones are made using YOLOv7 [63] with weights

from [64]. The corresponding 3D points within the 2D bounding box are then identified by

color thresholding and a 3D cone position is estimated using the median of these points.

39



Cone detections are accumulated into local maps using the robot’s odometry combined with

3D cone detections to chain pairwise associations. Local maps are shared with neighbors

at a frequency of 1Hz, and frame alignment is performed using these local maps as they

arrive. We represent the frame alignment uncertainty, Ps, as a diagonal covariance matrix

with elements determined by a linear scale of the difference between the current and most

recent frame alignments.

Fig. 3.4 shows that using only noisy odometry readings without realignment only works

well while localization error is small, which only occurs at the beginning of the run. How-

ever, as more error is accumulated in each of the robot’s frame alignments, T̂odomi
odomj

(k), the

system fails to perform collaborative object tracking accurately. In contrast, when using our

MOTLEE framework for realignment, we are able to perform near the level of the system us-

ing ground truth localization. We achieve an average MOTA of 0.724, similar to the ground

truth performance of 0.756, while Casao et al. [42] breaks down due to the static camera

assumption and scores a MOTA of 0.141.

We also show the error between Todomi
odomj

(k) and T̂odomi
odomj

(k) in Fig. 3.5. With our MOTLEE

frame realignment, we get a median error of 1.83 deg heading error and 0.22m translation

error. Although we use the recorded data to run the system offline so that we can compare

different localization scenarios, our algorithm can easily be run in real-time with each tracking

and mapping cycle taking an average of 7.1ms with a standard deviation of 2.9ms and each

frame alignment cycle taking an average of 76.7ms with a standard deviation of 23.9ms.
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Figure 3.4: Four-minute long mobile MOT test results. MOTA is usually normalized by
the sum of the number of objects in each frame over a whole run. However, to show the
evolution of tracking over time, the MOTA score is shown over a sliding window of 10
seconds. Casao et al.’s algorithm [42], which does nothing to correct for localization error,
quickly degrades as drift accumulates in the robots. We show that MOTLEE demonstrates
improved robustness to frame misalignment and is able to achieve results similar to those of a
system with ground truth localization. We also show that by incorporating frame alignment
uncertainty into exchanged information in the KCF (green line), MOTLEE achieves a higher
MOTA than when this uncertainty is ignored (pink line) even though frame alignment results
do not change (the pink and green lines are on top of each other in the heading and translation
error plots).

41



0.0 2.5 5.0 7.5 10.0
Heading Error (deg)

0

25

50

75

100

125

150

0.0 0.5 1.0
Translation Error (m)

Figure 3.5: Histogram of error in frame realignment estimates during mobile MOT experi-
ment.

42



Chapter 4

Frame Alignment without an Initial

Guess

In chapter 3, we addressed the problem of iteratively correcting for frame alignment drift.

In this chapter, we develop a method for performing frame alignment when no initial in-

formation on relative robot localization is available. This makes the problem much more

challenging as the frame alignment problem must often deal with ambiguities—a potential

frame alignment may look convincingly correct; however, geometric or visual aliasing may be

present, and so a mechanism for rejecting incorrect potential alignments must be developed.

Section 4.1 presents our method for aligning robot frames without an initial guess by

searching for sequences of temporally adjacent alignments with high consistency. Experi-

mental results demonstrating our algorithm’s ability to find frame alignments in challenging

scenarios are then given in Section 4.2.
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Figure 4.1: To perform collaborative object tracking with a team of mobile robots (bottom
right), potential frame alignments are found by aligning maps of objects (top left) and filtered
using a multiple-hypothesis-inspired frame alignment filter (top right). Relative robot poses
are shown from the point of view of the purple robot.

4.1 Temporally Consistent Alignment of Frames Filter

(TCAFF)

TCAFF, our method for no-initial-guess frame alignment, is depicted in Fig. 4.1. Robots

create open-set object maps and then use TCAFF to filter potential alignments using tem-

poral consistency. Once a frame alignment has been found, robots can communicate in

collaborative tasks, like MOT.

4.1.1 Map Alignment

We perform frame alignment, finding Todomi
odomj

(k), by creating sparse maps of recently observed

objects in the environment and then aligning the maps of pairs of robots as shown in Fig. 4.1.

The map of robot i is denoted asMi and is composed of objects represented by their width
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w, height h, time since the object was last seen ℓ, and centroid position podomi expressed in

Fodomi
. To ensure that drifted parts of robot i’s map do not affect the estimated Todomi

odomj
(k),

an object is only included in Mi if ℓ < κ, where κ is a tuneable parameter based on how

fast drift is expected to accumulate.

A long-standing problem with object-based mapping in robotics is that traditionally

image detection networks must be trained to detect certain objects [18]–[20]. This can

require significant overhead and restricts the mapping techniques to functioning successfully

only in environments where those specific objects are present in sufficient numbers. We

follow the works of [13], [65] in using the open-set image detector FastSAM [11] to segment

open-set objects in real-time and use these generic object measurements to create object

maps.

Maps of recently observed objects are shared with neighboring robots at a regular rate,

and frame alignment is performed by treating the alignment of centroids as a point registra-

tion problem. As shown in Algorithm 1, we make modifications to the standard CLIPPER

method [12], [66] to perform robust global data association between points. CLIPPER solves

point registration by formulating the problem as a graph optimization and leveraging geomet-

ric consistency to reject outlier associations. First, a consistency graph G is formed where the

nodes ap are putative associations between a point in the first map pi and a point in the sec-

ond pj. Weighted edges exist between nodes if two associations are consistent with each other.

This is determined by using a distance measurement, d(ap, aq) = | ∥pi − qi∥ − ∥pj − qj∥ |. If

d(ap, aq) < ϵ, a weighted edge is added to the graph Ep,q = s(ap, aq), where s is a function

that maps the similarity of two associations to a score ∈ [0, 1]. Finally, the edges of the graph

are used to create a weighted affinity matrix M where Mp,q = s(ap, aq), and a continuous

relaxation of the following problem is optimized

max
u∈{0,1}n

u⊤Mu

u⊤u
.

subject to upuq = 0 if Mp,q = 0, ∀p,q,
(4.1)
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where the elements of u indicate whether an association has been kept as an inlier association.

See [12] for more details.

By creating a point cloud from centroids of mapped objects, CLIPPER can be leveraged

to form associations between objects within each map, as done in [13], [65], without any initial

frame alignment knowledge. We form the initial putative associations given to CLIPPER by

only including correspondences that would associate objects with similar widths and heights

in both maps to help keep the optimization small enough to be solved in real-time. After

objects in each map have been associated, we align the two maps using a weighted Arun’s

method [58], where weights are assigned between two objects W (oi,oj) = (ℓiℓj)
−1 where ℓ

is the time since o was last seen. This allows objects that were seen more recently (i.e., can

give more up-to-date information about relative robot pose) greater influence in the point

registration.

4.1.2 Near Optimal Associations

In practice, these sparse maps often include ambiguities in how they should be aligned due

to geometric aliasing (i.e., repetitive object structure), difficulty in representing the object’s

true centroid due to occlusion and partial observations, small overlap between the two maps,

and high noise level from the coarseness of the map representation. These ambiguities

can lead to registration problems that have many local optima whose objective values are

numerically similar or even cases where the global optimum does not necessarily correspond

to correct data associations. Additionally, an alignment between two object maps can still be

found even if the maps belong to non-overlapping areas, so a method for rejecting incorrect

frame alignments is needed. A heuristic approach can be taken, such as requiring a certain

number of associated objects to consider a frame alignment [67], but this requires making

assumptions about the expected abundance of objects to be mapped in the environment and

may still result in finding incorrect frame alignments or rejecting correct alignments that do

not meet the minimum number of associations.
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Instead, we propose a multi-hypothesis approach to address these ambiguities. Our

method considers different possible alignments of object maps and finds the most likely

alignment leveraging consistency of alignments over time. The first step in this process is

finding object-to-object associations that are correct but that may be sub-optimal according

to (4.1). To do this, we develop an algorithm to extract multiple near optima from CLIPPER,

shown in Algorithm 1.

Algorithm 1 Multiple Near Optima (MNO) CLIPPER
1: Input affinity matrix M ∈ [0, 1]m×m of consistency graph G
2: Output Y Set of near-optimal transformation meas. of Todomi

odomj

3: Y = {}
4: for n ∈ 1 : N do
5: inlier_associations ← CLIPPER(M)
6: Todomi

odomj
← aruns_method(inlier_associations)

7: Y ← Y + {Todomi
odomj

}
8: for p ∈ inlier_associations do
9: for q ∈ inlier_associations do

10: Mp,q ← 0

To search for nearly optimal associations, we initially run the standard CLIPPER, which

gives a single set of associations which is often the globally optimal solution to equation (4.1).

Then, elements of the affinity matrix M that were selected by the previous solution are set

to 0 to force CLIPPER to find a new set of associations that does not include any of the

previously selected associations, which thus yields a new set of nearly optimal associations.

This is repeated for a set number of iterations, N .

4.1.3 Multiple Hypothesis Formulation

We construct TCAFF, a frame alignment filter for finding map alignments that are consistent

over time. This formulation considers different associations of incoming frame alignment

measurements and is inspired by multiple hypothesis tracking (MHT) [34], [36] which is

typically used for assisting with the data association of object detections to tracked object

states in the MOT community. Instead, we apply similar concepts to determine when a
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sequence of frame alignments represents correctly associated map objects between a pair of

robots. The goal of TCAFF is at each timestep to take several potential frame alignments,

each referred to as frame alignment measurement yk ∈ Yk, and produce a filtered frame

alignment estimate sk.

For simplicity, we first assume an initial frame alignment guess, Todomi
odomj

(k0). At each

timestep k, robot i gets many potential frame alignments from MNO-CLIPPER. However,

because of map alignment ambiguity or lack of overlapping information (i.e., robots i and

j are not mapping any common objects), there exists only one or zero correct frame align-

ment measurements. By observing these measurements over time, the most likely sequence

corresponding to the true frame alignment can be determined. The selected measurements

are then filtered to obtain an accurate frame alignment estimate.

This problem can be expressed as a more general maximum a posteriori (MAP) estima-

tion problem of selecting the measurement variables that best fit the model

argmax
y1∈Y1,...,yK∈YK

p (sK |y1, ...,yK)

s.t. s0 = s(k0),

sk+1 = kalman_update(sk,yk),

(4.2)

This formulation can be used in other applications where temporal consistency can be used

to give extra information in ambiguous scenarios, but for our specific use case of estimating

a frame alignment, we use sk and yk as parameterizations of 2D frame alignments Todomi
odomj

where sk = [x, y, θ]⊤.

We represent sk and yk as Gaussian random variables, which allows us to rewrite equa-

tion (4.2) as

argmax
y1:K

K∏
k=1

exp
(
−1

2
∥yk −Hsk∥2Sk

)√
(2π)dy |Sk|

. (4.3)

where dy is the dimension of the measurement vector, H is the measurement matrix, Sk =

HPsH
⊤+Ry is the innovation covariance matrix, Ps is the estimate covariance resulting from
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Figure 4.2: Visualization of TCAFF multiple hypothesis process. (a) A new set of measure-
ments is computed. (b) Leaf nodes are extended by applying Kalman Filter updates with
candidate measurements. (c) Window is slid forward and unlikely branches are pruned.

the Kalman Filter, and Ry is the measurement covariance. Taking the negative logarithm

of equation (4.3) yields

argmin
y1:K

K∑
k=1

1

2

(
dy log(2π) + ∥yk −Hsk∥2Sk

+ log(|Sk|)) . (4.4)

If there is no measurement at time k (i.e., yk = None), we use a probability of no measure-

ment pNM resulting in

argmin
y1:K

K∑
k=1


1
2

(
∥yk −Hsk∥2Sk

+ log(|Sk|)
)
, yk ∈ Yk

−log(pNM)− 1
2
dy log(2π), yk = None.

(4.5)

We solve this optimization problem with a multi-hypothesis approach to find the correct

frame alignment from a set of potentially incorrect frame alignment measurements. Thus,

the robots use TCAFF to delay hard data association decisions until adequate information

is gained and frame alignment measurements can be evaluated for temporal consistency.

4.1.4 Frame Alignment Filter

Finding optimal frame alignments in (4.5) amounts to evaluating measurements as branches

of a tree. At the root of the tree is the initial state estimate ŝ0 and covariance Ps0 . The root

is connected to one or more children by different edges, each child representing an estimate
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ŝ1 and each edge representing a selected measurement y1. As leaves of the tree ŝk are added,

the optimal estimate ŝ∗k can be found by selecting the sequence of measurements resulting in

the minimum objective value (4.5). Because the objective value of a node’s child is the sum

of its own objective value and an additional cost, computation can be saved by reusing the

node’s pre-computed cost when adding children.

An update step is illustrated in Fig. 4.2. First, new measurements Yk are obtained from

MNO-CLIPPER. Next, a gating is performed for each leaf node ŝk and yk that prohibits

adding nodes with high cost values (i.e., highly unlikely measurements), helping keep com-

putation requirements low. A Kalman filter update [68] is then performed between each

associated node and measurement to compute ŝk+1 = kalman_update(sk,yk), and ŝk+1 is

added to the tree as a new leaf node.

Finally, because this hypothesis tree approach is exponential in complexity, pruning must

be employed to keep computation manageable. We employ a “sliding window” and “max

branches” pruning approach [37]. For a sliding window of length W , all branches sk−W that

do not have the leaf node s∗k as a descendant are pruned, leaving only a single sk−W node,

which becomes the root of the new window-bound hypothesis tree. Then, for a maximum

number of branches B, only the B most optimal leaves are kept and the rest are pruned.

To apply our TCAFF approach to a scenario where no initial s0 exists, we introduce a

sliding window method for exploring possible initial frame alignments s0. At each timestep

k, each measurement yk−W is used to initialize the root of a new exploring tree. The

measurements in Yk−W+1, ..., Yk are all added to each of the exploring trees and the optimal

s∗k from all of the exploring trees is selected and compared against a threshold τalign to

determine whether to initialize a “main” tree with the corresponding root at sk−W . Until a

main tree has been selected, the method declares that no frame alignment estimate can be

found. Similarly, a mechanism is needed to remove a main tree and go back to the exploring

phase if it becomes unlikely that the main tree is correct. We return to the exploring phase

if enough time has passed during which no measurements have been added to the optimal
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leaf node. This method allows robots to leverage temporal consistency (i.e., the fact that a

correct frame alignment estimate should produce many consistent measurements over time)

to reject incorrect measurements and align frames with no initial guess.

4.2 Experiments

We experimentally evaluate our TCAFF method for aligning coordinate frames in a tempo-

rally consistent manner in Sections 4.2.1 and 4.2.2. The results from our full collaborative

MOTLEE system using TCAFF are shown in Section 4.2.3. Unless otherwise stated, the

following parameter values were used for all experiments: κ = 20.0, τ = 10.0, ν = 3,

pNM = 0.001, τalign = 8.0, N = 4, W = 8, and B = 200.

4.2.1 Indoor Frame Alignment Experiment

First, we evaluate TCAFF’s ability to estimate the frame alignment between two robots

without any initial guess, which requires the ability to distinguish between maps that belong

to the same area and maps that result from traveling in non-overlapping areas. Two robots

are initially driven around a 10 × 10m motion-capture room. The robots are equipped

with an Intel RealSense T265 Tracking Camera whose onboard VIO is used for ego-pose

estimation and an Intel RealSense L515 LiDAR Camera that is used for extracting depths of

segments detected by FastSAM. In our experiments, object maps are updated at 10Hz and

are shared at 1Hz. Each robot’s TCAFF is updated upon the reception of a neighboring

robot’s map. Boxes are scattered around the room to represent generic objects that can be

detected by the open-set segmentation of FastSAM [11]. Both robots start in the room, and

then one robot leaves and accumulates odometry error out-of-view of the other robot before

returning to the room for the remainder of the experiment.

In Fig. 4.3 the frame alignment results from this experiment demonstrate that the robots

accurately estimate frame alignments when maps overlap at the start and end of the experi-
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ment. Additionally, the robots correctly recognize that potential alignments in the middle of

the run do not exhibit temporal consistency and should not be incorporated into the frame

alignment estimate. During the times when an estimate is made, the robots estimate the

relative frame alignments with average translation and rotation errors of 0.35m and 1.1 deg

respectively.

Figure 4.3: TCAFF is visualized by plotting the frame alignment measurements from MNO-
CLIPPER in blue along with the ground truth and TCAFF frame alignment estimate.
Each blue dot represents a frame alignment measurement y(k) = [x, y, θ]⊤, with the x, y,
and θ axes shown in separate plots. TCAFF correctly recognizes when enough temporally
consistent measurements are received to verify a correct frame alignment. The ground truth
frame alignment disappears in the middle of the run when one robot leaves the VICON room
and its ground truth pose is unavailable. While in separate areas, map information is still
exchanged, and MNO-CLIPPER can be used to find alignments between the two maps, but
TCAFF rejects these temporally inconsistent measurements.
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Figure 4.4: Images from the two robots traveling in opposite directions in the Kimera-Multi
dataset [69].

4.2.2 Outdoor Frame Alignment Experiment

The second experiment uses data collected in the Kimera-Multi outdoor dataset [69] to test

our open-set object mapping and TCAFF system in natural outdoor environments. We

test our frame alignment method working in two instances, one where robots run parallel

to each other along the same path and the other where robots start 50m away from each

other and then cross paths. Traditional, image-based loop closure techniques fail to detect

that robots cross paths when traveling opposite directions because of the large viewpoint

difference as discussed in [69]. Images from the two robots’ runs are shown in Fig. 4.4 and

the average and standard deviation of frame alignment errors are shown in Table 4.1. The

translation and rotation errors are computed as the difference between TCAFF’s estimate

and the ground truth frame alignment, noting that TCAFF’s estimate only occurs after

accepting an exploring hypothesis tree. The following parameters are changed in these

outdoor experiments: κ = 15.0 and W = 5. This maintains objects in the map of recently

seen objects for less time since odometry drift is worse in these scenarios. We show that

our method correctly estimates frame alignments in challenging outdoor scenarios from the

Kimera-Multi outdoor dataset, including a scenario where robots only observe the scene from

opposite directions as they cross paths.
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Table 4.1: Kimera-Multi Data Results

Avg. Translation Error [m] Avg. Heading Error [deg]

Same direction 1.01± 0.85 1.08± 0.82
Opposite directions 1.63± 0.67 1.11± 0.48

4.2.3 Full Collaborative MOT Experiment

Finally, we evaluate frame alignment from TCAFF used in conjunction with our MOTLEE

system’s collaborative object-tracking. We record and release a dataset of four robots driv-

ing autonomously around a motion capture room while six pedestrians walk around in the

same space. This multi-robot MOT experiment presents many additional challenges when

compared to the dataset recorded in [8], including more pedestrians and robots, robot tra-

jectories that cover the whole motion capture space rather than non-overlapping areas, and

the absence of domain-specific objects (e.g., cones) used for creating object maps.

We use the same sensors used in the 4.2.1 experiment with the substitution of the Intel

RealSense T265 for an Intel RealSense D455 camera attached to the rear of the robot.

Kimera-VIO [16] is used for ego-pose estimation and YOLOv7 [63] for person detection. We

evaluate the MOT performance using the MOTA metric [62], as defined in Section 3.4.

In Fig. 4.5 we compare the MOTA results of our full MOTLEE system against robots that

align frame using our ICP-based algorithm from Chapter 3 which is named here MOTLEE-

ICP [8], CLIPPER [12], and ground truth frame alignment. Note that only MOTLEE-ICP

is given the correct initial frame alignment. In the CLIPPER benchmarks, we accept the

association solution from standard CLIPPER as long as a minimum number of objects are

associated between the two maps and otherwise reject the alignment, and we show the CLIP-

PER method’s sensitivity to this parameter. If the required number of associations is low,

some incorrect associations are not rejected which hurts the performance of the inter-robot

frame alignment and collaborative MOT. Alternatively, a high minimum number of associ-

ated objects may be set, but this makes a restrictive assumption about the expected quantity

of overlapping objects in the two maps, and can result in many fewer accepted alignments.
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Figure 4.5: Comparison of MOTA results. Results for using a single CLIPPER solution
that requires a set minimum number of associations are shown for a sweep of different
parameter values. TCAFF is able to consider all potential alignments and reject incorrect
frame alignments by leveraging temporal consistency, resulting in a higher object tracking
accuracy.

Our method allows a system to benefit from the best of both worlds, additionally benefiting

from alignments that can only be found when using our MNO variation of CLIPPER. With

TCAFF, incorrect alignments are rejected and alignments can be found even when the maps

have very little overlap.

Additionally, we show MOTA over a rolling window and frame alignment results in

Fig. 4.6. MOTLEE achieves a total MOTA of 0.761, close to the ground-truth MOTA

of 0.827, and achieves an average frame alignment error of 0.43m and 2.3 deg.

4.2.4 Computation Time

We have broken up different pieces of the system to evaluate the computation time of the

different elements where the mean and standard deviation of computation times are shown

in Table 4.2. MNO-CLIPPER and TCAFF must both be performed for each neighboring

robot. Each of the tasks listed in Table 4.2 can easily be run in parallel for real-time use.
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Table 4.2: Pipeline Element Timing Analysis [ms]

Mapping (10 Hz) MOT (10 Hz) MNO-CLIPPER (1 Hz) TCAFF (1 Hz)

13.5± 8.0 2.2± 0.9 150.2± 45.3 18.6± 20.5
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Figure 4.6: Comparison of object tracking accuracy and frame alignment accuracy in an
experiment with four robots tracking six pedestrians. MOTA is computed over a rolling
window of 10 s. MOTLEE using TCAFF for frame alignment is benchmarked against frame
alignment from MOTLEE-ICP [8], CLIPPER [12], and ground truth frame alignment. Note
that the CLIPPER benchmark rejects any alignments with fewer than 10 associations since
this results in its best MOTA performance as seen in Fig. 4.5. MOTLEE is able to estimate
frame alignments with no initial guess, use frame alignments with few associated objects by
leveraging temporal consistency, and collaboratively track objects with accuracy similar to
that of robots with ground truth localization.

56



Chapter 5

Conclusion

In this thesis, we have presented a framework for aligning robot coordinate frames for col-

laborative tasks in real-time. We first developed a system for incrementally correcting for

frame drift by aligning tracked dynamic object measurements and sparse object maps, a

frame alignment method that is view-invariant and communication efficient. We further ex-

tended this capability to performing frame alignment without any initial guess, which was

accomplished by using open-set object maps and our frame alignment filter, TCAFF. We

demonstrated that TCAFF allows robots to perform pairwise frame alignments in the pres-

ence of map ambiguity by considering multiple frame alignment hypotheses and determining

correct alignments by searching for alignments with high temporal consistency. Although our

implementation is specifically aimed at aligning coordinate frames, TCAFF could be used

for other state estimation tasks that require rejecting temporally inconsistent false-positive

measurements.

We demonstrated the use of our frame alignment pipeline as part of MOTLEE, our

distributed system for performing collaborative dynamic object tracking. Included in this

effort, we showed how to incorporate frame alignment uncertainty when sharing spatial

information, including KCF state and measurement information. Using these methods, we

showed through hardware experiments that MOTLEE can perform object tracking with
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accuracy similar to that of a system with perfect localization.

5.1 Future Work

Multi-robot perception is a rapidly evolving field, and as such there remain many interesting

directions to explore for future work. These include:

• Open-set mapping with a consistent object-level understanding of an envi-

ronment. One limitation in our current use of FastSAM [11] is that we do not account

for instances where objects are segmented differently depending on the specific image

in which it is seen. For instance, depending on how large a car is in an image, the whole

car may be included in a single segment, or each window, wheel, door, and headlight

may be segmented separately. Higher-level semantics could be used to recognize when

a single object has been segmented into multiple parts.

• Incorporating additional object information when associating objects be-

tween maps. Our work currently only uses object centroids to perform point regis-

tration with the small additional help of using object widths and heights to filter out

clearly incorrect associations. Incorporating more information, including semantics,

learned shape descriptors, and object orientation could disambiguate some challenging

alignment problems.

• Integrating object-based place recognition and loop closure into a factor

graph SLAM formulation. Our methods work well for aligning recently observed

object maps for multi-robot systems in real-time. These concepts could be used to

complement other SLAM methods, like visual loop closure, to improve visual SLAM

systems’ ability to accurately optimize a robot’s complete trajectory and environment

map.
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