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ABSTRACT

Enabling data-driven decision-making in the built environment is critical to achieving ambitious
and urgent decarbonization goals. In the building sector, urban building energy models (UBEMs)
have become a valuable tool for jurisdictions to develop evidence-based retrofitting policies, but
dynamically exploring solutions is hampered by the computational expense and organizational
overhead of physics-based building energy models. In order to address these challenges, we
present a fast, flexible, and comprehensive UBEM methodology which can be used to reduce iden-
tified barriers to time-sensitive decision-making in building stock decarbonization spheres. The
methodology combines the speed of current data-driven approaches with the flexibility of com-
putationally intensive, but accurate, engineering models. Identifying machine learning methods
as a viable approach, we implement convolutional neural networks (CNNs) which embed time-
series from hourly weather data and building schedules; the embeddings are then combined with
static building characteristics and projected to monthly heating and cooling loads. The proposed
approach allows for programmatic flexibility and robustness to unique hourly weather conditions
globally, while contextual abstraction enables geometric independence. A dataset of over 1 million
detailed thermodynamics-based simulations was constructed to train and validate the surrogate
model. Model results at the individual shoebox, building, and urban scales compare favorably to
traditional numerical methods and meet accepted error bounds under national energy simulation
standards. Additional validation at the urban- and national-scales are performed using public build-
ing simulation datasets. We then demonstrate expanded applications, which leverage the reduced
computational cost of the framework to make traditionally infeasible analysis modes tractable and
deployable. The methodology presented is intended to be utilized for both very-large-scale sys-
tematic analysis and near-real-time interactive explorations. In developing this framework, we aim
to provide new mechanisms for key stakeholders in the decarbonization effort to quickly generate
actionable insights and engage in iterative discussions to develop evidence-based policy across
global building stocks.

Thesis Advisor: Christoph Reinhart
Title: Professor of Building Technology
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Hurtling towards uncharted complex system dynamics, cascading failures and runaway feed-
back loops, we find ourselves collectively engaged in a race against time with a singular goal:
reduce carbon emissions, or, less euphemistically, prevent climate collapse. The built environment
has a limited carbon budget, and so as architects and engineers, we have to make every ton of
carbon count. None of us are so easily classified though: we are all also computational designers,
programmers, digital storytellers, toolmakers. With these other intersecting digital identities comes
an analogous responsibility to make every floating-point operation (FLOP) count. Each FLOP is a
lever: spend some carbon on “compute”, and in doing so, hopefully, somewhere further down the
line, prevent more carbon from being emitted than was spent. We have an imperative to make every
single FLOP effective, just as we ought to strategically engage every gram of material within a struc-
ture. This responsibility has two axes of activity: on one hand, how can we extract the maximum
amount of actionable information from every FLOP in the shortest amount of time, and, on the other
hand, how do we intentionally transduce this virtual activity into real-world impact.

11



Chapter 1

Introduction

The global building stock must undergo significant changes to minimize and mitigate the effects of
climate change. Current buildings’ operational energy use accounts for approximately one-third of
global energy consumption and carbon emissions, which are concentrated in urban areas [1]. With-
out efforts to decarbonize and reduce the energy use of both new and existing buildings’ operations,
emissions will continue to rise, especially as urban areas age, grow, and increase in density.

Thus far, we have seen that fossil fuel emission reduction targets such as those set out by
the Intergovernmental Panel on Climate Change (IPCC) and the Paris Agreement have not been
addressed with the necessary urgency [1], [2]. Many global, national, and municipal goals set ob-
jectives for reductions at least 10 to 20 years in the future (often 2050). As such, efforts are typically
focused on top-down planning, relying on future leadership and natural technological advancement
for actual implementation, and focusing on increasing efficiency standards for new buildings rather
than improving existing ones. New buildings can be built to near- or net-zero standards by design,
but the decarbonization of existing buildings (a decarbonization lever which is vital) comes with
additional challenges [3], [4]. Weber et. al. estimate that approximately 51% of the global floor
area needed in 2050 already exists (68% in North America, and 72% in Europe) [5]. With a current
retrofit rate optimistically estimated to be 1% of global floor area per year (most of which is focused
in high-GDP countries), this must increase to 2.5-5.6% per year to meet the IPCC’s Shared So-
cioeconomical Pathways 2050 reduction targets [1], [5]. So, while the challenge of designing and
building energy efficient and sustainable new buildings is of great importance, we must also tackle
the challenge of decarbonizing our existing building stock, faster.

Technical solutions exist to reduce emissions of buildings through energy upgrade renovations,
or retrofits. In this work, we define a retrofit to be the modification of an existing building, specifically
designed to reduce the building’s energy use. Discussed further in 1.1, some common retrofits
include: installing LED lights, upgrading to more efficient windows, increasing insulation levels,
sealing leaky windows and doors, implementing occupancy-driven lighting and ventilation controls,
installing low-flow faucets, and upgrading to more efficient HVAC systems.

However, implementations of these solutions are not siloed as engineering challenges but are
complex and societal [6]. Electrification can increase pressure on cities’ electrical systems [7];
urban heat islands and rising temperatures increase health risks related to overheating and air
quality [8]; and due to buildings’ long lifetimes, decisions made today will impact urban emissions
for decades [1]. Challenges within and across systems must be addressed in an integrated manner
to progress towards increasingly stringent and necessary emissions targets. This systems-based
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Figure 1.1: Prototype web application deployed with surrogate modeling building simulation capac-
ities.

approach is especially important to ensure just and equitable energy transitions which minimize the
imbalanced impacts of climate change on vulnerable populations [6], [9]. Yet, there is a direct con-
flict between the long-term impacts of building-related policy and the time and resource constraints
of current policymakers, developers, and political cycles [10]. Therefore, in the realm of building
energy modeling applied to the study of and planning for top-down change, there is a consistent
struggle to balance accurate findings with rapid results.

This thesis attempts to address these challenges though the development and validation of a
tool which has been specified to empower decision-making for urban decarbonization. The ultimate
goal is to incorporate this work into accessible tools for a wide range of stakeholders, such as that
which is shown in Figure 1.1, depicting a prototype deployment in an interactive dashboard. Our
proposed methodology successfully generates results for urban building energy models at a rapid
pace, with novel flexibility and detail for the observed computation speed. The development and
validation of this solution is described in this thesis, forming the basis for a wide range of future
applications and additional work within sustainable policy-making, design, and engineering.

1.1 The use and reduction of operational energy in buildings
Most fossil fuel emissions of conventional and existing buildings are due to the use of a building over
its operational lifetime, through the direct or indirect use of fossil fuels for heating, cooling, and elec-
tricity needs (as opposed to embodied emissions from construction and demolition). The largest
sources of energy use in buildings globally are space heating, (increasingly) cooling, appliance
and equipment usage, water heating, and lighting. Other energy needs include fans, pumps, and
other active system demands [1]. These end-uses are largely dependent on the type of building,

13



Figure 1.2: Energy use intensity of typical North American commercial building typologies in cool
(6A) and hot (1A) climate zones [11].

or use patterns and intensity, as well as the local climate. Figure 1.2 describes typical breakdowns
of energy end-use for several common building types in North America, in a cool and warm climate
zone, illustrating the significance of a building’s use and climatic context, along with how it is con-
structed. Annual energy use varies greatly due to unique building profiles; it is therefore important
to understand a building’s energy use at a baseline prior to determining which energy efficiency
interventions can have an impact.

Retrofits can be implemented to reduce buildings’ total fossil fuel emissions in four main ways:
(1) reducing reliance on fossil fuels through electrification of fossil-fuel-intensive systems; (2) in-
creasing the efficiency of building systems and equipment to prevent losses from fuel- and electricity-
intensive systems; (3) reducing heating, cooling, and electricity demands by altering the construc-
tion and operation of the building itself; and, (4) generation of on-site green energy to reduce re-
liance on the grid (such as rooftop photovoltaics). In this way, most buildings are able to achieve
near-zero operation with (often significant) retrofits, making buildings an achievable but expensive
lever for meeting jurisdictional emissions reduction goals.

However, buildings are very complex systems, and, combined with a lack of data surrounding
current energy use, understanding precisely what is needed to reduce building energy use is a
difficult task, even at a single-building scale. End-use demands for heating and cooling are par-
ticularly complex, as they depend on an intricate interplay between the thermal properties of the
building envelope, variable outside environmental conditions, desired indoor conditions, the type
of conditioning system used, and the dynamics of interior occupancy patterns. So, measuring and
predicting the impact of interventions such as retrofits on energy use is not trivial.

1.1.1 The thermal response of buildings
To maintain comfortable and healthy indoor conditions, a building must respond to constantly
changing internal and external environments, such as weather or sunlight, use of appliances, or
operation of windows. The intervention of HVAC systems (active or passive) for heating, cooling,
and conditioning are not simply a response to instantaneous changes in the system, but interact

14



with the construction of the building itself. The building envelope, walls, roof, windows, and floor,
act to thermally separate a building’s interior from the exterior. The level of insulation, thermal mass,
and airtightness of the envelope influences the interaction between the interior and exterior, and
therefore how much additional energy a building will need to achieve desired conditions.

• Insulation acts as a barrier between internal and external temperature differences by slowing
down how quickly heat can transfer across the building envelope. Thermal resistance refers
to a material’s or construction’s ability to impede the flow of heat. In cold climates for example,
higher insulation acts to slow down the loss of heat from the interior of a building, reducing
the heating demands and therefore energy usage of the building compared to an envelope
with a low thermal resistance.

• Thermal mass is like a thermal battery or capacitor, storing and subsequently releasing heat
when exposed to thermal fluctuations. A building has a certain thermal inertia, which is
affected by both the envelope materials (which directly separate internal and external condi-
tions), as well as internal constructions and objects, which can accumulate thermal energy
from internal heat gains and external solar radiation. High thermal mass materials like brick
or concrete exhibit a time-lag in responding to external temperature changes, smoothing out
internal fluctuations in temperature. For example, a cool slab in the morning will maintain
cool temperatures during a hot day, while storing that daytime heat to be released during a
cool night. This can influence the energy use of a building by reducing the need for constant
and instantaneous intervention from heating and cooling systems.

• An envelope’s airtightness will override the resistance and capacitance of the building enve-
lope if air can flow freely between the interior and exterior environment. While this is very
useful to reduce cooling demands through natural ventilation when conditions allow, a "leaky"
envelope with high levels of infiltration can be the cause of a great amount of heat loss (or
gain), increasing energy use dramatically.

Acting simultaneously, insulation, inertia, and infiltration interact in nonlinear ways, and with
the added stochastic behavior of internal use and external conditions (which can be considered
as boundary conditions), the thermal response and operation of a building is very complex. Build-
ing energy models attempt to represent these thermodynamics algorithmically in order to make
inferences about building performance and better understand energy use.

1.2 Building energy modeling (BEM)
Building energy models estimate end-use demands given characteristic inputs based on building
use and construction, along with climatic conditions to capture the nonlinear behavior of energy
demands. While lighting and equipment energy usage are relatively simple to calculate given ade-
quate data (a function of energy intensity and usage), as discussed, the thermodynamics of heating
and cooling loads are much more complicated. Several methods exist to estimate heating and cool-
ing energy demands. At a building scale, three main modeling approaches are commonly used:
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• White-box, or engineering models utilize explicit mathematical equations to simulate a build-
ing’s thermodynamic response, derived from fundamental engineering principles of conduc-
tion, convection, and radiation. Although white-box models are the most accurate, they are
highly computationally intensive and are cumbersome to use in applications requiring multiple
models or model iterations.

• Approaches to simplify physics-based models are categorized as grey-box, or reduced order
models. These methods lump parameters such as overall thermal resistance and capaci-
tance by thermal zone, floor, or building to summarize a white-box model while preserving
the key underlying transient dynamics. Commonly, grey-box models utilize an electrical en-
gineering allegory, representing a building envelope as a circuit of resistors and capacitors,
and internal and external environments as current and voltage sources or sinks.

• Black-box, or data-driven models are used to balance speed and input detail. These are
statistics- or AI-based models that capture the relationship between selected model param-
eters and a building’s system response. They often require building-level energy data or
detailed and contextual modeling data, creating models that are not flexible and often require
energy meter data that is not readily available for all buildings in urban areas. All modeling
methods are discussed further in 2.2.2.

Each modeling approach has unique operational characteristics, to which the application of the
building energy model is highly sensitive. When developing strategies to reduce building stock
emissions at urban scales, modeling speed is very important. In many cases, a slow but detailed
model may render modeling individual buildings infeasible or unnecessary at urban scales, so
choosing an appropriate energy model is crucial, and discussed further in the following sections.

1.3 Urban building energy modeling (UBEM)
Now, considering the energy demands of a city, community, or real estate portfolio from a com-
prehensive perspective, the technical problem of existing building decarbonization transforms into
research- and policy-related questions that focus on macro-scale dynamics of retrofit diffusion.
These are related, but not limited to, aggregate carbon emissions, costs, labor, and occupant health
[4]. Buildings are not considered individually, and therefore top-down statistical approaches have
been common. Drawing from overall energy use, trends at urban scales can appear attractive due
to the simplicity and alignment with real aggregate urban energy use. However, while these can
estimate the outcome of converting certain groups of building types to another, models rely on
extrapolation and interpolation of existing conditions and may not be the most appropriate choice
when assessing more intricate energy supply-demand scenarios or when considering the impacts
of new technologies. They have also been found to underestimate total energy usage [12], [13].
Thus, urban building energy modeling has been established as a key planning tool for modeling
future conditions of building stocks. Simply put, UBEMs are a bottom-up urban energy model, us-
ing information at an individual building scale to simulate building energy models at urban scales.
UBEMs can be applied in areas such as decarbonization target planning, district energy system
design, peak modeling, and urban overheating that require problem-solving related to spatially de-
tailed analysis, unseen future conditions, or building-scale alterations [14].
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1.3.1 Decarbonizing the building stock
When applying UBEMs to urban decarbonization strategy for building stock emission reduction,
the first step, as discussed, is to understand current building conditions and baseline energy use
[15]. Once existing conditions are known, plausible retrofits for achieving decarbonization goals
can be determined. A multi-family residential building in Florida may benefit from the installation of
high-efficiency appliances, while a mid-century office in Minnesota may need to install additional
envelope insulation and new, triple-pane windows to see measurable reductions in energy use.
The latter is a much more intensive and expensive retrofit than the former, involving significant
changes to the building as a whole and focusing on demand reduction to have a more significant
impact on energy use. This would be considered a deep retrofit, which involves significantly ren-
ovating or replacing several elements in a building to radically reduce energy use. On the other
hand, shallow retrofits are small-scale alterations of aspects, which can occur gradually over time
[16]. Some common shallow retrofits are the replacement of fluorescent lights with LEDs or up-
grading to a high-efficiency boiler. While shallow retrofits are cheaper and easier, they often do
not achieve needed reductions [16]. In general, deep retrofits are needed to attain net-zero status
for buildings across North American communities, which involves several barriers with regards to
implementation, especially at large scales [1].

Evidently, the cost of deep building retrofits is a primary challenge. Particularly with regards to
the distribution of costs and benefits between operators, owners, and tenants [17]. With many cities
considering the use of financial incentives like rebates to support widespread retrofits, a detailed
understanding of the scope and scale of retrofits (and which retrofits to implement) is necessary to
plan for resource allocation [15], [16]. At the policy-scale, operational questions become relevant in
this estimation and are all dependent on quantifying the retrofits that must occur to reach high-level
decarbonization goals. One example is understanding which buildings should be targeted first and
how to phase program roll-outs, or determining labor requirements and gauging gaps in workforce
numbers and industry knowledge [17]. Large cities have the resources to commission large-scale
modeling for data-driven policy recommendations, but smaller communities (which are much more
numerous across the globe) often do not have the same capacity [15].

1.3.2 The need for speed
Even at a single building scale, energy models are computationally complex, posing issues of
scalability when applied to urban contexts. So, while UBEMs are necessary for the development
of widespread and specific decarbonization policy [4], the modeling process can be tedious and
cumbersome due to the time needed to complete a great number of building energy simulations.
First, a UBEM must be built and (manually or algorithmically) calibrated to aggregate metered data
at annual and jurisdictional scales to create a baseline case, which can require a great number of
iterations. Next, the bottom-up benefits of UBEMs are realized through the exploration of “what-if”
scenarios of unknown future technological solutions, new retrofit combinations, diffusion scenarios,
and detailed policy decisions.

Further iterations can be necessary to address issues of risk. Developing a UBEM requires
data and contextual knowledge about buildings, and validating potential pathways require informa-
tion about construction market trends, which have historically been very difficult to come by without
targeted market research and widespread energy audits. So, when considering the risk of poten-
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tial emissions reduction pathways, especially in tandem with the long-term commitment of capital
improvements, iterations of both baseline and upgrade scenarios can be highly beneficial [18].

Finally, systemic challenges call for systems-based questions and integrated approaches to the
problem definition process, a key first step towards solution development. If a UBEM takes several
hours to simulate, an iterative and collaborative design process is virtually impossible, especially if
jurisdictions wish to explore interactions across different systems and models, such as the electricity
grid or transportation networks. With many emissions reduction targets targeting change within the
next 25 years, we are running out of time for implementation, let alone planning. Rapid building
energy modeling is therefore needed at urban scales.

1.4 Thesis statement and concept
From a desire to make tools that increase the accessibility and effectiveness of building stock de-
carbonization planning, the focus of this work is to develop a foundational model for accelerating
urban building energy modeling. The kernel of such a framework is the ability to accurately and
quickly estimate seasonal energy use of buildings at an urban scale and beyond, anywhere in the
world. With a novel combination of speed and robustness in an energy modeling engine, new op-
portunities for analysis methodologies become available to the energy modeler, while at the same
time, urban building energy modeling can become accessible to a wider range of users. The thesis
is centered around three core aims that span across policy, usability, and technology:

1. To understand current barriers and bottlenecks in developing actionable solutions and path-
ways for urban building energy use reduction and related policies;

2. to specify the technological needs of a UBEM to empower collaborative and systemically
informed urban building stock decarbonization policy-making; and,

3. to develop a data-driven accelerated BEM method that is agnostic to geometry, climate, and
building program, which can reduce the cost and time-to-solution for UBEMs by orders of
magnitude.

In 2, we outline the state of current research and data-driven methods to approach urban build-
ing energy modeling for large scale building decarbonization interventions. We identify several
gaps in research to be addressed through this work. In 3, we establish the functional needs of
the proposed methodology, drawing from past work, experience, and tacit knowledge to present a
set of guiding technical specifications for the model and its proposed design. In 4 and 5, we de-
scribe the methods in which the model and methodology were developed, built, and tested through
a rigorous validation process across multiple scales. A final validation process is completed with a
large national dataset of realistic residential building energy use profiles. We benchmark the model
against data drawn from distributions which are known to accurately reflect the real building stock
and provide a test of robustness against model misalignment. Finally, in 6 we discuss the perfor-
mance of the model as it fits with the core goal of enabling decarbonization decision-making, and
present several detailed use-cases for future work and extended applications.
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Chapter 2

Current state of research

This chapter provides a review of influential bodies of literature that are foundational and relevant to
this work, as well as highlights current gaps in research. Use-cases and validations of UBEMs are
first summarized. Then, an overview of several approaches to accelerate building energy models
at several scales is presented to demonstrate the widespread need and applicability of improved
and rapid methods.

2.1 Validating the UBEM approach

Figure 2.1: Monthly loads with and without shad-
ing context. Both scenarios utilize full energy
models which include building geometry (as op-
posed to an area-based method).

If there is adequate information about the com-
position and distribution of the building stock,
UBEMs are deemed a reliable method for test-
ing scenarios at urban scales in unknown con-
ditions (such as changing building use and con-
struction characteristics or future climate sce-
narios) [19]. However, not all UBEMs have
the same modeling methodology. The simplest
UBEM follows a "floor-area" approach evalu-
ating energy use intensity (EUI) for building
groups. This is accomplished with an energy
model of a simple south-facing "shoebox," to
be multiplied out by the total urban floor area.
While this may be adequate for rough estima-
tion, applications often demand energy mod-
els which are sensitive to more than building
program and scale [14]. In particular, urban
context has been found to be an important as-
pect of building energy use, including build-
ing geometry, building-to-building interactions,
and self-shading. [20] evaluated the impor-
tance of shading on thermal energy demand in
a Mediterranean climate. They found that an
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isolated building energy model (with no shad-
ing considered) resulted in errors of up to 18.0%, while the consideration of inter-building effects
reduced the error to 2.5%, concluding that inter-building shading effects should be modeled in ur-
ban (dense) contexts. This aligns with [21], and the author’s own experimentation of a UBEM test
region located in a temperate climate. Illustrated in Figure 2.1, the impacts of context are clearly
seen year-long, increasing both heating and cooling peak seasonal loads due to shading. There-
fore, geometric context along with known construction and use information point towards a need
to maximize detail in UBEMs. Yet, their usefulness as an interactive and iterative tool demands
quick computation, as discussed in 1.3.2. To date, the authors are not aware of an efficient enough
building energy modeling methodology nor the data availability to accurately accomplish this, em-
phasizing that bottom-up models are a balancing act between fidelity and usability. The combination
of data scarcity and the computational burden of UBEMs requires the use of model complexity re-
duction techniques and approximations. Accordingly, selecting the correct building energy model
becomes a delicate balance between accuracy and allowable computation time. Some common
approaches in BEMs and UBEMs are discussed below.

2.2 Model simplifications
Complexity reduction of building energy modeling is a large area of work. Spanning across the
urban and building scale, several methods of simplification and acceleration are discussed in this
section.

2.2.1 Archetype segmentation

Figure 2.2: Urban archetype segmentation by ty-
pology, illustrated.

A pervasive (and often necessary) approach for
reducing the complexity of UBEMs is through
the development of building archetypes. Due
to market trends, building codes and other
macroeconomic factors, building constructions
are similar across time periods and geographic
regions [11]. This property can be leveraged
through the clustering of buildings into repre-
sentative programmatic groups. Illustrated in
Figure 2.2, this process increases model effi-
ciency and addresses incomplete data, utiliz-
ing characteristic similarities of buildings [22],
[23]. Divisions are often (and ideally) based
on program and age, but can increase in com-
plexity with data availability. For example, floor
area, basement and attic characteristics, and
census-related data have been found to affect energy use [24].

This approach has been standardized for widespread regional use through the development
of regional archetypes, such as the European TABULA project and the US National Renewable
Energy Laboratory (NREL) commercial reference buildings [11], [23]. These datasets and build-
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ing typologies have been widely used for UBEM applications across Europe and North America.
Broadly following historic construction standards and events, the US NREL commercial reference
buildings are representative of more than 60% of existing commercial buildings, informed by his-
torical releases of national building standards [11].

Archeypal segmentation is useful and necessary in UBEMs, both due to data limitations at
the development stage and for ease of policy intervention planning at the analysis phase [17].
Additionally, [25] found that in many cases, highly detailed UBEMs are unnecessary, especially
when considering a largely homogeneous building stock in a heating- or cooling-dominated climate,
where large chunks of the building stock are very similar, and therefore call for similar retrofits.
This can simplify the retrofit selection process, as heating- or cooling-dominated climates tend to
have clearer interventions related to reducing one particular energy end-use across all buildings,
regardless of type. However, when these conditions are not present, archetypal segmentation at a
finer resolution can be called for.

Additionally, when clustering a large number of buildings into a subset of archetypes, identical
building conditions can result in a strong bias towards specific energy end-use distributions, and
identical usage schedules applied across the entire building stock can result in amplifications of
peak loads [14]. Therefore, a key component for realistic UBEM analysis is increased stochasticity
of building occupancy and use schedules, which in turn increases the number of individual energy
simulations needed for a UBEM model [26].

With increasing computational resources and access to building stock data, UBEMs can be
modeled at increasingly higher levels of detail [27]. For example, NREL’s ResStock and ComStock
databases characterize the national building stock by construction decade, census zone, building
type (program), stories, mechanical system, and construction type [28]. Models are created by
sampling conditional probability distributions for building characteristics throughout the country, re-
sulting in unique building profiles in almost all modeling scenarios. Even though this high granularity
increases computational time and model complexity [24], [27], the underlying assumption is that
simulation results will become more accurate. So, there is a need for more computationally efficient
ways of running BEMs capable of granular expression of the wide range of thermodynamics seen
in buildings.

2.2.2 The building energy modeling engine
Choosing an appropriate building energy model is crucial in determining the accuracy, scope, detail,
and importantly, the usability of a UBEM [14], [19], [29]. White-box models have the advantage of
functioning with essentially any inputs of building geometry and construction, and can be used to
model the energy demands of any building in any climate. A prominent physics-based model is the
U.S. Department of Energy’s EnergyPlus, developed as a multi-zone heat balance model based
on thermal dynamics principles [30]. Other commonly used physics-based simulation engines are
TRNSYS, IDA ICE, and Modelica, which are implemented across several UBEM studies and tools
[31], [32]. However, the computational requirements of bottom-up approaches can inhibit large-
scale modeling and complex building geometry due to time constraints, and simulations with short
time steps due to instability [13].
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The heat-balance modeling methodology

EnergyPlus is based on a heat-balance and state-space method, in which all loads in all zones
and systems at each timestep are calculated using a heat balance method [33]. From thermody-
namic principles, the heat balance method assumes that the rate of heat gain is equal to the rate
of heat loss at the given point in time, across a given building element or surface, or equivalently
add to zero. Heat transfer is physically multi-dimensional, but in whole-building energy models,
it is assumed to be unidirectional across each model element. The factors affecting heat transfer
modeled in EnergyPlus include conduction through the element (𝑞”𝑘𝑖), convective exchange be-
tween the element’s interior surface and the air (𝑞”𝑐𝑜𝑛𝑣), internal radiant exchange (𝑞”𝐿𝑊𝑋 ), solar
radiation through windows (𝑞”𝑠𝑜𝑙 ), and radiant heat gain from internal lights (𝑞”𝑆𝑊 ) and equipment
(𝑞”𝐿𝑊𝑆). This is captured in a heat balance equation for the internal face of a given surface at a
single point in time:

𝑞”𝐿𝑊𝑋 + 𝑞”𝑆𝑊 + 𝑞”𝐿𝑊𝑆 + 𝑞”𝑘𝑖 + 𝑞”𝑠𝑜𝑙 + 𝑞”𝑐𝑜𝑛𝑣 = 0

Simultaneously, the interior state of a zone must follow the energy balance method as well,
interacting with all surfaces enclosing the zone as well as the elements within it (lights, people, and
equipment) and the active systems interacting with it (ventilation, heating and cooling).

Incorporating the transient nature of the system, conduction through building elements, 𝑞”𝑘𝑖 ,
is modeled as an infinite series of temperature histories at the interior and exterior surface, with

𝑞”𝑘𝑖 (𝑡) =
inf∑︁
𝑗=0

𝑌𝑗𝑇𝑖,𝑡− 𝑗𝛿 −
inf∑︁
𝑗=0

𝑋𝑗𝑇𝑜,𝑡− 𝑗𝛿

Where 𝑇 is the element temperature on the inside, 𝑖, or outside, 𝑜, surface, at time, 𝑡, and
history, 𝑗 , for timestep, 𝛿. The coefficients 𝑋 and𝑌 are response factors and must be calculated as
properties of the construction and fluctuating boundary conditions. Of course, an infinite number
of terms is not desirable, so there are several ways to approach this calculation. A main method
utilized in EnergyPlus are Conduction Transfer Functions (CTFs), which enable the approximation
of the infinite series based on methods proposed by [34]. Other approaches may use a variety of
numerical methods, such as finite element analysis (FEA), Laplace transforms, or the finite differ-
ence method (FDM); the latter is prominently integrated into EnergyPlus as a secondary solver and
can be particularly useful in the modeling of phase-change materials [33], [35]. So, while there are
multiple ways to capture the detailed thermal response of building elements, all of these take time,
both literally and figuratively, to solve.

Simplifying the heat-balance method

To address the efficiency of thermodynamic calculations for white-box models, the radiant time
series method is commonly used to calculate heat transfer through the building envelope. It uti-
lizes predefined and calculated conduction and solar heat gain coefficients to speed up transient
calculations, limiting the temperature "history" of a building element to 24 terms (usually hours).
However, this approach is constrained to certain simpler building materials [36]. [35] proposed the
use of power series expansions to calculate the CTF coefficients in a much more efficient way. The
Spawn-of-EnergyPlus model was designed to support HVAC controls modeling. Built upon the
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fundamentals of EnergyPlus, the modeling process is broken into a set of components that can be
calculated in parallel, utilizing existing complex system modeling frameworks [37]. This prototype
allowed for up to a 46% decrease in computation time.

As discussed in 1.2, multiple methods have been utilized to reduce the computational effort
required by engineering models, while maintaining their robustness. Reduced-order models sim-
plify building thermal processes which can be calculated at a much faster rate than energy-balance
methods. For example, the Resistor-Capacitor model. Some applications in UBEMs are CitySim
solver, ISO standard 13790, and FastBuildings [38]. Reduced order model calculations are based
on state-space calculations, transfer function models, and finite difference models [33], [39]. While
reduced-order models are useful in many ways to determine instantaneous energy loads, there are
limitations as to their accuracy in predicting the impact of thermal mass on energy use, as well as
the calculation of solar gains under varying incident angles [13], [39].

On the other hand, black-box models have proven to capture the transient response of build-
ings, but lack intepretability and flexibility. Current models often require building-level energy data
or detailed and contextual modeling outputs, creating models that are immutable and reliant on
data that is not widely available [13], [31]. For this reason, most applications of black-box models
have been limited to specific geographic and programmatic contexts [40]. On top of this, even if a
model is developed with climate or construction-based flexibility in mind, current grey- or black-box
models are constrained to certain building forms and layouts, thus limiting their applicability to be
repeated for large numbers of unique buildings. In this case, the white-box method of modeling
heat transfer through individual building elements is a robust method that allows for flexibility in
virtually any building form, use, location, and construction, when scaled up to urban models, this
approach becomes prohibitively slow and cannot effectively be used in interactive exploratory anal-
yses. So, recent work in geometric abstraction has allowed grey- and black-box models to achieve
this geometric flexibility in other ways.

2.2.3 Geometric abstractions

Core-perimeter models

The use of multi-zone building energy models has been established for decades: floor plans are
divided into a series of representative thermal zones, ideally following realistic room layouts. When
detailed internal layouts are unknown or modeling specific internal zones is deemed unnecessary,
buildings are divided into "core" and "perimeter" sections, as per national standards [41]. Many
calculation methods (including those used by EnergyPlus) assume perfect mixing within thermal
zones. So, modeling buildings with multiple thermal zones is needed to eliminate the assumption
that an entire building floor is thermally "well mixed". Divisions between perimeter and core areas
reflect the differences between demand in internal core areas compared to areas with high access
to climatic and solar interactions (facade-adjacent) [42]. Especially, when a floor plate contains
partitions and objects which constrain convection. The perimeter regions, typically 4.5-6 m (15-20
feet), are divided based on orientation, to capture the temporal aspects of solar radiation. The core
zone(s) are simply modeled as the leftover internal spaces. This algorithmic process of splitting up
core and perimeter areas is often referred to as "autozoning," and is illustrated in Figure 4.2 [29].
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Shoeboxing algorithms

Multi-zone models can become incredibly complex with irregularly shaped and numerous buildings
and are currently impractical at urban scales. The shoeboxer algorithm was originally developed to
reduce function evaluation time and enable urban building energy modeling while maintaining the
benefits of zone division [43]. Rather than running detailed energy models for entire buildings, each
building is represented as a linear combination of representative shoebox energy models. Each
has a single core and perimeter zone, as seen in Figure 4.3. For a single building, the shoeboxing
algorithm typically involves reducing full building geometry into a selected number of representative
"shoeboxes" with the following steps: (1) Discretize the floor plate into 𝑛 + 1 zones, where 𝑛 is
the number of perimeter zones, typically 1 per facade edge. (2) Compute summary features for
unique floorplates, e.g. core-to-perimeter ratios, facade-to-floor area ratios. (3) Place a sensor
grid of nodes over the building’s facade to represent candidate locations for shoebox allocation.
(4) Run solar irradiation analysis for each facade face’s sensor grid. (5) Cluster sensor nodes
based on annual irradiation. (6) Select one representative sensor node per cluster. (7) Allocate
one shoebox at each cluster’s representative node. (8) Derive shoebox geometry according to
summary floorplate features. (9) Identify the shading context for each shoebox. (10) Simulate
shoeboxes. (11) Compute shoebox weighting factors according to sensor node counts per cluster
and building. (12) Aggregate shoebox results according to weighting factors per building. After
reducing buildings to a standard geometric shape, further clustering based on annual irradiance
levels allows for a significant reduction in computations needed for a UBEM. This methodology
has been used in several urban and building energy modeling contexts in [44], [45], with similar
approaches applied by [46]. Although this approach allows for significant computational savings,
with an optimal acceleration of 150 times, large urban models can still result in long computation
times. However, geometric abstraction can be a key factor in building a robust model, explained in
4.

2.2.4 On the accuracy of UBEMs
At building scales, the ANSI/ASHRAE Standard 140, the Standard Method of Test for the Evaluation
of Building Energy Analysis Computer Programs, is widely used to measure simulation error in a
directly comparative manner. Errors within 15% CVRMSE and ±5% nMBE are deemed acceptable
[47]. To measure error in the first place, an accepted "ground truth" must be determined. In recent
literature, EnergyPlus is deemed a reliable baseline. ASHRAE 104 was used to validate Energy-
Plus itself, with the BESTEST method, which validated EnergyPlus against several other white-box
simulations in a variety of contexts [48]. We follow a similar approach, with an even wider scope,
by evaluating the proposed methodology in a variety of geometric and climatic contexts.

Due to the frequency of near-zero demands in energy models, [49] investigate the adequacy of
BEM statistical metrics for system-level analysis. The authors suggest that the ASHRAE-suggested
coefficient of variance of root mean squared error (CVRMSE) and mean bias error (MBE) are not
sufficient alone, and that the addition of 𝑅2 and the range normalized root mean squared error
(RN_RMSE) can be more meaningful in evaluating the performance of energy models. However,
in the evaluation of a new energy model, particularly for use with near-zero energy buildings, these
proposed metrics could put too high of an emphasis on the accuracy of high values or overall scale
of values rather than directly evaluating model accuracy in a comparative manner. [50] alterna-
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tively find that CVRMSE is the most robust approach for evaluating white-box energy models in
calibration applications. Therefore, in this thesis, we follow both the recommendations of ASHRAE
140’s calibration convergence tolerance (with some modifications due to the project scope) in the
validation and testing of the proposed methodology.

In general, there is little alignment nor recently updated standards on acceptable tolerances for
error across urban building energy modeling [51]. [51] found that in some widely accepted UBEM
methodologies, a single building’s energy use may have a percent error upwards of 1000%, but
when aggregated to urban scales, error can be as low as 1%. This uncertainty and lack of stan-
dardization is in part, due to the fact that detailed data on building energy use has been historically
difficult to obtain (nor possible for new and unseen contexts) [40], but also because error tolerance
is largely due to application 1. [51] note that, in addition to the selection of appropriate measures
of error, UBEM accuracy lies across the axes of spatial and temporal resolution. For example, at
city-scales, sub-hourly energy usage is not relevant in the determination of viable retrofit packages,
but it may be for electricity demand modeling. [52] explores the importance of accuracy in early-
stage design of low-carbon buildings through the use of a similarity threshold, finding that simplified
grey-box models can be a viable energy modeling engine for the design of sustainable architectural
strategies in early-stage design. Similarly, context can be very important. When developing retrofit
pathways at urban scales, [25] notes that in building stocks with homogeneous building archetypes
and a clear heating- or cooling-dominated climate, identifying solutions to reduce energy use can
be much simpler than more nuanced climates and contexts. A temperate climate may introduce
trade-offs between heating and cooling energy conservation measures, for example, triple-pane
windows with a higher solar heat gain coefficient may lower heating demands, but could also in-
crease cooling demands in the summer without adequate ventilation and shading. So, findings
within literature highlight the importance of calibration and sensitivity testing of bottom-up models
[51], [53], [54]. Thus providing further incentive to increase the speed of calculations which drive
UBEMs. But, as functionality is, to date, highly sensitive to computation time, there must be a
trade-off between error tolerance and speed in UBEMs. In this work, we attempt to address this
barrier through data-driven methods.

2.3 Machine learning in BEM and UBEM
With advancements in machine learning (ML) and increasing data availability, ML surrogate models
have been increasingly implemented for rapid calculations of UBEMs. An ML surrogate, referred to
simply as "surrogate model" in this thesis, is a black-box model designed to reproduce the outcomes
of a system given a set of design parameters when engineering models cannot be readily used,
often due to computational burden [40], [55]. In UBEMs, surrogates may replace the building energy
modeling engine, which is either input- and physics-informed, like EnergyPlus [56], or output-based,
trained on real energy meter data for specific sets of buildings [57], [58]. [59] takes a combined
approach. As ML models have difficulties extrapolating outside of the scope of training data, often
producing irregular results in regions of sparse data, the use of meter-based models is limited to
existing conditions, which lack the flexibility needed at the core of UBEM studies: unseen geometric,

1It is important to note that there is an additional layer of error when comparing to real building energy use, due to
lack of data about building stock. However, as this thesis considers these factors to be inputs (e.g. building envelope
composition and occupancy), this source of error is not considered.
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compositional, and climatic changes [12], [55], [60].
In the interest of developing a flexible model, we focus on physics-based surrogates since they

have the theoretical opportunity to model any building and climate condition without the need to rely
on high-quality data availability, so long as the desired building conditions are expressible within the
design space’s representational framework. Several ML architectures have been explored in UBEM
applications, the most common being neural networks, support vector machines, gradient boosting,
and random forest models with promising accuracy [40], [53], [58], [59], [61], [62]. While several
studies have successfully modeled multi-use and multi-zone UBEMs, most rely on site-specific
training datasets with static geometry and climate. General limitations related to ML models are also
observed, such as a lack of interpretability, especially as it relates to correlations between inputs,
overfitting, and a need for standardization in data-driven energy model inputs, model selection, and
feature engineering [12], [61], [63].

In an attempt to address these limitations of immutability, [56], present a climate-independent
surrogate for annual energy use. Employing a deep temporal convolutional neural network to pro-
cess multivariate hourly weather data, the proposed network extracts relevant features for esti-
mating heating or cooling demand. These location-specific weather features are then combined
with building design parameters and fed into a single surrogate model (a feed-forward neural net-
work). The study utilized 569 weather files from various Canadian locations, across 5 ASHRAE
climate zones, demonstrating less than 3% error in the surrogate model’s predictions for annual
heating demand for new building designs outside of the training data set. [56] note that the gener-
alizability of a surrogate model relies on the parametrization of the problem; more detailed inputs
(geometry, window sizes, construction parameters, climatic variables, etc.) allow for more flexible
applications, but also require significantly more effort and data for training. Therefore, similar to the
use of archetypes in UBEMs, it can be beneficial to utilize abstractions and simplifications which
minimally impact the accuracy of an energy model prior to training. For example, the use of geo-
metric abstraction into similar modules with the shoeboxer algorithm, as is applied in the proposed
methodology.

2.4 Identified research gaps
Through a comprehensive review of the state of current research, several research gaps were
identified, which provide a basis for future work. These are summarized below:

• Many UBEM approaches do not adequately consider urban context, especially with regards
to geometry and shading.

• However, UBEMs that are detailed tend to be so computationally and data-intensive that they
limit their own usability.

• There is a lack in standardization across UBEM and BEM validation and methodology devel-
opment.

• Simplification of urban building energy models through archetypal clustering can introduce
bias in baseline energy results, which can be transferred to selections of upgrades in building-
stock decarbonization pathway development and cause the overestimation of peak loads,
suggesting a need for UBEMs to support high-resolution timeseries inputs.
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• Current engineering-based (bottom-up) BEMs are too computationally expensive to be used
in urban contexts.

• On the other hand, black-box methods are valid only within the contexts and bounds in which
they have been trained, often being overly specific to certain use cases and therefore not
reusable or applicable for widespread adoption (especially for modeling future scenarios).

While the potential impact of rapid building energy models is vast, the parameterization and
scope of the black-box method should be considered alongside accuracy and is critical to the de-
velopment of tools that have a potential for widespread adoption. This thesis attempts to address
limitations of current methods with a novel shoebox energy surrogate model that is valid in a vari-
ety of climate and building parameter contexts while maintaining granularity of results at a monthly
level and accuracy comparable to physics-based models at the urban scale. Taking a similar ap-
proach to [56], we utilize a multi-modal architecture for processing the time-series portions of the
input vector separately from the unstructured data in the initial layers of the surrogate, introducing
the incorporation of building use and operation schedules and a vigorous synthetic data generation
methodology. The surrogate will integrate into, and accelerate existing urban modeling methodolo-
gies, such as the UBEM.io workflow [19].
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Chapter 3

Establishing a need for rapid monthly
modeling

Instead of approaching this methodology from a "maximalist" perspective (attempting to maximize
detail, accuracy, and speed simultaneously), we approached the concept of robustness from a
"user-first" perspective. Understanding the roles and questions of key stakeholders first through
existing work, tacit knowledge, and personal experience, the needs and goals of the urban retrofit
planning process were converted into specifications to define the scope of this model. The needs
of the urban building energy modeling team can be used to generate the demands on a new ac-
celerated foundational UBEM framework.

Discussed in the above sections, an ability to run models quickly is imperative for efficient and
comprehensive retrofit studies as well as collaborative work. If, during the exploration of retrofit
pathways a UBEM simulation takes multiple hours, the policy-making process and the ability to
iteratively explore options will be greatly limited. Not only are there an essentially limitless number
of interventions that can be tried and tested for a UBEM, but there are a multitude of stakeholders
which are needed to develop and evaluate the proposed options in the UBEM process. So, the abil-
ity to implement changes or scenarios and immediately see their impact on urban-scale results is
highly important in enabling collaborative decision-making. In an effort to increase the accessibility
of UBEM tools for cities to develop decarbonization plans, [15] has developed an 8-step frame-
work for cities to build, validate, and explore a baseline building energy model and potential retrofit
pathways at a fraction of the cost of traditional methods. Within this work, the author has identified
three key roles needed in the UBEM and retrofit pathway process: a project champion, driving the
decarbonization agenda; a Geographic Information System (GIS) specialist, providing city building
characteristics and geometric data; and an energy modeler, who is well versed in building energy
modeling as well as local historic energy policy. Each role is critical to developing (and importantly,
scaling and implementing) an urban decarbonization initiative, but their level of expertise with re-
gards to building systems and technical approaches to decarbonization are varied, presenting a
unique challenge in the development of tools and methods for retrofit modeling methodologies.

Through workshops with cities across the globe, [16], [64] achieve an understanding that the
process of developing an effective retrofit plan (effectively) is highly collaborative and iterative. As
mentioned in 1, building decarbonization policy-making cannot be siloed in engineering solutions,
but must be accessible to those involved in implementation and regulation. Tools should be intu-
itive accommodate the appropriate level of detail for the diverse set of stakeholders; comprehensive
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Figure 3.1: Typical roles present in developing and utilizing a UBEM for decarbonization policy and
retrofit planning.

enough to allow skilled energy modelers and engineers to implement detailed retrofits at a building
scale; flexible enough to function easily in a wide range of climates and contexts; and fast enough
for testing and learning from results to be an iterative process, leaving time to focus on the wider im-
pacts and systems at play. From an engineering or energy modeler perspective, the ability to model
multi-use buildings or consider behavioral change (for example, occupancy sensors for lighting, or
peak-load reduction of equipment with load shifting) have been a previously difficult task in UBEMs,
as these are programmatic and have hourly variations. Most current black-box models do not allow
for changes in use patterns (or schedules), being tied to a particular representative program (like
a residence or office), therefore eliminating the possibility of directly measuring savings from these
interventions. When they do incorporate programmatic variations as part of the design space, it
might typically be as categorical parameters, due to the fact that the underlying model inputs are
high dimensional time series. This does not allow for the full range of behaviors, new behaviors, or
the elimination of coincident peaking.

From a policy perspective, the ability to understand macro-scale results of engineering deci-
sions, as well as develop strategic groups for staged and organized implementation which ac-
knowledge the unique and diverse composition of cities is critical in the UBEM process [15]. So,
with this level of detail desired, the ability to introduce speed into this process is only useful if model
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results can be validated. However, there is a point at which additional detail could be considered
excessive. For example, in the development of archetypes, simplification can prove highly useful
in UBEMs. Archetypes can simultaneously make the modeling process more efficient while also
streamlining interpretation of the model’s results, and can enable bottom-up energy models even
when there is limited data. In finding a balance between detail and speed, it is important to es-
tablish (1) the maximum delay in model simulations and iterations, and (2) the minimum viable
output to make informed decisions about retrofits. Both act to define and determine the structure
of the proposed methodology. [52] found that in many cases, a simple shoebox can provide ac-
curate results in exploring low-carbon design options, particularly with regards to shading, but the
temporal response of the building envelope is significant. This approach of trying to maintain a
high information-to-model complexity ratio underlies most urban-scale and policy-driving method-
ologies. For instance, the authors have previously made the decision to trade higher fidelity for
higher speed when developing accelerated algorithms for photovoltaic potential estimation which
is sensitive to urban contexts [65].

A focus on selecting the appropriate level of detail for the urban modeling context guides many
key decisions and architectural choices detailed through this thesis. As such, we begin with an
attempt to review some of the functional needs of potential end users and the resulting technological
requirements. We question the need for detail where possible to distill the urban energy model
into its most functional parts. For example, discussed in 2.1, shading has a significant impact on
energy use. But while most approaches utilize time-consuming radiation calculations or ray tracing
methods, the nature of black-box models can be leveraged to simplify inputs precisely to what is
easily accessed by and intuitive to users, such as simple geometric definitions of shading maps.

In a similar vein, many UBEM approaches utilize annual energy use, or annual end-use demand
to evaluate building performance, as hourly values are not particularly necessary for selecting build-
ing upgrades. However, the seasonality of building use and thermal response is highly important
across several facets of the urban energy model [7]. It is particularly important in the development
of a baseline model when calibrating the selected archetypal representations of the building stock.
Described further in 6.1 in the context of detailed single-building autocalibration and in [53], cal-
ibration involves the refinement or selection of unknown building parameters (such as insulation
levels or lighting power density) through a fitting process to overall energy or fuel use. Usually,
multiple parameters are calibrated at once and there are therefore multiple solutions to a building
definition which converge to a given energy use profile. But, in many cases, detailed energy data is
not known at urban scales, yet annual values are not suitable for selecting building characteristics
[14]. For example, lowering internal loads from lights or equipment can reduce heating loads, but
so can higher levels of insulation. Annual fuel use would not show a difference between the two
solutions, but with monthly data, internal loads would increase cooling needs in the summer, while
insulation would decrease it. Calibration is always an ill-posed problem, but having access to the
seasonal peaks and contours helps reduce the size and complexity of the target’s inverse design
solution space. Similarly, the selection of upgrades can be sensitive to seasonality as well, so a
monthly timestep for results is deemed appropriate for urban scale studies.

Table 3.1 summarizes the identified needs for UBEMs in retrofit decision-making, and their
translation into specifications in the development of a tool, which were considered throughout the
process of defining and developing the methodology presented in the following sections.
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Challenge or Functional Need Technological Specification
Iterate and collaborate Near-real time response
Geometric context Consider context shading
Geometric flexibility Representation of buildings as syntheses of dis-

cretely modeled parts
Programmatic flexibility Use schedules and intensities data as input (oc-

cupancy, lighting, equipment)
Future climate and location-independent Hourly weather data as input
Accessible Cheap-to-free, easily deployed and consumed

in cloud architectures
Actionable level-of-detail Monthly fidelity, urban accuracy

Table 3.1: Functional needs translated into technological specifications.

31



Chapter 4

Methods

Developing a model for rapid UBEM evaluation which can be deployed globally presents chal-
lenges which are not present in implementing typical function approximations for single-building
energy models. In addition to incorporating common building energy model variables (like enve-
lope construction, power densities, and thermostat setpoints), the model must be robust to features
which might normally be fixed. In particular, the features which describe program and form must
be flexible to accommodate the wide range of geometry and programmatic uses present in a city,
while environmental conditions (including both urban shading context and climatic timeseries data)
must also be incorporated into the model’s domain to enable inference anywhere in the world.

We leverage a geometric abstraction approach which represents a building as a linear combi-
nation of discretized shoebox energy models, extending aspects of existing urban building energy
models developed in [43]. While developing a fixed-length geometric parameterization of building
geometry which can represent any building in the world would be a significant challenge, individual
shoebox geometry can be represented with 8 intuitive parametric features. In this implementation,
shoebox generation and allocation is then driven by the building footprint and height alone.

The challenge of achieving climatic robustness is due, in-part, to the non-linear responses of
buildings to their environments over the course of a year. Typical weather files for energy models
include several timeseries channels of 8760 hourly values over a year, rendering many function
approximation techniques infeasible due to mathematical complexity which may grow with input
size. While some approaches might rely on feature engineering to reduce weather data to sum-
mary statistics or other compressed representations, we instead elect to follow a similar approach
to [56], using deep convolutional neural networks to process the raw timeseries. This architec-
ture additionally enables incorporating varying building programs independently; not as categorical
inputs but instead by using full timeseries schedules for occupancy, operation of equipment, and
use of electric lights. As discussed in 2.2.2, heating and cooling are the most complex to estimate
due to numerical method bottlenecks, making up the bulk of the computational cost of bottom-up
building energy models. Therefore, the proposed methodology focuses only on these end-uses,
to be later combined with energy use due to lighting, equipment, and other linear functions. It is
recognized that values such as lighting and equipment have effects on heating and cooling loads
due to internal heat gains, so these values are considered as inputs.

A dataset of 1.25 million shoeboxes is generated to train the neural network surrogate to predict
monthly cooling and heating loads for shoebox energy models, which is to be used as a replacement
for EnergyPlus simulations within the larger urban building energy modeling pipeline.
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Figure 4.1: Shoebox allocation process

33



4.1 Representing buildings
We integrate and extend components of previous shoeboxing algorithms to develop a methodology
that is encodable for a neural network while simultaneously capable of expressing the geometric
dynamism of urban contexts. Irradiation-based clustering seen in [43] and other shoebox-based
approaches are primarily motivated by the need to reduce the number of function evaluations, as
total time-to-solution without clustering quickly becomes infeasible with multiple buildings. Although
distributed computing tools unavailable at the time the algorithm was developed can now be used
to run thousands of shoeboxes in parallel and at least reduce the real-world time to solution, to-
tal compute time (and thus cost) remains high, even if time-to-solution is reduced. However, with
the multiple orders-of-magnitude performance factor of the surrogate model developed in subse-
quent sections, we elect to drop the shoebox clustering analysis and follow a simpler and more
granular allocation strategy which enables placing vastly more shoeboxes per facade. Dropping
clustering also facilitates some of the extended applications discussed in 6.1, including allocat-
ing multi-program buildings within UBEMs and performing energy demand intensity mapping over
facade discretizations in early-stage design.

4.1.1 Shoebox weighting
Given a building with gross floor area 𝐺, for each floorplate with area 𝐴𝑖 we assign a weight
𝑎0, 𝑎1, . . . , 𝑎𝑚−1, where 𝑚 is the number of floorplates and,

𝑎𝑖 =
𝐴𝑖

𝐺

When a building is represented as a simple extrusion of a 2D footprint as is common in GIS-to-
UBEM workflows, the following can be calculated once per building. The weights are reduced to a
constant for all building floors:

𝑎𝑖 =
footprint area

𝐺

For each of the 𝑛𝑖 edges on the 𝑖-th floorplate with total perimeter 𝐿𝑖 , we sub-divide the 𝑗 -th edge
into 𝑝𝑖, 𝑗 arbitrary segments of length 𝐿𝑖, 𝑗 ,0, 𝐿𝑖, 𝑗 ,1, . . . , 𝐿𝑖, 𝑗 ,𝑝−1 and assign a weight 𝑏𝑖, 𝑗 ,𝑘 , with
𝑖 indexing floorplates, 𝑗 indexing edges, and 𝑘 indexing the subdivisions per edge:

𝑏𝑖, 𝑗 ,𝑘 =
𝐿𝑖, 𝑗 ,𝑘

𝐿𝑖

We allocate one shoebox 𝑆𝑖, 𝑗 ,𝑘 per edge subdivision at the edge midpoint, with a final weight given
by the following:

𝑐𝑖, 𝑗 ,𝑘 = 𝑎𝑖 ∗ 𝑏𝑖, 𝑗 ,𝑘
When no subdivisions per edge are used (as demonstrated in subsequent sections), the 𝑏𝑖, 𝑗 ,𝑘

weight simplifies to a simple edge weight.
Given an energy model, F , which operates over shoeboxes, 𝑆𝑖, 𝑗 ,𝑘 , and returns area-normalized

energy usage, we can define the entire area-normalized energy usage of the building, 𝐸 , as a linear
combination of the constitutive shoeboxes.
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Figure 4.2: Shoebox geometry extraction from auto-zoned floor plan

The energy model F first returns area-normalized energy for the perimeter and core zones;
then these are weighted by perimeter and core area to yield the whole shoebox’s area-normalized
values before the edge weighting in this section and shown in 4.1. As the shoeboxes are rectangular
prisms, these weights are necessarily the depth of each zone over the total shoebox depth.

𝐸 =

𝑚∑︁
𝑖=0

𝑛𝑖∑︁
𝑗=0

𝑝𝑖, 𝑗∑︁
𝑘=0

𝑐𝑖, 𝑗 ,𝑘F (𝑆𝑖, 𝑗 ,𝑘 )

=

𝑚∑︁
𝑖=0

𝑛𝑖∑︁
𝑗=0

𝑝𝑖, 𝑗∑︁
𝑘=0

𝐴𝑖

𝐺
·
𝐿𝑖, 𝑗 ,𝑘

𝐿𝑖
· F (𝑆𝑖, 𝑗 ,𝑘 ) (4.1)
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4.1.2 Shoebox geometry specification
The geometric parameters which define a shoebox are as follows:

𝜃𝑖, 𝑗 ,𝑘 := shoebox facade normal azimuthal angle

𝑤𝑖, 𝑗 ,𝑘 := shoebox facade width

ℎ𝑖, 𝑗 ,𝑘 := shoebox height

𝜔𝑖, 𝑗 ,𝑘 := shoebox window-to-wall ratio

𝑑
𝑝

𝑖, 𝑗 ,𝑘
:= shoebox perimeter zone depth

𝑑𝑐
𝑖, 𝑗 ,𝑘

:= shoebox core zone depth

𝜌𝑖, 𝑗 ,𝑘 := shoebox roof surface adiabatic fraction

𝜎𝑖, 𝑗 ,𝑘 := shoebox ground surface adiabatic fraction

Figure 4.3: Shoebox geometry parameters

While typical UBEMs require the height
and WWR parameters to be shared across
a building facade to enable clustering,
the evaluation of the surrogate allows
for more granular shoebox allocation with
unique parameters per shoebox, allowing
for richer design expressivity. Orientation
is driven directly by edge orientation, while
shoebox width is typically set by users to a
value between 3 and 5 meters.

The remaining parameters are driven
by the floorplate autozoning so that each
individual shoebox maintains key char-
acteristics of the floorplate. After the
𝑖th floorplate has been autozoned into 𝑛𝑖
perimeter zones and one core zone, the
entire floorplate’s core area-to-perimeter
area ratio 𝜂𝑖 is computed. Similarly,
the floorplate’s entire perimeter area-to-
facade area ratio 𝜉𝑖 is computed. These
together drive the shoebox perimeter zone
depth 𝑑𝑝

𝑖, 𝑗 ,𝑘
and shoebox core zone depth 𝑑𝑐

𝑖, 𝑗 ,𝑘
for a given shoebox width 𝑤𝑖, 𝑗 ,𝑘 and height ℎ𝑖, 𝑗 ,𝑘 .

The product of the floorplate perimeter area-to-facade area ratio and the shoebox facade area
𝜉𝑖 · 𝑤𝑖, 𝑗 ,𝑘 · ℎ𝑖, 𝑗 ,𝑘 gives the shoebox perimeter zone area; dividing by the shoebox width returns
the desired shoebox perimeter depth as in 4.2. The shoebox core zone depth is found from the
perimeter depth and 𝜂𝑖 as in 4.3:

𝑑
𝑝

𝑖, 𝑗 ,𝑘
= 𝜉𝑖 · ℎ𝑖, 𝑗 ,𝑘 (4.2)

𝑑𝑐
𝑖, 𝑗 ,𝑘

= 𝜂𝑖𝑑
𝑝

𝑖, 𝑗 ,𝑘
(4.3)
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Finally, the roof and ground surfaces of the shoebox are set to be partially adiabatic according
to ratios 𝜌𝑖, 𝑗 ,𝑘 and 𝜎𝑖, 𝑗 ,𝑘 to preserve heat loss form factors for the building. When using many
shoeboxes, these ratios can be set to fully adiabatic for middle floors, and fully exposed for roofs
on the top floor or fully exposed for grounds surfaces on the bottom floor; alternatively, when using
fewer shoeboxes, they can be set according to a building’s heat loss form factor. The side and rear
walls of the shoeboxes are also set to be adiabatic, as shoeboxes are placed per facade edge.
Roof and facade constructions are set according to the non-geometric features, as discussed in
sec. 4.1.4.

While this scheme for shoebox geometry allocation is used and validated in this work, focus was
placed on the development of the surrogate, and its rapid evaluation opens the door for alternative
shoebox allocation strategies to be more easily developed and tested in an iterative manner in
future work.

4.1.3 Shading and context geometry

Figure 4.4: Context shading representation for a
shoebox module.

To accommodate urban context effects via
building-to-building shading and self-shading, a
compact representation of the context geome-
try is required. To achieve this, each shoebox
discretizes the surrounding context (including it-
self) in azimuthal increments of 𝜙 = 𝜋/12 ra-
dians and casts rays into the scene for each
azimuthal angle; the top edges of intersecting
surfaces are used to determine an elevational
angle for the corresponding azimuthal angle.
These elevational angles become the inputs
which together describe a shading mask for the
corresponding shoebox. In the simple example
in Figure 4.4, one of the twelve shading eleva-
tion angles is drawn. Although an urban scene
may take on a more complex form, determin-
ing the shading mask for a shoebox reduces
the entire scene to an equivalent shading mask
which would visually follow the form shown in
Figure 4.4. While this step might seem compu-
tationally expensive due to the raytracing, cus-
tom GPU kernels extending previous work by the authors were written to exploit algorithmic short-
cuts which arise from the 2.5D nature of the problem and to exploit the massive potential for paral-
lelism, and is still a fraction of the compute of a radiation analysis [65]. These shading masks are
also easily cached and only need to be computed once. The algorithm developed to solve this is a
variant of the Amanatides-Woo voxel traversal adapted to the 2.5D GIS context [66]. However, as
shown in 5.4, even using simple rules of thumb to estimate shading context can be sufficient to avoid
this step all together by replacing explicitly computed shading masks with reasonable assumptions.
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4.1.4 Non-geometric features and schedules
In addition to the geometric features, each shoebox has a variety of non-geometric features rep-
resenting the building’s profile and usage. A complete list of static features is reproduced in Table
4.1. In addition to the static non-geometric features, three schedules of 8760 independently vari-
able timesteps are used to describe hourly building usage of occupancy, equipment, and lights,
represented as fractions of a given people or power density.

4.2 Synthetic data framework
This framework requisites the creation of a comprehensive synthetic dataset of physics-based shoe-
box models on which a neural network-based surrogate is trained. The dataset plays a pivotal role
in accurately capturing the complexity and variability of energy use across different climates and
building typologies and is freely published in accompanying materials to facilitate open research.
Over 1.25 million unique shoeboxes were generated, spanning the globe and covering all ASHRAE
climate zones equally. EnergyPlus is used to simulate each of the shoeboxes using Ideal Loads
Air System HVAC input, reporting monthly heating and cooling loads. The dataset is split into three
segments, training (80%), validation (10%), and testing (10%).

4.2.1 Shoebox sampling and generation
Each shoebox simulation in our dataset represents a simplified building model with specific geo-
metric and non-geometric features. These features are uniformly and randomly sampled from a
predefined design space, ensuring a wide variety of building types and characteristics, including
unusual parameter combinations which are uncommon in the real world. Uniform random sam-
pling was chosen because of this intent to learn a complete function approximation of the particular
mathematical model of reality over the whole design space domain, as opposed to an approach
which aims to learn from the non-i.i.d. (independent and identically distributed), features. In other
words, the sampling strategy seeks to aid in learning the physics, rather than the data.

The geometric sampled features include parameters such as facade orientation, window-to-
wall ratio, and zone depths, as defined in 4.1.2, while the non-geometric features cover building
characteristics, including insulation levels, thermal properties of building materials, power densities,
and more, detailed in 4.1.4. The azimuthal shading context was uniformly randomly sampled as
well. Bounds for all parameters are listed in Table 4.1.

4.2.2 Schedule generation
To realistically model building operation, unique schedules for equipment, lighting, and occupancy
were generated for every sample in the dataset. These schedules are fractional usage schedules
spanning 8760 hours, corresponding to a full year. The schedules were generated according to a
stratified strategy. For each schedule, there was a 50% probability of selecting pure noise, sim-
ulating unpredictable usage patterns with the intent to increase robustness to arbitrary schedules
and assist in capturing impulse responses. The remaining half of the schedules were based on
15 different building use programs (e.g., residential, commercial, educational) from the US De-
partment of Energy’s representative commercial buildings dataset [11]. These were chosen with
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equal probability, with white noise perturbations added at every timestep. The amplitude of these
perturbations varied uniformly randomly up to 0.3, introducing realistic variability in building usage.

Table 4.1: Shoebox parameterization and training dataset bounds

Parameter Name Min Max Units

Lighting power density 0 30 𝑊/𝑚2

Equipment power density 0 60 𝑊/𝑚2

People density 0 0.5 𝑝𝑝𝑙/𝑚2

Heating setpoint 14 24 ◦𝐶
Cooling setpoint 22 30 ◦𝐶
Infiltration 0.0 1 𝐿/𝑠/𝑚2 (envelope area)
Ventilation per area 0.0 5 𝐿/𝑠/𝑚2 (floor area)
Ventilation per person 0 15 𝐿/𝑠/𝑝𝑒𝑟𝑠𝑜𝑛
Ventilation mode - - off/on/demand-controlled
Economizer - - none/differential enthalpy
Heat recovery - - none/sensible/latent
Facade mass - - steel/wood/masonry/concrete
Roof mass - - steel/wood/masonry/concrete
Facade R-value 0.3 15 𝑚2𝐾/𝑊
Roof R-value 0.3 18 𝑚2𝐾/𝑊
Slab R-value 0.3 15 𝑚2𝐾/𝑊
Window U-value 0.3 7.0 𝑊/𝑚2𝐾
Window SHGC 0.05 0.99 -

Occupancy schedule 0 1 fractional, 8760 timesteps
Lighting schedule 0 1 fractional, 8760 timesteps
Equipment schedule 0 1 fractional, 8760 timesteps

Normal azimuthal angle 0 2𝜋 radians
Facade width 2 8 m
Height 2.5 6 m
Window-to-wall ratio 0 0.9 -
Perimeter zone depth 1.25 12 m
Core zone depth 1.25 60 m
Roof adiabatic fraction 0 1 -
Ground adiabatic fraction 0 1 -
Shading 1, . . . 12 0 𝜋/2 radians
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Figure 4.5: Weather file locations

4.2.3 Climate zone representation and weather file assignment
A critical aspect of our dataset is the representation of diverse climatic conditions. We select 850
EnergyPlus Weather (EPW) files from the 1000 most populous cities globally, while ensuring a bal-
anced representation across all ASHRAE climate zones. These files are divided into two sets: seen
and unseen EPWs, with an 80%/20% splitting ratio dividing the EPWs within each climate zone into
the two seen and unseen buckets respectively. Shoeboxes in the training segment exclusively use
weather files from the seen collection of weather files, while the validation and testing shoebox
segments exclusively use unseen weather files. This separation allows for rigorous testing of the
model’s generalizability to new climatic conditions.

Each shoebox is randomly assigned to an ASHRAE climate zone, followed by a random se-
lection of a weather file from that climate zone’s respective set of seen or unseen EPW files. This
approach ensures equal probability for each climate zone in each segment of the dataset, enabling
the model to learn and adapt to a broad range of environmental conditions without overfitting in a
certain region of the world.

4.2.4 Physics-based simulation data
Each shoebox sample’s design vector is simulated with EnergyPlus to report monthly heating and
cooling loads by zone, illustrated in Figure 4.6. All 30 conditioning, construction, geometry, and
building use parameters are defined as model inputs. All other components of the energy models
are held constant between samples in the dataset. More details can be found in Appendix A.1, and
the parameters are listed in Table 4.1.

Simulations were executed with massive parallelism on AWS cloud infrastructure. This ap-
proach leveraged AWS Batch compute on Fargate, facilitating efficient and scalable processing of
the large dataset.
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Figure 4.6: Illustration of energy model monthly heating and cooling requirements for a selection
of sampled shoeboxes in Seattle (4C). Each shoebox has unique construction characteristics and
programs resulting in differing monthly profiles.

4.3 Surrogate architecture
In this section, we define the architecture of the surrogate model used to predict monthly heating
and cooling for shoebox energy models. Given our energy model F and a dataset of shoeboxes S,
we seek a surrogate model F̂ parameterized by 𝜃 which is defined as the solution to a minimization
problem of a loss function L over the training dataset S:

L(𝜃) = 1
|S|

∑︁
®𝑥∈S

(
F̂ (®𝑥; 𝜃) − F (®𝑥)

)2
(4.4)

𝜃∗ = arg min
𝜃

L(𝜃) (4.5)

4.3.1 Preliminaries
Neural networks are well-known for their highly expressive function approximation capabilities and
amenability to efficient training and inference through easily parallelized operations. Appendix A.2
provides a brief review of neural networks, including convolutional neural networks.

We incorporate temporal convolutional layers which operate over multivariate timeseries. Given
an input sequence for layer 𝑘 with 𝑚𝑘 channel dimensions (e.g. dry bulb temperature and relative
humidity) and a kernel size of 𝑑𝑘 timesteps, each output channel 𝑗 is computed with a filter matrix
Wk,j ∈ R𝑚𝑘×𝑑𝑘 applied as a dot product over a sliding window of the input sequence with length
𝑑𝑘 :

®𝑥𝑘+1, 𝑗 ,𝑡 = 𝜙(W𝑘, 𝑗 · ®𝑥𝑘,:,𝑡:𝑡+𝑑𝑘 + 𝑏𝑘, 𝑗 ) (4.6)
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Figure 4.7: Two-part model architecture.

4.3.2 Model architecture
The model is composed of two networks which follow a typical ResNet-like architecture [67]. The
first is responsible for processing the hourly annual timeseries data (including weather and sched-
ules) and generating a latent representation of learned features at a monthly resolution, called the
timeseries latent projector. The second, called the regression head is responsible for combining
the learned features with the static input features (both geometric and non-geometric) to regress
monthly heating and cooling demands. Both networks employ the same modular structure, differ-
ing only in the dimensionality configurations of each block. The basic modular block is composed
of a chain of alternating temporal convolutions and non-linear activations, followed by a batch nor-
malization layer and a skip connection which adds the input to the output of the block (including a
channel size transformation applied as a pointwise 1D convolution). The skip connection is used
to mitigate the vanishing gradient problem and enable training of very deep networks [68].

4.3.3 Timeseries latent projection
The timeseries latent projection is composed of three blocks, where each block contains three tem-
poral convolution layers and a skip connection. In each of the three blocks, the three kernel sizes for
each of the temporal convolution layers are 16,9,4. The first block has 16 output channels, the sec-
ond has 16, and the third has 32. When the input channel dimension differs from the output channel
dimension, the first layer in the block performs the channel size transformation via an increased
number of filters. SELU activation functions are used. All striding is set to 1 and zero-padding is
employed, preserving dimensionality along the time-axis across each layer. The only change in
the temporal dimension occurs at the end of the timeseries latent projection via an average pooling
layer which reduces the temporal dimension from 8760 to 360 followed by a learned convolution
with kernel size 30 and stride of 30 to bring the temporal dimension down to 12, effectively acting
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as a learned weighted averaging layer which reduces timeseries to monthly resolutions. This final
transformation also expands the channel dimension to 4 times the number of static channels which
will be included in the subsequent regression head.

4.3.4 Regression head
The regression head concatenates the static features with the output timeseries latent projections.
It converts each of the static features into a timeseries of length 12 and concatenates these pseudo-
timeseries with the projections of the original timeseries features along the channel axis. It is com-
posed of 12 blocks each with 3 alternating temporal convolution layers and non-linear activations,
followed by batch normalization and a skip connection. Unlike the timeseries latent projection, here
the kernel sizes are all set to 1 with 512 output channels, effectively acting as a pointwise convo-
lution, or, in other words, typical fully-connected layers applied over the channel dimension and
parallelized over time. A final pointwise convolution reduces the channel count to 4, representing
monthly heating and cooling for the perimeter and core zones separately, totaling 48 values in the
output vector.

4.4 Surrogate data encoding
Weather timeseries channels extracted from EPW files were dry bulb temperature, dew point tem-
perature, relative humidity, wind direction, wind speed, direct normal radiation, diffuse horizontal
radiation, and diffuse horizontal radiation. Additionally, for each weather file, solar azimuth and
solar elevation were computed for each hour of the year using PVLib [69]. Latitude and longi-
tude were also included as constant timeseries. Schedules were included as additional channels
in the timeseries latent projection’s input layer. Each timeseries channel was normalized using
the distributions of the data as present in the seen weather file dataset. All continuous static fea-
tures (non-geometric and geometric) were min-max normalized to the range [0,1] as they were
drawn from randomly and uniformly sampled distributions over the design space bounds (see 4.2).
Categorical static features were one-hot encoded. Each of the static features were repeated into
timeseries of length 12 before concatenation with the timeseries latent vectors along the channel
axis in preparation for input to the regression head. Simulated monthly perimeter and core heating
and cooling area-normalized thermal demand results were all normalized to a reference range of
[0 𝑘𝑊ℎ/𝑚22, 100 𝑘𝑊ℎ/𝑚2].

4.5 Hyperparameters and training
The model was trained using the Adam optimizer with a learning rate of 0.01 and a batch size of
128 and the MSE-loss function (see equation 4.4). A learning rate scheduler was used to decay the
learning rate by 0.95 for each epoch. 4x NVIDIA Tesla V100 GPUs were used for 53 epochs, taking
approximately 8 hours, with approximately 1 million samples per epoch and shuffling performed at
the end of each.
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Chapter 5

Validation

The novel rapid UBEM evaluation pipeline was evaluated in three stages. First, the surrogate
model was validated against the withheld data from the EnergyPlus simulated dataset (see 4.2)
for approximately 125,000 shoeboxes. After validating the shoebox surrogate, validation of the
shoeboxer algorithm was performed by creating 10,000 autozoned buildings (as in ASHRAE 90.1)
with the same non-geometric feature parameterization as the shoeboxes. These buildings were all
simulated in 13 locations around the world with EnergyPlus, then discretized and predicted using
the shoeboxing algorithm and surrogate engine as detailed in 4.1. After validating the performance
of the engine on individual buildings, the results for each of the 13 locations were aggregated into
urban-scale results for both the autozoned multi-level EnergyPlus models and the neural network
shoebox models.

The validation datasets generated by the authors were designed to minimize inductive bias
between the building-scale validation models and the underlying shoebox models which the frame-
work originally used to generate data and which the neural network regresses. Validating against
data drawn from the defined design space was done to isolate any failure modes in the actual sur-
rogate and shoeboxing process, as opposed to simply failing because the validation dataset was
drawn from a distribution too disjoint from the supported parameters and their scopes. However, the
real world of course is not perfectly captured by this design space, but we do still hope to be robust
to it. As such, we additionally validate from the building-scale to the state-scale and even up to the
national scale using the ResStock open dataset, which uses considerably more detailed white-box
energy models than the shoebox models used here [70]. These pre-existing ResStock datasets
have been generated from an entirely different energy modeling pipeline with different geometric
parameterizations, and fully modeled HVAC equipment. The dataset, having gone through its own
extensive validation to reflect real distributions of building characteristics and demand across the
United States, crucially provide individual samples which act as a proxy for real-world conditions
(and dramatically increases the risk of inductive bias of the entire shoeboxing algorithm).

Several error metrics are used in validation: Root Mean Squared Error (RMSE) and its normal-
ized variant the Coefficient of the Variation of the RMSE (CVRMSE), the Mean Bias Error (MBE)
and its normalized variant (nMBE), Mean Absolute Error (MAE), and Percent Error. Percent error is
an easily understandable metric and therefore widely used but is highly sensitive to zero and near-
zero conditions. RMSE is a commonly used metric representative of error in physical units between
modeled and baseline values but does not indicate the relative magnitude of errors compared to the
scale of the problem. Therefore, CVRMSE, the RMSE normalized by the dataset’s true mean, can
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provide clarity on the predictive performance of models due to its expressive clarity. MAE serves
a similar purpose as RMSE but with no additional penalty incurred by larger magnitude errors with
the removal of the quadratic. MBE sums the prediction residuals, giving an overall consideration
of bias to over or underestimation through a signed value. However, as MBE is calculated across
the dataset, cancellation of over and underestimated values can give the impression of overly opti-
mistic results [49]. However, some steps of the framework rely on aggregating outputs of previous
steps (e.g. from building to urban scale), so MBE is still useful: the nMBE at one scale becomes a
percent error at the next scale. The validation process is described further in the following sections.

In each section, metrics are often reported segmented by end-use demand (heating or cooling),
timeframe (monthly or annual), scale (shoebox, building, or urban), and ASHRAE climate zone.
For example, reporting the CVRMSE of annual building-scale heating demand intensity in climate
zone 1A. As the model predicts monthly thermal demand intensity, careful attention must be paid
to aggregation. The terms before the word "scale" will always be used to refer to the aggregation,
while the second set of terms will be used to refer to the segmentation. In the example above then,
the buildings are segmented by climate zone, with the CVRMSE computed using each climate
zone’s respective true heating demand intensity mean as the normalizing factor, resulting in one
error metric result for each climate zone present in the data (in this example). For an urban-scale
example, the total energy of all buildings would be first aggregated and then divided by the total
floor area of all buildings. When monthly CVRMSEs are computed and reported, they are computed
over the entire timeseries, rather than computing 12 independent timeseries as is sometimes done.

RMSE(F̂ , F ,S) =
√√

1
|S|

∑︁
®𝑥∈S

(
F̂ (®𝑥) − F (®𝑥)

)2
CVRMSE(F̂ , F ,S) = RMSE(F̂ , F ,S)

1
|S|

∑
®𝑥∈S F (®𝑥)

MAE(F̂ , F ,S) = 1
|S|

∑︁
®𝑥∈S

|F̂ (®𝑥) − F (®𝑥) |

MAPE(F̂ , F ,S) = 1
|S|

∑︁
®𝑥∈S

|F̂ (®𝑥) − F (®𝑥) |
F (®𝑥)

MBE(F̂ , F ,S) = 1
|S|

∑︁
®𝑥∈S

F̂ (®𝑥) − F (®𝑥)

5.1 Shoebox-scale

5.1.1 Testing framework
The neural network model was validated on a test segment of 125,000 randomly generated shoe-
boxes exclusively using weather files that were not included in the training segment (see 4.2.3).
Stratified sampling over the climate zones was used in the training dataset to ensure that the model
had ample variety to learn from, as well as in the test set to ensure that error metrics could be com-
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puted on a per-climate zone basis with equally sized segments. Heating and cooling loads are
evaluated separately.

5.1.2 Validation

Figure 5.1: Shoebox monthly model fit

The model achieved a CVRMSE and RMSE for shoebox-scale monthly loads segmented at
the zone level of 9.6% and 0.6 kWh/m2 respectively. To better understand behavior at the zone
and end-use level, errors were also computed independently for heating and cooling in both zones,
representing four error axes (see Figure 5.1). Results are shown in the Table 5.1. Given the
ASHRAE recommendations of 15% CVRMSE and ±5% for nMBE for monthly predictions, the
model is deemed sufficient for usage at both the zone-scale and shoebox-scale.

Table 5.1: Disaggregated shoebox-scale errors in unseen weather files

Period Zone End Use CVRMSE [%] nMBE [%] RMSE [kWh/m2]

Monthly Core Cooling 7.5 -1.1 0.5
- - Heating 15.2 -0.6 0.3
- Perimeter Cooling 7.4 -0.3 0.8
- - Heating 11.7 -0.9 0.5

Annual Core Cooling 4.6 -1.1 3.6
- - Heating 8.5 -0.6 2.3
- Perimeter Cooling 4.2 -0.3 5.5
- - Heating 6.4 -0.9 3.6

Errors were also computed for each shoebox’s monthly demands with segmentation over cli-
mate zones and individual months to ensure adequate performance. Complete error summaries
are provided in tables B.2 - B.9. In all cases, both nMBE and CVRMSE were within the desired
bounds for cooling. For heating, select cases exceeded the bounds for CVRMSE, as illustrated in
5.2, however the true mean was near zero and the RMSE was in line with or better than the other
cases. Essentially, in certain climate zones or months where the expected value of the heating
demand is exceedingly small, there is a degree of noisiness in the predictions, but given the low
RMSE and nMBE values, this is considered acceptable. Users are encouraged to consult tables
B.2 - B.9 provided for evaluating model performance according to their particular use-case.
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Figure 5.2: Monthly CVRMSE by climate and thermal zone (no-heating climates omitted)

5.1.3 Comments
The neural network is deemed sufficiently accurate for any use case which directly relies on explicitly
reporting the individual results of shoeboxes, such as early-stage design exploration or parametric
facade analysis (see 6.1) so long as the white-box model would be appropriate for that applica-
tion as well. Algorithms which require specific aggregations of shoeboxes using computed weights
(including the one detailed in 4.1) must still be validated independently of the neural network sur-
rogate, as is done in the next section. However, it is clear that the neural network architecture and
training pipeline are performing effectively.

5.2 Building-scale

5.2.1 Testing framework
To validate the performance of the surrogate in conjunction with the algorithm in 4.1 for representing
buildings as linear combinations of shoebox discretizations, 10,000 buildings were generated by
sampling from a uniform distribution over a modified version of the original design space that the
surrogate was trained on (for instance, replacing shoebox-specific geometry features with building
geometry features like number of floors or floorplate size). The design space was also restricted
to remove regions with trivial solutions like extremely wide setpoint dead-bands which yield no
demand. Complete sampling bounds for building generation are listed in B.1.

Each design vector from the new dataset was used to generate a multi-story building. This
building was then autozoned into a multi-zone energy model, as described in 4.1, resulting in a
whole-building energy model (rather than shoeboxes) per ASHRAE 90.1. Each whole-building
model was run in EnergyPlus with 13 different weather files, totaling 130,000 test cases over all
cities. These were then discretized into shoeboxes as discussed in 4.1.2 and processed by the
surrogate before re-aggregation to the building-scale according to equation 4.1. Error metrics for
heating and cooling demand intensities were then computed.

Additionally, whole-building EUI was also estimated from the thermal demands. To convert the
monthly heating and cooling requirements predicted by the surrogate and shoeboxing algorithm into
energy usage, each building was assigned a heating type (heat-pump electrified or non-heat pump)
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followed by sampling a coefficient of performance (COP) between 0.92 and 0.97 for non-heat pump
heating and between 2 and 4 for heat-pump electrification. Cooling COPs were sampled from the
same range as heat pump electrified heating. The buildings were sampled with 85% probability of
using non-heat pump heating and 15% heat-pump electrification. For each of the 10,000 autozoned
buildings, this was performed 100 times to ensure no sensitivity to the coefficient of performance
assignments. After assigning and applying coefficients of performance, the values were added
together along with the total electricity usage from equipment and lighting loads. For the equipment
and lighting loads, the electricity was directly reported from the EnergyPlus autozoned models as
ground truth. This was compared to a summation of the fractional usage schedules with power
density for the surrogate approach, returning equivalent results as expected.

5.2.2 Validation

Thermal demands

Figure 5.3: Building level heating and cooling
demand monthly model fit.

Heating and cooling demand reported by Ener-
gyPlus and the proposed algorithm are plotted
against each other in Figure 5.3, showing strong
biases in opposite directions for heating and cool-
ing. This is also reflected in the normalized mean
bias errors of 9.5% for cooling and -12.0% for
heating on an annual basis. Error metrics for
each thermal demand end use and timescale are
given in table 5.2. Complete error metrics at the
building-scale for each end use in each city on
monthly and annual bases are given in tables
B.10 - B.13. While the errors are higher than
desired for building-scale predictions, further in-
spection reveals that the model performs better
as thermal demand increases, as illustrated in
figs 5.4 and 5.5, which depict errors with respect
to different magnitudes of monthly thermal de-
mand. The model’s prediction error rate grows
significantly slower than the monthly thermal de-
mands’ true values: when demand is low, noise

in the predictions dominates, but when demand is high, the signal emerges from the noise floor
and the model correctly captures the thermal demand. This is clearly illustrated anecdotally in 5.6,
where monthly thermal demand predictions and true values for four different buildings are shown for
three different climates (Mumbai, Seattle, and Oslo). While the general morphologies and scales
of predictions are correctly identified, heating tends to be underestimated and cooling tends to be
overestimated. This ability to correctly identify the scale and general morphology is proven by the
high R2-scores for each individual month, which are above 0.92 for all months except for heating
in June-July, which are still above 0.82, as shown in table 5.3.
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Table 5.2: Building-scale thermal demand errors

Period End Use CVRMSE [%] nMBE [%] MAE [kWh/m2] RMSE [kWh/m2]

Monthly Cooling 25.9 +9.5 0.9 1.6
- Heating 42.0 -12.0 0.6 1.5

Annual Cooling 21.4 +9.5 9.4 16.3
- Heating 31.6 -12.0 7.2 13.5

Table 5.3: Building-scale thermal demand R2 scores

Month Cooling Heating

Jan 0.966 0.972
Feb 0.963 0.975
Mar 0.967 0.965
Apr 0.966 0.934
May 0.970 0.920
Jun 0.958 0.846
Jul 0.953 0.821
Aug 0.961 0.882
Sep 0.960 0.936
Oct 0.966 0.933
Nov 0.970 0.975
Dec 0.959 0.974

Figure 5.4: Building-scale monthly RMSE by de-
mand

Figure 5.5: Building-scale monthly CVRMSE by
demand
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(a) Mumbai (0A).

(b) Seattle (4C).

(c) Oslo (6A).

Figure 5.6: Monthly thermal demands for four buildings in 3 different climates
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Energy use intensity

Operating over the entire test suite (10,000 buildings ×13 locations ×100 COP assignments per
building), the shoeboxing surrogate pipeline achieved annual individual building total area-normalized
energy RMSE of 7.1 kWh/m2 and a CVRMSE of 5.6%. When evaluating error metrics separately
per location, CVRMSE was less than 8.5% in all locations, as shown in Figure 5.8a. Complete
error metrics for building-level total energy use are provided in Table B.14. Figure 5.7 illustrates
RMSE values for heating and cooling as compared to mean normalized loads for heating and cool-
ing individually. As expected, with higher load demands, the magnitude of RMSE increases. This
propagates further into urban-scales as seen in Figure 5.8a. Future applications could extend the
usability of the surrogate in extreme climates with a single dominating load end-use with further
training.

Figure 5.7: RMSE and mean normalized load for annual whole-building thermal demand by city
and end-use.

5.2.3 Comments
The normalized mean bias error present in heating and cooling pointing in opposite directions is a
clear indication that the shoeboxing process is introducing a misalignment with validation data that
appears as a clear thermodynamic effect with a variety of possible explanations: more heat is being
represented in the approximation of the building than in the simulated case. As a secondary goal of
this project is to be able to use the same foundational model made for the UBEM context in single
building contexts, it will be important to identify this source of error, or otherwise establish simple
weighting factors to account for it as it appears to be present across climate zones. In the interim,
it is recommended to use this model with caution in cases that depend on disaggregated demands
at the building scale, as it will tend to over-predict cooling and under-predict heating; additionally,
it is recommended to be aware of the fact that disaggregated predictions at the monthly scale are
noisy when demand is low, but for identifying demand in the most thermally intense months, it is
considered acceptable depending on the climate zone.
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Possible causes of biased predictions

A possible explanation for bias in the predictions is the handling of infiltration in the shoeboxer
algorithm. The effective infiltration of the shoeboxes resulting from the assigned infiltration rates
and adiabatic proportions of each shoebox’s roof and facade could end up too small; an artifact of
how the adiabatic proportions are derived from the number of floors. This could result in insufficient
heat loss in the winter, and potentially "free cooling" in transitional months.

Another possibility is that the core and perimeter zones are not weighted optimally. The core
and perimeter zones are plainly area weighted with their depths determined to preserve the build-
ing’s core area-to-perimeter area ratio. The two zones are otherwise identical with the exception of
the facade in the perimeter zone and the parallel partition at the core zone’s boundary. This means
that all internal gains are identical on a per square meter basis, as are all conductive and infiltration
rates for the roof, and side walls between the two zones. However, the core zone cannot exchange
heat through its rear wall, instead only exchanging heat with the perimeter zone through the parti-
tion. Similarly, the perimeter zone can additionally exchange heat with the environment through its
facade, including the window. In the winter, when the environment is too cold, the perimeter zone
will likely be losing a large amount of heat through the window and facade infiltration which the core
zone has no analog for. This ought to result in higher heating demand for the perimeter zone than
the core zone for a shoebox at most heating timesteps, with the exception of some south-facing
facades which receive solar gains at certain times of the day. If the core zone was given too much
weight in the building level aggregation, then it is possible that the lower heating of the core zone
becomes over-represented in the aggregated building’s prediction. Similarly in the spring and fall,
there may be many days should result in lower or no cooling demand as the perimeter zone more
closely tracks the environment, so overweighting the core could result in excess cooling in the final
estimation.

Additional work is warranted to further refine the core and perimeter depth weighting schemes
so that they better reflect the thermodynamic process of the multi-zone whole-building model and
some caution should be used in specific applications which rely on the disaggregated heating and
cooling demands of particular buildings, e.g. in the autocalibration workflows detailed in 6.1. One
natural approach for future work will be to use the rapid function evaluation of the surrogate to
generate many different combinations of shoeboxes for a variety of buildings and separately learn
correction factors for heating and cooling artifacts in the shoebox aggregation scheme.

5.3 Urban scale
As this methodology has been developed to analyze and model building energy use at urban scales,
a representative method was developed to initially validate this use-case.

5.3.1 Testing framework
Using Rhino and Grasshopper, a "city" generation script was written to rapidly generate thousands
of test buildings with shading context, which were evaluated in the same city’s weather context. The
area-normalized thermal demand intensity results for the individual buildings for each city were
multiplied by each building’s gross floor area (GFA) to give the total thermal demand of the city,
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(a) Building-scale CVRMSE (b) Urban-scale percent error

Figure 5.8: Error by city for shoeboxing algorithm with surrogate for whole-building annual energy
usage, as compared to an autozoned EneryPlus model at the building-scale (left) and aggregated
at the urban scale (right).

summed, and re-normalized by the UBEM’s total GFA to give a final heating and cooling thermal
demand intensity. As in the building-scale case, a series of trials where COPs were assigned to
each building were conducted in order to then compute total energy use intensities for each city.
Additional urban scale (and beyond) testing using ResStock data is detailed in 5.4.

5.3.2 Validation
At the urban scale, in almost all cases the predicted monthly thermal demand was within 15% of
the true thermal demand, with the exception of heating in select months and locations where the
demand was less than 2.5 kWh/m2; in these cases, the error was almost always within 0.75 kWh/m2
(as shown in figs. 5.9a and 5.9b). For annual thermal demand intensity, the maximum error was
within 15% in almost all cases except for select heating annual demands in cooling dominated
climates as expected, and is illustrated in figure 5.10.

For each city’s total energy use intensity, our approach achieved a percent error compared to
the autozoned UBEM of less than 6.5% in all 13 locations and a percent error of 2% or better in
8 locations, shown in Figure 5.8b. Again, in climates with high loads of a single end-use, we see
higher error. We also observe an overall decrease in error with aggregation at the urban scale.
Although this is expected (and a key mechanism of the applicability of shoeboxer algorithms), error
at the building-scale calls for future work on the shoeboxer methodology.

5.3.3 Comments
The hypothesis that at urban scales total error will decrease was validated, but we continue to
observe higher levels of error in heating- and cooling-dominated climates. This is partially due to the
fact that loads are simply higher for these areas, as is depicted in Figure 5.7, but also highlights that
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any bias at a building scale will be emphasized when aggregated at urban scales. Nevertheless,
the overall results are deemed acceptable for both monthly and annual predictions of both thermal
demand intensities and total energy use intensities.

(a) monthly thermal demand fit (b) monthly thermal demand residuals

Figure 5.9: Urban-scale monthly thermal demand model fit (left) and residuals (right) for all cities

Figure 5.10: Predicted versus true annual thermal demand intensities at the urban scale
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5.4 Validating against ResStock: from building to national scale
We additionally perform an alternate form of validation from the building-scale to the state-scale
and even up to the national scale using the ResStock open dataset, which uses considerably more
detailed white-box energy models. ResStock, developed by the US NREL and Department of
Energy (DOE), is a methodology and dataset which enables unprecedented granularity in modeling
the USA national building stock’s residential buildings. Utilizing datasets and findings from several
sources of building stock surveys and studies, the framework leverages statistical sampling and
large datasets of stochastic sub-hourly building schedules to generate hundreds of thousands of
detailed EnergyPlus building simulations set across thousands of counties across the United States
with unique weather data. Developed, in large part, to explore retrofit pathways at large scales,
ResStock has been rigorously tested and validated for this application, providing an ideal dataset
to validate our proposed methodology.

In these ResStock test cases, we challenge the inductive bias of our model by using this pre-
existing dataset generated from an independently developed energy modeling pipeline. The Res-
Stock pipeline has entirely different parameterizations, fully modeled HVAC equipment, and cru-
cially, individual design vectors generated to reflect the real distribution of building characteristics
across the United States. While validating against the previous datasets reveals how the acceler-
ated shoeboxing pipeline performs at regressing randomly generated data from the same design
space, here we aim to prove that the entire stack is not the fruit of the poisoned tree (sometimes
known as "junk in, junk out"). Although comparing performance to a uniformly random distribution
(as done in the previous sections) is reasonable when no appropriate prior is available, ResStock
fortunately provides an excellent repository of high-quality, locally cohesive individual buildings
which can be used for large-scale urban validation.

5.4.1 Testing framework
The ResStock 2022 TMY3 1.1 release was used [70]. 257 counties from across the United States
were selected to generate equal representation of all states. These counties were selected based
off of the number of buildings present in the ResStock representation of each county to make es-
timating county-scale energy usage meaningful. Up to 2,000 buildings were randomly selected
from each county if available; if fewer buildings were available, all were selected. A mapping from
ResStock’s input parameters was developed into the drastically simplified design space of the sur-
rogate model, detailed in Appendix C.1. This mapping provides a strong test of the robustness
of the model: how well can it perform despite its significantly reduced dimensionality, lack of fully
detailed HVAC systems, and black-box nature? After mapping into the surrogate’s design space,
each building’s design vector was then converted into shoeboxes which were predicted by the sur-
rogate model and aggregated into a building scale prediction. These results were then compared
to the ground truth data from ResStock. County-scale aggregations were computed in addition to
state- and national-scale aggregations. As in previous sections, the aggregations were computed
as the total energy demand for that scale (e.g. all buildings in a single county) over the total GFA
for that scale, as expected.
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5.4.2 Validation
Error metrics for the building, county, and state scale are provided in table 5.4. First, we examine
the most granular predictions: monthly thermal demand for all buildings. A model fit scatter plot
with 107,000 buildings is shown in Figure 5.11, and clearly captures the limitations of this approach.
At the monthly level, the surrogate pipeline fails to provide sufficiently accurate predictions, likely
due to the drastically different design spaces. At the same time, it is clear that both heating and
cooling predictions are at least responsive to demand scales, as indicated by the R2 scores, and
while the predictions are biased, they are not drastically biased (both within ±10%).

Figure 5.11: Resstock monthly thermal demand model fit (n=107,000 bldgs)

However, when we aggregate to the county level, the story changes: after converting the ther-
mal demand intensities to thermal demand for each county, summing, and then returning back to
normalized thermal demands, the CVRMSE for both annual heating and cooling demand intensi-
ties fall below 15%, and the R2 scores are all above 0.93 for both monthly and annual predictions.
indicating that the surrogate model pipeline would give comparable predictions to NREL’s ResStock
dataset without the complexity of hundreds of parameters. This pipeline’s simplifications may re-
sult in differences to ResStock at the building scale, but these differences tend to cancel out when
aggregating to larger scales. Interestingly, the signs of the normalized bias errors flipped, indicat-
ing that smaller buildings and larger buildings must behave differently: at building-scale, these are
weighted equally, but at the county-scale, the larger buildings within a county influence the error
more.

This trend continues at state-scale, where the annual CVRMSEs of both heating and cooling
demand intensities separately fall below 12.5% and the R2 scores rise above 0.95 for both monthly
and annual predictions. This methodology yields incredibly similar results for entire states as com-
pared to using highly detailed white-box models, despite the fact that it uses a vast amount of ge-
ometric and parametric abstraction and was trained with highly simplified energy models vis-a-vis
ResStock. At the national scale, with over 100,000 unique buildings modeled by ResStock across
48 states, the percent errors in annual heating and cooling demand were 2% and 5%; monthly
demands are shown in Figure 5.12.
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Table 5.4: Annual and monthly errors for ResStock thermal demand intensity

Scale Timestep End Use CVRMSE [%] RMSE [kWh/m2] nMBE [%] R2

Building Monthly Heating 70.3 5.2 -8.9 0.820
- - Cooling 57.1 2.0 -3.3 0.879
- Annual Heating 48.9 43.2 -8.9 0.700
- - Cooling 38.5 16.3 -3.3 0.842

County Monthly Heating 19.8 1.5 +2.4 0.974
- - Cooling 32.2 0.8 +7.2 0.956
- Annual Heating 11.7 11.0 +2.4 0.935
- - Cooling 14.6 4.6 +7.2 0.967

State Monthly Heating 15.3 1.2 +2.6 0.983
- - Cooling 28.1 0.8 +7.3 0.963
- Annual Heating 8.4 7.9 +2.6 0.957
- - Cooling 12.1 3.9 +7.3 0.971

Figure 5.12: National-scale monthly thermal demand
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5.4.3 Comments
While part of the value of high-resolution datasets like ResStock and ComStock comes with mod-
eling and sizing systems where transients dominate design decisions, for instance in peak load
estimations, these datasets also can play a key role as benchmark evaluation suites for prototypes
of new building energy modeling methodologies. Although the model presented in this thesis is
not yet robust enough to capture all the nuances of ResStock’s design space or reach its high-
resolution at the building-scale, this is by design: these levels of detail are not always necessary
for the policy and planning contexts in which UBEMs are often deployed. The strong parity between
the surrogate pipeline and ResStock at the county scale demonstrates the philosophy of UBEM:
building-level accuracy can take a backseat when urban or county-scale predictions are desired.

5.5 Speed and savings
Full compute comparisons are detailed in table 5.5. For both urban-scale predictions, the black-box
models do not use any archetypal segmentation. The white-box urban-scale prediction was made
leveraging the shoeboxer algorithm with clustering and archetypal segmentation.

Table 5.5: Speed comparison between models

Scale white-box black-box Performance Factor Comments

shoebox 5s <1ms 9,000x 1,800 shoeboxes/s
building 30s 11ms 2,700x avg. 20 shoeboxes/bldg.
urban 83.3 hrs [multi-zone] 1.9 min 2,700x 10k bldgs.
urban 10.3 hrs [shoeboxed] 1.9 min 325x 10k bldgs.

Each EnergyPlus autozoned building energy model takes approximately 30 seconds on an
AWS Fargate 1vCPU/2048MB machine; the EnergyPlus models for all 13 test locations were run
massively in parallel on AWS in approximately 30 minutes (limited by a max parallelism of 5,000
simultaneous simulations). The serial compute for the autozoned models was approximately 83
hours for each of the 13 test cities. The actual time to solution was 5 minutes by leveraging dis-
tributed computing, at a total cost of $3.33, compared to a batched solution-time of 2 minutes and
$0.05 total per location (10,000) simulations for the neural network shoebox engine when running
on a serverless Nvidia A5000 GPU endpoint, representing substantial performance, cost, and en-
ergy improvements. At a throughput of between 1500 and 2000 shoebox predictions per second, a
large-scale UBEM with 100,000 buildings in a city, which previously without distributed cloud com-
puting may have taken days to weeks to complete depending on the stability of the user’s platform
could now be completed in under 20 minutes with individual results for every building, or in under a
minute when using archetypal segmentation. For UBEM seed models, typically comprised of 100
buildings and used iteratively to define calibrated baseline templates, the modeling becomes nearly
real-time at 1s-2s maximum.
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Chapter 6

Discussion

In this manuscript, we set out to create a flexible and fast surrogate model combined with a shoe-
boxer algorithm that allows users to model monthly energy use and/or savings from common retrofit
upgrades in multiple buildings in a fraction of the computational effort required by conventional
BEM-based approaches. When combined with retrofit cost models and census data, the method
can be applied in cities worldwide to formulate socioeconomic technology pathways to help mu-
nicipal governments plan for the energy transition, as discussed in 6.1 and [16]. In reflecting on
it’s applicability in this wider context, we question: Is the methodology accurate enough to replace
existing BEM workflows, flexible enough to be used in different geographic contexts and, most
importantly, are these time savings crucial for the advancement of UBEM?

Starting off with the question of accuracy. There are no existing prescriptions for UBEM ac-
curacy, leaving consensus on acceptable error bounds to the discretion of the user. For example,
much of the focus of this work has been surrounding usability within the particular use-case of
UBEMs for retrofit planning. Therefore, while validating the surrogate at it’s minimal scale (the
shoebox) was imperative, the building-scale results are less demanding in terms of absolute ac-
curacy therefore allowing for savings in development and computation time. At the building scale,
eliminating bias is of utmost importance so that urban aggregations remain accurate, which is the fo-
cus of this work, and will require further work on the existing shoeboxer algorithm. This perspective
holds in considering the surrogate in future use cases, as described in 6.1, whereby the accept-
able bounds of error are flexible and dependent on an identified minimum viable scope and result.
These are particularly acceptable when the modeling focus lies on predicted savings from over-
all retrofit measures across different building typologies, if differences between the surrogate and
physics-based model are sustained and under ASHRAE 140 recommendations at annual scales.
When testing against 13 locations comprised of 10,000 buildings each (where each building was
generated with multi-zone energy models and a shading context), monthly thermal demand errors
were less than 15% in almost all locations and months, excepting heating loads in a few cooling-
dominated climates where the demand was near-zero. Total annual energy use intensity errors
were all less than 7%. indicating that the surrogate framework is providing comparable accuracy to
an urban-scale model which is even more detailed than typical shoebox+archetype-based UBEMs.

When testing against the NREL dataset with 107,000 buildings spread across 257 counties
from 48 states, at the county-scale, we found an nMBE of ±2.4% and ±7.2% for heating and cool-
ing demand intensities respectively and CVRMSEs of 19.8% and 32.2% monthly heating and cool-
ing demand intensities or 11.7% and 14.6% for annual demands compared to the corresponding
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aggregations of ResStock simulation results [70], [71]. Considering the high level of detail in Res-
Stock simulations, the necessarily flawed translations from ResStock data vectors into the surrogate
pipeline, and the surrogate pipeline’s many simplifications, this relative alignment is a promising sign
for the validity of a real-time urban scale model as discussed in 5.4. It should be added that in its
current stage, our method will not be able to provide reliable peak load predictions. However, the
same is true for existing BEM-based methods for urban-scale predictions. One can however ar-
gue that fast surrogate UBEMs will be better equipped to tackle such problems going forward than
their conventional alternatives since the computational cost of introducing stochastically modified
schedules that reflect differences in occupant behavior is easily accomplished by our method.

Can the model be used for socioeconomic technology pathway analysis anywhere? A key fea-
ture of the model is its demonstrated ability to predict monthly energy use across all climate zones,
saving the need to retrain the model for different geographic regions. Another key requirement for
UBEM is of course the availability of reliable template libraries for different building stocks. For-
tunately, there are efforts underway worldwide to compile such datasets, as both surrogate and
physics-based UBEMs, equally rely on this simulation input. Additionally, with the cheap function
evaluation, it becomes much easier to perform analyses which stochastically perturb various pa-
rameters or mutate them to better understand the actual behavior of newly developed archetype
templates under a wide range of conditions. Along those lines, it becomes possible to introduce
probabilistic analysis into modeling workflows: rather than predicting outcomes under a single set
of conditions, populations of scenarios can easily be generated by randomly sampling over ranges
of unknown parameters in building templates.

How crucial is the speed improvement offered by surrogate models? In a series of recent work-
shops with a total of 24 municipal representatives the authors have trained groups of sustainability
champions, GIS managers, and energy modelers to develop customized building retrofit strategies
for their communities [15]. Until now, these workshops have had the character of a consultation,
where the sustainability champions initially lay out their concerns and aspirations for their commu-
nity followed by two days of training the energy modelers and running a small number of upgrade
scenarios. With the new, faster method in place, these workshops can both be shortened and
evolve into design charette type gatherings where various community stakeholders propose differ-
ent upgrades and incentive schemas that can then be tested in near real time. For example, a key
stage in the development of city-wide UBEMs is the use of a "seed model," typically consisting of
about 100 buildings [15]. The seed model is used to develop and calibrate baseline archetypes for
a specific urban context through trial and error, and it is then used to test out different retrofit path-
ways. This stage of a workshop typically takes a full day, with each iteration taking up to an hour
to run, even if only a single parameter has changed (for example, changing an R-value by 0.5-RSI
for a single archetype). With the surrogate, each iteration is no more than two seconds, allowing
for more nuanced iterative design (and more time spent on critical analysis). This shift will lead
to multi-way conversations where more personal, community-specific solutions can be identified
with greater buy-in from all parties involved. In terms of technical opportunities, such brainstorming
sessions can be further supported by targeted optimization studies to fine-tune energy transition
plans. From structural design to daylighting simulations, the building technology field has repeat-
edly demonstrated how rapid feedback and interactivity can lead to a more fluid and effective design
process [72], [73]. With the surrogate framework in this thesis, UBEMs can now enjoy these same
benefits.
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6.1 Extended applications
We have touched on several applications within the subject of urban building energy modeling.
However, with adequate accuracy at the shoebox and building-scale, there are several further ap-
plications for the proposed model and methodology in which the authors see potential for impact.
By leveraging the accelerated nature of function evaluation, previously computationally expensive
analysis methodologies or difficult-to-scale applications become feasible. These may have wide-
ranging impact, ranging from injecting data-driven decision-making into early-stage design pro-
cesses, autocalibrating building energy models to determining governmental strategies for heat-
pump retrofit funding allocation policy. Cutting across building and urban scales, these uses-cases
suggest starting points for developing end-to-end modeling pipelines to accelerate global decar-
bonization of the building stock.

6.1.1 Strategic retrofit optimization

Figure 6.1: An illustration of retrofit pathway op-
tions analysis using the NSGA-II algorithm. Cap-
ital cost and energy use intensity are jointly re-
duced for a school located in Boston, MA.

A major barrier in retrofit adoption is a lack of
understanding and uncertainty with regards to
how best to balance the high financial burden
of deep retrofits with the most "effective" in-
terventions. Currently, the selection of retrofit
packages for a building are a result of an en-
ergy audit and a complicated iterative energy
modeling process based on a subjective and
experienced-based list of potential interven-
tions presented by the energy auditor or mod-
eler. Because of complex interactions between
building systems and subsystems, as well as
between a building and its contextual environ-
ment, detailed surveying and energy modeling
is needed to determine the applicability of se-
lected retrofit measures for a specific building
[74], [75]. The audit itself can be time consum-
ing and costly, with rates between $0.02 to $0.5
per square foot in 2012 [76]. However, audit-
ing is just the first step of the process. During
project planning, the results of the energy au-
dit are used to identify the specific retrofit mea-
sures that will be implemented. This includes determining the scope of the work, establishing a
timeline, and identifying any potential obstacles or challenges. So, while selecting potential retrofits
is an intensive process to begin with, the process of developing an integrated project construction
timeline and financing plan can also have an impact on financial and operational feasibility. For
example, given a series of annual cash flows, the implementation of higher-efficiency mechanical
systems may be cheaper than an envelope upgrade, but if insulation levels are increased prior to
purchasing (and therefore sizing of) new mechanical systems, the overall size of components can
be reduced. Financial analysis can be used to determine the costs and benefits associated with the
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proposed retrofit measures, and often results in an iterative process, to refine and re-select energy
conservation measures that fit within financial needs [75].

Therefore, holistic energy auditing and retrofit implementation planning can be used to com-
putationally determine optimal retrofit pathways in an efficient manner. Given the complexity of
buildings, there can be a multitude of possible options and pathways for achieving desired emis-
sions reduction goals, a decision process which can be fittingly addressed through multi-objective
and linear optimization. Figure 6.1 illustrates an output of the optimization process, with each
point representing a series of retrofit combinations which attempt to minimize both capital cost and
energy use intensity. Being a non-differentiable optimization problem, optimal solutions are not
immediately definable and must be determined through an iterative search, such as the NSGA-II
algorithm. So, the ability to generate potential pathways is limited by the efficiency of the energy
model. By lowering function evaluation time, surrogate models can be utilized to optimize retrofit
plans through efficient design space exploration and search algorithms.

6.1.2 Connecting to cost models and funding policy: heat-pump sizing es-
timates

Accurately estimating thermal loads at the building scale can play a significant role in influencing the
equitable and effective deployment of government resources in support of decarbonizing the build-
ing stock beyond simply using the thermal loads to estimate total emissions. It can also play a role
in large, end-to-end pipelines. While evaluating which retrofit pathways are effective from a carbon
perspective, it is important to recognize that actually getting building owners to adopt retrofits is a
completely separate policy and economic challenge. Various socioeconomic factors can influence
the likelihood of building owners actually adopting retrofit measures, particularly in the residential
context [77]. Governments from the municipal to federal scale can play a role in increasing retrofit
rates with incentives such as tax rebates, upfront cash, or match restricted savings accounts. How-
ever, allocating this funding so that various goals can be met, ranging from maximum retrofit rates
and minimum carbon emissions to equitable distribution or prioritizing healthy living environments.

A climate robust surrogate can play a crucial role in an end-to-end pipeline which models from
the bottom up the effects of various policy decisions concerning retrofit incentives. The key steps
are to model the energy use and savings potential for each home, estimate the cost of the retrofits,
estimate the willingness to pay for each homeowner in conjunction with the economic policy deci-
sions, and then model cost and emissions outcomes.

The surrogate model can of course directly yield baseline energy savings. If retrofit costs and
energy savings are known, payback periods can be calculated. Together with census-tract level
data about socioeconomic statuses, these parameters can be used with data-driven models to
estimate homeowner’s willingness to accept sizes and types of financial incentives provided by
governments [78]. However, estimating costs of retrofits can be challenging. We have recently
contributed to work which demonstrates that using homeowner surveys, total installation cost (in-
cluding all equipment and labor for heat pump retrofits) can be modeled with reasonable accuracy
using just the year of construction (which serves as a proxy for the envelope quality) and size of
the home [79]. Adding system size as an input to the cost model significantly improves the model’s
accuracy, even using simple coarse bins of small, medium, and large systems. This suggests a
need for peak load estimation, however, even a monthly surrogate may be able to use peak winter

62



and summer months as binning proxies for categorization, though future work is needed to validate
the binning accuracy.

With cost estimations in hand along with energy savings, the willingness-to-pay model can
be executed with a given economic policy as an input affecting either upfront or payback time cost
reductions. With homeowners’ willingness to pay represented probabilistically, technology adoption
curves can be modeled as distributions, as implemented by the authors on the UBEM.io platform.
The technology adoption curves can in turn be used to drive emissions (using energy results from
the surrogate), as well as cost projections to both homeowners and cost to the funding government
selecting the incentivization strategy. Taken all together, these inputs can be used to drive a high-
level economic policy planning tool which can explore how and where money is effectively allocated,
which allows the user to identify various key priorities and goals, as shown in [80]. This represents
a complete end-to-end policy planning pipeline that goes beyond simple savings estimations.

6.1.3 Granular and stochastic UBEMs
Archetypal segmentation continues to be an effective manner of simplifying and summarizing build-
ing characteristics, particularly from an envelope perspective in the event of limited data. However,
the realities of building program and stochastic use remain limitations to this approach. Simply,
people use buildings daily at different times and in different ways, and today’s buildings often con-
tain multiple programs, often across different levels, such as a retail and restaurants podium below
an office and residential high-rise. Currently, this additional detail would need to be considered
through a "best guess" average increase in program-related factors such as equipment and people
densities, and use-schedules. Even if this process works well for one building in an urban area,
these factors are highly dependent on the size and proportion of building programs, and therefore
do not scale. Clearly, an ability to decouple overall building characteristics from internal use and
program is ideal, which becomes feasible with rapid surrogates. Now, with the ability to allocate
many more shoeboxes, each potentially with fully unique parameterizations, clustering by archetype
is not as necessary to produce a feasible UBEM. Stochasticity can uniquely be introduced to build-
ing’s schedules, allowing for improved modeling of peak loads, and several architectural programs
can be simulated at a floor plan or even a room-by-room level.

6.1.4 Low-energy and parametric early-stage design
In architectural workflows, early-stage design decisions can make some of the biggest impacts on
final building emissions, especially when considering embodied carbon. Real-time updates on op-
erational energy use during early-stage architectural workflows are enabled with surrogate models
such as this through the discretization of a single building design into shoeboxes. Additionally, sen-
sitivity and parameter interaction analyses performed on single shoeboxes can be easily executed,
aiming to build intuition in the designer about how thermal demands respond to parameter relation-
ships given the climatic boundary conditions and how various design decisions result in trade-offs
between heating and cooling demands or any other post-processed analysis metric therein.

While traditional physics-based shoebox models can be used for iterative design exploration
relatively effectively and quickly (e.g. 4-5 seconds per single run), they still often require special-
ized software to run which a designer or architect may not have access to or working knowledge
of. Engineers with the ability to set up such models and analyses may only be joining projects after
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early-stage analysis is complete. Deploying such tools in web environments with simple, intuitive
interfaces aims to increase the accessibility for usage by early-stage stakeholders and thus in-
ject data-driven decision-making earlier into the design process. However, deploying cloud-native
energy models in an effective manner comes with its own set of infrastructure and maintenance
challenges, even at a runtime of 6 seconds per white-box model.

Using a surrogate model (which can easily be deployed in a minimum maintenance server-
less inference architecture) can cut the costs associated with simulation by nearly the same factor
as the performance gain or more by leveraging batching decisions. In the case of the surrogate
model detailed in this thesis, that entails several orders of magnitude in cost savings per simulation
to maintain a cloud-hosted, free-to-use tool. One such prototype application was developed and
deployed using a combination of serverless inference providers as a proof-of-concept for such an
application, and a screenshot of the user interface is shown in Figure 1.1.

Additionally, using white-box models, even with short run-times, makes systematic sensitivity
and parameter interaction analyses necessarily low resolution and low dimensional. With a rapidly
evaluated shoebox, generating high-resolution parameter grid sweeps and sensitivity analyses be-
come feasible, while low resolutions ones become near-real-time. For instance, a 32x32 grid search
(1024 simulations) completes in less than a second on a consumer GPU, while a 256x256 grid
search (approx. 65,000 simulations) completes in under 40 seconds, compared to 102 minutes of
serial compute and 110 hours respectively for the white-box model. Figure 6.2 demonstrates one
such grid sweep for the familiar window-to-wall ratio versus orientation relationship.

Figure 6.2: Contour maps of thermal demand intensities as a function of window-to-wall ratio and
orientation

Floor plan optimization

Looking at single sections or floors of buildings, the structure of the shoebox could allow floor
plans to be represented as a series of adjoining shoeboxes. [81] has explored automatic floor
plan generation as a viable method for interactive and parametric design of low-carbon buildings,
connecting structural material efficiency to energy-related factors, such as daylight availability and
the placement of less-conditioned zones to act as buffers to highly conditioned zones thus reducing
loads on active systems.
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6.1.5 Facade energy analysis in early-stage design
By discretizing facades into unit cells and allocating one shoebox per cell (rather than lower-order
shoebox allocations as in the UBEM case), it becomes feasible to run hundreds or even thousands
of shoebox energy models along a facade to identify regions where additional architectural or en-
gineering solutions may be necessary to control loads beyond typical irradiation analyses. This
process is comparable to placing a sensor grid over a facade to perform solar irradiance analysis.

While using solar maps tells part of the story and can be used to guide decision-making about
design and engineering strategies to manage gains, it necessarily cannot give the designer feed-
back about how iterative changes are impacting the actual ultimate energy usage directly, instead
only giving feedback on how the input to one such energy model is changing. Select test case
shoeboxes would still need to be run for each design scenario, with the designer needing to wait
for results each time. Even using just 10 shoebox models per facade and a simulation time of 6
seconds per shoebox, this still results in waiting a full minute between runs, presenting a barrier
to iterative design even at very low spatial resolutions. With a rapidly evaluated surrogate which is
sensitive to the surrounding context and solar conditions, as presented in this thesis, shoeboxes
can be placed across high-resolution facade cells to better understand how the surrounding context
and shading affect thermal performance.

Figure 6.3: Elevational view of facade thermal demand intensity analysis for a 60m x 20m south-
facing facade, 3m x 3m cells

Figure 6.3 demonstrates this analysis mode. A south-facing 60m x 20m facade is discretized
into cells 3m tall and 3m wide, with one shoebox placed behind each facade and resulting in 10
shoeboxes for each of the 20 floors. All 200 shoeboxes were modeled with identical input parame-
ters to represent a baseline starting point for the design except for the shading mask. The shading
mask was calculated from the surrounding context independently for each shoebox, and then the
heating and cooling demands for the perimeter zones were predicted using the surrogate model,
taking under a second to return results. At this speed, the analysis can be used interactively in near-
real-time, greatly increasing the potential for iterative design while allowing the form and forces to
interact with each other in a feedback loop.
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6.1.6 Autocalibration of building parameters
Given the importance of building parameter inputs for bottom-up modeling, ML models can be used
to improve calibration methods for building energy models against metered data. BEM calibration
is an inverse design or model parameter estimation process in which a set of energy simulation
inputs is sought such that the modeled output aligns with target data, typically monthly utility bills.
Once calibrated, then counterfactuals can be explored with the surrogate: how would the building
perform under different conditions? Which retrofits will be the most cost- or carbon-effective? A
globally robust surrogate can be used to accelerate the autocalibration process by replacing multiple
different steps within an end-to-end calibration pipeline, though the most natural choice would be to
directly use the surrogate within an optimization loop which aims to find populations or ensembles
of viable designs which all yield the same target energy bill; this differs from one of the definitive
treatments of autocalibration given by [53], in which a separate model is trained per building for the
objective function itself, as opposed to a single surrogate model shared between all buildings, as
is proposed here.
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Chapter 7

Conclusion

We have described the project scoping definition, methodology, data collection, and validation pro-
cess for the development of a novel black-box building energy model for use in UBEM applications,
as well as presented several cases for expanded applicability. The two-part neural network ar-
chitecture and chosen parameters enable a climate- and program-agnostic ML surrogate model,
while the use of geometric abstraction with the shoeboxer algorithm permits geometric flexibility.
The presented data collection, training, and validation methodologies also contribute to enabling
cheap cloud-based pipelines for building- and urban- scale analyses in multiple applications. Cur-
rently capable of being deployed in a serverless web application for monthly evaluation of heating
and cooling loads at urban scales, the inclusion of context through additional building energy loads
will allow it to be applied in decision-making processes for policymakers and urban planners for de-
carbonization policy and retrofit adoption strategizing. Given the format of the model’s timeseries
inputs, this methodology can easily be implemented in conjunction with detailed urban microclimate
data and stochastic building use and occupancy schedules, along with a wide array of identified
(and unidentified) extended use cases.

7.1 Limitations and future work
While the proposed approach attempts to encompass a wide-ranging set of conditions and pa-
rameters and is deemed acceptable for use in UBEM applications, limitations are present. First,
although the model performs well at both the shoebox scale and the urban scale, at the building
scale, it demonstrated systematic error in a key building-level test case which must be addressed.
Although context is included, window coverings or overhangs are not directly considered. In the
validation methodology, validated geometries were equirectangular. However, given the accuracy
of individual shoebox results, we suggest that irregular building shapes can be addressed by the
surrogate given that the shoeboxer algorithm have previouslt been shown to appropriately handles
irregular geometric conditions as well [43]. HVAC system information (for which COP is deemed
a proxy), natural ventilation, and operational settings such as electric light dimming, heating and
cooling setpoint hourly schedules, or ventilation/infiltration schedules are not considered. Future
inclusion of these variables would allow for increased detail in programs across and within buildings
and zones, which becomes particularly useful when considering operational retrofits and more de-
tailed timesteps. Accordingly, a prominent use case for UBEMs is the analysis of peak loads with
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increasing electrification. We have addressed monthly loads given their importance for urban emis-
sions reduction planning, however, future work will address hourly values or seasonal peak analysis.
Similarly, issues of overheating and thermal comfort are of growing concern. An extension to the
surrogate could be altered to include thermal parameters as outputs.

7.2 Concluding remarks
This thesis presents a data-driven methodology to rapidly estimate the monthly energy end use of a
detailed urban building energy model from the bottom up. A focus on usability, flexibility, and future
impact drove the scoping and specification of the proposed surrogate model approach. Geomet-
ric abstraction with a shoeboxing algorithm and a two-part model architecture enable the handling
of high-fidelity timeseries data and therefore a highly robust UBEM approach. After training the
model and validating the methodology at shoebox, building, and urban scales, an additional val-
idation process was carried out with a large national dataset of realistic data and highly detailed
building simulations. Comparative to current approaches, the proposed method can be applied
in the context of urban building energy modeling to balance speed, accuracy, accessibility, and
applicability.

But, it is important to note that it is not just the speed or scale of the computation, or how de-
tailed the information generated is, but also how that information is made useful and actionable;
that is to say, how it is embedded into tools which enable designers, policymakers, educators, and
other engineers to make critical decisions and implement meaningful carbon reduction actions.
This methodology therefore aims to enable dialogues that engage the intersectional nature of im-
plementing existing and effective technological solutions into the complexity and diversity of real
systems. In the hopes that, eventually, these attempts to tackle complexity may propel efforts for a
more sustainable future to catch up to a world already hurtling towards a climate emergency.
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Appendix A

Methodological details

A.1 Physics-Based Simulation
Each shoebox sample’s design vector is automatically translated into an EnergyPlus Input Data
Format (IDF) model and simulated with EnergyPlus v22.2.0 [82]. These energy models use the
Zone Ideal Loads Air System and report monthly heating and cooling loads. Economizers and
heat recovery ventilation are optionally added according to each shoebox’s sampled design vector.
Ventilation per floor area and person are set using the design vector, as is the ventilation mode
(always off, always on, demand controlled ventliation). Infiltration is set to the design vector’s value
representing flow per exterior area. EnergyPlus Simple Glazing Systems are used to represent
window constructions by solar heat gain coefficient (SHGC) and U-Value as drawn from the design
vector. Envelope construction is determined by first selecting from a pre-determined architectural
section according to the design vector’s categorical mass type (steel, woodframe, masonry, con-
crete) and then setting the thickness of the insulation layer according to the specified R-Value in
the design vector. Constant dual setpoint thermostats are used. Lighting power density, equipment
power density, and people density are set according to the design vector and controlled by the
fractional schedules sampled in the design vector (see 4.2.2). All other components of the energy
models are held identical between all samples in the dataset.

A.2 Convolutional Neural Networks

Neural networks are generally defined by composed layers of linear transformations 𝑓𝑘 : R𝑛𝑘 →
R𝑛𝑘+1 followed by non-linear activations 𝜎 : R → R evaluated elementwise in 𝑅𝑛𝑘+1 . Given the
output of the previous layer ®𝑥𝑘 , the output of the 𝑘 th layer 𝐿𝑘 (®𝑥𝑘 ) = ®𝑥𝑘+1 is given by

𝐿𝑘 (®𝑥𝑘 ) = 𝜎( 𝑓𝑘 (®𝑥𝑘 ))
𝑓𝑘 (®𝑥𝑘 ) = W𝑘 ®𝑥𝑇𝑘 + b

where the weight matrix W is a learnable 𝑛𝑘+1×𝑛𝑘 dimensional parameter and b is a learnable
𝑛𝑘+1 × 1 bias parameter.
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A challenge faced by neural networks is the time and space complexity growth that scale with
both the input and output dimensions of a layer, 𝑛𝑘 and 𝑛𝑘+1. Dealing with high-dimensional data
can quickly become infeasible. Convolutional neural networks (CNNs) are commonly deployed
architectures which alleviate complexity explosion by assuming an underlying structure in the data
which exhibits some form of temporal and/or spatial organization. Following this assumption, a
much smaller linear transformation 𝑓 (known as kernel) can be used in each layer, operating over
only a subset of each input vector per application but parallelized over time and/or space, known as
striding (when the input subsequence is non-contiguous, the kernel is said to be dilated, extending
the window of time or space over which relationships can be made, though this is not used in this
paper). The output vector of a convolution is reconstructed as a concatenation of the parallel results
of kernel application. Convolutional parameters can be thought of as a weight-sharing scheme,
vastly reducing the memory footprint. CNNs have been shown to be effective in wide-ranging
applications alongside energy modeling, from computer-vision to audio processing to multi-variate
timeseries sequence modeling.
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Appendix B

Supplemental tables

Table B.1: Whole building validation sampling

Parameter Name Min Max Units

Lighting power density 0 15 𝑊/𝑚2

Equipment power density 0 30 𝑊/𝑚2

People density 0 0.2 𝑝𝑝𝑙/𝑚2

Heating setpoint 14 24 ◦𝐶
Cooling setpoint 22 30 ◦𝐶
Infiltration 0.0 1 𝐿/𝑠/𝑚2 (envelope area)
Ventilation per area 0.0 1 𝐿/𝑠/𝑚2 (floor area)
Ventilation per person 0 5 𝐿/𝑠/𝑝𝑒𝑟𝑠𝑜𝑛
Ventilation mode - - off/on/demand-controlled
Economizer - - none/differential enthalpy
Heat recovery - - none/sensible/latent
Facade mass - - steel/wood/masonry/concrete
Roof mass - - steel/wood/masonry/concrete
Facade R-value 0.3 15 𝑚2𝐾/𝑊
Roof R-value 0.3 18 𝑚2𝐾/𝑊
Slab R-value 0.3 15 𝑚2𝐾/𝑊
Window U-value 0.3 7.0 𝑊/𝑚2𝐾
Window SHGC 0.3 0.6 -

Building use type 0 15 (determines 8760 hour schedules)

Orientation 0 2𝜋 radians
Building width 10 50 m
Building length 10 50 m
Perimeter zone offset 4.5 4.5 m
Floor-to-floor height 3 5 m
Number of floors 1 10 -
Window-to-wall ratio 0.1 0.8 -
Shading 1, . . . 12 0 𝜋/2 radians
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Table B.2: Shoebox monthly errors: core zone cooling

Month CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

01/Jan 10.4 -1.5 0.4 3.5
02/Feb 10.2 -1.8 0.4 3.4
03/Mar 8.3 -1.1 0.4 4.8
04/Apr 7.4 -1.3 0.4 5.9
05/May 6.8 -1.2 0.5 7.9
06/Jun 6.2 -0.6 0.6 9.5
07/Jul 5.9 -1.0 0.7 11.3
08/Aug 6.3 -1.0 0.7 10.7
09/Sep 6.5 -1.0 0.5 7.9
10/Oct 7.7 -1.3 0.4 5.9
11/Nov 9.2 -1.4 0.4 4.2
12/Dec 10.3 -1.4 0.4 3.6

Table B.3: Shoebox monthly errors: perimeter zone cooling

Month CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

01/Jan 14.0 -0.7 0.6 4.6
02/Feb 12.2 -0.4 0.6 4.8
03/Mar 9.1 -0.5 0.7 7.2
04/Apr 7.6 -0.4 0.7 9.7
05/May 6.7 -0.4 0.9 13.6
06/Jun 5.8 0.1 1.0 17.0
07/Jul 5.3 -0.3 1.1 20.7
08/Aug 5.5 -0.3 1.1 19.5
09/Sep 6.2 -0.2 0.8 13.7
10/Oct 7.8 -0.4 0.7 9.5
11/Nov 10.6 -0.9 0.6 6.1
12/Dec 12.9 -0.5 0.6 4.7
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Table B.4: Shoebox monthly errors: core zone heating

Month CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

01/Jan 7.8 -0.7 0.5 7.0
02/Feb 10.5 0.1 0.5 5.1
03/Mar 12.1 -0.5 0.4 3.2
04/Apr 25.1 -1.2 0.3 1.1
05/May 68.2 -2.6 0.3 0.4
06/Jun 79.1 -0.1 0.1 0.2
07/Jul 61.1 -2.5 0.1 0.1
08/Aug 71.6 0.2 0.1 0.1
09/Sep 53.7 0.6 0.1 0.2
10/Oct 30.3 -1.3 0.3 0.9
11/Nov 11.6 -1.0 0.4 3.2
12/Dec 9.5 -0.6 0.6 5.8

Table B.5: Shoebox monthly errors: perimeter zone heating

Month CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

01/Jan 6.2 -1.2 0.9 14.4
02/Feb 8.1 -0.5 0.8 10.5
03/Mar 9.6 -0.5 0.6 6.5
04/Apr 18.2 -0.8 0.4 2.2
05/May 49.3 -2.0 0.3 0.7
06/Jun 68.7 0.0 0.2 0.3
07/Jul 59.4 -2.3 0.1 0.2
08/Aug 62.8 0.3 0.1 0.2
09/Sep 40.3 -0.3 0.2 0.5
10/Oct 21.1 -1.6 0.4 2.0
11/Nov 9.0 -1.2 0.6 6.7
12/Dec 7.2 -1.0 0.9 12.1
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Table B.6: Shoebox monthly errors by climate zone: core zone cooling

Climate Zone CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

0A 5.6 -0.5 0.8 14.9
0B 5.5 -1.1 0.7 12.8
1A 7.2 -1.4 0.7 9.5
1B 4.8 -0.7 0.6 12.2
2A 7.5 -0.7 0.7 9.1
2B 5.9 -1.2 0.5 8.3
3A 10.4 -1.3 0.6 5.9
3B 6.9 -1.2 0.4 5.7
3C 8.6 -1.7 0.3 3.8
4A 6.6 -0.9 0.4 5.9
4B 7.5 -1.1 0.4 5.4
4C 9.4 -1.3 0.3 3.2
5A 9.4 -1.7 0.3 3.5
5B 7.1 -1.6 0.3 4.6
5C 6.3 -1.3 0.3 4.3
6A 9.4 -1.3 0.3 3.4
6B 9.2 -2.2 0.4 3.8
7 9.2 -1.9 0.3 3.3
8 11.4 -1.7 0.4 3.2
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Table B.7: Shoebox monthly errors by climate zone: perimeter zone cooling

Climate Zone CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

0A 4.4 0.1 1.3 28.8
0B 5.0 -0.2 1.2 23.6
1A 6.8 -0.7 1.1 16.7
1B 3.9 0.1 0.9 22.3
2A 6.2 0.2 1.0 16.1
2B 6.5 -0.5 0.9 14.4
3A 9.5 -0.4 0.9 9.7
3B 8.2 -0.4 0.8 9.8
3C 13.5 -1.0 0.7 5.4
4A 6.9 -0.1 0.6 9.4
4B 6.9 -0.2 0.6 8.7
4C 14.6 -0.9 0.6 4.2
5A 12.8 -0.9 0.6 4.5
5B 9.3 -0.8 0.7 7.1
5C 8.2 -0.4 0.5 6.4
6A 12.1 -0.8 0.5 4.4
6B 12.3 -1.5 0.6 5.2
7 14.4 -1.4 0.6 3.8
8 13.9 -1.2 0.5 3.6
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Table B.8: Shoebox monthly errors by climate zone: core zone heating

Climate Zone CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

0A - - 0.0 0.0
0B 101.7 -7.5 0.1 0.1
1A 139.8 7.6 0.1 0.1
1B 54.0 -2.8 0.1 0.2
2A 47.8 -6.2 0.3 0.6
2B 38.4 -3.1 0.2 0.4
3A 14.7 -0.1 0.3 2.2
3B 23.0 -3.3 0.4 1.5
3C 21.0 -2.4 0.3 1.4
4A 8.3 -1.5 0.2 2.9
4B 7.5 -1.2 0.2 3.0
4C 14.5 -2.5 0.5 3.6
5A 13.5 0.0 0.5 3.6
5B 10.4 0.5 0.4 3.3
5C 7.0 -1.0 0.2 3.2
6A 7.9 -1.6 0.4 4.6
6B 15.1 1.3 0.6 3.8
7 13.4 1.8 0.7 5.3
8 8.1 0.5 0.4 5.2

76



Table B.9: Shoebox monthly errors by climate zone: perimeter zone heating

Climate Zone CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

0A - - 0.0 0.0
0B 97.7 -8.8 0.1 0.1
1A 127.3 9.4 0.2 0.1
1B 50.7 -3.3 0.1 0.2
2A 38.4 -6.4 0.4 1.0
2B 35.4 -3.5 0.2 0.7
3A 12.5 0.1 0.5 3.8
3B 20.2 -3.2 0.5 2.6
3C 17.7 -1.9 0.4 2.4
4A 7.9 -1.6 0.4 5.5
4B 7.2 -1.5 0.4 5.9
4C 10.9 -1.9 0.7 6.7
5A 10.6 -0.5 0.8 7.0
5B 8.6 0.0 0.6 6.6
5C 6.8 -1.3 0.4 6.4
6A 6.8 -2.0 0.7 10.6
6B 11.0 0.6 0.9 8.4
7 8.0 0.3 1.0 13.0
8 6.2 -0.4 0.8 12.2
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Table B.10: Building-scale end use monthly load error: heating

City CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

Mumbai - - 0.0 0.0
Caracas - - 0.1 0.0
Riyadh 147.6 -40.6 0.4 0.3
Miami 239.9 -59.6 0.2 0.1
Sao Paulo 127.4 -33.3 0.3 0.2
Rome 51.2 -22.4 1.2 2.4
Tokyo 42.8 -13.7 1.0 2.4
Las Vegas 71.9 -29.7 1.1 1.6
London 32.4 -13.2 1.4 4.3
Seattle 37.6 -17.7 1.5 4.0
Krakow 25.6 -9.4 1.7 6.5
Oslo 23.9 -8.7 1.7 7.1
Fairbanks 22.3 -8.4 3.9 17.4

Table B.11: Building-scale end use monthly load error: cooling

City CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

Mumbai 18.9 13.7 3.7 19.6
Caracas 20.9 12.6 1.9 9.1
Riyadh 14.1 7.7 2.0 13.9
Miami 18.5 11.8 2.3 12.6
Sao Paulo 20.0 5.9 1.1 5.3
Rome 32.2 7.4 1.1 3.3
Tokyo 26.8 6.5 1.3 4.7
Las Vegas 18.7 8.4 1.6 8.5
London 57.6 -2.6 0.7 1.2
Seattle 44.9 1.7 0.8 1.7
Krakow 48.4 -1.0 0.7 1.4
Oslo 76.1 -10.6 0.6 0.8
Fairbanks 75.4 0.6 0.7 0.9
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Table B.12: Building-scale end use annual load error: heating

City CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

Mumbai - - 0.1 0.0
Caracas 566.4 -68.2 0.5 0.1
Riyadh 80.0 -40.6 2.6 3.3
Miami 147.0 -59.6 1.4 1.0
Sao Paulo 95.0 -33.3 2.6 2.7
Rome 37.9 -22.4 11.0 28.9
Tokyo 29.9 -13.7 8.7 29.1
Las Vegas 47.2 -29.7 8.9 19.0
London 26.7 -13.2 13.7 51.1
Seattle 30.7 -17.7 14.9 48.4
Krakow 20.5 -9.4 16.1 78.5
Oslo 20.5 -8.7 17.4 84.6
Fairbanks 15.9 -8.4 33.3 208.9

Table B.13: Building-scale end use annual load error: cooling

City CVRMSE [%] nMBE [%] RMSE [kWh/m2] True Mean [kWh/m2]

Mumbai 16.9 13.7 39.7 235.3
Caracas 18.5 12.6 20.0 108.6
Riyadh 11.1 7.7 18.5 167.1
Miami 15.3 11.8 23.0 150.8
Sao Paulo 16.7 5.9 10.6 63.3
Rome 22.0 7.4 8.6 39.2
Tokyo 15.2 6.5 8.5 55.9
Las Vegas 13.4 8.4 13.7 102.0
London 44.1 -2.6 6.2 14.1
Seattle 32.3 1.7 6.6 20.4
Krakow 33.9 -1.0 5.9 17.4
Oslo 57.3 -10.6 5.5 9.6
Fairbanks 47.7 0.6 5.4 11.3
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Table B.14: Building-scale total energy error

City True mean [kWh/m2] RMSE [kWh/m2] CVRMSE [%] MBE [kWh/m2]

Mumbai 167.9 13.8 8.2 -11.1
Caracas 124.0 6.9 5.6 -4.7
Riyadh 145.4 6.1 4.2 -4.0
Miami 138.9 7.8 5.6 -5.9
Sao Paulo 109.2 3.6 3.3 -0.9
Rome 109.8 4.0 3.6 1.3
Tokyo 115.6 3.5 3.1 0.2
Las Vegas 128.2 4.3 3.3 -1.0
London 108.7 4.9 4.5 2.5
Seattle 109.9 5.2 4.7 2.9
Krakow 119.1 5.4 4.6 2.6
Oslo 118.5 6.1 5.2 2.9
Fairbanks 161.4 11.2 6.9 6.0
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Appendix C

Pseudocode

C.1 NREL data conversion
The parameters and conversion methodology used to convert ResStock building definitions into
inputs for the surrogate methodology are detailed below. Each variable has a related parameter or
parameters from ResStock which are used to calculate the input to the model.

Because EPD and LPD values are not presented directly in ResStock, and it is not immediately
apparent which loads are considered internal gains from a thermal perspective, we derived EPDs
and LPDs from the provided timeseries. Additionally, because our underlying EnergyPlus shoebox
models used in training do not include natural ventilation within their design space, we used double
the number of expected shoeboxes for each building: half were modeled with a higher infiltration
rate to try to capture the effects of natural ventilation within the shoebox predictions.

1 ResStock_building_definition = {
2 "area": {
3 ResStock Parameter: ["sqft"],
4 Type: int,
5 Conversion Method: lambda x: x / 10.7, # Convert to meters
6 },
7 "climate_zone": {
8 ResStock Parameter: ["ashrae_iecc_climate_zone_2004"],
9 Type: string,

10 Conversion Method: None,
11 },
12 "state": {
13 ResStock Parameter: ["state"],
14 Type: string,
15 Conversion Method: None,
16 },
17 "county": {
18 ResStock Parameter: ["county"],
19 Type: string,
20 Conversion Method: None,
21 },
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22 "city": {
23 ResStock Parameter: ["city"],
24 Type: string,
25 Conversion Method: None,
26 },
27 "floors": {
28 ResStock Parameter: ["geometry_stories"],
29 Type: int,
30 Conversion Method: None,
31 },
32 "width": {
33 ResStock Parameter: None,
34 Type: int,
35 Default Value: 3,
36 },
37 "height": {
38 ResStock Parameter: None,
39 Type: int,
40 Default Value: 3,
41 },
42 "perim_depth": {
43 ResStock Parameter: None,
44 Type: int,
45 Default Value: 3,
46 },
47 "core_depth": {
48 ResStock Parameter: ["sqft"],
49 Type: int,
50 Conversion Method: core_to_perimeter_area_ratio *

perimeter_depth ,
51 },
52 "roof_2_footprint": {
53 ResStock Parameter: [
54 "geometry_building_horizontal_location_sfa",
55 "geometry_building_horizontal_location_mf",
56 "geometry_attic_type",
57 ],
58 Type: boolean,
59 Conversion Method:
60 if residence is on a middle floor:
61 no exposed roof
62 else:
63 exposed roof
64 },
65 "ground_2_footprint": {
66 ResStock Parameter: None,
67 Type: boolean,
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68 Default Value: exposed slab,
69 },
70 "orientation": {
71 ResStock Parameter: ["orientation"],
72 Type: float,
73 Conversion Method: lambda x: convert orientation to radians,
74 },
75 "wwr": {
76 ResStock Parameter: ["window_areas"],
77 Type: float,
78 Conversion Method: convert to percentage ,
79 },
80 "cop_cooling": {
81 ResStock Parameter: ["hvac_cooling_type"],
82 Type: float,
83 Conversion Method: look up cooling COP based on type,
84 },
85 "cop_heating": {
86 ResStock Parameter: ["heating_fuel"],
87 Type: float,
88 Conversion Method: look up heating COP based on type,
89 },
90 "HeatingSetpoint": {
91 ResStock Parameter: ["heating_setpoint"],
92 Type: float,
93 Conversion Method: convert to celcius,
94 },
95 "CoolingSetpoint": {
96 ResStock Parameter: ["cooling_setpoint"],
97 Type: float,
98 Conversion Method: convert to celcius,
99 },

100 "LightingPowerDensity": {
101 ResStock Parameter: ["lighting"],
102 Type: float,
103 Conversion Method: estimate lighting power density from use of

overall lighting energy; infer lights schedule from hourly
usage,

104 },
105 "EquipmentPowerDensity": {
106 ResStock Parameter: ["plug_loads"],
107 Type: float,
108 Conversion Method: estimate equipment power density from use of

overall lighting energy; infer equipment schedule from
hourly usage,

109 },
110 "PeopleDensity": {
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111 ResStock Parameter: ["occupants", "sqft"],
112 Type: float,
113 Conversion Method: None,
114 },
115 "Infiltration": {
116 ResStock Parameter: [
117 "infiltration",
118 "sqft",
119 "geometry_stories",
120 ],
121 Type: float,
122 Conversion Method: lambda x: calculate infiltration per square

meter of envelope area assuming a square building
123 },
124 "VentilationPerArea": {
125 ResStock Parameter: None,
126 Type: int,
127 Default Value: 0,
128 },
129 "VentilationPerPerson": {
130 ResStock Parameter: None,
131 Type: int,
132 Default Value: 0,
133 },
134 "VentilationMode": {
135 ResStock Parameter: None,
136 Type: int,
137 Default Value: 0,
138 },
139 "FacadeMass": {
140 ResStock Parameter: ["insulation_wall"],
141 Type: int,
142 Conversion Method: look up mass group (low, med, high, very

high) based on roof material ,
143 },
144 "RoofMass": {
145 ResStock Parameter: ["roof_material"],
146 Type: int,
147 Conversion Method: look up mass group (low, med, high, very

high) based on roof material ,
148 },
149 "FacadeRValue": {
150 ResStock Parameter: ["insulation_wall"],
151 Type: float,
152 Conversion Method: None,
153 },
154 "RoofRValue": {
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155 ResStock Parameter: ["insulation_roof", "insulation_ceiling"],
156 Type: float,
157 Conversion Method: lambda x: None,
158 },
159 "SlabRValue": {
160 ResStock Parameter: [
161 "insulation_slab",
162 "insulation_rim_joist",
163 "insulation_foundation_wall",
164 ],
165 Type: float,
166 Conversion Method: None,
167 },
168 "WindowUValue": {
169 ResStock Parameter: ["windows"],
170 Type: float,
171 Conversion Method: look up as-built U-values based on type of

window,
172 },
173 "WindowShgc": {
174 ResStock Parameter: ["windows"],
175 Type: float,
176 Conversion Method: look up as-built SHGC based on type of

window,
177 },
178 "EconomizerSettings": {
179 ResStock Parameter: None,
180 Type: int,
181 Default Value: 0,
182 },
183 "ShadHeight": {
184 ResStock Parameter: ["neighbors", "geometry_stories"],
185 Type: int,
186 Conversion Method: calculate angle of shading to right and left

based on distance to neighbours , assuming they are of equal
building height,

187 },
188 }
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