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ABSTRACT

Organic semiconductors comprised of strongly-coupled chromophores harness control
of delocalized excitations, or excitons, via programmed molecular structures. The
dynamics of these excitons enable energy and information transfer within molecular
networks, positioning chromophore assemblies as ideal candidates for a number of
technologies such as solar energy conversion, nanoelectronics, and quantum computing.
Despite significant advancements, there exists no universal model that can explain the
dependence of exciton photophysics on molecular morphology. This thesis employs
mathematical and atomistic models to contribute key physical insights into the
interdependencies between chromophore spatial organization and exciton dynamics,
shaped by inter-chromophore couplings and interactions with the thermal bath.

In the first part, a Frenkel Exciton-based model is introduced as a strategy for
studying exciton evolution between precisely arranged chromophores. In Chapter
2, I develop a novel approach to map unitary quantum computing operations to
Hamiltonians describing excitonic circuits in the presence of a model bath. Then,
Chapter 3 scales this framework to complex quantum algorithms represented by explicit
molecular systems. Finally, Chapter 4 presents an innovative molecular approach for
directing exciton flow via geometrical phase in tightly-bound chromophore arrays.

The second part delves into the intricacies of exciton interaction in densely packed
molecular systems arranged within DNA scaffolds. Chapter 5 combines molecular
dynamics and quantum mechanical calculations, further validated by experimental
results, to study the interplay between long-range electrostatic and short-range charge
transfer interactions. Chapter 6 then correlates this interplay with geometrical con-
figurations derived from the DNA scaffolding. This thesis culminates in Chapter 7,
which introduces a computational pipeline designed to leverage the precise control over
excitons afforded by macromolecular frameworks, paving the way for custom-tailored
DNA-based excitonic circuits.

Thesis Supervisor: Adam P. Willard
Title: Professor of Chemistry
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Chapter 1

Introduction

Organic semiconductors promise to be a cost-effective and environmentally friendly

alternative to inorganic electronics, due to their flexibility, temperature stability,

and the abundance of their foundational materials [4, 58]. Organic electronics, as

seen in applications ranging from photovoltaics [125] to transistors (TFTs) and light-

emitting devices (OLEDs) [47, 58], have rapidly cemented their importance in modern

technology. Intrinsically, the performance of these materials is governed by the

absorption and emission of their low-lying excited states. Further advances in the

field of organic electronics require a deep understanding of the electronic structure

of these low-lying excitations and their photophysical pathways, in order to produce

devices with unique and improved properties.

Central to organic semiconductors are photoactive materials such as chromophores

or dyes. An extensive 𝜋-conjugated system—alternated single and double bonds—

allows these molecules to absorb light in the visible spectrum (400–700 nm). The strong

absorption in this range is predominantly a result of excitations to low-lying states,

which significantly dictates the photophysics of chromophores. Upon photoexcitation,

e.g., by a photon, an electron is created in the lowest unoccupied molecular orbital

(LUMO) and a “hole” in the highest occupied MO (HOMO). In chromophores with an

extended conjugated 𝜋-system, such as cyanines [73, 99], squaraines [8], rylenes [100,

132], and acenes [4], the HOMO-LUMO gap is small resulting in Coulombic attraction

between the electron and “hole”, with the pair forming a quasi-particle—an exciton.

25



These molecules also exhibit easily tunable HOMO/LUMO levels, making them prime

candidates for photovoltaic and optoelectronic applications.

The unique characteristics of organic semiconductors are not solely dependent on

their chemical structure, as the properties of these materials can also be modulated

using geometric design. An assembly of semiconducting moieties can be precisely

arranged so as to control the dynamics of the prepared exciton. These systems, often

termed excitonic circuits, can be designed to control the size, location, and energy of

the exciton spread across the molecular framework [32, 51].

Through millions of years of evolution, nature has mastered the art of leveraging

excitons. In the process of photosynthesis, plants capture sunlight in the light-

harvesting complexes—associated dyes and proteins—where photons are channeled as

excitons into reaction centers, which then catalyze water splitting to produce chemical

energy [111, 122, 124]. Plants afford the precise control needed to transport excitons,

from capture to chemical energy, by precisely fixing the position and orientation

of chromophores via protein scaffolding. This naturally occurring strategy offers a

template for designing synthetic systems for various artificial applications, such as

signal processing [20], photovoltaics [18, 130], photocatalysis [147], imaging [83, 84]

and quantum information [27, 28].

This thesis delves into the intricacies of exciton dynamics within molecular exci-

tonic circuits and the control enabled by precisely positioning chromophores through

macromolecular scaffolding, such as proteins, DNA, or metal-organic frameworks [130,

138]. The remainder of this chapter will introduce theories for describing exciton

states and the coupling between them, and discuss the influence of a thermal bath on

their dynamics.

The first part of this thesis explores the relationship between molecular configu-

ration and coherent exciton dynamics, employing general mathematical models that

account for both the system and its thermal environment. Chapter 2 examines the

potential and limitations of controlling excitons via circuit geometry, aiming to realize

quantum computing operations within these circuits. This chapter proposes a foun-

dational strategy for embedding quantum operations into excitonic circuits, whereas
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Chapter 3 extends the approach to more sophisticated quantum algorithms. The latter

also examines the effect of a thermal bath on the delicate equilibrium of an exciton

delocalized in a molecular circuit, introducing an atomistic framework to assess the

role of environmental fluctuations. Chapter 4 advances this discussion by presenting a

method for directing the coherent transport of excitons in circuits, essential for the

development of effective organic molecular circuits.

Building upon the established principles of exciton transport and delocalization,

the second part of the thesis presents DNA nanostructures as a precision tool for

dictating circuit geometries. Chapter 5 explores exciton manipulation through an

atomistic strategy, combining molecular simulations with the calculation of short and

long-range electronic couplings. Subsequently, Chapter 6 delves into the intricate

connection between photophysical properties and circuit geometries. Finally, Chapter

7 introduces a high-throughput computational workflow that links DNA scaffolding

with circuit geometries and exciton properties, offering a promising method for the

design of programmable excitonic circuits.

1.1 Exciton Theory

Frenkel exciton theory.

It is convenient to describe the excited state of an N-molecule system on a reduced

basis of single-molecule excitations. If one then assumes that each molecule can only

access one ground and one excited state, then the basis can be represented with that

of the Frenkel exciton (FE) model [61, 43]. Specifically, the generic Hamiltonian of

the Frenkel model is given by,

ℋ̂ =
𝑁∑︁

𝑚=1

𝜖𝑚 |𝑚⟩ ⟨𝑚|+
𝑁∑︁

𝑚 ̸=𝑛

𝑉𝑚𝑛 |𝑚⟩ ⟨𝑛|, (1.1)

where |𝑚⟩ is the basis state where molecule 𝑚 is in the excited state (with all other

molecules in the ground state), 𝜖𝑚 is the energy of this basis state, and 𝑉𝑚𝑛 is the

electronic coupling between the states |𝑚⟩ and |𝑏⟩.
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A Frenkel excitation therefore implies the electron and the hole are localized in

the same molecule, resulting in an exciton with a small radius. An exciton delocalized

in a chromophore dimer as described by the Frenkel model is illustrated in Fig. 1-1.

In this representation, the electronic coupling 𝑉𝑚𝑛 is defined as the overlap between a

pair of FE states,

𝑉𝑚𝑛 = ⟨𝑚|𝐻̂|𝑛⟩. (1.2)

This simple and computationally efficient model has been widely used in the study of

excited multi-chromophoric systems [14, 134, 139]. Although the Frenkel model omits

the influences of higher-order excitations, many-body effects, nuclear relaxation, and

the specific details of molecular electronic structure, it has been found to be remarkably

accurate for reproducing the results of experimental and higher level theory when

appropriately parametrized for organic conjugated molecules. Therefore, the Frenkel

model is employed as an initial approach to excitonic circuits for Part I of this thesis.

In Chapter 2 and 3, the FE model is used to describe excitonic circuits composed of

coupled chromophores, mapping quantum computing operations. Chapter 4 will delve

further into the directional flux of a Frenkel exciton between coupled sites.

Charge transfer excitons.

While the Frenkel exciton provides an accurate description in most excitonic circuits,

in closely packed (< 4Å) chromophore aggregates, spatial overlap between MOs allows

for the transfer of an electron (hole) between neighboring molecules. In this regime,

the Kasha exciton model breaks down, as it operates under the premise that electron

overlap between chromophore molecules is small [77, 87, 88]. As a result, such a

system can no longer be described by the Hamiltonian in Eq. 1.1. The most general

Hamiltonian expression that can explain the state of a single exciton in both the

strongly-bounded (Frenkel) and weakly-bonded (Wainner-Mott) limits can be written
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Figure 1-1: Schematic illustration of an exciton delocalized in a chromophore dimer. (A)
The neutral Frenkel states resulting from a local excitation, and (B) the charge transfer
states that result from the electron/hole transfer between neighboring chromophores.
(C) Illustration of the charge transfer-mediated exciton coupling introduced in the
text, 𝑉CT (Adapted from Ref. [77]).

as [9, 79],

𝐻̂𝑒𝑙 =
∑︁
𝑚𝑛

(𝑉𝑚𝑛 − 𝑈(0)𝛿𝑚𝑛)𝑐
†
𝑚𝑐𝑛𝑑

†
𝑚𝑑𝑛

+
∑︁
𝑛

[𝑡𝑒𝑐
†
𝑛𝑐𝑛+1 + 𝑡ℎ𝑑

†
𝑛𝑑𝑛+1 + ℎ.𝑐.]

−
∑︁
𝑛,𝑠 ̸=0

𝑈CT(𝑠)𝑐
†
𝑛𝑐𝑛𝑑

†
𝑛+𝑠𝑑𝑛+𝑠, (1.3)

where 𝑐†𝑛(𝑐𝑛) creates (annihilates) an electron in the LUMO of chromophore 𝑛, 𝑑†𝑛(𝑑𝑛)

creates (annihilates) a hole in the HOMO and ℎ.𝑐. is the hermitian conjugate. The

first term of this equation accounts for the Frenkel exciton contribution, with 𝑉𝑚𝑛

the Coulombic coupling between chromophore 𝑛 and 𝑚, as defined in Eq. 1.2, and

𝑈(0) is the local exciton binding energy. The last two terms in Eq. 1.3 contain the
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CT contribution: The second term accounts for the nearest-neighbor (NN) transfer of

an electron (hole), mediated by the electron (hole) transfer integral, 𝑡𝑒 (𝑡ℎ). The last

term represents the interaction between anion-cation pairs, or an electron and hole

separated by 𝑠 NNs with a Coulomb binding energy 𝑈CT(𝑠). In organic chromophores,

low dielectric constants allow charge transfer only between NN molecules, so for 𝑠 = 1

𝑈CT(1) becomes,

𝑈CT = 𝑒2/(4𝜋𝜀0𝜀𝑅𝑟). (1.4)

Here, 𝑟 is the separation between the molecules, while 𝜖0 and 𝜖𝑅 are the dielectric

constants of vacuum and water, respectively. The electron and hole integrals are

defined as,

𝑡𝑒 = ⟨𝐿(1)|ℎ|𝐿(2)⟩ (1.5)

𝑡ℎ = −⟨𝐻(1)|ℎ|𝐻(2)⟩,

where 𝐿(1) and 𝐻(1) are the LUMO and HOMO of molecule 1, respectively, and ℎ is

the 1-electron Hamiltonian.

A similar expression to Eq. 1.2 can be derived for the short-range CT coupling by

considering the energy-transfer process described in Fig. 1-1C. This two-step process

requires the transfer of a hole(electron) and electron(hole) pair, through a virtual CT

state with energy 𝐸𝐶𝑇 − 𝐸𝐹𝐸. The coupling can therefore be written as [77, 79],

𝑉CT ≈ −2
𝑡𝑒𝑡ℎ

(𝐸CT − 𝐸FE)
, (1.6)

where 𝐸CT − 𝐸FE is the energy gap between the CT state and the neutral Frenkel

exciton. This energy gap can also be described in terms of the local and CT binding

energies, by considering the energy of an unbound CT pair, 𝐸unb
CT ≡ 𝐼𝑃 − 𝐸𝐴 + 𝑃 ,

where 𝐼𝑃 , 𝐸𝐴 and 𝑃 are the ionization potential, electron affinity and polarization

energy, respectively. The energy difference between the unbound CT pair and the
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FE/CT energies is the corresponding binding energy,

𝐸CT = 𝐸unb
CT − 𝑈CT,

𝐸FE = 𝐸unb
CT − 𝑈(0). (1.7)

Therefore, 𝐸CT − 𝐸FE = 𝑈(0) − 𝑈CT. This expression is convenient as the FE/CT

energy gap is difficult to obtain computationally and experimentally. In contrast, the

local binding energy is known to have little impact in the overall coupling 𝑉CT, and

can usually be approximated as a constant [152].

In most organic systems, the energy gap 𝐸CT − 𝐸FE is larger than the interaction

terms in Eq. 1.3, 𝑉𝑚𝑛 and 𝑡𝑒/𝑡ℎ. As a result, the Frenkel and CT exciton states can

be solved separately,

𝐻̂𝑒𝑙 = 𝐻̂FE + 𝐻̂CT + 𝐻̂FE+CT (1.8)

with 𝐻̂FE given by Eq. 1.1, and

𝐻̂CT =
∑︁
𝑛

[𝑡𝑒𝑐
†
𝑛𝑐𝑛+1 + 𝑡ℎ𝑑

†
𝑛𝑑𝑛+1 + ℎ.𝑐.] +

∑︁
𝑛

𝑈CT𝑐
†
𝑛𝑐𝑛𝑑

†
𝑛+1𝑑𝑛+1. (1.9)

The last term 𝐻̂FE+CT is included to account for the interaction between FE and CT

states, which becomes significant with decreasing energy gap between these states.

Strong interaction between the Frenkel and charge transfer excitons has been observed

in chromophores with large 𝜋-conjugated systems, such as perylenes [78, 79, 132, 153].

In these systems, the excitation of the Frenkel state will be rapidly followed by nuclear

relaxation and CT, a phenomenon referred to as excimer formation.

I will employ the expanded exciton model above to study the photophysical

properties of closely-packed chromophore dimers in Chapters 5-7.
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1.2 Exciton Dynamics in a Thermal Environment

In describing the evolution of a system of interactive chromophores with a realistic

framework we must account for both the effect of intermolecular interactions, described

by the coupling 𝑉𝑚𝑛, and the interactions of each dye and its local thermal environment

or bath. Phonon modes in the bath couple with the chromophore’s electronic transitions

and affect electron transfer between molecular units. These modes can arise, for

example, from the dye’s chemical structure, i.e., normal vibrational modes, or from

collective motions of the solvent.[114]

A simple approach for describing the effect of these thermal fluctuations is by

separating the contributions of the bath from the system Hamiltonian,

ℋ̂ = ℋ̂𝑆 + ℋ̂𝐵 + ℋ̂𝑆−𝐵 (1.10)

Where ℋ̂𝑆 is the system Hamiltonian, ℋ̂𝐵 describes the thermal bath and ℋ̂𝑆−𝐵

describes the system-bath coupling.

For simplicity, we can assume that the bath is approximated as a collection of 𝑁

(i.e., one for each dye molecule) independent harmonic oscillators,

ℋ̂𝐵 =
𝑁∑︁
𝑚

∑︁
𝑎

ℎ̄

2

(︀
P2

𝑚,𝑎 + 𝜔2
𝑚,𝑎Q

2
𝑚,𝑎

)︀
, (1.11)

where the first summation is taken over the dye molecules, the second summation

is taken over oscillator frequencies, 𝜔𝑚,𝑎, and Q𝑚,𝑎 and P𝑚,𝑎 denote the position

and momentum of the oscillator state. In this framework, we assume that each dye

interacts with its own bath.

The influence of the bath in the electronic transition is typically manifested as a

difference in the wavelength of light absorbed vs emitted – often referred to as a Stokes

shift. Interaction with a given bath mode of frequency 𝜔𝑚, 𝑎 leads to a shift in the

nuclear coordinates of the ground and excited states, which results in the release of

vibrational energy upon electronic excitation. The reorganization energy, denoted as

𝜆, quantifies this nuclear relaxation process and is a good measure of the system-bath
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interaction.

Intermolecular interactions will drive the transport of neutral excitons and charged

particles in the presence of thermal fluctuations. The nature of this excitonic transport

will depend on the relative strength of the coupling 𝑉𝑚𝑛 within the circuit, compared

to the strength of intramolecular interactions of each chromophore with its surrounding

bath [32]. For instance, in molecular circuits with large nearest-neighbor separation

𝑉𝑚𝑛 is often negligible with respect to the intramolecular coupling, measured by

𝜆. Exciton transport in these systems is driven by incoherent or Förster energy

transfer, where particles are seen as “hopping” between chromophore sites [129]. When

intermolecular coupling increases with respect to intramolecular coupling, exciton

and charge transport are mediated by coherent dynamics. Here, the excitation is

considered as being delocalized across the array of chromophores interacting with

each other. Both coherent and incoherent transfer are of paramount importance in

biological systems, enabling the transfer of the exciton within the LHCs and to the

reaction center. In the limit of very small or large coupling strength with respect to

the bath, theories such as Förster and Redfield are often employed, respectively.

Light-harvesting complexes have evolved to achieve reduced reorganization energies

of less or about 100 cm−1 [32, 81]. Therefore, electron transport between closely-packed

chromophores in this environment will be dominated by coherent dynamics. For the

first part of this work, Chapters 2-4, I will undertake the problem of exciton transfer

and dynamics within the coherent regime, assuming Frenkel excitons that couple

weakly to the thermal bath. The system dynamics are described using a reduced

density matrix (RDM) approach, that enables the treatment of both system and bath

modes quantum mechanically. Chapter 2 approximates the effect of the environment

analytically through a minimal dephasing/dissipation model, while Chapters 3 and 4

treat the interaction with phonon modes explicitly via the Redfield approximation.

It is important to acknowledge that, between the strong- and weakly-coupled bath

regime, we also find an intermediate regime where bath relaxation is on the same order

of magnitude as the electron transfer. In this regime, the Redfield approximation is no

longer valid, and alternative methods are often used instead. These methods include
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those based on the path-integral approach [55], mixed quantum-classical approaches

[119], or extensions of the Redfield model, such as the polaron transformation [52,

136]. To describe the breadth of inter- and intra-molecular interactions in organic

semiconductors a more precise description of the bath modes is adopted in Chapter 3,

aided by a classical description of the bath via room-temperature molecular dynamics

(MD) simulations paired with electronic structure calculations of the excited state.

This MD and quantum mechanical combined approach is also adopted in subsequent

chapters to describe the Coulombic and charge-transfer interactions in chromophore

aggregates.
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Chapter 2

Molecular Excitons for Quantum

Computing Platforms

2.1 Introduction

The elementary component of a quantum computer—a qubit—is a two-state quantum

system. A qubit can be constructed from many different physical systems, including a

pair of coupled organic dye molecules sharing a single exciton. Using this kind of qubit

it is therefore possible, at least in principle, to develop quantum computing elements

that operate via the excited state dynamics of specifically designed excitonic circuits

comprised of multiple dye molecules in precise geometric arrangements. In this chapter,

I introduce a general strategy for designing excitonic circuits for quantum computation.

I apply this strategy to identify fundamental bounds on the computational complexity

that these circuits can support and identify the physical requirements for performing

universal quantum logic gate operations on one- and two-qubit systems. This study

therefore sets the groundwork for enabling the development of programmable dye-based

quantum computing elements.

As introduced in Chapter 1, the evolution of excitons within a circuit is determined

by the intermolecular electronic coupling network and the electronic properties of

the dyes. The electronic coupling between dye molecules is programmed by their

intermolecular spacing and orientation [33]. Supermolecular support structures can
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be used to fix the positions and orientation of the dye molecules, which in turn

can enable the dynamical control of the shared exciton required to implement state

transformations for quantum computation.

Quantum computing offers several key advantages over traditional classical comput-

ing and is poised to make a transformative impact on certain areas of the information

sciences, such as cryptography and molecular simulation[45, 121]. However, despite

enormous potential for broad technological impact, quantum computing presents

unique implementation challenges that have thus far limited it to only a few physical

systems [48]. This includes optical cavities [117, 57], trapped ions [35, 3, 62], molecular

spins [65, 63], superconductors [150], quantum dots [96, 101] and solid state color cen-

ters [1, 31]. From the standpoint of quantum computing, each of these qubit systems

has its own strengths and limitations. Practical application of any specific system will

require exploiting its strengths while mitigating its limitations. Characterizing the

strengths and limitations of new potential qubit systems, such as those made from

excitonic circuits, is an important step in the development of quantum information

technologies.

A limitation that affects nearly all qubit systems is the requirement for low operating

temperatures. This requirement is intrinsic to the physics of some systems, such as

superconducting and trapped atom qubits. Low temperature is also used to reduce

the effects of environmental noise, which can destroy the delicate phase information

required for quantum computation. Unfortunately, achieving and maintaining the low

temperatures that are required for these systems is both expensive and impractical.

Qubit systems with the ability to maintain and share their phase information in

noisy thermal environments could significantly improve the scalability of quantum

computing technologies. [115, 53]

The dye molecules that comprise excitonic circuits are highly sensitive to envi-

ronmental noise and exhibit coherence times that are generally much shorter than

existing qubit systems. On the other hand, the dye molecules can be strongly coupled

so as to enable rapid transfer and evolution of phase information. Viable quantum

computing in excitonic circuits will require balancing short coherence times with the
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ability to produce strong intermolecular electronic couplings. Theoretical models, such

as those presented here, play an important role in developing an understanding of this

balance, its potential implication, as well as its physical limitations.

The focus of this chapter is to explore the opportunities and limitations in engineer-

ing quantum dynamics in excitonic molecular systems. We show here and in Ref.[27],

that these dynamics can be programmed and exploited to realize a broad range of

quantum operations, including, in particular, a universal set of quantum logic gates

[116, 90]. Promisingly, coherent dynamics in excitonic molecular systems are seen to

survive moderate levels of environmental noise, suggesting they may be candidates for

a new class of quantum materials with information processing applications.

I present a general strategy for programming the dynamics of excitons in the design

of excitonic circuits. Importantly, this programming enables the implementation of

unitary transformations, such as those that form the basis for quantum information

processing. To accomplish this implementation we can map qubit states onto the

electronic excitation states of coupled dye molecules. For example, the basis states

of a two-qubit system, i.e., {|00⟩ , |01⟩ , |10⟩ , |11⟩}, can be mapped onto a basis of

localized single molecule excitations in an excitonic circuit made of four molecules. By

representing qubit states as electronic excitations, rather than rotational or vibrational

excitations, our approach differs from those that have been proposed previously.

An excitonic representation of a qubit system naturally supports quantum prop-

erties such as superposition, i.e., through excitonic delocalization, and can encode

coherence and entanglement in multi-qubit systems. It is important to note that

the mapping presented here, i.e., whereby each state of a system of qubits is repre-

sented by the state of a single exciton in a system of multiple dye molecules, encodes

entanglement inefficiently, leading to significant system size scaling problems. How-

ever, this scaling problem arises due to the difficulty of representing multi-particle

entanglement using a single particle and is therefore a consequence of the limited

mapping we propose. As such, more sophisticated mappings that allow multiple

excitons can significantly reduce (or altogether eliminate) this issue. However, while a

multi-exciton mapping solves the scaling problem, it introduces physical effects, such
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as exciton-exciton interactions, that significantly complicate theoretical formulation.

These complications represent significant future challenges that must be overcome

to enable quantum computing through exciton circuits. The work we present here

demonstrates how the geometric arrangements of excitonic dyes can be used to encode

a quantum transformation, a key first step towards enabling quantum logic operations

in excitonic systems.

In the following section, I present the details of this strategy and its application to

the set of universal quantum logic gates. Then, we simulate the performance of these

gates under varying environmental conditions.

2.2 Exciton Circuit Model

In this chapter, I employ the Frenkel exciton model introduced in Section 1.1 to

describe excitonic circuits of coupled molecular dyes. We assume the configurations

of dye molecules in these circuits are defined by their center of mass positions and

orientations. For the purpose of illustration, we begin with the assumption that the

coupling between dye molecules in Eq. 1.1 can be represented by the point dipole

approximation,

𝑉𝑖𝑗 =
1

4𝜋𝜀0

𝜇⃗𝑖.𝜇⃗𝑗 − 3 (𝜇⃗𝑖.̂rij) (𝜇⃗𝑗 .̂rij)
𝑟3𝑖𝑗

, (2.1)

where 𝜇⃗𝑖 is the transition dipole moment of excitation |𝑖⟩, 𝑟⃗𝑖𝑗 = 𝑟⃗𝑖 − 𝑟⃗𝑗 is the displace-

ment vector between the dyes, r̂ij = 𝑟⃗𝑖𝑗/𝑟𝑖𝑗 is the corresponding displacement unit

vector and 𝜀0 is the vacuum permitivity. Alternatively, 𝑉𝑖𝑗 can be expressed as a

function of molecular orientational coordinates as,

𝑉𝑖𝑗 =
1

4𝜋𝜀0

|𝜇𝑖| |𝜇𝑗| cos 𝜃𝑖𝑗 − 3 (|𝜇𝑖| cos𝜙𝑖) (|𝜇𝑗| cos𝜙𝑗)

𝑟3𝑖𝑗
, (2.2)

where 𝜃𝑖𝑗 is the twist angle between the dipole moments of the pair of dyes, and 𝜙𝑖

denotes the angle between 𝜇𝑖 and the vector 𝑟𝑖𝑗, as illustrated in Fig. 2-1. In later

chapters, we will increase the complexity of the definition of molecular coupling for

more accurate approximations.
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Figure 2-1: Coordinates defining the relative arrangement of dye molecule pairs
.

Despite its simplicity, the Frenkel exciton model encodes all of the information on

the system dynamics we need for the purposes of this chapter. As we will see in the

following sections, the form of the Frenkel Hamiltonian allows us to easily map unitary

qubit operations onto excitonic circuit geometries. As has been shown in previous

studies [134, 98], the details of the molecular structure of the dyes, such as the disorder

of the molecular system, can be encoded in the elements of the Hamiltonian. In the

next chapter, we will show that the parameters of the Frenkel Hamiltonian can be

determined from classical all-atom molecular dynamics together with semiempirical

electronic structure calculations [28, 54, 134, 98].

2.3 Mapping Quantum Operations into Excitonic Cir-

cuits

Engineering exciton dynamics

Molecular excitonic systems with tunable geometry present a unique opportunity

to design systems that realize specific quantum transformations. This approach is

illustrated in Fig. 2-2 for schematic quantum circuits. In particular, closed system
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quantum dynamics generate a family of unitary transformations, {𝑈̂(𝑡) ≡ 𝑒−
𝑖
ℎ̄
ℋ̂𝑡},

from the system Hamiltonian, ℋ̂. A system Hamiltonian, ℋ̂, can be represented by a

target unitary transformation, 𝑈̂target, through the relationship,

ℋ̂𝜏 ≡ 𝑖

𝜏
ℎ̄ ln 𝑈̂target (2.3)

where 𝜏 gives the transformation time at which 𝑈̂target is realized. The family of

Hamiltonians, {ℋ̂𝜏}, are scalar multiples that differ only in the transformation time.

A
B

C

Quantum Computation: Û Frenkel Hamiltonian: Dye Geometry

qubit 1

qubit 2

qubit 3

time

gate operations

∣ψ0〉 ∣ψF〉
τ Ĥ

εi

εj

Vij

Figure 2-2: Encoding quantum operations into the dynamics of a physical system. A
series of unitary operations, such as gates in a quantum circuit, can be equivalently
represented as a Hamiltonian matrix. A physical system of interacting molecules is
implied when this matrix is assumed to be a Frenkel Hamiltonian. If this physical
system can be constructed, then its excited state dynamics will encode the result of
the quantum computation.

Systems comprised of molecular dyes are promising for these applications as their

Hamiltonians can be tuned by modifying the spectral properties and geometry of the

constituent dyes. Equations 1.1- 2.3 taken together prescribe a method for designing

excitonic circuits that implement a given unitary transformation. Specifically, Eq. 2.3

and 1.1 define a set of energetic constraints on the coupling and site energies of the

dyes while Eq. 2.1 translates these to geometric constraints on the dye assembly. A

physical system implementing a unitary transformation, 𝑈̂target, must therefore satisfy

these geometric constraints.

Mapping the universal quantum gates.

We now illustrate the use of this approach by considering the implementation of a

universal set of quantum gates in a dye system. These simple transformations are

widely studied as the building blocks of all quantum algorithms. We will show that
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the one-qubit NOT, Hadamard, and 𝜋/8 transformation, and the entangling two-qubit

CNOT transformation (shown in Table 2.1) can be implemented in excitonic dye

systems. Moreover, we find that excitonic circuits have far more flexibility than

required to realize these transformations, allowing us to design around practical

limitations (e.g. limited dye libraries), optimize performance in the presence of noisy

environments and even design systems that are easier to prepare and measure with a

given experimental set up.

Each state |𝑖⟩ can be identified in the site basis by the dye molecule where the

excitation is localized. Each of these dyes is then associated with a state of the qubit

register, mapping the register state to the exciton location. We will then denote each

dye by the qubit state from which it is mapped. For a one qubit gate, the qubit states

|0⟩ and |1⟩ are mapped to the states |𝐴⟩ and |𝐵⟩ of a two dye system (with molecules

A and B), respectively, where |𝐴⟩ corresponds to the state where only dye A is excited

and |𝐵⟩ corresponds to the state where only dye B is excited. Likewise, for a two qubit

gate the qubit states |00⟩ , |01⟩ , |10⟩ and |11⟩ map to the states |𝐴⟩ , |𝐵⟩ , |𝐶⟩ and |𝐷⟩

of a four dye system. Note that, within this approach, mapping 𝑛 qubit states will

require the preparation of 2𝑛 dye molecules, thus providing strong practical limitations

on the complexity of quantum computation that can be reasonably represented with

an excitonic circuit. For example, the state of a 10-qubit operation requires the use

of 1024 dye molecules. Despite this practical limitation, however, the platform that

we propose provides an important initial step towards establishing the feasibility

of more sophisticated potential approaches. For example, it would be possible to

significantly reduce the number of required dye molecules by expanding the framework

to include multiple excitations. Because the preparation and spectroscopic analysis of

singly-excited systems are more straightforward than those for systems with multiple

excitations, the model described in Sec. 1.1 is more appropriate for an initial study

for excitonic quantum circuits.

The simplest of these transformations is the 𝜋/8 phase gate. This gate increases the

relative phase between states |0⟩ and |1⟩ giving the operation 𝑈̂𝜋/8 and corresponding

Hamiltonian in Table 2.1. This Hamiltonian leads to two intuitive constraints on
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Table 2.1: The unitary transformations corresponding to the universal quantum logic
gates and the corresponding system Hamiltonians as mapped from Eq. 2.3.

Gate Unitary operator Hamiltonian

NOT 𝑈̂NOT =

(︂
0 1
1 0

)︂
ℋ̂NOT = 𝜋ℎ̄

2𝜏

(︂
−1 1
1 −1

)︂
Hadamard 𝑈̂Had = 1√

2

(︂
1 1
1 −1

)︂
ℋ̂Had = 𝜋ℎ̄

2
√
2𝜏

(︂
1−

√
2 1

1 −1−
√
2

)︂
𝜋/8 𝑈̂𝜋/8 =

(︂
1 0

0 𝑒𝑖𝜋/4

)︂
ℋ̂𝜋/8 =

𝜋ℎ̄
4𝜏

(︂
−1 0
0 0

)︂

CNOT 𝑈̂CNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ℋ̂CNOT = 𝜋ℎ̄
2𝜏

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 −1 1
0 0 1 −1

⎞⎟⎟⎠

NOT Hadamard �/8

CNOT

A B C

D

Figure 2-3: A schematic of the dye circuits representing the four universal quantum
gates transformations.

the dye assembly—one on the coupling and the other one on the relative excitation

energy of the dyes. First, since this gate does not induce transitions between qubit

states, the dyes must be uncoupled, i.e. 𝑉01 = 0. Second, to allow the two states

to acquire relative phase, the dyes must be non-degenerate with ∆𝜖01 = 𝜖0 − 𝜖1 ̸= 0.

These constraints are satisfied by any uncoupled dye heterodimer allowing for any

pair of non-degenerate dyes and a broad range of possible geometric configurations, as

illustrated in Fig. 2-3C. Moreover, the transformation time is given by 𝜏 = 𝜋/(4∆𝜖01).

We now consider the single-qubit NOT gate, represented by the unitary operation

𝑈̂NOT, in Table 2.1. This transformation swaps qubit states |0⟩ and |1⟩ without

modifying their relative phase. To ensure excitation transfer the two dyes must have

non-zero coupling (i.e. 𝑉01 ̸= 0). In addition, they must also be degenerate to ensure
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that the excitation fully transfers between the states. Thus, any coupled pair of

degenerate dyes, e.g., a homodimer, reproduces a quantum NOT gate Fig. ( 2-3A).

Physically, this exploits the oscillatory energy transfer in a homodimer to coherently

swap qubit states, where the NOT operation is realized at half the Rabi frequency,

𝜏 = 𝜋/(2𝑉01), when population inversion is maximized.

In a similar way, we can identify a molecular system that represents the action of a

Hadamard gate on an input qubit state. This gate is represented by the operator, 𝑈̂Had

(Table 2.1). The Hadamard gate transforms an initial state into a superposition of

the qubit states |0⟩ and |1⟩. The system described by ℋ̂Had is illustrated in Fig. 2-3C.

This system corresponds to a heterodimer coupled by 𝑉01 = 𝜋/(2
√
2)𝜏 , where the

relative transition energies of the dyes are given by ∆𝜖01 = 𝜋/(
√
2𝜏 ). We see that ℋ̂Had

impose an additional constrain on the system as the ratio of the energy difference,

∆𝜖01, and the coupling between the dyes, 𝑉01, must be equal to a constant factor:

∆𝜖01/𝑉01 = 2. Consequently, the coupling between the dyes in the heterodimer will be

completely specified after we choose a value for ∆𝜖01, and only a reduced set of dye

spatial distributions will evolve with a Hamiltonian ℋ̂Had for such a system.

The CNOT gate is an operator that acts over two qubits: one control qubit and

one target qubit. If the control qubit is set to zero, then the operator does not act

over the target qubit, but if the control qubit is set to 1, then the CNOT operator

acts over the target as a NOT gate. The CNOT gate is represented by the 4 × 4

evolution operator, 𝑈̂CNOT (Table 2.1). The control operation is represented in the

upper left quarter of 𝑈̂CNOT, a 2 × 2 identity matrix, while the NOT operation is

represented in the lower right quarter of 𝑈̂CNOT. The Hamiltonian that corresponds to

this operator is given by ℋ̂CNOT. Correspondingly, a CNOT gate can be realized by

a coupled homodimer representing the NOT operation, and two identical uncoupled

dyes corresponding to the identity operation, as illustrated in Fig. 2-3D.

It is important to note that the circuits we propose effectively hard code the action

of specific quantum unitary operations. Programmability of these circuits is achieved

in their geometric design, thus limiting the flexibility of this platform as a universal

quantum computer. For instance, a computation that requires the sequential action of
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two quantum logic gates on two qubits is represented by a different excitonic circuit

than that of either of the individual gates operations. Our study provides a framework

for simulating quantum physics and also for designing hard-coded quantum circuits

performing pre-determined operations.

Exploiting additional degrees of freedom for selective excitation and mea-

surement.

In the previous section, we found that unitary transformations impose remarkably

lenient constraints, allowing for a broad range of possible excitonic circuits. This

flexibility can be exploited to construct systems that are easier to experimentally

initialize and measure. For two-dimensional operations, such as the one-qubit gates

studied earlier, selective initialization and measurement of the two sites can be

implemented through a polarization addressing scheme. In its most straightforward

realization, this addressing approach can be achieved by selecting a configuration where

the two dyes have orthogonal transitional dipole moments. Such a configuration is still

able to support coupling between the two dyes through the second term of Eq. 2.1. Any

desired superposition of sites can then be excited or probed by selecting the appropriate

polarization of the excitation or measurement pulse. Real valued superpositions of the

two dyes are then addressed by linear polarizations and complex-valued superpositions

by elliptical polarizations.

Four-dimensional operations, such as the two-qubit CNOT gate, require a slightly

generalized strategy since four possible states {|00⟩,|01⟩,|10⟩,|11⟩} must be selectively

initialized and measured. From ℋ̂CNOT, we know different transition energies are

associated with different states of the control qubit (i.e. first qubit). As a result,

frequency 𝜔0 addresses the set {|00⟩ , |01⟩}, and frequency 𝜔1 the set {|10⟩ , |11⟩}. This

allows the control qubit state to be selectively excited and probed by selecting the

frequency of the excitation and probe pulses. Each of these pairs can then be oriented

orthogonally to each other, with |00⟩ orthogonal to |01⟩ and |10⟩ orthogonal to |11⟩

(Fig. 2-3D). This arrangement then allows for a polarization addressing of the target

qubit state, analogous to the two-dimensional approach.

These addressing strategies are of course not unique. However, they demonstrate
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how the excess degrees of freedom can be exploited to satisfy additional constraints

imposed by experimental limitations (e.g. orthogonality for polarization addressing).

Moreover, these constraints can be softened to satisfy other technical constraints. For

example, polarization-addressed dyes can be placed in non-orthogonal configurations.

While this reduces the specificity of the addressing procedure, it can increase the

coupling between the dyes, mitigating the effect of environmental noise. In the next

section, we explore how dye configurations can be tuned to optimize this type of

trade-off.

In the Appendix A we present an analysis of the fundamental bounds on the

complexity of operations that can be represented by a circuit of multiple coupled

molecules.

2.4 Effect of a Phonon Bath in Mapped Operations

Open System Dynamics of a Two-level System

Thus far, we have restricted our attention to closed system dynamics where the

state of the quantum system can be represented as a linear combination of the form

𝜓 = 𝑎0 |0⟩+ 𝑎1 |1⟩. In this setting, the system is isolated from the surroundings and

retains all of its phase information as it evolves in time. However, when a system

evolves in contact with a bath, environmental noise and the formation of uncontrolled

system-bath entanglement lead to the gradual loss of phase information of the system.

In the presence of this incomplete phase information, the state of the quantum system

can no longer be represented by a wavefunction. Instead, the system state must be

represented by a density matrix 𝜌 [15]. In this matrix representation, the diagonal

components, 𝜌𝑖𝑖, give the population of state |𝑖⟩, playing an equivalent role to the

probability amplitudes |𝑎𝑖|2. The complex-valued off-diagonal components, 𝜌𝑖𝑗, are

known as coherences and describe the phase information between states |𝑖⟩ and |𝑗⟩.

In the following sections, we will consider the evolution of the one-qubit gates in

the presence of a noisy environment. This will allow us to examine the limitations

and requirements of excitonic quantum information processing and illustrate the
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optimization of these quantum circuits. By taking advantage of the normalization

condition, |𝛼|2 + |𝛽|2 = 1, the density matrix of a two-level qubit can be conveniently

represented by the density matrix

𝜌(𝑡) =
1√
2

⎛⎝ 1 + 𝜎𝑧(𝑡) 𝜎𝑥(𝑡)− 𝑖𝜎𝑦(𝑡)

𝜎𝑥(𝑡) + 𝑖𝜎𝑦(𝑡) 1− 𝜎𝑧(𝑡)

⎞⎠ , (2.4)

where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are real valued components of a 3D vector 𝜎⃗ known as the Bloch

vector. The properties of the density matrix constrain this vector to the sphere |𝜎⃗| ≤ 1,

which is referred to as the Bloch sphere.

In this compact representation, the evolution of a closed system reduces to solving

the set of differential equations for the Bloch vector 𝜎⃗, known as the Liouville-von

Neumann equations. For a general Hamiltonian of the form 𝐻 = 𝜖0 |0⟩ ⟨0|+ 𝜖1 |1⟩ ⟨1|+

𝑉01 |0⟩ ⟨1|+ 𝑉 *
01 |1⟩ ⟨0|, these equations of motion are

𝜎̇𝑥 =
𝑖

ℎ̄
(∆𝜖01𝜎𝑦 + 2ℐ [𝑉01]𝜎𝑧) , (2.5a)

𝜎̇𝑦 =
−𝑖
ℎ̄

(∆𝜖01𝜎𝑥 + 2ℛ [𝑉01]𝜎𝑧) , (2.5b)

𝜎̇𝑧 =
2𝑖

ℎ̄
(ℐ [𝑉01]𝜎𝑥 +ℛ [𝑉01]𝜎𝑦) , (2.5c)

where ℛ [𝑉01] and ℐ [𝑉01] are the real and imaginary parts of the coupling 𝑉01 between

the dye molecules, respectively. This yields a unitary evolution that is equivalent to

the time-dependent Schrödinger equation.

In an open system, interaction with a noisy environment substantially modifies the

system dynamics. Generally, these dynamics can be quite complicated, potentially

showing substantial non-Markovian character that depends intricately on the structure

and statistics of the environment. In this study, we aim to consider a simple model for

the influence of the bath that relies minimally on the details of the local environment.

As such, we will restrict our attention to simple phenomenological Markovian master

equations of the Lindblad type [15]. In this model two major effects are included

for a system of dye molecules coupled to a phonon bath. The dephasing, with rate
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𝛾, describes random fluctuations in the energy levels of the dye molecules due to

environmental noise. This leads to the loss of coherent phase information, manifesting

in a decay in the off-diagonal components of 𝜌, or coherences. In addition, dissipation,

with rate Γ describes the loss of excitation energy to the phonon bath as the system

relaxes to the lower energy eigenstate. Including these dephasing and dissipation

effects in Eq. 2.5, we arrive at an expression for the Bloch equations in an open system:

𝜎̇𝑥 =
𝑖

ℎ̄
(∆𝜖01𝜎𝑦 + 2ℐ [𝑉01]𝜎𝑧)−

1

2
(Γ + 2𝛾) 𝜎𝑥, (2.6a)

𝜎̇𝑦 =
−𝑖
ℎ̄

(∆𝜖01𝜎𝑥 + 2ℛ [𝑉01]𝜎𝑧)−
1

2
(Γ + 2𝛾) 𝜎𝑦, (2.6b)

𝜎̇𝑧 =
2𝑖

ℎ̄
(ℐ [𝑉01]𝜎𝑥 +ℛ [𝑉01]𝜎𝑦) + Γ

(︂
1

2
− 𝜎𝑧

)︂
. (2.6c)

The quantity 𝑇2 = 2/(Γ + 2𝛾) is often referred to as the total dephasing time while

𝑇1 = Γ−1 is called the dissipation or relaxation time. As in the case of the Frenkel

exciton model described in Sec. 2.2, this simple model is used with the acknowledgment

that more sophisticated approaches to these dynamics may be required to treat specific

systems in future work.

In the following section, we will use Eq. 2.6 to model the dynamics of the NOT

and Hadamard gates in order to illustrate the effects of environmental noise on the

desired unitary transformation. For simplicity, we will restrict our attention to dyes

with linear (as opposed to circular) transition dipole moments. This leads to a real

valued coupling between the dyes 𝑉01 = ℛ [𝑉01].

Employing a toy model to measure gate performance in an environment.

The dynamics of the NOT and Hadamard quantum gates under the effect of phonon

bath can be derived by solving the system of equations in Eq. 2.6, using the appropriate

Hamiltonian in Table 2.1. The relative populations of the states of the two-level

qubit system in the site basis, as well as the coherences at a a given time, 𝑡, can

be extracted from the density matrix in Eq. 2.4. As an example, we examine the

population dynamics of the NOT gate. Figure 2-4A shows the population dynamics

of the state |1⟩ under the effect of different dephasing rates. In the isolated case, the
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required state inversion of the input qubit (taking the qubit from |0⟩ to |1⟩ and from

|1⟩ to |0⟩), is implemented by Rabi oscillations with a period 2𝜏 . This first maximum

corresponds to the time it takes the system to perform a single gate operation, before

returning again to its initial state, at 𝑡 = 2𝜏 . The oscillatory nature of the dynamics

indicates that for a given configuration the NOT gate transformation is in fact realized

at many times, specifically at any 𝜏𝑛 = 𝑛𝜏 , where 𝑛 is any odd integer. The oscillations

in Fig. 2-4A are seen to decrease rapidly with increasing dephasing rate 𝛾, since the

coherence is mostly lost when the dephasing time, 1/𝛾, is ∼ 1/3 of 𝜏 .

The performance of a quantum gate can be quantified according to the schematic in

Fig. 2-4B. In a closed system, a perfect NOT gate would interconvert 100% of the initial

qubit between |0⟩ and |1⟩. However, dephasing (here shown for 𝛾 ∼ 𝜏) reduces the

amplitude of the Rabi oscillations, decreasing the amount of the excitation transferred

to the desired state. At longer times, dephasing fully damps the oscillations leaving

an equal (incoherent) mixture of |0⟩ and |1⟩ states. We then want to measure the

state of the system at the minimum time it requires to perform the desired operation,

𝜏 , and the efficiency must be determined at 𝑡 = 𝜏 (dotted red line in Fig. 2-4B).

Following this idea, we define a fidelity measure for a two-state excitonic circuit that

quantifies the probability of measuring the correct outcome after the transformation is

applied. This quantity includes the deviation of the state of the open system from that

of the closed quantum system at time 𝑡 = 𝜏 and the ability to perform the polarization

addressing scheme proposed earlier. Describing the state of the system at a given time

by the density matrix, 𝜌, in Eq. 2.4, the fidelity of the circuit can be defined by

Fid = |Tr{𝜌open(𝜏)𝜌closed(𝜏)}| × sin2 𝜃𝑖𝑗, (2.7)

where 𝜌open and 𝜌closed are the density matrices describing the open and closed quantum

systems, respectively. The trace expression in Eq. 2.7 quantifies the deviation of the

open systems dynamics from the ideal closed system case. In general, the absolute

value of this trace takes a value between 0 and 1. Most notably, if 𝜌closed = 𝜌open,

as is the case for a system well isolated from environmental noise, the result is that
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Figure 2-4: Effect of the bath interaction in the dynamics of the excitonic system
simulating the NOT gate. (A) Population dynamics of the |1⟩ state for different
dephasing ratios, 𝛾 × 𝜏 . The 𝑥 axis corresponds to time as a fraction of the time it
takes to complete the first transformation. (B) Schematic of the definition used for
quantum fidelity. The fidelity measures how much the excitonic open system dynamics
differ from those of the closed system at 𝑡 = 𝜏 (red dotted line).

of a pure state density matrix Tr{𝜌2closed} = 1 [15]. The last term, sin2 𝜃𝑖𝑗, describes

the ability of the polarization addressing scheme to distinguish between a pair of

dyes when the system is measured. This gives a vanishing fidelity for parallel and

anti-parallel dyes (i.e. 𝜃𝑖𝑗 = 0, 𝜋) since the two dyes cannot be distinguished by a

polarized pulse in these configurations.

Equipped with this measure of circuit performance, we now consider the required

parameter regime for a reliable implementation of two-dimensional unitary transfor-

mations. To illustrate the effect of dissipation and dephasing on the fidelity of a NOT

gate circuit, we use as an example a pair of nearly-orthogonal Cy3 dyes scaffolded in

adjacent nucleotide bases [93]: 𝑟𝑖𝑗/𝜇 ≈ 0.27Å/D, 𝜃𝑖𝑗 = 4𝜋/9 and 𝜙 = 𝜋/2. The effect

is shown in Fig. 2-5A.

As expected from the dynamics shown in Fig. 2-4A, the Fidelity of the gate expo-

nentially decays with increasing dephasing and dissipation rates before approaching a

50-50 incoherent mixture of the two states. This yields a fidelity of 0.5 indicating that

the correct answer is obtained with the same probability as randomly selecting the

output. This corresponds to a circuit that has entirely failed to mimic any unitary

transformation. Similarly to the NOT gate, the performance of the Hadamard gate is

determined by the computation time scale 𝜏 relative to the bath-induced relaxation

time. It can be shown that the same behavior in Fig. 2-5 can be observed in a

51



Hadamard circuit.

When (Γ + 𝛾)𝜏 > 1, the system has lost its coherence before the gate operation is

completed for the first time. Consequently, an excitonic NOT and Hadamard gate

will perform well if the computation time, 𝜏 , is less than both the dephasing and

dissipation times, this is, below the limit (Γ + 𝛾)𝜏 < 1 (red dashed line in Fig. 2-5A).

Figure 2-5: Fidelity of the NOT gate under environmental noise.
(A) Fidelity as a function of dephasing and dissipation effects as ratios of the

computation time, 𝜏 . Above Γ + 𝛾 = 1/𝜏 , the system will lose dynamics faster than
the time it takes the first gate transformation to be completed (red dashed line). (B)

Fidelity as a function of the dephasing as 𝛾 × 𝜏 .

Using these observations, it is possible to establish specific bounds on the potential

dye systems that can be employed to map a one-qubit unitary transformation. Because

these transformations can only be reliably realized if they are completed before bath-

induced relaxation, (Γ + 𝛾) < 1/𝜏 (red dotted line in Fig. 2-5) imposes an upper

boundary on the allowable computation time. Furthermore, the transformation time,

𝜏 , depends on the strength of the coupling (e.g. 𝜏 = 𝜋/(2𝑉01) for the NOT gate).

If the dyes can be placed no closer than some distance 𝑟min, and the orientation of

the dyes is set to maximize the coupling from Eq. 2.1 (i.e., 𝜃𝑖𝑗 = 𝜋/2 and 𝜙 = 0),

the coupling is bounded by the expression |𝑉01| ≤ |𝜇𝐴||𝜇𝐵|/4𝜋2𝜖0𝑟
3
min. Using these

considerations, we propose the following criteria promising excitonic circuits:⃒⃒⃒⃒
(Γ + 𝛾)

𝜇A𝜇B

⃒⃒⃒⃒
<

1

𝜋2𝜀0𝑟3min

, (2.8)

where the choice of 𝑟min depends on the choice of supermolecular support structure
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for the dye pairs. For example, for a system of dyes embedded in DNA, the individual

dyes cannot be placed closer than a DNA base-pair, so we have 𝑟min ≈ 3.4Å. For dye

pairs in a polypeptide chain, 𝑟min is determined by the peptide size, which is typically

1.32Å. [13].

Optimizing circuit geometry.

We now consider optimizing the geometry of excitonic circuits to maximize their Fi-

delity. Due to the flexibility of the constraints imposed by the unitary transformations,

many configurations can reproduce the same gate. However, these will generally differ

in their computation time and therefore, their sensitivity to environmental noise. For

the NOT gate, this time scale is entirely determined by the coupling between the dyes.

For simplicity, we will restrict our attention to homodimers with identical dyes since

this is the most likely method of achieving degenerate excited states.

In this case, 𝜇𝐴 = 𝜇𝐵 and the coupling 𝑉01 and, consequently, the fidelity will

be a function of only the spatial arrangement of the molecular system. We describe

the exciton geometry via three parameters: the twist angle, 𝜃𝑖𝑗, the center-to-center

intermolecular distance, 𝑟𝑖𝑗, and the angle between the dyes and the distance vector,

𝜙, which we assume to be identical for each dye. In realistic systems, the bath

contribution is expected to be dominated by the dephasing contribution. As such,

we have restricted our attention to purely dephasing baths (i.e. Γ = 0) with a fixed

slow dephasing rate 𝛾 × 𝜏f = 0.8. The parameter 𝜏f is calculated from the electronic

coupling between a pair of nearly-orthogonal Cy3 dyes at base-pair distance, as in the

previous section. This dephasing rate was selected to more clearly show the geometry

dependence of the fidelity and is likely to be significantly higher in realistic systems.

We first consider a pair of dyes comprising a NOT gate which are displaced

perpendicular to their dipole moments (i.e. 𝜙 = 𝜋/2), which sets the second term in

Eq. 2.1 to zero. Fig. 2-6A shows the dependence of the fidelity of the NOT gate on

the spatial terms, 𝑟𝑖𝑗 and 𝜃𝑖𝑗. Note that the intermolecular distance is presented as

a ratio of the transition dipole moment magnitude, 𝜇, in Å/D units, with 𝜇 = 12D

corresponding to a Cy3 homodimer.

Some interesting patterns in the behavior of the fidelity should be highlighted in
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Fig. 2-6A. We first note two regions where the fidelity is zero for all intermolecular

distances: when 𝜃𝑖𝑗 = 𝜋/2 and 0, 𝜋. In the first case, the dyes are orthogonal to each

other, leading to vanishing coupling for all 𝑟𝑖𝑗 . The dye geometry is therefore incapable

of satisfying the coupling constraints imposed by the NOT gate transformation. The

second case corresponds to a dimer of parallel or antiparallel dyes. In this case, the

dyes can not be distinguished by the polarization addressing scheme. As a result,

Eq. 2.7 results in a fidelity of zero when 𝜃𝑖𝑗 = 0, 𝜋, for all values of 𝑟𝑖𝑗. Overall, the

dependence of the fidelity on the interchromophore angle, 𝜃𝑖𝑗 , demonstrates a trade-off

between the cos 𝜃𝑖𝑗 and sin2 𝜃𝑖𝑗 terms, with a maximum fidelity at a critical point close

to 𝜃𝑖𝑗 = 𝜋/2, as evident in Fig. 2-6A.

The effect of the interchromophore distance, 𝑟𝑖𝑗, on the fidelity is contained in

the term 1/𝑟3𝑖𝑗 in Eq. 2.1. As a result, we see that the coupling and the fidelity

monotonically decrease with increasing distance between the dyes. In this case, the

optimal geometry simply minimizes distance subject to experimental constraints.

A more complete picture of geometry arrangement emerges when 𝜙 is allowed to

change. Fig. 2-6B presents the behavior of the fidelity when 𝜃𝑖𝑗 and 𝜙 are varied at a

fixed ratio of 0.21𝑒× 𝑟𝑖𝑗/𝜇 = 1.29 and the same bath conditions as panel A. In this

case, the coupling contains contributions from the second term in Eq. 2.1, allowing for

𝑉01 ̸= 0 when 𝜃𝑖𝑗 = 𝜋/2. As a result, the maximum fidelity can now be reached with

orthogonal dyes as this circumvents the trade-off between coupling and measurement

specificity inherent to the 𝜙 = 𝜋/2 case treated above. Similarly to Fig. 2-6A, a sharp

line can be seen with rapidly decreasing fidelity where the dyes are uncoupled. Since

the coupling depends on both angles, this is no longer a straight line and instead

appears as the curved line in Fig. 2-6B given by 𝜇𝐴 · 𝜇𝐵 = 3(𝜇𝐴 · 𝑟𝑖𝑗)(𝜇𝐵 · 𝑟𝑖𝑗).

In this chapter, we have proposed a general strategy for mapping specific unitary

operations onto excitonic circuits. Although this strategy is limited in complexity

small quantum systems, these systems exhibit a manifold of possible excitonic circuits

that are able to generate them. This excess degrees of freedom can be exploited to

facilitate experimental initialization and measurement and to mitigate the effect of

environmental noise. In the next chapter, I will explore unitary operations of increased
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Figure 2-6: Fidelity of the NOT quantum gate for different spatial distributions of
the dye-pair coordinate system.(A) Fidelity as a function of the dimensionless ratio of
the inter-chromophore distance and transition dipole magnitude, 0.21𝑒× 𝑟𝑖𝑗/𝜇, and
angle, 𝜃𝑖𝑗, when both dyes are orthogonal to the 𝑧 axis, and (B) as a function of 𝜃𝑖𝑗
and 𝜙, the angle between both dyes and the distance vector, r̂ij.

complexity, using a simple 2-qubit quantum algorithm as an example. Moreover, I will

introduce an atomistic model for the bath, that will replace the toy model employed

in the present chapter.
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Chapter 3

Modeling Thermodynamic Bath

Effects in Exciton-Mapped Quantum

Algorithms

3.1 Introduction

One potential application of excitonic circuitry is quantum computing. Excitons

carry information about quantum phase, coherence, and entanglement that can be

systematically manipulated within appropriately designed systems [76, 17, 75, 38,

138]. These quantum dynamical properties can be tuned to encode specific quantum

transformations, or sequences of transformations. However, as seen in the previous

chapter, optimization of a circuit for mapping unitary operations is challenging due

to ambiguity in design strategy, as there are generally numerous different circuit

geometries capable of performing a given computation. In this Chapter, I will compare

two different strategies for designing excitonic circuits that carry out a simple 2-qubit

algorithm. We find that the strategy of hard-coding the entire algorithm into a

single circuit has the potential to yield significantly higher fidelity than a modular

strategy, for which the algorithm is implemented as a sequence of universal quantum

gate operations. This finding thus exposes significant practical barriers to the use of
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excitonic circuits for more complicated quantum algorithms, e.g., requiring more than

two qubits or many steps.

This Chapter will extend the mapping of unitary quantum gates to the design of a

simple multi-step 2-qubit quantum algorithm—the 2-qubit Deutsch-Jozsa algorithm—

where there are multiple approaches to circuit design. Our results highlight that

computational fidelity can depend significantly on the chosen design strategy.

In the next section, I will review the Deutsch-Jozsa algorithm. Then, in Sec. 3.3,

I describe how this algorithm can be implemented with excitonic circuits using two

different design strategies—serial and combined. In Sec. 3.4 I evaluate the fidelity of

these hypothetical circuits under the influence of a harmonic bath. Finally, in Sec. 3.5

I propose a specific atomistic realization of these circuits and evaluate the circuit

performance with a more realistic bath model.

3.2 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa (D-J) algorithm is one of the simplest algorithms for which a

quantum computer outperforms a classical one [44]. The algorithm distinguishes the

identity of a black-box ‘oracle gate’ that transforms an input binary array of 𝑛 bits,

e.g., (0,1,1,0,· · · ,1) to a single binary output value, i.e., 0 or 1. The two possible

identities of this oracle gate are ‘constant’, in which the output is always the same (i.e.,

always 1 or always 0, regardless of the input), and ‘balanced’, in which the output is 0

for half of the input states and 1 for the other half. To unambiguously determine the

identity of an unknown oracle gate requires multiple queries with classical computation

(at least 2𝑛−1 + 1), but only requires a single query with quantum computation [36].

This algorithm has been implemented in several physical systems, such as nuclear

spins [34], ion traps [70], and superconductors [46] as a way to demonstrate their

feasibility as potential quantum computing platforms.

Figure 3-1A depicts the quantum circuit diagram for identifying a 𝑛 = 1 oracle

gate, 𝑓 . The quantum algorithm, which requires two qubits, involves performing

Hadamard operations carried out on one or both qubits after and before evaluating
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the oracle gate. Specifically, the first set of Hadamard operations transform the

input state, |Ψ⟩𝑖 = |0⟩ |1⟩ into a superposition state, i.e., |Ψ⟩1 = |+⟩ |−⟩, where

|±⟩ = (|0⟩ ± |1⟩) /
√
2. The action of the oracle gate is to perform a phase kick-back

operation on the second qubit, 𝑈𝑓 : |𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ = (−1)𝑓(𝑥) |𝑥⟩ |𝑦⟩. When

𝑁 = 2, 𝑓(𝑥) can take 1 of 4 possible values: 𝑓(𝑥) = 0 or 𝑓(𝑥) = 1, when constant,

and 𝑓(𝑥) = 𝑥 or 𝑓(𝑥) = NOT𝑥, when balanced. After the third step, the final state of

the qubit register will then be |Ψ⟩𝐹 = ± |0⟩ |−⟩ or |Ψ⟩𝐹 = ± |1⟩ |−⟩ if the oracle gate

is constant or balanced, respectively. A single measurement over the ancilla qubit (i.e.

qubit 1) at the conclusion of the algorithm therefore reveals the identity of the “black

box" oracle function.
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Figure 3-1: Encoding the Deutsch-Jozsa algorithm into the evolution of excitonic
circuits. (A) Quantum circuit diagram representing the Deutsch-Jozsa algorithm.
(B) Schematic representation of the 2-qubit excitonic circuit geometry for the serial
strategy. This circuit transforms an input exciton state, 𝜌0, into an output state, 𝜌F,
via three steps. Dye molecules are represented by ovals and the molecular species is
indicated by shading. Non-zero coupling is indicated by red arrows. The top and
bottom branches in the middle step correspond to the constant and balanced cases,
respectively. (C) Schematic excitonic circuit geometry for the combined strategy for
the constant (left) and balanced (right) algorithms. The balanced algorithm includes
dye molecules (circles) that are excited via circularly polarized photons.
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3.3 Implementing the Deutsch-Jozsa Algorithm with

Excitonic Circuits

In this section we describe two general strategies for representing a simple quantum

algorithm as an excitonic circuit of precisely arranged dye molecules. The first is a

serial strategy, where each quantum gate operation is carried out sequentially. The

second is a combined strategy, where the entire algorithm is carried out by a single

circuit.

Mapping the D-J algorithm onto the Frenkel Hamiltonian.

We propose excitonic circuits for the D-J algorithm following the procedure described

in Chapter 2 and Ref. [27]. Following Eq. 2.3, our approach to excitonic circuit

design for an 𝑛-qubit quantum computation maps the 𝑁 × 𝑁 unitary operator for

the computation, where 𝑁 = 2𝑛, to the Frenkel Hamiltonian of a system of 𝑁 dye

molecules, ℋ̂comp. There are many possible strategies for designing an excitonic circuit

for the multi-step D-J algorithm. For instance, the algorithm can be equivalently

represented by either a sequence of three 2-qubit unitary operations (i.e., 𝑈̂1, then

𝑈̂2, then 𝑈̂3), one for each step in the circuit diagram of Fig. 3-1A, or a single unitary

operation that combines all three steps (i.e., 𝑈̂prod = 𝑈̂3𝑈̂2𝑈̂1). These two limiting

strategies, as illustrated in Figs. 3-1B and C, yield either four distinct circuits in the

serial case (one for each of the first and third steps and one for each of the balanced

and constant oracle gates) or two distinct circuits in the combined case (one for the

balanced case and one for the constant case). The unitary operators and corresponding

system Frenkel Hamiltonians for the serial and combined strategies of excitonic circuit

design are contained in Table 1, as derived from Eq. 2.3.

A serial implementation of the D-J algorithm requires a coordinated series of

exciton evolutions and transfers between different circuits. First, a specific exciton

state is initialized on a system described by ℋ̂1, for instance through laser excitation.

The exciton is then evolved for time 𝜏1 followed by a transfer of the resulting exciton

state to a system described by ℋ̂2. The exciton is then evolved for time 𝜏2 and

transferred to the system described by ℋ̂3. The exciton is then allowed to evolve
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Table 3.1: The unitary transformations corresponding to the universal quantum
logic gates and the corresponding system Hamiltonians as mapped. All Hamiltonian
couplings are presented relative to the difference in excitation energy between a pair
of dyes, ∆𝜀𝛼𝛽 = 𝜀𝛼 − 𝜀𝛽

Operation Unitary operator Hamiltonian

First step 𝑈̂1 =
1
2

⎛⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎠ ℋ̂1 =
𝜋ℎ̄
4𝜏1

⎛⎜⎜⎝
𝜀𝛼 ∆𝜖𝛼𝛽/2 ∆𝜖𝛼𝛽/2 ∆𝜖𝛼𝛽/2

∆𝜖𝛼𝛽/2 𝜀𝛽 ∆𝜖𝛼𝛽/2 −∆𝜖𝛼𝛽/2
∆𝜖𝛼𝛽/2 ∆𝜖𝛼𝛽/2 𝜀𝛽 −∆𝜖𝛼𝛽/2
∆𝜖𝛼𝛽/2 −∆𝜖𝛼𝛽/2 −∆𝜖𝛼𝛽/2 𝜀𝛼

⎞⎟⎟⎠

Oracle 𝑈̂ con
2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ℋ̂con
2 =

⎛⎜⎜⎝
𝜀𝛼 0 0 0
0 𝜀𝛼 0 0
0 0 𝜀𝛼 0
0 0 0 𝜀𝛼

⎞⎟⎟⎠

𝑈̂bal
2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ℋ̂bal
2 = 𝜋ℎ̄

2𝜏𝑏2

⎛⎜⎜⎝
𝜀𝛼 0 0 0
0 𝜀𝛼 0 0
0 0 𝜀𝛽 ∆𝜀𝛼𝛽
0 0 ∆𝜀𝛼𝛽 𝜀𝛽

⎞⎟⎟⎠

Third step 𝑈̂3 =
1√
2

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞⎟⎟⎠ ℋ̂3 =
𝜋ℎ̄
4𝜏3

⎛⎜⎜⎝
𝜀𝛼 0 ∆𝜀𝛼𝛽/2 0
0 𝜀𝛼 0 ∆𝜀𝛼𝛽/2

∆𝜀𝛼𝛽/2 0 𝜀𝛽 0
0 ∆𝜀𝛼𝛽/2 0 𝜀𝛽

⎞⎟⎟⎠

Combined,
constant

𝑈̂ con
prod = 1√

2

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞⎟⎟⎠ ℋ̂con
prod = 𝜋ℎ̄

4𝜏𝑐𝑜𝑛

⎛⎜⎜⎝
𝜀𝛼 ∆𝜀𝛼𝛽/2 0 0

∆𝜀𝛼𝛽/2 𝜀𝛽 0 0
0 0 𝜀𝛼 ∆𝜀𝛼𝛽/2
0 0 ∆𝜀𝛼𝛽/2 𝜀𝛽

⎞⎟⎟⎠

Combined,
balanced

𝑈̂bal
prod = 1√

2

⎛⎜⎜⎝
1 0 0 1
1 0 0 −1
0 1 1 0
0 −1 1 0

⎞⎟⎟⎠ ℋ̂bal
prod = 𝜋ℎ̄

8𝜏𝑏𝑎𝑙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀𝛼
Δ𝜀𝛼𝛽

4
(2 +

√
2𝑖)

Δ𝜀𝛼𝛽

2
(1−

√
2)

Δ𝜀𝛼𝛽

4
(2−

√
2𝑖)

Δ𝜀𝛼𝛽

4
(2−

√
2𝑖) 𝜀𝛽

Δ𝜀𝛼𝛽

4
(2 +

√
2𝑖) −Δ𝜀𝛼𝛽

2
(1 +

√
2)

Δ𝜀𝛼𝛽

2
(1−

√
2)

Δ𝜀𝛼𝛽

4
(2−

√
2𝑖) 𝜀𝛼

Δ𝜀𝛼𝛽

4
(2 +

√
2𝑖)

Δ𝜀𝛼𝛽

4
(2 +

√
2𝑖) −Δ𝜀𝛼𝛽

2
(1 +

√
2)

Δ𝜀𝛼𝛽

4
(2−

√
2𝑖) 𝜀𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for time 𝜏3 on system 3 before it is read out, for instance through photon emission.

Admittedly, achieving and coordinating these steps would require a heroic feat that we

lack current technology to achieve. Nonetheless, for the sake of analysis, we assume

here that initialization, exciton transfer, and detection all occur without error and

with 100% fidelity.

On the other hand, the combined strategy utilizes a single excitonic circuit to

execute the action of the combined unitary operators 𝑈̂ con
prod = 𝑈̂3𝑈̂

con
2 𝑈̂1 and 𝑈̂bal

prod =

𝑈̂3𝑈̂
bal
2 𝑈̂1, thereby eliminating the need to transfer exciton states between multiple

separate circuits. The excitonic circuit implied by ℋ̂con
prod is an uncoupled pair of

coupled heterodimers. Notably, this circuit is effectively identical to that of the circuit

for ℋ̂3. This similarity implies that the specific operation of the constant oracle

operator is essentially trivial and simply drops out of the combined unitary operator,

leading to a significant simplification of the resulting excitonic circuit.

The excitonic circuit is implied by two pairs of homodimers, with all dyes coupled

to each other. Notably, the system features imaginary-valued couplings. Imaginary

coupling can occur between two dyes if each one is electronically excited using a

different polarization of light. For example, if one dye is initialized using linearly

polarized light with unequal x-y amplitudes and the other dye is excited with circularly

polarized light. I will delve deeper into the idea of imaginary coupling in the following

chapter.

3.4 Simulating the Performance of Idealized Exci-

tonic Circuits in Model Environments

The Hamiltonians in Table 1 represent idealized systems that in the absence of an

environment (i.e., a closed quantum system) will perform the given computation in

time 𝜏 with unit fidelity. However, any practical application will include the influence

of a noisy environment. In this case, system-bath interactions lead to dephasing and

dissipation that can alter the output and thus degrade fidelity.
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In this section we simulate the influence of a model environment on the fidelity of

idealized D-J excitonic circuits. We compare overall fidelity loss between idealized

serial and combined circuits. We assume that serial circuits lose no fidelity between

steps. Because fidelity losses due to dissipation are expected to be negligible on the

timescales of interest, we only consider the effect of dephasing in the system dynamics.

We also assume that the input state of the wavefunction can be precisely prepared

and the output state can be precisely detected at time 𝜏 . With these assumptions, we

can evaluate fundamental differences in fidelity between circuits designed with the

serial and combined strategies. We describe the state of the excitonic wavefunction in

terms of a reduced density matrix and simulate the evolution of that wavefunction

using a Redfield master equation under the secular approximation.

The Redfield equations are defined in terms of time correlation functions of the

system-bath coupling, which are given by,

ℋ̂𝑆−𝐵 =
𝑁∑︁
𝑚

G𝑚

∑︁
𝑎

𝑐𝑚,𝑎Q𝑚,𝑎, (3.1)

where G𝑚 represents the electronic state of the 𝑚th dye molecule and the coefficients

𝑐𝑚,𝑎 describe the distribution of the system-bath coupling across the different bath

modes. Specifically, we define G𝑚 using a Linbladian operator with diagonal elements,

G𝑚 =

√︂
𝛾𝑚
2

|𝑚⟩ ⟨𝑚| , (3.2)

where 𝛾𝑚 is the dephasing rate of the 𝑚th dye. The phonon modes coordinates enter

the Redfield equation through time-correlation functions of the form,

𝜒𝑚(𝑡) =
∑︁
𝑎

𝑐2𝑚,𝑎⟨Q𝑚,𝑎(𝑡)Q𝑚,𝑎(0)⟩

=
ℎ̄

𝜋

∫︁ ∞

0

𝑑𝜔𝐽(𝜔) [coth (𝛽ℎ̄𝜔/2) cos𝜔𝑡− 𝑖 sin𝜔𝑡], (3.3)

where 𝜒𝑚(𝑡) is calculated for each local bath 𝑚, 𝛽 = 1/𝑘𝐵𝑇 and 𝐽(𝜔) is the spectral

density. For this section, 𝐽(𝜔) is taken to be a Ohmic spectral density with a Lorentzian
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cutoff,[19]

𝐽(𝜔) = 2𝜆Ω𝑐
𝜔

𝜔 + Ω2
𝑐

, (3.4)

where 𝜆 is the reorganization energy of the bath and Ω𝑐 the cutoff frequency.

We choose bath parameters to model a condensed phase chromophoric system at

300K. From Ref. [81], we set 𝜆 = 100 cm−1 ≈ 0.012 eV and Ω𝑐 to be proportional to 𝜆

by 2𝜆/(𝛽Ω2
𝑐) = 1.2 [113]. The dephasing time, 𝑡𝐷 = 1/𝛾, was chosen to be (3/4)𝜏 for

all dyes in a given circuit, where 𝜏 is the transformation time for the mapped operation.

We parameterize the dye molecules in our circuit based on Cy3-oxypropyl and Cy5-

oxypropyl molecules. Specifically, we always assume that dye A is a Cy3 species with

excitation energy 𝜀𝛼 = 3.24 eV. In circuits that require two dye species (i.e., A and

B), we assume the B dye species is Cy5 with 𝜀𝛽 = 2.85 eV. These values reflect the

first excited state energies as computed from time-dependent density functional theory

(TDDFT) with a 6-31G+(d) basis set and WB97XD DFT functional.

The resulting dynamics for the four studied systems, namely, the serial and

combined excitonic circuits, both for the constant and balanced versions of the

algorithm, are shown in Fig. 3-2. The influence of system-bath interactions on the

fidelity of a given computation is encoded in the structure and evolution of the reduced

density matrix, 𝜌. This influence can be illustrated by tracking a single element of 𝜌 in

both a closed and open system. In Fig. 3-2A, we plot the exciton population on dye C

throughout the sequence of transformations described for the serial D-J algorithm in

its constant version, namely ℋ̂1, ℋ̂con
2 and ℋ̂3, while Fig. 3-2B depicts the dynamics

for the balanced version. We focus on this dye molecule because its final population

indicates the identity of the oracle gate. Moreover, these populations are presented as

segmented plots, in order to illustrate how the populations are transferred sequentially

through the algorithm, at each transformation time. The full population dynamics for

the individual circuits can be found in Fig. B-1 in the Appendix B.

Phase loss in the open system (solid lines in Fig. 3-2) results in a decrease in

fidelity that grows with time. In the serial system, shown in Figs. 3-2A and B, phase

loss accumulates with each subsequent step. It can be seen that dephasing is most
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Figure 3-2: Time-evolution of the populations of the D-J algorithm with a model
environment. The population for the Cy3 (C) dye as the wavefunction evolves through
the first, second and last step, for (A) the constant and (B) balanced version. The
segmented dynamics illustrate the transference of populations to subsequent steps,
when the transformation time is reached (vertical dotted lines). The populations
for all four dyes for the single-step in the combined approach, for (C) the constant
and (D) the balanced version. Here, 𝜏 is indicated with a black dotted line. The
populations for the closed system are shown in dashed lines on each plot. For the
combined constant version, note that 𝜌22 and 𝜌33 are both constant in zero.

significant in the final step of the algorithm in both serial systems. Indeed, the details

of the system Hamiltonian set the dephasing rates for each different excitonic circuit.

In contrast, the combined systems, shown in Figs. 3-2C and D, require only a single

step. In the constant system (Fig. 3-2C) the system maintains high fidelity despite

being prone to dephasing due to the short computation time, 𝜏con ≈ 4fs. Notably, the

balanced system requires a much longer computation time (𝜏bal ≈ 13fs) yet features

negligible fidelity loss. This observation implies that some circuits retain fidelity much

better than others and that design efforts may require a trade-off between circuit

complexity and fidelity retention.

In order to quantify how much of the information contained in the final quantum

state is lost due to fluctuations in the bath, we use a modified form of the fidelity

defined in Eq. 2.7,

𝐹 (𝑡) = 𝑇𝑟
√︁
𝜌(op)(𝑡)1/2𝜌(cl)(𝑡)𝜌(op)(𝑡)1/2, (3.5)

65



which measures the similarity between the closed system density matrix at time 𝑡,

𝜌(𝑐𝑙)(𝑡), and that of the open system under pre-defined environmental conditions,

𝜌(𝑜𝑝)(𝑡). To account for uncertainty in the measurement associated with any possible

experimental set-up to be used to read the final state, we assume 𝜌(𝑜𝑝) cannot possibly

be measured exactly at 𝑡 and, thus, we randomly choose a time 𝑡𝑚 from the range

𝑡𝑚 ∈ {𝑡−∆𝑡, 𝑡+∆𝑡}, where ∆𝑡 is the uncertainty in the measurement (here chosen

to be ∆𝑡 = 0.2fs), and average over the total number of observations, 𝑀 :

𝐹 (𝑡𝑚) =
1

𝑀

𝑀∑︁
𝑚

𝑇𝑟
√︁
𝜌(op)(𝑡𝑚)1/2𝜌(cl)(𝑡𝑚)𝜌(op)(𝑡𝑚)1/2. (3.6)

We use this equation to compute the fidelity of the open D-J excitonic circuits. Under a

serial approach, the fidelity decreases as 𝐹 (𝜏1) = 0.93 → 𝐹 (𝜏 c2 ) = 0.74 → 𝐹 (𝜏3) = 0.65

(with 𝜏 c2 set to 2fs), and 𝐹 (𝜏1) = 0.93 → 𝐹 (𝜏b2 ) = 0.79 → 𝐹 (𝜏3) = 0.69, from the first

to the third step of the algorithm, for the constant and balanced D-J, respectively.

That is, the fidelity decreases consistently with each step, such that there is significant

uncertainty in the identity of the oracle function upon measurement on the state 𝜌3(𝜏 ).

On the other hand, the calculated fidelities for the combined approach are significantly

higher, 𝐹 (𝜏con) = 0.96 and 𝐹 (𝜏bal) = 0.97. Notably, the lower fidelities of the serial

circuits do not include the effects of fidelity loss in the transfer of excitons from one

circuit to the next. We thus speculate that the combined strategy for excitonic circuit

design yields calculations with much higher fidelity than a serial strategy.

The difference in fidelity between the two strategies can be observed more clearly

by comparing F̄ as a function of time for the combined and serial approach, as shown

in Fig. 3-3. These results highlight that fidelity loss rates differ between steps in the

serial circuits and that certain steps can dominate overall fidelity loss. For both cases

considered here, the second step (associated with the action of the oracle gates) is

the most significant source of fidelity loss. These results also highlight that fidelity

loss rates are significantly lower for the combined strategy than for the serial strategy.

These differences reflect the benefit of lowering the total computational time, thereby

reducing system-bath interactions, but also reveal that some circuits are fundamentally
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better at retaining exciton phase information than others.

Figure 3-3: Fidelity of the serial and combined approaches as a function of time, for
(A) the constant and (B) balanced circuits, respectively. Transformation times 𝜏1,
𝜏1 + 𝜏2 and 𝜏1 + 𝜏2 + 𝜏3 = 𝜏serial are indicated by blue, orange and red dotted lines,
respectively. In both panels, the time axis is scaled to the total computational time
of the serial approach. For the constant case 𝜏serial = 8.4fs and 𝜏prod = 3.7fs. For the
balanced case 𝜏serial = 9.0fs and 𝜏prod = 13.0fs.

3.5 Designing Explicit Molecular Representations of

Excitonic Circuits

The systems implied by the idealized Hamiltonians of Table 1 are hypothetical in that

they ignore the potential for steric clashes and geometric frustration that may arise in

a physical multi-dye system. Thus, in this section we construct D-J excitonic circuits

by arranging four explicit dye molecules in space and we evaluate the performance of

the resulting circuits.

We design an excitonic circuit constructed from all-atom representations of Cy3

and Cy5 dyes. Cyanine dyes are often used in synthetic dye-based systems due to their

photostability, high fluorescence efficiency, low Stokes shift, commercial availability,

and compatibility with common experimental set-ups [93, 99].

We narrow our focus to the constant version of the D-J algorithm, noting that

qualitative differences in fidelity between the combined and serial approaches are

expected to hold in general. This choice provides simplicity in both the form of the

Hamiltonian for the constant oracle operator, a scaled identity operator, and the fact

that 𝐻̂con
prod and 𝐻̂3 are isomorphic and can thus be carried out on identical circuits.
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Our approach is to first identify a geometric arrangement of dye molecules whose

interactions approximate a target Frenkel Hamiltonian. We then apply soft constraints

to these dye molecules and simulate their dynamics in explicit solvent, using electronic

structure calculations to compute bath parameters. With these parameters and the

approximate Hamiltonian, we simulate the evolution of the reduced density matrix

and analyze the associated computational Fidelity.

Genetic algorithm for the design of excitonic circuits.

In this subsection we describe the development of a genetic algorithm for positioning

atomistic representations of dye molecules to yield specific target electronic coupling

values. As determined by the Hamiltonians in Table 1 and illustrated in Fig. 3-1, the

circuits we aim to create contain two species of dye molecules differing in their excitation

energies. The specific dyes that are chosen will set the value of 𝜖1 and 𝜖2 and therefore

determine the magnitude of coupling that is required to enable the computation

(i.e., off-diagonal elements in ℋ̂). Coupling is a sensitive function of intermolecular

separation and orientation so there are, in principle, numerous arrangements of a dye

pair that will yield the same coupling value. However, identifying the positioning of a

multi-dye system that simultaneously satisfy multiple couplings can be a difficult task.

We undertake this task by performing a search of dye positioning that is biased

to favor configurations with a specific set of intermolecular coupling values. For

any specific configuration, we compute each value of the intermolecular electronic

coupling in an atomistic basis via the point monopole approximation, which has been

demonstrated to accurately represent couplings between closely spaced organic dye

molecules [30, 54]. Specifically, we define the coupling between molecules 𝑖 and 𝑗 as,

𝑉𝑖𝑗 ≈
∑︁
𝑚,𝑛

𝑞
(𝑖)
𝑚 𝑞

(𝑗)
𝑚

|r(𝑖)𝑚 − r
(𝑗)
𝑛 |

, (3.7)

where 𝑞(𝑖)𝑚 is the transition charge density associated with atom 𝑚 on molecule 𝑖 in

its first excited state, and r
(𝑖)
𝑚 denotes the position of that atom. We compute the

values of 𝑞(𝑖)𝑚 by performing a TDDFT calculation on the molecule in its ground state

configuration and localizing the transition density via RESP fitting.
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Identifying configurations of a 4-dye system that exhibit the coupling values in

a given ℋ̂ requires simultaneously satisfying up to six coupling values. We search

for these configurations via a genetic algorithm (GA) as follows: For a given set

of dyes (e.g., two pairs of Cy3 and Cy5 dyes) the position of one of the molecules

is fixed (e.g., dye A), while the positions of the remaining dyes (e.g., dyes B, C

and D) are varied. The GA is designed to find the optimal arrangement of the 3

mobile dyes coordinates such that the system’s coupling resembles that of the desired

Hamiltonian. Specifically, given the system is initialized such that the center of mass

of all 4 molecules is located at the origin, the coordinates of dyes B, C and D are

modified by a series of translation-rotation operations of the form,

(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 ) = 𝑅𝑥(𝜃𝑥)𝑅𝑦(𝜃𝑦)𝑅𝑧(𝜃𝑧) [(𝑥0, 𝑦0, 𝑧0) + (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)] , (3.8)

where the initial configuration of the dye, {𝑥0, 𝑦0, 𝑧0} is first translated by the displace-

ment vector, (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) and then rotated around its three axis by angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧).

A chromosome is therefore defined by the displacement and rotation variables for

each of the non-fixed dyes (e.g, 18 genes in total for the 4-dye system). For each

resulting spatial configuration, the intermolecular coupling is calculated between each

pair of dyes with Eq. 3.7, and the Hamiltonian of the trial system is constructed. The

fitness of each chromosome is determined by comparing the resulting trial Hamiltonian,

ℋ̂𝑖,test, with the desired one, ℋ̂𝑖 (from Table 3.1),

Γfit = 1−
[︂
1

2
Tr

{︂√︁
(ℋ̂𝑖,test(𝜏)− ℋ̂𝑖(𝜏))†(ℋ̂𝑖,test(𝜏)− ℋ̂𝑖(𝜏))

}︂]︂
. (3.9)

We carry out the GA until the fitness function in Eq. 3.9 has been maximized.

For the ℋ̂1 circuit, the genes comprise the possible rotation and translation

operations of Eq. 3.8, keeping one of the Cy3 dyes fixed and imposing a steric

constraint that the atoms of any pair of dye molecules be separated by more than 2Å.

The GA was run until convergence over a configuration space that includes all dye

displacements within a sphere in which 𝑉𝑖𝑗 ̸= 0 and all dye rotation angles ranging

from −𝜋/2 to 𝜋/2. Due to the steric constraint and the need for large coupling values
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(𝑉 ≈ 0.1− 0.2eV), there is no guarantee of finding a nearly exact solution with this

approach. Fig. 3-4B depicts the geometry calculated with this method, which has a

fitness of Γ = 75%, and a calculated fidelity of 𝐹 = 82.3%.

Finding an optimal geometry for ℋ̂3 following this recipe is a simple problem, since

only a single coupling must be satisfied. Here, only the Cy3-Cy5 pairs will be coupled,

and the coupling between the two possible pairs is exactly the same. In fact, due to

this simplicity, the circuit can be optimized without the use of the GA. Fig. 3-4A

shows the resulting geometric configuration for ℋ̂3, calculated using the described

method. This geometry yields a value of Γ = 99.5%.

Figure 3-4: Schematic of the dye circuits representing the DJ algorithm and corre-
sponding Hamiltonians. (A) For the excitonic circuit found to evolve similarly to
ℋ̂1, and whose spatial distribution was determined using GA, and (B) for the circuit
evolving as ℋ̂3 (and ℋ̂𝑐𝑜𝑛).

Simulation methodology.

In this subsection, we outline the process for characterizing the system-bath interaction

on an explicit dye system. Once the optimal geometry for a specific transformation

Hamiltonian is identified, a series of classical and ab-initio calculations can be carried

out to describe the effect of the bath fluctuations on the system dynamics. This

effect can be fully described in terms of the excitation energy autocorrelation function.

In the present model only the first excited state is accessible, and therefore the

autocorrelation function is calculated for the energy gap from the ground to excited

state, 𝜀01. To compute the correlation function, we first use classical MD to generate
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ground state equilibrium dynamics of the dye system immersed in bulk liquid water at

300K. We then compute the excited state energy, 𝜖01 for each dye separately at each

step of the MD simulation [120, 118, 42, 143]. Finally, we calculate the correlation

function,

𝐶(𝑡) =
1

𝑁𝑡 − 𝑖

𝑁𝑡−𝑖∑︁
𝑘=1

(𝜀01(𝑡
′
𝑘)− ⟨𝜀01⟩)

(︀
𝜀01(𝑡

′
𝑘+𝑖)− ⟨𝜀01⟩

)︀
, (3.10)

where 𝑡′𝑖 denotes the 𝑖th discrete MD timestep, 𝑁𝑡 is the total number of steps in the

trajectory, 𝑡 = 𝛿𝑡× 𝑖, and 𝛿𝑡 = 4fs is the timestep increment in the MD simulations.

We assume each molecule is interacting with its own local bath. Under the Kubo

stochastic lineshape theory, the dephasing function, characterizing the exponential

decay on the system’s phase, can be calculated from the energy gap correlation function

[103],

𝐷(𝑡) = exp

[︂
− 1

ℎ̄2

∫︁ 𝑡

0

𝑑𝜏(𝑡− 𝜏)𝐶(𝑡)

]︂
. (3.11)

The dephasing time can likewise be calculated from integration over the dephasing

function, 𝐷(𝑡),

𝑡𝐷 =
2√
𝜋

∫︁ ∞

0

𝐷(𝑡)𝑑𝑡. (3.12)

Therefore, following a similar argument as in Sec. 3.4, Equations 3.11 and 3.12 can

be used to describe the system operator, Gm, for each one of the four dyes in the

circuit, with 𝛾𝐷 = 1/𝑡𝐷. Similarly, the energy gap correlation function, 𝐶(𝑡), can

also be used to derived the frequency-dependent bath contribution to the interaction

ℋ̂𝑆−𝐵, contained in the spectral density, 𝐽(𝜔). We use the following definition,

𝐽(𝜔) =
2

𝜋ℎ̄
tanh

(︂
𝛽ℎ̄𝜔

2

)︂∫︁ ∞

0

𝐶(𝑡) cos(𝜔𝑡)𝑑𝑡, (3.13)

where a factor 𝛽 = 1/𝑘𝐵𝑇 is added to make sure the spectral density is temperature-

independent.

The variation in the energy gap, 𝜀01(𝑡𝑖), was estimated along multiple trajectories.

In total two sets of simulations were carried out, one for the first step of the D-J

algorithm and one for the third step. Each trajectory was generated through a MD

simulation on each system, composed of two Cy3-oxypropyl and two Cy5-oxypropyl
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dyes. The Generalized Amber Force Field (GAFF)[149] was employed to describe the

cyanine molecules, and their respective atomic point charges were generated with a

restrained electrostatic potential (RESP) fit, using the Q-Chem software [133]. The

four cyanine molecules were solvated in a TIP3P water box and Cl− ions were explicitly

added to neutralize the partial positive charge of the dyes. To mimic the scaffolding

of the cyanine molecules to a supramolecular structure, constraining the relative

positions of the dyes, each molecule was subjected to a small harmonic restrain over

the OH end-groups. If connected to a DNA platform, the cyanine dyes would form

a bond through this group and, hence, the mechanical constrain on the molecule is

concentrated there. Ground-state MD simulations were performed using the Amber18

program [24], with the harmonic constrain on the OH group present throughout the

entire simulation.

The energy gap from the ground to first excited state was calculated for each

individual cyanine molecule, every 4fs along each MD trajectory. Quantum Chemical

calculations were performed using TDDFT with the B3LYP/6-31G level of theory,

as included in the PySCF package [141]. The use of more sophisticated basis sets

and DFT functionals will result in more accurate absolute values for the excited

state energies, but the magnitude of the fluctuations will be virtually the same.

A comparison of energy fluctuations calculated with different basis sets and DFT

functionals is presented in Fig. S2. The same time-step was employed for every dye in

both of the studied circuits, but the length of the QM calculations varied depending

on convergence of the correlation function in Eq. 3.10. Here, convergence was said to

be reached when C(t) did not seem to visibly change with increasing sampling, and

the dephasing function, 𝐷(𝑡), showed a purely decaying behaviour for the time-range

of interest. The last data points for some calculated autocorrelation functions were not

considered within the time range of interest, as C(t) will not be statistically significant

for the last few lag points, given the small number of MD trajectories employed.

Convergence of the autocorrelation, 𝐶(𝑡), was observed to vary significantly between

dyes within the same system, supporting the initial assumption that local baths on

each dye are fairly independent from each other. Further details on the MD and QM

72



simulations are included in the Appendix B.

Simulating the performance of explicit molecular excitonic circuits.

Using the GA methodology, we generate system Hamiltonians, ℋ̂1 and ℋ̂3. We define

the system-bath interaction, ℋ̂S−B, for each dye separately, following Eq. 3.1. The

energy gap fluctuations resulting from the interaction of each dye molecule with its

local bath, in the systems defined by ℋ̂1 and ℋ̂3 are plotted in Figs. 3-5A and B,

respectively. In general, the nuclear modes coupling to the electronic transitions of the

dye can correspond to either intramolecular vibrations (i.e., arising from the chemical

structure of the dye), local intermolecular modes (i.e., from interaction to the other

dyes in the system) or from collective motions from the water solvent [114]. These

modes affect the system differently depending on the spatial arrangement and chemical

nature of the excitonic circuit, and this difference will be reflected in the fluctuation

patterns of 𝜀01. The influence of these fluctuations on exciton dynamics can be more

conveniently illustrated in terms of the correlation function, 𝐶(𝑡), of Eq. 3.10. These

correlation functions are plotted in Figs. 3-5C and D.

Figure 3-5: Energy gap fluctuations estimated for each one of the four dyes in the
circuit corresponding to (A) the first step of the D-J algorithm, ℋ̂1, and (B) for the
third step, ℋ̂3. Corresponding autocorrelation function for the circuits: (C) ℋ̂1, and
(D) ℋ̂3.
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We find that the short-time behavior of 𝐶(𝑡) is fairly similar for all dyes in circuits

ℋ̂1 and ℋ̂3, with a rapid decay on time scales of about 8 fs. This fast component

of the oscillations has a period of ∼ 16 fs, for all four dyes in both circuits, but the

amplitude of the oscillations and its slow frequency components differ across different

dyes and between the circuits. The short-time component in 𝐶(𝑡) most likely arises

from intramolecular vibrational modes (probably involving the C−−C bond), which are

expected to be comparable for all dyes, as Cy3 and Cy5 are structurally very similar.

However, we can expect the slower frequency components and the long-time decay of

the correlation function to differ between dyes, depending on the local environment

induced by the intermolecular interactions within each circuit, which are dictated by

its spatial arrangement.

We observe that the correlation function for ℋ̂3 does not seem to vary widely

between different dyes, while striking discrepancies are evident between the dyes in ℋ̂1.

This disparity between ℋ̂1 and ℋ̂3 arises due to their different spatial dye arrangements.

Each cyanine dye in ℋ̂3 (Fig. 3-4B) interacts with only one other molecule, with

each Cy3-Cy5 pair sharing identical interactions. Therefore, the local environment is

similar for all dyes, leading to a similar pattern of fluctuations. On the other hand, the

geometrical arrangement for ℋ̂1 is quite different (Fig. 3-4A), since each dye interacts

closely with the other dyes in the circuit. Differences in intermolecular interactions

manifest as differences in 𝐶(𝑡). The most notable difference is the magnitude of 𝐶(𝑡)

for the Cy5(D) dye, which is more than twice that of the other dyes in the circuit (see

insert in Fig. 3-5C), and the presence of large long-time oscillations in the same dye.

We quantify the differences in 𝐶(𝑡) by fitting each to the following functional form

[118],

𝐶 ′(𝑡) =

𝑁𝑒𝑥𝑝=2∑︁
𝑖=1

𝑎𝑖𝑒
−𝑡/𝜏𝑐,𝑖 +

𝑁𝑑𝑎𝑚𝑝=6∑︁
𝑖=1

𝑎̃𝑖 cos (𝜔̃𝑖𝑡)𝑒
−𝑡/𝜏𝑐,𝑖 , (3.14)

This functional form is capable of describing the fast exponential decay (in the first

term) and the damped oscillations (in the second term) observed in MD simulations.

The value of the correlation at 𝑡 = 0, 𝐶 ′(0) =
∑︀𝑁𝑒𝑥𝑝=2

𝑖=1 𝑎𝑖 +
∑︀𝑁𝑑𝑎𝑚𝑝=6

𝑖=1 𝑎̃𝑖, is a direct

measure of the magnitude of the average fluctuations, and indicates that Cy5(D)
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couples more strongly to the bath, compared to the other dyes. Finally, the noticeable

long-time oscillations observed in this dye are contained within the first two terms of

the damped component of 𝐶 ′(𝑡), 𝑁𝑑𝑎𝑚𝑝 = 1, 2, but due to the complex environment of

these dyes, it is hard to assign these slow oscillations to a particular component of the

molecule’s normal modes. A complete analysis of the fitted form of 𝐶 ′(𝑡), including

the fitted parameters for each dye, is included in the Appendix B.3.

0

A B

C D

Figure 3-6: Numerical dephasing function for each dye in the circuit corresponding to
(A) the first step of the D-J algorithm, ℋ̂1, and (B) for the third step, ℋ̂3. Spectral
density fitted as in Eq. 3.15, for the dyes in circuits: (C) ℋ̂1, and (D) ℋ̂3.

We calculate the dephasing function by performing a numerical integration over

the time component of C(t), as defined in Eq. 3.11. The dephasing function for

each dye, in the circuits described by ℋ̂1 and ℋ̂3, is presented in Fig. 3-6A and B,

respectively. This function describes the rate at which the phase of each dye decays

as a result of its coupling with the bath. It can be shown that the rate of decay of

𝐷(𝑡) is directly proportional to 𝐶(0), and inversely proportional to the correlation

time, 𝜏𝑐,𝑖. Physically, both quantities are related to the strength of the system-bath

coupling and, thus, we expect the dyes exposed to stronger influence of the nuclear

modes to dephase faster.
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The dephasing times for the dye molecules in ℋ̂3 are 𝜏𝐷,𝐴 = 82.1fs, 𝜏𝐷,𝐵 = 97.4fs,

𝜏𝐷,𝐶 = 43.0fs and 𝜏𝐷,𝐷 = 82.8fs. These values, with an average of 𝜏𝐷 = 76.3fs, are

consistent with those reported for cyanine dyes in other studies [93]. We observe

that only the Cy3(C) dye seems to deviate from the the other dye molecules possibly

due to subtle differences in geometric arrangement or perhaps indicating the need for

increased sampling. The dephasing times for the dye molecules in ℋ̂1 are much less

homogeneous, with 𝜏𝐷,𝐴 = 173.6fs, 𝜏𝐷,𝐵 = 45.9fs, 𝜏𝐷,𝐶 = 95.9fs and 𝜏𝐷,𝐷 = 18.9fs. We

note that the Cy3(A) appears to be remarkably protected from the effect of the thermal

bath. The close proximity between the two Cy5(B and D) dyes appears to lead to

faster dephasing for these two dyes. However, the value of 𝜏𝐷 for Cy5(D) is strikingly

small, meaning there is an increased coupling to the bath that cannot be simply

explained in terms of inter-atomic distances. A comparative analysis of the torsion

angles of the geometries in ℋ̂1 (Appendix B, Fig. B-3) reveals a conformational change

on the Cy5(B) dye, involving one of the heterodimer rings that may be responsible for

the unexpectedly short dephasing time.

We compute the spectral density, 𝐽(𝜔), from Eq. 3.13. The power spectrum

resulting from the numerical integration over the correlation function of each site gives

rise to an intricate and noisy spectrum as plotted and discussed in Appendix B.3 and

Fig. B-4. We thus capture the essential features in the low-frequency regime by fitting

the noisy calculated 𝐽(𝜔) to the following functional form,

𝐽(𝜔) =
2

𝜋ℎ̄
tanh

(︂
𝛽ℎ̄𝜔

2

)︂[︂
𝑎1𝜏𝑐,1

𝜏 2𝑐,1𝜔
2 + 1

+
𝑎2𝜏𝑐,2

𝜏 2𝑐,2𝜔
2 + 1

]︂
(3.15)

which is derived by assuming that 𝐶(𝑡) exhibits a double exponential decay (i.e.,

𝑎𝑖 = 0 in 3.14). This fit spectral density is plotted in Figs. 3-6C and D, and the

fitting parameters are presented in Table B.5 in the Appendix B. We observe the

same tendency in 𝐽(𝜔) as in the dephasing function, 𝐷(𝑡), i.e., the molecules more

strongly coupled to the thermal fluctuations exhibit faster dephasing rate and larger

peak amplitudes in the short-frequency range of the spectra.

The dephasing rate, 𝛾𝑚 = 1/𝑡𝐷,𝑚, and spectral density, 𝐽𝑖(𝜔), for every dye in
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each system provide a complete description of the system-bath component of the

total Hamiltonian for that molecule (Eq. 3.1 to 3.3). We employ this description to

realize the D-J algorithm with a realistic bath, by applying the same methodology

used for the model bath in Sec. 3.4. Here, we solved the Redfield equations with

𝐽(𝜔) described by Eq. 3.15, and using the parameters calculated in this section, i.e.,

𝑡𝐷, 𝑎1,2 and 𝜏𝑐;1,2. The resulting time-dependent dynamics are shown in Fig. 3-7, for

the constant combined and serial versions of the algorithm. For the serial case, we

maximize fidelity by eliminating the trivial action of ℋ̂2 (just the identity operator).

Figure 3-7: Time-evolution of the populations in the constant version of the D-J
algorithm with the calculated bath. (A) The population for the Cy3(C) dye as
the wavefunction evolves through the first and last step. The transformation time,
𝜏 , for each step is marked with blue and red dotted lines, respectively. (B) The
populations for all four dyes for the single-step in the combined approach. Here, a
single 𝜏 is indicated with a black dotted line. The populations for the closed system
corresponding to the exact Hamiltonian evolution are shown in dashed lines, in both
serial and combined approaches.

The fidelity of the cyanine-mapped algorithm is then calculated using Eq. 3.5. We

find the simulated geometries encode the constant D-J algorithm with final fidelities of

𝐹 (𝜏con) = 0.994 and 𝐹 (𝜏3) = 0.819, for the combined and serial circuits, respectively.

We note these values are better than those obtained with a model bath, which is

expected, as these fictitious systems lose their phase about 20 times faster than the

realistically simulated circuits.

We note that in both simulated Hamiltonians, ℋ̂′
1 and ℋ̂′

3, the oscillatory behavior

is non-periodic, which results in increased stability against environment fluctuations,

at least within the timescale of interest. This suggests that circuit fidelity depends

77



almost entirely on the choice of circuit geometry, and not on its coupling with the

harmonic bath. More conclusive results require a more accurate treatment of the

intermolecular coupling, as Eq. 3.7 does not consider the effect of the thermal motion

over the charge distribution of the individual dyes. While the limited study we present

here cannot necessarily be generalized, we can safely state that design strategies

that limit overall evaluation time and circuit-to-circuit exciton transfer will feature

improved fidelity. To this end, the combined strategy is preferred, especially for simple

computations with relatively few qubits.

In this chapter, we have mapped multi-step quantum operations into excitonic

circuits by using the 2-qubit Deutsch-Jozsa algorithm as an example. We show this

implementation can be approached with two general strategies: one by mapping the

individual steps in the algorithm, involving the precise control of the initial state of

each operation in the sequence (i.e., a serial approach), and a second one were the

entire algorithm is mapped into a single excitonic circuit realizing the transformation

(i.e., a combined approach). We have implemented these two strategies on a cyanine-

based excitonic circuit, first by studying a model environment for the system-bath

interaction, and second by explicitly simulating the thermal fluctuations with QM/MM

simulations. While the atomistic model for the bath was able to describe the system-

bath interaction for the excitonic circuit encoding the constant D-J algorithm, the

operator representing the balanced algorithm indicates its implementation may be

more challenging. In the next chapter, we will study an excitonic molecular system

that exhibits the complex-value coupling seen in the Hamiltonian ℋ̂bal
prod.
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Chapter 4

Complex-Valued Couplings for

Coherent Control in Devices

4.1 Introduction

The location of an exciton can be controlled by the careful placement of an excitonic

circuit molecular components. Controlling the direction in which an exciton flows

within a circuit is more challenging, with the most reliable current design strategy

being to utilize energetic gradients for funneling the flow of excitons. This strategy is

effective but also necessitates performance loss in applications that rely on the efficient

conversion or transfer of exciton energy [95]. The ability to control exciton position

and flow without energy loss has the potential to improve the efficiency of existing

excitonic technologies or to enable the development of new applications for excitonic

circuitry.

In this chapter, we propose the use of complex-valued intermolecular electronic

coupling as a novel method for controlling exciton directionality, for instance, in cyclic

and branched excitonic circuits. Using simplified site-based models, I will illustrate

the ability of complex-valued couplings (CVCs) to direct excitons one way or the other

at bifurcating junctions. To connect with more realistic physical systems, I present a

molecular motif capable of yielding CVCs and suggest a strategy for observing their

effects in a laboratory setting.
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For systems of many dye molecules, the structure of the intermolecular coupling

network dictates the tendency of excitons to migrate or delocalize across the system.

While delocalization can be modulated through variations in coupling strength, the

directionality of migration is less easily controlled [28]. In principle, directional control

over excitons can be achieved through the introduction of geometric phase into the

coupling network. However, the viability of this strategy is not immediately clear since

standard theories of intermolecular coupling (e.g., Förster theory) do not allow for

the appearance of phase. Here, we describe a model for a chromophore dimer system

where a geometrical phase in the intermolecular coupling can be optically induced via

circularly polarized light. First, we briefly review the topic of geometrical phase in

quantum systems.

Geometric phase in quantum systems.

Geometrical phase is typically induced in quantum mechanical systems via electro-

magnetic potentials. In a phenomenon known as the Aharonov–Bohm (AB) effect

[2], a quantum particle can experience a phase shift while circulating in the presence

of a magnetic field. This approach to phase control has been studied in the context

of quantum computing operations and information storage on multi-spin systems

[137, 112], semiconductor quantum rings [16, 68], and in light-harvesting models for

increasing the efficiency of electron transfer [22, 52, 156].

The AB effect can influence the phase of charge carriers driven across coupled

molecules in ring configurations when subjected to an external magnetic field [52].

In such a system, a phase appears in the electronic coupling, 𝑉𝑚𝑛 = |𝑉 |𝑒𝑖𝜃𝑚𝑛 , with

real 𝑉 and 𝜑𝑚𝑛. In these closed-loop molecular circuits, phase can be manipulated to

maximize energy transfer and minimize dissipation to the environment [22].

In principle, an analogous effect can be achieved for excitonic systems through the

excitation of ring-like symmetric dyes with circularly polarized light. The phase of the

resulting exciton dresses the intermolecular interactions, leading to the appearance of

complex-valued components in the intermolecular electronic coupling.
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4.2 A Dimer Model for Generating Complex-Valued

Couplings

To explore this possibility, we consider an idealized minimal system capable of gen-

erating CVCs. As illustrated in Fig. 4-1, the system consists of two dye molecules,

one that supports a circularly polarized exciton state and one that supports a linearly

polarized exciton state. The coupling between these two exciton states includes a

complex-valued geometric phase, as we describe below. This phase can be manipulated

via chemical or geometric design to achieve control over exciton dynamics.
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Figure 4-1: Complex-valued couplings can be induced in chromophore dimers. (A)
A circularly polarized pulse propagating in the 𝑧 axis acts on a molecule with 𝐷𝑁h

symmetry (circular molecule), populating one of two delocalized excitations. Here
the pulse is depicted as RCP and creates an exciton localized in the |𝜋+⟩ state. (B)
Schematic representation of the pulse acting on a molecule, which populates the
first excited state. Unlike the circular molecule, the 𝑥 and 𝑦 components of the
linear molecule’s dipole moment, 𝜇𝐿, are not symmetric and will interact with the
corresponding components of the circular pulse (𝜀𝑥 and 𝜀𝑦, respectively) separately,
according to the dipole angle with respect to the 𝑥 axis, 𝜃. (C) Time evolution of
populations and (D) coherences of an exciton shared between a porphyrin and Cy3
molecules, after a RHS circularly polarized pulse is applied, as described in the text.
Solid lines correspond to a choice of 𝜃 = 0 and dashed lines to 𝜃 = 𝜋/2. (E) A
circularly polarized pulse acting on the 𝐷𝑁h symmetric molecule when the molecular
plane is not orthogonal to the axis of propagation. The deviation is quantified by the
angle 𝜑. (F) Time evolution of the coherences for the dimer wavefunction when 𝜃 = 0
and 𝜑 = 0 and 𝜋/3 (solid and dashed lines, respectively).
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We describe this system using the Frenkel exciton model, with a Hamiltonian

given by 1.1, and the coupling defined as the overlap between the FE states (Eq. 1.2).

In typical multichromophoric systems, this coupling is well approximated by Förster

theory, which defines the coupling as the Coulomb interaction between the transition

dipoles of chromophores 𝑛 and 𝑚. The standard formulation of Förster theory appears

to restrict the coupling 𝑉𝑛𝑚 to be real-valued. However, if one defines the coupling as

the interaction between transition densities, rather than dipoles, then this apparent

restriction is removed. A chromophore with a complex-valued transition density,

i.e., an exciton state with complex phase, can yield values of 𝑉𝑛𝑚 that are also

complex-valued.

Molecules with high orbital symmetry naturally yield exciton states with complex

character. For example, the lowest unoccupied molecular orbitals (LUMO) of a

molecule with 𝐷𝑁h symmetry is a degenerate pair of 𝜋±𝑚 states, with 𝑚 = ±1.

The 𝐷𝑁h symmetry point group implies a regular n-sided prism or bipyramid. At

this level of symmetry, the 𝑥 and 𝑦 components of the transition dipole moment

(TDM) vector at the molecular plane have the same magnitude. As a result, one

can set an arbitrary frame of reference to describe the dipole interactions of these

molecules.For the remainder of this chapter, we will refer to a chromophore within this

symmetry group as circular, and one with lower symmetry (i.e., with a directional

TDM component) as a linear dye.

The 𝜋±𝑚 states are eigenstates of the angular momentum operator, 𝑙̂𝑧, with

eigenvalues ±ℎ̄, respectively, and can be described as linear combinations of real states

𝜋𝑥 and 𝜋𝑦,

|𝜋±⟩ =
1√
2
(|𝜋𝑥⟩ ± 𝑖|𝜋𝑦⟩) . (4.1)

Similarly, the 𝜋𝑚𝑥, 𝜋𝑚𝑦 states with 𝑚 > 1 can be written as linear combinations of

the angular momentum 𝜋±𝑚 states. A linear pulse resonant with the HOMO-LUMO
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gap will create one of two real-valued excitations,

|𝜋𝑥⟩ =
1√
2
(|𝜋+⟩+ |𝜋−⟩) (4.2)

|𝜋𝑦⟩ = − 1√
2
(|𝜋+⟩ − |𝜋−⟩) ,

Notably, it is possible to selectively access the complex states |𝜋±⟩ by using circularly

polarized light, as demonstrated in previous studies with Porphyrin rings [11, 10,

86]. A circularly polarized laser pulse propagating in a direction perpendicular to the

plane of the conjugated ring induces an electronic ring current in Mg-Porphyrin (𝐷4h

symmetry). The resulting excitation carries a phase due to the induced magnetic field.

This effect is illustrated in Fig. 4-1A, where a generalized 𝐷𝑁h molecule is depicted as

a circle.

To evaluate the coupling between molecules with circularly (high symmetry) and

linearly (low symmetry) polarized excitons (i.e., via Eq. 1.2) we express each exciton

state in a common Cartesian basis. In general, the wavefunction of an exciton generated

via circularly polarized light can be described using Jones calculus [37],

|𝜓𝐶⟩ =
1√
2
(|𝜓𝑥⟩ ± 𝑖|𝜓𝑦⟩) . (4.3)

For the molecule with 𝐷𝑁h symmetry, represented in Fig. 4-1A, 𝜓𝑥(𝑦) correspond to the

𝜋𝑥(𝑦) states defined in Eq. 4.2, and the phase of the light wave is omitted for simplicity.

In contrast, the first excitation of a molecule with lower symmetry, such as depicted

in Fig. 4-1B, is a real, non-degenerate state that can be accessed through a pulse

resonant with the molecule’s transition energy. The wavefunction of an excitation

induced by a linearly polarized pulse propagating in the 𝑧 direction can be separated

in its 𝑥 and 𝑦 components,

|𝜓𝐿⟩ = cos 𝜃|𝜓𝑥⟩+ sin 𝜃|𝜓𝑦⟩, (4.4)

where |𝜓𝑥(𝑦)⟩ is the wavefunction resulting from the interaction of the system with the
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𝑥(𝑦) component of the light, weighted by the angle 𝜃 of the transition dipole moment

of the molecule, 𝜇𝐿, with respect to the 𝑥 axis (Fig. 4-1).

With the exciton states defined in Eqs. 4.3 and 4.4, according to the Frenkel model,

the coupling between a circularly and linearly polarized molecule is given by,

𝑉𝐿𝐶 = cos 𝜃𝑉𝑥 ± 𝑖 sin 𝜃𝑉𝑦, (4.5)

where 𝑉𝑥(𝑦) = ⟨𝜓𝐶
𝑔 𝜓

𝐿
𝑒,𝑥(𝑦)|𝐻̂|𝜓𝐶

𝑒,𝑥(𝑦)𝜓
𝐿
𝑔 ⟩ is the 𝑥(𝑦) component of the coupling between

the low- and high-symmetry molecules. Note here that the phase will only appear in

the interaction when the circularly-polarized molecule is coupled to a low-symmetry

molecule, otherwise, the frame of reference for the corresponding dipoles is indistin-

guishable.

Optical excitation of a CVC dimer system.

To demonstrate that circularly polarized light can, in fact, induce a delocalized

excitation in a system of one linear and one 𝐷𝑁h circular dye, we employ a Frenkel

exciton model describing the electronic state of the coupled system. In this model,

a pair of coupled linear and circular dyes has a total of four electronic states: An

initial state where both dyes are in the ground state, |𝑔⟩ ≡ |𝑔𝑔⟩, one where the exciton

is located in the linear molecule and the circular molecule is in the ground state,

|𝑒⟩ ≡ |𝑒𝑔⟩, and when the exciton is located in the 𝜋± MO of the circular molecule,

|+⟩ ≡ |𝑔+⟩ and |−⟩ ≡ |𝑔−⟩. Following the model described in Ref. [11], we write the

wavefunction for the 4-state exciton system,

|Ψ(𝑡)⟩ =𝐶𝑔(𝑡)|𝑔⟩𝑒−𝑖𝐸𝑔𝑡/ℎ̄

+𝐶𝑒(𝑡)|𝑒⟩𝑒−𝑖𝐸𝑒𝑡/ℎ̄

+𝐶+(𝑡)|+⟩𝑒−𝑖𝐸+𝑡/ℎ̄

+𝐶−(𝑡)|−⟩𝑒−𝑖𝐸−𝑡/ℎ̄, (4.6)

where 𝐶𝑖(𝑡) and 𝐸𝑖 are the wavevector coefficients and transition energies for the

exciton state |𝑖⟩, with 𝑖 = 𝑔, 𝑒,+ and −.
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We evaluate the effect on the wavefunction above after the system is perturbed by a

circularly polarized laser field 𝜀±(𝑡), by describing its evolution via the time-dependent

Schrödinger equation under the dipole approximation,

𝑖ℎ̄|Ψ̇(𝑡)⟩ = (𝐻𝑒𝑙 − 𝜇̂ · 𝜀±(𝑡)) |Ψ(𝑡)⟩, (4.7)

where 𝜇̂ is the dipole moment operator, defined as the summation of the product

of charge 𝑞𝑗 and position 𝑟𝑗 for all charged particles 𝑗, 𝜇̂ =
∑︀

𝑗 𝑞𝑗𝑟𝑗. The right/left

circularly polarized pulse (RCP/LCP) is described in terms of its cartesian components,

𝜀±(𝑡) = 𝜀0𝑠(𝑡)[cos(𝜔𝑡+ 𝜂)𝑒𝑥 ± sin(𝜔𝑡+ 𝜂)𝑒𝑦], (4.8)

with field amplitude 𝜀0, carrier frequency 𝜔, phase 𝜂, shape function 𝑠(𝑡) and unit

vectors 𝑒𝑥 and 𝑒𝑦 along the 𝑥- and 𝑦-axes.

We derive an expression for the coefficients 𝐶𝑖(𝑡) after an RCP pulse with fre-

quency resonant to the circular dye, 𝜔𝐶 , is applied by combining Eq. 4.7 with the

time-independent Schrödinger equation, 𝐻𝑒𝑙|Ψ𝑖⟩ = 𝐸𝑖|Ψ𝑖⟩. A complete derivation is

presented in the Appendix C.1. Using the Rotating wave approximation (RWA) to

simplify the expression we find that for a RCP pulse,

Ċ(𝑡) =
𝑖

ℎ̄
𝜀0𝑠(𝑡)×⎛⎜⎜⎜⎜⎜⎜⎝

|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑒(𝑡)𝑒
−𝑖𝜔𝐿𝑡 + 𝜇𝐶𝐶+(𝑡)

|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑔(𝑡)𝑒
𝑖𝜔𝐿𝑡

𝜇𝐶𝐶𝑔(𝑡)

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.9)

From this ODE system, we note that the dipole angle, 𝜃, adds a phase to the

circularly polarized field acting on the linear exciton with coefficient evolving as 𝐶𝑒(𝑡).

On the other hand, the effect of the pulse in the circular dye depends exclusively on

the magnitude of the corresponding dipole, meaning that the choice of a coordinate

system is irrelevant for this dye owing to its high molecular symmetry. When the
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same pulse interacts with the asymmetric linear dye, the equal-magnitude 𝑥 and 𝑦

components of the field interact with the components of the dipole vector separately,

weighted by the relative angle of the dipole, as described by Eq. 4.4.

The ODE system in Eq. 4.9 does not have an analytical solution, therefore we

provide a numerical solution for the system of equations using the molecular and pulse

parameters from Ref. [11]: 𝜀0 = 2.20×109 Vm−1 and 𝑠(𝑡) = sin2
(︁

𝜋𝑡
𝑡𝑝

)︁
, with 𝑡𝑝 = 9.67fs

the duration of the pulse. The circular molecule is chosen to be Mg-Porphyrin, with

𝜇𝐶 = −1.84 𝑒𝑎0 and ℎ̄𝜔 = 2.21 eV, and the linear molecule to be Cy3 (𝜇𝐿 = 5.04 𝑒𝑎0

and ℎ̄𝜔 = 2.27 eV). The Resulting populations, |𝐶𝑖|2, and coherences ℐ[𝐶𝑖𝐶𝑗 ] between

the four states are shown in Fig. 4-1C and D, for 𝜃 = 0 (solid) and 𝜋/2 (dashed).

Here, ℐ[𝐶𝑖𝐶𝑗] refers to the imaginary component of 𝐶𝑖𝐶𝑗. As described, the phase

will almost exclusively affect the formation of the linear exciton state, |𝑒⟩, with the

effect more readily observed in the exciton coherences (Fig. 4-1D). Note that the linear

exciton populates more than the circular due to differences in the dipole strength.

In the derivation above we have assumed that the 𝑧 axis of light propagation is

aligned to be exactly orthogonal with the 𝑥𝑦 plane of the circular molecule. In a real

experimental setting, however, maintaining precise placement of the dye and pulse

to achieve this configuration can be challenging. Additionally, the alignment of the

molecule in relation to the light might vary over time. To address this issue, we can

derive a system of equations describing the wavefunction evolution of the dimer system

as a function of the angle 𝜑. This angle represents the alignment of the axis of light

propagation with the circular molecule’s 𝑥𝑦 plane, as depicted in Fig. 4-1E. Adopting

an approach akin to the one used for the dipole angle 𝜃, we arrive at the following

system of equations. A complete derivation can be found in Appendix C.2,

𝐶̇(𝑡) =
𝑖

ℎ̄
𝜀0𝑠(𝑡)

⎛⎜⎜⎜⎜⎜⎜⎝
|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑒(𝑡)𝑒

−𝑖𝜔𝐿𝑡 + 𝜇𝐶𝑒
𝑖𝜑𝐶+(𝑡)

|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑔(𝑡)𝑒
𝑖𝜔𝐿𝑡

𝜇𝐶𝑒
−𝑖𝜑𝐶𝑔(𝑡)

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.10)

Interestingly, the coefficients ˙C(𝑡) match those derived for the aligned dimer system in
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Eq.4.9. Here, the alignment angle 𝜑 functions merely as a global phase in the evolution

of the |±⟩ wavefunction, 𝐶+(𝑡). Since the ODE system lacks an analytical solution, we

numerically solve it using the same pulse parameters as before. Coherences ℐ[𝐶𝑖𝐶𝑗]

for 𝜑 = 𝜋/3 are depicted in Fig.4-1F using dashed lines, compared to those for a

perfectly aligned system with 𝑝ℎ𝑖 = 0 and 𝜃 = 0. Populations |𝐶𝑖|2 for an arbitrary

alignment given by 𝜑 will be identical to those of the 𝑝ℎ𝑖 = 0 dimer. These findings

show that in a linear-circular excitonic circuit, only the relative geometry of the linear

molecule–defined by angle 𝜃–has an effect on the populations, and not the placement

of the circular dye.

4.3 Results

Two-dye Model System

Having defined the general mathematical model for the interaction between a circularly

polarized exciton and a linearly polarized exciton, we now describe the evolution of

an exciton within such a dimer pair. A Hamiltonian matrix for the dimer system can

be defined using Eq. 1.1, with 𝑁 = 2,

𝐻̂dimer =

⎛⎝𝐸𝐿 𝑉𝐿𝐶

𝑉𝐶𝐿 𝐸𝐶

⎞⎠ (4.11)

where 𝐸𝐿 and 𝐸𝐶 are the energies for the linearly and circularly excited molecules,

respectively, and 𝑉𝐶𝐿 = 𝑉 *
𝐿𝐶 . As before, we choose 𝐸𝐶 = ℎ̄𝜔𝐶 to be the excitation

energy of Mg-Porphyrin and 𝐸𝐿 = ℎ̄𝜔𝐿 that of a Cy3 dye. Arbitrary values for the

real components of the coupling are set to be proportional to the energy difference

between the two Frenkel exciton states, 𝑉𝑥 = ∆𝐸𝐿𝐶/2 and 𝑉𝑦 = 3∆𝐸𝐿𝐶/4, with

∆𝐸𝐿𝐶 = 𝐸𝐿 − 𝐸𝐶 . The dimer system is depicted in Fig. 4-2A.

The dimer described by Eq. 4.11 can be evolved using the Liouville equation,

𝜌̇ = − 𝑖

ℎ̄

[︁
𝐻̂𝑠, 𝜌(𝑡)

]︁
(4.12)
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Figure 4-2: Two-dye model system with complex-valued coupling. (A) Representation
of a dimer with imaginary excitonic coupling. An aromatic ring with 𝐷𝑁h symmetry
is excited via a circularly polarized pulse resonant with the first excitation 𝜔𝐶 = 𝐸𝐿/ℎ̄,
and a resonant linearly polarized pulse is applied to the other molecule with 𝜔𝐿 = 𝐸𝐿/ℎ̄.
(B) Exciton populations for the dimer for changing phase angle 𝜃 and normalized
excitonic flux, 𝐹 01, as described in the text, for a (C) RCP and (D) LCP incident
pulse.

where 𝜌 is the density matrix describing the evolution of the closed system. The

expression above leads to a system of ODEs for the matrix elements of the density

matrix, which can be solved to obtain the population dynamics of the exciton, i.e., the

diagonal elements 𝜌𝑖𝑖. Starting from an initial state when the exciton is localized in

the circularly-polarized molecule, 𝑖 = 1, we derive the populations 𝜌11(𝑡) with varying

phase angle, 𝜃 (Fig. 4-2B).

The populations 𝜌𝑖𝑖 provide information about the location of the exciton at a given

time, 𝑡, but do not provide insight into the process of coherent exciton transfer between

the dyes. For instance, if we treat the coupling as a global phase 𝑉𝐿𝐶 = |𝑉 |𝑒𝑖𝜃, which

is the case when 𝑉𝑥 = 𝑉𝑦, the populations are predicted to be independent of the phase

angle. When the initial state of the system is localized on one of the molecules, this

factor will merely act as an overall phase in the evolution of the site-basis probability
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amplitudes, 𝐶𝑖(𝑡). On the other hand, the imaginary part of the off-diagonal elements

of the density matrix, ℐ[𝜌𝑖𝑗], contains information about the quantum coherence and

therefore the direction of the exciton flux.

To define the directionality of flow in exciton population, we adopt the definition

of exciton flux between two molecules 𝑚 and 𝑛 from Refs. [151, 154] ,

𝐹𝑚𝑛 = 2𝑉𝑚𝑛ℐ[𝜌𝑚𝑛]. (4.13)

In this expression, the sign of the flux, 𝐹𝑚𝑛, specifies the direction of the coherent

exciton transfer, i.e., 𝐹𝑚𝑛 = −𝐹𝑛𝑚. The normalized exciton flux, 𝐹𝑚𝑛, is calculated

for the dimer as a function of 𝜃 for both RCP and LCP light (Fig. 4-2B and C,

respectively). Note that excluding the two limiting cases where 𝜃 = 0, 𝜋, we see that

in general 𝐹 (RCP)
𝑚𝑛 (𝑡) ̸= −𝐹 (LCP)

𝑚𝑛 (𝑡), meaning that inverting the polarization of the

pulse will not simply shift the direction of the exciton flux, but will also affect the

magnitude of flux at a given time.

A B

VLL

Va
LC

Vb
LC

RCP

LCP

t (fs)

31

2

ωC= εC/ℏ

Figure 4-3: Three-dye model system with complex-valued coupling. (A) The 3-dye
system described in Eq. 4.14. One dye with 𝐷𝑁h symmetry is excited with circularly
polarized light (red circle) and is coupled to two low-symmetry dyes (𝑎 and 𝑏). (B)
For two linear dyes with different relative orientations with respect to the circular dye,
𝜃𝑎 ̸= 𝜃𝑏, inverting the direction of the light will change the order at which an exciton
initially localized at 1 populates the other two sites.

Three-dye cycle.
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We now extend the framework introduced for circular-linear interactions into larger

Hamiltonians. One system of interest that has been studied in the context of the AB

effect is a cycle made up of three sites all coupled to each other. A magnetic-induced

phase in the interaction between these sites was demonstrated to invert the order at

which the charge carrier populates neighboring states [52, 22]. An analogous effect

can be achieved for an exciton in a model three-molecule system, as illustrated in

Fig. 4-3A. The following Hamiltonian describes a 3-dye system containing one 𝐷𝑁h

molecule excited through circularly polarized light, interacting with two asymmetric

molecules,

𝐻̂3cycle =

⎛⎜⎜⎜⎝
𝐸𝑎

𝐿 𝑉 𝑎
𝐿𝐶 𝑉𝐿𝐿

𝑉 𝑎
𝐶𝐿 𝐸𝐶 𝑉 𝑏

𝐿𝐶

𝑉𝐿𝐿 𝑉 𝑏
𝐶𝐿 𝐸𝑏

𝐿

⎞⎟⎟⎟⎠ . (4.14)

In 𝐻̂3cycle, the linear-circular coupling, 𝑉𝐿𝐶 , carries a phase while the linear-linear

interaction 𝑉𝐿𝐿 does not.

The Hamiltonian 𝐻̂3cycle can be evolved as a closed system with Eq. 4.12 by solving

the corresponding equations of motion. Starting from an excitation induced on the

circular molecule, the ordering of the sites the exciton occupies changes with respect to

the exciton direction, indicating the exciton flux may be switching from clockwise to

counter-clockwise when using an RCP or LCP pulse, respectively (Fig. 4-3B upper and

lower boxes). In this model, we set the energies of the circularly polarized excitation

to be the porphyrin excitation energy and the linearly polarized molecules both to

Cy3. The phase angle is different for each Cy3 molecule, which would be the case

if, for example, they are arranged at different angles with respect to the pulse. It is

worth noting that if the molecules are parallel to each other, i.e., 𝜃𝑎 = 𝜃𝑏, no local

phase is introduced into the system, as the population initialized at 𝐸𝐿 will equally

populate either one of the linear sites.

We calculate the normalized flux using Eq. 4.13 for the clockwise path: 𝐹23, 𝐹31

and 𝐹12. For the 3-dye cycle the condition 𝐹𝑚𝑛 = −𝐹𝑛𝑚 still holds for any given site,

but the total flux coming in and out of the site is not necessarily equivalent. For

example, for site 1 (𝐸𝑎
𝐿), the net flux that circulates in the clockwise direction is given
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by 𝐹1 = 𝐹12 − 𝐹31 ̸= 0. However because the construct is a closed ring and is isolated

from the environment, the sum of net flux for all three sites must be equal to zero

for the system to maintain detailed balance. Because there is nothing that forces the

exciton to flow consistently in a given direction (e.g., an electron trap) a fraction of

the population will flow in the opposite direction.

The direction of exciton flow cannot easily be estimated from the dynamics plotted

in Figs. 4-3. We quantify the overall direction of population flow by adding the total

flux in a given direction: 𝐹right = 𝐹23 + 𝐹31 + 𝐹12 and 𝐹left = −𝐹right. We found

that when an RCP pulse is used 𝐹right = 1.65 − 17.2𝑖 and an LCP pulse leads to

𝐹right = −2.04− 17.3𝑖 eV. Clearly, switching the polarization of light inverts the global

direction of the exciton flow, although the inversion is not complete given the difference

in the electronic coupling between the sites (arising from a difference in phase, 𝜃).

Branched circuit.

In addition to driving circular flow in ring-like excitonic circuits, complex-valued

coupling can enable excitons to be directed along specific paths in branched excitonic

circuits. To demonstrate this capability, we designed a model of branched circuits

with two paths of linear dye molecules originating from a central high-symmetry

dye molecule excitable with circularly polarized light. This circuit is illustrated in

Fig. 4-4A. A Hamiltonian describing this system is given by,

𝐻̂branched =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐸𝐶 𝑉𝐶𝐿,𝑎 𝑉𝐶𝐿,𝑏 0 0

𝑉𝐿𝐶,𝑎 𝐸𝐿,𝑎 0 𝑉𝐿𝐿 0

𝑉𝐿𝐶,𝑏 0 𝐸𝐿,𝑏 0 𝑉𝐿𝐿

0 𝑉𝐿𝐿 0 𝐸𝐿,𝑎 0

0 0 𝑉𝐿𝐿 0 𝐸𝐿,𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.15)

As with the previous examples, the energies of the circular and linear molecules are

taken as those for Mg-Porphyrin and Cy3, respectively, and all the linear molecules

have identical energies (i.e., 𝐸𝐿,𝑎 = 𝐸𝐿,𝑏 = 𝐸𝐶𝑦3 and 𝐸𝐶 = 𝐸𝑀𝑔𝑃ℎ. The coupling

between the circular and linearly excited sites is defined with Eq. 1.2, and the phase 𝜃

is different for every path (illustrated with green and orange in Fig. 4-4A, respectively).
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Figure 4-4: Branched excitonic circuit with complex-valued coupling. (A) System
described by the Hamiltonian Eq. 4.15, consisting of two separate linear circuits
connected to the same central 𝐷𝑁h molecule. The cases when the phase is set to
𝜃 = 0 and 𝜋/2 are illustrated, resulting in the green and orange paths being blocked,
respectively. (B) The populations for both cases are calculated, evidencing that the
population flux is almost completely stopped by careful manipulation of 𝜃. The top
and bottom plots correspond to the diagrams on the left.

For simplicity, the linear-to-linear coupling 𝑉𝐿𝐿 is set to half the energy difference

∆𝐸𝐿𝐶 .

Starting from an exciton fully localized on the central molecule via a circularly-

polarized pulse (red circle in Fig. 4-4A), the amount of population flowing into each

of the two connected molecules will depend on their relative angle with respect to the

incident light. When the connected dyes (green and orange solid lines) are placed

orthogonally with respect to each other (for example, by setting 𝑉 𝑎
𝑥 = 𝑉 𝑏

𝑦 ), the exciton

flux is completely blocked when the incident light is directed parallel to one set of dyes

(no flux), and orthogonal to the other (full flux). In the example shown in Fig. 4-4A,

when the light is parallel to the green path and orthogonal to the orange one, the

first path is blocked (top diagram). When the light is parallel to the orange dyes, this

path is blocked instead (bottom diagram). Note that a full delocalization across the

circular and all the linear dyes in the activated path (both solid and dashed lines) is

achieved by aligning the linear dyes parallel to each other.

We calculated the exciton populations for the described model, setting 𝑉 𝑥
𝐿𝐶,𝑎 =

𝑉 𝑦
𝐿𝐶,𝑏 = 5∆𝜖𝐿𝐶/4 and 𝑉 𝑦

𝐿𝐶,𝑎 = 𝑉 𝑥
𝐿𝐶,𝑏 = ∆𝜖𝐿𝐶/4. Switching the relative phase, 𝜃 =
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𝜃𝑎 = 𝜃𝑏, between 0 and 𝜋/2 will almost completely block the flux to the orange and

green paths, respectively. This same idea can be generalized for complex constructs

connecting more than two paths with similar results. We note that in this particular

circuit architecture, the direction of the circularly polarized light has no effect on the

exciton flux when 𝜃 is fixed. As was previously observed in Ref. [52], the AB effect

will not manifest in open cycles, and therefore, switching between RCP and LCP light

will not change the exciton flux in Fig. 4-4. In fact, one can argue that circularly

polarized light is not strictly necessary in this particular construct. A similar phase

control could be achieved with a linear pulse on a circuit of dyes with precisely aligned

dipole moment vectors. Indeed, the control of the phase is an artifact of the alignment

between the molecules and does not necessarily arise for the complex phase in the

coupling.
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Figure 4-5: Geometrical phase induced with real-valued coupling. (A) A linear pulse
directed at an angle of exactly 45 ith respect to a molecule. The resulting wavefunction
will have 𝑥 and 𝑦 components of the same magnitude. When coupled to a second
molecule, the magnitude of the coupling will depend on the alignment with the second
molecule, which can constructively or destructively interfere with the first. (B) The
evolution of a simplified system of the model described, when the 𝑥 and 𝑦 components
are constructive and destructively interfering (left and right, respectively), as a function
of the alignment angle 𝜃.

To highlight the unique effects that arise from systems with CVCs, we consider a

system that exhibits a real-valued excitonic coupling, but with a similar component

separation to that in Eq. 4.5. In particular, when a linear pulse is directed at a

±45°angle with respect to the 𝑥 axis, the Jones vector takes the form, |𝜓±𝜋/4⟩ =
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1√
2
(|𝜓𝑥⟩ ± |𝜓𝑦⟩). Such a pulse applied to the same system of symmetric and asymmetric

dyes will lead to an expression for the coupling with the same form as that for the

𝑉𝐿𝐶 coupling,

𝑉𝐿(±𝜋/4) = cos 𝜃𝑉𝑥 ± sin 𝜃𝑉𝑦. (4.16)

A representation of this dimer system is shown in Fig. 4-5A. The interaction with

a second molecule will amplify or decrease the components of the coupling, such that

two molecules that are fully aligned will exhibit the strongest coupling (Fig. 4-5B left

panel), and orthogonally-placed molecules will have the least coupling strength (Fig. 4-

5B right). Therefore, it is possible to implement the same effect as in Fig. 4-4, just

by taking advantage of the molecular alignment. Specifically, a symmetric molecule

excited with a linear pulse at exactly 45°will give the same effect observed in Fig. 4-4

with a phase-dependent coupling. However, because there is no phase introduced

into the system, the AB effect and the control of exciton coherences are not present.

Therefore, the control over excitonic flux as presented in Fig. 4-3 would not be possible.

Note that we specifically use a |𝜓±𝜋/4⟩ pulse applied to a symmetric molecule to obtain

a coupling equation comparable to that of Eq. 4.3, but the dipole-dipole interference

can be applied to any pair of dyes excited with a classical field.

In this chapter, I have described a method to introduce a phase dependency on

the electronic coupling between interacting chromophores. We have demonstrated

that RCP and LCP light can be used to control the sign of the phase, while the

magnitude of the phase can be adjusted by changing the angle of the incident light

with respect to the linear molecule, either through modifying the laser parameters

or the geometrical orientation of the molecules. The effect presented here could

have important implications for the development of efficient organic semiconductor

materials, providing a strategy for directional excitonic flux in the coherent EET

regime. To provide a simple and tractable model for the imaginary coupling we

assumed the environment only couples weakly to the system, but we anticipate our

model can be easily expanded to include the effect of strong system-bath interactions.
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Part II

Exciton Circuits in DNA

Nanostructures: An Atomistic Model
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Chapter 5

Quantifying Molecular Coupling in

Dimers Scaffolded in DNA

5.1 Introduction

The previous chapters 2-4 explored the intricacies of exciton evolution via chromophore

coupling and introduced the ability to control exciton delocalization and transport

through molecular arrangement. Molecular coupling was found to arise from the

alignment between transition dipole moments associated with individual chromophores.

This long-range interaction, commonly referred to as Coulombic or excitonic coupling,

manifests between exciton units localized within individual molecules.

Early theories of molecular excitons, as proposed by Davydov [43] and Kasha

[87, 88, 107], suggest that photophysical behaviors of chromophore aggregates stem

largely from electrostatic interactions between adjacent molecules. In this framework,

transition dipole vectors that are either aligned head-to-tail or side-by-side result in

the formation of J -aggregates and H -aggregates, respectively. The former leads to

positive excitonic coupling, while the latter results in negative coupling.

Yet, in tightly packed aggregates, dyes may exhibit configurations favorable to 𝜋−𝜋

stacking. Such arrangements prompt spatial overlap between the MOs of neighboring

chromophores, inducing short-range effects like charge-transfer (CT) coupling. These

charge transfer interactions entail the spatial separation of the electron and hole
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forming the exciton across different chromophore units.

In 𝜋-stacked aggregates, notably within light-harvesting complexes (LHCs), both

long- and short-range interactions can be observed simultaneously. In LHCs, relative

chromophore orientation and, therefore, the balance between the two effects is con-

trolled via precise molecular placement within protein scaffolds [130]. Understanding

the dynamics between these interactions is crucial for elucidating key photophysical

phenomena, such as symmetry-breaking charge separation (SB-CS), which propels

the conversion of photon-induced excitons into chemical energy[124]. Furthermore,

modulation of excitonic and CT contributions has also been studied in the context of

singlet fission, excimer, and charge-transfer state formation using covalently bonded

chromophores [5, 6, 39, 89, 127, 132, 155].

Covalent chromophore aggregates, however, face significant constraints due to

synthetic limitations [78, 77]. Enter DNA nanotechnology. Current advancements

in this field have unlocked the potential to develop distinctive architectures and

functionalities [29, 80, 146] Pairing this with the ability to scaffold dye aggregates in

DNA with precise positions and orientations [17, 50, 64], posits DNA as an attractive

platform for designing programmable and functional excitonic materials. Notably,

while DNA materials have traditionally been employed as a framework to control

exciton transfer and evolution, as dictated by Coulombic and Forster-type coupling [21,

66, 72, 74], short-range CT coupling had not yet been demonstrated in DNA-scaffolded

constructs before our recent study [71].

In this chapter, I introduce DNA scaffolding as a strategy for fine-tuning inter-

chromophore coupling. I present an analysis of exciton evolution, focusing on the

contrast between long- and short-range interactions within Squaraine dimers scaf-

folded in double-stranded DNA. Our theoretical insights are paired with experimental

observations, as reported by our collaborators for the same chromophore systems. In

the next section, I describe our computational strategy, employing a combination of

molecular dynamics (MD) and quantum mechanical simulations to accurately cal-

culate the excitonic and CT coupling, while also incorporating the statistics of the

DNA-scaffolded aggregates. Finally, I employ our methodology to explain the CT and
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exciton interplay as reported in spectroscopical measurements.

5.2 Theroretical Model

In the previous chapters we represented excitons in a localized Frenkel exciton basis,

where the electron and the hole are both located in the same molecule. In this chapter,

I evaluate the effects of close-packing in chromophore dimers scaffolded in DNA. To

this end, we shall employ a Hamiltonian model expanded to include the effect of

charge transfer states, as introduced earlier in Section 1.1.

We calculate the contribution of the long- and short-range coupling to the total

chromophore-chromophore interaction,

𝑉total = 𝑉excitonic + 𝑉CT. (5.1)

The Coulombic or excitonic coupling was previously approximated as an interaction

between transition dipoles in Chapter 2 (Eq. 2.1) and between sets of monopoles in

Chapter 3 (Eq. 3.7). A more exact derivation of the coupling can be done in terms of

two-electron integrals of occupied and virtual orbitals,

𝑉excitonic =
∑︁
𝑖,𝑎,𝑗,𝑏

𝑐
(1)
𝑖,𝑎 𝑐

(2)
𝑗,𝑏 [2(𝜓

(1)
𝑖 𝜓(1)

𝑎 |𝜓(2)
𝑗 𝜓

(2)
𝑏 )− (𝜓

(1)
𝑖 𝜓

(2)
𝑗 |𝜓(2)

𝑎 𝜓
(1)
𝑏 )]. (5.2)

where 𝜓
(1)
𝑖 represents the orbital 𝑖 in monomer 1, and 𝑐

(1)
𝑖,𝑎 is the CIS coefficient

describing the excitation of a single electron from occupied MO 𝑖 to virtual MO 𝑎.

The first term in Eq. 5.2 is the Coulomb integral (𝑖𝑎|𝑗𝑏) =
∫︀
𝑑𝑟1𝑑𝑟2𝜓

*
𝑖 (𝑟1)𝜓𝑎(𝑟1)𝑟

−1
12

×𝜓*
𝑗 (𝑟2)𝜓𝑏(𝑟2), while (𝑖𝑗|𝑎𝑏) is an exchange integral and is often negligible unless

molecules exhibit a significant spatial overlap. The two-electron integrals can be

calculated using time-dependent density functional theory (TDDFT) or configuration

interaction singles (CIS) with the Tamn-Dancoff approximation (TDA).

The CT coupling is calculated following Eq. 1.6, which describes a CT-mediated

energy-transfer process, as previously introduced. We calculate the energy gap

∆𝐸CT−FE = 𝐸CT − 𝐸FE through the bonding energies ∆𝐸CT−FE = 𝑈(0)− 𝑈CT. The
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local binding energy, 𝑈(0), is taken here as a constant set to 0.7 eV [152], while the CT

binding energy, 𝑈CT, is calculated with Eq. 1.4. The electron/hole transfer integrals

can be determined via DFT calculations.

5.3 Long and Short-Range Coupling in Squaraine

Dimers

In this chapter, I present a combined theoretical and experimental effort to design

programmable circuits that exhibit symmetry-breaking charge transfer—a phenomenon

where a CT excited state forms with the electron and hole distributed across an identical

chromophore pair. The platforms studied here were zwitterionic squaraine dimers in

Duplex DNA. Renowned for their susceptibility to electron donating and accepting

groups, squaraine chromophores exhibit strong absorption in the visible spectrum

[140]. Phosphoramidite-modified squaraine dyes were scaffolded in the DNA via the

phosphate groups of the DNA backbone (See Fig. 5-1A).

The purpose of this study was to showcase the design flexibility DNA scaffolding

offers. To this end, the squaraine dimers were tethered to DNA in two primary

methodologies: first, by hybridizing one strand containing two attached chromophores

to its chromophore-absent counterpart; and second, by hybridizing two chromophore-

containing strands. The resulting DNA structures contained a pair of serial and a

pair of parallel dyes, respectively. Each pair of dimers was also separated by a variable

number of nucleotide bases ∆𝑛, with 𝑛 the number of base pairs separating the pair.

Here, ∆𝑛 was varied from 0 to 3 for the serial dimer (Fig. 5-1B), and from 0 to 2

for the parallel (Fig. 5-1C). Throughout these manipulations, consistent local DNA

sequences were maintained, ensuring any resultant photophysical alterations stemmed

from chromophore coupling variations and not DNA scaffold interactions.

The absorption spectrum was measured for the two dimer configurations and

different nucleotide separations and is presented in Figures 5-1B and C for the serial

and parallel dimers. The spectrum of a squaraine monomer scaffolded in DNA is also
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presented for comparison. The absorption spectrum of chromophore dimers typically

contains two main vibronic bands, 0–0 (left) and 0–1 (right). A redistribution of

these bands compared to the monomer is characteristic of H-type dimers. In fact,

the redistribution of these vibronic bands, quantified by the ratio of their intensities,

𝜈00/𝜈01, is directly proportional to the intermolecular coupling strength. Notably,

for both the serial and parallel configurations, the spectra evinced a pronounced

vibronic band separation, indicative of strong intermolecular coupling—a phenomenon

seemingly unaffected by nucleotide spacing variations. The band ratios were calculated

by fitting the absorption spectra into a two-Gaussian model to obtain the relative

band strengths [71]. The resulting experiment band ratios are plotted in Fig. 5-3A.

Although the absorption spectrum gives an overview of the total coupling strength,

it doesn’t precisely capture the interplay between excitonic and CT contributions

in 𝜋-stacked chromophores, as seen in section 5.2. Grasping the intricacies of this

interplay becomes imperative for deciphering the spectral distinctions between the

serial and parallel configurations. Moreover, the spectra’s apparent insensitivity to

nucleotide spacing, contrary to the intuitive expectation of reduced interaction strength

with increased chromophore separation, requires further exploration.

In the subsequent section, I introduce a computational approach designed to

evaluate the excitonic and CT coupling strengths for chromophore pairs in DNA. This

will help us understand the relationship between the experimental spectra and the

underlying physics of chromophore interactions.

5.4 A Combined Molecular Dynamics and Quantum

Mechanical Approach

In an effort to understand the interplay between excitonic and charge transfer interac-

tions in chromophore aggregates and how they relate to DNA scaffolding patterns,

we examined two DNA constructs: serial ∆0 and parallel ∆0. Our approach com-

bined molecular dynamics (MD) simulations with quantum mechanical techniques to
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Figure 5-1: Squaraine dimers on DNA Duplex. (A) Chemical structure of
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spectrum (bottom) of the (B) serial and (C) parallel configurations defined in the text.
Here, ∆𝑋 quantifies the number of nucleotides separating each dimer unit. For the
Serial, the ∆0 and ∆3 configurations are illustrated, while Parallel we illustrate ∆0
and ∆2. Figure adapted from Ref. [71]

calculate both excitonic and charge transfer couplings in DNA-scaffolded dimers.

Ground-state MD simulations were performed in explicit solvent for a DNA frag-

ment featuring squaraine dimers in either the serial or parallel ∆0 configuration. On

the other hand, excited-state quantum mechanical calculations were performed on

isolated dimer coordinates extracted from the MD simulations. Given that high-level

quantum mechanical calculations do not converge for large molecular systems (> 100

atoms), this combined strategy allows us to capture the effect of DNA-chromophore

interactions arising from the different scaffolding patterns on the dimer electronic

coupling. Snapshots from our MD trajectories are illustrated in Fig. 5-2B for the

serial (top) and parallel (bottom) ∆0 configurations. The excitonic coupling was

determined by explicitly calculating two-electron integrals between monomer tran-

sition dipoles obtained using time-dependent density functional theory (TDDFT)

with the Tamn–Dancoff approximation (Eq. 5.2) [78, 152, 153]. Charge-transfer cou-

pling was calculated from electron and hole transfer integrals via DFT calculations

(Eq. 1.6). Computational details on the MD force field generation, MD simulations and

excited-state electronic structure calculations are presented in the following sections.

Squaraine force field generation.
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Atom Type Charge Atom Type Charge Atom Type Charge
N1 n2 -0.1737 H13 hc 0.0499 C31 c3 -0.1104
N2 n2 -0.1737 H14 hc 0.0499 H31 hc 0.0435
C1 c2 -0.3091 H15 hc 0.0499 H32 hc 0.0435
H1 ha 0.1485 C18 c2 0.3446 C32 c3 0.1909
C2 c3 -0.0520 C19 ca 0.0038 H33 h1 0.0280
C3 c2 0.3446 C20 ca -0.1475 H34 h1 0.0280
C4 c2 -0.3091 H16 ha 0.1555 C33 c3 0.0368
H2 ha 0.1485 C21 ca -0.1015 H35 h1 0.0612
C5 c2 -0.1614 H17 ha 0.1360 H36 h1 0.0612
C6 c2 0.5245 C22 c3 -0.0520 C34 c3 -0.1029
C7 c2 -0.1614 C23 ca -0.1615 H37 hc 0.0657
C8 c2 0.5245 H18 ha 0.1285 H38 hc 0.0657
C9 c3 -0.0834 C24 ca -0.1338 C35 c3 -0.0774
H3 hc 0.0499 C25 ca -0.0845 H39 hc 0.0347
H4 hc 0.0499 H19 ha 0.1355 H40 hc 0.0347
H5 hc 0.0499 C26 c3 -0.0834 C36 c3 -0.0759
C10 c3 -0.0834 H20 hc 0.0499 H41 hc 0.0380
H6 hc 0.0499 H21 hc 0.0499 H42 hc 0.0380
H7 hc 0.0499 H22 hc 0.0499 C37 c3 -0.1104
H8 hc 0.0499 C27 c3 0.0368 H43 hc 0.0435
C11 ca -0.0845 H23 h1 0.0612 H44 hc 0.0435
H9 ha 0.1355 H24 h1 0.0612 O3' OS -0.5767
C12 ca -0.1615 C28 c3 -0.1029 O1 O2 -0.5961
H10 ha 0.1285 H25 hc 0.0657 O2 O2 -0.5961
C13 ca -0.1015 H26 hc 0.0657 OP1 O2 -0.8233
H11 ha 0.1360 C29 c3 -0.0774 P P 1.4218
C14 ca -0.1475 H27 hc 0.0347 O5' OS -0.5767
H12 ha 0.1555 H28 hc 0.0347 C38 c3 0.1909
C15 ca 0.0038 C30 c3 -0.0759 H45 h1 0.0280
C16 ca -0.1338 H29 hc 0.0380 H46 h1 0.0280
C17 c3 -0.0834 H30 hc 0.0380 OP2 O2 -0.8233
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Figure 5-2: Combined molecular dynamics and quantum chemical approach. (A) Force
field assignments for the phosphoramidite-modified squaraine molecule. Atom types
and charges are listed at the bottom. (B) Snapshot of the equilibrated structures for
the Serial ∆0 (top) and Parallel ∆0 (bottom) squaraine dimers scaffolded in DNA
Duplex, that were simulated in this work. (C) Intradimer distance and (D) couplings
as calculated for the serial (red) and parallel (blue) dimer trajectories generated. The
excitonic and CT couplings are plotted in solid and dashed lines, respectively. A
snapshot of the MO distribution at a configuration of minimum 𝑉CT is also shown for
both dimers in dashed-line circles.

Prior to the all-atom MD simulations, a force field (FF) was generated for the squaraine

molecule and its hexyl linkers. The modified squaraine molecule was modeled using the

Avogadro molecular editor (version 1.2.0) [7], and the geometry was optimized with the

restricted Hartree-Fock (RHF) method and the 6-31G(d) basis set, as included in the

Q-chem software [133]. The atomic point charges were generated with the AM1-BCC

method [82] included in the Antechamber package [148]. The partial charges assigned

to the phosphate group were chosen to resemble those found in the DNA backbone

and the generalized Amber force field (GAFF) [149] was employed for all FF terms.

The atom types and calculated charges are presented in Figure 5-2A, with the atom

assignments indicated on the chemical structure.

All-atom molecular dynamics simulations.

The DNA-scaffolded dimer constructs studied in this chapter were prepared using

the PyMol software [131], from the DNA duplex and squaraine optimized structures.
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A B-form DNA duplex fragment with 21 base-pairs was modeled with the nucleic

acid builder (NAB) from AmberTools [24]. Two DNA-squaraine complexes were

constructed: a serial configuration, with each monomer replacing two consecutive

bases, and a parallel configuration, with the monomers replacing a complementary

base pair (Figure 5-2B).

All-atom molecular dynamics (MD) simulations were performed on the DNA-

squaraine constructs using the software Amber18 [24] with the GAFF2 force field.

The structures were solvated in TIP3P water molecules, using a distance of 12 Å with

respect to the solvent box. Explicit Na+ ions were added to neutralize the DNA, and

Cl− ions were added to set a concentration of 100 mM NaCl, mimicking experimental

conditions. Periodic boundary conditions were applied to all MD simulations, and

the SHAKE algorithm was used to constrain the H atoms to the equilibrium bond

length. A 12 Å cutoff was used to calculate the Van der Waals energies, while The

Particle Mesh Ewald (PME) method was employed to calculate full electrostatics. The

simulations were carried out in an NPT ensemble using the Langevin thermostat for

temperature control with a collision frequency of 5 ps−1, and the Berendsen barostat

for pressure control, with a reference pressure of 1 bar.

Minimization of the constrained system was carried out before the production

simulation for 5000 steps. Then, the constrained system was slowly heated to 300 K

for a total time of 20 ps and time-step 2 fs, and then left to equilibrate with constant

temperature for 2 ns. The production dynamics were then generated at 300 K for a

total time of 5 ns with a 2 fs time step, which is within the timescale where CT effects

were detected in the experiment. The serial dimer simulations were performed on

duplicate, while the parallel dimer coordinates were averaged over three trajectories

for 5 ns each. The variation of the intramolecular distance was calculated as the center

of mass distance for both types of dimers and averaged over the production replicates.

The trajectories, shown in Figure 5-2C, were used as an indication of the stabilization

of the dimer configurations.

Quantum mechanical calculations.

Charge-transfer coupling was calculated from electron and hole transfer integrals via
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DFT calculations, according to Eq. 1.6) [152]. The coordinates of each squaraine

molecule were extracted from the MD trajectories every 20 ps with the MDAnalysis

package [110] (250 frames in total). Then, the phosphate groups in the squaraine

linkers were replaced with hydrogen atoms, and DFT was performed with a 6-31G

level of theory and implicit COSMO solvation using the PySCF package [141]. These

results were employed to calculate 𝑉CT as described in Section 5.2, while TDDFT/TDA

was performed with a B3LYP functional to calculate 𝑉excitonic. Other excited state

properties needed to reproduce optical properties for squaraine were also calculated,

namely, the excitation energy, transition dipole moment, and oscillator strength.

The variation of 𝑉excitonic and 𝑉CT for the isolated monomer trajectories is shown in

Fig. 5-2D. A snapshot of the serial and parallel dimer configurations at local minima

points of 𝑉CT are presented as insets in Fig. 5-2D, where the MO distributions were also

calculated. Since the change in intermolecular distance remains fairly stable through

the simulation (Fig. 5-2C), the variation in coupling likely comes from differences in

the relative orientation of the monomers within a given range of intradimer separation.

5.5 Evaluating the Interplay between Excitonic and

Charge Transfer Coupling.

Following the procedure detailed in the previous section, the excitonic and charge

transfer coupling was calculated for the serial and parallel ∆0 dimer trajectories. The

simulation resulted in long-range excitonic couplings, 𝑉excitonic = 207 and 319 cm−1,

and short-range CT couplings, 𝑉CT = −199 and −45 cm−1, for the serial and parallel

∆0 dimers, respectively. The 0–0/0–1 band ratio was calculated based on the average

total coupling 𝑉excitonic + 𝑉CT [71], and plotted against the experimental values in

Fig. 5-3A. The total coupling strength for the parallel dimer is seen to be stronger

than that of the parallel, which is consistent with the experimental measurements.

These differences in coupling can be explained by comparing the statistical distri-

bution of the excitonic and CT coupling along the MD trajectories for the serial and
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parallel configurations (kernel density estimation (KDE) plots in Figure 5-3B and C,

respectively). The KDE distributions show that while the excitonic coupling is on

the same order of magnitude for both types of dimers, the CT coupling significantly

is larger for the serial dimer. In fact, the sub-50 cm−1 CT coupling for the parallel

configuration could be considered negligible if compared to the excitonic coupling,

consistently in the 100 cm−1 order of magnitude. Thus, the excitonic coupling of

the parallel ∆0 dimer can be adequately described using Kasha theory, which treats

Coulombic interactions only, while a Hamiltonian describing the serial ∆0 dimer must

include both Coulombic and CT contributions, i.e., using the Hamiltonian in Eq. 1.3.

The magnitude of CT coupling in the serial dimer configuration also explains

the differences in the 0–0/0–1 band ratio observed experimentally, despite both

configurations sitting at similar intermolecular distances 5-2C. Based on the relative

phase of the molecular orbitals for each monomer, we determined the charge-transfer

coupling was negative, while the excitonic coupling was positive as expected for an

H-type dimer. The opposite signs of the excitonic and charge-transfer couplings implies

a destructive interference between these two contributions, which likely results in the

larger total coupling for the parallel dimer observed in the absorption spectra.

The origin of the difference in CT coupling between the two dimers lies in their

relative chromophore orientations. As shown in the insets of Fig. 5-2D, the serial dimer

at a point of minimum 𝑉CT adopts a 𝜋-stacked structure, while the chromophores in

the parallel dimer are shifted by an angle. Sitting at a similar intermolecular distance,

the "twisting" of the chromophores in the parallel dimer decreases the orbital overlap,

compared to the serial’s 𝜋-stacked configuration. On the other hand, horizontal

displacement on the serial stacks will decrease the long-range electrostatic interactions

while maintaining strong orbital overlap. It has been noted in previous studies with

𝜋-stacked aggregates that CT character is very sensitive to the relative orientation

between chromophores (within the sub 5Å scale), and this behavior was observed

here for squaraine dimers. We conclude that the parallel configuration selects for

more excitonic and less charge-transfer character, whereas the serial configuration has

near-equal couplings for both processes.

106



B.

V C
T (

×1
02  c

m
-1
)

Vexcitonic (×102 cm-1)
1 43

-4

-3

-2
-1

2
Serial ∆0

5
-5

C.

V C
T (

×1
02  c

m
-1
)

-4
-3
-2
-1

Vexcitonic (×102 cm-1)
1 432

Parallel ∆0
5

-5

TT... ... ... ...
A.

ν 0
0/ν

01
 ra

tio
4

Experiment
Theory (Excitonic)
Theory (Excitonic + CT)

0.4

0.6

0.8

DNA construct
Monomer∆0 ∆1 ∆2 ∆3

2

0

Figure 5-3: Excitonic and charge transfer coupling in squaraine dimers scaffolded in
DNA. (A) Experimental molecular coupling as extracted from the vibronic peak ratio
between the 0–0 and 0–1 bands (𝜈00/𝜈01) in the absorption spectra, compared with
the average theoretical values. Kernel density plot of the excitonic vs charge transfer
coupling for the (B) serial (C) and parallel ∆0 dimers.

5.6 Intermolecular Interaction in Squaraine Dimers

The observed differences in the absorption spectra between serial and dimer configura-

tions are attributed to variations in the balance between excitonic and charge-transfer

couplings. However, this interplay cannot explain why the absorption band ratio

seems to be unaffected by the imposed nucleotide spacing.

In addition to the short-range CT coupling, closely spaced chromophores experience

attractive molecular forces. In particular, the electron polarizability of zwitterionic

chromophores enhances their tendency for charge separation. In this section, we will

further explore squaraine dimer interactions beyond charge transfer and examine their

effect on DNA scaffolding patterns.

Destabilization of DNA double-chain.

We postulate that the constancy of the 𝜈00/𝜈01 band ratio with respect to nucleotide

spacing originates from potent molecular forces within the chromophore pair, strong

enough to induce conformational changes in the DNA double-strand structure.

Indeed, the absorption bad ratio observed in the parallel dimer also supports this

theory. DNA Duplex’s structure naturally pushes the bound dimers to angle out-

wards from the backbone, preventing steric interference between the sizable squaraine

molecules (approximately ∼15 Å in diameter) and backbone atoms (Fig. 5-4A). Given

the DNA double helix’s 20 Å diameter, such an arrangement results in a significant
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interchromophore gap, leading to negligible coupling, as depicted in Figures 5-4D and

E. Spectroscopic observations contradict this initial design since parallel dimers exhibit

pronounced coupling —more than the serial ∆0 dimer which allows for intermolecular

separations below approximately 7 Å, given a DNA base-pair distance of 3.4 Å. This

initial design is not supported by spectroscopical observations, as parallel dimers show

strong coupling, even more so than the serial ∆0 dimer, which allows for intermolecular

separations below ∼ 7Å given DNA base-pair distance is 3.4 Å. Hence, the coupling

strength seen in the parallel dimer can only arise from DNA conformational changes

allowing shorter inter-chromophore distances without steric interference with backbone

atoms.

Considering the disparity between DNA equilibration timescales and CT effect

detection timescales, we initiated the MD simulation in a high-energy structure,

expecting the DNA to transition to its genuine equilibrium configuration within

feasible computational timeframes. We probed configurations where monomers were

positioned closer, anticipating the intradimer interaction would offset unfavorable

DNA steric interactions. For instance, one initial condition positioned the molecules

within the DNA’s major grooves (Figure 5-4B). However, as depicted in Fig. 5-4E,

this setup only slightly reduces the intramolecular dimer gap to the DNA’s diameter,

still resulting in negligible coupling.

Based on the arguments above, the only plausible configuration where the parallel

∆0 dimer would be separated by less than the DNA diameter would be if located

inside the DNA backbone. In a double-chain structure, this configuration is extremely

unstable and will lead to one of two energetic pathways: the restoration of the

DNA structure with the chromophores being pushed back out of the backbone,

or the breaking of DNA base-pair hydrogen bonds in order to accommodate the

dimer. Initializing our MD simulations in this high-energy configuration led to

the second equilibrium structure, as shown in Fig. 5-4C. This simulated trajectory

yielded monomer-to-monomer distances closely resembling the serial dimer, with

𝑉excitonic aligning with experimental observations (Figures 5-4D and E). It is essential

to recognize that both outward and inward configurations represent local energy
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minima of the chromophore-DNA structure, with the dimer’s local environment

and experimental conditions potentially guiding the system towards one of these

configurations. Under the conditions studied here, the equilibrium configuration aligns

with that of Fig 5-4C,corroborating experimental data.

To validate that squaraine dimer intermolecular interactions can enforce these

DNA conformational shifts, we conducted umbrella sampling calculations on two

squaraine dyes solvated in water to quantify their interaction strength.
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Figure 5-4: Intradimer interactions drive structural changes in DNA scaffold. (A)
Molecular snapshots of the starting dimer-DNA scaffold structures tested to replicate
spectroscopical observations. (B) Intradimer distances along the molecular dynamics
trajectories when starting for the structures above, compared to the serial dimer. (C)
Histogram with the total coupling distributions for each one of the starting structures.

Umbrella sampling calculation on isolated dimer.

The described rearrangement of the DNA duplex can only manifest if the squaraine

monomer’s intermolecular force is robust enough to break the hydrogen bonds con-

necting the base pairs. Specifically, squaraine aggregation-induced stabilization should

surpass the destabilization caused by separating complementary base pairs.

We attempt to test the feasibility of the initial configuration chosen for the parallel

∆0 dimer by comparing the intermolecular forces of squaraine aggregation, with the

DNA hydrogen bonding free energy, which is typically more dominant than base

𝜋-stacking energy [60]. If these values are comparable, we contend that the proposed
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structure (Figure 5-4A) is energetically feasible. WTo this end, we employed umbrella

sampling (US) calculations on the isolated squaraine dimer to determine the potential

energy surface (PES) associated with the dimer disaggregation.

Initially, we extracted the squaraine dimer’s coordinates from the parallel ∆0 DNA-

squaraine starting structure shown in Figure 5-2B after performing MD minimization.

MD simulations were carried out in the isolated dimer solvated in TI3P explicit water,

using the Amber18 software and the same FF from Fig. 5-2A. Following the protocol

outlined in Ref. [144], a restrained minimization of the initial structure was performed

for 5000 steps each, followed by 5000 steps of unrestrained minimization for the entire

system, both with a 12Å cutoff. This was followed by an NVT heating of the solvent

to 300 K, for 20 ps. Then, an NPT equilibration of the entire system was carried

out by gradually reducing the imposed harmonic constrain on the system on 4 steps,

with 30 ps each: from 50 to 10, 5 and 0 kcal mol−1Å−2. Finally, umbrella sampling

was employed for the free energy calculation of the final equilibrated structure [126].

To construct the potential mean field (PMF) for squaraine aggregation, the dimer

was constrained on a biased potential across a range of intramolecular separations

with a harmonic restrain of 100 kcal mol−1Å−2. Here, the intramolecular distance was

defined as the separation between the C7 atoms on each squaraine molecule, identified

as the closest to the center of mass of the molecule. A total of 90 windows were

constructed by varying the center of the biased potential from 3 to 12 Å, every 0.1

Å. For each window, a 2000-step minimization, 40 ps NPT equilibration, and 100 ps

NPT production were simulated, with biased coordinates recorded every 4 ps of the

production run (a total of 2500 recorded per window). Then, the WHAM algorithm

[94], as implemented by Alan Grossfield [69], was employed to process the biased

coordinates with a converged tolerance of 0.00001, and the free energy of aggregation

was calculated from the obtained PMF (Fig. 5-5A). The WHAM result was tested for

accuracy by manually calculating the PMF from each of the biased distributions, for

each window, confirming the convergence of the code.

The potential energy surface for the dimer revealed an intermolecular interaction

energy of ∆𝐺 = −4.6 kcal mol−1 which is lower than the guanine-cytosine hydrogen
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bond strength (∆𝐺 = −5.5 kcal mol−1) and slightly higher than the adenine-thymine

hydrogen bond strength (∆𝐺 = −4.5 kcal mol−1) under similar conditions [144, 60].

This suggests that the free-energy of intradimer interactions is sufficient to potentially

disrupt the stability of base-pair interactions of DNA.

The stability of the proposed conformation in Fig. 5-4A is far too complex to

be explained through mere base-pairing hydrogen bond strengths, as the placing of

the dimer inside the duplex triggers a reconfiguration of all the adjacent nucleotide

pairs, with varying stability outcomes, some becoming more stable than others. Our

analysis suggests that intradimer forces are pivotal in shaping the spatial layout of

strongly-coupled dimers

However, we believe our analysis highlights the critical role intradimer forces play

in driving the spatial layout of strongly-coupled dimers. These results, in conjunction

with insights from charge-transfer coupling effects, attempt to explain the complex

interplay between long and short-range intradimer interaction in the strong coupling

limit.
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To further clarify the interactions within stacked chromophores at the strong-
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coupling limit that led to the observed pattern of coupling strengths, an alternative

DNA structure was designed. The Stem Loop-3 construct (Fig. 5-5 was synthesized

by pairing chromophore-containing serial strands with a ∆𝑛 separation and comple-

mentary strands incorporating three loops. This DNA structure was built as a way to

impose mechanical constraints in the DNA, hindering its structural reorganization

and making interactions between squaraine pairs less favorable. This design choice

is validated by the absorption spectra of the stem loop-3 DNA, which exhibited a

reduced vibronic band ratio as the ∆ nucleotide separation increased. Notably, at a

separation of ∆3, the absorption spectra mirrored that of a monomer.

This chapter underscores the potential of DNA scaffolds in manipulating the

photochemistry of strongly-coupled squaraine chromophores. Our exploration delved

deep into the dynamics of interactions among closely-aligned chromophore pairs,

focusing on the delicate balance between excitonic and charge-transfer interactions. It

was demonstrated that chromophores can also exhibit attractive molecular forces that

can potentially reshape the scaffold’s architecture. In designing DNA-chromophore

nanomaterials, it is imperative to consider all intermolecular interactions. This

encompasses both charge transfer and molecular electrostatics, the latter influenced

by the selected scaffolding pattern and also the inherent properties of the molecular

chromophores.
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Chapter 6

Relating Dimer Geometry with

Optical Properties

6.1 Introduction

DNA nanotechnology offers exciting avenues for modulating photophysical properties

via molecular design. In previous chapters, we delved into mathematical models and

computational techniques to understand how circuit geometry affects interchromophore

interactions. We saw that even a fundamental DNA architecture, like the double helix,

affords great design adaptability. In particular, by positioning dimers on the same

or opposing strands of a DNA duplex, we can tune exciton photophysical pathways

[71]. DNA origami programmable structures can provide us with a broader design

spectrum for exciton control compared to DNA duplexes, but a more profound grasp

of the structure-property relationship in DNA nanostructures is still needed [72, 71].

Central to excitonic circuit design is mastery over exciton product states. An

exciton may delocalize between chromophores or transform into free charge particles.

The character of intermolecular interactions delineates the photophysical pathways

available to an exciton. Electrostatic (or excitonic) interactions, for instance, facilitate

electron transfer, while short-range interactions steer charge separation pathways

[155]. As we learned in the previous chapter, varying geometries and DNA-scaffolding

patterns can promote distinct interaction types. Yet, designing structures explicitly
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for specific product states remains a challenging task [155, 100].

This chapter aims to get a deeper understanding of the relationship between DNA,

dimer geometries and exciton product states. I spotlight a system featuring Perylene

diimides (PDIs) chromophore dimers scaffolded in DNA. PDIs are a class of dyes that

can access a variety of product states, including symmetry-breaking CT and singlet

fission [97, 100, 132, 155] Dimer configurations of these dyes have been reported to

form excimers [100, 91]. Stemming from a superposition of Frenkel and CT exciton

states, these product states are prevalent in the short-range domain [59]. Through

DNA scaffolding, we aim to regulate excimer formation and exciton delocalization.

To this end, we introduce a DNA origami structure and examine its influence on dye

molecule positioning relative to the Duplex DNA explored in Chapter 5. DNA-origami

constructs not only amplify our design space but also enable the scaffolding of higher

chromophore counts, which is essential for designing extended circuits and enhancing

signals through multiple pair repetitions [105].

In the following sections, I will analyze spectroscopical measurements provided

by our experimental collaborators on PDI dimers scaffolded on DNA Duplex and

a DNA origami structure. I will employ a similar combined MD and quantum

mechanical approach to that used in the previous chapter. My focus will be on the

characteristic geometries that will be imparted by the different DNA architectures

and their implications for charge transfer and excimer formation in PDI dimers.

6.2 Studying Charge-Transfer State Formation in

PDI dimers

A programmable DNA platform was employed by our collaborators to scaffold the

PDI dimers. PDIs were attached to DNA through the backbone’s phosphate groups

and modified for increased solubility and to prevent dye aggregation. High-throughput

synthesis methods were employed to produce the Duplex-DNA assemblies, including a

structure with a PDI dimer in opposite strands (Opp-duplex), and a series of dimers
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in the same strand with increasing base-pair separation ([0,1,3,5]nt-duplex). These

structures are illustrated in Fig. 6-1A.
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Figure 6-1: PDI dimers in DNA origami. (A) A dimer of modified PDI molecules
(chromophore in red, linker groups in black) is attached to a DNA Duplex (here
represented as a cylinder). Dimers are synthesized in parallel and serial configurations
with no base-pair separation (labeled Opp-duplex and 0nt-duplex, respectively). (B)
Illustration of the DNA-origami architecture made from a six-helix bundle (6HB).
Each 6HB DNA contains 10 repeated units of the PDI dimer. The dimer is attached
in the cavity in parallel, and with a separation of ∆ base pairs. The 6HB-0∆ and
2∆ are shown at the bottom. (C) Emission spectra as measured for the Opp and the
serial 0-5nt dimers. (D) Spectra for the 0-5∆ 6HB structures. The emission for the
corresponding monomers is included in both cases for comparison. (E) Excimer/Frenkel
band ratio plotted against the experimental coupling strength, as extracted from the
emission and absorption spectra, respectively.

Although a similar strategy was employed to produce PDI-duplex aggregates to

that used in the previous chapter for squaraine dimers, the dimer did not show strong

interactions impeding the spatial separation of the dyes through base-pair insertion.

The ability to separate chromophore units through nucleotide insertions adds to the

programmability of the DNA scaffolds.

Besides double-stranded DNA, a higher-order DNA origami structure was also

studied. A six-helix bundle (6HB) DNA architecture was chosen as a stable and
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robust platform that allows for the integration of multiple units of chromophore

dimers. The ability to attach a large number of dyes is pivotal for the design of

circuits that mimic Nature’s machines, which can be composed of hundreds of precisely

placed chromophore units [32, 130]. DNA-6HB structures were produced containing 10

repeated units of PDI dimers with varying separation ([0,2,3,4,5]∆-6HB, see Fig. 6-1B).

The separation between repeated units was large enough to guarantee no interaction

between dimers.

The goal was that 6HB DNA-origami structures will induce CT and excimer

formation in PDI dimers. Attaching the dimer in the inner cavity of the 6HB structure

(∼2 nm in diameter) should restrict dyes to the short-range coupling regime, facilitating

the formation of a CT state. In order to test this hypothesis, the PDI-6HB and Duplex

structures were studied with a combination of spectroscopical and computational

methods. We sought to establish a difference in the nature of the coupling between

the two DNA architectures and recognize the spatial patterns imposed by each one of

these structures.

The absorption and emission spectra were measured by our collaborators for each

one of the 6HB and Duplex structures (0–5 ∆-6HB, 0–5 nt-duplex and Opp-duplex),

and their corresponding monomers. The emission spectra of the 6HB structures

exhibit the characteristic band broadening of excimer states (Fig. 6-1C), which was

not present in the Duplex constructs (Fig. 6-1C). Excimers are often dubbed self-

trapped states ... the emission spectra indicate the formation of excimers in the

6HB 0–3∆ dimers. To further compare the photophysical properties of these two

DNA structures, the Excimer/Frenkel band ratio was extracted from the measured

emission bands and plotted against the coupling strength, as calculated from the

𝜈00/𝜈00 absorption band ratio. The Excimer/Frenkel ratio indicates the formation

of excimers in the PDI-6HB, which increases for smaller nucleotide separations and

chromophore interaction strength. On the other hand, Duplex PDIs present negligible

excimer populations, although decreasing dimer separation leads to larger increments

in coupling strength compared to the 6HB dimers. Stronger coupling in the Duplex

constructs is an indication of either shorter chromophore separations or stronger and
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destructively interfering CT-mediated interactions, as seen in Chapter 5.

Further understanding of the complex interplay between short and long-range

interactions in PDI dimers requires computational modeling. In the next section,

I describe the simulation of the DNA constructs aimed to uncover the structural

differences of the 6HB and Duplex constructs and how they relate to their observed

optical properties.

6.3 Computational Methods

To devise the interplay between charge-transfer and excitonic coupling in PDI dimers

on different DNA scaffolds, we carried out simulations in selected 6HB and Duplex

constructs: The 0 and 2 ∆-6HB, and the 0nt and Opp-duplex dimers. Larger

separations in 6HB dimers display negligible coupling strengths according to the

absorption spectra and, therefore, were not analyzed further. A combined MD and

quantum mechanical strategy akin to that in Sec 5.4 was employed. Additional details

are presented next.

Molecular simulations.

All-atom MD simulations were carried out by our collaborators in the two 6HB and the

two Duplex constructs. The force field for the PDI molecule with the linker attachments

was parameterized following a similar strategy to that of the previous chapter. The

modified PDI-linker molecules, however, required a fragmentation approach given the

size of the system [66]. The molecule was fragmented into three separate residues,

with each of these capped with appropriate chemical groups matching the charges

present in the original bonds. Each residue was parametrized separately using the

GAFF and with the atomic charges calculated via RESP fit.

The B-form of DNA was employed for the duplex structure, and built using the

nucleic acid builder (nab) as implemented in AmberTools21 [25], while the 6HB DNA

origami structure was generated using caDNAno2 [49]. The geometry-optimized PDIs

were scaffolded manually on the corresponding positions for the Duplex and 6HB

structures. For the large PDI-6HB origami, simulations were performed using short 42-
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bp sections containing a single PDI pair—in contrast to the 10 repetitions implemented

experimentally—to reduce computational cost. The simulated constructs for the 0∆

and 2∆-6HB are presented in Fig. 6-2A and B, while the 0nt and Opp-duplexes are

shown in Fig. 6-2C and D.

Molecular simulations were carried out in explicit TIP3P solvent, with MgCl2
added to neutralize the system and to reflect experimental conditions (12 mM MgCl2).

A truncated octahedron with 10 Å cutoff distance was used to solvate the duplexes,

while a cuboid box with 10 Å distance to the sides perpendicular to the rod axis and

0 Å along the 6HB axis was employed for the 6HB structures. We also set periodic

boundary conditions, such that the solvation box would mimic the length and rigidity

of the DNA rod prepared experimentally.

The all-atom MD simulations were performed in Amber16, using The OL15 FF

for the DNA residues and GAFF for the PDI residues. Each DNA-dimer system was

initially minimized in two steps: first with constraints placed on the dyes and DNA

((500 kcal mol−1 Å−2), and then unrestrained, each for 5000 steps. This was followed

by an equilibration from 0 to 300 k with weakly position restrains (10 kcal mol−1

Å−2) for 20 ps and an unconstrained equilibration in a NPT ensemble at 300 K and

1 bar for 200 ps. Finally, production runs were performed for each system in a NPT

ensemble at 300 K and 1 bar for 100 ns in triplicate. A time step of 2 fs was used for

all MD simulations.

Quantum mechanical calculations.

We evaluate the nature of chromophore interactions in the 6HB and Duplex constructs

by using the expanded CT Hamiltonian introduced in Sec. 5.2.

The excitonic coupling is calculated from the two-electron integrals in Eq. 5.2.

On the other hand, we characterize CT interactions via DFT calculations using the

Frontier Molecular Orbital (FMO) approach[142]. We start by describing the transfer

of a single electron and hole between the donor (D) and acceptor (A) molecules.
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Respectively,

𝐷−𝐴 −→ 𝐷𝐴−

𝐷+𝐴 −→ 𝐷𝐴+.
(6.1)

We integrate between the initial and final states in 6.1 to get the corresponding CT

integrals, 𝑡𝑒 and 𝑡ℎ:

𝑡𝑒 ≡ ⟨𝐷−𝐴|ℎ̂|𝐷𝐴−⟩ = ⟨𝜙𝐷
LUMO|ℎ̂|𝜙𝐴

LUMO⟩

𝑡ℎ ≡ ⟨𝐷+𝐴|ℎ̂|𝐷𝐴+⟩ = ⟨𝜙𝐷
HOMO|ℎ̂|𝜙𝐴

HOMO⟩.
(6.2)

Where ℎ̂ is the Kohn-Sham operator for the DA dimer. We have also defined the charge-

localized dimer states in terms of monomer HOMO and LUMO orbitals 𝜙𝑖
HOMO[LUMO],

with 𝑖 = 𝐷,𝐴. Because the HOMOs and LUMOS of separate molecules are not

guaranteed to be orthonormal, we apply a Löwdin symmetry transformation to the

integrals in 6.2,

𝑡𝑒[ℎ] =
𝑡𝑒[ℎ] +

1
2
(𝜀𝐷𝑒[ℎ] + 𝜀𝐴𝑒[ℎ])𝑆𝑒[ℎ]

1− 𝑆𝑒[ℎ]

(6.3)

where 𝜀𝐷𝑒 = ⟨𝜙𝐷
LUMO|ℎ̂|𝜙𝐷

LUMO⟩ is the site energy for the LUMO of monomer D, and 𝑆𝑒[ℎ]

is the spatial overlap between the LUMOs[HOMOs] of D and A. We can then calculate

the CT coupling using Eq. 1.6, where The CT-FE energy difference is calculated from

the binding energies as in the previous chapter, ∆𝐸CT−FE = 𝑈(0)− 𝑈CT.

The coordinates of each PDI dimer were extracted from the MD trajectories every

20 ps for the last 2 ps for each trajectory (a total of 100 frames per dimer configuration).

The MD Analysis tool [67, 110] was employed to extract the coordinates for the PDI

and two linkers separately. In order to perform the quantum mechanical calculations

the phosphate ends were capped with hydrogen. The alkyl chains on the linkers were

kept in the capped structure to maintain the properties of the molecules as much as

possible without the need for prohibitively expensive quantum mechanical calculations.

Furthermore, to avoid minimizing the PDI monomers at each step of the simulation

and to conserve the distinct molecular configuration resulting from the DNA scaffolding,
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Table 6.1: Calculated average coupling values from combined QM-MM simulations.

Sample 𝑉excitonic/ cm−1 𝑉CT/ cm−1 𝑉total / cm−1

0∆-6HB 554.30 -147.95 406.35
2∆-6HB 598.93 -49.68 549.25
0nt-duplex 779.97 -53.83 726.14
opp-duplex 660.25 -43.05 617.20

the capping H was placed in the coordinates of the linker group to be replaced, with

the bond length adjusted accordingly (e.g., d[C-H]=1.09Å and d[O-H]=0.97Å.

DFT was performed for the separate PDI monomers of each dimer configuration,

at the cc-pVDZ level of theory and implicit COSMO solvation using PySCF [141].

The excitonic coupling, 𝑉excitonic, was calculated according to equation 5.2, where

TDDFT/TDA was performed with a B3LYP functional to calculate the Coulomb and

exchange integrals corresponding to the first excited state. On the other hand, the

CT coupling 𝑉CT was calculated with equation 1.6. The Löwdin symmetry transform

(Eq. 6.3) was employed to calculate the electron and hole transfer integrals of the

DA dimer, as implemented in the Q-chem software [133]. The CT coupling was set

to destructively interfere with the excitonic coupling in all cases to match the total

coupling observed in the experiments.

Figure 6-2A and B show the evolution of 𝑉excitonic and 𝑉CT for 0∆ and 2∆-6HB

across the MD trajectory, and Fig. 6-2C-D shows the results for the duplex trajectories.

Calculations for the 3∆-6HB showed negligible coupling and results are omitted here.

The average coupling values for all structures are presented in Table 6.1.

6.4 Differences in Molecular Coupling Explained by

Geometrical Features

Our calculations show a strong CT character in the 0∆-6HB dimer and weak for the

2∆ and the duplexes. Furthermore, the excitonic coupling seems to be larger for the

duplexes. Due to excitonic-CT destructive interference, the total coupling is also

stronger in the 0nt and Opp-duplex, which reproduces the patterns extracted from
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Figure 6-2: Results from molecular simulations on the PDI dimer constructs. Snapshot
of simulated structures for the 6HB DNA-origami and calculated coupling for the
last 2 ns of simulation for a (A) ∆0 and (B) ∆2 separation. Simulated structure and
calculated coupling for the Duplex (C) 0nt (serial with no separation) and (D) Opp
(parallel with no separation).

the absorption spectra. The CT character in the PDI-6HB agrees with the reported

Excimer/Frenkel ratio as well. Some differences with the experimental coupling are

remarked, namely, the Opp-duplex should exhibit the strongest coupling, while in

our computational results, it was the 0nt construct. Stronger interactions for the

Opp dimer should either arise from shorter interchromophore distances that were not

captured on the MD trajectories or from a strong and destructively interacting CT

coupling in the 0nt structure, also not captured in our simulations. The CT character

of the ∆2-6HB is also not captured in our simulations, likely due to insufficient

sampling.
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In order to understand the interaction patterns of PDI dimers and how they relate

to the DNA scaffold as seen in our simulations and experimental measurements, we

now investigate the dimer geometries and how they relate to these observations. In our

analysis, we will only focus on the 0∆-6HB, 0nt-duplex and Opp-duplex constructs,

presuming the 2∆-6HB structure should have similar patterns to the 0∆. For the last 2

ns of each dimer MD trajectory, the center of mass distance and angular displacement

between PDI molecules were calculated for the same simulation frames in Fig. 6-2.

The angular offset can be defined by considering a vector spanning the two opposite

N atoms in the PDI ring, roughly aligning with the dipole moment vector. The

displacement is calculated as the angle between the N-N vectors in the PDI dimer.

We noticed significant variations between the distributions of angles and distances

of the studied constructs (6-3). In terms of separation, the duplexes and 0∆-6HB

dimers presented predominant short 𝜋-stacking distances between ∼ 4 and 6Å, typical

of aggregated PDIs [23]. The distribution of the origami 0∆-6HB was particularly

narrow within that range, while that of the 0nt and Opp-duplexes show different

populations. In each case, the population with less frequency corresponds to one of

the three MD trajectories deviating from the average behavior. We also recognize

different patterns in the angle offset. In particular, the duplex dimers showed relatively

small rotational offsets, of 37 ± 6 and 17 ± 5 respectively, reflecting a nearly parallel

alignment. On the other hand, the 0∆-6HB construct was offset by about 60 . The

large offset in origami dimers can be attributed to the attachment of PDIs in two

neighboring helices, compared to the same helices in duplexes. Added to the rigidity

of the 6HB structure, this leads to the imposing of spatial constraints on the PDI

dimer that hinders it from reaching a 𝜋-stacked geometry. The rigidness of 6HB dimer

configuration may also lead to the more homogeneous distribution observed.

Based on the calculated total coupling values, we also identified the PDI structures

that most closely resemble experimentally observed properties. Specifically, matching

the strength of the coupling with respect to the 𝑉exp observed in the absorption spectra.

We note that the total coupling measured is a result of an average observation of both

monomer and dimer subpopulations present in the experiment at different degrees,
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Figure 6-3: Geometrical patterns induced by DNA scaffolding. Density plot for the
center of mass distance vs relative angle between PDI molecules, as extracted from
the molecular dynamics simulations, for the (A) 0nt-duplex (B) Opp-duplex and
(C) 0∆-6HB dimers. Dimer configurations where the DFT-calculated coupling more
closely matches experimental values are circled in white. These configurations are also
illustrated on the top insets. The boxed areas indicate the populations that are both
most frequent and closer to experimental values.

so an exact match between theory and experiment is not possible without careful

consideration of monomer and dimer ratios. Therefore, we only determine the structure

that we expect to be predominant according to the experimental observations. These

dimer configurations are indicated with a white circle in the distribution plots of

Fig. 6-3, and are illustrated as insets. The experimental configurations show rotational

offsets of 62.2° and 31.1°for 0∆-6HB and Opp-duplex, respectively.

To determine whether there is a relation between the structural patterns and

the intermolecular coupling, we calculate the distribution of 𝑉exc and 𝑉exc for the

population closest to the experiment configuration (boxed area of Fig. 6-3). Histograms

displaying the coupling for the 0nt, Opp and 0∆-6HB are shown in Fig. 6-4, with the

total 𝑉T as red dashed overlay. We can see that the coupling distributions correlate

very closely with the geometry distribution, with the bimodality of the Opp-duplex

geometries also present in the couplings. This is an indication that the observed

interactions are a direct consequence of geometrical patterns in the dimer constructs
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and that these patterns are also related to different choices of DNA scaffolds and

attachment points. Notably, the CT distribution in the duplexes sits narrowly around

0, while 0∆ showcases a significant number of configurations with 𝑉CT between 0

and -1000 cm−1. A stronger and destructively interfering CT coupling also leads to

an overall decrease in the total interaction, as evident in a lower 𝑉𝑒𝑥𝑝 and seen for

squaraine dimers in the previous chapter.

We also note the excitonic coupling is slightly larger for the duplexes, especially for

one of the populations in the Opp-Duplex dimer. This strongly-coupled population

contains the configurations that most closely match our experimental results. The

short intermolecular distances and 𝜋-stacked configurations observed in the duplexes

would lead to stronger electrostatic interactions.

Because the center-of-mass distance is comparable on all three constructs, we

trace the variations in coupling to the N-N rotational offset. Previous studies have

associated large rotational offsets in PDI dimers with an increase in CT character

and excimer emission. Specifically, a conical intersection was predicted at an angle of

∼60°, between the symmetry-allowed (upper) Frank-Condon state and the symmetry-

forbidden (lower) state from which excimers decay [56]. This observation corresponds

to the increase in the calculated CT in the heavily-rotated 6HB dimer, and the

broadening of the emission spectra seen experimentally.

To corroborate there exists such a correlation between the NN-angle and the

increase in CT and excimer character, we calculated 𝑉exc and 𝑉CT for a pair of

geometry-optimized PDIs. We constrained simulations to a 4.0 Å center-of-mass

distance and varied the NN rotational angle (Fig. 6-4D). The NN angle was screened

from 0 (parallel dyes) to 90° (orthogonal dyes) and the resulting coupling is shown

in Fig. 6-4E. As expected, the excitonic coupling decreases monotonically from a

maximum at 0° to a minimum at 90°. Parallel dyes are known to have stronger

electrostatic interactions as transition dipole moment vectors are aligned, and weaker

or null interactions when the dipole vectors become orthogonal (Eq. 2.1).

The CT coupling, while also decreasing with rotational offset, presented a non-

monotonic decrease. The resulting 𝑉CT was highly sensitive to the molecular packing
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geometry, as it relies on molecular orbital overlap between neighboring molecules. A

maximum of 𝑉CT is seen at 0° when PDIs are aligned, as parallel 𝜋-stacking leads to

near-perfect MO overlap, and falls to zero when PDIs are orthogonal and MO overlap

is minimized. The CT coupling also decreases consistently up to an angle of ∼30°,

but then increases again to a local maximum at ∼65°. This local maximum coincides

with a slight alignment of the aromatic rings.

The changes in 𝑉exc and 𝑉CT with displacement angle coincide with patterns

of geometry and coupling observed in the simulated PDI-DNA constructs. For

visualization purposes, the distribution of NN-angles for the 0nt-duplex, Opp-duplex

and 0∆-6HB is also displayed in Fig. 6-4E. We can see that the 0∆-6HB angle

distribution is roughly centered around the local maxima of the CT coupling, which

further confirms the increase in CT character and excimer populations seen in our

simulations and the experiment On the other hand, 0nt distribution sits around small

angles of rotation, which translates to a stronger 𝑉exc and slight CT coupling, while

the Opp-duplex sits almost exactly on the local minimum of 𝑉CT. This matches

the observation of neither of the duplexes presenting significant excimer emission.

Furthermore, the fact that the 0nt-duplex dimer configurations exhibit slightly stronger

CT than the Opp-duplexes, could be the origin of the reduced total coupling for the

0nt, if the short and long-range interactions are destructively interfering as proposed

before. We can also theorize that the reason behind the excimer emission on the

0∆-6HB lies in the comparable strengths of 𝑉exc and 𝑉exc at the local maxima of ∼65°,

which could possibly facilitate Frenkel and CT exciton mixing.

Overall, in this chapter we were able to identify patterns in the excitonic and

charge-transfer couplings of PDI dimers scaffolded in different DNA structures, and

associate them to geometrical features imposed by local spatial constrains of the DNA

scaffolds. In particular, 6HB origami structures can be employed to program charge-

transfer character in chromophore dimers. The rigidity of the 6HB imposes a significant

rotational offset in the chromophore pair with high fidelity. This programmability

could be used to induce excimer formation or SBCT states in chromophore aggregates.

Importantly, by understanding the correlation between DNA structure, local dimer
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geometry and chromophore interactions we could design materials with programmable

photophysics with accuracy only comparable to Nature’s biosconstructs.
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Figure 6-4: Relationship between imposed scaffold geometry and interchromophore
coupling. Histograms for the excitonic and charge-transfer coupling calculated for
the boxed configurations in Fig.6-3 for the (A) 0nt-duplex (B) Opp-duplex and (C)
0∆-6HB dimers. The total coupling (𝑉exc + 𝑉CT) is shown in red dashed lines. (D)
The coupling is calculated for different N-N rotation angles for a PDI dimer fixed at a
center of mass distance of 4 Å. (E) The couplings 𝑉𝑒𝑥𝑐 and 𝑉CT are calculated from 0
to 90° angles.
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Chapter 7

A Computational Strategy for the

Design of Exciton Circuits with

Programmable Properties

7.1 Introduction

In the two previous chapters, we learn that DNA scaffolding can control the photo-

physics of chromophore aggregates. The defining features of these properties originate

from the interplay between short and long-range chromophore interactions For in-

stance, long-range interactions regulate exciton delocalization and transfer amidst

neighboring chromophores, whereas short-range interactions promote exciton evolution

into charge-separated states. Long-range, or excitonic coupling, is largely influenced

by electrostatic forces and thus depends on the distance and alignment of transi-

tion dipoles. In contrast, short-range CT interactions, emerging from the overlap

of neighboring molecular orbitals, are particularly sensitive to even minor shifts in

chromophore orientation [79].

Nature, as we have seen, has honed this mechanism over time. Plants efficiently

control the spatial arrangement of chromophores within a sub-Å range, ensuring

optimized exciton transport and charge separation across extensive molecular networks
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[130]. This remarkable precision is attributed to the meticulous structure of protein

scaffolds in the light-harvesting complexes. Attempting to emulate such precision with

DNA nanostructures is undeniably challenging.

Our previous discussions underscored the potential of DNA architectures in direct-

ing exciton transport and evolution within chromophore circuits. In Chapter 5 we

discerned how varied attachment paradigms can encode CT characteristics in squaraine

dimers and, in Chapter 6, demonstrated how DNA origami structures can enhance

our selectivity for CT coupling and mixed CT/Frenkel states. Different architectural

choices lead to unique geometric features within chromophore dimers, which in turn

influence the nature of the interactions observed. For a truly programmable excitonic

platform, it is imperative to identify and fabricate the specific chromophore-DNA

configurations that yield the desired photophysics.

Thus far, our approach has relied on experimental data on already tested dimer

constructs which we then analyze via computational simulations. However, there are

practical limitations to the number of DNA-dye structures that can be synthesized and

characterized experimentally, even with state-of-the-art high-throughput techniques

[40, 104]. Given these constraints, leveraging our accumulated knowledge to craft an

efficient computational methodology seems to be the logical next step. This approach

would guide experimental efforts towards the most promising structures, likely having

the desired excitonic properties.

In this chapter, I present a high-throughput computational framework aimed at

screening chromophore scaffold configurations with specific optoelectronic properties.

This software will allow for the evaluation of a plethora of configurations, by harnessing

the strengths of both MD and quantum mechanics as in previous chapters. However,

it distinguishes itself by navigating the configuration space more efficiently, leveraging

approximations and automation. We will initially focus on Cy3 dimers scaffolded in

DNA Duplexes, a system with ample computational and experimental documentation,

fitting as the first application of our software [41, 93, 72, 73].

Although several methods have employed quantum mechanical/molecular mechan-

ical (QM/MM) approaches to examine the electronic properties of disordered systems
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[109, 118, 119, 135], and there are a number of packages for both MD and excited

state calculations in organic molecules [26, 141, 133], to our knowledge, none of these

techniques provide a cohesive bridge between the classical and quantum components.

Our software seeks to provide this integration, which is crucial for a comprehensive

exploration of all potential dimer configurations within DNA structures. We have

simplified the MD simulation to capture only the dimers’ local environment and extract

patterns of geometries across all samples. By correlating these patterns with changes

in interchromophore coupling, as previously discussed in Chapter 6, we can identify

DNA-chromophore constructs with the desired properties on a broader scale.

The following section will introduce our strategy for geometry screening using a

QM/MM approach. Next, I will provide a detailed walkthrough of our algorithm,

followed by a practical application on a subset of Cy3 dimers embedded in DNA

duplexes.

7.2 Workflow for the High-throughput Screening of

Excitons in DNA Structures

Molecular dynamics and excited-state electronic structure can be employed to capture

the dynamics of excitons in molecular nanostructures. In particular, the statistical

mechanics of the system are investigated using ground-state MD simulations, whereas

exciton interactions are deciphered using quantum mechanical calculations. This

methodology has been successful in the analysis of free chromophores in solution[77,

79, 132] and in the context of interacting chromophores with fixed orientations [28].

Notably, MD simulations become computationally demanding for extensive molec-

ular systems, such as DNA scaffolds [71, 72]. To provide perspective, simulating DNA

constructs comprising 22 to 30 base pairs can extend from a few weeks to several

months, contingent on the simulation setup. Consequently, our methodology has

predominantly focused on the computational examination of previously characterized

DNA constructs. This approach constrains our exploration to a limited subset of
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DNA structures and configurations, hindering a comprehensive exploration of the

configurational space. Moreover, constraints on the number of replicates, coupled

with poor statistics and energy sampling, have occasionally led to discrepancies with

experimental results. These discrepancies often manifest due to simulations not con-

verging to the energy minimum conformation [72] or resulting in the prediction of

local minima configurations (Chapter 6).

Sampling of dimer 
positions in DNA

Molecular dynamics 
simulations in DNA box

Analisis of trajectory statistics 
with quantum mechanics

QM
on each 
cluster

wavelength (nm)

Spectroscopical properties

Pattern of 
geometries

Feedback

1) 2) 3)

4)

Figure 7-1: Methodology for the screening of dimers in DNA nanostructures.

To navigate these challenges, and with the aim of employing theoretical simulations

as a roadmap to guide experiments, we designed a high-throughput computational

workflow for the investigation of exciton dynamics in DNA-scaffolded chromophore

circuits (Fig. 7-1). This comprehensive workflow encompasses four general steps:

1. Sampling of chromophore dimer positions within a full-length DNA construct.

2. Conducting MD simulations of these samples in a truncated DNA scaffold

environment.

3. Employing quantum mechanics to analyze trajectory statistics.

4. Undertaking synthesis and spectroscopic characterization of promising candi-

dates.
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This protocol harnesses approximations and automation to efficiently simulate

numerous dimer configurations within a selected DNA structure and chromophore.

The remainder of this section will briefly describe the steps we follow to implement an

efficient search in the chemical and structural space of both chromophores and DNA

scaffolds. Computational details of our package, built in a Python environment, are

presented in the next section.

0) Force field preparation

Before initiating the sampling process, we develop a force field for the dye, drawing

parallels to strategies deployed in previous chapters but with enhanced automation.

This refines the procedure, accommodating a broader chemical space of dye molecules

and linker combinations. Our strategy consists of building the dye and linker FF

separately, starting from a geometry-optimized structure for each where we have

capped them with a chemical group mirroring the charge of the other entity. This

modular approach (illustrated in Figure 7-2A) facilitates the simulation of larger dye

molecules, especially since the calculation of partial charges restricts the system size to

about 70-80 atoms—even with semi-empirical methods. Additionally, this automated

process enables us to experiment with diverse dye and linker combinations, thereby

expanding the available chemical space.

Notably, this process assumes that chromophore atoms and bonds primarily adhere

to standard conventions, aligning with the generalized Amber Force Field (GAFF)

[149]. Non-standard atom types and bonds, although infrequently reported in DNA

origami circuit literature [149], would necessitate manual tweaks in the dye force field.

1) Sampling of dimers in DNA.

Having defined the FF for the dye/linker molecule, we aim to comprehensively sample

potential attachment points for a homodimer of the modified dye. Our workflow

caters to dyes with dual attachment points, implying that they bind to the DNA

backbone at two successive nucleotides via individual linker groups. Finding all

possible ways to place a doubly attached dye in a DNA scaffold with 𝑛 nucleotides

(assuming all nucleotides are viable for linker attachment) results in a total of 𝑛−1𝐶2

possible configurations. Placing a second dye now adds 𝑛−1𝐶2 ×(𝑛−2)−1 𝐶2 more
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Figure 7-2: Preparation of the force field and DNA attachment of a Cy3 dye. (A)
Dye and linker force fields are prepared separately and the molecules merged in a
subsequent step. (B) The dye is attached to the DNA backbone via phosphate links.
An anti-parallel alignment of the backbone and dye center of mass is enforced to
reduce the possibility of steric clashes.

configurations, which for a 40-nucleotide DNA duplex strand results in up to 493,506

potential combinations. Simulating all of these combinations, even with approximated

methodologies, is unfeasible. However, not all of these pairs will lead to significant

exciton transfer, as pairs separated by more than 4 nucleotides usually display monomer-

like photophysics.[72]. By focusing on dye pairs separated by less than a certain

intermolecular distance, we can filter out inconsequential configurations, narrowing

down the number of necessary simulations to around 100 for a 40-nucleotide duplex.

Dyes bind to the DNA through the backbone’s phosphate groups (Fig. 7-2B). For

every pair combination, our software places the dye at the designated attachment,

aligning the linker’s and backbone’s phosphate coordinates. To prevent steric clashes

between the dye and local DNA nucleotides, we align their corresponding centers

of mass in an anti-parallel manner. This process is automated, in contrast to our

prior methodology (Chapters 5-6) where this was done manually aided by molecular

visualization software. This approach ensures the dimer-DNA configurations are

optimal starting points for the subsequent MD simulations.

2) Molecular dynamics simulations.

Further optimizations are essential to feasibly simulate an extensive set of dimer-DNA
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configurations. For instance, statistics of DNA scaffolded constructs are primarily

influenced by their local environment, so including residues distant from the dimer

will contribute minimally to the results. Our strategy extracts a predetermined box

surrounding the dimer for simulation, eliminating the need to simulate the entire

DNA structure. Meanwhile, the effect of the omitted DNA structure is approximated

using weak harmonic constraints on the terminal residues of the box. Placing these

constraints is essential to maintaining the robustness of the long DNA strand as needed

to ensure structural stability when attaching the dimer.

The generated samples from the previous step serve as starting structures for our

MD simulations. These simulations are uniformly prepared using AmberTools23 [26],

with molecules solvated in explicit TIP3P water. A consistent set of MD parameters

is applied to all simulations. Due to the large number of samples, which complicates

individual monitoring of each MD trajectory, simulations are executed for a fixed

duration, long enough to ensure the equilibrium of the dimer within the compact DNA

box.

3) Quantum mechanical analysis.

Upon completion, the equilibrated MD production trajectories are extracted for

further analysis. Using geometric features, a clustering process identifies similarities

among the samples. As outlined in Sec.6.4, we aim to find a correlation between

chromophore orientation and intermolecular coupling. We categorize dimer samples

based on geometric characteristics, such as the center of mass distance and rotational

offset (Fig. 6-3).

Classification of the MD data is done with principal component analysis (PCA)

[85, 123], followed by k-means clustering [92, 102] (Fig. 7-1). This results in the identi-

fication of structurally similar groups, which are then verified via quantum mechanical

calculations to determine excitonic and charge-transfer coupling (Equations 5.2 and

1.6, respectively). PCA clustering parameters, such as the number of clusters or

principal components, can be adjusted to ensure that most configurations within a

cluster possess similar exciton properties.

By tracing the samples back to their associated scaffolding patterns, we can identify
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candidates matching specific coupling properties. These dimer-DNA structures can

be experimentally validated to either support our theoretical predictions or provide

insights for refining our methodology.

7.3 Computational Package

We now describe the implementation of the workflow in Fig. 7-1. The software is

implemented as a Python3 package integrated with Amber and AmberTools23 [26].

Steps 0), 1), 2) and 3) in the previous section are implemented as four stand-alone

modules that prepare all necessary input files for simulating the dimer-DNA samples

and analyzing the resulting trajectories. The process, detailed as an information flow

diagram in 7-3, starts with the preparation of the force field (step 0 ) by the FF module,

which takes the optimized geometries of the dye and linker in PDB format. Then, the

sampling (step 1 ) is done with the MD module, which takes the output from FF and a

PDB of the DNA scaffold. For each sample generated, the MD module also prepares and

initializes the MD simulations in Amber (step 2 ). For the final step, the QM module

takes the trajectories generated in the previous step and carries out the analysis and

electronic structure calculations (step 3 ). A fourth module commons, contains auxiliary

functions for geometry operations and quantum mechanical calculations, which are

employed by the main three modules. The remainder of this section will summarize

the function of each module.

i) The commons module.

This module contains two submodules with functions shared by the other three

modules. The submodule geom_utils contains functions that carry out a variety of

operations in molecules, as well as facilitates the import of PDB files. Molecules and

trajectories are imported using the MDAnalysis package [67, 110]. On the other hand,

coupling_utils handles all excited-state electronic structure calculations, which

includes calculating the excitonic and CT coupling. These calculations are performed

with the aid of the PySCF package [141].

ii) The FF module.
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The first step in Fig 7-1 is building the force field for the dye and the linker, separately.

This step is carried out by the FF module, taking the optimized geometries of the two

fragments—capped with appropriate chemical groups— in PDB format. The outcome

of this step is to generate output files for the dye-linker FF that can be interpreted by

Amber.

To begin, we pre-process the dye and linker PDB input geometries for subsequent

steps. Specifically, each atom is assigned a unique name, as required for building a FF.

135



Then, the main step for the FF preparation is calculating the atomic charges. For

efficiency, this is done with the am1-bcc semi-empirical method [82], as implemented

in Amber’s Antechamber [148]. The output, a mol2 FF file, also contains information

about atom types, according to the generalized Amber FF (GAFF) [149]. For this

fragment-based approach, the cap groups are necessary to ensure charge neutrality,

with the caps matching the charge of the counterpart fragment. However, these caps

need to be eliminated from the final FF of the dye+linker molecule. This module

will also modify the mol2 files, eliminating the surplus atoms while making sure the

charge is maintained. Finally, the module will output the modified mol2 files for

the linker an atom, a joined PDB file for the dye+linker molecule, and a parameter

modification file, frcmod. The latter contains modified force field parameters which

are generated automatically by AmberTools [26]. Note at this step that for molecules

with non-standard atoms and bonds, the frcmod file needs to be manually modified

by the user.

Within this module, the submodule file_process contains auxiliary functions

for reading, modifying and writing PDB and mol2 by storing the data in pandas

DataFrames [106]. On the other hand, the gen_dye_lnk submodule contains functions

that support the process described above. The joined PDB file is generated by the

commons/geom_utils auxiliary module. The fragments are aligned such as the centers

of mass are anti-parallel to decrease steric constrains.

iii) The MD module.

This module takes the output from the previous step, namely, the force-field mol2

and frcmod files, and the joined PDB for the dye and linker molecule, along with a

PDB for the DNA-scaffold. With these four as an input, the module samples dimers

from the dye+linker modified molecule along the given DNA scaffold structure, and

initializes MD simulations for each one of the generated samples.

The sampling of dimers in DNA is carried out by the sampling submodule. This

submodule will 1) Read and process the monomer and dye PDB files, 2) sample all

possible pairs that can be attached in the DNA based on a pre-defined intermolecular

distance, and 3) for each valid pair place the dimer in position and generate a PDB
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and AMBER LEaP input file of the dimer within a DNA box. Potential attachment

points, 𝑖, are defined using the P atom coordinates across the DNA, and dimers are

defined by (𝑖, 𝑗) pairs, where 𝑖− 1, 𝑖 and 𝑗, 𝑗 + 1 define the attachment points of each

doubly-linked dye. Then, a KDTree algorithm, as implemented in SciPy [12, 145], is

employed to determine all possible nearest neighbor pairs (𝑖, 𝑗) within the maximum

distance defined for a valid pair. Adjacent dimers (i.e., 0nt) are defined by (𝑖, 𝑖) pairs.

For each valid pair, we then define a DNA box that will allow us to approximately

describe the steric interactions we need to take into account in the alignment process

of the dimer in the duplex. A separate box is defined around each monomer, centered

around the midpoint between the attachment points, and with a pre-defined box

length. Each monomer is aligned such that the P atom in each linker overlaps with

the P atom in the DNA binding site, and the center of mass of the dye is antiparallel

to that of the DNA box.

Linkers attach to the DNA through the phosphate -PO3 group, which is included

in the linker FF to ensure consistency of charge distribution between a dye-linker in

solution and attached to DNA. Because each P atom can only bond to 4 oxygen atoms

at a time, after bonding to the dye, the bond with the adjacent nucleotide is broken. A

molecule with two symmetric attachments, such as Cy3, will bond with two adjacent

PO3 DNA groups, breaking two bonds: P-O5’ and O3’-P (As labeled in Fig. 7-2).

As a result, the nucleotide supported by these bonds is solvated. To avoid having an

incomplete DNA residue, which will lead to problems with AMBER, we assign the

phosphate on the O3’ side to be in the dye residue, while having the phosphate on the

O5’ side belong to the adjacent residue (as labeled in Fig 7-2). Following this process

will result in a standard PDB file that should be recognized by the standard GAFF

and the OL15 DNA FF.

In the last step, we save the dimer sample by defining a second DNA box around

the dyes. The program will make sure there are no incomplete residues left in the box

and transform the edge residues into terminal nucleotides for FF consistency. The

dimer is then merged with the DNA into a single PDB file. The mol2 and frcmod

FF files from the previous module are also modified, as during the sample generation
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some atoms were changed.

Finally, to generate the input files that Amber requires to initialize the MD

simulations, the sampling module integrates with LEaP [26] to produce these files

from the PDBs. LEaP will take the FF files for the dye and linker, and the sample

PDB to generate parameter prmtop and coordinate rst7 files for the system solvated

in explicit TIP3P water, with Na+ ions added for charge neutrality. Prior to executing,

we also clean the PDB file with pdb4amber (as implemented in AmberTools23), define

the atoms that will take part in the dimer-DNA bonds, and generate input files for

the LEaP program.

The md_samples takes the output from sampling to initialize the MD simulations.

A similar procedure to that described in [72] is followed, with the all-atom MD

simulations performed in Amber, using The OL15 FF for the DNA residues and GAFF

for the dimer residues. First, the solvent and ions are minimized for a total of 4000

steps, and then the entire system is minimized for another 4000 steps. This is followed

by a slow equilibration of the system from 0 to 300 K, with weak 10 kcal mol−1 Å−2

restraints imposed on the DNA, for a total of 20 ps. A second minimization of the

system in an NPT 300 K ensemble is followed for an additional 100 ps, with weaker

restraints imposed (5 kcal mol−1 Å−2). Finally, production runs in an NPT ensemble

are carried out until equilibrium. To mimic the effect of the long DNA structure, in

the reduced-sized box we include in each sample, we apply weak 3 kcal mol−1 Å−2

constraints on the terminal nucleotides of each sample throughout the simulations.

Doing so avoids the destabilization of the short DNA-box strand. All simulations were

carried out employing the parameters of Chapter 5 and Ref. [72], with a 10 Å cutoff

to calculate the Van der Waals energies. The input files for each sample and MD step

where prepared with the md_samples submodule, which also executed the runs within

Amber’s sander program [26].

iv) The QM module.

After completion, the MD trajectories for all of the samples are imported into the

Python environment using MDAnalysis [110], which takes the parameter prmtop

and trajectory nc files as inputs. Because we are interested in the statistics of the
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chromophore-chromophore interaction, we extract the coordinates of the dimer from

these trajectories for further analysis. To extract the chromophore geometries, we

break the O-PO3 bond on each linker. Then, the remaining O3’ and O5’ atoms in

the linker are capped with H’s to ensure the molecule’s stability for the subsequent

quantum mechanical calculations. We choose not to keep the phosphate groups for

further analysis because they complicate simulation convergence.

Based on the extracted trajectories, we calculate a set of geometrical features that

could potentially encode the complex interactions between the chromophore molecules.

These features are calculated for the last 200 ps by the auxiliary module geom_utils

and stored in a pandas DataFrame [106]. We then perform PCA in the generated

features, reducing the number of components to those needed to preserve at least

80% of the variance. Then, starting from these principal components, we employ the

k-means clustering algorithm to find similarities in the data. The number of clusters is

optimally defined using the inflection point or “elbow” after which the score converges

with respect to the number of clusters [128]. The representative structure for each

cluster is then calculated as the structure closer to the cluster center. Both data

extraction and clustering are performed by the cluster_traj submodule.

For each representative structure, quantum mechanical calculations are performed

to calculate the excitonic and charge transfer coupling according to Equations 5.2 and

1.6, respectively. These operations are performed by the QMM_traj submodule, using

auxiliary functions from the coupling_utils module. We follow the same process

outlined in 6.3. The coupling_utils module calculates 𝑉exc via TDDFT/TDA as

implemented in PySCF [141], while the electron/hole integrals in 𝑉CT are calculated

with the Löwdin symmetry transform (Eq. 6.3), as implemented in the Q-chem software

[133]. For the transfer integrals, the QMM_traj submodule prepares the input files

required by Q-chem.
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7.4 Results

We apply our workflow to screen Cy3 dimer configurations within DNA duplexes. The

FF was prepared for the dye and linker pair in Fig. 7-2. These two fragments were

capped with groups sharing a chemical similarity to their complementary fragment

near the bond. A PDB file was prepared for a Cy3-modified dye with two copies

of the linker, which allows the dye to be scaffolded in the DNA at two adjacent

attachment points. A DNA duplex with 21 complementary base pairs was chosen

as the scaffolding. Dimer positions were sampled within a limit 18.5 Å distance

between attachment points, which was determined to render dimer configurations

with non-negligible interaction. Because sampling occurs before MD equilibration,

It is advisable to choose a distance that covers configurations initially positioned at

large binding distances but that could later equilibrate into dimers with significant

interaction. The resulting dimer samples were simulated along with all the DNA

residues fitting inside a pair of 20 Å-length boxes centered around the two attachment

points. From a total of 311 valid samples within the pre-defined distance, we selected

80 for further analysis and simulation.

A. B. C.

parallel Serial Serial

Figure 7-4: Examples of a Cy3 dimer sampled in DNA duplex. Equilibrated molecular
structures for a (A) Parallel 3nt (B) Serial 0nt and (C) Serial 1nt samples.

Molecular dynamics simulations are prepared and initialized on Amber20 [25].

Figure 7-4 shows a few of the samples generated for Cy3 in DNA Duplex, after all

the MD steps are performed and the trajectories are equilibrated. The structures for

a parallel 3nt, serial 0nt and serial 1nt dimer are shown (Fig. 7-4A-C respectively).

From the simulated trajectories, we prepared the following set of four features: Center

of mass intermolecular distance, rotational offset along the long axis, and displacement
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along the short and long axis. The selection was made based on the features that

have been previously observed to have a strong effect on short-range chromophore

interactions (Chapter 6 and Ref. [78]).
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Figure 7-5: PCA and clustering of Cy3 dimer geometry. (A) Dimer geometry is
characterized using the center of mass distance, the angle between the molecules’
long-axis vectors, and the long and short-axis displacements. PCA is employed for
dimensionality reduction of the geometrical data, followed by K-means clustering to
separate the data by spatial similarity. Scatter plots presenting the data in the two
principal components, colored by (B) cluster and (C) DNA attachment type. Scatter
plots for the features contributing the most to the two principal components: the
rotation angle and center of mass distance, colored by (D) cluster and (E) attachment
type.

The last 200 ps of simulation for each one of the samples is selected for subsequent

cluster analysis. Figure 7-5B presents the result of PCA followed by k-means clustering

on a total of 8 samples—each with a different scaffolding pattern—using the four

geometrical features described above. The number of principal components and

number of clusters were set to their optimal values, as described in the previous

section. We see that from the eight configurations, the data is classified into three

clusters each sharing similar spatial properties. The clusters are also traced back to the

different attachment configurations and colored correspondingly in the PCA-clustering

data (Fig. 7-5C). We see that most configurations belong entirely to a single cluster,
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with the exception of samples that are probably not fully equilibrated. This is the

case, for example, of the serial- 1nt and 2nt (S-1nt and S-2nt) and the parallel-1nt

(P-1nt) configurations. These configurations likely favor reorganization within the

DNA base-pair interactions to decrease inter-chromophore distance, as previously

observed with squaraine dimers [72], resulting in slower equilibration of the dimer-DNA

system. Another interesting observation is the similarity of the S-0nt and P-4nt dimers,

which comprise the 𝐶2 cluster, along with S-1nt. At 4nt separation, after a full turn of

the DNA double-strand, two parallel dyes will be placed along the same line, resulting

in a similar configuration to a S-0nt dimer. After equilibration, both of these dimers

seem to have driven similar conformational changes in the DNA scaffolding, therefore

sharing similar spatial features. The other clusters, 𝐶1 and 𝐶3, seem to be composed of

similar scaffolded structures. The 𝐶1, by dimers with little apparent interaction (S-2nt,

P-1nt and part of P-0nt), and 𝐶2 by two parallel dimers with similar nt separation.

Next, we analyze the features that contribute the most to the principal components

in Fig. 7-5D and E. As expected from the results of the previous chapter, these are the

center of mass distance and the rotational offset. Figure 7-5 shows a scatter plot of the

data with respect to these two features. The result is expected, as the intermolecular

distance and rotation angle were previously observed to have the strongest effect in

the coupling between PDI dyes (Sec. 6.4. We see very similar patterns of classification

for the different attachments, especially for cluster 𝐶1. Some separation is observed

between the two parallel dimers P-3nt and 2-nt in cluster 𝐶3. For these dimers,

significant similarity is observed in the short and long-axis displacement, even though

the dimer separation is different. This observation highlights the necessity of utilizing

multiple features along with dimensionality reduction. This is because the spatial

interactions of dimers cannot always be explained solely in terms of intermolecular

distance and rotational offset, as was previously attempted in Sec. 6.4.

For each one of the clusters, we now need to confirm that the data was not only

classified in terms of spatial correlation but that these configurations also share a

connection in terms of photophysics. To this end, a representative structure for each

one of these clusters is selected as the dimer closest to the center of the cluster. These

142



representative configurations are, in order, parallel-1nt, parallel-4nt and serial-1nt.

The calculated excitonic and CT coupling are to be compared between these structures

to note differences in the calculated values characterizing each spatial group. Similarly,

these values must be compared with those calculated for other dimer samples within

the same cluster, in order to determine whether the classification procedure was

adequate. Disagreement between these values would indicate the need to tweak the

PCA-clustering procedure. In the case of Fig. 7-5, this will most likely point to the

number of clusters chosen, as significant variations can be observed among samples of

the same cluster.

7.5 Future Directions

In this chapter, we have outlined a systematic workflow for the evaluation and

characterization of dimer configurations within DNA scaffolds. In particular, we

applied our methodology to sample Cy3 dimers in a DNA Duplex. A total of 8 unique

configurations were simulated and classified by their geometric characteristics.

Nevertheless, the results depicted in Fig. 7-5 represent merely a subset of the

extensive collection of Cy3 dimer samples generated throughout this study. While

these initial findings elucidate some correlation between various types of attachments,

they fall short of delivering a comprehensive understanding of how DNA scaffolding

influences dimer configurations. Specifically, we have presented only a single instance of

each attachment type, with the possibility that some may not have achieved the global

minima conformation by the end of the molecular dynamics simulations. Addressing

this, further exploration involving multiple iterations of identical attachment types,

originating from random initial conditions, may enhance the diversity of sampled

trajectories without a proportional increase in simulation time. Currently, simulations

are ongoing for the remaining 72 dimer samples, with the anticipation of refining our

understanding of their dynamic behavior.

At the moment of writing this chapter, a complete quantum mechanical analysis

of the samples is also in progress. This analysis is poised to shed light on the impact
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that DNA scaffolding has on the photophysical properties of chromophore dimers,

especially concerning their exciton and charge-transfer (CT) interactions. Significantly,

this investigation is expected to pinpoint configurations with optimal properties for

further experimental validation.

Looking ahead, we aim to expand the application of our methodology to a broader

range of dye and DNA scaffold combinations. Our workflow’s inherent adaptability

positions it well for generalization to diverse systems, opening avenues for the investi-

gation of novel materials with programmable excitonic behaviors. Additionally, the

versatility of our force field design permits the exploration of alternative dye and linker

arrangements In conjunction with AI-driven searches within the chemical space, it

could potentially be employed for the identification of prime photoactive molecules

tailored to specific applications.

Overall, the combination of high-throughput computational approaches and refined

experimental techniques is poised to be instrumental in the future advancement of

materials science, paving the way for breakthroughs in fields such as light-harvesting,

electronics, and quantum computing.

144



Appendix A

Bounds on the Complexity of a

Realizable Unitary Operation

Although Eq. 2.1 provides the geometric constraints for representing a given unitary

operation as an excitonic circuit, it is not guaranteed that these can be physically

satisfied. For example, it is possible that the number of constraints exceeds the

number of degrees of freedom within the geometric design space. In this subsection we

enumerate the degrees of freedom available to systems of multiple molecules and thus

establish fundamental bounds on the complexity of operation that can be represented

by a circuit with a given number of dye molecules.

In order to implement an 𝑁−dimensional unitary transformation in the single

excitation manifold a set of 𝑁 dyes is required. The diagonal matrix elements of 𝑈̂target

impose 𝑁 − 1 constrains on the Hamiltonian, after accounting for invariance under the

total phase change. These can be satisfied using the 𝑁 − 1 relative energy degrees of

freedom, 𝜖𝑖. This leaves 𝑁(𝑁 − 1) off-diagonal matrix elements that must be satisfied.

However, the logarithm of unitary transformations must be anti-Hermitian, indicating

that the lower triangle of the matrix can be inferred from the upper triangle, leaving
1
2
𝑁(𝑁−1) independent constrains. The freedom of choosing 𝜏 introduces a free choice

of scaling, which removes one additional constraint.

These constraints must be satisfied by tuning the geometric degrees of freedom of

the dye assembly. Each of the 𝑁 dyes introduces three degrees of freedom corresponding
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to the dye positions, resulting in 3𝑁 degrees of freedom. Each of the 𝑁 excitations

also gives three degrees of freedom corresponding to the orientation of their transition

dipole moment, which gives an additional 3𝑁 . However, invariance under center of

mass translation and total rotation removes a total of 5 of these degrees of freedom.

Overall, such a dye assembly provides sufficient flexibility to realize an 𝑁−dimensional

transformation if,

6𝑁 − 4 ≥ 1

2
𝑁(𝑁 − 1). (A.1)

Clearly A.1 is satisfied for all 𝑁 <∼ 12 leaving at least three excess degrees of freedom.

These excess degrees of freedom indicate the effective dimensionality of the manifold

of possible dye configurations that implement a given transformation. As we will

discuss later, this extra flexibility can be used to optimize the performance of the

system in the presence of environmental noise and to construct systems that enable

straightforward experimental initialization and measurement.

This analysis bounds the complexity of transformations that can, in principle,

be realized in excitonic systems. However, it assumes a freedom in selecting the

positioning, energies and transition dipole moments of the dyes that does not exist

in practical applications. Realistically, any given scaffolding approach may have

restrictions on dye placement and may only be compatible with a restricted subset

of dyes. These practical constraints make the added flexibility of the excess degrees

of freedom essential as they can be used to design around the limitations of a given

experimental approach. In the remainder of this paper we will show that, at least

for simple transformations, the required constraints leave a great deal of flexibility in

implementation.
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Appendix B

Additional Details on the Simulation

of Excitonic Circuits in Model and

Atomistic Environments

B.1 Population Dynamics of Excitonic Circuits in

Model Environments

The population dynamics of all four dyes comprising the idealized circuits in Section

3.4, for each step in the serial approach, are shown in Figure B-1. Note that the

first step is identical for both versions of the algorithm (i.e., ℋ̂1), and therefore

here the resulting populations are only shown once. On the other hand, the third

step population dynamics are shown for both circuits, to illustrate the effect of the

difference in initial states, even though both circuits evolve with ℋ̂3. The second step

for the constant version is not shown, as the identity oracle operation has no effect on

the exciton populations.
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Figure B-1: Time-evolution of the populations of the D-J algorithm with a model
environment (extension of Fig. 3-2). Populations of all four dyes in each excitonic
circuit are shown for the (A) first, (B) second and (C) third steps of the balanced
version of the D-J algorithm. The third step corresponding to the constant version of
the D-J algorithm is depicted in (D).

B.2 Methodology for the QM/MM Simulation of

Cyanine Excitonic Circuits.

All-atom Molecular Dynamics Simulations for Cy3 and Cy5 Constructs.

The molecular simulations in this paper followed a similar methodology as that

described by Ref. [72] Prior to performing the all-atom molecular simulations over

the Cy3-Cy5 constructs, a force field was generated for both the Cy3 and Cy5

monomers. The structures for Cy3-oxypropyl and Cy5-oxypropyl were built using

the Avogadro software (version 1.2.0), [7] and the geometry was optimized with the

restricted Hartree-Fock (RHF) method and the 6-31G(d) basis set, as included in the

Q-chem software [133]. The atomic point charges were generated with a Restrained

Electrostatic Potential (RESP) fit also using Q-Chem, and the generalized Amber

force field (GAFF) [149] was employed for all force field terms.

The optimized spatial parameters obtained from the genetic algorithm code were

used to build the Cy3-Cy5 constructs with the MDAnalysis software [110, 108], using

the equilibrium geometries. All-atom Molecular Dynamics (MD) simulations were
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performed on these cyanine systems using the software Amber18 [24] with the GAFF2

force field [149]. The structures were solvated in TIP3P water molecules, and a

distance of 10Å with respect to the solvent box. Explicit Cl− ions were added to

neutralize the cyanine molecules. Periodic boundary conditions were applied to all

MD simulations, and the SHAKE algorithm was applied to constrain the H atoms to

their equilibrium bond length. A 12Å cutoff was used to calculate the Van der Waals

energies, while The Particle Mesh Ewald (PME) method was employed to calculate

full electrostatics. The simulations were carried out in an NPT ensemble using the

Langevin thermostat for temperature control with a collision frequency of 2 ps−1, and

the Berendsen barostat for pressure control, with a reference pressure of 1 bar. Prior to

the production simulation, a minimization was carried out over the constrained system

during 5000 steps. Then, the constrained system was allowed to equilibrate while it

was slowly heated to 300 K, for a total time of 10 ps and time-step 1 fs, which was

followed by a second equilibration for 5 ps at constant temperature. The production

dynamics were then generated at 300 K during a total of 6 ps. A smaller time-step

of 0.1 fs was used during this step to carefully simulate the short-time dynamics of

interest.

Excited State Quantum Mechanical Calculations.

The geometries for the CY3-CY5 constructs, corresponding to ℋ̂1 and ℋ̂3, were

sampled from the MD trajectories every 4 fs. For each time frame, the coordinate

data for the cyanine molecules was extracted using the MDAnalysis package [110],

and the singlet excited state energies were calculated for each individual molecule

using PySCF with the TDDFT 6-31G/B3LYP level of theory [141].

B.3 Determination of Bath Fluctuations Effects on

the Cy3-Cy5 Circuits

Fitting the Energy-gap Correlation Function into a Functional Form.

The parameters employed to fit the correlation function, 𝐶(𝑡), into the functional
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Table B.1: Fitting parameters for the Cy3(A) dye in the excitonic circuit realizing ℋ̂1.

Exponential 𝑎𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠]

1 2.000 18.22
2 0.089 16.88

Damped 𝑎̃𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠] 2𝜋/𝜔̃𝑖[𝑓𝑠]

1 1.000 157.9 21.49
2 4.525 152.7 58.45
3 0.501 1079 20.35
4 5.983 87.60 17.74
5 3.354 41.01 15.84
6 3.875 15.79 12.41

Table B.2: Fitting parameters for the Cy5(B) dye in the excitonic circuit realizing ℋ̂1.

Exponential 𝑎𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠]

1 3.128 19.18
2 38.71 98.27

Damped 𝑎̃𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠] 2𝜋/𝜔̃𝑖[𝑓𝑠]

1 1.276 117.7 21.60
2 7.805 117.2 82.54
3 1.340 3500 19.98
4 7.253 57.26 16.83
5 10.577 13.27 13.64
6 2.306 1489 17.67

form in Eq. 3.14 are presented in tables B.1 to B.4, for the ℋ̂1 excitonic circuit. The

resulting fit is compared with the numerically calculated correlation in Figure B-2.

Note the fit is not exact due to the small number of parameters employed, however,

the fit is appropriate to understand the behavior of the different correlation curves.

Analysis of the Fluctuations of the Torsional Angles in Cyanine Circuits.

Variations in the dephasing time between the different cyanine molecules in the circuits

can be explained in terms of the confirmations these molecules acquire as a function

of time. We analyze the torsional angles 𝜃 and 𝜑 for the Cy3 and Cy5 molecules

(Fig. B-3A) to reveal the origin of the strike differences observed in the effect of bath

fluctuations. The change of these torsional angles as a function of time reveals a

conformational shift on the Cy5(B) dye involving one of the heterodimer rings. On

the other hand, the other three molecules do not exhibit significant variation in their
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Table B.3: Fitting parameters for the Cy3(C) dye in the excitonic circuit realizing ℋ̂1.

Exponential 𝑎𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠]

1 6.520 0.290
2 19.10 37.18

Damped 𝑎̃𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠] 2𝜋/𝜔̃𝑖[𝑓𝑠]

1 1.000 1000 20.48
2 0.000 525.2 60.97
3 0.995 2600 22.07
4 8.849 20.00 15.06
5 9.192 71.99 17.81
6 1.065 17800 17.95

Table B.4: Fitting parameters for the Cy5(D) dye in the excitonic circuit realizing ℋ̂1.

Exponential 𝑎𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠]

1 70.00 10.00
2 70.00 43.33

Damped 𝑎̃𝑖[10
−5𝑒𝑉 ] 𝜏𝑐,𝑖[𝑓𝑠] 2𝜋/𝜔̃𝑖[𝑓𝑠]

1 28.24 2000 514.7
2 28.59 2000 171.9
3 3.451 2480 67.99
4 5.755 2392 17.57
5 2.059 2450 27.17
6 4.053 2000 26.31

Figure B-2: Correlation function for ℋ̂1 fitted to a double exponential with damped
oscillations functional form, as described in the main text. The dashed lines show the
time evolution of 𝐶(𝑡) as calculated numerically from the data set for 𝜀01.
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Figure B-3: Fluctuations on the relative geometries of the Cyanine molecules for the
ℋ̂1 circuit. The time evolution of two torsional angles is evaluated, 𝜃 and 𝜑. The
angles are indicated in (A) and (B), respectively, while the evolution of these for a
space of 700 fs is shown in (C) and (D).

structure that could indicate a conformational change. Structural reorganization

resulting from the thermal bath in Cy5(B) may be responsible for the unexpectedly

short dephasing time.

Spectral Density via Numerical Integration of the Correlation Function.

The spectral density was first calculated through a numerical integration of the

correlation function via Eq. 3.13. The resulting noisy spectra are shown in Figure B-4

for both circuits studied in this manuscript. The intricate nature of the spectra most

likely is due to the lack of sampling data, with 𝐶(𝑡) not decaying completely to zero

over the time range where 𝐽(𝜔) was evaluated. However, we can note that, generally,

the same molecules share similar peaks, although with varying amplitudes that directly

depend on the magnitude of the bath fluctuations for each dye. In particular Cy5(B)

in circuit ℋ̂1 shows a large amplitude frequency mode around 600cm−1. This peak

probably corresponds to the vibrational mode on the heterocycle ring and confirms our

hypothesis of a conformational change modifying the spectroscopic properties of this

dye. As described in the main text, the standard description of the spectral density in

Eq. 3.13 often fails to characterize high-frequency vibrational modes, and this region
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of the spectra is more accurately described with a harmonic approximation of 𝐽(𝜔).

Figure B-4: Spectral density, 𝐽(𝜔) evaluated from the numerical integration of 𝐶(𝑡)
as in Eq. 3.13, for the circuits evolving as ℋ̂1 and ℋ̂3, respectively.

Fitting the Numerical Spectral Density.

Assuming the correlation function, 𝐶(𝑡), takes a double exponentially decaying func-

tional form we have,

𝐶(𝑡) = 𝑎1𝑒
−𝑡/𝜏𝑐,1 + 𝑎2𝑒

−𝑡/𝜏𝑐,2 , (B.1)

which is derived by setting 𝑎̃𝑖 = 0 in Eq 3.14. The corresponding spectral density is

derived in the main text (Eq. 3.15), and the numerical spectra in Figure B-4 are fitted

to this functional form. The fitting parameters are listed in Table B.5, while the fitted

𝐽(𝜔) is shown in the main text for both cases.

Table B.5: Fitting parameters for the spectral density.

ℋ̂1 Dye 𝑎1[10
−5𝑒𝑉 ] 𝑎2[10

−5𝑒𝑉 ] 𝜏𝑐,1[𝑓𝑠] 𝜏𝑐,2[𝑓𝑠]
Cy3(A) 65.96 65.83 2.513 2.512
Cy5(B) 9581 99.31 2.214 2.215
Cy3(C) 8626 95.71 2.200 2.200
Cy5(D) 140.9 3587 10.00 0.035
ℋ̂3 Dye 𝑎1[10

−5𝑒𝑉 ] 𝑎2[10
−5𝑒𝑉 ] 𝜏𝑐,1[𝑓𝑠] 𝜏𝑐,2[𝑓𝑠]

Cy3(A) 159.2 159.2 1.997 1.997
Cy5(B) 185.4 182.8 1.930 1.930
Cy3(C) 125.5 125.5 1.721 1.722
Cy5(D) 154.7 150.3 1.779 1.779
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Appendix C

Mathematical Derivations on the

Dynamics of Dimer Systems with

Complex-valued Coupling

C.1 Derivation of the Wavefunction Coefficients for

the Circular and Linear Dimer System

In the Frenkel exciton model, The wavefunction for the dimer with a linear and 𝐷𝑁h

circular dyes, excited through circularly polarized light, can be represented with four

electronic states, [11]

|Ψ(𝑡)⟩ =𝐶𝑔(𝑡)|𝑔⟩𝑒−𝑖𝐸𝑔𝑡/ℎ̄

+𝐶𝑒(𝑡)|𝑒⟩𝑒−𝑖𝐸𝑒𝑡/ℎ̄

+𝐶+(𝑡)|+⟩𝑒−𝑖𝐸+𝑡/ℎ̄

+𝐶−(𝑡)|−⟩𝑒−𝑖𝐸−𝑡/ℎ̄, (C.1)

where 𝐶𝑖(𝑡) and 𝐸𝑖 are the wavevector coefficients and transition energies for the

exciton state |𝑖⟩, with 𝑖 = 𝑔, 𝑒,+ and −, representing the ground state |𝑔⟩ ≡ |𝑔𝑔⟩, an

exciton located on the linear molecule, |𝑒⟩ ≡ |𝑒𝑔⟩, and the exciton located in the 𝜋±
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MO of the circular molecule, |+⟩ ≡ |𝑔+⟩ and |−⟩ ≡ |𝑔−⟩, respectively,

When the wavefunction above is perturbed by a circularly-polarized laser field

𝜀±(𝑡), its time evolution can be described under the dipole approximation using the

time-dependent Schrödinger equation (Eq. 4.7. The right/left circularly polarized

pulse (RCP/LCP) is described in terms of its cartesian components by Eq. 4.8

with field amplitude 𝜀0, carrier frequency 𝜔, phase 𝜂, shape function 𝑠(𝑡) and

unit vectors 𝑒𝑥 and 𝑒𝑦 along the 𝑥- and 𝑦-axes. The time-dependant dynamics of

the coefficients 𝐶𝑖(𝑡) can be derived by combining 4.7 with the time-independent

Schrödinger expression, 𝐻𝑒𝑙|Ψ𝑖⟩ = 𝐸𝑖|Ψ𝑖⟩,

𝑖ℎ̄𝐶̇𝑗(𝑡) = −𝜀±(𝑡)
∑︁
𝑖

𝐶𝑖(𝑡)⟨𝜓𝑗|𝜇̂|𝜓𝑖⟩𝑒−𝑖𝜔𝑖𝑗𝑡. (C.2)

Expanding for 𝑖 = 𝑔, 𝑒,+ and −,

𝑖ℎ̄Ċ(𝑡) = −𝜀±(𝑡)

⎛⎜⎜⎜⎜⎜⎜⎝
0 ⟨𝑔|𝜇|𝑒⟩𝑒−𝑖𝜔𝐿𝑡 ⟨𝑔|𝜇|+⟩𝑒−𝑖𝜔𝐶𝑡 ⟨𝑔|𝜇|−⟩𝑒−𝑖𝜔𝐶𝑡

⟨𝑒|𝜇|𝑔⟩𝑒𝑖𝜔𝐿𝑡 0 0 0

⟨+|𝜇|𝑔⟩𝑒𝑖𝜔𝐶𝑡 0 0 0

⟨−|𝜇|𝑔⟩𝑒𝑖𝜔𝐶𝑡 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠C(𝑡),

(C.3)

where 𝜔𝐿 = (𝐸𝑒 − 𝐸𝑔)/ℎ̄ and 𝜔𝐶 = (𝐸± − 𝐸𝑔)/ℎ̄ are the excitation energies for the

linear and circular molecules, and we have taken the ground state to be the reference

energy, 𝐸𝑔 = 0. Note the dipole is non-zero only for the ground to excited state

transitions. The effect of the laser field, with frequency 𝜔𝐶 , on the linear excitation

can be calculated by expanding the dipole vector in terms of its Cartesian components,

⟨𝑔|𝜇|𝑒⟩ = |𝜇𝐿| cos 𝜃𝑥̂+ |𝜇𝐿| sin 𝜃𝑦,

−⟨𝑔|𝜇|𝑒⟩𝑒−𝑖𝜔𝐿𝑡.𝜀±(𝑡) = −𝜀0𝑠(𝑡)|𝜇𝐿|𝑒−𝑖𝜔𝐿𝑡 cos(𝜃) cos(𝜔𝐶𝑡)± sin(𝜃) sin(𝜔𝐶𝑡)

= −𝜀0𝑠(𝑡)|𝜇𝐿|𝑒−𝑖𝜔𝐿𝑡 cos(𝜃 ∓ 𝜔𝐶𝑡) (C.4)

where we have used the trigonometrical identities for sin𝛼 sin 𝛽 and cos𝛼 cos 𝛽. For

the circular exciton, the pulse with resonant frequency 𝜔𝐶 will interact with the 𝑥
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and 𝑦 components of the complex excitations, as previously described in 4.1). For

example, for an RCP field, we obtain the following expressions,

− ⟨𝑔|𝜇|+⟩𝑒−𝑖𝜔𝐶 𝑡.𝜀±(𝑡) = −𝜀0𝑠(𝑡)𝜇𝐶 (C.5a)

− ⟨𝑔|𝜇|−⟩𝑒−𝑖𝜔𝐶𝑡.𝜀±(𝑡) = −𝜀0𝑠(𝑡)𝜇𝐶𝑒
−2𝑖𝜔𝐶𝑡, (C.5b)

where we have used the fact that 𝜇𝐶 = 1√
2
⟨𝑔|𝜇|𝑥⟩ = 1√

2
⟨𝑔|𝜇|𝑦⟩. Using the Rotating

Wave Approximation (RWA) (𝑒±2𝜔 ≈ 0) we finally arrive to an expression for the

wavefunction coefficients when an RCP pulse with frequency 𝜔𝐶 is applied,

Ċ(𝑡) =
𝑖

ℎ̄
𝜀0𝑠(𝑡)×

⎛⎜⎜⎜⎜⎜⎜⎝
|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑒(𝑡)𝑒

−𝑖𝜔𝐿𝑡 + 𝜇𝐶𝐶+(𝑡)

|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑔(𝑡)𝑒
𝑖𝜔𝐿𝑡

𝜇𝐶𝐶𝑔(𝑡)

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (C.6)

C.2 Derivation of the Wavefunction Coefficients when

the Circular Molecule is Misaligned with the

Axis of Light Propagation

In Section C.1 we derived the coefficients describing the evolution of the dimer

wavefunction, when the 𝑥𝑦 plane of the molecule is aligned to be orthogonal to the 𝑧

axis of propagation of the incident 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 pulse. However, the above assumes a highly

precise spectroscopical setup of the system that may not be achievable in practice. In

fact, in a realistic system, one may have an ensemble of dimer configurations, where

some conserve the desired geometry, and some deviate from the intended configuration.

While the effect of deviations in the linear dimer is encoded in the angle 𝜃 (see Eq.

4.4), all our previous assumptions do not account for deviations in the circular pulse

alignment with respect to the pulse.

For a highly-symmetric molecule, we are interested in the effect of deviations with

respect to the plane orthogonal to the propagation of the light 𝑧. Rotations within
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this plane have no effect on the population of complex excitations. The symmetry

𝜇𝑥 = 𝜇𝑦 allows one to arbitrarily choose the frame of reference of the molecule to one

where the dipole components are aligned with the components of the light in that 𝑥𝑦

plane. Therefore, we account for the deviation of the plane with respect to the light

propagation axis, 𝑧, by defining an angle 𝜑, which quantifies the angle between the

rotated transition dipole moment vector and its projection in the molecular plane.

The components of the rotated vector, 𝜇⃗′, can be described in terms of the angle 𝜑

and the vector in the original plane, 𝜇⃗,

𝜇⃗′
𝑥 = 𝜇⃗𝑥 cos𝜑− 𝜇⃗𝑦 sin𝜑 (C.7a)

𝜇⃗′
𝑦 = 𝜇⃗𝑥 sin𝜑+ 𝜇⃗𝑦 cos𝜑 (C.7b)

Given that the 𝑥𝑦 frame of reference on a 𝐷𝑁ℎ molecule can rotate with respect to

the 𝑧 axis, here 𝜇⃗′
𝑥(𝑦) describes an arbitrary vector in the rotated molecular plane,

such that the angle of rotation is minimum. Using the definition above for the

transformed dipole moment of the 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 molecule, we can evaluate the wavefunction

for the circular -linear dimer excited through circular polarization, following Eq.

C.1: |Ψ(𝑡)⟩ = 𝐶𝑔(𝑡)|𝑔⟩𝑒−𝑖𝐸𝑔𝑡/ℎ̄+𝐶𝑒(𝑡)|𝑒⟩𝑒−𝑖𝐸𝑒𝑡/ℎ̄+𝐶𝑥(𝑡)|+⟩𝑒−𝑖𝐸+𝑡/ℎ̄+𝐶𝑦(𝑡)|−⟩𝑒−𝑖𝐸−𝑡/ℎ̄.

Employing a similar process as that described in Sec. C.1, we can derive the matrix

elements for the time-dependent wavefunction coefficients, when the dipole vector is

rotated by 𝜑. While the effect of the light perturbation on the linear molecule should

not be affected by the orientation of the circular molecule, we update the electric

field perturbation in the degenerate states |±⟩ by employing the new definition for

the dipole in Eq. C.5a,

⟨𝑔|𝜇|±⟩𝑒−𝑖𝜔𝐶𝑡.𝜀±(𝑡) =
1√
2
(⟨𝑔|𝜇|𝑥⟩ ± 𝑖⟨𝑔|𝜇|𝑦⟩) 𝑒−𝑖𝜔𝐶𝑡.𝜀±(𝑡)

=
1√
2
(𝜇𝐶𝑥(cos𝜑± 𝑖 sin𝜑) + 𝑖𝜇𝐶𝑦(± cos𝜑+ 𝑖 sin𝜑)) 𝑒−𝑖𝜔𝐶 𝑡.𝜀±(𝑡).

(C.8)

Expanding the terms above, we can solve the matrix elements for the states |+⟩ and
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|−⟩, after applying a RCP, 𝜀+,

−⟨𝑔|𝜇|+⟩𝑒−𝑖𝜔𝐶 𝑡.𝜀+(𝑡) = −𝜀0𝑠(𝑡)𝜇𝐶𝑒
𝑖𝜑[cos(𝜔𝐶𝑡) + 𝑖 sin(𝜔𝐶𝑡)][cos(𝜔𝐶𝑡)− 𝑖 sin(𝜔𝐶𝑡)]

= −𝜀0𝑠(𝑡)𝜇𝐶𝑒
𝑖𝜑, (C.9a)

−⟨𝑔|𝜇|−⟩𝑒−𝑖𝜔𝐶𝑡.𝜀+(𝑡) = −𝜀0𝑠(𝑡)𝜇𝐶𝑒
−𝑖𝜑[cos(𝜔𝐶𝑡)− 𝑖 sin(𝜔𝐶𝑡)][cos(𝜔𝐶𝑡)− 𝑖 sin(𝜔𝐶𝑡)]

= −𝜀0𝑠(𝑡)𝜇𝐶𝑒
−𝑖𝜑𝑒−2𝑖𝜔𝐶𝑡 ≈ 0. (C.9b)

Where we have used the RWA, such that 𝑒−2𝑖𝜔𝐶𝑡 ≈ 0. Replacing the above matrix

elements in the righ-hand side of Eq. C.3, we can derive the time-dependent wave-

function coefficients for this system,

𝐶̇𝑗(𝑡) =
𝑖

ℎ̄
𝜀0𝑠(𝑡)

⎛⎜⎜⎜⎜⎜⎜⎝
|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑒(𝑡)𝑒

−𝑖𝜔𝐿𝑡 + 𝜇𝐶𝑒
𝑖𝜑𝐶+(𝑡)

|𝜇𝐿| cos(𝜃 − 𝜔𝐶𝑡)𝐶𝑔(𝑡)𝑒
𝑖𝜔𝐿𝑡

𝜇𝐶𝑒
−𝑖𝜑𝐶𝑔(𝑡)

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (C.10)

Thus, the ˙C(𝑡) coefficients are identical to those derived for the perfectly aligned

system, with the rotation angle 𝜑 merely acting as a global phase in the evolution of

the |±⟩ wavefunction, 𝐶+(𝑡).
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