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Abstract 
 

This work presents the most comprehensive framework to date to assess the intersectional risks 

associated with design and policy decisions regarding the built environment. This framework is 

applied to decisions regarding the selection of hazard mitigation measures to apply, households 

to prioritize in hazard mitigation grant programs, and construction materials to use in efforts to 

reduce societal greenhouse gas (GHG) emissions. 

 

To study these decisions, a computation inexpensive method is developed to compute expected 

damages associated with each individual building in a community with hurricane wind exposure. 

This method is applied to study the cost burden of expected damages on each individual 

household. Later, this is integrated into building life cycle assessment (LCA) to incorporate 

hazard vulnerability into building embodied emissions. Lastly, building LCA is extended to 

inform the sectoral environmental footprint (SEF) of construction material sectors. 

 

Together, the model results of this work show that expected damages are currently 

underestimated, socially-vulnerable groups are likelier to be priced out hazard repairs, and 

ignoring use and end-of-life stages leads to ignoring the largest portion of building life cycle 

emissions as well as the largest contributors of the SEF of construction materials. By 

reevaluating the performance of the housing stock under each metric, strategies are proposed to 

prevent monetary damages, redistribute the cost burden of remaining monetary damages, and 

couple considerations for climate mitigation and climate adaptation by promoting disaster risk 

reduction as a pathway towards GHG abatement. 
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1 Introduction: Three Pillars of Sustainability 

One of the United Nations’ (UN’s) Sustainable Development Goals (SDGs) is to “make cities 

and human settlements inclusive, safe, resilient, and sustainable” (UN, 2015). To aid design and 

policy towards this goal, it is crucial to have a framework capable of assessing the performance 

of the housing stock in the face of economic, social, and environmental stressors. Each of these 

elements corresponds to one of the three pillars of sustainability. 

This work presents the most comprehensive framework to date to assess the intersectional risks 

associated with design and policy decisions regarding the built environment. The chapters of this 

work demonstrate the proposed methods on decisions regarding the selection of hazard 

mitigation measures to apply (Chapter 2), households to prioritize in hazard mitigation grant 

programs (Chapter 3), and construction materials to use in efforts to reduce societal greenhouse 

gas (GHG) emissions (Chapters 4 & 5). 

In Chapter 2, an updated framework is developed to compute expected damages associated with 

each individual building in a community with hurricane wind exposure. In Chapter 3, this 

framework is applied to study the cost burden of expected damages on each individual household 

and identify trends across socioeconomic and demographic groups. In Chapter 4, this is 

integrated into building life cycle assessment (LCA) to incorporate hazard vulnerability into 

building embodied emissions. In Chapter 5, industrial ecology tools like life cycle inventories 

(LCIs) and building LCA are extended to inform the sectoral environmental footprint (SEF) of 

construction materials sectors. 

Chapter 2 mainly focuses on the economic pillar of sustainability, Chapter 3 on the social 

pillar, and Chapters 4 & 5 on the environmental pillar. Each chapter of this work highlights 

benefits of assessment methods found under other pillars. This work attempts to bridge the 



20 

 

disconnect between available assessment methods by combining stressors and metrics across the 

three pillars of sustainability.  
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2 Contributions to Economic Assessment 

This chapter includes the manuscript “Texture-Informed Approach for Hurricane Loss 

Estimation: How Discounting Neighborhood Texture Leads to Undervaluing Wind Mitigation” 

authored by Ipek Bensu Manav, Jacob Roxon, Franz-Josef Ulm, Jeremy Gregory, and Randolph 

Kirchain (Manav et al., 2022). 

 

2.1 Abstract 

Motivating investment in pre-disaster mitigation requires accurate estimates of natural hazard 

risks. Present tools for loss estimation overlook building-level variations in wind loading induced 

by the configuration of surrounding buildings, called neighborhood texture. In doing so, such 

tools underestimate expected wind-related losses and undervalue wind mitigation. 

In this manuscript, texture effects are incorporated into a widely recognized loss estimation 

framework and applied to a case study of the residential building stock in Florida – with a focus 

on five densely populated counties representing a range of hazard exposure. For this study, each 

building is individually assessed for its prevailing local texture, and its occupancy and building 

characteristics are probabilistically assigned based on current Census data. Mitigation measures 

considered include shutters, straps, and tie downs. 

Even accounting for more than a third of homes already having these mitigation measures, model 

results suggest that implementing them would yield annualized benefits of $4.3 billion statewide 

ranging from $136 per household in Duval County to $1,950 per household in Miami-Dade 

County (respectively 100% and 90% higher than conventional estimates). 
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2.3 Introduction 

Over the last four decades, tropical cyclones have caused nearly $1 trillion in losses in the United 

States – more than any other natural hazard (NOAA 2020). As costs mount, stakeholders are 

calling for more focus and spending on pre-disaster mitigation rather than response and recovery 

(Gall et al., 2011). In fact, a recent report by the National Institute of Building Sciences (NIBS) 

estimated that $14 billion spent by Federal agencies in the past 23 years to mitigate wind-related 

hazard risks will yield $70 billion in avoided property losses – a cost-to-benefit ratio of 1 to 5 

(NIBS 2019a; 2019b). The U.S. National Science and Technology Council (NSTC) identified six 

grand challenges in creating resilient communities. Four of these grand challenges deal with 

doing a better job at quantifying and communicating hazard risks and the value of mitigation 

within communities (NSTC 2008; 2005). 

There are a number of tools communities can turn to for quantifying hazard risk by predicting 

expected losses due to natural hazards. For wind-related hazards, the two most widely used are 

the HAZUS-MH model developed by the U.S. Federal Emergency Management Agency 

(FEMA) (Schneider & Schauer, 2006; Vickery, Lin, et al., 2006; Vickery, Skerlj, et al., 2006) 

and the Florida Public Hurricane Loss Model (FPHLM) developed by a consortium of Florida 

universities led by Florida International University (FIU) (Pinelli et al., 2011). Within such tools, 

a key determinant of loss is the expected wind load experienced by a structure. Expected wind 

loads derive from both the local rate of occurrence of storms and the morphology of the local 

neighborhood and nearby obstructions, referred to as terrain (ASCE 2016; 2010). Present models 

of terrain effects consider obstruction height and density, and average these values across an 

upwind fetch of several kilometers (Wieringa, 1992, 1993) leading to nearly identical damage 

and loss risk levels for buildings within the same area. Previous work by several of the authors 
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has shown that the fine characteristics of the configuration of surrounding buildings, called 

neighborhood texture, create local variations in wind loads. As a result of texture, some buildings 

experience loads far above conventional estimates and some far below (Roxon, 2020). This 

manuscript shows that, because structural response is highly non-linear, by ignoring these 

variations, conventional methods systematically underestimate expected losses and, therefore, 

undervalue wind mitigation. On state level, this undervaluation could be on the order of billions 

of dollars per year.  
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2.4 Literature Review 

There are a number of studies and models for loss estimation (also called risk assessment) that 

assess structural performance under wind loading and evaluate expected wind-related losses. 

Models of this type can be grouped into two categories based on the underlying approach: 

econometric models (e.g., fitting claims data to directly infer a relationship between building 

characteristics and loss exposure) and engineering-based models (e.g., simulating building loss 

exposure based on structural analysis) (Pita et al., 2013). Engineering-based models span a range 

of scales from building components (e.g., roof panels and roof-to-wall connections) (Li & 

Ellingwood, 2006) to representative building types (e.g., wood-frame single family dwellings) 

(Li & van de Lindt, 2012). These models can be employed to explore the implications of damage 

on different scales, including groups of these representative building types aggregated within 

Census Tracts (Vickery, Lin, et al., 2006; Vickery, Skerlj, et al., 2006), counties (Pinelli et al., 

2011) or actuarial portfolios (AIR 2019; ARA 2019; CoreLogic 2019; RMS 2019). These models 

can also be incorporated into optimization algorithms for performance-based design (Wen & 

Kang, 2001a, 2001b). Engineering-based models have been applied to the cost-benefit analysis 

of applying various mitigation measures (Torkian et al., 2014) and the life cycle cost analysis 

(LCCA) of mitigating low-rise (Dong & Frangopol, 2017; Li, 2012; Noshadravan et al., 2017) 

and mid- to high-rise buildings (Mahmoud & Cheng, 2017). 

While a variety of data sources (e.g., field observations, wind tunnel tests, or claims data) and 

analytical methods (e.g., regression) have been employed in developing engineering-based 

models, these models are notionally similar in how they treat the influence of nearby 

obstructions (e.g., buildings and vegetation) on wind loads. Specifically, these models make use 

of various land use land cover (LULC) databases (e.g., the Florida Water Management Districts 
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and the Multi-Resolution Land Characteristics (MRLC) Consortium) to infer information on 

nearby obstructions and aggregate this information on various scales (e.g., Census Tract in 

HAZUS and ZIP code in actuarial tools), but they essentially refer to the same guidelines 

(Powell et al., 2003; Vickery et al., 2009; Vickery & Skerlj, 2005) for the treatment of this 

information. For these guidelines, they either refer to local building codes (AIR 2019) or they 

refer to the same authors that contributed to the development of building codes (ARA 2019; 

CoreLogic 2019; RMS 2019). The American Society of Civil Engineers (ASCE) 7 wind load 

provisions are the basis for building codes effective across the U.S. (ICC 2020; 2019; 2017). 

Nearby obstructions interfere with wind flows and affect wind loads (or pressures) acting on 

structures. In wind load provisions, this interference is captured within the impacts of what is 

referred to as terrain (also called exposure or surface roughness). When computing expected 

wind loads, the local terrain determines the exposure factor, 
hK , at mean roof height h , applied 

as follows 

 2

h hq K v  Eq.1.4.1 

where 
hq  is the velocity pressure at h , and v  is the 3-s gust wind speed at the height of 10 m (33 

ft) in open terrain (Zhou & Kareem, 2002). In literature, K  is recognized to be a continuous 

function of the surface roughness length, 
0z  (m) (Wieringa, 1992, 1993) where 

0z  is derived from 

the average height and areal density of nearby obstructions (Lettau, 1969). Recent studies have 

developed analytical relationships between K  and 
0z  using wind tunnel tests (Ozmen et al., 

2016), as well as Monte Carlo (MC) (Datin & Stedman, 2015), finite element (FE) (He et al., 

2017) and computational fluid dynamics (CFD) simulations (Kent et al., 2017; Ricci et al., 

2017). However, in current practice, 
hK  is assigned one of four discrete values corresponding to 
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four terrain classes, namely Exposure A (urban), Exposure B (suburban), Exposure C (open 

terrain) and Exposure D (water surfaces). Comparatively denser (or rougher) terrain classes 

correspond to muted wind loading (Wieringa, 1992, 1993). 

Over the last three decades, since its creation, the ASCE 7 provisions have been revised seven 

times (Barben & Solnosky, 2017). Although changes have been made to the definitions of factors 

that add onto Eq.1.4.1 and the wind speeds that Eq.1.4.1 is based on, these changes have not 

materially affected how terrain is accounted for (Cook et al., 2011). Critique on terrain classes 

have consisted of elimination (Vickery & Skerlj, 2000) and reintroduction of Exposure D 

(Vickery et al., 2010), and calling for (Irwin, 2006) and proposing (Ellison & Rutz, 2015) 

systematic approaches for assignment which currently relies on expert judgment (Ellingwood & 

Tekie, 1999). 

Of tools for loss estimation, HAZUS is the basis for most large-scale cost-benefit reports (NIBS 

2019b). It also contains the first nationwide database for 
0z  assigned systematically. This 

assignment makes use of LULC maps (FDEP 2021; MRLC Consortium 2015). Each LULC 

category corresponds to a 
0z  (Vickery, Lin, et al., 2006). In other loss estimation tools, similarly, 

0z  is derived from LULC maps. Typically, 
0z  is then used to adjust wind speeds and adjusted 

wind speeds are input to damage and loss functions (AIR 2019; ARA 2019; CoreLogic 2019; 

RMS 2019). In HAZUS, however, these functions are differentiated by characteristic values of 
0z  

(Vickery, Skerlj, et al., 2006). These functions were developed from wind tunnel tests (Case & 

Isyumov, 1998; Ho et al., 1992) that were conducted on regularly spaced arrays of similar low-

rise buildings. Such regularity (in spacing and footprint area) is a common thread in terrain 

studies. 
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Summary tables for 
0z  are available for stretches of terrain identified as continuous and 

homogeneous over areas of hundreds or thousands of meters in fetch (Wieringa, 1993). In 

HAZUS, and other tools, inhomogeneous areas are broken down into relatively homogeneous 

stretches and then 
0z  are averaged (so constant) across the area as a whole (e.g., weighted by 

building footprint in HAZUS and by population in actuarial tools) (Vickery, Lin, et al., 2006). 

This simplification is a practical one, driven by a lack of an established means to quantify 

inhomogeneity (and its impacts) on finer scales. As a consequence, current loss estimation tools 

have limited ability to evaluate the influence of surrounding buildings on damage (e.g., through 

shielding or tunneling) (Pita et al., 2015). 

Recently, Roxon demonstrated the use of the radial distribution function (RDF) as a 

computationally tractable method to quantify the impact of inhomogeneity at finer scales 

(Roxon, 2020). In statistical physics, this function describes variations in the density of atoms 

surrounding an atom of interest. Hence, this function provides a succinct measure, referred to by 

Roxon as texture, of disorder and density in the configuration of surrounding buildings within 

fetches of only tens of meters. Roxon replicated the morphologic characteristics of real-life cities 

in CFD simulations, by varying both spacing (based on the local RDF) and footprint areas (based 

on the local distribution) for groups of square-shaped buildings, and developed an empirical 

relationship between texture and wind loading on building facades. (Further characterization of 

the literature on terrain and texture can be found in the Supplementary Materials.) 

In summary, the literature on loss estimation is extensive. Most of that literature applies a similar 

set of assumptions around structural wind loading, which do not account for the local 

configuration of surrounding buildings (i.e., texture). Roxon’s texture represents a 

computationally inexpensive method to account for local configuration, but it has not yet been 
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adapted for loss estimation. This manuscript aims to fill these gaps by incorporating a texture-

based model into a loss estimation framework, and applying that framework to explore the 

implications of neighborhood texture on estimates of expected losses and the derived value of 

wind mitigation. 

To accomplish this goal, we introduce a procedure for deriving probabilistic, directional 

multipliers on wind speeds that approximate the impacts of local configuration, and we 

incorporate these multipliers into HAZUS – a widely used loss estimation tool. Its role for policy 

in emergency management makes it relevant for large-scale studies that could inspire public 

discourse. Also, HAZUS is publicly accessible and modifiable, and, although private actuarial 

tools may be more advanced, HAZUS includes many of the aspects necessary for this analysis 

(e.g., wind speed distributions and damage and loss functions). Here, it is also important to note 

that, unlike these actuarial tools, loss values in HAZUS do not reflect deductibles and limits, 

hence losses are a representation of monetary damage. Because no public dataset includes all 

building-level information needed to carry out this analysis, we probabilistically assign 

occupancy and building characteristics to building footprints.  
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2.5 Methodology 

To estimate the expected wind-related losses for any building, it is necessary to know its 

expected wind loads and its construction characteristics (Vickery, Lin, et al., 2006; Vickery, 

Skerlj, et al., 2006). To incorporate the variations created by neighborhood texture, we must also 

know details about the arrangement of nearby buildings. Unfortunately, the authors are unaware 

of any publicly available dataset that provides all of this information for individual buildings in 

the U.S. However, geographic information system (GIS) datasets are available that describe the 

location and footprint (and occasionally three-dimensional envelop) of buildings. Separately, 

Census data is available on the prevalence of occupancy and building types. In the U.S., the 

highest resolution form of the latter data is available for Census Tracts. Each Census Tract 

averages 4,000 inhabitants and is designed to be homogeneous in regard to demographics and 

living conditions (U.S. Census Bureau, n.d.-b). 

To accommodate the state of the data, our methodology comprises four elements: [1] The use of 

GIS files to evaluate the local texture for each building in the area of interest (a of Figure 2.5-1), 

[2] the incorporation of local texture into the recurrence of wind loads acting on each building (b 

of Figure 2.5-1), [3] the construction of probability distributions (called building schemes) to 

describe building structural response from the likelihood of occupancy and building types in the 

area of interest (c of Figure 2.5-1), and [4] the integration of all this information to estimate 

expected wind-related structural losses (d of Figure 2.5-1) and the benefits of mitigation to 

reduce those losses. 
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Evaluating Local Texture and Its Impact on Building Drag Coefficients 

To estimate the impacts of texture on expected structural losses, we first evaluate the local 

textural characteristics surrounding a building and how they amplify or mute the drag coefficient 

experienced by that building. Ideally, this would be carried out using CFD simulations of each 

individual building within the study area. Unfortunately, at present, the computational cost of 

CFD simulations is prohibitive for large case studies. Instead, we make use of an empirical 

relationship developed by Roxon (2020) (discussed below) and use that to augment current 

algorithms described in the ASCE 7 provisions and HAZUS framework. This relationship 

specifically estimates the maximum drag coefficient experienced by a building accounting for 

the configuration of nearby structures. 

Roxon developed this relationship by first executing CFD simulations for hypothetical 

neighborhood configurations, and then creating a regression model between attributes of these 

neighborhoods and the drag coefficients induced on neighborhood buildings. Specifically, Roxon 

found that the maximum drag coefficient is well predicted by the frontal (or facade) density for a 

building of interest and the angular order,  , of its surrounding buildings.   is used in statistical 

physics to describe the disorder (or order) in atomic arrangements. To make the regression model 

easier to apply, Roxon found that   is strongly correlated with the number of surrounding 

buildings. These findings have been applied in this work. 

For each building b in the study area, the latitude and longitude of the building centroid and the 

building footprint area, 
bA (m2), are extracted from GIS files of building footprints. For the study 

area, an overall density length, L̂  (m), is estimated as the average of bA across all buildings. 

Using this value, the local neighborhood of b  is defined as comprising buildings within a radius 
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of 10 L̂ . For this neighborhood, two attributes of b  are estimated. These are the local areal 

density, 
bP  (buildings per m2), and the local density length, 

bL  (m). The product of these two 

attributes and the average building height, h , (i.e., 
b bP L h ) provides an approximation of 

neighborhood frontal density. Additionally, the number of neighbors, 
bn , is computed as the 

buildings within a radius 3.5
bL  of b . 

bn  was found to be strongly negatively correlated with   

and represents a measure of disorder (Roxon, 2020). These attributes are then used to derive the 

maximum drag coefficient specific to b , 
bC , using a relationship defined by Roxon (2020). 

Formally, this is stated as: 

 1b b b bC n P L h= +  Eq.1.5.1 

As a point of comparison, the drag coefficient of an isolated square-shaped building, 
0C , is 2 

(Drag Coefficient, 2004). When 
0bC C , a structure experiences texture-induced amplifications 

in wind loading, and 
0bC C  implies texture-induced reductions in loading. Figure 2.5-2 

illustrates differences in local texture and the consequences of that difference on drag 

coefficients for three adjacent Census Tracts in Broward County, Florida. The greatest potential 

amplifications of 
bC  are for buildings in areas with high density (high 

b bP L h ) and low disorder 

(low 
bn ). In Figure 2.5-2 this occurs within the southernmost Census Tract (extensive orange 

coloration of buildings). The greatest potential reductions of 
bC  are for buildings in areas with 

low density and high disorder. In Figure 2.5-2 this occurs within the northernmost Census Tract 

(blue coloration of buildings). Areas with medium density and disorder exhibit a mix of 

amplifications and reductions. 
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Incorporating Texture-Adjusted Drag Coefficients in Wind Loads 

In Chapter 16 Section 9 of the ASCE 7 provisions, the derivation of wind loads experienced by a 

building b  begins by identifying the far-field 3-s gust wind speeds ( B

bv , referred to as the basic 

gust wind speeds, or basic gusts, and defined by gusts occurring in the wind layer high enough 

above ground surface to be unaffected by frictional forces created by the local terrain) at the 

centroid of the Census Tract containing b  (Cook et al., 2011; Vickery, Skerlj, & Twisdale, 2000; 

Vickery, Skerlj, Steckley, et al., 2000). The provisions also give guidelines on adjusting these 

basic gusts to local gusts ( L

bv ) based on the prevailing local terrain. Using that, it is possible to 

identify a factor, called the wind speed ratio, W , that represents the ratio between local and basic 

gusts. This leads to the relationship 

 L B

b b bv W v=  Eq.1.5.2 

where W  is the square-root of the exposure factor, K , from Eq.1.4.1 (Cook et al., 2011). 

To account for the impact of neighborhood texture, we estimate building-specific effective gusts 

( eff

bv ). The effective gusts aim to represent wind loading deviations from local gusts due to 

recirculation eddies (and resulting pressure differentials) induced by the configuration of 

buildings (and neighborhood canyons) surrounding b . Formally, therefore, we define the 

relationship between eff

bv  and L

bv  as: 

 eff L

b b bv eW v=  Eq.1.5.3 

where 
beW  is a proportionality constant that will be referred to as the effective wind speed ratio. 
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To estimate expected losses, we use the HAZUS framework which does not explicitly compute 

local gusts, but rather maps basic gusts to expected damage and losses for five terrain 

descriptions, namely “Open” (
0z  = .03 m), “Lightly Suburban” (

0z  = .15 m), “Suburban” (
0z  = 

.35 m), “Lightly Treed” (
0z  = .70) and “Treed” (

0z  = 1.0) (Vickery, Skerlj, et al., 2006). To make 

use of this framework, we estimate losses based on effective basic gusts ( effB

bv ), defined as: 

 effB B

b b bv eW v=  Eq.1.5.4 

Eq.1.5.4 implies that for a building in a neighborhood configuration that induces 
beW  = 1.2, 

when that neighborhood experiences basic gusts of 45 m/s (100 mph) ( B

bv  = 45 m/s) the building 

would experience the impact of basic gusts of 55 m/s (120 mph) ( effB

bv  = 55 m/s). By logical 

extension, in such a context, the impact of 55 m/s (120 mph) occurs with the frequency of 45 m/s 

(100 mph) basic gusts. This latter frequency is derived from a Weibull fitting of basic gusts at the 

centroid of Census Tracts (Batts et al., 1980). 

Because structural response is highly non-linear, the implications of texture-induced changes 

vary significantly. Considering 45 m/s (100 mph) basic gusts on an unmitigated single-family 

dwelling in Open terrain, 
beW  = 1.2 increases expected losses by 14% of replacement cost; 

whereas, 
beW  = .8 decreases expected losses by only 3% of replacement cost (FEMA 2019). 

It is possible to infer 
beW  from the relationship between wind loading, wind speed, and drag 

coefficient. Specifically, wind load is proportional to wind speed (squared) and drag coefficient. 

Therefore, in the direction of the maximum drag coefficient 
bC  (discussed prior), we can discuss 

the effects of texture either in terms of changes to the drag coefficient (shifting from the 

conventional drag coefficient 
0C  to 

bC ) (for a given B

bv ) or in terms of changes to the wind 



36 

 

speeds that load b  (shifting from B

bv  to the effB

bv  in that direction) (assuming the conventional 

drag coefficient 
0C ). That is to say 

 ( ) ( )
2 2

, 4

0

B effB d

b b bC C  ==  Eq.1.5.5 

where d  is the directional severity of wind loading. To develop the relationship expressed in 

Eq.1.5.1, Roxon repeated CFD simulations for Saffir-Simpson Category 5 winds impinging on 

the simulated neighborhoods from each of four orthogonal directions (Roxon, 2020). As such, 

each building had four simulation results (i.e., wind loads and derived drag coefficients) 

including a maximum drag coefficient 
bC  and three inferior drag coefficients. For this analysis, 

Roxon’s original simulation results are ranked by d  and the ranked set is indexed on {1,2,3,4}d  . 

bC , as defined in Eq.1.5.1, is associated with 4d = . 

Using Eq.1.5.5 and the relationship in Eq.1.5.4, we infer 

 ( ) ( )
2 2

4

0

B d B

b b b bC C eW ==  Eq.1.5.6 

This provides a relationship between 4d

beW =  and 
bC . Formally, that is stated as: 

 4

0/d

b beW C C= =  Eq.1.5.7 

As discussed prior, each b  has a maximum drag coefficient 
bC  and three inferior drag 

coefficients. We used these additional simulation results to generate a more complete analysis of 

building risk. We transformed the simulation results into a dataset of fractions for inferior wind 

speed ratios 4 4d d d

b b beW eW  == , where 4d

b   are modeled as conditional probability functions 

based on the magnitude of the corresponding observed 
bC . Specifically, 4d

b   are partitioned into 

six subsets based on whether the corresponding 
bC  falls within one of six ranges (as defined in 
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Table 2.5-1). 4d

b   within each of the six subsets are fit to a Beta distribution (best fit parameters 

listed in Table 2.5-1). The conditional probability functions are then placed within convolution 

integrals to evaluate expected losses in each of the inferior directions. 

Constructing Building Schemes 

Publicly available datasets for building footprints, specifically GIS files, contain limited to no 

information on occupancy and building type. This lack of information is referred to as under-

specification. In this manuscript, under-specification is addressed by probabilistically assigning 

occupancy and building types to building footprints based on characteristics of the Census Tract 

in which it is located. 

For this analysis, we consider 8 occupancy types, i  (  , ,...,i RES1 RES2 RES3F  complete list in 

Table 2.5-2), and 27 building types, j  (  , ...,j WSF1 WSF2 MH94HUDIII  complete list can be found 

in the Supplementary Materials). Each building, b , is assigned a likelihood of being each of 

types ij . The prevalence of occupancy types (e.g., RES1 = single-family dwelling) can be 

obtained from HAZUS or the U.S. Census Bureau’s American Community Survey (ACS). The 

prevalence of building types can be  obtained from probability distributions in HAZUS referred 

to as building schemes (FEMA n.d.). 

Within HAZUS building schemes, each Census Tract belongs to a schematic region (and a state). 

The distribution of “general” building types is provided on the state level, and the conditional 

distribution of “specific” building types, given a general building type, is provided on a regional 

level. General building type defines construction material (e.g., wood-frame), while specific 

building type further defines construction characteristics (e.g., wood-frame single-family 
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dwelling with one story). HAZUS provides loss functions for each specific building type, and 

according to whether or not (or which) mitigation measures are applied (listed in Table 2.5-3). 

Due to data limitations, three assumptions are made about mitigation measures and occupancy 

types. First, cases considered assume either all or none of the mitigation measures are applied. 

Future studies could look at the effects of each mitigation measure separately and compare these 

effects to empirical results from past hurricanes. Second, all building footprints are assumed to 

be residential (despite the fact that some building footprints are commercial). This should not 

lead to a significant error, because more than 90% of buildings are residential. Also, we expect 

commercial buildings to be less susceptible to texture-related loss amplifications, partly because 

they are built to higher performance standards than residential buildings, and partly because they 

tend to be found in low density configurations (e.g., strip malls). Lastly, building schemes are 

assumed to apply uniformly across each Census Tract (though structures of closer proximity are 

likelier to be similar). To estimate Census Tract totals for losses and benefits, we compute 

Census Tract averages across all buildings in each Census Tract, and then scale that by only the 

number of residential buildings. 

Estimating the Value of Mitigation 

To estimate the value of mitigating against wind-related losses and to quantify the impact of 

explicitly considering neighborhood texture in that estimate, we evaluate expected losses for 

individual buildings from four perspectives: With and without mitigation ( m M=  and m M=  

respectively), and with and without consideration of local texture ( t T=  and t T=  respectively). 

More specifically, we define the expected annual benefits (EAB) (of mitigating) for a building b
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as the difference between expected annual losses (EAL) when m M=  versus m M= . Expressed 

analytically, that is 

 , ,t t M t M

b b bEAB EAL EAL= −  Eq.1.5.8 

Using this metric, it is then possible to evaluate the impact of accounting for texture effects as 

the change in EAB for b  when t T=  versus t T= . Formally, we define this as the additional 

expected annual benefits (AEAB) for b , and compute it as: 

 T T

b b bAEAB EAB EAB= −  Eq.1.5.9 

Referencing our building schemes, EAL for b  is a weighted average of EAL estimated for each 

occupancy type i  that b  could belong to. EAL for each i  is its local replacement cost times the 

convolution integral of its loss function over the recurrence of effective basic gusts effB

bv  acting on 

b  (discussed earlier). Loss functions for each i  are weighted averages of curves for each 

building type j  that i  could be constructed of, and are also interpolations across curves for 

characteristic roughness length (based on 
0z  of the Census Tract containing b ) (Vickery, Skerlj, 

et al., 2006). EAL is evaluated in each directional severity d , and then averaged (Batts et al., 

1980).  
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Table 2.5-1. Summary of Roxon’s simulation results and Beta fitting. 
 Range of Maximum Drag Coefficient (

bC ) 

 [1.0, 1.5] (1.5, 2.0] (2.0, 2.5] (2.5, 3.0] (3.0, 3.5] (3.5, 4.0] 

#Observations 77 456 368 300 202 200 
d

beW  d  = 1 .74 

(.02) 

.77 

(.04) 

.79 

(.06) 

.82 

(.08) 

.85 

(.10) 

.89 

(.13) 

d  = 2 .77 

(.03) 

.82 

(.05) 

.87 

(.07) 

.93 

(.10) 

.91 

(.12) 

1.03 

(.16) 

d  = 3 .80 

(.03) 

.87 

(.05) 

.95 

(.07) 

1.02 

(.10) 

1.10 

(.12) 

1.17 

(.15) 

d  = 4 .83 

(.03) 

.94 

(.04) 

1.06 

(.03) 

1.17 

(.03) 

1.27 

(.03) 

1.37 

(.03) 
4/d d

b beW eW =
 d  = 1 .90 

(.03) 

.82 

(.05) 

.75 

(.06) 

.71 

(.07) 

.67 

(.08) 

.65 

(.10) 
1d

xA =  73 45 31 26 18 14 

1d

xB =  8 10 10 11 9 7 

p-value .37 .03 <.01 <.01 <.01 .01 

d  = 2 .94 

(.03) 

.87 

(.05) 

.82 

(.07) 

.79 

(.08) 

.77 

(.10) 

.75 

(.11) 
2d

xA =
 43 27 19 15 11 9 

2d

xB =
 3 4 4 4 3 3 

p-value .69 .07 <.01 .02 .08 .25 

d  = 3 .97 

(.03) 

.93 

(.05) 

.90 

(.07) 

.87 

(.08) 

.87 

(.09) 

.85 

(.11) 
4d

xA =
 39 18 12 12 9 7 

4d

xB =
 1 1 1 2 1 1 

p-value .98 .09 <.01 .35 .06 .43 

Note: means, and standard deviations (in parentheses) across observations; d

beW  = effective wind 

speed ratio of observation b  for directional severity d ; d

xA  = alpha (shape) parameter; d

xB  = beta 

(shape) parameter; p-value from Kolmogorov-Smirnov hypothesis testing. 
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Table 2.5-2. List of occupancy types considered. 
Code Description 

RES1 Single-family dwellings 

RES2 Manufactured homes 

RES3A Duplexes 

RES3B Triplexes and quads 

RES3C Multi-unit housing with 5-9 units 

RES3D Multi-unit housing with 10-19 units 

RES3E Multi-unit housing with 20-49 units 

RES3F Multi-unit housing with 50+ units 

Note: nomenclature for codes borrowed from HAZUS. 

 

Table 2.5-3. List of mitigation measures considered. 
Code Description 

MM1 Applying shutters on all windows and entry doors 

MM2 Placing straps or clips on roof-to-wall connections 

MM3 Providing superior wood roof deck attachment 

MM4 Providing superior metal roof deck attachment 

MM5 Providing secondary water resistance 

MM6 Applying tie downs 
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Figure 2.5-1. Methodological flow diagram to compute expected annual losses for building 

footprints with underspecified occupancy type i  and underspecified building type j ; (a) using 

GIS files to evaluate local texture; (b) incorporating texture into wind loads; 
bC  = maximum drag 

coefficient of building b ; d

beW  = effective wind speed ratio of b  for directional severity d ; (c) 

constructing building schemes; and, (d) estimating expected losses; 
0z  = surface roughness length (m). 
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Figure 2.5-2. Trends in local texture across three adjacent Census Tracts; Colors indicate 

maximum drag coefficient for corresponding building; Greatest load amplifications on buildings 

in areas with high density/low disorder, and greatest reductions on buildings in areas with low 

density/high disorder. 
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2.6 Case Study 

To demonstrate the application of our modified, texture-informed framework, we produced a 

case study on the benefits of mitigating homes in the state of Florida – which currently contains 

6.9 million buildings (Microsoft, 2018) and 9.3 million housing units (or households) in 4245 

Census Tracts (U.S. Census Bureau, 2020a) (Table 2.6-1). In this section, we discuss statewide 

results along with results for five focal counties. Our focal counties consist of Miami-Dade, Lee, 

Hillsborough, Orange and Duval county, respectively recognized for the metro areas of Miami, 

Fort Myers, Tampa, Orlando and Jacksonville. Respectively, they contain 1.0 million, 383 

thousand, 564 thousand, 518 thousand and 400 thousand households (U.S. Census Bureau, 

2020a) (Table 2.6-1). These counties represent a range of exposure to wind-related hazards. As a 

rule of thumb, more northern counties (like Duval) have less wind exposure than southern ones 

(like Miami-Dade), and inland counties (like Orange) have less wind exposure than coastal ones 

(like the other four). Lee and Hillsborough are on the Gulf coast, while Miami-Dade and Duval 

are on the Atlantic coast (shown in Figure 2.6-1). 

In our study, all building footprints were extracted from an online repository (Microsoft, 2018). 

The empirical relationship developed by Roxon requires the attributes of latitude, longitude, and 

footprint area for each building in a study area. Any dataset that includes these attributes or 

facilitates their extraction would be sufficient. The online repository we used was systematically 

derived on national scale. However, various other datasets are available on more localized scales 

(and their availability is increasing rapidly). Among these datasets, there are those that are 

prepared by government (e.g., Miami-Dade County’s Open Data Hub) (MDC 2019) and those 

that are crowd-sourced (e.g., OpenStreetMap) (OSM 2021). 
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Locational attributes were then spatially joined with the U.S. Census Bureau’s 2018 cartographic 

boundary files for assignment of Federal Information Processing Standard (FIPS) codes (U.S. 

Census Bureau, 2018). Each FIPS code corresponds to a unique Census Tract. Surface roughness 

length, 
0z , recurrence intervals for basic gust wind speeds, B

bv , and applicable schematic regions 

were taken from HAZUS. In HAZUS, the surface roughness information was derived from the 

Florida Water Management Districts (FDEP 2021) and the MRLC Consortium (MRLC 

Consortium 2015), while the information on recurrence intervals was derived from ASCE 7 wind 

maps (ASCE 2018). These data sources could be used directly as well. In Florida, there are four 

HAZUS schematic regions: Southeast (including Miami-Dade), South (including Lee), Central 

(including Hillsborough and Orange) and North (including Duval). 

The HAZUS database also has average replacement costs (for each occupancy type) and loss 

functions (for each building type). The latest property and loss valuations are in 2018-USD 

(FEMA 2019). The HAZUS replacement costs were modeled from the RSMeans database 

(Gordian, 2021) which is the industry standard for labor and materials costs. Future studies could 

make use of this database in computing costs related to the application of various mitigation 

measures (Torkian et al., 2014) and comparing these costs to the relevant, texture-informed 

benefits to evaluate potential homeowner decisions. 

Missing information was filled using a nearest-neighbors matrix of centroids of Census Tracts. 

Of the 4245 Florida Census Tracts, 4207 have 
0z  and recurrence intervals available in the 

HAZUS database; and, 4096 have average replacement cost available in the HAZUS database.  
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Table 2.6-1. Exposure in Florida and focal counties. 
 #Tracts #Buildings #Households 

Florida 4190 6.90 million 9.25 million 

Miami-Dade 518 495 thousand 1.01 million 

Lee 166 281 thousand 383 thousand 

Hillsborough 319 418 thousand 564 thousand 

Orange 206 353 thousand 518 thousand 

Duval 173 303 thousand 400 thousand 

Note: number of Census Tracts limited to those identified to contain buildings. 
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Figure 2.6-1. Map of maximum effective wind speed ratio; Colors indicate Census Tract mean 

of maximum effective wind speed ratio across Census Tract buildings; Orange indicates potential 

amplifications in worst-case wind loads, while blue indicates potential reductions in worst-case 

wind loads. 
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2.7 Results 

Applying the relationships in Eq.1.5.1 and Eq.1.5.7, we estimated the maximum effective wind 

speed ratio, 4d

beW = , for each building in Florida. Figure 2.6-1 maps the Census Tract level 

summary of this estimation (in terms of mean of 4d

beW =  across buildings in each Census Tract). In 

Figure 2.6-1, orange coloration indicates Census Tracts where, on average, structures experience 

amplifications in worst-case wind loads, while blue coloration indicates Census Tracts where, on 

average, structures experience reductions in worst-case wind loads. Each Census Tract represents 

roughly the same number of households. As such, less dense Census Tracts are cartographically 

larger and are also associated with potential reductions (blue on the map). Although these 

encompass a large area on the map, they represent 14% of Florida Census Tracts (and roughly 

the same fraction of housing units) (Figure 2.7-1). Conversely, denser Census Tracts are 

cartographically smaller and are associated with potential amplifications (orange on the map). 

They represent 86% of Census Tracts (more than half of which have a mean of 4d

beW =  greater 

than 1.2) (Figure 2.7-1). In Florida, these densely built-up areas tend to be along the coastline – 

where wind-related hazards are already of high concern. 

Implications of Texture Effects on Mitigation Benefits 

Based on texture-adjusted expected wind loadings, our model results yield expected annual 

losses (EAL) with a statewide median of $732 per year per household ($/yr/hh) for unmitigated 

homes ( m M= ), and $270/yr/hh for mitigated homes ( m M= ) (Table 2.7-1). Comparing m M=  

versus m M=  (as in Eq.1.5.8), that yields expected annual benefits (EAB) of mitigating which 

have a statewide median of $468/yr/hh and reach $1,310/yr/hh to $6,720/yr/hh in the upper 
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quartile of Florida Census Tracts (representing 2.2 million housing units) (Table 2.7-1). 

Comparing analyses considering the impact of texture ( t T= ) to one that does not ( t T= ), 80% 

of Census Tracts exhibit an increase in their mean EAB, more than half of which at least double 

their conventional estimate (Figure 2.7-2). Our results yield additional expected annual benefits 

(AEAB) (as defined in Eq.1.5.9) which have a statewide median of $210/yr/hh and reach 

$589/yr/hh to $3,300/yr/hh in the upper quartile of Census Tracts (Table 2.7-1). 

Underestimating the value of mitigation can lead to homeowners making sub-optimal decisions 

about investing in mitigation measures. Among our focal counties, AEAB are lowest in the 

northernmost, Duval County, and highest in the southernmost, Miami-Dade County. Duval has a 

mean of $70/yr/hh with a standard deviation of $65/yr/hh. Miami-Dade has a mean of $909/yr/hh 

with a standard deviation of $758/yr/hh. And, the other counties average at roughly two hundred 

dollars per year per household (Table 2.7-2). 

To better understand what areas are more likely to be associated with underestimated EAB, we 

explored the correlation between neighborhood characteristics and the magnitude of the 

underestimate. Specifically, we evaluate the Pearson correlation coefficient between AEAB and 

several neighborhood characteristics (Table 2.7-3, Table 2.7-4, and Table 2.7-5). AEAB are 

higher for homes in areas that are more coastal (ρ = .25); have more exposure to wind-related 

hazards (strongly correlated, ρ = .57) (Table 2.7-3); have higher prevalence of single-family 

dwellings (ρ = .33); and, have lower prevalence of manufactured homes (ρ = -.29) (Table 2.7-4). 

Overall, coastal areas tend to be more exposed to wind-related hazards (ρ = .24); have lower 

shielding effects induced by the local terrain (ρ = -.14); and, have higher tunneling effects 

induced by the local texture (ρ = .27) (Table 2.7-5). 
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All of our focal counties have suburban/urban terrain (Table 2.7-3); have more than 80% of their 

households living in single-family dwellings; and, have average replacement cost of roughly two 

hundred thousand dollars per housing unit (Table 2.7-4). As they are all densely built-up areas, 

they are all susceptible to adverse texture effects. However, accounting for these effects scales 

their EAB at vastly different rates (as discussed earlier). Of them, Miami-Dade, Lee, and 

Hillsborough (the southernmost counties) are the most coastal (with respectively decreasing 

wind exposure and AEAB). Duval (the northernmost county) is less coastal (and has low wind 

exposure, leading to much lower AEAB). And, Orange (relatively more southern) is the least 

coastal (though has high wind exposure, leading to similar AEAB as Lee and Hillsborough) 

(Table 2.7-3). 

Lastly, we computed total expected losses and benefits statewide. Our results show statewide 

EAL of $12.0 billion per year ($/yr) if all homes are unmitigated, EAL of $3.9 billion/yr if all 

homes are mitigated, and, therefore, EAB of $8.1 billion/yr. This latter figure includes AEAB of 

$3.7 billion/yr. This implies that conventional loss estimation models may be underestimating 

the value of mitigating Florida homes by more than 80%. At present, nearly 40% of single-

family dwellings, and manufactured homes, nearly 30% of duplexes, triplexes, and quads, and 

nearly 20% of larger multi-unit housing include the mitigation measures studied (FEMA 2019) 

(regional assumptions can be found in the Supplementary Materials). Under these assumptions, 

the state of Florida is currently reaping 47% of potential benefits for mitigating homes against 

hurricanes. Nevertheless, the state is still exposed to an EAL of $8.2 billion/yr, and there is a 

remaining $4.3 billion/yr of potential benefits (of which $2.0 billion/yr can be attributed to 

texture-related loss amplifications).  
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Table 2.7-1. Summary of expected annual losses and benefits of mitigating ($/yr/hh); Statewide. 
 Considering Texture Effects ( t T= ) 

 EAL ( m M= ) EAL ( m M= ) EAB AEAB 

Minimum 2 1 1 -1,570 

25th percentile 336 139 196 22 

50th percentile 732 270 468 210 

75th percentile 1,932 608 1,310 589 

Maximum 9,470 2,760 6,720 3,300 

Mean 

(Std. Deviation) 

1,310 

(1,380) 

420 

(400) 

885 

(983) 

404 

(595) 

Note: percentiles, means, and standard deviations across averages for Census Tracts; m M=  = 

unmitigated building stock; m M=  = mitigated building stock. 
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Table 2.7-2. Summary of expected annual losses and benefits of mitigating ($/yr/hh); Focal 

counties. 
 Considering Texture Effects ( t T= ) 

 EAL ( m M= ) EAL ( m M= ) EAB AEAB 

Miami-Dade 2,800 

(1,420) 

846 

(408) 

1,950 

(1,000) 

909 

(758) 

Lee 1,220 

(685) 

405 

(199) 

817 

(498) 

230 

(390) 

Hillsborough 671 

(406) 

239 

(129) 

432 

(278) 

222 

(212) 

Orange 542 

(245) 

219 

(93) 

322 

(153) 

225 

(130) 

Duval 226 

(128) 

90 

(44) 

136 

(84) 

70 

(65) 

Note: means and standard deviations (in parentheses) across averages for Census Tracts; m M=  

= unmitigated building stock; m M=  = mitigated building stock. 
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Table 2.7-3. Summary of explanatory factors; Locational characteristics. 
 Coastal-ness Windiness Terrain Texture 

Florida -21 18 .38 1.17 (.18) 

Miami-Dade -10 21 .36 1.24 (.16) 

Lee -7 18 .34 1.12 (.18) 

Hillsborough -11 17 .40 1.16 (.19) 

Orange -57 18 .43 1.21 (.19) 

Duval -21 13 .36 1.14 (.19) 

ρ with EAB ( t T= ) .42 .71 -.39 .28 

ρ with EAB ( t T= ) .36 .70 -.26 .57 

ρ with AEAB .25 .57 -.12 .70 

Note: means and standard deviations (in parentheses) across Census Tracts; Pearson correlation 

coefficients computed statewide from Census Tract means of EAB, and AEAB; t T=  = not 

considering texture; t T=  = considering texture; Coastal-ness = negative distance of Census 

Tract centroid from nearest coastline (km); Windiness = Census Tract expected annual basic gust 

wind speed (m/s); Terrain = Census Tract surface roughness length (m); Texture = Census Tract 

mean of maximum effective wind speed ratio. 

 

Table 2.7-4. Summary of explanatory factors; Occupancy and building characteristics. 
 Single-Family Manufactured Multi-Unit Replacement Cost 

Florida 81% 12% 7% $208,000/hh 

Miami-Dade 88% 3% 9% $218,000/hh 

Lee 84% 11% 5% $246,000/hh 

Hillsborough 78% 13% 9% $196,000/hh 

Orange 85% 5% 10% $253,000/hh 

Duval 88% 7% 5% $246,000/hh 

ρ with EAB ( t T= ) .30 -.35 .04 .17 

ρ with EAB ( t T= ) .35 -.35 -.04 .19 

ρ with AEAB .33 -.29 -.09 .18 

Note: percentages and means across Census Tracts; Pearson correlation coefficients computed 

statewide from Census Tract means of EAB, and AEAB; t T=  = not considering texture; t T=  = 

considering texture. 
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Table 2.7-5. Correlation matrix for explanatory factors. 
 Coastal. Wind. Terrain Texture Single-F. Manuf. Multi-U. Repl. C. 

Coastal. 1        

Wind. .24 1       

Terrain -.14 -.27 1      

Texture .27 .42 .02 1     

Single-F. .14 .14 -.16 .28 1    

Manuf. -.23 -.28 .17 -.28 -.83 1   

Multi-U. .14 .21 -.00 -.03 -.39 -.20 1  

Repl. C. -.04 -.01 -.07 .09 .47 -.27 -.39 1 

Note: Pearson correlation coefficients computed statewide; Coastal-ness = negative distance of 

Census Tract centroid from nearest coastline (km); Windiness = Census Tract expected annual 

basic gust wind speed (m/s); Terrain = Census Tract surface roughness length (m); Texture = 

Census Tract mean of maximum effective wind speed ratio; Single-family dwellings, 

manufactured homes, and multi-unit housing in terms of percentages; Replacement cost in terms 

of $k/hh. 
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Figure 2.7-1. Histogram of Census Tract mean of maximum effective wind speed ratio; A 

majority of Florida Census Tracts have potential amplifications in worst-case wind loads. 

 

 
Figure 2.7-2. Histogram of Census Tract mean ratio between texture-informed expected annual 

benefits and HAZUS expected annual benefits; Filtered to Census Tracts with HAZUS expected 

annual benefits greater than $100/yr/hh (histogram for Census Tracts with HAZUS expected 

annual benefits less than $100/yr/hh can be found in the Supplementary Materials); A majority 

of Census Tracts exhibit an increase in expected annual benefits of mitigating homes. 
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2.8 Discussion 

The results of applying our modified framework to a case study on Florida indicate that current 

loss estimation methods that do not consider texture effects severely underestimate expected 

losses. Though texture can induce wind loads both higher and lower than conventional estimates, 

the non-linearity of structural response leads to a significant net increase in expected losses. In 

total, this increase could be on the order of tens to hundreds of millions of dollars per year on a 

county level, and on the order of billions of dollars per year on the state level. Our model results 

suggest that implementing mitigation measures including shutters, straps, and tie downs across 

unmitigated homes would yield annualized benefits of $4.3 billion statewide ranging from $136 

per household in Duval County to $1,950 per household in Miami-Dade County (respectively 

100% and 90% higher than conventional estimates) (Table 2.7-2). 

In current practice, hurricane loss risk is acknowledged to be high along the Atlantic and Gulf 

coasts – leading to locally stricter building codes in coastal communities (ICC 2017). This study 

of the implications of neighborhood texture suggests that not only have such risks been 

previously underestimated, but many communities considered inland and protected would 

benefit significantly from further mitigation. This latter description would be anywhere more 

than 1.6 km (1 mi) away from the immediate coastline (therefore, including anywhere within 

Orange County) (ICC 2017). Our findings strongly encourage coastal states to consider broader 

efforts to adopt strict building codes – especially in densely built-up areas where risk factors 

compound. 

The benefits of mitigating homes extend beyond the magnitude of avoided structural losses 

captured in the scope of this manuscript. Many other forms of loss accrue to homeowners and 
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communities, including: loss of building contents, debris generation, and business interruption 

(FEMA 2019). Additionally, mitigation can lead to insurance discounts for homeowners (Malik 

et al., 2012; The State of Florida, 2011). Finally, as has been widely discussed, many experts 

believe that storm recurrence intervals may shorten with climate change, but recurrence data 

available today does not reflect this. All together, these facts signify that the values developed in 

this study are themselves still underestimates of the value of mitigation. While future studies 

should expand this work to include such benefits, the values presented here already begin to 

make a strong case to act now to make buildings more resilient to future storms.  
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2.9 Data Availability Statement 

All data, models, or code generated or used during the study are available in a repository or 

online in accordance with funder data retention policies. Our study of all hurricane-prone states 

can be found at: https://cshub.mit.edu/city-texture-dashboard. Our code (with sample input) can 

be found at: https://github.com/CSHubMIT/texture_loss_estimation. HAZUS software and 

associated data files can be found at: https://msc.fema.gov/portal/resources/hazus. GIS files for 

building footprints can be found at: https://github.com/microsoft/USBuildingFootprints. U.S. 

Census Bureau’s cartographic boundary files and ACS data tables can be found at: 

https://www.census.gov. 
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3 Contributions to Social Assessment 

This chapter includes the manuscript “Priced Out: Measuring the Severe Cost Burden of 

Hurricane Repairs on Socially-Vulnerable Households” authored by Ipek Bensu Manav and 

Randolph Kirchain. The title and content of the manuscript may have changed during peer 

review and publication. 

 

3.1 Abstract 

Unlike recovery, which is dictated by hazard events, mitigation is allocated a priori. Mitigation 

spending could be allocated to either minimize total monetary damage or to minimize the 

number of households that face severe cost burden. Publicly-available methods for risk 

assessment lack means to simulate how hazard risks differ across households, hence cannot 

inform the latter decision. 

This manuscript bridges that gap by presenting a scalable, high-resolution method to evaluate 

expected damages for each individual household. This method is used to develop the first pre-

disaster mapping of such across six states tracing the hurricane-prone coasts of the United States. 

The case study identifies households that face being priced out by hazard repairs, herein referred 

to as severe cost burden and defined as expected monetary damages in excess of one-quarter of 

household annual income. 

Datasets are created to represent residences and resident households combining physical 

characteristics and demographics. All analyses use public information from the U.S. Federal 

Emergency Management Agency (FEMA) and Census Bureau. Across the six states, model 
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results show 712 thousand households are likely to be severely cost-burdened by hurricane 

repairs. Socially-vulnerable groups are overrepresented among severely cost-burdened 

households, including households that are below the poverty line, are single-parent households, 

belong to minorities, live in mobile homes, and/or include a member with disability. In the case 

study of Miami-Dade County, FL, a disaster risk reduction policy is characterized to address all 

avoidable price-out as well as the majority of avoidable monetary damage while selecting only 

1% more residences than would be selected if the only criteria were addressing the latter. 

3.2 Keywords 

Hurricanes, Social Vulnerability, Risk Assessment  
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3.3 Introduction 

An increasing awareness of the tie between climate change and natural hazard events is leading 

governments to reexamine their spending on disaster risk reduction. Authors across the globe, 

studying various natural hazards, have shown that investing in pre-disaster mitigation can 

significantly reduce spending on post-disaster recovery (de Vet et al., 2019; X. Wu & Guo, 2021; 

Yaron & Wilson, 2020). 

Recently, policies in the United States have begun to put this into practice. In the state of Florida 

alone, more than $100 million in Federal funds have been approved for strengthening new 

structures and retrofitting existing structures (FEMA 2019a). Maximizing the impact of these 

funds requires that decision-makers rigorously answer the questions of ‘where’ support is needed 

and ‘who’ needs it the most. 

Across engineering disciplines, vulnerability to natural hazards is commonly represented as 

deriving from two factors: climate and structures (Pita et al., 2015). Climatological vulnerability 

relates to living in areas that are prone to natural hazards, while structural vulnerability relates to 

living in structures that are susceptible to incurring damage. These forms of vulnerability focus 

on the ‘where’ and ‘what’ dimensions of risk. 

A growing body of literature recognizes, however, that the impacts of natural hazards fall 

disproportionately on disadvantaged communities (Cutter, 2001). This phenomenon has been 

labeled as social vulnerability. Being socially-vulnerable is defined as lacking the capacity to 

“anticipate, confront, repair, and recover from the effects of a disaster” (Flanagan et al., 2011). A 

goal of identifying social vulnerability is identifying the ‘who’ dimension of risk. 
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Though there are extensive bodies of work on estimating expected damages and on measuring 

social vulnerability, separately, the literature lacks a quantitative analysis exploring the 

connection of the former with the latter. The aim of this study is to explore this connection, by 

using a high-resolution loss estimation approach with probabilistic demographic and 

socioeconomic models to quantify the heightened risk faced by socially-vulnerable groups. 

Our fundamental research questions are: [1] given the current state of modeling and data, could 

we identify which indicators of social vulnerability correspond to disproportionate risk of being 

priced out of natural hazard repairs—here we focus on hurricane repairs, [2] how does the 

present housing stock fare in terms of expected monetary damages and number of households 

expected to be severely cost-burdened by these damages, and [3] what do these metrics 

ultimately tell us for disaster risk reduction policy?  
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3.4 Literature Review 

Throughout this manuscript, we refer to three types of vulnerability: climatological, structural, 

and social. We define climatological vulnerability as living in areas that are prone to natural 

hazards, structural vulnerability as living in structures that are susceptible to incurring damage 

during hazard events, and social vulnerability as having demographic or socioeconomic 

characteristics that increase the likelihood of living in such risky areas and structures as well as 

lacking the resources to prepare for, respond to, and recover from hazard risks. 

Cutter, Boruff, and Shirley (2003) place climatological factors under ‘biophysical’ vulnerability, 

and structural and social factors under ‘social’ vulnerability. In this work, we modify these 

definitions to emphasize the type of biophysical risk being discussed and to individually address 

the risks related to structures and the likelihood of living in them. 

There is extensive engineering literature on climatological and structural vulnerability. Here, we 

focus on the part of that literature that estimates expected wind-related damages. Studies of 

hurricane losses have examined the risk of loss for various structure components and model 

structure types (Pita et al., 2015). Regional loss estimation models include: the Hazards U.S. 

Multi-Hazard (HAZUS-MH) model developed by FEMA (Vickery, Lin, et al., 2006; Vickery, 

Skerlj, et al., 2006), the Florida Public Hurricane Loss Model (FPHLM) developed by a 

consortium of Florida universities led by Florida International University (FIU) (Pinelli et al., 

2011) and several actuarial models developed by private companies (AIR 2019; ARA 2019; 

CoreLogic 2019; RMS 2019). Of these, all except for HAZUS are currently proprietary. 

Information that is publicly-available suggests that these studies and tools focus on 

climatological and structural aspects of risk, such as wind exposure, construction materials, and 
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construction types. That is to say: these studies primarily explore the questions of ‘what’ is 

affected and ‘where’, but largely lack any analysis of ‘who’. 

Analysis of ‘who’ is limited to estimates of the number of households that could be displaced or 

that could require shelter in the event of a hurricane (Rosenheim et al., 2019; Vickery, Skerlj, et 

al., 2006). These estimates are based only on the extent of structural damage and, hence, do not 

comment on the variability in demographic and socioeconomic characteristics of affected 

households. Though these community-level estimates are crucial for disaster planning, 

overlooking variability in household characteristics discounts disparity in the experiences of at-

risk households, and makes it difficult to identify households in most need of mitigation support. 

As such, HAZUS, and similar tools, can be used to explore risks associated with climatological 

and structural vulnerability, but are strained in mapping these results to indicators of social 

vulnerability. 

To date, studies of social vulnerability—that are applicable to hurricane-prone areas—have been 

expansive, spanning various fields and approaches. For the research explored here, we categorize 

these as studies which develop or report on: [1] social vulnerability indices, [2] vulnerability 

indices for hurricanes, [3] case studies of hurricane events, and [4] post-disaster surveys of 

hurricane-impacted households. 

There are a number of studies that propose indices to assess the social vulnerability of 

administrative divisions (e.g., counties, Census Tracts, or Census Block Groups). These indices 

are based on the unweighted averages of indicators that are referred to as indicators of social 

vulnerability. These indicators derive from sociological studies, and are used to create 

generalized indices which include the Social Vulnerability Index (SoVI) developed by Cutter, 

Boruff, and Shirley (2003) and the Social Vulnerability Index (SVI) developed by the U.S. 
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Centers for Diseases Control and Prevention (CDC) (Flanagan et al., 2018). Later, expanding on 

the SoVI, Cutter, Burton, and Emrich (2010) developed a more specialized index for natural 

disaster resilience. 

All of these indices are constructed from Census indicators that either relate to social factors 

such as demographic and socioeconomic characteristics or serve as proxies for structural damage 

exposure. The latter are, namely: density of housing permits, density of housing units, density of 

commercial and manufacturing establishments, and percentage of mobile homes. The natural 

disaster resilience index introduces structure age as a measure of hazard performance and makes 

use of the percentage of housing units built before 1970 as proxy. None of these indices include 

an explicit evaluation of loss risk, nor do they include indicators of climatological vulnerability. 

Indices specific to hurricanes include: the Composite Hurricane Vulnerability Index (CHVI) 

(Prasad, 2013), the Hurricane Vulnerability Index (HVI) (Pompe & Haluska, 2011) and the 

Hurricane Disaster Risk Index (HDRI) (Davidson & Lambert, 2001). Compared to their more 

generalized counterparts, these indices incorporate measures of climatological vulnerability to 

tropical storms (e.g., return period of hurricanes or specific hurricane categories), storm surge 

(e.g., percentage of land in storm surge inundation zones), and flooding (e.g., percentage of land 

in flood risk zones). 

Similar to their generalized counterparts, however, these indices do not include any explicit 

evaluation of loss risk, and instead make use of proxies for structural damage exposure. These 

proxies relate to the density (superscript d), value (superscript v), and quality (superscript q) of 

the built environment. Namely, these are: percentage of resident and tourist populationd, 

population densityd, density of roadsd, value of powerlinesv, value of properties and farm 

productsv, median value of owner-occupied housing unitsv, mean structure ageq, and mean score 
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from the Building Code Effective Grading Schedule (BECGS) (developed by the Insurance 

Services Office (ISO))q. 

The studies discussed thus far do not compute expected damages, and instead evaluate loss risk 

as a linear combination of various indicators. Studies of the response of structures under wind 

loading show that expected monetary damage is a highly nonlinear combination of the 

recurrence and intensity of wind loading, the structural and nonstructural characteristics of 

structures, and the value of structures and contents exposed (Manav et al., 2022). 

There are a number of case studies that overlay measures of social, structural, and climatological 

vulnerability to identify main contributing factors. Case studies focused on coastal hazards 

include qualitative studies, e.g., that of New Hanover County, SC (Flax et al., 2002), Yaquina 

Bay, OR (Wood et al., 2002) and Cape May, NJ (S. Wu et al., 2002), and quantitative studies, 

e.g., that of the State of Rhode Island (Odeh, 2002) and Georgetown, SC (Cutter & Emrich, 

2006). Although these case studies do not compute expected damages, some of them deal with 

post-event estimates of monetary damage. However, these estimates do not give indication of the 

likelihood of repeating an adverse event. 

Lastly, there are a number of post-disaster surveys that identify sociological relationships 

between household characteristics (e.g., minority or tenure status) and household behavior (e.g., 

decision to dislocate following a hurricane event). Surveys have been conducted for a variety of 

decisions regarding disaster preparedness, response, and recovery. These surveys include: 

behavior aggregated on Census Block Group level in Galveston, TX following Hurricane Ike 

(van Zandt et al., 2012) and behavior aggregated on household level in Southeast Florida 

following Hurricane Andrew (Peacock et al., 1997). 
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The latter of these collections of surveys was incorporated into a forward selection logistic 

regression to build a predictive model of household displacement (Lin, 2009) which was later 

applied to a case study of a earthquakes in Seaside, OR (Rosenheim et al., 2019). This case study 

gives insight into how variations in household characteristics can be incorporated into loss 

estimation. However, this predictive model remains the lone example of an engineering 

application of social vulnerability information. 

Studies of social vulnerability present great potential to capture interdependencies between 

physical and social systems in hazard-prone communities. However, there remains a disconnect 

between measuring social vulnerability and estimating expected damages in a context that can be 

applied to forward-looking engineering questions. This study makes use of Census Public-Use 

Microdata Sample (PUMS) data to derive such connections and incorporates them into loss 

estimation. This information is then used to inform the allocation of funds in disaster risk 

reduction efforts.  
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3.5 Methodology 

The objective of this study is to measure the risk of households being priced out of hurricane 

repairs and identify indicators of social vulnerability that correspond to heightened risk. Ideally, 

this would have been accomplished using a single dataset of households, where the demographic 

and socioeconomic characteristics of each resident and the construction characteristics of their 

residence are all known. However, in the U.S., the required information is found across several 

datasets aggregated on various levels at much less granular scales, e.g., Census Block Group, 

Census Tract, or even Census Division (with decreasing granularity). 

To address this, we identify the number of households associated with each geographic location, 

and use locational context to infer information about residents (e.g., indicators of social 

vulnerability) and their residences (e.g., occupancy type). We then match up occupancy types 

with structural and nonstructural characteristics, which enable us to estimate replacement cost 

and loss functions, both of which are crucial to evaluating expected monetary damage. To do 

this, our methodology consists of four aspects: [1] iterative proportional fitting of Census data, 

[2] characterizing the housing stock, [3] simulating resident households and their residences, and 

[4] evaluating expected loss levels. 

To explore the dimensions of vulnerability to hurricanes, we compute household risk exposure 

from three perspectives: [1] absolute-dollar (AD) losses (a dollar value of expected monetary 

damage), [2] per-replacement-cost (PRC) losses (a percentage metric of the extent of expected 

monetary damage), [3] per-annual-income (PAI) losses (a percentage metric of the cost burden 

of expected monetary damage, or the affordability of hurricane repairs). 
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For this, we use the CDC’s SVI and various surveys from the U.S. Census Bureau in an 

augmented HAZUS methodology (Manav et al., 2022). The SVI is used to identify household 

characteristics that are pertinent to social vulnerability. Census data enables us to map household 

and housing characteristics to specific locations (and, therefore, to climatological and structural 

risk). Our framework allows us to estimate wind-related loads and losses for each residence. 

Together, this framework and data simulate how hurricane risk exposure varies across 

demographics. The results of this inquiry reveal how prioritizing one of the loss metrics shapes 

disaster risk reduction policy. 

Iterative Proportional Fitting of Census Data 

The CDC’s SVI includes 15 indicators of social vulnerability (listed in Table 3.5-1) (Flanagan et 

al., 2018). Of these indicators, 14 are considered in this study. 12 are included in characteristics 

of households, and 2 are included in characteristics of their housing. SVI3 (‘Mean income’) is 

replaced by household annual income and modeled by income brackets. SVI11 (‘Multi-unit 

structures’) and SVI12 (‘Mobile homes’) are incorporated into model occupancy types. SVI15 

(‘Group quarters’) is excluded because it is not covered by these occupancy types. 

In this study, 10 income brackets (IBs) are considered (listed in Table 3.5-2). Each income 

bracket is assigned a midrange household annual income, e.g., IB2 (‘Between $10,000 to 

14,999/yr’) is assigned $12,500 / year. Also, 8 residential occupancy types are considered (listed 

in Table 3.5-3). 

Our iterative proportional fitting (IPF) is comprised of two steps. First, Census PUMS data is 

used to derive state-level, general joint distribution tables. There are 12 such general joint 
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distribution tables: [1] income bracket v. occupancy type, [2-12] income bracket v. social 

vulnerability indicator. Formally, that is 

 0 /ij ijP N N=  Eq.2.5.1 

where N  = number of entries in PUMS data, ijN  = number of entries that both are of income 

bracket i  and have characteristic j  (e.g., occupancy type or social vulnerability indicator), 0

ijP  = 

percent value of the same. The superscript 0 indicates the 0th iteration. 

Then, data tables are used to fit these general joint distribution tables to joint distributions 

specific to location (e.g., in this study, Census Tract). This data includes: [1] percent distribution 

of income brackets, represented by 
iP , [2] percent distribution of occupancy types, represented 

by jP , [3-13] percent prevalence of each social vulnerability indicator not covered by income 

brackets and occupancy types, also represented by jP . 

A total of 1+11 such specific joint distribution tables (referred to later as IPF tables) are derived. 

In IPF, rows and columns are scaled iteratively until each row adds up to the location-specific 

percent distribution of each income bracket, that is 

 ' ' 1 ' 1/ , 1, 2,...t t t

ij ij i ij

j

P P P P i− −=  =  Eq.2.5.2 

where 't

ijP  = percent of households that both are of income bracket i  and have characteristic j  

after row operations for iteration ' 1,2,...t = . Each column adds up to the location-specific percent 

distribution of each characteristic of interest (e.g., occupancy type or social vulnerability 

indicator), that is 

 1 1/ , 1,2,...t t t

ij ij j ij

i

P P P P j− −=  =  Eq.2.5.3 
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where t

ijP  = percent of households that both are of income bracket i  and have characteristic j  

after column operations for iteration 1,2,...t = . And, also, the entire table adds up to 1±.1%. 

Specifically, 

 1ij

i j

P =  Eq.2.5.4 

where ijP  = percent of households that both are of income bracket i  and have characteristic j  

after last iteration  . 

Throughout this study, we make use of data from the U.S. Census Bureau and CDC. The 

American Community Survey (ACS) provides state-level PUMS data (U.S. Census Bureau, n.d.-

a). The ACS DP03 (Selected Economic Characteristics) includes Census-Tract-level distribution 

of income brackets, and the ACS DP04 (Selected Housing Characteristics) includes Census-

Tract-level distribution of occupancy types. 

The CDC’s database includes Census-Tract-level distribution of social vulnerability indicators 

(CDC and ATSDR n.d.). However, if necessary, this data could also be found from the U.S. 

Census Bureau (except, different indicators might fall in the scope of different surveys, e.g. 

DP03 and DP04 mentioned above). 

Characterizing the Housing Stock 

To compute expected damages, we need information about the housing stock, namely 

replacement costs and loss functions, the latter of which describes expected levels of loss at each 

event intensity (e.g., peak gust wind speed) as a percentage of replacement cost. 

In HAZUS, each occupancy type corresponds to a replacement cost. Formally, that is 
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 RC C SF=   Eq.2.5.5 

where RC  = replacement cost for a given occupancy type ($), C  = unit cost per square foot ($ / 

sqft) (a function of Census Division, income ratio, and occupancy type), SF  = square footage 

(sqft) (a function of Census Division and income ratio) (FEMA 2021b). In HAZUS, income ratio 

(IR) refers to the ratio between Census Block Group median income and Census Division 

median income. IRs represent cost fluctuations associated with different locations. To calculate 

IRs, we made use of ACS data (U.S. Census Bureau, n.d.-a). 

Additionally, replacement cost for RES1 (‘Single-family dwellings’) includes the cost of 

basement and garage. That is 

 ' ' b gRC C SF SF =  +  +  Eq.2.5.6 

where 'RC  = replacement cost for RES1 ($), 'C  = unit cost per square foot ($ / sqft) (a function 

of Census Division, IR, number of stories, and presence of basement), 
b  = basement unit cost 

per square foot ($ / sqft) (a function of Census Division, IR, number of stories, and finishing of 

basement), g  = garage unit cost ($) (a function of IR and size of garage) (FEMA 2021b). 

To assess the prevalence and characteristics of basements and garages, we made use of American 

Housing Survey (AHS) (U.S. Census Bureau, 2019) and Survey of Construction (SoC) (U.S. 

Census Bureau, 2020c) PUMS data pertaining to single-family dwellings. 

In this study, the distribution of number of stories, 
S , is modeled as 

 ( | )S P S s IB = =  Eq.2.5.7 

where S  = number of stories (a function of Census Division and income bracket based on AHS 

PUMS data). 
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The distribution of framing materials, 
F , is modeled as 

 ( | )F P F f S = =  Eq.2.5.8 

where F  = framing material is (a function of Census Division and number of stories based on 

SoC PUMS data, F {wood-frame, concrete block, and concrete}). Knowing a residence’s 

framing material, we can assign it a HAZUS general building type (GBT), e.g. W = wood, M = 

masonry (or concrete block), and C = concrete (FEMA 2021b). Further knowing a residence’s 

number of stories, we can assign it a HAZUS specific building type (SBT), e.g. WSF1 = wood 

single-family dwelling with one story (FEMA 2021b), 

The prevalence and characteristics of basement, 
B , are modeled as 

 ( | , )B P B b S F = =  Eq.2.5.9 

where B  = presence and finishing of basement (a function of Census Division, number of stories 

and framing material based on SoC PUMS data). 

Similarly, the prevalence and characteristics of garage, 
G  are modeled as 

 ( | , )G P G g S F = =  Eq.2.5.10 

where G  = presence and size of garage (a function of Census Division, number of stories and 

framing material based on SoC PUMS data). 

At the level of detail of SBTs, we can assign each residence a loss function (FEMA 2021a). As 

discussed prior, the prevalence of SBTs for single-family dwellings derives from the AHS and 

SoC, the latter of which includes information on framing material. Since the SoC is not available 
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for multi-unit housing, the prevalence of SBTs for multi-unit housing is based on regional 

assumptions in HAZUS (FEMA 2019b). 

HAZUS loss functions also incorporate information on terrain (i.e., density of surrounding 

structures and vegetation) and wind building characteristics (WBCs) (e.g., roof type, roof cover 

type, roof deck attachment,…) (FEMA 2021a). In the HAZUS database, surface roughness 

length (for terrain) can be found for each Census Tract, and the prevalence of each WBC is based 

on regional assumptions (FEMA 2019b). HAZUS regions are not to be confused with Census 

Regions, which can represent very different scales. For instance, the Southeast Florida HAZUS 

region spans only Miami-Dade, Broward, and Palm Beach counties, while the South Census 

Region spans these counties as well entire and multiple states. 

Simulating Resident Households and Their Residences 

The ACS provides data on the number of households present in each Census Block Group (U.S. 

Census Bureau, n.d.-a). As outlined in the previous section, we sample from the 12 IPF tables to 

attribute each household an income bracket (sampled from {1,2,...,10}  based on the location-

specific distribution of income brackets), occupancy type (sampled from {1,2,...,8} based on the 

location-specific joint distribution of occupancy types and income brackets), and social 

vulnerability indicators (sampled from {0,1}  based on the location-specific joint distribution of 

social vulnerability indicators and income brackets). Then, we further attribute each household a 

set of housing characteristics (i.e., replacement cost and loss function). Thus, we obtain a 

simulated dataset of households in an area of interest where all necessary information is known 

to evaluate expected damages. 
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Evaluating Expected Loss Levels 

In Chapter 2 of this work, we show that the HAZUS loss estimation methodology tends to 

underestimate expected wind loads and damages by assuming all structures within a given 

Census Tract and of a given occupancy type experience the same level of expected monetary 

damage (Manav et al., 2022). This methodology is augmented using an empirical relationship 

that takes information on the density and arrangement of surrounding structures, referred to as 

neighborhood texture, to estimate structure-specific wind loading variations. (Textural 

information readily derives from publicly-available shapefiles of building footprints.) 

In this chapter, we implement this empirical relationship and simulate building-specific wind 

loading, expressed as an effective wind speed ratio, to account for texture effects. Since these 

ratios are computed for each building footprint, in Census Block Groups with multi-unit housing, 

the number of households may be greater than the number of unique ratios, in which case 

multiple households are attributed the same building footprint and effective wind speed ratio. 

Using this augmented approach, expected annual losses (EALs) are derived from an effective 

wind speed ratio, local recurrence of wind speeds, and expected monetary damage at each wind 

speed (i.e., loss function) (Manav et al., 2022). Recurrence information, as well as loss functions, 

can be found in the HAZUS database (FEMA 2019b). 

In the following sections, we refer to three EAL metrics: [1] absolute-dollar (AD), [2] per-

replacement-cost (PRC), [3] per-annual-income (PAI). AD losses represent annual dollar values. 

Formally, that is 

 [ | ] ( )
w

AD RC E MD w P w=    Eq.2.5.11 
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where RC  = replacement cost ($), [ | ]E MD w  = expected value of monetary damage at effective 

wind speed w , ( )P w  = annual probability of recurrence of effective wind speed w . Here, this 

effective wind speed distribution is unique to each building footprint (incorporating both its 

effective wind speed ratios and the local recurrence of wind speeds in its Census Tract). 

PRC losses normalize AD losses by replacement cost, that is 

 /PRC AD RC=  Eq.2.5.12 

and PAI losses normalize AD losses by household annual income, that is 

 /PAI AD AI=  Eq.2.5.13 

where AI  = household annual income ($ / year).  

The EAL metrics can be interpreted as the value (Eq.2.5.11), extent (Eq.2.5.12), and cost burden 

(Eq.2.5.13) of expected monetary damage. Having three metrics allows us to explore the impacts 

of hurricane damages from multiple perspectives.  
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Table 3.5-1. List of social vulnerability indicators included in the CDC’s Social Vulnerability 

Index. 
Code Description 

SVI1 Below poverty 

SVI2 Unemployed 

SVI3 Mean income 

SVI4 No high school diploma 

SVI5 Aged 65yo or older 

SVI6 Aged 17yo or younger 

SVI7 With disability 

SVI8 Single-parent household 

SVI9 Minority 

SVI10 English less than “well” 

SVI11 Multi-unit structures 

SVI12 Mobile homes 

SVI13 Crowding 

SVI14 No vehicles 

SVI15 Group quarters (not modeled) 

Note: SVI3 (‘Mean income’) covered by income brackets; SVI11 (‘Multi-unit structures’) and 

SVI12 (‘Mobile homes’) covered by occupancy types. 

 

Table 3.5-2. List of income brackets considered. 
Code Description 

IB1 Up to $9,999/yr 

IB2 Between $10,000 to 14,999/yr 

IB3 Between $15,000 to 24,999/yr 

IB4 Between $25,000 to 34,999/yr 

IB5 Between $35,000 to 49,999/yr 

IB6 Between $50,000 to 74,999/yr 

IB7 Between $75,000 to 99,999/yr 

IB8 Between $100,000 to 149,999/yr 

IB9 Between $150,000 to 199,999/yr 

IB10 More than $200,000/yr 

 

Table 3.5-3. List of occupancy types considered. 
Code Description 

RES1 Single-family dwellings 

RES2 Manufactured residences 

RES3A Duplexes 

RES3B Triplexes and quads 

RES3C Multi-unit housing with 5-9 units 

RES3D Multi-unit housing with 10-19 units 

RES3E Multi-unit housing with 20-49 units 

RES3F Multi-unit housing with 50+ units 

Note: nomenclature for codes borrowed from HAZUS. 
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3.6 Case Study 

To explore the relationship between social vulnerability and hurricane risk exposure, we apply 

the methodology described in Section 3.5 to analyze all residences within the states along the 

hurricane-prone Gulf Coast, including the states of Florida, Georgia, Alabama, Mississippi, 

Louisiana, and Texas. In total, this represents analyzing loss risk for more than 13 million 

structures and 25 million households. In the body of this manuscript, we present a detailed look 

at the results for the county of Miami-Dade, FL, and then summarize the results for the six states. 

Detailed state results can be found in the Supplementary Materials. 

Miami-Dade County, Florida 

The analysis of Miami-Dade County, FL is based on a simulation of 937,657 households, 

information about which were compiled from data and shapefiles from 781 Census Tracts (U.S. 

Census Bureau, 2020a), 3,736 Census Block Groups (U.S. Census Bureau, 2020a), and more 

than 300,000 building footprints (Microsoft, 2018). For consistency, all datasets and shapefiles 

pertain to 2018 and all dollar values are in 2018-USD. 

Of these households, 65% live in single-family dwellings, 5% in mobile homes, and the rest in 

multi-unit housing (Table 3.6-1). Of households living in multi-unit housing, 34% live in low- to 

mid-rise structures, and 66% in mid- to high-rise structures (Table 3.6-1). In this case study, 

occupancy types RES3A-C are grouped together to represent low- to mid-rise multi-unit 

housing, and RES3D-F are grouped to represent mid- to high-rise multi-unit housing. This aligns 

with CDC’s definition of SVI11 (‘Multi-unit structures’) which encompasses RES3D-F. This 
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also captures the difference in structural behavior between low- to mid-rise structures and mid- 

to high-rise structures. 

Table 3.6-1 presents the intermediary results of IPF to estimate the median income and percent 

prevalence of social vulnerability indicators, for the county in aggregate as well as broken down 

by occupancy type. Median income for households in single-family dwellings ($87,500/yr) is 

above the county median ($62,500/yr). Correspondingly, median income for households in 

mobile homes and multi-unit housing fall below the county median. Indicators of social 

vulnerability show an inverse relationship with household annual income (at varying degrees), 

hence socially-vulnerable groups are comparatively more prominent in mobile homes and multi-

unit housing, particularly in low- to mid-rise multi-unit housing. For instance, 12-13% of 

households in the occupancy types are estimated to be single-parent households, while a lower 

9% of households in single-family dwellings are estimated as such. 

Exploring expected annual losses (EALs), Table 3.6-2 presents the county median for each EAL 

metric, as well as the same broken down by occupancy type and by socially-vulnerable group. 

Median EALs are $2,269 / year / household (or 1% of replacement cost, or 4% of annual 

income). Median EAL ranges as high as $10,338 / year / household (or 25% of replacement cost, 

or 41% of annual income) for mobile homes, and as low as $1,155 / year / household (or 1% of 

replacement cost, or 4% of annual income) for low- to mid-rise multi-unit housing. The lowest 

per-annual-income (PAI) losses are in single-family dwellings and mid- to high-rise multi-unit 

housing (at 4% of annual income), where households are relatively higher-income. 

Additionally, the three EAL metrics are rank-correlated (Table 3.6-3). We used Spearman rank 

correlation for continuous v. continuous variables (e.g., EALs v. household annual income), and 

Kruskal-Wallis rank sum testing for continuous v. categorical variables (e.g., EALs v. social 
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vulnerability indicators). Spearman rank correlation indicates that household annual income is 

strongly negatively-correlated with per-annual-income (PAI) losses (ρ = -.44) (which may be 

expected as this metric derives from household annual income), slightly positively-correlated 

with absolute-dollar (AD) losses (ρ = .12), and very slightly positively-correlated with per-

replacement-cost (PRC) losses (ρ = .04) (Table 3.6-3). This suggests that monetary damage may 

be driven by replacement costs being higher in higher-income communities, which in turn may 

be offset by the availability of financial resources in these communities to respond to hurricane 

repair needs. 

Kruskal-Wallis rejects the null hypothesis that EALs are similarly distributed for socially-

vulnerable and non-socially-vulnerable groups at < .001 statistical significance for most pairs of 

groups (Table 3.6-2). This suggests that loss risk falls disproportionately on socially-vulnerable 

groups.  
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Table 3.6-1. Percent prevalence of each group; households. 
Description Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 923,957 603,548 50,470 93,020 176,919 

Median income ($/yr) 62,500 87,500 20,000 20,000 42,500 

Below poverty (%) 20 15 33 36 26 

Unemployed (%) 6 5 8 8 7 

No high school diploma (%) 16 15 20 19 16 

Aged 65yo or older (%) 16 15 19 18 17 

Aged 17yo or younger (%) 19 19 20 20 19 

With disability (%) 10 9 13 14 11 

Single-parent household (%) 10 9 13 12 10 

Minority (%) 79 77 84 84 78 

English less than “well” (%) 18 17 24 24 19 

Multi-unit structures (%) 19 - - - 100 

Mobile homes (%) 5 - 100 - - 

Crowding (%) 5 5 6 6 5 

No vehicles (%) 12 14 8 8 10 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 3.6-2. Expected annual loss (EAL) metrics; median. 
 AD PRC PAI 

Population $2,269 1% 4% 

RES1 $2,513 1% 4% 

RES2 $10,338 25% 41% 

RES3A-C $1,155 1% 5% 

RES3D-F $1,877 1% 4% 

Below poverty $1,963* 1%* 20%* 

Unemployed $2,014* 1%* 8%* 

No high school diploma $2,005* 1%* 5%* 

Aged 65yo or older $2,308* 1%* 5%* 

Aged 17yo or younger $2,312 1%* 4%* 

With disability $2,162* 1%* 7%* 

Single-parent household $2,134* 1%* 7%* 

Minority $2,289* 1%* 4%* 

English less than “well” $2,188* 1%* 7%* 

Multi-unit structures $1,877* 1%*** 4%* 

Mobile homes $10,338* 25%* 46%* 

Crowding $1,948* 1%* 5%* 

No vehicles $1,839** 1%* 2%* 

Note: Kruskal-Wallis rank sum testing rejects the null hypothesis that EALs are similarly 

distributed for socially-vulnerable and non-socially-vulnerable groups at *< .001 statistical 

significance for most pairs of groups; **< .01, ***< .05; AD = absolute-dollar EALs ($ / year / 

household), PRC = per-replacement-cost EALs (% / year / household), PAI = per-annual-income 

EALs (% / year / household); RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C 

= low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 3.6-3. Correlation of expected annual loss (EAL) metrics; Spearman correlation 

coefficient. 
 AD PRC PAI 

AD 1   

PRC .56 1  

PAI .75 .30 1 

Household income .12 .04 -.44 

Note: AD = absolute-dollar EALs ($ / year / household), PRC = per-replacement-cost EALs (% / 

year / household), PAI = per-annual-income EALs (% / year / household). 
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3.7 Results 

The objective of this study is to observe to what extent indicators of socially vulnerability 

correspond to heightened risk of being priced out of hurricane repairs, and present how 

financially challenging levels of monetary damage could be prevented through data-informed 

disaster risk reduction policy. Our results consist of three parts: [1] identifying households likely 

to be priced out of repairs, [2] measuring expected performance of the housing stock, and [3] 

prioritizing residences for further retrofitting. 

Identifying Households Likely to Be Priced Out of Repairs 

We found that 88,364 households are at risk of being priced out of hurricane repairs (Table 

3.7-1). In this study, we refer to such households as severely cost-burdened and assume that the 

threshold for being severely cost-burdened is expecting levels of monetary damage which, on 

average, exceed three months of household income (or one-quarter of household annual income). 

However, in reality, this threshold might be much lower. According to a recent survey, half of 

Americans have less than three months of income in an emergency fund, and this includes one-

quarter of Americans that have no emergency fund at all (Bankrate, 2021). 

Table 3.7-1 presents the median income and percent prevalence of social vulnerability indicators 

for households identified as severely cost-burdened by hurricane repairs. Median income is 

below the county median for severely cost-burdened households and most of the socially-

vulnerable groups are overrepresented among these households. 

Chi-squared testing rejects the null hypothesis that socially-vulnerable groups are proportionately 

represented among severely cost-burdened households at < .001 statistical significance for all 



86 

 

groups (Table 3.7-1). For example, if households with incomes below the poverty line were 

represented proportionately, we would expect 88,364 x 20% = 17,673 impoverished households 

to be severely cost-burdened by hurricane repairs. However, our model results yield 88,364 x 

71% = 62,738 such households. Similarly, we would expect 88,364 x 10% = 8,836 single-parent 

households to be severely cost-burdened, but our model results yield a higher number of 88,364 

x 15% = 13,254 such households. 

Figure 3.7-1 shows ratios between percent prevalence of socially-vulnerable groups among 

severely cost-burdened households and their overall percent prevalence, e.g., 71% / 20% = 3.6 

for impoverished households (see Supplementary Materials for derivation). A ratio of 1 

implies that a group is proportionately represented among severely cost-burdened households. A 

ratio greater than 1 implies that a group is overrepresented, where the greater the ratio the greater 

the overrepresentation, or disparity. From these ratios, we observe that all socially-vulnerable 

groups are overrepresented among severely cost-burdened households (with the exception of two 

groups discussed in the next paragraph). This overrepresentation is highest for households that 

are below the poverty line, that have members who are unemployed, that have members who 

have disability, that speak English less than “well”, and/or that live in mobile homes. 

Exceptionally, SVI11 (‘Multi-unit structures’) and SVI14 (‘No vehicles’), both of which fall 

under the Housing and Transportation domain of the CDC’s SVI (Flanagan et al., 2018), are 

underrepresented (not overrepresented) among severely cost-burdened households. These 

characteristics relate to living in densely built-up areas, where vulnerability of the built 

environment is driven by insufficiency or inefficiency of evacuation routes, rather than damage 

in structures (what is simulated in this study). These areas comprise mostly mid- to high-rise 
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multi-unit housing, which have better hazard performance than single-family dwellings and 

mobile homes. 

Comparing Miami-Dade to the entire state of Florida, the overrepresentation of minority 

households is more pronounced in the state results. The ratios for SVI9 (‘Minority’) and SVI10 

(‘English less than “well”’) are visibly greater in the state results (Figure 3.7-1). Some studies 

caution against using these characteristics as indicators of social vulnerability in Miami-Dade, 

because of its unique composition, with several neighborhoods that are majority Hispanic, 

particularly Cuban, and conduct their local affairs in Spanish (Peacock et al., 1997). This allows 

for households that speak English poorly, or even not at all, to access resources for preparedness 

and response as easily as their counterparts who are white and/or speak English fluently. 

Furthermore, comparing Florida to the other five states, similar socially-vulnerable groups tend 

to be overrepresented among severely cost-burdened households. In all states, ratios greater than 

1.5 include indicators SVI1 (‘Below poverty’), SVI2 (‘Unemployed’), SVI7 (‘With disability’), 

SVI8 (‘Single-parent household’), and SVI12 (‘Mobile homes’). Additionally, some states 

include other indicators associated with socioeconomic status, e.g. SVI4 (‘No high school 

diploma’) (in Georgia, Louisiana, and Texas), and minority status, e.g. SVI9 (‘Minority’) (in 

Alabama and Louisiana) and SVI10 (‘English less than “well”’) (in Florida, Louisiana, and 

Texas).  
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Table 3.7-1. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households. 
Description Population Cost-Burdened 

Total (#) 923,957 88,364 

Median income ($/yr) 62,500 5,000 

Below poverty (%) 20 71 

Unemployed (%) 6 11 

No high school diploma (%) 16 22 

Aged 65yo or older (%) 16 19 

Aged 17yo or younger (%) 19 21 

With disability (%) 10 16 

Single-parent household (%) 10 15 

Minority (%) 79 88 

English less than “well” (%) 18 30 

Multi-unit structures (%) 19 17 

Mobile homes (%) 5 14 

Crowding (%) 5 6 

No vehicles (%) 12 2 

Note: Chi-squared testing rejects the null hypothesis that socially-vulnerable groups are 

proportionately represented among severely cost-burdened households at < .001 statistical 

significance for all groups. 
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Figure 3.7-1. Ratio between percent prevalence of each group among severely cost-burdened 

households and their overall percent prevalence for State of Florida (in light blue) and for county 

of Miami-Dade, FL (in dark blue); disparity is highest for households that are below the poverty 

line, that have members who are unemployed, that have members who have disability, that speak 

English less than “well”, and/or that live in mobile homes. 
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Measuring Expected Performance of the Housing Stock 

In this study, 8 mitigation measures are considered (listed in Table 3.7-2). There are several 

other structural and nonstructural factors that contribute to hazard performance. However, 

decisions relating to many of these factors are only applicable for new structures (e.g., selection 

of framing materials). Mitigation measures considered here can be applied to both new and 

existing structures (e.g., as a part of retrofitting). 

Figure 3.7-2 shows the number of households severely cost-burdened by monetary damage. In 

the two extremes, the number of households severely cost-burdened by hurricane repairs would 

be 122,600 / year if no mitigation measure were applied, and 52,562 / year if all of the mitigation 

measures were applied. So, 70,038 households / year could be removed from severe cost burden 

through using these mitigation measures. We can call this avoidable price-out. Our model results 

indicate that 51% of avoidable price-out currently remains in the county (calculated from the 

current estimate of 88,364 households / year expecting severe cost burden, as (88,364 - 52,562) / 

(122,600 - 52,562) = 51%). (The remaining avoidable price-out ranges between 54-67% for the 

five states.) 

Figure 3.7-3 shows the total expected monetary damage. In the two extremes, the value of 

monetary damage would be $3.33 billion / year if no mitigation measures were applied, and 

$1.55 billion / year if all of the mitigation measures were applied. So, $1.78 billion / year of 

monetary damage could be prevented through using these mitigation measures. Our model 

results indicate that 46% of avoidable monetary damage currently remains in the county 

(calculated from the current estimate of $2.37 billion / year of expected monetary damages, as 
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(2.37 - 1.55) / (3.33 - 1.55) = 46%). (The remaining avoidable monetary damage ranges between 

51-70% for the five states.) 

In Figure 3.7-2 and Figure 3.7-3, there exists a level of monetary damage as well as a number of 

households severely cost-burdened by this damage even in the ‘fully mitigated’ case. This should 

not be interpreted as risk that is inevitable, but rather risk that requires more strenuous measures 

to be taken than the mitigation measures listed in Table 3.7-2, such as adoption and enforcement 

of stricter structure codes. 

In the following section, we will focus on the portion of risk reduction that is achievable using 

only the mitigation measures listed in Table 3.7-2. We offer two possible schemes for 

prioritizing residences in a regional effort. One prioritizes residences by cost burden (ranking 

households based on their per-annual-income (PAI) losses) (Figure 3.7-4), and the other 

prioritizes residences by monetary damage (ranking households based on their absolute-dollar 

(AD) losses) (Figure 3.7-5).  
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Table 3.7-2. List of mitigation measures considered. 
Code Description 

MM1 Applying shutters on all windows and entry doors 

MM2 Placing straps or clips on roof-to-wall connections 

MM3 Providing superior wood roof deck attachment 

MM4 Providing superior metal roof deck attachment 

MM5 Providing secondary water resistance 

MM6 Applying tie downs 
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Figure 3.7-2. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year. 

 

 
Figure 3.7-3. Total expected monetary damage by mitigation level; $ billion / year. 
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Prioritizing Homes for Further Retrofitting 

We found that the current estimate of avoidable monetary damage and price-out that remains in 

Miami-Dade corresponds to roughly 25% of residences having all of the mitigation measures 

listed in Table 3.7-2 (or 75% having none of them). With that, we can discuss the possible 

outcomes of further retrofitting under two prioritization schemes: either ranking households 

based on their PAI losses (‘Strategy 1’ in Figure 3.7-2, Figure 3.7-4, and Figure 3.7-5) or 

ranking them based on their AD losses (‘Strategy 2’ in Figure 3.7-3, Figure 3.7-4, and Figure 

3.7-5). 

Figure 3.7-4 plots the percentage of avoidable price-out that can be eliminated at various levels 

of mitigation under each scheme, and Figure 3.7-5 plots the percentage of avoidable monetary 

damage that can be eliminated at various levels of mitigation under each scheme. There are 

trade-offs of choosing one scheme over the other. 

Strategy 1 (based on PAI losses) eliminates all avoidable price-out with an additional 6% of 

residences mitigated (on top of the 25% that is presently mitigated), while Strategy 2 (based on 

AD losses) only eliminates this with an additional 43% of residences mitigated (or at close to 

three times the amount presently mitigated). At an additional 21% of residences mitigated (or at 

close to twice the amount presently mitigated), Strategy 2 eliminates the majority (or 75%) of 

avoidable price-out. 

Also, Strategy 2 eliminates the majority (or 75%) of avoidable monetary damage with an 

additional 13% of residences mitigated (on top of the 25% that is presently mitigated), while 

Strategy 1 eliminates this with an additional 19% of residences mitigated. So, compared to using 

Strategy 1, using Strategy 2 reaches peak performance in terms of expected number of 
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households severely cost-burdened by monetary damage very quickly. However, Strategy 2 

results in slightly reduced performance in terms of expected monetary damage. 

A combination of these two prioritization schemes could fare well on both terms. With an 

additional 14% of residences mitigated, addressing 6% of the highest PAI losses, and then 8% of 

the highest AD losses after that, we could eliminate all avoidable price-out and the majority of 

avoidable monetary damage.  
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Figure 3.7-4. Percentage of avoidable price-out eliminated at various levels of mitigation under 

prioritization schemes; Strategy 1 refers to prioritizing residences based on cost burden, and 

Strategy 2 refers to prioritizing residences based on monetary damage. 

 

 
Figure 3.7-5. Percentage of avoidable monetary damage eliminated at various levels of 

mitigation under prioritization schemes; Strategy 1 refers to prioritizing residences based on cost 

burden, and Strategy 2 refers to prioritizing residences based on monetary damage. 
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3.8 Discussion 

At the current level of mitigation, Miami-Dade, FL has a remaining $1.78 billion / year in 

expected monetary damage and 70,038 households / year facing risk of being priced out that 

could be prevented using the mitigation measures considered in this work. In the state of Florida, 

this amounts to $8.7 billion / year and 336,619 households / year, and across all six study states, 

this amounts to $117.2 billion / year and 443,512 households / year. Within each of the six states, 

the current level of mitigation eliminates less than half (even less one-third in some cases) of 

avoidable monetary damage and, separately, avoidable price-out. 

The case study of Miami-Dade, FL shows how this analysis could be used for data-informed 

disaster risk reduction policy which addresses both monetary damage and its resulting cost 

burden with minimal effort. In fact, in that county, it is possible to address all avoidable price-out 

(i.e. eliminating risk to households who cannot afford repairs) as well as  the majority of 

avoidable monetary damage simply by choosing the mitigated residences carefully and 

mitigating only 1% more residences than would be selected if addressing avoidable monetary 

damage were the only criteria. 

There is increasing availability of support and resources for homeowners seeking to retrofit their 

residences. There are Federal and state programs for grants, loans, and insurance. Each of these 

programs require assessors make decisions every day about ‘who’ to protect. To aid this 

decision, we explore hurricane wind-related damages and repair needs from various metrics and 

mitigation prioritization schemes. Our simulated datasets and simulation code could be used by 

nonprofits and government agencies to identify the location of climatologically-, physically-, 

and/or socially-vulnerable households. 
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In its latest version, our methodology assumes that each household decision is independent. 

However, mitigating multi-unit housing would impact several households at once. Our code 

could be updated to incorporate dependencies among households in multi-unit housing. Our code 

could also incorporate dependencies among households in the same community (e.g., Census 

Block Group or Census Tract), to capture community-level impacts of mitigation. Also, the ‘per-

annual-income’ (PAI) approach might be more relevant for homeowners, rather than renters. 

This approach could be refined for the experiences of renters. 

Lastly, futures studies could consider the cost of applying mitigation measures. The cost model is 

derived from the RSMeans labor and materials cost database (FEMA 2021b). This database 

could be used to derive costs for items like shutters (Torkian et al., 2014). Such an analysis 

would enable the study of the extent of mitigation achievable under budget constraints, where 

addressing one property of higher value could be costlier than addressing multiple lower-value 

properties.  
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4 Contributions to Environmental Assessment: Project Level 

This chapter includes the manuscript “House of Cards: Trade-Offs of Construction Material 

Choice in Hurricane-Prone Communities” authored by Ipek Bensu Manav and Randolph 

Kirchain. The title and content of the manuscript may have changed during peer review and 

publication. 

 

4.1 Abstract 

With increasing demands for ‘green’ buildings, it is critical to develop rigorous methods to 

quantify how ‘green’ a building is. Such methods derive environmental impact measures, the 

most common of which is greenhouse gas (GHG) emissions. 

Building life cycle emissions consist of embodied and operational emissions. Present studies of 

building emissions are typically limited to embodied emissions, and studies of building 

embodied emissions are typically limited to the product and construction stages. However, the 

majority of building life cycle emissions derive from the later use and end-of-life stages, which 

include emissions from repair, replacement, and operational energy usage. 

In this manuscript, hazard vulnerability and carbon uptake are incorporated into building 

embodied emissions. Then, embodied emissions are combined with operational emissions to 

capture the full life cycle of emissions associated with construction material choice. The case 

study explores outcomes for concrete, masonry, and wood homes in Miami-Dade, FL. 

Expanding the case study to the entire state, outcomes are mapped for exterior wall core material 

choice. 
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Model results show that a durable, hazard-resilient material like concrete may lead to higher 

emissions in the initial construction stage, while also contributing to lower life cycle emissions, 

thanks to savings in the repair and replacement stages. The case study highlights concrete as the 

favorable material option in coastal and more southern communities, where hurricane wind 

exposure is relatively higher, and wood as the favorable material option in inland and more 

northern communities, where hurricane wind exposure is relatively lower. 

4.2 Keywords 

Hurricanes, Loss Estimation, Life Cycle Assessment  
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4.3 Introduction 

Residential buildings are widely recognized as a major contributor of greenhouse gas (GHG) 

emissions (Lucon et al., 2014). Thus, buildings are becoming a central topic for discourse around 

climate mitigation and adaptation. 

To aid the increasing demand for ‘green’ buildings, various institutions offer building rating 

systems, such as the U.S. Green Building Council’s (USGBC’s) Leadership in Energy and 

Environmental Design (LEED) program. This program is based on a set of prescriptive measures 

(USGBC, n.d.). Such programs focus on initial design and construction, rather than the entire 

building life cycle, though ignoring use and end-of-life leads to mal-informed decision-making. 

An example of such decision-making is jeopardizing the durability and hazard resilience of 

buildings by promoting lightweight construction in communities exposed to natural hazards. 

To address concerns around hazard resilience, an increasing number of institutions offer building 

rating systems specialized in this regard, such as the Institute for Business and Home Safety’s 

(IBHS’s) FORTIFIED program for buildings in hurricane-prone communities. Similar to LEED, 

this program is based on prescriptive measures (IBHS, n.d.), albeit a completely separate set 

from those covered in LEED, failing to bridge the two perspectives. As a result, the pursuit of 

sustainable (i.e. ‘green’) buildings and resilient buildings, though inextricable, are deeply 

extricated in practice. 

A similar trend follows for sustainability and resilience assessments. Life cycle assessment 

(LCA), a common tool for sustainability experts, in theory, captures environmental impacts 

arising from the entire building life cycle. However, present LCA studies ignore hazard repair 

and replacement demands in their estimate of embodied emissions. On the other hand, loss 
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estimation, a common tool for resilience experts, deals with a variety of different metrics (e.g. 

dollar value of expected damages, number of households expected to displace), but falls short of 

translating those metrics to environmental measures (e.g. GHG emissions associated with 

repairing expected damages). 

In this manuscript, we start bringing these two perspectives together to better represent the 

outcomes of construction material choice in single-family dwellings in hurricane-prone 

communities. By forging a more complete model for building LCA, we incorporate hazard 

vulnerability into the discussion of what makes a home ‘green’. In doing so, we demonstrate that 

the material choice that is more carbon-intensive to build with can lead to lower life cycle 

emissions, if that option is used in a climatological context where it provides significant benefits 

compared to its competitor in terms of durability and hazard resilience.  
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4.4 Literature Review 

Building emissions comprise of product (A1-3), construction (A4-5), use (B), and end-of-life (C) 

emissions. Portions of these emissions can be characterized as either embodied or operational, 

associated with consumption of either materials or operational energy (i.e. electricity and fuels). 

Analyzing building emissions relies on itemizing activities and assigning them schedules. 

Activities can be as large as pouring concrete for a slab foundation or as small as changing a 

lightbulb. Schedules can be as infrequent as only once (e.g. the foundation) or as frequent as 

every few years (e.g. the lightbulb). Defining activities and schedules depends on assumptions, 

which are often better defined for earlier (i.e. product and construction) stages, and less so for 

latter (i.e. use and end-of-life) stages. 

In studies of building embodied emissions, use-stage emissions are the “most neglected” 

(Pomponi & Moncaster, 2016). Pomponi and Moncaster conducted a review of 77 such studies 

and found that 90% account for product (A1-3) stage, 50% account for construction (A4-5) 

stage, and 30% account for end-of-life (C) stage, while only 20% account for use (B) stage 

(2016). Even in studies which consider B-stage emissions, we identified two major gaps 

pertinent to evaluating decisions like construction material choice: neglect of hazard 

vulnerability and either neglect or overstatement of carbon uptake. 

First, there are a few embodied emission studies which consider B3 (repair) emissions, and they 

fail to incorporate the impacts of hazard vulnerability. By assuming steady-state conditions, these 

studies limit activities to regular wear-and-tear and ignore extreme conditions such as those 

which lead to damage from natural hazard exposure. (A similar trend follows for studies which 

consider B2 (maintenance), B4 (refurbishment), and B5 (replacement) emissions.) 
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Studies which consider B2-5 emissions cover a variety of building components: mechanical, 

electrical, and plumbing (MEP) (e.g. inspecting boilers annually) (Blengini & Di Carlo, 2010; 

Brown et al., 2014; Lee et al., 2009; Moncaster & Symons, 2013; Onat et al., 2014), finishing 

(e.g. cleaning façade annually) (Blengini & Di Carlo, 2010; Moncaster & Symons, 2013; 

Pomponi et al., 2015), and insulation (e.g. upgrading insulation) (Brown et al., 2014; Moncaster 

& Symons, 2013; Onat et al., 2014). Schedules derive from literature (Baek et al., 2013; Blengini 

& Di Carlo, 2010), contractor surveys (Blengini & Di Carlo, 2010), national surveys (Brown et 

al., 2014; Lee et al., 2009; Onat et al., 2014), and databases (Moncaster & Symons, 2013). 

Activities and schedules are influenced by building age (Lee et al., 2009), type (Onat et al., 2014; 

Vukotic et al., 2015), materials (Alshamrani et al., 2014; Vukotic et al., 2015), and climate (e.g. 

hot or cold, wet or dry) (Basbagill et al., 2013). Climate factors do not include natural hazard 

exposure (Basbagill et al., 2013). Most authors assume structural components are “permanent” 

(Vukotic et al., 2015). Some acknowledge high-strength materials “expand the lifespan” of 

buildings (Baek et al., 2013). However, this effect is left out of modeling on the basis that there 

is “little reliable information” (Blengini & Di Carlo, 2010). 

Although the environmental impacts of natural hazards have not yet been studied rigorously, 

their economic impacts have been the subject of various areas of study: loss estimation (Pita et 

al., 2015), cost-benefit analysis (Li, 2012; Torkian et al., 2014), and life cycle cost assessment 

(LCCA) (Dong & Frangopol, 2017; Mahmoud & Cheng, 2017; Noshadravan et al., 2017). These 

areas of study allow us to assess activities and schedules associated with damage and repairs. For 

instance, hurricanes lead to varying degrees of damage, ranging from loss of nonstructural 

components (e.g. roof shingles), to loss of structural components (e.g. roof decking), to loss of 

the entire building. The extent and frequency of damage relies on structural (e.g. decking 
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material) and climatological (e.g. frequency of storms) vulnerability. The combination of all 

these considerations allows to assess demands for repair and replacement. 

Hurricane loss estimation models span a range of scales from building components (e.g. roof 

panels) (Li & Ellingwood, 2006) to building archetypes (e.g., wood-frame single-family 

dwellings) (Li & van de Lindt, 2012). These models are employed to study Census Tracts 

(Vickery, Lin, et al., 2006; Vickery, Skerlj, et al., 2006), counties (Hamid et al., 2011), and 

actuarial portfolios (AIR, 2019; ARA, 2019; CoreLogic, 2019; RMS, 2019). These studies are 

then applied to the cost-benefit analysis of various mitigation measures (Li, 2012; Torkian et al., 

2014) and the LCCA of buildings (Dong & Frangopol, 2017; Mahmoud & Cheng, 2017; 

Noshadravan et al., 2017). In Chapters 2 & 3 of this work, we discuss how integrating texture 

(i.e. density and configuration of surrounding buildings) into loss estimation enables us to 

calculate expected damages for each individual buildings in an area of study in a computationally 

inexpensive manner (Manav et al., 2022). We make this integration using the Hazards U.S. 

Multi-Hazard (HAZUS-MH) model developed by the U.S. Federal Emergency Management 

Agency (FEMA) (Vickery, Lin, et al., 2006; Vickery, Skerlj, et al., 2006), as all other regional 

loss estimation models are currently proprietary. 

Second, there are fewer embodied emission studies which consider B1 (operational use) 

emissions. These emissions occur without active intervention from building occupants or 

managers, an example being carbon uptake. Through carbon uptake (or carbonation), concrete 

surfaces absorb atmospheric carbon dioxide in a chemical process which reverts its drying. 

Carbon uptake has been studied extensively by material scientists and structural engineers, as 

carbonation leads to a progressively acidic concrete medium and poses a threat to the steel 

reinforcement bars embedded inside of it. Increasingly, carbon uptake is recognized as an 
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opportunity, rather than a threat, because it provides a passive mechanism through which 

atmospheric carbon dioxide is sequestered (IPCC, 2022). Studies which consider carbon uptake 

assume lofty lengths for building lifespan and second life (García-Segura et al., 2014). 

Overstating the potential for carbon sequestration through carbon uptake, however, hinders 

efforts to neutralize and reduce GHG emissions, by underestimating the portion of emissions 

which require active intervention (e.g. design optimization). In recent conference proceedings, 

we propose a set of realistic assumptions for the use and end-of-life carbon uptake of cement-

based products (CBPs) (e.g. ready-mixed concrete) in buildings (AzariJafari et al., 2023). 

Lastly, building LCA addresses both embodied and operational emissions, creating a more 

comprehensive assessment of building emissions. In this manuscript, we extend the Building 

Attribute-to-Impact Algorithm (BAIA), developed by colleagues at the MIT Concrete 

Sustainability Hub (CSHub), to incorporate hazard vulnerability and carbon uptake into the LCA 

of single-family dwellings. BAIA is pliable to study regional impacts of natural hazards thanks 

to its use of underspecification. Streamlined LCA (or underspecified LCA) allows to generate 

LCA results under conditions where some model inputs are missing (albeit with a band of 

uncertainty to follow) (Hester et al., 2018). This functionality accommodates gaps in user 

knowledge, as conventional LCA can be prohibiting due to the data-intensive, data-dependent 

nature of the practice. For our purposes, we make use of streamlined LCA to study the regional 

housing stock based on publicly-available housing surveys, which definitely do not cover all 

details necessary for conventional LCA.  
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4.5 Methodology 

The objective of this study is to conduct a regional assessment of the outcomes of construction 

material choice in single-family dwellings in hurricane-prone communities. To do this, we apply 

a streamlined LCA model updated to include impacts of hazard vulnerability and carbon uptake. 

Ideally, we would have applied this model on a dataset of every new home permitted to be built 

in a year of interest, where all building characteristics are known. However, in the U.S., not all 

characteristics are tracked, while others are found across several datasets aggregated on various 

levels at much less granular scales (e.g. Census Division). 

To address this, we simulate 5,000 actualizations of a typical home under 100 wind loading 

scenarios in each Census Tract, making use of locational data to infer climatological and 

building characteristics. For each actualization b , we then match up this information with 

damage, cost, and emission models to evaluate the full life cycle of emissions associated with its 

initial construction, repair, replacement, and operational energy usage. Our methodology consists 

of four aspects: [1] creating building archetypes, [2] incorporating expected damages into LCA 

results, [3] parameterizing carbon uptake, and [4] conducting statistical testing to evaluate 

outcomes. 

For this, we use the BAIA LCA model, the HAZUS loss estimation model, and the plentitude of 

building characteristic assumptions underlying each of these models. Wherever possible, these 

assumptions are supplemented by data from the U.S. Census Bureau’s American Housing Survey 

(AHS). Combined in a single framework, these models and data allow us to evaluate the context 

dependency of building life cycle emissions.  
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Creating Building Archetypes 

In this study, we create comparative samples to explore building life cycle emissions and the 

influence of exterior wall core material choice on such in single-family dwellings. Specifically, 

the exterior wall core material can be concrete (i.e. insulated concrete form (ICF) wall core), 

masonry (i.e. concrete masonry unit (CMU) or concrete block wall core), or wood (i.e. light-

frame, wood stud wall core). 

To span the entire sample space, we simulate 5,000 actualizations of a typical home represented 

by present tools and data. This sample space is characterized by a variety of inputs pertinent to: 

[1] both BAIA and HAZUS, [2] only one of BAIA or HAZUS, or [3] the carbon uptake model. 

Under category [1], each actualization b  is assigned: number of stories (1, 2, or 3), living area 

(small, medium, or large), roof shape (gable or hip), roof cover (asphalt shingles, concrete tiles, 

or metal cladding), and window area (low, medium, or high). Information for the first two (i.e. 

number of stories and living area) derive from 2018 AHS data (respectively, ‘STORIES’ and 

‘UNITSIZE’ in the metadata) (U.S. Census Bureau, 2019), while the latter three derive from the 

HAZUS database (FEMA, 2021b). 

In HAZUS, discrete variables (e.g. number of stories, roof shape, and roof cover) are sampled 

based on their prevalence in the model’s 2018 update (FEMA, 2021b). In BAIA, such variables 

are sampled simply as equally likely options (Hester, 2018). Thus, wherever possible, we make 

use of the building characteristic prevalences found in the HAZUS database (or AHS data). 

Since BAIA depends on computing the exact building geometry, continuous variables (e.g. 

living area and window area) are sampled from a range represented by a uniform distribution 



111 

 

(Hester, 2018). (In HAZUS, living area is a deterministic function of other building 

characteristics, while window area is treated as a discrete variable.) 

Living area for ‘small’ homes is sampled from 100-183 m2 (‘UNITSIZE’ = 1, 2, 3, 4, or 5), 

‘medium’ from 183-267 m2 (‘UNITSIZE’ = 6 or 7), and ‘large’ from 267-350 m2 (‘UNITSIZE’ 

> 7). Their probabilities derive from AHS data and are grouped based on number of stories (e.g. 

homes with more stories likelier to have larger living area) (U.S. Census Bureau, 2019). 

Moreover, window-to-wall ratio (WWR) for homes with ‘low’ window area is sampled from 

.17-.25, ‘medium’ from .25-.33, and ‘high’ from .33-.4. Their probabilities derive from the 

HAZUS database. BAIA inputs front, back, and side WWRs separately (Hester, 2018). For 

simplicity, we assume the same WWR for front and back facades, and sample side WWR from 

.1-.17. 

The complete list of building characteristics input to HAZUS can be found in Table 4.5-1 

(including several characteristics which fall under [2]). In HAZUS, these characteristics are 

referred to as wind building characteristics (WBCs) (FEMA, 2021b). A complete set of 

information for b  in the HAZUS model allows us to assign damage functions and compute 

expected damages in terms of a percentage of total replacement cost of each b . Damage 

functions are modeled based on 2018 RSMeans data on labor and material costs (FEMA, 2021b). 

The complete list of building characteristics input to the BAIA operational energy model can be 

found in Table 4.5-2 (including several characteristics which fall under [2]). In BAIA, these 

characteristics are referred to as Attribute-to-Activity Model for Energy (AAME) inputs (Hester, 

2018). Additionally, the BAIA materials model inputs information about the exact building 

geometry, subassembly configurations, and material definitions (Hester, 2018). A complete set 
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of information for b  in the BAIA operational energy and materials models allows us to model 

replacement schedules, energy costs and emissions, and labor and material cost and emissions. 

This, in turn, allows us to compute emissions associated with the initial construction, 

replacement, and operational energy usage of each b . Replacement schedules derive from 

industry standards, material emissions from life cycle inventories (LCIs), energy cost and 

emissions from 2018 electrical grid data, and other costs from 2018 RSMeans data (similar to 

HAZUS) (Hester, 2018). 

Moreover, under category [3], each b  is assigned: presence of basement (yes or no) and 

foundation type (slab foundation, basement, partial basement, or crawlspace). Information for 

these derive from 2018 AHS data (respectively, ‘GARAGE’ and ‘FOUNDTYPE’ in the 

metadata) (U.S. Census Bureau, 2019). Both are treated as discrete variables. 

Lastly, each b  is assigned a service life (or lifespans) from a survival rate fitted to Weibull 

distribution. Formally, that is 

 ( ) ( ,2.8,73.5)bP ls Weibull l=  Eq.3.5.1 

where ( )bP ls  is the probability that b  has a service life less than or equal to ls , given Weibull 

shape parameter 2.8 and scale parameter 73.5 (Aktas & Bilec, 2012). 

Based on this survival rate, the average service life is 66 years. Practically, more durable and 

hazard resilient construction materials contribute to longer service lives (Baek et al., 2013). 

However, in LCA, this contributes to higher life cycle emissions, as use-stage emissions scale 

proportionally to service life. To circumvent this dichotomy, we assume the same survival rate 

for homes with concrete, masonry, and wood exterior wall core options. Rather than shortened 

service lives, we represent compromised performance through increased repair and replacement 
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demands. Cases where such demands exceed initial construction emissions can be interpreted as 

cases where the given b  would need to be torn down and rebuilt to ensure the given service life. 

Incorporating Expected Damages into LCA Results 

As described earlier, the HAZUS model allows us to compute expected damages as a percentage 

of total replacement cost of each actualization b . The HAZUS database includes damage 

functions as well as terrain and wind speed recurrence data (FEMA, 2021b). The former is 

available for each wind building type (WBT) (defined by WBCs listed in Table 4.5-1). The latter 

is available for each Census Tract. 

Hazard repair demands are driven by residing in a Census Tract with high hurricane exposure 

and/or in a building susceptible to incurring damages when exposed to hurricane wind loading. 

Wind speed recurrence data is fitted to Weibull distributions and captures the annual probability 

of each wind speed, represented as 

 , ( ) ( , )t t tP ws Weibull X Y =  Eq.3.5.2 

where ( )tP ws  is the probability that Census Tract t  experiences wind speeds less than or equal to 

ws  on year  , given Weibull shape parameter 
tX  and scale parameter 

tY . 

Damage data is fitted to normal distributions to create damage functions which capture the 

expected damages at each wind speed and terrain definition (e.g. urban, suburban, or rural), 

represented as 

 , ,( ) ( , , )b b t b tws Normal ws  =  Eq.3.5.3 
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where ( )b ws  is the expected damages that b  incurs under wind speed ws , given normal 

parameters ,b t  and ,b t  derived from the WBT of b  and terrain definition of Census Tract t . 

We simulate 100 hurricane wind loading scenarios in each Census Tract. To define the analysis 

period, we identify the longest service life among 5,000 actualizations. Then, we sample wind 

speeds for each year within that analysis period. Under a given scenario, the sampled wind 

speeds (and terrain) are the same for all each b  within a Census Tract. This leads to the 

relationship 

 , ,( ) ( )b tP ws P ws =  Eq.3.5.4 

where , ( )bP ws  is the probability that b  in Census Tract t  experiences wind speeds less than or 

equal to ws  on year  . 

Whether or not, or to what extent, each b  incurs damages depends on its damage function. We 

combine Eq.3.5.3 and Eq.3.5.4 as 

 , , ,( ) ( , , )b t tws Normal ws    =  Eq.3.5.5 

where , ( )b ws  is the expected damages that b  incurs under wind speed ws  on year  . 

Moreover, each b  only incurs expected damages on year   as long as it has not yet reached the 

end of its service life ls . Thus, the expected damages each b  incurs over its service life is a sum 

of expected damages it incurs on each year ls  . That is 

 
, ,% ( ) ( )b b b

ls

Rr ws P ws 





=  Eq.3.5.6 

where % bRr is the expected damages that b  incurs over its service life. This is represented as a 

percentage of b ’s replacement cost. 
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In HAZUS, replacement cost is a deterministic function of living area, presence of garage, 

presence of basement, and Census Block Group (each corresponds to a cost correction factor). 

This function is generalized from initial construction costs. Instead of HAZUS replacement 

costs, we opt to use BAIA initial construction costs (and emissions), as these are unique to each 

actualization. 

To combine expected damages with replacement emissions, we make use of subassembly loss 

ratios. HAZUS technical manual provides these ratios to break down entire building damages to 

building components. For simplicity, we assume subassembly damages are equally distributed 

across relevant building components. Then, we multiply subassembly expected damages by the 

relevant replacement emissions. That is 

 %bc bc bc bRr TR LR Rr=  Eq.3.5.7 

where 
bcRr  is the emissions associated with the expected damages that building component bc  

found in b  incurs over its service life, 
bcTC  is its total replacement emissions, 

bcLR  is its HAZUS 

subassembly loss ratio, and % bRr  is the expected damages that b incurs as a percentage of b ’s 

replacement cost. 

Thus, the emissions associated with the expected damages that each b  incurs over its service life 

is a sum of expected damages it incurs on each building component. That is 

 
b bc

bc b

Rr Rr


=  Eq.3.5.8 

where 
bRr  is the emissions associated with the expected damages that b  incurs over its service 

life and 
bcRr  is the emissions associated with the expected damages that building bc  found in b  

incurs. 
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Working on the scale of subassemblies and building components is critical because some of the 

most carbon-intensive subassemblies (e.g. foundation) incur no damages under hurricane wind 

loading, so applying expected damages on the entire building scale could lead to overestimating 

emissions associated with hazard repair demands. 

Parameterizing Carbon Uptake 

To account for carbon uptake, we apply the same framework as the C-Up model (AzariJafari et 

al., 2023). In this framework, the carbon uptake of each building b  is a sum of carbon uptake on 

each surface on each building component. That is 

 
,b f bc

f bc bc b

CU CU
 

=    Eq.3.5.9 

where 
bCU  is the carbon uptake of b  and ,f bcCU  is the carbon uptake on face f  of building 

component bc  found in b . 

After computing surface areas and volumes, we apply carbon functions to estimate the potential 

for carbon uptake. These functions rely on the type of CBP, compressive strength, mix design, 

and exposure conditions. This can be shown as 

 , ,, , ,f bc bc bc bc f bcU CBP CS MD EC  Eq.3.5.10 

where ,f bcU  is the unit carbon uptake on face f  of building component bc  found in b , 
bcCBP  is 

its material definition (i.e. concrete or mortar), 
bcCS  is its compressive strength (e.g. 15-25 MPa), 

bcMD  is its mix design (e.g. substitution of portland cement by slag and/or flyash), and ,f bcEC  is 

its exposure condition (e.g. indoor, unfinished). 
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CBPs contribute to carbon uptake throughout the product (A1-3) and construction (A4-5) stages 

(i.e. carbonation of cement wastage), use (B) stage, and end-of-life (C) stage of buildings. That is 

 , , , ,

waste use EoL

f bc f bc f bc f bcCU CU CU CU= + +  Eq.3.5.11 

where ,f bcCU  is the carbon uptake on face f  of building component bc  found in b , given a 

service life of   and end-of-life period of   , ,

waste

f bcCU  is the carbon uptake associated with cement 

wastage, ,

use

f bcCU  is the B-stage carbon uptake, and ,

EoL

f bcCU  is the C-stage carbon uptake. 

Specifically, we assume 97% of cement consumed is bulk and 3% bagged, and that 2% and 15% 

of bulk and bagged cement, respectively, gets wasted (AzariJafari et al., 2023). The potential for 

carbon uptake associated with cement wastage is a function of   and wasted volume (AzariJafari 

et al., 2023), shown as 

 , , , ,%waste waste

f bc f bc f bc f bcCU CW V U  Eq.3.5.12 

where ,

waste

f bcCU  is the carbon uptake associated with cement wastage on face f  of building 

component bc  found in b , given a total carbonation period of  , ,% f bcCW  is its percentage of 

cement wastage, ,f bcV  is its volume, and ,

waste

j bcU  is the unit carbon uptake associated with cement 

wastage based on Eq.3.5.10. 

B-stage carbon uptake is a function of   and surface area (AzariJafari et al., 2023), shown as 

 , , , ,

use use

f bc f bc f bcCU SA U    Eq.3.5.13 

where ,

use

f bcCU  is the B-stage carbon uptake on face f  of building component bc  found in b  over 

its service life  , ,f bcSA  is its surface area, and ,

use

f bcU  is the unit B-stage carbon uptake based on 

Eq.3.5.10. 
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C-stage carbon uptake is a function of    and uncarbonated volume (AzariJafari et al., 2023), 

shown as 

 , , ,

EoL EoL

f bc f bc f bcCU UV U    Eq.3.5.14 

where ,

EoL

f bcCU  is the C-stage carbon uptake on face f  of building component bc  found in b , 

,f bcUV  is its uncarbonated volume, and ,

EoL

f bcU  is the unit C-stage carbon uptake based on Eq.3.5.10

. 

We assume concrete applications have    of 6 months, during which they contribute to C-stage 

carbon uptake, while mortar applications are fully-carbonated during their service life (within 

approximately 15 years), so they do not contribute to C-stage carbon uptake. Since our cut-off is 

at end-of-life, we ignore second-life carbon uptake. 

We carry out this calculation for all relevant surfaces and volumes. These surfaces and volumes 

include foundation systems, basement walls, and exterior walls (excluding windows and exterior 

doors). Regardless of the exterior wall core material, all homes (except those with crawlspaces) 

are assumed to have concrete slab foundations and footings. All homes with basements (partial 

or full) are assumed to have CMU basement walls. Concrete and masonry homes are assumed to 

have concrete or CMU exterior walls, respectively. Volumes exclude steel reinforcement in 

concrete components (1-2% of cross-section) and hollow sections in CMU components (only 

counting for the shells and webs). CMUs are assumed the standard 20 cm (8’’) by 40 cm (16’’). 

As stated earlier, carbon uptake relies on compressive strength and mix design. Concrete 

components are applied the 15-25 MPa concrete carbon uptake model, while CMU components 

are applied the mortar carbon uptake model. Mix design information derives from National 

Ready-Mixed Concrete Association (NRMCA) data for U.S. regions. 
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Lastly, exposure conditions influence the rate and degree of carbonation. Possible exposure 

conditions are inground (e.g. slab foundation), indoor, unfinished (inner side of basement walls), 

indoor, finished (inner side of exterior walls), outdoor, sheltered from rain (outer side of exterior 

walls on dry days), or outdoor, exposed to rain (outer side of exterior walls on rainy days). 

Carbon uptake on outdoor surfaces are a weighted average based on the local breakdown of dry 

and rainy days. 

Conducting Statistical Testing to Evaluate Outcomes 

To recap, we are interested in comparing outcomes of exterior wall core material choice. To do 

this, we simulate 5,000 actualizations of typical homes under 100 wind loading scenarios in 

hurricane-prone communities. Each actualization b  enables a comparative sample of life cycle 

emissions for concrete, masonry, and wood exterior wall core options. These life cycle emissions 

include initial construction, repair, replacement, and operational energy usage emissions. 

Formally, that is 

 
b b b b bLC IC Rr Rt EU= + + +  Eq.3.5.15 

where 
bLC  is the life cycle emissions of b , 

bIC  is its initial construction emissions, 
bRr  is its 

hazard repair emissions, 
bRt  is its replacement emissions, and 

bEU  is its operational energy 

usage emissions. 

Unless denoted by a letter and/or number code, we use the terms ‘initial construction’, ‘repair’, 

and ‘replacement’ to refer to the sum of life cycle activities associated with a stream of material 

consumption. Hence, initial construction, repair, and replacement emissions, each, include 
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relevant product, construction, and end-of-life emissions. Additionally, CBPs consumed 

contribute to carbon uptake. Together, that is 

 , , , ,b x b x b x b x bX P C EoL CU= + + +  Eq.3.5.16 

where 
bX  is the emissions of X  (initial construction, repair, or replacement) of b , ,x bP  is its 

product emissions, ,x bC  is its construction emissions, ,x bEoL  is its end-of-life emissions, and ,x bCU  

is its carbon uptake associated with CBPs consumed. 

To study the benefits of each exterior wall core option, we conduct statistical testing of building 

stage emissions. We observe the differences wood-minus-concrete, masonry-minus-concrete, 

and wood-minus-masonry, as well as each flipped. Then, we run a signed rank test (a non-

parametric test) to compute statistical significance to the differences. (We do not satisfy the 

conditions for a t-test (a normal test) as most differences are not normally distributed and have 

significant outliers.) 

To identify which exterior wall core option is overall advantageous, we conduct similar 

statistical testing. For hazard repair demands, we highlight two of the 100 scenarios: median and 

95th-percentile. The median is intended to be representative (since life cycle repair demands are 

themselves a sum of random samples, they fall under the law of large numbers and show a 

normal distribution, hence the median is the mean). The 95th-percentile is intended for design (as 

engineering principles favor). 

Lastly, to combine multiple comparisons, we apply the Bonferoni principle and add the statistical 

significance of the differences. Then, we can map the ranking of the exterior wall core options 

based on life cycle emissions.  
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Table 4.5-1. List of HAZUS wind building characteristics (WBCs). 
Code Description 

rship Roof shape hip 

rsgab Roof shape gable 

rcshg Roof cover asphalt shingles 

rccnt Roof cover concrete tiles 

rcmet Roof cover metal cladding 

walow Window area low 

wamed Window area medium 

wahig Window area high 

swrys Secondary water resistance present 

swrno No secondary water resistance 

rda6d Roof decking 6d @ 6’’/12’’ 

rda8d Roof decking 8d @ 6’’/12’’ 

rda6s Roof decking 6d @ 6’’/6’’ 

rda8s Roof decking 8d @ 6’’/6’’ 

tnail Roof-to-wall connections toenails 

strap Roof-to-wall connections straps 

shtys Shutters present 

shtno No shutters 

gdnod No garage door (homes w/o shutters) 

gdkwd Garage door weak (homes w/o shutters) 

gdstd Garage door standard (homes w/o shutters) 

gdno2 No garage door (homes w/ shutters) 

gdsup Garage door superior (homes w/ shutters) 

rmfys Masonry reinforcement present 

rmfno No masonry reinforcement 
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Table 4.5-2. List of BAIA Attribute-to-Activity Model for Energy (AAME) inputs. 
Code Description 

LivingArea Living area (sqft) 

Bedrooms Bedrooms 

Stories Stories 

AspectRatio Aspect ratio 

DegreesFromS Degrees from south (deg) 

RoofType 0 = gable, 1 = hip 

RoofPitch Roof pitch 

FrontWWR Front window-to-wall ratio 

BackWWR Back window-to-wall ratio 

SideWWR Side window-to-wall ratio 

WallU U-value of exterior walls (W/m2K) 

SlabU U-value of slab foundation (W/m2K) 

RoofU U-value of roof (W/m2K) 

WinU U-value of windows (W/m2K) 

WinSHGC Solar heat gain coefficient of windows 

HeatingShadeFactor Heating shade factor 

CoolingShadeFactor Cooling shade factor 

OverhangLength Overhang length (ft) 

ACH50 Air leakage rating 

VentHeatRecoveryRate Ventilation heat recovery rate 

PctOpenWin Percentage of openable windows 

PctLED Percentage of LED lightbulbs 

WaterHeaterEff Water heater efficiency 

HeatingEff Heating efficiency 

CoolingEff Cooling efficiency 

HeatingSetPoint Heating set point (F) 

CoolingSetPoint Cooling set point (F) 

Note: several of these inputs depend on the building geometry and material definitions, such as 

window-to-wall ratios (depend on window and exterior wall areas) and U-values (depend on 

wall, roof, slab foundation, and window materials). 
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4.6 Case Study 

To explore the relationship between natural hazard exposure and building life cycle emissions, 

we applied the methodology described in Section 4.5 to analyze the outcomes of construction 

material choice in single-family dwellings across the hurricane-prone state of Florida. We 

present a detailed look at the results for the county of Miami-Dade, FL, and then summarize the 

results for the entire state. 

The analysis of Miami-Dade County, FL is based on information from the 2018 updates for the 

BAIA and HAZUS models, as well as 2018 AHS data. As described earlier, this information is 

aggregated on various levels. 

Locational information is necessary for both BAIA and HAZUS. HAZUS terrain and wind speed 

recurrence are available on Census Tract level (FEMA, 2021b). BAIA climate variables are 

available on county level (input to compute heating and cooling demands), and BAIA energy 

emissions are available on state level (Hester, 2018). 

Building characteristic information is also necessary for both models. HAZUS characteristics are 

defined on schematic regional level, which can be larger or smaller than a state. In the case of 

Florida, the state is divided into four schematic regions: North Florida, Central Florida, South 

Florida, and Southeast Florida. Miami-Dade falls under Southeast Florida (FEMA, 2021b). AHS 

characteristics are defined on Census Division level (Southeast for Miami-Dade and Florida) 

(U.S. Census Bureau, 2019). BAIA characteristics are sampled depending on whether they are 

discrete or continuous. Discrete BAIA characteristics are sampled as equally likely options. 

Continuous BAIA characteristics are sampled from a uniform distribution. These distributions do 

not vary by location (Hester, 2018).  
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4.7 Results 

The objective of this case study is to compare outcomes of exterior wall core material choice in 

single-family dwellings in Miami-Dade, FL and across the state of Florida. Our results consist of 

two parts: [1] comparing building life cycle emissions for example Census Tracts in the county, 

and [2] mapping exterior wall core material choice recommendations for all Census Tracts in the 

county and across the entire state. 

Comparing Building Life Cycle Costs and Emissions 

In this section, we compare building life cycle emissions for three example Census Tracts in 

Miami-Dade. Figure 4.7-1 shows life cycle results for a Census Tract at a ‘mid-level’ of 

hurricane wind exposure (i.e. not too coastal or too inland, as exposure is highest on the coast, 

decreasing moving inland) (Census Tract 12086008416). Figure 4.7-2 shows hazard repair 

results for two additional Census Tracts, one on the coast (labeled as ‘higher’ exposure) (Census 

Tract 12086004404) and one furthest inland (labeled as ‘lower’ exposure) (Census Tract 

12086011500). 

We found the largest differences in the product (A1-3) and construction (A4-5) stages (red areas 

in Figure 4.7-1) and the hazard repair (B3) stage (light blue areas in Figure 4.7-1). Our model 

results suggest that wood homes yield the lowest A-stage emissions. Considering most studies of 

building embodied emissions are limited to these stages (Pomponi & Moncaster, 2016), such 

studies would promote wood as the most eco-friendly (i.e. lower emissions) exterior wall core 

material. However, accounting for latter stage emissions and capturing a more complete picture 

of building life cycle emissions highlights concrete as the most eco-friendly exterior wall core 
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material, especially in a climatological context that favors durable and hazard resilient 

construction materials. 

Particularly, differences in the hazard repair (B3) stage are more pronounced in areas with higher 

hurricane wind exposure (top row of areas in Figure 4.7-2) and less pronounced in areas with 

lower hurricane wind exposure (bottom row of areas in Figure 4.7-2). This suggests a strong 

context dependency in evaluating the influence of hazard vulnerability the entire building life 

cycle. 

While differences exist in the operational energy usage (B6) stage (hatched blue areas in Figure 

4.7-1), the replacement (B4) stage (dark blue areas in Figure 4.7-1), and the end-of-life (C) stage 

(gray areas in Figure 4.7-1), these differences are much smaller than those in the product (A1-3), 

construction (A4-5), and hazard repair (B3) stages. 

In these figures, carbon uptake (a negative emission) is removed from A-stage emissions. The 

total carbon uptake is roughly 1.7, 1.6, and 1.3 Mt carbon-dioxide-equivalent (CO2e) for 

concrete, masonry, and wood homes, respectively. Thus, carbon uptake sequesters a portion, 

albeit small, of building life cycle emissions. 

We conducted Spearman rank correlation between building stage emissions and building 

characteristics. Figure 4.7-3 shows Spearman rank correlation coefficients between building 

stage emissions for concrete archetypes and continuous inputs, Figure 4.7-4 shows the same for 

categorical inputs. Figure 4.7-5 shows Spearman rank correlation coefficients between the 

difference in building stage emissions for wood versus concrete archetypes and continuous 

inputs, Figure 4.7-6 shows the same for categorical inputs. These figures are limited to inputs 

with at least one coefficient larger than .1 (or less than -.1). A complete list of inputs, as well as 
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comparisons for masonry versus concrete and concrete versus masonry archetypes, can be found 

in the Supplementary Materials. 

Lifespan, living area, and number of stories influence B4 and B6 emissions, but do not notably 

influence the differences in the same. Living area and number of stories do, however, influence 

both the net value of and differences in A1-5 and B3 emissions. 

Percentage of openable windows, front and back WWRs, and heating and cooling efficiencies 

influence B6 emissions, but do not notable influence the differences in the same. Heating and 

cooling set points influence both the net value of and differences in B6 emissions. Additionally, 

differences in U-value of the exterior wall core influence the differences in B6 emissions. 

Details about shutters, garage doors, and surrounding exposure conditions influence the net value 

of and differences in B3 emissions. Roof shape and roof deck attachment also influence the 

differences in B3 emissions. Moreover, roof shape influences A1-5 emissions (as it affects the 

amount of material consumed for the exterior wall system). 

Figure 4.7-1 and Figure 4.7-2 show average building stage emissions. Spearman rank 

correlation above also pertains to averages. In the remainder of this discussion, we refer to [1] 

initial construction, [2] repair and replacement, [3] operational energy usage, and [4] carbon 

uptake. [1] includes product (A1-3), construction (A4-5), and the relevant portion of end-of-life 

(C) activities. [2] includes repair (B3), replacement (B4), and the relevant portion of end-of-life 

(C) activities. [3] include operational energy usage (B6) activities. [4] includes cement wastage, 

use, and end-of-life carbon uptake. 

In a Census Tract at a ‘mid-level’ of hurricane wind exposure, concrete homes, compared to 

wood, yield lower repair and replacement emissions in 97% of actualizations, lower operational 
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energy usage emissions in 58% of actualizations, and greater carbon uptake in 100% of 

actualizations. Wood homes, compared to concrete, yield lower initial construction (including 

relevant product, construction, and end-of-life emissions) in 96% of actualizations. (Please refer 

to the Supplementary Materials for supporting boxplots.) 

Concrete homes, compared to wood, yield lower life cycle emissions in 74% of actualizations. 

Compared to masonry, concrete homes yield lower life cycle emissions in 88% of actualizations, 

and wood homes yield lower life cycle emissions in 78% of actualizations. (Please refer to the 

Supplementary Materials for supporting boxplots.) 

Moving forward in this discussion, it is important to note that all comparisons up to this point are 

based on the median scenario of wind loading for each actualization. In this climatological 

context (i.e. Census Tract and intensity), concrete is the most eco-friendly exterior wall core 

material, then wood, then masonry.  
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Figure 4.7-1. Building life cycle emissions for an example Census Tract in Miami-Dade, FL; 

mean of 1,000 actualizations, median scenario of 100 wind loading scenarios. 

 

 
Figure 4.7-2. Building hazard repair emissions for example Census Tracts in Miami-Dade, FL; 

mean of 5,000 actualizations, median scenario of 100 wind loading scenarios. 
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Figure 4.7-3. Spearman rank correlation between building stage emissions for concrete 

archetypes and continuous inputs; initial construction, repair, and replacement emissions exclude 

end-of-life emissions for the respective activity; figure shows inputs with at least one coefficient 

larger than .1 or less than -.1. 
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Figure 4.7-4. Spearman rank correlation between building stage emissions for concrete 

archetypes and categorical inputs; initial construction, repair, and replacement emissions exclude 

end-of-life emissions for the respective activity; figure shows inputs with at least one coefficient 

larger than .1 or less than -.1. 
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Figure 4.7-5. Spearman rank correlation between the difference in building stage emissions for 

wood versus concrete archetypes and continuous inputs; initial construction, repair, and 

replacement emissions exclude end-of-life emissions for the respective activity; figure shows 

inputs with at least one coefficient larger than .1 or less than -.1. 
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Figure 4.7-6. Spearman rank correlation between the difference in building stage emissions for 

wood versus concrete archetypes and categorical inputs; initial construction, repair, and 

replacement emissions exclude end-of-life emissions for the respective activity; figure shows 

inputs with at least one coefficient larger than .1 or less than -.1. 
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Mapping Exterior Wall Core Material Choice Recommendations 

Here, we expand on building life cycle emissions from the previous section to derive exterior 

wall core material choice recommendations. Figure 4.7-7 shows results of the comparative study 

for Miami-Dade, FL. Figure 4.7-8 shows the same for the entire state. These maps are based on 

the 95th-percentile scenario of wind loading for each actualization. Both maps correspond to the 

same legend, where pink-orange tones indicate Census Tracts where concrete is the most eco-

friendly option, while blue-green tones indicate Census Tracts where wood is the most eco-

friendly option. Concrete, masonry, and wood homes are ranked based on building life cycle 

emissions. In Census Tracts where the ranking between two or more options is not statistically 

defensible, these options are noted as ‘tying’. 

As discussed in the previous section, most studies of building embodied emissions only account 

for product (A1-3) and construction (A4-5) emissions. Hence, such studies would lead to 

recommendations as depicted on the left-side of Figure 4.7-7, as wood homes yield the lowest 

A-stage emissions. 

In addition to product (A1-3) and construction (A4-5) emissions, this study accounts for repair 

(B3), replacement (B4), operational energy usage (B6), and end-of-life (C) emissions, as well as 

carbon uptake, capturing a more complete picture of building life cycle emissions. Our approach 

leads to recommendations as depicted on the right-side of Figure 4.7-7 and in Figure 4.7-8. 

These maps suggest that there is no one-size-fits-all solution, as concrete and masonry homes are 

favorable in more coastal and southern Census Tracts, where hurricane wind exposure is 

relatively higher, while wood homes are favorable in more inland and northern Census Tracts, 
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where hurricane wind exposure is relatively lower. Therefore, assessing the outcomes of exterior 

wall core material choice is highly dependent on the climatological context.  
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Figure 4.7-7. Exterior wall core material comparisons based on building life cycle emissions in 

Miami-Dade, FL; p < .05 across 5,000 actualizations, 95th-percentile scenario of 100 wind 

loading scenarios. 

 

 
Figure 4.7-8. Exterior wall core material comparisons based on building life cycle emissions in 

Florida; p < .05 across 5,000 actualizations, 95th-percentile scenario of 100 wind loading 

scenarios. 
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4.8 Discussion 

Present studies of building embodied emissions are mostly limited to the product and 

construction emissions associated with initial construction. However, this leads to a misleading 

assessment of which construction materials constitute ‘green’ buildings. Typically, this 

assessment is boiled down to an absolute preference between one construction material over the 

other (e.g. wood over concrete). In this manuscript, we demonstrate that a comprehensive 

assessment results in a ‘mix of fixes’ highly dependent on the climatological context. 

We expand building embodied emissions to incorporate hazard vulnerability and carbon uptake, 

and then combine embodied emissions with operational energy usage emission to capture a full 

life cycle of emissions associated with the outcomes of construction material choice. A durable, 

hazard-resilient material like concrete may increase emissions associated with initial 

construction, but lower life cycle emissions by saving repair and replacement demands. 

Particularly in hurricane-prone communities, hazard repair emissions can comprise a similar 

order of magnitude as initial construction emissions. Regarding exterior wall core material 

choice, we found that concrete is the favorable material option in more coastal and southern 

communities, where hurricane wind exposure is relatively higher and the hazard repair stage is 

the dominating factor, while wood is the favorable material option in more inland and northern 

communities, where hurricane wind exposure is relatively lower and the initial construction stage 

is the dominating factor. The favorability of concrete is particularly pronounced for large 

structures (greater living area, more stories) and/or structures lacking hurricane mitigation 

measures. 
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Ultimately, exterior wall core material choice is one of many decisions around building 

sustainability and hazard resilience. Future studies can extend this work to explore the outcomes 

of other decisions, such as selecting a different configuration of building characteristics like in 

Table 4.5-1 and Table 4.5-2. These studies can also focus on a wider range of residential and 

commercial building archetypes, as well as a wider range of natural hazards, as archetypes 

respond to natural hazards in different ways.  
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5 Contributions to Environmental Assessment: Sector Level 

This chapter includes the manuscript “Exploring Opportunities for Building Life Cycle 

Assessment to Inform Cement Scope 1-3 Greenhouse Gas Accounting” authored by Ipek Bensu 

Manav, Hessam Azarijafari, and Randolph Kirchain. The title and content of the manuscript may 

have changed during peer review and publication. 

 

5.1 Abstract 

Present protocols for greenhouse gas (GHG) accounting imply that the full scope of cement’s 

sectoral emissions cannot be captured. Based on cement’s status as an intermediate product, 

these protocols assert that necessary information (e.g. design details) is lacking to measure or 

model cement’s downstream emissions (e.g. use and end-of-life emissions of end-use 

applications such as buildings). 

Previous work developed streamlined tools for building life cycle assessment (LCA) and loss 

estimation. This research allows us to estimate the full life cycle of a given building’s GHG 

emissions while making use of very little or no additional design details. Combined with housing 

stock analysis and cement market share information, this research is extended to create a more 

complete picture of cement’s sectoral environmental footprint (SEF) associated with buildings. 

Particularly for long-life products like cement-based products (CBPs), ignoring downstream 

emissions can mean ignoring a large portion of their value chain. Model results show that scope 

1-2 emissions comprise 26% of reportable building emissions, upstream scope 3 emissions 

comprise another 2%, while downstream scope 3 emissions comprise the remainder and majority 
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72%. Moreover, the largest portion of downstream scope 3 emissions derive from building 

operational energy usage. 

This manuscript explores opportunities for building LCA to inform cement’s SEF, especially 

throughout defining and estimating emission categories currently deemed too complex to tackle. 

Compared to present protocols, this exploration offers a broader range of pathways for the 

cement sector to strategize efforts for GHG reduction and neutralization. 

5.2 Keywords 

Life Cycle Assessment, Greenhouse Gas Reporting, Cement 
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5.3 Introduction 

As an increasing number of countries, communities, and industry commit to lowering planetary 

greenhouse gas (GHG) emissions, organizations (e.g. companies) have a growing need for clear 

guidelines on setting and tracking targets for GHG abatement (IPCC, 2022). The current best 

practice for doing so is called organizational GHG accounting (and reporting) (GHGP, 2011, 

2015). 

Present protocols for organizational GHG accounting define three scopes of an organization’s 

environmental footprint: scope 1 or direct emissions, scope 2 or indirect emissions associated 

with generation of purchased electricity, and scope 3 or any other indirect emissions upstream or 

downstream of the organization’s direct activities. 

The definition of scope 3 emissions is broad, and its emission categories are comprehensive, as 

this scope includes 15 emission categories spanning activities from the extraction of raw 

materials for production of the organization’s product to the processing of wastes at the end-of-

life of the organization’s product. However, for materials producers, and particularly producers 

of intermediate goods, several of these emission categories are deemed “too difficult” to measure 

(WBCSD, 2011a). An example of such intermediate goods is cement, which gets mixed into 

cement-based products (CBPs) (e.g. ready-mixed concrete), which in turn gets cast into end-use 

applications (e.g. buildings). Cement producers often lack complete information on their 

product’s end-use applications (e.g. specific operational energy usage of each building including 

CBPs). Because of this, present protocols rule out most downstream scope 3 emission categories 

for cement producers based on cement’s status as an intermediate good (WBCSD, 2011a). 
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In this manuscript, our objective is two-fold. First, we extend organizational GHG accounting to 

study the full scope of reportable building emissions associated with the cement sector—as a 

whole, rather than focusing on a specific cement producer. While doing so, we define the 

sectoral environmental footprint (SEF) to encompass a good’s scope 1-3 GHG emissions. 

Measuring and tracking cement’s SEF is crucial to ongoing carbon-neutrality efforts, as an 

increasing number of commitments are made on industrial sector level (Battelle, 2002; WBCSD, 

2002), as well as on national or regional level, where GHG emissions are aggregated on 

industrial sector level (EPA, 2023). 

Second, we amend present protocols to offer ways in which building life cycle assessment 

(LCA) can supplement GHG accounting for emissions categories currently ruled out for being 

too complex to tackle. We demonstrate this integration with a focus on single-family dwellings. 

Combined with housing stock analysis and cement market share information, building LCA 

allows to model downstream emissions associated with the construction, use, and end-of-life of 

single-family dwellings including CBPs.  
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5.4 Literature Review 

Organizational GHG accounting for cement producers is governed by initiatives from three 

international organizations: [1] Science-Based Targets Initiative’s (SBTi’s) cement guidance for 

target setting (SBTi, 2022), [2] World Business Council for Sustainable Development’s 

(WBCSD’s) cement guidance for GHG reporting (WBCSD, 2011b, 2011a), and [3] Greenhouse 

Gas Protocol (GHGP), the underlying protocols which define scopes and categories of GHG 

emissions (GHGP, 2011, 2015). A complete list of emission categories covered by GHGP and 

WBCSD can be found in the Supplementary Materials. 

For the purposes of this study, we assume scope 1 activities include clinker production, yet 

exclude any other blending, grinding, bagging, or T&D beyond the factory gate. There are a 

variety of cement producers. Blending, grinding, and vertically-integrated plants differ based on 

their material intake, where blending and grinding plants purchase clinker, while vertically-

integrated plants produce their own (WBCSD, 2011b). Cement producers also differ based on 

the reach of their transportation and distribution (T&D) network, as their final node can be the 

factory gate, other plants, or construction sites (WBCSD, 2011b). 

Limiting scope 1 activities to clinker production simplifies our system boundaries, while making 

sure that we cover the single-most carbon-intensive process in cement manufacturing (i.e. clinker 

production), as well as the only process cement producers are required to report on (i.e. clinker 

production) regardless of whether they purchase clinker or produce their own (WBCSD, 2011b). 

Within our system boundaries, scope 1 emissions refer to direct emissions associated with 

clinker production, scope 2 emissions refer to indirect emissions associated with combustion of 
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fuels for generation of purchased electricity, and scope 3 emissions refer to any other indirect 

emissions upstream or downstream of clinker production or generation of purchased electricity. 

Scope 1 activities required to be reported on include calcination and combustion of raw materials 

and on-site combustion of fuels (WBCSD, 2011b). These fuels include those burned for kiln and 

non-kiln activities, on-site power generation, and on-site transportation involving internal 

combustion engine vehicles (ICEVs). 

Scope 2 activities required to be reported on include off-site combustion of fuels for generation 

of purchased electricity (WBCSD, 2011b). This purchased electricity includes that consumed for 

kiln and non-kiln activities, on-site power generation, and on-site transportation involving 

electrical vehicles (EVs). 

Upstream scope 3 activities required to be reported on include cradle-to-gate and T&D activities 

associated with purchased goods, services, and fuels (burned in scope 1 or 2) (WBCSD, 2011a). 

Though optional to report, these activities can include cradle-to-gate and T&D activities 

associated with capital goods (WBCSD, 2011a). The tricky part about accounting for capital 

goods emissions is allocation (i.e. deciding which portion of emissions to attribute to a given 

type or amount of product). However, life cycle inventories (LCIs) readily account for and 

thoroughly document allocation principles for capital goods emissions (ecoinvent, n.d.). 

The only downstream scope 3 activities required to be reported on are T&D activities associated 

with sold goods (WBCSD, 2011a). Though optional to report, these activities can include 

activities associated with processing cement into CBPs, installing CBPs in buildings, and use and 

end-of-life of buildings (WBCSD, 2011a). As described earlier, these latter activities are deemed 

“too difficult” to measure or model for cement producers. 
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Typically, scope 1 activities are the easiest to report on, since they only involve the reporting 

party, while scope 2 and 3 are harder because they rely on collecting data from other partnering 

parties. Industrial ecology provides a versatile toolkit to aid various emission categories likely to 

experience data gaps (de Bortoli et al., 2023). This toolkit includes: LCIs and LCA. 

LCIs can supplement scope 2 and upstream scope 3 accounting, as they offer an inventory of 

cradle-to-gate environmental impacts (e.g. GHG emissions) associated with a unit of direct 

activity (e.g. a kg of clinker production) (ecoinvent, 2021c). These environmental impacts 

include those associated with direct activity as well as upstream activities (e.g. cradle-to-gate and 

T&D activities associated with limestone used for a kg of clinker production). LCIs are easily 

accessible and thoroughly documented, however their estimates are based on industry averages 

and limited in geographic scope. These estimates need to be adjusted to account for local 

variability in technology, electrical grid, and material availability (Hottle et al., 2022; Klee et al., 

2011). 

In addition to the benefits of LCIs, LCA can supplement downstream scope 3 accounting, as it 

captures the full life cycle of environmental impacts associated with a product (e.g. a kg of 

cement). Relevant fields of study include organizational LCA (or O-LCA), LCA of cement, and 

LCA of buildings. 

Similar to GHG accounting, the objective of O-LCA is to aid organizations in evaluating 

strategies for GHG abatement. The main difference between the practices is how they break 

down activities, as GHG accounting categorizes activities based on scopes, while O-LCA 

categorizes activities based on life cycle stages. Though O-LCA practitioners strongly urge 

organizations to consider downstream environmental impacts, a recent study found pushback 

from materials (and construction) sectors, as materials producers (and contractors) do not have 
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full control over the final product that is buildings (and infrastructure) (Martínez-Blanco et al., 

2020). Another study found similar pushback, adding a reason for the reluctance being that 

reported emissions seem higher when considering downstream environmental impacts (de 

Bortoli et al., 2023). However, different scopes are reported separately (WBCSD, 2011b, 2011a) 

and, often times, different scopes are assigned different GHG abatement targets (more ambitious 

for direct emissions) (SBTi, 2022). Thus, having a more comprehensive assessment of 

downstream scope 3 emissions does not interfere with ongoing efforts, yet presents new 

pathways to innovate to achieve targets. 

LCA studies of cement explore methods to quantify the environmental impacts of cement. A 

number of these studies focus on mix design: substituting ordinary portland cement (OPC) with 

portland pozzolana cement (PPC) (Manjunatha et al., 2021), blast furnace slag (a side product of 

steel production) (Manjunatha et al., 2021), or fly ash (a side product of coal combustion) (Seto 

et al., 2017). Other studies consider a broader range of strategies for GHG abatement: recycling 

of cement kiln dust (CKD) (Huntzinger & Eatmon, 2009), improving energy efficiency (Busch et 

al., 2022), switching to alternative fuels (Busch et al., 2022; Salas et al., 2016), or implementing 

carbon capture utilization and storage (CCUS) (Busch et al., 2022; Salas et al., 2016). A few 

studies consider the potential of carbon uptake to contribute to GHG abatement (Busch et al., 

2022; García-Segura et al., 2014). All of these studies have a cradle-to-gate cut-off (apart from 

those which consider carbon uptake), ignoring environmental impacts beyond the factory gate 

(apart from carbon uptake) (Ige et al., 2021). 

Lastly, LCA studies of buildings explore methods to quantify the environmental impacts of 

entire (or parts of) buildings (including the environmental impacts of cement, or CBPs, 

consumed in building construction). The building life cycle consists of product (A1-3), 
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construction (A4-5), use (B), and end-of-life (C) stages. Present studies look at emissions 

associated with a variety of combinations of these stages (Pomponi & Moncaster, 2016). 

Considering the breadth of emission categories covered by GHGP, a portion of emissions in each 

of these stages is relevant to at least one of the scopes within cement’s SEF. However, no study 

to date has mapped the connection between building life cycle emissions and cement’s SEF (or 

the SEF of any other construction material). 

In this manuscript, we explore opportunities for building LCA to inform cement’s SEF. In 

Chapter 4 of this work, we propose an integrated building LCA framework to assess the 

regional influence of hazard vulnerability on life cycle emissions associated with single-family 

dwellings. To do this, we make use of streamlined LCA, loss estimation, and housing stock 

analysis. In this manuscript, we combine this framework with cement market share information 

to estimate the contribution of single-family dwellings to cement’s SEF over the years.   
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5.5 Methodology 

The objective of this study is to estimate the contribution of single-family dwellings to cement’s 

SEF over the years. As described earlier, scope 1 emissions are direct emissions associated with 

clinker production, scope 2 emissions are indirect emissions associated with combustion of fuels 

for generation of purchased electricity, and scope 3 emissions are any other indirect emissions 

upstream or downstream of clinker production or generation of purchased electricity. 

In this context, cement is the intermediate good, CBPs are the primary good, and single-family 

dwellings are the final product. Upstream scope 3 includes cradle-to-gate and T&D activities 

associated with purchased goods, services, fuels, and capital goods used in either clinker 

production (scope 1) or generation of purchased electricity (scope 2). Downstream scope 3 

includes activities associated with processing clinker into CBPs, as well as the construction, use, 

and end-of-life of buildings. 

Present protocols rule out several of these activities within emission categories on the basis that 

they are “too complex” to measure or model (WBCSD, 2011b, 2011a). To measure them, we 

would need to gauge every electrical grid, smokestack, tailpipe, and chimney, and add up 

respective emissions. The costs of such an operation would be astronomical. To model them, 

ideally, we would analyze a dataset of every home permitted to be built in each year, where all 

building characteristics are known. However, in the U.S., not all characteristics are tracked, 

while others are found across several datasets aggregated on various levels at much less granular 

scales (e.g. Census Division). 

In this manuscript, we offer opportunities to aid reporting a full scope of emissions while making 

use of data and models that are currently available and publicly accessible. In doing so, we 
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evaluate life cycle emissions for each building b  built in each year. Our methodology consists of 

four aspects: [1] identifying which building life cycle emissions map onto cement’s SEF, [2] 

evaluating life cycle emissions for building archetypes, [3] defining ‘excess’ energy usage, and 

[4] scaling LCA results to study cement’s SEF over the years. 

Identifying Which Building Life Cycle Emissions Map onto Cement’s SEF 

The life cycle emissions associated with each building b  consist of embodied and operational 

emissions. Formally, that is 

 
b b bLC Ed Ol= +  Eq.4.5.1 

where 
bLC  is the life cycle emissions of b , 

bEd  is its embodied emissions, and 
bOl  is its 

operational emissions. 

Embodied emissions relate to product, construction, and end-of-life emissions associated with 

material consumption. Operational emissions relate to fuels and electricity emissions associated 

with operational energy usage. 

To identify which building embodied emissions map onto cement’s SEF, we first need to 

identify which CBPs are used in building components. In the context of single-family dwellings, 

a variety of CBPs can be used in a variety of building components. A complete list of building 

components considered can be found in Table 5.5-1 and a complete list of CBPs considered can 

be found in Table 5.5-2. For instance, cast-in-place concrete can be used in exterior walls, slab 

foundations, or footings, while concrete masonry units (CMUs) can be used in exterior walls or 

basement walls. 
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To evaluate the reportable embodied emissions arising from each b , we first evaluate embodied 

emissions arising from each CBP used in each building component found in b . That is 

 
,

Ed

b cbp bc

cbp bc bc b

SEF Ed
 

=    Eq.4.5.2 

where Ed

bSEF  is the reportable embodied emissions of b  and ,cbp bcEd  is the embodied emissions 

associated with CBP cbp  used in building component bc  found in b . 

Embodied emissions arising from each CBP consists of ‘direct’ and ‘indirect’ emissions. As 

discussed earlier, we simplify our system boundaries by limiting direct activities to clinker 

production (scope 1). These direct activities consist of kiln and non-kiln activities. A complete 

list of kiln activities considered can be found in Table 5.5-3 and a complete list of non-kiln 

activities considered can be found in Table 5.5-4. 

Present protocols require cement producers to report a selection of indirect activities as well. 

These required indirect activities include generation of purchased electricity (scope 2), cradle-to-

gate and upstream T&D activities associated with purchased goods, services, and fuels (upstream 

scope 3), and downstream T&D activities associated with sold goods (downstream scope 3) 

(WBCSD, 2011a). We extend required upstream activities to include cradle-to-gate and T&D 

activities associated with capital goods, which we allocate based on information found in LCIs 

(ecoinvent, 2021c). This is one of our contributions, however the majority of our contributions 

are in our treatment of downstream activities. 

We extend required downstream activities to include activities associated with processing clinker 

into CBPs, as well as the construction, use, and end-of-life activities of buildings. The former 

consists of T&D activities of delivering clinker to the processing site, ‘direct’ activities 



152 

 

associated with CBP production, and cradle-to-gate and T&D activities associated with other 

(non-clinker) goods, services, fuels, and capital goods used in CBP production. The latter 

consists of T&D activities of delivering CBPs to the construction site, ‘direct’ activities 

associated with building construction, use, and end-of-life, and carbon uptake (a chemical 

process inherent to CBPs which leads to negative emissions during building construction, use, 

and end-of-life). 

The use of buildings leads to operational emissions, in addition to embodied emissions discussed 

thus far. In this work, reportable building emissions account for a portion of emissions associated 

with building operational energy usage. We call this portion ‘excess’ (defined later). 

Although all stages of the building life cycle are relevant to cement’s value chain, we only 

account for a portion of emissions associated with each building life cycle stage in cement’s 

SEF. A complete list of building life cycle emissions considered in cement’s SEF can be found 

in Table 5.5-5. This is also shown in Figure 5.5-1. Specifically, we assume product, 

construction, and end-of-life emissions associated with CBPs used in initial construction, repair, 

and replacement are in scope, while the same for other (non-CBP) goods are out of scope. 

In reality, a multitude of stakeholders are involved in upstream and downstream activities. Each 

such activity contributes to a unique stakeholder’s scope 1 emissions, while also contributing to 

the scope 2 or 3 emissions of the other stakeholders. A tentative list of stakeholders in cement’s 

value chain can be found in the Supplementary Materials. For instance, the scope 1 emissions 

of a coal plant are the scope 2 emissions for a cement plant, the scope 1 emissions of a limestone 

quarry are upstream scope 3 emissions for the cement plant, and the scope 1 emissions of a 

ready-mixed concrete plant are downstream scope 3 emissions for the cement plant. In this work, 

we are not interested in identifying individual stakeholders so much as creating a comprehensive 
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understanding of activities within cement’s value chain. (Reserved for future studies, this 

understanding can be applied to other residential and commercial building archetypes, not just 

single-family dwellings.) 

Evaluating Life Cycle Emissions for Building Archetypes 

As formalized in Eq.4.5.1, the life cycle emissions associated with each building b  consist of 

embodied and operational emissions. The embodied component of building life cycle emissions 

includes emissions associated with materials consumed in initial construction, repair, and 

replacement. That is 

 
b b b bEd IC Rr Rt= + +  Eq.4.5.3 

where 
bEd  is the embodied emissions of b , 

bIC  is its initial construction emissions, 
bRr  is its 

hazard repair emissions,  and
bRt  is its replacement emissions. 

We use the terms ‘initial construction’, ‘repair’, and ‘replacement’ to refer to the sum of life 

cycle activities associated with a stream of material consumption. Hence, initial construction, 

repair, and replacement emissions, each, include relevant product, construction, and end-of-life 

emissions. Together, that is 

 , , , ,b x b x b x b x bX P C EoL CU= + + +  Eq.4.5.4 

where 
bX  is the emissions of X  (initial construction, repair, or replacement) of b , ,x bP  is its 

product emissions, ,x bC  is its construction emissions, ,x bEoL  is its end-of-life emissions, and ,x bCU  

is its carbon uptake associated with CBPs consumed. 
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The operational component of building life cycle emissions includes emissions associated with 

fuels and energy consumed for operational energy usage. That is 

 
b bOl EU=  Eq.4.5.5 

where 
bOl  is the operational emissions of b  and 

bEU  is its operational energy usage emissions. 

In Chapter 4 of this work, we create building archetypes to represent building characteristics 

pertinent to evaluating embodied and operational emissions. These building archetypes differ 

based on: exterior wall core material (concrete, masonry, or wood), number of stories (1, 2, or 3), 

living area (small, medium, or large), roof shape (gable or hip), roof cover (asphalt shingles, 

concrete tiles, or metal cladding), window area (low, medium, or high), among several other 

building characteristics. Along with locational characteristics (e.g. climate), these building 

characteristics help estimate material and energy demands. 

Building geometry and material definitions directly impact material demands for initial 

construction, while other material and energy demands rely heavily on locational characteristics. 

This is reflected in a number of effects. Exposure to natural hazards (e.g. hurricane winds) leads 

to higher hazard repair demands. Humidity leads to higher replacement demands (more regular 

wear-and-tear). Humidity also inhibits carbon uptake on outdoor surfaces. Temperature affects 

heating and cooling demands. Material definitions amplify or reduce these effects, as more 

durable, hazard-resilient materials require less repair and replacement, and massive materials cut 

down on heating and cooling. 

In this manuscript, we apply the integrated building LCA and loss estimation framework 

presented in a recent manuscript. This framework uses a combination of building archetypes to 

evaluate emissions associated with the construction, use, and end-of-life of typical single-family 
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dwellings in a region. To reiterate, we do not account for the entirety of building life cycle 

emissions in cement’s SEF, but a portion, including embodied emissions associated with CBPs 

and operational emissions associated with ‘excess’ energy usage (as shown in Figure 5.5-1). 

Defining ‘Excess’ Energy Usage 

Although present protocols recognize emissions associated with building operational energy 

usage as part of downstream emissions, they lack clear guidelines (or even a precedent) 

regarding what portion of building operational energy usage to account for. Operational energy 

usage of each building b  consists of fuels and electricity used for heating, cooling, and other 

purposes such as lighting and appliances. That is 

 
b b b bEU Hg Cg Or= + +  Eq.4.5.6 

where 
bEU  is the operational energy usage emissions of b , 

bHg  is its heating emissions, 
bCg  is 

its cooling emissions, and 
bOr  is its other operational energy usage emissions. 

To achieve both ‘completeness’ and ‘relevance’ principles in GHG accounting (GHGP, 2015), 

we make two recommendations: [1] limit reporting to building heating and cooling, and [2] 

apply a science-based metric to identify CBPs’ contribution to building heating and cooling 

performance. 

Regarding [1], CBPs are used in building components (e.g. exterior wall core) which impact 

building heating and cooling performance (e.g. thermal resistance, or its inverse thermal 

conductivity). However, they are not used in any building components which impact building 

operational energy usage associated with other purposes. Thus, only heating and cooling is 

relevant to report on within cement’s SEF. This can be shown as 
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 Ol

b b bSEF Hg Cg +  Eq.4.5.7 

where Ol

bSEF is the reportable operational emissions associated with b , 
bHg  is its heating 

emissions, and 
bCg  is its cooling emissions. 

Regarding [2], building façade, roof, and foundation all contribute to building heating and 

cooling performance, but building façade by far is the most influential. Building façade consists 

of windows, exterior doors, and exterior walls, while exterior walls consist of exterior wall core 

and exterior and interior finishings. 

Windows, exterior doors, and exterior walls represent a system in parallel (as shown in Figure 

5.5-2). Based on principles of heat transfer, these building components contribute to a combined 

thermal conductivity proportional to their individual thermal conductivities and surface areas. 

This leads to the relationship 

 window window door door wall wall

b b b b b b b bU SA U SA U SA U SA= + +  Eq.4.5.8 

where 
bU  is the combined thermal conductivity of b , wall

bU  is that of its windows, doors

bU  is that of 

its exterior doors, and wall

bU  is that of its exterior walls, and 
bSA  is the total surface area 

comprising of walls

bSA  the surface area of windows, door

bSA  the surface area of exterior doors, and 

walls

bSA  the surface area of exterior walls. 

Hence, the contribution of CBPs in exterior walls to heating and cooling performance is 

inversely proportional to the thermal conductivity and surface area of exterior walls, compared to 

other façade component buildings, shown as 

 1( )Ol walls walls walls

b b b bSEF CBP U SA −  Eq.4.5.9 
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where Ol

bSEF is the reportable operational emissions associated with b , walls

bCBP  is the indicator of 

whether its exterior walls include CBPs, wall

bU  is the thermal conductivity of its exterior walls, 

and walls

bSA  is its surface area. 

Exterior wall core and exterior and interior finishings represent a system in series (as shown in 

Figure 5.5-2). Based on principles of heat transfer, these building components contribute to a 

combined thermal conductivity inversely proportional to their individual thermal conductivities 

(area is not a factor since it is the same). This leads to the relationship 

 1 1 1 1( ) ( ) ( ) ( )walls EWC EF IF

b b b bU U U U− − − −= + +  Eq.4.5.10 

where walls

bU  is the thermal conductivity of b ’s exterior walls, EWC

bU  is that of its exterior wall 

core, EF

bU  is that of its exterior finishing, and IF

bU  is that of its interior finishing. 

Apportioning building heating and cooling comes down to layers in exterior wall core. Exterior 

and interior finishings contribute to thermal resistance negligibly (if at all) (Hester, 2018). Thus, 

we remove them from the equation. Exterior wall core itself consists of multiple layers. 

Depending on the exterior wall core material, these layers include insulation (rigid or nonrigid), 

wood products (e.g. sheathing), and CBPs. This can be denoted as 

 1 1( ) ( )EWC l

b b

l EWC

U U− −



=   Eq.4.5.11 

where EWC

bU  is the thermal conductivity of b ’s exterior wall core and l

bU  is that of its exterior 

wall core layers. 

Hence, the contribution of CBPs in exterior wall core to heating and cooling is proportional to 

the thermal conductivity of CBP layer, compared to other layers in exterior wall core, shown as 
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 Ol l l

b b b

l EWC

SEF CBP U


   Eq.4.5.12 

where Ol

bSEF is the reportable operational emissions associated with b , l

bCBP  is the indicator of 

whether its exterior wall core layers include CBPs , and l

bU  is the thermal conductivity of its 

exterior wall core layers. 

Considering the relationships in Eq.4.5.7, Eq.4.5.9, and Eq.4.5.12, reportable operational 

emissions arising from each b  is represented by its heating and cooling apportioned proportional 

to the contribution of CBPs to exterior wall core thermal conductivity and inversely proportional 

to the contribution of exterior walls to façade thermal conductivity. ‘Excess’ energy usage is 

defined to capture the impacts of CBPs on building operational energy usage. 

Scaling LCA Results to Study Cement’s SEF Over the Years 

To scale building LCA results, we first aggregate the number of single-family dwellings built in 

each year. That is 

 
,t ba t

ba

N N=  Eq.4.5.13 

where 
tN  is the number of single-family dwellings built in analysis year t  and ,ba tN  is that of its 

building archetypes. For 
tN , we refer to the U.S. Census Bureau’s Building Permits Survey 

(BPS) (U.S. Census Bureau, 2020b). For ,ba tN , we make use of building characteristic 

information from the U.S. Census Bureau’s American Housing Survey (AHS) (U.S. Census 

Bureau, 2019) and the Federal Emergency Management Agency’s (FEMA’s) HAZUS model 

database (FEMA, 2021b). 
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To evaluate reportable building emissions in each year, we sum the reportable emissions 

associated with each building b  of each building archetype built in each year. That is 

 ( )Ed Ol

t b b

ba b ba

SEF SEF SEF


= +  Eq.4.5.14 

where 
tSEF  is the reportable building emissions in analysis year t , Ed

bSEF  is the reportable 

embodied emissions associated with b  as defined in Eq.4.5.2, and Ol

bSEF  is its reportable 

embodied emissions as defined across Eq.4.5.7, Eq.4.5.9, and Eq.4.5.12. The number of b s of 

each building archetype add up to ,ba tN  in each analysis year, and the total number of b  add up to 

tN . 

To match our estimate of clinker consumed to the actual amount of clinker sold in each year, we 

apply a correction factor on reportable building emissions. This leads to the relationship 

 
corr

corr t

t t

t

M
SEF SEF

M

 
=  
 

 Eq.4.5.15 

where corr

tSEF  is the corrected reportable building emissions in analysis year t , 
tSEF  is the 

uncorrected reportable building emissions, 
tM  is our estimate of clinker consumed, and corr

tM  is 

the actual amount sold. For this, we refer to clinker sales information from the Portland Cement 

Association (PCA). 

To map reportable embodied emissions onto scopes and categories in cement’s SEF, we need to 

break down LCI data into ‘direct’ and upstream portion, as LCI data incorporated into building 

LCA is based on cradle-to-gate emissions for primary materials (e.g. CBPs) which map onto a 

variety of scope 1, 2, and 3 categories in cement’s SEF. LCI documentation helps separate 

‘direct’ and upstream emissions. This varies by CBP. For instance, >90% of emissions 
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associated with ready-mixed concrete production is upstream emissions associated with clinker 

production (ecoinvent, 2021a). Upstream emissions associated with clinker production also have 

cradle-to-gate cut-off. Hence, these emissions need to be further broken down (>90% ‘direct’ 

and <10% upstream) (ecoinvent, 2021c), as well as emissions associated with fuel and electricity 

production (>80% ‘direct’ and <20% upstream) (ecoinvent, 2021b). 

For additional details on clinker production, we recommend referring to process models such as 

those derived from the U.S. Energy Information Agency’s (EIA’s) Manufacturing Energy 

Consumption Survey (MECS) (EIA, 2018). Process models are especially useful to discern 

sources of scope 1 emissions, particularly between emissions associated with calcination of raw 

materials versus combustion of fuels.  



161 

 

Table 5.5-1. List of building components considered (Hester, 2018). 
Code Description 

BC1 Concrete tile roof 

BC2 Brick exterior finishing (as mortaring) 

BC3 Stone exterior finishing (as mortaring) 

BC4 Masonry exterior wall core 

BC5 Concrete exterior wall core 

BC6 Precast concrete exterior wall core 

BC7 Slab foundation 

BC8 Foundation footings 

BC9 Masonry basement walls 

Note: BC1 (concrete tile roof) and BC6 (precast concrete exterior wall core) correspond to zero 

prevalence among single-family dwellings. 

 

Table 5.5-2. List of CBPs considered (Hester, 2018). 
Code Description 

CBP1 Concrete tile 

CBP2 Mortaring 

CBP4 Concrete masonry unit 

CBP5 Concrete masonry unit filler 

CBP6 Cast-in-place concrete 

CBP7 Precast concrete 

Note: CBP1 (concrete tile) and CBP7 (precast concrete) correspond to zero prevalence among 

single-family dwellings. 

 

Table 5.5-3. List of kiln activities considered as part of clinker production (WBCSD, 2011b). 
Code Description 

S1-1 Calcination of raw meal (e.g. limestone) 

S1-2 Combustion of organic carbon 

S1-3 Calcination of bypass dust 

S1-4 Calcination of cement kiln dust 

S1-5 Combustion of fossil fuels and biofuels 

 

Table 5.5-4. List of non-kiln activities considered as part of clinker production (WBCSD, 

2011b). 
Code Description 

S1-6 On-site power generation (e.g. boilers) 

S1-7 On-site transportation 

S1-8 Off-site transportation 

S1-9 Equipment 

S1-10 Room heating and cooling 

S1-11 Drying of mineral components 
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Table 5.5-5. Mapping building life cycle emissions onto cement’s sectoral emissions. 
Relevance to Cement Sector Emissions Required to Report? 

In scope, indirect; 

contribute to upstream 

scope 3 emissions 

A1-2 and B2-5 <> upstream scope 3, categories 

1, 3, and 4; cradle-to-gate and T&D emissions 

associated with raw materials, fuels, and electricity 

used for clinker production 

Required by WBCSD 

A1-2 and B2-5 <> upstream scope 3, categories 

2 and 4; cradle-to-gate and T&D emissions 

associated with capital goods used for clinker 

production 

NOT required by WBCSD 

because “insignificant” 

In scope, direct; contribute 

to scope 1 emissions 

A1 and B2-5 <> scope 1; scope 1 emissions 

associated with production of clinker used for 

CBPs 

Required by WBCSD 

In scope, indirect; 

contribute to scope 2 

emissions 

A1 and B2-5 <> scope 2; Scope 1 emissions 

associated with generation of purchased electricity 

for production of clinker used for CBPs 

Required by WBCSD 

In scope, indirect; 

contribute to downstream 

scope 3 emissions 

A2 and B2-5 <> downstream scope 3, category 

9; T&D emissions associated with clinker used for 

production of CBPs 

Required by WBCSD 

A1-2 and B2-5 <> downstream scope 3, 

category 10; cradle-to-gate and T&D emissions 

associated with materials that are NOT clinker but 

used for production of CBPs 

Not mentioned by WBCSD 

A3 and B2-5 <> downstream scope 3, category 

10: scope 1-2 emissions associated with 

production of CBPs used for initial construction, 

repair, and replacement (including carbon uptake 

of cement wastage) 

NOT required by WBCSD 

because “difficult” 

A4 and B2-5 <> downstream scope 3, category 

10; T&D emissions associated with CBPs used for 

initial construction, repair, and replacement 

Not mentioned by WBCSD 

A5 and B2-5 <> downstream scope 3, category 

10; scope 1-2 emissions associated with 

installation of CBPs used for initial construction, 

repair, and replacement 

NOT required by WBCSD 

because “difficult” 

B1 and B2-5 <> downstream scope 3, category 

11; scope 1-2 emissions associated with use of 

CBPs used for initial construction, repair, and 

replacement (including carbon uptake) 

B6-7 <> downstream scope 3, category 11; scope 

1-2 emissions associated building ‘excess’ energy 

usage 

C1-4 <> downstream scope 3, category 12; 

scope 1-2 emissions associated with end-of-life of 

CBPs used for initial construction, repair, and 

replacement (including carbon uptake) 

Out of scope 

A1-5, B2-5, and C1-4 <> out of scope; Scope 1-3 

emissions associated with non-CBP materials used 

for initial construction, repair, and replacement 

Not mentioned by WBCSD 

Note: T&D = transportation and distribution, CBP = cement-based product. 

  



163 

 

 
Figure 5.5-1. Outline of how building life cycle emissions map onto cement’s sectoral 

emissions; all building life cycle stages relevant to cement’s value chain, however only a portion 

of emissions in each building life cycle stage relevant to report in cement’s sectoral emissions. 
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Figure 5.5-2. Building components in parallel and in series on building façade; windows, doors, 

and exterior wall in parallel, while exterior wall core in series with exterior and interior 

finishings. 
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5.6 Case Study 

To explore opportunities for building LCA to inform cement’s SEF,  we applied the 

methodology described Section 5.5 to analyze reportable emissions associated with single-

family dwellings across the hurricane-prone state of Florida. 

The analysis of Florida is based on information from the 2018 updates for the BAIA and HAZUS 

models, as well as 2018 AHS data. As described earlier, this information is aggregated on 

various levels. 

To evaluate building life cycle emissions, we apply an integrated building LCA and loss 

estimation framework. Locational and building characteristic information is necessary for both 

LCA and loss estimation elements of this framework. Various pieces of this information are 

available on Census Tract, county, state, or regional level. 

To estimate the number of single-family dwellings built in each year, we make use of BPS and 

PCA data. BPS building permits data is available for each county in the U.S. (U.S. Census 

Bureau, 2020b). Projects permitted are not necessarily projects completed, but building permits 

are publicly accessible, while specific project completion dates are typically kept private. To 

make up for this discrepancy, we match our estimate of clinker consumed to the actual amount of 

clinker sold. PCA clinker sales data is available for each state in the U.S. This data spans 1940 

through 2018. Although AHS and BPS data span a broader timeframe, we select 1940 through 

2018 as an analysis period to ensure we have a complete set of information for each state and 

analysis year.  
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5.7 Results 

The objective of this case study is to map life cycle emissions associated with Florida single-

family dwellings onto cement’s SEF over an analysis period of 1940 through 2018. Our results 

consist of two parts: [1] evaluating building life cycle emissions for a year of added housing 

stock, and [2] estimating reportable emissions within cement’s SEF for the entire analysis period. 

Evaluating Building Life Cycle Emissions 

In this section, we evaluate building life cycle emissions for Florida homes built in 2018. Figure 

5.7-1 shows building life cycle emissions for Florida homes built in 2018 and Figure 5.7-2 

shows only the portion of those building life cycle emissions which map onto cement’s SEF (i.e. 

reportable emissions). Product and construction emissions for initial construction map onto 

cement’s SEF in 2018, and other emissions map onto later years until every building in this 

added housing stock reaches the end of its service life. 

As shown in Figure 5.7-1, operational energy usage emissions comprise the largest portion of 

building life cycle emissions. Product emissions for initial construction and repair emissions 

track a similar order of magnitude, particularly in Florida where homes are exposed to hurricane 

wind loading. In other states, with lower exposure to hurricane wind loading, repair emissions 

might be lower, or even on-par but driven by a different natural hazard (e.g. flooding or 

earthquakes). 

As described earlier, all stages of the building life cycle are relevant to cement’s value chain, 

however only a portion of emissions associated with each building life cycle stage falls within 

cement’s SEF. Reportable embodied emissions are limited to product, construction, and end-of-
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life emissions associated with CBPs used in initial construction, repair, and replacement. As 

shown in Figure 5.7-2, reportable repair emissions are much lower than reportable product 

emissions for initial construction. This is because hazard repairs rarely occur in building 

components containing CBPs (e.g. foundations). (Further discussion of reportable embodied 

emissions can be found in the Supplementary Materials.) 

‘Excess’ energy usage emissions comprise 20% to 50% of operational energy usage emissions 

(20% for concrete homes, 50% for masonry homes). Reportable operational emissions represent 

less than half of operational energy usage emissions. As shown in Figure 5.7-2, reportable 

operational emissions comprise more than half of reportable emissions. (Further discussion of 

reportable operational emissions can be found in the Supplementary Materials.)  
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Figure 5.7-1. Breakdown of building life cycle emissions; Florida homes built in 2018. 

 

 
Figure 5.7-2. Breakdown of building life cycle emissions which map onto cement’s sectoral 

emissions; Florida homes built in 2018. 
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Estimating Reportable Emissions within Cement’s SEF 

Here, we scale up reportable emissions associated with CBPs used in Florida homes built in 1940 

through 2018 to capture cement’s SEF over the years. Figure 5.7-3 shows reportable emissions 

associated with CBPs used in Florida homes built in 1940 through 2018 and Figure 5.7-4 shows 

a snapshot of these reportable emissions in 2018. Product and construction emissions for initial 

(i.e. new) construction in a given analysis year maps onto cement’s SEF in that year, and other 

emissions map onto later years until every building in this added housing stock reaches the end 

of its service life. 

Cement’s SEF grows over time, not only because new construction rates go up, but because the 

existing housing stock grows, contributing to a larger number of homes creating operational 

energy usage emissions, or reaching the end of their service life and creating end-of-life 

emissions. Scope 1, 2, and upstream scope 3 emissions follow the trend of cement sales. While 

downstream scope 3 emissions follow the same trend, they also grow over time. As shown in 

Figure 5.7-3, in earlier analysis years, downstream scope 3 emissions comprise a smaller portion 

of reportable emissions. Towards the end of the analysis period, downstream scope 3 emissions 

comprise the largest portion of reportable emissions. 

As shown in Figure 5.7-4, scope 1-2 comprise 26% of reportable emissions in 2018, upstream 

scope 3 comprises 3%, while downstream scope 3 comprises the remainder and majority 72%. 

The majority (>95%) of scope 1-2 emissions arise from calcination of raw materials (i.e. process 

emissions) and combustion of kiln fuels. The majority (>95%) of upstream scope 3 emissions 

arise from production of raw materials, fuels, and electricity. The majority (>99%) of 

downstream scope 3 emissions arise from construction, use, and end-of-life of buildings. 
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By the end of the analysis period, downstream scope 3 includes use and end-of-life emissions 

from housing stock added in 2017, 2016,… going all the way back to 1940 (the beginning of the 

analysis period). Consequently, similar to values shown in Figure 5.7-3 and Figure 5.7-4, 

operational energy usage emissions comprise the largest portion of cement’s SEF. However, 

distinct from values shown in Figure 5.7-3 and Figure 5.7-4, end-of-life emissions comprise a 

larger portion of cement’s SEF than they do in the full life cycle of housing stock added in a 

single year.  
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Figure 5.7-3. Reportable emissions associated with cement-based products used in Florida 

homes built in 1940-2018; carbon uptake plotted at 2x scale for readability. 
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Figure 5.7-4. Breakdown of reportable emissions associated with cement-based products used in 

Florida homes built in 1940-2018; snapshot of 2018. 
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5.8 Discussion 

Present protocols for GHG accounting of cement producers are limited to emissions which fall 

under the product stage in the building life cycle. However, the majority of building life cycle 

emissions derive from the construction, use, and end-of-life stages that occur much after the 

product stage. As buildings are one of the main end-use applications of CBPs, the construction, 

use, and end-of-life emissions of buildings are major contributors to reportable emissions within 

cement’s value chain. 

In this manuscript, we demonstrate that the contribution of latter-stage building life cycle 

emissions to cement’s SEF is particularly prominent towards the end of the analysis period, as 

the existing housing stock grows over time, and a larger number of homes create operational 

energy usage emissions, or reach the end of their service life and create end-of-life emissions. To 

do this, we make use of LCIs and building LCA to aid current best practices for GHG 

accounting. 

By considering a wider variety of building life cycle emissions, we expand required GHG 

accounting. While the GHGP guidelines, the general guidelines for GHG accounting, cover these 

emission categories, and the WBCSD guidelines, those specialized to cement producers, 

recognize them, these guidelines deem use and end-of-life emissions associated with end-use 

applications “too complex” to measure or model. 

Figure 5.8-1 shows a complete list of scopes and categories captured in this study. We create a 

more complete picture of cement’s SEF than current best practices. However, a truly complete 

picture needs to include a comprehensive range of residential and commercial buildings and 

infrastructure, as well as a comprehensive range of natural hazards. 
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Moreover, future studies can extend this work to explore scope 4 (or avoided) emissions. This 

scope captures environmental benefits, not just footprints. These benefits are characterized by 

comparing the current (baseline) scenario (in a world where CBPs are used in various 

applications) to an alternative scenario (in a world where all applications are replaced by 

competing construction materials). Scope 4 encompasses scope 1-3 as well as any other life 

cycle stage where differences arise. As scope 4 emissions are not actualized, they cannot be 

measured and need to be measured. Thus, the capability of LCA to model different scenarios is 

critical to rigorously investigate scope 4 emissions.  
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Figure 5.8-1. Emission scopes and categories within cement’s value chain. 
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6 Conclusion 

The chapters of this work present the most comprehensive framework to date to assess the 

intersectional risks associated with design and policy decisions regarding the built environment. 

These risks involve the interplay of physical and economic stressors (Chapter 2), physical, 

economic, and social stressors (Chapter 3), and physical, economic, and environmental stressors 

(Chapters 4 & 5). 

This work spans a variety of disciplines. Chapters 2 & 3 pertain to loss estimation and regional 

planning for disaster risk reduction. Chapter 4 pertains to building life cycle assessment (LCA) 

and measuring sustainability at a project level. Chapter 5 pertains to greenhouse gas (GHG) 

accounting and measuring sustainability at industry or regional levels. Chapters 4 & 5 also 

highlight that disaster risk reduction is a key part of reducing GHG emissions created by 

residential building construction. 

In Chapter 2, neighborhood texture is defined to characterize the configuration of the 

surrounding neighborhood. Texture effects are incorporated into a widely-recognized loss 

estimation framework. This framework is applied to compute expected damages associated with 

each individual building in a community with hurricane wind exposure. The case study 

demonstrates that accounting for texture effects can as high as double expected damages. 

Overlooking these impacts leads to undervaluing hurricane wind mitigation. 

In Chapter 3, the augmented loss estimation framework is combined with human behavior 

simulation. This combination is applied to compute expected damages associated with each 

resident household in each individual building. Resident households are attributed household 

annual income as well as demographic and socioeconomic characteristics. This allows to study 

the cost burden of expected damages across demographic and socioeconomic groups. The case 
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study demonstrates that socially-vulnerable groups are disproportionately impacted by hurricane 

wind exposure, as they are likelier to be priced out of hazard repairs. If hurricane wind mitigation 

efforts are prioritized strategically, it is possible to prevent monetary damages on societal level 

and redistribute the cost burden of monetary damages on individual household level, doing so 

without significant trade-offs towards either of the respective performance metrics. 

In Chapter 4, the augmented loss estimation framework is integrated into building LCA. This 

integration makes use of building archetype definition and loss functions from loss estimation as 

well as the capability to produce results with incomplete building information from streamlined 

building LCA. Incorporating hazard vulnerability into building LCA shifts the discussion of 

what construction materials constitute a ‘green’ building from solely focusing on initial 

construction emissions to considering the benefits of durability and hazard resilience which are 

reaped much later than initial construction stages. Accounting for hazard vulnerability can as 

high as double building embodied emissions. This more complete picture of building life cycle 

emissions helps map areas where repair and replacement emissions are the leading factor in 

determining the life cycle outcomes of construction material choice. The case study shows that 

the favorability of concrete is particularly pronounced in areas with high hurricane wind 

exposure and for large structures and/or structures lacking hurricane mitigation measures. 

In Chapter 5, the integrated loss estimation and building LCA framework is extended to the 

GHG accounting of construction material sectors. Guidelines are developed for construction 

material sectors to model emission categories which are currently deemed too complex and 

difficult to measure. A precedent is formulated for industry, regional, or industry level 

policymaking to consider the construction, use, and end-of-life emissions of end-use applications 

associated with construction materials while strategizing GHG abatement. This directs GHG 
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abatement efforts towards emission categories which are the largest contributors of SEFs, thus 

the most effective to tackle. 

So far, the loss estimation component of this work has focused on hurricane wind loading. Future 

works can extend this approach to study other natural hazards, such as flooding, fires, or 

earthquakes. Such work could then be integrated with this work for an expansive, multi-hazard 

framework. As hazards like hurricanes, floods, and fires become more intense and/or frequent 

with the changing climate, the impacts of these hazards in terms of the dollar value or cost 

burden of monetary damages or GHG emissions will only go up if no action is taken. The design 

of the housing stock is crucial for both climate mitigation (reducing GHG emissions released into 

the atmosphere to slow down climate change) and climate adaptation (which includes 

strengthening structures to withstand climate events). 

While the loss estimation component of this work includes a wider range of residential 

construction types, the building LCA component has focused on single-family dwellings. Future 

works can develop methods for streamlined building LCA for other residential and commercial 

construction types. Such work could start with generalized models for low-, mid-, and high-rise 

geometries, and then specialize these models for live and dead loads representing different 

residential and commercial end-use applications. This is particularly important for industry or 

regional efforts for GHG abatement. While single-family dwellings comprise a large number of 

structures in the U.S., a high-rise structure consumes multiples of the amounts of materials used 

in a single-family dwelling. Thus, triaging across construction types relies on a thorough 

investigation of each. 

There remain gaps in defining building archetypes, characterizing loss functions, defining cost 

and emission models, and incorporating climate change into hurricane wind loading scenarios. 
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Building archetypes, and their associated loss functions and cost and emission models, currently 

do not account for regional and timestamp differences in code adoption and enforcement, 

availability of grant and insurance benefits programs, and technological advances in construction 

methods and materials, all of which impact the performance of the housing stock. Additionally, 

the hurricane wind loading scenarios presented in Chapters 4 & 5 represent percentiles in 

present wind speed distributions, which derive from historical hurricane events. Climate change 

will likely shift the higher percentile scenarios to lower percentiles, as high-category hurricanes 

become more frequent. 

Further directions for future work can be found in the respective Discussion sections of each 

chapter. This work, as it stands, encompasses the best of the author’s knowledge on data and 

modeling available at the date of submission. Although this work has gone through the diligent 

review of the author’s thesis committee, several of the chapters are still under peer review for 

publication. If available, please refer to the published materials for the most up-to-date version of 

this work, as additions may have been made to the content or geographical scope presented here.  
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7 Chapter 2 Supplementary Materials 
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7.1 Aid to Literature Review 

Table 7.1-1. Aid to literature review. 
 Terrain Texture 

Main Message In denser (rougher) areas, lower wind 

loads, lower expected losses. 

In dense areas with less disorder (though 

perfect order not realistic), higher 

maximum wind loads. 

Theoretical Backing Upwind terrain effects – Rougher areas 

create friction and turbulence which 

affect the mean wind speed and wind 

speed gradient in the Internal Sublayer 

(ISL) (Davenport, 1960). 

Urban canyon effects – Less disorder 

creates channels (or canyons) through 

which turbulence is amplified. 

Flow Type Depending on planar density; Smooth, 

semi-smooth, wake-interference (if 

considerably inhomogeneous), or 

skimming flow (Wieringa, 1993). 

Mostly wake-interference flow (fewer 

meshing points for “smoother” flows). 

Flow Boundary Layer ISL (above “blending height” where no 

more recirculation eddies and horizontal 

homogeneity can be assumed) 

(Wieringa, 1993). 

Transition Sublayer (TSL) (where there 

are recirculation eddies). 

Applicational Input Visual site survey (descriptions, 

photographs, or LULC maps) (though 

wind tunnel tests recommended for high-

rise cities) (Davenport, 1960). 

Building footprints (required to extract 

latitudes, longitudes, and footprint 

areas). 

Application Surface roughness length lists (matching 

descriptions to ranges or characteristic 

values for roughness length) (typically 

for homogeneous stretches) (Wieringa, 

1992, 1993). 

Regression model (using latitudes, 

longitudes, and footprint areas). 

Observations Station records – To quantify upwind 

terrain effects (Wieringa, 1992, 1993). 

Wind tunnel tests – To characterize 

roughness elements (Seginer, 1974). 

CFD simulations – To quantify urban 

canyon effects (160 simulations in total). 

RDF – To quantify (and replicate) 

disorder. 

Observed Areas Actual towns and cities (station records) 

(Karlsson, 1986; Shiotani, 1962; Steyn, 

1982; Yersel & Goble, 1986). 

Objects (such as bushel baskets) with 

regular size, height, and spacing (wind 

tunnel tests) (Lettau, 1969). 

Sample cities with: Replicated texture 

(through Reverse MC on RDF), random 

footprint areas (sampled from local 

distribution), and constant roof height 

(9.5 m) (CFD). 

Observed What? Mean wind speed (wind profile), or 

mean frictional velocity (station 

records). 

Obstruction height, obstruction side-

area, and surface area (wind tunnel 

tests). 

Pressure and velocities (at simulated 

convergence) (read from meshing points) 

(CFD). 

Observed Where? Towers – 20-100 m high, several km in 

fetch (terrain described qualitatively) 

(station records). 

Turntables (wind tunnel tests). 

Meshing points on building facades 

(sample size of 100-300 buildings) 

(CFD). 

Reference buildings – 3.5 times density 

length in radius (RFD). 
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Table 7.1-1 (continued). Aid to literature review. 
Measurements At least 2 different heights on a single 

tower, 10s to 100s over months or years 

(station records). 

Several repetitions (wind tunnel tests). 

40 sample cities under Saffir-Simpson 

Category 5 hurricanes simulated in four 

directions (CFD). 

Finer mesh for: More turbulent flows 

and more complexity (trade-off between 

complexity and accuracy). 

Modeled Quantities Surface roughness lengths, drag 

coefficients, or exponents of power law 

profiles (latter two height-dependent) 

(Wieringa, 1992). 

Drag coefficients (from differences of 

pressures averaged across meshing 

points on front and back facades). 
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7.2 Regional Assumptions for Prevalence of Mitigation 

Table 7.2-1. Prevalence of mitigation in Southeast Florida; % of buildings (FEMA 2019). 
 MM1 MM2 MM3 MM4 MM5 MM6 Avg 

RES1 29 84 71 0 0 0 46 

RES2 0 0 0 0 0 71 35 

RES3A 0 81 70 0 0 0 30 

RES3B 0 81 70 0 0 0 30 

RES3C 0 53 47 0 0 0 20 

RES3D 0 53 47 0 0 0 20 

RES3E 0 53 47 0 0 0 20 

RES3F 0 53 47 0 0 0 20 

Note: mitigation measures for RES1 are MM1, MM2, MM3 and MM5; that for RES2 are MM1 

and MM6; and, that for RES3 are MM1, MM2, MM3, MM4 and MM5. 

 

Table 7.2-2. Prevalence of mitigation in South Florida; % of buildings (FEMA 2019). 
 MM1 MM2 MM3 MM4 MM5 MM6 Avg 

RES1 14 84 51 0 0 0 37 

RES2 0 0 0 0 0 74 37 

RES3A 0 81 50 0 0 0 26 

RES3B 0 81 50 0 0 0 26 

RES3C 0 53 33 0 0 0 17 

RES3D 0 53 33 0 0 0 17 

RES3E 0 53 33 0 0 0 17 

RES3F 0 53 33 0 0 0 17 

Note: same as Table 7.2-1. 

 

Table 7.2-3. Prevalence of mitigation in Central Florida; % of buildings (FEMA 2019). 
 MM1 MM2 MM3 MM4 MM5 MM6 Avg 

RES1 5 72 67 0 0 0 36 

RES2 0 0 0 0 0 73 36 

RES3A 0 69 66 0 0 0 27 

RES3B 0 69 66 0 0 0 27 

RES3C 0 45 44 0 0 0 18 

RES3D 0 45 44 0 0 0 18 

RES3E 0 45 44 0 0 0 18 

RES3F 0 45 44 0 0 0 18 

Note: same as Table 7.2-1. 

 

Table 7.2-4. Prevalence of mitigation in North Florida; % of buildings (FEMA 2019). 
 MM1 MM2 MM3 MM4 MM5 MM6 Avg 

RES1 8 78 57 0 0 0 36 

RES2 0 0 0 0 0 74 37 

RES3A 0 76 56 0 0 0 26 

RES3B 0 76 56 0 0 0 26 

RES3C 0 50 37 0 0 0 17 

RES3D 0 50 37 0 0 0 17 

RES3E 0 50 37 0 0 0 17 

RES3F 0 50 37 0 0 0 17 

Note: same as Table 7.2-1.  
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7.3 Additional Tables 
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Table 7.3-1. List of building types considered. 
Code Description 

WSF1 Wood single-family dwellings, single story 

WSF2 Wood single-family dwellings, 2+ stories 

WMUH1 Wood multi-unit housing, single story 

WMUH2 Wood multi-unit housing, 2 stories 

WMUH3 Wood multi-unit housing, 3+ stories 

MSF1 Masonry single-family dwellings, single story 

MSF2 Masonry single-family dwellings, 2+ stories 

MMUH1 Masonry multi-unit housing, single story 

MMUH2 Masonry multi-unit housing, 2 stories 

MMUH3 Masonry multi-unit housing, 3+ stories 

MERBL Masonry engineered residential buildings, low-rise 

MERBM Masonry engineered residential buildings, mid-rise 

MERBH Masonry engineered residential buildings, high-rise 

CERBL Concrete engineered residential buildings, low-rise 

CERBM Concrete engineered residential buildings, mid-rise 

CERBH Concrete engineered residential buildings, high-rise 

SPMBS Steel pre-engineered buildings, small 

SPMBM Steel pre-engineered buildings, medium 

SPMBL Steel pre-engineered buildings, large 

SERBL Steel engineered residential buildings, low-rise 

SERBM Steel engineered residential buildings, mid-rise 

SERBH Steel engineered residential buildings, high-rise 

MHPHUD Manufactured homes, pre-HUD 

MH76HUD Manufactured homes, post-1976 HUD 

MH94HUDI Manufactured homes, post-1994 HUD Wind Zone I 

MH94HUDII Manufactured homes, post-1994 HUD Wind Zone II 

MH94HUDIII Manufactured homes, post-1994 HUD Wind Zone III 

Note: Nomenclature for codes borrowed from HAZUS. 
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7.4 Additional Figures 
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Figure 7.4-1. Histogram of Census Tract mean ratio between texture-informed expected annual 

benefits and HAZUS expected annual benefits; A majority of Census Tracts exhibit an increase 

in expected annual benefits of mitigating homes. 

 

 
Figure 7.4-2. Histogram of Census Tract mean ratio between texture-informed expected annual 

benefits and HAZUS expected annual benefits; A majority of Census Tracts exhibit an increase 

in expected annual benefits of mitigating homes. 
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8 Chapter 3 Supplementary Materials 
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8.1 Analyses of States 

Results for State of Florida 

For the State of Florida, we simulated 7,570,518 households, 

making use of data and shapefiles from 67 counties, 4,131 Census 

Tracts, 14,885 Census Block Groups, and more than 3,000,000 building footprints (Table 8.1-1). 

In 67 / 67 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $1,133 / year 

/ household (or 1% of replacement cost, or 2% of annual income). This is as high as $7,661 / 

year / household (or 18% of replacement cost, or 29% of annual income) across mobile homes, 

and as low as $561 / year / household (or .5% of replacement cost, or 2% of annual income) 

across low- to mid-rise multi-unit housing (Table 8.1-2). 

We found that 483,127 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-3). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with disability, that are single-

parent households, that speak English less than “well”, and/or that live in mobile homes (ratios 

greater than or equal to 1.5). 

The number of households severely cost-burdened by hurricane repairs would be 637,754 / year 

if no mitigation measures were applied, and 301,135 / year if all of the mitigation measures were 

applied (Table 8.1-4). So, 336,619 households / year could be removed from price-out by using 
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these mitigation measures. Our model results indicate that 54% of this avoidable price-out 

currently remains in the state. 

The value of monetary damage would be $16.90 billion / year if no mitigation measures were 

applied, and $8.20 billion / year if all of the mitigation measures were applied (Table 8.1-5). So, 

$8.70 billion / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 51% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-1. Percent prevalence of each group; households (Florida). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 7,570,518 4,982,055 417,042 769,573 1,401,848 

Median income ($/yr) 62,500 87,500 20,000 20,000 42,500 

Below poverty (%) 20 15 32 35 26 

Unemployed (%) 6 6 8 8 7 

No high school diploma (%) 11 10 13 13 12 

Aged 65yo or older (%) 21 20 25 24 23 

Aged 17yo or younger (%) 19 19 19 20 19 

With disability (%) 14 13 18 18 15 

Single-parent household (%) 8 7 10 10 8 

Minority (%) 40 39 46 45 41 

English less than “well” (%) 6 5 7 7 6 

Multi-unit structures (%) 19 - - - 100 

Mobile homes (%) 6 - 100 - - 

Crowding (%) 3 3 3 3 3 

No vehicles (%) 8 9 5 5 7 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-2. Expected annual loss (EAL) metrics; median (Florida). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 1,133 1 2 

RES1 1,138 1 2 

RES2 7,661 18 29 

RES3A-C 561 .5 2 

RES3D-F 1,043 1 2 

Below poverty 952 1 10 

Unemployed 1,011 1 4 

No high school diploma 1,099 1 3 

Aged 65yo or older 1,173 1 2 

Aged 17yo or younger 1,091 1 2 

With disability 999 1 3 

Single-parent household 1,078 1 3 

Minority 1,391 1 3 

English less than “well” 1,719 1 5 

Multi-unit structures 1,043 1 2 

Mobile homes 7,661 18 29 

Crowding 1,330 1 3 

No vehicles 1,141 1 1 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-3. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households 

(Florida). 
Description Population Cost-Burdened Ratio 

Total (#) 7,570,518 483,127 - 

Median income ($/yr) 62,500 5,000 - 

Below poverty (%) 20 68 3.40 

Unemployed (%) 6 12 2.00 

No high school diploma (%) 11 15 1.36 

Aged 65yo or older (%) 21 26 1.24 

Aged 17yo or younger (%) 19 20 1.05 

With disability (%) 14 21 1.50 

Single-parent household (%) 8 12 1.50 

Minority (%) 40 54 1.35 

English less than “well” (%) 6 12 2.00 

Multi-unit structures (%) 19 13 .68 

Mobile homes (%) 6 31 5.17 

Crowding (%) 3 3 1.00 

No vehicles (%) 8 1 .13 
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Table 8.1-4. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Florida). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 301,135 483,127 637,754 

HAZUS 171,786 251,032 322,743 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-5. Total expected monetary damage by mitigation level; $ billion / year (Florida). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 8.20 12.68 16.90 

HAZUS 4.54 7.01 9.07 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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Results for State of Georgia 

For the State of Georgia, we simulated 3,704,120 households, 

making use of data and shapefiles from 159 counties, 1,953 

Census Tracts, 6,359 Census Block Groups, and more than 2,000,000 building footprints (Table 

8.1-6). 

In 39 / 159 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $66 / year / 

household (or .04% of replacement cost, or .1% of annual income). This is as high as $2,203 / 

year / household (or 5% of replacement cost, or 8% of annual income) across mobile homes, and 

as low as $19 / year / household (or .01% of replacement cost, or .1% of annual income) across 

low- to mid-rise multi-unit housing (Table 8.1-7). 

We found that 9,511 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-8). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with no high school diploma, 

that have members with disability, that are single-parent households, that live in mobile homes, 

and/or that experience crowding (ratios greater than or equal to 1.5). 

The number of households severely cost-burdened by hurricane repairs would be 10,662 / year if 

no mitigation measures were applied, and 7,357 / year if all of the mitigation measures were 

applied (Table 8.1-9). So, 3,305 households / year could be removed from price-out by using 

these mitigation measures. Our model results indicate that 65% of this avoidable price-out 

currently remains in the state. 
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The value of monetary damage would be $377 million / year if no mitigation measures were 

applied, and $262 million / year if all of the mitigation measures were applied (Table 8.1-10). 

So, $115 million / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 70% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-6. Percent prevalence of each group; households (Georgia). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#)  3,704,120 2,453,240 205,053 380,144 665,683 

Median income ($/yr) 62,500 87,500 20,000 20,000 30,000 

Below poverty (%) 21 16 35 37 29 

Unemployed (%) 6 6 8 8 7 

No high school diploma (%) 13 12 15 15 14 

Aged 65yo or older (%) 14 13 16 16 14 

Aged 17yo or younger (%) 24 23 25 25 24 

With disability (%) 12 11 16 16 14 

Single-parent household (%) 10 9 13 13 11 

Minority (%) 45 43 51 51 46 

English less than “well” (%) 3 2 3 3 3 

Multi-unit structures (%) 18 - - - 100 

Mobile homes (%) 6 - 100 - - 

Crowding (%) 2 2 2 2 2 

No vehicles (%) 8 10 5 5 7 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-7. Expected annual loss (EAL) metrics; median (Georgia). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 66 .04 .1 

RES1 65 .04 .1 

RES2 2,203 5 8 

RES3A-C 19 .01 .1 

RES3D-F 58 .04 .1 

Below poverty 61 .04 1 

Unemployed 63 .04 .2 

No high school diploma 60 .04 .2 

Aged 65yo or older 67 .04 .2 

Aged 17yo or younger 64 .04 .1 

With disability 63 .04 .2 

Single-parent household 63 .04 .2 

Minority 61 .04 .2 

English less than “well” 71 .04 .2 

Multi-unit structures 58 .04 .1 

Mobile homes 2,203 5 8 

Crowding 62 .04 .1 

No vehicles 61 .04 .1 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-8. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households 

(Georgia). 
Description Population Cost-Burdened Ratio 

Total (#) 3,704,120 9,511 - 

Median income ($/yr) 62,500 5,000 - 

Below poverty (%) 21 91 4.33 

Unemployed (%) 6 15 2.50 

No high school diploma (%) 13 20 1.54 

Aged 65yo or older (%) 14 15 1.07 

Aged 17yo or younger (%) 24 28 1.17 

With disability (%) 12 23 1.92 

Single-parent household (%) 10 20 2.00 

Minority (%) 45 58 1.29 

English less than “well” (%) 3 2 .67 

Multi-unit structures (%) 18 .1 .01 

Mobile homes (%) 6 94 15.67 

Crowding (%) 2 3 1.50 

No vehicles (%) 8 1 .13 
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Table 8.1-9. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Georgia). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 7,357 9,511 10,662 

HAZUS 6,950 8,658 9,238 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-10. Total expected monetary damage by mitigation level; $ million / year (Georgia). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 262 343 377 

HAZUS 248 314 336 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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Results for State of Alabama 

For the State of Alabama, we simulated 1,856,554 households, 

making use of data and shapefiles from 67 counties, 1,173 Census 

Tracts, 4,022 Census Block Groups, and more than 1,000,000 building footprints (Table 8.1-11). 

In 44 / 67 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $50 / year / 

household (or .03% of replacement cost, or .1% of annual income). This is as high as $1,912 / 

year / household (or 5% of replacement cost, or 7% of annual income) across mobile homes, and 

as low as $11 / year / household (or .01% of replacement cost, or .1% of annual income) across 

low- to mid-rise multi-unit housing (Table 8.1-12). 

We found that 29,708 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-13). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with disability, that are single-

parent households, that belong to minority, and/or that live in mobile homes (ratios greater than 

or equal to 1.5). 

The number of households severely cost-burdened by hurricane repairs would be 33,405 / year if 

no mitigation measures were applied, and 22,233 / year if all of the mitigation measures were 

applied (Table 8.1-14). So, 11,172 households / year could be removed from price-out by using 

these mitigation measures. Our model results indicate that 67% of this avoidable price-out 

currently remains in the state. 



206 

 

The value of monetary damage would be $859 million / year if no mitigation measures were 

applied, and $563 million / year if all of the mitigation measures were applied (Table 8.1-15). 

So, $296 million / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 67% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-11. Percent prevalence of each group; households (Alabama). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 1,856,554 1,355,968 149,869 224,661 126,056 

Median income ($/yr) 62,500 62,500 30,000 20,000 20,000 

Below poverty (%) 21 14 32 43 37 

Unemployed (%) 6 5 8 9 8 

No high school diploma (%) 13 12 16 17 16 

Aged 65yo or older (%) 16 15 19 18 18 

Aged 17yo or younger (%) 22 22 22 23 22 

With disability (%) 16 14 20 21 20 

Single-parent household (%) 8 7 11 12 11 

Minority (%) 32 30 39 40 36 

English less than “well” (%) 1 1 1 1 1 

Multi-unit structures (%) 7 - - - 100 

Mobile homes (%) 8 - 100 - - 

Crowding (%) 0 0 0 0 0 

No vehicles (%) 8 9 5 4 5 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-12. Expected annual loss (EAL) metrics; median (Alabama). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 50 .03 .1 

RES1 46 .03 .1 

RES2 1,912 5 7 

RES3A-C 11 .01 .1 

RES3D-F 27 .02 .1 

Below poverty 50 .03 .5 

Unemployed 50 .03 .2 

No high school diploma 49 .03 .1 

Aged 65yo or older 54 .03 .1 

Aged 17yo or younger 50 .03 .1 

With disability 47 .03 .1 

Single-parent household 53 .03 .2 

Minority 56 .03 .2 

English less than “well” 48 .03 .1 

Multi-unit structures 27 .02 .1 

Mobile homes 1,912 5 7 

Crowding - - - 

No vehicles 58 .03 .1 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-13. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households 

(Alabama). 
Description Population Cost-Burdened Ratio 

Total (#) 1,856,554 29,708 - 

Median income ($/yr) 62,500 12,500 - 

Below poverty (%) 21 74 3.52 

Unemployed (%) 6 13 2.17 

No high school diploma (%) 13 18 1.38 

Aged 65yo or older (%) 16 19 1.19 

Aged 17yo or younger (%) 22 25 1.14 

With disability (%) 16 24 1.50 

Single-parent household (%) 8 15 1.88 

Minority (%) 32 49 1.53 

English less than “well” (%) 1 1 1.00 

Multi-unit structures (%) 7 2 .29 

Mobile homes (%) 8 63 7.88 

Crowding (%) 0 0 - 

No vehicles (%) 8 1 .13 
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Table 8.1-14. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Alabama). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 22,233 29,708 33,405 

HAZUS 18,230 24,485 26,634 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-15. Total expected monetary damage by mitigation level; $ million / year (Alabama). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 563 762 859 

HAZUS 461 607 654 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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Results for State of Mississippi 

For the State of Mississippi, we simulated 1,101,348 households, 

making use of data and shapefiles from 82 counties, 654 Census 

Tracts, 2,289 Census Block Groups, and more than 600,000 building footprints (Table 8.1-16). 

In 36 / 82 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $84 / year / 

household (or .1% of replacement cost, or .2% of annual income). This is as high as $2,522 / 

year / household (or 6% of replacement cost, or 9% of annual income) across mobile homes, and 

as low as $17 / year / household (or .02% of replacement cost, or .1% of annual income) across 

low- to mid-rise multi-unit housing (Table 8.1-17). 

We found that 16,343 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-18). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with disability, that are single-

parent households, and/or that live in mobile homes (ratios greater than or equal to 1.5). 

The number of households severely cost-burdened by hurricane repairs would be 18,383 / year if 

no mitigation measures were applied, and 12,445 / year if all of the mitigation measures were 

applied (Table 8.1-19). So, 5,938 households / year could be removed from price-out by using 

these mitigation measures. Our model results indicate that 66% of this avoidable price-out 

currently remains in the state. 

The value of monetary damage would be $461 million / year if no mitigation measures were 

applied, and $311 million / year if all of the mitigation measures were applied (Table 8.1-20). 
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So, $150 million / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 66% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-16. Percent prevalence of each group; households (Mississippi). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 1,101,348 800,279 88,826 132,576 79,667 

Median income ($/yr) 62,500 62,500 30,000 20,000 30,000 

Below poverty (%) 21 15 33 45 36 

Unemployed (%) 7 7 9 11 9 

No high school diploma (%) 15 14 18 19 17 

Aged 65yo or older (%) 15 14 18 17 17 

Aged 17yo or younger (%) 23 23 24 25 24 

With disability (%) 15 14 20 21 18 

Single-parent household (%) 10 8 13 14 12 

Minority (%) 39 36 47 49 44 

English less than “well” (%) 1 1 1 1 1 

Multi-unit structures (%) 7 - - - 100 

Mobile homes (%) 8 - 100 - - 

Crowding (%) 0 0 0 0 0 

No vehicles (%) 9 11 6 5 6 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-17. Expected annual loss (EAL) metrics; median (Mississippi). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 84 .1 .2 

RES1 76 .05 .1 

RES2 2,522 6 9 

RES3A-C 17 .02 .1 

RES3D-F 32 .02 .1 

Below poverty 84 .1 1  

Unemployed 99 .1 .4 

No high school diploma 88 .1 .3 

Aged 65yo or older 91 .1 .2 

Aged 17yo or younger 83 .1 .2 

With disability 110 .1 .4 

Single-parent household 87 .1 .4 

Minority 57 .03 .2 

English less than “well” 117 .1 .3 

Multi-unit structures 32 .02 .1 

Mobile homes 2,522 6 9 

Crowding - - - 

No vehicles 71 .05 .1 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-18. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households 

(Mississippi). 
Description Population Cost-Burdened Ratio 

Total (#) 1,101,348 16,343 - 

Median income ($/yr) 62,500 5,000 - 

Below poverty (%) 21 78 3.71 

Unemployed (%) 7 15 2.14 

No high school diploma (%) 15 20 1.33 

Aged 65yo or older (%) 15 18 1.20 

Aged 17yo or younger (%) 23 27 1.17 

With disability (%) 15 26 1.73 

Single-parent household (%) 10 18 1.80 

Minority (%) 39 51 1.31 

English less than “well” (%) 1 1 1.00 

Multi-unit structures (%) 7 1 .14 

Mobile homes (%) 8 70 8.75 

Crowding (%) 0 0 - 

No vehicles (%) 9 1 .11 
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Table 8.1-19. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Mississippi). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 12,445 16,343 18,383 

HAZUS 11,127 14,614 15,992 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-20. Total expected monetary damage by mitigation level; $ million / year 

(Mississippi). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 311 410 461 

HAZUS 277 368 399 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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Results for State of Louisiana 

For the State of Louisiana, we simulated 1,724,092 households, 

making use of data and shapefiles from 64 counties, 1,125 Census 

Tracts, 3,688 Census Block Groups, and more than 1,000,000 building footprints (Table 8.1-21). 

In 41 / 64 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $537 / year / 

household (or .3% of replacement cost, or 1% of annual income). This is as high as $5,476 / year 

/ household (or 13% of replacement cost, or 17% of annual income) across mobile homes, and as 

low as $186 / year / household (or .2% of replacement cost, or 1% of annual income) across low- 

to mid-rise multi-unit housing (Table 8.1-22). 

We found that 55,669 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-23). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with no high school diploma, 

that have members with disability, that are single-parent households, that belong to minority, that 

speak English less than “well”, and/or that live in mobile homes (ratios greater than or equal to 

1.5). 

The number of households severely cost-burdened by hurricane repairs would be 65,177 / year if 

no mitigation measures were applied, and 40,197 / year if all of the mitigation measures were 

applied (Table 8.1-24). So, 24,980 households / year could be removed from price-out by using 

these mitigation measures. Our model results indicate that 62% of this avoidable price-out 

currently remains in the state. 
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The value of monetary damage would be $1,759 million / year if no mitigation measures were 

applied, and $1,080 million / year if all of the mitigation measures were applied (Table 8.1-25). 

So, $679 million / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 64% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-21. Percent prevalence of each group; households (Louisiana). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 1,724,092 1,162,367 96,663 201,534 263,528 

Median income ($/yr) 62,500 87,500 30,000 20,000 42,500 

Below poverty (%) 21 16 30 42 27 

Unemployed (%) 6 6 8 9 7 

No high school diploma (%) 14 13 16 18 15 

Aged 65yo or older (%) 14 13 16 17 16 

Aged 17yo or younger (%) 23 23 24 25 24 

With disability (%) 14 13 18 19 16 

Single-parent household (%) 10 9 12 14 11 

Minority (%) 38 35 44 48 41 

English less than “well” (%) 1 1 2 2 1 

Multi-unit structures (%) 15 - - - 100 

Mobile homes (%) 6 - 100 - - 

Crowding (%) 2 2 2 2 2 

No vehicles (%) 11 13 8 6 9 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-22. Expected annual loss (EAL) metrics; median (Louisiana). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 537 .3 1 

RES1 536 .3 1 

RES2 5,476 13 17 

RES3A-C 186 .2 1 

RES3D-F 408 .3 1 

Below poverty 477 .3 5 

Unemployed 502 .3 2 

No high school diploma 494 .3 1 

Aged 65yo or older 536 .3 1 

Aged 17yo or younger 485 .3 1 

With disability 481 .3 2 

Single-parent household 505 .3 2 

Minority 688 .4 2 

English less than “well” 956 1 2 

Multi-unit structures 408 .3 1 

Mobile homes 5,476 13 17 

Crowding 462 .3 1 

No vehicles 736 .4 1 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-23. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households 

(Louisiana). 
Description Population Cost-Burdened Ratio 

Total (#) 1,724,092 55,669 - 

Median income ($/yr) 62,500 5,000 - 

Below poverty (%) 21 78 3.71 

Unemployed (%) 6 13 2.17 

No high school diploma (%) 14 21 1.50 

Aged 65yo or older (%) 14 17 1.21 

Aged 17yo or younger (%) 23 26 1.13 

With disability (%) 14 23 1.65 

Single-parent household (%) 10 17 1.70 

Minority (%) 38 59 1.55 

English less than “well” (%) 1 3 3.00 

Multi-unit structures (%) 15 4 .27 

Mobile homes (%) 6 44 7.33 

Crowding (%) 2 2 1.00 

No vehicles (%) 11 2 .18 
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Table 8.1-24. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Louisiana). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 40,197 55,669 65,177 

HAZUS 23,896 28,617 31,425 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-25. Total expected monetary damage by mitigation level; $ million / year (Louisiana). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 1,080 1,517 1,759 

HAZUS 665 882 984 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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Results for State of Texas 

For the State of Texas, we simulated 9,373,319 households, 

making use of data and shapefiles from 254 counties, 5,214 

Census Tracts, 17,319 Census Block Groups, and more than 5,000,000 building footprints 

(Table 8.1-26). 

In 164 / 254 counties, at least 10% of households are exposed to hurricane-related losses greater 

than $100 / year. Across these counties, median expected annual losses (EALs) are $149 / year / 

household (or .1% of replacement cost, or .3% of annual income). This is as high as $1,862 / 

year / household (or 4% of replacement cost, or 4% of annual income) across mobile homes, and 

as low as $70 / year / household (or .1% of replacement cost, or .4% of annual income) across 

low- to mid-rise multi-unit housing (Table 8.1-27). 

We found that 117,591 households are likely to face financially challenging levels of hurricane 

losses and repair needs (Table 8.1-28). Socially vulnerable groups are overrepresented among 

these households. This overrepresentation is highest for households that are below the poverty 

line, that have members who are unemployed, that have members with no high school diploma, 

that have members with disability, that are single-parent households, that speak English less than 

“well”, and/or that live in mobile homes (ratios greater than or equal to 1.5). 

The number of households severely cost-burdened by hurricane repairs would be 143,343 / year 

if no mitigation measures were applied, and 81,875 / year if all of the mitigation measures were 

applied (Table 8.1-29). So, 61,468 households / year could be removed from price-out by using 

these mitigation measures. Our model results indicate that 58% of this avoidable price-out 

currently remains in the state. 
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The value of monetary damage would be $4,603 million / year if no mitigation measures were 

applied, and $2,826 million / year if all of the mitigation measures were applied (Table 8.1-30). 

So, $1,777 million / year of potential monetary damage could be prevented by using mitigation 

measures. Our model results indicate that 62% of this avoidable monetary damage currently 

remains in the state.  
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Table 8.1-26. Percent prevalence of each group; households (Texas). 
Description/Code Population RES1 RES2 RES3A-C RES3D-F 

Total (#) 9,373,319 6,284,120 525,121 1,085,636 1,478,442 

Median income ($/yr) 62,500 87,500 30,000 20,000 42,500 

Below poverty (%) 22 16 30 42 27 

Unemployed (%) 5 5 6 7 6 

No high school diploma (%) 16 15 18 19 16 

Aged 65yo or older (%) 13 12 14 15 14 

Aged 17yo or younger (%) 25 25 26 27 25 

With disability (%) 12 11 14 16 13 

Single-parent household (%) 10 9 12 14 11 

Minority (%) 54 52 60 62 54 

English less than “well” (%) 6 6 8 9 7 

Multi-unit structures (%) 16 - - - 100 

Mobile homes (%) 6 - 100 - - 

Crowding (%) 4 4 5 5 4 

No vehicles (%) 6 7 5 3 5 

Note: RES1 = single-family dwellings, RES2 = mobile homes, RES3A-C = low- to mid-rise 

multi-unit housing, RES3D-F = mid- to high-rise multi-unit housing. 
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Table 8.1-27. Expected annual loss (EAL) metrics; median (Texas). 
Description/Code AD ($/yr) PRC (%/yr) PAI (%/yr) 

Population 149 .1 .3 

RES1 158 .1 .3 

RES2 1,862 4 4 

RES3A-C 70 .1 .4 

RES3D-F 91 .1 .3 

Below poverty 136 .1 2 

Unemployed 152 .1 1 

No high school diploma 152 .1 1 

Aged 65yo or older 144 .1 .4 

Aged 17yo or younger 152 .1 .4 

With disability 140 .1 1 

Single-parent household 148 .1 1 

Minority 161 .1 .5 

English less than “well” 169 .1 1 

Multi-unit structures 91 .1 .3 

Mobile homes 1,862 4 4 

Crowding 154 .1 .4 

No vehicles 152 .1 .2 

Note: medians limited to households in counties with at least 10% of population exposed to 

hurricane-related losses greater than $100 / year; AD = absolute-dollar EALs, PRC = per-

replacement-cost EALs, PAI = per-annual-income EALs; RES1 = single-family dwellings, RES2 

= mobile homes, RES3A-C = low- to mid-rise multi-unit housing, RES3D-F = mid- to high-rise 

multi-unit housing. 
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Table 8.1-28. Percent prevalence of each group among severely cost-burdened households (i.e., 

expecting hurricane repairs which exceed 1/4 of household annual income); households (Texas). 
Description Population Cost-Burdened Ratio 

Total (#) 9,373,319 117,591 - 

Median income ($/yr) 62,500 5,000 - 

Below poverty (%) 22 85 3.86 

Unemployed (%) 5 12 2.40 

No high school diploma (%) 16 24 1.50 

Aged 65yo or older (%) 13 14 1.08 

Aged 17yo or younger (%) 25 29 1.16 

With disability (%) 12 19 1.58 

Single-parent household (%) 10 18 1.80 

Minority (%) 54 74 1.37 

English less than “well” (%) 6 12 2.00 

Multi-unit structures (%) 16 4 .25 

Mobile homes (%) 6 41 6.83 

Crowding (%) 4 5 1.25 

No vehicles (%) 6 1 .17 
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Table 8.1-29. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year (Texas). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 81,875 117,591 143,343 

HAZUS 18,002 21,824 23,543 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 

 

Table 8.1-30. Total expected monetary damage by mitigation level; $ million / year (Texas). 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

EAL 2,826 3,927 4,603 

HAZUS 773 1,065 1,171 

Note: EAL = expected annual loss metric, HAZUS = conventional EAL estimate not accounting 

for texture effects. 
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8.2 Additional Tables 

 

  



230 

 

Table 8.2-1. Correlation of expected annual loss (EAL) metrics; Spearman correlation 

coefficient. 
 AD PRC PAI 

HAZUS .65 .36 .83 

Note: AD = absolute-dollar EALs ($ / year / household), PRC = per-replacement-cost EALs (% / 

year / household), PAI = per-annual-income EALs (% / year / household); HAZUS = 

conventional EAL estimate not accounting for texture effects. 

 

Table 8.2-2. Expected number of households severely cost-burdened by monetary damage by 

mitigation level; households / year. 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

HAZUS 12,902 21,653 31,309 

Note: HAZUS = conventional EAL estimate not accounting for texture effects. 

 

Table 8.2-3. Total expected monetary damage by mitigation level; $ billion / year. 
 Fully 

Mitigated 

Current 

Estimate 

Fully 

Unmitigated 

HAZUS .44 .69 .97 

Note: HAZUS = conventional EAL estimate not accounting for texture effects.  
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8.3 Additional Figures 
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Figure 8.3-1. Number of households severely cost-burdened by hurricane repairs and portion 

below the poverty line (dark gray bars). 

 

 
Figure 8.3-2. Percent of households severely cost-burdened by hurricane repairs and portion 

below the poverty line (dark gray bars). 
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9 Chapter 4 Supplementary Materials 
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9.1 Additional Tables 
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Table 9.1-1. Relationship between building stage emissions for concrete archetypes and 

continuous inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

ls .62 .19 .93 -.02 -.02 .68 .51 .00 -.01 

LivingArea .28 .02 .23 .78 .86 .44 .32 .28 .35 

Bedrooms .05 .01 .16 -.02 -.02 .00 -.02 -.02 -.02 

Stories .20 .38 .08 .18 .05 .30 .05 -.06 -.09 

AspectRatio .06 .13 .02 .03 .06 -.02 .01 .01 .02 

DegreeFromS .00 -.02 -.01 -.01 -.01 .00 .00 -.01 .00 

RoofPitch .02 .02 .00 .08 .07 .04 .05 .06 .04 

FrontWWR .06 .13 .01 -.01 -.02 .05 .02 .10 .09 

BackWWR .04 .16 -.01 .00 -.02 .06 .03 .11 .10 

SideWWR .04 .03 .01 .00 -.02 .06 .04 -.02 -.02 

SlabU .00 .21 -.04 -.27 -.35 -.03 -.12 -.14 -.19 

RoofU .03 .00 .00 -.03 .01 .00 .01 -.12 -.04 

WinU .07 .05 -.02 -.02 .10 .02 .23 -.02 .10 

WinSHGC .11 .05 -.02 .01 .12 .06 .23 .00 .10 

HeatingSF .03 .01 -.01 .02 .00 -.01 -.02 .01 .00 

CoolingSF .06 -.01 .04 -.02 .00 .03 .01 -.02 -.02 

OverhangL -.03 -.02 -.02 -.02 -.03 -.02 -.01 -.03 -.02 

ACH50 .04 .05 .00 .03 .03 .02 .03 .01 .01 

WaterHeaterE .00 -.01 -.01 -.02 -.02 -.02 -.03 -.02 -.03 

HeatingE -.03 .55 .00 .00 .02 -.03 -.01 .02 .01 

CoolingE -.01 .01 -.09 .01 -.01 .00 .01 -.01 -.02 

HeatingSP -.02 .02 -.03 .01 .00 .04 .04 .01 .01 

CoolingSP -.05 -.03 -.01 .01 .02 .01 .02 .02 .03 

ExtWallU -.01 -.02 .00 .05 -.01 .00 -.01 -.01 -.01 

ExtDoorU .01 .01 .01 .01 .02 .01 .01 .02 .02 

Note: explanation of input names can be found in the main text. 



237 

 

Table 9.1-2. Relationship between difference in building stage emissions for wood versus 

concrete archetypes and continuous inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

ls .01 .03 .05 .01 .01 .03 .03 .00 -.01 

LivingArea .08 .08 .07 -.39 -.65 .01 .01 .36 .38 

Bedrooms .02 -.02 .03 -.01 -.01 -.03 -.03 -.01 -.01 

Stories .05 .17 .06 -.35 -.59 .02 .02 .54 .54 

AspectRatio .02 .02 .01 -.02 -.05 -.01 .00 -.02 -.02 

DegreeFromS .01 .00 .04 .01 .01 -.02 -.02 -.01 -.01 

RoofPitch .00 -.02 .02 -.05 -.08 .00 .00 .03 .02 

FrontWWR -.09 .01 -.02 .05 .06 .01 .01 -.06 -.08 

BackWWR -.08 .02 .00 .04 .06 -.02 -.02 -.06 -.07 

SideWWR -.02 .00 .00 .00 .01 .02 .02 .01 .02 

SlabU -.03 .03 .00 .00 -.01 -.01 -.01 .11 .10 

RoofU .04 .03 .02 .01 -.01 .00 -.01 -.06 -.01 

WinU -.02 .00 .02 -.01 .00 .02 .01 -.01 .06 

WinSHGC -.01 -.01 .03 -.02 -.02 .01 .01 .01 .07 

HeatingSF .01 .02 .00 -.02 -.01 -.02 -.02 .00 .00 

CoolingSF .00 .01 .03 .02 -.01 -.03 -.03 -.01 .00 

OverhangL .03 .00 -.01 .02 .03 -.02 -.02 .00 .00 

ACH50 .02 .04 .02 -.02 -.03 -.03 -.03 .00 .00 

WaterHeaterE -.02 -.02 .00 .02 .01 .00 .00 .00 -.01 

HeatingE .04 .00 .01 .02 -.01 -.01 -.01 .00 .00 

CoolingE .00 .03 .05 .00 .00 -.04 -.04 .02 .01 

HeatingSP -.01 .03 .00 .01 .02 -.02 -.02 .00 .00 

CoolingSP -.04 -.18 -.10 .00 -.02 .01 .01 -.02 -.02 

delExtWallU -.27 -.37 -.40 .16 .06 .04 .04 .02 .02 

ExtDoorU -.01 .00 -.01 .01 .00 -.01 -.01 .00 .00 

Note: explanation of input names can be found in the main text; ‘del’ indicates the difference in 

U-value of the exterior wall core. 
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Table 9.1-3. Relationship between difference in building stage emissions for masonry versus 

concrete archetypes and continuous inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

ls .07 .09 .13 .02 .02 - - .00 -.01 

LivingArea .14 .13 .15 -.10 -.50 - - .42 .46 

Bedrooms -.03 -.03 .01 .00 -.01 - - -.02 -.02 

Stories .08 .32 .08 -.08 -.45 - - .60 .55 

AspectRatio .00 .05 -.02 .01 -.03 - - -.02 -.02 

DegreeFromS -.01 -.02 .03 .00 .01 - - -.01 -.01 

RoofPitch .02 -.01 .05 .00 -.05 - - .03 .04 

FrontWWR -.09 .04 .01 .00 .03 - - -.06 -.07 

BackWWR -.11 .03 -.01 .01 .02 - - -.05 -.06 

SideWWR -.02 -.03 .02 -.01 .00 - - .02 .01 

SlabU -.01 .08 -.03 .01 -.01 - - .11 .07 

RoofU .06 .01 .04 .00 -.02 - - -.01 .02 

WinU -.04 -.07 .01 .00 -.02 - - -.01 .07 

WinSHGC -.05 -.09 .00 .01 -.02 - - .02 .09 

HeatingSF -.02 .02 -.03 -.01 .00 - - .00 -.01 

CoolingSF .01 .01 .08 .03 -.01 - - .00 .01 

OverhangL .07 .02 .04 .03 .03 - - .00 .00 

ACH50 .01 .08 -.01 -.02 -.04 - - .01 .00 

WaterHeaterE -.01 -.04 .01 .02 .02 - - -.01 -.01 

HeatingE .06 -.08 .00 .00 -.03 - - -.01 -.01 

CoolingE .00 .06 .10 -.03 .01 - - .02 .02 

HeatingSP .00 .00 .01 -.01 .01 - - .00 .01 

CoolingSP -.04 -.28 -.19 -.01 -.02 - - .00 .00 

delExtWallU -.06 -.06 -.10 .11 -.02 - - .01 .00 

ExtDoorU .02 .00 .02 -.01 .02 - - -.01 .01 

Note: explanation of input names can be found in the main text; ‘del’ indicates the difference in 

U-value of the exterior wall core; difference in replacement emissions for masonry versus 

concrete archetypes is equal to zero. 
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Table 9.1-4. Relationship between difference in building stage emissions for wood versus 

masonry archetypes and continuous inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

ls -.05 -.09 -.10 -.01 .00 .03 .03 -.01 -.01 

LivingArea -.12 -.11 -.14 -.33 -.34 .01 .01 -.32 -.41 

Bedrooms .04 .04 .00 .01 .00 -.03 -.03 .03 .02 

Stories -.07 -.27 -.07 -.31 -.30 .02 .02 -.45 -.38 

AspectRatio .00 -.04 .02 -.04 -.03 -.01 .00 .01 .01 

DegreeFromS .01 .02 -.02 .00 .01 -.02 -.02 .01 .00 

RoofPitch -.02 -.01 -.05 -.06 -.07 .00 .00 -.02 -.05 

FrontWWR .07 -.05 -.02 .04 .05 .01 .01 .03 .04 

BackWWR .10 -.02 .01 .04 .05 -.02 -.02 .00 .01 

SideWWR .02 .04 -.02 .00 .02 .02 .02 -.01 .00 

SlabU .00 -.06 .03 -.01 .01 -.01 -.01 -.08 .00 

RoofU -.06 -.01 -.03 .00 .00 .00 -.01 -.06 -.04 

WinU .03 .06 -.02 -.01 .01 .02 .01 .00 -.06 

WinSHGC .05 .08 -.01 -.03 -.01 .01 .01 -.02 -.07 

HeatingSF .03 -.02 .03 -.01 -.01 -.02 -.02 .00 .00 

CoolingSF -.02 .00 -.08 -.01 -.02 -.03 -.03 -.01 -.01 

OverhangL -.07 -.03 -.04 .00 .02 -.02 -.02 -.01 .00 

ACH50 -.01 -.07 .02 -.01 .01 -.03 -.03 .00 .00 

WaterHeaterE .01 .04 .00 .01 -.02 .00 .00 .00 .00 

HeatingE -.05 .10 .01 .03 .03 -.01 -.01 .03 .02 

CoolingE .00 -.05 -.10 .01 -.02 -.04 -.04 -.01 -.02 

HeatingSP .00 .01 -.01 .02 .01 -.02 -.02 -.01 .00 

CoolingSP .03 .23 .14 .00 .00 .01 .01 -.01 -.01 

delExtWallU -.16 -.18 -.25 .17 .12 .03 .03 .02 -.01 

ExtDoorU -.02 -.02 -.04 .02 -.02 -.01 -.01 .02 -.01 

Note: explanation of input names can be found in the main text; ‘del’ indicates the difference in 

U-value of the exterior wall core. 
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Table 9.1-5. Relationship between building stage emissions for concrete archetypes and 

categorical inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

rsgab .01 -.01 -.01 .12 .14 .03 .02 .02 .02 

rship -.01 .01 .01 -.12 -.14 -.03 -.02 -.02 -.02 

rda6d .01 .01 .00 -.01 -.01 .00 .01 -.04 -.03 

rda8d -.01 -.01 .00 .00 .00 .00 -.01 .01 .01 

rda8s -.01 .00 .00 .02 .01 .00 .00 .02 .02 

tnail .01 .00 .01 .01 .01 .02 .02 -.01 -.01 

strap -.01 .00 -.01 -.01 -.01 -.02 -.02 .01 .01 

shtys .01 -.01 .01 .01 .03 .01 .00 -.43 -.45 

shtno -.01 .01 -.01 -.01 -.03 -.01 .00 .43 .45 

gdnod .00 .00 .00 -.02 -.02 .00 .02 .20 .22 

gdwkd .00 .00 .01 -.01 -.01 .01 .01 .14 .14 

gdstd -.01 .00 -.02 .02 .00 -.01 -.03 .13 .13 

gdno2 .02 .01 .02 .01 .02 .02 .01 -.28 -.29 

gdsup -.01 -.02 -.01 .01 .02 -.01 -.01 -.28 -.30 

rmfys .01 -.02 .00 .00 -.01 .00 .00 .04 .03 

rmfno -.01 .02 .00 .00 .01 .00 .00 -.04 -.03 

rcbur .00 .01 .00 -.02 -.02 .00 .00 -.03 -.04 

rcspm .00 -.01 .00 .02 .02 .00 .00 .03 .04 

widdA .02 .00 .02 .03 .03 .01 .02 .21 .23 

widdB -.01 .01 -.02 -.01 -.01 -.02 -.01 .27 .29 

widdC .01 .02 .02 -.01 .00 .03 .01 .01 .01 

widdD -.02 -.03 .00 .00 -.01 -.02 -.02 -.55 -.59 

Note: explanation of input names can be found in the main text. 
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Table 9.1-6. Relationship between difference in building stage emissions for wood versus 

concrete archetypes and categorical inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

rsgab .01 .00 .00 -.15 -.27 .01 .01 .12 .13 

rship -.01 .00 .00 .15 .27 -.01 -.01 -.12 -.13 

rda6d .02 -.01 .00 -.01 -.01 -.02 -.02 .15 .16 

rda8d .00 .00 -.01 .01 .01 .01 .01 .16 .16 

rda8s -.02 .01 .01 .00 .00 .01 .01 -.28 -.29 

tnail .02 -.03 .00 -.01 .00 .02 .02 .20 .21 

strap -.02 .03 .00 .01 .00 -.02 -.02 -.20 -.21 

shtys .01 .02 .02 .00 -.02 .00 .00 -.31 -.33 

shtno -.01 -.02 -.02 .00 .02 .00 .00 .31 .33 

gdnod .00 .00 .00 .02 .02 .00 .00 .11 .13 

gdwkd .00 .00 -.03 .00 .01 -.01 -.01 .12 .13 

gdstd -.01 -.02 .00 -.02 -.02 .00 .00 .11 .11 

gdno2 -.01 .04 -.01 .00 -.02 .00 .00 -.18 -.19 

gdsup .02 -.01 .03 .00 .00 .01 .01 -.22 -.23 

rmfys .01 -.02 .01 .03 .01 -.03 -.03 .00 -.01 

rmfno -.01 .02 -.01 -.03 -.01 .03 .03 .00 .01 

rcbur .01 .01 .01 .02 .01 .01 .01 .02 .01 

rcspm -.01 -.01 -.01 -.02 -.01 -.01 -.01 -.02 -.01 

widdA .00 .00 .00 -.02 -.02 .02 .02 -.11 -.12 

widdB .00 -.02 .00 .02 .02 .00 .00 -.06 -.05 

widdC -.01 .00 .01 .00 -.02 -.02 -.02 .04 .03 

widdD .01 .02 -.01 -.01 .01 .01 .01 .13 .13 

Note: explanation of input names can be found in the main text. 
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Table 9.1-7. Relationship between difference in building stage emissions for masonry versus 

concrete archetypes and categorical inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

rsgab .04 .03 .02 -.02 -.20 - - .21 .22 

rship -.04 -.03 -.02 .02 .20 - - -.21 -.22 

rda6d .01 .00 .01 .00 -.01 - - .14 .15 

rda8d .00 -.01 .02 .00 .01 - - .17 .17 

rda8s -.01 .01 -.02 -.01 .00 - - -.29 -.29 

tnail .00 -.01 -.01 .00 .01 - - .19 .19 

strap .00 .01 .01 .00 -.01 - - -.19 -.19 

shtys .00 -.01 .01 -.02 -.03 - - -.30 -.34 

shtno .00 .01 -.01 .02 .03 - - .30 .34 

gdnod -.01 .01 .00 .01 .04 - - .15 .18 

gdwkd .00 .00 -.01 .01 .00 - - .09 .09 

gdstd .01 -.01 .00 -.01 -.01 - - .09 .10 

gdno2 .01 .02 .01 -.02 -.02 - - -.18 -.21 

gdsup .00 -.02 .01 .00 -.02 - - -.20 -.23 

rmfys .01 -.02 .01 .01 .01 - - .01 .01 

rmfno -.01 .02 -.01 -.01 -.01 - - -.01 -.01 

rcbur -.02 .00 .00 .01 -.01 - - .01 .00 

rcspm .02 .00 .00 -.01 .01 - - -.01 .00 

widdA .00 .00 .01 .01 -.01 - - -.07 -.07 

widdB .03 -.01 .01 -.02 .01 - - -.05 -.03 

widdC -.03 .02 .00 .01 -.02 - - .03 .03 

widdD .00 -.02 -.01 .01 .01 - - .09 .08 

Note: explanation of input names can be found in the main text; difference in replacement 

emissions for masonry versus concrete archetypes is equal to zero. 
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Table 9.1-8. Relationship between difference in building stage emissions for wood versus 

masonry archetypes and categorical inputs; Spearman rank correlation coefficient. 
 Energy Usage Intl. Cnst. Replacement Hazard Repairs 

 Cooling Heating Other A C A C A C 

rsgab -.04 -.03 -.02 -.16 -.16 .01 .01 -.22 -.22 

rship .04 .03 .02 .16 .16 -.01 -.01 .22 .22 

rda6d -.02 -.01 -.02 -.02 .00 -.02 -.02 -.10 -.10 

rda8d .00 .00 -.02 .02 -.01 .01 .01 -.11 -.13 

rda8s .02 .00 .03 .00 .01 .01 .01 .19 .21 

tnail .01 .00 .01 -.02 -.02 .02 .02 .02 .05 

strap -.01 .00 -.01 .02 .02 -.02 -.02 -.02 -.05 

shtys .00 .01 .00 .01 .02 .00 .00 .19 .23 

shtno .00 -.01 .00 -.01 -.02 .00 .00 -.19 -.23 

gdnod .01 -.01 -.01 .00 -.01 .00 .00 -.12 -.14 

gdwkd .01 .00 .01 -.01 .01 -.01 -.01 -.03 -.03 

gdstd -.01 .01 .00 -.01 -.02 .00 .00 -.05 -.07 

gdno2 -.01 .00 .00 .02 .00 .00 .00 .13 .16 

gdsup .01 .02 -.01 -.01 .02 .01 .01 .12 .14 

rmfys -.01 .02 -.01 .02 -.01 -.03 -.03 .00 -.02 

rmfno .01 -.02 .01 -.02 .01 .03 .03 .00 .02 

rcbur .02 .00 .01 .01 .02 .01 .01 .00 .02 

rcspm -.02 .00 -.01 -.01 -.02 -.01 -.01 .00 -.02 

widdA -.01 .00 -.01 -.03 -.01 .02 .02 -.02 -.01 

widdB -.03 -.01 -.01 .03 .02 .00 .00 .02 .02 

widdC .03 -.02 .00 .00 -.01 -.02 -.02 .00 .00 

widdD .00 .03 .02 -.01 -.01 .01 .01 .00 -.01 

Note: explanation of input names can be found in the main text. 

  



244 

 

9.2 Additional Figures 
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Figure 9.2-1. Building embodied emissions for an example Census Tract in Miami-Dade, FL; 

mean of 5,000 actualizations, median scenario of 100 wind loading scenarios. 
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Figure 9.2-2. Building stage emissions for an example Census Tract in Miami-Dade, FL; 5,000 

actualizations, median scenario of 100 wind loading scenarios. 

 

 
Figure 9.2-3. Building stage emissions for an example Census Tract in Miami-Dade, FL; 5,000 

actualizations, median scenario of 100 wind loading scenarios. 

 

 
Figure 9.2-4. Building life cycle emissions for an example Census Tract in Miami-Dade, FL; 

5,000 actualizations, median scenario of 100 wind loading scenarios. 
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Figure 9.2-5. Building stage emissions for an example Census Tract in Miami-Dade, FL; 5,000 

actualizations, 95th-percentile scenario of 100 wind loading scenarios. 

 

 
Figure 9.2-6. Building stage emissions for an example Census Tract in Miami-Dade, FL; 5,000 

actualizations, 95th-percentile scenario of 100 wind loading scenarios. 

 

 
Figure 9.2-7. Building life cycle emissions for an example Census Tract in Miami-Dade, FL; 

5,000 actualizations, 95th-percentile scenario of 100 wind loading scenarios. 
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Figure 9.2-8. Exterior wall core material comparisons based on building life cycle emissions in 

Miami-Dade, FL; p < .05 across 5,000 actualizations, median scenario of 100 wind loading 

scenarios. 

 

 
Figure 9.2-9. Exterior wall core material comparisons based on building life cycle emissions in 

Florida; p < .05 across 5,000 actualizations, median scenario of 100 wind loading scenarios. 
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10 Chapter 5 Supplementary Materials 
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10.1 Additional Tables 
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Table 10.1-1. An organization’s emission scopes and categories (GHGP, 2011, 2015). 
Emission Scope Emission Category Required to Report? 

Scope 1; direct emissions 

• Process emissions associated with operations 

• Emissions associated with combustion of fuels, 

including fuels used for operations, on-site 

power generation, and on-site and off-site 

transport involving owned ICEVs 

Required by GHGP 

Scope 2; indirect emissions 

associated with generation 

of purchased electricity 

• Emissions associated with combustion of fuels 

for generation of purchased electricity, including 

electricity purchased for operations, on-site 

power generation, and on-site and off-site 

transport involving owned EVs 

Required by GHGP 

Upstream scope 3; indirect 

emissions upstream of the 

organization’s activities 

• Category 1; cradle-to-gate emissions associated 

with purchased goods and services 

Required by GHGP 
• Category 2; cradle-to-gate emissions associated 

with capital goods 

• Category 3; cradle-to-gate emissions associated 

with fuel- and energy-related activities 

• Category 4; scope 1-2 emissions associated with 

upstream T&D 

Required by GHGP; 

optional to report cradle-to-

gate emissions associated 

with relevant vehicles, 

facilities, and infrastructure 

• Category 5; scope 1-2 emissions associated with 

waste generated in operations 

• Category 6; scope 1-2 emissions associated with 

business travel 

• Category 7; scope 1-2 emissions associated with 

employee commuting 

• Category 8; scope 1-2 emissions associated with 

upstream leased assets 

Downstream scope 3; 

indirect emissions 

downstream of the 

organization’s activities 

• Category 9; scope 1-2 emissions associated with 

downstream T&D 

Required by GHGP; 

optional to report cradle-to-

gate emissions associated 

with relevant vehicles, 

facilities, and infrastructure 

• Category 10; scope 1-2 emissions associated 

with processing of sold products 

• Category 11; scope 1-2 emissions associated 

with use of sold products 

• Category 12; scope 1-2 emissions associated 

with end-of-life of sold products 

• Category 13; scope 1-2 emissions associated 

with downstream leased assets 

• Category 14; scope 1-2 emissions associated 

with franchises 

• Category 15; scope 1-2 emissions associated 

with investments 

Note: ICEV = internal combustion engine vehicle, EV = electrical vehicle. 
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Table 10.1-2. A cement producer’s emission scopes and categories (WBCSD, 2011b, 2011a). 
Emission Scope Emission Category Required to Report? 

Scope 1; direct emissions 

• Process emissions associated with combustion of 

organic carbon in raw materials and calcination 

of raw meal, bypass dust, and cement kiln dust 

• Emissions associated with combustion of fuels, 

including fuels used for kiln and non-kiln 

activities, on-site power generation, and on-site 

and off-site transport involving owned ICEVs 

Required by WBCSD; 

optional to report off-site 

transport involving owned 

ICEVs 

Scope 2; indirect emissions 

associated with generation 

of purchased electricity 

• Emissions associated with combustion of fuels 

for generation of purchased electricity, including 

electricity purchased for kiln and non-kiln 

activities, on-site power generation, and on-site 

and off-site transport involving owned EVs 

Required by WBCSD; 

optional to report off-site 

transport involving owned 

EVs 

Upstream scope 3; indirect 

emissions upstream of the 

organization’s activities 

• Category 1; cradle-to-gate emissions associated 

with purchased goods and services, such as 

clinker, raw materials (e.g. limestone), cement 

constituents (e.g. non-calcinated limestone), 

equipment parts, lubricants, fluids, chemical 

agents, maintenance services 

Required by WBCSD 

• Category 2; cradle-to-gate emissions associated 

with capital goods, such as kilns, grinders, silos, 

engines, vehicles, heavy duty materials (e.g. 

pipes), IT equipment 

NOT required by WBCSD; 

noted as “relevant” but 

“insignificant” 

• Category 3; cradle-to-gate emissions associated 

with fuel- and energy-related activities 
Required by WBCSD 

• Category 4; scope 1-2 emissions associated with 

upstream T&D 

• Category 5; scope 1-2 emissions associated with 

waste generated in operations 

NOT required by WBCSD; 

noted as “irrelevant” 

• Category 6; scope 1-2 emissions associated with 

business travel 
NOT required by WBCSD; 

noted as “relevant” but 

“negligible” 
• Category 7; scope 1-2 emissions associated with 

employee commuting 

• Category 8; scope 1-2 emissions associated with 

upstream leased assets 

NOT required by WBCSD; 

noted as “irrelevant” 

Downstream scope 3; 

indirect emissions 

downstream of the 

organization’s activities 

• Category 9; scope 1-2 emissions associated with 

downstream T&D 
Required by WBCSD 

• Category 10; scope 1-2 emissions associated 

with processing of sold products, such as turning 

cement into concrete or mortar 
NOT required by WBCSD; 

noted as “difficult to 

measure for intermediate 

products” 

• Category 11; scope 1-2 emissions associated 

with use of sold products, such as buildings and 

roads 

• Category 12; scope 1-2 emissions associated 

with end-of-life of sold products, such as 

buildings and roads 

• Category 13; scope 1-2 emissions associated 

with downstream leased assets 

NOT required by WBCSD; 

noted as “irrelevant” 
• Category 14; scope 1-2 emissions associated 

with franchises 

• Category 15; scope 1-2 emissions associated 

with investments 

Note: ICEV = internal combustion engine vehicle, EV = electrical vehicle.  
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Table 10.1-3. Examples of stakeholder activities. 
Relevance to Cement Sector Stakeholder Activity 

In scope, indirect; contribute to 

upstream scope 3 emissions 

Producer of capital goods Production of capital goods 

Raw material supplier e.g. 

limestone quarry 

Extraction and processing of raw 

materials 

Fuel supplier e.g. gas company Extraction and processing of fuels 

T&D provider 
T&D of capital goods, raw 

materials, and fuels 

In scope, direct; contribute to 

scope 1 emissions 
Cement producer Clinker production 

In scope, indirect; contribute to 

scope 2 emissions 
Electricity provider Generation of purchased electricity 

In scope, indirect; contribute to 

downstream scope 3 emissions 

Producer of CBPs, or primary, 

materials (e.g. ready-mixed 

concrete plant) 

Processing of clinker into CBPs 

T&D provider T&D of CBPs 

Construction company Installation of CBPs in buildings 

End-user 

Use of end-use applications, as 

pertaining to CBPs (including 

carbon uptake) 

Waste processor 

End-of-life of end-use applications, 

as pertaining to CBPs (including 

carbon uptake) 

Out of scope 

Producers of non-CBP primary 

materials used in cement’s value 

chain 

n/a 

Producers of competing primary 

materials (e.g. logging company) 
n/a 

Note: T&D = transportation and distribution, CBP = cement-based product; not meant to be 

comprehensive. 
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Table 10.1-4. A building’s life cycle stages and activities (Hester, 2018). 
Life Cycle Stage Life Cycle Activity Emissions 

A1-3: material production 

A1: production of capital 

goods, raw materials, fuels, 

and electricity 

Cradle-to-gate emissions associated with: 

• Clinker used for production of CBPs 

• Materials that are NOT clinker but used for 

production of CBPs 

• Materials used for production of non-CBP 

materials 

A2: transport of capital 

goods, raw materials, fuels, 

and electricity 

T&D emissions associated with: 

• Clinker used for production of CBPs 

• Materials that are NOT clinker but used for 

production of CBPs 

• Materials used for production of non-CBP 

materials 

A3: transformation of raw 

materials into primary 

materials 

Scope 1-2 emissions associated with: 

• Production of CBPs (including carbon uptake of 

cement wastage) 

• Production of non-CBP materials 

A4-5: construction 

A4: transport of primary 

materials 

T&D emissions associated with: 

• CBPs 

• Non-CBP materials 

A5: installation of primary 

materials in building 

Scope 1-2 emissions associated with: 

• Installation of CBPs (including carbon uptake) 

• Installation of non-CBP materials 

B1-6: use 

B1: use of installed primary 

materials 

Scope 1-2 emissions associated with: 

• Use of CBPs (including carbon uptake) 

• Use of non-CBP materials 

B2: maintenance of building 

A1-5 emissions associated with: 

• CBPs 

• Non-CBP materials 

B3: repair of building 

B4: replacement of building 

B5: refurbishment of 

building 

B6: operational energy 

usage of building 

Scope 1-2 emissions associated with: 

• Baseline energy usage 

• ‘Excess’ energy usage 

B7: operational water usage 

of building 
n/a 

C1-4: end-of-life 

C1: demolition of building 

Scope 1-2 emissions associated with: 

• End-of-life of CBPs (including carbon uptake) 

• End-of-life of non-CBP materials 

C2: transport of demolished 

materials 

C3: processing of 

demolished materials 

C4: disposal of demolished 

materials 

Note: T&D = transportation and distribution, CBP = cement-based product. 
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10.2 Additional Figures 
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Figure 10.2-1. Outline of how building life cycle emissions map onto cement’s sectoral 

emissions; all building life cycle stages relevant to cement’s value chain, however only a portion 

of emissions in each building life cycle stage relevant to report in cement’s sectoral emissions. 

 

 
Figure 10.2-2. Breakdown of building life cycle emissions; parts highlight represented emissions 

which map onto cement’s sectoral emissions. 
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Figure 10.2-3. Reportable emissions associated with cement-based products used in Florida 

homes built in 1940; parts highlighted represent scopes 1 and 2. 

 

 
Figure 10.2-4. Reportable emissions associated with cement-based products used in Florida 

homes built in 1940; parts highlighted represent upstream scopes 3. 

 

 
Figure 10.2-5. Reportable emissions associated with cement-based products used in Florida 

homes built in 1940; parts highlighted represent downstream scopes 3.  
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