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1 Introduction

Events from particle physics collisions live in a space rich with structure, whose dimensionality,
topology, curvature, and other geometric properties encode the myriad physical phenomena
that can be observed. A first step to quantifying the features of this space is to define a metric
distance between events, and further ideally in an infrared and collinear (IRC) safe way to
render the parametrization of the space calculable in perturbative quantum field theory. The
first IRC-safe metric on the space of collider events was constructed in ref. [1] and called the
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Energy Mover’s Distance (EMD), which quantified the minimal energy cost of deforming
one event into another. The EMD has since sparked significant interest, with numerous
other metrics proposed or exploiting properties of the EMD in various contexts [2–15]. This
includes the Shaper framework [16], which can be used to construct and evaluate generalized
EMD-based event and jet shapes. EMD-based observables have also received heightened
interest in the experimental community — one such observable, the event Isotropy [5, 17],
was recently measured at the Large Hadron Collider (LHC) by the ATLAS collaboration [18].

The EMD is formulated as the Wasserstein metric [19–21] of an optimal transport problem
in which energy deposits from one event are moved around the detector to reproduce the
energy deposits of another event. An idealized particle physics detector lives on the celestial
sphere, so this optimal transport problem is defined in two dimensions. Because objects in
two or higher dimensions lack a natural ordering, there is no general closed-form expression
for the EMD as a function of event constituents. Thus, generically, this distance must be
evaluated through some numerical optimization. This irreducible numerical computation
obscures analytical understanding of the EMD, except in the simplest of event configurations,
and further can suffer from slow evaluation, though there are now efficient codes for optimal
transport in two or more dimensions [16, 22].

With these points as motivation, the Spectral EMD (SEMD) was introduced recently [23].
Instead of optimal transport on the celestial sphere, the SEMD is defined through optimal
transport between spectral function representations of events [24–28]. Spectral functions
are one-dimensional distributions that encode pairwise particle angles and energy products.
As such, the spectral representation is automatically invariant to isometries of the events
being compared. Further, a theorem of ref. [29] ensures that the spectral representation can
be, with probability 1, mapped to a unique distribution of particles on the celestial sphere,
up to isometries. This result establishes that the SEMD is not only an approximation to
the EMD or only approximately a metric, but is indeed a genuine metric between collision
events satisfying identity of indiscernibles, symmetry, and the triangle inequality. Crucially,
because points in one dimension are well ordered, optimal transport in one dimension can be
expressed as an integral of the difference of the spectral quantile functions (inverse cumulative
spectral functions), which can correspondingly be evaluated very efficiently.

Nevertheless, ref. [23] mostly focused on the p = 1 Wasserstein metric of the spectral
representation. While simple and motivated historically by the Monge-Kantorovich prob-
lem [30] and the Earth Mover’s Distance from computer vision [31–34], direct evaluation of
this integral between arbitrary events is challenging because its integrand is expressed as
the absolute value of a difference of functions. Thus, in practice, the p = 1 SEMD is, like
the ordinary EMD, most easily numerically evaluated. Further, p = 1 Wasserstein metrics
lack properties that, as physicists, we have come to expect of metrics, namely, their direct
interpretability as differential line elements with a natural Riemannian structure. Simply
modifying the definition of the SEMD to a p = 2 Wasserstein metric endows the SEMD with
many nice properties familiar from Riemannian metrics [4, 35–37].

In this paper, we flesh out the p = 2 SEMD metric, establish its remarkable properties,
and introduce a computational framework called Specter for its efficient evaluation. First
and foremost, the p = 2 SEMD can be expressed exactly in closed-form between any two
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events as represented as point clouds on the celestial sphere. This represents the first metric on
collider events that can be expressed with no approximations or need for numerical evaluation,
and correspondingly renders theoretical calculations potentially feasible. Novel event and jet
shape observables can be constructed from the SEMD as defined by the minimal distance from
an event of interest to a desired energy flow configuration as in refs. [16, 38], and essentially
becomes a problem in geometric probability [39–41], formulated as shape-line picking. As
such, many observables constructed from the SEMD enjoy a closed-form expression as well.
Moreover, we argue that SEMD and derived observables capture the same QCD jet physics
as do the EMD and its observables, potentially enabling high-speed precision studies of QCD,
while being complementary to the EMD for non-QCD physics.

To facilitate these computations, we construct the Specter framework, available at
https://github.com/rikab/SPECTER. Specter is to the SEMD what Shaper is to the EMD:
an efficient program for evaluation of the p = 2 SEMD on events from data (real or simulated),
and for the construction and evaluation of all spectral event and jet shape observables.1 Due
to the closed-form expression and well-ordering in one dimension, Specter evaluates the
SEMD between events hundreds or even thousands of times faster than comparable codes
can evaluate the EMD. On an ordinary GPU architecture, Specter can perform 1 million
metric evaluations per second, making it far more feasible to compute distances between
all pairs of events (to compute correlation dimensions [42]), perform gradient descent (for
parameter optimization [16]), or experimental studies (potentially even at the trigger level).

The organization of this paper is as follows. In section 2, we review the spectral
representation of events, evaluate the p = 2 SEMD, and discuss its properties. In section 3,
we introduce the Specter framework and discuss the algorithm to efficiently evaluate the
SEMD between events with N particles in only O(N2 log N) time compared to O(N3) for
the EMD, and demonstrate performance through some runtime benchmarks. In section 4,
we review how to construct event and jet shape observables from a metric formulation, and
present a collection of observables defined from the SEMD useful for identifying structure
on both complete events as well as on individual jets. In section 5, we study the SEMD
and derivative observables on simulated events, providing comparisons where possible to the
EMD. We conclude in section 6, and present some more details of ground metric choices
and closed-form expressions in the appendices.

2 The p = 2 Spectral EMD

In this section, we provide a review of the spectral function, define the general SEMD metric
from it, and then specialize to the Riemannian p = 2 case, for which the SEMD metric can
be written in closed form. Because the explicit form of the p = 2 SEMD metric is new, we
present a detailed discussion of its derivation, but point the reader to ref. [23] for more details
about the spectral function and its one-dimensional optimal transport.

2.1 Review of the Spectral EMD

The spectral function s(ω) is a one-dimensional representation of a particle collision event
or jet. It is a distribution of pairwise particle angles ω, weighted by the product of energies

1Unlike Shaper, though, Specter does not correspond to some tortured acronym.
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of the particles in each pair:

s(ω) ≡
∑

i,j∈E
EiEj δ(ω − ωij) =

∑
i∈E

E2
i δ(ω) +

∑
i<j∈E

2EiEj δ(ω − ωij) , (2.1)

where E is the set of particles of interest, ωij is an appropriately-defined angle or distance
between particles i and j, and Ei is the energy of particle i. Many plots showing how a
spectral function can be constructed from an event or jet will be shown in sections 4 and 5.
We also define the cumulative spectral function:

S(ω) =
∫ ω

0
dω′ s(ω′), (2.2)

and the inverse cumulative spectral function S−1(E2). The spectral function is normalized
to integrate to the total squared energy:

E2
tot = S(ωmax). (2.3)

The spectral function is IRC safe because it is multi-linear in particle energies and the
arguments of the δ-functions are purely functions of angle (with no energy weighting). It
is also invariant to isometries of the ground space, such as rotations about the colliding
beam directions or permutations of particle labels, because it is sensitive only to relative
angles. The spectral function almost uniquely defines the positions of particles on the celestial
sphere, up to isometries, because both relative angles and particle energies are drawn from
continuous distributions on phase space [29].2 By “almost uniquely”, we mean that there
is 0 probability that a spectral function corresponds to two or more distinct, non-isometric
distributions of particles on the celestial sphere. This is necessary to define a metric — the
distance between spectral functions should be always zero if and only if they are the same
spectral function, and thus the distance between their corresponding events being zero implies
they are almost always the same event. Note that the existence of degenerate configurations
is highly nontrivial, and we discuss this point more in section 2.4.

Then, as the fundamental object that encodes complete information about the set of
particles, a metric between two events A, B can be defined through the optimal transport
of one event’s spectral function to the other’s. Further, because the spectral function is
one-dimensional, the optimal transport cost can be expressed as a one-dimensional integral
of the difference between inverse cumulative spectral functions:

SEMDp(sA, sB) ≡
∫ E2

tot

0
dE2

∣∣∣S−1
A (E2) − S−1

B (E2)
∣∣∣p , (2.4)

for some p ≥ 1. Technically, to be a metric (and satisfy the triangle inequality between three
events A, B, and C), we further need to take the 1/p power of the result, but we instead work
with this pth power to avoid carrying around clunky roots. S−1

A (E2) is the inverse cumulative
spectral function of event A, for which the cumulative spectral function is:

S(ω) ≡
∫ ω

0
dω′ s(ω′) =

∑
i∈E

E2
i +

∑
i<j∈E

2EiEj Θ(ω − ωij) . (2.5)

2This is in contrast to distributions on a regular lattice, where pairwise distances are likely to be non-unique.
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In ref. [23], the p = 1 metric was studied in detail, which corresponds to the historical
Monge-Kantorovich distance or Earth Mover’s Distance [30] of the more general class of
Wasserstein metrics [19–21]. In the p = 1 case only, the inverse cumulative spectral functions
can be replaced by the cumulative spectral functions themselves:

SEMDp=1(sA, sB) ≡
∫ ωmax

0
dω |SA(ω) − SB(ω)| . (2.6)

For this reason, the p = 1 metric was previously studied in detail, while p > 1 metrics
(which require the inverse cumulative spectral function to be defined) were not. We next
demonstrate, however, that this restriction was neither necessary nor especially convenient
because we can rather easily exactly evaluate the SEMD integral for p = 2.

2.2 Closed-form evaluation

In this work, we focus exclusively on the p = 2 SEMD:

SEMDp=2(sA, sB) =
∫ E2

tot

0
dE2

∣∣∣S−1
A (E2) − S−1

B (E2)
∣∣∣2 (2.7)

=
∫ E2

tot

0
dE2

(
S−1

A (E2)2 + S−1
B (E2)2 − 2S−1

A (E2)S−1
B (E2)

)
.

We assume that the two events A and B have the same total energy Etot. (As discussed in
ref. [23], this can be accomplished by adding any deficit energy to the less energetic event’s
spectral function a distance ωR away, where ωR is a chosen angular scale.) Here, the inverse
cumulative spectral function can be evaluated from:

S−1(E2) =
∫ ωmax

0
dω Θ

(
E2 − S(ω)

)
. (2.8)

For two events or jets A, B that each contain a discrete number of particles, the SEMD can
be evaluated exactly in closed form. We consider each term in the integrand of eq. (2.7)
separately, and then add them together appropriately to evaluate the spectral metric.

We begin by evaluating terms whose integrands are squares of the inverse cumulative
spectral functions. To do these integrals, we make a change of variables from squared energy
to cumulative spectral function:

E2 = S(ω) . (2.9)

We then find: ∫ E2
tot

0
dE2 S−1(E2)2 =

∫ ωmax

0
dω ω2 s(ω) , (2.10)

which is just the second moment of the spectral function. This moment is trivial to evaluate
because the angular dependence in the spectral function is in δ-functions:∫ E2

tot

0
dE2 S−1(E2)2 =

∑
i<j∈E

2EiEjω2
ij , (2.11)
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where the sum runs over all particles i < j in the event E . This is just a two-point energy
correlation function observable [43, 44] evaluated on the event of interest.

Moving on to the mixed term, we can evaluate it from the explicit form of the inverse
cumulative spectral function, S−1(E2). To do this, it is convenient to introduce some notation.
The cumulative spectral function can be written as:

S(ω) =
∑
i∈E

E2
i +

∑
i<j∈E

2EiEjΘ(ω − ωij) ≡
∑
i∈E

E2
i +

∑
n∈E2

ωn<ωn+1

(2EE)nΘ(ω − ωn) . (2.12)

In the sum on the right, ωn is one of the
(N

2
)

pairwise angles between the N particles in the
event and (2EE)n is its corresponding squared energy weight. The notation n ∈ E2 ≡ E × E
means that n represents a pair of particles from event E . In the sum, we have ordered
the angular factors so that ωn < ωn+1. We then define inclusive and exclusive cumulative
distributions up to a peak n ∈ E2 as:

S+(ωn) ≡ lim
ϵ→0

S(ωn + ϵ) =
∑
i∈E

E2
i +

∑
n≥m∈E2

ωm<ωm+1

(2EE)m , (2.13)

S−(ωn) ≡ lim
ϵ→0

S(ωn − ϵ) =
∑
i∈E

E2
i +

∑
n>m∈E2

ωm<ωm+1

(2EE)m . (2.14)

Note that S+(ωn) is the cumulative spectral function including the peak at ω = ωn, while
S−(ωn) does not include the peak at ωn. Using this notation, the inverse cumulative
distribution S−1(E2) can be expressed as:

S−1(E2) =
∑

n∈E2
ωn<ωn+1

ωn Θ
(
S+(ωn) − E2

)
Θ
(
E2 − S−(ωn)

)
. (2.15)

The proof of this statement follows simply by sketching the functional form of the cumulative
spectral function as in figure 1, reflecting about the diagonal, and building the resulting
function out of Θ-functions.

To express the mixed term, is it further convenient to define the quantity:

Snℓ ≡ min
[
S+

A (ωn), S+
B (ωℓ)

]
− max

[
S−

A (ωn), S−
B (ωℓ)

]
, (2.16)

where A and B refer to two different spectral functions, indexed by n and ℓ respectively.
Integrating the product of spectral functions defined by eq. (2.15) and keeping careful track
of the Θ-functions, the cross term integral in the SEMD can be written as:∫ E2

tot

0
dE2 S−1

A (E2)S−1
B (E2) =

∑
n∈E2

A, ℓ∈E2
B

ωn<ωn+1
ωℓ<ωℓ+1

ωnωℓ ReLU(Snℓ), (2.17)

where

ReLU(x) ≡ x Θ(x) , (2.18)

is the Rectified Linear Unit function [45].

– 6 –
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ω , E2

(ω) , -1(E2)

Figure 1. Illustration of the relationship between the cumulative spectral function and its inverse.
The cumulative spectral function S(ω) (red) takes the value of a squared energy E2 at every angle ω,
while the inverse cumulative spectral function S−1(E2) (green) takes the value of an angle at every
squared energy.

Summing up the squared and mixed contributions yields a compact form for the SEMD:

SEMDβ,p=2(sA, sB) =
∑

i<j∈EA

2EiEjω2
ij +

∑
i<j∈EB

2EiEjω2
ij − 2

∑
n∈E2

A, ℓ∈E2
B

ωn<ωn+1
ωℓ<ωℓ+1

ωnωℓ ReLU(Snℓ) .

(2.19)
We emphasize that this is an exact and closed-form expression for the p = 2 SEMD between
any two sets of discrete points. Moreover, eq. (2.19) is extremely fast to evaluate; we
will see in section 3 that it is possible to evaluate it in O(N2 log N) time using the highly
efficient, differentiable, and parallelizable Specter framework. This is in contrast to the
p = 1 SEMD [23], the ordinary EMD, or approximations to Wasserstein such as sliced-
Wasserstein [46] or Sinkhorn [47], which either have no closed-form expression, are expensive
to evaluate, or are inexact. Lastly, the structure of eq. (2.19) is valid for any choice of ground
metric ω. In fact, it is not even necessary that ω be a proper metric at all — it suffices
for ωij to be any symmetric matrix such that ωii = 0.

For events A and B each with N particles, the first two terms in this sum have O(N2)
terms to evaluate. The cross term is a sum over both events, and naively appears to have
O(N4) terms. However, the structure of Θ(Snℓ) within the ReLU function ensures that
almost all of these terms are zero, and that only O(N2) actually contribute to the cross
term. This term takes the form:

Θ(Snℓ) = Θ
(
S+

A (ωn) ≥ S+
B (ωℓ) > S−

A (ωn)
)

OR Θ
(
S+

B (ωℓ) ≥ S+
A (ωn) > S−

B (ωℓ)
)

. (2.20)

Here, we have slightly abused the step function notation, with Θ(TRUE) = 1 and Θ(FALSE) =
0. These two inequalities can be computed efficiently in O(N2 log N) time and makes the
SEMD much easier to calculate, as we explored further in section 3.

– 7 –
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2.3 Choice of ground metric

The distance metric ω depends on the geometry being considered. For jets at a hadron
collider, we consider a local rectangular patch in the rapidity-azimuth (y, ϕ) plane and use
the Euclidean metric:3

ωij =
√

(yi − yj)2 + (ϕi − ϕj)2. (2.21)

In this case, we use the particle’s transverse momentum pT in place of its energy E, but for
the sake of notational simplicity, we continue to use E everywhere in this paper.

For full events in a spherical detector, we use the spherical arc length (angle θ) metric:

ωij = |θij | =
∣∣∣∣∣cos−1

(
1 − pi · pj

EiEj

)∣∣∣∣∣ , (2.22)

where throughout this paper we assume that particle momentum four-vectors pi, pj

are massless.
There are many other possible geometries and metrics one could have chosen instead, such

as cylindrical geometries, chord lengths rather than arc lengths, or even arbitrary warpings
of the above metrics, but we stick to these two for the reminder of this paper for simplicity.
These two metrics in particular are relatively simple to work with and make it easy to relate
the SEMD to the EMD and other well-known observables. We briefly discuss using the
spherical chord length rather than arc length in appendix A.

We note that the SEMD and eq. (2.19) are valid and interpretable even outside the
context of collider physics. For example, in images, the metric ω might be a pixel distance,
and the energy E might be pixel intensities. In general, the SEMD is a valid metric on the
space of arbitrary weighted distributions — in collider physics, an event (jet) is a distribution
of points xi with weights Ei (pT,i) and pairwise distances ωij . These distributions need not
even be discrete: the definition of the SEMD given in eq. (2.4) is valid even if sA or sB are
continuous, though it can no longer be evaluated using the exact expression in eq. (2.19)
and must be approximated using sampling.

2.4 Comparison to the EMD and degeneracies

The p = 2 SEMD bears many similarities to the ordinary β = 2 EMD, and their differences
can be illuminating. The β = 2 EMD between two events E and E ′, assuming they have
the same total energy Etot, is given by [1]:4

EMD(E , E ′) = min
πij≥0

∑
ij

πij ω2
ij , such that

∑
i

πij =
E′

j

Etot
and

∑
j

πij = Ei

Etot
, (2.23)

where i indexes particles in E and j indexes particles in E ′. Both the EMD and SEMD
exhibit the same scaling: bilinear in particle energies and quadratic in distance scales, and
are expected to be similar in the soft/collinear limits of QCD [23]. In spite of this, their
behavior can sometimes differ wildly, especially for “near-degenerate” events.

3This differs from the convention of ref. [16], which for β = 2 has an overall factor of 1
2 in the metric.

4For the rest of this paper, whenever we refer to the ordinary EMD, we always mean the β = 2 EMD.
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To set the stage, we first review a case where the SEMD and EMD are expected to agree
exactly. Consider a generic jet E and a special jet E ′ consisting of a single particle, such
that the center-of-energy x0 = 1

Etot

∑
i Eixi of both jets is the same, where xi = (yi, ϕi) is

the detector coordinate of particle i and we use the Euclidean metric of eq. (2.21).5 The
EMD is straightforward to calculate, since the optimal transport plan is to simply transfer
all of E to the single point of E ′:

EMD(E , E ′) = 1
2

∑
i Ei(xi − x0)2∑

i Ei
= 1

2

∑
ij EiEj(xi − xj)2

E2
tot

, (2.24)

where in the last step, we have used that x0 = 1
E

∑
j Ejxj is the center-of-energy. Note

that while the EMD naively appears to be linear in energy, it is actually quadratic once
the center-of-energy is accounted for. One can show that the β = 2 EMD between any
two localized jets is minimized whenever they share their center-of-energy — in this case,
the minimization is equivalent to the β = 2 recoil-free jet angularity [48, 49], the β = 2
1-subjettiness [50], or the yet-to-be-defined 1-sPronginess (see section 4.2.1 for more details).

We can also calculate the SEMD of this configuration directly using eq. (2.19):

SEMD(sE , sE ′) =
∑
i,j

EiEj(xi − xj)2. (2.25)

Up to the total energy normalization, which we may set to 1, and an unimportant extra
factor of 2 (which is due to the 1

β convention in ref. [16]), these agree. Moreover, both metrics
are IRC safe, and therefore continuous on the space of events. This implies that for jets E ′

that are almost one particle, e.g. one particle plus a soft or collinear emission, EMD(E , E ′)
and SEMD(sE , sE ′) should be almost the same. Both the EMD and SEMD scale bilinearly
in energy and scale with (xi − xj)2, so one should expect them to be similar.

On the other hand, there are cases where the ordinary EMD and the spectral SEMD are
very different. Consider the case where E is an equilateral triangle of three particles, with
one particle having an energy of 2

3 units, and the other two each having energies of 1
6 units.

Without loss of generality, choose the most energetic particle to be at the origin, and one of
the two others to be at (1, 0). Then, choose E ′ to consist of two particles, each of energy 1

2
units, with one at the origin and the other at (1, 0). Clearly, the energy flows of E and E ′ are
different, and so the EMD will be nonzero. However, this specific configuration happens to
be a rare degenerate case, with both E and E ′ having the exact same spectral function:

sE(ω) = sE ′(ω) = 1
2δ(ω) + 1

2δ(ω − 1), (2.26)

and therefore the SEMD is zero. That is, these two configurations that are very different
in “energy flow space” become the same event in “spectral space”.

Even though fully degenerate configurations are just a measure-0 subset of all events,
this quirk has implications for the full space of events. Since both metrics are IRC safe,
events that are almost degenerate will be separated by a large distance in energy flow space,
but will be separated by an almost zero distance in spectral space. The topology induced

5The center-of-energy is not well-defined for a full event on the celestial sphere, but is well-defined for a jet
living on a rapidity-azimuth patch.
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Figure 2. (a) Diagram showing how spectral space induces a different topology on the space of
events, as equilateral triangles are closer to 2-particle events in spectral space than in full event space.
(b) The minimum EMD (black) and minimum SEMD (red) of an isosceles triangle to all possible
2-particle events (also known as the 2-subjettiness and 2-sPronginess, respectively, defined further in
section 4.2.2). The isosceles triangle’s opening angle is varied. The point of the triangle where the
angle varies has an energy of 2/3 and the other two points each have an energy of 1/6.

by the SEMD is genuinely different than the topology induced by the EMD on the space of
events. Observables defined using the EMD are IRC safe in the sense that the EMD changes
very little under a soft or collinear splitting. Observables defined using the SEMD satisfy a
slightly stronger condition: the SEMD changes very little under a soft or collinear splitting
or a hard splitting that happens to be nearly degenerate.

In figure 2, we show the minimum SEMD and EMD between isosceles triangles and
the set of all two particle events, also known as the 2-sPronginess (see section 4.2.2) and
the 2-subjettiness [50], respectively. The energies of the three particles are as described
above, with the apex having an energy of 2

3 , and the opening angle θ is varied. The SEMD
and EMD agree locally near the θ = 0 configuration, where the event is essentially two
particles, and both exhibit the expected quadratic scaling as the opening angle increases.
However, near θ = π

3 , which is the equilateral triangle configuration, the two sharply diverge,
as the event appears to be 3 particles in event space but 2 particles in spectral space. The
agreement between the SEMD and EMD has been “spoiled” by the presence of this degeneracy,
where otherwise the naive scaling would suggest that the SEMD should continue to grow
quadratically alongside the EMD.

Given that the EMD and SEMD exhibit similar energy and distance scaling, their
differences can be “blamed” on these topological differences. How often, then, do these
differences occur? The simplest possible degenerate configuration is the equilateral triangle
configuration described above. Generically, any set of three particles whose distances from
each other are all O(1) of each other and whose relative energies are also all O(1) will be
“almost” degenerate, and these terms in the spectral function will almost collapse to two points.
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In a light quark or gluon-initiated QCD jet, this is unlikely to occur: emissions of the hard
core are strongly ordered in both the emission angle and energy — that is, QCD jets tend to
have 1 hard prong. Even if a degenerate triangle does occur between three particles of similar
energy, their contribution to the spectral function will be highly energy-suppressed relative
to the harder component. In contrast, a top-quark-initiated jet tends to form three hard
subprongs in an approximately triangular formation. Therefore, one should expect that the
EMD and SEMD should be similar between pairs of QCD jets, but be significantly different
between pairs of top jets. This is indeed the case; the empirical study in section 5.2 shows
that the EMD and SEMD is indeed similar for QCD jets, but differs on other phase spaces.

3 The SPECTER framework

Specter is a numeric framework for computing the p = 2 SEMD between events using
eq. (2.19), and for computing observables derived from the SEMD via gradient descent as
described further in section 4. Specter is implemented in JAX [51], a Python library
for differentiable and compilable computing. In section 3.1, we discuss the algorithm to
efficiently compute eq. (2.19). Then, in section 3.2, we demonstrate the speed of the Specter
framework with empirical studies. This section is self-contained, and readers less focused
on the implementation of the SEMD can safely skip to section 4.

3.1 Algorithm for the Spectral EMD

Given an event E with N massless particles, we first compute its spectral representation sE .
We assume that all events are normalized with a total energy Etot = 1, and that we can
efficiently compute a distance matrix ωij , computed using either eq. (2.21) or eq. (2.22).6 The
spectral representation is a 2 × (1 +

(N
2
)
) array of values, with the first column representing

the list of distances ωij and the second column representing the list of energies (2EE)ij .
The second dimension represents the list of all pairs of particles, plus an additional entry
for the i = j pairs. We index these pairs by n, and we 0-index, with the index n = 0
referring to the i = j pairs.

For i > j, the matrix of distances ωij are then sorted in ascending order into a single
list ωn and assigned indices n = 1, . . . ,

(N
2
)
. The special value ω0 = 0 is assigned for n = 0.

These values then populate the first column of the sE array. Then, for n ≥ 1 corresponding
to the pair (i, j), the value (2EE)ij = 2EiEj is computed and populate the second column,
with the special value (2EE)0 = ∑

i E2
i .

Importantly, every step of this operation is fully differentiable (even the sorting, as
long as the indices are tracked). The entire operation can be run in O(N2 log N) time: the
N2 is due to the pairs, and the logarithm to the sorting and searching operations. Note
that storing the spectral representation of an event requires O(N2) in memory, unlike an
ordinary event which requires only O(N) in memory. For large N , approaching as high as
N ∼ 1000 for heavy ion collision experiments, these memory requirements per event can
become a bottleneck of the Specter algorithm.

6In principle, nothing prevents the use of arbitrary ωij in the algorithm, but for simplicity we will stick
with the two prescribed metrics.
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Figure 3. (Left) The indices (n, ℓ) for which Θ(Snℓ), as defined in eq. (2.16), is nonzero for a typical
pair of events with 10 particles. The bright red points are (n, ℓ) pairs where Θ(Snℓ) = 1. (Middle,
Right) This can be computed as the logical OR of eq. (3.2), which consist solely of searches within
sorted lists and are primitive operations within JAX.

We will find it convenient to process many events at once (a batch), each with a different
number of particles N . To deal with this and keep all of our arrays rectangular, we choose a
fixed Nparticles.7 Events with fewer particles than this are 0-padded (which will not change
the energy flow E by IRC safety), and events with more particles than this have their least
energetic particles removed (which is not IRC safe).8

Given two events EA and EB , and their spectral representations constructed as described
above, we now wish to compute eq. (2.19) efficiently. The first two terms of eq. (2.19) are
straightforward given the spectral representations sE , as they take the form:

Term 1 + Term 2 =
∫

dω ω2(sA(ω) + sB(ω)
)

=
∑
n=0

ω2
n(2EE)A,n +

∑
ℓ=0

ω2
ℓ (2EE)B,n, (3.1)

which are simple sums with O(N2) terms, and they are also straightforward to differentiate
through. The cross term of eq. (2.19) is more daunting, as the sum naively has O(N4)
terms to evaluate. However, this sum is sparse — almost all terms are 0, and only O(N2)
terms will survive the Θ(Snℓ) function defined in eq. (2.20). An example of this is shown
in figure 3, which shows Θ(Snℓ) for a typical pair of events. Only a sparse subset of (n, ℓ)
terms will contribute to the sum. Moreover, we can efficiently pre-compute which indices
(n, ℓ) will survive the Θ(Snℓ) function by taking advantage of the fact that spectral functions
are one-dimensional objects that can be sorted.9

For a given (n, ℓ) pair, eq. (2.20) implies Θ(Snℓ) is 1 if and only if:

SB(ωℓ−1) < SA(ωn) ≤ SB(ωℓ) OR SA(ωn−1) < SB(ωℓ) ≤ SA(ωn) , (3.2)

7In principle, this is not necessary and one can instead use “awkward arrays” [52] to avoid the need for
rectangular data structures, but for simplicity this is not implemented in v1.0.0 of Specter.

8To avoid this, events should be clustered in an IRC-safe way to fewer than Nparticles ahead of time.
9This is a concrete realization of the conventional wisdom that having sortable distances is why optimal

transport is easier in one dimension than in higher dimensions.
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where S(ω) is the cumulative spectral function corresponding to s(ω). These relationships
are simple searches through sorted lists of the form: for each n, the inequality at the left of
eq. (3.2) returns an ℓ satisfying the inequality, and similarly, for each ℓ, the inequality at
the right of eq. (3.2) returns an n satisfying the inequality. This operation is implemented
as an efficient and parallelized primitive in many Python libraries — in JAX, it is the
searchsorted function, which returns the first ℓ or n satisfying the inequalities. We need to
combine the inequalities with a logical OR to find all such ℓ or n, which is demonstrated in
figure 3. For each n, the search operation runs in only O(log N) since S(ωℓ) is sorted in ℓ by
construction, and so for the entire event it only takes O(N2 log N) to find all indices that
contribute to the cross term. The logical OR structure implies that there can be at most
2
(N

2
)

< N2 pairs of indices, which allows us to set an upper bound to the allocated memory,
though in practice this limit is rarely saturated. Note that the n = 0 and ℓ = 0 terms can
be skipped, since ω0 = 0 and therefore does not contribute to the sum.

With the list of indices (n, ℓ) for which Θ(Snℓ) is nonzero in hand, the cross term in
eq. (2.19) is now faster to evaluate, as we only need to sum O(N2) terms. The indices do not
need to be recomputed when calculating derivatives, so time is in fact saved if the same Θ
function is used for both the SEMD and its derivatives with respect to sE . Thus, the entire
SEMD computation can be performed exactly in O(N2 log N) time and O(N2) memory, in
a way that is easily amenable to parallelization and differentiation.

It is important to emphasize that this is an exact algorithm to compute the SEMD. No
approximations have been made, numerical or otherwise. This is important to emphasize
since when evaluating spectral shape observables (see section 4 for more details), there
are two approximations made: first, continuous events are approximated as discrete, so
that this algorithm may be applied; second, evaluating shape observables requires gradient
descent over the shape parameters, which is an inexact minimization procedure. However,
the SEMD evaluation itself is exact — this is in contrast to Shaper, where on top of these
two approximations, the EMD computation is also an approximation using the debiased
Sinkhorn divergence [47, 53–56].

3.2 Runtime benchmarks

In figures 4 and 5, we show the runtime of Specter to calculate the SEMD between two
events with N particles. For comparison, we also show the runtime for calculating the ordinary
EMD using the approximate Sinkhorn algorithm via Shaper, and an exact calculation using
the Python Optimal Transport library (POT) [22]. Figure 4 shows the runtimes when running
on a compute cluster GPU (specifically, a NVIDIA A100 with 16 GB of memory) and figure 5
shows the runtimes when running on an ordinary laptop CPU (specifically, one of the authors’
Dell Inspiron 16 with an Intel i7-1255Ux12 CPU with 8 GB of memory), which together
span the typical use cases. We include curves for several different batch sizes to show the
impact of parallelization: 1, 10, 100, 1000, and 10000 pairs of events at once in figure 4, and
1, 10, and 100 pairs of events at once in figure 5. Note that some of the curves for Shaper
and Specter truncate early: this is due to memory limitations. In particular, because JAX
arrays are indexed using int32, and Specter requires O(N2) memory, events with more
than 2∼16 ≈ 30000 particles cannot be handled.
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Figure 4. Runtimes for various (S)EMD algorithms as a function of the number of particles N in
each event, as run on a NVIDIA A100 GPU with 16 GB of memory. The SEMD, as evaluated by
Specter, is shown in red. The ordinary EMD, as estimated by the Sinkhorn algorithm with Shaper
and in full with the Python Optimal Transport library, are shown in purple and blue, respectively.
All lines eventually scale as N∼2 or better.

On the GPU, Specter is significantly faster than the ordinary EMD calculation, achieving
speeds that are hundreds to thousands of times faster than Shaper or POT. For events with
∼ 100 particles, which is typical in jet physics, it takes only 0.001 seconds to compute the
SEMD between 10000 pairs of events. The corresponding calculation of the EMD on the
same hardware using Shaper would take ∼ 1 second (and it would only be an estimate),
and nearly 100 seconds using POT. Even on a CPU, Specter is faster than either Shaper
or POT at low N , and is approximately just as fast at moderate and large N .

All algorithms tend towards ∼ O(N2) at large N . However, especially on the GPU
(figure 4), the runtime at N ≲ 100 is dominated by an overhead component, and in this
regime the scaling is significantly better than O(N2). In fact, an O(N) or smaller overhead
seems to completely dominate the Specter runtimes across the entire range before being
cutoff due to memory limitations, which becomes more apparent with larger batch sizes. It is
possible that this is not saturated in our trials, and that even faster per-event runtimes might
be achieved with larger batch sizes. In all cases, the compile time is not considered: this
is the long-run per-event runtime. Both Shaper and Specter take less than one minute
to compile on both the laptop and GPU hardware.
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Figure 5. The same as figure 4, but as run on an ordinary laptop CPU with 8 GB of memory. Each
of the three lines corresponds to batch sizes of 1, 10, and 100 respectively. All lines eventually scale
as N∼2.

4 Spectral shapes

Having defined the p = 2 SEMD and presented the Specter algorithm for efficient evaluation,
we now show how the SEMD can be used to define novel spectral event and jet shape
observables. These are analogous to observables defined using the ordinary EMD [1, 16],
but with the added benefit of being much easier to evaluate on events due to the speed of
Specter. In some cases, it is even possible to define observables with tractable closed-form
expressions, in contrast to the EMD where it is difficult to find closed-form expressions in
all but the most trivial cases. This makes it possible to define shape observables that both
probe event geometry and can be evaluated extremely quickly, and in some cases practically
instantaneously with an exact closed-form expression.

4.1 General aspects

Following the philosophy of ref. [16], any metric on the space of events can be used to define
an infinite family of event and jet shape observables. The SEMD is no different in this regard.
A “shape” can be defined as a parameterized energy flow E(θ)

Shape on detector space, which then
induces a corresponding spectral function s

(θ)
Shape. Then, for an event or jet with energy flow E

and corresponding spectral function sE , we can define a spectral shape observable OShape(sE)
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and the corresponding spectral shape parameters θShape(sE):10

OShape(sE) = min
E(θ)

Shape

SEMD(sE , s
(θ)
Shape) (4.1)

θShape(sE) = argmin
E(θ)

Shape

SEMD(sE , s
(θ)
Shape). (4.2)

Given the algorithm in section 3.1 for efficiently computing the SEMD in a differentiable
way, one can numerically approximate the (arg)minimum via gradient descent. This is done
essentially identically to Shaper [16].

Note that even though we use the SEMD, as defined on spectral densities, we still perform
the optimization over detector space events E(θ)

Shape rather than directly over parameterized
spectral functions s

(θ)
Shape. This is to ensure that the final parameters correspond to a physically

realizable event — not all spectral densities correspond to physical values of energy or particle
positions. For instance, the spectral density:

s(ω) = E2
totδ(ω − ω0), (4.3)

for nonzero ω0 can only come from a non-physical event with two particles, one with energy
E1 = Etot

2 (1 + i) and the other with energy E2 = Etot
2 (1 − i), and therefore one cannot

directly optimize over ω0 if one wants to avoid these “ghost events”. However, this is still
technically a valid optimization to perform, and the observables O and θ obtained this way
are perfectly well-defined if one is willing to accept the minimization over non-physical ghost
events, though we do not do so here.

Given this setup, all one must do to define a shape is to specify a manifold M of
parameterized energy flows E(θ)

Shape with coordinates θ. This is exactly identical to how
observables are defined using Shaper as described in section 3 of ref. [16], and indeed all the
same manifolds of energy flows can be carried over. Shapes are defined by first specifying
the parameterization manifold MShape ∋ θ, and then providing a sampling procedure to
sample N weighted points based on those parameters. For example, one can define the
“spectral Ringiness” (or “spRinginess”) of an event, which is parameterized by a positive
radius (R ∈ MRing = R+), plus a function to sample N points uniformly on a circle of radius
R each with weight 1/N . As with Shaper, multiple primitive shapes can be composed
together to form composite shapes that probe more complex geometries.

The isometry-invariance of the SEMD leads to a small subtlety when parameterizing
shapes. Because the SEMD is invariant under translation and rotation of either event,
parameters that affect the overall translational or rotational degrees of freedom will carry
no information. For example, while the ordinary Ringiness observable needs an overall
translational degree of freedom to specify the location of the circle, the spRinginess does
not. The same observable definition and sampling can be used for both, but the spectral
observable will be completely agnostic to the unneeded parameter. The rest of this section
is dedicated to discussing examples of spectral shape observables.

10Note on naming conventions: we use the argument of the function to distinguish the EMD-based
observables and parameters from the SEMD-based ones with OShape(E) and θShape(E) for the ordinary EMD,
and OShape(sE) and θShape(sE) for the SEMD. When naming shapes, we use “s” or “sp” in front to signal the
spectral version.
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4.2 Spectral prong shapes

The most basic possible spectral shape observables we can define are the N -sPronginess
observables, which are the spectral equivalent of the β = 2 N -(sub)jettiness [50, 57, 58]
observables.11 These observables probe how much an event looks like N prongs. These
observables can be defined either on local patches of the rapidity-azimuth plane for jets using
the metric in eq. (2.21) (corresponding to N -subjettiness), or over the entire detector for full
events using the metric in eq. (2.22) (corresponding to N -jettiness with no beam parameter).12

4.2.1 1-sPronginess

The simplest spectral shape observable is the 1-sPronginess, which probes how much the
event or jet looks like it has 1 prong. This is accomplished by calculating the (spectral)
distance to an event with just a single particle, given by the energy flow density:

E1-Prong(x) = Etotδ(x − x0), (4.4)

where Etot is the total energy of the particle and x0 is its position in the detector. However,
this position does not matter due to the translational invariance of the metric, for which
the relevant object is the spectral representation:

s1-Prong(ω) = E2
totδ(ω). (4.5)

Note that there are no free parameters in the spectral function — in spectral space, there
is only one single particle event up to energy normalization. Given this, we can exactly
compute the 1-sPronginess observable for an event O1-Prong(sE), as the SEMD between sE
and s1-Prong by using eq. (2.19):

O1-Prong(sE) =
∑

i<j∈E
2EiEjω2

ij . (4.6)

In this form, the 1-sPronginess is actually identical to many other well-known observables.
For example, the 1-sProginess is identical to the recoil-free β = 2 angularity [48, 49], which
is itself identical to the β = 2 1-subjettiness [50] for ω = ∆R as in eq. (2.21).

4.2.2 N-sPronginess

The first nontrivial spectral observable is the N -sPronginess, for N > 1, which measures
how much an event E looks like it has N prongs. These are characterized by calculating
the spectral distance to events with N particles:

E(Ei,xi)
N -Prong(x) =

N∑
i

Ei δ(x − xi), (4.7)

11We call it the N -sPronginess because “N -ssubjettiness” [sic] would have been a terrible name.
12It is possible to define a beam parameter by using unbalanced spectral functions, by introducing a scale

parameter ωR to re-balance the spectral functions as described in eq. (2.13) of ref. [23].
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Figure 6. The (a) detector representation from eq. (4.7) and (b) spectral representation from eq. (4.8)
of an idealized 3-(s)Prong event, in a patch of the rapidity-azimuth plane. Each dot is a particle, with
its size representing its energy weight.

where Ei are the particle energies, constrained to be positive and sum to Etot, and xi are
the particle positions. The corresponding spectral density is:

s
(Ei,xi)
N -Prong(ω) =

∑
i∈EN-Prong

E2
i δ(ω) +

∑
i<j∈EN-Prong

2EiEjδ(ω − ωij), (4.8)

where ωij is the distance between xi and xj , as defined using either eq. (2.21) or eq. (2.22).
Note that due to translational invariance, one of the xi degrees of freedom is redundant.
Additionally, there is an overall redundant rotational degree of freedom between the xi’s.
An example of a 3-(s)Prong event and its spectral representation on the rapidity-azimuth
plane is shown in figure 6.

Given this, we can define the N -sPronginess observable ON -Prong(sE) and corresponding
spectral parameters θN -Prong(sE) = (Ei, xi) via eqs. (4.1) and (4.2),13 which can be numerically
evaluated using the Specter algorithm. For a given choice of (Ei, xi) parameters, the SEMD
can be exactly evaluated using eq. (2.19), though the minimization over the (Ei, xi) is
nontrivial. To choose initial values of Ei and xi in an IRC-safe way, we simply apply kT -
clustering [59, 60] to obtain N subjets. The positivity and sum rule constraints on Ei can be
enforced during gradient descent using the simplex projection algorithm [61–63].

As discussed in section 2.4, the N -sPronginess for N > 1 is nontrivial in that it is
distinctly different than its corresponding ordinary EMD observable, the N -subjettiness,
which is defined using the same parameterized energy flows. The N -sPronginess probes
slightly different physics than the N -subjettiness: while a low value of 2-subjettiness implies a
jet looks like it has two hard subprongs, a low value of 2-sPronginess implies that a jet looks
like it has two hard subprongs or has three hard subprongs in an equilateral triangle formation.

13Up to the redundant translational and rotational degrees of freedom.
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Figure 7. The (a) detector representation from eq. (4.9) and (b) spectral representation from
eq. (4.10) of an idealized ring jet, in a patch of the rapidity-azimuth plane. Each dot is a sampled
particle, with its size representing its energy weight, which happens to be uniform.

4.3 Spectral jet shapes

Building off of the N -sPronginess, we can build more nontrivial observables that probe the
structure of localized jets. In this subsection, we define several novel spectral jet shape
observables and discuss their properties. For all of the observables in this subsection, we
take the ground metric ω to be the Euclidean metric in eq. (2.21).

4.3.1 Jet spRinginess

We define the jet spRinginess observable, in analogy with the Ringiness observables of ref. [16].
A ring-shaped event with radius R is given by the energy flow density:

E(R)
Jet Ring(x) = Etot

2πR
δ(|x| − R). (4.9)

The radius R is an explicit parameter that will later have to be optimized. The corresponding
spectral representation is:

s
(R)
Jet Ring(ω) = E2

tot
π

2√
4R2 − ω2

. (4.10)

Unlike the N -sPronginess of the previous subsection, this is a continuous rather than
discrete distribution. However, one can approximate the continuous distribution by simply
sampling a large number N of points in a circle of radius R, each with energy Etot

N . Then,
all one has to do is use the Specter algorithm to compute the SEMD between the event
of interest E and the discrete event approximating the sphere, and use gradient descent to
find the optimal R. There are a variety of ways to choose the initial value of R, such as the
distance between the leading two subjets, but for simplicity we choose to initialize R = 0
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Figure 8. The (a) detector representation from eq. (4.13) and (b) spectral representation from
eq. (4.14) of an idealized line jet, in a patch of the rapidity-azimuth plane. Each dot is a sampled
particle, with its size representing its energy weight, which happens to be uniform.

so that the observable can be treated as a perturbation to the 1-sPronginess, similar to the
choices of initialization for Shaper. Unlike the ordinary jet Ringiness, however, there is little
danger of getting stuck in a local minimum, since we will see extremely shortly in eq. (4.12)
that the SEMD is convex in R. An example ring is shown in figure 7. In figure 7(b), there
is a peak in the sampled ring distribution at ω = 0. The ω = 0 bin receives contributions
from the individual particle energies squared — in the fully continuous distribution, these
are infinitesimal quantities, but in a uniform sample with N particles, this peak will go as
N × 1

N2 . This peak is a generic feature of sampling continuous shapes.

The jet spRinginess is our first example of a nontrivial observable with a fully closed-form
expression: by using the cumulative spectral function and eq. (2.7), we can actually completely
bypass the Specter algorithm and sampling just described and exactly evaluate the jet
spRinginess and Ropt (see appendix B.1 for details). The optimal radius Ropt(sE) of an event
E with spectral representation sE is given by:

Ropt = 2
π

∑
n∈E2

ωn<ωn+1

ωn

[
cos

(
π

2E2
tot

S−(ωn)
)
− cos

(
π

2E2
tot

S+(ωn)
)]

. (4.11)

The spRinginess, OJet Ring(sE), of the event is then given by:

OJet Ring(sE) = min
R

SEMDβ,p=2
(
sE , s

(R)
Jet Ring

)
=

∑
i<j∈E

2EiEjω2
ij − 2E2

totR
2
opt . (4.12)
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4.3.2 Jet spLineliness

Similar to jet spRinginess, which probes how ring-like a jet is, we can also ask how line-like a jet
is to define the jet spLineliness. Here, we compare to line-segment-like events with a length L:

E(L)
Jet Line(x) = Etot

L
δ(x(2) − 0) Θ(0 < x(1) < L) , (4.13)

where x(1) and x(2) are the first and second detector coordinates, respectively (e.g., in rapidity-
azimuth space, x(1) is the rapidity and x(2) is the azimuthal angle). Up to isometries, this
describes all possible line-segment-like jets. The corresponding spectral representation is:

s
(L)
Jet Line(ω) =

( 2
L

− 2ω

L2

)
E2

tot. (4.14)

An example line is shown in figure 8.
Just like the jet spRinginess, both the jet spLineliness and the optimal parameter Lopt can

be numerically estimated with the Specter algorithm, by sampling points on a line segment
of length L and performing gradient descent over L to minimize the SEMD.14 Similarly,
it is possible to evaluate the spLineliness and optimal length in closed form to bypass the
numeric estimate (see appendix B.2 for details):

Lopt(sE) = 6
E2

tot

∑
n∈E2

ωn<ωn+1

ωn

[
S+(ωn) + 2

3Etot

(
E2

tot − S+(ωn)
)3/2

(4.15)

−S−(ωn) − 2
3Etot

(
E2

tot − S−(ωn)
)3/2

]
.

OJet Line(sE) =
∑

i<j∈E
2EiEjω2

ij −
L2

opt
6 E2

tot . (4.16)

4.3.3 Jet sDiskiness

The last jet shape observable we present is the jet sDiskiness, which asks how much like a
uniform disk a given jet looks like. The corresponding disk-like events are given by:

E(R)
Jet Disk(x) = Etot

πR2 Θ(|x| < R), (4.17)

where R is a free parameter determining the radius of the disk. The jet sDiskiness and
Ropt can be estimated using the Specter algorithm by sampling points uniformly on a disk
with radius R, and then performing gradient descent to minimize the SEMD with respect
to R. An example disk is shown in figure 9.

However, unlike the above cases, a closed form expression for OJetDisk(sE) or Ropt(sE)
seems intractable. The spectral density of a disk is given by:15

s
(R)
Jet Disk(ω) = 4ωE2

tot
πR2 cos−1 ω

2R
− 2ω2E2

tot
πR3

√
1 − ω2

4R2 . (4.18)

14Specter is built off of and heavily borrows from Shaper, especially in its sampling procedure for shapes.
The original version of Shaper did not have line segments built in, but it is possible to cheat and sample
line segments by using Shaper’s built-in ellipses with R1 = L/2 and R2 frozen to zero. The fact that the
exact and numerical curves in figure 19 match shows that this is fine to do, and shows how shapes can be
manipulated in both programs.

15This spectral density is the solution to the well-known “ball line picking” problem [39–41].
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Figure 9. The (a) detector representation from eq. (4.17) and (b) spectral representation from
eq. (4.18) of an idealized disk jet, in a patch of the rapidity-azimuth plane. Each dot is a sampled
particle, with its size representing its energy weight, which happens to be uniform.

To perform the closed-form SEMD, one must obtain the inverse of the cumulative spectral
function, and then integrate it against eq. (2.15). This is a difficult integral — one can
attempt to numerically estimate it via Monte Carlo, but this is effectively what the Specter
algorithm already does by sampling.

4.4 Spectral event shapes

We can also define spectral shape observables over the entire detector space rather than just
a localized region. The observables listed in this subsection probe the full event geometry.
For these observables, we assume that the ground metric ω is the arc-length metric on the
sphere of eq. (2.22).16 All the previously described observables in sections 4.2 and 4.3 can
also be defined on the sphere by appropriately substituting in the correct ground metric ω.

As discussed in section 2.4, the EMD and SEMD of localized events are expected to agree
exactly when one of the events has only a single particle. However, when considering a full
detector in the center-of-mass frame, events with a single massless particle are unphysical,
and events cannot be localized to a single patch. Therefore, for event shapes, it is often
convenient to adopt observable-dependent normalizations such that the EMD and SEMD
agree on some other physical configuation.

4.4.1 Event sThrust

In analogy with the ordinary event thrust observable [64–66], we can define the event sThrust,
which probes how back-to-back an event is using the SEMD. The sThrust is given by the

16One can instead choose to use other metrics, such as chord length, to define these observables. In this
case, all of these observables are still well defined and qualitatively similar to the arc-length observables, but
the closed-form expressions may be different (if they are derivable at all).
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Figure 10. The (a) detector representation from eq. (4.19) and (b) spectral representation from
eq. (4.20) of an idealized thrust event with z ≈ 0.45, on the celestial sphere. Each dot is a particle,
with its size representing its energy weight.

minimum spectral distance to a back-to-back 2 particle event with potentially different
energies:

E(z)
Thrust(x) = Etot

(
zδ(θ) + (1 − z)δ(θ − π)

)
, (4.19)

where z and 1 − z parameterize the energy fractions carried by each particle and θ is the
usual polar coordinate of the sphere. The corresponding spectral function is

s
(z)
Thrust(ω) =

(
z2 + (1 − z)2

)
E2

totδ(ω) + 2z(1 − z)E2
totδ(ω − π) . (4.20)

Note that unlike the case with ordinary Thrust, which when calculated using the EMD
requires optimizing over both z and a thrust axis, rotational symmetry removes the need
optimize over a thrust axis for sThrust, and thus only a single optimization over z is required.
The sThrust is actually just a special case of the event 2-sPronginess discussed in section 4.2.2,
with the particle positions fixed. An example of a thrust configuration is shown in figure 10.

The event sThrust of an event E is then given by:

OThrust(sE) = 2
π2 min

z∈[0,1]
SEMD(sE , s

(z)
Thrust), (4.21)

with the factor of 2
π2 chosen such that the sThrust is normalized between 0 and 1

2 , like the
ordinary Thrust.17 This normalization reflects the choice of using arc-length rather than
chord length; the ordinary thrust is typically defined through dot products between the
particle momentum and the thrust axis (resulting in a chord length) and is thus slightly
different, but in the collinear limit these are linearly related by this normalization factor. One
can, of course, have used chord lengths to define sThrust instead in closer correspondence
with the ordinary Thrust, which we discuss in appendix A.

17In our convention, sThrust is low for pencil-like events and large for events away from pencil-like. This
differs from the “FastJet” Thrust, which does the opposite. The sThrust really corresponds to (1 − Thrust).
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The SEMD between the thrust event and a general event E is

SEMD = min
z∈[0,1]

∑
i<j∈E

2EiEjω2
ij + 2π2z(1 − z) E2

tot (4.22)

− 2π
∑

n∈E2
ωn<ωn+1

ωn ReLU
(
S+(ωn) − max

[(
z2 + (1 − z)2

)
E2

tot, S−(ωn)
])

.

The optimization over z can be performed via gradient descent. However, it can be shown
that z = 1

2 is a local extremum of the SEMD (see appendix A for more details), and is
thus not an ideal initial point for gradient descent. The value z = 1

2 is not necessarily the
true minimum, merely an extremum, though in practice we find that the true minimum is
extremely close to z = 1

2 in dijet events. It may also be possible to perform the minimization
exactly in finite time as a distribution-partitioning problem in spectral space, analogous to
the hemisphere-picking problem for ordinary Thrust (see ref. [67] for a review of classical and
quantum algorithms), though we do not pursue this further here. There is also a simple test
for checking if z = 0.5 is the true minimum, given by eq. (A.7) in appendix A.

4.4.2 Event spIsotropy

Next, we define the spectral Isotropy (spIsotropy) of an event over the celestial sphere. In
analogy with the ordinary Isotropy [5], this is defined as the (spectral) distance to the
uniform event over the sphere:

EIsotropy(x) = Etot
4π

. (4.23)

The corresponding spectral representation can be calculated to be:

sIsotropy(ω) = E2
tot
2 sin(ω). (4.24)

Like the continuous observables described in the previous subsection, the uniform event can
be approximated by sampling N points on the sphere, each with energy Etot

N . Then, all one
has to do is use the Specter algorithm to compute the SEMD between the event of interest
E and this discrete event. There are no free parameters in eq. (4.23), so no minimization
is necessary. An example of such a sampling is shown in figure 11.

Like the event sThrust, we find it convenient to normalize the event spIsotropy. By
convention, we multiply the SEMD value by a factor of 1

π−2 , such that the event spIsotropy
of a perfectly back-to-back equal energy event is 1, to match the ordinary spherical Isotropy.

The spIsotropy observable can be written exactly in closed-form, allowing one to bypass
the Specter algorithm for generic observables. By using eq. (2.7) and the exact form of the
cumulative spectral function for a uniform sphere (see appendix B.3 for details), one can show:

OIsotropy(sE) = 1
π − 2

 ∑
i<j∈E

2EiEjω2
ij + π2 − 4

2 E2
tot − 2

∑
n∈E2

ωn<ωn+1

ωn

[
f+(n) − f−(n)

] ,

(4.25)
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Figure 11. The (a) detector representation from eq. (4.23) and (b) spectral representation from
eq. (4.24) of an idealized isotropic event, on the celestial sphere. Each dot is a sampled particle, with
its size representing its energy weight, which happens to be uniform.
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Figure 12. The (a) detector representation from eq. (4.27) and (b) spectral representation from
eq. (4.28) of an idealized ring event, on the celestial sphere. Each dot is a sampled particle, with its
size representing its energy weight, which happens to be uniform.

where

f±(n) =
√

S±(ωn)
√

E2
tot − S±(ωn)

+ S±(ωn) cos−1
(

1 − 2S±(ωn)
E2

tot

)
− E2

tot sin−1
(√

S±(ωn)
Etot

)
. (4.26)

4.4.3 Event spEquatorialness

On the celestial sphere, we can define the event spEquatorialness as the distance of an event
to the ring-like event on the equator of the sphere, given by:

EEquator(x) = Etot
2π

δ

(
θ − π

2

)
, (4.27)
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where θ is the usual polar coordinate of the sphere. Due to rotational invariance, all other
great circles on the sphere are the same in spectral space. The corresponding spectral
representation is:

sEquator(ω) = E2
tot
π

. (4.28)

Just like the event spIsotropy, the event spEquatorialness can be easily estimated by sampling
N points uniformly on the equator of the sphere using the Specter algorithm. An example
of this sampling is shown in figure 12.

However, it is also possible to solve for the SEMD exactly in closed form by using eq. (2.7)
and the cumulative spectral function for a ring (see appendix B.4 for details):

OEquator(sE) =
∑

i<j∈E
2EiEjω2

ij + π2

3 E2
tot (4.29)

− π

E2
tot

∑
n∈E2

ωn<ωn+1

ωn

[(
S+(ωn)

)2
−
(
S−(ωn)

)2]
.

4.5 . . . and more!

It is important to emphasize that the above list of shape observables is not exhaustive. As
with Shaper, one can use any parameterized manifold of events E(θ) to define a shape, so
long as it is known how to sample from it. This includes more exotic shapes such as ellipses
or polygons, but also combinations of shapes such as N -spRinginess, or N -sPronginess plus
spIsotropy defined as N prongs on top of a uniform background. All of these are possible
within the Specter framework.

Many of the observables discussed above were simple enough to admit an exact closed-
form expression, bypassing the need to use the Specter algorithm at all to estimate them.
However, this is not the case for a generic spectral observable — for these, one must use
Specter to estimate them.

5 Empirical studies

In this section, we use Specter to evaluate SEMDs and spectral shape observables on
simulated collider events. We begin with a comparison of pairwise (S)EMDs between jets
and between full events, to explore the differences between the SEMD and ordinary EMD.
Then, we evaluate the spectral shape observables defined in section 4 on both localized jets
and global events. These are evaluated using the numeric Specter algorithm, and, wherever
possible, also in closed-form. For comparison, we show the distribution of the corresponding
ordinary EMD-based shapes, as defined in ref. [16] using the Shaper algorithm for β = 2.18

18To match conventions, we multiply the ordinary EMD as evaluated by Shaper by a factor of 2, since the
metric used in ref. [16] is 1

β
|x − y|β/2 rather than the |x − y|β/2 used here. This factor was chosen in ref. [16]

so that the gradients of the Sinkhorn divergence have nicer scaling with β and to match onto other metrics in
the optimal transport literature.
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5.1 Datasets

For the empirical studies in this section, we generate several different sample datasets using
Pythia 8.3 [68]. The first three datasets consist of localized jets for studying the properties
of pairwise (S)EMDs and jet shape observables. The final, fourth dataset consists of full
events for the purposes of studying event shape observables.

For each dataset described below, we use 100k samples, with this number chosen because
Shaper (but not Specter) is often time-limited. All datasets are publicly available, as
described in Code and data below. The datasets are:

• QCD Jets. We generate QCD events in proton-proton collisons at
√

s = 14 TeV
using Pythia’s HardQCD:all process, with a phase space cut of p̂T ∈ [375, 687.5] GeV.
Multi-parton interactions, initial-state radiation, and final-state radiation are kept on.
The events are then clustered into jets using FastJet 3.3.0 [69] using the anti-kT

algorithm [70] with jet radius R = 1.0 (AK10 “fat jets”). Final-state invisible particles,
namely neutrinos, are not included in the clustering. Jets are required to satisfy
pT,J ∈ [500, 550] GeV and ηJ < |2.5|. The jets are then saved. If an event has multiple
jets meeting all cuts, only one jet is saved, selected randomly. The 125 most energetic
particles are saved per jet. These jets are used for the pairwise (S)EMD studies in
section 5.2 and for the jet shape studies in section 5.3. An example of a typical jet in
this dataset, along with its spectral representation, is shown in figure 13.

• Top Quark Jets. We generate t̄t events in proton-proton collisons at
√

s = 14 TeV
using Pythia’s Top:gg2ttbar and Top:qqbar2ttbar processes, with a phase space
cut of p̂T ∈ [375, 687.5] GeV. Multi-parton interactions, initial-state radiation, and
final-state radiation are kept on. All tops are forced to decay hadronically. Events are
then clustered into AK10 jets, exactly as in the QCD jets above. Jets are required to
satisfy pT,J ∈ [500, 550] GeV and ηJ < |2.5|. Additionally, we require that there exists a
top quark parton within ∆R = 1.0 of the jet axis. One jet amongst those that satisfy
the cuts is randomly selected per event to be saved as a t jet. The 125 most energetic
particles are saved per jet. The t jets are used for the pairwise (s)EMD studies in
section 5.2.

• Uniform Phase Space “Jets”. We generate points in uniform phase space using
the RAMBO algorithm [71]. Each event has 125 particles with at total

√
s = 150 GeV.

These events are then boosted in the x-direction such that their total energy is 500 GeV,
which makes the events appear jet-like, but without the singularity structure of QCD.
These “jets” are used for the pairwise (S)EMD studies in section 5.2.

• LEP Dijet Events. We generate e+e− → hadrons events at
√

s = mZ using Pythia’s
WeakSingleBoson:ffbar2gmZ process, in order to simulate LEP-like jets. The interme-
diate virtual photon or Z is forced to decay to one of the 5 light quarks. Initial-state
radiation due to the leptons is turned off. No additional cuts or clustering are applied.
An example of a typical event in this dataset, along with its spectral representation, is
shown in figure 14.
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Figure 13. The (a) detector representation and (b) spectral representation of a typical simulated
QCD jet, in a patch of the rapidity-azimuth plane.

-150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

Azimuthal Angle-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°

P
ol

ar
A

n
gl

e

Detector Representation
PYTHIA 8.3
e+e− → Hadrons√
s = mZ

(a)

0 1 2 3

Distance ω

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

p
ec

tr
al

D
en

si
ty

Spectral Representation
PYTHIA 8.3
e+e− → Hadrons√
s = mZ

(b)

Figure 14. The (a) detector representation and (b) spectral representation of a typical simulated
e+e− → hadrons event, on the celestial sphere.

5.2 Pairwise distances between events and jets

In this subsection, we compute the (spectral) EMD between pairs of jets associated with
different underlying processes. As discussed in section 2.4, one should not generally expect
the SEMD and ordinary EMD to be the same, though they may be correlated. Whenever
an (almost) equilateral triangle configuration occurs between any set of three particles in
an event, one should expect a deviation between the SEMD and EMD, as the information
probed is genuinely different. These configurations occur whenever the energies of particles
are all within an O(1) number of each other, and their pairwise distances are also all within
an O(1) number of each other. There are two factors we can identify that lead to equilateral
triangle configurations:
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1. Number of Particles. Combinatorially, if an event has N particles, we can form(N
3
)

triangles between them. If the energies and positions of particles are uniformly
distributed, one should expect that the number of equilateral triangles should scale
similarly. In QCD jets, however, emissions off the hard core are strongly ordered in
both energy and angle, so forming equilateral triangles with balanced energies involving
the hard core is highly suppressed.

2. Scaling. Even if there do exist equilateral triangle configurations, if the pairwise
(2EiEj) or the ωij scales are small, then the degeneracy will contribute very little to
the EMD/SEMD difference. In QCD jets, these are the soft and collinear scales, which
are suppressed. In top jets, there is an additional hard scale, mt/E, to contend with.

Thus, we should expect that as we increase the number of particles in an event, or as we
change the event type to include harder-scale physics, that the EMD and SEMD become more
different. To show this, we calculate pairwise SEMDs (using Specter) and isometry-modded
EMDs (using Shaper) between QCD jets, top quark jets, and uniform phase space, each
described in section 5.1. Moving from QCD to top jets to uniform phase space, one should
expect that the emissions are less strongly-ordered and that there exist harder and wider
scales to form equilateral triangles. Each dataset is clustered into 2, 5, and 25 subjets with
the exclusive kT -algorithm [59, 60] in FastJet [69].

Unlike the SEMD, the ordinary EMD is not invariant under isometries. To alleviate
this and put our comparisons on fairer ground, we use the “Tangent EMD” [72], wherein we
“mod out” the isometries by minimizing the EMD over all possible translations and rotations
using Shaper. Precisely, this is given by:

Tangent EMD(E , E ′) = min
θ∈E(2)

EMD(E , E ′(θ)), (5.1)

where E(2) is the two-dimensional Euclidean group, and E ′(θ) is a translated and rotated
energy flow parameterized by θ.

The results of this study are shown in figure 15. In the grid of plots, N is increased
going downwards and harder physics is shown going rightwards. In both directions, the
SEMD to EMD difference grows relative to the baseline N = 2 QCD jets in the upper left.
Moreover, the EMD is often greater than the SEMD, but this is not always the case. We
can make several observations from this plot:

• SEMD ≈ EMD in QCD jets. Even across a large number of kT subjets, the EMD
and SEMD are very close, especially compared to top jets or uniform phase space. This
follows from the above arguments — there are typically no additional hard emissions in
QCD jets that can “spoil” the spectral representation with a near-degeneracy.

• SEMD ≲ EMD generically. It seems there is a slight bias for the EMD to be greater
than the SEMD rather than the other way around. It is hard to tell if this is a result
of imperfect minimization while calculating the Tangent EMD, or a robust feature —
one might expect that the existence of near-degeneracies would generically decrease
distances in spectral space, though section 7.3 of ref. [23] provides an example where
the SEMD can be greater.
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Figure 15. Comparison of the SEMD, as evaluated using Specter, to the isometry-modded EMD,
as evaluated using Shaper, on pairs of events. Pairs of QCD jets are used for the left column (red),
pairs of top jets are used for the middle column (orange), and pairs of uniform boosted phase space are
used for the right column (yellow). Each jet is clustered into subjets before the (S)EMD is computed:
2 subjets in the top row, 5 subjets in the middle row, and 25 subjets in the bottom row. Note that
the histogram is in log scale.

• Differences grow with Nsubjets. The relative SEMD to EMD difference of the
distributions grows as the number of subjets increase. In particular, for N = 2, the two
are highly correlated across all three types of jets.

There is clear evidence of a physics-dependent correlation between the EMD and SEMD,
potentially intertwined with the collinear and strongly-ordered structure of QCD. There
is more to be done to elucidate the relationship between these quantities, which we leave
for future work.

5.3 Hearing jets spRing and sProng

In this subsection, we evaluate the jet shape observables defined in section 4 on the QCD jets
dataset described in section 5.1. For each observable, we evaluate both the spectral shape
observable OShape(sE) and the corresponding spectral shape parameters θShape(sE) on the
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Figure 16. (a) Distributions of the 1-(s)Pronginess observable, as defined in section 4.2.1, evaluated
on jets using Specter (red) and Shaper (purple). (b) The corresponding ratio of the sPronginess to
the Pronginess.

distribution of events E using Specter. We also show the distributions for the corresponding
EMD-based observables defined using the same shapes, as evaluated using Shaper.

For both programs, we sample N = 125 points for each shape. The gradient descent
operation is run for 500 epochs with the Adam optimizer with a learning rate of 0.001. Often,
convergence is reached by ∼100 epochs, but we do not do any early stopping to be conservative.
Shaper requires two additional parameters that control the Sinkhorn estimation: we choose
ϵ = 10−3 and ∆ = 0.99 for results as precise as possible.

In figures 16 and 17, we show the 1-(s)Pronginess, 2-(s)Pronginess, and 3-(s)Pronginess, as
defined in sections 4.2.1 and 4.2.2. The spectral 1-sPronginess and the ordinary 1-Pronginess
(1-subjettiness) should be identical — indeed, we see that the ratio of the two is close
to 1. Deviations from 1 are due to numerics: both Specter and Shaper use a finite
gradient descent algorithm (though Specter’s gradient descent happens to be irrelevant
for 1-sPronginess), and Shaper uses an approximation of the EMD rather than the exact
EMD. The spectral 2- and 3-sPronginess, on the other hand, are significantly less than their
ordinary EMD counterparts, and are less correlated.

In figures 18, 19, and 20, we show the jet (sp)Ringiness, the jet (sp)Lineliness, and the
jet (s)Diskiness respectively, as defined in section 4.3. Each of these observables is defined
with a corresponding length scale parameter (radii for the rings and disks, and lengths for the
lines). For each observable, we show the (spectral) EMD (solid) as well as the corresponding
length scale parameter (dashed) as calculated using Specter and Shaper. In all cases, the
spectral observable is smaller than the corresponding ordinary observable by factor of about
2 to 5. With the exception of the 1-sPronginess, which is expected to exactly match the
1-subjettiness, this ratio is dataset dependent and difficult to predict. For instance, one can
construct a dataset of near-equilateral triangles, in which the 2-subjettiness is infinitely larger
than the 2-sPronginess, as in figure 2(b). Understanding the origin of this factor of 2 to 5
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Figure 17. Distributions of the 2- and 3- (s)Pronginess observables, as defined in section 4.2.2,
evaluated on jets using Specter (red) and Shaper (purple) in (a) and (c), respectively. The
corresponding ratio of the sPronginess to the Pronginess is shown in (b) and (d), respectively.

times would require a full QCD computation, which we leave for future work. Interestingly,
the two circular observables achieve essentially the same radius using either the spectral
or ordinary metric, but the spLineliness tends to have a length parameter 2 times bigger
than the ordinary Lineliness. Notably, all three parameter ratios peak sharply near either
1 or 2, whereas the corresponding (spectral) EMD ratios are broad — changing the metric
seems to scale the physical distance between events, which is not unexpected, but does not
seem to change the optimal geometry by much.

5.4 Event shapes

In this subsection, we evaluate the event shape observables defined in section 4 on the
e+e− dataset described in section 5.1, namely the event sThrust, event spIsotropy, and
event spRinginess.
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Figure 18. Distributions for the (sp)Ringiness observable, as defined in section 4.3.1, evaluated
on jets using Specter (red) and Shaper (purple). The observable value is shown in (a), and the
corresponding shape parameter is shown in (c). The ratio of the spRinginess to the Ringiness is shown
in (b) and (d).

In figure 21, we show the sThrust, as computed by the Specter algorithm, and (1 −
Thrust), as calculated using FastJet 3.3.0. The two distributions agree extremely well near
(S)EMD values of 0, with the distribution of ratios sharply peaked at 1, indicating that the
sThrust and Thrust behave similarly in the collinear limit, as expected. At larger values of
the (S)EMD, however, the two distributions diverge, and the SEMD does not reach these
higher values. This is a consequence of the fact that the sThrust and Thrust use different
ground metrics. The sThrust uses the arc-length metric of eq. (2.22), but ordinary Thrust
corresponds to the chord-length metric, ω2 ∼ 1 − cos(θ). If one were to define sThrust using
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Figure 19. Distributions for the (sp)Lineliness observable, as defined in section 4.3.2, evaluated
on jets using Specter (red) and Shaper (purple). The observable value is shown in (a), and the
corresponding shape parameter is shown in (c). The ratio of the spLineliness to the Lineliness is
shown in (b) and (d).

this metric as well, the sThrust and Thrust distributions become nearly identical, as we
explore further in appendix A.

In figure 22, we show the spIsotropy, as computed by the Specter algorithm, as well as
the exact closed-form expression in eq. (4.25). We also show the ordinary spherical event
Isotropy, as calculated using the Python Optimal Transport library [22], rather than Shaper,
since Shaper in its current form is unable to handle manifolds with local curvature. The
ordinary Isotropy is normalized such that the spIsotropy and Isotropy agree on 2-particle
events. Dijet events are not isotropic, and indeed we see that both the spIsotropy and
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Figure 20. Distributions for the (sp)Diskiness observable, as defined in section 4.3.3, evaluated
on jets using Specter (red) and Shaper (purple). The observable value is shown in (a), and the
corresponding shape parameter is shown in (c). The ratio of the spDiskiness to the Diskiness is shown
in (b) and (d).

Isotropy take large values away from zero. As is the case with the jet shape observables, the
spIsotropy tends to be strictly less than its ordinary counterpart, with the ratio ≲ 1. Unlike
the event sThrust, the spIsotropy differs greatly from its ordinary counterpart, but this is to
be expected: the fully isotropic event has a (nearly) highly degenerate spectral function, since
it is easy to form (nearly) equilateral triangles from uniformly sampled particles, and thus
we are far from the non-degenerate region probed by thrust. We also observe a small bump
in the spIsotropy distribution near 0 — we speculate that this may be due to degenerates
caused by some additional prongy structure in the dijet events.
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Figure 21. Distributions for the event (s)Thrust observable, as defined in section 4.4.1, evaluated on
jets using Specter (orange), and the FastJet 3.3.0 (pink). The observable value is shown in (a)
and the ratio of the sThrust to the Thrust is shown in (b). A variant of the sThrust based on chord
lengths rather than arc lengths is shown in figure 24.
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Figure 22. Distributions for the event (sp)Isotropy observable, as defined in section 4.4.2, evaluated
on jets using Specter (orange) and the Python Optimal Transport (POT) library (pnik). The
observable value is shown in (a) and the ratio of the spIsotropy to the Isotropy is shown in (b).
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Figure 23. (a) Distribution for the event spEquatorialness observable, as defined in section 4.4.3,
evaluated on e+e− → hadrons events using Specter (orange) and exactly using eq. (4.29) (dark red).

Finally, in figure 23, we show the event spEquatorialness distribution as evaluated
by Specter, and evaluated exactly using eq. (4.29). Here, we are unable to evaluate a
corresponding observable using the ordinary EMD, as Shaper cannot handle local curvature
and the Python Optimal Transport library cannot efficiently optimize the rotational degrees
of freedom of the ring over the sphere. Interestingly, like the spIsotropy, there is also a
bump in the distribution near 0, but even larger. These bumps appear to be a generic
feature of spectral event shape observables that potentially probe interesting physics, and
we leave their analysis to future work.

6 Conclusion

In this paper, we introduced an efficient algorithm for evaluating the p = 2 SEMD. The p = 2
SEMD takes on a simple closed form, which enables an exact computation between any pair
of discrete events in O(N2 log N) time, and is to our knowledge the only exactly calculable
metric on collider events. In addition, the SEMD is fast: using the Specter framework, which
is an efficient and highly parallelized implementation of the SEMD, it is possible to perform
SEMD computations at scale, and in practical cases can even go as fast as O(N). The SEMD
is highly correlated with the ordinary EMD, especially for QCD jets, and its fast-to-evaluate,
closed-form nature makes it suitable to perform precision studies of the geometry of QCD.

The speed of Specter makes previously infeasible analyses on the geometry of collider
events possible. It is now feasible, for example, to compute distances between all

(NEvents
2

)
pairs

of events in a dataset. This, for instance, makes it easier to perform correlation dimension
studies [42], and makes it possible to extend machine learning scaling law studies far beyond
what is possible with the ordinary EMD [73]. The idea of a metric on “theory space”, or
ΣMD, has also been proposed [1, 23], but to our knowledge has never been empirically studied
due to being prohibitively expensive. The ground metric of the ΣMD is itself the EMD
between events, requiring

(NEvents
2

)
evaluations of the EMD. Specter may be able to make
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the “Spectral ΣMD” [23] finally tractable, which would potentially enable a novel method to
probe the QCD β-function and the anomalous dimensions of other operators.

Moreover, as the SEMD is an IRC-safe metric between events, we have shown how the
Shaper prescription of ref. [16] can be carried over to define a new set of IRC-safe shape
observables. Unlike observables defined via the ordinary EMD with Shaper, however, the
spectral observables defined via the SEMD with Specter are far easier to evaluate due to
Specter’s speed and exact metric computation, and in many cases the observables even
admit exact closed-form expressions. For instance, while the 2D ordinary event Isotropy
does not seem to admit a closed form solution and is expensive to calculate, the event
spIsotropy has a closed form enabling easier theoretical study, and is practically instantaneous
to evaluate on huge batches of events at once. Specter makes the analysis of a huge class
of complex jet observables far more computationally feasible, potentially higher upstream in
the LHC analysis chain, and is a step closer towards being able to study complex observables
at trigger level.

There are a variety of open questions and future directions not addressed in this paper.
Now that we have closed-form metrics and even closed-form shapes, an obvious next step
is to attempt to compute their distributions in QCD. While ref. [23] made progress towards
fixed order calculations for the p = 1 SEMD, is it possible to go beyond? The EMD and
SEMD seem highly correlated in QCD jets, but not other physics scenarios — while we
have speculated that this is due to the degeneracy structure of spectral space, the precise
mechanism requires further explanation. Indeed, the difference or ratio between the EMD
and SEMD may itself be an interesting observable, as they behave differently depending
on the context. Throughout this paper, we have primarily focused on balanced optimal
transport, but in principle, it is possible to extend the ideas here (and the Specter code) to
accommodate unbalanced optimal transport and derived observables. We wish to emphasize
that we have only shown a small, finite subset of possible shape observables in this paper

— the class of observables is truly infinite, and limited only by one’s ability to parameterize
arbitrary 2D distributions. Finally, there exists the possibility for the Specter code to
be faster: it was developed in Python, rather than a fully compiled language, and written
by a physicist rather than computer scientist — there is almost certainly potential to be
even better!

Code and data. Version 1.0.0 of the Specter framework is available at https://gi
thub.com/rikab/SPECTER. It may also be installed via PyPi using the command
pip install specterpy. Note that a JAX installation is required for Specter to work.
Several example and tutorial scripts for operating Specter may be found in the subfolder
https://github.com/rikab/SPECTER/tree/main/examples. Additionally, the code used
to perform all of the analyses and produce all of the plots presented in this paper may be
found in https://github.com/rikab/SPECTER/tree/main/studies.

The datasets described in section 5.1 are also available for use. The Specter package can
be used to automatically download and load them — see the examples folder. These datasets
can also be accessed independently of specterpy using the ParticleLoader package, hosted
at https://github.com/rikab/ParticleLoader.
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A More about sThrust: chord lengths and energy fractions

The “ordinary” Thrust observable [64–66] is based off of the chord length between points
on the celestial sphere rather than the arc length. The sThrust also has a parameter to
optimize over, the energy fraction z, which unlike other spectral shape observables (such as
spRinginess) does not take a simple closed form. In this appendix, we briefly describe what
it would look like to use chord length as the basis for the sThrust, rather than the arc length
used in section 4.4.1, and discuss the optmization of the z parameter.

If we define the angular measure as

ω2
ij = 1 − cos θij

2 , (A.1)

then the spectral function for a perfect, narrow dijet event is

sThrust′(ω) =
(
z2 + (1 − z)2

)
E2

totδ(ω) + 2z(1 − z)E2
totδ(ω − 1) , (A.2)

on events with total energy Etot in the center-of-mass frame and energies zEtot and (1−z)Etot
in each hemisphere. With this definition of the angular measure, note that the second moment
of the thrust spectral function is∫

dω ω2 sThrust′(ω) = 2z(1 − z)E2
tot , (A.3)

and the second moment of the spectral function for a general event is
∑

i<j∈E
2EiEjω2

ij = 1
2
∑

i<j∈E
2EiEj(1 − cos θij) = E2

tot
2 , (A.4)

in the center-of-mass frame. Therefore, the SEMD between this thrust event and a general
event E is

SEMD = E2
tot
2 + 2z(1 − z)E2

tot (A.5)

− 2
∑

n∈E2
ωn<ωn+1

ωn ReLU
(
S+(ωn) − max

[(
z2 + (1 − z)2

)
E2

tot, S−(ωn)
])

.

The chord-length sThrust is then the minimum SEMD over z.
In figure 24, we show the distribution of this chord-based sThrust versus the ordinary

Thrust. The distributions are practically identical, and the ratio of the two observables is
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Figure 24. The same as figure 21, but using the chord-based sThrust rather than the arc-length-
based sThrust.

sharply peaked at 1. Note that there is some spread around 1 — one might expect this is due
to the finite nature of the gradient descent algorithm in finding the optimal z for the sThrust,
but gradient descent can only ever overestimate the sThrust — any deviations towards
smaller values are due to genuine differences between the two observables. Nevertheless, for
these back-to-back dijet events, the chord-based sThrust and Thrust are nearly identical, as
expected in the collinear limit. The differences between the two observables seen in figure 21,
then, are likely solely due to the difference in ground metric.

For both arc-length sThrust and chord-length sThrust, the value z = 1
2 is significant, and

empirically is almost always the minimum argument in dijet events. Because the spectral
thrust event is symmetric under z ↔ (1 − z), the value z = 1

2 is a local extremum. We
can check if this is a (local) maximum or a minimum with the second derivative (for the
following expressions, we use the chord-length sThrust, but analogous statements hold for
the arc-length sThrust with additional factors of π):

d2

dz2 SEMD
∣∣∣∣∣
z=1/2

= −4 + 8
∑

n∈E2
ωn<ωn+1

ωn Θ
(

S+(ωn) − 1
2

)
Θ
(1

2 − S−(ωn)
)

. (A.6)

Therefore, there is a simple test if z = 1/2 is the minimum. If

∑
n∈E2

ωn<ωn+1

ωn Θ
(

S+(ωn) − 1
2

)
Θ
(1

2 − S−(ωn)
)

>
1
2 , (A.7)

then z = 1/2 is a local minimum. In fact, z = 1
2 is the true global minimum. If eq. (A.7) is

true, this means that at least half the mass of the event spectral function lies to the right
of ω = 1

2 , which is to be optimally transported to the sThrust spectral function’s peak at
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ω = 1. However, this peak can only support a mass of 2z(1 − z), which maxes out at 1
2

at z = 1
2 , and so this is the optimal value.

On the other hand, if eq. (A.7) is not true, then the minimum is displaced from z = 1/2.
In that case, the optimal value of z then corresponds to the amount of squared energy
transported from the region where ω < 1/2 to ω = 0, as the solution of

z2 + (1 − z)2 = 1
E2

tot

∫ 1/2

0
dω s(ω) . (A.8)

The precise value of z actually isn’t that important, because the optimal transport plan for
the SEMD is to move all energy at less than ω = 1/2 to ω = 0, and to move all energy
above ω = 1/2 to ω = 1.

B Closed-form expressions for spectral observables

Many of the observables in section 4 admit exact closed-form expressions. In this appendix,
we go over the derivations of these expressions.

B.1 Closed-form jet spRinginess

For a uniform energy distribution in the shape of a circle of radius R in a jet with total
energy Etot, the cumulative spectral function is

SJet Ring(ω) = 2E2
tot

π
sin−1

(
ω

2R

)
. (B.1)

The inverse cumulative spectral function is then

S−1
Jet Ring(E2) = 2R sin

(
π

2
E2

E2
tot

)
. (B.2)

The integral of the square of this is∫ E2
tot

0
dE2

(
S−1

Jet Ring(E2)
)2

= 2E2
totR

2 . (B.3)

We also need the integral∫
dE2 S−1(E2)S−1

Jet Ring(E2) = 2R
∑

n∈E2
ωn<ωn+1

ωn

∫ S+(ωn)

S−(ωn)
dE2 sin

(
π

2
E2

E2
tot

)
(B.4)

= 4R

π
E2

tot
∑

n∈E2
ωn<ωn+1

ωn

[
cos

(
π

2E2
tot

S−(ωn)
)
− cos

(
π

2E2
tot

S+(ωn)
)]

.

With these results, we note that the SEMD between a jet and the uniform ring con-
figuration is quadratic and convex in the radius parameter R. As such, there is a unique,
global minimum that can be determined and established as the optimal value of the radius.
This optimal radius Ropt(sE) is

Ropt = 2
π

∑
n∈E2

ωn<ωn+1

ωn

[
cos

(
π

2E2
tot

S−(ωn)
)
− cos

(
π

2E2
tot

S+(ωn)
)]

. (B.5)

These results can then be used to construct the observable of eq. (4.12).
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B.2 Closed-form spLineliness

For a continuous energy distribution arranged along a line of length L in a jet, its cumulative
spectral function is

Sline(ω) =
(

2ω

L
− ω2

L2

)
E2

tot . (B.6)

The inverse cumulative spectral function is then

S−1
line(E

2) =
(

1 −
√

1 − E2

E2
tot

)
L . (B.7)

Its squared integral is then ∫
dE2 S−1

line(E
2)2 = L2

6 E2
tot . (B.8)

Next, we need to integrate this inverse cumulative spectral function against the inverse
cumulative spectral function for the event of interest. We have

∫
dE2 S−1(E2)S−1

line(E
2) = L

∑
n∈E2

ωn<ωn+1

ωn

∫ S+(ωn)

S−(ωn)
dE2

(
1 −

√
1 − E2

E2
tot

)
(B.9)

= L
∑

n∈E2
ωn<ωn+1

ωn

[
S+(ωn) + 2

3Etot

(
E2

tot − S+(ωn)
)3/2

−S−(ωn) − 2
3Etot

(
E2

tot − S−(ωn)
)3/2

]
.

As we observed with the jet spRinginess, the SEMD between the uniform line configuration
and a jet is quadratic and convex in the length parameter L, and so it can be optimized
by setting it equal to its unique minimum. These results can then be used to construct
the observable of eq. (4.16).

B.3 Closed-form spIsotropy

Consider a continuous energy distribution on the celestial sphere that is perfectly isotropic.
The spectral function for this energy distribution can be calculated by fixing a reference
particle to be located at the north pole, and the other particle at some point with polar angle
θ and azimuthal angle ϕ. The spectral function then follows from

siso(ω) = E2
tot

4π

∫ 2π

0
dϕ

∫ π

0
sin θ dθ δ(ω − θ) = sin ω

2 E2
tot , (B.10)

for a total energy Etot. The cumulative spectral function of angular distances ω on the
sphere is then

Siso(ω) = 1 − cos ω

2 E2
tot . (B.11)
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The inverse cumulative spectral function is then

S−1
iso (E2) = cos−1

(
1 − 2 E2

E2
tot

)
. (B.12)

The integral of its square is∫ E2
tot

0
dE2 S−1

iso (E2)2 = π2 − 4
2 E2

tot . (B.13)

Next, we need to integrate this inverse cumulative spectral function against the inverse
cumulative spectral function for the event of interest. We have∫

dE2 S−1(E2)S−1
iso (E2) =

∑
n∈E2

ωn<ωn+1

ωn

∫ S+(ωn)

S−(ωn)
dE2 cos−1

(
1 − 2 E2

E2
tot

)
(B.14)

=
∑

n∈E2
ωn<ωn+1

ωn

[√
S+(ωn)

√
E2

tot − S+(ωn) + S+(ωn) cos−1
(

1 − 2S+(ωn)
E2

tot

)

− E2
tot sin−1

(√
S+(ωn)
Etot

)
−
√

S−(ωn)
√

E2
tot − S−(ωn)

−S−(ωn) cos−1
(

1 − 2S−(ωn)
E2

tot

)
+ E2

tot sin−1
(√

S−(ωn)
Etot

)]
.

These results can then be used to construct the expression for the observable of eq. (4.25).

B.4 Closed-form event spEquatorialness

For continuous energy distribution on the equator of the celestial sphere, the cumulative
spectral function is

Sring(ω) = ω

π
E2

tot . (B.15)

The inverse cumulative spectral function is then

S−1
ring(E2) = π

E2

E2
tot

. (B.16)

The integral of the square of this inverse cumulative spectral function is∫ E2
tot

0
dE2 S−1

ring(E2)2 = π2

3 E2
tot . (B.17)

Next, we need to integrate this inverse cumulative spectral function against the inverse
cumulative spectral function for the event of interest. We have∫

dE2 S−1(E2)S−1
ring(E2) =

∑
n∈E2

ωn<ωn+1

ωn

∫ S+(ωn)

S−(ωn)
dE2 π

E2

E2
tot

(B.18)

= π

2
1

E2
tot

∑
n∈E2

ωn<ωn+1

ωn

[(
S+(ωn)

)2
−
(
S−(ωn)

)2]
.

This can then be used to construct the observable of eq. (4.29).
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