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Abstract: Wearable accelerometers are widely used as an ecologically valid and scalable solution for
long-term at-home sleep monitoring in both clinical research and care. In this study, we applied a
deep learning domain adversarial convolutional neural network (DACNN) model to this task and
demonstrated that this new model outperformed existing sleep algorithms in classifying sleep–wake
and estimating sleep outcomes based on wrist-worn accelerometry. This model generalized well
to another dataset based on different wearable devices and activity counts, achieving an accuracy
of 80.1% (sensitivity 84% and specificity 58%). Compared to commonly used sleep algorithms, this
model resulted in the smallest error in wake after sleep onset (MAE of 48.7, Cole–Kripke of 86.2,
Sadeh of 108.2, z-angle of 57.5) and sleep efficiency (MAE of 11.8, Cole–Kripke of 18.4, Sadeh of 23.3,
z-angle of 9.3) outcomes. Despite being around for many years, accelerometer-alone devices continue
to be useful due to their low cost, long battery life, and ease of use. Improving the accuracy and
generalizability of sleep algorithms for accelerometer wrist devices is of utmost importance. We
here demonstrated that domain adversarial convolutional neural networks can improve the overall
accuracy, especially the specificity, of sleep–wake classification using wrist-worn accelerometer data,
substantiating its use as a scalable and valid approach for sleep outcome assessment in real life.

Keywords: sleep; accelerometer; wearable; deep learning

1. Introduction

Sleep is a fundamental biological process essential for physical and mental health. In-
sufficient or poor-quality sleep has been linked to a wide range of adverse health outcomes,
including cardiovascular disease, metabolic disorders, and mental health conditions [1–3].
Despite decades of research, many aspects of sleep physiology, sleep disorders, and their re-
lationships with chronic conditions remain poorly understood. The ability to monitor sleep
accurately and cost-effectively across large populations is critical for advancing research,
diagnosis, and treatment of sleep-related disorders.

Sleep monitoring refers to the process of measuring and analyzing sleep patterns,
including the duration, quality, and timing of sleep, as well as periods of wakefulness.
Polysomnography (PSG), the clinical gold standard for sleep monitoring, provides detailed
insights into physiological states using sensors to record brain activity, muscle movements,
and other signals. However, its resource-intensive nature and reliance on controlled envi-
ronments make PSG unsuitable for large-scale or long-term monitoring. To address these
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limitations, wearable devices such as wrist-worn accelerometers have gained popularity for
tracking sleep in real-world conditions. These devices offer a practical and non-intrusive
solution, enabling continuous data collection in free-living environments [4].

Since the introduction of wrist-worn actigraphy in the early 1980s [5], several gen-
erations of automated scoring algorithms have been developed [6]. Earlier wrist-worn
accelerometers only reported data in the form of counts [7], which are a way to quantify
movement over a given period. Early sleep scoring algorithms were thus developed to use
these counts as their input. These algorithms range from simple logistic regression models,
to more sophisticated machine learning and deep learning techniques [5,8–11]. Later, wear-
able devices capable of recording raw accelerometer data enabled the use of heuristic and
machine learning approaches for analyzing raw acceleration, enhancing the development
of sleep scoring algorithms in the 2010s [12,13]. Despite these advancements, one persistent
challenge in sleep scoring via wrist-worn accelerometry is the balance between specificity
and sensitivity. High specificity in detecting wake periods often comes at the expense of
sensitivity, leading to compromised overall accuracy in sleep–wake classification.

The primary objective of this study is to develop a model for detecting sleep and wake
states from activity counts that is both accurate and generalizable. Sleep–wake classification
models often face a trade-off between specificity (accuracy in detecting sleep) and sensitivity
(accuracy in detecting wake). This trade-off is particularly problematic for sleep-disordered
patients, who experience more frequent wake episodes compared to healthy individuals.
While high specificity is relatively easy to achieve due to the predominance of sleep epochs,
achieving high sensitivity without compromising overall accuracy remains a significant
challenge [14].

Existing machine learning and deep learning models for sleep classification are prone
to overfitting to the specific characteristics of their training datasets. This issue is exacer-
bated by the use of activity counts, which vary depending on the computation method.
Although efforts have been made to standardize these metrics [7], current models often
fail to generalize to new datasets with different activity count methods [15]. This lack of
generalizability limits the practical application of these models in large-scale population
studies and across diverse user groups.

Given the rise in demand for sleep monitoring with wearables, it is important to
refine and develop models to obtain better sleep–wake detection accuracy and improve
the estimation of outcome measures such as sleep efficiency (SE, sleep time divided by
time in bed) and wake-after-sleep-onset (WASO; total minutes of wake during the in-bed
sleep interval after sleep onset). Although many datasets of PSG-validated sleep data
have been described [6], few are publicly accessible. Currently, the Multi-Ethnic Study
of Atherosclerosis (MESA) dataset [16,17] is the largest dataset with concurrent PSG and
actigraphy. In the MESA dataset, raw acceleration is not available, activity counts are the
only available data from the wrist-worn accelerometers. In this study, we first trained a
convolutional neural network (CNN) model with the MESA dataset and achieved good
performance. Then, we improved this model using a domain adversarial convolutional
neural network (DACNN) to allow it to generalize to a validation dataset based on a
different type of activity count computed from an open-source package [7].

Machine learning or deep learning approaches are powerful data science techniques
and have substantially improved the accuracy of feature detection in many disciplines,
such as imaging and voice recognition. These approaches, however, are susceptible to the
risk of overfitting. The models may latch on to particularities in the training dataset that
the end-user would deem unimportant, and their performance would suffer on unseen
datasets. Model generalization is even more challenging in using accelerometry data for
sleep–wake classification. Many big sleep datasets based on accelerometry only retained the
activity “counts” as the source data. Activity “counts” are derived from raw acceleration
data using non-standard algorithms, many of which are black-box approaches proprietary
to the manufacturers. While efforts have been made to document “counts” and make them
open-source [7], differences in how activity counts are computed pose another challenge
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for models trained using one activity count method to generalize to another dataset using
another activity count method. This challenge has been observed in previous work applying
deep learning sleep algorithms to unseen datasets using different counts [15].

Improving model generalizability is crucial to the application of machine learning
and deep learning models to real-world problems, especially in medicine. The machine
learning community has developed many techniques for overcoming these issues such as
using dropout [18], max pooling [19], and early stopping [20]. One approach is to use a
domain adversarial neural network [21,22] to train a model with one dataset but enforcing
the features to be indistinguishable from a domain dataset. A domain adversarial approach
is particularly effective in improving generalizability to a target dataset when the datasets
contain non-linear differences that cannot be corrected by unit-scaling the observations.
This would be the case for datasets where different activity counts are used which have
different sensitivities in detecting activity counts [23].

To address these challenges, this study builds on the existing body of work in sleep
monitoring by making the following contributions: We develop a convolutional neural
network (CNN) model specifically optimized for detecting wake states with high sensitivity,
which is critical for studying sleep-disordered populations. A domain adversarial convolu-
tional neural network (DACNN) approach is employed to improve the model’s ability to
generalize across datasets with different activity count computation methods. We evalu-
ate the model’s performance in estimating key sleep metrics. By focusing exclusively on
activity counts, we prioritize scalability and applicability in large-scale, free-living studies.

This paper is structured as follows: Section 2 details the datasets and modeling
approach; Section 3 presents the performance evaluation; and Section 4 discusses the
implications, limitations, and future directions of this work.

2. Materials and Methods
2.1. Datasets

The MESA sleep studies [16,17] were conducted on 2237 participants using an Ac-
tiwatch Spectrum device (Philips Respironics) which recorded activity counts at 30-s
epochs. Overall, 15.0% of individuals had severe sleep-disordered breathing (SDB) (apnea–
hypopnea index [AHI] ≥ 30); 30.9% short sleep duration (<6 h); 6.5% poor sleep quality
(sleep efficiency < 85%); and 13.9% had daytime sleepiness [16]. Polysomnography (PSG)
was recorded simultaneously using a Compumedics Somté System (Compumedics Ltd.,
Abbotsville, Australia). Institutional Review Board approval was obtained at each study
site and written informed consent was obtained from all participants. Sleep stages and
EEG (cortical) arousals were scored according to published guidelines [24].

The Newcastle (NC) dataset [13,25] is composed of 28 participants that participated
in a sleep study with concurrent PSG and actigraphy. Of these, 27 of the participants
wore two accelerometers, one on each wrist, except while 1 participant only wore an
accelerometer on one wrist. There are 55 records in total that contain sleep stage information
as well as three channels of raw acceleration. The acceleration data were recorded using a
triaxial accelerometer (GENEActiv, Activinsights Ltd, Kimbolton, UK). The accelerometers
collected data at a sampling rate of 85.7 Hz with a range of ±8 g. PSG was recorded
using an Embletta® (Denver) system. All respiratory events and sleep stages were scored
according to standard criteria [26]. A total of 20 of the participants had at least one sleep
disorder. The sleep disorders included idiopathic hypersomnia, restless leg syndrome, sleep
apnea, narcolepsy, sleep paralysis, nocturia, obstructive sleep apnea, RBD, parasomnia
and insomnia. The methods were performed in accordance with relevant guidelines
and regulations and approved by the NRES Committee North-East Sunderland ethics
committee (12/NE/0406).

2.2. Data Preprocessing

The MESA dataset contains activity counts aggregated over 30 s windows as well as
the PSG labels over 30 s periods. We used these data directly in this study by aligning
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count data with PSG labels based on timestamps. Participants without a full night of
concurrent PSG and actigraphy, with less than 3 h of data, or with more than 16 h of data,
were discarded, as in [9]. The resultant number of recordings used in the MESA was
1817 participants.

The NC dataset is composed of raw acceleration data and 30 s window PSG labels.
The acceleration data in the NC dataset were preprocessed using the GGIR package [27]
and raw triaxial accelerometer data were calibrated relative to the gravitational acceleration
and temperature [28]. All subjects in the NC dataset were kept.

Since raw acceleration data were not available for the MESA dataset, the model
development only used activity counts as input. In the case of the MESA dataset, activity
counts are provided in the dataset, although the algorithm used to derive them from
the raw accelerometer data is not publicly available. In the case of the NC dataset, raw
accelerometer data were down-sampled to 40 Hz (taking the mean in 25 ms windows), and
then activity counts were obtained using the open-source package agcounts [7]. The PSG
data collected in the study was only used as the ground truth and was not given as an
input to the model.

Sleep onset latency was not included as a sleep endpoint in this work because sleep
diary information was not collected with the NC dataset and sleep onset latency based on
acceleration alone has been shown to be unreliable [29].

2.3. Model Architecture

The input to our models is a time series of accelerometer counts. We first trained a
model with three 1D convolutional layers, each followed by batch normalization, activation,
and max pooling (Figure 1). Batch normalization was used to regularize the weights of the
kernels, speed up convergence, and normalize the features from the convolutions to make
them more robust to changes in magnitude. The max-pooling layers reduce the number of
parameters needed to be trained by half, but at the same time expand the receptive field by
two and posterior layers extract features that expand further in the time dimension.

The model performed well on the MESA dataset on which it was trained but showed
limited accuracy when dealing with data from the NC dataset. Although the MESA dataset
is much larger than the NC dataset, differences were observed in the mean values of activity
counts during sleep and wake between the two datasets. This warranted using a domain
adversarial network to force the model to derive features from the MESA dataset that
are not distinguishable from the NC dataset, but without providing any labels from the
NC dataset to the model during training. Figure 1 shows the model architecture, where
after the third max-pooling layer the network is split in two heads: a label classifier and a
domain classifier. The noDACNN network only includes the label classifier head, whereas
the DACNN network includes the domain adversarial head. The classifier predictor is
composed of a fully connected layer, a dropout, and an output layer. The domain predictor
has a gradient reversal operator, a fully connected layer, and an output layer. The labels for
the classifier predictor are MESA sleep–wake, but not NC labels. For the domain predictor,
the labels are MESA/NC, thus this predictor tries to identify the provenance of the sample.
When performing backpropagation, the loss from the domain predictor is inverted by
the gradient reversal operator and penalizes the network if the prediction is correct; thus,
the model is incentivized to extract features that are the least distinguishable between
dataset domains.

We explored two input lengths. First, an input length of 25 min prior to the current
epoch, the current epoch, and 25 min after the current epoch was used. Previous stud-
ies demonstrated that this is an ideal length for the models to have adequate temporal
context [9,11]. The second input was the past 25 min, the current epoch, and only 1 min
of future activity. The rationale for one minute was to provide enough feature context to
assess if the current activity over the 30 s epoch was transient or stable over two consecutive
time points. Given that each epoch is 30 s, the input length in the first case was 101 samples
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and the second was 53 samples. In the MESA dataset, a split of 65-20-15% was used for
training, validation, and testing. The NC dataset was only used for validating the results.

Figure 1. Model architecture. The DAsleepCNN model is composed of modules of a convolutional
layer, batch normalization, and max pooling; after three modules the output is flattened and sent to a
label classifier where it predicts sleep–wake labels for the MESA dataset, and to a domain adversarial
classifier that classifies the dataset domain of the input. For MESA samples, the input labels are the
dataset label and sleep–wake label, for NC samples only the dataset label is provided. For inference,
the domain adversarial component is not used, only the label classifier.

2.4. Model Performance

The model performance was assessed by measuring the accuracy in predicting the
correct sleep–wake labels. The confusion matrix and AUC results are reported for the
best-performing models for the MESA and NC datasets. Given that the NC dataset was
not used for training the models, we report further metrics averaged across subjects and
compare them with other algorithms. The algorithms compared are z-angle [13], Cole [8],
and Sadeh [10].

The z-angle relies on findings periods of constant wrist angle extracted from raw
accelerometer data to detect sleep. Cole is based on the absence of movement, as measured
by activity counts. Sadeh relies on 4 features extracted from counts that are then combined
using linear discriminant analysis.

Except for the z-angle, all of the algorithms were rescored [5]. Rescoring is a technique
developed to enhance specificity in sleep–wake detections by count-based algorithms [5,30].
There are five rescoring rules, which are after at least four epochs scored as wake, the next
sleep epoch is relabeled as wake; after at least ten epochs scored as wake, the next three
sleep epochs are relabeled as wake; after at least fifteen epochs scored as wake, the next
four sleep epochs are relabeled as wake; six epochs or less scored as sleep surrounded by at
least ten epochs, before or after, scored as wake are rescored as wake; and then an epoch
or less scored as sleep surrounded by at least 20 epochs, before or after, scored as wake
are rescored as wake. The metrics used were sensitivity (the percentage of correct sleep),
specificity (the percentage of correct wake), precision (the percentage of detected sleep
that was correct), and F1 (the harmonic mean of sensitivity and precision). In addition, we
computed two sleep endpoints: WASO and SE. The root mean squared error (RMSE) was
used to measure the algorithm error in estimating the sleep endpoints.

3. Results

In total, four models were trained with an input of the past 25 and future 25 min (25 + 25)
or past 25 and future 1 min (25 + 1), and with a domain adversarial (DACNN) network or
without it (noDACNN) (see Table 1).
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Table 1. Four models trained.

Model Past 25 min + Future 25 min Past 25 min + Future 1 min

Without DA noDACNN25+25 noDACNN25+1
With DA DACNN25+25 DACNN25+1

As expected, the domain adversarial CNNs performed better than noDACNN for the
NC dataset, as the DA penalized convolutional features that are distinguishable between
the datasets; thus, the model generalizes better to the target dataset. In the MESA dataset,
the noDACNN models performed better, this is also expected, as the features extracted
fit the data better without having to be generalized to another dataset. Interestingly, on
the NC dataset, the shorter input length of past 25 + future 1 min performed better, with
an accuracy of 80.1; and on the MESA dataset, the longer input length of past 25 + future
25 min performed better, with an accuracy of 84.3%. Figure 2 shows the accuracies for
different models and datasets.
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Figure 2. Model accuracy. The accuracies of the four models presented are plotted for the NC and
MESA datasets. For MESA, the highest accuracy was achieved by noDACNN25+25. However, this
model had a marked drop in performance when applied on NC, showing poor generalizability.
DACNN25+1, on the other hand, had a high accuracy on NC, which crucially was on par with its
performance on MESA.

The confusion matrices and the receiver operating characteristic (ROC) for the best
models for both datasets are shown in Figure 3. The sensitivity in detecting sleep was 87%
and 92%, and specificity was 61% and 73%, for the NC and MESA datasets, respectively.
On the NC dataset, the AUC reached 0.79, whereas on the MESA it was 0.87. The ROC-
AUC curve on the NC dataset was skewed toward a higher false positive rate at the low
true positive rate quadrant, as compared to the MESA ROC-AUC curve (Figure 3). The
false positive rate indicates the probability of a negative sample (wake) being classified as
positive (sleep). This indicates that some samples have a high probability of belonging to a
class, but their class prediction is not correct.

Given the ROC-AUC results, we further examined the average values of inputs that
were classified correctly and incorrectly (Figure 4). For both datasets, the mean activity
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counts of true sleep predictions are lower than the mean of true wake predictions. This
is expected as the amount of movement is typically minimal during true sleep periods,
while it is likely higher during true wake periods. In the MESA dataset, the activity range
of the false wake predictions are close to the range of true sleep, and the mean is below
zero. Interestingly, in the NC dataset, the mean activity counts of false wake predictions
are above zero and the 75th percentile overlaps with the 25th percentile of true wake. This
indicates that on average, sleep periods classified as wake have higher activity than sleep
periods classified correctly; similarly, false sleep predictions have lower activity count than
wake periods correctly classified.

Figure 3. Confusion matrices and ROC-AUC. On top, the confusion matrix and ROC-AUC are plotted
for the NC dataset using the best-performing model with input past 25 + 1. On the bottom, the same
plots are shown for the MESA dataset with the model input of the past 25 + 25.

Since the NC dataset was not used for training the model, it remains a validation
dataset that can be used to compare the performance across sleep algorithms (Table 2). The
best-performing model, DACNN25+1, outperforms the other deep learning models across
almost all metrics in the NC dataset. Only noDACNN25+1 provides higher sensitivity,
but at the expense of much lower specificity and overall accuracy than the best model.
DACNN25+1 also performs much better than traditional algorithms. Again, due to the
trade-off between sensitivity and specificity, while some algorithms, e.g., Sadeh rescored,
showed a high specificity of 75.5% but a sensitivity of 61.9%, the best DACNN model
demonstrated a balance between sensitivity and specificity, achieving the highest overall
accuracy and F1. Importantly, DACNN25+1 also provides the best estimation of sleep
outcome measures, with the lowest mean error and root mean squared error as compared
to all other models and algorithms.
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Figure 4. Average input values for correct and incorrect predictions in the datasets. The violin
plots show the mean and 25th and 75th interquartile ranges for true and false predictions for the
best-performing models. The left represents predictions from the NC dataset and the right from the
MESA dataset.

Table 2. Performance metrics for developed models and prior algorithms. acc: accuracy; sens:
sensitivity; spec: specificity; prec: precision; RMSE: root mean squared error; MAE: mean absolute
error; CI: confidence interval.

Model acc sens spec prec F1 WASO RMSE MAE CI
Width SE RMSE MAE CI

Width

DACNN25+1 80.1 83.9 57.6 81 81.7 159.3 80.9 48.7 309.1 71.8 11.8 8.0 45.7
DACNN25+25 78.6 81.1 55.7 79.9 79.5 165.2 83.2 54.8 323.8 70.6 12.5 9.1 49.2
noDACNN25+1 77 84.9 48.5 77.2 80.1 137.1 102.8 76.5 353.4 75.6 17.7 13.5 57.1
noDACNN25+25 72.9 68.9 68.3 81.3 73.2 231 94.1 57.2 331.5 59 13.3 9.1 46.1

Previous Algorithms
Z-angle 76.2 83.6 47.5 76.2 79.1 140.8 91.1 57.5 325.3 75 13.0 9.3 46.2
Cole rescored 71.9 66.1 73.6 82.6 72.2 247.5 105.8 86.2 322.5 56.3 18.4 15.4 51.7
Sadeh rescored 69.6 61.9 75.5 83.1 69 268.6 133.1 108.2 393.2 52.5 23.3 19.3 64.1

Baselines
All sleep 69.2 100 0 69.2 79.6 0 223.9 180.1 526.1 100 37.2 30.8 83.1
All wake 30.8 0 100 0 0 571.4 409.4 391.3 476.5 0 72.4 69.2 83.0

4. Discussion

In this study, we implemented convolutional neural networks to detect sleep–wake
from wrist accelerometer data. We used two datasets: one with activity counts already
provided by the manufacturer and another where activity counts were computed from the
raw acceleration data using an open-source package. Given the difference between the
datasets, particularly in the derivation of activity counts, we used a domain adversarial
CNN to extract features from the large dataset that were generalizable to the smaller
dataset. Two input lengths were explored to give the model a temporal context from which
to estimate the class probability of samples. Using the NC dataset as the validation dataset,
the top-performing model was the domain adversarial CNN with the past 25 min of activity
counts and 1 min of future activity counts. For the MESA, the original large dataset used
for training the model, the CNN without the domain adversarial component and with the
past and future 25 min of activity counts performed the best. The performance of these
two models was superior to previous sleep–wake classification algorithms using the NC
dataset as a validation dataset.

While raw accelerometer data can potentially contain more information useful for
discriminating wake from sleep, activity count algorithms play a crucial role in sleep
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research, which is likely to continue to be the case [8,10]. In addition, raw acceleration
data are not provided by some wearable manufacturers (Philips) and are not available
in many open-source datasets (MESA, STAGES). It is important to recognize that activity
counts are not created equal; even derived from the same raw accelerometer data, activity
counts might differ due to preprocessing steps such as filter parameters or the precision
of the quantization process for estimating the count. These differences can affect the
generalizability of algorithms trained across datasets using different activity count methods.
It is apparent that the ActiGraph activity counts in the NC dataset have on average much
higher values than the Philips activity counts in the MESA datasets (Figure 4). Previous
research has shown a non-linear relationship between Philips and ActiGraph activity
counts, with the latter being greater when physical activity is higher than 20.

Deep learning models showed different performance with the MESA and NC datasets.
Although the CNN model with the past and future 25 min achieved an accuracy of 84.2%
and outperformed previous studies that used the same input length, 8, 10, the models
did not generalize well to NC data based on different activity counts. The differences in
mean activity counts between datasets warranted the use of a domain adversarial neural
network, as previous studies have demonstrated them to be useful in extracting features
that are generalizable to a validation dataset [31–34]. When using a domain adversarial
network, the model not only performed much better in terms of classification accuracy but
also better in terms of sleep outcome estimation. While classification accuracy is important,
sleep outcomes are the specific metrics used to assess sleep in clinical trials and care. As
shown in Table 1, the DACNN with the input of past 25 + 1 min had the best performance
in terms of accuracy, F1, WASO error, and SE error. The results suggest that one minute
of future activity counts provides enough context for the model to decide if the current
activity is stable or transient. Overall, this model outperforms all the previous algorithms
used on this validation dataset, as reviewed by Patterson et al. [15].

There are limitations that do not seem feasible to overcome. As shown in Figure 4, there
are situations where participants are awake but there is no movement, and in other instances
there is movement but the participant is asleep. This clearly drives the predictability in
the NC dataset lower, potentially because half of the participants have a sleep disorder.
In the MESA dataset, given the large sample size, these situations may be averaged out.
Nonetheless, the performance of models did not increase beyond the reported accuracy
of 84.3% in the MESA dataset, suggesting that there is a limit to how well sleep–wake
can be predicted from accelerometer-only data. Another limitation is that only two sets
of combinations of input lengths were tested; future research should further examine the
contributions of different input lengths to model performance.

Recent technological development to incorporate physiological sensing capabilities
into wearables holds much potential to increase the accuracy of sleep-stage detection from
accelerometer-only devices [14]. Current photoplethysmography (PPG)-based devices
must be charged every few days at best, whereas accelerometer-only devices can go for a
month or longer on one charge. This is a critical usability aspect for certain patients, for
whom charging can be difficult to remember or perform.

Despite intrinsic challenges in sleep–wake classification compared to PSG, a wearable
device with an accelerometer allows continuous monitoring of sleep without the need for a
complex setup or having to be moved to a sleep lab. The models we present prove that
good levels of accuracy can be achieved, and it can reliably estimate sleep endpoints with a
margin of error of a few minutes or less than 9%, depending on the unit of the measure.
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