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Abstract 
 

 

How will artificial intelligence affect the US-China balance of power? While a nascent literature 

debates whether AI may upend strategic stability or revolutionize the nature of warfare, existing 

discussions suffer from both imprecise conceptualization and scarce data. In three essays, this 

dissertation evaluates the impact of AI on the nuclear balance, the conventional balance, and long-

term US-China competition more generally by focusing on deep learning, generating data through 

simulation and supply chain analysis. 

 

The first essay defends the focus on deep learning, then presents an end-to-end conceptualization 

of how its technical qualities translate into usefulness across different categories of modern 

military tasks, which in turn affect, when contextualized to the particular dyad under study, the 

strategic balances across different domains of US-China competition. At each analytic layer, the 

paper condenses deep learning’s effects into several generalizations, tying AI to existing debates 

in security studies and setting an agenda for future research. 

 

The second essay simulates US-China nuclear war in Python to assess AI’s impact on the strategic 

balance, focusing on the tracking of mobile platforms on land. It finds that AI reduces the total 

“effective counterforce area” – the area the United States would have to destroy with nuclear 

weapons, to carry out a splendid first-strike – by one to two orders of magnitude. Under low to 

medium alert, the simulation finds this would enable successful US nuclear counterforce. While 

countermeasures are available to China, the essay predicts heightened nuclear tensions as a result. 

 

Finally, the third essay exploits supply chain datasets to assess each side’s ability to bring AI-

enabled autonomous weapons to bear in future conventional conflicts. I find that control over the 

production of advanced AI chips by the United States and allies almost certainly means the United 

States would better exploit such weapons, if they emerged as decisive in modern warfare, within 

at least the next ten years. Potential Chinese policy responses, such as cannibalizing its civilian 

sector or substituting with older chips, would likely fail for technical reasons. 
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Introduction 
 

What is artificial intelligence, and how will it affect our world? Perusing the existing literature, one 

gradually acquires the impression that AI may revolutionize warfare, obsolete all human labor, cast the 

globe into permanent authoritarianism, and/or more generally either destroy our world or save it.  Stephen 

Hawking, for example, famously warned that “full artificial intelligence could spell the end of the human 

race.”1 Similarly, for Henry Kissinger, AI could mean the end of the Enlightenment, causing human history 

to “go the way of the Incas.”2 Even short of the end of the human age, for Graham Allison, China could use 

AI to overtake US military power by obsolescing large swaths of our advanced but still human-reliant 

forces, achieving a kind of “AI supremacy.”3 Alternatively, as one reads further about AI, it may become 

difficult to avoid the slight suspicion, kept in the back of the mind, that perhaps AI is “just BS,” a passing 

fad likely to leave our theoretical understanding of world affairs largely unscathed.4 

 

What are we to make of all this? In my view, the present conceptual morass arises from this issue: there is 

no consensus definition of AI. Consequently, those writing within security studies (and in adjacent, non-

academic venues) are commenting on a large, loosely constrained grab-bag of different technologies, some 

mature, some newly born into the world, and some not yet existent. Undisciplined by technical bounds or 

the empirics generated by mature military technologies with a battlefield record, amateur speculation about 

AI has essentially no bounds: writers are free to use AI as a blank slate onto which to project their particular 

worries, whether that be the amplification of structural inequities in American society, the military and 

ideological global struggle against Chinese Communism, the intensifying disempowerment of blue-collar 

workers due to industrial automation, or even the wholesale destruction of the human race.  

 

To be clear, I do not mean to suggest that all or even any of these narratives are wrong – in fact, each of 

these worries has generated a particular, genuine scholarly community based outside political science, 

discussing the impact of AI on each concern in earnest. Rather, I mean that among observers of those affairs 

related to international security (whether in universities or at think tanks), extant discussions have been, for 

the most part, conceptually undisciplined, drawing on and combining existing strands of thought from other 

conversations about, in fact, very different technologies and applications. This has resulted in confusion. 

 

Defining Artificial Intelligence 
Thus, this dissertation argues that scholars in security studies should mainly study deep learning, a specific 

kind of machine learning leveraging multiply-layered “neural networks,” which are computing constructs 

loosely inspired by the human brain. Among technologies commonly called AI, deep learning can be 

contrasted with symbolic AI, a first-wave technical approach most prominent beginning in the 1950s, and 

artificial general intelligence (AGI), a hypothetical future capability with AI as good as humans at all tasks.  

 

In my view, focusing on deep learning captures, among technologies thought of as AI, the effects most 

important to security studies, such as the possibility of future “drone swarms” of perhaps thousands of 

 
1 Rory Cellan-Jones, “Stephen Hawking warns artificial intelligence could end mankind,” BBC, 2014, 

https://www.bbc.com/news/technology-30290540. 

 
2 Henry A. Kissinger, “How the Enlightenment Ends,” The Atlantic, June 2018, https://www.theatlantic.com/magazin 

e/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/. 

 
3 Graham Allison, “Is China Beating America to AI Supremacy?,” The National Interest, December 22, 2019, 

https://nationalinterest.org/feature/china-beating-america-ai-supremacy-106861. 

 
4 Daniel W. Drezner, “What if AI is just BS?,” The Washington Post, May 1, 2019, https://www.washingtonpost.com/ 

outlook/2019/05/01/what-if-ai-is-just-bs/? 
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autonomous weapons platforms, discussed in this dissertation’s third essay, or the potential for AI-assisted 

nuclear counterforce, discussed in this dissertation’s second essay. Many papers could – and have – been 

written about symbolic AI and AGI, but they cannot be productively conflated with deep learning. 

 

 
 

What narrowing the focus to deep learning reveals is that despite the broad generalities characterizing much 

existing commentary, AI’s effects on variables of interest to security studies will likely vary by both domain 

and dyad. First, variation by domain emerges because deep learning’s contribution to different military 

tasks will likely be fairly uneven. For missions like electronic warfare built atop mature engineering 

disciplines, for example, new AI algorithms must clear a higher bar to improve upon the state-of-the-art. In 

contrast, since previous-generation, manually-crafted systems struggled with characterizing images and 

understanding language, deep learning’s applications to computer vision and automated intelligence-

processing represent relatively large gains.5 AI is not itself a discrete physical object, like machine guns, 

fighter aircraft, or nuclear weapons, but rather a general-purpose technology with many applications; 

consequently, its manifestations importantly vary across domains in their effects. 

 

Second, variation by dyad emerges because AI’s strategic effects are, I argue throughout this dissertation, 

mediated both by each country’s stock of AI’s inputs – those raw precursors, including data, hardware, and 

engineering talent, necessary to create and deploy AI – as well as each country’s leverage, or their ability 

to use AI applications, once produced, to achieve strategic goals specific to the country. Since technologies 

are often more useful for some goals than others, differences in leverage can be decisive. This dissertation 

thus focuses on the US-China balance, both due to the dyad’s substantive importance, as well as because 

both countries are among the farthest along in deploying AI. 

 

Artificial Intelligence and the US-China Balance of Power 
Overall, contrary to the conventional wisdom that China may use AI to leapfrog US national power, I find 

that AI will more likely strengthen the US position relative to China in both the nuclear and conventional 

domains. More generally, as opposed to the received wisdom about information technology in the age of 

globalization, I find that AI’s effects likely drive “rich get richer effects,” as opposed to democratizing 

access to military power. The United States is advantaged against China in leveraging AI, and in turn, China 

is advantaged against its own domestic population. In both cases, the more well-resourced agent wins. 

 

In the nuclear domain, AI may counterfactually enable a successful US nuclear counterforce campaign 

against the Chinese arsenal. Leveraging a detailed model in Python coded with Torin Rudeen, the paper 

reports the results of simulating US counterforce both with and without AI, and finds that AI reduces the 

total “effective counterforce area” – the area the United States would have to destroy with nuclear weapons, 

to carry out a splendid first-strike – by one to two orders of magnitude. Across a variety of stochastic and 

selected assumptions, this makes the difference in whether a US first-strike is successful. 

 
5 Tom Stefanick, “AI in the Aether: Military Information Conflict,” in The Global Race for Technological Superiority, 

ed. Fabio Rugge (Brookings, 2019), https://www.brookings.edu/wp-content/uploads/2019/12/FP_20191211_military 

_information_conflict_stefanick.pdf, 112-30. 
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In the conventional domain, while it remains an open question whether fully autonomous AI-enabled drones 

will revolutionize future warfare, collected in swarms or otherwise, I exploit industry datasets to argue that 

control over the production of advanced AI chips by the United States and allies almost certainly means 

that such drones would not, if they emerge, advantage China. Based on longstanding technical trends, I 

argue that AI weapons will require cutting-edge chips – China cannot substitute with large numbers of older 

chips. I evaluate various possible Chinese policy responses, up to and including an invasion of Taiwan to 

seize its chip production capabilities, and find that they would likely fail to restore Chinese access in the 

event of a US-led supply cutoff. Thus, if the future of warfare comes to be dominated by “drone swarms,” 

this will favor the United States at least for the next ten years, and likely afterwards as well. 

 

Artificial Intelligence and Security Studies 
This dissertation has a number of implications for scholars of security studies. First, for those interested in 

artificial intelligence, the first essay offers the field an operationalization of AI as deep learning, providing 

an object amenable to study by accepted methods in security studies. The second and third essays, which 

deploy campaign analysis and supply chain analysis, respectively, provide methodological examples of 

how to study an emerging technology not yet deployed in fully realized form on the world’s battlefields. 

The third essay also advances the discussion of drone swarms by providing technically grounded theory 

about how they would work, and what they would materially require. 

 

Second, for nuclear scholars, the second essay represents quasi-experimental evidence about the effects of 

an emerging technology, AI, on the general survivability of nuclear arsenals. Mobile delivery platforms, 

both on land and at sea, exploit the simple fact that, to put it colloquially, nations and oceans are large, 

while launchers and submarines are small; consequently, mobility has represented a strong form of 

concealment owing to difficulties in locating moving platforms. Our model, however, shows that with AI, 

mobility may no longer be a guarantee of obscurity. States have several options for countermeasures, which 

the second essay explores in detail. Many of these countermeasures, however, such as seeking to degrade 

adversary AI systems, destroying adversary space assets, or switching to a launch-on-warning posture, may 

increase the chances of escalation, both accidental and intended. While our model focuses on the US-China 

balance, Iran and North Korea are likely to be even worse off vis-à-vis the United States, and states in other 

dyads – such as India, considering its nuclear strategy against Pakistan – may feel tempted to explore AI-

enabled counterforce options as well. 

 

Third, for students of warfare, the third essay gives technical reasons grounded in the political economy of 

transnational production to show that the emerging AI capabilities in conventional warfare most often 

speculated about will likely lean on a critical material precursor – advanced AI chips – whose production 

is controlled by the United States and its allies. “AI chips,” I argue, are analogous to highly enriched 

uranium in the early nuclear age – while uranium occurs plentifully and naturally in nature, and chips are 

freely sold in iPhones, laptops, and even cars, the ability to produce the specialized chips required for AI 

weapons will serve as a key supply-side constraint – and source of US advantage – for at least ten years.  

 

Fourth, for those interested in the diffusion of military power, the industry datasets exploited in the third 

essay show that globalization, rather than leading to redundancy and the reduced ability of any given state 

to impose supply cutoffs on others, has in fact led to specialization and the consequent development of 

monopolies, or near-monopolies, at various high-tech chokepoints. Put another way, contrary to cyclic 

theories beginning with Robert Gilpin which argue that hegemons invariably undermine themselves by 

encouraging technological diffusion to the periphery, I find that in production of cutting-edge technologies 

in particular, R&D intensity may prevent diffusion and instead re-concentrate power in the leading state.6 

 

 

 
6 Robert Gilpin, War and Change in World Politics (Cambridge: Cambridge University Press, 1981), 162, 176-85. 
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Artificial Intelligence and US Policymaking 
This work also has implications for policymakers. First, some observers have argued that because China 

may overtake the United States by means of AI, we should dispense with excessive concerns about ethics 

and AI misbehavior and instead focus on catching up. This is backwards. AI is instead likely to augment 

US power vis-à-vis China, if anything, and making sure AI technologies are safe for the battlefield both 

honors longstanding US values and builds trust necessary to effective organizational adoption of AI by the 

US military – if soldiers do not trust the systems into whose artificial hands they must put their lives, this 

will hurt, rather than enhance, US combat effectiveness.7 

 

Second, policymakers must maintain strategic stability with China to avoid the risk of accidental nuclear 

war. While China has thus far resisted nuclear arms control talks with the United States, avoiding trilateral 

discussions with Russia, AI counterforce capabilities may eventually compel greater diplomatic 

engagement. US policymakers should not stumble into an AI-empowered counterforce capability, but rather 

undertake a strategic review and deliberately choose, with eyes wide open, whether or not to hold the 

Chinese arsenal at risk. Simultaneously, policymakers must attend to related risks in other dyads, such as 

with India and Pakistan, where AI could similarly tilt the scale of enabling (or appearing, to policymakers, 

to enable) counterforce.8 

 

Finally, this work offers several conceptualizations, reached in the course of its three essays, of how best 

to compete with China in AI. Being ahead in AI research lacks inherent virtue – famously, the French first 

invented mechanically powered submarines, but regretted this when the British Navy, better adopting the 

technology, leapfrogged French sea power.9 While AI research will invariably diffuse, however, AI 

hardware chokepoints are a strong, weapons-relevant advantage worth maintaining. Similarly, as the first 

essay details, the United States has a longstanding advantage over China in attracting high-skilled, AI-

relevant STEM talent it would be foolish to discard. The United States should specifically avoid advancing 

research which, once diffused, would asymmetrically empower China to reach its goals – for example, AI 

applications enabling information warfare most effective against democratic states which hold elections. 

Instead, the United States should coordinate with its allies to establish robust AI technology standards which 

favor democracies globally. 

 

Dissertation Outline 
The above-synthesized analysis unfolds in three essays below. Summarizing, the first essay asks, “What is 

artificial intelligence, and what are its effects?” It argues that the extant literature suffers from a badly 

operationalized independent variable – as scholars define AI in very different ways, analyses disagree 

simply due to discussing entirely different technologies. This brushclearing paper operationalizes AI as 

deep learning, then presents an “end-to-end” conceptualization of deep learning’s causal impact, moving 

from its basic technical nature (“mechanical effects”) to its usefulness across different categories of modern 

military tasks (“tactical effects”), then finally to its contextual impact on the US-China balance of power 

(“strategic effects”). At each analytic layer, the paper condenses deep learning’s effects into several 

generalizations, tying AI to existing debates in security studies and setting an agenda for future research. 

 
7 Michèle A. Flournoy, Avril Haines, and Gabrielle Chefitz, “Building Trust through Testing: Adapting DOD’s Test 

& Evaluation, Validation & Verification (TEVV) Enterprise for Machine Learning Systems, including Deep Learning 

Systems,” WestExec Advisors, 2020, https://cset.georgetown.edu/wp-content/uploads/Building-Trust-Through-

Testing.pdf. 

 
8 Christopher Clary and Vipin Narang, “India's Counterforce Temptations: Strategic Dilemmas, Doctrine, and 

Capabilities,” International Security 43.3 (2019), 7-52. 

 
9 Michael C. Horowitz, The Diffusion of Military Power: Causes and Consequences for International Politics (New 

Jersey: Princeton University Press, 2010), 1-2. 
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The second paper, coauthored with Torin Rudeen, asks, “Will artificial intelligence threaten the 

survivability of nuclear arsenals?” To assess this question, we code a simulation of US nuclear counterforce 

efforts against the Chinese arsenal, separately modeling each of “find, fix, and finish.” We run this 

simulation both with and without AI at various alert levels, finding that AI threatens the survivability of 

Chinese road-mobile missiles at low and medium alert. Our simulation represents the first detailed modeling 

of the question of mobile platform detectability from first principles, as well as a significant advance in 

model sophistication over the open-source state-of-the-art. On balance, our results provide evidence for the 

view that technological developments may increasingly threaten strategic stability. 

 

Finally, the third essay seeks to make inroads on the question, “Will artificial intelligence favor China or 

the United States in the conventional military domain?” It argues that specialized AI chips will be the key 

material bottleneck for states’ ability to field AI-enabled weapons platforms at scale. Critically, while AI 

research is open, global, and collaborative, AI hardware is ever more consolidated in US and allied 

countries. The involved technologies are approaching fundamental physical limits; consequently, leading 

firms require both almost all available global talent, as well as the economy of scale created by meeting 

almost all global demand, to make continuous R&D progress. Thus, for deep structural reasons related to 

long-term trends in science, I argue that AI chip production capability will not diffuse to China for at least 

the next ten years, giving the United States a fundamental material advantage in AI-enabled conventional 

weapons for that period and likely beyond. 

 

Conceptually, the collected logic of the dissertation can be understood as follows: at a high level, the first 

paper identifies search and mass as main effects of AI on military power. The second paper applies search 

to the nuclear domain, using simulation to assess AI’s impact on the US-China strategic balance through 

AI-empowered tracking of mobile platforms. Complementarily, the third paper applies mass to the 

conventional domain, exploiting proprietary datasets related to the AI supply chain to assess each side’s 

ability to bring mass in the form of AI-enabled weapons to bear in future conventional conflicts. 
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On Not Confusing Ourselves About Artificial Intelligence: 

Deep Learning, Security Studies, and the US-China Balance of Power 
 

Introduction 
What is artificial intelligence, and what are its effects? Recent breakthroughs in modern AI have sparked 

fierce attention from the world’s national security ecosystems: Putin has averred that “whoever leads in AI 

will rule the world,” and most countries of geopolitical note have developed national AI policies, appearing 

to share his urgency.10 China’s “Next Generation Artificial Intelligence Development Plan” assesses that 

AI, as a “new focus of international competition,” is a “technology that will lead in the future”; the plan 

calls for China to “lead the world in AI” by 2030.11 According to the US National Security Commission on 

Artificial Intelligence, AI weapons will be “weapons of first resort in future conflicts” and “transform all 

aspects of military affairs.” On their view, Chinese strategy seeks specifically to “leapfrog” US power by 

more quickly adopting AI, which it sees as underpinning the next generation of military technology.12 

 

This flurry of activity has helped provoke, in turn, an equally sizable crush of commentary. Prominent takes 

disagree wildly: is AI “the new electricity,” to use the phrase Andrew Ng famously coined, or very possibly 

“just BS” – today’s nanotechnology – as Daniel Drezner muses?13 Observers variously speculate that AI 

may automate perhaps 40% of human jobs in the near-term, revolutionize the nature of warfare, or even 

cause human extinction.14 For Henry Kissinger, AI will bring about the end of the world created by the 

 
10 “‘Whoever leads in AI will rule the world’: Putin to Russian children on Knowledge Day,” Russia Today, September 

1, 2017, https://www.rt.com/news/401731-ai-rule-world-putin. For an overview of national AI plans, see Jessica 

Cussins Newman, “Toward AI Security: Global Aspirations for a More Resilient Future,” Center for Long-Term 

Cybersecurity, February 2019, https://cltc.berkeley.edu/wp-content/uploads/2019/02/Toward_AI_Security.pdf, as 

well as Tim Dutton, Brent Barron, and Gaga Boskovic, “Building an AI World: Report on National and Regional AI 

Strategies,” CIFAR, 2018, https://www.cifar.ca/docs/default-source/ai-society/buildinganaiworld_eng.pdf. 

 
11 China State Council, “A Next Generation Artificial Intelligence Development Plan,” July 20, 2017, translated by 

New America, https://www.newamerica.org/documents/1959/translation-fulltext-8.1.17.pdf 

 
12 Eric Schmidt, Robert Work, Safra Catz, Eric Horvitz, Steve Chien, Andrew Jassy, Mignon Clyburn, Gilman Louie, 

Chris Darby, William Mark, Kenneth Ford, Jason Matheny, Jose-Marie Griffiths, Katharina McFarland, and Andrew 

Moore, “Final Report,” National Security Commission on Artificial Intelligence, March 2021, 

https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf, 1, 22-3. 

 
13 Andrew Ng, “Artificial Intelligence is the New Electricity,” Stanford Graduate School of Business, 2017, 

https://www.youtube.com/watch?v=21EiKfQYZXc; Daniel W. Drezner, “What if AI is just BS?,” The Washington 

Post, May 1, 2019, https://www.washingtonpost.com/ outlook/2019/05/01/what-if-ai-is-just-bs/? 

 
14 The “nature of warfare” remark is attributable to former Deputy Secretary of Defense Robert Work. See Benjamin 

Jensen, Scott Cuomo, and Chris Whyte, “Wargaming with Athena: How to Make Militaries Smarter, Faster, and More 

Efficient with Artificial Intelligence,” War on the Rocks, June 5, 2018, https://warontherocks.com/2018/06/wargamin 

g-with-athena-how-to-make-militaries smarter-faster-and-more-efficient-with-artificial-intelligence/. The automation 

remark is from AI entrepreneur Kai-Fu Lee. See Don Reisinger, “A.I. Expert Says Automation Could Replace 40% 

of Jobs in 15 Years,” Fortune, http://fortune.com/2019/01/10/automation-replace-jobs/. Opinions are mixed on 

automation. See Erin Winick, “Every study we could find on what automation will do to jobs, in one chart,” MIT 

Technology Review, January 25, 2018, https://www.technologyreview.com/s/610005/every-study-we-could-find-on 

what-automation-will-do-to-jobs-in-one-chart/. On extinction, see a skeptical view at Oren Etzioni, “No, the Experts 

Don’t Think Superintelligent AI is a Threat to Humanity,” MIT Technology Review, September 20, 2016, 

https://www.technologyreview.com/s/602410/no-the-experts-dont-think-superintelligent-ai-is-a-threat-to-humanity/, 

then a rebuttal at Allan Dafoe and Stuart Russell, “Yes, We Are Worried About the Existential Risk of Artificial 

Intelligence,” MIT Technology Review, November 2, 2016, https://www.technologyreview.com/s/602776/yes-we-

areworried-about-the-existential-risk-of-artificial-intelligence/. For the seminal work on risks from very advanced AI, 
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Enlightenment, as human cognition will become increasingly unable to keep up with, and resist, the 

direction induced in society by AI.15 In his words, “Humanity is at the edge of a revolution driven by 

artificial intelligence.”16 For Jason Lanier and Glen Weyl, two researchers at Microsoft, AI “is best 

understood as a political and social ideology,” one which seeks to “replace, rather than complement, not 

just individual humans but much of humanity.” In their view, the idea of AI should be abandoned entirely, 

in favor of renewed focus on human beings.17  

 

Reading the literature, in short, one gets the mounting impression that AI may lead to the final victory of 

Chinese Communism, make nuclear arsenals everywhere vulnerable to enormous swarms of autonomous 

drones, destroy humanity altogether, and/or simply be the latest fad in buzzwords among those whose 

profession depends on the continuous discussion of such buzzwords, in the same mental category as “Big 

Data” or “globalization” or “5G.”18 Insofar as something important may be happening here, the mind 

nonetheless begins to desire greater precision: again, “what is AI, and what are its effects?” 

 

We are, I believe, confusing ourselves. Generating useful analysis of new technologies requires especially 

precise conceptualization, since the empirics which would typically discipline errant speculation are scarce. 

Since common understandings of what AI is range both tax software and weaponized drones, asking “what 

are the effects of AI?” without proper operationalization is like asking, “what are the effects of explosives?”, 

lumping together firecrackers and nuclear weapons. The analytic consequences of persistent conceptual 

fuzziness are real – for example, one recent article suggesting America adopt an AI-enabled “Dead Hand” 

conflates three highly distinct technologies.19 If AI is anything close to as big a deal as some like Kissinger 

believe, we must do better. 

 

This paper attempts to do better. First, I grapple with the problem of defining AI. I argue that “AI” is best 

decomposed into several different technologies, each superficially similar but best conceptualized as 

importantly separate by political science, similar to how interstate wars and civil wars are understood to 

have distinct causes, characteristics, and effects. I further argue that security studies should, at present, 

mostly study “deep learning,” that approach to machine learning which uses multiple layers of artificial 

neural networks, which are computing constructs loosely inspired by the brain, to learn how to best 

represent data. Deep learning underlies most recent headline-grabbing progress in AI. 

 
see Nick Bostrom, Superintelligence: Paths, Dangers, Strategies (Oxford University Press: UK, 2014). The best quick 

overview of these concerns is Kelsey Piper, “The case for taking AI seriously as a threat to humanity,” Vox, December 

23, 2018, https://www.vox.com/future-perfect/2018/12/21/18126576/ai-artificial-intelligence-machine-learning-

safety-alignment. 

 
15 Henry A. Kissinger, “How the Enlightenment Ends,” The Atlantic, June 2018, https://www.theatlantic.com/magazin 

e/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/. 

 
16 Henry A. Kissinger, Eric Schmidt, and Daniel Huttenlocher, “The Metamorphosis,” The Atlantic, August 2019, 

https://www.theatlantic.com/magazine/archive/2019/08/henry-kissinger-the-metamorphosis-ai/592771/. 

 
17 Jaron Lanier and Glen Weyl, “AI is an Ideology, Not a Technology,” WIRED, March 15, 2020, 

https://www.wired.com/story/opinion-ai-is-an-ideology-not-a-technology/. 

 
18 Some of my colleagues would virulently disagree with me about 5G, and indeed, my point is not that these terms 

mean and refer to nothing, but simply that our discussions about them are overwhelmingly imprecise. 

 
19 Adam Lowther and Curtis McGiffin, “America Needs a ‘Dead Hand,’” War on the Rocks, August 16, 2019, 

https://warontherocks.com/2019/08/america-needs-a-dead-hand/. The Soviet Union’s Perimetr system relied on the 

if-then symbolic logic most often called AI beginning in the 1950s, not modern machine learning. Artificial General 

Intelligence (AGI) is a theoretical possibility about which experts disagree – it may be centuries away, or impossible. 

Neither is deep learning, the AI approach most responsible for the recent upswell of interest. 
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Second, I ask what AI’s effects are. I argue that operationalizing AI as deep learning clarifies presently 

confused debates about AI’s effects – while no satisfyingly final answers can be reached within one paper, 

delving into deep learning’s particulars helps make AI “legible” to the theoretical constructs of political 

science, establishing a basis for further research. This second effort occurs in three parts, split into an 

exploration of deep learning’s mechanical, tactical, and strategic effects:  

 

● By “mechanical effects,” I mean what deep learning does, technically speaking, in a vacuum, or 

when run on a laptop in the woods, so to speak. Analogously, oil’s mechanical effects derive from 

its nature as a dense hydrocarbon.  

 

● By “tactical effects,” I mean what deep learning does, in the context of its effects on a modern 

military. Analogously, oil’s mechanical effects translated into much greater mobility and duration 

of maneuver for militaries than before.  

 

● Finally, by “strategic effects,” I mean what deep learning does, in the context of geopolitical 

competition between the United States and China – that is, what is its effect on the balance of 

power? Analogously, oil drastically enhanced the power of Saudi Arabia, permanently altering the 

geopolitics of the Middle East. 

 

To preview in summary form, at the 10,000-foot level we can understand deep learning as, mechanically, 

a technology which enables machines to learn, and consequently both recognize and reproduce, patterns 

from data. Here, I mean “patterns” in a very powerfully general sense, ranging from “what it looks like 

when stocks are about to go up,” to “what kinds of imagery data human beings would predictably call a 

cat.” Tactically, deep learning’s pattern-learning abilities permit, for modern militaries, a kind of fungibility 

of resources: successful adoption allows converting the triple bundle of compute, task-specific data, and AI 

talent into the automation of a wide variety of military tasks, tasks which either previously required human 

beings, or were outright impossible due to human limitations. Bucketing, we can usefully understand these 

tasks as falling significantly into two conceptual categories: search, meaning the ability to find proverbial 

needles in haystacks of various kinds, and mass, meaning the converse ability to produce and bring to bear 

haystacks of useful needles. At both the mechanical and tactical layers, however, technical risks specific to 

deep learning generate the possibility of new types of accidents and vulnerabilities, complicating adoption. 

 

Strategically, translating upwards to how this impacts the US-China balance of power, technologies 

definitionally alter relative balances of power when they disproportionately benefit, or disproportionately 

harm, one state versus another. When I embed the above-theorized tactical effects into the US-China context 

and ask what results, I find that there are differences not only in how much compute, data, and talent either 

country can acquire (thus possessing the key resources which are “inputs” to AI), but also in how well each 

country can use the resulting automation of search and mass (thus leveraging the “outputs” of AI) across 

various domains of competition, both nuclear and conventional, to gain relative advantage. As a first cut, I 

find that AI may worsen the nuclear balance for China, generate mixed effects on the conventional balance, 

and strengthen China’s prospects in long-term peacetime competition with the United States. As no single 

paper can satisfactorily answer questions across every domain, I primarily aim to lay down a conceptual 

architecture for further research into the strategic layer of AI’s effects.20 Finally, I conclude the paper by 

briefly re-summarizing my argument and suggesting avenues and methods for future research. 

 

  

 
20 The second paper of my dissertation further explores the nuclear balance, and the third paper of my dissertation 

further explores the conventional balance. 
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What is AI? 
AI has no consensus definition.21 Varying definitions across the US government cover, rather chaotically, 

almost all computing-related activities. Several bodies, including the Office of the Director of National 

Intelligence (ODNI) and the NSCAI, roughly define AI as using computers to replace human cognition.22 

Elsewhere, definitions are far more general – for example, the National Institute of Standards and 

Technology (NIST) indicates AI is the “capability of a system to acquire, process, and apply knowledge,” 

and Section 238 of the 2019 National Defense Authorization Act (NDAA) gives a maximally inclusive, 

five-part definition of AI, even including artificial systems developed in neither software nor hardware, 

including “set[s] of techniques.”23  

 

Thankfully, matters are somewhat tamer among computer scientists, who mostly form a 2x2 in disagreeing 

whether intelligence means “human-like” or “ideally rational,” plus whether the AI’s “thought” or 

“behavior” must exhibit intelligence.  

 

Most AI Definitions Within Computer Science Fall Into a 2x224 
 

   Dimension of Behavior 

    Thinking Acting 

Key Criterion 

for “AI-Ness” 

Human-Like 
“machines that think 

like humans” 

“machines that act like 

humans”   

Ideally Rational 
“machines that think 

rationally” 

“machines that act 

rationally”   

 
21 This issue is oft discussed. See Daniel S. Hoadley and Kelley M. Sayler, “Artificial Intelligence and National 

Security,” Congressional Research Service, January 30, 2019, https://fas.org/sgp/crs/natsec/R45178.pdf, 1-4; Danielle 

C. Tarraf, William Shelton, Edward Parker, Brien Alkire, Diana Gehlhaus Carew, Justin Grana, Alexis Levehahl, 

Jasmin Leveille, Jared Mondschein, James Ryseff, Ali Wyne, Dan Elinoff, Edward Geist, Benjamin N. Harris, Eric 

Hui, Cedric Kenney, Aydne Newberry, Chandler Sachs, Peter Schirmer, Danielle Schlang, Vicotria Smith, Abbie 

Tingstad, Padmaja Vedula, and Kristin Warren, “The Department of Defense Posture for Artificial Intelligence: 

Assessment and Recommendations,” RAND, 2019, https://www.rand.org/pubs/research_reports/RR4229.html, 147-

154; P. M. Krafft, Meg Young, Michael Katell, Karen Huang, and Ghislain Bugingo, “Defining AI in Policy versus 

Practice,” arXiv, December 23, 2019, https://arxiv.org/pdf/1912.11095v1.pdf; Jonas Schuett, “A Legal Definition of 

AI,” arXiv, September 4, 2019, https://arxiv.org/pdf/1909.01095.pdf; and Heather M. Roff, “The frame problem: The 

AI ‘arms race’ isn’t one,” Bulletin of the Atomic Scientists 75.3 (2019): 95-8, among others. 

 
22 “The AIM Initiative: A Strategy for Augmenting Intelligence Using Machines,” Office of the Director of National 

Intelligence, January 16, 2019, https://www.dni.gov/files/ODNI/documents/AIM-Strategy.pdf, 13; Eric Schmidt, 

Robert O. Work, Safra Catz, Steve Chie, Mignon Clyburn, Christopher Darby, Kenneth Ford, Jose-Marie Griffiths, 

Eric Horvitz, Andrew Jassy, Gilman Louie, William Mark, Jason Matheny, Katharina McFarland, and Andrew Moore, 

“Interim Report,” National Security Commission on Artificial Intelligence, November 2019, 7. Available online: 

https://www.epic.org/foia/epic-v-ai-commission/AI-Commission-Interim-Report-Nov-2019.pdf. This was also the 

approach of DoD’s 2018 AI Strategy, which defined AI as “the ability of machines to perform tasks that normally 

require human intelligence.” (This definition had no legal force. There is no DoD-wide definition.) See “Summary of 

the 2018 Department of Defense Artificial Intelligence Strategy: Harnessing AI to Advance Our Security and 

Prosperity,” DoD, 5. Available online: https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-

DOD-AI-STRATEGY.PDF. 

 
23 Tarraf et al., “The Department of Defense Posture for Artificial Intelligence,” 150-2; National Defense 

Authorization Act for Fiscal Year 2019, Section 238, https://www.congress.gov/115/bills/hr5515/BILLS-

115hr5515enr.pdf. 

 
24 Taxonomy from Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach (US: Prentice Hall, 

2009), 5. This is the standard introductory textbook for computer scientists studying AI. 
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Confronting these options, security scholars have mostly ticked the “machines that act like humans” 

quadrant.25 Within that 2x2, this is the logical choice – after all, behavior is the causally important attribute 

for weapons systems; it matters not if the AI “thinks.” Similarly, in considering when, whether, and how 

AI will replace human operators at various tasks, “human-like” qualities are the key threshold – since 

human behaviors are themselves riddled with various cognitive biases, AI need not be “ideally rational” to 

meet the bar.26 

 

In my view, however, no quadrant of this 2x2 best serves our purposes. Critically, the definitions therein 

are all outcome-based – that is, they define as AI all machines which have the ability to exhibit a certain 

form of performance, such as human-like behavior or thinking. Such definitions make a great deal of sense 

for computer science, which has the creation and refinement of AI as its goal, but not for political science.  

 

First, outcome-based definitions inherently under-exploit the technical literature. Since these 

operationalizations define something as AI if capable of human-like behavior, and not, otherwise, they 

black-box whether AI can actually produce such behaviors. It is definitionally assumed. Besides risking 

separation from technical realities, this approach thus also tends to elide sober discussion of AI’s limitations 

and vulnerabilities. Regrettably, much strategic analysis is still patterned, “well, if AI can do X, then Y 

might follow,” without answering, “can AI do X?” In such cases, replacing “AI” with “magic” would not 

cause loss of content. 

 

Second, more worryingly, outcome-based definitions lack intercoder reliability. Since analysts tend to have 

different opinions about what “meets the bar” of human-like performance, discussions can give the 

impression that both everything and nothing can be AI. Arguably, after all, calculators, drone swarms, and 

tax preparation software all exhibit “human-like behavior” in one sense or another, as they replace 

counterfactual expenditures of human labor and cognition. As M. L. Cummings notes, “by this definition a 

house thermostat is intelligent because it can perceive and adjust the temperature.”27 On the other hand, 

many tasks previously considered benchmarks for “real” AI, such as playing chess or writing poetry, are 

often retroactively dismissed as “not really requiring intelligence” once computers accomplish such tasks. 

In Douglas Hofstadter’s now standard misquoting of the famous adage, “AI is whatever hasn’t been done 

yet.”28 This conceptual confusion is not only deeply unsatisfying, but also precludes analytic progress in 

studying AI as an independent variable. 

 
25 M. L. Cummings, “Artificial Intelligence and the Future of Warfare,” Chatham House, January 2017, 

https://www.chathamhouse.org/sites/default/files/publications/research/2017-01-26-artificial-intelligence-future-war 

fare-cummings-final.pdf, 4; Vincent Boulanin, “Introduction,” in The Impact of Artificial Intelligence on Strategic 

Stability and Nuclear Risk, Volume I: Euro-Atlantic Perspectives, ed. Vincent Boulanin (SIPRI, May 2019), 

https://fas.org/sgp/crs/natsec/R45178.pdf; Michael Horowitz, “Artificial Intelligence, International Competition, and 

the Balance of Power,” Texas National Security Review 1 (2018), https://doi.org/10.15781/T2639KP49; Michael C. -

---, “When speed kills: Lethal autonomous weapon systems, deterrence and stability,” Journal of Strategic Studies 42 

(2019), 767. 

 
26 Molly Kovite, “I, Black Box: Explainable Artificial Intelligence and the Limits of Human Deliberative Processes,” 

War on the Rocks, July 5, 2019, https://warontherocks.com/2019/07/i-black-box-explainable-artificial-intelligence-

and-the-limits-of-human-deliberative-processes/. Listing human foibles is the standard counter to accident-based 

worries about deploying AI, imperfections and all. For the seminal work on human biases, see Daniel Kahneman, 

Thinking, Fast and Slow (US: Farrar, Straus and Giroux, 2011). 

 
27 Cummings, “Artificial Intelligence and the Future of Warfare,” 6. 

 
28 Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (US, Basic Books, 1979), 601. Tesler 

maintains the quote was “Intelligence is whatever machines haven’t done yet,” though the Hofstadter rendering is now 

omnipresent. Larry Tesler, “CV: Adages & Coinages,” http://www.nomodes.com/Larry_Tesler_Consulting/Adages_a 

nd_Coinages.html. 
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For example, political science may wish to ask, “does AI increase or decrease X?” for various X (e.g., the 

cost of air power, the sustainability of authoritarianism, the survivability of nuclear arsenals, and so on). 

Questions of this sort are ill-formed, however, if no consensus exists on what actually counts as AI, and 

especially if different subsets of “AI” produce oppositely signed effects. To illustrate, one prominent 

discussion concerns whether and when AI-driven automation will obsolete different kinds of human 

experts. Here, however, while expert systems (first created in the 1970s, but still used today) lean on human 

specialists to formulate enormous databases of manually inputted knowledge, deep learning models often 

leverage no human domain knowledge whatsoever. The first expert system, MYCIN, was developed by 

four doctors and one “pure” computer scientist; in 2020, DeepMind published research in Nature 

demonstrating a deep learning AI consistently outperforming human radiologists in breast cancer 

screenings.29 Consequently, while expert systems did not drive the extinction of many expert professions, 

this is not necessarily empirical evidence about deep learning’s labor automation effects today. 

 

Notably, this point is not merely theoretical – even outside academia, that both everything and nothing can 

be AI causes real-world difficulties. For example, a 2019 DoD-commissioned RAND study found that its 

59 government interviewees gave a “very broad” variety of definitions of AI, and that “it is not currently 

clear how the determination of what constitutes an AI initiative or activity is made, by whom, and whether 

that determination is consistent across DoD.”30 (The study itself simply noted, “It is outside the scope of 

our study to define artificial intelligence.”)31 Similarly, as Wired remarked in 2014, “the business plans of 

the next 10,000 startups are easy to forecast: Take X and add AI.”32 Since AI is “hot” but unclearly defined, 

startups, governments, and bureaucrats requesting program funding are all incentivized to label projects as 

AI, if at all plausible. Jonas Schuett goes so far as to recommend that policymakers should not use the term 

“artificial intelligence” for regulatory purposes, due to its inherent murkiness.33 It appears possibly not an 

exaggeration to say that the US government does not, presently, itself know “how much AI” it is funding.  

 

Here, a short imaginative excursion may be helpfully illustrative. As an analogy, imagine that strategic 

bombers were instead commonly referred to as “city destruction assets” (CDAs) by security studies, and 

that instead of discussing the technical particulars of aircraft per se, scholars instead wrote abstractly of 

how CDAs had commonly failed to produce peace by collapsing the enemy’s morale, drawing very general 

conclusions about the causal structure of international affairs.34 So far, so good, but imagine further that 

once nuclear ICBMs arrived on the scene, they were then also referred to as CDAs, without a great deal of 

fanfare about distinguishing between different kinds of CDAs – in fact, imagine that the typical 

 
29 Nils J. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements (UK: Cambridge 

University Press, 2009), 291-5; Edward H. Shortliffe, “Medical Expert Systems – Knowledge Tools for Physicians,” 

Western Journal of Medicine 145.6 (1986): 830-9; Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan 

Godwin, Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg C. Corrado, Ara Darzi, Mozziyar 

Etemadi, Florencia Garcia-Vicente, Fiona J. Gilbert, Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan 

Karthikesalingam, Christopher J. Kelly, Dominic King, Joseph R. Ledsam, David Melnick, Hormuz Mostofi, Lily 

Peng, Joshua Jay Reicher, Bernardino Romera-Paredes, Richard Sidebottom, Mustafa Suleyman, Daniel Tse, Kenneth 

C. Young, Jeffrey De Fauw, and Shravya Shetty, “International evaluation of an AI system for breast cancer 

screening,” Nature 577 (2020), 89-94. 

 
30 Tarraf et al., “The Department of Defense Posture for Artificial Intelligence,” 147, 47, 54. 

 
31 Ibid., 21.  

 
32 Kevin Kelly, “The Three Breakthroughs That Have Finally Unleashed AI on the World,” Wired, October 27, 2014, 

https://www.wired.com/2014/10/future-of-artificial-intelligence/. 

 
33 Schuett, “A Legal Definition of AI,” 3-4. 

 
34 Robert Pape, Bombing to Win: Air Power and Coercion in War (US: Cornell University, 1996). 
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commentator writing on CDAs had very little technical grasp of how they worked, merely that they tended 

to produce the destruction of cities, and that the newer ones seemed to work better. Examples of previous 

classes and uses of CDAs would be mixed freely in this discourse; imaginative discussion of future, even 

more powerful CDAs might also be discussed and often conflated. 

 

Of course, the point of this small imaginative exercise is that this is exactly the situation we confront, with 

discussion of AI. Just as strategic bombers and ICBMs deserve separate study, so too do the various 

technologies all commonly lumped together and called AI. Indeed, computer scientists themselves tend to 

focus on specific operationalizations of AI, rather than comment on “AI” as a whole; in a sample of several 

dozen thousand computer science publications on arXiv, over a fifth mentioned deep learning in their title, 

while only 138 articles did the same for “AI” or “artificial intelligence.”35 The three most prominent such 

technologies conflated under the AI banner are symbolic AI, deep learning, and superintelligence: 

 

● Symbolic AI (commonly “good old-fashioned AI” or “GOFAI” for short, or less commonly 

called “handcrafted knowledge systems” by DARPA) relies, as its core technical principle, on the 

idea that reality can be usefully understood using a “physical symbol system,” or any formal 

language in which symbols correspond to information and can be manipulated according to set 

rules, such as algebra, chess, or binary.36 Symbolic AI emerged, in part, from the idea that human 

reasoning itself consists, in large part or entirely, of a kind of manipulation of discrete symbols. 

Most ambitiously, according to the “physical symbol system hypothesis,” later formalized by Allen 

Newell and Herbert Simon, “A physical symbol system has the necessary and sufficient means for 

general intelligent action.”37 If this hypothesis were true, symbolic AI could be exactly as powerful 

as human minds. 

 

Symbolic AI was the most well-known paradigm in the first wave of interest in AI beginning in the 

1950s. Its products required human experts, for some application in question, to input the relevant 

symbols and their rule-based relationships; for example, the medical diagnostic product mentioned 

above, MYCIN, relied on human doctors to input “if x, then y” rules linking symptoms to diseases. 

Although rarely called AI now, tax preparation software is, in fact, an example of symbolic AI – 

the customer inputs various data, which the software then manipulates according to its internal 

ruleset to produce a filled-out tax return. Other symbolic AI systems developed using this technical 

basis include aircraft autopilots and missile guidance.38 

 

● Deep learning, on the other hand, relies as its core technical principle on multiply-layered 

artificial neural networks (sometimes called “deep neural networks,” or DNNs, as shorthand), 

which are computing constructs loosely inspired by the human brain. As constructs, DNNs are 

extremely powerful because they are, mathematically speaking, “universal function 

approximators” – that is, they can compute any imaginable function. This is, to put it mildly, a 

fairly astonishing property. Put another way, for any kind of relationship between some x and some 

y, where x might be “pictures” and y might be “accurate labels of those pictures” (or, more 

 
35 Daniel Staff, “Why the ‘AI revolution’ is really a deep learning revolution,” Medium, October 22, 2018, 

https://medium.com/digital-catapult/why-the-ai-revolution-is-really-a-deep-learning-revolution-23e45da2ba3a. 

 
36 Nilsson, The Quest for Artificial Intelligence, 65. Symbolic AI was nicknamed “Good Old-Fashioned Artificial 

Intelligence” in John Haugeland, Artificial Intelligence: The Very Idea (US: MIT Press, 1985).  

 
37 Allen Newell and Herbert Simon, “Computer Science as Empirical Inquiry: Symbols and Search,” Communications 

of the ACM 19.3 (1976): 113–26. 

 
38 Greg Allen, “Understanding AI Technology,” DoD Joint Artificial Intelligence Center, 2020, 

https://www.ai.mil/docs/Understanding%20AI%20Technology.pdf, 3. 



21 

ambitiously, where x might be “battlefield situations” and y might be “the military tactics most 

likely to produce victory in those battlefield situations; or, more commonly, where x might be 

“sentences in Chinese” and y might be “the corresponding, properly translated sentences in 

English”), there exists a DNN which can compute that function, given the appropriate data, 

sufficient computational hardware, and the right algorithm as designed by some clever engineer.39 

The key difference between deep learning and symbolic AI, for our purposes, is that, simplifying 

somewhat, deep learning learns how best to represent and understand the data on its own, as 

opposed to relying on direct human “teaching.” 

 

Deep learning is the cause of the recent spike in attention to AI. In recent years, deep learning has 

enabled dramatic advances in machine translation, autonomous driving, facial recognition, protein 

folding, and medical image analysis.40 Improved natural language processing (NLP) models are 

able to generate seemingly human-authored text on prompted topics without task-specific training, 

as well as outperform human respondents at the standard reading comprehension dataset.41 Human-

indistinguishable “deepfakes” have arisen with generative adversarial networks (GANs), which 

achieve their eerie indistinguishability by training two models against each other: one attempts to 

generate new, fake examples, and one attempts to discern whether given examples are real or fake.42 

AlphaGo defeated Lee Sedol 4-1 in Go, then was itself defeated 100-0 by its successor AlphaGo 

 
39 Of course, DNNs are not God – depending on the details (chiefly, the availability or even possibility of data, the 

goodness of one’s algorithms, and the quantity of computational power brought to bear), the quality of the 

approximation of the function will vary greatly, or alternatively it may take longer than the remainder of the time 

available in the universe before heat death to find that approximation. For an intuitive explanation, see Michael 

Nielsen, “A visual proof that neural nets can compute any function,” Neural Networks and Deep Learning 

(Determination Press, 2015). Available online: http://neuralnetworksanddeeplearning.com/chap4.html. 

 
40 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,” Nature 521 (2015): 436-44; Yonghui Wu, 

Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, 

Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan 

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff 

Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean, 

“Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” arXiv, 

October 6, 2016, https://arxiv.org/pdf/1609.08144.pdf; Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel 

Macesanu, “A Survey of Deep Learning Techniques for Autonomous Driving,” arXiv, October 17, 2019, 

https://arxiv.org/pdf/1910.07738.pdf; Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent 

Sifre, Tim Green, Chongli Qin, Augustin Zidek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig 

Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu, and 

Demis Hassabis, “Improved protein structure using potentials from deep learning,” Nature (2020), 

https://www.nature.com/articles/s41586-019-1923-7; Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud 

Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, 

Clara I. Sanchez, “A Survey on Deep Learning in Medical Image Analysis,” arXiv, June 4, 2017, 

https://arxiv.org/pdf/1702.05747.pdf. 

 
41 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever, “Language Models are 

Unsupervised Multitask Learners,” OpenAI, February 14, 2019, https://cdn.openai.com/better-language-

models/language_models_are_unsupervised_multitask_learners.pdf; Jacob Devlin, Ming-Wei Chang, Kenton Lee, 

and Kristina Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” 

arXiv, May 24, 2019, https://arxiv.org/pdf/1810.04805.pdf. 

 
42 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 

Courville, and Yoshua Bengio, “Generative Adversarial Nets,” arXiv, June 10, 2014, https://arxiv.org/pdf/1406.2661. 

pdf. 
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Zero a year later; this successor program required no human data or guidance.43 Superhuman levels 

have been achieved in Starcraft II, Dota 2, and poker.44 AlphaFold achieved breakthrough rates of 

accuracy comparable to experimental methods in protein-structure prediction, a paradigm-changing 

result for the biological sciences.45 According to analysis by Klinger et al. (2020) of 110,000 arXiv 

papers, deep learning increasingly dominates the AI research field, especially in the private sector.46 

 

● Artificial general intelligence (AGI), finally, is a theoretical capability that does not yet exist.  

AGI is AI that is as good as humans at all tasks.47 However, experts disagree whether AGI is even 

technically possible, let alone which specific technical principles might lead to AGI.48 In other 

words, as with the above-discussed prevailing definitions of “AI,” AGI is an outcome-based term 

referring to the AI’s level of performance – again, that is, that the AGI is as good as human beings 

at all tasks. How the AGI does this is not specified, though identified candidates that have been 

speculated about include, for example, advanced self-modifying machine learning, whole brain 

emulation in software, brain-computer interfaces, or a combination of individually superhuman 

services acting in ensemble, among other possibilities.49 

 
43 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, 

Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den 

Driessche, Thore Graepel, and Demis Hassabis, “Mastering the game of Go without human knowledge,” Nature 550 

(2017): 354–59. That program’s own successor, AlphaZero, itself achieved superhuman performance across Go, 

chess, and shogi within 24 hours of training. AlphaZero similarly was given no human guidance besides the game 

rules. See Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.” 

 
44 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, 

David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo 

Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi 

Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar 

Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, 

Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver, 

“Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature 575 (2019): 350-4; Christopher 

Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław “Psyho” Dębiak, Christy Dennison, David Farhi, 

Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, 

Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas 

Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Philip Wolski, Susan Zhang, “Dota 2 with Large Scale Deep 

Reinforcement Learning,” arXiv, December 13, 2019, https://arxiv.org/pdf/1912.06680.pdf; Noam Brown, Adam 

Lerer, Sam Gross, and Tuomas Sandholm, “Deep Counterfactual Regret Minimization,” arXiv, May 22, 2019, 

https://arxiv.org/pdf/1811.00164.pdf. 

 
45 Ewen Callaway, “‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures,” 

Nature, November 30, 2020, https://www.nature.com/articles/d41586-020-03348-4. 

 
46 Joel Klinger, Juan Mateos-Garcia, and Konstantinos Stathoulopoulos, “A narrowing of AI research?,” arXiv, 

November 18, 2020, https://arxiv.org/pdf/2009.10385.pdf. 

 
47 Bostrom, Superintelligence. 

 
48 See a review of the debate at Stuart Russell, Human Compatible: Artificial Intelligence and the Problem of Control 

(US: Viking, 2019), Chapter 6. For a short elucidation of the negative view, see Kevin Kelly, “The Myth of a 

Superhuman AI,” Wired, April 25, 2017, https://www.wired.com/2017/04/the-myth-of-a-superhuman-ai/. 

 
49 See Bostrom, Superintelligence, 27-35, 35-43, and 54-8, for the ideas about machine learning, whole brain 

emulation, and brain-computer interfaces, respectively. For the ensemble idea, see K. Eric Drexler, “Reframing 

Superintelligence: Comprehensive AI Services as General Intelligence,” Future of Humanity Institute, 2019, 

https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf. 
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While all three technologies can benefit from study, they cannot be productively conflated. For clarity, I 

offer a diagram below:  

 

Technologies Commonly Called “AI”50 
 

 
 

The problem is that analysts often simply say “AI,” when they have in mind separate selections of these 

three possibilities; many commentaries even seemingly freely mix and match between different aspects of 

each. In fact, the technologies have different technical, scientific bases – they are operating on different 

basic principles, have different demands of the organizations which would deploy them, and affect the 

broad ensemble of variables that political scientists care about in different ways. Like strategic bombers 

and ICBMs, they are simply different things, even though human beings have attempted to use them – or 

imagine using them – to accomplish similar ends. So, what should scholars excited by “AI” study? 

 

In my view, most scholars should study deep learning.51 First, relative to symbolic AI, deep learning has 

more importance – insofar as interested academics have specific recent examples of impressive AI 

capabilities in mind, as discussed above, they are overwhelmingly likely to be examples of deep learning. 

On the other hand, like the hope of winning wars with strategic bombing alone, the intervening decades 

have given the lie to GOFAI’s most ambitious dreams. This is not to say nobody should study symbolic AI 

– due to the slow pace of adoption in that domain, for example, militaries are still in the process of 

integrating GOFAI into their nuclear architectures, which makes studying GOFAI there useful.52 More 

generally, however, GOFAI no longer captures what most are in fact thinking of, when they think of AI. 

 
50 As a technical aside, this diagram simplifies somewhat for the sake of legibility – doubtless, computer scientists 

themselves would take issue. More completely, deep learning is a specific approach to “machine learning,” which is 

any approach to artificial intelligence which seeks to have the machine itself do learning, rather than the human 

engineer preprogram the machine to know what it needs to know. Consequently, “machine learning” includes many 

elements which are not deep learning – for example, linear regression is, in fact, a (simple) form of machine learning. 

Machine learning other than using deep learning was applied to play tic-tac-toe in the 1960s, enable the “Stanford 

Cart” to navigate a room full of chairs (albeit taking over 5 hours) in the 1970s, recognize spoken words in the 1980s, 

and play backgammon in the 1990s; indeed, Alan Turing first defended the possibility of “learning machines” in 1950. 

See Tom Mitchell, Machine Learning (US: McGraw Hill, 1997), 2-3. 

 

Deep learning is a general approach to the problem of machine learning; “supervised learning,” “unsupervised 

learning,” and “reinforcement learning” are types of machine learning problems. Thus, one can have reinforcement 

learning which uses deep learning, or does not. The most exciting recent results, however, have all resulted from the 

application of deep learning. 

 
51 I specify “deep learning” instead of “machine learning” because the latter is, again, treacherously, an outcome – 

deep learning is a specific technology through which machines can be taught to learn. 

 
52 One such study is Michael C. Horowitz, Paul Scharre, Alexander Velez-Green, “A Stable Nuclear Future? The 

Impact of Autonomous Systems and Artificial Intelligence,” arXiv, 2019, https://arxiv.org/abs/1912.05291, 6. They 

write, “In this paper, unless otherwise specified, we generally use the terms automated or autonomous system to refer 

to ‘first wave’ expert AI systems that perform various tasks on their own.” 
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Second, relative to AGI, deep learning has the benefit of tractability – state-of-the-art deep learning research 

today is commercial, not governmental, and the field’s norms strongly encourage open online publication.53 

Consequently, scholars can freely peruse breakthrough research, including likely military precursors.54 In 

contrast, since we lack certainty about whether AGI is even possible, let alone what technical basis it may 

emerge from, it is very difficult to imagine rigorous analysis, since this is then akin to saying, “one day we 

may be able to control time – ignore how for the moment – but what are the implications of that”? The 

battlefield effects of AGI seem presently unknowable. 

 

Consequently, for the purposes of this paper, I define artificial intelligence to be deep learning. One 

conceptual issue is worth addressing here: should the definition of “AI” include its inputs? After all, deep 

learning’s recent “moment in the sun” has benefited enormously from the increased availability of all three 

of its inputs: data, compute, and talent. The rise of the Internet has caused the availability of large datasets 

to balloon, both in terms of datasets deliberately created for deep learning, such as ImageNet, and in terms 

of generally available material against which to train – for example, GPT-2 involved scraping all Reddit 

posts which had a certain minimum karma score. Simultaneously, the semi-continued march of Moore’s 

Law, the observation that the number of transistors per silicon chip doubles with regularity, combined with 

the increasing development of advanced chips specialized for AI applications, has meant compute has kept 

pace. Finally, computer scientists have continued a steady pace of algorithmic progress using deep learning. 

As a result of these three trends, beginning in 2012, many of the standard AI benchmarks were consistently 

won by systems using deep learning.55 Perhaps, then, we should include these trends as part of AI? 

 

In my view, we can do so without incorporating them into the definition of AI per se. Similar to the 

relationship between steel (and steelworkers) and railroads, it seems most coherent to regard data, compute, 

and AI talent as precursors to AI, but not as AI itself. After all, technologies are always embedded in the 

context of other factors – the US nuclear arsenal, for example, requires for optimal function not just the 

weapons themselves but also satellites, dual-capable aircraft, and the entire political structure of the US 

military and government, to boot. Nonetheless, we would not consider the US government itself part of 

what a “nuclear weapon” is. Instead, we might analogously speak of “AI systems” which include the 

computer scientists, weapons platforms, and broader organizations within which deep learning is deployed, 

just as we speak of “nuclear weapons systems” which include the operating governments’ command-and-

control infrastructure, and so on.  

 

What are AI’s effects? 
Having operationalized AI as deep learning provides the basic clarity necessary to studying AI’s effects. 

Since it is beyond the scope of one paper to rigorously assess deep learning’s effects on all dependent 

variables of interest to political science, I focus my attention on the US-China balance of power to illustrate 

how concentrating on deep learning can clarify extant discussions about AI. 

 

The US-China balance seems especially suitable for this: first, a significant literature assessing AI’s effects 

on it already exists, providing useful ground on which to demonstrate the utility of focusing on deep 

 
53 For example, in contrast, GPS and the internet were developed by the US government. See Lorand Laskai, “Civil-

Military Fusion: The Missing Link Between China’s Technological and Military Rise,” Council on Foreign Relations, 

January 29, 2018, https://www.cfr.org/blog/civil-military-fusion-missing-link-between-chinas-technological-and-

military-rise.  

 
54 Most work appears on arXiv, an electronic preprint repository. See https://arxiv.org/list/cs/recent. 

 
55 Allen, “Understanding AI Technology,” 17. An important factor in the rise of compute availability was the shift to 

use of GPUs, created to display graphics, for the highly parallelizable calculations involved in deep learning. See Ian 

Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (MA: MIT Press, 2016), 439-41. 
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learning. Second, AI’s effects on the US-China balance run through many intermediate DVs of intrinsic 

interest to political science, such as strategic stability, and so the topic covers broad theoretical ground. 

Finally, the ongoing competition between the United States and China is one of the major geopolitical 

stories of at least the next few decades, and so is of substantive interest in and of itself. 

 

Thus, what are deep learning’s effects on the US-China balance of power? I answer this question in three 

parts: first, I explain deep learning’s “mechanical effects,” by which I mean what deep learning “does,” 

technically speaking, in a vacuum. I argue that these effects can be usefully understood by political scientists 

as a powerful ability to carry out pattern recognition and pattern generation while risking a kind of technical 

accident best encapsulated as “misalignment.” In short, to “what does deep learning, you know, do, as a 

technology?” we can answer, “Pattern recognition plus pattern generation, minus misalignment.” 

 

Second, I explore deep learning’s “tactical effects,” showing how these mechanical effects would play out 

in the context of use by a modern military. Deep learning has a plethora of possible military applications, 

but I argue that many key uses fall into the categories of “search” and “mass.” Militaries seeking to leverage 

deep learning also face the possibility of “slippage,” however, comprising not only misalignment’s 

technical accidents, but also social accidents and new AI-specific vulnerabilities when facing adversaries. 

In short, to “what are deep learning’s main uses for militaries, tactically speaking?” we can answer, “Search 

plus mass, minus slippage.”  

 

Finally, I move the tactical effects into the dyadic context of US-China competition, assessing deep 

learning’s “strategic effects” on the relative balance of power. I find that there are differences in both 

“inputs” (the key resource precursors affecting “how much” AI either country can acquire), and “leverage” 

(“how useful” AI, once acquired, is to that country, in the context of the relative balance, given what the 

specific areas of contestation are) between the United States and China. As an initial analysis, these 

differences appear to favor the United States in the nuclear domain, favor China in the context of peacetime 

competition, and have mixed effects on the conventional balance. 

 

An End-to-End Conceptualization of AI’s Effects 
 

(1) Mechanical Effects 

Pattern Recognition Pattern Generation Misalignment 
 

 
 

(2) Tactical Effects 

Search Mass Slippage 
 

 
 

(3) Strategic Effects 

Nuclear Conventional Peacetime 

 

 

(1) Mechanical Effects 
By “mechanical,” I mean basic, fundamental, technical; that is, what does AI “do,” in the sense that being 

an energy-dense hydrocarbon is what oil “does”? Put another way, what does deep learning do, on a laptop 

in the middle of nowhere? Since description always leaves out some detail, I seek to capture only the key 

characteristics of deep learning most important for security studies; similarly, at the dawning of the use of 

oil, minutely describing its molecular structure would not be useful for security studies scholars, but perhaps 
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explaining its special energy density would be. In this spirit, I argue deep learning can be understood as 

“pattern recognition and pattern generation, minus misalignment.” 

 

(a) Pattern Recognition 

Deep learning can, in a powerfully general fashion, recognize patterns in data, even extremely complex 

patterns such as what moves in specific situations in chess or Go have the highest probability of victory. 

This ability differs sharply from symbolic AI, which required manual human input of each pattern. 

 

How? The basic technical basis for this ability is multiply-layered neural networks (DNNs), which are 

universal function approximators, meaning they can compute any imaginable function. Since, as mentioned 

above, most of reality can be described in the form of some kind of function, this gives DNNs the general 

ability to learn patterns across many, many domains of human activity, accounting for their wide application 

in fields ranging from self-driving cars (simplifying, as a function: “over hundreds of thousands of miles of 

driving data, both real and simulated, how do various actions map to the probability of crashing?”) to 

cooling Google’s power centers (“how do various power distribution regimes map to energy efficiency?”). 

Some recent applications of deep learning’s pattern recognition abilities include facial recognition, 

intelligence processing (i.e., “is this a nuclear plant, or a random industrial building”), medical diagnosis, 

wildlife classification, autonomous vehicles, and automated software vulnerability detection/exploitation.56  

A distinct branch of machine learning problems, that of reinforcement learning, has also benefited from 

applying deep learning to game-generated or simulated data.57   

 
56 A deep learning model beat manual modeling in forecasting aftershock locations in earthquakes. AI-driven 

autonomous data center cooling delivered 30% energy savings to DeepMind, including through methods which 

surprised expert human operators. Alpha-Fold set new records in protein-folding. Norouzzadeh et al. used CNNs to 

classify Serengeti wildlife appearing in camera traps with 93.8% accuracy. By self-restricting automated classification 

to the 99.3% of images where it had confidence it was at least as accurate as human classifiers, and passing on the rest 

to humans, the system was able to save about 8 years of work. The Google-created platform Global Fishing Watch 

uses deep learning to identify transshipment to catch illegal poaching activity. To identify fishing vessels without 

Automatic Identification Systems (AIS), GFW analyzes satellite data from NOAA and classifies ships from space. 

Some research examines automated vulnerability detection systems for cybersecurity using deep learning to learn 

features directly from source code. Microsoft researchers used deep learning to augment fuzzing, a technique for 

discovering software vulnerabilities by testing malicious inputs. Here, the researchers made the malicious input 

learned, rather than random. See Phoebe M. R. Devries, Fernanda Viegas, Martin Wattenberg, and Brendan J. Meade, 

“Deep learning of aftershock patterns following large earthquakes,” Nature 560 (2018): 632-4. Available online: 

https://www.nature.com/articles/s41586-018-0438-y; Chris Gamble and Jim Gao, “Safety-first AI for autonomous 

data centre cooling and industrial control,” August 17, 2018, https://deepmind.com/blog/article/safety-first-ai-

autonomous-data-centre-cooling-and-industrial-control; Senior et al., “Improved protein structure using potentials 

from deep learning”; Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexandra Swanson, 

Meredith S. Palmer, Craig Packer, and Jeff Clune, “Automatically identifying, counting, and describing wild animals 

in camera-trap images with deep learning,” PNAS 115.25 (2018): E5716–E5725. Available online: 

https://www.pnas.org/content/pnas/115/25/E5716.full.pdf. Brian Sullivan, “Close encounters of the fishy kind,” 

Google, June 8, 2018, https://www.blog.google/products/earth/close-encounters-fishy-kind/. Rebecca L. Russell, 

Louis Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer, Onur Ozdemir, Paul M. Ellingwood, and Marc W. 

McConley, “Automated Vulnerability Detection in Source Code Using Deep Representation Learning,” arXiv, 

November 28, 2018, https://arxiv.org/pdf/1807.04320.pdf; Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur 

Ozdemir, Leonard R. Kosta, Akshay Rangamani, Lei H. Hamilton, Gabriel I. Centeno, Jonathan R. Key, Paul M. 

Ellingwood, Erik Antelman, Alan Mackay, Marc W. McConley, Jeffrey M. Opper, Peter Chin, and Tomo Lazovich, 

“Automated software vulnerability detection with machine learning,” arXiv, August 2, 2018, 

https://arxiv.org/pdf/1803.04497.pdf. Mohit Rajpal, William Blum, and Rishabh Singh, “Not all bytes are equal: 

Neural byte sieve for fuzzing,” Microsoft, 2017, https://www.microsoft.com/en-us/research/wp-content/uploads/2017 

/11/neural-fuzzing-mcr.pdf. 

 
57 To avoid confusion, it may be useful to emphasize again that reinforcement learning and (un)supervised learning 

are types of machine learning problems; deep learning is an approach to those problems. Reinforcement learning 
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To further illustrate what is new about deep learning, we can examine three cases where both the previous 

wave of technology in this domain, symbolic AI, and deep learning, have been used for the same purpose. 

First, chess – IBM’s Deep Blue (1997) was an application of symbolic AI, and beat Garry Kasparov at 

chess through training by human grandmasters and brute-force analysis of 200 million positions per second. 

In contrast, DeepMind’s AlphaZero (2017), which achieved superhuman chess ability without any human 

grandmaster involvement, relied on applying deep learning to achieve that superhuman ability within 24 

hours of self-play with no human training and access only to the game’s rules.58 

 

Second, spam filters – with symbolic AI, one might instruct the spam filter to block every email containing 

the phrase “cheap imported drugs”; of course, this could be defeated by clever spammers who understood 

this and could use different phrasings. In contrast, a spam filter being trained with deep learning could be 

given millions of emails which human beings (say, in the normal course of using the popular email service 

Gmail) have themselves marked as spam or not, and itself then learn how to robustly identify and predict 

which emails are spam.59 

 

Finally, image recognition – with symbolic AI, efforts at image recognition failed to reach human-level 

performance because of the extreme difficulty in coding formal rules to “explain” to the AI how to assess, 

say, whether an object is a picture of fighter aircraft, or a civilian passenger plane. Many of the 

distinguishing features one might use to inform a human child (e.g., “what’s attached here is a missile”) 

invoke higher-level conceptual constructs, and translating those into computer-legible symbolic encodings 

 
trains software agents to take actions in some environment to maximize reward, either in actual games with inherent 

rewards, or in real-world environments where reward can be defined; while reinforcement learning is not necessarily 

deep, the combination of the two as deep reinforcement learning (DRL) has been responsible for most recent 

breakthroughs.57 As one application, researchers are exploring the use of DRL to coordinate UAV networks, as 

individual drones can be modeled as game-playing agents taking action under uncertainty to collaboratively maximize 

overall swarm performance. See Yuxi Li, “Deep Reinforcement Learning: An Overview,” arXiv, November 26, 2018, 

https://arxiv.org/abs/1701.07274. Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang, 

Ying-Chang Liang, and Dong In Kim, “Applications of Deep Reinforcement Learning in Communications and 

Networking: A Survey,” IEEE Communications Surveys & Tutorials 21.4 (2019): 3133-74; Bo Yang and Min Liu, 

“Keeping in Touch with Collaborative UAVs: A Deep Reinforcement Learning Approach,” IJCAI-18, 2018, 

https://www.ijcai.org/Proceedings/2018/0078.pdf. 

 

Some examples of reinforcement learning problems where deep learning has enabled progress include a robot  learning 

how to solve a Rubik’s cube, including in response to previously unseen disturbances, such as being perturbed by a 

plush giraffe or having two fingers tied. AI progress has now achieved superhuman levels across chess, shogi, Dota-

2, Starcraft, and many other games. Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob 

McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas 

Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang, “Solving 

Rubik’s Cube with a Robot Hand,” arXiv, October 16, 2019, https://arxiv.org/pdf/1910.07113.pdf; Silver et al., 

“AlphaZero”; Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning 

Algorithm”; Brown et al., “Deep Counterfactual Regret Minimization; Berner et al., “Dota 2 with Large Scale Deep 

Reinforcement Learning”; Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement learning.” 

 
58 David Silver, Thomas Hubert, Julian Schrittwieser, and Demis Hassabis, “AlphaZero: Shedding new light on chess, 

shogi, and Go,” DeepMind, December 6, 2018, https://deepmind.com/blog/article/alphazero-shedding-new-light-

grand-games-chess-shogi-and-go; David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew 

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen 

Simonyan, and Demis Hassabis, “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning 

Algorithm,” arXiv, December 2017, https://arxiv.org/pdf/1712.01815.pdf. 

 
59 Ben Buchanan and Taylor Miller, “Machine Learning for Policymakers: What It Is and Why It Matters,” Belfer, 

June 2017, https://www.belfercenter.org/sites/default/files/files/publication/MachineLearningforPolicymakers.pdf, 5. 
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is not at all trivial. In particular, as computers “read” image data pixel by pixel, detecting the actual outlines 

of objects in pictures, relative to, say, the tarmac on which the airplane is parked, is difficult in and of itself.  

Additionally, image data is also often perturbed – each pixel of each image may be influenced by the angle 

of observation, illumination conditions, visibility levels as influenced by weather, other objects cluttering 

the picture, variation across different kinds of aircraft, and so on. “Airplane” is itself a higher-order 

construct which humans readily recognize, but which has to be taught to computers. Put another way, image 

data is very high-dimensional data, and attempting to hand-code the rules mapping all those dimensions to 

human-legible conceptual categories met with little success, as one quickly confronts combinatorial 

explosion.60 In fact, this was a more general cause of loss of interest in a previous wave of AI – the British 

government’s Lighthill report, widely credited with touching off the “AI winter” (involving mass de-

funding) of the 1970s, noted that one could “single out one rather general cause for the disappointments 

that have been experienced: failure to recognize the implications of the combinatorial explosion.”61  

 

In contrast, deep learning’s DNNs can learn the function themselves, if exposed to sufficient quantities of 

data.62 Why is this? According to the manifold hypothesis, deep learning’s unreasonable power derives 

significantly from locating “manifolds” in high-dimensional data, where a manifold is a lower-dimensional 

approximation of higher-dimensional data. For example, in the below depiction, two-dimensional data 

actually lie on a one-dimensional manifold (a string).  

 

1-D Manifold in 2-D Data63 

 
 

Analogously, by learning such manifolds, deep learning is able to tackle speech, image, and other data 

which intuitively seem too high-dimensional to be tractable.64 Because these learned manifolds are non-

 
60 Goodfellow et al., Deep Learning, 2-10. 

 
61 See James Lighthill, “Artificial Intelligence: A General Survey,” Science Research Council, 1973. Available online:  

http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm. For an explanation of 

combinatorial explosion, see Lei Chen, “Curse of Dimensionality,” in Encyclopedia of Database Systems, ed. Ling 

Liu and M. Tamer Ozsu (Boston: Springer, 2009). 

 
62 Ibid., 6.  

 
63 Goodfellow et al., Deep Learning, 158. 

 
64 Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (MA: MIT Press, 2016), 157-161; Pratik 

Prabhanjan Brahma, Dapeng Wu, and Yiyuan She, “Why Deep Learning Works: A Manifold Disentanglement 

Perspective,” IEEE Transactions on Neural Networks and Learning Systems 27.10 (2016): 1997-2008. See an 

excellent intuitive explanation at Chris Olah, “Neural Networks, Manifolds, and Topology,” colah’s blog, April 6, 

2014, http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/. 
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linear, deep learning is able to learn them while other, “shallow” machine learning methods like principal 

component analysis, which rely on the data falling near a linear subspace, fail.65 

 

(b) Pattern Generation 

Deep learning also has pattern generation capabilities, which can be thought of as essentially reversing the 

relationship between inputs and outputs in learned cases of pattern recognition. Here, deep learning systems 

are able to output realistic members of some class of object of which many examples have been fed to the 

model.66 Often, though not always, this relies on generative adversarial networks (GANs), a technical 

approach where a generative model and a discriminative model compete, respectively, to “fake” samples 

from training data, and to discriminate between fake and real samples. Across various tasks, this approach 

has produced very strong, human-indistinguishable “fakes.”  

 

For example, one recent pattern generation capability, GPT-3, has been used to write fiction, poetry, puns, 

philosophical speculation about GPT-3 itself, and even working, simple quantities of computer code. The 

quality of this ability is remarkable: for illustration, I reproduce below an example of writing generated 

from a human prompt. Here, the bolded text was entered by the human being; the non-bolded text was 

produced by the AI. 

 

 

 

 

 

 
65 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan, “Testing the Manifold Hypothesis,” Journal of the 

American Mathematical Society 29.4 (2016): 983-1049. Available online: http://www.mit.edu/~mitter/publications/1 

21_Testing_Manifold.pdf. Another, more poetic theory about deep learning is, essentially, that because of various 

mathematical properties having to do with the fundamental nature of physics, most functions that would be interesting 

to human beings can be expressed as chains of polynomials, which the DNNs involved in deep learning have a natural 

tendency to learn. Put another way, to use a bit of political science jargon, the “data-generating processes” encoded 

into reality by physics look similar to those which deep learning has an inductive bias toward learning. See Henry W. 

Lin, Max Tegmark, David Rolnick, “Why does deep and cheap learning work so well?,” arXiv, 

https://arxiv.org/abs/1608.08225. 
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GPT-3 Text Output67 

 

 

 
 

 

Indeed, on the largest GPT-3 models, OpenAI found that the ability of humans to distinguish generated 

from human-written text approached random chance.68 GPT-3 has been used for translation, the mass 

grading of homework, original music compositions, to write in the particular style of famous dead authors, 

and so on. In a humorous fit of whimsy, the philosophy site Daily Nous asked philosophers to comment on 

the implications of GPT-3, then had GPT-3 itself generate responses to those commentaries. For example: 

 
67 Posted online, alongside other responses to the same prompt, at https://github.com/minimaxir/gpt-3-

experiments/blob/master/examples/unicorn/output_0_7.md. For collected examples of GPT-3’s output, see “GPT-3 

Creative Fiction,” Gwern, https://www.gwern.net/GPT-3. 
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Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen 

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher 

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam 

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei, “Language Models are Few-Shot Learners,” arXiv, 
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“To be clear, I am not a person. I am not self-aware. I am not conscious. I can’t feel pain. I don’t enjoy 

anything. I am a cold, calculating machine designed to simulate human response and to predict the 

probability of certain outcomes.”69  

 

Notably, GPT-3’s ability to generate patterns is both fairly general and multi-modal – for example, one 

capability is the creation of new images, which did not previously exist, from user text: 

 

New Images from User Text70 

 

 
 

If this seems impressive, one can begin to understand how, in the limit, one could believe that recent 

progress in AI has wide implications for automating increasing swaths of human cognitive, physical, and 

even artistic labor, and hence implications also for security studies. Colloquially, “what’s the catch?” 

 

(c) Misalignment 

Deep learning is a powerful technology, but also carries with it the risk of new technical accidents. Chief 

among these is “misalignment,” or mismatch between what we intend the AI to do, and what it ends up 

doing. With symbolic AI, since it was human beings who were hand-feeding the machine the rules of 

behavior, it was still possible to produce technical accidents, but these could be reasonably controlled 

through caution; with deep learning, this is more difficult, since the task of learning rules and functions has 

been outsourced to the AI itself. 
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In particular, after having been trained on data, deep learning models are exceptionally hard to interpret – 

it is often impossible for human beings to know what exact rules and functions the AI has decided to learn. 

Some AI researchers have themselves criticized the field for a lack of mechanical understanding, comparing 

machine learning to “alchemy.” While Chinese alchemists successfully invented gunpowder while 

researching medicines, for example, they had no real scientific understanding of any of their results, 

however successful.71 Similarly, while AI researchers have theories about how deep learning works, many 

open theoretical questions about the technical details obtain, and the tuning process for models often in 

practice involves more trial and error than not.72 Most colorfully, in the memorable words of David 

Duvenaud, deep learning somewhat resembles pre-engineering physics: “Someone writes a paper and says, 

‘I made this bridge and it stood up!’ Another guy has a paper: ‘I made this bridge and it fell down—but 

then I added pillars, and then it stayed up.’ Then pillars are a hot new thing. Someone comes up with arches, 

and it’s like, ‘Arches are great!’”73 

As Alan Turing wrote in 1950, “An important feature of a learning machine is that its teacher will often be 

very largely ignorant of quite what is going on inside.”74 With deep learning, this problem is especially 

acute due to complexity – for example, ResNet, a commonly used image classification architectures, uses 

around 5*107 parameters. What is layer 27 of a hundred-layer neural network doing?75 Intuitively, it is 

difficult for a human being to understand the inner workings of the model with any precision.76 This 

generates a common potential, across applications of AI, for various kinds of accidents, since it is difficult 

both to accurately instruct opaque machines, and also to work with them in the field.77 One Google research 

team famously described machine learning as “the high-interest credit card of technical debt,” where 

technical debt refers to any accumulated expediencies in software development which complicate further 

modifications.78 
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Researchers have sought to address this issue by working through various avenues to promote “explainable 

AI” (XAI), the idea that AI systems should explain themselves in ways which possess both interpretability, 

or the ability to be easily understood by human beings, and completeness, or in possession of the 

characteristics of being accurate and comprehensive.79 Nonetheless, concerns about accidents persist. 

 

For digestibility, we can typologize these possible accidents into two types: imprecise orders, and 

environmental shocks: 

 

 
 

First, imprecise orders – often, researchers may fail to specify a correct objective function, leaning either 

to “monomania” or “reward hacking.” “Monomania” occurs when the AI agent maximizes one objective 

at the expense of other common-sense constraints, such as if a cleaning robot knocks over a vase in order 

to clean a room faster.80 As MIT professor Norbert Wiener warned in 1960, “If we use, to achieve our 

purposes, a mechanical agency with whose operation we cannot interfere effectively, because the action is 

so fast and irrevocable that we have not the data to intervene before the action is complete, we had better 

be quite sure that the purpose put into the machine is the purpose which we really desire.”81 Contextually, 

one might imagine a poorly designed autonomous weapons system told to maximize killing of enemy 

combatants, which then does so by killing every human it can find.  

 

As another kind of imprecise order, “reward hacking,” happens when the AI is able to satisfy the objective 

function given by its human creator in an unintended way. For example, when MIT’s Lincoln Labs sought 

to automate bug-fixing using the algorithm GenProg, the testing procedure compared GenProg’s output to 
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a correctly fixed “target” program that a human had written. Astonishingly, one generation of GenProg 

achieved perfect scores by simply deleting the target files.82  

 

A second accident category emerges from environmental shocks. In this category, something surprising 

happens in the real-world environment that interacts unfavorably with the AI’s programming, causing it to 

take unintended actions. If “rare events” fail to sufficiently appear in the training data, for example, the AI 

may react erratically. This is an issue with self-driving cars, as pedestrians darting out during a green light 

may be rare in natural data. (Simulation is one way to address this).83 When leveraging reinforcement 

learning, an AI might also unexpectedly cause damage while exploring its environment (“unsafe 

exploration”). Finally, if the environment in which the AI is deployed differs significantly from its training 

environment, the AI may suffer from “distributional shift,” referring to the difference between the training 

and test distributions.84 In the notorious case of the 1983 Soviet nuclear false alarm, where Stanislav Petrov 

declined to pass on an early warning report of an American first strike to his superiors, the satellite Oko 

was programmed to identify ballistic missile launches by detecting engine exhaust plumes, but was fooled 

by sunlight glinting off clouds. While Oko did not make use of deep learning, it is an illustrative precedent, 

as an equivalent mistake in military classifiers is imaginable, if AI trained on badly curated or inadequately 

simulated data is then released into a somewhat different real world.85 

 

 

(2) Tactical Effects 
Having established a baseline explanation of deep learning’s technical nature, we can now ask how its 

abilities might be useful to modern militaries. In short, what are deep learning’s tactical effects? 

 

The extant literature debates whether AI’s effects on military affairs will be “revolutionary,” a question 

which naturally invites imprecision. Similar debates tend to surround each new technology upon 

appearance, whether discussing 5G, quantum computing, or cybersecurity.86 With AI, the question of 

“revolutionary” impact is especially fraught. As a general-purpose technology (GPT), AI will have 

manifold applications across military domains, making cross-domain generalizations inherently imprecise. 

Some debate whether drone swarms will render aircraft carriers, human boots-on-the-ground, or all manned 
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aircraft obsolete.87 Others discuss whether AI will endanger countries’ second strike capability.88 Other 

theorized applications include cognitive electronic warfare, autonomous underwater vehicles, 

transportation logistics, automated cyber offense and defense, predictive maintenance and supply, casualty 

extraction, better simulated military training, reconnaissance and intelligence uses, political and battlefield 

event forecasting, and augmented battlefield decision-making, among other possibilities.89 How can we 

sum these effects?  

 

In my view, a natural framework emerges from having scoped our analysis to deep learning. Although AI’s 

specific applications vary wildly in effect, deep learning’s invariant technical attributes enable cross-
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domain generalization – that is, deep learning has similar effects in each domain. I describe these effects as 

search, mass, and slippage. 

 

(a) Search 

First, deep learning is likely to advantage “finders” over “hiders” across a wide variety of domains, 

primarily through the application of automated data-processing to enhance the increased scale and speed of 

intelligence, surveillance, and reconnaissance efforts, as well as through the use of autonomous platforms 

capable of carrying out search tasks that have greater reach and persistence. Before deep learning, it was 

impossible to automate the sorts of intelligence fusion tasks involved in searching, due to the absence of 

mathematically precise models. However, AI classifiers are trainable to process essentially all intelligence 

streams under active exploitation by modern militaries, including audio, video, electronic, signal, and text 

intercepts. By substituting for human labor, these deep learning systems will thus enhance states’ ability to 

detect a variety of elusive targets.90 This will arguably have several downstream effects across different 

domains: mobile targets will become less survivable, both on land and at sea; traditional difficulties with 

looking for dissidents or insurgents hiding among large populations will decrease. 

 

Mobile Targets 

In particular, reliably detecting mobile targets on land and at sea, a historically difficult task even for leading 

militaries, has become increasingly possible in principle because of rapid progress in sensor technologies 

and platforms.91 The key bottleneck, however, is skilled human labor, as intelligence analysts are finite – 

for example, the US intelligence community reportedly generates “more than three NFL seasons worth of 

high-definition imagery data each day with a single sensor in a single combat theater.” and twenty analysts 

take a full day to manually exploit just 6 to 12 percent of imagery data for one city.92 According to Robert 

Cardillo, then Director of the National Geospatial-Intelligence Agency, given rapid increases in the US 

ability to collect, the intelligence community would require 8 million analysts to manually exploit its 

imagery data alone in 2037.93 The ODNI’s 2019 AI strategy notes that global web traffic will reach 3.3 

zettabytes in 2021, up from 1.2 zettabytes in 2016.94 Predator and Reaper drones demand up to 10 pilots 
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for one continuous 24/7 coverage of an area, 20 people to operate sensors, and “scores” of analysts to sift 

sensor data.95 AI which could itself sort through such data would enormously ease the burden.96 

 

Hidden Targets 

Search as a tactical effect also describes AI’s ability to help states locate individuals of interest within 

cluttered contexts. With deep learning models, algorithms could replace human agents in trawling through 

communications data, bank records, social media posts, and recorded footage, allowing scalable 

identification of dissident or terrorist leaders and followers, enabling targeted coercion and/or early 

detection of unrest by authoritarian leaders.97 Similarly, urban warfare is casualty-intensive: short lines of 

sight enable easy ambushes; complex vertical terrain creates sniper perches everywhere; IEDs litter the 

ground, vehicles have difficulty navigating tight streets and rubble, and locals easily disappear after hit-

and-run attacks.98 AI could alleviate these difficulties, however, as small autonomous platforms could scout 

tight, high-risk spaces, mapping the city without exposing human life; automatic ground resupply, 

intelligence-processing, and casualty evacuation could further limit risk.99 

 

(b) Mass 

Second, deep learning is likely to allow states to bring to bear, at much larger scales, various kinds of assets 

whose production was previously bottlenecked by human labor either being finite, or unusable for some 

tasks entirely due to biological limitations. Abstractly, deep learning unlocks a kind of fungibility for 

modern states – when available, they may now substitute data, hardware, and algorithms for human beings, 

in the production functions of various assets. Just as the steam engine enabled the fungibility of work and 
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heat, thereby generating a paradigm change in what kinds of energy in human societies could be harnessed 

toward what ends, deep learning allows all the data accumulated by the proliferation of US sensors in recent 

decades to be repurposed toward substituting for human beings.100 With deep learning, therefore, we should 

expect “more things in more places, more of the time.” 

 

Massing Weapons 

First, a large extant discussion theorizes that AI may drive the rapid proliferation of lethal autonomous 

weapons systems (LAWS). On some views, the fielding of large autonomous drone swarms will 

fundamentally change warfare – as commonly envisioned, “swarm-on-swarm” warfare will involve the 

competitive attrition of many disposable units, in contrast to today’s layered defense of high-value 

platforms like aircraft carriers.101 While drone swarms have not yet appeared in modern militaries, deep 

learning solves a key bottleneck – that of a sufficient number of human pilots. In principle, after all, all the 

functions for which aircraft currently require a human being – integrating visual, audio, and signals 

information to execute the OODA loop ("Observe, Orient, Decide, Act"), maneuver to defeat air defenses, 

and make the decision to fire munitions – are all functions of a form which can be computed by deep 

learning’s DNNs. 

 

In terms of mass, with reference to competitions of pure attrition, partially or fully autonomous AI platforms 

would reduce a nation-state’s need to recruit human bodies to fly planes or sweep cities. If even a highly 

finite pool of human aviators could iteratively pilot significant swarms of drones, this would shift the 

limiting factor in state ability to endure a protracted war to its stock of hardware, away from its stock of 

human bodies. As AI enables unmanned systems to increasingly represent the “tip of the spear,” defense 

planners may come to count drones and their available domestic supply of AI chips the way they once 

counted soldiers and the available domestic recruiting pool of military-age adults.102 Downstream, this 

could help demographically disadvantaged but technologically sophisticated nations like Japan compensate 

for low birth rates.103 
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If autonomous drones enabled by deep learning are possible, states will face large incentives to use them. 

Owing to casualty aversion, the United States has sought to leverage advanced weapon systems to reduce 

the loss of its soldiers, and already makes extensive use of unmanned but human-piloted drones; the 

possibility of further reducing human deaths even in high-intensity air warfare would be a strong reason to 

seek adoption.104 According to wargames research by Lin-Greenberg (2020), since the political costs of 

losing such drones would be low, widespread acquisition by states would likely lead to more frequent and 

longer in duration, but less escalatory wars.105 Similarly, Gartzke (2019) also argues that remotely piloted 

vehicles will encourage frequent, drawn-out, low-intensity wars. After all, war typically proceeds until one 

side is either completely annihilated or discovers, before the other, after progressive absorption of warfare’s 

costs, that its resolve is no longer sufficient to warrant willing continuation of the conflict. Insofar as wars 

increasingly risk only machines, however, they will only very slowly impose costs on involved nations, 

enabling glacially long comparisons of relative resolve on the battlefield, like two marathon runners using 

walking to carry out a contest of stamina.106 

 

In addition, advanced LAWS, unfettered by human biological limits, would have several advantages over 

manned aircraft. Human cognitive ability varies between individuals, but within a fairly narrow band set 

by biology. In contrast, LAWS have no such ceiling, and will likely exhibit progressively more superior 

decision-making and reaction times.107 Further, human biological limits mean aircraft cannot exceed 

survivable speeds as the G forces involved would kill the pilot. LAWS would suffer no such limit. In 

maturity, therefore, such systems would likely consistently defeat human pilots in dogfights.108 

 

Massing Propaganda 

Second, significant ink has been spilled over the use of deepfakes to generate propaganda at scale, or to 

feed an adversary false intelligence at a critical juncture, such as to manufacture an interstate crisis.109 In 
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the future, current computational propaganda concerns may just be the tip of the iceberg, eclipsed by large-

scale machine-generated of information that is targeted at particular individuals or subpopulations, evolved 

to maximally shape particular behaviors, and able to reach anyone as often as they have web access.110  

 

Leveraging extensive progress in AI-empowered microtargeted advertising, governments could precisely 

manipulate human emotions, auto-generating text designed to appeal to the precise tastes, political leanings, 

and personality profile of a given citizen. OpenAI self-censored full publication of its GPT-2 language-

generation model in 2019, for example, because it was concerned that generating close-to-human text would 

enable nefarious actors to proliferate disinformation; it is easy to imagine states pursuing the same for their 

own ends.111 In the limit, an individual’s entire information ecosystem – including ads for specific music, 

movies, or books, custom-generated news articles, and social media postings nominally associated with 

government organs, bloggers, or celebrities, could all be AI-generated. In such worlds, citizens of autocratic 

regimes would be encased inside informational cocoons of technological control, with the generated data 

ever increasing the AI system’s ability to influence behavior and predict dissent. 

 

(c) Slippage 

Besides accidents arising from deep learning’s technical particulars per se (“misalignment”), integrating 

AI into military tasks also raises two additional categories of risk: social accidents related to interactions 

between AI and human beings, and new vulnerabilities related to adversaries attacking the new technology. 

I collectively refer to these accidents and vulnerabilities as “slippage,” meaning any gap between intended 

and resulting effects of adopting the technologies. I diagram this below: 

 

 
 

Social Accidents 
 

Excessive Trust 

Humans deployed with automated systems sometimes grow to assume the machine is always correct, 

worsening decision-making. Because the inner workings are somewhat incomprehensible, modern AI 

sometimes inspires a kind of reverence. As Go professional Fan Hui remarked after AlphaGo’s move 37 

against Lee Sedol, which led to decisive victory, “It’s not a human move. I’ve never seen a human play this 
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move. So beautiful.”112 Broad empirical evidence exists for this phenomenon.113 Known as “automation 

bias,” this was the cause of several fratricides by Patriot batteries in 2003, during the invasion of Iraq – 

operators trusted the targeting solutions generated by the batteries, resulting in firing on friendly aircraft.114  

 

Insufficient Trust 

Conversely, humans with modern AI systems, not understanding them, sometimes also exhibit the opposite 

reaction, declining to trust these systems altogether. For example, Macdonald and Schneider (2019) find 

strong survey evidence for preferences for manned over unmanned aircraft among American ground fires 

controllers.115 Lack of trust can lead to units in the field being combat ineffective, as well as services in 

general failing to genuinely integrate AI into doctrinal and operational practice.116 

 

New Vulnerabilities 

In military affairs, adopting new capabilities means adopting new vulnerabilities, as the addition of any 

technology logically expands the attack surface available to adversaries. For example, the information 

revolution also spawned the need for cybersecurity.117 We can divide AI vulnerabilities into two types: 

training-time attacks and test-time attacks. 
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As the name suggests, training-time attacks occur during the model training phase, when the deep neural 

net is in the process of learning how to, say, separate cats from dogs. Here, most often discussed is “data 

poisoning,” where attackers add to training data to alter later model behavior. These attacks can be fairly 

sophisticated – for example, researchers have found adding just a single image to a training set can allow 

the attacker to control the identity of some target person, in the view of the classifier.118 

 

Test-time attacks occur after training, when the AI is attempting to use its model to classify data. Here, most 

research focuses on adversarial examples, which are input data with human-imperceptible modifications 

intended to induce misclassification. This attack is possible because a deep neural network’s input-output 

mappings are significantly discontinuous – that is, in the n-dimensioned space of possible images, the 

learned model does not consider inputs close to those it would classify as “cat” to also be cats. Instead, 

moving a human-imperceptible amount in that space might lead the model, for example, to believe with 

high confidence that the input was a tortoise instead.119 In contrast, even with significantly larger 

perturbations than those necessary to fool deep learning models, humans would consider most visual inputs 

close to those intuitively classified as cats to be, at the least, strongly catlike. 

 

Importantly, attacks utilizing adversarial examples do not require digital access to the model, as long as the 

targeted AI system intakes perturbable physical data. For example, an attacker could imperceptibly modify 

a pop song to contain audio data recognized by the AI system as voice commands, or apply subtle makeup 

to their face to cause the AI system to believe they are someone with access rights.120 Further, even in “black 

box” scenarios where the attacker has no prior knowledge about the model, the attacker may still be able to 

generate adversarial examples either by training against known models they believe to be similar (e.g., an 

outdated, but now public iteration of the same classifier).121  

 

Considerable research effort explores how to defend machine learning models against adversarial examples, 

such as by oneself generating and then directly training against such examples (“adversarial training”), or 

by smoothing the model’s input-output mappings through outputting probabilities, rather than hard 
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decisions (“defensive distillation”). Such defenses can still be defeated if the attacker holds an advantage 

in computational resources, however.122 

 

 

(3) Strategic Effects 
Finally, how might these tactical effects impact the US-China balance of power? The conventional wisdom 

argues that AI may be a critical technology in US-China competition, assessing that the boost from 

harnessing AI might suffice for China to leapfrog US power. For former Deputy Secretary of Defense 

Robert Work and Greg Grant, just as the United States “offset” the Soviet Union’s conventional overmatch 

in Europe first with tactical nuclear weapons, then later with long-range precision strike, so too might China 

offset American advantages by winning in AI. In their view, “any objective assessment must at least 

consider the possibility that the U.S. Joint Force is close to becoming the victim of a deliberate, patient, and 

robustly resourced military-technical offset strategy. ... Chinese military thinkers believe AI likely will be 

the key to surpassing the U.S. military as the world’s most capable armed force.”123  

 

Similarly, according to Elsa Kania, Chinese elites indeed see AI as a “leapfrog” technology that could help 

China surge past the United States; Greg Allen concurs.124 Fu Ying, who chairs both the PRC National 

People’s Congress Foreign Affairs Committee and Tsinghua University’s Center for International Strategy 

and Security, AI may “set[] off a new round of the rise and fall of the great powers.”125 Similarly, Graham 

Allison assesses that China may “beat America to AI supremacy,” and “is currently on a trajectory to 

overtake the United States in the decade ahead.”126 James Johnson argues AI will “redefine and transform 

the status quo in military-use technology,” promoting a “shift to Sino-American bipolarity.”127  

 

AI’s effects on the US-China balance of power have general theoretical significance. Many analysts argue 

emerging technologies represent opportunities for weaker powers to leapfrog US strength; others are 

equally skeptical.128 Security studies has long maintained an ambivalent relationship with technology as a 
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causal variable – is technology almost epiphenomenal, the product of conscious investment driven by the 

typical forces of international relations, or is it capable of being an independent force, with quasi-random 

discoveries carrying the significance of exogenous shocks? Arguably, AI is a useful test of these theories.  

 

In my view, however, the case for Chinese advantage thus far lacks conceptual precision. First, due in part 

to definitional confusions, what actual inputs are required for modern states to acquire AI have not been 

precisely discussed. Second, even after states acquire AI, there is no universal conversion rate from “more 

AI” to “more power.” As having “more AI” is unlike having “more tanks,” evaluating who AI advantages 

requires theory beyond bean-counting. Without further conceptual glue, assessments that China possesses 

a “data advantage” or that American talent still dominates remain only standalone facts of uncertain effect 

and magnitude. Thus, correspondingly, I divide analysis into two parts, looking at differences in:  

 

● Inputs. Put colloquially, “how much AI” can each state get? Deep learning’s key precursors are 

task-specific data, computational power, and AI talent. Can either state simply buy as much of 

those precursors as they like on the open market, in which case access to inputs may be effectively 

symmetric, or are there further complications? 

 

● Leverage. Once acquired, “how useful is that AI” to each state in terms of the relative balance? 

Critically, where, when, and how much does access to AI’s tactical effects, for either state, translate 

into real strategic effects? Notably, these effects need not be symmetric, as the United States and 

China have different strategic circumstances and needs. 

 

(a) Inputs 

“How much AI” can the US and China get? New technologies generate new inputs to power: for example, 

the advent of railroads, internal combustion engines, and nuclear weapons dramatically increased the value 

of steel, oil, and uranium, respectively.129 A state’s endowment of these resources or their precursors, 

previously irrelevant, became variously important for its security. So, too, did that state’s policies, or lack 

thereof, for acquiring and exploiting those inputs. 

 

In the case of AI, recent deep learning advances have been driven by three key factors: algorithmic advances 

by leading researchers, hardware improvements via inexpensive parallel-processing GPUs followed by 

advanced AI chips, and expanding data availability in an exploding number of fields.130 Consequently, we 

can ask about the balance of access to talent, hardware, and data in turn. 

 

Talent 

The United States likely possesses a mild to moderate talent advantage. First, consider pure manpower. 

While the PRC’s AI emphasis led to dozens of universities setting up AI degree programs, much of the 

newly educated talent has left China. Of the 2,800 Chinese accepted to prominent machine learning 

conference NeurIPS over the last decade, for example, three-quarters are working outside China. Further, 

85% of those departees headed to the United States. 131 According to recent data on 1,999 US AI PhD 
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graduates, over 80 percent of internationally originating US-trained AI PhDs stay in the United States after 

graduation, while the “vast majority” of Chinese-trained talent has left China. In fact, over 90 percent of 

Chinese students in this data choose to stay in the United States.132 

 

Similarly, Tencent has reported that China contains around 39,000 AI researchers, half of the United States’ 

78,000 researchers. Notably, the total talent pool is quite small – Tencent notes an upper bound at around 

300,000 qualified AI researchers, but this figure also includes non-expert members of technical AI teams. 

According to an analysis of LinkedIn data by J. F. Gagne, the total pool of PhD-educated AI researchers 

numbers only 22,000, with China able to draw only one-fourth of new researchers trained abroad compared 

to the United States.133 Most US data scientists have over a decade of experience, while 40 percent of those 

in China have less than half a decade of the same.134 

 

Second, consider research quality. According to Stanford’s 2019 AI Index, US publications in AI retain 

50% greater influence than those of China by Field-Weighted Citation Impact (FWCI), a regionally-

adjusted measure of citation frequency.135 Similarly, according to McKinsey, while China has become 

increasingly prolific in publishing a large raw number of papers, if adjusted by H-index, a measure of 

influence, China (168) lags even the UK (190) and has less than half the influence score of the United States 

United States (373).136 Subjectively, US companies have dominated headlining AI advances, such as with 

AlphaGo defeating Lee Sedol and OpenAI’s development of NLP model GPT-2. The dominant platforms 

used in AI research, TensorFlow and PyTorch, are also American.137 

 

Further, talent concentrations are likely self-sustaining. Open Economy Politics (OEP), the dominant 

research paradigm in international political economy (IPE), has long adopted the assumption of constant 

returns to scale, allowing analysis of trade across industries. Many goods, however, exhibit high intra-

industry trade, indicating increasing returns to production. If AI is such a good, the key economic 

implication is that despite the wide availability of certain factors of production such as software, the 
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distributional benefits of AI may nonetheless not widely diffuse, but rather concentrate in a small number 

of countries.138 

 

Indeed, Avi Goldfarb and Daniel Trefler argue that AI contains several economies of scale. Data manifests 

economies of scale by enabling better product, which in turn attracts more customers, who provide more 

data. Building AI capabilities requires large fixed costs: while much research is open-source, salaries for 

high-quality AI researchers often reach into the millions.139 Finally, AI investments exhibit “economies of 

scope,” where building multiple products is cheaper than building each separately. For example, the 

Alphabet subsidiaries Google, YouTube, Android, and Waymo all benefit from their pooled in-house AI 

capabilities, and data, talent, and software also passes easily between these firms.140  

 

Why do these benefits require geographic colocation? The central insight of “new economic geography,” 

as first conceived of by Paul Krugman in the 1990s, is very roughly that economic activity tends to have 

good reasons for geographic aggregation (e.g., cities exist), and that these reasons then weigh against other 

factors encouraging diffusion. Despite intense competition and the need to pay high wages and property 

costs, for example, firms continue to stubbornly locate in Silicon Valley and New York, along with in other 

persistent regional clusters globally.141 

 

For AI, empirically, even today, capabilities have become concentrated in a small handful of companies in 

a small handful of locations. Two reasons arise: the costs of transmitting data across national boundaries, 

as regulatory rules in different jurisdictions arise, and perhaps more importantly the local diffusion of tacit 

engineering knowledge, transmissible primarily through face-to-face engineer contact over the course of an 

organization’s regular functioning.142 In fact, talent location is evidently so important that companies have 

empirically been willing to set up new branches near key hires, so that professors can retain their academic 

jobs will working for some new division. Examples here include Raquel Urtasun, both of the University of 

Toronto and Uber, Russ Salakhutdinov of Carnegie Mellon University and Apple, and Yann LeCun, of 

NYU and Facebook. Google’s DeepMind opened in London then expanded to Edmonton exactly because 

Demis Hassabis and Richard Sutton lived in those locations, respectively. Each was afforded this exorbitant 

privilege by their respective company.143  
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This talent deficit will likely impact China’s relative ability to leverage AI for military ends, as even with 

readily available compute and data, model architecture depends strongly on intelligent human input, and 

AI research on military applications specifically is unlikely to be openly shared.144 This is especially so 

because a key difficulty in training AI for military tasks is that the chaos of the battlefield is long-tailed – 

that is, much of the distribution consists of individually rare events. Predictably, classifiers relying on large 

datasets struggle with long-tailed phenomena, and require careful tuning by human engineers.145 

 

Hardware 

Second, how does Chinese hardware compare to that of the United States? While much software is open-

source and Chinese skill at IP theft is legendary, one source of evidence is to observe what the actual state 

of hardware development is on both sides of the Pacific. Notably, China is significantly behind in two key 

inputs into AI development: semiconductors and data centers.146 

 

First, while China has made progress in producing memory chips, as well as analog and compound 

semiconductors, it has had much more difficulty specifically with semiconductor foundries.147 Within 

semiconductor manufacturing equipment (SME), two bottlenecks most constrict China – photolithography 

equipment, the manufacture of which is dominated by the Netherlands and Japan, and deposition, etching, 

and process control equipment, the manufacture of which is dominated by US and Japanese companies. 

Overall, over 90 percent of SME firms are in the United States, the Netherlands, and Japan.148 Since nearly 

all high-end AI chips are also made in Taiwan, the United States, and South Korea, the United States, with 

allied cooperation, is consequently able to choke off Chinese hardware supplies for AI. For example, in 

October 2018, US sanctions on Chinese chip company Fujian Jinhua forced a halt in output the following 

March.149 

 

Simultaneously, Chinese efforts to create indigenous capacity have not succeeded. China’s Semiconductor 

Manufacturing International Corporation (SMIC) has consistently lagged the Taiwan Semiconductor 

Manufacturing Company (TSMC), the world’s current largest semiconductor foundry. SMIC had plans to 

switch to a 14nm process for production in 2019, which TSMC has been using at scale since 2015. Since 

TSMC is the market leader, it has been able to command high prices for its services, while SMIC has 
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required infusions of government subsidies.150 Breaking into technically complex, consolidated industries 

is naturally challenging, and China lacks indigenous talent. Empirically, Chinese efforts here have 

consistently leaned on state-owned enterprises (SOEs), with such unconvincing results that one industry 

expert has remarked “I think what they are doing in fabrication is another Great Leap Forward.”151 Despite 

disproportionate government equity injections, Chinese semiconductor firm profitability remains behind 

European, Japanese, Korean, Taiwanese, and American peers.152 Consequently, Saif Khan estimates China 

will “very likely” fail to create an indigenous photolithography industry inside a decade. 

 

Further, US export controls explicitly seek to keep Chinese semiconductor manufacturing capabilities two 

generations behind the state of the art, requiring China to make up the gap natively.153 Catching up will 

likely a difficult task for China – semiconductor foundries form a natural oligopoly as a corollary to Moore’s 

Law, as the parallel continuous increase in foundry costs causes profitability to accrue only to leading 

companies. The entry barrier is thus very high – according to Rock’s Law (sometimes called Moore’s 

Second Law), the cost of a semiconductor fabrication plant should double every four years.154 

 

Second, one further way to operationalize hardware is to compare data centers. Since 2012, the most 

compute-intensive AI training runs have doubled in compute usage, astonishingly, every 3.5 months.155 As 

such, continued AI progress will likely require increasingly massive investments in compute, frequently 

actualized as “hyperscale” data centers which exploit efficiencies of scale to power machine learning’s 

increasingly greedy demands.156 This is especially so as tasks with greater subjective difficulty have, 

empirically, been increasingly amenable to parallelization. Within supervised learning, for example, 

training on ImageNet’s 14 million images of all sorts has been more parallelizable than with MNIST, a 

relatively simple database of handwritten letters. Similarly, within reinforcement learning, Dota 5v5 has 

been more parallelizable than Atari Pong.157 This will likely increase both the monetary cost and hardware 
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reliance of future research – while the largest runs in 2018 relied on hardware costing millions of dollars, 

continued growth at the same rate implies moving from AlphaGo Zero’s $10 million to perhaps $5-6 billion 

dollar experiment sizes within a half decade.158 Notably, OpenAI’s training run of GPT-3 was so expensive 

that although a minor bug was discovered after starting, the company could not restart the process and had 

to accept a slight inefficiency.159 

 

By the data center metric, the United States is well ahead. As of December 2018, the United States was 

home to 40% of the world’s hyperscale data centers, well ahead of China’s 8% share. Amazon and Google 

together opened almost half of new data centers created in 2018.160 Quantity aside, data centers also operate 

at differing levels of efficiency, measured by Power Usage Effectiveness (PUE), the ratio of total energy 

used by the data center to energy successfully used for computing. As such, a PUE of 1 would represent 

perfect efficiency, with zero overhead. Most Chinese data centers operate at between 2.2 and 3.0 PUE, 

consuming 2 percent of total Chinese electricity consumption, despite government efforts to encourage 

greater efficiencies, including a ban on data centers with over 1.5 PUE from operating in Beijing. In 

contrast, the average US data center operates at 1.82 PUE.161 As of May 2019, the average Google data 

center operated at 1.11 PUE, with the most efficient as low as 1.07.162 Baidu declined to provide a 2017 

Greenpeace study with PUE data.163 

 

Data 

Finally, let us turn to data. One common metaphor is that data is the new oil.164 The comment that typically 

follows is that China has more data, and that AI therefore advantages China, which possesses both a larger 

population size and relatively lax privacy laws allowing the government to access the data that population 
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generates.165 In the most well-known advancement of this narrative, Kai-Fu Lee has argued that AI is 

“turning China into the Saudi Arabia of data: a country that suddenly finds itself sitting atop stockpiles of 

the key resource that powers this technological era.”166 Similarly, in an influential report for the Center for 

a New American Security, Elsa Kania cites China’s “massive amounts of data” as potentially enabling a 

“rapid rise” for China in AI, citing a China Electronic Information Industry Development (CCID) study 

showing China will have “20% of the world’s data by 2020 and 30% by 2030.”167 Indeed, the International 

Data Corporation projects that China’s share of global data will grow from 23.4% in 2018 to 27.8% in 2025, 

outpacing average global growth by 3%.168 Simultaneously, they project the US share will decline from 

21% to 17.5%.169 

 

Advocates of this view are not unaware that other factors go into AI; rather, they simply believe that AI is 

the most important driver. Baidu CEO Qi Lu, for example, has argued that data is paramount due to being 

the “primary means of production.”170 Similarly, for Lee, AI has now entered an the “age of 

implementation,” with the most economic purchase to be gained via applying existing AI insights, rather 

than discovering new ones. As such, AI today is comparable to the task of mass electrification – companies 

transforming themselves following the discovery of electricity did not need to achieve new breakthroughs, 

but merely competently implemented Edison’s discovery.171 In his pithy formulation, “In deep learning, 

there’s no data like more data … Given much more data, an algorithm designed by a handful of mid-level 

AI engineers usually outperforms one designed by a world-class deep-learning researcher.”172 

 

This view is not without merit – after all, large dataset availability has been a key ingredient in powering 

the recent resurgence of artificial intelligence.173 However, a number of factors significantly mitigate this 
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advantage.174 First, data generalizes poorly. For example, models trained in Wikipedia’s standard English 

have not been able to understand Twitter’s casual slang.175 China’s population size likely makes it the 

world-leading authority on performing, say, facial recognition of Chinese faces, but this does not enable its 

algorithms to better scan battlefields for tanks or identify cyber-vulnerabilities in American systems.176 As 

such, China’s data advantage is narrow and uneven – Chinese AI-powered mobile apps might certainly 

have more data about how to get more play time out of consumers, for example, but proximate benefits are 

likely economic, not military. Data is not oil, but rather kerosene, diesel, jet fuel, and so on.177 

 

In fact, for military-relevant applications, it seems plausible that the United States is the party with the data 

advantage.178 During the Cold War, the United States invested extensively in ASW capabilities to locate 

and track Soviet SSBNs, resulting in sequential breakthroughs in passive sonar and signals processing. 

These included an underwater network of hydrophones in the ‘50s, followed by attack submarines with 

both bow mounted and towed arrays in the ‘60s and ‘70s, which forced the Soviets to withdraw their SSBNs 

defensively into near-shore bastions. To track land-based mobile assets, the United States developed a 

constellation of satellites possessing synthetic aperture radar, which has become capable over the last two 

decades of detecting moving targets. Stealthy penetrating UAVs and unattended ground sensors further 

provide relevant military data about enemy asset movements.179 By raw numbers, the United States operates 

901 satellites to China’s 299; while China has been significantly investing in augmenting its capabilities, 

the US still has a significant overall lead.180 The geography of the internet also makes it easy for US 

intelligence to collect voluminous data on foreign actors.181 

 

Second, many argue that China’s data advantage flows from relatively lax privacy laws.182 As Work and 

Grant write, “Western democracies are both wary and cautious about governments and companies massing 
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personal data. Those same qualms don’t exist among Chinese consumers and certainly not the Chinese 

government.”183 However, while China’s authoritarian nature certainly means Chinese corporate data is less 

shielded from government eyes, this narrative oversimplifies on several accounts. Notably, Chinese 

consumers have increasingly demanded privacy protections from corporations, if not from the government. 

In part, this has been driven by concern over consumer data leaks, which one China Consumer Association 

found 85% of respondents had experienced.184 When Baidu’s CEO, Robin Li, remarked that “if [Chinese 

users] are able to exchange privacy for safety, convenience, or efficiency, in many cases they are willing to 

do that,” widespread internet backlash erupted, with Weibo polling showing 85.8% of over 10,000 

participants disagreed with Li’s comments.185 Indeed, the government has in fact stepped in to enforce data 

protections – in January 2019, for example, the Ministry of Industry and Information Technology 

blacklisted 14 mobile apps for failing to comply with personal data standards set in the May 2018 Personal 

Information Security Specification.186 

 

In addition, American privacy protections are less robust than commonly thought. While patchwork laws 

exist in specific areas like healthcare, Congress has not yet passed general legislation governing the 

collection and use of consumer data. As such, circumstances are opposite to those in China – American 

citizens are much more protected from government use of data, but corporations freely exploit personal 

information.187 Illustratively, the US in fact issued China at the WTO in July 2017 for overly strong privacy 

laws, arguing that these would disrupt normal cross-border transfers of data necessary to international 

commerce. The EU, whose General Data Protection Regulation (GDPR) similarly protects cross-border 

data transfers, declined to join the US criticism.188 

 

Finally, progress on privacy-preserving machine learning may gradually reduce democratic difficulties with 

obtaining sufficient data to power AI applications while maintaining their values. For example, federated 

learning preserves privacy by never centralizing the training data into one datacenter. Rather, data remains 

distributed in the hands of the individuals whose data it is (e.g., within individual phones).189 Another 
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privacy-preserving machine learning method, homomorphic encryption, preserves privacy by performing 

machine learning only on encrypted data. Since the data owner retains the encryption keys, the ML service 

provider never has access to the original data. Once the provider returns the still-encrypted ML output, the 

data owner then uses their keys to extract the result. This would allow a medical patient, for example, to 

use ML on their medical records while minimizing risks of a leak.190 

 

In sum, the United States appears to have a neutral to mild advantage in talent and data, and a significant 

advantage in hardware. There are soft reasons to expect the US talent advantage to persist, due to the 

tendency for talent to attract more talent, though this could be reversed by policy or circumstantial shocks; 

there are harder reasons, however, to expect the US hardware advantage to persist, as demonstrated in part 

by decades of difficulties with Chinese import substitution attempts.191 

 

(b) Leverage 

On one view, differences in inputs should end up mattering little, in terms of AI competition. If 

commercially-driven AI research in the United States easily spreads to China, does it matter who leads, for 

the purpose of military power?192 As Joseph Nye argues, since the cost of emailing code to another is zero, 

the barriers to information-sharing have become dramatically lowered in the information age. We should 

therefore expect quick diffusion of power.193 Brundage et al. make broadly the same point when they note 

the zero marginal cost of software – while building an extra tank has additional material and labor costs, 

duplicating a program is a simple matter of copy and pasting.194 Unlike stealing the plans for an F-35, in 

this view, many AI applications are entirely based in software, and so if other countries successfully get 

their hands on privately developed code, they can immediately turn it to their own use.195 

 

In my view, however, this is mistaken. Importantly, even if China were able to purchase exactly as much 

talent, hardware, and data as it desired on the open market, this would still not necessarily mean that AI’s 
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benefits would diffuse evenly.196 More dramatically, even were the United States to somehow pack up 

Google, Facebook, and all the rest and ship the companies in a box to China, there would still be important 

differences in leverage. Here, by leverage, I mean “a state’s ability to use some given technology for 

strategic advantage, in the context of dyadic competition with another state.” 

 

Leverage: Technical Progress Can Play Favorites 
 

 
 

Let us unpack this further. In general, technologies not only demand to be acquired, in and of themselves, 

by would-be leading states; they also change to what degree various state characteristics, such as 

previously-acquired assets, surrounding geography, or operational doctrines, are still adaptive.197 For 

example, Mongol light cavalry, modern navies, and ballistic missiles all changed what barriers “counted” 

for producing security, obviating simple remoteness, oceans, and armies still in the field, respectively, as 

effective shields against coercive power.198 After the invention of motorized vehicles, horses declined 

rapidly as a major contributor to the military power of states. With AI, progressive substitution for human 

labor may analogously reduce the importance of sheer population size.199 Conversely, some foundational 

shifts can also make what states are already doing, or already possess, unintentionally more adaptive – for 
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example, the invention of railroads was a boon for those finding themselves naturally rich in steel 

precursors.200  

 

Of course, if characteristics of states become maladaptive, they will change them if doing so is not more 

costly than the resultant benefits. But some characteristics are very costly to change, or not reasonably 

malleable at all as a conscious policy decision, such as regime type. In the context of dyadic competition, 

we might call these “strategic asymmetries.” Consequently, technologies can interact with these 

characteristics, insofar as they differ across states, to produce enduring change in the balance of power 

between different states. Depending on what prior balance of military assets a state possessed before 

technological change, a state may thus succeed wildly in acquiring AI but still suffer a large net decrease 

in power due to changes in other factors. 

 

Returning to the US-China balance of power, we can thus see how even if both sides were to acquire the 

same “amount” of AI, the balance might still be changed. I consider three strategic asymmetries which 

could mean differential ability to leverage AI for strategic gain: geography, regime type, and “enduring 

missions,” where the last refers to particular strategic goals that the state in question has historically pursued 

and is unlikely to relinquish (e.g., for China, the reincorporation of Taiwan). For each, I give a number of 

vignettes which suggest AI’s effects may fall in one direction or another; I do not intend to thoroughly 

analyze each vignette, but rather suggest potential strategic interactions for further analysis. 

 

GEOGRAPHY 

Geography changes little, and thus provides an enduring source of strategic asymmetry between states.201 

For example, horse-backed cavalry made the Mongol Empire unmatched at land warfare, allowing it to rule 

continental Eurasia, but Japan’s water barrier frustrated repeated invasion attempts, setting an eastward 

limit to Mongol expansion.202 That is, Japan survived the invention of a new technology where many long-

forgotten states did not because of geography. More recently, the Soviet Union’s high latitude made 

satellites in geostationary orbit unsuited for detecting US missiles launched over the Arctic. While Soviet 

scientists eventually invented the highly elliptical Molniya orbit to compensate, satellites in this orbit 

decayed much more rapidly, requiring replacement every 1.5 years.203 Most simply, naval advances least 

benefit landlocked nations. 

 

Contextually, most plausible scenarios for US-China military conflict involve fighting in maritime East 

Asia. While this holds, geography’s interaction with search may favor the United States, while its 

interaction with mass may favor China. 
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Search 
 

Mobile Ground Targets 

On search, as discussed above, AI classifiers, which could help exploit signals and image intelligence at 

scale by substituting for human labor, will likely enhance states’ ability to detect mobile ground targets.204 

Even if both sides acquire this capability, however, this would disproportionately favor the United States. 

First, AI-enabled mobile ground target detection could critically augment the US Air-Sea Battle operational 

concept.205 At core, ASB aims to execute a blinding campaign against Chinese coastal assets, thereby 

suppressing China’s ability to hold US bases and platforms at risk. A key difficulty, however, is locating 

China’s mobile land-based missile launchers, as well as potentially dispersed and concealed command-and-

control networks associated with air defense.206  

 

More generally, defeating SAM mobility has become vital to modern SEAD campaigns. US efforts in 

Operation Desert Storm against Iraqi SAMs, which were standalone fixed targets, were over 95 percent 

successful; in comparison, allied efforts comprising thousands of SEAD sorties in Operation Allied Force 

against Serbian SAMs, which relied on mobility and concealment, destroyed only three launchers.207 

Chinese defense planners, observing this juxtaposition, increasingly emphasized mobility in the years 

following, with continuous investment in mobile SAM forces through the present day.208 Critically, it is on 

this basis that Biddle and Oelrich (2016) argue that China will be able to maintain a coastally based A2/AD 

bubble indefinitely into the future, because targeting mobile ground targets against background clutter is 

very difficult. 209 Insofar as AI makes this less difficult, this favors the United States. 

 

Second, mobile ground target detectability benefits China less. America’s eight air bases in the Western 

Pacific are known, fixed targets visible on Google Maps; their usefulness does not – and could not – derive 
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from hiding.210 Of these bases, only two are within unrefueled combat radius of the Taiwan Strait – Kadena 

Air Force Base and Marine Corps Air Station Futenma, both in Japan’s Okinawa Prefecture.211 Logical 

improvements to base survivability include hardened aircraft shelters, dispersing assets across additional 

bases, and shortening the runway length needed for takeoff; these tactics do not involve being elusive.212 

 

Mobile Naval Targets? 

Finally, this capability likely would not counterfactually enable Chinese detection of US surface vessels. 

That mission may not require modern AI at all, as detecting surface vessels is much easier than detecting 

mobile ground targets. Surface vessels have large minimum radar cross-sections, and distinguishing ships 

against the ocean is much easier than distinguishing, for example, SAMs against urban surroundings, due 

to the absence of background clutter. Consequently, even airborne radar can detect small cargo vessels, let 

alone larger ground radar or larger ships.213 Correspondingly, US war games against China already open 

with US carriers steaming away from Chinese anti-ship missiles.214  
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Mass 
 

Distant Attrition 

As discussed above, one tactical effect of AI, according to various analysts, may be a shift toward swarm-

on-swarm warfare. If correct, however, transitioning to this state of affairs could favor China. First, the 

tyranny of distance – since US-China conflict most likely occurs in East Asia, China would be sharply 

advantaged by proximity in any attrition-based battle, as it could reinforce losing swarms and mass forces 

in selected airspace with relative celerity.215  

 

Exquisite Obsolescence? 

Second, if power remains concentrated in “exquisite” platforms neither side can replace anyway, distance 

matters less. Thus, China arguably gains if America’s exquisite platforms become obsolete, all else equal. 

The United States is the world leader in large, capital-intensive, high-tech platforms – China has two aircraft 

carriers, while we have eleven; despite their best efforts, China’s fifth-generation fighter aircraft far lag the 

United States.216 Many analysts have argued drone swarms in particular will threaten the continued 

survivability and relevance of these exquisite platforms.217 If this is correct, even if carriers can survive 

massed swarms, the cost-exchange ratio of available defenses would be prohibitively unfavorable.218 Of 

course, the United States could invest heavily in counter-swarm capabilities to blunt this effect.219 
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Additionally, the US hardware advantage could be sufficiently large to offset suffering the obsolescence of 

a greater inventory of existing assets.220 

 

REGIME-TYPE 

State regime types are also slow to change, and thus provide another source of strategic asymmetry. Here, 

AI’s interactions with both search and mass may favor China. With AI, data-hungry algorithms may 

advantage authoritarian states, which already surveil and catalogue their own populations with little regard 

for human rights.221 

 

Search 
 

Scalable Control 

Several AI applications would likely help the Chinese Communist Party lengthen their rule.222 First, making 

surveillance scalable could sharply increase the economic sustainability of intense social control.223 

Presently, autocracy requires human labor proportional to those controlled; in East Germany, for example, 

the Stasi employed more than 1 percent of the population.224 China employs up to 1,000 censors per 

individual site, totaling two million censorship workers in 2013.225 Since 2010, China has spent more on 

domestic security than external defense.226 As a critical underlying capability, facial recognition 
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improvements would be vital to allow China to better exploit its 200 million physical cameras.227 Deep 

learning could enable pattern recognition of when, where, and why protests are likely to break out, as well 

as early identification of dissident leaders, combination of various sources of data, and monitoring web 

platforms at scale. 

 

Authoritarian Economics 

Further, non-human surveillance methods may also avoid additional costs unrelated to the direct cost of 

employment. For example, some evidence suggests surveillance itself depresses economic activity by 

eroding social trust, causing individuals to reduce their productive activity.228 Other studies have found 

interpersonal trust to correlate with entrepreneurship and innovation.229 This effect was particularly acute 

because Stasi informants remained, publicly, their normal roles as colleagues, family, and friends, and so 

the knowledge of Stasi presence caused widespread doubt and fear. Automated technological surveillance 

would plausibly avoid these effects.230 

 

Finally, search may benefit authoritarian states by enhancing state interventions into internal markets. Even 

given perfect information, the classic critique of centrally planning complex economies is that the 

computational labor required to solve an optimization problem with millions of inputs is essentially infinite, 

even for very high-powered supercomputers.231 However, it is unnecessary to propose that every single 

economic transaction take place under the approving glance of the state to see possible benefits to relatively 

planned economies from AI.  

 

Data is already used to partially plan markets, both in China and in the United States. Deep learning has 

already been applied to market design, as eBay, TaoBao, Amazon, Uber, and others mine their massive 

volumes of sales data to better match demand and supply. Several advantages obtain, including automatic 

pattern analysis, improved forecasting, and natural language processing for predicting demand and 

performing sentiment analysis. Google’s “Smart Bidding,” for example, uses machine learning to optimize 

conversions for ads; California uses AI to predict electricity demand, smoothing out the power grid and 

preventing blackouts.232 Walmart’s internal logistical particulars represent, to a significant degree, a 

centrally planned micro-economy.233 As such, national-level strategic planning is likely to become more 

feasible via applying deep learning to market data. 
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Mass 
 

Inhuman Forces 

In addition, highly capable autonomous drones would be especially useful to the CCP for suppressing 

unrest. Chinese counterinsurgency strategies in Tibet and Xinjiang, including ongoing mass detention and 

torture of Uighurs, have relied strongly on hard power solutions, as opposed to the “softer” approaches 

favored by the United States.234 More generally, authoritarian states have disproportionately perpetrated 

mass, intentional, unrestricted killings of civilians during counterinsurgencies – a “well, just kill them all” 

solution to the problem of distinguishing civilians and combatants.235 In such cases, retaining human 

support for the campaign has often been an important constraint; the availability of autonomous drones 

could remove it, thus increasingly precluding meaningful resistance in Tibet, Xinjiang, Hong Kong, and an 

invaded Taiwan, as well as leading to highly distasteful outcomes.236 That is, in general, autonomous drones 

may reduce the cost, for authoritarian regimes, of relying on violence to maintain regime stability.237 Asking 

human soldiers to kill civilians demands the regime somehow purchase a high degree of loyalty; ordering 

military intervention carries the risk that individual commanders may refuse to slaughter protestors, as with 

Major General Xu Qinxian during the Tiananman Square protests. The PLA has no parallel to DOD’s 

Directive 3000.09, which requires that weapons systems able to select and engage targets without further 

human involvement allow “appropriate ... human judgment over the use of force.”238 

 

AI’s mass effects could also resolve China’s coup-proofing dilemma. Autocrats balancing external and 

internal threats often “coup-proof” their militaries, weakening combat power to preclude a putsch.239 After 
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Tiananmen, China incorporated its public security chiefs into core Party leadership, providing hundreds of 

millions of yuan in graft for loyalty.240 As AI increasingly allows delegating power to machines rather than 

humans, automation would progressively reduce the total number of human beings in whose true loyalty 

CCP elites would need to be confident, or at least able to monitor. Consequently, China may become 

increasingly comfortable with decentralized command, meritocratic promotion, and other organizational 

practices which generate military competency, helping bridge the quality gap between Chinese and 

American forces.241 

 

If AI substantially increases the CCP’s expected lifespan, this has grand strategic implications.242 The 

Soviet Union’s collapse favorably resolved the Cold War without pitched battle. Besides the effect on China 

itself, given the CCP’s habit of exporting autocratic technology, effective population control methods would 

risk spreading globally.243 If more governments thus become or stay authoritarian, this would not only be 

normatively undesirable, but also hurt our ability to find democratic allies abroad; at the least, China could 

offer robust technological support to aligned dictators.244 
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Information Warfare 

Finally, besides increasing the fitness of authoritarian governments more generally, highly effective, AI-

enhanced information warfare may unlock persuasion as a viable theory of victory for governments willing 

to deploy manipulative propaganda at scale. If mass opinion comes to be decisively influenced by the clash 

between AI influence systems, for example, China may come to believe that its best bet for reabsorbing 

Taiwan is heavy investment in AI-empowered propaganda.  After all, China’s Great Firewall arguably 

represents a ready-made testbed for future AI-enabled information control techniques. 

 

This would more generally pose a significant challenge for democratic societies, as precision propaganda 

would increase the efficacy of forms of political interference differentially used more frequently by 

authoritarian states. Russian interference into recent US presidential elections was accomplished with only 

modern-day systems. As AI capabilities develop, it may become harder and harder for democratic states to 

meaningfully aggregate the opinions of their own populations, insofar as an increasingly greater percentage 

of the information available to those populations becomes manufactured. Leveraging AI to alter target 

states’ national priorities through information warfare would represent “winning without fighting” par 

excellence.245 

 

ENDURING MISSIONS 

Finally, for various reasons, states tend to adopt enduring missions which are unlikely to change over time, 

representing a third and final source of strategic asymmetries. For China, reincorporating Taiwan is central 

to the CCP’s legitimacy. For the United States, flirting with nuclear counterforce has seemingly always 

been in our DNA.246 Search and mass variously change the difficulty of these missions, thereby affecting 

the balance of power by potentially changing how relevant scenarios would resolve. 

 

Search 
 

Occupation Policing 

First, given the order-of-magnitude difference between the two governments’ military budgets, Taiwanese 

victory may increasingly require protracted guerilla warfare in the island’s mountains and cities, as opposed 

to preventing a Chinese amphibious landing outright.247 Even assuming US intent to intervene, China’s 
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missile inventory could mean US base closures for days to weeks at war’s start, requiring meaningful 

Taiwanese resistance to stave off a fait accompli.248 As Taiwan’s citizens increasingly identify as “just 

Taiwanese” (66 percent, according to 2019 Pew polling), as opposed to “both Taiwanese and Chinese” (28 

percent) or “just Chinese” (4 percent), holding out may be costly but plausible.249 Analogously, during the 

1979 Sino-Vietnamese war, a conventionally inferior Vietnam nonetheless denied China a clear victory.250  

 

As population-wide resistance becomes increasingly critical to Taiwan’s defense, AI-enabled capabilities 

which make Taiwan more digestible would thus strike at the core of its deterrent. With search, predictive 

policing could help China distinguish Taiwanese combatants from neutral civilians. Data from social media, 

visual surveillance, and electronic eavesdropping could be automatically processed to identify guerillas 

without mass interrogation, reducing collateral damage and building local support.251  
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Nuclear Counterforce 

Second, conversely, in the nuclear domain, locating China’s road-mobile missiles is the key challenge 

limiting US counterforce, executed either as part of damage-limitation after the outbreak of nuclear war or, 

less likely, as a disarming first strike.252 Timely identification is primarily complicated by “needle in a 

haystack” dynamics – China is large, and analytic labor is scarce.253 As with elusive ground targets, AI-

enabled intelligence processing of satellite imagery, unattended ground sensors, drone imagery, and other 

intelligence streams could provide the necessary scale and speed, as I explore at paper length below.254 

Conversely, China simply does not have enough nuclear weapons for meaningful counterforce, even 

knowing the location of every American asset.255 

 

More generally, China’s posture of assured retaliation accepts nuclear vulnerability but promises revenge, 

while our damage-limitation strategy seeks to reduce vulnerability to begin with.256 Our strategy comprises 

two parts: a disarming first-strike against China’s arsenal, and absorption of surviving weapons with missile 

defense.257 Some analysts argue AI could help missile defenses distinguish decoys from real warheads by 

training reliable classifiers; since China has no strategic missile defense capability, this would only benefit 

the United States.258 Of course, it bears repeating that asset-based asymmetries most easily erode; here, 

several possible future Chinese acquisitions, such as nuclear-tipped hypersonic glide vehicles, competently 

quiet SSBNs, or simply a much larger arsenal, could change this calculus. 
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Mass 
 

Urban Warfare 

AI’s mass effects could also help China take Taiwan by strengthening urban warfare capabilities. 

Automating the most dangerous tasks could reduce PLA casualties, helping maintain domestic support for 

a long war. As above, AI is likely to ease the difficulties of urban warfare through various applications of 

autonomous platforms. 

 

Political Warfare 

Further, AI could enhance Chinese political warfare. The CCP has long wielded disinformation against 

Taiwan, including through “fake news” campaigns supporting preferred candidates in the island’s 2020 

elections.259 As computer-generated writing, video, and audio become increasingly indistinguishable from 

reality, voter access to true information may degrade, hurting the Taiwanese government’s ability to reflect 

the preferences of its citizenry.260 AI could also improve Chinese manipulation of those preferences outright 

– by processing social media posts, demographic information, and other data sources, algorithms could 

tailor persuasion to each individual’s personality type, social connections, and political beliefs.261 
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Conclusion 
This paper sought to help tame the nascent, but already highly ensnarled, discussion of AI by security 

studies scholars. First, I argued that security studies should focus its study of AI on “deep learning,” the 

modern AI technique driving most recent headlining progress. Without focus, “AI” by default ranges tax 

software, drones, thermostats, ballistic missile defenses, brute-force computation, machine learning, and all 

manner of other grab-bag vagaries. If we wish to answer questions like, “how will AI affect the US-China 

balance?”, we will require a suitably sized independent variable. 

 

Second, leaning on my narrower operationalization, I reviewed the computer science literature about what 

deep learning does, and conceptualized its effects in a manner hopefully more suitable for security studies. 

I argued that AI’s mechanical effects can be summarized as “pattern recognition and pattern generation, 

minus misalignment,” and that its tactical effects can similarly be encapsulated as “search plus mass minus 

slippage.”  

 

Finally, a significant literature asks whether China might, exploiting AI, leapfrog US power. In the last part 

of this chapter, I unpacked this inquiry into two questions about US and Chinese state-specific factors: first, 

does China have more of the inputs – i.e., talent, hardware, and data – which serve as key precursors to AI? 

Second, even if the US or China successfully translates plentiful resources into many deployed military 

applications of AI, how useful are those applications (“leverage”) in terms of the balance of power between 

the United States and China? Although the assessments in this paper are preliminary, I found that AI may 

favor the US in the nuclear domain, assist China with peacetime competition, and produce mixed effects in 

the conventional domain. 

 

AI’s Leverage-Based Effects 
 

 Nuclear Conventional Peacetime 

US-Favoring Easier Counterforce  Easier Air-Sea Battle --- 

China-Favoring --- Easier Taiwan;  

Easier Air-to-Air 

Easier Authoritarianism: 

Use of Force, Economics 

 

If AI’s effects on international affairs seem, even at this early stage, likely to be sufficiently large, it 

behooves the discipline of security studies to begin now grappling with its implications, if only to advise 

policymakers already making decisions with long-run impact in the present. Despite the world’s militaries 

not having yet fielded mature AI-enabled weapons systems, a variety of research methodologies represent 

available avenues for scholarly progress.262  

 

● First, theory. International relations comprises a rich population of causal models about state 

behavior, technology, and power, and it seems likely that significant low-hanging fruit exists in 

applying that existing literature to AI’s particular features. Since applying theory in turn requires 

technically sound excavation of what AI’s particular features are, in a way which makes the 

technology “legible” to the security studies discipline’s theoretical constructs, work in this bucket 

includes both conceptualizing AI’s effects and adapting extant theories to those effects. This paper 

is a first-cut effort in this category. 
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● Second, surveys. Novel data can be produced through eliciting both mass and expert opinions.263 

For those seeking to assess whether, when, and why AI capabilities may cross theoretically 

important thresholds, polling actual AI researchers can generate predictive data.264 Understanding 

the attitudes of likely military end-users for AI systems, including to what degree they welcome, 

trust, or fear battlefield use, can inform theory about AI’s impact on military conflict.265 

 

● Third, wargames. A surge of recent scholarship has explored wargaming as a generalizable 

experimental method for political science research.266 Since wargames generate data, albeit data 

produced by a context which must be carefully considered for disanalogies to actual warfare, they 

are especially useful when history contains little or no examples of the phenomenon studied, such 

as extended drone wars or mutual nuclear exchange.267 Consequently, wargaming methods seem 

especially suitable for application to scenarios involving AI-enabled weapons systems.268 

 

● Fourth, formal modeling. AI-integrated militaries may raise questions about credible 

commitments, signaling, and delegation which seem especially amenable to game-theoretic formal 

modeling. Fully autonomous weapons systems, free from human cognitive biases, may uniquely 

conform to rationality assumptions.269 In recent work, Garfinkel and Dafoe (2019) begin to reason 

mathematically about how swarm warfare could affect the offense-defense balance.270 These 

methods could be applied to reason about AI across different battlefield conditions.271 
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● Finally, campaign analysis. The use of campaign analysis by security studies dates back at least 

to the Cold War, when John Mearsheimer and Barry Posen debated the conventional balance in 

Central Europe in the pages of International Security.272 Extant work by Heginbotham et al. (2015) 

and Lieber and Press (2017) already touch, however lightly, on AI applications affecting the US-

China military balance, and recent scholarship formalizing the campaign analysis method should 

ease its further application.273 

 

This paper sought to cover significant conceptual ground, in seeking to make AI legible to security studies 

as a construct amenable to study. In doing so, it doubtless generated some number of errors. Given the 

importance of AI to our discipline, it is hoped that the aggravated reader will take such errors, if they are 

also convinced of AI’s importance, as a provocation to join a sorely needed discussion.  
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Artificially Assured Destruction? 

Modeling the Effects of Artificial Intelligence on the US-China Nuclear Balance 

with Torin Rudeen 

 

Introduction 
Will artificial intelligence endanger China’s second-strike capability against the United States? If AI means 

a first-strike counterforce effort by the United States would become overwhelmingly likely to succeed, 

decision-makers in both the United States and China would face grim dilemmas during an escalating crisis. 

Washington, afraid of losing the chance to “win cleanly and quickly” and avoid a long, costly conflict with 

an uncertain outcome, would be tempted to decide matters in one nuclear swoop while it still could. 

Conversely, Beijing, fearing this calculus, would face “use it or lose it” pressures for first use.274 In short, 

under first-strike instability, to paraphrase the Cold War adage, the only thing worse than going first is 

going second.275 Thus, whether or not AI may induce first-strike instability in the US-China dyad 

specifically, and in other “suspicious” dyads like India and Pakistan more generally, is of critical 

importance. 

 

More generally, if AI strongly enhances leading militaries’ ability to conduct nuclear counterforce, this may 

implicate the sustainability of unipolarity most generally. If the nuclear revolution holds, continued great 

power rivalry arguably seems mysterious for all but the most obstinate flavors of offensive realism, as states 

can secure absolute security for themselves through acquiring a survivable arsenal.276 Further, since the 

world economy is relatively open in historical terms, many non-survival interests related to flourishing can 

also theoretically be obtained without some spasm of revisionist conquest.277 Consequently, waging war in 
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a risky bid to seize hegemony seems, given a nuclear arsenal’s guarantee against invasion, perhaps the only 

way a regional power can place its survival in real doubt at all.278 Most prominently, Nuno Monteiro’s 

theory of unipolar politics synthesizes these conditions by arguing that if the nuclear revolution holds (and 

war is thus costly), then unipolar powers can indefinitely enjoy a durable world order in which they are 

primus inter pares by accommodating other powers’ economic needs.279 

 

Another thread in international relations theory, however, argues that orders inherently generate 

disequilibria over time, leading to the punctuation of world orders with wars which settle into the 

establishment of new systems.280 Technology figures prominently as a causal intermediary in these sorts of 

cyclic views, often playing the role of both endogenous instrument of would-be disruptors as well as 

exogenous disruptor itself.281 If both hegemons and rising powers can both enjoy security and growth, after 

all, what is there to fight over? Here, AI serves as an example of exactly what – diffusion of specifically 

dual-use AI applications seems almost inevitable alongside continued global economic growth, after all, 

due to their economically profitable nature.282 Such dual-use applications, however – in particular, order-

of-magnitude jumps in the scale and speed of data-processing – exactly underlie the causal mechanisms our 

model finds may endanger China’s second-strike capability.  

 

Consequently, if such technologies and their successors naturally make nuclear counterforce more thinkable 

for the unipole, guaranteeing nuclear survivability (and signaling credible intentions to do as much) 

becomes difficult for even benevolently intentioned hegemons seeking to pacify would-be challengers. 

Thus, for theorists seeking to square the circle of mature, long-held nuclear arsenals, deep economic 

interdependence following decades of globalization, and continued US-China rivalry, the structural 

inevitability of counterforce-enabling technologies underpinned by AI provides one causal explanation for 

why US-China competition has progressed toward ever fiercer stages: despite all our wealth and strength, 

the continued march of technology simply means states are not yet safe. Competition hedges against 

technological development, not only in the nuclear realm, but in the realm of grand strategic choice between 

satisfied behavior as a status quo power and revisionism more generally.283 
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Predictably, these substantive and theoretical implications have provoked an increasingly vast literature 

assessing AI’s impact on the US-China nuclear balance.284 At present, however, this literature inspires two 

dissatisfactions: first, lacking a consensus definition of AI, the field discusses an enormous panoply of 

commonsensically distinct technologies under one banner. Different works appear to reference technologies 

falling under different operationalizations of AI, each of which carry their own technical limits, 

vulnerabilities, and capabilities; to some extent, scholars are talking past one another.285 Second, since AI’s 

adoption by modern militaries is immature, extant discussion is necessarily both qualitative and speculative. 

Of course, no state has ever attempted nuclear counterforce against another; this lack of data makes 

discussion further removed from reality. 

 

This paper addresses these gaps by programmatically simulating a US nuclear counterforce effort assisted 

by deep learning against the Chinese arsenal. The focus on deep learning follows the previous paper in this 

dissertation, serving as a clear technical bound on how the AI works; the use of simulation extends several 

previous works assessing the US-China nuclear balance.286 We operationalize this approach by focusing on 
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how deep learning affects the detectability, identification, and tracking of Chinese strategic road-mobile 

missiles; we discuss the model in detail below. 

 

Our paper intends several contributions. First, we weigh in on a narrow technical debate with significant 

stakes – the question of whether mobile nuclear platforms can be detected, identified, and tracked.287 

Second, our paper contributes to the study of artificial intelligence by political science. AI generally 

presents “legibility” issues – since the technology is immature and applications are many, getting a 

methodological handle on AI as a variable requires significant conceptual work.288 Our operationalization 

in this paper does some of that work. 

 

In addition, a significant ongoing debate about AI is whether it will diffuse power more generally, 

accelerating the arrival of multipolarity. On some views, the AI field’s openness and commercial 

importance means the military benefits of the technology will be easily obtainable by other states; on other 

views, Chinese authoritarianism, population size, and military-civil fusion make it well-positioned to use 

AI to offset American power.289 This paper provides evidence that AI’s strategic uses will also be important 

for assessing AI’s impact on the balance of power: even if both China and the United States obtain certain 

raw AI capabilities, analysis needs to account for whether those capabilities can be put to good use. Here, 

US AI capabilities threaten Chinese second-strike because of relative arsenal size and US willingness to 

entertain counterforce efforts, regardless of whether China also possesses equivalent deep learning 

capabilities. Relatedly, a small literature asks how AI will affect broader structural variables in international 

affairs, such as the offense-defense balance; our results support the theory that AI will promote offense-

dominance by advantaging finders over hiders.290 
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Finally, we push the envelope on the sophistication of simulations used in campaign analyses. Previous 

models primarily use Monte Carlo sampling to allow specified quantities to vary according to some set 

distribution. While useful, these models also naturally limit themselves to spreadsheet-style analysis. In 

contrast, we implement a quasi-geographic model in Python which operationalizes each TEL as a state 

machine, enabling modeling of the US intelligence process over many time-steps. This not only allows us 

to sample from a richer array of possible simulated world-states, but additionally permits capturing 

complicated, emergent, over-time effects from the progressive interaction of various modeled objects. 

 

The remainder of the paper proceeds as follows: first, we unpack the debate over whether, why, and how 

AI may impact the viability of first-strike counterforce. Second, we describe the programmatic model we 

use to test these mechanisms, and then present the model’s results. Finally, we discuss the broader 

implications of our model’s results, including for what countermeasures states may adopt to stave off the 

impact of AI on their arsenals, and briefly conclude. 

 

 

Artificial Intelligence and Nuclear Counterforce 
Scholars have proposed many ways in which AI could affect the possibility of nuclear counterforce. On the 

one hand, AI could enable fast, high-endurance drones capable of penetrating deep into enemy territory, 

solve “needle in a haystack” problems associated with tracking mobile platforms both on land and undersea, 

and increase the speed and reliability of conventional counterforce attacks, among other effects. Thus, AI 

could decrease survivability.  

 

On the other hand, AI could improve early warning systems, increase the robustness of nuclear command 

and control systems, and enable the use of highly survivable autonomous delivery vehicles able to remain 

meaningfully functional past the loss of human leaders, among other effects. Thus, AI could enhance 

survivability.291  

 

The list of theorized effects is very long, as is the list of applications enabled by AI which are said to 

responsible for producing such effects. The key difficulty, of course, is that there is likely some truth to the 

diagnosis of such effects on both sides, AI being a general-purpose technology which “goes in everything.” 

Fortunately, we claim, most hypothesized effects in political science should be considered not to be real 

until proven beyond conceptual gesture; in the grand interplay of technology, after all, it is axiomatic that 

most effects “wash out,” easily counterbalanced by some equally incidental countermeasure and thereby 

never of lasting interest to political scientists – to produce effects on international affairs which are notable, 

we ought to have some real evidence to believe some real effect exists. Consequently, we limit ourselves 

to examining the use of deep learning techniques to assist with intelligence-processing in the detectability, 

identification, and tracking of Chinese strategic road-mobile missiles. 

 

(1) Deep Learning and Intelligence-Processing 
This focus has several rationales. First, deep learning for pattern recognition in colossal-scale data streams 

is a proven application of AI which has already been demonstrated to be technically possible. Consequently, 

there is no need to speculate about, for example, theoretical delegation to future emotionless AI decision-

 
291 Horowitz, Scharre, and Velez-Green, “A Stable Nuclear Future?”; Boulanin et al., “Artificial Intelligence, Strategic 

Stability and Nuclear Risk”; ---, ed., The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk, 

Volume I; Saalman, ed., The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk, Volume II; 

Topychkanov, ed., The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk, Volume III; Loss and 

Johnson, “Will Artificial Intelligence Imperil Nuclear Deterrence?”; Johnson, “MAD in an AI Future?”; Loss, 

“Artificial Intelligence, the Final Piece to the Counterforce Puzzle?”; Geist and Lohn, “How Might Artificial 

Intelligence Affect the Risk of Nuclear War?,” RAND, 2018; “AI and the Military”; Payne, “Artificial Intelligence: A 

Revolution in Strategic Affairs?”. 
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makers, as some commentators do. Second, although descriptively innocuous, deep learning is actually a 

breakthrough technologically in the ability of militaries to process intelligence at speed and at scale. As our 

model results below demonstrate, the application of deep learning can increase the speed at which a military 

locates a target of interest in already-possessed intelligence by between one and three orders of magnitude. 

 

Critically, although efforts to use other technologies commonly referred to as AI have been applied to 

intelligence processing before, none have reached near-human (or, in the case of deep learning, often super-

human) levels of intelligence, due to the difficulty of generating a mathematical formalizing which captures 

what humans do when they, for example, identify a cat as a cat, or a SAM site as such. Due to widespread 

application of deep learning to image, text, video, and other modalities beginning in the 2010s, however, 

deep learning classifiers now exceed human performance on many standard benchmarks of competence at 

these tasks. 

 

ImageNet Challenge Progress292 

 

 
 

Consequently, at the level of military tasks, substitution of deep learning algorithms for human intelligence 

analysts in many modalities has become increasingly feasible; AI can be tasked with locating targets of 

interest, noticing discrepancies in behavior, or combing through endless quantities of online text to look for 

terrorist intentions.293 

 
292 Daniel Zhang, Saurabh Mishra, Erik Brynjolfsson, John Etchemendy, Deep Ganguli, Barbara Grosz, Terah Lyons, 

James Manyika, Juan Carlos Niebles, Michael Sellitto, Yoav Shoham, Jack Clark, and Raymond Perrault, “Artificial 

Intelligence Index Report 2021,” Stanford University Center for Human-Centered Artificial Intelligence, 2021, 

https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf. 

 
293 Innovation in the algorithmic architectures underlying deep learning's abilities in these domains continue. For 

imagery, the chief innovation for deep learning's classifying abilities was convolutional neural nets (CNNs), which 

encoded a prior that pixels near each other tended to contain relevant information in images; for text, the key 

architectural improvement has been the Transformer, which also underly key recent breakthroughs in the quality of 

machine translation in BERT, and text generation in GPT-2 and GPT-3. For the seminal papers involved, see Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural 
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Third, though mundane-sounding, enhanced speed and scale in intelligence-processing strike at a key 

bottleneck in the US counterforce process vis-à-vis China: that of detectability. Surprisingly, detectability 

appears to decisively inform analysts’ views on whether China’s nuclear arsenal is survivable, but has not 

previously been modeled. Instead, detectability or lack thereof is a stipulated assumption in extant models. 

 

Reviewing briefly, Keir Lieber and Daryl Press (2006) assess that the US maintains a first-strike capability 

against both Russia and China by assuming, without explicitly modeling the question, that detectability is 

trivial.294 In contrast, Eric Heginbotham et al. (2015) assess that the Chinese arsenal has become 

increasingly survivable because they assume, also without modeling, that Chinese mobile assets are 

invulnerable.295 
 

Most recently, Wu Riqiang (2020) uses point estimates for the detectability of different Chinese fixed assets 

to model US nuclear counterforce over a 25-year period, but does not cite sources for these estimates.296 

Rachel Tecott and Andy Halterman (2021) correctly note the arbitrary nature of Wu’s detectability point 

estimates, and perform a sensitivity analysis by sampling from reasonable ranges – for example, per 

iteration, they draw the probability a launch site is detected from the range (10%, 90%).297 In these analyses, 

however, one’s assumed degree of detectability is still decisive – drawing a higher probability makes China 

vulnerable to a US first-strike, while low detectability implies the inverse.  

 

In short, if we could narrow the range for how detectable we believe Chinese mobile nuclear assets are, this 

would dominate our conclusion about Chinese survivability in one direction or another. Intuitively, at a 

very simple level, this is actually rather unsurprising – the US nuclear arsenal is large relative to China’s, 

so as long as any US counterforce effort can trade its weapons for China’s at some sane exchange rate, 

counterforce will look possible in these models. As the Chinese academic Li Bin once somewhat scathingly 

commented about Lieber and Press (2006), 

 
Basic arithmetic alone will certify that thousands of nuclear missiles should be able to destroy a couple dozen [missiles] … 
[but] the calculations in the paper are based on a fundamentally unrealistic assumption: that is, [that] the United States can 

detect and locate all Russian and Chinese long-range nuclear weapons.298 

 

Our paper addresses this gap in the literature by modeling, from first principles, whether the United States 

can detect China’s road-mobile missiles using its various intelligence assets. We assess this question both 

with and without AI. We focus on road-mobile missiles because both Chinese and American analysts 
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applied to SAR data specifically, see C. P. Schwegmann, W. Kleynhans, and B. P. Salmon, “The development of deep 

learning in synthetic aperture radar imagery,” paper presented at the International Workshop on Remote Sensing with 
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mostly agree China’s fledgling SSBN capability is unlikely to become survivable in the medium-term; the 

undersea balance strongly favors the United States.299  

 

(2) Intelligence-Processing and Counterforce 
So, how does AI help with detectability? The core of the problem is as follows: US collection of data has 

far outpaced the ability to digest it.300 As US sensor platforms have proliferated, so has the demand for 

skilled human labor to process the resulting intelligence. Intelligence analysts reportedly can require a full 

day simply to exploit 6 to 12 percent of imagery data for one city; one defense official has projected that 

the intelligence community would require 8 million analysts to manually exploit its imagery data alone in 

2037. Consequently, the United States is actively pursuing AI-empowered intelligence-processing 

capabilities to find and track mobile nuclear assets, both on land and at sea.301 In 2018, Reuters quoted US 

officials noting that “there are multiple classified programs now under way to explore how to develop AI-

driven systems ... scouring huge amounts of data, including satellite imagery, with a speed and accuracy 

beyond the capability of humans.”302 Since computational power is easily purchased much more cheaply 

than human analysts, highly accurate classifiers would enable the US intelligence community to run any 

number of iterations of its code over various intelligence modalities. Although this seems to us well within 

the capability of existing deep learning systems, we pause to consider two objections: 

 

(a) What about data quality? 

Rafael Loss and Joseph Johnson argue in several fora that data quality issues will prevent AI from usefully 

classifying Chinese road-mobile transporter-erector launchers (TELs), but we disagree.303  
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First, the data imbalance failure modes they mention are trivially easy to avoid. The US likely has a 

reasonable quantity of images of TELs, which have been paraded through China and photographed on the 

Internet, but even were China to deploy a novel TEL type during a crisis, one can simply add weights to 

datasets so that false negatives are costlier than false positives. Further, it would not be difficult to retrain 

one’s model on a daily basis as new intelligence arrived of the new TEL. Alternatively, one could 

synthetically augment the number of positive images in any number of ways; rotation, shifting, and 

cropping, for example, would not increase the number of false positives, since they would represent 

potentially real pictures of TELs heading in different directions.304 

 

Second, they argue AI cannot understand vehicle function from form, but this is a non sequitur. For 

intelligence processing, the AI merely needs to sort images; it does not need to have any understanding of 

how missile launchers work. If AI can never locate TELs because they are indistinguishable from trucks, 

this would also be equally true of human analysts. 

 

Third, they argue AI cannot deal with the curse of dimensionality. This is a strange criticism, since deep 

learning’s significant advances over the state-of-the-art have resulted precisely from its unique ability to 

deal with the curse of dimensionality.305 Further, the curse of dimensionality simply does not apply to the 

examples they cite. The curse of dimensionality is that phenomenon in statistics that as dimensionality 

increases, the difficulty of estimating a function grows exponentially due to combinatorial explosion.306 

Increasing picture resolution, however, is not equivalent to adding points in additional dimensions. One 

does not store 100x100 pixel images as 10,000-dimensional vectors. Contextually, deep convolutional 

neural networks (CNNs) exactly work by introducing spatial dependency between nearby pixels. In the lab, 

CNN-based classifiers run over SAR data for automatic target recognition (ATR) have already achieved 

accuracy in excess of 95%.307 

 

Finally, they argue that AI will be unable to discard unimportant features. However, deep CNNs do in fact 

possess this ability – that is, in fact, the reason to use them. The oft-repeated buzzword about deep learning 

is that it makes feature engineering, or the careful selection of what features to feed into the model, 

unnecessary. This criticism of theirs is thus especially strange. 

 

(b) What about the “Scud hunt”? 

During the oft-referenced “Scud hunt,” the United States launched around 2,500 sorties intended to hunt 

Scud launchers, but failed to confirm kills against any of the 30 Iraqi TELs, despite 88 Scud missiles being 
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launched.308 The Scud hunt is thus often cited to illustrate the difficulty of counterforce, including in 

discussions about AI.  

 

However, compared to modern US counterforce against China, the Scud hunt is disanalogous even before 

adding AI. First, the Scud TEL had a much smaller intelligence signature – it was ten times lighter and four 

times smaller than the DF-31A, and was not accompanied by various unique support vehicles.309 Chinese 

TELs include service trucks purposed for fire control, power, power distribution, aiming, and inspection.310 

The presence of these trucks themselves – or their distinct signatures – could all be features that AI 

algorithms could learn to detect. 

 

Second, with US counterforce against China, less precision is required of any intelligence signature – US 

nuclear weapons would destroy a much larger area than the conventional munitions used against Scud 

TELs.311 This enables our model’s use of barrage attacks against Chinese TELs, which tolerate uncertainty 

or targeting delay simply by destroying a wide area. In contrast, although Scud TELs were visually sighted 

42 times during the Scud hunt, strike aircraft were unable all but 8 times to find the TELs again after arriving 

in the area.312 

 

Third, the United States and its coalition partners failed to undertake extensive “intelligence preparation of 

the battlefield” (IPB); analysts were unsure even how many TELs existed, let alone where they were based, 

let alone where they would likely hide based on previous behavior. In contrast, the US devotes significant 

effort to monitoring Chinese TELs, as we discuss further below.313 Fourth, the sensor modalities used during 

the Scud hunt were qualitatively much worse than those available today – search modalities consisted 

entirely of aircraft and special operations forces (SOF) operating on foot, with both sometimes defaulting 

to using own literal eyesight to spot TELs.314  

 

Adding AI, our model illustrates how AI-assisted intelligence-processing shores up exactly those 

deficiencies which produced the failed Scud hunt. First, during the Scud hunt, the typical delay between 

target identification and ordnance delivery exceeded 50 minutes.315 Consequently, cued aircraft were often 

unable to find their targets. In contrast, our simulation results graphed below show exactly that AI’s key 

effect is to accelerate intelligence-processing, enabling the US to attack a much smaller area to defeat a 

given TEL. Second, AI enables broad-area search modalities to be useful for mobile targets. Using aircraft 
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and SOF to find Scuds was like – and in many cases, exactly was – walking through a desert with a flashlight 

looking for small objects. In contrast, using AI to sort through vast quantities of intelligence before passing 

on cues to human analysts would be like knowing, after a few minutes, the three possible locations those 

small objects could be. 

 

 

Modeling US Nuclear Counterforce Against China 
Having described how AI could assist with US counterforce, we now turn to describing the model within 

which that assistance occurs. At a high level, our code simulates the kill chain from end to end for US 

nuclear counterforce efforts against the Chinese arsenal, separately modeling each of “find, fix, and finish.” 

We then evaluate any remaining Chinese weapons against US missile defenses; this enables us to output 

whether China did, in fact, successfully retaliate against any given counterforce attempt.316 

 

Our baseline case implements AI-assisted “finding” and “fixing” against low, medium, and high alert 

levels; these Chinese alert levels, which we describe below, control TEL behavior, including the frequency 

and roaming behavior of deterrent patrols, the strictness of emissions control, what percentage of Chinese 

weapons are mated, and the density of Chinese decoys, among other details. We simulate both broad-area 

and cued collection modalities for the United States. For the former, this includes imagery satellites (EO), 

radar satellites (SAR/GMTI), and patrolling standoff aircraft operating near China’s coast (P-8s, EP-3s); 

for the latter, this includes unattended ground sensors, hyperspectral imagers, SIGINT intercepts, and 

stealthy penetrating UAVs (RQ-180s). To more realistically model these collection modalities, we also 

simulate various stochastic environmental features which likely affect US intelligence efforts. Our 

simulation includes a day/night cycle, cloud cover varying over hours, and geographically specific estimates 

of Chinese truck density as an input into false-positive TEL sightings. 

 

Our simulation of US “finding” and “fixing” outputs target sets for US counterforce efforts, including both 

fixed and mobile targets; our code then evaluates the sufficiency of the US arsenal at each time-step. We 

launch US SLBMs and ICBMs in barrage attacks against Chinese TELs, then launch any surviving Chinese 

weapons against CONUS, assessing whether they penetrate US missile defenses. This enables us to graph, 

over the course of the simulation, windows of opportunity where US counterforce efforts would succeed, 

if any. Below, we present results from twelve runs which simulate a 24-hour period minute by minute, but 

no programmatic limitation would prevent longer simulations. Our code is also highly configurable across 

all of these parameters, enabling easy exploration of excursion cases; below, we evaluate the implications 

of the ongoing miniaturization of satellite technology, as well as of Chinese expansion of its nuclear arsenal. 

We also run the model with and without AI, allowing us to illustrate its impact. 

 

The remainder of this section discusses the simulation’s parameters for the Chinese nuclear arsenal, TEL 

behavior under different alert levels, US intelligence collection, US intelligence processing, US nuclear 

counterforce attacks, and Chinese retaliation. 

 

(1) Chinese Nuclear Forces 
In 2019, according to the oft-cited Nuclear Notebook, China possessed around 290 nuclear warheads, 

intended for delivery via land-based ballistic missiles, submarine-launched ballistic missiles (SLBMs), and 

aircraft. However, many of these warheads were intended for regional use. Approximately 138 warheads 

were attached to delivery systems which range US soil, including territories and peripheral states; of these, 

around 80 were able to reach the continental United States (CONUS) proper from their deployment areas. 

 
316 While we focus the most effort on Chinese road-mobile missiles, we account for other parts of the Chinese arsenal 

through parameter adjustment. 
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Roughly 48 of those 80 were road-mobile missiles.317 As of November 2020, according to the Nuclear 

Threat Initiative (NTI), China has approximately 64 such missiles.318 We combine data sources to produce 

the below table of Chinese TELs and associated bases.319  

 

Chinese Nuclear-Capable TELs, 2019 
 

name latitude longitude missile_count DF_31A DF_31AG DF_26320 DF_31 DF_21AE 

Datong 36.95 101.67 6 0 0 0 6 0 

Chizhou 30.69 117.9 12 0 0 0 0 12 

Dalian 39.3 122.07 12 0 0 0 0 12 

Leping 28.98 117.12 12 0 0 0 0 12 

Nanyang 33.01 112.41 12 12 0 0 0 0 

Shaoyang 27.25 111.39 12 0 12 0 0 0 

Tianshui 34.53 105.91 12 0 12 0 0 0 

Yuxi 24.36 102.49 24 24 0 0 0 0 

Hancheng 35.48 110.45 6 2 2 0 2 0 

Korla 41.69 86.17 36 0 0 36 0 0 

Jianshui 23.73 102.87 36 0 0 36 0 0 

Xinyang 32.17 114.13 36 0 0 36 0 0 

Qingyuan 23.68 113.18 36 0 0 36 0 0 

 

Mobile Missiles Ranging CONUS 

China’s aforementioned 64 strategic mobile missiles ranging CONUS are single-shot transporter-erector-

launchers (TELs), represented entirely by the DF-31A (CSS-10 Mod 2) and DF-31AG (CSS-10 Mod 3).321 

In 2019, China had approximately 24 launchers each of both types; they carry the same missile ranging 

11,200 km.322 As of November 2020, NTI reports China has approximately 38 DF-31As and 26 DF-

31AGs.323 

 
317 Hans M. Kristensen and Matt Korda, “Chinese nuclear forces, 2019,” Bulletin of the Atomic Scientists 75.4 (2019): 
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Mobile Missiles Ranging US Soil 

China additionally possesses approximately 46 mobile missiles which range US territories, Hawaii, or 

Alaska, but not CONUS. These missiles comprise: 

  

● 40 DF-26s (no NATO designation). China has approximately 200 DF-26 launchers, capable of 

carrying both conventional and nuclear payloads.324 Kristensen and Korda estimate approximately 

40 would arm themselves with nuclear warheads in a crisis, with a range of 4,000 km; 

distinguishing them on the road may be difficult. This may require counterforce efforts to destroy 

all DF-26 launchers, if distinguishing intelligence streams are unavailable. Unlike China’s DF-21 

variants, where the nuclear and non-nuclear launchers have differences easily observable in satellite 

imagery, the DF-26 is simply one dual-use launcher.325 These could reach Guam, but not 

CONUS.326 

  

● 6 DF-31s (CSS-10 Mod 2). China has about 6 DF-31 launchers with a range of about 7,200 km. 

They are not deployed in areas which would enable them to reach CONUS, but could target 

Guam.327 Theoretically, DF-31s deployed in Heilongjiang, China’s northeast corner, could just 

reach parts of the American west coast. 

 

We focus on the combined target set of missiles ranging either CONUS or US soil in our baseline case, but 

US planners could theoretically set the threshold for successful counterforce at eliminating all nuclear 

weapons able to target even US overseas bases and/or regional allies. 

 

Mobile Missiles Ranging US Allies 

Finally, China also possesses approximately 40 missiles total for the DF-21A (CSS-5 Mod 2) and DF-21E 

(CSS-5 Mod 6). These are the nuclear variants of the dual-capable DF-21 family, and have a range of 2,150 

km.328 As above, the variants are distinguishable. They can reach neither Guam nor CONUS, but could 

threaten US regional allies. 

 

(2) Chinese TEL Behavior 
How do Chinese transporter-erector-launchers (TELs) behave under different alert levels? Unfortunately, 

with some notable exceptions, scarce explicit information is available.329 Consequently, we follow 

Heginbotham et al. (2015) and Wu (2020) in conceptualizing several alert levels appropriate to our 

simulation based on reasonable assumptions about Chinese strategy. 

 

Fundamentally, China faces tradeoffs between TEL survivability and other goals. Trivially, were China 

only seeking to maximize TEL survivability, it could purchase an enormous number. In practice, potential 
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defensive practices like emissions control (EMCON), TEL hardening or stealth covers, or off-road 

capability may also pose difficulties for maintaining nuclear command and control, run against PLA culture, 

and/or simply cost money presently allocated elsewhere. For historical reasons dating back to Mao, for 

example, the CCP strongly prioritizes negative over positive control – in relative terms, it prefers the 

“never” branch of the always/never dilemma.330 Chinese elites are likely to strongly resist pre-delegation 

to field commanders, even when tactically optimal.331 Strategically, China’s declared “no first use” policy 

looks more credible the less TELs are ready to fire.332 

 

Consequently, China presently keeps its missiles de-mated and its TELs in garrison during peacetime, only 

dispersing launchers during crises as deliberate nuclear signaling.333 Relative to continuous deterrent 

patrols, this obviously decreases TEL survivability, but serves as a costly and thus arguably credible signal 

of Chinese nuclear intentions. Under this peacetime level of “day-to-day alert,” US first-strike counterforce 

would not require finding and tracking dispersed TELs, but merely striking various possible combinations 

of fixed assets, such as the TEL-associated bases themselves, the warhead storage base or its associated rail 

lines, prepared forward and launch sites for default TEL deployment, and so on.334 Since this alert level 

involves no application of AI against mobile systems, we model it only as a beginning state for shifting to 

other alert levels. That is, even our “low alert” scenario assumes higher readiness of nuclear forces than 

China actually practices, a China-favoring assumption already giving credit for some level of adaptation.335  

 

Instead, given the above, we conceptualize Chinese alert levels as a progressively increasing willingness to 

prioritize TEL survivability over other goods. Applying this idea to various available levers allows us to 

formulate corresponding TEL behaviors. We thus model three alert levels: low, medium, and high. 

 

TEL Behavior by Alert Level 
 

 Low Medium High 

Speed (km/h) 20 40 69 

Mating % 16.67% 50% 100% 

Roam % 25% 75% 100% 

EMCON % 0% 50% 100% 
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Endurance (h/day) 8 16 24 

Endurance (km) 500 750 1000 

Decoy:Real 0:1 1:1 2:1 

Base Tethering? Y Y N 

 

Speed 

How fast do the TELs drive? Extant scholarly works report significantly different likely Chinese TEL 

speeds, ranging from 20 km/h to 90 k/h.336 Since the reported speed of the DF-31 TEL vehicle is 69 km/h, 

we use that as a maximum.337 Although 20 km/h seems intuitively slow, this sometimes corresponds to 

Chinese road regulations for TEL-sized trucks; additionally, TEL accidents are likely seen as particularly 

costly, especially if they are carrying nuclear weapons.338 Consequently, we take the 20 km/h estimate from 

Li (2007) at face value, but assign it to the low alert case; we assign 40 km/h to medium alert, and 69 km/h 

to high alert. 

 

Mating % 

What percentage of TELs are mated? As above, Chinese doctrine keeps nuclear warheads de-mated from 

TELs in peacetime.339 For low alert, we follow Wu (2020) in assuming only 1/6th of warheads will be readily 

available, having been pre-dispersed from central storage to TEL bases. To prevent the US from simply 

striking the central warhead and TEL bases and easily obtaining victory, we operationalize low alert by 

assuming China takes the minimum precaution of mating those pre-dispersed warheads. Consequently, 

16.67% of China’s TELs are mated in low alert; we stipulate China mates half of TELs in medium alert, 

and all TELs in high alert. 

 

Roam % 

What percentage of TELs are roaming, as opposed to staying in base? For low and medium alert, we follow 

Heginbotham et al. (2015) in assigning 25% and 75% of TELs to roam, respectively.340 Under high alert, 

we set 100% of TELs to roam. 

 

EMCON % 

What percentage of the time do TELs practice EMCON? Under low alert, drivers and staff freely 

communicate and receive orders and other chatter; under medium alert, we cut this by half. Under high 

alert, we assume pre-delegation of necessary authorities, allowing 100% EMCON. 
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Endurance 

How long or far can TELs drive before crews need to rest, vehicles need maintenance, or fuel tanks are 

empty?341 We conceptualize longer endurance times and distances as a willingness to push crews, defer 

non-emergency maintenance, and carry additional fuel on-board or as part of the vehicle convoy. We assign 

8, 16, and 24-hour shifts to low, medium, and high alert, respectively, with drive distances of 500, 750, and 

1000 km. Under high alert, we assume refueling on the road takes half an hour. 

 

Decoys 

We stipulate that under low alert, China deploys no decoys; under medium alert, China deploys decoys at 

a 1:1 ratio. These decoys are indistinguishable from real TELs with 0.5 probability; we conceptualize them 

as decoys seen previously by US intelligence. Under high alert, we stipulate China deploys decoys at a 2:1 

ratio, with half of deployed decoys nearly indistinguishable from real TELs (0.9). 

 

Base Tethering 

Under low and medium alert, we assume that TELs eventually return to their base areas, and do not 

arbitrarily wander the entirety of China. Under high alert, we assume that China has pre-positioned 

replacement crew members, fuel, food, and other maintenance supplies, thus allowing arbitrary TEL 

roaming without generating large, visible supply tail. In this “free roaming” mode, TELs rest for four hours 

every 24 hours underneath thick structures (e.g., overpasses, warehouses, tunnels) which block line-of-sight 

collection modalities.342 

 

(3) US Intelligence: Preparation of the Battlefield 
Very substantial US peacetime intelligence efforts are devoted to collecting on others’ nuclear arsenals.343 

These include broad-area remote sensing modalities, but also costlier, slower, targeted efforts, such as 

cultivating human sources with special knowledge of China’s nuclear weapons, monitoring 

communications over long stretches of time, and directing satellites to look at particular areas of interest. 

 

Bases 

Consequently, the United States has likely already identified China’s TEL-containing garrisons and pre-

prepared launch sites.344 (Minimally, it knows at least as much as we know from the open-source.) This 

means crises start with the US possessing knowledge of how many TELs China has of each type and which 

bases they are stationed at. Since TEL bases are known even to open-source analysts, we give the US credit 

for “gatekeeping” all TEL bases, monitoring entry and exit traffic.345 

 

Roads 

US intelligence may also have an understanding, built up over years, of China’s typical TEL patrol routes. 

It almost certainly understands which parts of China constitute drivable terrain for TELs, and which roads 

and/or fields are too steep, soft, or insecure to admit TEL traffic – in other words, using pure road density 
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overestimates drivable TEL area and represents a conservative estimate, a ceiling for where TELs could 

possibly drive). This effectively decreases the search area for broad collection modalities substantially. 

 

TELs 

Finally, the US likely has an intimate understanding of each TEL type’s height, weight, and so on. In fact, 

precise specifications for TELs are available even in the open-source. For example, we know the length, 

diameter, and mass of the DF-31 missile, canister, and associated TEL vehicle.346  

 

This knowledge also gives the US knowledge of TEL-specific signatures. In particular, since China has 

itself paraded these missiles through its streets, and each TEL type was in development for many years and 

has existed for years after that, it seems safe to assume that the US has an arbitrary quantity of images of 

each TEL type (one can find many images on the open-source Internet), making ML training possible. 

 

Furter, the US knows TELs have various signatures that make them quite unlike civilian trucks. In addition 

to having a particular mass, shape, and brute appearance, mobile solid-propellant missiles require 

“approximately six vehicles, including the TEL.”347 These include service trucks purposed for fire control, 

power, power distribution, aiming, and inspection.348 

 

(4) US Intelligence: Broad-Area Detection 
We give the US credit for three kinds of broad-area detection assets: EO satellites, SAR/GMTI satellites, 

and standoff aircraft. 

 

EO satellites 

Mature miniaturization of electro-optical satellites likely means continuous  high-resolution imaging from 

space is available to the Pentagon for every part of the Earth.349 EO satellites, of course, can be temporarily 

defeated by bad weather and cloud cover; their view can also be blocked by high valleys or buildings. Based 

on Trump’s tweeting of a KH-11 image, US EO satellites have at least 10-cm resolution.350 

 

SAR/GMTI satellites 

Recent technological advances mean satellites using synthetic aperture radar can detect both stationary and 

moving targets at sufficient resolution to find truck-sized objects.351 SAR satellites in sun-synchronous low 

earth orbit (LEO) can iteratively view the entire earth, but consequently provide only intermittent coverage 

of any given area. The United States has a finite number of SAR satellites, but ongoing miniaturization 

likely will mean progressively reduced time between usable passes.352 SAR satellites provide day-night all-

weather coverage, though they can be blocked by disadvantageous topography.  
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SAR miniaturization means the possibility of “near-continuous all-weather day-night coverage” at 

progressively cheaper cost.353 Besides relying on military satellites, the rapid proliferation of commercial 

constellations due to falling launch costs and ongoing miniaturization also provides a ready-made source 

of data. These commercial constellations would complicate Chinese counterspace efforts, which would 

need to destroy hundreds of distributed assets belonging to third parties to disable their use; this would 

represent both a targeting problem and a political one.354 Benchmarking US capabilities against commercial 

SAR provider ICEYE, the US arguably should have the ability to view each meter of China once per hour. 

 

Standoff aircraft 

Finally, aircraft carrying SAR operating in the GMTI mode can also both detect and track Chinese TELs. 

One way to do this would be to operate off the Chinese coast (“standoff”). US aircraft regularly fly 

reconnaissance mentions close to the Chinese coast, including sometimes disguised as aircraft from other 

countries (e.g., Malaysia, the Philippines).355 There were 60 such flights in September, for example.356 

These include the US Navy’s P-8A Poseidon planes, equipped with AN/APY-10 radars which can conduct 

surface searches with SAR, ISAR, and also take simple video from up to 370 km away. It also includes the 

EP-3E ARIES II, which also carries AN/APY-10 series radar.357 The EP-3E ARIES II also carries ELINT 

and COMINT systems with a maximum range of 926 km. All together, US standoff aircraft can be 

understood as likely seeing about 400 km inwards from the coast with both video and SAR/ISAR/GMTI 

day-night all-weather radar, and with ELINT/COMINT systems about 900 km.358 

 

(5) US Intelligence: Targeted Collection 

Base surveillance 

TEL bases themselves do not migrate. Thus, the US can pre-position intelligence assets to gate-keep these 

bases, more effectively observing when TELs enter and leave the area. 

 

First, consider unattended ground sensors. The US could position UGSs near bases and major roads TELs 

are likely to turn onto, allowing them to distinguish between TELs and lighter traffic.359 UGSs with decade-

long lifespans appear possible. After emplacement by UAV or human agents, they could remain silent until 
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activated, recharging via sunlight.360 UGSs could also help cue any penetrating UAVs.361 Indeed, DARPA 

has studied using deep learning to fuse and class signatures derived from physical sensors.362  

 

Second, consider geosynchronous SIGINT satellites. The US historically tracked Soviet TELs in part by 

intercepting communications using SIGINT satellites.363 The US continues to develop these capabilities 

today, with continuous launches of more SIGINT satellites. Cell phone, radio, and camera intercepts could 

enable “listen[ing] into the conversations of technicians working in a missile convoy.”364 It is very hard for 

TELs not to talk, compared to fixed missile sites.365 While the details are of course classified, reporting 

seems to indicate that the US Orion constellation can listen to most cell communications in China at most 

times. Once cued to stare at the right places, the US can listen to 100% of TELs that are not under 

EMCON.366 While this traffic is likely encrypted, we estimate based on broad technical assumptions that 

the US has a 5% chance of bypassing encryption for any given intercept. 

 

Cueing 

Once detected by broad-area assets, others which have narrower range can be “cued” to migrate toward the 

identified TELs, providing additional modalities. First, hyperspectral collectors can powerfully distinguish 

between decoys and real TELs.367 There is a limited number of these, but their numbers are increasing.368 

 

Second, although higher-risk, the US could send stealthy high-endurance unmanned drones into Chinese 

airspace, likely launched through non-coastal parts of the Chinese border (e.g., through Pakistan). This 

modality is new with high-endurance UAVs, which unlike human pilots are happy to crawl through airspace 

for very long periods. Stealthy UAVs are thus useful for tracking cued targets.369 
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We give the US credit for 20 RQ-180s, identical to the number of actively fielded RQ-170s. The RQ-180 

reportedly has parameters similar to the Global Hawk, giving it 24 hours of flight time, 629 km/h speed, 

and a range of 22,000 km; it is reportedly even stealthier than the F-35. As Heginbotham et al. (2015) found 

that latest-generation aircraft with very low detectability could still access 93% of a notional target set in 

China in 2017, we give the RQ-180 a significant probability of penetration.370 We assume the RQ-18 has a 

maintenance to flight time ratio of 1:1, and model it as a source of EO and SAR/GMTI data. 

 

(6) US Intelligence: AI-Assisted Processing 
To quantitatively estimate AI’s effects, we stipulate that satellite data arrives as 250m x 250m tiles, since 

our search is for small trucks and we have access to at least 1m-resolution imagery. Consequently, for every 

square kilometer, we have 16 images to consider. 

 

What about false positives? Naively, China has an area of around 10 million sq km, so we would need 160 

million images to cover the entire country. Obviously, however, not all areas are near TEL bases, some 

areas definitely do not contain TELs (e.g., inaccessible mountaintops), and our simulation assumes TELs 

drive on roads. Adjusting for China’s road network to bound uncertainty, we find the need to process the 

equivalent of between 37,500 and 1,250,000 sq km. How long would this take? 

 

Happily, a study by Marcum et al. (2017) analyzing the kindred problem of broad-area search for SAM 

sites took 13 hours to process 88,000 sq km of data, using one server and 4 GPUs.371 This computation is 

embarrassingly parallel, however, so speed can be trivially scaled by adding additional computing power. 

If we assume the US government uses computation equivalent to machine learning applications for one 

Google datacenter, this would roughly generate 1,000 times the computing power of Marcum et al.’s setup, 

and therefore achieve about 100 times lower latency while processing an order of magnitude more data. 

Consequently, accounting for government willingness to spend what it takes, as well as optimizations 

specific to satellite imagery, we estimate a processing time of 5 minutes.  

 

Marcum et al. (2017) also usefully provides parameters for expert human analysts: in their experiment, the 

processing task required 43 minutes, with human analysts able to review an image every 1.3 seconds using 

an optimized user interface. Assuming the United States could devote 100 analysts to a counterforce effort, 

this means our notional human analysis team processes 7800 instances per minute. Consequently, AI 

represents an enormous increase over human-only efficiency. With human-machine teaming, we set 

algorithmic false positives and false negatives locally based on truck density, then pass on the most 

controversial images to the human team. 
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(7) US Counterforce Against Chinese TELs 
How would US nuclear counterforce against Chinese TELs work? We first enumerate the US nuclear 

arsenal, then discuss specifics involved in destroying TELs. 

 

US Nuclear Forces 

The United States possesses approximately 3800 nuclear warheads, of which 1750 are actively deployed: 

400 on land-based intercontinental ballistic missiles (ICBMs), 900 on submarine-launched ballistic missiles 

(SLBMs), 300 at bomber bases on US soil, and 150 tactical bombs at European bases.372 We consider only 

SLBMs and ICBMs, given that long aircraft travel times would not be suitable for striking mobile targets 

with fleeting locations. Since China does not possess effective ballistic missile defenses, the destroyable 

area calculations can be performed cleanly. Further, based on estimating how many fixed structures the US 

would seek to destroy specifically with nuclear weapons, we reserve 240 ICBMs (180 W78s, and 60 W87s) 

for that purpose. As a sanity check, Heginbotham et al. (2015) estimate 157 US warheads for fixed targets 

in their 2017 US first-strike scenario.373  

 

Available TEL-Killing Weapons 
 

Weapon Available Count 

W76-1 675 

W88 225 

W78 120 

W87 40 

 

SLBMs 

The US possesses 1,486 UGM-133A Trident II D5/LEs (“Trident D5s”), with 900 to 950 warheads 

normally deployed on submarines at any given time. Since Trident D5s possess an extended range of 12,000 

km, US submarines can strike all of China from even just off the west coast. Further, more than 60 percent 

of deterrent patrols take place in the Pacific, likely reducing SLBM travel time by half or more.374 Trident 

D5s travel at 29,020 km/h; consequently, SLBMs fired from maritime East Asia will have flight times of 

12.4 minutes or less, while those outside will have maximum travel times of 24.8 minutes. We assume the 

deployed mixture consists of 75% Mk4As and 25% Mk5s, which matches the proportion of available 

warheads in the US arsenal. 
 

ICBMs 

The US maintains 400 silo-based LGM-30G Minuteman III ICBMs deployed across Colorado, Nebraska, 

Wyoming, North Dakota, and Montana. Consequently, given a speed of 24,000 km/h, maximum flight 

times to China are half an hour.375 We similarly assume the deployed mixture consists of 75% Mk12As and 

and 25% Mk21/SERVs, which matches the proportion of available warheads in the US arsenal. 
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TEL-Killing 

To set parameters for TEL-killing, we must estimate both how large an area must be destroyed at what psi, 

as well as how nuclear weapon yields convert to area. 

 

Target Sizing 

The target area which must be destroyed to neutralize a TEL depends on three factors: TEL speed, road 

density, and weapon flight time. On speed, since TELs derive survivability partially through resembling 

surrounding non-TEL traffic, TELs likely drive at speeds normal for Chinese roads. Following Chinese 

road regulations, this reportedly limits TEL speeds to between 20 km/h and 40 km/h, although they could 

hypothetically accelerate to 69 km/h, the maximum speed of the DF-31 TEL.376 On road density, Chinese 

road density in 2019 was 52.21 km per 100 sq km, though area information unfortunately appears 

unavailable.377 If TELs could drive in any direction, the area the TEL could be after n minutes would 

obviously be a circle, πr2. However, Wu (2020) claims that “Chinese TELs lack off-road mobility.”378 We 

assume fully half of China is TEL-drivable, which likely overstates the case significantly; thus, half that 

area must be destroyed. 

 

Finally, weapon flight time (“delay”) will obviously vary by platform. As above, we give the United States 

credit for locating 60% of its SSBNs in the Pacific, with maximum flight times of 12.4 minutes; the 

remaining 40% have flight times of up to 24.8 minutes. CONUS-based ICBMs experience flight times of 

up to half an hour. Assuming TELs move during weapon flight, neutralizing any given TEL requires 

striking the whole area that TEL could be, after weapon arrival. Thus, TELs represent a target area of: 

 

road density * π * (speed * delay)2 

 

where road density is set to 0.5, speed varies according to alert level as above, and delay varies by weapon. 

 

Strike Area 

How much area does each weapon strike cover? This depends on two primary factors: TEL hardness and 

atack doctrine. On hardness, TELs can be neutralized by 2-4 psi; we conservatively round up to 5 psi.379 

On attack doctrine, we follow Lieber and Press (2017) in their assessment that with modern weapons 

technology, two nuclear weapons should destroy a targeted area with a probability of kill (Pk) exceeding 

99.9%.380 Consequently, we assume the US follows a 2:1 strike doctrine for TELs, seeking to blanket the 

area possibility containing the TEL with 5 psi, twice. 

 

We model the relationship between each weapon and the area its detonation covers using two sources: first, 

we use the surface burst formula commonly cited by Li (2007), Glaser and Fetter (2016), Lieber and Press 
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(2017), and Wu (2020). This formula ultimately derives from the standard reference text by Glasstone and 

Dolan, Effects of Nuclear Weapons (1977):381 

 

 
 

Here, LR is lethal radius in nautical miles, Y is yield in megatons, and H is target hardness in psi. However, 

this arguably underestimates the efficacy of the US nuclear arsenal against TELs, as soft targets do not 

require surface burst detonations – an airburst is likely to produce sufficient force across a wider area. 

 

Thus, second, we source airburst data from Alex Wellerstein’s NukeMap utility, which also implements its 

formula and graphs from Effects of Nuclear Weapons.382 Our calculations agree approximately with the US 

Defense Intelligence Agency’s 1969 Physical Vulnerability Handbook – Nuclear Weapons, which holds 

that a 100-kt weapon can effectively destroy road-mobile missiles across a radius of 2875 meters, or 

approximately 26 square kilometers.383 This produces an increase of the efficacy of the US nuclear arsenal 

against 5 psi TELs by very roughly a factor of 3. 

 

TEL-Killing Area by Weapon 
 

Weapon Surface Burst (sq km) Airburst (sq km) 

W76-1 11.16 31.2 

W88 32.86 91.9 

W78 26.80 74.9 

W87 24.90 69.6 

 

Consequently, we can solve for a US first-strike package by combining TEL target sizing and weapon strike 

area, keeping in mind the different delays for different weapons. In tables: 

 

TEL-Killing Data (Pacific SLBMs) 

 

TEL 
Speed 
(km/h) 

Average 
Road 

Density, 2019 
(km / sq km) 

Pacific 
SLBM 

Delay (h) 

Target 
Area (sq 

km) 

W76-1s 
Needed 
(Surface 

Burst, 2:1) 

W76-1s 
Needed 

(Airburst, 
2:1) 

W-88s 
Needed 
(Surface 

Burst, 2:1) 

W-88s 
Needed 

(Airburst, 
2:1) 

20 0.5221 0.207 28.11 5.04 1.80 1.71 0.61 

30 0.5221 0.207 63.25 11.34 4.05 3.85 1.38 

 
381 Lynn Etheridge Davis and Warner R. Schilling, “All You Ever Wanted to Know about MIRV and ICBM 

Calculations but Were Not Cleared to Ask,” The Journal of Conflict Resolution 17.2 (1973), 213. 

 
382  For an explanation of airburst calculations, see Alex Wellerstein, “The trouble with airbursts,” Restricted Data, 

December 6, 2013, http://blog.nuclearsecrecy.com/2013/12/06/trouble-airbursts/. 

 
383 Matthew G. McKinzie, Thomas B. Cochran, Robert S. Norris, and William M. Arkin, “The U.S. Nuclear War Plan: 

A Time for Change,” Natural Resources Defense Council, 2001, https://www.nrdc.org/sites/default/files/us-nuclear-

war-plan-report.pdf, 54. 
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40 0.5221 0.207 112.45 20.15 7.21 6.84 2.45 

50 0.5221 0.207 175.71 31.49 11.26 10.69 3.82 

60 0.5221 0.207 253.02 45.34 16.22 15.40 5.51 

70 0.5221 0.207 344.38 61.72 22.08 20.96 7.49 

80 0.5221 0.207 449.80 80.61 28.83 27.38 9.79 

90 0.5221 0.207 569.28 102.02 36.49 34.65 12.39 

100 0.5221 0.207 702.82 125.95 45.05 42.78 15.30 

 

 

TEL-Killing Data (Distant SLBMs) 

 

TEL 
Speed 
(km/h) 

Average 
Road 

Density, 
2019 (km / sq 

km) 

Distant 
SLBM 

Delay (h) 

Target 
Area (sq 

km) 

W76-1s 
Needed 
(Surface 

Burst, 2:1) 

W76-1s 
Needed 

(Airburst, 
2:1) 

W-88s 
Needed 
(Surface 

Burst, 2:1) 

W-88s 
Needed 

(Airburst, 
2:1) 

20 0.5221 0.413 111.91 20.06 7.17 6.81 2.44 

30 0.5221 0.413 251.79 45.12 16.14 15.33 5.48 

40 0.5221 0.413 447.63 80.22 28.69 27.24 9.74 

50 0.5221 0.413 699.43 125.35 44.84 42.57 15.22 

60 0.5221 0.413 1,007.18 180.50 64.56 61.30 21.92 

70 0.5221 0.413 1,370.88 245.68 87.88 83.44 29.83 

80 0.5221 0.413 1,790.54 320.89 114.78 108.98 38.97 

90 0.5221 0.413 2,266.15 406.12 145.27 137.93 49.32 

100 0.5221 0.413 2,797.72 501.38 179.34 170.28 60.89 

 

TEL-Killing Data (ICBMs) 

 

TEL 
Speed 
(km/h) 

Average 
Road 

Density, 
2019 (km / sq 

km) 

CONUS 
ICBM 

Delay (h) 

Target 
Area (sq 

km) 

W78s 
Needed 
(Surface 

Burst, 2:1) 

W78s 
Needed 

(Airburst, 
2:1) 

W-87s 
Needed 
(Surface 

Burst, 2:1) 

W-87s 
Needed 

(Airburst, 
2:1) 

20 0.5221 0.5 164.02 12.24 4.38 13.17 4.71 

30 0.5221 0.5 369.05 27.54 9.85 29.64 10.60 

40 0.5221 0.5 656.09 48.96 17.52 52.70 18.85 

50 0.5221 0.5 1,025.14 76.50 27.37 82.34 29.46 

60 0.5221 0.5 1,476.20 110.16 39.42 118.57 42.42 
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70 0.5221 0.5 2,009.28 149.95 53.65 161.39 57.74 

80 0.5221 0.5 2,624.36 195.85 70.08 210.79 75.41 

90 0.5221 0.5 3,321.46 247.87 88.69 266.78 95.44 

100 0.5221 0.5 4,100.56 306.01 109.49 329.36 117.83 

 

 

For visual legibility, we can also graph the cumulative destroyable area (within which TELs hardened to 5 

psi would be destroyed) against delay from weapon launch. To accomplish this, we simplify multiply 

through weapon availability by the 2:1 airburst tables given above, sorting by delay. Following these 

assumptions, we estimate that the United States can destroy 27,450.75 sq km of TELs after 30 minutes. 

 

Cumulative Destroyable Area by Delay 

 
What about tunnels? 

Our simulation does not explicitly model tunnels, but at minimum cave-ins of all exits could be easily 

accomplished with even non-nuclear strikes; depending on the facility in question, surface-burst attacks 

with nuclear weapons should also penetrate immense quantities of earth. According to a Chinese study, US 

nuclear weaponry “would thoroughly destroy the tunnel exits/entrances of China’s underground missile 

sites.”384 Consequently, TELs in tunnels arguably resemble fixed targets. 

 

What about launchpads? 

Strangely, Wu (2020) assumes that Chinese mobile missiles are each assigned to three corresponding pre-

surveyed launch sites, and that the missiles will be unable to launch if those sites are destroyed.385 As Wu 

 
384 Wu, “Living with Uncertainty,” 101. Eric M. Sepp, “Deeply Buried Facilities: Implications for Military 

Operations,” Occasional Paper 14 (2000), 25, 31. 

 
385 Ibid., 90-1. 
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himself notes, however, there is not robust evidence this is true. Indeed, there is no obvious technical reason 

why it would be thus. Soviet launchers did not require pre-prepared sites, so it is at least possible China 

will develop the capability to launch from arbitrary areas meeting certain minimum conditions.386 We 

assume TELs can launch from arbitrary locations, and require the United States to destroy the TEL itself. 

 

What about deserts? 

Glaser and Fetter (2018) suggest China could deploy TELs throughout the Gobi Desert, which contains an 

area larger than Texas mostly comprised of bare rock. This would enable omnidirectional maneuvering at 

high speeds, potentially overwhelming the US nuclear arsenal by presenting an extremely large effective 

target size.387  

 

However, this strategy would not be costless, as the nature of the Gobi Desert would complicate TEL 

concealment. Deserts are mostly cloudless and experience little rainfall, meaning TELs could not leverage 

periods of bad weather to relocate without being imaged by US EO satellites. An environment of mostly 

bare rock would also prevent TELs from using topography to avoid US SAR satellite passes. With little of 

anything else around, TELs would be easily distinguishable against the featureless ground; rather than rely 

on wide-area nuclear barrages, the United States could bring conventional assets to bear on these wayward 

nomads, especially given the Gobi Desert’s presumably low density of air defense capabilities. 

 

Further, more importantly, Glaser and Fetter credit these Gobi TELs with various technological 

improvements, such as traveling at high-speeds off-road and being hardened to resist 5-10 psi (5 psi is 

generally understood to suffice for destroying cities). While these are plausible, the US would naturally 

develop appropriate countermeasures; one can also arbitrarily make the US arsenal sufficient again to 

destroy such TELs, for example, by simply increasing the delivery speed and/or yield of US nuclear 

weapons to generate a sufficient area of destruction. Unless some new technical development changes 

matters, in other words, it is always possible to make any arsenal survivable or vulnerable simply by 

stipulating that the other side fails to respond to increased arming. In contrast, AI’s effects are notable 

because they leverage the effects of already-existing intelligence assets, acting as a force multiplier. 

 

Other Assumptions 

Finally, it is worth noting that in modeling the US counterforce effort, we have made a number of 

simplifying assumptions which generally favor China. First, besides destroying the launchers themselves, 

the United States could also preclude a Chinese second strike by disabling its command and control. We 

do not explore this possibility here, though this would likely be easier than destroying each mobile Chinese 

TEL, as most command-and-control assets are fixed. 

 

Second, the United States could also leverage conventional assets for counterforce. Large-area barrage 

attacks against TELs demand the large blast radii of nuclear weapons, but prepared launch sites, special 

railroads designated for transporting warheads, visible shelters, and other targets could all be destroyed 

with various sources of long-range precision strike. Finally, we assume the US cannot distinguish between 

mated and de-mated TELs in the field, and therefore must destroy both. In practice, various intelligence 

sources would yield some hope of discrimination. 

 

  

 
386 Matthew G. McKinzie, Thomas B. Cochran, Robert S. Norris, and William M. Arkin, “The U.S. Nuclear War Plan: 

A Time for Change,” Natural Resources Defense Council, 2001, https://www.nrdc.org/sites/default/files/us-nuclear-

war-plan-report.pdf, 52. Soviet road-mobile missiles could launch from unprepared sites if “terrain relief” allowed. 

 
387 Glaser and Fetter, “Correspondence,” 205-6. 
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(8) Missile Defense Against Surviving TELs 
We implement an extremely simple Monte Carlo layer to account for US missile defenses: giving the US 

credit for its 44 interceptors, we assume each has Pk of 0.5, and that all are fired simultaneously, distributed 

equally, against any approaching Chinese missiles. For simplicity, we make the China-favoring assumption 

of giving the PLARF credit for perfect weapon reliability of any surviving TELs. Since the probability that 

one missile survives one interceptor is (1 – Pk), the probability that one missile survives its equal share 

interceptors is: 

 

(1 − 𝑃𝑘)
𝑁
𝑀 

 

where N is the number of interceptors, and M is the number of incoming missiles. Thus, the probability that 

the missile is destroyed is 

1 − (1 − 𝑃𝑘)
𝑁
𝑀 

 

and the probability that M missiles are destroyed is, correspondingly,  

 

(1 − (1 − 𝑃𝑘)(
𝑁
𝑀
))𝑀 

 

Summing up, the probability that at least one missile is not destroyed is then 

 

1 − (1 − (1 − 𝑃𝑘)(
𝑁
𝑀
))𝑀 

 

We can also produce this, practically, in table form, assuming the US would be deterred by even one hit: 

 

US Missile Defense Efficacy 
 

Surviving Missiles Probability of > 1 Hit  Surviving Missiles Probability of > 1 Hit 

1 0.00%  13 72.98% 

2 0.00%  14 81.40% 

3 0.01%  15 87.81% 

4 0.20%  16 92.38% 

5 1.12%  17 95.46% 

6 3.66%  18 97.41% 

7 8.63%  19 98.59% 

8 16.37%  20 99.26% 

9 26.58%  21 99.63% 

10 38.45%  22 99.82% 

11 50.83%  23 99.92% 

12 62.63%  24 99.96% 

13 72.98%  25 99.98% 

14 81.40%  26 99.99% 
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Results 
Overall, we find evidence for the pessimistic view in the ongoing scholarly discussion of the possibility of 

US-China nuclear war due to strategic instability. Under conditions of low alert, we find US detection of 

Chinese road-mobile missiles is occasionally possible even without employing AI: windows of opportunity 

periodically emerge. With AI, we find the United States can consistently track Chinese TELs in the low 

alert case, and that windows of opportunity emerge even under higher levels of alert. 

 

We run various world-states through low, medium, and high alert simulations for twenty-four hours each, 

beginning with the base case, using best-guess point estimates plus AI, and the base case minus AI; we then 

discuss some simulation excursions, and then potential countermeasures by states concerned about AI. 

 

(1) Base Case: Nuclear Counterforce, With and Without AI, All Alert Levels 
We begin by visualizing the comparison of the two base cases, with and without AI, on the next page. 

Throughout, we focus primarily on four metrics: 

 

● undetected roaming, or the average number of minutes spent roaming since the average TEL 

was last tracked by the United States. This provides a measure of TEL elusiveness over the lifetime 

of the simulation; larger delays imply increasingly imprecise US understandings of TEL locations. 

 

● the effective counterforce area, or the total area in square kilometers that the United States must 

destroy, at each time-step in the simulation, to successfully execute a first-strike against China. 

Since this area depends on weapon latency, we graph three lines corresponding to average flight 

times for US SLBMs within and without East Asia, as well as ICBMs originating from CONUS. 

As explained above, the counterforce area depends primarily on TEL speed and US knowledge of 

TEL locations. 

 

● surviving TELs, meaning how many TELs would remain if the United States initiated 

counterforce efforts at each time-step. Note that since not all TELs are mated under low and 

medium alert and the US possesses missile defenses, this is not identical to whether China has 

successfully retained a second-strike capability. 

 

● second-strike probability, or the chance that China would successfully strike US soil with at 

least one penetrating missile after absorbing the US counterforce attack if all surviving mated TELs 

fired, taking into account US missile defenses. 
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Base Case: Nuclear Counterforce, With and Without AI, All Alert Levels 
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First, most notably, AI’s large effect size above is clearly evident, so much so that a logarithmic scale 

became necessary. To illustrate this more clearly, we isolate AI from above and graph it non-

logarithmically: 

 

 

Artificial Intelligence and Mean Effective Counterforce Area 

 

 
 

In the mechanics of our simulation, AI contributes immensely to US counterforce efforts, making the area 

which must be searched by other modalities or subject to barrage attack less by two entire orders of 

magnitude, in both the high and medium alert cases, and one order of magnitude in the low alert case. 

Equivalently, the effect of AI-powered intelligence-processing, in terms of US ability in a counterforce 

effort, has an effect size in our model equivalent to increasing the brute size of the US arsenal by between 

1,000% and 100,000%. 

 

Second, our model also enables us to dig carefully into the mechanics of each run. At low alert, our model 

indicates China lacks a secure second-strike capability either way – no mated TELs survive US counterforce 

efforts. Examining our simulation output carefully, this result obtains because most Chinese TELs are not 

on deterrent patrol under low alert, and are in fact associated with specific bases to which they return and 

at which they can be destroyed. Additionally, most TELs are de-mated under low alert. On net, this makes 

human analysts even unaided by AI enough to locate any roaming TELs a significant fraction of the time 

under our low alert assumptions. 

 

Nonetheless, even at low alert, the effects of AI versus human processing are tangible in the practical details 

of counterforce. The below figures show base case counterforce area under low alert as a function of 

simulation time, with and without AI. In particular, the AI-enabled graph is much more jagged because AI 

intelligence-processing increases the sensitivity of US counterforce efforts to moment-by-moment 

variations in available intelligence sources. Weather, time of day, and random chance affect the availability 

of US observations of Chinese TEL location; since exploitation of this knowledge is gated by human analyst 

attention without AI, however, the variation occurs over a longer timescale as the US intelligence 

community’s humans produce each piece of finished intelligence. This patterns also obtains when observing 

undetected roaming time. 
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Counterforce Area (Base Case, Low Alert, No AI)

 
 

 

Counterforce Area (Base Case, Low Alert, AI) 
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Undetected Roaming (Base Case, Low Alert, No AI) 

 
 

 

Undetected Roaming (Base Case, Low Alert, AI) 
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Moving to medium alert, we find that without AI, humans are no longer able to keep pace with Chinese 

TEL movements. Consequently, the counterforce area and average undetected roaming time continuously 

increase, and the probability of retaliation quickly converges to 1. Throughout the simulation duration, 

under these conditions about 20-30 mated TELs would survive US counterforce efforts, with some minute-

to-minute variation based on the model’s stochastic components. 

 

Counterforce Area (Base Case, Medium Alert, No AI) 

 
 

 

Undetected Roaming (Base Case, Medium Alert, No AI) 
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Surviving TELs (Base Case, Medium Alert, No AI) 

 
 

Retaliation Probability (Base Case, Medium Alert, No AI) 

 
 

(2) Base Case, Medium Alert, With AI 
In contrast, with AI, the US still experiences occasional windows of opportunity where splendid first-strike 

against the Chinese nuclear arsenal is possible. Since these windows are brief and somewhat unpredictable, 

essentially depending on stochastic fluctuations in detecting and tracking the last marginal TEL, however, 

the United States would have to move toward an extremely ready posture, waiting for optimal striking time 

over a designated 24-hour period; such preparations would potentially be visible to China, prompting 

countermeasures to increase TEL survivability (such as by moving to high alert). To hold open these 

windows, the United States could also likely cue more targeted intelligence assets to engage in riskier, 

costlier, and/or lower-duration ISR missions (e.g., stealthy UAV missions, HUMINT for TELs in bad-

weather areas, tailored SIGINT for particular TEL units and personnel) during likely future opportunities 

for first-strike (e.g., good-weather days). 
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Counterforce Area (Base Case, Medium Alert, AI) 

 
 

Undetected Roaming (Base Case, Medium Alert, AI) 
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Surviving TELs (Base Case, Medium Alert, AI) 

 
 

Retaliation Probability (Base Case, Medium Alert, AI) 
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(3) Base Case, High Alert, With and Without AI 
In the high alert case, where we also give China credit for a number of countermeasures (e.g., 100% 

emissions control), we find that US counterforce efforts are unworkable either with or without AI. Digging 

into the raw results, we find this is primarily because of the combination of high TEL speed and irreducible 

latency – even with AI, there is an absolute minimum time needed to collect and analyze data; following 

that, there is some minimum flight time for US nuclear weapons, even depressed-trajectory SLBMs located 

within East Asia. Consequently, even when stochastic factors fluctuating over the course of simulation time 

give the United States relatively up-to-date information about TEL locations, a splendid first-strike remains 

out of reach. To combat this, the United States would have to pre-position strike assets just off China’s 

coast, or acquire a larger nuclear arsenal and thereby become able to hold a larger area at risk with barrages. 

 

Counterforce Area (Base Case, High Alert, AI) 

 
 

 

Undetected Roaming (Base Case, High Alert, AI)
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Surviving TELs (Base Case, High Alert, AI) 

 

 
 

 

Retaliation Probability (Base Case, High Alert, AI) 

 
 

 

(4) Excursions 
We also ran various excursions. First, the price of maintaining SAR constellations continues to fall, both 

due to cheaper launches and miniaturization. We assess the impact of a nearly saturated SAR constellation 

for the United States, where time between five-minute passes is reduced to five-minutes. Thus, in this 

excursion, the United States has day/night, all-weather SAR/GMTI coverage of most of China, topography 

permitting. Successful counterforce at low alert is trivial, as even the base case without AI was successful.  

 

At medium alert, however, we find a significant change – instead of a mostly survivable Chinese deterrent 

with windows of opportunity for a US first-strike, the inverse obtains: US first-strike is mostly possible, 

outside a few stochastically generated intervals. 
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Counterforce Area (SAR Excursion, Medium Alert) 

 
 

Undetected Roaming (SAR Excursion, Medium Alert) 
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Surviving TELs (SAR Excursion, Medium Alert) 

 
 

Retaliation Probability (SAR Excursion, Medium Alert) 
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However, at high alert, as with the base case, we find again that US counterforce are still unworkable, due 

to high TEL speed and irreducible latency. This is a notable finding, as it suggests that even with AI, the 

progressive proliferation of miniaturized satellites will not itself threaten Chinese second-strike. Instead, to 

threaten a China which adopted the measures we bundle with high alert status, the US would have to itself 

change its force structure or take other costly actions. 

 

Counterforce Area (SAR Excursion, High Alert) 

 
 

Undetected Roaming (SAR Excursion, High Alert) 
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Surviving TELs (SAR Excursion, High Alert) 

 
 

Retaliation Probability (SAR Excursion, High Alert) 
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Besides increased SAR satellites, we also asked if shifting more submarines to the Pacific, adopting a doctrine of being willing to only protect 

CONUS, or developing first-rate AI able to classify intelligence five times as fast as our point estimate would decisively change our results. The 

impact of developing first-rate AI was roughly comparable to launching more SAR satellites, and also permitted counterforce against China at 

medium alert; no excursions examined, however, enabled counterforce at high alert. 

 

Five Excursions 

 



Countermeasures 
If our model successfully identifies that AI-enhanced counterforce will pose significant risks to China’s 

arsenal, how might China respond? Nuclear weapons states have employed three main strategies to ensure 

the survivability of their arsenals: redundancy, hardening, and concealment.388 Given the large size of the 

US nuclear arsenal relative to China’s, redundancy and hardening have not been favored relative to 

concealment. Insofar as AI systems increasingly complicate concealment, however, China may feel 

compelled to consider countermeasures in all three categories (a-c). I discuss each in turn, as well as the 

possibility of China shifting to a launch-on-warning posture (d). 

 

(1) Concealment 
As a strategy for survivability, concealment intuitively consists of limiting enemy knowledge about the 

locations of key aspects of one’s nuclear weapons system. Presently, mobile platforms enjoy “concealment 

by default” when on deterrent patrol, because the total area they could be is very large relative to their size. 

In theory, TELs could be on any road in China, and submarines could be anywhere in the ocean. As our 

model illustrates, however, AI-enabled intelligence-processing may pose severe difficulties for this form 

of concealment, as rapidly and accurately ascertaining platform locations will become increasingly easy. 

To restore the efficacy of concealment, China could undertake several possible countermeasures. 

Conceptually, these countermeasures can essentially be reduced to two types: confronting an increase in 

US capability to track its mobile platforms, China could seek to restore its previous level of survivability 

either by degrading that capability or by increasing its own elusiveness. 

 

(a) Degrading US Capabilities 

China could seek to degrade the newfound US ability to defeat concealment through mobility by attacking 

at several different points along the kill chain. Below, I discuss counter-AI and counter-space options. 

 

Counter-AI 

First, most obviously, China could seek to defeat US AI directly. As this dissertation’s first paper discusses 

at length, deep learning systems are vulnerable to both training-time attacks, which seek to teach the AI 

system the wrong lessons (likely through breaches of cybersecurity), and test-time attacks, which seek to 

exploit imprecision in AI systems once trained.  

 

On the former, access to US systems could enable Chinese hackers to teach image classifiers to see TELs 

as normal trucks, for example, or otherwise misclassify key intelligence.389 While the ability to disable US 

systems through cyber-vulnerabilities is not new to AI, what is arguably notable is the scale of disruption 

– since AI does most of the work in our model of making the Chinese arsenal vulnerable, having one’s AI 

system hacked means the US loses most of its counterforce capability. Thus, moving a greater percentage 

of the total “labor” of one’s system to AI effectively increases the total vulnerability of one’s military 

capabilities to cyber-intrusions.  

 

On the latter, test-time attacks after training are arguably less likely without also having compromised 

cybersecurity anyway, as while adversarial examples are often discussed in the existing literature (e.g., 

small perturbations can cause image classifiers to see pandas as gibbons, for example), such attacks require 

fairly precise knowledge of the particular weights the AI system has learned to assign to different kinds of 

evidence, anyhow; that is, since the details of US counterforce-involved AI systems would almost certainly 

be highly classified, exploiting the possibility of adversarial examples would likely require some degree of 

 
388 Lieber and Press, “The New Era of Counterforce,” 16-8. 

 
389 Andrew Lohn, “Hacking AI: A Primer for Policymakers on Machine Learning Cybersecurity,” CSET, 2020, 

https://cset.georgetown.edu/research/hacking-ai/. 
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compromise in security in the first place, at which point less exotic attacks are also already available. Thus, 

we assess that while counter-AI efforts could help China restore nuclear survivability, they would depend 

strongly on Chinese ability to penetrate US nuclear systems with its capabilities in cyberspace. 

 

Finally, as a third possibility, China could also seek to attack the interface between human beings and their 

AI systems. For example, perhaps exploiting AI’s increasing ability to generate human-quality writing at 

scale, Chinese propagandists could promulgate narratives about the dangers of reliance on fickle, 

mysterious, and easy-to-deceive AI. If US elites cannot justify the expense involved in integrating AI 

systems into counterforce efforts to their publics, or if US military brass do not themselves trust their AI, 

then high-stakes counterforce efforts which rely on those systems will be unlikely. Of course, this attack 

modality is necessarily more speculative. 

 

Counter-Space 

Further, since the AI system modeled above relies on continuous streams of data from EO and SAR 

satellites, China could utilize counter-space capabilities to disable wartime tracking of its mobile platforms. 

Notably, China possesses several counterspace capabilities it could use against US satellites, including 

direct-ascent kinetic anti-satellite weapons (ASATs), as well as radio-frequency jammers and other 

directed-energy weapons.390 Could blinding US EO and SAR satellites ensure TEL survivability? We assess 

the prospects as mixed. 

 

First, pre-deploying counter-space assets would likely play into US efforts in intelligence preparation of 

the battlefield. Even in the base scenario, dazzling imaging systems requires co-locating dazzlers with the 

target being protected, however; the same holds for radio-frequency jamming. Consequently, if not also 

widely deployed across areas without TELs, the fact of dazzlers or jammers could itself help reveal TEL 

locations, or at least prompt further US scrutiny.391  

 

Second, China could resort to ASATs. Even if China knew the United States would likely retaliate, since 

the latter generally relies far more on orbital infrastructure compared to China, China may feel that mutual 

denial of space would be advantageous. Consequently, Stephen Biddle and Ivan Oelrich assess that “in a 

high-stakes confrontation with China, [the United States] cannot assume its satellites will survive.”392 

However, this would of course represent a destructive kinetic attack against US assets, and hence be a fairly 

escalatory move; it would also not guard against a bolt-from-the-blue attack of the sort modeled by 

Heginbotham et al. (2015) and Wu (2020), in addition to this paper, as baseline assessments, even if such 

an attack is politically unlikely on the part of the United States. 

 

Further, as satellites continue to miniaturize, the resilience of US space assets is likely to sharply increase 

over the near to medium term, as the progressive miniaturization of satellite technology has enabled a super-

linear growth in constellations of tiny satellites for all purposes.393 In sum, strategic competition between 

 
390 Heginbotham et al., “The U.S.-China Military Scorecard,” 245-57, 227-43. 
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393 Christopher Mims, “The Tiny Satellites That Will Connect Cows, Cars and Shipping Containers to the Internet,” 

Wall Street Journal, January 9, 2021, https://www.wsj.com/articles/the-tiny-satellites-that-will-connect-cows-cars-

and-shipping-containers-to-the-internet-11610168400; Roberto Di Pietro, “The Coming Satellite Revolution: New 
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the United States and China will also involve space, which in turn will affect US ability to leverage AI 

systems which depend on data pipelines involving satellites. Settling which way that balance will turn is 

outside the scope of this paper. 

 

(b) Increasing Chinese Elusiveness 

Instead of degrading US AI or space capabilities, China could also seek to instead respond to an AI-

augmented US ability to defeat concealment through mobility by seeking to amplify the elusiveness of its 

mobile platforms. 

 

“Denial through Silence” 

First, China could seek to defeat US AI-assisted counterforce by denying US AI systems the data needed 

to function, a strategy we might term “denial through silence.” Since deep learning generates military power 

by substituting for, and sometimes exceeding, human beings at various data-intensive tasks, severely 

restricting what data an adversary can feed their AI system can constrain any AI-derived advantages. This 

denial could occur during both training and inference. 

 

In training, deep learning systems need many examples of some given phenomena before becoming reliably 

able to perform identification. In fact, since deep learning systems are much more data-hungry than human 

beings, denial through silence can be effective against AI systems where the same tactic would have failed 

against humans. In the nuclear domain, this could take the form of, for example, excluding new TEL models 

from military parades, so as to minimize available data about their appearance, weight, and other 

specifications, making it harder to train US AI systems seeking to sort through intelligence to identify them. 

Indeed, this aspect of AI-related competition is likely to broadly incentivize increased peacetime secrecy 

about military capabilities – states broadly face tradeoffs, in considering whether to reveal the possession 

of some given capability, between generating deterrent and other value by signaling and the fear that 

enemies may develop potent countermeasures.394 If a growing ensemble of AI systems depend for their 

efficacy on the obtainability of a key minimum quantity of data about adversary military systems, then 

incentives to conceal such systems so as to avoid erosion of their usefulness will increase. 

 

In inference, in order for AI systems to observe and locate mobile platforms, they need to emit data streams 

on which the AI systems can do their work. China could reduce the surface area of such streams in several 

ways, as incorporated into the simulation of the different stipulated alert levels in our model. Of course, 

this principle is not unique to AI – in the undersea balance, for example, a constant struggle obtained during 

the Cold War between Soviet efforts to quiet submarines and American efforts to again track them, often 

by identifying increasingly exotic and obscure acoustic signals.395 Although this would be somewhat costly 

in terms of ensuring reliable command-and-control, units could be given more authority to vary their paths 

in times of crisis, reducing the degree to which US intelligence preparation of the battlefield efforts could 

usefully extrapolate from data about past behavior. Further, China could instruct its TELs (and, in theory, 

its nuclear-armed submarines) to practice emissions control, communicating only minimally during 

deterrent patrols.  

 

“Denial through Noise” 

Obversely, China could seek to hide any true signals revealing TEL location amidst noise. First, as we 

model above, China could deploy large numbers of decoys, which at perfect indistinguishability would be 

 
 
394 Brendan Rittenhouse Green and Austin Long, “Conceal or Reveal? Managing Clandestine Military Capabilities in 

Peacetime Competition,” International Security 44.3 (2019/2020), 48-83. 
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equivalent to building up its arsenal size, as any US counterforce effort would then also be obligated to 

strike all decoys. To approach indistinguishability, however, would require a fairly significant effort on the 

part of the PLA, as TELs at present have various highly distinctive pattern-of-life tells which set them apart 

from civilian traffic, such as the presence of support vehicles (to say nothing of living at specific bases). 

 

Second, China could also repeat this exercise for other avenues of intelligence, such as by transmitting large 

numbers of falsified orders about TEL movement back and forth on channels known to be monitored by 

the US intelligence community. It is difficult to assess the efficacy of such efforts now, but given the 

increased quality of AI-generated text and video, China could in theory begin to itself use AI to create noise, 

perhaps generating fake activity many times over compared to any signs of real TEL movements. Which 

side prevailed would then depend on relative expertise at leveraging their respective military AI systems. 

 

(2) Redundancy 
Redundancy refers, simply, to increasing the number of targets which must be disabled by any adversary 

to obviate one’s retaliatory capability. I discuss a simple increase of China’s arsenal size, as well as reliance 

on other deliver systems from the other two legs of the triad.  

 

(a) Arsenal Size 

First, most obviously, China could simply increase the size of its nuclear arsenal. The DoD diagnoses 

exactly such an effort to be underway, forecasting that China will at least double its stock of warheads over 

the next decade.396 Strikingly, however, our model finds that doubling the Chinese arsenal only matters 

under medium alert, increasing the mean probability of successful second-strike from 38% to 100%. Under 

low alert, the Chinese arsenal must be sextupled before breaking a 1% probability of successful second-

strike; under high alert assumptions, Chinese second-strike capabilities are already secure.  

 

Successful 2nd-Strike Probability and PRC Arsenal Buildup 
 

 
 

Conversely, considering high alert, even doubling the US nuclear arsenal does not drop the chance of 

successful Chinese second-strike below 100%; at medium alert, a decrease is palpable, but a full 150% 

capability is required before the chance of retaliation drops below 10%. Of course, even a further 50% 

buildup of the already-large US nuclear arsenal is extremely unlikely. 

 

 

 
396 Idrees Ali and Phil Stewart, “Pentagon concerned by China’s nuclear ambitions, expects warheads to double,” 

Reuters, September 1, 2020, https://www.reuters.com/article/us-usa-china-military-nuclear/pentagon-concerned-by-

chinas-nuclear-ambitions-expects-warheads-to-double-idUSKBN25S5MB. 
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Higher PRC Alert Levels Are Robust to US Arsenal Buildups – Second-Strike Probability 
 

 
This dynamic can also be seen in examining the number of mated TELs which, on average, survive a US 

counterforce effort – here, on high alert, fully doubling the US nuclear arsenal only purchases the 

destruction of about 18 TELs; TELs under medium alert are comparably costly. 

 

Higher PRC Alert Levels Are Robust to US Arsenal Buildups – Mated TELs 

 

 
 

Asking our simulation for the break point, we find that the US arsenal would have to be sextupled – an 

increase of over 10,000 deployed warheads – to confidently threaten China’s second-strike capability at 

high alert. 
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US Arsenal Size Against Mean 2nd-Strike % and Mated Surviving TELs 

 

 
In short, alert levels decisively dominate arsenal size in our model, in either direction. To illustrate why this 

is the case, we graph the effective counterforce area produced by PRC arsenal increases of up to 1000% the 

original baseline case, at both medium and low alert: 

 

Effective Counterforce Area – Low and Medium Alert 
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Here, the solid black line represents the mean area a US nuclear counterforce effort can destroy TELs across 

(assuming a 2:1 targeting doctrine, airburst, and 5 psi), averaging across stochastic effects and normalizing 

to a 12-minute flight time to account for weapon latency. The blue and orange lines, equivalently, represent 

the total mean target area presented by the Chinese nuclear arsenal under low and medium alert, 

respectively; when these lines exceed the solid black line, this means that some TELs would survive the 

average run of the simulation.397 Intuitively, what is occurring is that each additional TEL under a higher 

alert level is worth a much larger amount than the same TEL under a lower alert level – the difference in 

slope is so large that the blue line would have to be continued very far off the graph to achieve what a single 

doubling does for the effective counterforce area of the PRC arsenal, under medium alert. 

 

(b) Delivery Systems 

I discuss submarines and bombers in turn. First, as mentioned above, the consensus of both American and 

Chinese analysts is that the United States possess a strong lead against Chinese submarines, having 

previously benchmarked against Soviet submarines quieter than current-generation Chinese assets.398 Wu 

similarly dismisses Chinese submarines out of hand, noting that US advantages in the undersea domain are 

“likely to persist for a long time,” owing to both a large technological lead and the likely ease of monitoring 

submarine transits around the first island chain.399  

 

Second, while China’s H-6 bomber could theoretically represent an air leg finishing its nuclear triad within 

the decade, this would face several barriers to representing increased survivability against US AI-enabled 

counterforce efforts. First, most obviously, airfields, airstrips, and hangars all represent fixed targets, easily 

located now via amateur use of Google Maps, let alone AI-enabled processing of all US intelligence 

streams. Since one or two nuclear weapons would almost certainly suffice to destroy each airbase, this 

could represent only marginal increases to the effective counterforce area presented to US counterforce 

efforts. Second, several factors would complicate airborne alert. During a period of the Cold War, the 

United States ran 24/7 airborne alert missions using nuclear-armed B-52s, so that a portion of the US nuclear 

deterrent would still survive and be available for retaliation even if every square inch of American earth 

were irradiated by Soviet missiles. These efforts were discontinued after eight years, however, because of 

the high frequency of accidents, including one which caused the radioactive contamination of Denmark and 

another which resulted in the temporary loss of several weapons to the ocean.400 Given the PRC’s relatively 

small arsenal size, combined with the Politburo’s revealed preferences about the always/never dilemma up 

to the present, this would likely seem an especially costly way to purchase additional survivability. 

 

Further, even assuming the prospect of AI-enabled counterforce put the fear of God, so to speak, into the 

CCP, an effort to credibly strike CONUS with nuclear-armed bombers would face severe range difficulties. 

 
397 Note that this is not equivalent to successful second-strike, in part because the US possesses missile defenses which 

are also implemented in the simulation, and also because taking average effects in effect treats US decision-makers as 

randomly initiating a counterforce attack at some arbitrary point in the day. In practice, of course, decision-makers 

would only agree to counterforce attacks with high chances of success, and so would selectively pick from more 

favorable parts of the stochastic distribution (e.g., weather, chance SIGINT intercepts, low civilian truck traffic). 
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Assuming H-6s equipped with China’s air-launched ballistic missile (ALBM), the CH-AS-X-13, the 

bomber would need to fly about 7,000 km to be able to strike the western coast of the United States. Since 

the H-6 has a claimed maximum combat radius of 3,500 km, this would require aerial refueling even 

assuming the pilot would ditch into the ocean after firing. This would be, to say the least, a fairly awkward 

way of carrying out nuclear retaliation - for one, for example, given the H-6’s maximum speed of about 

1000 km/h, the bomber would need to take on a heroic 7-hour journey to range California, giving the United 

States a very long window in which to intercept. Of course, China could in theory solve this problem by 

both acquiring an airbase closer to the United States, and then basing nuclear-armed bombers there, but this 

would increase the difficulties involved in instituting some form of 24/7 airborne alert (otherwise, the 

United States could likely strike that forward-positioned airbase with conventional capabilities at the start 

of any kinetic conflict).401  

 

Finally, restoring survivability through redundancy would require vast non-warhead investments. In 

particular, since any US nuclear counterforce effort can always target the weakest link in the overall Chinese 

nuclear weapons system, it does no good to build 1,000 warheads if Chinese command-and-control can still 

be easily destroyed. Thus, a redundancy strategy would also require installing additional communications 

networks, command and control systems, and all other aspects of the Chinese nuclear weapons system other 

than the warheads and launch vehicles themselves. 

 

(3) Hardening 
Third, China could increase the difficulty of destroying individual TELs. While the model already assumes 

TELs hardened to require 5 psi of overpressure to destroy, and in targeting solutions assigns US weapons 

sufficient to blanket each targeted TEL with 5 psi twice, faster TELs could function as better weapon 

sponges. That is, examining our model, we found that a key contributor to large effective counterforce areas 

at medium and high alert was, simply, TEL speed – although AI cut out the vast majority of the information-

processing latency between “find” or “fix” and “finish,” the weapons used to “finish” China’s road-mobiles 

still need to travel between 12 and 30 minutes to reach their target, by which time they must strike a radius 

proportional to TEL driving speed. Even with perfect AI-assisted ISR, gains in counterforce ability are still 

bounded by the geography of one’s strike assets. The Pentagon’s Scud hunt report noted, “Planners cannot 

target things whose existence is unknown to them”; after AI, perhaps we should note, “Even when their 

existence is known, planners cannot efficiently target things moving at high speeds that are far away.”402 

 

While TELs cannot drive at their maximum speed on all roads at all times, as this would surely risk accident 

and incur unacceptable maintenance costs, there is the simple brute fact that TELs driving at high speeds, 

no matter how effective the AI-empowered information-processing, can represent very large barrage targets 

simply by virtue of drawing a large circle. Consequently, modifying TELs to drive faster and more 

sustainably may be a simple way for China to recover some portion of survivability, either alone or 

alongside other packages of actions coded as part of our alert level schema. Under perfect transparency, it 

is worth noting that mobility represents a form of hardening, not concealment. 
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(4) Posture 
Finally, China could also recover survivability by switching to a launch-on-warning posture, as the DoD’s 

2020 report to Congress forecasts.403 At best, such a doctrinal change could enable a high degree of 

protection against counterforce efforts, albeit at the cost of leaving some nuclear systems on high alert.  

Nonetheless, some reasons point against the efficacy of such a measure. 

 

First, an early warning system might not substantially increase the acceptable launch window for a 

retaliatory Chinese strike. After all, while the United States uses various forward-deployed assets as part of 

its early warning system, a Chinese equivalent would likely, at least at first, be much more primitive and 

rely on assets based on Chinese soil.404 Further, the travel times for US nuclear weapons are inherently very 

short. For US submarines located in the Pacific, depressed-trajectory SLBM strikes would take about 12 

minutes on average to reach their targets, and positioning close to the Chinese coast could theoretically 

reduce this travel time to a single-digit number. Thus, relative to existing doctrine, switching to a launch-

on-warning posture would only drag forward in time a few minutes the allowable window within which 

Chinese retaliation could occur. In fact, Wu and Li assert that even Chinese solid-fuel missiles take “tens 

of minutes” or “half an hour” to become ready to launch; while fixing these vulnerabilities would doubtless 

be part of adopting a launch-on-warning posture, sufficiently low weapon latencies could once again enable 

some form of damage limitation capability.405 

 

Second, this doctrinal shift to launch-on-warning would require massive across-the-board changes to 

Chinese command-and-control, training procedures, and default readiness conditions. That is, given the 

above extremely abbreviated notice, to make a Chinese nuclear attack against the US homeland possible 

with just a few minutes’ warning would require day-and-night changes across the entirety of the Chinese 

nuclear weapons system. Obviously, Chinese TELs would need to be mated ahead of time, and any 

confirmatory procedures presently in place to prevent accidental launch and confirm that orders were 

flowing from China’s national command authority would have to be minimized. Since Chinese elites 

currently prefer the “never” branch of the always/never dilemma, culturally dislike pre-delegation, and 

generally favor negative control, shifting to a launch-on-warning posture would represent a large 

organizational/cultural shift of the sort likely requiring adaptation on the scale of years, rather than months. 

 

Finally, in the framework of long-term strategic competition, China’s assured retaliation posture has 

enabled it to enjoy a relatively tame nuclear balance with the United States, as well as the resource savings 

from abstaining from a large build-up a la US-Soviet nuclear competition. Keeping nuclear forces on 

continuous alert to make launch-on-warning possible would increase accident risk, generate large and 

continuous organizational demands on Chinese military and civilian elites, and would require a burst of 

sustained spending on various aspects of the Chinese nuclear weapons system.406  
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Conclusion 
China is large, and mobile launchers are small. Since 2007, China has leveraged this basic fact to great 

effect, militating against large US advantages derived from arsenal size, overall military spending, and most 

of all the long experience of nuclear competition with the Soviet Union. As our simulation shows, however, 

advances in modern AI are eroding this previously easy source of nuclear survivability. In our model, AI 

provides an order-of-magnitude or more reduction in counterforce requirements. Mobility is no longer a 

guarantee of obscurity, as deep learning classifiers obviate the need for human analysts to process image, 

text, audio, electronic, and other intelligence flows. If TELs are present in the massive, continuously 

generated dataset incoming from satellites, drones, intercepts, and other sources, the AI state-of-the-art has 

reached the point where a classifier can likely be trained to find them at superhuman speed. 

 

In the simplest sense, the US arsenal is large relative to all states but Russia. Consequently, if the US can 

exchange its warheads for those of a target state at any reasonable, reliable rate, it has a strong chance of 

possessing a nuclear counterforce ability against that state. Every other aspect of both the US and other 

states’ nuclear weapons systems adjusts what that exchange rate may be, but at the heart of the matter, the 

US arsenal is large, the Chinese arsenal is small, and China cannot realistically deploy thousands of 

additional weapons. AI’s decisive effects flow from this core dynamic: without concealment, adjusting that 

exchange rate will require much more effort than China has previously put into nuclear competition with 

the United States. Redundancy and hardening run up against US arsenal size. Our model allows us to 

conclude that based on open-source information about US intelligence assets and AI capabilities, road-

mobile missiles are indeed eminently detectable and trackable under various plausible conditions. 

 

Nuclear Survivability After AI 
What, then, can China do? Two main possibilities remain: negating the new AI capability itself, through 

either digital or physical means, and shifting to a launch-on-warning posture. Many ways in which China 

could conceivably negate the new AI capability, however, are also themselves escalatory. Digitally 

speaking, in the field, fooling AI systems requires understanding them, which means compromising the 

cybersecurity of US nuclear assets. Data poisoning attacks definitionally entail direct modification of the 

AI’s training process, after all, while the construction of adversarial examples is difficult without 

knowledge of the trained AI model’s weights. Thus, an intensified need to defeat adversary AI systems may 

worsen what Ben Buchanan terms the “cybersecurity dilemma,” where states feel compelled to penetrate 

each other’s systems in cyberspace for defensive reasons, leading to the mutual perception of hostility.407 

 

Physically speaking, destroying US satellites en masse would be an act of war. Pre-delegating launch 

authority to TELs would undermine the credibility of China’s no-first-use pledge, and higher TEL speeds, 

radio silence, and constant deterrent patrols would all raise the risk of accidents. Shifting to launch-on-

warning would require significant investment in, and retooling of, China’s overall nuclear weapons 

systems, heralding a new era of nuclear competition between the United States and China that the world 

has thus far been able to avoid. Consequently, the possibility of AI-enabled US nuclear counterforce raises 

issues policymakers will have to carefully consider and navigate. Notably, while worries about accident 

risk related to Chinese delegation of nuclear command and control to AI are oft-discussed, none of these 

specific measures involve AI.408 AI’s ripple effects are not limited to the domain of AI. 
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Further, if AI enables successful US counterforce against China, its effects likely also matter for imaginable 

US counterforce efforts against Iran or North Korea. According to reporting by Reuters, for example, the 

US has exactly begun applying AI to finding and tracking North Korean mobile missiles.409 Of course, 

while China’s arsenal size is small relative to the United States, North Korea and Iran are even worse off. 

Elsewhere, no hard barrier precludes other states facing nuclear adversaries with relatively small arsenals 

from, in theory, adopting AI-enabled counterforce strategies. India has recently begun exploring the 

possibility of counterforce against Pakistan.410 South Korea may come to seek a conventional counterforce 

effort against North Korea, with the steady acquisition of UAVs, EO satellites, and a miniaturized SAR 

constellation beginning in 2025.411 

 

Generally speaking, if AI means the death of mobility as a relatively cheap way of achieving arsenal 

survivability, and if even conventional counterforce efforts become increasingly plausible, we may see the 

reemergence of global nuclear competition among many dyads, as previously survivable arsenals become 

less so. For dyads with highly asymmetric arsenal sizes, the warhead-poor state may have to adopt some of 

the countermeasures we explore here for China, such as defeating the AI directly or switching to a more 

hair-trigger launch posture, since building up a larger inventory may be impractical and even invite 

preemption. For dyads where weapons are fewer, a race to build more weapons may be reignited. 

 

Simultaneously, the increasing efficacy of AI-assisted counterforce may also deter new would-be nuclear 

states from attempting to acquire weapons, due to the increased difficulty of protecting nascent arsenals 

from preventive attacks. If AI renders even fairly mature arsenals vulnerable to counterforce, crossing the 

threshold of acquiring a single operational weapon may no longer be sufficient to guarantee against 

homeland invasion.412 Rather, new nuclear states may be forced to ford a longer period of vulnerability. 

 

Future work should investigate the possibility of AI-enabled counterforce against states other than China, 

both by the United States and by regional actors. In addition, we do not investigate in this paper all AI 

applications which could assist US counterforce efforts. First, this dissertation’s third essay argues that AI 

hardware advantages mean the US will better leverage any hypothetical drone swarming based on advanced 

deep learning algorithms; some analysts believe drone swarms would significantly ease conventional 

damage limitation efforts, as their mass deployment both undersea against submarines and in air against 

strategic bombers would not be constrained by a nation’s supply of appropriately skilled human beings.413 
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Second, the AI-powered intelligence-processing modeled in this paper for nuclear counterforce would be 

equally useful for defeating concealment efforts in any conventional counterforce campaign. While only 

nuclear weapons can supply large-area barrage attacks against TELs in motion, if Wu (2020) is correct in 

assessing that Chinese mobile missiles cannot launch if all pre-prepared firing locations are destroyed, then 

deep learning classifiers would likely be of immense help in locating all such locations by continuously 

combing through intelligence data to detect new construction activity.414 

 

Finally, AI may eventually help augment US missile defense efforts. The key technical difficulty with 

missile defense is decoys. In the atmosphere’s near-vacuum, light and heavy objects move similarly, and 

sophisticated decoys are coated to heat, cool, and reflect identically to real warheads. Since incoming 

missiles travel at many times the speed of sound, targeting and launch are already automatic, but current 

algorithms rely on handcrafted features.415 While data about what decoy measures or new missile types 

China might deploy are obviously highly secret, synthetic data or simply excellent intelligence could enable 

the US to bring AI to bear.416  

 

Thus, more campaign analyses would shed further light on AI’s nuclear effects. More generally, we hope 

the present effort advances the cause of simulation as a method in political science. By dynamically 

modeling the US intelligence process, TELs, and environmental factors, we were able to observe variation 

over 24-hour periods in US first-strike ability. For many kinds of military questions for which data is scarce, 

we suggest that simulation of this sort can begin to shed light on the issues at stake.  

 

Implications for Policymakers 
Despite the inevitable simplifications in any simulation, we believe we amass significant evidence that 

China’s nuclear deterrent, assuming realistic conditions, is fairly vulnerable to a US first-strike, both 

without – but especially with – AI. We find that AI has enormous effects on the US ability to locate China’s 

road-mobile missiles, rendering thinkable the execution of the nuclear counterforce mission under mixtures 

of stochastic and strategic circumstances that would be one to several orders of magnitude too demanding 

otherwise. Since this effect derives from the speed, volume, and accuracy with which modern AI systems 

can process intelligence streams the United States already possesses, rather than from the deployment of 

some discrete novel capability, gradual adoption of such systems seems almost inevitable. Many 

capabilities which would further strengthen an AI-assisted nuclear counterforce campaign by the United 

States, such as the further development of robust SAR constellations, will likely proceed because they have 

many other non-nuclear uses. 

 

This raises the challenge of managing strategic stability with China. China has thus far resisted trilateral 

nuclear arms control talks with the United States and Russia, a stance some observers have characterized 

as aggressive alongside the US intelligence community’s recent assessment that China may double its 

nuclear arsenal over the next decade.417 If China believes US AI-assisted counterforce would more than 
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compensate for even a tripled arsenal, however, it may come to seek diplomatic negotiations as part of its 

next evolution in nuclear strategy. As rivalry between the United States and China is likely to continue 

intensifying over the near to medium term, both states must exercise caution to avoid dynamics which 

would raise the risk of a mutually catastrophic nuclear war. Especially as discussions about how to 

modernize the US nuclear arsenal continue in earnest, policymakers should privately review to what degree 

they intend to deliberately hold China’s arsenal at risk, rather than stumbling into ever-more-effective 

counterforce capabilities by virtue of AI development undertaken for other purposes. 

 

Further, our simulation constitutes significant evidence that AI is likely to impact nuclear balances more 

generally, including those outside the US-China dyad. Progressively cheaper access to imaging satellites, 

including in dyads such as India and Pakistan, means that access to data may not bottleneck the use of AI 

in any nascent counterforce efforts.418 US policymakers considering the stabilizing management of regional 

rivalries should identify dyads where AI may induce first-strike instability, and coordinate with allies to 

minimize resulting inadvertent escalation risks. 

 

  

 
 
418 Clary and Narang, “India’s Counterforce Temptations,” 32. 



126 

No Chips for the Drones of China: 

Why Hardware Will Bottleneck Chinese Military Artificial Intelligence 
 

Introduction 
In Beltway discussions of artificial intelligence (AI), national security, and China, it has become impossible 

to avoid repeatedly encountering the following idea: AI may enable China to leapfrog US military power.419  

 

But how? Naively, after all, the US vastly outspends China on essentially every relevant metric; concerns 

about Chinese home-field advantage are valid, but have nothing to do with AI. Nor do those raising the “AI 

leapfrog hypothesis” appear to uniformly believe that the gap between the US and China is small, whether 

owing to geography or other factors, and that therefore AI, simply being the latest in some long succession 

of new technologies relevant to military affairs, need only make up some small amount of ground. Rather, 

analysts seem to believe AI’s effects could be fundamental. 

 

Why? Although scholars’ emphases differ, we can usefully crystallize the most prominent arguments 

underpinning the leapfrog hypothesis into the following two claims: (1) AI-enabled autonomous weapons 

(“AAWs”) will possess decisive advantages over current-generation military assets, and (2) China will 

better leverage the existence of such weapons.420 Consequently, the argument goes, the rise of such weapons 

in modern warfare could counterfactually enable Chinese victory in conflicts with the United States. In the 

words of Graham Allison, China may be “currently on a trajectory to overtake the United States in the 
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decade ahead,” assisted by “AI-empowered drone swarms” which could “make aircraft carriers … obsolete, 

all for one-thousandth of the cost.”421 Thus, the claim goes, we must outrace China to weaponize AI. 

 

Notably, the first claim is not without its critics. Advocates argue AAWs gathered into drone swarms could, 

in theory, overwhelm human-piloted aircraft and surface vessels through sheer number, maneuverability, 

and/or decision-making speed, or at the least generate highly favorable cost exchanges.422 Further, since 

losing AAWs would not carry nearly the same political cost as losing human lives, states without AAWs 

would risk losing contests of political endurance, whether in wartime itself or during peacetime episodes 

of coercion.423 At the top end, some analysts argue advanced drones are best conceptualized as WMD.424 

Overall, on this view, states witnessing others’ pursuit of AAWs will be obligated to acquire their own.425 
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On the other hand, no current-generation drones have defeated human-piloted aircraft or bested modern air 

defenses on the battlefield; as a future technology, no empirical proof yet exists that AAWs will 

revolutionize warfare.426 Since AAWs will require high-tech inputs, they may be sufficiently expensive that 

they fail to generate profitable cost exchanges when used as swarms.427 Further, various countermeasures, 

such as air defense artillery, may be highly effective.428 Overall, this debate seems difficult to resolve now, 

as discussions about how future and existing weapons systems will interact likely turn on hard-to-predict 

questions surrounding doctrines, capabilities, and countermeasures. The second claim, however, I argue, 

can be evaluated now. 

 

To summarize, this paper’s central claim is that the non-diffusion of AI hardware will prevent China from 

better leveraging, in the context of conventional conflict with the United States, any future AI-enabled 

autonomous weapons capability which emerges within at least the next ten years. Even stipulating that 

future AAWs will in fact defeat current human-controlled military assets, and even if China develops better 

doctrine and organizational practices for such weapons, the PLA will be fundamentally limited by lacking 

self-sufficient access to advanced AI chips.429 

 

Importantly, this argument rests on several key assumptions. While I defend their likelihood below, it is 

worth making explicit the scope conditions without which my thesis might prove untrue: 

 

● US/ally relations. I assume a minimum degree of US/ally coordination about export controls. 

Only a “minimum degree” is required because the United States itself controls several supply 

chokepoints, but the effectiveness of supply cutoff would be immensely reduced (to say nothing of 

other military problems) if all of East Asia collectively decided to bandwagon with China. 

 

● No radical technological breakthroughs. Forecasting technological futures always inherently 

carries uncertainty. The technologies discussed herein are mature, and the degree to which China 

lags can be measured in well-defined generations through which other nations have had to progress, 

but some unlikely, radically novel way of producing advanced chips could theoretically emerge. 

 

● AAWs will require advanced chips. Similarly, I argue that for various technical reasons, AAWs 

capable of substituting for human pilots and defeating modern air defenses will require advanced 

chips. While I believe the argumentation is sound, unexpected fundamental breakthroughs in 

algorithmic efficiency could theoretically mean “stupider” chips suffice. In such worlds, of course, 

there still might be decisive advantages to having the smartest chips, as I discuss below. 

 

● No peaceful reunification. Taiwan Semiconductor Manufacturing Company (TSMC) is a critical 

node in the global semiconductor supply chain. While I argue below that China could not solve its 

 
426 Michael C. Horowitz, Sarah E. Kreps, and Matthew Fuhrmann, “Separating Fact from Fiction in the Debate over 

Drone Proliferation,” International Security 41.2 (2016), 7-42; Michael C. Horowitz, Joshua A. Schwartz, and 

Matthew Fuhrmann, “China Has Made Drone Warfare Global,” Foreign Affairs, November 20, 2020, 

www.foreignaffairs.com/articles/china/2020-11-20/china-has-made-drone-warfare-global. 

 
427 Shmuel Shmuel, “The Coming Swarm Might Be Dead on Arrival,” War on the Rocks, September 10, 2018, 

https://warontherocks.com/2018/09/the-coming-swarm-might-be-dead-on-arrival/. 

 
428 Ibid.; Paul Scharre, “Counter-Swarm: A Guide to Defeating Robotic Swarms,” War on the Rocks, March 31, 2015, 

https://warontherocks.com/2015/03/counter-swarm-a-guide-to-defeating-robotic-swarms/; Arthur Holland Michel, 

“Counter-Drone Systems, 2nd Edition,” Center for the Study of the Drone, December 2019, 

https://dronecenter.bard.edu/files/2019/12/CSD-CUAS-2nd-Edition-Web.pdf. 

 
429 In this paper, by “advanced AI chips” I mean leading-node GPUs, FGPAs, and ASICs. I elaborate further below. 



129 

supply issues by forcibly seizing TSMC facilities during a conventional conflict, the story would 

look different if Taiwan had, years prior, voluntarily rejoined China in peacetime. 

 

The argument unfolds in three parts. First, I briefly review the existing technological diffusion literature, 

including its predictions about AI. Second, I argue that even if AI research fully diffuses, lack of access to 

AI hardware, specifically advanced AI chips, would still prevent China from better leveraging AAWs in 

conventional conflict against the United States. Third, I show that China will not have access to such chips 

– their production, presently concentrated in the United States and allied countries, will not diffuse to China, 

making supply cutoff possible even after considering possible Chinese countermeasures. 

 

Existing Literature: Diffusion and AI 
Scholars disagree about what existing theories of technological diffusion should apply to AI. In one camp, 

many IR scholars have argued beginning with Kenneth Waltz that the emulation of power-generating 

technologies possessed by other states is a mainstay of international affairs, following directly from 

international anarchy’s demand that states secure their own survival.430 Generally, scholars have 

emphasized that this emulation tends to eroding the leading state’s position over time, as rising powers can 

free-ride off expensive R&D efforts and focus on implementation; for Robert Gilpin, this dynamic famously 

accounted for the cyclic rise and fall of hegemonic powers.431 Analysts have submitted that globalization 

has likely accelerated the rate of diffusion of power, reducing the degree to which any state can be ahead 

of others.432 

 

For another camp, however, the diffusion of military technology has arguably slowed. Most prominently, 

Andrea and Mauro Gilli argue that increased complexity has made advanced weapons systems, such as the 

US F-22, extremely difficult to copy, even given China’s extensive skill at cyber-espionage. On their view, 

the pure engineering challenges now involved in assembling fighter aircraft, submarines, and aircraft 

carriers far exceed those faced by Imperial Germany in copying British dreadnoughts, for example.433 

Writing about current-generation drones, Gilli and Gilli also emphasize the increased “infrastructural 

support” needed for complex technologies, citing the long list of technologies involved in carrier strike 

groups other than carriers themselves. Contextually, using UAVs effectively requires integrating them into 

an organization capable of piloting them, processing the data received from them, and coordinating them 

with many other military assets.434 The difficulty of these “infrastructural” tasks, in their view, has spiked. 
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Which of these theories better describes AI? The overwhelmingly predominant narrative holds that AI 

technology should easily and uniquely diffuse. After all, AI seems the child par excellence of today’s 

“Information Age”: as a general-purpose technology that goes in anything and everything, the commercial 

incentives to develop, spread, and integrate it are immense. The field itself reflects these expectations of 

maximum openness: cutting-edge research, including breakthrough results by leading companies, is almost 

universally posted on the unclassified internet in full methodological detail, simultaneous with the 

announcement of the results themselves. Unlike with spaceflight, the Internet, or GPS, no major 

government is pioneering basic research progress in AI; rather, the private sector is firmly ahead.435 Overall, 

in the standard telling, one gets the impression that both state militaries and non-state actors might, in the 

near future, buy drones off Amazon, download the latest AI software from arXiv.org, and then easily 

combine them to produce weaponized swarms capable of terrorizing cities and seasoned human pilots alike. 

Given these conditions, combined with China’s generally large efforts to acquire and adopt foreign 

technology, it seems hard to imagine that AI-enabled weapons would not diffuse to China.436 

 

Indeed, in responding to the second camp, analysts tend to argue that AI may uniquely dodge these barriers: 

that is, AI’s pattern of diffusion will more resemble smartphones, ubiquitous and commercialized, rather 

than F-35s, complex and rare. A 2020 Congressional Research Service report best encapsulates this view:  

 
AI systems are particularly vulnerable to theft by virtue of being almost entirely software-based ...  the Chinese may be 
able to steal the plans for an F-35, but it will take them years to find the materials and develop the manufacturing processes 

to build one. In contrast, stolen software code can be used immediately and reproduced at will.437 

 

Similarly, Michael Horowitz has argued that military AI systems may spread quickly if they have low unit 

costs and have core commercial in addition to military purposes, unlike the weapons technologies cited by 

Gilli and Gilli.438 Horowitz, notably, also allows for the opposite possibility – if AI capabilities require 
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classified data, pose difficult systems integration challenges, or threaten existing organizational hierarchies, 

they may diffuse less easily and grant innovators significant first-mover advantages.439 For Allison, 

however, these may exactly be reasons to predict Chinese dominance – AI may threaten American 

organizational hierarchies, as well as antitrust and privacy-related values in American society more 

generally, but not the Chinese equivalents. In his words, “Beijing is not just trying to master artificial 

intelligence – it is succeeding.”440 America’s competitors, the argument goes, will not bind their own hands 

with concerns about “AI ethics,” whether domestically or on the battlefield.441 In short, analysts mostly not 

only believe AI will easily diffuse, but that China may better utilize its fruits. 

 

Why AI Weapons Will Require Advanced Chips 
In my view, however, analysts predicting diffusion have critically overlooked a key dimension: hardware. 

Although cutting-edge AI research is freely posted online, production of the specialized chips on which AI 

algorithms are best run is overwhelmingly concentrated in the United States and its allies. Below, I argue 

that even if Chinese AI research, organizational capital, and doctrine were all to overtake US capabilities, 

the United States would still be decisively advantaged in fielding AAWs if China were to lack access to 

advanced chips. The next section then argues that China will indeed lack access to such chips. 

 

Notably, this is not an argument about the engineering complexity of future AI weapons, but rather an 

argument about the enforceable scarcity of critical material inputs. Analogously, possessing superior 

nuclear strategy and delivery systems would not be useful without fissile material. Given this, the best 

analogy for AI is not that “data is the new oil,” but that “AI chips are the new uranium.”442 While uranium 

occurs ubiquitously in nature, enriching it to weapons-grade quality constrained proliferators in the early 

nuclear age. Similarly, while the raw materials for AI chips are everywhere, production of leading-edge 

chips is a highly rarefied ability. Even if AAWs are like iPhones, with both low unit costs and overwhelming 

overlap with various underlying commercial technologies, only Apple makes iPhones, and were they to 

cease selling them, consumers would face steep barriers in replicating the technology.443 

 

I proceed in two parts: I first explain what “AI chips” are, and then explain why AAWs would almost 

certainly require them, including why substituting with larger numbers of older chips would fail. 
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(1) What Are AI Chips? 
Unlike more universally used CPUs, AI chips have specific design features optimized for implementing AI 

models, such as greater ability to execute highly parallel calculations, deliberately lower-precision 

calculation of numbers sufficient for AI models but more efficient in use of transistors, and/or adaptation 

to programming languages specifically written for maximizing AI code efficiency. Consequently, 

specialized AI chips can provide improvements over CPUs equivalent to 26 years of CPU development. 

Further, even AI chips which are specialized but not state-of-the-art can incur order-of-magnitude greater 

energy costs.444  

 

Moore’s Law, which states that the number of transistors per chip doubles every two years, held from the 

1960s to the 2010s, then began slowing as chip design ran up against fundamental physical limits.445 

Individual transistors are now only several atoms thick, posing increasingly esoteric challenges; in the 

2000s, for example, engineering difficulties arose when electrical current began leaking out from between 

atomically thin insulative layers of transistors.446 Consequently, further progress has involved specialized 

chips, rather than simply cramming more transistors into CPUs. There are three types of AI chips: 

 

● GPUs (“graphics processing units”), originally designed for image-processing applications, 

exhibit the ability to execute highly parallel computation. GPUs became the most-used chip for 

training AI systems in 2017.447  

 

● FPGAs (“field-programmable gate arrays”), as the name suggests, include logic blocks which 

can be programmed after the FPGA’s manufacture to optimally execute specific algorithms.448  

 

● ASICs (“application-specific integrated circuits”), in contrast with FPGAs, are hardwired to 

optimally execute specific algorithms. State-of-the-art ASICs beat their FPGA equivalents, but 

become obsolete quickly since each new algorithm requires new ASICs to be manufactured, while 

FPGAs can be reprogrammed.449  

 

(2) Are AI Chips Necessary? 
Accepting that “AI chips” are better for AI, why would advanced AI chips specifically be necessary for 

AAWs? In short, increasingly complex AI models will pose escalating difficulties with both computation 

and miniaturization, gating their ability to be updated and installed on weapons platforms intended to 

navigate battlefield environments autonomously. The process of using AI systems can be divided into two 

distinct phases: training and inference. I discuss each phase in turn. 
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(a) Training 

First, one undertakes training of the AI model, during which it learns the knowledge to be used later in the 

field. For example, training AAWs might involve showing them many pictures of munitions fired by enemy 

air defenses, perhaps combined with simulated practice in a virtual environment, so as to teach them to 

evade effectively. Axiomatically, viable use of drones in interstate warfare will require more advanced 

machine learning models than presently fielded – existing autonomous drones cannot defeat modern air 

defenses; improvements in navigation, evasiveness, target selection, and other metrics will be required to 

begin replacing more of the functions of human pilots.450  

 

Importantly, these more advanced models will likely require exponentially more computing power.451 The 

amount of computational power used in training the most sophisticated AI models has, since 2012, doubled 

every 3-4 months. Consequently, compute usage has increased 300,000 times since 2012, driven 

significantly by deep learning’s extreme responsiveness to the use of ever greater quantities of compute.452 

As Rich Sutton, the father of modern reinforcement learning, pithily remarked, the last 70 years of AI 

research have shown that leveraging greater computing power beats clever engineering.453 Similarly, 

analyzing 171,394 deep learning papers, Nur Ahmed and Muntasir Wahed find that the necessity of 

computing power for deep learning has meant large firms and elite universities dominate the AI frontier.454 

Compute, not data, bottlenecks the modern development of AI models. 

 

Thus, whenever battlefield-effective AAW algorithms first become available, they will likely first result 

from quantities of compute expenditure only available to the largest AI companies and/or most AI-invested 

militaries. Further, as battlefield conditions change, maintaining updated AAW algorithms will demand 

continuous training of AI models. Using deep learning, AI training processes often involve executing the 

same computation millions of times; intuitively, this means the parallelism-optimized architectures of 

advanced AI chips benefit the speed and efficiency of such processes enormously.455 Thus, lack of access 

to leading-edge server-grade chips would necessarily constrain the quality of Chinese AAW algorithms 

used for swarming, navigation, evasiveness, and any other complex cognitive functions currently performed 

by human pilots. According to the chip benchmarking literature, which studies the relative efficacy of 

different chip types for AI applications, specialized AI chips exhibit up to three orders of magnitude of 

improvement, relative to even state-of-the-art CPUs, in efficiency and speed across both training and 

inference tasks.456 If it were to take 1,000 times as long for China to produce updated AAW algorithms, 
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this would obviously dampen their efficacy. Older or unspecialized chips may simply be unable to be used 

for the same applications, as energy consumption would “quickly balloon to unmanageable levels.”457  

 

Notably, even assuming perfect espionage, China would not be able to field equivalently effective AAWs 

simply by stealing already-trained US AI models. After all, US and Chinese AAWs would be optimized 

for different tasks, priorities, and modes of operation, given each country’s differing objectives, geography, 

and orders of battle. For example, analysts often derive Chinese advantage from the idea of using AAWs 

to overwhelm US aircraft carriers. The US itself would have a greatly reduced need to train AI models 

which, when loaded onto AAWs, generated optimum anti-carrier tactics, however. Thus, models most 

suited for China’s specific strategic purposes may simply not be available to steal. Even when reaching the 

state-of-the-art is still possible, training runs using lower-quality chips can cost orders of magnitude more 

money, due to relative inefficiency. Thus, this would also dampen a major theorized tactical advantage of 

AAWs relative to high-tech manned platforms, which is their relative cheapness.458  

 

(b) Inference 

Further, apart from difficulties with training, advanced AI chips will also be necessary for inference – actual 

application of the trained AI model in the field. Specifically, it likely will not be possible to deploy 

appropriately miniaturized AAWs without state-of-the-art chips. The reason is the breakdown of Dennard 

scaling, a counterpart of Moore’s Law, which held that power density would remain constant even as 

transistor count increased for some unit area.459 Since this is no longer true as of the 2000s, advanced AI 

models will be constrained in their ability to naturally become able to be loaded onto smaller and smaller 

packages over time, as the heat generated by computation would destroy the platform. Put another way, 

weapons platforms would have to be two or three orders-of-magnitude physically larger to run the same 

deep learning applications, if state-of-the-art chips are not used; in addition, due to increased power 

consumption overall, they would possess dramatically less range.460 Illustratively, to return to the above-

invoked analogy, the degree to which uranium has been enriched determines the quantity required to build 

a nuclear weapon, as less is required at more enriched levels to reach critical mass. At 5% enrichment, 

critical mass would require an elephant-sized quantity; weapons-grade uranium is typically defined as 90% 

or higher, requiring only about a turkey’s worth to go critical.461 Very similarly, the higher quality the chips 

used, the smaller the drones can be. Thus, future drones able to load sufficiently complex AI models to 

autonomously swarm or defeat modern air defenses will almost certainly require advanced AI chips.462 
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(c) Could China use a cloud computing architecture? 

One could ask: why would it be necessary to perform inference on AAWs themselves (an “edge computing” 

architecture), as opposed to, say, beaming the data back to an on-shore data-center (a “cloud computing” 

architecture)? A cloud architecture would face several issues specific to the intended functionality of AAWs 

– first, most obviously, this would introduce a significant vulnerability, as the signal could be jammed or 

spoofed.463 

 

Second, this would introduce severe issues related to latency. How long could AAWs wait, after all, if 

attempting to perceive and dodge anti-aircraft fire? Some evidence about this dynamic is available from 

development of autonomous cars, which rely on AI chips for high inference speed, since they must rely 

quickly to changing traffic conditions (e.g., to avoid hitting pedestrians).464 For AAW-on-AAW conflicts, 

edge computing would almost certainly be necessary to be competitive – that is, since mere seconds of 

maneuver decisions can decide the outcomes of dogfights, AAWs with better AI chips performing faster 

inference will naturally be able to defeat adversaries by more rapidly executing the so-called OODA 

(“Observe, Orient, Decide, Act”) loop often used to characterize aerial combat.465 Even if China located 

AAW servers on its eastern coast to minimize distance to likely battlefields, even a few seconds would 

likely systematically disadvantage its AAWs compared to those performing on-board computation.466 

 

Relatedly, specialized AI chips can further increase computational speed through architectural innovation: 

for example, US-based Google’s TPU (“tensor-processing unit”), an AI-specialized ASIC, contains 

sufficient on-chip memory to run AI models on the chip itself. In contrast, forcing the chip to communicate 

with external memory in other parts of the platform can take, depending on the details, up to 100 times 

longer.467 Thus, hardware progress would likely continue to advantage AAWs with more advanced AI chips 

over those with less. 

 

(d) Could China substitute with larger numbers of older chips? 

The reader may intuitively object: could China simply use larger numbers of worse chips? If China can 

simply substitute larger numbers of lower-quality chips for AAWs, after all, then lack of access to cutting-

edge chips may become only a marginal economic cost, rather than a decisive supply line interaction. Even 

for training, several additional technical reasons count against this possibility, however.  

 

 
in the leadup to World War II, however, more refined fuels with higher flashpoints were required to avoid unacceptable 

rates of accidental fire. Consequently, the US military developed specialized mixtures which became the first jet fuels. 

Similarly, current-generation drones can use run-of-the-mill computer chips, but AAWs may require the “jet fuel” of 
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First, as mentioned, leading AI algorithms depend on handling massive data through model parallelism – 

that is, they break down the tasks required for running AI into many smaller, simultaneous processes. 

Difficulties in tuning for parallelism, however, scale with the number of chips intended to be used in 

parallel. Consequently, whenever AAWs able to compete on the modern battlefield emerge as a 

breakthrough capability, the ability to implement their algorithms on larger numbers of older chips will be 

a distinct, unsolved technical problem. This problem is not likely to be small, nor is it one that is commonly 

solved, as leading AI companies tend to simply acquire leading-node chips. Depending on the algorithmic 

details, implementation on large numbers of older chips may even simply be technically impossible.468  

 

Thus, if China lacked access to advanced chips, it could not simply copy-paste American AAW algorithms, 

even if stolen in toto through espionage. Rather, it would then have to confront an additional, difficult, and 

potentially impossible software engineering problem of adapting the stolen algorithms to older hardware. 

Since inefficiency in power usage means the operating costs of using old chips exceeds leading-node AI 

chips substantially, this could theoretically even make attrition-style AAW air-to-air combat no longer a 

favorable cost-exchange proposition for China.469 

 

Second, even assuming China could solve this engineering problem, it would then also require additional 

“networking technology,” which governs how quickly and efficiently chips can “talk” to other chips, to 

implement. Otherwise, the increased volume of inter-chip communication required by using more chips 

would necessarily mean slower inference speeds, allowing American AAWs to outmaneuver Chinese 

copies in executing the OODA loop. Thus, China would face both an additional hardware problem, in 

addition to the above algorithmic problem.470 

 

Finally, it is difficult to overstate how impoverished China’s indigenous chip fabrication capability is – 

China does not have the ability to fabricate “chips that are nearly as good as the state-the-art,” with which 

it could conceivably substitute for leading-edge chips; rather, even considering AI chips more broadly, up 

to 16-nanometer transistors and better, the US, Taiwan, and South Korea still control 95.3% of global 

fabrication capability.471 I discuss China’s shortcomings in indigenous production in the next section. 

 

No Chips for the Drones of China 
Even if advanced AI chips will be required for AAWs, can access to them be denied to China? I first show 

why production of advanced AI chips will not diffuse away from the United States and its allies, then 

explain why a supply cutoff would be effective. 

 

(1) Why Hardware Production Will Not Diffuse 
The United States and its allies currently control, and are likely to control, the production of leading-node 

AI chips for at least the next decade. This section proceeds in two parts: First, I explain what theoretical 

mechanisms have driven why the AI supply chain has become increasingly concentrated, contrary to 

scholarly predictions about globalization. Second, I show that this concentration is currently controlled by 

the United States and its allies, and argue that this state of affairs will persist for at least the next decade. 
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(a) In AI, globalization means specialization, not redundancy 

Naively, since AI chips have intense commercial value, one might expect their production to diffuse widely. 

For example, Horowitz assesses that AI may “decentralize the capacity to produce important military 

hardware,” as weapons systems increasingly based on dual-use commercial technologies should become 

widely available. Thus, although China may find it very difficult to overtake the United States “in the area 

of manned fighters, manned tanks, or aircraft carriers,” conditions may change if “the shift to systems based 

more on commercial technologies … allow[s] more countries to produce military power independently than 

could before.”472 With AI, however, commercialization has actually resulted in the opposite trend – fewer 

countries can produce power independently, because particular segments of the involved technologies have 

become increasingly concentrated in fewer and fewer companies and countries. 

 

Fundamentally, this is a result of specialization: ironically, as I show in the next section, the reliability of 

global trade in the AI supply chain has encouraged not only specialization according to comparative 

advantage, but also the pushing of scientific limits through pooling global demand and talent which would 

not have been possible in autarkic countries. That is, according to a broad swath of evidence across sectors 

of the global economy, research productivity appears to have gradually and broadly declined over the last 

century, whether considering agricultural productivity, medical innovations, the price of light, genomic 

science, or many other fields.473 With AI specifically, the number of researchers used as inputs to double 

chip density has increased by 18 times since the early 1970s.474  

 

Research fields have generally reacted to increased R&D difficulty by combining global forces, and 

advanced AI chip production has been no exception. Surviving firms in AI require both almost all available 

global talent, as well as the economy of scale created by meeting almost all global demand, to make 

continuous R&D progress. In 2000, 25 chip manufacturers made cutting-edge chips; in 2018, only 3 did.475 

The fixed costs required to stay competitive in semiconductor manufacturing have repeatedly ballooned, 

encouraging iterated consolidation or relinquishment. For example, the average AI chip company spends 

25% of revenue on R&D.476 Modern fabrication plants (“fabs”) cost billions of dollars, and cutting-edge 

chips each contain tens of billions of transistors.477 From 2017-2020, Samsung spent $93.2 billion in 

semiconductor capital outlays; in 2021, Taiwan’s TSMC announced a $100 billion investment over three 

years, a figure exceeding the GDP of two-thirds of the world’s countries, to expand capacity.478 Designing 
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a 10-nanometer node chip cost $170 million in 2016, while designing a 5nm node chip cost $540 million 

in 2020.479 EUV machines, which cost $160 million per unit, print transistors with precision equivalent to 

about the growth of a human fingernail in a few seconds.480 In all, producing a single chip involves more 

than 1,000 individually complex steps.481 Further, since deep learning benefits greatly from specialized AI 

chips, its continuously increasing prominence in modern AI is only likely to further accelerate this trend.482  

 

In sum, commercialization and globalization have disincentivized indigenous production, and instead 

driven a tendency toward an increasingly specialized, fragmented number of distinct market segments, 

which either begin or become more concentrated as they arise and develop over time. As a practical 

consequence of these trends, across the AI supply chain, due to the economies of scale, concentrations of 

engineering talent, and volumes of tacit knowledge required to sustain these efforts, for many highly 

specific sub-technologies only a small handful of companies or sometimes only one company can exist, 

with even highly aggressive state subsidies empirically unable to sustain cutting-edge capability 

domestically. Leveraging industry datasets, I illustrate this for various parts of the AI supply chain below. 
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Herfindahl-Hirschman Index – All Segments483 

 

 

 
483 Data sources: SEMI; VLSI Research; TrendForce; public reporting. 
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Specifically, the horizontal axis is the segment’s Herfindahl-Hirschman Index (HHI) score, a standard 

measure of market concentration, illustrating declining firm count at the cutting-edge of various sub-

technologies.484 HHI is calculated by adding the square of the market share of each firm within a given 

market. Consequently, under HHI, 10,000 is a perfect monopoly. A market under 1,000 is coded by the US 

Fair Trade Commission as unconcentrated; between 1,000 and 1,800, the market is “moderately 

concentrated”; above 1,800, the market is “highly concentrated.”485 Below, I draw a green line at 1000, and 

a red line at 1800 – as is visually apparent, the AI supply chain is overall extremely concentrated. 

 

These trends toward concentration can also be understood by examining specific segments over time. For 

example, as an oft-cited example of gradual monopoly, I diagram below the progressive dropping-out of 

companies in the photolithography segment, eventually leaving Dutch company ASML with a monopoly 

over EUV photolithography technology, required to produce all leading-edge AI chips. 

 

Photolithography – Consolidation Over Time486 
 

 
 

Similarly, we could also consider specific AI chip types – again, GPUs, FPGAs, and ASICs. Nvidia 

invented discrete GPUs in 1999, for example, and only Nvidia and AMD have had meaningful market share 

through at least 2019.487 Unfortunately, ASIC company revenues are not publicly available, but the below 

figure shows two snapshots of the FPGA segment for which data are available: 1996 and 2016. By 2016, 

the market became dominated by three major companies. 
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FPGAs – Consolidation Over Time488 

 
 

(b) AI segments live on US and allied soil 

Further, this consolidation has overwhelmingly led to concentrating AI supply chain segments in the United 

States and allied countries. While Horowitz writes that both China and Taiwan “lead the world” in 

semiconductors, the two countries are in fact worlds apart – China lags in almost every segment.489 Even at 

the broad cross-segment level, the US and allied advantage is easily visible. 

 

Market Share by Segment490 
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Further, it may also be instructive to walk, step-by-step, through the supply chain in somewhat more detail, 

and examine concentration at select parts thereafter. 

 

The Semiconductor Supply Chain491 

 

 
 

At a high level, the production process for chips has three steps: design, fabrication (i.e., manufacture), and 

assembly. Chip design makes use of chip IP and electronic design automation (“EDA”) software, which 

form separate market segments; fabrication creates chips out of wafers (most frequently silicon), and both 

the fabrication and assembly steps use various chemicals and semiconductor manufacturing equipment 

(“SME”). While most companies previously performed all three steps in-house, modern-day companies 

now often specialize, owing to increasing complexity.492  

 

Design 

In the design of discrete GPUs, US-based Nvidia and AMD have a duopoly.493 While ASIC data is 

unfortunately unavailable, US-based Xilinx and Intel dominate FPGA design, while Chinese FPGA 

companies have only developed trailing-node chips.494 Further, all chip design companies require access to 

EDA software. There are essentially only three EDA companies, all US-based: Cadence Design Systems, 

Synopsys, and Mentor. EDA was dominated by these three companies in 2001; this remained true in 

2018.495 EDA is highly specific to particular fabs and nodes, meaning that even successfully stealing 

previous-generation EDA would only grant limited and decaying usefulness. EDA vendors spend 35% of 

revenue on R&D, reflecting the complexity of their industry. 496  In contrast, China has less than 1% market 

 
491 Adapted from Kleinhans and Baisakova, “The global semiconductor value chain,” 12. 

 
492 The notable exceptions are Intel and Samsung, although Intel may be shifting away from an integrated model due 

to encountering various technical difficulties. See Leo Sun, “Why Intel's Foundry Plans Don't Make Any Sense,” The 

Motley Fool, 2021, https://www.fool.com/investing/2021/05/03/why-intel-foundry-plans-dont-make-any-sense/. 

 
493 Khan and Mann, “AI Chips,” 27-8. 

 
494 Ibid. 

 
495 Cheng Ting-Fang and Lauly Li, “The great US-China tech decoupling: Where are we now?,” Nikkei Asia, 2019, 

asia.nikkei.com/Economy/Trade-war/The-great-US-China-tech-decoupling-Where-are-we-now; Russ Arensman, 

“EDA's OK,” EDN, 2002, https://www.edn.com/edas-ok/. 

 
496 Kleinhans and Baisakova, “The global semiconductor value chain,” 13. 

 



143 

share of the global chip design market, including high-end CPUs, discrete GPUs, FPGAs, and memory 

chips.497  

 

Fabrication 

Let us first discuss memory chips, which function as storage, and then logic chips, which undertake 

computational processing. Beginning with memory, DRAM (“dynamic random-access memory”) chips are 

used in all computing devices: specifically, they are “short-term memory” chips which temporarily store 

data while processing it. The DRAM market has consolidated substantially: in 2005, the eight largest 

DRAM vendors had 97% market share; in 2019, the three largest DRAM vendors had 95% market share. 

In other words, the DRAM market has consolidated into three major players: South Korea’s Samsung and 

SK Hynix, and US-based Micro.498  

 

On the other hand, NAND flash memory chips, named after the NOT-AND logic gate, are used in most 

computing devices: specifically, they are the “long-term memory” counterpart to DRAM, storing data for 

the longer-term. NAND is dominated by six major players: South Korea’s Samsung and SK Hynix, Japan’s 

KIOXIA, and US-based Micron and Intel.499 However, only US and Korean companies have made it to the 

10nm node. 

 

Memory Chipmakers by Country and Node500 

 
 

Moving to logic fabs, which produce all “AI chips,” one notes that they are extremely concentrated, 

especially at the leading edge. Taiwan’s TSMC has more than 50% market share, followed by South 

Korea’s Samsung at a distant second. TSMC and Samsung are the only fabs offering fabrication at 7nm 

nodes or better - while US-based Intel also plans to do so, it stumbled in transitioning nodes and now plans 

to have 7nm production online only in 2023, assuming no further delays.501  
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Logic Chipmakers by Country and Node502 

 
 

While the Chinese government has heavily subsidized its own fab, SMIC, it heavily trails TSMC and over 

90% of its business is older 250-40nm nodes.503 State subsidies were up to a whopping 40% of total chip 

fab revenue for Chinese firms from 2014-2018, and yet the most heavily subsidized fab, SMIC, was only 

able to produce a limited amount of 14nm capacity.504 One industry expert remarked, “I think what they are 

doing in fabrication is another Great Leap Forward.”505 Despite disproportionate government equity 

injections, Chinese firm profitability remains behind European, Japanese, Korean, Taiwanese, and 

American peers.506 

 

Semiconductor Manufacturing Equipment 

Next, as mentioned above, all fabs rely on semiconductor manufacturing equipment (SME) companies for 

the equipment they use to produce chips. SME itself consists of many specialized and consolidated 

segments, with vendors specializing in equipment used in specific steps out of hundreds of the chip 

fabrication process. Five companies dominate the SME market: US-based Applied Materials, Lam 

Research, and KLA; the Netherlands’ ASML, and Japan’s Tokyo Electron.507 Incumbents are very difficult 

to displace because they receive continuous feedback and knowledge from their collaborations with, and 
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sales to, leading fabs.508 Together, the US, the Netherlands, and Japan hold 80-95% market share in almost 

all SME segments, while China has about 2 percent market share across the same.509  

 

Market Share of Best Chinese SME Segments510 

 
 

In contrast, even China’s SMIC relies on SME imports. Chinese news pieces, sometimes picked up by 

western reporting, have tended to vastly exaggerate Chinese SME capabilities.511 In truth, China has almost 

no SME industry to speak of, including “only a small number of companies that are not at the state of the 

art.”512 Not even Chinese chipmakers buy Chinese SME, with less than 8 percent of China’s annual SME 

demand fulfilled domestically in 2020, despite the goal set in “Made in China 2025” of reaching 50 percent 

localization.513 

 

SME: Lithography 

Of special importance within SME is lithography equipment, involved in transferring chip patterns onto 

raw wafers. Notably, as mentioned above, the Dutch company ASML is the only company in the world 

which produces extreme ultraviolet (EUV) lithography, necessary to produce all chips smaller than 7nm.514  

 

The most advanced Chinese photolithography firm, Shanghai Micro Electronics Equipment (SMEE), on 

the other hand, tops out with only beginning to prototype the 90 nm node; that is, it is eight generations 

behind the leading node.515 In turn, ASML is dependent on highly specialized components manufactured 
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by single firms in the US and allied countries, including special light sources from US-based Cymer.516 

Further, even the market for less advanced photolithography is highly consolidated – apart from ASML, 

the only other company producing photolithography equipment for chips past the 90nm node at scale is 

Japan-based Nikon.517 Since the US has convinced the Netherlands to apply an export ban on EUV 

equipment to China, it seems very difficult for Chinese fabs to progress beyond the 7nm node “for the 

foreseeable future.”518  

 

Photolithography Companies by Country and Node519

 
 

Other Materials 

Fabs also use various specialized chemicals and gases during chip manufacture, with strict impurity 

requirements of 1 part per billion or less. This segment is dominated by Japan’s Shin-Etsu, Sumitomo 

Chemicals, and Mitsui Chemicals; and by Europe’s BASF, Linde, and Merck KgaA.520 Finally, fabs make 

chips out of wafers, a segment which has also rapidly consolidated. In 1990, more than 20 silicon wafer 

suppliers existed; in 2019, only 5 companies controlled 90% of the market: Japan-based Shin-Etsu and 

Sumco, Taiwan’s GlobalWafers, Europe’s Siltronic, and South Korea’s SK Siltron.521 In sum, across the 

many segments of the supply chain, China not only lacks indigenous capabilities, but in a significant 

number of cases is various generations behind the cutting-edge. 
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(c) What if China seizes Taiwan? 

At this point, one might wonder: could China invade Taiwan to acquire control of TSMC?522 As one 

industry analysis notes, “the importance of Taiwan for the semiconductor value chain cannot be 

overestimated. Almost the entire fabless industry for cutting-edge chips, globally, relies on TSMC – it is 

potentially the most critical single point of failure in the entire semiconductor value chain.”523  While this 

would not involve geographic dispersion of the ability to produce advanced AI chips, were Taiwan to be 

successfully absorbed by China, one could reasonably say that hardware production had then “diffused” 

there. However, even if China were willing to mount an invasion of Taiwan for chips, this seems unlikely 

to be succeed as a way of acquiring chip production capability. 

 

First, TSMC would likely not remain operational following the invasion. Fabs comprise a large selection 

of delicate machines, with TSMC’s fabs spanning cities across northern, southern, and central Taiwan. 

Hsinchu, home to TSMC’s headquarters, also houses several Taiwanese military bases, sits on Taiwan’s 

cost facing China, and hosts Taiwanese military drills practicing repelling a Chinese invasion.524 

Consequently, it seems likely that unless Taiwan were to surrender outright, most of the military 

contingencies currently planned for by both sides would carry a significant risk of destroying the machines 

it took TSMC many years to build.525  

 

Second, even if Chinese forces sought to deliberately avoid damaging TSMC facilities, a difficult task given 

that the current dominant operational concept for Taiwan’s defense involves long, protracted warfare on 

the island to impose costs on China and stall for US involvement, Taiwanese forces might destroy TSMC 

facilities themselves, to avoid having them fall into Chinese hands.526 As World War II began, for example, 

the US government was not only able to persuade Standard-Vacuum, a US-based oil company in the Dutch 

East Indies, to participate in its oil embargo of Japan, but also secured an agreement from Standard-Vacuum 

that it would destroy its oil wells if the Japanese launched an invasion to seize its oil. Given that Taiwan 

would almost certainly depend on American intervention to survive a full-on Chinese invasion, in such a 

contingency its government would arguably see destroying TSMC – in the event that its facilities appeared 

about to fall into Chinese hands – as necessary to avoid strengthening the Chinese war effort against any 

incoming US forces.527 Further, TSMC itself might also wish to destroy its Taiwan-based fabs to protect its 

own customer IP; being a global company with offices across Europe and North America, it might reason 

it possessed a greater chance of eking out survival if its technological secrets did not fall into Chinese 

hands.528 And, of course, were the United States to actually engage in hostilities on Taiwan, it could easily 

destroy TSMC fabs itself, their composition representing simply a dozen or so fixed targets. 
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Third, Chinese engineers might be unable to operate TSMC without its original employees, who may well 

have fled the country at the start of the conflict. As Stephen Brooks has argued, returns to conquest have 

tended to decline in the modern era in part because knowledge workers tend to be highly geographically 

mobile, and even when conquerors capture knowledge-based companies whole, it is easy for employees 

whose job it is to produce intangible outputs to engage in difficult-to-prevent shirking, compared to, say, 

the coal mines of yesteryear.529 

 

Finally, perhaps most unavoidably, as discussed above, TSMC’s chip manufacturing capabilities depend 

on raw inputs which are overwhelmingly sourced from American, European, and Japanese firms. In 

wartime, these inputs would almost certainly be cut off.530 While existing stocks might provide a limited 

manufacturing capability, TSMC would not be able to continue operating for long. 

 

(2) Hardware Supply Cutoff Would Succeed 
Even if convinced that China does not, and will not, for the near future, house the production of advanced 

AI chips, one might then ask: even if production is housed by the United States and its allies, would a supply 

cutoff succeed? After all, advanced AI chips are presently sold on the open market, and the history of export 

controls shows leaks are not exactly rare. Hugo Meijer argues, for example, that any export controls toward 

China will invariably fail, due both to lack of domestic political will and increased defection by allies.531 

Several reasons, however, point to likely success. 

 

(a) Chokepoints have proliferated 

First, the general tendency toward specialized, consolidated AI segments means a larger number of “bites 

at the apple” for effective cutoff. The United States itself has sole control over four chokepoints which 

would prevent China from producing leading-edge chips; even disregarding that, even if Japan decides to 

bandwagon with China, the US can still achieve a cutoff if Taiwan and South Korea agree to withhold their 

part of the supply chain, for example. Below, adapting work by Saif Khan, I show what chokepoints would 

be available if the US can secure a given number of allies’ cooperation. 
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For legibility, we can display this visually: twelve more chokepoints are potentially available if the US can 

secure the cooperation of two additional countries, for example. Eugene Gholz argues that globalization 

makes countries more resilient to supply cutoff, because of the wide availability of alternative suppliers; 

here, however, the opposite seems true – for many segments, there are no alternative suppliers.533 

 

Chokepoints and Allies 

 

 
 

Importantly, chip design is fab-specific. That is, chip designs are highly complex blueprints which work 

with a specific fab; redesigning the same chip to be produced by a different fab can take years.534 

Consequently, were China to lose access to TSMC, even if a successful indigenous fab could be produced 

under desperate wartime measures (itself doubtful), a several-year pause in production would likely occur. 

 

Further, even if the United States was unable to marshal allied willpower to cut off China, the fact of heavy 

US involvement in the AI supply chain also means ample opportunity for US exploitation of China-bound 

materials, potentially allowing the United States to decrease the effectiveness of Chinese AAWs even 

without denying China advanced AI chips altogether. According to 2021 Bloomberg reporting, for example, 

China-based supply chain elements inserted malicious chips into server motherboards made by US-based 

Super Micro Computer Inc. (“Supermicro”), which counts federal agencies among its clients. 

Consequently, DoD analysts worried that compromised Supermicro “implants” could “be a digital weapon 

that could shut down those systems during a conflict.” Similarly, laptops from Lenovo Group Ltd., a US 

military supplier incorporated in Hong Kong, were found in 2008 to contain altered hardware which 

transmitted all inputted data back to China.535 The United States presumably possesses hardware hacking 

capabilities that are at least as competent. 
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Finally, US ability to effectively impose supply cutoffs of relevant segments in coordination with allies, 

even in peacetime, has already been demonstrated. First, when China attempted to compete in DRAM by 

establishing the Fujian Jinhua Integrated Circuit Company in 2016, the US banned US-origin SME exports 

to that company in 2018, and it was forced to shutter all production after running out of critical US-

dominated inputs in 2019.536 When the US ban occurred, ASML voluntarily withdrew its engineers from 

the company on the same day. According to reporting by Reuters, Japanese SME firms also then decided 

to voluntarily mirror the US blacklist, declining to fill the market void left by the US withdrawal.537  

 

Second, in December 2020, the United States imposed export controls against SMIC, issuing a 

presumption-of-denial policy banning export of items uniquely required for chip fabrication at 10nm and 

below.538 Consequently, experts forecast that the fabrication market will not significantly change for at least 

ten years.539 As mentioned, China has no companies capable of fabricating leading-node GPUs and FPGAs: 

Chinese chip design firms must turn to Taiwan’s TSMC. While “Made in China 2025” set the goal of 70% 

self-sufficiency in semiconductors, local chip production remained at 16% in 2020, with market research 

firm IC Insights predicting that figure would only reach 19% in 2025.540 

 

Finally, in 2019, the United States and the Netherlands began blocking Chinese access to critical SME, 

EUV in particular.541 China only plans to develop an EUV machine by 2030; since China has already missed 

various other previously set goals about AI supply chain independence, even this is likely over-optimistic.542 

In December 2020, the US additionally increased the severity of its export controls on Huawei, preventing 

it from buying chips manufactured from fabs which use US SME. Huawei had stockpiled components for 

a full year amidst US trade tensions, but will at some point run out of up-to-date chips, and will likely be 

forced to pivot to other parts of its business.543  Commenting on Chinese indigenization efforts responding 

to these developments, a manager at China’s largest chip design toolmaker noted in 2021, “asking us to 

fully replace [US-based] Synopsys and Cadence is like coming to carmakers and asking to build rockets.”544 

 

Further controls are also possible. China is so enormously behind in this segment that more complete SME 

controls would likely block Chinese chip fabrication beyond the 90nm node, eight generations behind 
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current leading-edge 5nm production.545 According to one market model, even controlling SME at or past 

45nm would cut China’s share of global chip fab capacity all the way to 0.2%.546  

 

(b) What about stockpiling? 

One might ask: since great powers are likely to stockpile a significant inventory of weapons, will supply 

cutoffs will lack sufficiently immediate effects to deter wars?547 However, this argument is unlikely to apply 

to AI. First, since leading-node chips are extremely finite, especially at first, states are unlikely to be able 

to build up very large stockpiles of AAWs. Second, as mentioned above, in the case of Taiwan 

contingencies, the island government is likely to attempt to stall, in the event of Chinese invasion, for US 

arrival. This may lead to a naturally protracted conflict.548 Third, this stockpile would repeatedly obsolete 

itself as chips changed nodes. 

 

Finally, most importantly, the consensus view of scholarship is that AAWs are likely to exactly encourage 

wars of attrition, as the relative lack of human casualties will reduce the probability that either side exits 

due to public outcry. Thus, possessing a lesser stockpile of AAWs will likely be especially relevant if 

predicted changes to warfare come to pass. 549 

 

(c) Could China cannibalize its civilian sector? 

Following a supply cutoff, could China simply cannibalize civilian-sector AI chips for military use? After 

all, advanced AI chips are a ubiquitous consumer goods input, including into iPhones, laptops, and cars. 

Analogously, when considering the effects of a blockade of oil on China, analysts have found that 

commandeering domestic supplies could help cushion against a distant US supply cutoff of the Strait of 

Malacca, potentially allowing remaining supply lines (e.g., overland pipelines) to suffice for China’s 

military needs.550 

 

With AI chips, however, this is unlikely. First, unlike with oil, there are presently no countries which are 

both geopolitically aligned with China and possess leading-node capabilities. Russia and Central Asia are 

players in oil and natural gas and so can relieve China by land, avoiding US maritime dominance, but no 

equivalent actors exist for AI chips. Second, leading-node chips used in consumer goods are not precisely 

fungible with those likely to be used in AAWs. Chips are designed to be produced by specific fabs, and 

customized for specific purposes. Consequently, one cannot, say, order chips for laptops, but then reroute 

those chips for AAWs. It would likely be necessary to design the chips for AAWs in the first place. 

 

(d) What about transshipment? 

Finally, the reader may ask, what about third parties making purchases on behalf of China? While 

transshipment of oil has frequently been used to avoid sanctions, this seems less likely in the case of 

advanced AI chips. First, most fundamentally, as mentioned above, chips are not wholly fungible. Second, 
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even were this possible, the world is consuming advanced chips, an extremely finite resource, faster than 

they are being produced. Consequently, even when TSMC cut off supplying Huawei due to US policy 

change under the Trump administration, it suffered no net loss of business – in the words of CEO Peter 

Wennink of ASML, the European company with, again, a complete monopoly on EUV equipment required 

to produce all leading-edge chips, “if we cannot ship to customer A or country B, we’ll ship it to customer 

C and country D.”551 Unlike oil, a difficult-to-control commodity sometimes described as “one big pool,” 

all of the world’s advanced chips are spoken for and highly valued by specific clients. As a result, especially 

under wartime conditions, surveilling and protecting the AI supply chain would likely be a top priority for 

the United States and its allies. 

 

 

Conclusion 
Regardless of whether fully autonomous drones revolutionize future warfare, control over production of 

advanced AI chips by the United States and allies almost certainly means such drones would not, if they 

emerge, advantage China. In 2019, China imported $238 billion of crude oil, but $301 billion of 

semiconductors; a supply cutoff is both feasible and could attack any number of parts of the supply chain.552 

 

Although China is engaged in intense indigenization efforts, a consensus forecast is that achieving chip 

self-sufficiency is extremely unlikely within the next 10 years.553 At a minimum, a very conservative 

estimate is that it is very difficult to imagine that China will successfully develop EUV technology, a key 

bottleneck for the most advanced chips, for at least that timeframe.554 Less conservatively, without US, 

Japanese, and Dutch components, one Brookings report assessed that China “would find it nearly 

impossible to develop or maintain advanced chip factories for the foreseeable future.”555  

 

Consequently, if AAWs are realized within the next decade, the US will likely enjoy uncontested use for a 

notable period of time. Contrary to analysts predicting China will leapfrog the United States using AAWs, 

the opposite may be true – insofar as other trendlines look unfavorable for the United States in the 

conventional domain vis-à-vis China, the rise of AAWs as a significant military technology could instead 

restore US advantage in the Western Pacific balance. 

 

Besides commenting on the specific question of AAWs and the US-China balance, this paper arguably 

makes several additional theoretical contributions. First, these results advance the general study of AI by 

political science. Existing assessments suffer from scarce data – AI-enabled weapons have not yet been 

widely fielded en masse or used in wars, precluding empirically-driven analysis. To compensate, this paper 
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focuses on inputs instead of outputs, illustrating how existing datasets can be brought to bear – analogously, 

demographics permits estimating how large the military-age population for some state may be, several 

decades out, even if that state’s future military doctrine is harder to predict.  

 

Second, the paper intervenes in the related literature of whether liberalism has superseded mercantilism. 

This ongoing debate asks whether global markets have dampened causes of conflict related to scarcity, and 

centers on oil as its primary case. One side argues that commoditization means attempts at coercion through 

resource denial translate only into relative price changes (as with the diversification of upstream crude oil 

producers, after the 2000s), rather than existential threats (as with the US embargo on Japan which helped 

motivate Pearl Harbor).556 For Eugene Gholz, for example, threats of supply cutoffs are a “weak reed,” as 

globalization has meant an increase in alternative sources of supply – the US embargo on Japan was only 

workable in a previous era.557 Others argue even globally traded goods contain actors with disproportionate 

influence, with interdependence being variously weaponizable by central nodes.558 Here, Gholz replies by 

suggesting that defense industries are especially unlikely to “rely on links for which substitutes are 

unavailable,” but in the case of the AI supply chain, industries have no choice when oligopolies or even 

monopolies obtain in particular segments.559 This paper’s analysis of the AI supply chain provides evidence 

that even as interdependence can generate economic incentives for peace, goods with certain technical 

characteristics can give rise to specific, highly concentrated market segments which then represent sources 

of coercive power.560  

 

Finally, the paper makes several contributions to the diffusion literature. AI as a case usefully tests 

competing mechanisms in the extant literature predicting diffusion, or its absence: AI is an unusually open 
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field with strong commercial applications, even among modern information technologies, but is also a 

complex, investment-intensive technology commonly understood as important to future military power. 

Consequently, observing how clashing causal mechanisms interact in the AI case naturally horse-races 

extant theories of diffusion against each other.561  

 

Further, the paper arguably illustrates the utility of third-image, system-level analyses of the diffusion of a 

particular technology, in addition to predominant second-image, state-specific explanations which focus on 

states’ finances, internal politics, organizational capital, and culture.562 Extant second-image narratives 

adopt this basic framing: states wish to adopt the best technologies available, and so the question of 

diffusion relates to which states are able to do that, as determined by differently emphasized material or 

intangible factors.563 Consequently, recent discussion over whether globalization has accelerated or 

inhibited diffusion centers on whether more or less is now demanded of would-be adopting states. Does the 

internet, increased trade, and the ease of transmission and theft of assets like software reduce adopting 

states’ burdens, or do specialization, increased complexity, and the shift from codified to tacit knowledge 

imply the opposite?564 This paper suggests that diffusion patterns are controlled by system-level variables, 

however, in addition to state-specific factors. Theoretically, the argument outlined above demonstrates that 

for some innovations, strategic, economic, and/or scientific limits mean diffusion will be limited to some 

fixed quantity of states, regardless of the absorptive capacity of any would-be adoptee in question.565 

 

Finally, the extant diffusion literature importantly fails to distinguish between production and acquisition. 

Whether or not states produce technologies domestically or acquire them abroad is infrequently discussed. 

Instead, adoption is typically operationalized as binary: either a state adopts a given innovation or does not. 
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For example, under Horowitz’s “adoption-capacity theory,” states either pursue adoption, or select other 

responses depending on the innovation’s financial intensity and organizational capital requirements; 

Horowitz further decomposes financial intensity into two factors: whether the “underlying basis of the 

technology” is civilian or military, and the cost per unit of the technology.566 Similarly, Daniel Drezner’s 

2x2 typologizes technologies using two factors: whether the private or public sector leads, and whether the 

fixed-cost investments needed “to develop or adopt” the new technology are high or low.567 In a collection 

of essays about technological diffusion, Emily Goldman and Leslie Eliason describe diffusion simply as 

occurring when “an idea, thing, or practice is transmitted from one social group to another.”568 

 

In significant part, inattention to production has been the norm because studies of diffusion have sought to 

produce theory applicable to a very broad range of phenomena, both material and immaterial: that is, 

discussions of diffusion freely range not only over weaponry requiring new complex, physical materials, 

such as tanks or aircraft carriers, but also over intangibles, such as ideas and doctrines whose utility emerges 

primarily from making use of existing materials (e.g., suicide terrorism), and which therefore do not acquire 

production to adopt.569 While this is understandable, it also means that significant swaths of theorizing in 

the diffusion literature have somewhat lost touch with the actual physicality of military weapons. 

Illustratively, Horowitz’s nuclear weapons case study focuses entirely on financial costs as the key 

limitation for would-be proliferators; he does not discuss the limited availability of fissile material in the 

early nuclear era. This is an important omission, I claim, because some things are not for sale – the United 

States would not have sold off its nuclear weapons for any amount of money, in 1955.570  

 

In other words, even if a given technology “diffuses” in the sense of being possessed in some quantity by, 

and competently used by, various militaries, this is not equivalent to the diffusion of all of the power which 

flows from that technology. AAWs may become widely used – in fact, the US military may sell them abroad 

itself, and China may even get its hands on appreciable quantities. This is not, however, equivalent to 

diffusion: in reviewing the almost universal failure of academic theories to predict North Korea’s successful 

nuclearization, for example, Nicholas Miller and Vipin Narang note the importance of the eroding 

effectiveness of supply-side control measures, given that nuclear technology is now decades old and 

counting.571 Since North Korea indigenously and secretly developed its nuclear reactor and reprocessing 

facility, its reduced elicitation of sensitive nuclear assistance from other countries helped it fly under the 

 
566 Horowitz, The Diffusion of Military Power, 24-32. 

 
567 Daniel W. Drezner, “Technological change and international relations,” International Relations 33.2 (2019), 292. 

 
568 Emily O. Goldman and Leslie C. Eliason, “Introduction,” in The Diffusion of Military Technology and Ideas 

(California: Stanford University Press, 2003), eds. Emily O. Goldman and Leslie C. Eliason, 11. 

 
569 Suicide terrorism is Horowitz's fourth case study. See The Diffusion of Military Power, 166-207. 

 
570 Ibid., 98-133. 

 
571 Nicholas L. Miller and Vipin Narang, “North Korea Defied the Theoretical Odds: What Can We Learn from its 

Successful Nuclearization?,” Texas National Security Review 1.2 (2018), https://tnsr.org/2018/02/north-korea-defied-

theoretical-odds-can-learn-successful-nuclearization. See also Francis J. Gavin, “Strategies of Inhibition: U.S. Grand 

Strategy, the Nuclear Revolution, and Nonproliferation,” International Security 44.2 (2019), 185-92; and Nicholas L. 

Miller, Stopping the Bomb: The Sources of Effectiveness of US Nonproliferation Policy (US: Cornell University Press, 

2018); R. Scott Kemp, “The Nonproliferation Emperor Has No Clothes: The Gas Centrifuge, Supply-Side Controls, 

and the Future of Nuclear Proliferation,” International Security 38.4 (2014): 39-78. 
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radar of detection by the United States.572 In other words, nuclear weapons diffused to North Korea because 

of a change in the underlying difficulty of production. Those studying AI would do well to pay attention to 

the comparable underlying dynamics of advanced chips. 

 

Thus, the analogy to uranium may be suitable in at least one more way. At the open of the nuclear age, 

scholars generally predicted rapid proliferation: since nuclear weapons provided their owners with such 

enormous military advantages, it was thought, their acquisition would be widely desired. Decades later, 

however, nuclear-armed states remain in the single digits. Presently, a growing literature debates whether 

AI-enabled weapons of the future will revolutionize warfare, and hence proliferate widely out of state desire 

to keep up with the times, or whether another AI winter will set in, following eventual disappointment with 

AI’s inevitable limitations. Thinking of advanced AI chips as fissile material, however, opens another 

possibility – AAWs may come to both be regarded as revolutionary, but also fail to diffuse widely in their 

first decades, due not to financial intensity, demands upon organizational capital, or complexity, but due to 

careful control by the United States and its allies of the key intermediate precursors to such weapons. 

 

In the long-run, of course, even if previous-generation AAWs cannot defeat those fielded by the United 

States, they may still be used in various regional conflicts, or by states eager to police their own populations. 

I also do not claim this imbalance in advanced chip access is irrevocably permanent. It is not maintained 

by physics, after all, but merely a present confluence of economics and geopolitics.573 Such imbalances, 

especially when used in war, tend toward their own erasure – after the 1973 oil crisis, when the Organization 

of Arab Petroleum Exporting Countries (OAPEC) embargoed Israel-supporting nations during the Yom 

Kippur War, the United States undertook intense efforts to develop alternative energy sources.574 If China 

were to suffer defeat in conventional conflict with the United States due to lacking access to AAW 

precursors, and if the rivalry were to persist following that conflict’s political consequences, avoiding a 

repeat scenario would likely become a top priority for the following decades. Consequently, I limit the 

scope of the paper’s argument to ten years.575 

 

  

 
572 Miller and Narang, “North Korea Defied the Theoretical Odds.” On sensitive nuclear assistance, see Matthew 

Kroenig, Exporting the Bomb: Technology Transfer and the Spread of Nuclear Weapons (Ithaca: Cornell University 

Press, 2010). 

 
573 As R. Scott Kemp wrote about the increasing impracticality of denying countries with nuclear ambitions access to 

gas centrifuges, “What was once exotic is now pedestrian, and nuclear weapons are no exception.” Kemp, “The 

Nonproliferation Emperor Has No Clothes,” 41. 

 
574 According to declassified British documents, the United States may have considered responding by invading Saudi 

Arabia, Kuwait, and Abu Dhabi with two or three brigades, followed by two divisions, to seize its oilfields. Michael 

Peck, “The Time America Almost Invaded OPEC,” The National Interest, 2014, 

https://nationalinterest.org/feature/the-time-america-almost-invaded-opec-15726. 

 
575 Of course, looking more than ten years out, it also becomes increasingly difficult to predict whether current 

geopolitical conditions will continue. For example, China may have democratized, or suffered economic collapse; 

conventional conflict between the United States and China may have become increasingly unthinkable for any number 

of reasons. 
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Conclusion 
 

This dissertation defends an operationalization of artificial intelligence as deep learning, then assesses its 

domain-by-domain impact on the US-China balance. In doing so, it seeks to offer AI to security studies as 

a legible object, breaking ground on efforts to apply known methods to study an emerging technology. In 

the nuclear domain, it finds that AI could counterfactually enable US counterforce against China. In the 

conventional domain, it finds that the AI hardware supply chain strongly favors the United States in any 

contest of AAWs which unfolds in at least the next ten years. 

 

Avenues for Future Research 
This dissertation suggests several avenues for future work. We can usefully divide such avenues into 

projects and methods, and consider them in turn. 

 

Projects 
While AI has received rapidly increasing attention from economics, sociology, and philosophy, including 

its self-spawned fields of AI ethics and AI governance, to say nothing of computer science itself, it has 

curiously been the subject of relatively scant attention from political science and security studies. For this 

dissertation, the bulk of cited literature has come not from academia proper, but from outlets contained by, 

or adjacent to, the national security ecosystems of the world. In my view, this is regrettable. 

 

In the nuclear domain, the campaign analysis undertaken in the second paper could be extended to the US-

China undersea balance, as well as to other dyads. It will also be important to consider under what 

circumstances, or given what additional enabling technologies, AI may mean purely conventional 

counterforce is possible, both for the United States against China, as well as elsewhere. 

 

The AI applications discussed as changing the US-China nuclear balance should also change the 

conventional balance, both in that dyad and more generally. Given the proliferation of precision-strike 

capabilities, advantaging finders over hiders is very likely useful not only for locating TELs and 

submarines, but also for defeating concealment in purely conventional conflicts. For example, given its 

ability to rapidly process vast quantities of data, deep learning will also alter global naval balances, 

advantaging those with access to SAR constellations by easing the search of oceans for surface vessels.576 

 

Outside security studies, a precise study of how AI affects the political economy of authoritarianism ought 

to be conducted. To what degree will AI shift the incentives of elites? Full answers should emerge from 

comparative politics and dissection of the history of previous potentially centralizing technologies. For 

example, could AI reduce the size of the minimum winning coalition within political systems by automating 

many of the instruments of power?577 Could AI dampen the negative economic consequences of internal 

surveillance? Are automated armies a solution to coup-proofing? 

 

Methods 
First, I enumerate several methodological approaches at the end of this dissertation’s third essay, including 

application of existing IR theory, mass and expert surveys, wargames, formal modeling, and campaign 

analyses. The second essay, of course, serves as an example of a campaign analysis; the third essay, in turn, 

exemplifies the use of data about inputs, even as the battlefield outputs of key AI resources remain immature 

 
576 C.P. Schwegmann, W. Kleynhans, B.P. Salmon, L.W. Mdakane, and R.G.V. Meyer, “Very deep learning for ship 

discrimination in Synthetic Aperture Radar imagery,” paper presented at the IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS), China, 2016, https://ieeexplore.ieee.org/abstract/document/7729017/. 

 
577 Bruce Bueno de Mesquita, Alastair Smith, Randolph M. Siverson, and James D. Morrow, The Logic of Political 

Survival (US: MIT Press, 2003). 
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and difficult to study. This focus on inputs could be variously extended. The most low-hanging fruit, for 

one, is that at time of writing, revenue data about the ASICs discussed in this dissertation’s third essay, 

unlike GPUs and FPGAs, appears unobtainable, due to technological novelty. Since whether or not AI 

hardware diffuses will importantly determine the degree to which China (and other countries) can leverage 

AAWs (and other AI-enabled military applications), it seems easy to say that someone ought to write, in a 

few years, an analysis with all available data at that time of to what degree that diffusion has occurred, 

especially in light of the recent US rediscovery of various forms of industrial policy (including likely large 

subsidies of various US companies involved in the AI supply chain, as well as in convincing TSMC to 

invest in some amount of capability in the United States). As technological progress continues to clarify 

what forms of data and engineering talent are most critical for battlefield applications, similar analyses 

could be done for data and AI talent, as well. 

 

Second, albeit somewhat farther afield, I have come to believe political scientists ought to consider 

significant forays into forecasting, both of technological futures and of political outcomes more broadly, as 

a partial solution to the problems of data scarcity in studying actively unfolding phenomena. Most works 

in political science are already at least predictive – for example, campaign analyses can be understood as 

making forecasts about the likely outcomes of military contingencies, subject to specified scope conditions. 

More fundamentally, any theoretical partition of the possible values of some variable represents, arguably, 

a forecast that those possibilities should manifest more than an infinitesimal fraction of the time. On one 

end, grand theory is often too loose to generate point predictions useful to policymakers, and among 

scholars this tends to provoke decades of essentially unresolvable debates between theoretical schools. On 

the other end, quantitative hypothesis-testing on datasets of definitionally past occurrences has tended to 

encourage a theory-free search for empirical regularities, but it is often unclear whether such regularities 

map usefully onto the future.578 While expert predictions have an abysmal track record, evidence suggests 

the accuracy of such predictions can be improved with a little training and effort, especially for nearer-term 

forecasts.579  Since policymaking must deal with ongoing events, a willingness to consider explicit near-

term forecasts based on one’s work would naturally increase its real-world relevance; conversely, 

generating predictions should also avoid endless theoretical speculation in a vacuum – if one’s work 

generates no testable propositions, after all, then it is definitionally non-falsifiable. With AI, the very broad 

range of implicit forecasts made about its impact on international affairs makes some kind of forecasting 

easy in applying political science research, but this idea could be extended to other subjects, as well.580 

 

Implications for Scholars 
This dissertation offers several contributions to security studies. First, for readers convinced of AI’s 

importance, the first essay offers a focus on deep learning as a productive direction for the field. The second 

and third essay extend this focus to the nuclear and conventional domains, illustrating how a focus on 

specific applications informed by technical detail can generate epistemic progress even though AI 

capabilities have not yet been deployed at scale on the world’s battlefields. 

 
578 John J. Mearsheimer and Stephen M. Walt, “Leaving theory behind: Why simplistic hypothesis testing is bad for 

International Relations,” European Journal of International Relations 19.3 (2013): 427-57. See also the discussion of 

difficulties with pooling data in Gary King, “Proper Nouns and Methodological Propriety: Pooling Dyads in 

International Relations Data,” International Organization 55 (2001): 497-507. 

 
579 Tetlock, Expert Political Judgment; Philip E. Tetlock and Dan Gardner, Superforecasting: The Art and Science of 

Prediction (NY: Broadway Books, 2016); J. Peter Scoblic and Philip E. Tetlock, “A Better Crystal Ball: The Right 

Way to Think About the Future,” Foreign Affairs, 2020, https://www.foreignaffairs.com/articles/united-states/2020-

10-13/better-crystal-ball. 

 
580 Existing forecasting efforts which could be interesting sources of data for political scientists include Metaculus 

(https://www.metaculus.com/), Foretell (https://www.cset-foretell.com/), and of course the Good Judgment Project 

(https://goodjudgment.com/). 
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Second, for those who study nuclear weapons, this dissertation offers evidence for simulation that AI may 

undermine mobility as a strategy for arsenal survivability, demanding new countermeasures from states 

previously reliant on road-mobile missiles to guarantee their second-strike capability. Of course, this effect 

will apply unevenly across states, but even for China, many of the available countermeasures may increase 

escalation risks, as they involve either destructive interference with US nuclear systems themselves, or 

progressive movement toward postures more toward the “always” branch of the always/never dilemma. To 

stop enemy AI from converting their mobile platforms into, essentially, large fixed targets, states will have 

to choose from various possible countermeasures outlined in the third essay. Worse-off states, like Pakistan, 

Iran, and North Korea, may have difficulty in the near to medium term in fully restoring their survivability. 

 

Finally, for theorists of military power, this dissertation shows that technological progress may produce 

highly concentrated supply chokepoints which favor dominant states, rather than diffuse power to the 

periphery through globalized interdependence. Advanced AI chips are firmly ensconced on US and allied 

soil, with transnational production having led to monopolistic specialization rather than the easy 

redundancy of oil-like commodities available from many suppliers. If US supply cutoffs would be effective, 

as the third essay argues they would be, then technological innovation at the increasingly impenetrable 

R&D frontier may re-concentrate power in the United States, rather than promote its gradual erosion. 

 

Implications for Policymakers 
Finally, this work also has implications for policymakers. First, the sky is not falling – if China displaces 

the United States as the world’s leading power in the near future, AI will not be the cause. The geography 

of AI hardware production strongly favors the United States in any duel over the conventional applications 

of AI for at least the next ten years, and at higher levels of escalation, AI may even enable successful US 

counterforce against the Chinese nuclear arsenal. Consequently, risks to the United States in adopting AI 

technologies emerge more from unsafe implementations borne out of corner-cutting and unnecessary haste, 

rather than from falling behind. While a healthy sense of competition is indispensable, running so fast while 

ahead that we trip and smash our collective face into the ground would be senseless. 

 

Second, China may feel increasingly threatened by US counterforce ability over the coming decade. AI-

enabled intelligence-processing means the US ability to hold the Chinese arsenal at risk will increase 

naturally, even without the specific acquisition of further counterforce-specific platforms. US policymakers 

should decide whether they endorse such a development, and consciously choose whether to proceed; 

strategy should dictate technology, not vice versa. Bilateral and trilateral discussions with China and/or 

Russia about these issues should follow that strategic determination. Further, American foreign policy in 

regions with other competitive nuclear dyads, such as India and Pakistan, must also attend to the increasing 

possibility of counterforce by American allies, including the attendant escalation risk. 

 

Finally, this work offers several guidelines for best competing with China in AI. Basic, private-sector AI 

research will almost certainly all diffuse, but US AI hardware and talent advantages are worth investing in. 

Strong technical barriers, such as those surrounding EUV photolithography, mean China will be unable to 

produce its own advanced AI chips for at least the next ten years, a horizon which prudent policy could 

extend. Conversely, the United States should make sure that its own government-sponsored research does 

not further some of AI’s more authoritarian possibilities, including those now sadly on display in Xinjiang. 

Those AI fields, such as research underpinning civilian surveillance technologies, disproportionately 

further Chinese strategic ends. As the country leading the world in AI research, the United States can shape 

the direction of the technology to its strategic advantage. If those forecasting civilization-changing effects 

for more advanced AI are anywhere close to correct, the future of US prosperity may depend on it. 
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Appendix – Simulation Code 
The second essay centers on simulating US nuclear counterforce efforts against China. We intend to 

continue iterating on the code, and will host the latest version on Github.581 Below, we document the 

function of each code module at time of writing to make the structure of our program more legible. 

 

config.py 
Stores all parameters used by the model, including quantitative assumptions about TELs, US intelligence 

capabilities and nuclear arsenal, and China itself. 
 

Configuration is stored in a series of Python classes that support overriding, so that the default config can 

be modified to create specialized configurations to represent different Chinese strategies under low, high, 

and medium alert levels. 
 

simulation.py 
Contains the Simulation object which acts as a container for all other objects, and performs basic functions 

of running the simulation, including: 

● Keeping track of the current time. Time in the simulation begins at noon on January 20th, 2021, 

and progresses in steps of one minute. Real times are used rather than offsets from an arbitrary 

“t=0” so that sunrise and sunset times can be simulated realistically. 

● Running the simulation’s event loop. 

 
The simulation supports two main modes of operation: 

● In Base Local mode, each TEL is considered to stay within a radius of its home base, returning 

after each trip. In this mode, TELs are linked together based on base affiliation, so e.g. TELs 

associated with the same base are assumed to experience the same weather. 

● In Free Roaming mode, each TEL is assumed to wander throughout all of China independently, 

increasing the amount of sensor data that must be processed in order to find all of the TELs. 

 
enums.py 
Contains low level data types (enumerations) used throughout the simulation, representing concepts such 

as the different states a TEL can be in, the different detection methods available to the US, and so on. 
 

location.py 
Contains a Location class, representing a (lat, lon) coordinate pair. The main use of the Location object in 

this simulation is to allow calculating sunrise and sunset times for a given TEL base (determining whether 

nearby TELs are visible to EO satellites). This calculation takes into account both geographical position 

and the time of year. 
 

tel.py 
Contains the TEL class, which represents either a TEL, or a Chinese decoy which is designed to look and 

behave similarly to a TEL. Each TEL independently transitions through a configured set of states based on 

the alert level (e.g. staying in base for 16 hours, then roaming for 8 hours). In addition, while in Free 

Roaming mode each TEL independently simulates weather conditions. 
 

The TEL class also contains methods for reporting how far the TEL has roamed since it was last observed, 

and how many square km must be destroyed in order to cover all of the areas it could have roamed to in 

this time. 
 

 
581 https://github.com/torinmr/nuclear-simulation. 
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tel_base.py 
Contains the TELBase class, which holds a collection of TELs based at the same location. In Base Local 

mode, it also simulates local weather. 
 

This module also contains functions for loading the set of TELs from an external data file. 
 

intelligence_types.py 
Contains data types used to represent different stages of US collection and processing of intelligence data. 
 

TLO: A TEL-Like-Object. Represents an object which the US may (rightly or wrongly) believe is a TEL. 

Every TEL and decoy has a corresponding TLO, and there are also TLOs to represent heavy trucks which 

could be mistaken for TELs. A single TLO object can represent multiple entities in the simulation, so it is 

possible to represent ~1 million trucks by a single object, allowing them to be simulated efficiently. 
 

Observation: A piece of intelligence (processed or unprocessed) which the US has collected. It can 

correspond to a TLO, but it can also represent e.g. a satellite imagery tile that may not contain a TEL or 

TLO. Observations are marked with what detection modality created the observation (EO satellite, ground 

sensor, etc.), as well as when the observation occurred. 
 

File: A File represents the information the US has collected about a given TEL. The US maintains one File 

for every TEL, and assigns Observations to a file when it believes them to correspond to it. When it comes 

time to assess the potential for a nuclear strike, it is the Observations in the Files which are used to do so. 
 

intelligience.py 
Contains an Intelligence class, representing the efforts of the US intelligence apparatus to find and track 

TELs. It consists of a pipeline of operations: 
 

(1) A series of Observer classes (corresponding to different detection modalities) generate raw 

observations. 

 

(2) Corresponding Analyzer classes process these observations, attempting to determine which 

correspond to TELs. 

 

(3) A Tracker class takes the observations output from the Analyzers, and attempts to pair them to 

TEL files. 

 

(4) Finally, an assess() function is called to judge the odds of a successful first strike based on the 

data in the TEL files. 

 
observer.py 
Contains several observer classes, all implementing an abstract Observer interface. Each Observer looks at 

the set of TLOs, and determines which it is able to observe at the current time, based on factors like cloud 

cover, daylight, TEL state, SAR satellite passes, and so forth. It then adds (a large amount of) observation 

objects representing raw sensor data which does not correspond to a TLO or TEL. 
 

Contains implementations for EO and SAR satellites, offshore aircraft equipped with SAR sensors, signals 

intelligence with a low chance to detect TELs not practicing emissions control, and ground sensors with a 

good likelihood of detecting TELs entering or leaving the base. 
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analyzer.py 
Contains implementations of an abstract Analyzer interface. An Analyzer takes a series of observations as 

input each time step, and then outputs processed observations once it has finished processing them. The 

operations which are output are only the ones which are believed (by the possibly fallible analysis process) 

to correspond to real TELs. In reality, some of them may be non-TEL TLOs, such as trucks or decoys. 
 

The ImageryAnalyzer models an AI-assisted image recognition process. It is assumed that large quantities 

of image data are processed first by an ML algorithm with a given false positive and false negative rate, 

and then by human analysts. Only a certain quantity of human analysts are available, so how quickly they 

are able to process a batch of data will depend crucially on how many non-TEL objects can be filtered out 

by the AI system. 
 

tracker.py 
Contains implementation of the Tracker interface. 
 

assessor.py 
Contains the implementation of the assess() method. This is called at each timestep to determine whether a 

first strike is possible. It works by first collecting the area around each TEL which must be destroyed, which 

varies based on how precisely the TEL’s location is known. This area is calculated several times, based on 

the flight time delay of different US nuclear assets. 
 

To complete the assessment, missiles in the US nuclear arsenal are matched up against TELs, starting with 

those whose location is most precisely known (and are thus easiest to destroy). Once enough missiles have 

been committed to a given TEL to guarantee destruction, it proceeds to the next. Ultimately, either an 

assignment which destroys all TELs is found, or there is some remaining amount of TELs with the ability 

to fire back at the US. This number is passed through a formula to determine the probability that at least 

one warhead gets through US missile defenses. 
 

renderer.py 
Contains the Renderer class, which is responsible for generating charts and graphs based on the state of the 

simulation. 
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