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ABSTRACT

A theoretical study of a proposed travelling wave
pulse shaping device is performed. The device consists
of two evanescently coupled single mode dielectric wave-
guides. One waveguide is amplifying, the other is lossy,
and both may exhibit saturation. Four nonlinear partial
differential equations are derived from Maxwell's
equations and Schodinger's equation, in the semiclassical
manner, to define the system's dynamic model. The steacv state
limit is then defined and described by a second order
nonlinear autonomous differential equation. Critical
point analysis of the steady state equations reveal
three real valued critical points for which stability
criteria are given. Steady state solutions for ten
different characteristic behaviors are obtained by two
different algorithms. One involves the use of symbolic
manipulation software to provide Taylor series expansions
of the solutions in the phase plane and the other is a
numerical method. The former algorithm may be used to
provide approximate solutions of any second order
autonomous system for any phase plane region with any
specified accuracy. The results correlate well with
the critical point predictions and physical interpreta-
tions are offered for each case.

A simplifying transformation is performed on the
dynamic equations. These transformed equations are then
solved by the use of nonlinear finite difference equations.
Conditions necessary for the convergence and stability of
the finite difference scheme are derived. These conditions
are empirically shown to be sufficient as well as



necessary. The dynamic results demonstrate the two major
pulse shaping applications: 1) pulse height standard-
ization (i.e. optical limiting), and 2) pulse width
shortening. On the latter application it is shown that
pulses with widths smaller than the medium's relaxation
time may be generated by the saturation effects of either
waveguide by itself (i.e. when the other waveguide is
linear).

Device parameters are optimized for the pulse height
standardizer (PHS) in the steady state limit. When the
input amplitude varies uniformly over a 2 to 1 range
(an input signal to noise ratio of 14.31 dB) the output of
a realizable "optimal" PHS device has a signal to noise
ratio of 23.3dB. The effects of pulsewidth and risetime
on the PHS performance are then demonstrated.

Other applications include the use of the device as
an amplifier, oscillator, logic element, comparator, and
general pulse shaper.
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CHAPTER I - PULSE SHAPING AT OPTICAL FREQUENCIES

In recent years a wide variety of optical devices have
been considered for the possible development of several high
speed discrete and analog signal processing components—--logic
elements, memory elements, differential amplifiers, and the
like. To insure the proper operation of any of these com-
ponents within an actual system, however, it is often essen-
tial that some type of signal filtering, or pulse shaping, be
performed. One important example of this is the necessity
of pulse height standardization (i.e., optical limiting) to
make feasible the use of various optical devices as logic
elements within an integrable system. There are, of course,
numerous other examples.

This chapter briefly reviews some conventional approaches
to pulse shaping at optical frequencies, introduces the more
recent use of integrated optical devices as signal processors,
and concludes with the presentation of a novel travelling wave
device which will be modeled, analyzed and developed in the

remainder of this thesis.

1.1 Some Conventional Optical Tulse Shaping Devices

An example of a conventional optical pulse shaping device
is the saturable optical resonator (SOR). This is simply
an optical resonator which may be characterized by several

parameters, one or more of which may saturate (i.e., approach



a‘limiting value) due to the presence of the resonating
optical field. The saturation phenomcna cause the resonator
transmissivity to become a nonlinear function of the incident
optical intensity. Under certain conditions this nonlinear
function may become multiple-valued so that the resonator
exhibits multistability. While multistability is essential
for memory element applications, it is the highly nonlinear
transmission characteristic that makes the saturable resonator
useful in optical pulse shaping.

The earlier saturable optical resonators were implemented
"in bulk", i.e., the resonators were physically large and un-
suited to any scheme of integration. One of the first types
of SOR analyzed was that whiqh Szgke et. al. discussed in
1969.[1]The SOR consisted of a Fabry-Perot type cavity reson-
ator that contained a saturably absorptive medium. Saturably
absorptive media have an absorption that decreases

(2]

with increasing intensity (decreasing absorption
with increasing intensity is often referred to as
bleaching) . The incident in-
tensity was provided by a Q-switched CO2 laser. Since the
gain medium was external to the SOR, the SOR could be thought
of as a passive "cavity dumping" device.

Szgkeé model of the SOR consisted primarily of the

combination of the steady state field equations of the

Fabry-Perot with the steady state solution of the dipole rate
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equation for the absorbtion coefficient. 'Ffom this model

he obtained steady state solutions for the resonator intensity
versus incident intensity via both computer calculations

and an approximate formula valid for large mirror reflecti-
vity (R>1). A reproduction of these results obtained from
reference [l] is presented in figure 1.

Y
80

FIGURE 1- SOR Transfer Curves
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The figure shows solutions of incident intensity versus
resonator intensity for various values of the unperturbed

absorption coefficient, @y . The Fabry-Perot is assumed to be
on resonance. Notice that when the initial absorption

coefficient is zero (lossless medium) the transfer



charaéteristic is a linear one. When the mediumwithin

the SOR is lossy ( ¢p # 0) some input intensity will be re-
guired to bleach the.absorber before energy can penetrate
into the resonator. The resulting nonlinearity of ‘he
transfer characteristic becomes more pronounced with in-
creasing oag until oy exceeds a particular value for
which the characteristic curve obtains both a maximum and a
minimum. When this occurs the resonator intensity becomes
a multiple-valued "function" of the incident intensity. The
SOR is then said to be operating in its bistable mode

where hysterisis effects may be observed as I have
illustrated by superimposing dotted lines and arrows on one
of thé curves of figure 1.

Experimentally Szgke ét. él. could not demonstrate
bistable operation of the SOR since the values of «y that
were achievable for the gaseous absorptive medium used were
less than the required value. Pulses with a full width
at half maximum pulse width of 135 nanoseconds were
shortened to 100 nanoseconds by use of the SOR* The SOR

also‘performed additional pulse shaping by substantially

w *Various other applications of the SOR suggested by
Szoke include Q-switching, laser output stabilization,
pulse train generation, logical operations (by use of a
probe beam), and memory functions. Descriptions of SOR
mode-locking and pulse shaping may be found in references
[3] and [4].
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reducing the energy in the tail of the pulse. The two
main limitations of the analysis, as recognized by Szgke
were the neglect of the effects of linear loss (the
residual absorption due to the inadequacy of the two
level absorber model) and the neglect of the effects
of coupling between forward and backward waves within
the saturable resonator. This last effects is expected
to result in Bragg reflections from a periodic "grating"
produced by standing waves. It should also be emphasized
that the steady state model used is only valid when the
incident intensity is slowly varying over time intervals
comparable to the absorbers'relaxation time.

Several other authors have analyzed saturable
optical resonators of similar construction. Notably,
in 1971 Spillef considered the effects of koth residual
(linear) loss and cavity detuning on the SOR.[5] The
same steady state model was used. Spiller obtains the
same results as Szgke for the case of no linear loss and
no cavity detuning. These results were presented as
plots of the resonator transmissivity versus incident

power density for different mirror reflectivities,RM, and

are reproduced from reference [5] in figure 2.
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FIGURE 2 - SOR Transmission for Different Mirror Reflectivity
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Notice that when RM = 0 the result is simply the single
pass steady state transfer characteristic of a saturable
absorber. When the mirror reflectivity is increased the
result is a steepening of the transfer characteristic as
one would expect from a cascade of single pass sections.

_.When Ry exceeds a certain value,hysteresis loops are formed
and bistable operation of the SOR is achievéd.

Cavity detuning and residual losses both degrade SOR

performance in a similar fashion. The presence of either

will reduce both the maximum transmissivity of the SOR

and the area encompassed by the hysterésis loops. This
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area decreases continuously until it vanishes thus elimina-
ting the probability of bistable operation.

Spiller presents some transient response data although
the steady state equations used can not be expected to
remain valid. These results are therefore of dubious value
but it is.claimed that the SOR will change states due to
an instantaneous input switching in 5 picoseconds after an
initial "punch-through®” delay of 10 nanosecond for the
numerical example considered.

Experimentally Spiller could not operate in the bistable
region due to the linear loss of the saturable absorber used.
Pulses of 2 nanosecond pulse widths (FWHM) were shortened
to 1 nanosecond pulse widths by use of the SOR.

A more theoretical treatment of some similar processes
is offered by McCall in reference [6]. Bistable operation of
a SOR was demonstrated experimentally by McCall et. al. in
1975 L71. 81

Other examples of conventional optical pulse shaping
devices are often comprised of the same nonlinear Fabry-
Perot structure as the SOR but the nonlinearity is achieved
through the exploitation of a different physical phenomenon.

[10] effects have been examined

Stark,[Q]Raman, and Brillouin
as potential sources of the required nonlinearity. A large
number of nonlinear Fabry-Perots utilize an intensity depen-

dent (nonlinear)rhase retadation. These devices often consist
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of a Kerr medium within a cavity resonator. The non-
linearity is introduced by the intensity dependent refractive
index of the medium.

The first analysis of this type of device was performed
by Felber and Marburger in 1976 [11] The results are pre-

sented in figure 3.

FIGURE 3 - Kerr-filled Nonlinear Fabry-Perot Interferometer

[¢]

C e/w

a) Transmission vs. Phase b) Transmission vs. Incident Intensity

The familiar Fabry-Perot resonator transmissivity, T, versus
phase delay, 6 , characteristic is presented in part (a) of
figure 3 along with three lines that show the linear
dependeﬁce of phase on intensity, 8 = y <g2> + for three

different values of incident intensity, Eg (note that 7 is
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proportional to <E2>/Eg ). The system operating point is
located at the intersection of the F-P curvé and the line that
corresponds to the present value of incident intensity.
Keeping in mind that the slopes of the straight lines are
inversely proportional to the incident intensity, the
device operation may be illustrated as follows. As the
incident intensity increases from some initially small value
the resonator operating point will move slightly upward
(increasing T) along the first part of the F-P curve (about
half way to the first F-P peak). Thus the operating point
would move from the first intersection with line A to the
first intersection with line B to the first intersection
with line C. At thié first intersection with line C, a
further increase in incident intensity would reduce the
slope of the phase line so that the operating point would
have to jump discontinuously to the other side of the first
F.P. transmission peak where the transmissivity is somewhat
larger. Further increase in E% would decrease the value
of T whereas a decrease in input intensity at this point
would increase T. As Eg is decrec.ed at this point the
operating point would move upward along the right hand side
of the first F-P peak through another intersection with
line B until it intersects line A at the top of the F-P
vpeak; Further decrease in input intensity would cause the
operating point to jump back to the low transmissivity

*T.e. the Fabry-Perot transfer characteristic.



15

region where this discussion originated. vTﬁese results

may be presented as a plot of T versus E% which is done

in part (b) of figure 3. Feasibility of multistable and
bistable operation is apparent due to the hysteresis effects
as described above. By affecting the index of refraction

of the Keri medium with a control or probe beam the device
may be operated as an amplifier. Due to the nonlinear
transfer characteristic the device may also be operated as
an optical limiter.

[12) Jptained the first

In 1977 Bischofberger and Shen
set of experimental results for the Kerr filled resonator.
They also developed models for description of the devices
transient behavior that are in excellent agreement with the
empirical results. Operation of the device as a power
limiter, a differential amplifier, and a bistable element
was demonstrated for input pulses of widths on the order of
tens of nanoseconds. The transient response of such a device
has been considered in greater detail most recently (March
1981) by Goldstone and GarmirellBJ. In this article the
device is operated in the bistable mode and conditions are
derived for overshoot switching (i.e., switching ficin one
bistable state to another at intensities smaller than the
switching intensity indicated by the steady state transfer

curve). Overshoot switching is dependent on the rise time

of the input pulse and the ratio of cavity roundtrip time,
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Tc, to the response time of the nonlinear médium, Tn.
Overshoot switching is optimal for TC/31= 1 and requires
an input rise time less than a few T. . Also considered

is the effect of d=ad time (ife., the duration of zero
input intensity) between pulses in a pulse train input. It
is shown that pulses are processed independently (as far as
overshoot switching is concerned) when dead times are >
3rc. ' For dead times

less than 31c there are four different pulse train trans-

mission modes for four different ranges of dead time.

1.2 Integrated Optical Signal Processors

If any of the aforementioned optical signal processing
devices are to be of practical use they must be implemented
in an integrable form. Several integrated optical devices
have been considered and fabricated, a few of which will be
discussed here.

In 1976 Okuda et.al. proposed the use of distributed
Bragg-reflectors on each side of an optical waveguide made

(14] or a Kerr medium[lS] as

of eithexr a saturakle absorber
inteorated implementations of the two major types of non-

linear resonators. The Bragg-reflectors, which are simply
rectangular (in this case square) periodic corrugations in

one surface of the waveguide, produce reflections so that

the physics of the devices is expected to be very similar
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to that of the bulk versions. The spatial distribution

of propagation modes (forward and backward) is assumed to be
time independent so that conventional coupled mode theory
may be used. These coupled mode equations used in conjunc-
tion with the steady state saturable loss equation or the
intensity dependent refractive index equation (depending of
course on which device is considered) define the systems
steady state response. The results are exactly analogous

to those obtained for the bulk resonators with the exception
that the mirror reflectivity paramefer, , has been re-
placed by the coupling coefficient which describes the amount
of coupling between the forward and backward propagating
modes as produced by the corregations. Experimental results
are not presented nor is an attempt at dynamic analysis
made. The dynamic results of Goldstone and Garmire for the
bulk version of the Kerrmedium resonator are probably ap-
plicable to Okuda's integrated version; however, there may
be some differences in the dynamic response of the two
different types of "mirrors".

Another interesting integrated optical signal processor
is that proposed in 1578 by Gray and Casperson.[i6]
Although this device is normally operated as an cptical
transistor, and is therefore a pulse shaping device only in
the most general sense, it is discussed here since the

structure is somewhat similar to the one that is to be
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proposed and developed in this thesis. Graf and Casperson's
device employs the cross-saturation effects of two coupled
propagation modes within a gain medium to produce an optical
inverter. The operafion of the inverter may be simply
described as follows. The twé modes will experience two
different values of net gain in the waveguide direction
(since photons of the higher order mode travel through more
medium for the same distance in waveguide directions they
experience more net gain). The higher gain mode will be
more sensitive to gain fluctuations so that it may be
modulated by the saturation effects produced by the lower
order mode. Amplifiers, inverters, comparators, and logic
devices may be fabricated in this fashion. Although the
basic process does not demonstrate bistability; memory
elements, controlled oscillators, etc. may be fabricated by
optically feeding back the various output signals to the
appropriate inputs in a manner exactly analogous to tech-
niques common in electronics. The coupled mode equations
uéed in the analysis, however, were acain time independent
so that the systems dynamic respoﬁse was not considered.
No experimental results were reported.

An analysis of the dynamic characteristics of this type
of inverter has recently (January 1981) been performed by

[17]

Otsuka. This analysis is based on a lumped model

which utilizes the mean value theorem and the assumption of



small device lengths. It is shown that the inverter will
operate on rectangular pulse trains with pulse widths
comparable to the mediuinrelaxation time for a required dead
time of about three times the pulse width. The amplifier
is used in conjunction with an integrated resonator to
produce a saturable oscillator for the implementation of

an optical limiter; however, the dynamic response of the
limiter is not considered (i.e., steady state equations for
the oscillator are used}.

The device to be proposed, analyzed, and developed in
this thesis is an integrated optics active traveling wave
structure. Physically the device consists of two single-
mode slab dielectric waveguides embedded in a substrate and
separated by a distance smail enough to permit some evan-
escent mode coupling between the guides. One wavequide is
amplifying (for which an inversion pump is supplied) and
the other is lossy. Both the gain and loss media may exhibit
saturation. The device is similar to a saturable resonator
except that pulse energy is coupled from one waveguide to
the other and back again as it travels through an initially
unperturbed mediim rather than travelling through the same
mediumas it reflects between resonator mirrors (i.e., the
device is a travelling wave device rather than a resonator).
The nature of the mode coupling is considerably different

from that of Gray and Casperson's device since in the
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proposed structure each mode saturates only its own wave-
guide medium. Some of the anticipated advantages of this
type of pulse shaping device are:
1. the degrading effects of absorption (both linear
and saturable loss) experienced in the saturable
optical resonator should be compensated by the

presence of gain;

2. any initial "punch-through" delay for penetratidn
of the first mirror of a nonlinear Fabry-Perot
should be eliminated by the.traveling wa. 2 struc-

ture;

3. the traveling wave nature of the device should allow
considerable reduction of the requisite dead time

between pulses for independent processing;

4. the pulse response should be significantly faster
than the characteristic response times of either
medium due to the combined saturation effects which

are easily controlled.

These advantages and several others will be demonstrated
later. The device shall normally be operated as a single
input single output device since the primary application of
interest is the shaping of optical pulses. Other types of
signal processing may be achieved by use of this pulse

shaper in conjunction with available components or by
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operating the device in a triode mode. A time dependent
coupled mode theory will be developed so that the systems

dynamic response may be analyzed.
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CHAPTER II - SEMICLASSICAL DERIVATION OF THE DYNAMIC
EQUATIONS

The equations governing the most general behavior of
the prorosed travelling wave pulse shaping devicé are derived
in this chapter. These equations describe the transient
or dynamic response of the system. The derivation of the
equations is exact except for the semiclassical assumption
which neglects the quantum nature of the electromagnetic
radiation. This approximation yields highly accurate results
when applied to systems operating at frequencies within the
visible spectrum and is thus valid for the actual devices at
intensities capable of saturating a nonlinear medium. In
order to derive these equations a time dependent coupled
mode theory is developed as é simple extension of the con-
ventional theory. These coupled mode equations are then
used in conjunction with the appropriate rate equations (es-
sentially Sch;dinger's equation cast in the density matrix
formalism) to form the system's mathematical model. A di-
mensionless form of the dynamic equatibns is then defined.
From the dynamic equations, two sets of "aominant satura-
tion" equations are derived for two limiting cases of prac-

tical importance.

2.1 Theory of Coupnled Modes in Space and Time

Yariv[lal has developed a formalism to describe

coupling between the various modes or propagation of
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electromagnetic radiation within a guided-wave structure
when the mode amplitudes are time invariant. To describe
the transient behavidr of guided-wave devices a theory of
coupling between mode amplitudes that are time variant as
well as space dependent is required. The extension from
Yariv's formuiation is a straightforward one.
If the polarization within the medium may be expressed

as
(Eq. 2.1-1) P(r,t) = (e(T) - eg)E(r,t) = Py(r,t)
then there will be no couéling of modes as is the case,
for example, of any linear isotropic medium.

The polarization, however, will not
always be expressable in the above form. If, for example,
the mecdium is anisotropic of nonlinear, or if external

sources are present then the polarization must be described

as
(Eq. 2.1-2) B(r,t) = Po(r,t) + P (r,0)
where FpemJE,t) is the so called perturbing polariza-

tion due to the external source, the bianisotropy of the
medium, corrugations in the waveguide surface, or whatever
else is causing the deviation between P and Py. Systems
in which polarizations of this more general form occur may
be analyzed in terms of coupled modes.

From Maxwell's equations the following wave equation

may be derived for each component of the electric field.
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yo = _ 3%E_(r,t) 42 3
(Eq. 2.1-3) V2E (T,t) = ne (¥)—=r—— + (P pert(r ,t))
Where i = x, y, or z indicates the specific vector component.

Since the possible coupling of guided modes to radiation
modes is to be ignored (radiation losses for the structures
considered are small and may, if netessary, be included
phenomenologically) the electric field may be expanded in
terms of the confined propagation modes. For example,
considering only plane waves that travel in the +z direction,
(Eg. 2.1-4)

B (F,0) = (1/2)Re{§1Am(z)E}(f“)(x)ei(“‘t - Ba2))

where the mode amplitudes A are allowed to vary with z.
This expression may be used to describe the fields within a
system that has achieved temporal equilibrium or steady
state. For such a system the distribution in mode ampli-
tudes at any point along the waveguide does not vary in time
(it may of course vary in distance). To consider a dynamic
situation, i.e., to determine the transient behavior of

the mode amplitudes due to the turning on or off, or temporal
variation, of the perturbation, one must allow for the time
dependence of the mode amplitudes, thus

(Eq. 2.1-5)

B () = (1/2)Re{gA (2, t)E(m)( yel(ut = 82))
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Using this expression and the "slowly" varying envelope

. 2
approximations 9%Am(z,t) | . Am(z,t)
PP 0z Bm 3z
and 92A_(z,t)
m*t = << 0 A t)
—er—| e

which simply require that the mode amplitudes vary only
slightly over a distance of an optical wavelength and

within a time interval of an optical period, the wave

equation becomes 52 { _
» YT pert(r O}y =
(Eq. 2.1-6)

im)(x)ei(wt—smz) (m)( Ye i(wt-B z))}

- iw ue——— E

aAm
el 18,55 :

Multiplying this equation by some normalized field of an-

(2)

other mode, say (x) , and using the orthogonality

property of the modes (i.e. me(m) (x)E(l) (x)dx = 20w . )
y y

—-C0 ' Bm z’m

integration of both sides of the equation yields

Eg. 2.1-7
(Eq ) dA 2

oA i ® 5 ol '
m . wue 9%m 45-3112 { {m[Ppert(r,t)]yEgm)(x)dx }

9z g ot 2w 3t
m

The term on the right hand side of the above equation is a.
source term, i.e., it represents energy that is either im-
parted to or taken from the energy of the mth mode due to
the presence of the perturbation. The source term may be
attacked analytically, but a phenomenological derivation of

the relevant terms is simpler and provides greater insight
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to the underlying physical processes.

As an example, consider the case of a single isotropic
waveguide. Suppose a perturbation is induced in the form
of an external pump so that a population inversion takes
place causing light wave amplification. To examine the
steady state behavior of the system the mode amplitudes are

assumed not to vary in time. The resulting equation would

be
| Ay i 92 * [P T E(m)
2 A L Bperc 0] T 000

Neglecting gain saturation, the source term would take the
form GAm, where G is the amplitude gain (of the mth mode)
per unit length. Thus %%E = G Am (G>0) would describe the
exponential gain in a nonsaturating gain medium.

Similarly if the medium had nonsaturating losses that
were not incorporated into the dielectric constant ¢,
then the following equation would hold %%m = - L Am (L > O)
where L is the loss per unit length.

To account for gain and loss saturation effects the
above equations would still be used except that G and L
would become functions of Z. The solution. coculd be obtained
by combining the above mode equations with the steady state
rate equations that describe the medium saturation effects.

As another example consider two waveguides that are

adjacent to each other closely enough that the evanescent
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fields from each waveguide extend slightly ;nto the other
waveguide. Although this evanescent field does not propa-
'gate any power by itselff it does have energy that may be
viewed as an external source term that perturbs, or
couples energy to, the pPropagating modes of the waveguide
that it has penetrated into. The ainiount of energy that is
added or subtracted is proportional to the perturbing
evanescent field which is proportional to its total source,
the mode amplitudé of the other waveguide. Thus if we
consider two closely adjacent single-mode waveguides in the
time invariant case, we would obtain the equations

dal da2

dz dz ~ KAl where Al and A2 are the amplitudes

of the single modes of propagation (one for each of the two

= KA2,

waveguides) and K is the coupling constant. The signs of the

Source terms are arbitrary as long as one is positive and

the other negative, as may be proved by power cons=rvation

arguments for modes traveling in the same direction, or from

evaluating the time derivatives of the polarization integral.
The dynamic behavior of two closely adjacent single

mode waveguides, one of which is amplifying and the other of

which is lossy (not described by & ) must be governed by

Eg. 2.1-8

(Eq ) AL L L AL _ o 4k a2
0z v ot
282 132 | po-ka1
9z v ot

*I.e. in the direction perpendicular to the waveguide
interface. The evanescent field does propagate a surface
'wave at the interface but this is not the coupled energy
term being described.
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&here the unperturbed speed of propagatioﬁ ‘v==zfz is
assumed the same for the two waveguides. This result may
of course be derived more riéorously. Notice that the time
dependence of the mode amplitudes does not affect the form
of the source terms with the éxception that they may now be

time dependent also. Therefore in general we would have

L = L(z,t), G = G(z,t) .

2.2 Gain and Loss Saturation Rate Equations

To analyze saturation of both the loss and the gain
media the semiclassical approach is used. Thus the media
are treated quantum mechanically and the fields are treated
classically. The interconnection between media and fields
is provided by the electric dipole interaction.

Consider a classical electromagnetic plane wave incident
upon a quantumAmechanical two-level electronic system
(e.g., an atom or molecule). According to the density
matrix formulation of quantum mechaniqs a rate equation may
be written for the difference in probabilities of upper and
lower energy eigenstate occupation as follows
(Eq. 2.2-1)

9(011=P25) , (P1,=Pp5) = (P11=P5)% _ [H',0]11-[H",p]22
ot Tl ih
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where .
p11 is the (1,1) matrix element of the

density operator which is the
probability of being in the

upper energy eigenstate,

p22 is the probability of being
in the lower energy eigenstate,
H' is the perturbing Hamiltonian

(for our case this is the electric

dipole interaction Hamiltonian),
Hv,b]ii is the (i,i)th element of the

commutator of the perturbing

Hamiltonian operator H' .,

and the density operator p ,

(o -p )® is the equilibrium

11 22
(i.e. unperturbed) population inver-
sion,
and T1 is the characteristic relaxation

time that incorporates the effects
of spontaneous emission, lattice
interactions, inelastic collisions,

etc.

Now we consider a homogenous ensemble of these elec-
tronic systems. We define macroscopic energy level

population densities by simply multiplying the appropriate
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-

density matrix element by the average number of atoms/

molecules per unit volume, Nv. Thus N2 = vall is

the average number of electronic systems in the lower
energy eigenstate, similairily{Nl = N, p2z . Now using

the electric dipole interaction energy for the perturbing

Hamiltonian it can be shown that Eg. 2.2-1 becomes

(Eq. 2.2-2)
e .
a(N,~Ny) + (&'NZ)E(NI'M = -2 (P'E)
where P is the time derivative of the polariza-
tion
E is the local electrical field
and AQ is the energy difference between the

two levels.

The instantaneous loss seen at the photon-electron

interaction site is proportional to the probability of

absorption, which is proportional to Poo= Pyy - Therefore
the macroscopic loss is proportional to N2 - Nl‘ Similarly
the macroscopic gain is proportional to Nl - N2. Thus the

rate equation describing the population level saturation

(and other) effects for the macroscopic loss, L, is

(Eq. 2.2-3)
) ) ) - N 5.
a};(z £) + L(z ;i L = (_f-\gg-z— PoE)X(some positive constant)
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Similarly the rate equation for the macroscopic gain, G, is

(Eq. 2.2-4)

(Z_ P'E]x(some positive constant)

36(z,t) | G(z,t)-G* -~

ot Tl h{

The source terms on the right hand side of these rate
equations may each be expressed in terms of the mode ampli-
tude of the appropriate waveguide. Noting that the polar-
ization is proportional to the product of the susceptibility
and the electric field, and that the imaginary part of the
susceptibility is proporticnal to N, - Nl' it may be shown

that Eq. 2.2-3 and Eq. 2.2-4 can be written as

(Eg. 2.2-5)
AL(z,t) , L(z,6)-1° _ - (A2)°L(z,t)
at T1 Tl(L)PS(L)
and
(Eq. 2.2-6) 26(z,8) , 6(z,0)-6° _ - (a1)%G(z,t)
at Tl Tl PS

(6)""(6)

where the constant PS is often referred to as the saturation
intensity level. Note the subscripts reflect the fact that
the two different waveguide media may be characterized by

different parameters, PS, and Tl.
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2.3 A Dimensionless Form of the Dynamic Equations

Four partial differential equations have been derived
which model the dynamic behavior of the mode
amplitudes of two single-mode waveguides (one of which
exhibits saturable gain, the other exhibits saturable loss)
that are evanescently coupled. These equations are repeated

here for completeness.

(Egq. 2.3-1)
PAL 1 AL _ g a1+ kA2
0z v 9dt
A2 ~]:—[§—2-=—LA2—KA1
0z v ot
AL, L-LE _ _ (DL
Tl Tl PS
it T > w
e 2
36, 66 _ _ (A%
ot Tl Tl PS
(G) (6)""(6)
A dimensionless form of the above system of equations is
desired. For the present assume TlﬂJ = Tlﬂﬁ = Tl and
PSGJ = PSUD = PS . Later this restriction may be removed.

Now define the following set of dimensionless parameters:

(Eq. 2.3-2)
alz Al//PS a2z A2/vVPS
2z L/LE g= G/G° k= v T1 K
y= t/T1 x= z/(v T1)
- e
L v Tl L€ g=VvTILC
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So that a dimensionless form of the dynamic equations

is
(Eq. 2.3-3)
alx +al = 8y .8 al + k a2
a2 + a2 = -2 2 a2 -k al
X 0
B 1- a1+ (al)?)
2
8, = 1-g(1+ (a2))

where the subscripts, of course, indicate partial deriva-

tives.

2.4 Dominant Saturation Equations

Systems are often encountered in which the saturation
of either the loss or the gain (but not both) is the pre-
is

dominant effect. In other words either PS( or PS

G) (L)
So large (in comparison to the other) that it is essentially
- infinite. When this happens, the corresponding parameter,

L or G, will change very little with tiﬁe and may be assumed
to remain at its unperturbed value. if the loss saturation

effects are dominating then the following set of equations

would be appropriate.

(Egq. 2.4-1) alx + aly = 8, al + k a2
a2 + a2 = -2 2 a2 -k al
X y 0
g = 1- 21+ (a2)?)

y
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Similarily, if the effects of gain saturation are the
dominating phenomeron then we would arrive at the following
set of equations.

(Eq. 2.4-2)

alx + aly =8y 8 al + k a2
a2 + a2 = -2 a2 - k al
X y 0
2
g, = 1=-g(l+ (al)")

y
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CHAPTER III - STEADY STATE RESPONSE AND STABILITY CRITERIA

This chapter deals entirely with the steady state
behavior of the proposed traveiling wave pulse shaping
device. Steady state is first defined, then the appropriate
equations are derived from the dynamic equations. Thev
applicabiiity of the steady state limit to several real
situations is discussed. It is shown that the steady state
equations define a set of critical points for which a
linearized analysis is performed. Following a brief intro-
duction to the theory of critical points, critical point
stability criteria are giVen. Approximate and numerical
phase plane solutions demonstrating all possible types of
steady state behavior are generated. The épproximate
algorithim which utilizes the symbolic manipulation software
of M-ACSYMA,[191 may be applied to any second order nonlinear
autonomous differential equation. Physical interpretations
of the steady state results are offered and potential device

applications are enumerated.

3.1 Derivation of the Steady State Equations

The systems steady state response may be defined as
the asymptotic limit as time goes to infinity of the device
response due to constant input amplitudes. Since steady
state is a limiting concept it may never be achieved exactly
in practice. It will however yield an accurate approximation

of the response due to input amplitudes that are essentially
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‘constant over a time interval of several characteristic
ﬁime constants, Tl. For.constant input amplitudes,

al(o,y) = constapt 1 and a2(0,y) = constant 2, the loss
and gain saturation eqﬁations show that the loss and gain
parameters at the input, 1(6,y) and g (0,y), will expon-
entially approach steady state values that are time in-
variant. Due to the contihuity of the mode amplitudes in
space, temporal invariance will propagate through the wave-
guides as steady state ensues. In the stéady state limit,
therefore, all variables become indépendent of time for all
X. Setting thé partial derivatives with respect to y
equal to zero in the loss and gain saturation equations
results in the steady state loss and gain equations

(Eq. 3.1-1)
1

lss(x) - a + [aZSS(x)]Z) gss(x) -

1
2
1+ [alSS(X)] )

Similarily, the steady state limit of the mode amplitude

equations is

alss(x)

(Eq. 3.1-2) ~gx = 8y 84(¥) al  (x) + k a2 (x)
d a2ss(x)

— ax —RO lss(x) aZSS(x) -k alss(x)

Combining the above two sets of equations results in the fol-
owing two nonlinear autonomous ordinary differential equaticns

that describe the steady state behavior of the system.
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d al go .
(Eq. 3.1-3) 58 _ 3 al + k a2
dx (L + al®) ss ss
sS
d aZSS -20
dx = 2 a2ss -k alss
(1 + aZSS)

Analogously, the steady state response of the dominant loss

saturation device can be shown to be governed by
d ai

(Eq. 3.1_4) deS = go alSS + k aZSS
d a2 -20
EL g a2 -k al
dx s ss

2
(1 + aZSS )
The steady state limit of the dominant gain saturation

equations results in

d al go
(Eq. 3.1-5) 3 58 - 5 al + k a2
x (1 + a1’ ) ss ss
ss '
d aZSS
= X a2ss k alss

For the remainder of this chapter the "s.s." subscript will
not be used since all further discussions will refer to the

steady state.*

3.2 Critical Point Analysis of the Steady State Equations

3.2.1 Theory of Critical Points

Consider a nonlinear system of coupled first order

differential equations of the following form [20]

(Bq. 3.2.1) 6,(2) = £1(oy5055 *** 8)

8,(2) = £,(61,0,5 *°* 4)

£ (9156, """ 4)

¢, (2)
% . .
Notice that the steady state equations depcnd only on two device
parameters (divide by k). The two parameters used may be written
"in several different forms. This matter is discused in chapter 5.
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This type of sysfem is autonomous since the independent
variable does not appear explicitly. The soihtions.of such
a system describe trajectories- (with Z as the parameter) in
an n-dimehsional fphase" space. If n = 2, as in the case
of the steady state equations} the space is referred to as
the phase plane. Any given trajectory will exhibit one of
five possible asymptotic behaviors as Z goes to infinity.
The five possibilities are
1. the trajectory may approach infinity,
2. the trajectory may describe a closed cycle,
| 3. the trajectory may approach a closed cycle (by
spiraling inward or outward),
4. the trajectory may remain motionless at a critical
point for all Z, of
5. the trajectory may approach a critical point.
The critical points are defined to be the points in
phase space where the dependent variables do not change. The
location of the critical points may be obtained ﬁrom the

solution of the following system of equations

(Eq. 3.2.1-2) 0 = £, (420, =+ ¢ )
AR ACROSEAN
0 = fn(¢l’¢2’ Tt ¢n)

The global behavior of a system is determined to a
great extent by the local behavior near the systems critical

points. Trajectory behavior near a critical point must be



one of the four following types:

l. a ceﬁter, trajectories are closed paths or cycles
around the critical point;

2. a saddle point, trajectories approach £he critical
point and then go aﬁay from it;

3.. a spiral point, trajectories spiral towards
(stable) or away from (unstable) the critical
point; or

4. a node, trajecto;ies are asymptotic to straight

lines through the critical point moving towards

(stable) or away from (unstable) the critical point.

3.2.2 Analysis of Dominant Loss Saturation

This subsection presents critical point analysis of
the steady state equations when loss saturation effects
-dominate. For this system there are three critical points,

s e k
specifically: — A, .y =8, . k
’ (30 (i), @D} (0,0) - g, (h1), %(ni))

1/2
"z Y '
two non-origin (hereafter referred to as "off-center")

: _( Bo*o .

where - aﬁd)z( Existence of the

critical points within the real valued phase plane requires
) .

that k <g;% . If this is not the case then there will

only be one critical point, the origin.

Classification of the system behavior near the

critical points is achieved by examining the approximate




solutions obtained from linearizing the eqﬁations in the
vicinity of the critical points. Near the origin the
behavior is approximated by

(Eq. 3.2.2-1) a2(x) = A exp(slx) + B exp(szx)

(s, + 2,) ' (s, + 2,) ,
al(x) = - 1 - 0" A eXP(Slx) _ 2 . 0" B exp{s,x)
where - o 82
T . U L R S b
1,2 2 4 80™0

and A and B are arbitrary constants.

Solutions of the form al(z) = A; exP(S;Z) + B, exp(s,2) ,
a2(z) = A, exp(saz) + B, exP(sz) s will produce phase
plane trajectories (Z is the "parameter") that trace:

1. a node, if S, and S, are real with the same sign

(if they are both negative the node is stable,

if they are both positive the node is unstable);

2. a saddle point, if Sa and Sb are real with opposite -

sign; or

3. a spiral point, if Sa and Sb are complex conjugates
(if the real parts of S, and Sy are negative the
spiral point is stable, if the real parts of Sa

and S, are negative the spiral point is unstable).

b

If Sa and S, were imaginary then the trajectories would trace

b
closed cycles around the critical point. For this to happen,

however, the physical parameters of the system, 1 , g,

@] (o}

and k, would have to take on specific values with exact

precision. Due to fluctuations and uncertainties this is



physically impossible and mathematically mﬁst occur with
zero probability. Although this precludes the existence
of limit cycles around any particular criticallpoint it
does not prohibit the existence of global limit cycles
(i.e., limit cycles encompassing more than one critical
point) .

Applying the statements above to Eq. 3.2.2-1 yields
stability criteria for the critical point at the origin
in terms of the device parameters, 1 _, g_, and k. These

(o] o]

criteria are'presented in the following graphical format *

FIGURE 4 - Saturable Loss Central Critical Point Stability
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' e

a6 Qe Qo™
’ ]
The system behavior near either of the two off-center
critical peoints is approximated by the linearized solution
(Egq. 3.2.2-2) a2(x) = A exp(s3x) + B exp(s4x) £ a(hi)

2 2
2 k 2k
al(x) = [.15_ [1_ __k_] - S5 ] A exp(sax) + Eo{l— W]- i(; B exp(34x)

8ol Bo*0| X 0%o
- (4) k

k,

89 (hi)

*Notice that the stability of this critical point is depend-

ent only upon two parameters,kZ/Ego and &ﬂlo(the 1atterléSS
dependence being simply whether greater tban or >
than one) . This is true for all real critical points of a

three structures.

|
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_ 0 k -2
s3,4=7 * 52, oo
| 0”0
- . kz ) ]2 ) kz 1/2

where #1120, _k - -2k°(1 - —)
| [ 5+ T (Bl T 2| A=
2g02.0 .

and A and B are again arbitrary constants. From these
solutions the following stability criteria are obtained

for the off-center critical points.
FIGURE 5 - Saturable Loss Off-center Critical Point Stability
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Notice that the distinction between nodes and spiral
points has not been specified. Actual closed form solutions
for the values of k2 at which the system makes transitions
between nodal and spiral point behavior have_bgen obtained.
These formulae are so extremely compiex, however, that they
are of no practical value and are in fact too lengthy to
be presented here. Useful formulae may be obtained for
various limiting cases. At this point it is sufficient,
however, to simply note that the existence (or non-existence)
of spiral points within these regions is easily controlled.
The numerical values of k2 for which thé behavior changes

from node to spiral point (providing these values exist)
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are easily obtained for any particular set ofllo and Iq
Behavior of the off-center critical points when

k2 > 94 10, has not Lcen described since these pbints are

| only of interest when they exist in the real valued mode

amplitude phase plane.

3.2.3 Analysié of Dominant Gain Saturation

This subsection presents the critical point analysis
of the steady state eguations when gain éaturation effects
dominate. The same procedures used in the previous sub-
section to obtain stability criteria for the dominant loss
saturation device may be repeated for the dominant gain
saturation equations. The results, however, may be obtained
in a different manner which reveals the symetries and
similarities of the two devices. This approach also allows
for a reduction in the number of possible types of behavior
for which solutions must be computed.

Application of the transformation; al -~ a2, a2 =+ al,
lo > 950 9o 10, to the dominant loss saturation equations

results in

(Eq. 3.2.3-1)

d al = "-%') _
1= [T+(al) 2] al k a2
d az 29 a2 + k al

dx
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These equations are the "space-reversed" version of the
dominant gain saturation equations.

Therefore the phase plane trajectories of the dom-
inant gain saturation equations for a specific parameteriza-
tion: 20 =, constant 1, 95 = constant 2, k = constant 3,
will be identical to the trajectories of the dominant loss
saturation equations for the parameterization: Rb = constant
2, do = constant 1, k = constant 3, except that the
dependence on the parameter x has been reversed (i.e., the
trajectories of one progress in a direction opposite of
the other with increasing x). An analysis of the dominant
loss saturation eguations (in steady state) simultaneously
analyzes the dominant gain saturation equations. Thus the
critical point analysis of £he dominant gain saturation
equations has already been performed. The stability criteria
may be obtained from those of the previous subsection by
exchanging 20 and 9o and performing space reversal. This
is equivalent to the following changes:

stability - instability instability » stability

2
k =
S(satur:able loss) gOR'O(l + /I T 830/20 )
4
- kz(saturable gain) = golo(l + /1 + 8g0/£0 )/4
The resultant stability criteria for the off-center critical

points of the dominant gain saturation device are as follows.
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FIGURE 6 — Saturable Gain Off-center Critical Point Stability
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The stability criteria for the critical point at the origin

are

FIGURE 7 - Saturable Gain Central Critical Point Stability

Case @, 1. gé,é—f,;,})l e fe;“-\_{-(__. <stable nade ——>I-£— slable spiral por wt

ANC
o p o0 (&Y’
=

case ®, l<g,
t"SaAAle ?O“d -—*—Uksfn‘o\e hae_* Uiﬁkﬂkle $?Avq\ P'“’k’—_—%ao

a
> K

‘,

° 0 A0 ey
Note that this is exactly the same result as was obtained
for the central critical point in the previous subsection.
This follows from the factlthat near the origin, where the
mode amplitudes are small, both devices are not exper-

iencing saturation effects and will therefore exhibit

the same unperturbed behavior.
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"3.2.4 Analysis of Dual Saturation

This subsection deals with the critical point
analysis of the steady state equations when both loss and
gain saturation effects are considered. There are five
critical points for this sysfem, two of which are never
real valued and will therefore not be analyzed. The

three possible real critical points are :

- . . 7 -
( al(hi) ,az(hi)) 3 (0,0) N \al(hi) N a2 (hi)) .
( )
- ) - 2 2
where al, .\ = Lot & |, [————(lo'go)go —1] L20
(hi) 212 ) 21‘(2 12 |
\ J
( ( : ) v1/2
and aZ(hi) =1 Y ) (e-2)2 )2 - 1/2
0 02_0__1 . 0 00 f 4 020 1
2k : 2k k
/ \ .
J

The stabiiity criteria for the critical point at
‘the origin may be shown to be the same as those for the two
previous devices described. Again this is to be expected
since all three devices have the same unperturbed response
near the origin.

The off-center critical points again exist in the
real phase plane only when k2 <95 Lot Linearizing the
equations near either of the off-center critical points

results in

(Eq. 3.2.4-1) €2+ be2+ce2=0
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€2 =.52(x) = a2(x) * a2 (p4)

2 2
where 29 (1-a2¢piy) go(1-al(yi)) |, and i
y 2
(+a2% )2 (alfny)

e z k2 - Eo(l‘az%hi))] Bo(1-alfhsy)

(1+a2 %hi) ) ZJ (l+al%hi) )2
The algebraic complexity of b and c on lo’ 9y and k2
renders closed form solutions of the stability transition
points, ki , etc., useless.l Limiting cases mav be ex-
amined and it may be shcocwn that all types of critical
point behavior are possible. Stability criteria may be
obtained for specific values and 1O and 95 by plotting the

k2 dependence of b and c.

3.3 Parameterizations and Cases of Interest

Numerical valués of-lé, 9o and k which demonstrate
all possible types of steady state behavior are now chosen.
Steady state solutions will be generated for these
examplimary parameterizations.

The dominant loss and dominant gain saturatiqn
devices are examined simultaneousiy.' For éése A, i.e.
when the unperturbed value of the saturating parameter is
larger than the value of the linear parameter, the numeri-
cal values chosen for the saturable loss device are,
lo=5, go=2, which corresponds to lo=2, 3o=5, for the
saturable gain dvice. The resultant stability criteria

for case A are:
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Six values of k” corresponding to the six different

stability regions are chosen and labeled (Al) through (A6).

These numerical values are:

k2 (A1) =.3583 k2 (A2)=4.1683 k2 (A3)=8.505

k% (A4)=9.695 %2 (A5)=11.125 2 (a6)=15.0

To examine Case B, the parameterization lo=2, go=5,

is chosen for the saturable loss device corresponding

to the choice, lo=5’ go=2, for the saturable gain device.

"The resulting stability criteria are:

FIGURE A ~ Critieal Poid Stabiidy for (ese B Sturable boss (Po=3 9,:5)
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The values of k2 corresponding to the three different
stability regions are chosen and labeled (Bl) through (B3).
These numerical values are:

k? (B1)=5.0  k? (B2)=11.125 K2

(B3)=15.0
Notice that the transition point k2S is irrelevent for
. . 2
Case B since a(hi) is not real for k >g610.
For the dual saturation device we arbitrarily
select the parameterization, 10=5, go=2, and plot the

k2 dependence of b, ¢, and 22 - ¢. From these plots the

4
following off-center critical point stability predictions

are obtained.

FIGURE 10 — Off-center Critical Point Stability for Dual Saturation (£0=5,g0=2)
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There is only one case of interest for this parameteriza-

tion, labeled D1, where k2(D1)=5. Other tyéeé.bf Be-

havior could be allowed for different parameterizations.

For instance, if lo and g, are more equal, then stable and un-
stable nodes and spiral »noints are allowed at the off-center
criticel points. When lO is substantially agreater than 9q then

only stable off-center spiral points are achieved. When 95 is
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substantially greater than 1o then only unstable off-
center spiral points are allowed. The case, D1,
however, will be sufficient to demonstrate the differ-

ences in dual and dominant steady state saturation.

3.4 Functional Approximate and Numerical Solutions
in the Phase Plane

3.4.1 1Initial Value Problems and Spontaneous

Singularities

Whether or not a given trajectory will enter a
neighborhood close enough to a critical point that
its behavior is accurately described by the afore-
mentioned linearized solution is, of course, dependent
on the initial conditions that uniquely define that
trajectory. The singularities of a nonlinear system
may not be derived from inspection of the coefficients
of the differential equation (as in the casé 6f“a |
linear system). Furthermore, these singularities are
dependent on the initial conditions (thus the term
"spontaneous" singularities because for a given para-

meterization some trajectories may be stable, (i.e.,
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decay into a critical point) while others are singular
(i.e., run off to infinity).
Obviously some type of global analysis is required. =
We could simply pick various initial conditions and
numerically solve the steady‘state equations but it would -
be difficult to know how to insure that we have exhausted
all types of behavior. A more useful approach is to use
functional approximations of the solutions at various grid

points over large regions of the phase plane.

3.4.2 Tangential Field Analysis and Taylor Series
Approximations of Multiple Valued Functions

Formulae describing the slope of a trajectory at any

point in the phase plane may be obtained by writing the

steady state equations in terms of %%%. In the dominant loss

saturation case, for example, the trajectory slope formula

would be [ g.a2
da2 _ ((1+a22) +kal]

dal gpal + ka2

For global indications of stability small lines could
be plotted at various points in the phase plane, each having
a slope equal to the tangent of the trajectory at that point.
The eye could then interpolate the general behavior of a
trajectory for any initial condition from this plot of the
"tangential field". A more elaborate and more useful
extension of this approach is to expand the trajectory around

each selected point in a Taylor series approximation. The
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- terms are easily calculated* by taking successive deriva-

tives of the trajectory slope formula, but one must be
careful in using Taylor series expansions of multiple
valued "functions".

The currént form of the algorithm used will now be
explained. Grid poinfs around which expansions are cal-
culated are evenly spaced and determined from the given
maximum aﬁd minimum values of al and a2 and the given num-
ber of steps between them. For each point the program de-
cides whether to expand al as a function of a2 or a2 as a
function of al. (If.the absolute value of the slope is
less thap one then a2 is expanded as a function of al.) A
reasonable number of terms is calculated by expanding until
the last term adds a negligable change in the plot when
the independent variable runs to the next grid point. (The
number of terms is limited to a maximum value which is usu-
ally set equal to seven.) Then the limit of the double
ended (plus or minus) increment of the independent variable
is selected (with the number of termé set to its "reason-
able" value) so that the error in the expansion is just on
the verge of being noticeable as seen from the plot
(which is usually set to - 5mm). To calculate this erfor
exactly one would have to evaluate the substitution of

*The terms are calculated and simplified (if possible)

by the symbolic manipulation capabilities of the MACSYMA
software.
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the series expansion for the dependent variable in the
formula for the next derivative and find the maximum of this
derivative as the independent variable varies over some
arbitrarily chosen maximum range (in the present implementa-
tion the next grid point is ﬁhis maximum range). When this
is done the resulting expressions in terms of the independ-
ent variable become extremely complicated and the computer
rapidly runs out of memory space (and calculation times
become ridiculously long). Since, however, these higher
derivatives are small we may assume that the next derivative
does not change very much over our selected maximum range
and approximate its maximum by selecting the maximum of

this derivative (with, of course, the expansion substituted
fgr the dependent variable) evaluated at the grid point and
the two end points of the independent variables' maximum
range. The range of the independent variable is then re-
stricted to that which produces the allowable error unless
that range exceeds the chosen ("to the next'gr;d point")
maximum range. There is, however, one more possible failure
of this type of expansion. The éctual solution may repre-
sent a double or multiple valued function over the determin-
ed independent variable's range. In other words, the true
solution may "double back" on itself while the expansion
cannot do this and the error formula does not take this

into account. For this to occur in an expansion of a2
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as a function of al the slope must sometime become infinite,
i.é., the expansion must intersect the'infinite slope

locus (e.g. for dominant loss saturation gopal + k a2 = 0

For this to occur in an expansion of al as a function

of a2, the slope must sometime become zero, i.e., the
expansion'must intersect the zero slope locus (e.g. for
dominant loss saturation 'éEE%YT + kal =0 . Since these
"double-valued errors" rarely occur, the algorithm is to
test each expansion for "double-valued error candidacy"
(i.e., if the slope at the end points has changed sign

from the original or if the absolute value of the slope at
the end points has changed from being less than one to
greater than one) and only then is the expansion tested for
intersection with the infinite or zero slope locus. If an
intersection exists (within the length of the expansion)
then the proper end {or possibly both ends) is shortened to ensure
a valid functional representation. The program works well,
gsing little time and memory while conveying a lot of
information. The program can be trivially modified to ap-
proximate phase plane solutions of any second order non-
linear autonomous differential equation. Obvious extensions
to this method include both the use of adaptive grid point
selection to produce continuous approximations and the use of
more than one pair of orthogonal axes for more efficient

functional expansions.
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3.4.3 'Numerical Analysis

Once the global behavior of a system has been
examined via the aforementionéd "trajectory field" plots,
continuous trajectories may be obtained from numerical
integration of the steady state equations for the initial
conditions of interest. The numerical solutions should
provide the final verification of the validity of the
critical point stability predictions and the trajectory
field approximations.

The algorithm employed utilizes a straightforward
“first order backward difference" formula to integrate, with
respect to x, each of the two equations of a steady state
system. When the distance in the phase plane between the

last plotﬁed point and the running sums becomes larger

than a specified value then the values of the sums are

stored as a point to be plotted and the summation resumes.
Thus, information about the x dependence of the mode
amplitudes is lost. If, however, the x dependence is
desired it is a simple matter to retain the "number of

steps taken" information.
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3.5 Steady State Results and Interpretatibns

3.5.1 General Remarks

This section presents results for the steady state
limit under the ten parameterizations of interest as orig-
inally enumerated in section‘3.3. For each case of
interest three plots will be presented and physical in-
terpretations will be offered. Two of these three plots
will be the discontinuous trajectory field plots generated
from Taylor series approximations. These two will cover
two different regions of the phase plane at two different
levels of globality. One will present information for
all four guadrants for amplitudes comparable to and some-
what larger than the off—cgnter critical point amplitudes.
The other will focus on the behavior near the critical
points. The third plot for each case of interest will
‘be the set of continuous phase plane trajectories that
were numerically generated from the set of initial con-
ditions as selected from and indicated on the first two
plots of that case of interest. All three plots are
presented on a single page along with a legend containing
vertinent information.

At this point the author digresses somewhat to
explain the large amplitude (A >> #S or a > 1)
response. Discontinuous trajectory field plots covering

large amplitude regions of the phase plane have been
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generated but will not be presented here since simple
physical arguments render these results blatantly obvious.
For example, when considering the saturable loss device,
large amplitudes will saturate the lossy wavegquide while
the gain waveguide remains linear. Therefore, if the wave-
guides were uncoupled (i.e. k2 = 0) then a2 would become
constant while al experiences exponential gain. For
increased coupling the net effect would still be that the
system energy would increase without bound. Thus for the
saturable loss device large amplitudes "blow up", i.e.

the trajectories approach infinity. Obviously infinite
energy is unobtainable in any actual physical system. What
really happens is that the system energy increases until
our model is no longer Valia, i.e. other mechanisms that
were negl-~cted begin to dominate the behavior. Some of
these various mechanisms are: the gain saturation effects
due to non-infinite PS(G)’ non- linear

effects such as self-induced transparency, thermal
effects, and others. .Similarly for fhe saturable gain
device, large amplitudes will saturate the gain medium
while the lossy waveguide remains linear. Therefore, if
the waveguides were uncoupled then al would become con-
stant while a2 experiences exponential loss. For in-
creased coupling the net effect would still be a reduction

in the system energy. Thus for saturable gain, large



58

samplitudes attenuate, i.e. the trajectories move towards
the smaller amplitude regions of the phase plane. The
model violation mechanisms for large amplitudes are the
same except that for saturable gain it is the non-infinite
PS(L) that was néglected. Practical devices, however,
shall always be designed to operate with system energies
much less than those experienced for the large amplitude
region, therefore, this region will not be considered
further.

Results for the.ten parameterizations of interest
shall be presented sequentic!ly. Correlation between
results of the two computational methods and the predicted
critical point behavior shall be examined and physical
interpretations will be discussed for each case. Critical
points are indicated by encircled stars and the directions
of the trajectories are indicated by arrowheads. For
case A the trajectory directions are indicated for the
saturable loss device while the directions for case B
are indicated for the saturable gain'device;. The initial
conditions used for the numerical solutions are indicated
on the trajectory field plots by stars with an arrow
extending in the direction of anticipated initial pro-
gression. Also indicated on the first trajectory field
plot is a rectangle indicating the phase plane region that

will be covered in the second trajectory field plot.
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A few comments on the accuracy and extrapolation
techniques of the trajectory field plots will now be made.
Due to the nature of the Taylor series approximation, as
used in this algorithm, the errors at the endpoints of
an expansion (i.e. the deviations between the actual
solution and the plotted expansion) are kept within a
certain tolerance. For the plots presented here that
tolerance was specified to be about 5 mm* Although the
endpoints are kept within the specified tolerance the
derivatives at the endpoints may be quite different than
those of the actual solution so that it is more accurate
to extrapolate from adjacent expansions rather than to
extrapolate by continuing with the same behavior (i.e;
using derivative informatidn) from the endpoint of an
expansion. Occasionally an expansion with a double valued
error will escape detection from the double valued error
candidacy tests resulting in an erroneous expansion. This
happens so rarely, however, that it is not worthwhile
(for our purposes) to explore more eiaboraté céndidacy
tests or to waste computer time testing for double valued

errors directly.

3.5.2 Results and Interpretations
The first case of interest is labeled Al and

represents the saturable loss device for 10=5, g0=2,

* Before a photo-reduction of about 40%.
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"k2=.3583, which is predicted to have an unstable node at

the off-center critical point and a saddle poirt at the
origin. This case also represents (with directions
reversed for inc;easing x) the saturable gain device for
lo=2, go=5, k2=.3583, which is predicted to have a stable
node at the off-center critical point and a saddle point
at the origin. The computed results are presented in

PL. 3.5.2-1, which correlate well within the predicted
behavior, i.e. the origin is a saddle point for both
devices and the off-center critical point is stable for
saturable gain and unstable for saturable loss. Note
that although the rapid variation of the trajectories
close to the off-center critical point yield some in-
accuracy it is possible to eiscern that we do in fact
have a node rather than a spiral point. This may be seen
by noting that a trajectory starting below the critical
point will not end up above it and similarly £for those
starting above, to the right, or to the left.*q These
results are verified by the numericai results which show

four continuous trajectories. A physical interpretation

*The distinction between nodes and spiral points is a,
slight one, however, and depends on both the location of k
in that stability region and the initial conditions. The
distinction is considered here, however, since in Chapter
IV it will be shown that this distinction leads to two
different device applications.
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of these results is as follows. For the saturable loss
device when 10> CRY weak coupling (small kz) means that
the electromaganetic energy will pbe amplified in the gain
waveguide and the_small amount of enerqgy that is coupled
into the other waveguide will start to saturate the loss
so that the net effect is that the amplitude al will in-
crease-without bound while amplitude a2 will approach a
constant value. For the saturable gain device when

10 < gy weak coupling is no problem for stability since
the gain will saturate until loss and gain effects
balance each other and an equilibrium amplitude is achiev-
ed at the off-center critical point.

For the next case, A2, we have increased the
coupling constant slightly fk2=4.1683) so that the predict-
ed behavior of the off-center critical point is now a
spiral point which should be unstable for saturable loss
and stable for saturable gain. PL.3.5.2-2 demonstrates
this. Note that for a spiral point we have the possibility
of circling around the critical poiht'beforé rﬁnning off
to infinity (saturable loss) or converging into the
critical point (saturable gain). A physical inter-
pretation is as follows. We have increased the coupling
constant by an amount such that the mode amplitudes

are more interdependent (thus the "curvature"
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of the phase plane trajectories has increased) but we have
not increased it enough to change the basic stability
(i.e. saturable loss response still blows up and saturable
gain response still converges to the off-center critical
point). This excellent agreement between theory and
results is further verified by the three continuous
trajectories generated by numerical analysis.

For the next case, A3, the coupling constant has
increased (k2=8.505) so that we predict the saturable loss
device to have a stable spiral point at the off-center
critical point and the saturable gain device to have an
unstable spiral point. Note the critical point at the
origin is not yet predicted to have changed from its
saddle point behavior. PL.3.5.2-3 shows that for initial
conditions much larger than the off-center critical point
values the saturable loss trajectories may still run off
to infinity but for smaller initial conditions the
trajectories will spiral in towards the critical point.
This convergence (or divergence for éaturabié gain) is
detailed by the second Taylor field plot and numerically
verified for four different initial conditions. Again
there is excellent correlation between analytical pre-
dictions and the results of the two computational methods.
Physically this continuation of increased "trajectory

folding over" with increased coupling méy be interpreted
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“as follows. For the saturable loss device the coupling

has increased enough that the energy in the gain wave-
guide (if it is small enough initially) will not just
increase without bound since a large amount is coupled

into the loss waveguide. Although the loss is greater than
the gain, the loss begins to saturate until loss and

gain effects balance each other and equilibrium amplitudes are
achieved at the off-center critical points. For the
saturable gain device this increased coupling means that
enough energy from the lossy waveguide is coupled into the
gain waveguide that the amplitudes will begin to increase
and gain saturation effects are not significant enough to
cause convergence near the critical point. Gain saturation
will cause attenuation for large amplitudes however, and
this opposition to the small amplitude blow-up results in
global limit cycles. An example of these global limit

cycles is presented in Figure 11.

FIGURE 11 ~ A Global Limit Cycle

1.3
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Increasing the coupling constant further (k2=9.695)
brings us to our next case, A4, which is predicted to have
an off-center stable node for the saturable loss device
and an unstable node for saturable gain. PL.3.5.2-4
shows that the trajectories have been "folded-over" even
more, sc that there are trajectories with extremely large
curvature in the regions where this increased interaction
is significant (i.e., near the critical points). Although
it is in this region that both the series truncation and
double-valued errors are larger, it is still clear from
the plots that critical point convergence (or divergencé,
for saturable gain) is asymptotic to straight lines, i.e.
this is a node rather than a spiral point. The set of
numerically generated contihuous trajectories for four
initial conditions correlates well with the predicted
behavior and the trajectory-field plots. A physical
interpretation is that we have not changed the basic
stability (from A3) yet, but we have increased the inter-
action enough so that the curvature 6f the £fa5ectories is
more abrupt, thus the final critical point convergence
or divergence must be asymptotic to straight lines.

For the next case, A5, the coupling constant has
increased enough (k2=ll.125) to change the predicted
central critical point behavior to a stable node, while a(hi)

has become imaginary so that we now have only one real
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critical point, the origin. This critical point is pre-
dicted to be a stable node for saturable loss and an
unstable node for saturable gain. PL.3.5.2-5 presents

the trajectory fields for relatively large amplitudes and
for the behavior near the critical point. Also shown are
three numerically dgenerated continuous trajectories. Once
again the results and the predictions are in agreement.
The physical interpretation for tiiis large coupling is
particularly simple. Around the origin the amplitudes

are small enough that thie system is relatively unperturbed.
Since the coupling is large the stability is determined

by thé relative magnitudes of 10 and 95 Thus for
saturable loss (A5: lu > go) the loss dominates and the
amplitudes attenuate making the origin stable. For
saturable gain (AS5: dy > 10) the gain will dominate
causing amplitudes around the origin to increase thereby
making the critical point unstable.

For the next case, A6, the coupling constant has
increased &2=13.125) slightly so that the only critical
point at the origin is now predicted to be a spiral point
(stable for saturable loss and unstable for saturable
gain). This slight modification in behavior is shown in
PL.3.5.2-6.

Results for the next three cases of interest were

generated from the dominant gain saturation equations,
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for 10=5, g0=2 (notice that the same results could have

been obtained from the dominant loss saturation equations
for 10=2, go=5). For the case B1, k2=5, the predicted
behavior from critical point analysis is that the off-
center critical point is a sﬁable node (or an unstable
node for the corresponding saturable loss device:
10=2, go=5) and the central critical point is a saddle
point. PL.3.5.2-7 demonstrates the basic stability.
The second trajectory field shows a node-~like behavior
which is verified numerically for four different initial
conditions. All results are in excellent agreement with
the critical point predictions. Physically the inter-
pretation is as follows. Weak coupling for saturable
gain means that the wavegui&es do not affect each other
very much so amplitude al saturates the gain thereby
approaching some constant value while the loss causes
attenuation of a2 reducing the system energy until equali-
brium is achieved at the off-center critical points. For
saturable loss, however, weak coupliné means that the
saturable loss can not prevent the linear gain from
increasing the system energy without bound.

For B2, the coupling constant has increased enough
(k2=11.125) that 2 (hi) has become imaginary and the only

critical point is the origin which is predicted to be a

stable node for saturable gain and an unstable node for
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saturable loss. These predictions are verified in
PL.3.5.2-8. Physically the interpretation is again
extremely simple since near the origin the device is non-
saturated or unperturbed. Therefore, in the saturable

gain case(B2: 1, > go) the loss is dominating causing

0
stability at the origin and in the saturable loss case

(B2: 10 < go) the gain is dominating causing instability

at the origin.

For B3, the coupling constant has increased (k2=15)
so that the origin is now predicted to be a stable spiral
point for saturable gain and an unstable spiral point for
saturable loss. This is verified and illustrated in
PL.3.5.2-9. Results for the dual saturation case,

D1 (1_=5, g =2, k°=5), are presented in PL.3.5.2-10.

Again there is excellent agreement between theoretical
predictions and the results of the two computational
methods. Notice that dual saturation causes the trajec-
tories to become more symetric (about al=a2) and that large
amplitudes saturate (i.e. produce trajectorieé berpendi—

cular to the axes) for both axes, rather than for one

axis as in the dominant saturation cases.
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3.6 Device Applications Based Upon Steady;State Results

Although steady state is a response limit that may
never be achieved exactly, wevmay anticipate certain
device applications based upon the steady state results
for instances where steady state is approximately valid.
One of these instances is when we have an input excitation
that is slowly varying over a period of time that is large
compared to the media response time, T1 (just how much
larger for how close an approximation will be determined
by the dynamic response).

The most obvious application (and the original impetus
for consideration of this type of structure) is the use of
these devices as an optical limiter or pulse height
standardizer. An optical limiter is not only essential
for optical logic devices but would also be extremely use-
ful for optical communications and various types of
physical measurements where optical pulse height and wave
shape control are necessary.

To fabricate a pulse height standardizer we simplv se-
lect a parameterization for one of the three types of
waveguide structure (saturable loss, saturable gain, or
dual saturation) such thaé there is stability at the
off-center critical point. We then expect that if we can
fabricate a device with this parameterization, an input

pulse of arbitrary (within reason) amplitude and



substantial width should eventually (in distance that is)

produce an output pulse with an amplitude that is always

equal to the off-center critical point value.ﬁ In theory,

this output pulse height could be made as small as desired
2

or as large as the value obtained for k2=kS (e.g. for the

dominant loss saturation case
a(hi)max - a(hi)|k2=k§ =

1/2
4 -1
1+7vV1+8g

L.) J
In actuality, however, there wflf be a limit as to how small

this standardized amplitude may be made due to parameter
uncertainties and fluctuations. For example, if we were
designing a pulse height standardizer for a small
standardized height using a loss saturation device, we

would want k2 to be close to gol but we must keep

0,
k2< golo. If incorporated all our uncertaihty inform~+ion
2

. : . . . 2
inco an effect.ve deviation in k“; say Ak, for some

assumed 10 and Iy then the smallest we could make

a(pi) can be shown to be 1/2

o T,
= 2 = v Ak" /g %
golo Ak 00

2 (hi)min
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In actuality the limit as to how large we can make a(hi)

is somewhat less than

a . ’
(h1)1k2=k§

since as shown later, when we consider the dynamic response,
that for pulse height standardizers it is preferred to

operate in the stable node region. Thus

(hi)max = 2(hi)|,2_, 2
k =k |
spiral

but this is not very restrictive since it is anticipated
that we would usually prefer to operate at a fraction of
the medium saturation intensity anyway. If larger power
levels are desired a differentmedium with a higher satura-
tion intensity, could be used. A more restrictive
practical constraint is that we can nct presently fabrica*~
devices with simultaneously large values of coupling
constant, k, and device length, d. We may take this
constraint as being kd < 5. Presently, however, we shall
not be concerned with this since the matter will be con-
sidered extensively in Chapter V when we present actual
device designs. Note that the fact that we can not
simultaneously make both the origin and off-center

critical . points stable does not necessarily prohibit the
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operation of thé device as a pulse height standardizer
since the steady state is not valid for the leading edge
of a pulse or for the response due to noise, etc.

Another possible application based upon steady state
results is the use of device-as a mode selector. If the
coupling of modes between multimode waveguides is pre-
dominantly just between modes of the same order then our
model would describe the behavior of each coupled pair
individually. The coupling constant will'be different for
the different mode pairs. Thus we could conceivably
design a device that would force different ordered mode
pairs to different (order dependent) fixed amplitudes
(including of course zero amplitude). Mode selectors
could be constructed in this fashion.

Another possible application involves the difference
in phase between the two off-center critical points (since
one has amplitudes that are the negative of the other
they are 180°out of phase with each other).'_There’are
difficulties in using any phase state device, however,
since sampling the output at a distance that deviates from
the desired distance by half a wavelength will be seen as a
change of state. Thus, we would have to be able to fab-
ricate distances accurate to within half a wavelength.
Operating in the millimeter wavelength range, however, may

make phase state devices feasible. If so, we could use the
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“device as an aﬁplitude discriminator. This is so since for
stable off-center critical points some input amplitudes may
converge to one critical point (say the one in the second
quadrant) while other input amplitudes will converge to
the other (say the one in the fourth quadrant). Detection
of the state of phase could be simply achieved through interfer-
ence techniques. It may be possible that phase state memory
elements could also be fabricated. Note, however, thatiall the
applications mentioned so far could only be expected to operate
on time scales larger than the medium response time, Tl. To
examine faster response behavior we must analyze the dynamic

equations.



CHAPTER IV - DYNAMIC RESPONSE

Device response to arbitrary input excitation is now
considered. The input pulses need not be slowly varying
{(with respect to T1l) and transient responses are included.

In this chapter a transformation is performed on the
dynamic equations which results in their simplification.
Some algorithms for solution of the transformed equations
are discussed. It is pointed out that a numerical approach
is the most efficient. This numerical scheme is presented
in detail after a brief discussion of the various finite
difference options. Results from excitation by two dif-
ferent waveshapes for various heights and widths are pre-
sented for two different device parameterizations. Physical
interpretations of the results are offered. Device

‘applications based on the dynamic results are then presented.

4.1 Pulse Frame Transformation

The four nonlinear coupled partiél'différéﬁtiél
equations that govern the general (dynamic) device response,
EQ. 1.3.3-3, may be classified as a parabolic system that
has one characteristic direction along the lines y=x+b,
where y is the dimensionless time variable (normalized to
Tl), x is the dimensionless space variable (normalized to

'vTl), and b is the y intercept. The dominant loss or gain
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saturation equations of course fall into the same classifi-
cation with the same characteristic. Instead of trying to
solve the equations in their present form, however, there
is a transformation which may be performed that results

in a significant reduction in mathematical complexity and
computational difficulty. Examination of the dynamic
equations shows that there are actually two basic directions
of information propagation. One of these directions is

the y direction along which the loss and gain parameters
saturate. In other words the loss and/or gain parameter

at any point in space-time has a value that depends only

on the values of that parameter and its saturating mode
amplitude at that space point for all prévious time points.
The other direction is the.characteristic direction (i.e.,
the lines y=x+b) along which the mode amplitudes propagate.
In other words the mode amplitudes at any point in space-
time depend only on the values of the mode amplitudes and
the loss and gain parameters at previous points along the
1line y=x+b, where b is the y interceét éf a line of unit
slope that intersects that spacthime point. Therefore

the loss and gain parameters may be evaluated by inte-
grating the saturation eguations in the y direction for each
specific value of x over the interval in y for which values
of al and a2 are known (from previous calculation or

specified boundary conditions). A similar integration of
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the coupled mode equations may be performed along the
y=x+b direétion if we simply parameterize x and y for any
specified value of b. Thus we'let, x=x(s)=s; y=y(s)=s+b

= 'a + ) _ and

then ]

3s X Ay

1(x,y)=1(s), gix,y)=g(s), al(x,y)=al(s}), a2(x,y)=a2(s)

so that the coupled mode equations become (for any specific

value of b): dal(s)

15 = gy8(s)al(s) + k a2(s)
(Eq. 4.1-1) Qg%&il = —202(S)a2(s) - k al(s)

The total derivatives were used since b was assumed to be
some particular value. In general, therefore, the coupled

mode equations may be written as: *

(Eq. 4.1-2) 3_3%8_& = gg8(s,y)al(s,y) + k a2(s,y)

2§%§§AXL = -zol(s,y)aZ(s,y) -k al(s,y’
This transformation shall be referred to as the pulse frame
transformation since it has the following physical inter-
pretation. Select a little bit of input pulse energy and
travel along the wavequide in the frame I

of that infinitesimal "energy chunk". Mathematically

this is equivalent to selecting some value of b and traveling
along the line y=x+b with increasing parameter s. Note

that this transformation results in substantial simplifica-
tion since Eq. 4.1-2 invol?es derivatives with respect to

a single independent variable only.

*Not%ce that these equations depend only on two independent
device parameters (sayloﬁsandgoﬂQ as was the case for the

steady state equations. This is considered in 5.1.
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There are tﬁo types of computational ﬁethods that
have been developed for the solution of the dynamic
equations under the pulse frame transformation. One involves
a combined numeric and analy;ic algorithm. This algorithm
uses linear finite difference formulae for the integration
of the saturation equations. thus generating approximations
of 1(s) and g(s). These 1l(s) and g(s) are approximate since
the linear finite difference formulae merely predict 1
and g along the line y=x+b from the behavior along the
previous line y=x+(b- 6b), thereby neglecting the instant-
aneous saturation effects (which are the source of the
nonlinearity). The algorithm then generates an approximate
" analytic solution of Eq. 4.1-1 using interpolation
polynomials for the functions 1l(s) and g(s) (these
polynomials are produced from the numerical values of 1 and
g obtained by the finite difference formulae). This algo-
rithm required a lot of time and elaborate mathematics for
its development. It can be used to generate correct
golutions but the computational times necessary make it
impractical. The main difficulty lies in the fact that the
difference equations neglect the instantaneous (nonlinear)
saturation effects so that extremely small time increments
(b) must be used or iterations must be employed. There may
be certain cases (long device lengths or. rapid mode

amplitude variations) where this algorithm is superior and
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future research may produce modifications that eliminate
the time step size difficulties. Details of this algorithm
and of various methods of its implementation are available
from the author but will not be discussed further here.

The other computational method employed circumvents
the aforementioned difficulties by using a totally numeric
approach that allows.for the instantaneous field-media
interaction by retaining the nonlinearities involved. This
algorithm is discussed in the next section and is the

method used to generate all of the dynamic results presented.

4.2 Nonlinear Finite Difference Equations

In choosing a quantization scheme for the numerical
solution of a differential équation one must consider the
pfoblems of convergence, stability, and computation time.
Ascertaining the convergence and stability properties of a
finite difference approximation is usually difficult and
often impossible for nonlinear differential equations.

It is shown later in this section, thevér, that a simple
probabilistic error analysis exists which provides criteria
necessary for convergence and stability although it does

not rigorously prove that these criteria are sufficient for
the existence of these properties. Despite this fact, the
arguments for the existence of convergence and stability are

intuitively palatable and empirically correct. Before
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delving into this; however, let us first consider some
of the options available in selecting a finite difference
scheme.

For the dynamic equations (as is the case for most
systems) it is preferred to leave the equations as a system
of coupled first order equations rather than combining some
or all of the equations. Thus finite difference formulae
for first ordered derivatives only need be considered.
Consider a function, ¢(r), for which a qﬁantized solution
is desired at the points r=i(ér), -Vie[O,i'max] ~, where §r
is the "step size' and i takes-on integer values. The
first order derivative of with respect to r evaluated at

[22]

is given by the exact relationship

d¢ 1

(Eq. 4.2-1)
. , acli = (51) [log(1+A)]¢i .

Where ¢4 Z ¢(i6r) , and A is the forward difference operator
defined byvA¢i==¢i+l"¢i- Expanding the logarithm one
obtains

do
(qu 402_2) dr i

AP S S N
LT Gy (8- /287 + (1/3)8% - (1/iet + Ly

2y = - = -
Where 4%; = 8(8¢5) = 885y = €3) = 054p = 2054y + O
etc. Since it is only possible to perform a finite number
of operations in a finite amount of time, the above formula
" must be truncated somewhere thereby yielding truncation

errors. The order of a finite difference approximation

refers to the highest ordered difference operator retained.
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Thus

(Eq. 4.2-2) g_j_g L (Slr) [a - (1/2._‘.A2 +(1/3)83 - ...+ (1/m)a"e,

is an n th order forward difference formula which will have

a truncation error that is pfoportional to (Gr)n.

Other formulae may be obtained by the use of shifting

operators as follows,

_ 1
i (8r)

[log(1+a)1¢; = . [log(14+4) ) (1+A) ¢, _,

(Eq. 4.2-3) 4d¢
dr

(6r)

(51r) [a+ (1/2)4% = (1/6)4% + A/12) A%~ ... 1¢;

or by the use of backward difference operators as in

(Eq. 4.2-4) %-fi- i= -(-?lr—) [log(1-9)]¢,
='f§;_ [Vv+ (@/2)v2 + (1/3)v3 + (1/6)v* + ...1¢
where g, =4 g Obviously there are several other
i i Ti-1°

formulae that may be obtained through the use of various
shifting and averaging operations.

Although truncation errors are proportional to the
step size raised to the order of the finite difference
formula, blind selection of higher order formulae will not
necessarily lead to improved behaVior since some of these
formulae either will not converge to the original
(continuous) equations or will become numerically unstable.
Convergence and stability of the use of first order formulae
| for the dynamic equations has been proved (this is usually
the case, due to the limit definition of a derivative)

however, the requisite smallness of the step sizes.results in
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computation times that are intolerable.

Note that the application of forward difference formulae
to the medium saturation equations produces equations that
inveclve the medium parameter (1 and/or g) at a point that is
ahead (in time) of the point.at which the nonlinear term
(alz and/or a22) occurs. Therefore, formulae of this type
linearize the equations as alluded to in the discussion of
the semianalytic algorithm in the previous section. This
is unfavorable, however, since saturation'is an instantaneous
process. Conseguently, forward difference formulae for the
media saturation equations converge only for very small
time steps regardless of the order of approximation used.

The use of backward difference formulae eliminates
this problem by allowing fof the instantapebus field—medium
ihteraction. This results in a nonlinear system of
algebraic equations but the nonlinearity is simple enough
that the MACSYMA software may be used to obtain numerical
solutions. Higher order formulae may be use@ufgp the time
derivatives so that larger step sizes-may be employed
resulting in a substantial reduction of computation time.

After considering a large number of applicable formulae
the optimal choice appears to be the use of a third order
backward difference formula for the time derivatives and
a first order backward difference formula for the derivatives

ﬁith respect to s. The third order formula obtained from
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from Eq. 4.2-3 may be written as

do} ___L - -
dr|i =Gery 116 — 1805 5 + 90y, = 20, 5]
and the first order formula is simply
do| , _1_ -6
dr| i = (ér) Loy ¢i—1]'

Using these formulae results in the following quanti-

zation of the dynamic equations for the dual saturation

case:
(Eq. 4.2-5) ali,j - ali,j-l - (Gs)gogi,jali,j - (8s)k azi,j =0
aZi.j - aZi,j_1‘+ (Gs)lgzi’jaZi’j + (8s)k ali,j =0

1lgi’j - 18gi’j_l + 9gi,j—2 - Zgi,j—3 + 6(6y)gi,j(1+(a1i’j)2) - 6(5y) = 0

Wy 5= 188y i1 P 9% 50 T P58 6(sy)2; ;(1+(a2; )?) - 6(dy) =0.

Where 6s is the step size in fhe s direction (associated
with the index i) and 8y is the step size in the y‘direction
' (associated with the index j ). 1In other words, s=i (8s),
y=s+ j (8y).

Similarily the quéntization of the dynamic equagions

for the dominant loss saturation case is:

(E . 4.2-6) - - - =
q ali,j ali,j—l (Gs)goali’j (Gs?k aZi’j 0
aZi,j - azi,j-l + (GS)lozi’jaZi’j + (8s)k ali,j =0
- - 2y . =
llzi,j 182i’j_1 + gli,j-Z A Zzi,j-3 + 6(6y)zi’j(l+(a21’j) ) 6 (Sy) 0

and the quantilization for the dominant gain saturation case

is:
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- - - - ( =
(Eq. 4.2-7) aly y-aly o (8s)ggg; jal; 5 = (8s)k a2 ;=0
aZi’j - azi,j—l + (Gs)lani’j + (63)k ali,j =0
- <+ - 2 - =
llgi,j 18gi,j-1 9gi,j-2 2gi,j-3 + 6(6y)gi’j(1+(ali’j) ) 6(8y) 0

As an example of the imposition or boundary conditions
suppose the saturable loss device is operated as a single
input pulse shaping device. An input pulse, say pulsel(y),
is fed into the gain waveguide while the ldssy waveguide
input is kept at zero. The system is initially unperturbed

so the boundary conditions are:

' al(x,0)

o, a2(x,0) = 0, L(x,0) =1

al(0,y)

These conditions are consistent with the differential

pulse(y), a2(0,y) =0, £(0,y) = 1.

equations. In imposing these conditions on the finite
difference equations it is valid to use the third order media
equation for the first two calculations under the assumption
that all previous conditions were unperturbed also (i.e.,

1, 2 = 1. Mathematically and

o F L b F LY
physically this assumption is allowed since it is gguivalent

1, %

to the assumption that the input pulse begins with a éero
amplitude of duration greater than or equal to 2(sy).

Conditions necessary for the convergence and stability
of the finite difference approximations shall now be

derived. Rather than presenting the error analysis for all
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the equations, the theory shall be demonstrated for a single
equation and results will be cited for the others. Consider

the loss saturation equation. Let Lij represent the

exact solution for 2 ,
evaluated at s= 1i(és), y=s+j (8y), and eiz; represent the
k)

total quantization error for & at that point. Thus,

3 = L - W . Using this notation in the loss
1,3 i,j i,]
saturation equation one obtains in the limit as 6s -+ 0 and
§y ~ 0, :
11.(2) (2) (2) () oL
-_ ll = - <+ —
(Eq. 4.2-8)  1le; 5 = 18e; o1 = 981, 5-072ey 53 F 6(8Y) |50,

The last term vanishes in the limit providing that L is
differentiable (as it must be by physical argu..nts). This
eqﬁation describes the propagation of errors for & in

the limit as d *0 and &y - 0. Ordinarily one would attempt
to prove boundedness of the magnitude of the 4 th error

by use of the Schwrtz inequality, however, this method is
useless for the present case. Instead let us consider the
effects of a single quantization error. Say the first

quantization error occurs at j = g and there are no

independent errors atj=1,j=2, or j=3 . In other words;
(%) () (2) h  pa-
ei,3’ 51,2’ , and ei,l represent the quantiza
tion errors due solely to the presence of Ef“g
i,

From Eq. 4.2.-8 it may be shown that all of these errors
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must be of the same sign so that Eg. 4.2-8 may be written
as -

(R)) _ () _ (2) (2)
1llej | = 18|EJ_1| 9I€j—2|-+ 2|ej_3|

where the arbitrary index, i, has been dropped. There will
be some maximum error, say |E|, over the points j-1, j-2

and j-3 , so that llle§2')l < (18 - 9 + 2) |E|

or e (™| < 8],

If the last inequality did not hold then the errors at later
points due to a single error would be unbounded and con-
vergence and/or stability would not exist.

Formulae for which similar inequalities do not hold
have been demonstrated to generate nonsensical results
(as they must since they would be proven non-convergent).
Applying similar arguments to the other equations of
Eq. 4.2-5, Egq. 4.2-6, and‘Eq. 4,.2-7, results in the
stipulation (Ss)'<(l/g0). The equations are proven to be
non-convergent when this condition is violated and empirical
results bear this out.

Note that this condition is necessary but not suf-
ficient. Convergence and stability may not be proved by
this argument since it describes only the effects of a
single error. There are several non-rigorous arguments,
however, that make this type of convergence "proof"
.palatable. One might arque that superposition holds

for the effects of multiple errors since the equations
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are quasilinear (i.e., the highest ordered‘derivatives
appear linearly). One might also argue that all of the
quantization errors will be of the same sign anyway since
the proof is for the limit as &8s >0 and 6y > 0 .
Probabilistically, one might argue that on the average
(over j) the errors will be of the same sign since the
parts due to previous errors are of the same sign and the
independent parts are of either sign with equal likelihood
(there is an initial swelling effect in efror propagation
that strengthens this argument even hore). Perhaps the best
argument for the validity of the single error analysis as
a convergence proof is the fact that the empirical results

make physical sense when the "proof" holds.
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4.3 Dynamic Results and Interpretations

Since the main objective of this thesis is to demon-
strate the operation of the proposed travelling wave
structure as a practical and useful optical pulse shaping
device, dynamic response results are presented only for
the dominant loss saturation case rather than attempting
to enumerate all possible cases and behaviors. The two
parameterizations considered are those referred to as
A3 (1,5, g =2, k®=8.505) and A4 (1=5, g =2, k°=9.695)
for which the steady state response has already been ex-
amined. These cases are off;center stable spiral poinf
and off-center stable node examples of the saturable loss
device.

The input pulses for thch the dynamic responses
are computed are of two basic types. One is an exponen-
tial edged rectangular pulse. The other is the hyperbolic
secant pulse. For both of these wave forms three differ-
ent pulse widths are used. One of these pulse widths is
‘long compared to the mediumresponse fime, Ti;véﬁd éhall
be referred to as an l-type pulse. Another pulse width
is short (or narrow) compared to Tl and is called an
n-type pulse. A pulse of medium width is also considered

which has a pulse width comparable to Tl and is referred

to as an m-type pulse.
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The exponantial edged rectangular pulse, intended

to be representative of a typical binary logic pulse, is

presented in figure 11. . ' —~

FIGURE 11 - Logic Pulse
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The pulse may be defined as follows.

A (1 - exp(-y/1)) , | (0 <y <41
pulse(y)z A (1 - exp(-4)) (412 y < 8D)
A (1 - exp((y-121) /1)) (81< y < 121)

where A defines the pulse amplitude. Thus the leading

edge is exponentiangrincreésing for four exponential time

constants, (i.e., 4t), the pulse is then flat for four

more time constants, and the trailing edge falls expon-

entially during the last four time constants. For 1, m, é
and n type exponential edged logic pulses we sgmewhat
arbitrarily choose, 17 = 4.0, 1 = 0.5 .ana T = (1/16)
respectively (recall that y is normalized, i.e.,
t=T> y=1). The value of A used is (0.2). §

The hyperbolic secant pulse is presented in figure 12.
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FIGURE 12 ~ Hyperbolic \

Secant Pulse //
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The pulse may be defined as follows:

pulse(y) = A sech(.8844(y-61)/1)

Where again A defines the amplitude. Thus the hyperbolic
secant pulse power is down by 3dB when y deviates from
6 t (the location of the maximum power) by a factor of 21,
In other words, 2t is the 3dB power pulsewidth (FWHM).
Note that 21 is also a good definition of rise time for
the hyperbolic secant pulse since it is the time required
for the pulse energy to rise form about one ninth of its
maximum to its maximum value. In addition to the well
known soliton properties of the hyperbolic secant pulse
in self-induced transparency phenomena, the pulse is
useful since it is analytic and displays both types of
convexity (which is important for the problem at hand).
For 1, m, and n type hyperbolic secant pulses we somewhat
arbitrarily choose, 1 = 2, t =(1/4) and T =1/32 , respectively.
Again, 2 = .2 is used.

The dynamic results are presented in two different

sets of plots. The first set demonstrates pulse
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~evolution as it presents the gain waveguide amplitude, -
al, versus time, y, at four different values of distance,
x. These four different distances are labeled 2, 4, 8;
and 16 (from the§s step index, i), corresponding to the
waveguide distances x ~ ;5657, 1.132, 2.263, and 4.525
( &=.4 was used) respectively. The second set of plots
presents al versus y at x = 4.525 (i=16) along with both
the unperturbed response (see Eg. 3.2.2-1) and the steady
state response evaluated at the same disﬁance for the same
input pulse. These plots facilitate the physical inter-
pretations of the results. For both types of plot sets
the 1, m, and n pulse width responses are presented on

one page for each waveshape and parameterization.

A summary of the parameters used for all cases plotted

is presented in figure 13.

" FIGURE 13 - Dynamic Plot Parameter Summary

Parameterization Pulse T Plot 1 Plot 2

A4 logic 4 PL.4.3-1 . . .PL.4.3-5

1/2
1/16
A3 logic 4 PL.4.3-2 PL.4.3~6
1/2
1/16
A4 hyp.sec. 2 PL.4.3-3 PL.4.3-7
- 1/4 :
1/32
A3 hyp.sec. 2 PL.4.3=4 PL.4.3-8
1/4
1/32
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Pl. 4.3-1 presents the evolution of the exponential
edged logic pulse for the off-center stable node para-
meterization, A4. We see that for the 1l-type pulse the
amplitude becomes close to the critical point value for
even small distances ahd then gradually achieves the
critical point value exactly. Once this value is
achieved,-a further increase in distance results in a
steepening of the leading and trailing edges along with
a widening of the standardized pulse height region.

The m-type pulse also converges to the critical point

but the leading edge has a sliaght initial overshoot. The
n-tyne pulse has a greater initial-overshoot and does not
actually converge to the critical point. These results

will be interpreted later.
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The evolution of the logic pulse for the stable
spiral point parameterization, A3, is presented in
PL. 4.3-2. The l-type pulsé takes longer in x to con-
verge to the criticél point (than for A4) and once the
edges start getting steeper the leading edge begins to
ring (oscillate). The initial ring for the m-type pulse
is larger but the amplitude still converges to the
critical point value. The initial ring for the n-type
pulse is larger still and the pulse disappears before the
amplitude can recover to the critical point value.

The hyperbolic secant pulse evolution for A4 is
presented in PL.4.3-3. The l-type pulse exhibits some
pulse height standardization and pulse edge sharpening.
The m-type pulse has a leading edge that is unaffected
but the trailing edge begins to "feel" the critical
point influence. The n-type pulse is rela;iye;y unper-
turbed for these distances.

In PL.4.3-4 the evolution of the hyperbolic pulse
for A3 is presented. The l-type pulse does exhibit
substantial pulse height standardization and pulse edge
sharpening at the expense of some oscillation. For the
m-type pulse there is a substantial overshoot bhefore a brief

convergence to the critical point value. The n-type
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PL.4.3-4
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pulse is again relatively unperturbed.

The second plot set demonstrates that the dynamic
response for large pulse widths is essentially the steady
state response and that for narrow pulse widths it is
essentially the unperturbed response. Tor pulse widths
in between these two limits the leading edge will tend to
be unperturbed and the trailing edge will tend towards
steady state. The differences between parameterizations
A3 and A4 will become apparent. |

In PL.4.3-5 the logic pulse for Ad at i = 16 is
presented along with the unperturbed fesponse, u , and
the steédy state response, s. For the l-type pulse
steady state is approximately valid. For the m-type pulse
the leading edge tends to be briefly unpertﬁrbed before
lapproaching steady state. A larger amount of the leading
edge of the n-type pulse is unperturbed and the pulse
input decays before steady state is achieved.

PL.4.3-6 presents similar results for the logic pulse
response under parameterization A3. The difference is
that the unperturbed response for A3 is larger in rela-
tion to the steady state response than it is for A4.

The result being a wider standardized pulse neight at
the expense of substantial ringing.

PL.4-3-7 and PL.4.3-8 demonstrate these same con-

clusions for the hyperbolic secant pulses of A4 and A3
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respectively. Note that for A3 the leading edge of the
dynamic response may be larger than the unperturbed
response. This may also be shown by expanding the steady
state response in a perturbation series in.terms of

The first term of the serieé is the unperturbed re-
sponse and the summation of the infinite series is the
steady state response. The dynamic response (in x) of
any part of an input pulse may be approximated by the
different orders of this perturbation series. For the
"slightly perturbed" response it may be shown that the
amplitudes may exceed those of the unperturbed response.
This is physically reasonable since an initial perturba-
tion of the loss should simply increase the effective

gain.
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4.4 Device Applications

Now that the systems dynamic response has been demon-
strated, potential device applications may be more seriously
considered. The applications of primary concern may be
categorized as optical pulse Shaping. Within this group
two useful devices have already been demonstrated.

One of these is the optical pulse height standardizer

(PHS) or optical limiter. System applications for such a
device are seemingly endless. The most obvious way to
construct a PHS is to exploit the convergence of mode
amplitudes to a stable off-center critical point in the
steady state limit. This approach shall be used in
Chapter V which deals with the semi-optimal design of a
realizable PHS. Non-criticél point convergent schemés
might also provide a means of obtaining a PHS. These
methods would utilize the fact that in the steady state
limit several different initial conditions may have trajec-
tories that end (after a certain distance) at a fpoint"
(or on a line tangential to one of thé éxeS) in the phase
plane without actually converging to a critical point. The
usefulness of this method in the dynamic case, however, has
not been demonstrated and will therefore not be considered
further in this thesis.

The other useful device that has been demonstrated

may be termed a pulse width shortener (PWS). These devices
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could be used to shorten the width of an input pulse to
time intervals substantially smaller than the medium re-
sponse times. Since this phenomenum depends on the ringing
of a pulses unperturbed leading edge, a practical PWS
device would probably use a PHS for an input stage in

order to steepen the edges of the input pulse before being
processed by the PWS itself. Device lengths for the PWS
could be kept small by using this technique. It is inter-
esting to note that the generation of optical pulses with
widths smaller than the mediumresponse times in, for
example, a laser diode has usually been attributed to the
combined effects of loss and gain saturation. For the
saturable loss coupled travelling wave structure, however,
it has been shown that saturation effects of the loss
ﬁedium alone may produce this phenomenum. Gain éaturation
for such a device ( PS > PS

(G) (L)
the height of the shortened pulse.

) would tend to limit

Other pulse shaping applications may be referred to
as general filtering. These could be'réaliéea'By é cascade
of several PHSs and PWSs, each designed to perform a
specific part of the required pulse shaping. One method
of fabricating these cascades in a continuous fashion would
be to induce a prescribed spatial variation in k and/or
1 and 9o° The spatial variance of k could be produced

o]

‘either by varying the refractive index of the separating
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medium (by some method of imp@riﬁy implantation) or by
varying the distance between.wav;guides.

Other potential applications may be classified as
general signal processing devices. These include single
and double input amplifiers (i.e., transistors and &if-
ferential amplifiers). Logic devices could conceivably
be made also, either in a direct fashion or by appropriate
interconnection of optical amplifiers. Gated mode
amplitude oscillators that exploit the global limit cycles
of the structure could also be made. The structure might
also provide an easy way of obtairing a highly stable
light wave amplifier or a highly stable laser. The only
application that will be considered and developed in detail

here will be the PHS device which is dealt with in the

next chapter.



116

parameter pairs. Some of these pairs are (zohggo/kh
2
(8972425713 (Ry/8y5k/gy); and (k ! (gy2g) s857 2p) etc.
In keeping with the fashion in which steady s ate stability

criteria were presented, the following definicions are made:

Y = k2/(g09.0) , B = ‘go/go . In terms of these parameters
the steady state eguations for the saturable loss device
become: ddil = /B/y al + a2
dd§2 _ VP__-aZ — - x al
YB(1 + a2™)

where n = kx . The criteria for the stability of the

off-center critical points are:

B<1; Y <-% 1+ /1 + 88 )

For the off-center critical point to be real requires y < 1.

These statements are displayed in the +y-g plane of

s

figure 13.
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The stable region was searched for the parameterization
which yields the largest output {(either ai or a2) signal to
noise ratioc when the input amplitude varies uniformly
over its optimal 2 to 1 rangé. Thus the input signal
to noise ratio is 14.31dB.

The output signal to noise ratio (at kxs= kd=5) is computed
for various 2:1 input ranges for each parameterization

trial point in the stable region of the y-f plane. The
optimal parameterization chosen is vy =.82, B8=.15, for which
the al output signal to noise ratio is 23.3dB when the
input varies uniformly from .6§6a0ﬂ) to l'ngaﬂﬁ) .
Output signal to noise rat;os of 24.5dB are achievable
for other y,3- points but this one was chosen since the
output signal to noise ratio near y =.82, g=.15 is es-
sentially constant over a larger region of the y-g plane.
Output signal to noise ratios cf 304B can be achieved
for "non-critical point convergent" schemes_where the
.outputs are much larger than the critical point values.
Tne dynamic response of these noh-convergent schemes,
however, is inferior.

PL.5.1-1 presents the phase plane trajectories (up
to kx =kd =5) for the parameterization: vy =.82,8 =.15
for the inputs: al = .4, .5, .6, .7, .8, .9, 1.0, 1.1,

1.2, 1.3, 1.4, in normalized coordinates
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(al normalized to g a(hi)* a2 normalized to a(hi)L Notice
that the output value of al is the same for inputs that
deviate from 1 (or a little less than 1) by the same
amount. Thus for an input which has small fluctuations
around three amplitudes: A, 2A, and 0 (like the output

of a two input interferometer operating on binary data),
the al output of the PHS would be tightly centered

around some value for the A and 2A inputs and tightly
centered around 0 for the 0 input. Operation of the PHS
in this fashion would make feasible the use of inter-
ferometers as exclusive--or logic gates from which entire
digital computers could be constructed. The speed of such
a logic gate would be limited only by the propagation
delay corresponding to the interferometer and PHS device

lengths.

5.2 Effects of Pulsewidth on Performance of Optimal PHS

This section presents. dynamic response: information
for the optimal PHS of the previqus section. Since this
PHS was optimized for the steady state limit it is expected
that the operation will deteriorate for small pulse widths.
This does not, however, mean that a faster PHS could not
be achieved with the traveling wave device under a dif-

ferent parameterization.
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The waveform used to test the dyhamic response 1s
the logic pulse as defined in 4.3. The exponential rise
and fall times, T , used are: 4; 1; and 1/2.

For each of these rise times-(or pulsewidths, since pulse-
width = 4 17 ) the input amplitudes: al = .6, al = .9,
al = 1.2 (normalized coordinates) are tested.

PL.5.2-1 presents the dynamic response at the device
output for the three input amplitudes when T =4 .
Notice that there is some overshoot for the largest input
amplitude.

PL.5.2-2 presents the dynamic response from the three
input amplitudes when =1 . Pulse height standardiza-
tion is still achieved altﬁough waveform fidelity has
deteriorated somewhat (predominantly for the largest input
amplitude response).

PL.5.2-3 presents the dynamic response for the three
input amplitudes when T=1/2 . The PHS is still
performing its basic function but thé pulse shapes are
deteriorated further with a substantial overshoot for the
response from the input amplitude of 1.2.

If a fast PHS is desired one could try optimizing

- and for the dynamic response. Another method might be
to predistort the pulse with a device of some y and g

such that the pulse edges are slowed before inputting
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the waveform to the PHS. Since, however, in a system
(for either computer or communication applications) the
data is sampled at the center of the pulse, initial over-

shoots are not as critical as one might expect.



CHAPTER VI - Suggestions for Fuvture Reseérch

There are a number of interesting problems remaining
that relate to the proposed travelling wave pulse shaping
device and similar devices. A multimode model could be
easily formulated to describé the coupling of two multimode
waveguides or several single mode waveguides. This model
could be used to explore the possibility of fabricating
mcde selectors/converters as suggested in 3.6.

A more detailed analysis of the dynaﬁic response
would be a fruitful endeavorf Comparisons of the saturable
loss response with the responses of the saturable gain and
dual saturation cases would be interesting. It would also
be useful to examine the effects of different Tl(L)’

Tl(g), PS(L)'and Ps(g)for the dual saturation case. This
could possibly provide some insight into the mechanisms of
picosecond pulse generation in laser diodes as well as

lead to more pulse shaping applicaticns as mentioned in 4.4.
This detailed study of the dynamic response would probably
involve characterization of various input waveforms and
might view the dynamic response as a perturbation of the
steady state case. The various orders of this perturbation
series have closed form representations (available from the
author) which have been shown to be useful in describing the
unperturbed, the slightly perturbed, and the totally

perturbed (i.e. steady state) cases. With this analytic



126

handle on might be able to optimize the design of PHSs
and PWSs, etc., for the dynamic case. The existence of
solitons might be examined by a asympotically expanding
an integral formulation of the equations although the
kd <5 constraint would probably render this study to be
an academic one.

The kd < 5 constraint should be more carefully evalua-
ted. Improvements (larger upper bound) of this restriction
would certainly be useful.

General pulse shaping by a device with a spatially
variant coupling constant would be a challenging and in-
teresting problem. One would attempt to be able to solve
for the required k(z) to pfoduce a given output waveform
from a given input waveform.

"Non-critical point convergent" applications such as
amplifiers and oscillators should also be investigated.

Phase state logic and decision circuits (amplitude
comparators) may prove to be fabricable'froﬁ-tﬂe pﬁlse
shaping structure.

PHSs could also be optimized for specific input dis-
tributions for different system applications as mentioned

in 5.1.
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