
MIT Open Access Articles

GCBF+: A Neural Graph Control Barrier Function
Framework for Distributed Safe Multi-Agent Control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: S. Zhang, O. So, K. Garg and C. Fan, "GCBF+: A Neural Graph Control Barrier Function
Framework for Distributed Safe Multi-Agent Control," in IEEE Transactions on Robotics.

As Published: http://dx.doi.org/10.1109/TRO.2025.3530348

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: https://hdl.handle.net/1721.1/158072

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-ShareAlike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/158072
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

GCBF+: A Neural Graph Control Barrier Function
Framework for Distributed Safe Multi-Agent Control
Songyuan Zhang, Student Member, IEEE, Oswin So, Kunal Garg, Member, IEEE, and Chuchu Fan, Member, IEEE

Abstract—Distributed, scalable, and safe control of large-scale
multi-agent systems is a challenging problem. In this paper, we
design a distributed framework for safe multi-agent control in
large-scale environments with obstacles, where a large number
of agents are required to maintain safety using only local
information and reach their goal locations. We introduce a
new class of certificates, termed graph control barrier function
(GCBF), which are based on the well-established control bar-
rier function theory for safety guarantees and utilize a graph
structure for scalable and generalizable distributed control of
MAS. We develop a novel theoretical framework to prove the
safety of an arbitrary-sized MAS with a single GCBF. We
propose a new training framework GCBF+ that uses graph
neural networks to parameterize a candidate GCBF and a
distributed control policy. The proposed framework is distributed
and is capable of taking point clouds from LiDAR, instead of
actual state information, for real-world robotic applications. We
illustrate the efficacy of the proposed method through various
hardware experiments on a swarm of drones with objectives
ranging from exchanging positions to docking on a moving target
without collision. Additionally, we perform extensive numerical
experiments, where the number and density of agents, as well as
the number of obstacles, increase. Empirical results show that
in complex environments with agents with nonlinear dynamics
(e.g., Crazyflie drones), GCBF+ outperforms the hand-crafted
CBF-based method with the best performance by up to 20% for
relatively small-scale MAS with up to 256 agents, and leading
reinforcement learning (RL) methods by up to 40% for MAS
with 1024 agents. Furthermore, the proposed method does not
compromise on the performance, in terms of goal reaching, for
achieving high safety rates, which is a common trade-off in RL-
based methods.

I. INTRODUCTION

A. Background

Multi-agent systems (MAS) have received tremendous atten-
tion from scholars in different disciplines, including computer
science and robotics, as a means to solve complex problems
by subdividing them into smaller tasks [1]. MAS applications
include but are not limited to warehouse operations [2], [3],
self-driving cars [4], [5], [6], [7], coordinated navigation of
a swarm of drones in a dense forest for search-and-rescue
missions [8], [9]; interested reader is referred to [10] for an
overview of MAS applications. For such safety-critical MASs,
it is important to design controllers that not only guarantee
safety in terms of collision and obstacle avoidance but are also
scalable to large-scale multi-agent problems.

Common MAS motion planning methods include but are
not limited to solving mixed integer linear programs (MILP)

SZ, OS, KG, and CF are with the Department of Aeronautics and Astro-
nautics at MIT, {szhang21,oswinso,kgarg,chuchu}@mit.edu.

Project website: https://mit-realm.github.io/gcbfplus-website/

Fig. 1: 8-Crazyflie swapping with GCBF: We learn a
decentralized graph control barrier function (GCBF) for an
8-agent swapping task on the Crazyflie hardware platform. We
visualize the learned GCBF for the blue agent and draw the
edges with its neighboring agents in grey. The learned GCBF
can handle arbitrary graph topologies and hence can scale to
an arbitrary number of agents without retraining.

for computing safe paths for agents [11], [12] and sampling-
based planning methods such as rapidly exploring random tree
(RRT) [13]. However, such centralized-in-execution approaches,
where the complete MAS state information is used, are not
scalable to large-scale MAS. The recent work [14] performing
distributed trajectory optimization proposes a scalable method
for MAS control. However, this approach cannot take into
account changing neighborhoods and environments, limiting
its applications. There has been quite a lot of development in
the learning-based methods for MAS control in recent years;
see [15] for a detailed overview of learning-based methods
for safe control of MAS. Multi-agent Reinforcement Learning
(MARL)-based approaches, e.g., Multi-agent Proximal Policy
Optimization (MAPPO) [16], have also been adapted to solve
multi-agent motion planning problems. However, when it comes
to RL, one main challenge for safety, particularly in multi-agent
cases, is the tradeoff between the practical performance and the
safety requirement because of the conflicting reward-penalty
structure [15]. We argue that our proposed framework does not
suffer from a similar tradeoff and can automatically balance
satisfying safety requirements and performance criteria through
a carefully designed training loss.

In the past few years, control barrier functions (CBFs)

2

have become a popular tool to encode safety requirements for
robotic systems [17]. For MAS, safety is generally formulated
pair-wise. Therefore, a CBF is assigned for each pair-wise
safety constraint, and approximation methods are used to
combine multiple constraints [18], [19], [20], [21]. While hand-
crafted CBF-based quadratic programs (CBF-QP) have shown
promising results for single-agent systems [22] and simple
(i.e., linear systems or systems with relative degree one) small-
scale multi-agent systems [23], it is difficult to find a CBF
when it comes to highly complex nonlinear systems and large-
scale MAS. Another major challenge with such approaches is
constructing a CBF in the presence of input constraints, e.g.
actuation limits. There are some recent developments on this
topic for MAS, see e.g.,[24]; however, as noted by the authors
in [25], finding a barrier function that satisfies safety conditions
in the presence of input bounds is a complex problem.

B. Our contributions

To overcome these limitations, in this paper, we first
introduce the notion of graph control barrier function, termed
GCBF, for large-scale MAS to address the problems of safety,
scalability, and generalizability. The proposed GCBF can
account for an arbitrary and changing number of neighbors,
and hence, computed for a small-scale MAS, the same GCBF
generalizes to large-scale MAS. We provide a new safety
result using the notion of GCBF that certifies the safety
of MAS of arbitrary size. This is the first such result that
shows the safety of MAS of any size using one barrier
function. Next, we introduce GCBF+, a novel centralized
training distributed execution framework to learn a candidate
GCBF along with a distributed control policy. We use graph
neural networks (GNNs) to capture the changing graphical
topology of distance-based observation information flow. We
propose a novel loss function formulation that accounts for
safety, goal-reaching as well as actuation limits, thereby
addressing the limitations of hand-crafted CBF-QP methods.
Furthermore, the proposed algorithm can work with LiDAR-
based point-cloud observations to handle obstacles in real-
world environments. With these technologies, our proposed
framework can generalize well to many challenging settings,
including crowded and unseen obstacle environments.

To corroborate the practical applicability of the proposed
method, we perform various hardware experiments on a swarm
of Crazyflie drones. The hardware experiments consist of the
drones safely exchanging positions in a crowded workspace in
the presence of static and moving obstacles and docking on a
moving target while maintaining safety. We also perform exten-
sive numerical experiments and provide empirical evidence of
the improved performance of the proposed GCBF+ framework
compared to the prior version of the algorithm (GCBFv0)
in [26], a state-of-the-art MARL method (InforMARL) [27],
MPC method from [28], and hand-crafted CBF-QP methods
from [23]. We consider three 2D environments and two 3D
environments in our numerical experiments consisting of linear
and nonlinear systems. In the obstacle-free case, we train with
8 agents and test with over 1000 agents. In the linear cases, the
performance improvement (in terms of safety rate) is about 5%,

while in the nonlinear cases, the performance improvement is
more than 30%. In the obstacle environment, we consider 8
obstacles in training, while up to 128 obstacles are considered
in testing. These experiments corroborate that the proposed
method outperforms the baseline methods in successfully
completing the tasks in various 2D and 3D environments.

C. Differences from conference version
This paper builds on the conference paper [26] which

presented the GCBFv0 algorithm. We propose a new algorithm
GCBF+ which improves upon GCBFv0 in the following ways.
• Algorithmic modifications: In the prior work, the control

policy was learned to account only for the safety con-
straints, and a CBF-based switching mechanism was used
for switching between a goal-reaching nominal controller
and a safe neural controller. This led to undesirable
behavior and deadlocks in certain situations. Furthermore,
an online policy refinement mechanism was used in [26]
when the learned controller could not satisfy the safety
requirements which required agents to communicate their
control actions for the policy update, adding computational
overhead. We modify how the training loss is defined so
that the safety and goal-reaching requirements do not
conflict, making it possible for the training loss to go
to zero. In this way, we can use a single controller for
both safety and goal-reaching, without an online policy
refinement step for higher safety rates.

• Actuation limits Another major limitation of GCBFv0
is that it does not account for actuator limits which may
result in undesirable behavior when implemented on real-
world robotic systems. In contrast, in the proposed method
in this work, the learned controller considers actuator
limits through a look-ahead mechanism for approximation
of the safe control invariant set. This mechanism ensures
that the learned controller satisfies the actuation limits
while keeping the system safe.

• Theoretical results on generalization While [26] proves
that a GBCF certifies safety for a specific size of the MAS,
it does not prove that the same GCBF certifes safety when
the number of agents changes. We advance this theoretical
result to prove that a GCBF can certify the safety of a
MAS of any size. This brings the theoretical understanding
of the algorithm closer to the empirical results, where
we observe our GCBF+ algorithm scaling to over 1000
agents while being trained with 8 agents.

• Hardware experiments We include various hardware
experiments on a swarm of Crazyflie drones, thereby
demonstrating the practicality of the proposed framework.

• Additional numerical experiments We also include
various new numerical experiments as compared to the
conference version. In particular, we perform experiments
with more realistic system dynamics, such as the 6DOF
Crazyflie drone, in contrast to simpler dynamics used
in the numerical experiments in [26]. Furthermore, we
provide comparisons to new baselines: InforMARL from
[27], which is a better RL-based method for safe MAS
control, MPC from [28], and centralized and distributed
hand-crafted CBF-based methods from [23].

3

• Better performance We illustrate that the new GCBF+
algorithm proposed in this paper has much better per-
formance than the original GCBFv0 algorithm in the
conference version. In particular, in complex environments
consisting of agents with nonlinear dynamics, GCBFv0
has a success rate of less than 10% while GCBF+ has a
success rate of over 55%. Furthermore, in crowded 2D
obstacle environments, GCBFv0 has a success rate close
to 20% while GCBF+ has a success rate of over 95%.

D. Related work

Graph-based methods Graph-based planning approaches
such as prioritized multi-agent path finding (MAPF) [29]
and conflict-based search for MAPF [30] can be used for
multi-agent path planning for known environments. However,
MAPF does not take into account system dynamics and
does not scale to large-scale systems due to computational
complexity. Another line of work for motion planning in
obstacle environments is based on the notion of velocity
obstacles [31] defined using collision cones for velocity. Such
methods can be used for large-scale systems with safety
guarantees under mild assumptions. However, the current
frameworks under this notion assume single or double integrator
dynamics for agents. The work in [32] scales to large-scale
systems, but it only considers a discrete action space and hence
does not apply to robotic platforms that use more general
continuous input signals.

Model predictive control To tackle MAS, distributed
Model predictive control (MPC) methods have been proposed,
incorporating multi-agent path planning and machine learning
[33], [34], [35], [36], [37] with distributed optimization [38],
[39], [40]. Although the computation is distributed, many MPC
works require a central node to perform global information
exchange. In addition, the computation complexity of MPC
methods impedes their scalability.

Centralized CBF-based methods For systems with
relatively simple dynamics, such as single integrator, double
integrator, and unicycle dynamics, it is possible to use a
distance-based CBF [17]. For systems with polynomial dy-
namics, it is possible to use the Sum-of-Squares (SoS) [41]
method to compute a CBF [42]. The key idea of SoS is that
the CBF conditions consist of a set of inequalities, which can
be equivalently expressed as checking whether a polynomial
function is SoS. In this manner, a CBF can be computed
through convex optimization [42], [43], [44]. However, the
SoS-based approaches suffer from the curse of dimensionality
(i.e., the computational complexity grows exponentially with
the degree of polynomials involved) [45].

Distributed CBF-based methods While centralized CBF
is an effective shield for small-scale MAS, due to its poor scal-
ability, it is difficult to use it for large-scale MAS. To address
the scalability problem, distributed CBFs have been developed
[23], [26], [46], [47], [48], [49]. In contrast to centralized CBF
where the state of the MAS is used, for a distributed CBF,
only the local observations and information available from
communication with neighbors are used, reducing the problem
dimension significantly. However, similar to a centralized CBF,

it is difficult to hand-craft decentralized CBF for agents with
nonlinear dynamics and input constraints. Most of the works on
the safety of MAS consider CBF between each pair of agents,
but the resulting control set that satisfies all the pair-wise CBF
conditions along with input constraints can be empty.

Learning CBFs One way of navigating the challenge of
hand-crafting a CBF is to use neural networks (NNs) for
learning a CBF [50]. In the past few years, machine learning
(ML)-based methods have been used to learn CBFs for complex
systems [47], [51], [52], [53], [54] . However, it is challenging
for them to balance safety and task performance for multi-
task problems, and some methods are not scalable to large-
scale multi-agent problems. The Multi-agent Decentralized
CBF (MDCBF) framework in [47] uses an NN-based CBF
designed for MAS. However, they do not encode a method of
distinguishing between other controlled agents and uncontrolled
agents such as static and dynamic obstacles. This can lead to
either conservative behaviors if all the neighbors are treated
as non-cooperative obstacles, or collisions if the obstacles
are treated as cooperative, controlled agents. Furthermore, the
method in [47] does not account for changing graph topology in
their approximation, which can lead to an incorrect evaluation
of the CBF constraints and consequently, failure.

Multi-agent RL The review paper [55] provides a good
overview of the recent developments in multi-agent RL (MARL)
with applications in safe control design (see [56], [57], [58]).
There is also a lot of work on MARL-based approaches with
focuses on motion planning [16], [46], [59], [60], [61], [62].
However, these approaches do not provide safety guarantees
due to the reward structure. One major challenge with MARL
is designing a reward function for MAS that balances safety
and performance. As argued in [63], MARL-based methods
are still in the initial phase of development when it comes to
safe multi-agent motion planning.

GNN-based methods Utilizing the permutation-invariance
property, GNN-based methods have been employed for prob-
lems involving MAS [64], [65], [66]. The Control Admissiblity
Models (CAM)-based framework in [64] uses a GNN frame-
work for safe control design for MAS. However, it involves
sampling control actions from a set defined by CAM and there
are no guarantees that such a set is non-empty, leading to
feasibility-related issues of the approach. Works such as [67],
[68] use GNNs for generalization to unseen environments and
are shown to work on teams of up to a hundred agents. However,
in the absence of an attention mechanism, the computational
cost grows with the number of agents in the neighborhood
and hence, these methods are not scalable to very large-scale
problems (e.g., a team of 1000 agents) due to the computational
bottleneck.

The rest of this article is organized as follows. We formulate
the MAS control problem in Section II. Then, we present
GCBF as a safety certificate for MAS in Section III, and the
framework for learning GCBF and a distributed control policy
in Section IV. Section V presents the implementation details
on the proposed method, while Sections VI and VII present
numerical and hardware experimental results, respectively.
Section VIII presents the conclusions and limitations of the
paper, and proposes directions for future work.

4

II. PROBLEM FORMULATION

Notations In the rest of the paper, R denotes the set of real
numbers and R+ denotes the set of non-negative real numbers.
We use ‖ · ‖ to denote the Euclidean norm. A continuous
function α : R → R is an extended class-K function if it is
strictly increasing and α(0) = 0. We use [·]+ to denote the
function max(0, ·). We drop the arguments t, x whenever clear
from the context. Unless otherwise specified, given a set of
vectors {xi} with xi ∈ X for each i ∈ 1, 2, . . . N and an index
set I, we define x̄I ∈ X |I| as the concatenated vector of the
vectors xi with index i ∈ I from the index set.

We consider designing a distributed control framework to
drive N agents, each denoted with an index from the set
Va := {1, 2, . . . , N}, to their goal locations in an environment
with obstacles while avoiding collisions. The motion of each
agent is governed by general nonlinear control affine dynamics

ẋi = fi(xi) + gi(xi)ui, (1)

where xi ∈ Xi ⊂ Rn and ui ∈ Ui ⊂ Rm are the state, control
input for the i-th agent, respectively and fi : Rn → Rn, gi :
Rn → Rn×m are assumed to be locally Lipschitz continuous.
For simplicity, we restrict our discussion to the case when all
agents have the same underlying dynamics, i.e., where Xi = X ,
Ui = U and fi = f , gi = g for all i ∈ Va. Note that it is also
possible to apply our approach to heterogeneous MAS. For
convenience, we also define the motion of the entire MAS via
the concatenated state vector x̄ := [x1;x2; . . . ;xN] ∈ XN and
ū := [u1;u2; . . . ;uN] ∈ UN , such that (1) can equivalently be
expressed as

˙̄x = f̄(x̄) + ḡ(x̄)ū, (2)

with f̄ and ḡ defined accordingly.
Let P ⊂ Rn denote the set of positions in an n-dimensional

environment (i.e., n = 2 or n = 3). We assume that each
state x ∈ X is associated with a position p ∈ P, and denote
by pi ∈ P the first n elements of xi corresponding to the
positions of each agent i. For each agent i ∈ Va, we consider
a goal position pgi ∈ P, and define p̄g as the concatenated
goal vector. The observation data consists of nrays > 0 evenly-
spaced LiDAR rays originating from each robot and measures
the relative location of obstacles within a sensing radius R >
0. We assume that R is large enough such that there exists
a feasible control input that can keep the agents safe once
an obstacle is observed. For mathematical convenience, we
denote the jth ray from agent i by y(i)

j ∈ X , where the first
n elements of y(i)

j constitute the position of the hitting target
p

(i)
j ∈ P and the last n−n elements are zero padding. We then

denote the aggregated rays as ȳi := [y
(i)
1 ; . . . ; y

(i)
nrays] ∈ Xnrays .

The inter-agent collision avoidance requirement imposes that
each pair of agents maintain a safety distance of 2r while the
obstacle avoidance requirement dictates that |y(i)

j | > r for all
j = 1, 2, . . . , nrays, where r > 0 is the radius of a circle that
can contain the entire physical body of each agent. The control
objective for each agent i is to navigate the obstacle-filled
environment to reach its goal pgi , as described below.

Problem 1. Design a distributed control policy πi such that,
for a set of N agents x̄ and non-colliding goal locations p̄g,

the following holds for the closed-loop trajectories for each
agent i ∈ Va:
• Safety (Obstacles): ‖y(i)

j (t)‖ > r, ∀j = 1, . . . , nrays, t ≥
0, i.e., the agents do not collide with the obstacles.

• Safety (Other Agents): ‖pi(t)−pj(t)‖ > 2r for all t ≥ 0,
j 6= i, i.e., the agents do not collide with each other.

• Liveness: inf
t≥0
‖pi(t)−pgi ‖ = 0, i.e., each agent eventually

reaches its goal location pgi .

To solve Problem 1, we consider the existence of a nominal
controller that satisfies the liveness property but not necessarily
the safety property, and construct a GCBF-based distributed
control policy to additionally satisfy the safety property.

III. GCBF: A SAFETY CERTIFICATE FOR MAS

Based on the algorithm in [26] (GCBFv0), we propose an
improved algorithm, termed GCBF+, to train a graph CBF
(GCBF) that encodes the collision-avoidance constraints based
on the graph structure of MAS. We use GNNs to learn a
candidate GCBF jointly with the collision-avoidance control
policy. Our GNN architecture is capable of handling a variable
number of neighbors and hence results in a distributed and
scalable solution to the safe MAS control problem.

A. Safety for arbitrary sized MAS via graphs

We first review the notion of CBF commonly used in
literature for safety requirements [17]. Consider a system
ẋ = F (x, u) where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and
F : Rn × Rm → Rn. Let C ⊂ X be the 0-superlevel set
of a continuously differentiable function h : X → R, i.e.,
C = {x ∈ X : h(x) ≥ 0}. Then, h is a CBF if there exists an
extended class-K function α : R→ R such that:

sup
u∈U

[
∂h

∂x
F (x, u) + α (h(x))

]
≥ 0, ∀x ∈ X . (3)

Let S ⊂ X denote a safe set with the objective that the system
trajectories do not leave this set. If C ⊂ S , then the existence
of a CBF implies the existence of a control input u that keeps
the system safe [22].

Based on the notion of CBF, we define the new notion of a
GCBF to encode safety for MAS of any size. To do so, we
first define the graph structure we will use in this work.

A directed graph is an ordered pair G = (V,E), where V is
the set of nodes, and E ⊂ {(i, j) | i ∈ Va, j ∈ V } is the set
of edges representing the flow of information from a sender
node (henceforth called a neighbor) j to a receiver agent i.
Let Ñi denote the set of neighbors for agent i ∈ Va. For the
considered MAS, we define the set of nodes V = Va ∪ Vo
to consist of the agents Va and the hitting points of all the
LiDAR rays from all agents denoted as Vo. The edges are
defined between each observed point and the observing agent
when the distance between them is within a sensing radius
R > 2r > 0.

Given n, sensing radius R, safety radius r and nrays, define
M − 1 ∈ N as the maximum number of sender neighbors that
each receiver agent node can have while all the agents in the
neighborhood remain safe. For simplicity, define Ni ⊆ Ñi as

5

the set of M closest neighboring nodes to agent i which also
includes agent i.1 Next, define x̄Ni ∈ XM as the concatenated
vector of xi and the neighbor node states with fixed size M
that is padded with a constant vector if

∣∣Ni∣∣ < M .

Remark 1. We define M as above so that, for any i ∈ Va,
changes in the neighboring indices Ni can only occur without
collision at a distance R (see Appendix A).

B. Graph Control Barrier Functions

We define the safe set SN ⊂ XN of an N -agent MAS as
the set of MAS states x̄ that satisfy the safety properties in
Problem 1, i.e.,

SN :=
{
x̄ ∈ XN

∣∣∣ (∥∥∥y(i)
j

∥∥∥ > r, ∀i ∈ Va,∀j ∈ nrays

)∧
(

min
i,j∈Va,i6=j

‖pi − pj‖ > 2r
)}
.

(4)
Then, the unsafe, or avoid, set of the MAS AN = XN \ SN
is defined as the complement of SN .

We now introduce the notion of GCBF for encoding safety
for MAS. We impose that for a given agent i ∈ Va, a node
j where ‖pi − pj‖ ≥ R does not affect the GCBF h so that
the resulting h is smooth. Specifically, for any neighborhood
set Ni, let N<R

i denote the set of neighbors in Ni that are
strictly inside the sensing radius R as

N<R
i := {j : ‖pi − pj‖ < R, j ∈ Ni}. (5)

Now, we are ready to define GCBF formally.

Definition 1 (GCBF). A continuously differentiable function
h : XM → R is termed as a Graph CBF (GCBF) if there
exists an extended class-K function α and a control policy
πi : XM → U for each agent i ∈ Va of the MAS such that,
for all x̄ ∈ XN with N ≥M ,

ḣ(x̄Ni
) + α(h(x̄Ni

)) ≥ 0 ∀i ∈ Va, (6)

where

ḣ(x̄Ni
) =

∑
j∈Ni

∂h(x̄Ni)

∂xj
(f(xj) + g(xj)uj) , (7)

with uj = πj(x̄Nj
), and the following two conditions hold:

1) The gradient of h with respect to nodes R away is 0, i.e.,

∂h

∂xj
(x̄Ni

) = 0 ∀j ∈ Ni \ N<R
i . (8)

2) The value of h does not change when restricting to
neighbors that are in N<R

i , i.e.,

h(x̄Ni) = h(x̄N<R
i

). (9)

Lemma 1. Given a GCBF h, the function t 7→ h(x̄Ni(t)(t)) is
a continuously differentiable function despite x̄Ni(t)(t) having
discontinuities whenever the set of neighboring indices Ni(t)
for agent i changes.

The proof of Lemma 1 is provided in Appendix B.

1For breaking ties, the agent with the smaller index is chosen.

Agent

Obstacle

Sensing
Radius R=0.5

Fig. 2: GCBF contours: For a fixed neighborhood N0 of
agent 0, we plot the contours of the learned GCBF hθ, projected
on xy-plane, by varying the position p0 of agent 0. Since agent
3 is outside of agent 0’s sensing radius, i.e., not a neighbor of
agent 0, it does not contribute to the value of h(x̄N0).

Remark 2. One way of satisfying the conditions 1) and 2) in
Definition 1 is by taking h to be of the form

h(x̄Ni) = ξ1

(∑
j∈Ni

w(xi, xj) ξ2(xi, xj)

)
, (10)

where ξ1 : Rρ → R and ξ2 : X × X → Rρ are two encoding
functions with ρ the dimension of the feature space, and w :
X ×X → R is a continuously differentiable function such that
w(xi, xj) = 0 and ∂w

∂xj
(xi, xj) = 0 whenever ‖pi − pj‖ ≥ R.

In practice, we use graph attention [69], which takes the form
(10), to realize conditions 1) and 2) in Definition 1, which we
introduce later in Section IV-A.

With Definition 1, a GCBF certifies the forward invariance
of its 0-superlevel set under a suitable choice of control inputs.
For a GCBF h, let Bh ⊂ XM denote the 0-superlevel set of h

Bh := {x̃ ∈ XM | h(x̃) ≥ 0}, (11)

and define CN ⊂ XN as the set of N -agent MAS states where
x̄Ni lie inside Bh for all i ∈ Va, i.e.,

CN :=

N⋂
i=1

CN,i, (12)

where

CN,i := {x̄ ∈ XN | x̄Ni
∈ Bh}. (13)

We now state the result of the safety guarantees of GCBF.

Theorem 1. Suppose h is a GCBF following Definition 1 and
CN ⊂ SN for each N ∈ N. Then, for any N ∈ N, the resulting
closed-loop trajectories of the MAS with initial conditions
x̄(0) ∈ CN under any locally Lipschitz continuous control
input ū : XN → UNsafe satisfy x̄(t) ∈ SN for all t ≥ 0, where

UNsafe :=
{
ū ∈ UN

∣∣∣ ḣ(x̄Ni
) + α(h(x̄Ni

)) ≥ 0, ∀i ∈ Va
}
,

(14)
with the time derivative of h given as in (7).

6

As a result of Theorem 1, the set CN , for any N ∈ N, is
a safe control invariant set [70]. An example of a GCBF is
shown in Figure 2.

Unlike traditional methods of proving forward invariance
using CBFs [22], the proof of Theorem 1 is more involved as
it must handle the dynamics discontinuities that occur when
the neighborhood Ni of agent i ∈ Va changes. We make use
of Lemma 1 to handle such discrete jumps. The proof of
Theorem 1 is provided in Appendix C.

Remark 3. Note that Theorem 1 proves that a GCBF can
certify the safety of a MAS of any size N ∈ N. This is in
contrast to the result in [26], which only proves that a GBCF
can certify safety for a specific N . As a result, the GCBF from
[26], or other notions of CBFs in the prior work, trained on,
say, 8 agents, cannot theoretically certify safety when used for a
MAS of 1000 agents. However, the proposed framework allows
such theoretical certification to carry over from a smaller-
sized MAS to a larger-sized MAS. This brings the theoretical
understanding of the proposed algorithm closer to the empirical
results, where we observe the new GCBF+ algorithm can scale
to over 1000 agents despite being trained with only 8 agents.

Remark 4. Note that the individual CN,i do not all need to be
a subset of SN as long the intersection CN ⊂ SN in Theorem 1.
For example, if SN can be written as the intersection of sets
SN,i, i.e., SN =

⋂N
i=1 SN,i, then it is sufficient that CN,i ⊆

SN,i for all i ∈ Va to obtain that CN ⊆ SN , since

CN :=

N⋂
i=1

CN,i ⊆
N⋂
i=1

SN,i =: SN . (15)

In practice, we take this approach and define SN,i for each
agent i ∈ Va as

SN,i :=
{
x̄ ∈ XN

∣∣∣ (∥∥∥y(i)
j

∥∥∥ > r, ∀j ∈ nrays

)∧
(

min
j∈Va,i6=j

‖pi − pj‖ > 2r
)}
.

(16)

C. Safe control policy synthesis

For the multi-objective Problem 1, in the prior work GCBFv0
[26], we used a hierarchical approach for the goal-reaching and
the safety objectives, where a nominal controller was used for
the liveness requirement. During training, a term is added to
the loss function so that the learned controller is as close to the
nominal controller as possible. In execution, GCBFv0 uses a
switching mechanism to switch between the nominal controller
for goal reaching and the learned controller for collision
avoidance. However, the added loss term corresponding to
the nominal controller competes with the CBF loss terms for
safety, often sacrificing either safety or goal-reaching.

In this work, we use a different mechanism for encoding
the liveness property. Given a nominal controller unom

i =
πnom(xi, p

g
i) for the goal-reaching objective, we design a con-

troller that satisfies the safety constraint using an optimization
framework that minimally deviates from a nominal controller
that only satisfies the liveness requirements.2 Given a GCBF h

2In this work, we use simple controllers, such as LQR and PID-based
nominal controllers in our experiments.

and an extended class-K function α, a solution to the following
centralized optimization problem

min
ū

∑
i∈Va

‖ui − unom
i ‖2, (17a)

s.t. ui ∈ U , ∀i ∈ Va, (17b)∑
j∈Ni

∂h

∂xj

(
f(xj) + g(xj)uj

)
≥ −α(h(x̄Ni

)), ∀i ∈ Va,

(17c)

keeps all agents within the safety region [22]. Note that (17c)
is linear in the decision variables ū. When the input constraint
set U is a convex polytope, (17) is a quadratic program (QP)
and can be solved efficiently online for robotics applications
[17]. We define the policy πQP : XN → UN as the solution
of the QP (17) at the MAS state x̄. Note that (17) is not a
distributed framework for computing the control policy, since
ui is indirectly coupled to the controls of all other agents via the
constraint (17c). Although there is work on using distributed
QP solvers to solve (17) (see e.g., [71]), these approaches are
not easy to use in practice for real-time control synthesis of
large-scale MAS. To this end, we use an NN-based control
policy that does not require solving the centralized QP online.
We present the training setup for jointly learning both GCBF
and a distributed safe control policy in the next section.

IV. GCBF+: FRAMEWORK FOR LEARNING GCBF AND
DISTRIBUTED CONTROL POLICY

A. Neural GCBF and distributed control policy

Drawing on the graph representation of arbitrary sized MAS
introduced in Section III-A, we apply GNNs to learn a GCBF
hθ and distributed control policy πφ for parameters θ, φ. We
transform the MAS graph into input features to be used as the
GNN input by constructing node features and edge features
corresponding to the nodes and edges of the graph G. To learn
a goal-conditioned control policy that can reach different goal
positions, we introduce a goal node and an edge between each
agent and their goal in the input features.

Node features and edge features The node features vi ∈
Rρv encode information specific to each node. In this work, we
take ρv = 3 and use the node features vi to one-hot encode the
type of the node as either an agent node, goal node or LiDAR
ray hitting point node. The edge features eij ∈ Rρe , where
ρe > 0 is the edge dimension, are defined as the information
shared from node j to agent i, which depends on the states of
the nodes i and j. Since the safety objective depends on the
relative positions, one component of the edge features is the
relative position pij = pj − pi. The rest of the edge features
can be chosen depending on the underlying system dynamics,
e.g., relative velocities for double integrator dynamics.

GNN structure Thanks to the ability of GNN to take
variable-sized inputs, we do not need to add padding nor
truncate the input of the GCBF into a fixed-sized vector when∣∣Ñi∣∣ 6= M . We define the input of hθ to be input features

zi =
[
z>i1, . . . , z

>
i|Ñi|

]>
, where zij = [vi, vj , eij]

>. In GNN,
we first encode each zij to the feature space via an MLP ψθ1

7

Loss computation

Backpropagation

Data collectionNominal Policy
𝜋9:;

GCBF
ℎ< , ℎ̇<

QP policy
𝜋=>

Sampled
input features

{𝑧?}

Trained controller
𝜋@

ℒ(𝜃, 𝜙)

Labelled
data

𝒟𝒞 , 𝒟𝒜

ℒCDE(𝜃, 𝜙)

ℒFGHI(𝜙)

Fig. 3: GCBF+ training architecture: The sampled input features are labeled as safe control invariant DC and unsafe DA
using the previous step learned control policy πφ. A nominal control policy πnom for goal reaching is used in a CBF-QP with
the previously learned GCBF hθ to generate πQP. Finally, the QP policy and the GCBF conditions are used to define the loss L.

0.2 0.3 0.4 0.5
Inter-agent distance dij

0.0

0.1

0.2

0.3

A
tte

nt
io

n
w

ei
gh

t w
ij

R = 0.5

Fig. 4: Satisfaction of Definition 1 in practice: The attention
weights wij in (18) are plotted against inter-agent distances
dij for sensing radius R = 0.5 from multiple trajectories.
The weight wij approaches 0 as the inter-agent distance
dij approaches R without explicit supervision, showing that
GCBF+ automatically learns to satisfy conditions 1) and 2) in
Definition 1 via the approach outlined in Remark 2.

to obtain qij = ψθ1(zij). Next, we use graph attention [69] to
aggregate the features of the neighbors of each node, i.e.,

qi =
∑
j∈Ñi

softmax
(
ψθ2(qij)

)︸ ︷︷ ︸
wij

ψθ3(qij), (18)

where ψθ2 and ψθ3 are two NNs parameterized by θ2 and θ3.
ψθ2 is often called “gate” NN in literature [72], and the resulting
attention weights wij ∈ [0, 1] (with

∑
j∈Ni

wij = 1) encode how

important the sender node j is to agent i. Note that applying
attention in GNNs is crucial for satisfying conditions 1) and
2) in Definition 1, which are satisfied in our experiments since
the attention weights and their derivatives go to 0 as the inter-
agent distance goes to R without any additional supervision
(see Remark 2 and Figure 4). The aggregated information qi
in (18) is then passed through another MLP ψθ4 to obtain the
output value hi = ψθ4(qi) of the GCBF for each agent. We
use the same GNN structure for the control policy πφ. Since
the input features zi for agent i only depend on the neighbors
Ñi, the πφ is distributed unlike (17).

B. GCBF+ loss functions

We train the GCBF hθ and the distributed controller πφ
by minimizing the sum of the CBF loss LCBF(θ, φ) and the
control loss Lctrl(φ):

L(θ, φ) = LCBF(θ, φ) + Lctrl(φ). (19)

The CBF loss LCBF(θ, φ) and the control loss Lctrl(φ) are
defined as sums over each agent as

LCBF(θ, φ) :=
∑
i∈Va

LCBF,i(θ, φ), (20a)

Lctrl(φ) :=
∑
i∈Va

Lctrl,i(φ). (20b)

Denote by DC,i,DA,i the set consisting of labeled input
features in the safe control invariant region and unsafe region,
respectively. The CBF loss LCBF,i penalizes violations of the
GCBF condition (6) and the (sufficient) safety requirement that
the 0-superlevel set CN,i is a subset of SN,i (see Remark 4):

LCBF,i(θ, φ) := ηderiv

∑
zi

[
γ − ḣθ(zi)− α(hθ(zi))

]+
+

∑
zi∈DC,i

[γ − hθ(zi)]+ +
∑

zi∈DA,i

[γ + hθ(zi)]
+
, (21)

where γ > 0 is a hyper-parameter to encourage strict
inequalities and ηderiv > 0 weighs the GCBF condition (6).
We use a class-K function α(h) = ᾱh for a constant ᾱ > 0.
From hereafter, we abuse the notation and use α to refer to ᾱ.
The control loss Lctrl,i encourages the learned controller πφ to
remain close to the QP controller πQP (the solution to the QP
(17) with h being the learned hθ in the previous learning step),
which is the closest control to πnom that maintains safety:

Lctrl,i(φ) := ηctrl ‖πφ(zi)− πQP,i(x̄)‖ , (22)

where ηctrl is the control loss weight and πQP,i(x̄) ∈ U is the
i-th component of πQP(x̄). In practice, it is possible that the
QP is infeasible during training. To this end, a relaxation term
ζ ≥ 0 is added to the left-hand side of constraint (17c) along
with a penalty term for ζ with a large coefficient added to the
objective function (17a). Once the CBF loss (20a) converges
to zero, the QP is feasible on the sampled data points.

One of the challenges of evaluating the loss function
L is computing ḣθ. Similar to [64], we estimate ḣθ by

8

(hθ(zi(tk+1))− hθ(zi(tk))) /δt, where δt = tk+1 − tk is
the timestep. Estimating ḣθ may be problematic if the set
of neighbors Ñi changes between tk and tk+1. However,
the learned attention weights satisfy conditions 1) and 2) in
Definition 1 as noted in Section IV-A. Consequently, Lemma 1
implies that hθ is continuously differentiable, and our estimate
of ḣθ is well behaved. Note that ḣθ includes the inputs from
agent i and the neighbor agents j ∈ Ni. Therefore, when
we use gradient descent and backpropagate Li(θ, φ) during
training, the gradients are passed to not only the controller of
agent i but also the controllers of all neighbors in Ñi.3 More
details on the training process are provided in Section V-A.
The training architecture is summarized in Figure 3.

Remark 5. Benefits of the new loss function In the prior
works [26], [47], the nominal policy πnom is used instead
of πQP in Lctrl. As a result, these approaches suffer from a
trade-off between safety and goal-reaching and often learn a
sub-optimal policy that compromises safety for liveness, or
liveness for safety. In contrast, our proposed method allows the
loss to converge to zero, and thus, does not have this trade-off.

Figure 5 plots the trajectories of an agent in the presence
of an obstacle under learned policies with πnom and πQP in
the Lctrl. When πnom is used, for small values of ηctrl, the
learned controller over-prioritizes safety leading to conservative
behavior (the top left plot). For large ηctrl, the learned policy
over-prioritizes goal reaching, leading to unsafe behaviors (the
top right plot). Using an optimal ηctrl, it is possible to get a
desirable behavior as in the top middle plot. In contrast, when
πQP is used in the control loss, the goal-reaching and the
safety losses do not compete with each other and it is possible
to get a desirable behavior without extensive hyper-parameter
tuning as can be seen in the bottom plots in Figure 5. Note that
when πnom is used, even with the optimal value of ηctrl, the
learned input (shown with black arrows) does not align with
the nominal input (shown with orange arrows), meaning that
the total loss may not converge to zero in such formulations
unless the nominal policy is also safe. On the other hand, when
πQP is used, the two control inputs have much more similar
values, which allows for the total loss to converge to 0.

C. Data collection and labeling

The training data {zi} is collected over multiple scenarios
and the loss is calculated by evaluating the CBF conditions
on each sample point. We use an on-policy strategy to collect
data by periodically executing the learned controller πφ, which
helps align the train and test distributions.

When labeling the training data as DC,i or DA,i, it is
important to note that an input feature zi that is not in a
collision may be unable to prevent an inevitable collision in the
future under actuation limits. For example, under acceleration
limits, an agent that is moving too fast may not have enough
time to stop, resulting in an inevitable collision. Therefore, we
cannot naïvely label all the input features as DC,i if they are
not in any collision at the current time step unless there exists

3We re-emphasize the fact the neighbors’ inputs are not required for πφ
during testing.

πBC,i := πnom,i

πBC,i := πQP,i

(GCBFv0)

(GCBF+)

ηctrl = 10−6 ηctrl = 10−4 ηctrl = 10−2

Control Loss = ηctrl∥πϕ,i − πBC,i∥

πϕ,i

πBC,i

Fig. 5: Comparison of the choice of control loss: The learned
policy πφ is sensitive to the choice of ηctrl when using πnom

as in GCBFv0 [26] (top) since a learned policy πφ that is close
to πnom may be unsafe and not satisfy the GCBF conditions
(6). Consequently, choosing ηctrl, which controls the relative
weight between LCBF and Lctrl, becomes a balancing act of
staying close to πnom while remaining safe. In contrast, by
definition of πQP (17), the control πφ is already safe. Hence,
the safety of πφ is not sensitive to ηctrl when using πQP for
the control loss, as in GCBF+.

a control policy that can keep them safe in the future. However,
as noted in [53], [73], [74], [75], computing an infinite horizon
control invariant set for high dimensional nonlinear systems is
computationally challenging, and often, various approximations
are used for such computations. In this work, we use a finite-
time reachable set as an approximation. At any given learning
step, given a graph G, and the corresponding input features
zi, i ∈ Va, we use the learned policy from the previous iteration
to propagate the system trajectories for T timesteps. If the entire
trajectory remains in the safe set SN,i for agent i, then zi is
added to the set DC,i. If there exist collisions in zi, it is added
to the set DA,i. Otherwise, it is left unlabeled. As T → ∞,
this recovers the infinite horizon control invariant set, but is
not tractable to compute. Instead, we choose a large but finite
value of T as a hyperparameter in our numerical experiments.

The training data can be collected and labeled efficiently as
follows. With the learned policy from the previous iteration,
we sample feature trajectories {z0

i , . . . , z
T̄
i } for some T̄ ≥ T .

If any feature zti is unsafe, it is added to DA,i. If T features
zt+1
i , . . . , zt+Ti after a feature zti including itself are all safe,

then zti is added to DC,i. Otherwise, it remains unlabeled.

Remark 6. Importance of control-invariant labels Note that
GCBFv0 [26] does not use the concept of the safe control
invariant set during training. Instead, similar to prior works
[47], [51], the learned CBF is enforced to be positive on the

9

entire safe set SN,i, even for states that are not control invariant.
Prior works attempt to alleviate these issues by estimating the
control-invariant using a shrunk safe set and introducing a
fixed margin between the safe and unsafe sets. However, for
high relative degree dynamics, this margin is state-dependent.
Therefore, this estimation of the control-invariant set does not
result in a true control-invariant set. As noted in [53], if the
safe set SN,i is not control-invariant, then no valid CBF exists
that is positive on SN,i. We later investigate the importance
of the quality of the control-invariant labels (as controlled by
T) in Section VI-C and find that poor approximations of the
control-invariant set CN,i via small values of T leads to large
drops in the safety rate. This provides some insight into the
performance improvements of GCBF+ over GCBFv0.

V. EXPERIMENTS: IMPLEMENTATION DETAILS

In this section, we introduce the details of the experiments,
including the implementation details of GCBF+ and the
baseline algorithms, and the details of each environment.

Environments We conduct experiments on five different
environments consisting of three 2D environments (SingleInte-
grator, DoubleIntegrator, DubinsCar) and two 3D environments
(LinearDrone, CrazyflieDrone). See Appendix D-A for details.
The parameters are R = 0.5, r = 0.05 in all environments.
The total time steps for each experiment is 4096.

Evaluation criteria We use safety rate, reaching rate, and
success rate as the evaluation criteria for the performance of
a chosen algorithm. The safety rate is defined as the ratio
of agents not colliding with either obstacles or other agents
during the experiment period over all agents. As an example,
in a scenario consisting of 100 agents, if 15 agents undergo
a collision at any time step, then the safety rate will be 85%.
The goal reaching rate, or simply, the reaching rate, is defined
as the ratio of agents that reach their goal location by the end
of the experiment period4. The success rate is defined as the
ratio of agents that are safe and reach their goals. For each
environment, we evaluate the performance over 32 instances
of randomly chosen initial and goal locations for 3 policies
trained with different random seeds. We report the mean rates
and their standard deviations for the 32 instances for each of
the 3 policies (i.e., average performance over 96 experiments).

A. Implementation details

Our learning framework contains two neural network models:
the GCBF hθ and the controller πφ. The sizes of the MLP
layers in them are shown in Table I. The resulting trained
control policy is loaded on each agent locally and requires
1.5 MB of memory. To make the training easier, we define πφ
= πNN

φ + πnom, where πNN
φ is the NN controller, so that πNN

φ

only needs to learn the deviation from πnom.
We use Adam [76] to optimize the NNs for 1000 steps

in training. The training time is around 3 hours on a 13th
Gen Intel(R) Core(TM) i7-13700KF CPU @ 3400MHz and
an NVIDIA RTX 3090 GPU. We choose the hyper-parameters

4Note that we do not consider collision dynamics in our experiments and
the agents continue moving after a collision.

TABLE I: Size of layers of the MLP used in the GNN.

MLP Hidden layer size Output layer size

ψθ1 256× 256 128
ψθ2 128× 128 1
ψθ3 256× 256 128
ψθ4 256× 256 1 for hθ and m for πφ

following Table II, where "lr cbf" and "lr policy" denote the
learning rate for hθ and πφ, respectively. We set α = 1.0,
γ = 0.02, and ηderiv = 0.2 for all the environments.

TABLE II: Hyper-parameters used in our training

Environment T ηctrl lr policy lr GCBF

SingleIntegrator 1 10−4 10−5 10−5

DoubleIntegrator 32 10−4 10−5 10−5

DubinsCar 32 10−5 3× 10−5 3× 10−5

LinearDrone 32 10−3 10−5 10−5

CrazyflieDrone 32 3× 10−5 10−5 10−4

B. Baseline methods

We compare GCBF+ with GCBFv0 [26], InforMARL [27],
MPC [28], and centralized and distributed variants of hand-
crafted CBF-QPs [23]. We use a modified version of the
GCBFv0 introduced in [26] where we remove the online policy
refinement step since it requires multiple rounds of inter-agent
communications to exchange control inputs during execution
and does not work in the presence of actuation limits.

The InforMARL algorithm is a variant of MAPPO [16] that
uses a GNN architecture for the actor and critic networks. We
use a reward function that consists of three terms. First, we
penalize deviations from the nominal controller, i.e.,

Rnom,i := −1

2
‖ui − unom

i ‖2 . (23)

To improve performance, we use a sparse reward term for
reaching the goal, i.e.,

Rgoal,i :=

{
1.0, ‖pi − pgi ‖ ≤ 2r

0 otherwise
(24)

Safety is incorporated by adding the following term to the
reward function to penalize collisions, similar to [77], [78]:

Rcol,i := max

{
max
j∈Ñi

Rcol,agent,ij , max
j∈nrays

Rcol,obs,ij

}
, (25)

where

Rcol,agent,ij :=

−1 ‖pi − pj‖ < 2r,

‖pi − pj‖
2r

− 2 2r ≤ ‖pi − pj‖ ≤ 4r,

0 4r < ‖pi − pj‖ ,
(26)

10

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

Si
ng

le
In

te
gr

at
or

D
ou

bl
e

In
te

gr
at

or
D

ub
in

s
C

ar

GCBF+ InforMARL GCBFv0 MPC DecCBF1.0 DecCBF0.1 CBF1.0 CBF0.1

(a) 2D environments

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

8 16 32 64 128 256 512 1024
Number of agents

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

Li
ne

ar
D

ro
ne

C
ra

zy
fli

e
D

ro
ne

GCBF+ InforMARL GCBFv0 MPC DecCBF1.0 DecCBF0.1 CBF1.0 CBF0.1

(b) 3D environments

Fig. 6: Success (left), safety (middle), and reach (right) rates for an increasing number of agents for fixed area width l.

for inter-agent collisions, and

Rcol,obs,ij :=

−1
∥∥∥pi − p(i)

j

∥∥∥ < r,∥∥∥pi − p(i)
j

∥∥∥
2r

− 2 r ≤
∥∥∥pi − p(i)

j

∥∥∥ ≤ 3r,

0 4r <
∥∥∥pi − p(i)

j

∥∥∥ .
(27)

for agent-obstacle collisions. The final reward function is a
sum of the above terms weighted by λnom, λgoal and λcol > 0.

Ri := λnomRnom,i + λgoalRgoal,i + λcolRcol,i (28)

We use a distributed MPC that does not assume inter-agent
communication [28], similar to the other baselines. At each time
step, since the control actions of neighbor agents are unknown,
they are assumed to follow a constant velocity model, and each
agent solves the following H-horizon optimal control problem:

min
ui

‖ui − unom
i ‖2, (29a)

s.t. ui ∈ U , (29b)

xki ∈ SN,i, k = 0, . . . ,H − 1 (29c)

where we use a constant velocity prediction of other agents in
the definition of the safe set SN,i in (29c). In the SingleInte-
grator environment, we estimate the current velocity using the
past two position observations, while in other environments,
velocity is included in agents’ states. The MPC baseline is
implemented in CasADi [79] using the SNOPT [80] optimizer.

For the hand-crafted CBF-QPs, we define a pairwise higher-
order CBF [81] between each pair of agents (i.j)5:

h0 =
∑
l∈P

(pli − plj)2 − (2r)2 (30)

h = ḣ0 + α0h0, (31)

where P = {x, y} for 2D environments and P = {x, y, z} for
3D, α0 ∈ R+ is a constant and r is the radius of the agent. In
the LiDAR environments, we also use a pairwise CBF between
each agent i and its LiDAR hitting points j, defined as

h′0 =
∑
l∈P

(
pli − p(i),l

j

)2

− r2 (32)

h′ = ḣ′0 + α0h
′
0, (33)

5Except for the single integrator environment, where we use the same h0
as in (30) and define h := h0. For the double integrator environment, [23]
proposes a CBF that considers the input constraints, which we compare with
in Section D-B.

11

where p(i),l
j is the l-th position dimension of LiDAR hitting

point p(i)
j . We consider two CBF-QP frameworks [23]:

• Centralized CBF: In this framework, inputs of all the
agents are solved together by setting up a centralized QP
containing CBF constraints of all the agents. In this case,
the CBF condition is

ḣ+ αh ≥ 0, ḣ′ + αh′ ≥ 0. (34)

• Decentralized CBF: In this framework, each agent com-
putes its control input but the CBF condition is shared
between the neighbors as in [23]. Let ẋij = fij(xij) +
gij,i(xij)ui + gij,j(xij)uj denote the combined dynamics
of the pair (i, j) where fij , gij,i, gij,j can be obtained
from combining the agent dynamics. Then, the constraint
used in the agent i’s QP is:

∂h

∂xij
gij,i(xij)ui ≥ −

1

2

(
αh(xij) +

∂h

∂xij
fij(xij)

)
,

(35)

while that in agent j’s QP is:

∂h

∂xij
gij,j(xij)uj ≥ −

1

2

(
αh(xij) +

∂h

∂xij
fij(xij)

)
,

(36)

so that the sum of the constraints (35) and (36) recovers the
CBF condition (34). Since the obstacles are not controlled,
for the agent-LiDAR pair, the constraint used in agent i’s
QP is:

∂h′

∂xij
gij,j(xij)uj ≥ −

(
αh′(xij) +

∂h′

∂xij
fij(xij)

)
.

(37)

For both centralized and decentralized approaches, we design
two baselines with α = 1.0 and α = 0.1, respectively. The
resulting 4 baselines are named CBF1.0, CBF0.1, DecCBF1.0,
and DecCBF0.1, respectively.

VI. NUMERICAL EXPERIMENTS: RESULTS

We conduct simulation experiments to examine the scalabil-
ity, generalizability, and effectiveness of the proposed method.
In all experiments, the initial position of the agents and goals
are uniformly sampled from the set P0 = [0, l]n for an area
width l > 0 which we specify for each environment. The
density of agents can be approximately computed as N/ln.
Hence, a smaller value of l results in a higher density of agents
and thus is more challenging to prevent collisions. We train
GCBF+ and GCBFv0 on an environment with 8 agents and 8
obstacles with l = 4 for 2D and l = 2 for 3D environments.

A. Performance under increasing number of agents

We first perform experiments in an obstacle-free setting
where we test the algorithms for a fixed l but increase the
number of agents N from 8 to 1024. This tests the ability of
each algorithm to maintain safety as the density of agents and
goals in the environment increases by over 100-fold. We use
l = 8 for SingleIntegrator and DoubleIntegrator environments,
l = 16 for the DubinsCar environment, and l = 4 for both the

3D environments6 and show the resulting success rate, safety
rate and reach rate in Figure 6.

Centralized methods do not scale with increasing num-
ber of agents. As expected, the centralized methods (i.e.,
CBF1.0 and CBF0.1) require increasing amounts of compu-
tation time as the number of agents increases. Consequently,
we were unable to test CBF1.0 and CBF0.1 for more than
32 agents in all environments due to exceeding computation
limits.

Hand-crafted CBFs are overly conservative. The decen-
tralized hand-crafted CBF-QP with α = 0.1 has comparable
safety performance to GCBF+. However, it is much more
conservative than GCBF+ and compromises its goal-reaching
ability, as evident from the low reach rates in all environments.
For larger α, the decentralized hand-crafted CBF-QP method
fails to maintain a high safety rate as the controls become
saturated by the control limit. Although the decentralized hand-
crafted CBF can be scaled to a large number of agents assuming
that each agent can perform computation for its control input
locally, in our experiments, we simulate the decentralized
controller on one computer node and hence are constrained
by the memory and computation limits of the computer. Thus,
we could not perform experiments for more than 256 agents.
However, the downward trend of the reaching rate illustrates
that the decentralized hand-crafted CBF-QP method becomes
more conservative as the environment gets denser.

MPC has low safety rates because of the non-cooperative
agents. MPC’s success rate drops significantly in all environ-
ments as the number of agents increases because the agents
do not know the actual actions of other agents and only make
predictions from observations. This problem is exacerbated in
the SingleIntegrator environment where the agent velocities
can change instantaneously. This leads to the predicted motions
of neighboring agents differing significantly from the actual
actions, resulting in low safety rates. On the other hand, for
environments with higher relative degrees, the agent velocities
do not change instantaneously. Consequently, the constant-
velocity model yields relatively more accurate predictions, and
hence, improved safety rates. However, the performance of
MPC is still considerably poorer than that of GCBF+ in all
experiments. This is due to the fact that, while GCBF+ also
does not have access to the control inputs of other agents during
online execution, however, during offline centralized training,
GCBF+ policy has access to the control inputs of other agents
which also come from the same GCBF policy being used by
the different agents. As a result, the GCBF+ policy can ensure
that the GCBF conditions are satisfied. Then, during online
execution, the GCBF condition is satisfied if all other agents
follow the same GCBF policy that was used during offline
training without the need for other agents to communicate
their control inputs. While distributed MPC can be scaled to
more than 256 agents, the computation is carried out on a
single computer in our experiments, and the computational
requirement of MPC exceeds the capability of one computer.
Therefore, we do not test MPC for more than 256 agents.

6 Note that we use more challenging (i.e., smaller) values of l for the 2D
(8, 16 vs 32) and 3D (4 vs 16) as compared to our previous work [26].

12

Lastly, since MPC gets even slower with LiDAR data, we do
not use MPC as a baseline when conducting experiments with
obstacles in Section VI-B.

GCBFv0 struggles with safety for dynamics with high
relative degrees. While GCBFv0 performs comparably on
the SingleIntegrator environment, the performance deteriorates
drastically on all other dynamics. This is because GCBFv0
relies on an accurate hand-crafted safe control invariant set
during training, which is difficult to estimate in the presence
of control limits for dynamics with high relative degrees. The
safe control invariant set is easy to estimate for relative degree
1 environments such as SingleIntegrator, where it can be taken
as the complement of the unsafe set. However, for high relative
degree dynamics with control limits, the naive estimation
method used by GCBFv0 breaks down, causing the safety rate
and thus success rate to drop significantly. Another potential
reason for the poor safety of GCBFv0 is that it uses πnom in
the control loss, which forces a trade-off between safety and
goal-reaching (see Remark 5).

GCBF+ performs well on nonlinear dynamics. We ob-
serve that all methods have lower success rates in environments
that have nonlinear dynamics (DubinsCar, CrazyflieDrone)
compared to ones with linear dynamics (SingleIntegrator,
DoubleIntegrator, LinearDrone). The performance gap between
GCBF+ and other methods is more clear in these challenging
environments. On the DubinsCar environment, GCBF+ achieves
a 44% higher (compared to InforMARL) and 55% higher
(compared to GCBFv0) success rate. On the CrazyflieDrone
environment, GCBF+ achieves a 45% higher (compared to
InforMARL) and 65% higher (compared to GCBFv0) success
rate. Hence, GCBF+ generalizes better than the baseline algo-
rithms, particularly for environments with nonlinear dynamics.

GCBF+ reach rate declines faster than InforMARL and
MPC. While the safety rate for GCBF+ is the best among
the baselines for denser environments, its reach rate declines
as the number of agents increases, while the reach rate for
InforMARL and MPC stays consistently near 100% in all
environments. The main reason for this decline is that GCBF+
focuses on safety and delegates the liveness (i.e., goal-reaching)
requirements to the nominal controller which is unable to
resolve deadlocks. Hence, one potential reason for the lower
reach rates of GCBF+ as the density increases is that the
learned controller is unable to resolve deadlocks that occur
more frequently with increasing density. On the other hand,
InforMARL has a sparse reward term for reaching the goal
(24) and hence, it is incentivized to learn a controller that can
resolve deadlocks at the cost of temporarily deviating from
the nominal controller and sacrificing safety, which is evident
from the significant drop in the safety rate for InforMARL.

B. Performance under increasing number of obstacles

In the next set of simulation experiments, we fix the number
of agents N and the area width l and vary the number of
obstacles present from 0 to 128. For the 2D DoubleIntegrator
environment, we consider (N = 256, l = 16) and (N =
1024, l = 32), where the obstacles are cuboids with side lengths
uniformly sampled from [0.1, 0.5] and each agent generates

32 equally spaced LiDAR rays to detect obstacles. For the
3D LinearDrone environment, we consider (N = 256, l = 8)
and (N = 1024, l = 12), where the obstacles are spheres
with radius uniformly sampled from [0.15, 0.3] and each agent
generates 130 equally spaced LiDAR rays to detect obstacles.

The success rate, safety rate, and reach rate for all cases are
shown in Figure 7. Overall, we observe similar trends as the
previous experiment in Section VI-A. In all environments,
GCBF+ has the highest success rates compared with the
baselines. Trained with just 8 agents and 8 obstacles, GCBF+
can achieve a > 98% success rate with 256 (and 1024)
agents and 128 obstacles. InforMARL performs well but is
behind GCBF+. Other baselines have much lower success
rates compared with GCBF+ and InforMARL. GCBFv0 does
not perform well since it does not account for control limits.
The decentralized hand-crafted CBF-QPs perform poorly in
the 2D environment due to their conservatism and in the 3D
environment due to saturation from the control limits.

C. Sensitivity to hyper-parameters
We next perform a sensitivity analysis of our proposed

method on the DoubleIntegrator environment to investigate the
effect of two hyper-parameters: α and T . The α parameter is
used to define the CBF derivative condition (21), while T is
used to label safe control invariant data and unsafe data (see
Section IV-C). We plot the success, reach, and safety rates
while varying α from 10−2 to 102 in the left plot in Figure 8.
The results showed that using α = 10−2 led to a drop in the
reach rate, while using α = 102 led to a drop in the safety rate.
This behavior can be attributed to the fact that for very small
values of α, the CBF condition becomes overly conservative,
resulting in poor goal-reaching. For very large values of α,
safety can be compromised as the CBF condition allows the
system to move towards the unsafe set at a faster rate. This,
along with the fact that the control inputs are constrained, may
lead to a violation of safety. Note that for α ∈ [0.1, 10], the
performance of GCBF+ does not change much. This implies
that GCBF+ is robust to a large range of α.

The right plot in Figure 8 analyzes the performance of
GCBF+ for varying prediction horizons T ∈ [4, 64] for labeling
the data to be safe control invariant or unsafe for training. For
a very small horizon T = 4, the safety rate drops as the
resulting approximation of the safe control invariant set is poor.
For a very large horizon T = 64, the algorithm becomes too
conservative, requiring longer training times to converge. For
the chosen fixed number of training steps, we observe that the
resulting controller, while maintaining 100% safety, achieves
98% goal-reaching rate. However, as observed from the plots,
GCBF+ is mildly sensitive to this parameter only at its extreme
values, and almost insensitive in the nominal range T ∈ [8, 32].

As InforMARL has the best performance among baselines,
we analyze its sensitivity as well. Figure 9 analyzes the
sensitivity of the performance of InforMARL to the weight
λcol that dictates the penalty for collision in the RL reward
function 28. It can be observed that for a relatively small
range of λcol ∈ [1, 10], InforMARL achieves high performance.
For smaller values of this weight, the RL-based method over-
prioritizes goal-reaching, compromising on safety, and for larger

13

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

0 2 4 8 16 32 64 128
Number of obstacles

0
20
40
60
80

100

Su
cc

es
s r

at
e

(%
)

0 2 4 8 16 32 64 128
Number of obstacles

0
20
40
60
80

100

Sa
fe

ty
 ra

te
 (%

)

0 2 4 8 16 32 64 128
Number of obstacles

0
20
40
60
80

100

R
ea

ch
 ra

te
 (%

)

O
bs

ta
cl

e2
D

25
6

O
bs

ta
cl

e3
D

25
6

O
bs

ta
cl

e2
D

10
24

O
bs

ta
cl

e3
D

10
24

GCBF+ InforMARL GCBFv0 DecCBF1.0 DecCBF0.1

Fig. 7: Obstacle environment performance: Success (left), safety (middle), and reach (right) rates for the obstacle environment
in one 2D and one 3D environment, namely, DoubleIntegrator and LinearDrone environments. In these experiments, the number
of agents as well as the area size are kept constant while the number of obstacles are increased. The first set of experiments
is conducted on 256 agents with all the baselines. The second set of experiments is conducted with 1024 agents with only
GCBF and InforMARL for comparison since we were unable to simulate other baselines for more than 256 agents due to
computational limits.

10 2 10 1 100 101 1020
20
40
60
80

100

R
at

es
 (%

)

Safety rate Reach rate Success rate

4 8 16 32 64
T

75
80
85
90
95

100

R
at

es
 (%

)

Safety rate Reach rate Success rate

Fig. 8: Left: Sensitivity of GCBF+ to the CBF class−K function parameter α. Right: Sensitivity of GCBF+ to prediction
horizon T for computation of the control invariant set Sc,i.

10 2 10 1 100 101 102

col

0
20
40
60
80

100

R
at

es
 (%

)

Safety rate Reach rate Success rate

Fig. 9: Sensitivity of InforMARL to the weight λcol in (28).

values of this weight, the goal-reaching performance is poor
due to over-prioritization of the system safety.

These experiments illustrate that the proposed algorithm
GCBF+ is not as sensitive to its crucial hyper-parameters as
InforMARL, and hence, does not require fine-tuning of such
parameters to obtain desirable results.

VII. HARDWARE EXPERIMENTS

We conduct hardware experiments on a swarm of Crazyflie
(CF) 2.1 platform7 to illustrate the applicability of GCBF+ on
real robotic systems. We conduct three sets of experiments as
discussed below. The hardware setup is illustrated in Figure 10.
To communicate with the CFs, two Crazyradios are used.
Localization is performed using the Lighthouse localization
system8. Four SteamVR Base Station 2.09 are mounted on
tripods and placed on the corners of the flight area.

A. Control architecture

An overview of the hardware control architecture is shown
in Figure 11. Computation is split into onboard, i.e., on the
CF micro-controller unit (MCU), and off-board, i.e., a laptop

7https://www.bitcraze.io/products/crazyflie-2-1/
8http://tinyurl.com/CFlighthouse
9http://tinyurl.com/lighthouseV2S

14

(a) (b) (c) (d)

Fig. 10: Hardware experiment setup: (a) The overall experimental setup with ground robots, CF drones and the motion
capture system. (b) Setup for the position exchange with large static obstacles. (c) Setup for the position exchange with a drone
acting as a moving obstacle, which is mounted on a tripod to be moved around randomly. (d) Setup for tracking and landing
on a moving platform.

Fig. 11: Hardware Control Architecture for Crazyflies

connected to the CFs over Crazyradio. Offboard computation
happens on a laptop connected to the CFs over Crazyradios.
To communicate with the Crazyflies, we use the crazyswarm2
ROS2 package10, which allows for receiving full state estimates
from and sending control commands to the CFs. We use a
single ROS2 node for the off-board computations at 50 Hz.

Task Specific Logic The state estimates are used to compute
a task-specific goal position for each of the CFs. For the
swapping tasks, the goals do not change. For the docking task,
we take the location of the Turtlebots to be the goal position.

GCBF+ Controller The goal positions and the state esti-
mates (position and velocities) are next used to compute target
accelerations for each CF using the GCBF+ controller. This
GCBF+ controller is trained using double integrator dynamics.

Ideal Dynamics Model To track the computed de-
sired accelerations from GCBF+, we make use of the
cmd_full_state11 interface in crazyswarm2. However,
cmd_full_state requires set points for the whole state
(i.e., also position and velocity) instead of just accelerations.
To resolve this problem, we simulate the ideal dynamics model
(i.e., double integrator) used for training GCBF+ and take the
resulting future positions and velocities that would result from
applying the desired accelerations after some duration ∆t. We
used ∆t = 50ms in our hardware experiments.

We do not modify the onboard computation. The received
full state set points are used as set points for a cascaded PID
controller, as described in the Crazyflie documentation12.

B. Experimental results
We conduct the following three sets of hardware experiments.

10https://github.com/IMRCLab/crazyswarm2
11http://tinyurl.com/CFcmdFullS
12http://tinyurl.com/CFCasCadePID

Position exchange In this experiment, we arrange the CF
drones in a circular configuration with the objective of each
drone exchanging position with the diagonally opposite drone.
We perform experiments with up to 8 drones. This is a typical
experiment setting used for illustration of the capability of an
algorithm to maintain safety where there are many inter-agent
interactions. The resulting trajectories of the drones are plotted
in Figure 12(a-b). As can be observed from the figure, the CF
drones maintain the required safe distance and land safely at
their desired location.

To further validate the efficacy of GCBF+ on physical robots,
we perform the position exchange experiment with 6 drones in
32 trials. The distribution of the minimum distance between
CF drones is shown in Figure 13. We can observe that the
GCBF+ controller successfully avoids collisions in all trials.

Position exchange with static obstacles In this experiment,
we introduce large obstacles to the position exchange experi-
ment as illustrated in Figure 10(b). Since the CF drones do not
have lidar sensors, the lidar observations are simulated using
the current position of the drones. We perform experiments with
6 drones, and the experimental results show that the success
rate is 100% for all 8 experiments.

Position exchange with moving obstacle In this exper-
iment, we add a moving obstacle to the setup from the
previous experiment to show the generalization ability of
GCBF+ to unseen scenarios. The moving obstacle is moved
arbitrarily around the environment by a human subject. The
path of the moving obstacle is not known beforehand by the
controlled CF drones. The moving obstacle is the same size as
a Crazyflie drone and moves with the same maximum speed
as the controlled drones. Figures 12(c-d) illustrate that safety
is maintained at all times.

Tracking and landing on moving target In this experi-
ment, the CF drones are required to track a moving ground
vehicle and land on it. For this experiment, instead of a simple
LQR controller, a back-stepping controller is used as a nominal
controller that can track a moving target with time-varying
acceleration. We use four Turtlebot 3 mobile robots13 as the
moving target, equipped with a platform on its top where a CF
drone can land. Initially, one CF drone is placed on each of the
Turtlebots. The drones take off and start tracking the diagonally
opposite moving target, while the Turtlebots move in a circular

13https://www.turtlebot.com/turtlebot3/

15

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0.0 2.5 5.0 7.5 10.0
Time (s)

0.0

0.5

1.0

M
in

 d
is

ta
nc

e
(m

)

0

1

2

3

4

5

6

7

1

2

3

4

5

6

0 2 4 6
Time (s)

0.00

0.25

0.50

0.75

M
in

 d
is

ta
nc

e
(m

)
0

1
2

3
4

5

Obstacle

Obstacle

1

1

2

2

3

3

4

5

6

4

5

6

0 10 20 30
Time (s)

0.0

0.5

1.0

M
in

 d
is

ta
nc

e
(m

)

0
1

2
3

4
5

1

1

2

2

3 3

4

4

0 5 10 15
Time (s)

0.0

0.5

1.0

M
in

 d
is

ta
nc

e
(m

)

0

1
2
3

Position Exchange
Position Exchange
with Static Obstacle

Position Exchange
with Moving Obstacle

Tracking and Docking
on Moving Target

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 12: Hardware Experiment Results: (a,c,e,g) Time-lapse illustration of a Crazyflie swarm controlled via GCBF+. (b,d,f,h)
The associated minimum distances for each agent to other agents and obstacles.

0.00 0.05 0.10 0.15
Min distance (m)

0

5

10

Fr
eq

ue
nc

y

Fig. 13: Distribution of the minimum distance between
Crazyflies in the position exchange task.

trajectory. From Figures 12(e-f), the drones successfully land
on the moving targets while maintaining safety with each other
in this dynamically changing environment. This illustrates the
generalizability of GCBF+ to a variety of control problems.

Experiment videos The experiment videos are available at
https://mit-realm.github.io/gcbfplus-website/.

VIII. CONCLUSIONS

In this paper, we introduce a new class of graph control
barrier function, termed GCBF, to encode inter-agent and
obstacle collision avoidance in a large-scale MAS. We propose
GCBF+, a training framework that utilizes GNNs for learning
a GCBF candidate and a distributed control policy using
only local observations. The proposed framework can also
incorporate LiDAR point-cloud observations instead of actual
obstacle locations, for real-world applications. Numerical
experiments illustrate the efficacy of the proposed framework
in achieving high safety rates in dense multi-agent problems
and its superiority over the baselines for MAS consisting
of nonlinear dynamical agents. Trained on 8 agents, GCBF+
achieves over 80% safety rate in environments with more than
1000 agents, demonstrating its generalizability and scalability.
A major advantage of the GCBF+ algorithm is that it does not
have a trade-off between safety and performance, as is the case

with reinforcement learning (RL)-based methods. Furthermore,
hardware experiments demonstrate its applicability to real-
world robotic systems.

The proposed work has a few limitations. In the current
framework, there is no cooperation among the controlled agents,
which leads to conservative behaviors. In certain scenarios,
this can also lead to deadlocks resulting in a lower reaching
rate, as observed in the numerical experiments as well. We
are currently investigating methods of designing a high-level
planner that can resolve such deadlocks and lead to improved
performance. Similar to other NN-based control policies, the
proposed method also suffers from difficulty in providing
formal guarantees of correctness. In particular, it is difficult, if
not impossible, to verify that the proposed algorithm can always
keep the system safe via formal verification of the learned
neural networks (see Appendix 1 in [82] on NP-completeness
of NN-verification problem). This informs our future line of
work on looking into methods of verification of the correctness
of the control policy. Lastly, in this work, we assumed that all
the agents have the same underlying dynamics for simplicity.
For heterogeneous MAS where agent dynamics are different,
the type of agents can be encoded in node features. In addition,
edge features can be chosen so that the shared information is
the same for different types of nodes. We leave the extension
of our method for heterogeneous systems as future work.

ACKNOWLEDGMENTS

This work was partly supported by the National Science
Foundation (NSF) CAREER Award #CCF-2238030, the MIT
Lincoln Lab under the Safety in Aerobatic Flight Regimes
(SAFR) program, and the MIT-DSTA program. Any opinions,
findings, conclusions, or recommendations expressed in this
publication are those of the authors and don’t necessarily reflect
the views of the sponsors.

REFERENCES

[1] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28 573–28 593, 2018.

16

[2] B. Li and H. Ma, “Double-deck multi-agent pickup and delivery: Multi-
robot rearrangement in large-scale warehouses,” IEEE Robotics and
Automation Letters, vol. 8, no. 6, pp. 3701–3708, 2023.

[3] A. Kattepur, H. K. Rath, A. Simha, and A. Mukherjee, “Distributed
optimization in multi-agent robotics for industry 4.0 warehouses,” in
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018, pp. 808–815.

[4] L. M. Schmidt, J. Brosig, A. Plinge, B. M. Eskofier, and C. Mutschler,
“An introduction to multi-agent reinforcement learning and review of its
application to autonomous mobility,” in 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022,
pp. 1342–1349.

[5] P. Palanisamy, “Multi-agent connected autonomous driving using deep
reinforcement learning,” in 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2020, pp. 1–7.

[6] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang,
M. Alban, I. Fadakar, Z. Chen et al., “Smarts: An open-source scalable
multi-agent rl training school for autonomous driving,” in Conference
on Robot Learning. PMLR, 2021, pp. 264–285.

[7] S. Zhang, Y. Xiu, G. Qu, and C. Fan, “Compositional neural certificates
for networked dynamical systems,” in Learning for Dynamics and Control
Conference. PMLR, 2023, pp. 272–285.

[8] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How, “Search
and rescue under the forest canopy using multiple uavs,” The International
Journal of Robotics Research, vol. 39, no. 10-11, pp. 1201–1221, 2020.

[9] K. A. Ghamry, M. A. Kamel, and Y. Zhang, “Multiple uavs in forest fire
fighting mission using particle swarm optimization,” in 2017 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017, pp.
1404–1409.

[10] C. Ju, J. Kim, J. Seol, and H. I. Son, “A review on multirobot systems
in agriculture,” Computers and Electronics in Agriculture, vol. 202, p.
107336, 2022.

[11] J. Chen, J. Li, C. Fan, and B. C. Williams, “Scalable and safe multi-agent
motion planning with nonlinear dynamics and bounded disturbances,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
2021, pp. 11 237–11 245.

[12] R. J. Afonso, M. R. Maximo, and R. K. Galvão, “Task allocation
and trajectory planning for multiple agents in the presence of obstacle
and connectivity constraints with mixed-integer linear programming,”
International Journal of Robust and Nonlinear Control, vol. 30, no. 14,
pp. 5464–5491, 2020.

[13] J. Netter, G. P. Kontoudis, and K. G. Vamvoudakis, “Bounded rational
rrt-qx: Multi-agent motion planning in dynamic human-like environments
using cognitive hierarchy and q-learning,” in 2021 60th IEEE Conference
on Decision and Control (CDC). IEEE, 2021, pp. 3597–3602.

[14] A. D. Saravanos, Y. Aoyama, H. Zhu, and E. A. Theodorou, “Distributed
differential dynamic programming architectures for large-scale multiagent
control,” IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4387–4407,
2023.

[15] K. Garg, S. Zhang, O. So, C. Dawson, and C. Fan, “Learning safe control
for multi-robot systems: Methods, verification, and open challenges,”
2023, arXiv:2311.13714.

[16] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of ppo in cooperative multi-agent games,”
Advances in Neural Information Processing Systems, vol. 35, pp. 24 611–
24 624, 2022.

[17] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European Control Conference (ECC). IEEE, 2019, pp. 3420–3431.

[18] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE Control Systems Letters,
vol. 1, no. 2, pp. 310–315, 2017.

[19] M. Jankovic and M. Santillo, “Collision avoidance and liveness of multi-
agent systems with cbf-based controllers,” in 2021 60th IEEE Conference
on Decision and Control (CDC). IEEE, 2021, pp. 6822–6828.

[20] R. Cheng, M. J. Khojasteh, A. D. Ames, and J. W. Burdick, “Safe multi-
agent interaction through robust control barrier functions with learned
uncertainties,” in 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE, 2020, pp. 777–783.

[21] K. Garg and D. Panagou, “Robust control barrier and control lyapunov
functions with fixed-time convergence guarantees,” in 2021 American
Control Conference (ACC). IEEE, 2021, pp. 2292–2297.

[22] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[23] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[24] Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance
for multi-robot operations with limited actuation: A control barrier
function approach,” IEEE Control Systems Letters, vol. 5, no. 1, pp.
127–132, 2020.

[25] D. R. Agrawal and D. Panagou, “Safe control synthesis via input
constrained control barrier functions,” in 2021 60th IEEE Conference on
Decision and Control (CDC). IEEE, 2021, pp. 6113–6118.

[26] S. Zhang, K. Garg, and C. Fan, “Neural graph control barrier functions
guided distributed collision-avoidance multi-agent control,” in 7th Annual
Conference on Robot Learning, 2023.

[27] S. Nayak, K. Choi, W. Ding, S. Dolan, K. Gopalakrishnan, and
H. Balakrishnan, “Scalable multi-agent reinforcement learning through
intelligent information aggregation,” in International Conference on
Machine Learning. PMLR, 2023, pp. 25 817–25 833.

[28] A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers, and
P. Patrinos, “Embedded nonlinear model predictive control for obstacle
avoidance using panoc,” in 2018 European control conference (ECC).
IEEE, 2018, pp. 1523–1528.

[29] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
7643–7650.

[30] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[31] S. H. Arul and D. Manocha, “V-rvo: Decentralized multi-agent collision
avoidance using voronoi diagrams and reciprocal velocity obstacles,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021, pp. 8097–8104.

[32] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu,
“Magent: A many-agent reinforcement learning platform for artificial
collective intelligence,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[33] P. Wang and B. Ding, “A synthesis approach of distributed model
predictive control for homogeneous multi-agent system with collision
avoidance,” International Journal of Control, vol. 87, no. 1, pp. 52–63,
2014.

[34] C. Toumieh and A. Lambert, “Decentralized multi-agent planning using
model predictive control and time-aware safe corridors,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 11 110–11 117, 2022.

[35] E. L. Zhu, Y. R. Stürz, U. Rosolia, and F. Borrelli, “Trajectory
optimization for nonlinear multi-agent systems using decentralized
learning model predictive control,” in 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, 2020, pp. 6198–6203.

[36] G. Fedele and G. Franzè, “A distributed model predictive control strategy
for constrained multi-agent systems: The uncertain target capturing
scenario,” IEEE Transactions on Automation Science and Engineering,
2023.

[37] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382, 2019.

[38] C. Conte, T. Summers, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Computational aspects of distributed optimization in model predictive
control,” in 2012 IEEE 51st IEEE conference on decision and control
(CDC). IEEE, 2012, pp. 6819–6824.

[39] A. Nedić and J. Liu, “Distributed optimization for control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–
103, 2018.

[40] P. Mestres and J. Cortés, “Distributed and anytime algorithm for network
optimization problems with separable structure,” in 2023 62nd IEEE
Conference on Decision and Control (CDC). IEEE, 2023, pp. 5463–
5468.

[41] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing sostools:
A general purpose sum of squares programming solver,” in Proceedings
of the 41st IEEE Conference on Decision and Control, 2002., vol. 1.
IEEE, 2002, pp. 741–746.

[42] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
control,” IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 3, pp. 1216–1229, 2017.

[43] M. Srinivasan, M. Abate, G. Nilsson, and S. Coogan, “Extent-compatible
control barrier functions,” Systems & Control Letters, vol. 150, p. 104895,
2021.

17

[44] P. Zhao, R. Ghabcheloo, Y. Cheng, H. Abdi, and N. Hovakimyan, “Convex
synthesis of control barrier functions under input constraints,” IEEE
Control Systems Letters, 2023.

[45] A. A. Ahmadi and A. Majumdar, “Some applications of polynomial
optimization in operations research and real-time decision making,”
Optimization Letters, vol. 10, pp. 709–729, 2016.

[46] Z. Cai, H. Cao, W. Lu, L. Zhang, and H. Xiong, “Safe multi-agent
reinforcement learning through decentralized multiple control barrier
functions,” arXiv preprint arXiv:2103.12553, 2021.

[47] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe
multi-agent control with decentralized neural barrier certificates,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=P6_q1BRxY8Q

[48] V. N. Fernandez-Ayala, X. Tan, and D. V. Dimarogonas, “Distributed bar-
rier function-enabled human-in-the-loop control for multi-robot systems,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 7706–7712.

[49] H. Wang, A. Papachristodoulou, and K. Margellos, “Distributed control
design and safety verification for multi-agent systems.” IEEE, 2024,
pp. 5481–5486.

[50] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control,” IEEE Transactions on Robotics, 2023.

[51] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control
using robust neural lyapunov-barrier functions,” in Conference on Robot
Learning. PMLR, 2022, pp. 1724–1735.

[52] Z. Qin, D. Sun, and C. Fan, “Sablas: Learning safe control for black-box
dynamical systems,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 1928–1935, 2022.

[53] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and
C. Fan, “How to train your neural control barrier function: Learning
safety filters for complex input-constrained systems,” arXiv preprint
arXiv:2310.15478, 2023.

[54] Y. Meng, Z. Qin, and C. Fan, “Reactive and safe road user simulations
using neural barrier certificates,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
6299–6306.

[55] J. Dinneweth, A. Boubezoul, R. Mandiau, and S. Espié, “Multi-agent
reinforcement learning for autonomous vehicles: a survey,” Autonomous
Intelligent Systems, vol. 2, no. 1, p. 27, 2022.

[56] W. Zhang, O. Bastani, and V. Kumar, “Mamps: Safe multi-agent
reinforcement learning via model predictive shielding,” arXiv preprint
arXiv:1910.12639, 2019.

[57] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint optimization
of multi-uav target assignment and path planning based on multi-agent
reinforcement learning,” IEEE access, vol. 7, pp. 146 264–146 272, 2019.

[58] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 3052–3059.

[59] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.

[60] Z. Dai, T. Zhou, K. Shao, D. H. Mguni, B. Wang, and H. Jianye,
“Socially-attentive policy optimization in multi-agent self-driving system,”
in Conference on Robot Learning. PMLR, 2023, pp. 946–955.

[61] X. Pan, M. Liu, F. Zhong, Y. Yang, S.-C. Zhu, and Y. Wang, “Mate:
Benchmarking multi-agent reinforcement learning in distributed target
coverage control,” Advances in Neural Information Processing Systems,
vol. 35, pp. 27 862–27 879, 2022.

[62] B. Wang, J. Xie, and N. Atanasov, “Darl1n: Distributed multi-agent
reinforcement learning with one-hop neighbors,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 9003–9010.

[63] Y. Wang, M. Damani, P. Wang, Y. Cao, and G. Sartoretti, “Distributed
reinforcement learning for robot teams: a review,” Current Robotics
Reports, vol. 3, no. 4, pp. 239–257, 2022.

[64] C. Yu, H. Yu, and S. Gao, “Learning control admissibility models with
graph neural networks for multi-agent navigation,” in Conference on
Robot Learning. PMLR, 2023, pp. 934–945.

[65] J. Blumenkamp, S. Morad, J. Gielis, Q. Li, and A. Prorok, “A framework
for real-world multi-robot systems running decentralized gnn-based
policies,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 8772–8778.

[66] X. Jia, L. Sun, H. Zhao, M. Tomizuka, and W. Zhan, “Multi-agent
trajectory prediction by combining egocentric and allocentric views,” in
Conference on Robot Learning. PMLR, 2022, pp. 1434–1443.

[67] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage
and exploration using spatial graph neural networks,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 8944–8950.

[68] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
11 785–11 792.

[69] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International Conference on Machine Learning. PMLR, 2019, pp.
3835–3845.

[70] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp.
1747–1767, 1999.

[71] M. A. Pereira, A. D. Saravanos, O. So, and E. A. Theodorou, “Decen-
tralized safe multi-agent stochastic optimal control using deep FBSDEs
and ADMM,” in Robotics: Science and Systems, 2022.

[72] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[73] K.-C. Hsu, V. Rubies-Royo, C. Tomlin, and J. F. Fisac, “Safety and
Liveness Guarantees through Reach-Avoid Reinforcement Learning,” in
Proceedings of Robotics: Science and Systems, Virtual, July 2021.

[74] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 8550–8556.

[75] L. Schäfer, F. Gruber, and M. Althoff, “Scalable computation of robust
control invariant sets of nonlinear systems,” IEEE Transactions on
Automatic Control, 2023.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[77] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How, “Multi-
agent motion planning for dense and dynamic environments via deep
reinforcement learning,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3221–3226, 2020.

[78] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE International Conference on Robotics and
Automation. IEEE, 2017, pp. 285–292.

[79] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi:
a software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.

[80] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[81] Q. Nguyen and K. Sreenath, “Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC). IEEE, 2016, pp. 322–328.

[82] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in Computer Aided Verification: 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30.
Springer, 2017, pp. 97–117.

[83] H. K. Khalil, “Nonlinear systems third edition,” Patience Hall, vol. 115,
2002.

[84] C. Budaciu, N. Botezatu, M. Kloetzer, and A. Burlacu, “On the
evaluation of the crazyflie modular quadcopter system,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2019, pp. 1189–1195.

APPENDIX A
PROOF OF THE CLAIM IN REMARK 1

For any i ∈ Va, by definition of M and the continuity of
the position of nodes, changes in the neighboring indices Ni
can only occur without collision at a distance R. To see this,
we consider the following three cases.
Case 1:

∣∣∣Ñi∣∣∣ < M , i.e., the number of neighbors is less

than M . In this case, Ni = Ñi and hence, a node j is added
or removed to Ni = Ñi when it enters or leaves the sensing
radius R.
Case 2:

∣∣∣Ñi∣∣∣ > M , i.e., the number of neighbors is more
than M . In this case, there are more than M − 1 neighbors of

18

agent i within sensing radius R, which, from the definition of
M , implies that the MAS is unsafe.
Case 3:

∣∣∣Ñi∣∣∣ = M , i.e., the number of neighbors is M . In

this case, if a neighbor is added to Ñi without any other agent
leaving the set Ñi, then we obtain Case 2 and the MAS is
unsafe. If a node j is removed with no other neighbors added
to Ñi, then this happens when j leaves the sensing radius R.
Finally, if a node j is removed at the same time that a node
k is added without changing the size of |Ni| = M , by the
continuity of the position dynamics there exists a time t where
both nodes are at the same distance R from pi. However, this
implies that |Ni| = M + 1, and the MAS is unsafe by Case 2.

Consequently, changes in the neighboring indices Ni can
only occur without collision at a distance R.

APPENDIX B
PROOF OF LEMMA 1

Proof: For convenience, define h̃ : R→ R as

h̃(t) := h(x̄Ni(t)(t)). (38)

In order to prove continuous differentiability of h̃ at each t,
consider two cases, namely time instants when the neighbor-
hood Ni(t) changes due to additional or removal of a neighbor
node, and time instants when there is no change in Ni(t). First,
consider t = t0 such that the neighborhood set Ni(t) does
not change at t0, i.e., limt↑t0 Ni(t) = limt↓t0 Nt(t) = Ni(t0).
Since h and x̄Ni

are continuously differentiable at t = t0, we
obtain that h̃ is continuously differentiable at t = t0.

Now, consider the case when Ni changes at t = t0. For the
sake of brevity, denote the neighborhood before the change
as N−i , and the neighborhood after the change as N+

i , i.e.,
N−i = limt↑t0 Ni(t) and N+

i = limt↓t0 Ni(t). Using 2) from
Definition 1, h̃ is continuous at t = t0. Moreover, using 2)
from Definition 1 on t < t0 and t ≥ t0 separately yields the
one-sided limits

lim
t↑t0

h(x̄N−i
(t))− h(x̄N+

i
(t0))

t− t0
= 0, (39)

and

lim
t↓t0

h(x̄N+
i

(t))− h(x̄N+
i

(t0))

t− t0
= 0. (40)

This, along with 1) from Definition 1 (i.e., the gradient of h
is zero at t0) implies that the derivative of h̃ exists at t0 and
is continuous. Hence, h̃ is continuously differentiable for all t.

APPENDIX C
PROOF OF THEOREM 1

Proof: Consider any i ∈ Va. We first prove that x̄Ni
(t) ∈

Bh for all t ≥ 0. Define tk for k ∈ N with t0 = 0, such that
Ni is constant on the time segments [tk, tk+1) for all i14 i.e.,

tk := inf{t > tk−1 | ∃i : Ni(t) 6= Ni(tk)}, k ≥ 1. (41)

14A Zeno behavior is not possible because of the smoothness of the control
input.

For each such interval [tk, tk+1), suppose that h(x̄Ni
(tk)) ≥ 0.

Then, using [83, Lemma 3.4] on the function t 7→ h(x̄Ni(t))
along with (6) implies that

h(x̄Ni
(t)) ≥ 0, ∀t ∈ [tk, tk+1). (42)

Since this holds for all i ∈ Va, we obtain that

x̄(tk) ∈ CN ⊂ SN =⇒ x̄(t) ∈ CN ⊂ SN , ∀t ∈ [tk, tk+1).

Since t 7→ h(x̄Ni(t)) is continuous from Lemma 1, the limit
of this map at tk+1 exists. Taking this limit on the left side of
(42) implies that h(x̄Ni(tk+1)) ≥ 0.

Since h(x̄Ni
(0)) ≥ 0, applying induction thus gives the

result that h(x̄Ni(t)) ≥ 0, and hence x̄Ni(t) ∈ Ci, for all
t ≥ 0. Since this holds for all i ∈ Va, by definition of CN , we
have that x̄ ∈ CN ⊂ SN for all t ≥ 0.

APPENDIX D
EXPERIMENT DETAILS AND MORE RESULTS

A. Environment details

Here, we provide the details of each experiment environment.
SingleIntegrator We use single integrator dynamics as

the base environment to verify the correctness of the baseline
methods and to show the performance of the methods when
there are no control input limits. The dynamics is given as
ẋi = vi, where xi = [pxi , p

y
i]> ∈ R2 is the position of the

i-th agent and vi = [vxi , v
y
i]> its velocity. In this environment,

we use eij = xj − xi as the edge information. We use the
following reward function weights for training InforMARL.

λnom = 0.1, λgoal = 0.1, λcol = 5.0 . (43)

DoubleIntegrator We use double integrator dynamics
for this environment. The state of agent i is given by
xi = [pxi , p

y
i , v

x
i , v

y
i]>, where [pxi , p

y
i]> is the position of the

agent, and [vxi , v
y
i]> is the velocity. The action of agent i is

given by ui = [axi , a
y
i]>, i.e., the acceleration. The dynamics

function is given by:

ẋi = [vxi , v
y
i , a

x
i , a

y
i]
> (44)

The simulation time step is δt = 0.03. In this environment,
we use eij = xj − xi as the edge information. We use the
following reward function weights for training InforMARL
without obstacles.

λnom = 0.1, λgoal = 0.1, λcol = 2.0 . (45)

and the following reward function weights with obstacles.

λnom = 0.1, λgoal = 0.1, λcol = 5.0 . (46)

For the hand-crafted CBFs, we use α0 = 10.
DubinsCar We use the standard Dubin’s car model in

this environment. The state of agent i is given by xi =
[pxi , p

y
i , θi, vi]

>, where [pxi , p
y
i]> is the position of the agent,

θi is the heading, and vi is the speed. The action of agent
i is given by ui = [ωi, ai]

> containing angular velocity and
longitudinal acceleration. The dynamics function is given by:

ẋi = [vi cos(θi), vi sin(θi), ωi, ai]
> (47)

19

8 16 32 64 128 256
Number of agents

0

20

40

60

80

100
Su

cc
es

s r
at

e
(%

)

8 16 32 64 128 256
Number of agents

0

20

40

60

80

100

Sa
fe

ty
 ra

te
 (%

)

8 16 32 64 128 256
Number of agents

0

20

40

60

80

100

R
ea

ch
 ra

te
 (%

)

GCBF+ Input Constrained DecCBF0.1 Input Constrained DecCBF1.0 DecCBF0.1 DecCBF1.0

Fig. 14: Comparison with a CBF that accounts for input constraints: Success (left), safety (middle), and reach (right) rates
for the proposed method (GCBF+), the decentralized CBF, and the decentralized input-constrained CBF in the DoubleIntegrator
environment.

The simulation time step is δt = 0.03. We use eij =
ej(xj) − ei(xi) as the edge information, where ei(xi) =
[pxi , p

y
i , vi cos(θi), vi sin(θi)]

>. We use the following reward
function weights for training InforMARL.

λnom = 0.1, λgoal = 0.1, λcol = 1.0 . (48)

For the hand-crafted CBFs, we use α0 = 5.
LinearDrone We use a linearized model for drones in

our experiments. The state of agent i is given by xi =
[pxi , p

y
i , p

z
i , v

x
i , v

y
i , v

z
i]> where [pxi , p

y
i , p

z
i]
> is the 3D position,

and [vxi , v
y
i , v

z
i]> is the 3D velocity. The control inputs are

ui = [axi , a
y
i , a

z
i]
>, and the dynamics function is given by:

ẋi =

vxi
vyi
vzi

−1.1vxi + 1.1axi
−1.1vyi + 1.1ayi
−6vzi + 6azi

 (49)

The simulation time step is δt = 0.03. We use eij = xj − xi
as the edge information. We use the following reward function
weights for training InforMARL.

λnom = 1.0, λgoal = 0.1, λcol = 1.0 . (50)

For the hand-crafted CBFs, we use α0 = 3.
CrazyflieDrone One of the advantages of GCBF is that it

is model-agnostic. To show that GCBF also works for other
more realistic dynamics, we test GCBF for CrazyFlie dynamics.
The 6-DOF quadrotor dynamics are given in [84] with x ∈ R12

consisting of positions, velocities, angular positions and angular
velocities, and u ∈ R4 consisting of the thrust at each of four
motors:

ṗx =
(
c(φ)c(ψ)s(θ) + s(φ)s(ψ)

)
w (51a)

−
(
s(ψ)c(φ)− c(ψ)s(φ)s(θ)

)
v + uc(ψ)c(θ) (51b)

ṗy =
(
s(φ)s(ψ)s(θ) + c(φ)c(ψ)

)
v (51c)

−
(
c(ψ)s(φ)− s(ψ)c(φ)s(θ)

)
w + us(ψ)c(θ) (51d)

ṗz = w c(φ)c(θ)− u s(θ) + v s(φ)c(θ) (51e)
u̇ = r v − q w + g s(θ) (51f)
v̇ = p w − r u− g s(φ)c(θ) (51g)

ẇ = q u− p v +
U1

m
− g c(θ)c(φ) (51h)

φ̇ = r
c(φ)

c(θ)
+ q

s(φ)

c(θ)
(51i)

θ̇ = q c(φ)− r s(φ) (51j)

ψ̇ = p+ r c(φ)t(θ) + q s(φ)t(θ) (51k)

ṙ =
1

Izz

(
U2 − pq(Iyy − Ixx)

)
(51l)

q̇ =
1

Iyy

(
U3 − pr(Ixx − Izz)

)
(51m)

ṗ =
1

Ixx

(
U4 − qr(Izz − Iyy)

)
(51n)

where m, Ixx, Iyy, Izz, kr, kt > 0 are system parameters,
g = 9.8 is the gravitational acceleration, c(·), s(·), t(·) de-
note cos(·), sin(·), tan(·), respectively, (px, py, pz) denote the
position of the quadrotor, (φ, θ, ψ) its Euler angles and
u = (U1, U2, U3, U4) the input vector consisting of thrust
U1 and moments U2, U3, U4.15

The relation between the vector u and the individual motor
speeds is given asU1

U2

U3

U4

=

CT CT CT CT

−dCT
√
2 −dCT

√
2 dCT

√
2 dCT

√
2

−dCT
√
2 dCT

√
2 dCT

√
2 −dCT

√
2

−CD CD −CD CD

ω2
1

ω2
2

ω2
3

ω2
4

,
(52)

where ωi is the angular speed of the i−th motor for i ∈
{1, 2, 3, 4}, CD is the drag coefficient and CT is the thrust
coefficient. These parameters are given as: Ixx = Iyy =
1.395×10−5 kg-m2, Izz = 2, 173×10−5 kg-m2, m = 0.0299
kg, CT = 3.1582 × 10−10 N/rpm2, CD = 7.9379 × 10−12

N/rpm2 and d = 0.03973 m (see [84]). We use the following
reward function weights for training InforMARL.

λnom = 0.5, λgoal = 0.1, λcol = 2.0 . (53)

For the hand-crafted CBFs, we use α0 = 3.
For the CrazyflieDrone environment, we use a two-level

control architecture similar to the one used in the hardware
experiments described in Section VII. The chosen control
algorithm computes a high-level reference velocity and yaw
rate as the input, which a low-level LQR controller then tracks.

B. Comparison with CBF that accounts for input constraints

We compared GCBF+ with generic hand-crafted CBFs that
do not account for input constraints in Section VI, as there is

15We noticed that the quadrotor dynamics in [84] (as well as the references
they cite) has a couple of typos (in ṗz and ṗ). We have fixed those typos
using first principles.

20

5 10 15 20
Relative delay ratio

0.0

0.1
Pr

op
or

tio
n

Fig. 15: Histogram of the relative delay ratio, defined as the
timestep taken by GCBF+ to reach the goal divided by the
timestep taken by the nominal controller to reach the goal in
the DoubleIntegrator environment.

no systematic way of hand-crafting a CBF for dynamical multi-
agent systems with input constraints. However, [23] proposes a
CBF-based hierarchical control framework that satisfies input
constraints for double integrator systems. The pair-wise CBF
candidate is given by

hij =
√

4umax(‖pi − pj‖ − 2r)+
(pi − pj)>
‖pi − pj‖

(vi−vj), (54)

where umax is the input constraint. However, this CBF
candidate might not be a valid CBF because it does not
necessarily satisfy the CBF condition (3) and can result in
an infeasible CBF-QP. To address this problem, the authors of
[23] develop a hierarchical control framework where whenever
the CBF-QP is infeasible for agent i, it decelerates with
the maximum acceleration umax. We generate two baselines
following this framework with α = 1.0 and α = 0.1 in the
CBF condition (34) and compare GCBF+ with these two
baselines (Input Constrained DecCBF α), as well as with
the decentralized framework introduced in Section V-B using
the CBF in (54). The results are shown in Figure 14. We can
observe that the safety rate of Input Constrained DecCBF is
close to 100%, much higher than DecCBF due to explicitly
considering input constraints. In light of the safety guarantees
in Theorem VI.2 of [23], we suspect that the safety violations
of Input Constrained DecCBF occur due to time discretization
errors which are not accounted for in the proof of safety in [23].
However, since the agents need to decelerate with maximum
acceleration whenever the CBF-QP is infeasible, the reach
rates of the Input Constrained DecCBF are low, resulting in
an overall low success rate. GCBF+, however, considers input
constraints during the learning process, and the learned GCBF
does not need another hierarchical controller to maintain safety.
Moreover, this hybrid controller of [23] only works with double
integrator dynamics and cannot be directly used with other
dynamics.

C. Analysis of time delay

Apart from the goal-reaching rate, we report the distribution
of the relative delay ratio, defined as tGCBF+/tnom where tGCBF+
and tnom are the timesteps taken by the agents to reach their
goals using GCBF+ and the nominal controller, respectively,

in the DoubleIntegrator environment with 1024 agents in
Figure 15. We can observe that about 90% of the agents reach
their goals within 10× the timesteps taken by the nominal
controller.

Songyuan Zhang is currently a graduate student
in the Department of Aeronautics and Astronautics
at Massachusetts Institute of Technology (MIT),
MA, USA. He received his Master of Science in
Aeronautics and Astronautics at MIT in 2024, and his
Bachelor of Engineering in Engineering Mechanics
(Tsien Excellence in Engineering Program, TEEP)
at Tsinghua University, Beijing, China, in 2021. His
research interests lie in learning safe and performant
controllers for complex large-scale autonomous sys-
tems using certificates and reinforcement learning.

Oswin So received his Bachelor of Science in Com-
puter Science from Georgia Institute of Technology,
Atlanta, Georgia, in 2021. He is currently a graduate
student in the Department of Aeronautics and Astro-
nautics at Massachusetts Institute of Technology. His
research interests include constrained optimization,
safety for dynamical systems, multiagent planning
and stochastic optimal control.

Kunal Garg received his Master of Engineering and
PhD degrees in Aerospace Engineering from Univer-
sity of Michigan in 2019 and 2021, and his Bachelor
of Technology degree in Aerospace Engineering from
the Indian Institute of Technology, Mumbai, India
in 2016. He is currently an assistant professor in
the Mechanical and Aerospace Engineering Program
at the School for Engineering of Matter, Transport,
and Energy at Arizona State University. Previously,
he was a postdoctoral associate in the Department
of Aeronautics and Astronautics at Massachusetts

Institute of Technology and before that, with the Department of Electrical
Engineering and Computer Science at the University of California, Santa Cruz.
His research interests include robust multi-agent path planning, switched and
hybrid system-based analysis and control synthesis for multi-agent coordination,
finite- and fixed-time stability of dynamical systems with applications to control
synthesis for spatiotemporal specifications, and continuous-time optimization.
He is a member of the IEEE.

Chuchu Fan is an Associate Professor in the Depart-
ment of Aeronautics and Astronautics (AeroAstro)
and Laboratory for Information and Decision Systems
(LIDS) at MIT. Before that, she was a postdoc
researcher at Caltech and got her Ph.D. at the
University of Illinois at Urbana-Champaign. Her
research group, Realm at MIT, works on using
rigorous mathematics, including formal methods,
machine learning, and control theory, for the design,
analysis, and verification of safe autonomous systems.
Chuchu is the recipient of an NSF CAREER Award,

an AFOSR Young Investigator Program Award, an ONR Young Investigator
Program Award, and the 2020 ACM Doctoral Dissertation Award.

