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Abstract
Automated spectrum monitoring necessitates the accurate detection
of low probability of intercept (LPI) radio frequency (RF) anom-
aly signals to identify unwanted interference in wireless networks.
However, detecting these unforeseen low-power RF signals is funda-
mentally challenging due to the scarcity of labeled RF anomaly data.
In this paper, we introduce WANDA (Wireless ANomaly Detection
Algorithm), an automated framework designed to detect LPI RF
anomaly signals in low signal-to-interference ratio (SIR) environ-
ments without relying on labeled data. WANDA operates through a
two-step process: (i) Information extraction, where a convolutional
neural network (CNN) utilizing soft Hirschfeld-Gebelein-Rényi cor-
relation (HGR) as the loss function extracts informative features
from RF spectrograms; and (ii) Anomaly detection, where the ex-
tracted features are applied to a one-class support vector machine
(SVM) classifier to infer RF anomalies. To validate the effectiveness
of WANDA, we present a case study focused on detecting unknown
Bluetooth signals within the WiFi spectrum using a practical dataset.
Experimental results demonstrate that WANDA outperforms other
methods in detecting anomaly signals across a range of SIR values
(-10 dB to 20 dB).
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1 Introduction
Low probability of intercept (LPI) signals represent signals that
are designed to conceal sensitive information by transmitting noise-
like waveforms using direct-sequence spread spectrum (DSSS) and
frequency hopping, rendering the transmitted signals practically
undetectable or unrecognizable to external wireless networks [1].
Accurate detection LPI RF anomaly signals is required to obtain
critical and real-time situational awareness in tactical wireless net-
works, public safety networks, and security-sensitive cyber-physical
systems. Detection of RF anomaly signals relies on extracting spe-
cific signal features from the input observations (e.g., raw in-phase
and quadrature signals and spectrograms) such that these features
effectively distinguish known and unknown (anomaly) signals. Con-
ventional algorithms rely on manually crafted pattern extraction
techniques [2–4] for anomaly signal detection. The key challenge in
detecting LPI signals is that the LPI RF signals are often obscured
by noise, causing the required signal features to be lost. The con-
ventional cyclo-stationary signal processing (CSP) signal processing
schemes, despite the capability of extracting useful signal features
in low signal-to-noise ratio (SNR) regimes, require high computa-
tional complexity, long signal collection duration, and signal-specific
expert domain knowledge for LPI signal detection [5].

Modern approaches surpass traditional algorithms by leveraging
deep learning (DL) to extract meaningful features from spectrograms.
DL algorithms can compare features extracted from an unlabeled
spectrogram with those of a known signal to identify potential anom-
alies. State-of-the-art methods like Autoencoders (AE) and recurrent
neural networks (RNN) are applied to this task. AEs, for example,
often fail to accurately reconstruct spectrograms from features at the
bottleneck layer when anomalies are present, resulting in large re-
construction errors that imply the presence of unknown elements in
the signal space [6, 7]. Similarly, RNNs predict future observations
based on previous ones, with significant prediction errors typically
indicating deviations from known patterns, thereby identifying anom-
alies [8, 9]. For instance, a deep video prediction network, PredNet,
was employed in [10] to predict spectrograms and use prediction
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error as a metric for anomaly detection. Convolutional neural net-
works (CNNs) are also proven effective in detecting RF anomalies.
In [11], a 1D CNN was used to detect LPI RF interference from I/Q
samples, while [12] combined CSP features and I/Q samples at the
CNN input to enhance DSSS signal detection in the LTE band.

However, state-of-the-art DL approaches for detecting LPI RF
anomaly signals face several challenges. First, the reconstruction
and prediction of high-dimensional spectrograms, as required in AE
and RNN approaches, are challenging tasks, especially in highly
dynamic and noisy signal propagation environments. Second, the
CNN approaches require supervised training with manually labeled
RF anomaly signals. However, obtaining labeled spectrograms for
every possible anomaly within a given band is highly impractical, if
not impossible. Lastly, these existing DL methods may not always
extract useful low-dimensional features (that differentiate the known
and anomaly signals) from high-dimensional spectrograms by fil-
tering out noise and other unwanted information. This limitation
reduces their efficiency in detecting unknown LPI RF anomalies in
the spectrum. Consequently, there is a need for novel unsupervised
DL approaches capable of detecting LPI RF anomaly signals without
relying on preexisting labels.

Contributions: In this work, we introduce the WANDA frame-
work, a novel solution aimed at addressing the challenge of auto-
mated and blind LPI RF anomaly signal detection. Our goal is to
significantly improve the network’s capability to detect subtle and
unknown RF signals within the spectrum. WANDA (i) extracts infor-
mative features required for anomaly detection by filtering out noise
and other unwanted information from spectrograms; (ii) facilitates
an end-to-end unsupervised training approach without requiring any
labeled RF anomaly signals during training; and (iii) does not re-
quire any prior knowledge of SNRs or the decoding/demodulating of
received signals for anomaly detection. Combining these attributes,
our proposed WANDA framework proves highly effective in de-
tecting unseen and unlabeled LPI RF anomaly signals. The specific
contributions of this work are summarized as follows.
• A DL-enabled RF anomaly signal detection system, called by

WANDA (Wireless ANomaly Detection Algorithm) is proposed.
WANDA monitors the RF spectrum, extracts information from the
observations, and detects the presence of anomaly signal(s) as shown
in Fig. 1. To conduct these steps, efficient feature extraction and
anomaly detection engines are designed for WANDA.
• A novel CNN is designed for the feature extraction engine of

WANDA. More precisely, the proposed CNN employs maximal soft
Hirschfeld-Gebelein-Rényi (HGR) correlation or H-score (discussed
in Section 3) as the loss function.
• A one-class support vector machine (OC-SVM) classifier is

employed in the anomaly detection engine of WANDA. The OC-
SVM utilizes features extracted by the feature extraction engine to
classify spectrograms as either clean or anomalous. The OC-SVM
classifier is trained by considering the features of known signals,
which are obtained by processing the known signal’s spectrograms
to the feature extraction engine, as the positive class features.
• To assess the performance of WANDA, a simulation case study

is designed to accurately detect the presence of unknown low-power
RF Bluetooth signals in the WiFi spectrum by leveraging a pub-
licly available dataset. Experimental results confirm that WANDA

Figure 1: Overview of WANDA framework.
achieves a higher true probability of detection and better RF anomaly
detection accuracy compared to several benchmark schemes.

2 Overview of WANDA
As shown in Fig. 1, the network controller periodically collects
in-phase/quadrature (I/Q) samples from the RF environment (with
both authorized and unauthorized devices). These samples are then
converted into spectrograms and fed into the WANDA framework.
WANDA performs real-time analysis to determine the presence of
an RF anomaly signal and communicates its decision to the network
controller. This work primarily focuses on accurately detecting low-
power and unknown RF anomaly signals that are present within the
spectrum, and the mitigation strategies for handling such unknown
interference are out of the scope of this work.

Now, let’s delve into the intricacies of the proposed WANDA
framework. WANDA consists of two sequential steps, namely, the
information extraction and anomaly detection steps. The anom-
aly detection from spectrogram is analogous to a hidden Markov
model [13, Ch. 5]. In particular, the observations for our consid-
ered problem is a sequence of high-dimensional spectrograms, de-
noted by {Z𝑛, 𝑛 = 0, 1, · · · }. Such spectrograms temporally vary due
to the (hidden) activity factor(s) of anomalous source, denoted by
{𝑧𝑛 ∈ {ON,OFF}, 𝑛 = 0, 1, · · · }. The goal is to learn the mapping,
Z𝑛 → z𝑛, 𝑛 = 0, 1, · · · , without any further knowledge of the statisti-
cal model (e.g., state transition probability matrix of z𝑛 and the con-
ditional probability ofZ𝑛 given z𝑛). Since spectrogram is usually a
high-dimensional 2D image, it contains both information-of-interest
and information-of-not-interest. As a result, learning of {z𝑛} would
be more efficient from {𝑍𝑛} rather than from {Z𝑛}, where {𝑍𝑛} is a
set of carefully extracted features by removing background noise and
other information-of-not-interest. Accordingly, we consider learning
the following mapping Z𝑛 → 𝑍𝑛 → z𝑛, 𝑛 = 0, 1, · · · . WANDA
performs such a mapping using the following two steps.
• Step I (learning Z𝑛 → 𝑍𝑛): Here, WANDA extracts a set of

low-dimensional features from high-dimensional spectrograms of
the input signal as such these features contain information about the
spectrogram and distinguish spectrograms of known and anomaly
signals. A custom CNN with unique loss function, described in
Section 3, is employed to conduct the feature extraction process.
• Step II (learning 𝑍𝑛 → z𝑛): Here, an ML-based anomaly

detection approach is employed to learn the mapping of RF anomaly
signal’s state in the spectrum from on the extracted features.

These two steps are sequentially trained offline, and both of them
are entirely unsupervised, i.e., they do not require any manually la-
beled anomaly signals and features. The detailed description of Steps
I and II of WANDA is explained in Sections 3 and 4, respectively.
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3 WANDA Framework Design: Feature Extraction
Engine (Step I)

The feature extraction engine of WANDA is a customized CNN
(dubbed as H-score CNN henceforward) trained to extract RF sig-
natures by removing noise from the spectrogram. Such a CNN is
obtained by modifying its loss function to the soft-HGR maximal
correlation function. Section 3. A presents Algorithm 1 to perform
soft-HGR maximal correlation by leveraging an unsupervised DL
method. Section 3. B explains our proposed CNN-based implemen-
tation of Algorithm 1 (i.e., the implementation of H-score CNN).

3.A Feature Extraction Algorithm Development.

Soft-HGR Correlation Approach. Let 𝑋 ∈ U and 𝑌 ∈ U be a
pair of spectrograms of the same signal at different time instants,
with U being the universal set of spectrograms. Thus, 𝑋 and 𝑌
have certain statistical correlations. The HGR maximal correlation
between 𝑋 and 𝑌 aims to find the non-linear transformations f∗ (·) =
[𝑓 ∗1 , 𝑓

∗
2 , · · · , 𝑓

∗
𝐾
] and g∗ (·) = [𝑔∗1, 𝑔

∗
2, · · · , 𝑔

∗
𝐾
], known as the HGR

maximal correlation functions, by solving the following optimization
problem [14].

f∗ (·), g∗ (·) = arg max
f,g

E
[
f𝑇 (𝑋 )g(𝑌 )

]
s.t. E [𝑓𝑖 (𝑥)] = E [𝑔𝑖 (𝑥)] = 0, 𝑖 = 1, 2, · · · , 𝐾 − 1

E
[
𝑓 ∗𝑖 (𝑥) 𝑓

∗
𝑗 (𝑥)

]
= 1𝑖=𝑗 , 𝑖, 𝑗 ∈ {1, 2, · · · , 𝐾 − 1}

E
[
𝑔∗𝑖 (𝑥)𝑔

∗
𝑗 (𝑥)

]
= 1𝑖=𝑗 , 𝑖, 𝑗 ∈ {1, 2, · · · , 𝐾 − 1}

(1)

where f (𝑥) = [𝑓1 (𝑥), · · · , 𝑓𝐾 (𝑥)]𝑇 and g(𝑥) = [𝑔1 (𝑥), · · ·𝑔𝐾 (𝑥)]𝑇
are known as the feature vectors and 𝐾 = |U|. The motivation for
considering HGR maximal correlation problem (i.e., eq. (1)) is ex-
plained as follows. The associated maximal correlation between
the 𝑘-th feature vectors is obtained as 𝜎𝑘 = E

[
𝑓 ∗
𝑘
(𝑋 )𝑔∗

𝑘
(𝑌 )

]
, 𝑘 ∈

{1, 2, · · · , 𝐾 − 1}, and the maximal HGR correlation between 𝑋 and
𝑌 is obtained as 𝐻 (𝑋,𝑌 ) = ∑𝐾

𝑘=1 𝜎𝑘 . Moreover, such HGR cor-
relation is related to the mutual information between 𝑋 and 𝑌 as
𝐼 (𝑋,𝑌 ) ≈ 1

2
∑𝐾
𝑘=1 𝜎

2
𝑘

, where 𝐼 (𝑋,𝑌 ) is the mutual information be-
tween 𝑋 and 𝑌 [14]. Essentially, the feature vectors obtained from
the HGR maximal correlation problem capture the maximum mu-
tual information between two spectrograms. Said differently, these
features encapsulate certain information about the spectrograms.
Note that the spectrograms of an RF signal exhibit unique patterns
that depend on the signal type. HGR correlation can extract features
capturing these distinctive patterns without any prior labels.

However, HGR maximal correlation approach requires high com-
putational complexity for feature extraction from high-dimensional
observations [15]. To overcome such an impediment, the following
optimization problem [16, eq. (17)] can be considered to alternatively
determine the optimal feature functions f∗ (·) and g∗ (·).

f∗ (·), g∗ (·) = arg max
f,g

E
[
f𝑇 (𝑋 )g(𝑌 )

]
− 1

2
tr (cov (f (𝑋 )) cov (g(𝑌 )))

s.t. E[f (𝑋 )] = E[g(𝑌 )] = 0.
(2)

Algorithm 1 Proposed Information Extraction Algorithm
Input: Paired spectrograms in an 𝑚-size mini-batch:
(𝒙 (1) ,𝒚 (1) ), (𝒙 (2) ,𝒚 (2) ), · · · , (𝒙 (𝑚) ,𝒚 (𝑚) ) .
Initialize: Neural Network Parameters 𝜽 .
repeat

Compute feature functions, f𝜽 (𝒙 (𝑖 ) ) and g𝜽 (𝒚 (𝑖 ) ) , ∀𝑖 = 1, 2, · · · ,𝑚.
Compute normalized feature functions:

f𝜽 (𝒙 (𝑖 ) ) ← f𝜽 (𝒙 (𝑖 ) ) −
1
𝑚

𝑚∑︁
𝑖=1

f𝜽 (𝒙 (𝑖 ) ), ∀𝑖 = 1, 2, · · · ,𝑚

g𝜽 (𝒚 (𝑖 ) ) ← g𝜽 (𝒚 (𝑖 ) ) −
1
𝑚

𝑚∑︁
𝑖=1

g𝜽 (𝒚 (𝑖 ) ), ∀𝑖 = 1, 2, · · · ,𝑚

Compute the sample covariance:

cov(f ) ← 1
𝑚

𝑚∑︁
𝑖=1

f𝜽 (𝒙 (𝑖 ) )f𝜽 (𝒙 (𝑖 ) )𝑇

cov(g) ← 1
𝑚

𝑚∑︁
𝑖=1

g𝜽 (𝒚 (𝑖 ) )g𝜽 (𝒚 (𝑖 ) )𝑇

Compute the H-score:

1
𝑚

𝑚∑︁
𝑖=1

f𝜽 (𝒙 (𝑖 ) )g𝜽 (𝒚 (𝑖 ) ) −
1
2

tr (cov(f )cov(g) )

Update the neural network parameters, 𝜃 , by considering H-score as the loss
function and applying the SGD and backpropagation techniques.
until Convergence or maximum number of iterations are reached
Output: Feature functions f𝜽∗ ( ·) and g𝜽∗ ( ·)

Eq. (2) is known as the soft-HGR maximal correlation problem, and
its objective function is defined as the H-score. Similar to maximiz-
ing HGR correlation, maximizing H-score also allows us to obtain
the feature vectors having maximum mutual information content
between 𝑋 and 𝑌 , with the reduced computational complexity [16].
Hence, we exploit the soft-HGR maximal correlation approach to
extract the RF signature from high-dimensional spectrograms.

Unsupervised DL algorithm to solve (2). Eq. (2) is an infinite
dimensional optimization problem over the function space, and as a
result, it is highly challenging to solve this problem optimally. To
this end, we apply unsupervised DL to solve (2). More specifically,
we introduce a DNN, parameterized by 𝜽 , to approximate the feature
functions f (·) and g(·). As a result, eq. (2) is equivalently written as

𝜃∗ = arg max
𝜽

E
[
f𝑇𝜽 (𝑋 )g𝜽 (𝑌 )

]
− 1

2
tr (cov (f𝜽 (𝑋 )) cov (g𝜽 (𝑌 )))

s.t. E[f𝜽 (𝑋 )] = E[g𝜽 (𝑌 )] = 0
(3)

where f𝜽 (·) and g𝜽 (·) denote the parameterized feature functions.
The DNN takes the negative of the H-score as the loss function.
We apply stochastic gradient descent (SGD) and backpropagation
techniques to update the parameters of H-score NN. The overall
algorithm for determining optimal feature functions by solving (3)
is summarized as Algorithm 1. The computational complexity of
Algorithm 1 is obtained as O(𝑚𝐾2), where 𝑚 and 𝐾 are the total
number of sample spectrograms and extracted features, respectively.

3.B Implementation of Feature Extraction Algorithm. A multi-
layer CNN is used to extract low-dimensional informative features
from the spectrograms. At first, the stream of complex I/Q samples
(i.e., time-domain signals) is decomposed into multiple frames, and
spectrograms of each frame of I/Q samples are determined. The
subsequent time-indexed spectrograms are passed in pair to the CNN
and its parameters are updated using Algorithm 1. For CNN, we
utilize two convolution layers with a ReLu activation function and a
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max pool layer. We also use a fully connected layer with a sigmoid
activation function before calculating the loss function. In contrast to
conventional approach, our proposed approach non-intuitively looks
at the channels (i.e., filters) of the second-to-last layer of the trained
CNN to extract the required features. Such an approach is motivated
by the fact that after getting appropriately trained using Algorithm 1,
the CNN learns to remove the non-required background noise from
the spectrogram and retains only the portions of the spectrogram
that contain signal specific information. The configuration of the
adopted CNN model for the simulation experiment is summarized
in the table 1. We emphasize that the architecture and complexity of
the required CNN model can vary according to the types of known
signals. The reported CNN configuration is selected after several
trials and error experiments.

Number of input samples, n 3 × 128 × 128
Size of minibatch 256

Optimizer Stochastic gradient descent
Learning rate 𝑒−5

Epochs 200
Input shape 3 × 64 × 64
Kernel size 9 × 9

CNN output channels 8
Shape of the channel 16×16

Table 1: Configuration of CNN for Anomaly Detection

4 WANDA Framework Design: Anomaly Detection
Engine (Step II)

Anomaly detection engine of WANDA performs mapping from the
extracted features to the state of RF anomaly signal (e.g., ON/OFF
or YES/NO). The overall procedure of training anomaly detection
engine is described as follows. In particular, we first pass the spec-
trograms of known signals through the trained H-score CNN and
obtain features from the CNN channels. Since the extracted features
are essentially 2D matrices, we flatten them to vectors and train a
one-class support vector machine (OC-SVM) classifier using such
flattened feature vectors as the positive class features. The classifica-
tion function used by the OC-SVM classifier for any given feature
generated by the trained H-score CNN, denoted by f , is expressed as
Φ(f) = ∑𝑁

𝑛=1 𝛼𝑛K(f, f𝑛) − 𝜌. Here, 𝛼𝑛 and 𝜌 are the classification
parameters that are learned during offline training and K(·) is the
Kernel function. Different types of Kernel functions, such as linear,
polynomial, and Gaussian radial basis functions, are available in the
standard APIs, and it is a hyper-parameter of the OC-SVM classifier.
The classification function is also known as the SVM score. During
online inference, a trained OC-SVM classifier computes the SVM
score for the feature vector(s) obtained by H-score CNN (i.e., Step
I) and determines the presence and absence of anomaly signal if
the SVM score is negative and positive, respectively. In order to
obtain suitable anomaly detection accuracy, the hyper-parameters
of the OC-SVM classifier need to be carefully optimized. To this
end, we leverage the Optuna [17] framework, a state-of-the-art opti-
mizer, to fine-tune the hyper-parameters of the OC-SVM classifier.
In our simulation, we compare the anomaly detection performance
of all the models (e.g., OC-SVM, ISOF, and SVDD) using their best
hyper-parameters obtained by the Optuna framework.

5 Data Set Generation
Dataset Information. We use the CRAWDAD data set [18] to

validate the effectiveness of WANDA in detecting the unknown

RF anomaly signals. The description of data set preparation is as
follows. We first construct and reshape the dataset that emulates
a continuous flow of raw signals. For simulation, we consider the
CRAWDAD data set consisting of 225,000 signals, each consisting
of 128 I/Q sample points [18]. More precisely, this data consists
of 15 signal classes, with classes indexed by 1 − 10 representing 1
MHz bandwidth IEEE 802.15.1 standard Bluetooth signals (with
center frequencies from 2.422 GHz to 2.431 GHz), classes indexed
by 11 − 13 representing 20 MHz bandwidth IEEE 802.11 standard
Wifi signals (with center frequencies 2.422 GHz, 2.427 GHz, and
2.432 GHz), and classes indexed by 14 − 15 representing 2 MHz
bandwidth IEEE 802.15.4 standard Zigbee signals (with center fre-
quencies 2.425 GHz and 2.430 GHz). As mentioned earlier, we con-
sider WiFi as our known signal and Bluetooth as the unknown and
intermittently ON/OFF anomaly signal. Thus, we investigate the
performance of our proposed WANDA framework to detect the
presence of Bluetooth signals in the WiFi spectrum. To this end,
we create training and testing data sets, where the training data set
consists of only WiFi signals and the testing data set contains WiFi
signals merged with randomly ON/OFF Bluetooth signals. For both
training and testing data set generation, we consider four different
SNR values, namely -10 dB, 0 dB, 10 dB, and 20 dB, for the WiFi
signals while considering that the Bluetooth signal’s SNR is 0 dB.
In our simulation, we present the performance in terms of signal-
to-interference (SIR) level in the dB unit, which is computed as
SIR(𝑑𝐵) = SNR𝑊𝑖𝐹𝑖 (𝑑𝐵) −SNR𝐵𝐿 (𝑑𝐵) where SNR𝑊𝑖𝐹𝑖 (𝑑𝐵) and
SNR𝐵𝐿 (𝑑𝐵) represent the SNR of WiFi and Bluetooth signals in the
dB unit, respectively.

Spectrogram Generation. After creating the I/Q signal segments,
we generate spectrograms from the created signals. We use the pspec-
trum function from MATLAB with the following set of parameters
listed in Table 2. A total of 20k time-indexed spectrogram samples
are generated for each signal-to-interference (SIR) value. The gener-
ated spectrograms are sequentially saved in an image format for all
the time windows. The spectrograms generated at the 𝑖-th and (𝑖+𝑁 )-
th time windows are applied to the H-score CNN simultaneously,
∀𝑖. This enables training the H-score CNN to extract features while
exploiting statistical dependency between stream of spectrograms.

Parameter Value
Minimum Threshold −80 dB
Sampling Frequency 107 Hz
Overlap Percentage 99%

Leakage Ratio 1
Frequency Resolution 3 × 105 Hz

Table 2: MATLAB pspectrum function parameters

6 WANDA Experimental Evaluation
As mentioned in Section 5, a case study is designed to evaluate
WANDA’s performance by focusing on the task of detecting un-
known or anomalous Bluetooth signals within the spectrum of WiFi
signals, where WiFi serves as our known signal. We utilize the
AUC (area under curve) and ROC (receiver operating characteristic
curve) as our two key evaluation metrics. AUC provides valuable
insights into how well our trained models perform at different thresh-
olds by measuring the True Positive Rate (TPR) and False Positive
Rate (FPR), defined as TPR = TP

TP+FN and FPR = FP
TN+FP , respec-

tively. Here, TP, TN, FP, and FN imply the total numbers of the

4
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Figure 2: AUC performance of the proposed WANDA (denoted
by H-score in the figures) and other benchmark schemes.
true predictions of the non-anomalous states, true predictions of the
anomaly states, false predictions of the non-anomalous states, and
false predictions of the anomaly states, respectively. A higher AUC
value indicates an improved model’s performance in distinguish-
ing non-anomalous and anomalous samples. Meanwhile, the ROC
curve visually represents the relationship between TPR and FPR
by plotting them over X-axis and Y-axis, respectively, as different
thresholds are considered. We consider the following two benchmark
schemes for performance comparison.

Conventional Scheme (Without H-score CNN): This scheme
infers the presence of the RF anomaly signal directly from the spec-
trogram using conventional anomaly detection approaches, namely,
OC-SVM, ISOF (Isolation Forest), and SVDD (Support Vector
Data Description), for detecting RF anomaly signals from the spec-
trogram. For training of all these approaches, we first convert the
spectrogram of the WiFi signals into a 2D pixel matrix. Then, we
flatten this matrix to a vector, reduce its dimension by applying
principle component analysis, and use it as a feature input to the
anomaly detector (i.e., OC-SVM, ISOF, or SVDD).

PredNet: In this scheme, we consider the prediction-based un-
supervised RF anomaly detection scheme proposed in [10]. The
RF anomaly signal detection is conducted in two steps. (I) In the
first step, a trained deep video encoding network, called Prednet
is utilized to predict the next spectrogram of the signal based on
the observations of a certain number of previous spectrograms and
a prediction error vector is computed. (II) In the second step, the
computed prediction error vector is applied to an anomaly detection
block in order to determine whether the spectrogram contains any
RF anomaly signals or not. Similar to WANDA, both spectrogram
prediction and anomaly detection stages are entirely unsupervised
and trained using only WiFi spectrogram. In particular, for training
the PredNet, a minimum mean square error criterion is considered
to minimize the prediction error between the predicted and actual
spectrogram images. Meanwhile, for training the anomaly detection
block based on the prediction error vector, conventional RF anomaly
detection schemes, such as OC-SVM, ISOF, and SVDD, are applied.
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Figure 3: ROC Curves of Comparison for SIRs -10 and 0 dB.
6.A Comparison With Benchmarks. Figs. 2(a)-2(d) compare
the AUC score of proposed WANDA, PredNet, and conventional
anomaly detection schemes. More specifically, in these figures, the
legend "H-Score" and X-axis labels “SVM” , ISOF” and “SVDD”
imply the proposed WANDA framework, where the anomaly detec-
tion engine employs the OC-SVM, ISOF, and SVDD algorithms,
respectively. Meanwhile, the legend "Without H-Score" and X-axis
labels “SVM” , ISOF” and “SVDD” imply the conventional anom-
aly detection schemes employing the OC-SVM, ISOF, and SVDD
algorithms, respectively. Finally, the legend "PredNet" and X-axis
labels “SVM” , ISOF” and “SVDD” imply the PredNet scheme [10],
where the anomaly detection step of PredNet employ the OC-SVM,
ISOF, and SVDD algorithms, respectively.

Figs. 2(a)-2(d) show that Prednet achieves a poor AUC score
in the range of 0.5 to 0.6 for all anomaly detection schemes, and
this score does not significantly vary with SIRs. Recall, in the Pred-
Net scheme the prediction error vector for the entire spectrogram
is used for both training and testing anomaly detection blocks (i.e.,
OC-SVM, ISOF, and SVDD). However, in practice, RF anomaly
signals are located only within a small portion of the spectrogram,
and the remaining large portion of the spectrogram contains only
background noise that is not impacted by the RF anomaly. As a
result, the prediction error vectors for both known (i.e., Wifi) and
anomaly impaired signals (e.g., Wifi with Bluetooth) looks almost
same to the anomaly detection algorithms (e.g., OC-SVM, ISOF, and
SVDD). Evidently, these algorithms cannot effectively distinguish
the non-anomalous spectrogram from the anomalous spectrogram.
Hence, PredNet achieves small AUC. The conventional approach
also achieves poor AUC. In contrast to both these schemes, our
proposed WANDA first extracts features containing the anomaly sig-
nal information, and removes all the unnecessary background noise
from the spectrogram. This gives the anomaly detection engines
a set of highly distinguishable features to differentiate the known
and unknown signals for all SIR values. Thus, WANDA achieves
substantially higher AUC scores than both benchmark schemes.

6.B Advantages of H-score Based RF Signature Extraction.
Figs. 3 and 4 plot the ROC curves of the proposed and benchmark
schemes for different SIR values. In the subplots 3(b), 3(d), 4(b), and
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Figure 4: ROC Curves of Comparison for SIRs 10 and 20 dB.
4(d), “With H-Score” represent ROC curves of anomaly detection
scheme equipped with H-score CNN based feature extraction ap-
proach. Within these figures, the blue colored curve represents ROC
of our proposed WANDA framework, where the orange and green
colored curve represents ROC of the H-score CNN with ISOF and
SVDD based anomaly detection engines, respectively. Meanwhile,
in figures 3(a), 3(c), 4(a), and 4(d)), “without H-Score” represent
ROC curves of the conventional anomaly detection schemes, i.e.,
without H-score CNN based feature extraction approach.

We emphasize that ROC curve of a particular anomaly detection
approach provides a trade-off between the TPR and FPR. For the im-
proved RF anomaly detection, a given scheme needs to provide high
TPR at the cost of low FPR. Figs. 3 and 4 depict that regardless of
SIR values, the TPR and FPR of the conventional anomaly detection
schemes remain the same, i.e., these schemes cannot achieve high
TPR and low FPR, simultaneously. In other words, these scheme
cannot efficient differentiate between signal classes with and with-
out anomaly. In contrast, the H-score CNN equipped RF anomaly
detection approach achieves notably improved TPR-FPR trade-off
for all the SIR values. For instance, at SIR 0 dB, the standalone OC-
SVM approach achieves 30% TPR at the cost of 40% FPR. However,
when H-score CNN based feature extraction approach is augmented
before the OC-SVM classifier (i.e., WANDA), 80% TPR is achieved
at the cost of only 20% FPR. The aforementioned results confirm
the fact that the proposed H-score CNN based feature extraction
approach can provide useful information to RF anomaly detection
engine, leading to notably improved trade-off between the TPR and
FPR for RF anomaly detection. Fig. 3 and 4 also illustrate that in
the presence of an H-score CNN based feature extraction approach,
all the anomaly detection engines (OC-SVM, ISOF, and SVDD)
achieves almost the same TPR-FPR trade-off for high SIRs (i.e.,
SIR greater than 0 dB), whereas at -10 dB SIR OC-SVM achieves
much improved TPR-FPR trade-off compared to both ISOF and
SVDD based anomaly detection engines. Because of the superior
TPR-FPR trade-off at all SIR values, we select OC-SVM in the
anomaly detection engine of the proposed WANDA framework.
7 Conclusion
In this paper, an automated and fully unsupervised LPI RF anomaly
signal detection framework called WANDA was proposed. Unlike

the traditional anomaly signal detection approaches, prior to anomaly
detection, WANDA extracts the low-dimensional informative fea-
tures from the high-dimensional spectrogram by eliminating noise
and without using any manually defined labels. Such a capabil-
ity of extracting features enables WANDA to detect RF anomaly
signals at both high and low SIR values. WANDA comprises an
H-score CNN-aided feature extraction step, followed by an OC-
SVM-based anomaly detection step. By employing this two-step
approach, WANDA optimized the detection process and ensures
an accurate identification of RF anomalies. For a case study, we
applied the proposed WANDA framework to detect unknown Blue-
tooth signals within a WiFi spectrum, using a realistic CRAWDAD
dataset. Our experiments demonstrated that WANDA significantly
outperforms both state-of-the-art PredNet and conventional anomaly
detection schemes in terms of AUC score and TPR-FPR trade-off
across a wide range of SIR values.
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