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ABSTRACT

The general performance equations for a
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single-degree~of-freedom gyroscope are developed to

include environmental and nonrigid gyro support effects
on instrument dynamics and errors. The performance

equations are developed in a matrix form that separates
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of-freedom Integrating and air bearing gyroscopes and
thelr use in a slngle-axls space integrator are dis-

cussed as speclal cases of the general performance

equations,
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CHAPTER 1

INTRODUCTION

Space Integrator Definition and Function in

an Inertial Guidance System

A space integrator is defined as a device

which gives a controlled member an angular velocity

with respect to inertial spice proportional to a command

signal even in the face of inbevlorenses. t+ (8) As

used in an inertial navigation or guidance system the

space integrator is basically a velocity-controlled

servomechanism that matches the inertial angular velo-

city of its controlled member to a commanded inertial

angular velocity. The output of the device may be

considered as the orientation of a coordinate frame

attached to the LI member with respect to an

inertial coordinate frame and the input as a command

inertial angular velocity. In this case the device 1s

I-A

performing an integration of the input angular velocity

with respect to lnertial space. The use of angular

velocity in the definition is to avoid the complication



involved when using angular displacement, which is not

a physical vector quantity. The definition of a space

integrator 1s given mathematically by

Wytem) = (PF) (s1)¥oma (1.1)

where:

Ws (em) =

PF) (61) =+

Woma =

the angular velocity of the controlled
member with respect to inertial space,

the performance function of the space

integrator.

the commanded angular velocity of the
controlled member with respect to 1in-

ertial space.

The function of a space integrator in an

inertial navigation system is twofold. First it pro-

vides isolation of a reference coordinate frame attached

to the controlled member from any base motion. Second

it rotates the controlled member at an angular velocity

with respect to inertial space when commanded to do so

byacommand input. A special case of the general

definition is when the command signal is zero and the

controlled member has zero angular velocity wlth respect

to inertial space. This speclal case implies a stable

orientation of the controlled member with respect to

inertial space and has given rise to the use of the

titles "stable table" and "stable platform" instead of

~



space integrator. These titles suggest the 1dea that

a space integrator stabilizes a coordinate frame with

respect to inertial space. This view 1s often helpful

in visuallzing the operation of a space integrator.

The single-axis space integrator is a special

case of the space integrator discussed and differs only

in the respect that it must satisfy the definition

about only one axls of the coordinate frame attached to

the controlled member. To establish a complete coordinate

frame three single-axls space lntegrators are required.

A schematic of a single-axls space Integrator is shown

in Fig. 1.1 illustrating the major components used in

the device.

The function of the components in the system

is explained by consldering the operation of the single-

axils space integrator. A single-degree-of-freedom gyro

is used to sense angular velocity with respect to inertial

space, The output of the gyro, in the form of an elec-

trical signal, is fed to the servo electronics and

amplifier which excites a torque motor whose axils of

rotation is the input axis of the gyro. The torque

generated by the woler rotates the controlled member

at an angular velocity whose sense 1s opposite to that

of the velocity of the base untll the input axis of the

gyro, mounted on the controlled member, senses no

angular velocity with respect to inertial space thus

=
.
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stablllzing the controlled direction with respect to

inertial space. The developed angle between the con-

trolled member and the base is the integral of the

angular velocity wlth respect to lnertilal space of the

base about the input axis and is the angle that the

base has rotated about thls axis with respect to

inertial space. Fig. 1.2 is a functional block diagram

of a single-axls space integrator.

I-B StatementoftheProblem

The definition and function of a single-axis

space integrator impose the requirement that the angu-

lar velocity of the controlled member be proportional

only to a command signal. In the mechanization and use

of the single-axis space integrator in a guldance system

it is necessary to determine if there are any other

inputs to the system, and, if other inputs are present,

how they affect the performance of the space integrator.

The analysis and resultant performance equation must

take into account the environment in which the system

operates and also the physical properties and construc-

tion of the device. For use in a high quality inertial

guidance or navigation reference system the output

angle of the single-axls space integrator must be

accurate to about 20 arc seconds (3)* imposing the

*K representative number used by Wiener in reference 3

5
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reauirement that the integrated errors due to the

environment and properties of the device be elther

less than 20 arc seconds or be compensated for to this

accuracy by a known relationship.

The guidance system in which the single-axils

space integrator operates will be mounted in a moving

vehicle which is subject to angular velocities about

all three axes of a coordinate frame attached to the

vehicle. The analysls of the space integrator must

then include the effect of angular veloclitles about all

three axes of the coordinate frame attached to the con-

trolled member.

The components of the single-axls space

integrator are illustrated ln Fig. 1.1. Although all

of the components will have nonideal performance, the

gyroscope is the prime component that determines the

performance function of the single-axis space integrator.

The ideal gyro for use in a single-axls space integrator

would develdp an output angle and electrical signal

directly proportional only to an angular velocity

about its input axils. In reallty the output angle of a

gyro 1s also a function of angular velocities about the

spin reference and output axes and mechanical properties

of the gyro. For its use in a single-axls space inte-

grator the gyro will be subjected to input angular

velocities about all three coordinate axes and the



effects of gyro element anisoinertia, nonrigid suspen-

sion of the gyro element, compliance of the spin axis

bearings, cross coupling of input angular velocities

and uncertainty torques as they affect the torques

developed about the gyro axes will be considered. The

nonrigid support of the gyro element will be examined

in detail to determine its effect on the dynamics of

the gyro and the assoclated single-axls space integrator.

The integrated errors present in the output angle of the

single-axis space integrator as a result of the nonrigid

support, coupled with the other conditions imposed on

the system, will be examined.

I-C Approach to Problem Solution

The approach to the problem solution will be

to first analyze the single-degree-of-freedom gyro

subject to the conditions stated in the previous

section. The performance equation of the gyro will be

written in matrix notation in a form that wlll separate

the dynamics of the gyro from the input excitation

terms. This approach illustrates what effects the

various conditions have on the gyro performance and

permits a more thorough analysis of the effects of

nonrigid gyro element suspension on the dynamics of

the gyro

&lt;



The performance function of the single-axis

space integrator will be derived using the matrix no-

tation. The resultant performance function will be in

a form that separates the various excitation terms from

the dynamics of the single-axls space integrator. The

excitation terms can then be analyzed separately to

determine thelr contributions to the resultant error

present in the indication of vehicle orientation.

To illustrate the significance and use of the

derived performance functions representative cases will

be examined for both the gyro and the single-axls space

integrator.

I-D ScopeoftheInvestigation

The conditions stated in section I-B for use

in this analysis are by no means a complete set of

conditions that are present in the single-axls space

integrator system, They are, however, the prime con-

ditions that affect the dynamics of the system and in-

clude most of the input excitation terms.

A more complete set of conditions would

include linear accelerations along all three coordinate

frame axes, mass unbalance of the gyro element, aniso-

elasticity of the gyro element and non ldeal performance

of the gyro spin motor. These conditions have been

dnmlyzeal®) and, with the matrix notation used in the

problem solution, these conditions can be analyzed

9



separately and directly inserted into the derived

performance equaticns.

I-E Background and Previous Results

The space integrator, as used in an inertial

guldance or navigation system, has been primarily a

three, fcur or five glmballed system that stabilizes a

coordinate frame with respect to inertial space. Much

analysis work has been done on thls type of system, (1),

(5),(6),(7),(8) and 1t is used in most working inertial

guldance and navigation systems. The single-axis

space integrator has been treated chiefly as a bullding

block toward the understanding and analysis of the three,

four and five gimballed system. The analysis of the

single-axis space integrator has, therefore, been

primarily concerned with special cases that will be

helpful in the building block concept. Wrigley!2) has

analyzed the single-axlis space integrator considering

input angular velocltlies about ‘all three coordinate axes

and an elastic support on the gyro input axils, Mueller?)

has analyzed the effect of an elastic input axis support

on the dynamics of the output angle of a single-degree-

of-freedom gyroscope.

10



CRAFTER IX

SINGLE-DECREE~-OF-FREEDOM GYROSCOPE

Introduction

The single-degree-of- freedom gyroscope has

been studied extensively and much literature is avail-

able on gyro theory and performance, (1):(2) (4), (9)

The purpose of the analysis included in this chapter

is not to repeat or add to the previous work but to

develop the gyro performance equations in a form and in

sufficient detail to make them applicable to the analysis

IT-A

of the single-axlis space integrator.

II-B Gyro Model Used for Analysis

Analysis of the gyro will be based on the

model illustrated in Fig. 2.1, which shows the nonrigid

support of the gyro due to the spin-axis bearings and to

the elasticity, radial elastic support and radial damp-

ing of the gyro element, These nonrigid support elements

develop torques about two axes of the gyro while the

torque about the third axis can be developed at the

i §
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designer's choice to determine the type of single-degree-

of-freedom gyro, In section II-D the support system 1s

analyzed 1n detail.

Three coordinate frames are necessary for a

discussion of the nonrigid single-degree-of-freedom

gyroscope:

1

2.

3.

inertial frame, 1, origin at the center
of mass of the earth.

gyro case frame, gc, origin at the center
of mass of the gyro case, fixed to the

gyro case,

gyro element frame, ge, origin at the
center of mass of the gyro element, fixed

to the gyro element.

In a single-degree-of-freedom gyro with a rigid support

system the gyro element frame and the gyro case frame

would be coincident.

The inertial frame axes will be defined as

Xys Uys Zyo the gyro case axes as IA, OA, SRA, and the

gyro element axes as Xx, y. and z with their orientation

shown in Fig. 2.1.

II-C DerivationofGyroElementEquationofMotion

The operation of a practical gyroscope is

most easlly explained by deriving the equations of

motlon for the gyro element as 1s done by Wrigley

in reference (2). These equations are derived by

using Newton's Law for rotation with moments taken

about the center of mass of the gyro element.

13
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PyHye = MN (2.1)

p 1850 = time rate of change of angular
momentum of gyro element with respect

to 1nertilal space

M = torque applied to gyro element

= d _ |

Py = [3-14 = time derivative taken in inertial

Hoe = Hy + His = angular momentum vector of gyro

element

1 = IW, = spin angular momentum vector of
spin motor rotor

Ig = spin axis moment of inertia of rotor

Ww = spin angular velocity vector

Hq = non-spin angular momentum vector of
gyro element

Applying the law of Corlolis to the left hand side of

Eq. (2.1) and separating He into its spin and non-spin

components gives

2 ge = Pgells tT Pols t Wipe) X Hy + Wi (ge) Hs

(2.2)

vhere Poe &gt; [35] ge = time derivative taken with respect
to gyro element

Wi(ge) = angular velocity vector of gyro

element with respect to lnertilal

space.

Assuming Wg iw constant (2) the basic law of motion of

the gyro element is

1 Ul



Poeling * Wy (ge) xX Hy TW (ge) x Hg = M (2.3)

With the gyro element frame oriented as shown

in Fig. (2.1) the important quantities in Eq. (2.3) can

be written in gyro element axes

"i(ge) ~ Ty tw, Li

Hg = KI Wg

Hos = 1 I Wy + J IW + Kk IW,

where Ios I, and 1, contain both rotor and gyro element

inertias about their respective axes. Due to the mag-

netic coupling between the gyro motor rotor and stator

the rotor inertia must be included in I,. If Wg = con-

stant, as has been assumed, the moment of lnertia

I, = constant. Substitution of these quantities into

Eq. (2.3) results in a modified Euler equation.

I pW, + + - =&lt;PWy WH (I, I JW W, M,

W - — oi

IP y WH, + (I, I)WW, MN,

+ - i

(I, = TWN, = M,

(2.4a)

(2.41)

(2.4c)

The angular motions of interest are those of

the gyro element with respect to the gyro case and are

shown in Fig. (2.2). With reference to Fig. (2.2)

the gyro element coordinate frame 1s related to the

gyro case coordinate frame by an angle transformation

matrix. With the assumption that all the angles are

15
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"small" the transformation matrix ct? = I + A where

my

1

 l1 0 O

O 1 O

O 0 1

A

O A -A,

=A, 0 Ay

~ Ag -A 0

(2.5)

In matrix A the angle As 1s used instead of Ay. This

1s consistent with common single-degree-of-freedom gyro

terminology where the angle about the y-axis is called

the gyro angle and labeled A.

Using the transformation matrix ct? the

angular velocities Wer Wy and Ww, can be expressedin

terms of:Wips Won and Wopa and the developed angles A,

Aus and A, as 1s shown in the matrix Eq. (2.6).

~
I.

nN.

N
v

W |

are
—

BE A -A
£

-A A,

A -
Ag “Ay 1

|

———

Wia

Won
ta

Wsra |
— 1

J

PA
 xX

PA
2

|PA 2]

(2.6a)

(2.6b)

(2.6¢)

The equations for W_, Wy and W, can now be

substituted into Eq. (2.4) to give the equations of

motion of the gyro element. Because of the size of

the resultant Soa ons they are not written in the

text but in section II-E they are written in an equi-

valent matrix form.

17



IT-D Analysis of Gyro Element Suspension System

The equations of motion of the gyro element

have been written in the form of a modified Euler

equation where the time derivative of the angular

momentum vector with respect to inertial space 1s equal

to the torque applied to the gyro element. If 1s now

necessary to examine now he torques M, &gt; M, and M_ are

developed in a practical nonrigid gyroscope by using

the gyro model of Fg. (2.1).

Fig. (2.1) shows five torques applied to the

gyro element. Four of these torques are present due

to the nonrigid support of the gyro element while the

fifth torque is a rotational torque about the y axis of

the gyro element applied at the designer's choice to

determine the type of single-degree-of-freedom gyro.

Spin axis bearings hehave in an elastic

manner when subjected to radial forces. 2): (9 ) As

used in the gyro element radlal forces are developed

along the x and y axes glving rise to torques about the

y and X axes respectively.

The gyro element will behave in an elastic

manner due to the elastic properties of the element

material. (2), (10) This elastic behavior wlll apply

torques about the x and z axes.

The support of the gyro element in a single-

axXls space integrator is either a fluid support or an

18



air bearing type of support coupled with a magnetic

suspension support. (10) These supports will apply

torques about the x and z axes. In the case of a

fluid and magnetic support an elastlc behavior will be

present due to the magnetic suspension and the forcing

of the non-compressible flotation fluid along the y-axis

of the gyro element. tld In addition to the elastic

torque a damping torque 1s present due to the viscous

nature of the flotation fluid. In the air bearing and

magnetic support an elastic torque 1s present due to

the magnetlc suspension and the compressible property

of air. In this case the damplng torque is essentially

ze,

The rotational torque applied to the y-axis

of the gyro element determines the type of single-degree-

of-freedom gyroscope and may take three forms:

= =k A - A 3 asti
M.; kK, z CoP gs primarily elastic

rate gyro

M, = “CPA; damping torque; integrating

M, = 0; urrestralned gyro

The torques, Ms Mand M, can now be deter-

mined as functions of the gyro suspension system. The

analysis of these torques as they apply to the gyro

gyro

element equations of motion will all take the same form,

An equivalent support system model will be defined and

a torque angle relationship will be derived in the form

M = kA where k = k(p)

10



ny
The support system for the x-axis is shown 1n

Fig. (2.3)

9 Ks (1p)

Kx(ge)

XL

S Ky (ms) |![°x(£s) “x(f£s)

x-Axls support system

og \ 2.3)

where

Ke (Db) = elastic coefficient of spin axls bearings

Ky (ge) = elastic coefficient of gyro element

Ky (ms) = elastic coefficient of magnetic suspension

Ke(£s) = elastic coefficient of fluid support

°x( fs) = damping coefficient of fluid support

To simplify the caquivalent k (p) the spin-axis bearing

and gyro element elastic coefficients willbecombined

in an equivalent Ke(ee) (pb) where

_ k p)¥

(gels Fp et

In a similar fashlon the magnetic and fluld support

elastic coefficients will be combined in an equivalent

Ky ( s\ Where

20



Ke(s) Ky ( £5) 5 Boy The desired k

lc

x , \ + c_p]

(0) = —xlse (0) xe) ©O00
| Kx(ge)(h) © Kx(s)7 °x

is now

(2 7)

Several special cases are of interest when a

practical single-degree-of-freedom gyro is considered.

Case A

will

A single-degree-of-freedom integrating gyro

generally be represented by the special case when

Kx(s) &lt;&lt; ¥x(ge)(b)

ky(s) &lt;&lt;CyP

Ke(ge) (Db) &lt;&lt; cp

t°nel} 5

© (0) (1b)

A single-degree-of-freedom alr bearing gyro could, for

different design configuratiors satisfy any of the three

speclal cases discussed below, In all three cases it is

assumed that the stiffness of the spin axis bearing and

gyro element, Ke(ge) (pb), is greater than the suspension

stiffness, ke(s)? and the radial damping, cP. With

this assumption Case B is satisfied when Ky(5)&lt;&lt; CxP-

Case C 1s satisfied when c, p&lt;&lt; Ky(s) and Case D is

~
satisfied when kels) = ¢c_P

21



Case B

For the special case when

Ke(s)&lt;S ¥x(ge) (Db)
~ £ &lt;

oP Kx(ge) (Db)

Ke(s) SS Cc”

fie

i$ 0 (2.7b)

case C

For the special case when

o &lt;&lt;
¥P Ky(ge) (Db)

52 (5) Kx(ge) (b)

a Pp { L Kes)

Po ™

he:16 }

’e = Kx(s) (2.7¢c)

case D

For the special case when

&lt;&lt;L
x(s) T ¥x(ge)(p)

 . ov 1

 nA or &lt;
hp. a. “

Ke(ge) (Db)

A Zk + c
5 ~ (2.74)

2D



vy
The support system for the z-axis 1s shown

in Fig. 2.4,
5

+ Kz(ge)

A

, Ky, (me) Lez

¢is support system

#

3 kK. (£s)

Fig, (2.4)

where:

ky( e) = elastic coefficient of gyro element
&amp; about z-axis

elastic coefficient of fluld or air

bearing support about z-axis

Kz (ms) = elastic coefficient of magnetic
suspension about z-axis

~ _o-

v, =
 -—

damping coefficient due to fluid or

alr bearing support about z-axis

For simpliclty in the analysisanelasticcoefficient,

K, (8)? wlll be defined that combines kK,(rs) and kK, (ms)

wh &gt; ¢

WK
z(s) = ¥z(£s) T ¥z(ms)
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The equivalent k,(p) is then:

f

’
0) = e (ge)! °aP + Kz (s)]

z( ge) Kz (8) + e,p
a

“oe a L°( )

jeveral special cases of lq. (2.8) are of

interest in a practiczl single-degree-of-freedomgyro.

Case A

For the special case when

Ko (5) &lt;&lt; Kz (ge)

&lt;
K,(s) &lt;= cp

&lt;&lt;
Ks (ze) CLP

hn

hen

K, = Ky(ge) (2.8a)

This special case will generally represent

most single-degree-of-freedom integrating gyros.

Case B

For the special case when

ky (8) &lt;&lt; Kz (ge)

Ky (5) CS cp

™
- )  K &lt;

Kz (ge)

then

Ve = cb (2.8b)

Sl



Case C

For the special case when

k (5) &lt;&lt; kz(ge)

2% Ky(ge)

t)- | =

K, (3)
ad

 oY

kK, = Kz (s) + c,P (2.8¢c)

This special case could represent a single-

degree-of-freedom airbearing gyro.

Ul

The torque about M, is the sum of the torque

developed due to the elasticity of the spin axils bear-

ings and the deslgners choice of the type of torque

applied about the y-axis. A model of the elements

developing this torque is shown in Fig. (2.5).

Ks (ge)

k(P)y (app)
1

y-Axis torquing

B "

- 2 5

alements
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where

k (ge) = elastic coefficient of the gyro spin
JIE axis bearings about the y-axis

The

&lt;(P)y (app) = the applied torque coefficlent
dependent on the type of applied

torque about the y-axis.

equlvalent k, is then

oo y(ge) (Py (app)
V Kg(ge) T ¥\P)y(app)

(2.9)

In practical single-degree-of-freedom gyroscopes

k &gt; k andv(ge)&gt;”¥(P)g(app)

cy = k(P)y(app)

The solution for the equivalent k 3 k, and

K, torque coefficients makes 1t possible to write Ms

M_ and M, in the general form shown in Eq. (2.9)

M, = k (pA,

M_ = An k,(p) 2

M_ =k (p)A_

(2.10a)

(2.10Dp)

(2.10c)

Equations (2.10) can be substituted into the

modified Euler equations of motion of the gyro element

to allow a solution that accounts for all of the con-

ditions stated 1n section I-B.

II-E Matrix Representation of Gyro Equations

The equations of motion of the gyro element

obtained when Eq. (2.6) and Eq. (2.10) are substituted

2A



in Eq. (2.4) account for all of the conditions stated

in section I-B. The three equations resulting from

this operation can be linearized and rearranged 1nto

the form of Eq. (2.11),

317 Ag + 245 Ag + a3 A = by

851 Ay + 850 A, + ass A, = b,

wh =
A, + a3 Ag az3 A, bg

(2.11a)

(2.11v)

(2.11c)

These three equations can be solved simultaneously to

find Ags Ag and A. However, the coefficlents of

Eq. (2.11) contain so many terms that a general solu-

tion for Ars Ag and A, is not practical and leads to a

solution whose complexlty tends to mask the physical

significance of the conditions imposed on the problem.

By rewriting the left hand side of Eq. (2.11) in a

matrix form and separating similar terms 1n the coef-

ficients on both sides it is possible to write Eq. (2.11)

in the following form:

(ce °12 °13

921 S22 ®23

bn 32 ©33]

+

7
fa), dyp 443

doy dpp dng

d31 d3p day

'e11 €12 e13) [Ay

€21 C22 C27

531 °32 °33) [*4

FIRth—

re
——’

(2.72)
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which 1s the same as

(C+ D+E)A=F+G+H (2.13)

where the matrices are defined as follows

,

I
x 2

Pt1

-t.p

0

ip

H
S

© P

- k

ii

~

Tz 2 +1
k,, —

Nhere ks ky and k, are torque coefficients defined in

section 1II-D.

D

H
8

R, “Sra

(P¥spa + I WgpaP

Iz I,
 KE Por ~ © YoaP

(1, - I.)

ZL (Wagan - Way)

=~ Psp CK “Ra?

Vans

{
z +

k, Pia wv NyaP

(1, - 1.)

—t (Wop¥1a + ¥spaP)

1 I R
Xx + Tx 3

pw Wap - Ww

k, OA | OA k, IA

I Pt = I WAP - Bo¥o,

(1, - 1.)

— Yas + Wg,P)

2 2
(I, - 1)(-W, Wy, + Wsp,P) (Ig - I)(W3, = Wpa) (1, - I) (MgyWgpy + Wap)

I. - 1). (1, - 1.) ; (x,-1.): x x x’ 142 2

a LILA + ¥g,p) —L—Z(Wo, Wgpa + WP) Tg enbioe (WSpa - 1a)

Ble.

J



r

Ix Hg
- PW - W

k, "IA Tk "OA

Fn
HoWrp = I,PWop + HgWomg

1,
k, PWsra

lL

where HW, d is a command torque applied about the

y-axis

fmm

(1, - I.)
z = yl

v— %oa¥sRa

(x, = I,)WpWgRa

(1, - I)
V X

2 Yoa¥1a

iii

21

[(u) m

(U) M A

 —_

A
x

A
2

hid M,
Inspection of the defined matrices reveals that each

matrix has a physical significance to the conditions

imposed on the problem. Matrices C, D and E can be

considered as torque coefficient matrices with each

matrix having a specific physical significance as

listed below.
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- physical properties of a nonrigid single-

degree~of-freedom gyro

angular velocity and acceleration depen-
dent torque coefficients

E - anisoinertia effects

r~

J

Matrices F, G and H can be considered as excitation

natrices with each matrix having a specific physical

significance.

F Coriolis and angular acceleration excit-

ation torques

G - anlsoinertia excltation torqu..:=

ff - uncertalnty torques

Eq. (2.13) can be rearranged as shown in Eq. (2.14)

CA=F+ G+ H- (D+ EA | (2.14)

where the dynamics of the gyro are on the left side

of the equation and on the right side of the equation

are excitation” terms where (D + E)A is now considered

an excitation torque. Another form of Eq. (2.13) can

pe written as Eq. (2.15)

CA+ (D+ EA=F+G+H (2.15)

In this form the term CA is the primary dynamics of

the gyro and (D + E)A is a type of perturbation acting

on the dynamics. A complete solution of the problem

will give a correct answer for both Eq. (2.14) and

Eq, (2.15) but the rearranging illustrates what might

be considered as primary and secondary effects.
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The matrix representation of the gyro element

equations of motlon separates the effects of the phy-

sical construction of the gyro and the environment in

which 1t operates. This separation makes it possible

to analyze each effect separately to determine its

contribution to gyro performance.

II-F General SolutionofGyroEquations

Kramer's rule for the solutionofsimultaneous

equations can now be used to solve for Ags Ag OT A.

When a single-degree~of-freedom gyro is used in a

single-axis space integrator the primary angle that

must be known explicitly is Ag The solution for

A_ and A, follows the same pattern as that for Age

To solve for Ag the matrix equationinthe

form of Eq. (2.14) will be used.

CA=F+ G+ H- (D+ E)A (2.14)

In this form the solution of the determinant of the

matrix C represents the dynamics assoclated with the

angle A

_ Ax 2 2 T He

c|= (37) »" + 1)(Iyp" - Ky)(3p2+ 1) + =Sp2 + 1)

(2 15)
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A single-degree-of-freedom integrating gyro

1s generally used in a single-axls space integrator

application and at this time 1t wlll be assumed that

ky = “CoP. As shown 1n Appendix A the assumption that

Ly 2 : I, 2

kK, p°&lt;«K1 and K, p &lt;&lt;1 1s valid over the frequency

range of operation of the gyro and will be used at this

time. Use of these two assumptions reduces (2.15) to
2 |

| lo = (xy + o p° + cp

which is of the same form as that derived in references

(2) and (10); with the difference being that k, 1s now

a general coefficient including all of the assumed

nonrigid properties of the gyro. Eq. (2.15) can be

written in the form of Eq. (2.17)

oot Vy
[,] oe

-—
TT

-’

¢l= o.p(E" c= P*tl)=cp ‘ + 1) (2.17)

effective output axis moment
of inertia

Ty i I./c, = characteristic time of gyro

He
I =I + we

ey TE]

Using Kramer's rule the general solution of A, is

C| A
g

—
”

x

 -~

0 n

Ir

m

0D

0

p 8

(2.18)
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wh ~.°2“lll

r= f+ gy +h - A(dy +e) -

-A fd, + en) - A,(a4 + e13)

m

 Nn

mt

p—

we

a

fo + 8p + hy = A (dy) + ey) -

dss + enn) - A, (dps + €s3)
- A

fa + g3 + hq - Ay(dg + es) -

A,(ds, + e3p) - A,(d33 + e33)

her

Cc A, =m + Hor (2.19)

To illustrate Eq. (2.19) it will be assumed

that A &lt;&lt; A and A&lt;&lt; Ag When the single-degree-of-

freedom gyro 1s used in a single-axis space integrator

this assumption may not be valid. The assumption is

made here only for the purposes of illustration.

Substitution of r and m into Eq. (2.19) gives

c| Ay =f, + gy + hy + Hpp(f) + gy + hy)-

Aldon + Ppp)+Hepl-Ag(dyp + epp)]

Use of the matrix coefficient gives

, ] |

(1.0 toe = Hy { Wpp=Woma~ (V)W,=A Wap, -p(U)M,
JI. -I_-

Xx ye 2
— = [WraWepn + AglWry - Wap)I}- IoPWop

(2.20)
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or

2
Ip + = }- IW

Of special interest are two of the special cases for

kK, developed in section II-D,

Case A

Case A represents most single-degree-of-

freedom integrating gyros with k_ = ky (b) In this

case Eq. (2.19) takes the form

H .

_ 1 Ss

Ag = To P+1 Le { (2.20a)

Case B

Case B represents an unrestrained single-

degree-of-freedom gyro with c g = 0

_ [x(s)toxP Hs {
HI ky (yt) +I 0, PIP

1

T= 5 Wo

(2, 20Db)

[I-G . Conclusion

The analysls of a single-degree-of-freedom

gyro based on the model 1llustrated in Fig. 2.1 can

be carried out in great detail when a matrix represen-

tation of the equations of motion of the gyro element

is used. This matrix representation separates the

various factors which affect the gyro performance

equation making it possible to analyze each term sepa-

rately.
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The representation of a practical single-

degree-of-freedom gyro by the model of Fig. 2.1 makes

it possible to analyze in detall the effects of a non-

rigid support for the gyro element and the equlvalent

k(p) terms derived in section II-D makes 1t possible

to write one general performance ecuation for any non-

rigid single-~-degree-of-freedom gyro. Speclal cases

of this general form can then be an integrating gyro,

an air bearing gyro or also a rate gyro which was

not discussed in this chapter.

II-H Recommendations for Further Study

(1) The model of the gyro in Fig. 2.1 appears to

be a representative model for single-degree-of-freedom

gyros. However, further study could be done to verify

the accuracy and limitations of this representation,

(2) To write the equations of motion of the gyro

element in matrix form it was necessary to linearize

fhe equations. Purther study could investigate what

effects the nonlinear terms have on the gyro perform-

ance equations.

(3) With the equations of motion of the gyro ele-

ment written in matrix form mass unbalance and aniso-

elasticity of the gyro element in an acceleration field

will develop torques about the gyro element axes. These

torques can be thought of as excitation terms and they

can be analyzed separately using the angle transform-

ation matrix to put the torques into gyro element axes.
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The resultant equation can then be directly added to

the matrix equation (2.13).
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CHAPTER III

NONRIGID SINGLE-AXIS SPACE INTEGRATOR

ITI-A Introduction

The single-axis space integrator has been

defined and its function in an inertial guidance or

navigation system has been explained in Chapter I.

Section I-B states the conditions imposed on the

single-axis space integrator for this analysis and in

Section I-C the role of the nonrigid single-degree-~of-

freedom gyroscope in a single-axlis space integrator is

explained. In Chapter II Yne gyre performance equations

have been derived and with the matrix representation

of these equations used in the derivation of the single-

axis space integrator performance equation the effect

of the imposed conditiors on system performance can be

analyzed.
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III-B Single-Axls Space Integrator Model Used for

Analysis

Fig. 3.1 illustrates the model of the single-

axis space integrator that wlll be used for the analysis,

The controlled member is the structure containing the

gyro case, the servo torque motor rotor and the connect-

ing shaft. between the two. Ks ky and k, are the

equivalent torque coefficients derived in section

II-D with the factor of 1/4 used only to show the

symmetry of the applied torque about the x, y and z

axes. It will be assumed that the bearings on the

servo drive axis are rigid. The base, as referred to

in Fig. 1.1, 1s now the shell enclosing the gyro and

servo drive structure. Damping between the base and

controlled member wlll be considered to be present.

ITI-C DerivationofPerformanceEquation .

Derivation of the performance equation for

the single-axis space integrator is most easily

accomplished by considering the controlled member

as a torque-sumnring member and summing all the torques

acting on it about IA. These torques are listed

helow:

LomPW1p = inertia reaction torque about IA

I = moment of inertia of the controlled

cm member abcut IA

2m (Wp - Ww,)= damping torque about IA
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Fig. 3.1 Model of single-axis space integrator

used for analysis
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Com = damping coefficient of single-axis
space integrator about IA |

Wo = angular veloclty of base with respect
to inertial space about IA

M,, = reactlon torque of gyro about IA

Mo = torque developed by servo torque
motor about IA

intr = interference torques about IA

The summation of all torques about the

controlled member servo axls 1s given by Eq. (3.1)

LomPWoa + Com(Wpp = Wpega)) + Mp = Mp + My pp

(3.1)

which 1s the basic equation used for derivation of the

single-axlis space integrator performance equation. To

remain consistent wlth the equation defining the space

integrator, argular velocity 1s used rather than an

angle. It should be remembered that the angle about

the servo axis, IA, of the controlled member with

respect to inertial space is the integral of Wipe

M., can be expressed in terms of Ms x. and

M, by use of the angle transformation matrix Coe As

jefined in Chapter II the torque relationship between

the gyro element and gyro case coordinate frame is

nt |

~y Noo?

=
—C

re
M

2c

HO



-1

Premultiplying both sides of the equation by cee

gii
1

-]
= ¢8¢

Me Coe Moe ( - 2)

and a solution of this equation for Mia expresses the

gyro reaction torque about the input axis in terms of

the torque developed about the gyro element axes as

shown by Eq. (3.3)

Mia = M, + AM, + AM,

The torque developed by the servo torque

motor is directly proportional to the output angle,

Ags of the single-degree-of-freedom gyro as shown

in Eq. (3.4) .

x 1.T= als

M, = (PF) A, = = S,_ FF) hp (2.4)

(PF), = performance function of the servo
control system

Sng sensitivity of the servo control

system, sometimes called gain of the

control system

(FF), q.= frequency function of the
control system

38rvo

Substitution of Eq. (3.3) and Eq. (3.4)

Eq. (3.1) gives Eq. (3.5).

(Imp * Com) Wa - [-5,4(FF) oq tM

emp (1A) - MN, AMg Miner

into

(3.5)
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A solution of the four simultaneous

equations, (3.5), (2.11a), (2.11b) and (2.1lc) where

Ms My and M_ have been replaced by equations (2.10a),

(2.10b) and (2.10c) will give the solutions for Wop

As A, and A, in a nonrigid single-axis space integra-
tor. The general solution by this method is very

tedious, tends to mask the physical significance of

the conditiors imposed on the problem and involves

the simultaneous solution of four nonlinear equations.

A useful and accurate solution that eliminates the

problem associated with the simultaneous solution is

presented in the following section.

ITI-D Practical Solution of Performance Equation

A practical solution of Eq. (3.5) can be

derived by consideration of the basic operation and

function of a nonrigid single-axis space integrator.

In section I-A the operation of a SLngle-Axls space

integrator was discussed and it was explained that the

function of the single-degree-of-freedom gyro in the

single-axis space integrator is as a transducer to

sense angular velocity with respect to inertial space,

and to transform this angular velocity into a suit-

electrical signal that excites a servo drive system.

The servo drive system then drives the controlled

member, the single-degree-of-freedom gyro case and

associated structure, to null the angular velocity

"Ho



about the input axis of the single-degree-of-freedom

gyro. The baslc operation of a single-axis space

integrator is thus dependent mainly upon the gyro

output angle, Age Because the basic performance

equation of the single-axis space integrator 1s derived

by summing torques acting on the controlled member, the

terms M_, M, and M, of Eq. (3.5) can be considered

as forms of torque interferences acting on the controlled

member. With these basic ideas in mind the following

approach to the solution of the performance equation

of the nonrigid single-axis space integrator is

taken.

First, by remembering that Eq. (2,12) is

actually representing the torques developed about the

x, y and z axes of the gyro element and that due to

the nonrigid support of the gyro element these torques

can be represented by Eq. (2.9) it 1s possible to

write by inspection of Eq. (2.11) the torques M_, M

and M,. In a single-axlis space lntegrator application

My and M, are multiplied by the angles A, and A,

respectively, per Eq. (3.5), and if, for illustration,

higher order terms, AA, , AZ, etc., are neglected

M, M, and M, can be written as shown in Eq. (3.6).
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_ 2

M, = I PW1p + HoWop + (Ip T HoWopa) Ax +

ii

Hp - I, PWapy - I WgraP) AH (I, pW},P - HWip)A,

(3.6a)

ig = IPWop = HgWpy = Mema

M, = 1,PWgpa

(3.6b)

(3:6¢)

Substitution of Eq. (3.6) into (3.5) gives

(Temp + Com) Wa = [-S. (FF) g * kg] Ag -

NY £

Mey = My - 1 DWrp- HoWop + Cem? (3.7)

Ke = I,PWgpa * IWsRaP - I,PWgRa - HgP

— 2 |

Mex = (Ip + H Worn) Ax

Mey = [I,pWg, + I PWoP - 2H Win MomalA,

With the performance equation of the single-

axis space integrator in the form of Eq. (3.7) the

angle Ag for the nonrigid single-degree-of-freedom

gyro can be used to find the performance equation of

the nonrigid single-axis space integrator. Although

it is possible to express a general performance equation

for the single-axis space integrator, the more practical

approach would be to substitute the performance functlon

of the particular type of single-degree-of-freedom

gyro that was to be used in Eq. (3.7). A single-degree-
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of-freedom integrating gyro and a single-degree-of-

freedom air bearing gyro are of particular interest

when used in a single-axis space integrator and are

discussed below.

IITI-D.1 Single-Axis Space Integrator Using an

I, tegrating Gyro | |

A single-degree-of-freedom integrating gyro

of the type in Case A of section II-D and Eq. (2-202),

when used in Eq. (3.7), will give the performance func-

tion of a nonrigid single axis space integrator as

Q I nC C.
2 cm

[srr (TP+1°+2s—ppy—(Tgp+1)pHy Ses cs 5 s “cs ce ©

K ]
TE + 1] W

cs' ‘cs 1A

k

1 - Wo + A Wen, -(UYW,] +(1 = srry Vema + Ag¥sra ~(U1H]

 XK (I, - I.) 2 2

[1 -srr mm (Vasa + AglWpy - Wgpa1)+

k I
l - Ww -

[1 - 5they,tePon
C .

[+E tr (Tp + 1 tM + -C
H SS (FFT 20 gP J PIM, HM +I PW HH Wop emp (1A)!

(3.8)

The performance equation (3.8) illustrates what para-

meters effect the dynarics and resulting errors in a

nonrigid single-axis space integrator. The parameters

ne



ec hI Cc kcm cm
’ 3Tr and T_ areme * Ss (FF) og Se 5(FT Tes cs cs &amp;

of particular importance. To further analyze Eq. (3.8)

the schematic block diagram of the single-axis space

integrator, Fig. (3.2), will be used. For illustrative

purposes all inputs to the gyro other than (Woma~ ra)

k

will be neglected, it wlll be assumed that &amp; &lt;&lt; 1
cs cs

and all interfering torques will be included in Miner

For a complete analysis all of these effects must be

included. The output Wrap of the system, using an

Integrating gyro, can now be written as

H
S

75cs(FF) gs : c p(T _pt+l)
- eee [W +: pMcmd H_S (FT) intf
P(TeP+1) (TopPteon)t_8Seq (FF) og s cs cs

o

ra

and at the lower frequency end
¢

ne a-—
"1a = Wema TH; SP Mintr

The open loop performance function, (PF),

(PF), = Sse 1 L
si Com cg PTD + I(T,,P +1)

I

where Tom = LE
cme

For a single-axls space integrator to be accurate to

0.1 meru, the error introduced by Myer the servo

gain, SJ must be adjusted accordingly. To illustrate
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the method of calculating Ss the following parameters

will be chosen

H

=
£

Eom = 10.000 dyne cm/rad/sec.

Tom = 0,05 sec, I

T, = 0,0017 sec (calculated i for a HIG-U4 gyro)

ex
T, = 0.0027 sec (experimental =5 for a HIG-4 gyro)

g

The two values of To are used to illustrate the effect

of nonrigidity on the single-axis space integrator

operation. For Win = 0,1 meru due to PM, trp = 1,000

dyne cm/sec

Seg = 19+ dyne cm/rad and
S H

a=-C8 _8_ 10f
Com e |

11  k;
With S__ = 10" dyne cm/rad the assumption a &lt;L 1 is

cs ns

Va =n”
nbd

Fig. 3.3 1s a Bode plot of (PF) 4 for both

values of Tee At the crossover frequency, Odb, the

phase shift is -207° for T = ,0027 sec and 200° for

T, = .0017. A well-designed servo system has about

-135° phase shift at the crossover frequency and, 1f

the theoretical value of Ty had been used for servo

compensation, a phase shift of 65° would stabilize

the servo system. Due to the nonrigid support system

In the gyro the compensation network must provide an

} Ee
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space integrator utilizing an integrating gyro
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additional 7° of phase shift.

iII - D.2 Single-Axis Space Integrator Using an Alr
Bearing Gyro

A single-degree-of-freedom gyro of the type

in Case D of section II-D and Eq. (2.20b), when used

in Eq. (3.7), will give the performance function of

the single-axis space integrator as

I. I o I
2

la—pr— —f (14D Ty p)p+5—fpr——Ho(1+0T,, pp” +
cs cs 's ga Soest FFs Hg ea

k

(1+T, Pp) (1- Ss FEY) Win =

k
eB . -

(1 5 (FF); LY 1 TeaP Wong + A Vora (Uv ] +

i (1,-1,) 2 2
HL epi (1+PN ==(Wp Wp tA [Wp ~Wgpa 1) 1

cs cs S

[1 - pI (52Hl - 1+T p

cs cs ga s

2
I _ (1+bT__p)p
£2——5F +I pW, -Hy Ses ) os [Hy My I.P¥p HsWon ¢om¥p1al

, (3.9)

Hg
I = I + q——

ga Ky(s)

T
pa

D =

Cx
Ke(s)

Lo
pa

2a,
2

I a

The parameters of interest are Tr pe

Ses(FF) og Scs(FF) g

K I

SFE — ’ —£= s T a and ob. Using Fig. (3.2) and
cs ot es Ss &amp;
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following the same procedure as used in section III-D.1,

with the same assumptions, a single-axis space integrator

using an air bearing gyro can be analyzed as shown below.

For the low frequency region

 I
~ a 2

Win = Wema * i P- Myngr

The open loop transfer function is

(pF). = H (8,4) (FF) [1+ T 5p]
= BeeZpee —

si | gafem p [1+bT,,p](T, pt+1]

To solve for Ia assume,as reasonable engineering values,

2

Iy = 35 gm cm

H, = 10% gm em®/sec

k,(3) =5 Xx 10° dyne cm/rad

which gives Ion = 235 gm em and b = 0,15

2
For p M, .. = 500 dyne cm/sec and Com = 10*dyne cm/rad/sec.

the gain 8 = 10° dyne cm/rad for a 0.1 meru uncertailn-

ty due to pM, ,.

Fig. 3.4 is a Bode plot of (PF)gy» subject

to the above conditions, for Cy = 0 and To = 0,05 sec.

At the crossover frequency the phase shift is -235°

which requires a phase shift of 100° for a well designed

Servo system. Fig. 3.5 1s a Bode plot of (PF) gy for

Tea = 0,01 sec, At the crossover frequency the phase

shift is 212° which requires a phase shift of 77° for

a well designed servo system,
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IITI-E Conclusion

The performance function for the nonrigid

single-axls space integrator is shown in Eq. (3.7)

in a form that is applicable for use with all single-

degree-of-freedom gyroscopes, For a particular

appliation and gyro the performance function can be

derived as shown for the two special cases in section

III-D. As illustrated by the two special cases the

stability of the servo system 1s dependent on the

suspenslon system of the gyro used in the single-axis

space integrator and to insure stability by servo

compensation the actual suspension system of the gyro

must be known in detail, When a mission velocity and

acceleration profile is specified the excitation terms

in Eq. (3.7) can be analyzed in detail to determine

the error in the axis orientation
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CHAPTER IV

SUMMARY OF RESULTS AND CONCLUSION

The general performance equation for a

nonrigid single-axls space integrator, as shown in

Fig. 3.1, is given by Eq. (3.7)

(TopmP + Com) WIa = [-S, (FF). q + koh,

-M
vv - Mey - IPW, - HWon + Cop "ey

hy (3.7)

This form of the equation includes all of the

conditions imposed on the device in section I-B while

retaining the physical significanceoftheconditions

and allows the designer of a single-axis space 1inte-

grator to separate and analyze independently the effect

of the various conditions on the dynamics and accuracy

of the device
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The development in Chapter II of the per-

formance equations of the nonrigid single-degree-of-

freedom gyro allows the designer of a single-axis

space integrator or a single-degree-of-freedom gyro

to include the effects of a nonrigld gyro element

support in his analysis and to analyze the gyro 1n

as much detail as he desires by separately analyzing

the contributions of the imposed conditions. When

the performance equations for the gyro have been

developed, including as many conditions as is desired,

they may be substituted into the general single-axils

space integrator equation, Eq. (3.7), and the single-axis

space integrator can then be analyzed in as much detail

as 1s desired.

A step-by-step analysis of a single-axis

space integrator would proceed as follows:

Determine type of single-degree-of-

freedom gyro to be used in the single-

axis space integrator.

Determine the physical parameters of the

gyro including the type of gyro element

suspension that is present.

Using section II-D determine:the equi-

valent k_, ky and k, that represent the

gyro element suspension.

Using Eq. (2.11) write the gyro equations
in a matrix form, this can generally be

done by inspection of the gyro coefficient

matrices that are defined.

4)
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5) Decide what terms should be included

in the gyro performance equations.

Following the procedure of section II-F,

determine the gyro performance equations.

Use the gyro performance equations in

Eq. (3.7) to determine the single-axis

space integrator performance equation.

Select a representative mission velocity

and acceleration profile.

Analyze the single-axls space integrator

performance equation to determine the

requirements of the control system per-

formance function to achieve the desired

system accuracy. |

Perfom an error analysis on the system

to determine the effects of the terms

not included in the first analysis.

7)

9)

10)

The following conclusions can be stated as a result

of the analyses carried out in ChaptersIIandIII.

1) A general set of performance equations

can be written for a nonrigid single-

degree~of-freedom gyro including all

effects of environment and physical

construction in a matrix form that

separates the various conditions.

An equivalent suspension system can be

derived for any nonrigid single-degree-

of freedom gyro. (Note that the suspension

stiffness used in the performance equations

is general and that even 1f a suspension

system other than that shown in Fig. 2.1

1s present the derlved performance equa-

tions are still valid.)

2)
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3) The dynamics of a single-degree-of-

freedom gyro are independent of the

z-axls suspension system when = pe&lt;LL 1.

For a practical single-degree-of-freedom

integrating gyro this assumption 1s valid.

A general performance equation for a

nonrigid single-axis space integrator

can be derived that includes all effects

of environment and physical construction

in a form that separates the effects of

the various conditions.

The dynamics of the single-axis space

integrator are dependent on the nonrigid

suspension system in the gyro as illus-

trated in section III-D., To insure

servo stability for the single-axis space

integrator the gyro suspension system

must be known in detail.

i)

5)
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CHAPTER V

RECOMMENDATIONS FOR FURTHER STUDY

As a result of the analysis and matrix

representation of the gyro performance equation in

Chapter II the following recommendations for further

study are suggested.

1) Representation of other Gyro Performance Parameters
in Matrix Form ; |

With the matrix form of the gyro element

equationsofmotion,Eg. (2.11), other parameters

that affect gyro operation can be derived, written in

a matrix form and directly added to Eq. (2.11). These

parameters might include mass unbalance, anisoelasticity,

x Wh

iC
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2) Analysis of a Single-Degree-of-Freedom Gyro used
in a "Strapdown" System

The equations developed in Chapter II for

a nonrigld single-degree-of-freedom gyro lend them-

selves directly to the analysis of a gyro where a

loop is closed about the signal generator and torque

generator. An analysis following the approach of

Chapter I1 where kk, = kA, will yield the performance

of the gyro in a "strapdown" system.

3) Analysis of a Pendulous Integrating Gyro
Accelerometer

The pendulous integrating gyro accelerometer

(PIGA) can be analyzed using the same approach that

was used for the analysis of the single-axic space

integrator. Eq. (3.7) for the single-axis space

integrator is also applicable for the PIGA and when

Eq. (2.11) includes the effect of an introduced mass

unbalance, pendulosity, about the y-axis of the gyro

element the performance equation for the PIGA can be

obtained. The derived equation will be subject to

the same conditions that are present in the single-

axils space integrator analysis.
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Appendix A

ANALYSIS OF GYRO SUSPENSION STIFFNESSES

Draper et a1(1) have presented experimental

and theoretical data for a particular HIG-4 gyro.

urigley(?) has used these data to calculate k_=5 X 10°

dyne cm/rad and an undamped natural frequency of 50 cps
I

to verify the assumption that £5 pe&lt;&lt; 1.
xX

To
| I, 2 &lt;&lt;
verify 7 P 1 assume

A

(1) I, =1,

(2) y(ge) = Kaz(ge)
— K.

’

where

Ko e) = elastic stiffness of the gyro
&amp; element about the x axis

Ko(ge) =

aa

ant

elastic stiffness of the gyro

element about the z axis

total elastic stiffness about

the z axils; see section II-D.
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k k b

I 3ere

Ke(b) = elastic stiffness of the spin axis
bearings about the x axis

assume, as reasonable engineering values, that

= 1

(1) ¥y(ge) = TO ¥x(b)

(2) Ky(ge) = Kx(b)

(3) Ky(ge) = 10 ¥y(p)

For these values the undamped natural frequency about

the z axis 1s 53 cps, 70 cps and 165 cps respectively

 Co I
to verify the assumption that Pe p=&lt;&lt; 1.
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