¥
§ -

NONRIGID SINGLE-AXIS SPACE INTEGRATOR DYNAMICS
by
Edward Eugene Shaw

S.B., Massachusetts Institute of Technology
(1960)

SUBMITTED IN FARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May, 1964

9] _n AR
Senabure of Authon Signature redacted

Department of Aeronaitics and Astronautics,
May 1964

- )
Certified by Signature redacted

0 a‘hes 1s Supervisor

Certified by - Signature redacted

Theslis Supervisor

1 , o
Accepted by Signature redacted

~ Chairman, \Departmental Committee
on Graduate Students



ACKNOWLEDGMENT

This report was prepared under DSR Project 55-191, spon-
sored by the Manned Spacecraft Center of the National Aeronautics

and Space Administration through Contract NAS 9-153.

The publication of this report does not constitute approval
by the National Aeronautics and Space Administration of the
findings or the conclusions contained therein. It is published only

for the exchange and stimulation of ideas.

1



NONRIGID SINGLE-AXIS SPACE INTEGRATOR DYNAMICS
by
Edward Eugene Shaw
Submitted to the Department of Aeronautics and Astronautics
on 22 May 1964 in partial fulfillment of the requirements
for the degree of Master of Science
in Aeronautics and Astronautics
ABSTRACT

The general performance equations for a
nonrigid single-axls space integrator and a nonrigid
single-degree-of-freedom gyroscope are developed to
include environmental and nonrigid gyro support effects
on instrument dynamics and errors. The performance
equations are developed in a matrix form that separates
dynamic and excitation terms., Nonrigid single-degree-
of-freedom integrating and air bearing gyroscopes and
thelr use 1n a single-axls space integrator are dis-
cussed as speclal cases of the general performance
equations,

Thesis Supervisor: Walter Wrigley, Sc.D,

Title: Professor of Aeronautics and
Astronautics

Thesis Supervisor: Robert K. Mueller, Sc.D.

Title: Professor of Aeronautics and
Astronautics

o B



O AR I AL DATHT B0ASE EIXA-BIORT! 10 1AHDR
; X
0. earhaE 2Ahw Gl
asdacmaeadnd Lo radduaniisd 18 rrmmeieged w0 0 Gedmrame
Jdmemrn oy T pilt Yo el Do LAR My Ak sl ok P
A e o e ClpunggRel & sl

SRR [TF et S R Tl i (] i T

. FOARTEE L
R 1Dl Rip Lispn ﬂl:-h.-'f"'flz'."l-nq dansnms a0l
LAl Bi FrL I = T F et s i DU =) B ot T F AR e |
of beeafaeeth a2k Bg~c i 77s « WOcwEM I =J om0 ea Tafr ke

l-dh"l,:he Fusyore omm bambown toon agnsmten pin on e
- SRt Ay W PT Rt ) SO S o b ad
I'”'-T"'!'H'q"! i ey T r At Dge D) @ FantsuTe.
shettRakomisnda Jdgiarh et mad Iagdl e ) ol
Ean Fagommm=aa AR mfa Ss A faaRatie Ao Enrl b
BED s SuiB kTl Hit kel s L e TR T
R = U A T wﬂn‘ m Aemdeg LEEori, 1 op Bepald

¥ 1o T TR 1 A I 4 _I'i‘u%'
] | | 'l fl 1}
e T
5'I. ) J".‘"'IL,II*I;'l' 'Iﬂ"i.l.'r' '@I‘.L'l'l!tql-ﬂ;_.l!'.l_"‘hl' Y .
. Eia L._.:Piranu'._'-l h 2o .manateas el
| R B " :t _,;»za-_l ,mr# | S

LB el A rasd DL Dt vienaroll 8F esnl

Al pichrEneie A To spgselond eieiT
-.:tJ"rnI-lhm gk

40




ACKNOWLEDGEMENTS

I would like to express my deep appreciation
to Professor Walter Wrigley and Professor Robert Mueller
for thelr assistance during all phases of preparing
this thesis. Also, my thanks to the Instrumentation
Laboratory and, in particular, Johﬁ Miller and
Jim Flanders for their 1nterest in and support of the
thesis. Many thanks are due Anthony Moscaritolo for
his superb work on all the illustrations.

Finally, my most sincere gratitude to my
wife, Beverly, for her typing and assistance in pre-

paring the finished text.

) Er E. Sc
May 1964



- -r




TABLE OF CONTENTS

Chapter I Introduction

I-A

Space Integrator Definition and
Function in an Inertial Guidance
System

Statement of the Problem
Approach to Problem Solution
Scope of the Investigation
Background and Previous Results

Chapter II Single-Degree-of-Freedom Gyroscope

II-A
I1-B
I1-C

11D

IT-E

II-F
I1-G
IT-H

Introduction
Gyro Model Used for Analysis

Derivation of Gyro Element Equation
of Motion

Analysis of Gyro Element Suspension
System

Matrix Representation of Gyro
Equations

General Solution of Gyro Equations
Conclusion
Recommendations for Further Study

Chapter III Nonrigid Single-Axis Space

ITI-A
I1I-B

1110
III-D

Integrator
Introduction

Single-Axis Space Integrator Model
Used for Analysis

Derivation of Performance ‘Equation

Practical Solution of Performance
Equation

TIII-D.1l Single-Axis Space Integrator

Using an Integrating Gyro

III-D.2 Single Axis Space Integrator

III-E

Using an Air Bearing Gyro
Conclusion

vii

page

O oo WU

10

11
1k
13

18

26

31
42

35
37

37
38

38
42

45
50
54



page
Chapter IV Summary of Results and Conclusion 655

Chapter V Recommendations for Further Study 59

Appendix A Analysis of Gyro Suspension 61
Stiffness

References 63

viii



Fig.
Fig.
Fig.
Fig.

Fig.,
Fig.
Fig,
Fig.

Pig.

Fig.

Fig.

Fig.

Lsd

1.2

3.4

3.5

ILLUSTRATIONS

Basic Components of a Single-Axis
Space Integrator

Functional Block Diagram of a

Single-Axis Space Integrator

Model of a gyro and support system
used for analysis

Gyro case and gyro element angular
relationship

x-Axis support system
z-Axis support system
y-Axis torquing elements

Model of single-axis space
integrator used for analysis

Schematic block diagram for a
single-axis space integrator

Open~-loop transfer function for a
single-axis space integrator
utilizing an integrating gyro

Open-loop transfer function for a
single-axis space integrator-
utilizing an air bearing gyro with
no radial damping

Open-loop transfer function for a

single-axis space integrator utilizing
an air bearing gyro with radial damp-

ing

ix

12
16

20 .
23
25
39

b

49

he






CHAPTER I

INTRODUCTION

I-A Space Integrator Definition and Function in

an Inertial Guidance System

A space integrator is defined as a device
which gives 2 controlled member nn wungular velocity
with respect to inertinl snice proportional to a command
signal even in the face of interferences.(l)’(e) As
used in an inertial navigation or guidance system the
space integrator is basically a velocity-controlled
servomechanism that matches the inertial angular velo-
city of its controlled member to a commanded inertial
angular velocity. The output of the device may be
considered as the orientation of a coordinate frame
attached to the confrolled member with respect to an
inertial coordinate frame and the input as a command
inertial angular velocity. In this case the device 1s
performing an integration of the input angular velocity
with respect to inertial space. The use of angular

velocity in the definition is to avoid the complication



involved when using angular displacement, which 1s not
a physical vector quantity. The definition of a space
integrator 1s given mathematically by

Witem) = (7F)(51)Woma (1.1)

where:

= the angular velocity of the controlled
member with respect to ilnertial space.

(fF)(si) = the performance function of the space
integrator.

cmd = the commanded angular velocity of the
controlled member with respect to in-
ertial space. =
The function of a space integrator in an
inertial navigation system is twofold. First it pro-
vides isolation of a reference coordinate frame atfached
to the controlled member from any base motion. Second
it rotates the controlled member at an angular velocity
with respect to inertial space when commanded to do so
by a command input. A special case of the general
definition is when the command signal 1s zero and the
controlled member has zero angular veloclty with respect
to inertial space. This special case implies a stable
orientation of the controlled member with respect to
inertial space and has given rise to the use of the

titles "stable table" and "stable platform" instead of



space integrator. These titles suggest the ldea that

a space integrator stabilizes a coordinate frame with

respect to inertial space. This view 1is often helpful
in visualizing the operation of a space integrator.

The single-axis space integrator is a special
case of the space integrator discussed and differs only
in the respect that it must satisfy the definition
about only one axis of the coordinate frame attached to
the controlled member. To establish a complete coordinate
frame three single-axis space integrators are required.
A schematic of a single-axis space integrator is shown
in Fig. 1.1 illustrating the major components used in
the device,

The functlon of the components in the system
is explained by considering the operation of the single-
axis space integrator. A single-degree-of-freedom gyro
is used to sense angular velocity with respect to inertial
space. The output of the gyro, in the form of an elec-
trical signal, is fed to the servo electronics and
amplifier which excites a torque motor whose axis of
rotation is the input axis of the gyro. The torque
generated by the motor—rotates the controlled member
at an angular velocity whose sense is opposite to that
of the velocity of the base until the input axis of the
gyro, mounted on the controlled member, senses no

angular velocity with respect to inertial space thus
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stabilizing the controlled direction with respect to
inerﬁial space. The developed angle between the con-
trolled member and the base is the integral of the
angular velocity with respect to inertial space of the
base aboutrfhe input axis and 1s the angle that the
base has rqtated about this axis with respect to
inertial space. Fig. 1.2 is a functional block diagram
of a single-axis space integrator.

I-B Statement of the Problem

The definition and function of a single-axis
space integrator impose the requlirement that the angu-
lar velocity of the controlled member be proportional
only to a command signal. In the mechanization and use
of the single~axis space integrator in a guidance system
it is necessary to determine 1f there are any other
inputs to the system, and, if other inputs are present,
how they affect thé performance of the space integrator.
The analysis and resultant performance equation must
take into account the environment in which the system
operates and also the physical properties and construc-
tion of the device. For use in a high quality inertial
guidahce or navigation reference system the output
angle of the single-axis space integrator must be

*
accurate to-about 20 arc seconds (3) imposing the

*A representative number used by Wiener in reference 3
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reauirement that the ilntegrated errors due to the
environment and properties of the device be elther
less than 20 arc seconds or be compensated for to this
accuracy by a known relationship.

The guidance system in which the single-axis
space integrator operates wlll be mounted in a moving
vehicle which is subject to angular velocities about
all three axes‘of a coordinate frame attached to the
vehicle. The analysis of the space integrator must
then include the effect of angular velocities about all
three axes of the coordinate frame attached to the con-
trolled member. .

The components of the single-axis space
integrator are illustrated in Fig. 1.1. Although all
of the components will have nonideal performance, the
gyroécope is the prime component that determines the
performance function of the slingle-axis space integrator.
The ideal gyro for use in a single-axis space lntegrator
would develop an output angle and electrical signal
directly proportional only to an angular velocity
about its inpuﬁ axls., In reality the output angle of a
gyro is also a function of angular velocitles about the
spln reference and output axes and mechanical properties
of the gyro. For its use 1n a single-axis space inte-
grator the gyro will be subjected to input angular

velocities about all three coordinate axes and ﬁhe



effects of gyro element anisoinertia, nonrigid suspen-
sion of the gyro element, compliance of the spin axis
bearings, cross coupling of input angular velocities

and uncertainty torques as they affect the torques
developed about the gyro axes will be considered. The
nonrigid support of the gyro element will be examined

in detail to determine its effect on the dynamics of

the gyro and the associated single-axis space integrator.
The integrated errors present in the output angle of the
sinpgle-axis space integrator as a result of the nonrigid
support, coupled with the other conditions imposed on
the system, will be examined,

I-C Approach to Problem Solution

The approach to the problem solution will be
to first analyze the single-degree-of-freedom gyro
subject to the conditions stated in the previous
section. The performance equation of the gyro will be
written in matrix notation in a form that will separate
the dynamics of the gyro from the input excitation
terms. This approach illustrates what effects the
various conditions have on the gyro performance and
permits a more thorough analysis of the effects of
nonrigid gyro element suspension on the dynamics of

the gyro,



The performance function of the single-axis
space integrator will be derived using the matrix no-
tation. The resultant performance function will be in
a form that separates the various excitation terms from
the dynamics of the eslngle-axls space integrator. The
excitation terms can then be analyzed separately to
determine their contributions to the resultant error
present 1n the indication of vehicle orientation.

To illustrate the significance and use of the
derived pefformance functions representative cases will
be examined for both the gyro and the single-axis space
integrator.

I-D Scope of the Investigation

The conditions stated in sectlon I-B for use
in this analysis are by no means a complete set of
conditions that are present in the single-axis space
integrator system., They are, however, the prime con-
ditions that affect the dynamics of the system and in-
clude most of the input excitation terms.

A more complete set of conditions would
include linear accelerations along all three coordinate
frame axes, mass unbalance of the gyro element, aniso-
elasticity of the gyro element and non ideal performance
of the gyro spin motor. These conditions have been
analyzed(u) and, with the matrix notation used in the

problem solution, these conditions can be analyzed



separately and directly inserted into the derived
performance equaticns,

I-E Background and Previous Resultis

The space Integrator, as used in an inertial
guidance or navigation system, has been primarily a
three, fcur or five gimballed system that stabilizes a
coordinate frame with respect to inertial space. Much
analysis work has been done on this type of system, (1),
(5),(6),(7),(8) and it 1s used in most working inertial
guidance and navigation systems. The single-axis
space integrator has been treated chlefly as a bullding
block toward the understanding and analysis of the three,
four and five gimballed system. The analysis of the
single-axis space integrator has, therefore, been
primarily concerned with special cases that will be
e Trbie Fhutiide el Banckabd Yidhaler o). s
analyzed the single-axis space integrator considering
input angular velocitlies about all three coordinate axes
and an elastic support on the gyro input axils. Mueller(9)
has analyzed the effect of an elastic input axis Support

on the dynamics of the output angle of a single-degree-

of-freedom gyroscope,

10
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ER II

SINGLE-DEGREE-OF~-FREEDOM GYROSCOPE

IT-A Introduction

The single-degree-of- freedom gyroscope has
been studied extensively and much literature is avail-
able on gyro theory and performanceo(l)’(g)’(u)’(g)

The purpose of the analysis included in this chapter

is not to repeat or add to the previous work but to
develop the gyro performances equations in a form and in
sufficient detail to make them applicable to the analysis
of the single-axis space integrator.

II-B Gyro Model Used for Analysis

Analysis cf the gyro will be based on the
model 1llustrated in Fig. 2.1, which shows the nonrigid
support of the gyro due to the spin-axis bearings and to
the elasticity, radial elastic support and radial damp-
ing of the gyro element., These nonrigid support elements
develop torques about two axes of the gyro while the

torque about the third axis can be developed at the

11
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Fig. 2.1 Model of gyro and support system used for analysis



designer's choice to determine the type of single-degree-
of-freedom gyro. 1In section 1I-D the support system is
analyzed in detail,

Three coordinate frames are necessary for a
discussion of the nonrigid single-degree—of-freedom
gyroscope:

1. inertial frame, i, origin at the center
of mass of the earth.

2. gyro case frame, gc, origin at the center
of mass of the gyro case, fixed to the
gyro case,

3. gyro element frame, ge, origin at the
center of mass of the gyro element, fixed
to the gyro element.

In a single-degree-of-freedom gyro with a rigid support
system the gyro element frame and the gyro case frame
would be coincident.

The inertial frame axes will be defined as

Xgs Tqs Zys the gyro case axes as IA, OA, SRA, and the

gyro element axes as x, y . and z with their orientation

shown in Fig. 2.1.

II-C Derivation of Gyro Element Equation of Motion
| The operation of a practical gyroscope is
most easily explained by deriving the equations of
motlon for the gyro element as is done by Wrigley
in reference (2). These equations are derived by
using Newton's Law for rotation with moments taken

about the center of mass of the gyro element.

13



p:BE__ =M (2.1)

ige
where
piﬁ o = time rate of change of angular
g momentum of gyro element with respect
to inertilal space
M = torque applied to gyro element
- d
p, = [H_"] = time derivative taken in inertial
> vl space
ng =.Hs T ﬁﬁs = angular momentum vector of gyro
element
Hs = ISWS = spin angular momentum vector of
spin motor rotor
I, = spin axis moment of inertia of rotor
WS = spin angular velocity vector
ﬁns = non-spin angular momentum vector of

gyro element
Applying the law of Coriolis to the left hand side of

Eq. (2.1) and separating'ﬁge-into 1ts spin and non-spin

components gives

pnge = pgeHs i pgeHns + wi(ge) x Hy + wi(ge)XHns=M
(2.2)
= d
where p__ = [H__] = time derivative taken with respect
ge o “Ee to gyro element
wi(ge) = angular velocity vector of gyro

element with respect to inertial
space.

Assuming ws = constant(e) the basic law of motion of

the gyro element 1s

14



vy - —
pgéﬁns b “i(ge) ® By * wi(ge)

4 Hns =M (2.3)
With the gyro element frame oriented as shown
in Fig. (2.1) the important quantities in Eq. (2.3) can

be written in gyro element axes
W = + JW._ + k
wi(ge) TWX Jwy sz
i = kISws

Hns = 1 wax + 7 Iywy + k Izwz

where Ix’ Iy and Iz contain both rotor and gyro element
inertias about their respective axes. Due to the mapg-

netic coupling between the gyro motor rotor and stator

the rotor inertia must be included in IZ. If WS = con-
stant, as has been assumed, the moment of inertia

Iz = constant. Substitution of these quantities into

Eq. (2.3) results in a modified Euler equation,

I oW, + Wst + (IZ - Iy)wywz = M (2.4a)
Iypwy ~ WM, & (1X - Iz)wxwz = My (2.4Db)
I,pW, + (Iy - IX)way - M, (2.4c)

The angular motions of interest are those of
the gyro element with respect to the gyro case and are
shown in Fig. (2.2). With reference to Fig. (2.2)
the gyro element coordinate frame is related to the
gyro case coordinate frame by an angle transformation

matrix, With the assumption that all the angles are

15
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Fig. 2.2 Gyro case and gyro element angular
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"small" the transformation matrix Céz = 1 + A where

1 O O 0 AZ -A
I = O 1 0O A = -A 0] A
& * (2.5)
0O 0 1 {_A -A 0
_ _ g X |

In matrix A the angle Ag is used instead of Ay. This

is consistent with common single-degree-of-freedom gyro
terminology where the angle about the y-axis is called
the gyro angle and labeled Ag

Using the transformation matrix ng the
angular velocitiles wx,.wy and wz can be’expressed in

terms of W and W and the developed angles Ax’

1a° Yoa SRA
Ag, and A, as is shown in the matrix Eq. (2.6).

o | T T T
W, 1 i -k Wrp A (2.6a)
wy =~ 1 AL Wop | pAg (2.6Db)

sz' Ag Ay 1 Ysra ‘{pAZ (2.6¢)

The eguations for wx, wy and WZ can now be
substituted into Eq. (2.4) to give the equations of
motion of the gyro element. Because of the size of
the resultant equafions they are not written in the
text but in section II-E they are written in an equi-

valent matrix form.

17



II-D Analysis of Gyro Element Suspension System

The equations of motion of the gyro element
have been written in the form of a modified Euler
equation where the time derivative of the angular
momentum vector with respect to inertlal space is equal
to the torque applied to the gyro element. It 1is now

necessary to examine how the torques M., M, and M, are

y
developed in a practical nonrigid gyroscope by using
the gyro model of F'g. (2.1).

Fig. (2.1) shows five torques applied to the
gyro element. Four of these torques are present due
to the nonrigid support of the gyro element while the
fifth torque is a rotational torque about the y axis of
the gyro element applied at the deslgner's cholce to
determine the type of single-degree-of-freedom gyro.

Spin axis bearings hehave in an elastic
manner when subjected to radial forces.(2)’(9 ) As
‘used in the gyro element radial forces are developed
along the x and y axes glving rise to torques about the
vy and X axes respectively.

The gyro element will behave in an elastic
manner due to the elastic properties of the element
matertal.(2)s(10) mnig elastic behavior will apply
torques about the x and z axes.

The support of the gyro element in a single-

axls space integrator is elther a fluid support or an

18



alr bearing type of support coupled with a magnetié
suspension support.(lo} These supports will apply
torques about the x and z axes. In the case of a
fluid and magnetic sppport an elastic behavior will be
present due to the magnetic suspension and the forcing
of the non-compressible flotation fluld along the y-axis
of the gyro element.(]l In addition to the elastic
torque a dampihg torque is present due to the viscous
- nature of the flotation fluld. 1In the alr bearing and
magnetlic support an elastlc torque 1s present due to
the magnetlic suspension and the compressible property
of air. 1In this case the damping torque 1s essentlally
zero,

The rotational torque applied to the y-axils
of the gyro element determines the type of single-degree-

of-freedom gyroscope and may take three forms:

My = —kgAg - cgpAg; primarily elastic torque;
rate gyro

My = —cgpAg; damping torque; integrating gyro

My = 0; urrestrained gyro

The torques, Mx, My'and Mz can now be deter-
mined as functions of the gyro suspension system. The
analysis of these torques as‘they apply to the gyro
element equations of motion will all take the same form.
An equivalent support system model wlll be defined and
a torque angle relationship will be derived in the form

M = kA where k = k(p)

19
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The support system for the x-axis is shown 1n

Fig. (2.3)

kx(ms) \;JCx(fs) l’cx(f‘s)

|
|

X-Axls support system

Fig.(2.3)
where
kx(b) = elastic coefflcient of spin axis bearings
kx ge) = elastic coefficient of gyro element
kx ms) = elastlc coefficient of magnetic suspension

o]

C

(
(
x( £s) = elastic coefficient of fluid support
x(

fs
£s) = damping coefficient of fluid support
To simplify the cquivalent kx(p) the spin-axis bearing
and gyro element elastic coefficients will be combined

in an equlvalent k wher
" x(ge) (Db) ©

k k
B (b)"x(ge)
kx(ge)b il kx?b)+k§(z:)

In a similar fashion the magnetic and fluild support
elastic coefficients will be combined in an equivalent

kx( s ) where

20



kx(u) o kx(?m) F k_(‘ ) The desired kx ia now

Felpe)(n) T Ma(m) T P (22T)

Several special cases are of interest when a
practical single-degree-of-freedom gyro is considered.
Case A

A single-degree~of-freedom integrating gyro

will generally be represented by the special case when

Kx(s) << *x(ge) (D)

Ky(s) S<OxP

then

s () (D) (2.7a)

A single-degree-of-freedom air bearing gyro éould, for
different deiiszn configuratiors saetisfy any of the three
special cases discussed below, In all three cases it 1s
assumed that the stiffness of the spin axis bearing and
gyro element, kx(ge)(b), is greater than the suspension

stiffness, kx( )? and the radial damping, c.P. With

S

this assumption Case B is satisfied when kx(s)<<:cxp.
Case C is satisfied when cxp‘t( kx(s) and Case D is

~

satisfied when kx(s) = cxp.

2 &



Case B

then

then

Case D

then

For the special case when

Ke(s)SC Kx(ge) (D)

P << Ky(ge)(b)

kx(syi< CxP

For the special case when

°xP << Ky(ge)(b)

k Kk

x{s) x(ge)(b)

For the special case when

<< x

kx(s) x(ge)(b)

0xP << Ky(ge)(b)

112

“xP Kx(s)

kx = ks + cxp

22
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The support system for the z-axis 1s shown

in Fig. 2.4,
k
z(ge)
l{z(ms) €z kz(fs)
"xis support system
Fig. (2.4)
where:
kz( e) = elastic coefficlent of gyro element
g about z-axis
kz(fs) = elastic coefficient of fluld or air
bearing support about z-axis
kz(ms) = elastic coefficient of magnetic

suspension about z-axis

¢, = damping coefficient due to fluid or
air bearing support about z-axis

For simplicity in the analysis an elastic coefficient,

kz(s)’ will be defined that combines kz( and kz(

fs) ms)

where

kz(s) - kz(fs') * kz(ms)

23



The equivalent kz(p) is then:

kz(ge)[czp " kz(a)]
kz(ge) ‘+ kZ(S) 4+ czp (2.8)

k,(p) =

Several special cases of lq. (2.8) are of
interest in a practic2l single-degree-of-freedom .gyro.
Case A

For the special case when

kZ(S)‘<<: Kz(ge)

<<
kz(_s) C,P

<
kz(ge) N C,P
then

k, N kz(ge) (2.8a)

This speclal case will generally represent
most single-degree-of-freedom integrating gyros.
Case B

For the special case when

ky(5) <" ¥z(ge)

kz(s)<< c.P

&<
2P K (ge)

then
k =c.p ' (2.8p)
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Case C
For the speclal case when

K, (5) << ¥z(ge)

<<
zP T Ky (ge)

~
kz(s) T CP
then

’kZ QJKZ(S) + Czp (2.80)

This special case could represent a single-
degree-of-freedom airbearling gyro.

M
ot

The torque about My i1s the sum of the torque
developed due to the elasticity of the spin axis bear-
ings and the designers choice of the type of torque
applied about the y-axis. A model of the elements

developing this torque is shown in Fig. (2.5).

Ky (ge)
k(p)y(

app)

y-Axis torquing elements

Plg. 2.5
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where

k (ge) = elastic coefficient of the gyro spin
bAY- axis bearings about the y-axis

k(p) Cappd = the applied torque coefficilent
yiapp dependent on the type of applied
torque about the y-axis.

The equivalent ky is then

_ K(ge) Py

(app) 2.9
Kg(ge) © (2:9)

¥{P)y (app)

4

In practical single-degree-of-freedom gyroscopes

y app)

k.= k(p) (2.9a)

y y(app)

The solution for the equivalent k , k.y and
X
Kz torque coefficients makes it possible to write Mx’

My and M, in the general form shown in Eq. (2.9)

B = kx(p)AX (2.102)

= e A 2.10b
M, y(p) o ( )
M, = kz(p)Az (2.10c)

Equations (2.10¢) can be substituted into the
modified Euler equations of motion of the gyro element
to allow a solution that accounts for all of the con-
ditions stated in section I-B.

II-E Matrix Representation of Gyro Equations

The equations of motion of the gyro element

obtained when Eq. (2.6) and Eq. (2.10) are substituted
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in Eq. (2.4) account for all of the conditions stated
in section I-B. The three equations resulting from
this operation can be linearized and rearranged into

the form of Eq. (2.11).

a;; Ayt ag, Ag +ay3 A, = by (2.11a)
ayy A, + a2, Ag + ayy A, = Dby (2.11b)
a3, A, + 235 Ag + agy . = b3 (2.11c)

These three equations can be solved simultaneously to
find Ax, Ag and AZ. However, the coefficients of

Eq. (2.11) contain so many terms that a general solu-
tion for Ax’ Ag and AZ is not practical and leads to a
solution whose complexity tends to mask the physical
significance of the conditions imposed on the problem.

By rewriting the left hand side of Eq. (2.11) in a
matrix form and separating similar terms 1n the coef-
ficients on both sides it is possible to write Eq. (2.11)

in the following form:

11 1o C13| |911 Y12 Y13| [e11 C12 C13f] [P [T B h|
fep1 Con o3| t|dp1 Gpp dp3 tlep1 €op CaglplAd = (F4TEAMS
°31 °32 °33] %31 %32 %33 |°31 °32 334 [FFA[3
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which is the same as

(C+D+E)A=F+G+H (2.13)

where the matrices are defined as follows

I o HS
ky ky
C =1|-H.p I p2 - k 0
s Y ¥
0 0 Iz 2+ 1
P
- z _

where kx’ k. and kz are torque coefficients defined 1in

section II-D.

H 1 T 1 I H
<5 - = pw - R Xpw., P X2w.p- 2w
k, "SRA k. PYsma "k "smP . PPoa ¥, "oa K "1a
X X X x X
D= 1,P%spn * Iy¥spaP Ha¥sRa SIPWra - Ip¥aP - Hg¥ou
1 1 1 I
z z + “z
k, Pon ~ X, “oaP K, PH 1A K, WIaP &

(1, - 1) o 2 (x, - T} 1y 23 " W)
T‘J_ (Wspa = ¥on) _?L (oa¥1a * ¥sRaP) —EX—L(""IA sra * YoaP

+ M

E = ) 2 2
(1, - 1)(-Wo, Wy, + YgpyP) (Ty - I)(Wg, - Wgpa) (I - Ty)(¥gaWigpy * WpaP)

(1, - 1) (I, - 1.) (1, - 1,) »

i x N x . w2
I V1a ¥ NgaP) _lh(z Yor¥sma * ¥paP) "12—_2 (Wspa - ¥1a)

z




— S

Ix Hs
- —=— pW - — W
kx IA kx OA
F=| HgWpy = LPWop + B Wong
I
z
" % PWsra
—_— z —
where stcmd is a command torque applied about the
y-axis,
I_ -1
-(_é___;[)w W
k OA"SRA
%
G = (IX IZ)WIAWSRA
(L, = L)
-y X
kK, Woal1a
(V) M, Ay
= M A = A
H= | (V)M k
(U) M, Ay

Inspection of the defined matrices reveals that each
matrix has a physical significance to the conditions
imposed on the problem. Matrices C, D and E can be
considered as torque zoefficient matrices with each
matrix having a speclfic physical significance as

listed below,.
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C - physical properties of a nonriglid single-
degree-of-freedom gyro

D - angular velocity and acceleration depen-
dent torque coefficients

E - anlsoinertia effects
Matrices F, G and H can be consldered as excitation
matrices with each matrix having a specific physical
significance.

F - Coriolis and angular acceleration excit-
ation torques

G - anisoinertia excitation torques

H - uncertainty torques
Eq. (2.13) can be rearranged as shown in Eq. (2.14)

CA=F+ G+ H- (D+ E)A (2.14)
where the dynamics of the gyro are on the left side
of the equation and on the right side of the equation:
are excitationgterms where (D + E)A is now considered
an excitation torque. Another form of Eq. (2.13) can
be written as Eq. (2.15)

CA+ (D+EA=F+G+H (2.15)
In this form the term CA is the primary dynamics of
the gyro and (D + E)A is a type of perturbation acting
on the dypamics. A complete solution of the problem
will give a correct answer for both Eq. (2.14) and
Eq, (2.15) but the rearranging illustrates what might

be considered as primary and secondary effects.
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The matrix representation of the gyro element
equations of motion separates the effects of the phy-
sical construction of the gyro and ﬁhe environment in
which 1t operates. This“separation makes 1t possible
to analyze each effect separately to determine its
contribution to gyro perfofmance.

II-F General Solution of Gyro‘Equations

Kramer's rule for the solution of simultaneous
equations can now be used to so}ve %or Ax’ Ag‘or hz' |
When a single-degree-of-freedom gyro is used 1in a
single-axis space integrator the primary angle that
must be known explicitl& is Ag. The solution for
Ax and AZ follows the same pattern as that for Ag.

To solve for Ag the matrix equation in the
form of Eq. (2.14) will be used.

CA=F+ G+ H- (D+ E)A (2.14)

In this form the solution of the determinant of the

matrix C represents the dynamics associated with the

angle A _.
gle A,
|c|= P 4 1)(I,p° - k_\ (2% 2 5, 2
ke ¥ (g P~ + 1)+ i 1)
zZ

(2.135)

3L



A single-degree-of-freedom integrating gyro
1ls generally used in a single-axls space integrator
application and at this time it will be assumed that

ky = -cgp. As shown in Appendix A the assumption that

x

2 Iz 2
D K and = p"<<'1 1is valid over the frequency

X 2
range of operation of the gyro and will be used at this
time. Use of these two assumptions reduces (2.15) to
. 2

| = (I, +-;§) p° + e P (2.16)
‘Which is of the same form as that derived 1in references
(2) and (10), with the difference being that k, 1s now
a general coefficient including all of the assumed
nonrigid properties of the gyro. Eq. (2.15) can be

written in the form of Eq. (2.17)

I
1 j —3
|C| cgp(cg p+ 1) C P (T_+ 1) (2.17)

g
. Where H2
L = 1 _ EE = effective output axis moment
& Y Xy  of inertia
Tg = Ip/cw = characteristic time of gyro
Using Kramer's rule the general solution of Ag is
1 r 0
|c|Ag = -H_p m 0 (2.18)
0 n 1
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where

By gy R By~ Al F el

-Ag(d + e - Az(d + e

12 T €10 13+ e13)

m=f,+g,+h, - A(d

2 x\doq t.©

21)

Agldap + epp) = A, (dpg + ep3)

n = f3 + &3 + h3 - Ax(d31 + e31)
-Ag(dzn + egp) - A (dgg + eg3)
then |

]c’ Ay =m + Hopr (2.19)

To illustrate Eq. (2.19) it will be assumcd
that AX<.<'Ag and AZ<<7Ag. When the single-degree-of-
freedom gyro is used in a single-axis space integrator
this assumption may not be valid. The assumption is
made here only for the purposes of illustration.
Substitution of r and m into Eq. (2.19) gives

jc| =f,+g,+hy+H p(f + gy +hy)-

2
- A (dyy + pyp) + Hsp[_Ag(dlz tepp)]
Use of the matrix coefficient gives

2 _ ;
(Ig? Hoe Pl = HS{'_WIA-wcmd-(U)wy-Agwsm-p(U)Mx -
s i

X 2 2
- ——L— [y Wgp, + Ay(Wrpy - WSRA)i} IgP¥Wop

S
(2.20)
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or
2 - -

(Igp™ + cgp)ig AN ¥ - TgPWoy

Of special interest are two of the special cases for

kx developed in section II-D,

Case A
Case A represents most single-degree-of-

freedom integrating gyros with kx = kx(b)‘ In this

case Eq. (2.19) takes the form

1 Hs

Ay = T [?{ - T Won (2.20a)
Casé B
Case B represents an unrestrained single-
degree-of-freedom gyro with cg =0
a = o x(s)*oxPl { }- Iy
g [(kax(s)+H§)+chxp]p2 B A

(2.20p)

II-G Conclusion

The analysis of a single-degree-of-freedom
gyro based on the model illustrated in Fig. 2.1 can
be carried out in great detail when a matrix represen-
tation of the equations of motion of the gyro element
is used. This matrix representation separates the
various factors whiéh affect the gyro performance
equatlion making it possible to analjze each term sepa-

rately.
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The representatlion of a practical single-
degree-of-freedom gyro by the model of Fig. 2.1 makes
it possible to analyze 1in detaill the effects of a non-
rigid support for the gyro element and the equivalent
k(p) terms derived in section II-D makes it possible
to wrlte one general performance ecuation for any non-
rigid single-degree-of-freedom gyro. Special cases
of this general form can then be an integratingAgyro,
an air bearing gyro or also a rate gyro which was
not discussed in this chapter.

II-H Recommendations for Further Study

(1) The model of the gyro in Fig. 2.1 appears to
be a representative model for single-degree-of-freedom
gyros., However, further study could be done to verify
the accuracy and limitations of this representation.
(2) To write the equations of motion of the gyro
element in matrix form 1t was necessary to linearize
the equations. PFurther study could investigate what
effects the nonlinear terms have on the gyro perform-
ance equations,

(3) With the equations of motion of the gyro ele-
ment written in matrix form mass unbalance and aniso-
elasticity of the gyro element in an acceleration field
will develop torques about the gyro element axes. These
torques can be thought of as excitation terms and they
can be analyzed separately using the angle transform-

ation matrix to put the torques into gyro element axes.
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The fesultant equation can then be directly added to

the matrix equation (2.13).
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CHAPTER III
NONRIGID SINGLE-AXIS SPACE INTEGRATOR

III-A Introductlon

The single-axis space integrator has been
defined and its function in an inertial guidance or
navigation system has been explained in Chapter I,
Section I-B states the conditions imposed on the
single-axis space integratof for this analysis and in
Section I-C the role of the nonrigid single-degree-of-
freedom gyroscope in a single-axis space 1ntegrator is
explalned. 1In Chapter II the gyro performance equations
have been derived and with the matrix representation
of these equations used 1n the derivation of the single-
axls space integrator performance equation the effect
of the imposed condition;on system performance can be

analyzed.
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III-B Single-Axls Space Integrator Model Used for
Analysis

Fig. 3.1 1llustrates the model of the single-

axis space integrator that will be used for the analysils.
The controlled member 1s the structure containing the
gyro case, the servo torque motor rotor and the connect-
ing shaft betweenpthe two, kx’ ky aﬁd kz are the
equivalent torque coefficlients derived in section

II-D with the factor of 1/4 used only to show the
symmetry of the applied torque about the x, y and z
axes. It will be assumed that the bearings on the

servo drive axlis are rigid. The base, as referred to
in Fig. 1.1, is now the shell enclosing the g&ro and
servo drive structure. Damping between the base and

controlled member will be consldered to be present.

III-C Derivation of Performance Equation

Derivation of the performance equation for
the single-axis space integrator is most easily
acéomplished by considering the controlled member
as a torque-sumning member and summing all the tofques
acting on it about IA. These torques are listed
below:

PW = inertia reaction torque about IA

Icm IA

moment of inertia of the controlled
member abcut IA

Icm

ccm(wIA - wb)= damping torque about IA
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Fig. 3.1 Model of single-axis space integrator
used for analysis
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S ™ damping coefficient of single-axis
space integrator about IA

wb = angular velocity of base wlth respect
to inertial space about IA

Mr = reaction torque of gyro about IA
Mm = torque developed by servo torque

motor about IA

Mintf = interference torgues about IA

The summation of all torques about the

controlled member servo axils is given by Eq. (3.1)
TemPWa * Com(Wra = Wp(za)) * Mp = My + My 00
(3.1)

which 1s the basic equation used for derivation of the
single-axis space integrator performance equation. To
remain consistent with the equation defining the space
integrator, argular velocity 1s used rather than an
angle. it should be remembered that the angle about
the servo axis, IA, of the controlled member with

respect to ilnertial space is the integral bf WIA‘

Mr can be expressed in terms of Mx’ My and

M, by use of the angle transformation matrix Cég. As
defined 1n Chapter II the torque relationship'between

the gyro element and gyro case coordinate frame 1is

= o8¢
Mae = Cge Mge
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1

Premultiplying both sides of the equation by cgg

gives

Mo ™ cgg lmge (3.2)
and a solution of thils equatilon for MIA expresses the
gyro reaction torque about the input axis in terms of
the torque developed'about the gyro element axes as
shown by Eg. (3.3)

M, = M + AZMy + A M (3.3)

IA g 2
The torque developed by the servo torque
motor is directly proportional to the output angle,

A of the single-degree-of-freedom gyro as shown

g}
in Eq. .(3.4).
M =-(PF)CSAg = - SCS(FF)CSAg (3.4)
where
(PF)cs = performance function of the servo
control system
SCS = sensitivity of the servo control
system, sometimes called gain of the
control system
(FF)CS_= frequency function of thie servo

control system
Substitution of Eq. (3.3) and Eq. (3.4) into
Eq. (3.1) gives Eq. (3.5).

(Icmp + Ccm)wIA o ['Sds(FF)cs : Mz]Ag "

Comp(1a) ~ Mx 7 AzMy t Myner (3.5)
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A solution of the four simultaneous
equations, (3.5), (2.11a), (2.11b) and (2.1lc) where
Mx’ My and Mz have been replaced by equations (2.10a),
(2.10b) and (2.10c) will give the solutions for WIA’
AX, Aé and Az in a nonpigid single-axis space integra-
tor. The general solution by this method is very
tedious, tends to mask the physical significance of
the conditioms imposed on the problem and involves
the simultaneous solution of four nonlinear equations.
A useful and accurate solutlon that eliminates the
problem associated with the simultaﬁeous solution is

presented in the following section.

III-D Practical Solution of Performance Equation

A practical sélution of Eq. (3.5) can be
derived by consideration of the basic pperation and
fuﬁction of a nonrigid single-axis space integrator.
In section I-A the operation of a single-aﬁis space
integrator was discussed and it was explained that the
function of the single-degree-of-freedom gyro in the
single-axis space integrator is as a transducer to
sense angular velocity with respect to inertial space,
and to transform this angular velocity into a suit-
electrical signal that excites a servo drive system.
The servo drive system then drives the controlled
member, the single-degree-of-freedom gyro case and

associated structure, to null the angular veloclty
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about the input axis of the single-degree-of-freedom
gyro. The basic operation of a single-axis space
integrator is thus dependent mainly upon the gyro
output angle, Ag. Because the basic performance
equation of the single-axis space integrator is derived
by summing torques acting on the controlled member, the
terms M, My and M, of Eq. (3.5) can be considered

as forms of torque 1nterferences acting on the controlled
member., With these basic ideas in mind the following
approach to the solution of the performance equation

of the nonrigid single-axis space integrator is

taken.

First, by remembering that Eq. (2.12) is
actually representing the torques developed about the
x} y and z axes of the gyro element and that due to
the nonrigld support of the gyro element these torques
can be represented by Eq. (2.9) it 1s possible to

“write by inspection of Eq. (2.11) the torques M, My

and MZ. In a single-axis space integrator application

My and Mz are multiplied by the angles AZ and Ag

respectively, per Eq. (3.5), and if, for i1llustration,

higher order terms, AXA i A 2, etc., are neglected

N4 X

M My and M, can be written as shown in Eq. (3.6).

xJ
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B 2
V.= prwIA + HWoy + (pr + HSWSRA)AX +

+ (Hgp - LPWepy - I, WopaP)AF(I,0Wop - HoWpy)h,

(3.6a)
M, = I PWos - HgWpp = Mopg (3.6b)
M, = I, DWgpy (3:6¢)
Substitution of Eq. (3.6) into (3.5) gives
(Icmp * ccm)wIA = ["SCS(FF)GS " kg] Ag g
" Myx ~ Myz - IxPWram HgWop ¥ Cony (3.7)
where

k, = prwSRA N waSRAp i IzprRA - Hgp

=
l

3
(pr + HSwSRA)Ax

Myz = [IyprA + IyPWoP - EHSWIA‘Mcmd]Az

With the performance equation of the single-

axis space integrator in the form of Eq. (3.7) the

angle Ag for the nonrigid single-degree-of-fréedom

gyro can be used to find the performance equation of

the nonrigid single-axis space integrator. Although

it is possible to express a general performance equation
for the singl%;axis space integrator, the more practical
approach would be to substitute the performance function
of the particular type of single-degree-of-freedom

gyro that was to be used in Eq. (3.7). A single-degree-
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of-freedom integrating gyro and a single-degree-of-
freedom air bearing gyro are of particular interest
when used in a single-axls space integrator and are
discussed below.

III-D.1 Single-Axis Space Integrator Using an
T teprating Gyro

A single-degree-of-freedom integrating gyro

of the type in Case A of section II-D and Eq. (2-20a),
when used in Eq. (3.7), will give the performance func-

tion of a nonrigid single axis space integrator as

I c c
2 cm
[—EWW (T p+ 1)p +ﬁ5—‘(‘FFT—-(TP+1)P'
Hs Ses cs & s Ses\Fes 78

k

- T('%f)_* 1] W
cs™ cS ] 1A =
3__%?FT__][wcmd + AngRA (U?Wy] *
* 3= _—(E'FT_][_H_L(WIA sra * AglWEy - Wgral)] +
+ [1 - "R o
[ S—I—E;ry——cs cs][ﬁf PW ), ]

H _C_(_F_)_(T p + 1)p][M  +M  +I DUy, +H W, - °cmwb(IA)]

; (3.8)
The performance equation (3.8) illustrates what para-
meters effect the dynarics and resulting errors in a

nonrigid single-axils space integrator. The parameters
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c Icm Com k

Ff g scs(H)cs E scs(;IIcs ; scsuf]cs L Tg RS

of particular importance. To further analyze Eq. (3. 8)
the schematlic block diagram of the single-axls space
integrator, Fig. (3.2), will be used. For illustrative

purposes all inputs to the gyro other than (wcmd IA)
wlll be neglected, it will be assumed that ﬁ <&
cs cs

and all interfering torques wlll be included in Mintf

For a complete analysis all of these effects must be

included. The output W of the system, using an

IA
integrating gyro, can now be written as

(FF)

Wra = Cgscs GE . p(TH1) |
p
P(Tgp+l)(Icmp+ccm)f§§scs(FF)cs cmd HSSAE%FFTES Yinte
c
g

and at the lower frequency end
c

~ 1
Wia = Wema +'ﬁ§ i Myintr

The open loop performance function, (PF);i

(PF) - SCS(FF)CS E ]
si 3 B cg‘p(Tgp + IJ(T, P ¥1)
I
cm
where T = —
cm [

For a single-axis space integrator to be accurate to
0.1 meru, the error introduced by pMintf’ the servo

gain, Scs, must be adjusted accordingly. To 1llustrate

46



Lt

Mlnff‘

COMPENSATION SYSTEM
GYRO NETWORK GAIN
wcmdq- Ag (FF) S #. |
' S EaE— ] = =5 m
3 %w Wemd-Y1a i - + L BPC

IA

Fig. 3.2 Schematic block diagram for
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the method of calculating Scs the following parameters

will be chosen

H
-
g
oy T 10,000 dyne cm/rad/sec.
TCm = 0,05 sec,. :
T, = 0.0017 sec (calculated EK for a HIG-4 gyro)
&1
T, = 0.0027 sec (experimental 35 for a HIG-4 gyro)
g

The two values of Tg are used to i1llustrate the effect
of nonrigidity on the single-axls space integrator
operation. For WIA = 0.1 meru due to pMintf = l,dOO
dyne cm/sec

10+ dyne cm/rad and

S =
cs
s.. H
¢ =22 2= 10
cm g
k|
with S__ = 10! dyne cm/rad the assumption & << 1 is
cs cs
valid.

Fig. 3.3 is a Bode plot of (PF)Si for both
values of Tg. At the crossover frequency, 0Odb, the
phase shift is -207° for T = -0027 sec and 200° for
Tg = ,0017. A well-designed servo system has about
-135o phase shift at the crossover frequency and, 1f
the theoretical falue of Tg had been used for servo
cémpensation, a phase shift of 650 would stabilize
the servo system. Due to the nonrigid support system

in the gyro the compensation network must provide an
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additional 7° of phase shift.

IITI - D.2 Single-Axis Space Integrator Using an Alr
‘Bearing Gyro

A single-degree-of-freedom gyro of the type
in Case D of section II-D and Eq. (2.20b), when used
in Eq. (3.7), will give the performance function of
the single-axis space integrator as

I

ls—Fry— = (Wb T p)p+ T(PFT— R (1+DT p)p° +
SCS csS HS ga SCS FF cs HS &a
k
+ (14T__p)(1- )] Wy, =
ga Scsl F B IA

© Kk
<o s C B ol _5__" i 4 1 “ T
(1 - g—Bry 11 + TpapllWopg + A Wggy = (VW] +

cs cs
(IX'I )
s

k
+[1- 1+T Y_ (W
(- gy (14T g2 [
k I
¢ a L |
+[l - g;;rﬁ)—c—sl[l + I‘gap][-ﬁ; D WOA]

2
Iga (1+pT ap)p

By Sesl

+A [w2

2 4 2 o
Wspathg[Wrp-Wspal)] -

IA

gt P tH Wy =C o Wprp ]

({3.9)

[ 1‘1}{\:

<

y +Mx
cSs

where T =1 +
Ba T T s

T = s s
ga kX(S)
I
b = _..K__

Iga

The parameters of interest are +

QT cm
[ <. T ¥ W T
”cs(?T)cs “cs(ﬁﬁ)cs

k R |
§__TF§T__ " —%5 » T, and b. Using Fig, (3.2) and
cs' ' /es s g

50



following the same procedure as used in sectlon III-D.1,
with the same assumptions, a single-axls space integrator
using an air bearing gyro can be analyzed as shown below,

For the low frequency reglon

T
~ a 2
Wip = Womg ﬁ;%;; P™ Mynge

The open loop transfer function is

Hy(Sge) (FF) o [1+ T p]

(PF) ., =
si I ¢ 2
ga cm o [1+ngap][Tcmp+1]

To solve for Iga assume,as reasonable engineering values,

I, = 35 gn om”
H 101‘l gm cmz/sec

s

i

kx(s) 5 x 10° dyne cm/rad

which gives Iga = 235 gm cm2 and b = 0,15

2
For p 1, . . = 500 dyne cm/sec2 and Bron = 104dyne cm/rad/sec.

eV
the gain S_ = 10° dyne cm/rad for a 0,1 meru uncertain-

ty due to p2 Mintf

Fig. 3.4 1s a Bode plot of (PF) subject

si’
to the above conditions, for Cy = 0 and Tcm = 0,05 sec.
At the crossover frequency the phase shift 1s -235O
which requires a phase shift of 100° for a well desligned
servo system. Fig. 3.5 1s a Bode plot of (PF)si for

Tga = 0.01 sec. At the crossovepwfrequency the phase
shift is 212" which requires a phéée shift of 770 for

a well designed servo system,
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IIIQE Conclusion

The performance function for the nonrigid
single-axis space integrator is shown in Eq. (3.7)
in a form that is applicable for use with all-single-
degree-of-freedom gyroscopes, For a particuiar
applimtion and gyro the performance function can be
derived as shown for the two special cases in section
IIT-D. As illustrated by the two special cases the
stabllity of the servo system is dependent on the
suspension system of the gyro used in the single-axis
space 1lntegrator and to insure stability by servo
compensation the actual suspension system of the gyro
must be known in detail, When a mission velocity and
acceleration profile is specified the excltation terms

in Eq. (3.7) can be analyzed in detail to determine

the error in the axis orientation,
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CHAPTER IV
SUMMARY OF RESULTS AND CONCLUSION

The general performance equation for a
nonrigid single-axis space 1lntegrator, as shown in

Fig. 3.1, is given by Eq. (3.7)

(Icmp L ccm)wIA = ['Scs(FF)cs o kg]Ag -

Myx = Mgy - IgPWpy - HyWoy + copWy (3.7)

This form of the equation includes all of the
conditions imposed on the device in section I-B while
retaining the physical significance of the conditions
and allows the designer of a single-axis space inte-
grator to separate and analyze independently the effect
of the various conditions on the dynamics and accuracy

of the device,
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The development in Chapter II of the per-
formance equations of the nonrigid single-degree-of-
freedom gyro allows the designer of a single-axis
space integrator or a single-degree-of-freedom gyro
to include the effects of a nonrigld gyro element
support in his analysis and to analyze the gyro in
as much detall as he desires by separately analyzing
the contributions of the imposed conditions. When
the performance equations for the gyro have been
developed, including as many conditions as 1s desired,
they may be substituted into the general single-axis
space integrator equation, Eq. (3.7), and the single-axis
space integrator can then be analyzed 1n as much detaill
as 1s desired. |

A step-by-step analysis of a single-axis
space integrator would proceed as follows:

1) Determine type of single-degree-of-
freedom gyro to be used in the single-
axlis space integrator.

2) Determine the physical parameters of the
gyro including the type of gyro element
suspension that is present.

3). Using section II-D determine the equi-
valent kx, ky and kz-that represent the
gyro element suspension,

4) Using Eq. (2.11) write the gyro equations
in a matrix form, this can generally be
done by inspection of the gyro coefficient
matrices that are defined.
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5) Decide what terms shoild be included
in the gyro performance equatlons.

6) Following the procedure of section II-F,
determine the gyro performance equations.

7) Use the gyro performance equations in
Eq. (3.7) to determine the single-axis
space integrator performance equation.

8) Select a representative mission velocity
and acceleration profile.

9) Analyze the single-axls space integrator
performance equation to determine the
requirements of the control system per-
formance function to achieve the desired
system accuracy.

10) Perfom an error analysis on the system
to determine the effects of the terms
not included 1n'the first analysis.

The following conclusions can be stated as & result
of the analyses carried out in Chapters II and III.

1) A general set of performance equations
can be written for a nonrigid single-
degree-of-freedom gyro including all
effects of environment and physical
construction in a matrix form that
separates the various conditions.

2) An equivalent suspension system can be
derived for any nonrigid single-degree-
of freedom gyro. (Note that the suspension
stiffness used in the performance equations
is general and that even if a suspension
system other than that shown in Filg. 2.1
1s present the derived performance equa-
tions are still valid.)

57



3)

5)

The dynamics of a single-degree-of-
freedom gyro are ilndependent of the
z-axls suspension system when % p2<< 1.
For n practical single-degree-o?-freedom
integrating gyro this assumption is valid.
A general performance equation for a
nonrigid single-axis space integrator
can be derived that includes all effects
of environment and physical construction
in a form that separates the effects of
the various conditions.

The dynamics of the single-axis space
integrator are dependent on the nonrigid
suspension system in the gyro as illus-
trated in section III-D. To insure

servo stability for the single-axis space
integrator the gyro suspension system
must be known in detail.
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CHAPTER V
RECOMMENDATIONS FOR FURTHER STUDY

As a result of the analysis and matrix
representation of the gyro performance equation in
Chapter II the following recommendations for further

study are suggested.

1) Representation of other Gyfo Performance Parameters
in Matrix Form

With the matrix form of the gyro element
equations of motion, Eq. (2.11), other parameters
that affect gyro operation can be derived, written in
a matrix form and directly added to Eq. (2.11). These
parameters might include mass unbélance, anisoelasticity,

etc.
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2) Analysis of a Single-Degree-of-Freedom Gyro used
in a "Strapdown" System

The equations developed in Chapter II for
a nonrigid single-degree-of-freedom gyro lend them-
selves directly to the analysis of a gyro where a
loop is closed about the signal generator and torque
generator. An analysis following the approach of
Chapter II where ky = KA _ will yleld the performance

g
of the gyro in a "strapdown" system.

3) Analysis of a Pendulous Integrating Gyro
Accelerometer

The pendulous integrating gyro accelerometer
(PIGA) can be analyzed using the same approach that
was used for the analysis of the single-axi: snace
integrator. Eq. (3.7) for the single-axis space
integrator is also applicable for the PIGA and when
Eq. (2.11) includes the effect of an introduced mass
unbaiance; pendulosity, about the y-axis of the gyro
element the performance equation for the PIGA can be
obtained. The derived equation will be subject to
the same conditions that are present in the single-

axis space integrator analysis.
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Appendix A

ANALYSIS OF GYRO SUSPENSION STIFFNESSES

(1)

Draper et al have presented experimental

and theoretical data for a particular HIG-4 gyro.
Wrigley(e) has used these data to calculate kx:5 X 106

dyne cm/rad and an undamped natural frequency of 50 cps

;i §
to verify the assumption that 'EE peL< 1,
X
I2 2
To verify = p << 1 assume
z
(1) 1, = 1L,
2 k., = k y = k
(2) x(ge) z{ge) z
where
kx( e) = elastic stiffness of the gyro
g element about the x axis
kz( e) = elastic stiffness of the gyro
& element about the z axis
kz = total elastic stiffness about

the z axis; see section II-D.
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k k
ror = Mot v) " TSl L

where

kx(b) = elastic stiffness of the spin axis
bearings about the x axis

assume, as reasonable englneering values, that

(1) kx(ge) = %5 kx(b)

(2) Ky(ge) = %x(b)
(3) y(ge) = 10 ky(p)
For these values the undamped natural frequency about

the z axis 1s 53 cps, 70 cps and 165 cps respectively

I
to verify the assumption that _k_z p2<< L
z
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