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CHAPTER I

INTRODUCTION

At a time when the first reusable space transportation system is
in the final developmental stages, considerable attention is being given
to new space applications. Investigations of required flight frequencies,
orbital payioad masses, and associated transportation costs have been

d[l] with the presumption that any one of several proposed new

performe
uses of the space environment will occur, resulting in vastly expanded

space operations.

With the probability that the next quarter century will lead to
many imaginative and unanticipated uses of space, it seems likely that
improvements in performance over what can be achieved with the space
shuttle will be desirable, and probably necessary. Given the uncer-
tainty of the economic evaluation methods (i.e., trying to establish
dollar figures for development and flight costs years before actual
flight), it seems reasonable to judge the design requirements of advanced
space transportation concepts, where approval is still years in the
future, on strict engineering performance requirements. In particular,
the propellant mass consumption requirement for a variety of propulsion
methods, along with the sensitivity of this quantity to the application
of constraints on specific force and dynamic pressure, seems an unambig-
uous performance measure which will permit a lucid comparison of alter-
nate space transportation concepts.

One class of launch vehicle that promises considerable improve-
ment in the propellant mass performance measure when compared to space
shuttle technology is the air-breathing launch system.

Since the end of World War II, much attention has been given to
high performance air-breathing engines for both aircraft and launch
vehicle propulsion. Most interest has been in the area of ramjet pro-
pulsion, due to its simplicity and high performance to beyond Mach 4.[2]
In the early 1960's interest developed in the possibility of ramjet
designs using supersonic combustion (scramjets) due to the decreased
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inlet losses expected, and improved specific impulse at high Mach num-
ber. The potential of operating to beyond Mach 10 was recognized.[3]

As spaceflight became routine in the mid 1960's, and the potential
for vastly increased flight activity was foreseen, consideration was
given to the possible economic benefit of space operations similar to

(4]

the routine commercial aircraft operations. The potential of an or-

bital craft that used an aircraft type launching platform was recognized.

At about the same time NASA was investigating design concepts for
the space shuttle. To support the investigation, work was done at
NASA's Langley Research Center on design concepts for a two stage ve-
hicle with an air-breathing first stage, and a rocket-powered second
stage that would achieve orbit. Two papers were submitted to the AIAA
Advanced Space Transportation meeting in 1970 that gave considerable
thought to the necessary technology, the general geometry, the develop-
ment requirements, the operational considerations, and the expected
performance of the air-breathing system as compared to more conventional

launch concepts.[5’6]

Due to concern about the technology development time, along with
a general conservatism about proven vs. new systems, the air-breathing
system was dropped as a contender for the space shuttle design. How-
ever, technology development has continued on a low key in the context
of hypersonic transport research. The technology and potential for
hypersonic transports were assessed at Lockheed in a 1970 report,[7]
and at NASA's Langley Research Center propulsion/airframe integration
concepts have been assessed along with thermal and structural prob-

[8-11] [12]

lems, and supersonic hydrogen fuel mixing and combustion.

Recently, the case has been argued for the development of a
flight-test platform for experimental hypersonic propulsion, structural,

[13]

and fuel systems. It seems likely that the technology base for

construction c¢f reusable air-breathing launch vehicles will soon exist.

As generally proposed, the air-breathing launch vehicle consists
of a two-staged horizontal takeoff configuration with air-breathing
capability on the first stage and with the second stage operating as a
conventional rocket. The first stage would have turbojet engines for
flight to about Mach 3. At some point above Mach 1, dual mode ramjet
engines, with both subsonic and supersonic combustion capability are
phased into use. At some point between Mach 4 and Mach 12, separation
of the stages occurs, and the first stage returns in an aircraft type
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operation, while the second stage attains orbital velocity on rocket

power.

Almost without exception, the first stage is presumed tc use
liquid hydrogen fuel at the higher Mach numbers because of the capacity
of the fuel as a heat sink in active structural cooling, along with its
high energy/mass density. At low Mach numbers, however, consideration
has been given to the alternative fuels due to the low volumetric

energy capacity of hydrogen.

Given the potential of full system reusability, more routine
aircraft type operation, safer abort capability, and improved perform-
ance values, it seems appropriate at this time to develop a design
methodology Zor the optimization of two-staged air-breathing launch
vehicles based on propellant mass performance criteria. (A two-staged
concept is considered to prevent the fuel penalty of transporting the
dry weight of heavy air-breathing propulsion systems to orbit, since
they have little utility in flight near orbit.) Consideration will be
given to trajectory shape, aerodynamic design, propulsion system per-
formance, and propulsion system changeover points. Since the overall
problem consists of a complicated nonlinear two point boundary value
problem, it is essential that efficient methods be devised to find the
cptimal solutions, to help keep the cost of computation down. It is
believed that any efficient solution techniques derived for this problem
will represent a contribution to the solution of many similar problems.

Many aspects of flight vehicle optimization have been addressed
in the last twenty-five years, though generally individually. The
aerospace Research Laboratory supported the development of an optimiza-
tion technique to evaluate the configuration of a two-dimensional
hypersonic cruise vehicle, with the cruise condition specified, using

(14]

the lift-to-drag ratio as the primary cost consideration. Optimal

rocket trajectories, with aerodynamic effects included, have been

[15]

evaluated for fixed rocket configurations. Minimum time to climb

and maximum altitude paths have been evaluated for air-breathing crafts

[16] Recently,

(fighters) with specified geometry and performance models.
attempts have been made to treat trajectory and configuration simul-
taneously for a single stage to orbit launch vehicle[17] although in this
case the method involved iterative optimization of each part separately
with intermediate efforts to match the results of the different computa-
tions. When the aggregate objectives of these studies are considered,
the need for a unified mathematical treatment to simultaneously optimize
flight vehicle configuration and trajectory is clear. '
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A solid data base exists for the general performance character-
istics of hypersonic lifting vehicles and propulsion systems. General
conceptualization studies have been done for the design of air-breathing
launch vehicles. Also, operational requirements of reusable space
transportation systems have been established. The need for post-ghuttle
launch vehicles with improved performance seems likely to develop.
Therefore, it appears to be timely to develop an optimal design meth-
odology for a reusable air-breathing launch platform.

In the following material a methodology to establish an optimal
configuration and flight path cf sophisticated systems with complicated
dynamics is developed and subsequently applied to a class of air-breathing
launch vehicles. Chapter II specifies a parametric vehicle model,
suitable for the optimization methodology, used for demonstration of the
technique. Chapter III defines the system dynamics model used. Chapter
IV outlines the mathematical development of the optimization algorithm,
while Chapter V relates the material in Chapters II and III to the equa-
tions in Chapter IV. Chapters VI and VII discuss and interpret the
results, and note numerical difficulties to be avoided when implementing
the methodology. Conclusions are drawn, future research extensions
are suggested and a listing of a computer algorithm is given in Chapter
VIII and the Appendix.
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CHAPTER I1I

THE VEHICLE AND ENVIRONMENT MODEL

In the following material, a parametric model of the two-staged
air-breathing launch vehicle is developed, and the vehicle thrust and
aerodynamic properties are defined, in a form suitable for computer
algorithm application.

2.1 An Overview

The class of vehicle to be considered is a two-staged configura-
tion, the second of which is a conventional rocket propelled orbiter
with reentry glider configuration resembling the space shuttle. The
first stage is propelled by air-breathing propulsion systems. Turbo-
jets operate at low Mach numbers. Convertible subsonic/supersonic com-
bustion ramjets (scramjets) are available to operate at high Mach num-
ber. Overlapping operation of the two air-breathing propulsion systems
is possible at intermediate Mach numbers. The vehicle is configured
for horizontal takeoff. The payload to be delivered to low earth orbit
is assumed comparable to the space shuttle.

The vehicle parametric model is a function of aerodynamic geometry,

propulsion geometry, fuel capacity, and propellant properties.

A shuttle-derived liquid hydrogen/liquid oxygen system is assumed
for the second stage. Due to the heat sink capacity of liquid hydrogen
upon conversion to combustible fuel, and the anticipated high heat load-
ing on hypersonic air frames and propulsion systems, liquid hydrogen is
assumed as the propellant in the scramjet propulsion mode. For low
Mach number, in the turbojet mode, a hydrocarbon fuel is assumed due to
its high volumetric energy capacity, its simpler handling and storage
requirements, and its ready use by existing and extrapolated turbojet

technology.
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The propulsion dynamics are modeled to allow for the three thrust
magnitude discontinuities which are associated with changes in propulsive
mode. The first discontinuity following takeoff represents transition
from the turbojet-only mode to mixed turbojet/scramjet operation. The
second discontinuity represents transition to the scramjet-only mode.

The third discontinuity represents simultaneous staging and initiation

of the second-stage rocket thrust.

The atmosphere is modeled as variable with altitude only, and is

assumed to rotate with the earth's surface.

Gravity is assumed to depend on altitude only, with wvariations

modeled on a homogeneous sphere representation of the earth.

2.2 The First-Stage Model

A principal objective in the development of a parametric model of
the physical characteristics of the air-breathing stage has been to
obtain a reasonable representation of vehicle performance while requir-
ing a minimum quantity of independent parameters. The desire to hold
down the number of parameters is associated with the strong influence

of the dimension of the parameter vector on computation time.

The basic dynamic behavior of the vehicle can be determined by
giving consideration to wing, fuselage, and propulsion system dimension,
along with component mass models, propulsion systew performance data,
and aerodynamic characteristics as a function of exterior geometry. If
component geometry and aerodynamic models are limited to two dimensions,
a further savings in parameter vector dimension is possible with little
loss in solution accuracy, since very little cross coupling between
down track and cross track motion would normally be expected.

2.2.1 The Wing

A simple body-integrated delta wing is considered, and the result-
ing configuration is treated as the sole source of aerodynamic lift and
drag. The data on the propulsion system, given later, specifies in-
stalled performance. Consequently, most of the expected drag not at-
tributable to the wing is incorporated into the propulsion model. Data
on body-integrated delta wing lift and drag coefficients is available
as a function of Mach number, aspect ratio, and angle of attack, as
long as the angle of attack does not stray too far from zero.
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The interpolation variables are A, and MO' where
A = aspect ratio
M0 = free stream Mach number
One has
2
Ys
A = A (2-1a)
W
p
Lw
c = (2-1b)
L qOAw
p
Dw
C = (2-1c)
D qOAw
p
where
wg = wing span
Aw = area of wing planform
P
q, = free stream dynamic pressure
Lw = 1ift due to wing
Dw = nonparasitic drag due to wing
The resultant 1lift and drag equations are
dCL
Ll o a quw (2-2a)
P
dCD 2
Dl = — CL + CD quw (2-2b)
dCL 0 p

where

net lift on first stage

net drag on first stage

parasitic drag term
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The data in Table II-1[18] is the basis of an aerodynamic data

linear interpolation scheme used to calculate lift and drag coefficients.

The interpolation results are the quantities dCL/da, and dCD/dCi,

where
CL = 1lift coefficient
CD = drag coefficient
a = angle of attack
Table II-1. Delta wing lift and drag coefficients.
dc
L
=T data
-
Mach Number
i Aspect |, oo 0.6 0.7 0.9 1.1 1.2 1.5 2.0 4.0 8.0
Ratio

0.5 0.0120 0.0130 0.0140 0.0145 0.0155 0.0150 0.0145 0.0140 0.0120 0.0075
1.0 0.0200 0.0230 0.0250 0.0280 0.0320 0.0300 0.0280 0.0240 0.0150 0.0075
2.0 0.0400 0.0440 C.0480 0.0530 0.0680 0.0620 0.0530 0.0380 0.0175 0.0075

3.0 0.0530 0.0590 0.0630 0.0720 0.0370 0.0740 0.0620 G.0420 0.0180 0.0075

4.0 0.0650 0.0700 0.0730 0.081C 0.0980 0.0800 0.0700 0.0440 0.0190 0.0075

ac
—g— data
ac
L -+
Mach Number
Aspect |, 55 0.6 0.7 0.9 1.1 1.2 1.5 2.0 4.0 8.0
Ratio

0.5 0.77 0.79 0.80 0.86 0.89 0.92 1.00 1.10 1.45  2.00
1.0 0.47 0.48 0.42 0.39 0.41 0.43 0.58 0.69 1.10 1.99
2.0 0.30 0.30 0.27 0.24 0.26 0.27 0.34 0.48 1.00 1.99

3.0 0.25 0.25 0.23 0.21 0.22 0.24 0.31 0.46 1.00 1.9¢

4.0 0.22 0.27% 0.21 0.195 0.21 0.22 0.28 0.45 1.00 1.99
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2[19], and are

Data for evaluation of CD are given in Table II-
based on shuttle zero angle of gttack drag properties with a scaling
factor used to approximate the effect of assumed improved aerodynamic
properties of the air-breathing stage. (The shuttle parasitic drag is
very high because of the silica thermal protection tile surface

properties).

Table II-2. First stage parasitic drag coefficients. (Based
on scaled shuttle data—scale factor = 1/3).

Mach Number CDo Mach Number CDO
0.25 0.0203 1.30 0.0521
0.60 0.0208 1.50 0.0516
0.80 0.0228 2.00 0.0470
0.%0 0.0268 3.00 0.0378
0.95 0.0351 4.00 0.0327
1.05 0.0492 5.00 0.0295
1.10 0.0507 8.00 0.0263
1.20 0.0518 10.00 0.0260

Similar to the parasitic drag scaling factor, a scaling factor is
allowed for the net lift and drag computations to approximate aero-
dynamic refinement of wing design or more complex wing geometries
(~0.7 for drag; ~1.7 for 1lift).

The result of the data format is a requirement for two wing-
associated independent parameters, wing span and wing area. However,
for a simple delta wing one has

2
Ys
A - —— (2"3)
wp (4 tan da)
where
) = delta wing angle, the forward wing edge angle

a
with the fuselage

The quantity Ga is used in place of the wing planform area as one of
the two wing-associated parameters.
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Without going into detailed analysis of thermal protection require-
ments, one can roughly judge wing mass from wing planform area. A useful

approximation in terms of slugs mass vs. square feet of wing area 13[20]
m = 0.25 A (2-4)
w W
P
where
m, = mass of wing

2.2.2 The Fuselage

For numerical simplicity it is desirable to keep the vehicle
aerodynamics model two dimensional. This consideration mandates a
fuselage design with constant geometry in a x-z body axis plane cross
section as shkowa in the side view of Figure II-1. Therefore, a repre-
sentation of the fuselage geometry simply requires a shape for the upper
and lower surfaces. The complete characterization of the fuselage
physical properties also requires internal propellant tank capacity,
and dry mass properties,

For vehicles expected to use air-breathing propulsion at high
Mach numbers, the body geometry must incorporate features beneficial
to propulsion system performance. The forward surface should provide
some compression prior to the propulsion system ingestion of air. The
aft surface should serve as an expansion region extending beyond the
propulsion system internal expansion nozzle. Good propulsion system
behavior requires much attention to the geometry of the aft expansion
surface to avoid undesirable effects such as separation. Consequently,
to retain simplicity in the parametric model, the aft surface angle is
assamed to be fixed, and is incorporated into the installed propulsion
system performance data. The vehicle nose angle and the overall fuse-
lage length are left as parameters to be evaluated. The general vehicle
geometric configuration is shown in Figure II~1. Note that the propul-
sion system is assumed to be under the fuselage, permitting a flat
upper suface.

The propellant tank capacity is constrained to match the propel-
lant requirements. To allow the volume to meet the constraint, fuse-
lage width is made a parameter.
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Y
FROM SIDE
rn L .1
% %
PROPULSION SYSTEM
Figure I[I-1. First stage cross-section.
One has
w 22 sin (a_) sin (a,)
Ve = fZSin(n+ — (2-5a)
%h T %t
sin (an) + sin (at) 2Vf
A = w.l fl + ; + (2-5b)
fS bd sin (an + at) We
where
Vf = fuselage volume
Af = fuselage surface area
s
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w = fuselage width

f

¢ = fuselage length
a, = nose angle
a, = tail angle

The most important aerodynamic property of the fuselage not in-
corporated into propulsion performance models is the free stream com-
pression by the vehicle nose. On the basis of the already assumed
simple vehicle geometry, one can use oblique shock/normal shock/Prandtl-
Meyer expansion fan theory for the supersonic compression calculations
prior to the propulsion system ingestion of the flow. (Perfect gas
behavior assumption is implied). Since the nose angle solution value
is likely to be small, and since vehicle rotational dynamics will not
be considered, eliminating the need for body pressure distributions,
subsonic compression effects are neglected. Thus, one need only con-
sider the nose effect when the free stream Mach number exceeds one. If
the nose angle plus the angle of attack exceeds zero, a shock will re-
sult, otherwise an expansion will result. The shock can be oblique or

normal depending on the turning angle of the free stream, and the Mach

number. The following equations apply to normal shocks[21]
Yo 1, 1/2
1l + 3 Mo
Ml = (2-6a)
2 Yo -1
M -
Yo% 2
2
T, = - 1+ ) 5 (Mo - 1) T0 (2-6b)
(vg + 1) Mg
(YO + l)Mg
_ Py = 5 Po (2-6c)
(vg )My + 2
Pl = leTl (2-6d)
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lere

Mo = free stream Mach number
M, = post nose compression Mach number
T0 = free stream temperature
T, = post nose compression temperature
Py = Ppost nose compression density
P, = post nose compression pressure
R = universal gas constant
Yo = free stream specific heat ratio
. . - [22]
The following equations apply to oblique shocks
Yo = 1 1/2
1 1 + —95——— Mg sin2 B
M1 = .2 ) 2 Yo - 1
sin™ (B_ - © 2 _. __0
s f YOMO sin Bs 3
2 . 2
2(yo - 1) “0“0 sin Bs + 1) 2 2
T1 = 1 + 5 >3 (Mo sin Bg - 1) T0
(YO + 1) M031n Bs
2 . 2
o - (YO + 1)M0 sin B8 .
1~ _ 2 . 2 0
(Yo 1)M0 sin Bs + 2
P1 = leT1
Mg sin2 Bs -1
tanef = 2 cot Bs 3
MO‘YD + cos 283) + 2
are
ef = flow deflection angle
Bs = shock angle
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(2-7b)

(2-7¢)

(2-74)

(2-7e)




[23]

The following equations apply for expansion

'Yo F 1 -1 (Yo - 1 (Mz 1))1/2 tan_l e 1 (Mz 1))1/2
8. = [——= {t — - - —_— -
£ Yo - T an Yo * 1 0 Yo *1 1 _
- (tan'l (Mg - 1y¥2 _gant (Mf - 1)1/2) (2-8a)
Yo = 1
T, = o T, (2-8b)
1+ 0 M?
2 1
1
T P
_ 1) (v,
Py = DO(T ) 0 (2-8c)
0
P, = pyRT, (2-8d)

) = a_ + a (2-9)

1f ef is negative one should use Eq. (2-8) with an iterative
solution of Eq. (2-8a) required. If ef is not negative, either Eq. (2-7)
or (2-6) should be used.

The distinction between use of Eq. (2-7) and (2-6) is dependent on
whether a solution to Eq. (2-7) exists. If there is a solution then
Eq. (2-7) is used. Otherwise Eq. (2-6) is used. (The principle that
the weak shock solution applies when possible is used). To determine if
a solution to Eq. (2-7) exists, it is necessary to investigate Eq. (2-7e)
in detail. Differentiation, and evaluation where the derivative def/st
vanishes yields a value of 8 for the maximum Gf that permits a real
solution

sin (8 = (iyn + DM} = 4 + [(va + D[y, + MYy
. 0 0 0 0 0

1/2
2 1/2 2
+ {B(YO - l)Mo} + 16 ) /(4YOM0) (2-10)
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Substitution of Eq. (2-10) into Eq. (2-7e) yields a maximum value

for 6, for which Eq. (2-7) can be applied.

f
The fuselage mass can be modeled to be a function of surface area,

propellant tank volume, and fuel type within a given tank.

Using the same approximation as is used in Eq. (2-4) one gets

= 0.25 Ag (2-11)

Mg
a S

where

m = mass of the fuselage due to area

The mass contribution of the propellant tanks must be based on the
volume available to each tank. Something less than the entire fuselage
volume is available for fuel storage due to the space requirement of
various nonpropellant systems. A simple approximation is to presume
that 80% of the total fuselage volume is available for fluid storage.

Of the volume available, allocation of space must be made for both the
turbojet and scramjet fuels, each having tanks with different mass pro-
perties due to the different fuel handling requirements. A parameter is

created to specify the relative space allocation.

One gets
mft = O.B(rTRf + rs(l - Rf))Vf (2-12)
where
me ‘' = mass of fuselage due to propellant tanks
t
Rf = turbojet fuel tank volume/total fuel volume ratio

= turbojet tank mass/volume ratio

r = scramjet tank mass/volume ratio

T and rg are constants requiring specification. Since the scramjet
fuel is cryogenic, with the associated added storage burdens (e.g.,
insulation), one expects rg to be larger than Lpe Analysis of material

and storage requirements suggest
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0.01 < r,, < 0.02 in slugs/ft> (2-13a)
0.03 < r. < 0.04 (2-13b)

2.2.3 The Propulsion Systems

The information necessary to characterize the propulsion system
includes the external geometry, the mass, and the operational performance.

The geometry information can be limited to inlet area in the
simplest case. On the basis of the two-dimensional aerodymanic approx-
imations already made, the required information can be stated by pro-
viding inlet width and height for each propulsion system. Since the
entire fuselage width is expected to provide precompression of the free
stream, a further simplification is to assume the propulsion system width
is equal to that of the fuselage, and all the compressed flow enters
the system. One therefore requires twc geometric parameters to define
the air breathing propulsion system: the turbojet inlet height, and the

scramjet inlet height. One gets

AT = hwa (2-14a)
AS = hswf {2-14Db)
where
AT = turbojet inlet area
AS = scramjet inlet area
h, = turbojet inlet height
hs = scramjet inlet height

Models of propulsion system mass are somewhat speculative due to
the experimental nature of scramjets and advanced lightweight turbojets.
However, some data has been generated, and can be suitably simplified

for use in the present problem.

In the case of the turbojet, one can extrapolate advanced light-
weight designs from tabulated data of existing turbojet designs and

[24]

historical weight reduction trends, to derive an approximate system

mass per unit of inlet area. The result yields
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m, = (7.5)STAT with: mq, in slugs (2-15)
AT in ft2

where

mass of turbojet in slugs

._]E

advanced turbojet scale factor =~ 2/3

wn
Il

The scramjet mass model must be extrapolated from data on exper-
imental configurations. Information on modularized designs has been
produced[zsl and can be converted into a function of inlet area. The
models lead to rather heavy systems designed to tolerate heat flux
loads expected until well above Mach 6. The result is

me = ((15.2 hs) - (4.6/hs))wf (2-16)

where

mg = scramjet mass in slugs if hS’ we are in feet

As hs drops below about 1.25 ft, then the accuracy of Eq. (2-16)
is rapidly reduced due to the growing relative contribution of propul-
sion system support equipment. A lower bound on mass per width can be
used to resolve the problem. Analysis of the support system mass re-

quirements suggests the bound[26]
mg 2 (15.0)w, (mS in slugs) (2-17)

The performance data for propulsion systems intended for a body-
integrated design application is usually presented in the form of in-
stalled specific impulse[27] with the implicit assumption of nearly
stoichiometric fuel/air mixture ratios. The data includes losses due to

engine cowl effects and nozzle expansion. The data can be made to be a
function of the aft fuselage angle, but a desireable angle is usually

given as

a = 12° (2-18)

On the basis of approximate curve fits for the Mach number de-
pendence of the specific impulse data one gets
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_ - 2 -
Icp = 3800 - (300 Ml) (100 Ml) (2-19a)

T
0.52
-1. M) -
I - 15000(M1'6)e 1.73( 1 (2-19b)
SP 1
S
where
Icp = turbojet installed specific impulse
T
ISP = scramjet installed specific impulse
S

Accurate computation of system thrust generally requires knowledge
of the variation of specific impulse with fuel/air mix. In most cases,
however, the specific impulse has little change near the stoichiometric
mixture ratio. As an approximation, the impulse is not made a function

of the fuel/air mix. This gives

TT = plulATISP 9oT¢ ® (2-20a)
T T
TS = plulASISPSgordeJmcR (2-20b)
where
TT = turbojet thrust
TS = scramjet thrust
p1 = air density after nose compression
u, = air velocity after nose compression
94y = gravity at earth's surface
re = stoichiometric turbojet fuel/air mass ratio
T (~0.0633 for octane)
re = stoichiometric scramjet fuel/air mass ratio
S (X 0.027778)
¢ = proportion of stoichiometric fuel mixture used
(where ¢ = 1 is assumed as an upper limit)
m-p = scramjet mass capture ratio

(proportion of inlet flow used in engine)
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The quantity ¢ is used in both parts of Eq. (2-20) since it is
assumed that if the scramjet and turbojet operate together, then they
are equally throttled. The mass capture ratio for the scramjet is
required to model the spillage effects at low supersonic Mach numbers
typical of these engines. (Data is available on the Langley three dim-

28]

ensional propulsion system design and is given in Table II-3).

2.2.4 A summary of First Stage Parameters

If the independent geometric parameters are assumed to be elements '
of a vector p, one can define the following:

Table II-3. Scramjet mass capture ratio.

Mach Number Mass Capture Ratio
2.5 0.35
3.5 0.60
5.0 0.80
5.5 0.85
8.0 0.95
p, = nose angle (an) P; = Wwing span (ws)
P, = fuselage width (wf) Pg = delta wing angle (aa)
Py = scramjet height (hs) Py = turbojet tank volume/first-

stage tank volume ratio (Rf)

Py = turbojet height (hT) Pg = fuselage length (%)

2.3 The Second-Stage Model

The assumption is made that the second stage is a scaled version
of the space shuttle, somewhat refined to improve aerodynamics. The
thrust is assumed to be selectable. The fuel is assumed to be internally
carried. Nominal space shuttle physical properties are given in
Table II-4.
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Table II-4. Space shuttle physical properties.

Mass (with 65,000 lbm payload) 7,000 slugs

Planform area = 4,000 ft2
Thrust (in vacuum) = 1,500,000 1bf
Engine mass = 600 slugs
Vehicle volume = 59,000 ft3

2.3.1 The Physical Characteristics

To compute the planform area of the second stage one uses elemen-
tary scaling theory. Since area is a function of linear dimension
squared, and the volume is a function of linear dimension cubed one

expects a 2/3 power growth factor of planform area vs. volume. One gets

A, = A.Po(l + (?))2/3 (2-21)

0
where
AP = second stage planform area
AP = shuttle planform area
Vp = volume required for propellant tank
V0 = shuttle nominal volume

The space shuttle uses an H2/02 fuel flow ratio 1.6 times stoichio-
metric. This is because the increase in hydrngen flow beyond a stoichio-
metric ratio can reduce the average molecular weight of exhaust products
more rapidly than the preexpansion temperature. The result is a higher
exhaust velocity and thus a higher specific impulse. It seems appro-
priate to assume the same fuel mixture for the second stage being con-
sidered. Also, an 80% use of available volume for propellant storage
seems likely after structure and insulation have been accommodated.

One gets

2

2/3 .
AP = 1+ {(0.0000334 m in ft
APo ( ( fs))

me = mass capacity in slugs of fuel tanks for the second stage
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Mass property calculations require fuel tank mass contributions
and rocket propulsion system mass contributions. On the basis of modest
improvements in space shuttle external tank and main engine construction

technologies one getslzg]
m = m + (0.04m_ ) + T /3220. (2-22)
ds d0 fS max
where
m3 = second-stage dry mass
s
my = nominal shuttle dry mass
0
Tmax = second-stage maximum thrust

(Equation (2-22) is derived from scaling shuttle data with a 15%
mass reduction assumed possible compared to shuttle orbiter vehicle 102.

The aerodynamic properties of the second stage are assumed to have
characteristics identical to the shuttle, though scaled to a degree assumed
possible by significant utilization of new aerodynamic technology (~0.7
for drag; ~1.7 for lift.) The baseline shuttle data is in Table II-S.[3°]

Using the data in Table II-5 one has

L2 = CLAPq0 (2-23a)
D2 = CDAPq0 (2-23Db)
where
L2 = 1ift due to second stage
D2 = drag due to second stage

The thrust level of the rocket propulsion has a maximum value,
but may be varied to any nonnegative value less than the maximum. The

equation is

T = T ¢ (2-24)
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where

TR rocket thrust

It is assumed that rocket specific impulse is constant at 450

seconds for mass flow calculations.

2.3.2 A Summary of Second Stage Parameters

Using the notation adopted for the first-stage independent geo-

metric parameters, one gets the following for the second stage

o
Il

maximum fuel capacity (mf )
s

Plo maximum rocket thrust (Tmaxs)

2.3.3 The Environment Model

The physical properties influencing vehicle behavior, but independ-
ent of vehicle design constitute the environment. 1In the problem under
consideration, the atmosphere and gravity fit this cateqgory. Both are
assumed functions only of radial distance from the earth's surface.

Table II-6 lists the data modeling the atmosphere, and used as
the basis for computing free stream properties.[31] For Mach number
and dynamic pressure calculations, the assumption is made that the air
mass rotates with the earth's surface uniformly. Between data points,
the density is assumed to exponentially decrease with altitude increase

as the bas’s of interpolation. Temperature is linearly interpclated.

Gravitation is modeled as though the earth were a perfect, homo-

geneous sphere. That is

GMe
g = — (2-25)
r
where
G = universal gravitation constant
Me = mass of the earth
r = distance from earth center
g = gravitation acceleration
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Table II-6. Atmospheric properties.

Altitude o Temp Altitude o Temp Altitude o Temp
(km) °0 (°c) (km) o (°c) (km) % (°c)
) 1.00000 288.150 68 9.3051 » 107 | 227.529 136 3.714 x 1077 642.32
4 0.66885 262.166 72 5.4361 x 107 | 211.876 140 2.770 x 1072 714.22
8 0.42921 236.215 76 3.050 x 107> | 196.24 144 2.129 x 107 785.87
12 0.25464 216.650 80 1.632 x 10~ | 180.65 148 1.676 x 1072 857.24
16 0.13589 216.650 84 7.807 x 10°% | 180.65 152 1.359 x 10”2 918.94
20 0.072579 216.650 88 3.738 x 10”® | 180.65 156 1.128 x 1072 970.88
24 0.038317 220.560 92 1.584 x 10°° | 182.62 160 9.459 x 10710 | 1022.23
28 0.020470 224,527 26 8.229 x 10~ | 198.45 164 8.139 x 10710 1054.67
32 0.011065 228,490 | 100 a.060 x 1077 | 210.02 168 7.040 x 107'° | 1087.01
36 0.0059248 | 239.282 104 2.034 x 1077 | 220.18 172 6.149 x 1071% | 1115.73
40 0.0032618 250.350 108 1.080 x 1077 | 247.85 176 5.415 x 10710 1136.02
a4 0.0018440 261.403 112 5.839 x 1072 | 275.85 180 4.782 x 10710 1156.12
48 0.6010749 | 270.650 | 116 3.294 x 1078 | 313,01 184 a.236 x 1072° | 1176.03
52 6.5389 x 10 9| 270.650 | 120 1.988 x 102 | 349.49 188 3.762 x 10710 | 1195.73
56 4.0622 x 104 | 263.628 | 124 1.171 x 10”8 | 423.90 192 3.359 x 10710 | 1211.66
60 2.4973 x 1074 | 255.772 128 7.533 x 1072 | 497.36 196 3.014 x 10710 1223.88
64 1.5377 x 1074 | 243.202 | 132 5.165 x 10~° | 570.09 200 2.708 x 1072% | 1235.95
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CHAPTER III

SYSTEM DYNAMICS

To compiete the dynamics model needed for computer analysis of the
air-breathing vehicle, the orbital mechanics model is needed.

The time dependent behavior of the air-breathing launch vehicle
can be represented by a set of differential equations. The equations
provide the necessary information to evaluate system position, velocity,
and mass state provided an appropriate reference frame and a set of

initial conditions are defined.

The real problem of the general launch vehicle trajectory analysis
requires three components each of position, velocity, and force. How-
ever, for the sake of keeping computation requirements to a minimum
(due to the strong association of computation time and component di-
mension), a two dimensional orbital dynamics model is used. Specifically,
only an equatorial launch to achieve an equatorial orbit is considered.

If an earth-centered set of polar coordinates is used, Newton's

laws of motion yield

2 2
d“r (de))
F = ml—5 - r{s— (3-1a)
r (dtz dt
e - mfc 2%, ,arae (3-1b)
8 2 dt dt
dt
where
m = vehicle mass
Fr = force in radial direction
Fe = force in tangential direction

Also, r and 0 are polar coordinates whose sign convention is shown in
Figure 3-1.
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Equation (3-1), along with mass flow relations, can be resolved
into a set of first-order diiferential equations in time, constituting

a state space representation of the system convenient for future use.

Solving Eq. (3-1) for the second derivatives of r, 6 one gets

2 F 2
dr - I, r(g—g) (3-2a)
dt .
dr do
a’e _ Fo 23t ac
— = = - = (3-2b)
dt

The system mass flow can be separated into three components, one
for each propulsive mode. That gives

m = Z rhi (3-3)
i

where
ﬁi = mass flow of ith propulsive mode
i = 1 implies the turbojet
i = 2 imples the scramjet
i = 3 implies the rocket

One also has

dr
d(af _ dzr -
= L (3-4a)
dt dtz
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a(F) _ d%

dt

Suppose a vector x is defined as the state where

b
It
] D O He K

N

dt

2

(3-4b)

(3-5)

Where the dot indicates differentiation with respect to time.

One has

H:He

DI D

Substitution of Eq. (3-2) into Eq. (3-6) yields

.
r

ro” +

De

EX)

]

)

+
Rle”
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Equation (3-7) is the state space dynamics equation sought. The
models given in Chapter II must be used to solve for F

, Fe, and ﬁi as
a function of states, parameters, and controls.
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CHAPTER 4

A SUITABLE OPTIMIZATION ALGORITHM

Suppose one has a set of m ordinary differential equations, each
of order n, defining the dynamic state of a physical system as a func-
tion of time. The equations can be reduced to a system of m x n first-
order differential equations. Such a mathematical system can be put in
state space notation by solving each resultant equation algebraically

for the first derivative it contains.

Suppose the mathematical representation just described already
exists, with the vector x representing the physical system states.

Define
x = $ = fxoup.ty (4-1)
where
x = a state vector of dimension a
u = a control vector of dimension b
p = a parameter vector of dimension c
tg = a switch time vector of dimension 4

(points of discontinuities in some component of the forces

contained in the dynamics)

The function f therefore represents the system dynamical behavior

in a form suitable for further manipulation.

In any problem where the objective is to find an extremal value
of a performance measure, it is possible to define the performance meas-
ure in terms of a function that places a mathematical cost or the system
behavior. When the extremal value of the mathematical cost function is
found, the extremal performance is achieved. The mathematical function
can, in one form, be represented by two terms. One is a terminal time
cost term, the other is a distributed cost term.
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Define

0
J(t) = ¢((x(1)) +/ L(x(t),u(t),p‘t))dt (4-2)
T
where
J(t) = the mathematical cost imposed on the system

at time T

¢({x(t)) = a terminal cost term evaluated at T,
dependent only on state

L(x(t) ,u(t),p(t)) = the distribution function for the dis-
tributed cost term, dependent on the
states, controls, and parameters
T = the terminal time. Since 1 will have a

negative value later, it is given as the

integral lower bound.

By the above formulation, ¢ and L have no explicit time dependence.

From the present formulation, one can create a Hamiltonian func-
tion appropriate to finding an extremal, of the the cost.

Define

H = L+ \'¢ (4-3)
where

a Hamiltonian function based on the cost

a vector known as the costate variable whose differential

>
]

equation will be defined later.

The intent is to find a minimum value of J. It seems likely that
- J will be a smooth function of the control variables and design param-
eters, justifying a search for optimal solutions at stationery points
only. Thus, a desired set of states, controls, parameters, and switch
times are found when 4J = 0.
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To start, differentiate Eg. (4-2).

1J

where

§x

Su

dp

One can geometrically demonstrate that to first order

(See Figure IV-1 for a scalar function representation.)

4

0

One gets

¢ Ax (1 + dr) + J/. (L 6x + L, Su + LpGp)dt - L{ drt

%l

’

o
seles

’

SIS
==

’

|
Sle

T

a row vector of dimension

a row vector of dimension

a row vector of dimension

a row vector of dimension

a variation of x, a vector of

a variation of u, a vector of

a variation of p, a vector of

C

dimension a
dimension b

dimension c

dx(t + d1) = 6x{t) + f(tr)dr

T

-3 t

|
\ dx(r +dr)
by
dx(nf
-
L =
[
1 |
; .
| \
x(t) ;||
Lo
by
|
. |
I
| |
] |
T rt+tdr

dx(r +dr) = 6x(1) + g—:‘ {r) dr + TERMS HIGHER THAN FIRST ORDER

dx{r +dr) = 8x(r) + f{r) dr TO FIRST ORDER

Figure IV-1.
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The first order approximation for dx is used since the algorithm
to be developed will itself be first order. Specifically, gradient
information will be used. If all information used is valid to first order

then no information necessary to the algorithm is lost.

Equations (4-4) and (4-5) are combined to yield

0
as = ¢, 6x + (¢ f - L)lT dar + Jf' (L 6x + L6u + L

T

p6p)dt (4-6)

It is necessary to find a relation between §x and dt to eliminate
the dt term in Eq. (4-6).

The solution of the optimization problem requires integration of
the states x starting at time = 0 until time = 1. The termination of
the state integration will have to be determined by some cutoff func-
tion at t = 1 since 1 is a free quantity not known a priori. Suppose
Q(x(t)) is such a cutoff conditon.

Let
Q(x(t)) = 0 (4-7)
One gets
Q(x(t) + dx(t + d1})) = 0 (4-8)
Using an expansion series one gets

Qx(t) + dx(Tt + dt)) = Q(x(T)) + Qxdx(r + dr) (4-9)

to first order
Use of Egqs. (4-7) and (4-8) in Eq. (4-9) yields
Qxdx(T +dt) = 0 ' (4-10)
Use of Eq. (4-5) in Eq. (4-10) yields

Qx(Gx(T) + f£(1)dT1) = 0 (4--11)
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Equation (4-11) can be algebraically solved for dt to get

stx(T)

dr = - T (4-'12)
X

Substitution of Eq. (4-12) into Eq. (4-6) yields

_ 0
as = {o¢ - (¢ ; F L) Sx (1) + f (anx + L 6u + Lpdp)dt
T T

(4-13)

Two point boundary value problems are usually formulated by de-
fining an adjoint function or sensitivity function which obeys a dif-
ferential equation of adjoint form. Applying this approach in this case,

one defines

s _ dx  _ _pT _ T -
A= ac = F ) L, (4-14)
where
_ of . . .
F = Ix @ matrix of dimension a x a (4-15)
One has
d, . T _sT T.»
EE(A §x) = X76x + A 6x (4-16)

Use of Eqg. (4-16) requires that a representation of §x be devel-
oped, but x can change discontinuously due to the switch points at t .
This can be treated by considering the influence on x of each of the

switch points separately.

Define

6x

dxo + Z:Gxi
i

yielding

6% cio + Ee;;ci (4-17)
i
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where

X, = state value without switch point contributions
X; = state contribution due to switch point i
One has
9% 9% ax
x = -0 9 -0 -
6x0 = % dxo + =3 Su + D §p (4-18a)
. ax, 3%, 3%,
dxi = % (Sxi + FIy Su + W sp (4-18b)

One notices,

however, that xi was chosen to represent the effect

on x of the switch point i. The switch point does not influence the
behavior of x in response to u or p. One, therefore, has in Eq. (4-18b)
du = 6p = 0 {(4-19)
It is convenient to define two new variables
_ a%
G = Em (4-20a)
- 9% -
K = p (4-20b)
Substitution of Egs. (4-20), (4-19), and (4-15) into Eq. (4-18)
yields
§x, = F8x, + GSu + Kép (4-21a)
Gxi = Fdxi (4-21b)
Substitution of Egs. (4-21) and (4-14) into Eq. (4-16) yields
aelox) = (T - nex s
S (Tex) = (-2TF - 1, )ex + 2 F6x0+le6xi+G6u+K6p)

(4-22)
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Simplification of Eq. (4-22) and use of Eq. (4-17) gives

ad—(x 5x)

-L 6% + AT (GSu + K&p) (4-23)

One has
§x(0) = 0 (4-24)

since the desired state at t = 0 is specified explicitly.

Combination of Egs. (4-24) and (4-17) yields

5X0(0) = 5xi(0) {4-25)

I
o

T to t = 0 can now be done,

Integration of Eg. (4-23) from t
using Eq. (4-25) and the fact that 6%
other words the switch points contrlbute nothing until théy occur,

0 for © < t < t , Oor in

permitting integration of their contribution from the times of the
switch points to the end only. (Note: the inequality is based on
T < 0.)

One gets
0
T T - _ T
-AT (1) 8% (1) - Z:,x (ts.)éxi(ts.) = f (anx + A (Gsu + KGp))dt
i i i
T
(4-26)
By geometric arguments one can show
+ -
dx.(t ) = —(f - f )dt (4-27)
i|"s, S, S. S,
i i i i
where
+ s+ _
fs = x(ts) (4-28a)
fS = x(ts) | (4-28Db)

(See Figure IV-2 for a scalar function representation.)
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x(t))

x(t])

x(th

H

E
Y S

t ts+dts

8 = (x{tg) - x(t])dt,
+,
= {fg -t )dtg

Wbk = (- )a
! S Si, Si

Figure 1IV-2.
Use of Eq. (4-28) in Eq. (4-26) yields
0

ATy exy (1) = / (-L 6% + A"Géu + ATksp)at

T
T + -
- At (e - £ \at (4-29)
; (si)(fsi Si) Si

However, since the transition points have no effect at t = 1,

one has

BxO(T) = 6x(1) (4-30)
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Substitution of Eq. (4-30) into Eq. (4-29) yields

0
-AT(T)«Sx(T) = f (-anx + 2Tgou + )\TK6p)dt

T

- E:AT(t )(f+ - £ )dt (4-31)
n S. S. S. S.
1 1 1 Al

1

Comparison of Eg. (4-31) and Eq. (4-13) implies an appropriate

definition of A(T1).

Define

AT(T)

¢ f - L
X
- (¢’x - Qx) (4-32)

Equation (4-32) is substituted into Eq. (4-31) and the result is
substituted into Eq. (4-13) to obtain

T

_ T T _ T + -
a3 = /O(Luéu + 1,60 + ATGou + ) KGp)dt 2 (tsi)(fs_ fsl)dtsi

’ 1 i i
(4-33)
One has
H = L+ AG (4-34a)
u u
_ T
Hp = L_+ MK (4-34b)
Substitution of Eq. (4-34) into Eq. (4-33} yields
0 0
ar = H Sudt + H 6pdt - E‘AT t 5 - £7 \at (4-35)
u P 3 s; 85 s; s;
T T

Note that p defines geometric parameters, so it must be time
invariant. One has
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-L- — i — —__-'_"

dp | -
= 0 (4-36)

Use of Eq. (4-36) in Eq. (4-35) yields

0 0
_ } T + -
a7 = f H Sudt + (/ det)ép Zi:A (tsi) (fsi ) fsi)dtsi

T

(4-37)

Up to this point, the problem has assumed a specified state at
t = 0, and a free state at terminal time. Typically, however, the
terminal time state is constrained in some manner that may include a
dependence on the parameters p. This is treated by creating a set of
terminal state constraint functions, and a set of constraint influence
functions, that establish a gradient contribution in the desired control
parameter, and transition time variations as a function of the violations
of the constraints.

Suppose one has several relations defining some equality con-
straints on state and parameters at terminal time in addition to Q
in Eq. (4-7). Call the constraint vector VY.

One has

Y = ¥Y(x(t),p(t)) = ¥(x(t),p) = 0 (4-38)
where

Y = a vector of dimension k
Differentiation of Eq. (4-38) yields

a¥ = ¥ dx(tr + dt) + ?pdp(r + drt) (4-39)

In analogy to Eg. (4-5) one gets

dp(t + dt) = 6&p(1) + %E(r)dr (4-40)

Substitution of Eq. (4-36) into Eq. (4-40) and subsequent use of
the result and Eq. (4-5) in Eq. (4-39) yields
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day = Wx(dx(r) + f(t)dr) + Wpdp (4-41)

It is necessary to create a set of differential equations that
will incorporate the results of Eq. (4-41), and will propagate the
influence of the equality constraints through the vehicle trajectory
and geometry. To achieve this, one must define a matrix function A of
dimension (a + c) x k.

One has
éx §x 6x
%(]\T (5p)) = AT Gp) + AT(dp) (4-42)
Use of Eq. (4-36) in Eq. (4-42) yields
8x 8x .
%(AT Gp)) = iT(sp) + AT (50") (4-43)

As with the influence function for the cost variation, an influence
function satisfying the adjoint differential equation can be used to ex-
press the effect of control variations on the constraint functions.

A = -aTa (4-44)
where
£ £
X P
A = (4-45)
Py P

The matrix A definition is selected to separate state and parameter
equality constraint sensitivity effects.

A = (4-46)

Substitution of Egs. (4-44) and (4-21) into Eq. (4-43) yields

20 - (i) o an(7 gt
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Substitution of Eq. {4-46) into Eq. (4-47) and simplification vields

%(AT(SE) - a7(%") (4-48)

Integration of Eg. (4-48), use of Eg. (4-25) and the fact that

the influence of the switch at tg is zero for (1 < t < tg ) if Tt <0
. . i . i '
and the integration is from t = 1 to t = 0 yields

§x. (t 0 1
AT(O)((S(:)) - AT(T)(5§$T)) - ):I\T(ts )( xé( Si)) = f /\T(ch)L at
1 i ,
(4-49)

where the tS terms are derived in a manner similar to Eq. (4-26).
i
Substitution of Eq. (4-27) into Eq. (4-49) yields

. (o o [ox(0) _ o [Gu . (f; - f;.)dts.
A (0) Gp) - A0\ ép N Aty 0 Jat - ZA (ts_) 1 o 1
1

T 1

(4-50)

Suppose, for convenience, A is partitioned into two separate

matrices.
Define
()
A = A2 (4-51)
where
I\1 = a matrix of dimension axk
A2 = a matrix of dimension cxk

Substitution of Eq. (4-51) into Eq. (4-50) yields

-AT(T)GX(T) + (Ag(o) - Ag(r))ap = J/. AfGGudt

57 (4-52)



Substitution of Eq. (4-12) into Eq. (4-41) yields

?fox

ay = L Qxf §x + Wpdp (4-53)

Comparing the forms of Eq. (4-52) with (4-53), it is clear that

useful definitions of the boundary conditions are
T fonx .
- - - 4-5
Al(T) L o F ( a)
p

T = - 4-54b

/\2(1) \l’p ( )

Substitution of Eq.

(4-54) into Eq.
result into Eq.

(4~52) and subsequently the
(4-53) yields

0

ay = f ATGsuat - A'g(map -ZA'{(ts )(f+ e
' i

(4-55)
i S si, 53
T

A certain amount of notational simplicity is useful for future
manipulation.

The following definitions are therefore useful.
Define

| + - -
g = | - (tsl)(fsl fsl) (4-56a)

5 (4-56b)



M = [-/@(0)

-AT ¢ ) et - g
S1/\ 51 S

(4-56c)
Substitution of Eq. (4-56) into Eq. (4-55) and (4-37) yields

0

a3 = J/. H 6udt + gTév (4-57a)
T
0
dy = f /\'deudt+M6v (4-57b)

T

Inspection of Eq. (4-57) reveals that simplification of the desired
decreases in J and [¥] functionally imply desired variations in 6u
and dv. It is necessary to control the size of the Steps taken by u
and v, however, to assure that the first order approximations made thus
far do not prevent convergence to the extremal solution one seeks.

An appropriate way to define step size is to create a quantity which
is quadratic in 6u and v to assure a step whose measure is positive.

Define
S = step size
0
s = 1 J(. suulouat + 1 svTv ley (4-58)
T
where
V = a symmetric positive definite matrix to weight relative
dv variations per iteration (dimension [c+d] x [c+d])
U(t) = a symmetric time function matrix, positive definite at

all times, to weight &u variations per iteration
(dimension bxb)

It is appropriate to seek improvement in the equality constraint
violations in direct proportion to the violations.
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Define

dy = -~C,V¥ (4-59)

where

CW is a constant to be specified

The step size control, the constraint violation improvement, and
the cost improvement relations must be unified into a single set of
relations. This is accomplished by adjoining a combination of Egs.
(4-59), (4-58), and (4-57) with Lagrange multipliers.

One defines n, v as Lagrange multipliers. Substition of Egq. (4-59)
into Eq. (4-57b), and combining the result with Egs. (4-57a) and (4-58)

yields
0 0
dJ = / Huéudt 3 gTév +n % / 6uTU-16udt + % 5VTV-16V - 52
T
0
T T
P J/.(AlGéudt + M8V + Cy¥) (4-60)

T

At the extremal, the variation of dJ with respect to éu and §v

will vanish.

One gets
0
- - m
§sd3 = 0 = J/. (H + nouta™t 4 vTAiG)GGudt
u
J
- \
+ (g7 + nev™vl + VT jsov (4-61)

Since the variations 68u and 68v are independent, the §6u term and

the §6v term wust separately vanish.

One gets

H, + nsutu ! + virle = o (4-62a)
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g + novTvt 4 vTM = 0 (4-62b)

One can solve Eq. (4-62) for du, &v explicitly, yielding

_ _ 1 T T _
fu = n U(Hu + G Alv) (4-63a)
sv = - % V(g + MTv) (4-63b)

Future notational simplicity suggests the following definitions

c. = 1 (4-64a)

[
>

z = - % v (4-64b)

The following results are obtained upon substitution of Eg. (4-64)
into Eq. (4-63)

T T
Su U(—CJHu + G Alz) (4-65a)

v -c Vg + VM Tz (4-65b)

Substitution of Eq. (4-65) into Eq. (4-57b), and use of Eq. (4-59)
yields
0
_ T _ T T _ T _
-C‘*,‘P = f AlGU( CyH, + G I\lz)dt + M( C;Vg + VM~z) (4-66)
T

Some algebraic manipulation of Eq. (4-66) yields

0

0
T T T _ T T -
J(' AJGUG A dt z + MVM'z = -C,¥ + C4 J/. AJGUH dt + CsMVg  (4-67)
T

T
Further notational simplification suggests the definitions

0
- TapeT -
Tyy = J(. AJGUG™ A, dt (4-68a)
T
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0

= TouyT -

I, = J/. A GUH at {4-68b)
T

Substitution of Eg. {4-68) into Eg. (4-67) yields

(I,, + MUMT)z = =-C,¥ + c, (I + Myg) (4-69)

I
Yy Y v

It is convenient to define

B = (IWW + MVM™) (4-70a)

(Iy; + MVQ) (4-70b)

Substitution of Eq. (4-70) into Eq. (4-69) and solution for z
yields

z = B(—CWW + CJC) (4-71)

Substitution of Eq. (4-71) into Eq. (4-65) yields

T

Su = U(-CJHu

T
+ G AlB(—CWW + CJC)) (4-72a)
— - T - -
dv = CJVg + VM 'B( CWW + CJC) (4-72b)

Reordering of terms in Eq. (4-72) leads to

T T T
Su u(-Cc,G AlBW - CJ(Hu - G AlBC)) (4-73a)

¥

v -C,VM'BY - C, (Vg - VM'BC) (4-73b)

Y
An equation defining the value of CJ is necessary. Since it is
also necessary to control the magnitude of the desired improvement in
cost on any iteration in order to assure the validity of the first
order approximations already used, it is appropriate to mathematically
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tie the value of CJ to the gradient equations and some suitable cost
variation (a measure of step size). One therefore defines a specified

cost variation dJS.

Using Eq. (4-73) and (4-57a) one gets

0
_ _ T _ T _ .T
as_ = J/. H,U(-C,G A BY - C (H. - G ABC))dt
T
+ gT(-CWVMTBW - ¢, (Vg - VM"BC)) (4-74)

Reordering terms in Eqg. (4-74) yields

0
- - T T T
as, = -C, J/. H UG A BYdt + g VM BY
T
0
T T T T
-C; J,. (H,UH - H UG A BC)dt + g (Vg - VM'BC) (4-75)

T
It is convenient to define a new function
0
1 = H UH At (4-76)
JJ u ‘u

T

Substitution of Egs. (4-76) and (4-68b) into Egqg. (4-75) yields

T T T o) T T, _ T,T
as, = CW(IWJBW + gruM Bw) CJ(IJJ Iy BC + g'Vg - g'VM Bc)
(4-77)
Solving Eq. (4-77) for C; one gets
ag_+ C (IT BY + gTvaBw)
_ s ¥ Cyllyg
¢ = - T T T T . (4-78)
I, - I,;BC + g'vg - g vM'BC

With dJs somehow specified, use of Egs. (4-78) and (4-73) permits

one to evaluate 6u and év providing CW is computable. CW' however,
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is simply a value used to establish a rate at which the Y vector viola-
y S 0.2)

when the violations of ¥ are large, and increasing CLP towards 1.0 as the

tions are reduced. Starting with a small positive value (0 < C

violations diminish, permits stable convergence and suits the linear

approximations used throughout.
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CHAPTER V

SPECIFIC FUNCTIONAL, DERIVATIVE, AND
BOUNDARY CONDITION RELATIONS

Use of the cptimization algorithm outlined in Chapter IV requires
definition of the cost function terms, choice of initial state boundary
conditions, specification of equality constraints and the state inte-
gration cutoff conditions, computation of derivative terms, and evalua-

tion of boundary conditions on adjoined functions.

5.1 The Cost Function

Equation (4-2) specifies a mathematical cost function to define
the measure of optimal system behavior. The cost consists of two com-
ponents, one evaluated at the terminal state condition, the other dis-

tributed over the entire trajectory.

Three quantities: fuel consumption, dynamic pressure, and specific
force, are chosen as a minimum set of elements required to characterize
optimal system performance. Fuel consumption is a quantity which ought
to be minimized. Dynamic pressure and specific force (the acceleration
exclusive of gravity) are quantities which ought to be constrained to
fall within bounds determined by structural failure loads, and payload

or crew load tolerances.

The terminal state cost function term may be viewed as the quan-
tity to be minimized, which is total fuel mass consumed in the example

under study.

This leads to the following definition

p(x{(t)) = xs(r) + xG(T) + x7(T) = ml(r) + mz(r) + m3(1)
(5-1)

Thus, the terminal cost element is the sum of fuel used for all propul-

sive modes combined.
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The distributed cost function term may be viewed as a collection
of penalty terms to increase resultant system cost for the violation
of desired bounds on inequality constrained quantities. Dynamic pres-
sure and specific force can be penalized in this manner when they

exceed design limits.

This gives

L(x(t), u(t), p) = L;(x(t)) + L, (x(t), u(t), p) (5-2)
where
L1 = penalty term on dynamic pressure
L2 = penalty term on specific force

A proper choice of L, and L, requires that no penalty be assessed
when the dynamic pressure and specific force remain within desired
bounds, that penalties be assessed at increasing rates as the bound
violations increase, and that no discontinuities in the penalty term

should exist at the bounds. A reasonable choice of penalty terms is

2
L, = Cy(F._ - a)%u (F._ - a.) (5-3b)
2 A" sp d 0'"sp d
where
Q = a constant to be chosen that weights dynamic
pressure bound violation penalties
CA = a constant to be chosen that weights specific
force bound violation penalties
g = dynamic pressure
qq = desired dynamic pressure bound
= specific force
sp
ag = desired acceleration bound (excluding gravity)
uo(q - qd) = a unit step function with the step at q = d4
uo(Fsp - a3) = a unit step function with the step at Fsp = a4
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Note that

22 4 rz(é - w )2 x2 + xz(x - w )?
_ e _ 2 1\74 e (5-4a)
q - P 2 = p 2
2 2
F = - 5-4b
sp y«Fr Fq) + Fy ( )
m
where
p = plr) = o(xl) = atmospheric density model, assumed a

function of altitude only

F_ = net radial force on the vehicle

Fg = net gravitational force on the vehicle
F, = net tangential force on the vehicle

m = net vehicle mass

Substitution of Egs. (5-3) and (5-2) into Eq. (4-2) yields

0
2
J(t) = ml(r) + mz(” + m3(1) + / [0(g - qd) uo(q - qd)
T
2
+ CA(FSp - ad) uO(Fsp - ad)]dt (5-5)

5.2 The Initial State Roundary Condition

The initial state is specified as the desired orbital state of
the launch vehicle. (With the terminal state locating the launch con-
ditions). The primary function of any vehicle in the space shuttle
class is to deliver payloads to low earth orbit, so a representative
low earth orbit is chosen as a basis of evaluation of the air-breathing
vehicle performance. The choice of a seventy-five mile circular orbit
seems simplest and appropriate since it represents the fringe of the
sensible atmosphere.

The use of a circular reference orbit makes the desired radial
velocity vanish, and the desired angular velocity independent of posi-
tion. The angular position can be chosen on the basis of a convenient

reference value. One cets
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r(0) R + h

e 0
r(0) 0
6(0) 0
x(0) = 8(0) = wg (5-6)
ml(O) 0
m2(0) 0
m3(0) 0
where

Re = earth radius

h0 = orbital altitude

wy = orbital angular rate

The propellant should be totally consumed at orbit insertion
leading to the zero value for propellant mass at t = 0. Since angular

position is an arbitrary reference, it is chosen to be zero.

Elementary orbital mechanics yield[32]

wy = [—= (5-7)

making 6(0) an explicit function of specified orbit altitude.

5.3 The Equality Constraints and the State Integration
Cutoff Condition

The equality constraints were formulated as a method of handling
the desired terminal state conditions on vehicle parameters, desired

position and velocity, and propellant quantity.

Of the four position and velocity states only three require con-
straint since the angular position can be tied to an arbitrary initial
state angular position reference. This leaves a requirement for con-
straint of radial position as well as radial and tangential velocity.

The optimization algorithm allows specification of parameter-
dependent constraints. Since it is desired to match propellant tank
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capacity with propellart reguirements, a set of propellant mass con-

straints are derived, one for each propellant type.

Equation (4-7) specifies a function required for state integration
cutoff. (The function locates the terminal time.) The cutoff function
must come from the list of possible equality constraint functions, and
should have an unambiguous zero crossing to assure proper choice of

cutoff time.

The most promising candidate for the cutoff function is angular
velocity since the entire desired velocity component for a horizontal
takeoff would be tangential, and is likely to be a well defined minimum

value. This defines

O {x())y = x4(1) - ed = 8§ - Gd {(5-8)
where
éd = desired angular velocity at takeoff
Equation (5-8) eliminates one of the equality constraints leaving
r - Re Xy - Re
: x,
Yy = 0 = m, - My = Xg = M, (5-9)
m, - M2 Xe M2
m3— M3 x7 - M3
where
Ml = turbojet propellant tank mass capacity
Mz = scramjet propellant tank mass capacity
M3 = rocket propellant tank mass capacity

The constraints imply takeoff from the earth's surface, with hor-
izontal velocity only at takeoff, and with no excess tank capacity.
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5.4 The Derivative Terms

Two partial derivative matrices require evaluation at each inte-
gration step in the implementation of the optimization algorithm. These
are F and K defined in Egs. (4-15) and (4-20b) .

Differentiation of Eg. (3-7) yields

0 1 0 Nl 1} 0
3 3F PN F aF F JF
02.579 1l o @{.__; (-g§lji) (_%.1_:) (
it LAY EA

3r e ° ."; lml sz
im "”"-: m Grr\ am
_3?2' _3_;: 0 .Tz' am: am:
3r i ’ 3é my Im,
(5-10a)
and 0
1% _Froom
m Jp m2 ap
0
1°%Fg _ o am
mr op m2r ap
K =
aﬁnl
T (5-10b)
a:ﬁz
op
aﬁx3
op



The partial derivatives contained in Eq. (5-10) are not readily
evaluated directly, so expressions for each must be derived in terms

of numerically computable quantities.

Prior to generation of the derivative expressions, it is necessary

to evaluate the forces involved in the dynamics Eq. (3-7).

Another requirement is to remove the constraint implied by the

quantity ¢ in Eq. (2-20) where
0 < ¢ < 1 (5-11)

since the optimization algorithm requires a control quantity without

constraints. A simple mathematical transformation yields

» = —L > (5-12)
1 + uf
where
u = an unbounded fuel flow function

f

Use of Eq. (5-12) and geometric considerations yield

GM _m
F, = (T +P) sin § + N cos 8§ - —— (5-13a)
r
Fe = (T + P) cos 6§ - N sin § (5-13b)
m = =p,u r, /(1 + u2) (5-13c)
1 %1877, £
. 2 _
m, = plulASrmecR/(l + uf) (5-134)
m, = =T /[I._ g.(l + u?)] (5-13e)
3 R SPgp 0 b
5§ = tan ! |7 : T {5-13£)
- r{6 - w)
e
where
T = T+ T, + T = the total vehicle thrust, constrained

to be in the body x-axis direction
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P = L sina - D cos « = the aerodynamic force parallel
to the body x-axis and of the same
sign convention as the thrust
N = Lcos a+D sin a = the aerodynamic force normal to the
body x-axis
also
§ = the body x-axis angle relative to the local horizontal
Py = density of air at propulsion system inlet
u, = velocity of air at propulsion system inlet
I = rocket specific impulse
SPg

Differentiation of Eg. (5-13) yields the desired partial derivative

relations in terms of computable quantities

oF 2GM m
r_ far , 3R _  238) g an 28 o
=T - (ar + T N ar) sin § + (3r + (T + P) ar) cos § + r3
(5-14a)
oF 3T . 3P 28 3N 36
— = (-—.+ .—N_-—)Sin6+(—.'+(T+P) _.')COSG
or or or or or ar
(5-14b)
oF 9T . 9P 38 N 26
— = (—7 + — - N —7) sin § + (= + (T + P) — ) cos § (5-14c)
a6 20 26 26 26 26
aFr GMe
== = - —F (5-144)
i r
oF GM
r _ (3T, 2B) 4 2N _ e om ;
5P (ap+ap) sin & + 5p €08 & = 77 3p (3-1de)
9Fg 3T . 2P 26 ON 38
- = (3? +ax - N 3;) cos & - (5; + (T + P) 3;) sin §
(5-15a)
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3¥ + (T + P)

P = (B? + ég - N ég) cos § - (3§ + (T + P)
26 36 28 38 206
BFe _ )
am.
1
oF
o _ (3T , ap _ BN .
-p (Bp + ap) cos § sin §
an 3(p,u,)
1 _ ) 171 2
5z = -A_Ty,f AT /(1 + ut.)
T
am 3(p,u,)
L = L1/ +ud)
or T or
am d(pqu)
Lo oagr, —2la s ud
26 T 26
a.
1 _
am. 0
1
amy o a("1“1”‘-11)/(1 . ud)
3p £ ap £
om 3(pyum,.)
S or
om d(p um, )
—2 - -, LLCR /(1 + wd)
or S or
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(5-16a)
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(5~-17a)
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Also, differentiation of Eq.

36
or

(5-13f) yields

) r(6 - we)
26 - we)2 + 12
r(6 - me)
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5.5 The Boundary Conditions of the Adjoined Functions

In Chapter IV, Egs. (4-32) and (4-53) specified boundary condition
relations on the required adjoint functions. The terms ¢x’ Qx' Wx, and

WP are required along with f and L at terminal time.

Differentiation of Eq. (5-1) with respect to states yields
¢, = (0 0 0 0 1 1 1) (5-20)
Differentiaiton of Eg. (5-8) with respect to states yields

Qx = (0 0 0 1 0 0 0) (5-21)

Differentiation of Eq. (5-9) with respect to states yields

o
[
o
(=]
o
o
o

Y = 0 o 0 0 1 O0 O (5-22)

Differentiation of Eq. (5-9) with respect to parameters yields

y_ o= P (5-23)

where the rows of Eq. (5-23) are row vectors of the same dimension as

the parameter vector p.

Substitution of Egs. (5-21), (5-20), (5-3), (5-2), and (3-7) into
Eq. (4-32) yields
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where

_ r . - . _ - 2 -
A, = [———(ml+m2+m3 Qlg - q4) uyla d4)

2
CA(Fsp - ad) uO(FSp - ad))l e

(5-24a)

(5-24Db)

Substitution of Egs. (5-23), (5-22), (5-21), and (3-7) into

Eq. (4-53) yields

-1 0 O
0 -1 o0
A'i‘('r) =l o o o
0 0 0
0 0 O
where
_ r
ho = Fy ..
— - 2rb
m
t=T
0
0
aml
T - op
AZ(T)
BMz
3p
3M3
op
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CHAPTER VI

NUMERICAL DIFFICULTIES AND THEIR RESOLUTION

6.1 An Overview

As anyone experienced with computer implementation of complex
mathematical algorithms would expect, a number of difficult numerical
problems arose in applying the technique described in Chapter IV to the
air-breathing launch vehicle optimization. These numerical problems
originate from idiosyncrasies of the algorithm, ncnlinearities of the
system dynamics and constraints, and machine data manipulation effects.
To minimize frustration and wasted effort for anyone who chooses to
apply the techniques contained in this dissertation, these problems are

discussed, and their resolutions are characterized below.

6.2 Loss of Significant Information

The gradient type optimization techniques characteristically have
sums and differences of numbers with similar magnitude. The differences
lead to a decrease in the number of significant digits in the informa-
tion due to the finite truncation of all information manipulated by a
computer. The interpolation of tabulated data to obtain gradient infor-
mation compounds the effect. The iterative techniques used to evaluate
some quantities contained in the dynamics equations can further accumu-

late the errors.

Double precision computation of all key variables, and double
precision storage of all important data seems essential to prevent com-

plete loss of necessary information.

6.3 Equality Constraint Effect on
Stability of Convergence

The optimization algorithm described in Chapter IV includes the
capability to contribute to the control vector variation a quantity
associated with terminal state and parameter equality constraint viola-
tions. The initial size of the violations can influence the stability
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of the algorithmic convergence to an extremal point. To understand the

effect, it is best to consider an unconstrained example.

Suppose one chooses to find an extremal point in a problem where
the cost is a function of a single scalar quantity (see Figure VI-1).
There may be local minima or maxima, but no absolute extremal value.
In a simple physical example, this may imply a local minimum exists for
fuel consumption as a function of positive fuel flow, but the absolute

minimum might require an unrealizable negative fuel flow setting.

J A DIRECTION OF

LOCAL GRADIENTS

Figure VI-I.

Refering to Figure VI-1, one can see that point A represents a
local minimum, point B a local maximum. In a minimization problem, con-
vergence to point A will only result if one starts to the right of point
B. To the left of point B the cost gradient points in a direction with-
out solution.

Similar curve "bumpiness" and "over the hill" effects can be ex-
pected for equality constraint convergence—particularly when there
are several interacting constraints. Too large an initial constraint
violation is almost sure to push one over at least one multidimensional
"hill". The result is that an initial set of controls, parameters, and
transition times must be chosen to lead to an approximation of a physi-
cally realizable configuration, although suboptimal.

To judge how large a constraint violation can be tolerated which
does not prevent constraint covergence, several rules of thumb, combined
with a little trial and error can help.
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First, the violations must be small enough such that nonlinearities
in the dynamics do not direct the constraint related contributions in an

entirely wrong direction.

Second, for state related constraints, energy considerations may
be used to judge the relative magnitudes of upper bounds of constraint
violations.

Third, the initial violations must have a scale far smaller than

the natural scales of the problem.

In the air-breathing vehicle example, the rules lead to the fol-

lowing conclusions.

The atmosphere properties vary nonlinearly with altitude when
viewed over intervals of more than a few thousand feet. The thrust of
an air-breathing vehicle will superimpose that effect with its own Mach
number related nonlinearities. The first rule suggests an upper bound
in an altitude constraint violation of a few thousand feet.

If the equality constraints are applied at the ground end of flight,
altitude provides a measure of vehicle potential energy increase, while
velocity provides a measure of kinetic energy increase from ground state.
The two are additive to obtain system energy changes. The potential
energy is approximately linear in altitude over a few thousand feet.

The kinetic energy is quadratic in velocity. Using the second rule,
assuming the tolerable constraint violations can be comparable in energy
measure, the maximum velocity constraint violations will be several tens
of feet per second.

For parameter related constraints the third rule must be applied.
Specifically, to match propellant consumed to propellant tank capacity,
the initial constraint violations ought not be more than several percent
of the expected fuel requirement.

Once the above listed conditions are met, constraint induced sta-
bility problems are not likely. Failure to satisfy the above conditions
generally results in convergence in most constraints with divergence in
at least one. (Often, the altitude constraint diverges in the air-
breathing launch vehicle case.)

Finding an initial guess of a vehicle and trajectory that satisfies
the equality constraint violation bounds established above is not a
simple task. It can be done, however, through the iterative use of a
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forward time vehicle flight simulation combined with a forward time
optimization routine which treats only equality constraint violations

of states at the desired orbit.

The forward time simulation consists of a vehicle dynamics model,
and a guessed set of parameters and controls. The air-breathing part of
the flight is "flown" to fuel depletion, automatically satisfying pro-
pellant consumption/tank volume matching constraints. The rocket tra-
jectory can then be experimentally "flown", with multiple control his-
tories, to burnout to establish the feasible range of orbits for the
configuration used in the guess. If the energy of the achievable orbits
is higher than is desired, the entire configuration should be scaled
down accordingly. If the energy of the achievable orbits is lower than
is desired, scale the configuration up. When the desired energy level
seems possible with a given configuration, experimentally find a control
history that results in an orbital velocity very close to the desired
value, with large altitude errors permissible. (At orbital velocities,
small velocity changes have the same system energy effect as large
altitude changes.)

The configuration obtained by the process just detailed is used as
an initial gquess for a forward time optimization. The optimization
routine is the forward time equivalent of the method detailed in Chap-
ter IV except that no performance measure is included (¢=L=0). Only
equality constraints on the terminal orbital states are applied as a

basis for choosing control variations.

The result of applying the forward time constraint violation re-
duction algorithm for a few iterations is a suitable configuration for
the backwards time optimization technique. Even after roundoff errors
introduced in inverting the time varying control histories, an initial
guess with suitably small equality constraint violations is likely to

result.

6.4 Choosing Metrics

Step size scaling within the various elements of the control vector
from one iteration of the optimization algorithm to the next is accom-
plished through the use of the matrices U and V, referred to as metrics.

The metric V weights the variations of the parameters p and the
transition times t., which are all time invariant. Consequently, the

elements of V are time invariant.
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The metric U weights the variations of the time varying control

histories, and consequently should be time varying.

The rate of convergence to the extremal points is highly sensitive
to the choice of U and V. 1In fact, the effect of the metrics on the
convergence may be seen as a reflection of the nonuniformity of the
performance function constant cost contours' curvature with respect to
each of the control elements in the locality of the current control values.
This leads to the conclusion that the best choice of U and V requires a
good estimate of the nature of the second derivatives of the performance

function geometry.

Since it is often difficult to discern much detail of the likely
second order behavior prior to applying an optimization technique, some
more "rules of thumb" must be used to get an initial set of metrics.
Some experimentation with the values arrived at by these rules is

suggested.

A desirable goal is to assure that the step taken in the direction
of each control element leads to unit changes in performance. For the
parameters, a good starting point is to assume that the curvature effects

are approximately proportional to the initial value of the parameter.

The V matrix includes cross coupling terms in the off diagonal,
and single element terms on the diagonal. Little is likely to be known,
a priori, about interaction between parameters or transition times. Con-
sequently, one should choose a diagonal matrix whose parameter associated
elements are proportional to the square of the parameter values. (The
square requirement results from the metric appearing in a quadratic term
of control variations to control step size.) For the transition times,
the characteristic dimension to judge metric size should be a substantial
fraction of the total flight time.

The U matrix includes cross coupling terms which ought to be set
to zero for reasons similar to those used in assigning off diagonal ele-
ments of the V matrix (i.e., ignorance of anything better to do). The
diagonal elements are more difficult to select than for the V matrix,
however. A magnitude is needed, and a shape is needed as a function of
time.

The time integrated magnitude of the diagonal elements of U may be
chosen by evaluating the time integrated magnitude of the corresponding
controls over the entire flight, using these values as the characteristic
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dimension in a fashion similar to that used when selecting the V matrix

diagonal values.

The shape as a function of time of the U matrix ought to reflect
time dependent behavior of the performance function constant cost contour
curvature which is very difficult to fathom without analytical formul-
lation of all the dynamics equations. Experimental variation of the
shape must be attempted to judge the effect on algorithmic convergence

rates.

To avoid too much complexity withcut good physical justification,
it is recommended that the shape function be no more complex than a

linear function of time.

6.5 Choosing a Penalty Function Weighting Factor

The inequality constraints are accommodated through the use of
quadratic penalties outside the constraint bounds. The weight assigned
to the penalty functions influences the relative rate of reduction of
the penalty terms and the fuel performance terms. The effect is not as
strong as the metric values on resulting step size, but it does have an
effect on how closely the constraint bounds are satisfied. It is prob-
ably not desirable to apply the full force of the penalities initially.
The penalty coefficient's initial value should be chosen so that the cost
contribution is comparable to, or a low multiple of, the expected non-
penalty performance improvement, with optimization allowed to proceed
until most of the initial penalty contribution is small. The penalty
gain should be boosted and the process repeated until the desired con-
vergence is achieved toward the inequality constraint bounds. The precise
weighting factor should be chosen realiziag that the bounds in the optimal
solution will be slightly violated, since pushing them to zero is offset
by cost increases in other terms. If the bound requirement is very rigid,
a final gain ten to one hundred times higher is desirable than for loose

bound requirements.

6.6 Choosing a Specified Cost Improvement

The quantity dJS, the specified cost improvement, determines the
overall step size of the optimization algorithm perturbations in all
dimensions at once. It clearly can force the step to range from nearly
linear to highly nonlinear changes in the performance function of a
system with nonlinear dynamics. A non-linear step may prevent stable
algorithm convergence.
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Choosing a proper value for a specified cost improvement requires
that one decrease its magnitude as the extremal point is approached to
prevent the larger and larger control element variations that would be
required to satisfy the specified quantity. To fail to change the
specified improvement results in increasingly nonlinear, and possibly
destabilizing, performance measure changes. If one has a rough estimate
of the cost improvement still possible, the specified cost improvement
should never exceed 15-20% of that value, and should probably only be a
few percent of the expected improvement when starting the optimization
process. Stability of equality constraint violations should be monitcred
during convergence of cost to assure that the specified cost improvement
is in fact small enough.
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CHAPTER VII

COMPUTER RESULTS

7.1 An Overview

A software implementation of the algorithm specified in Chaper IV
with the dynamics and boundary conditions specified in Chapters II,
III, and V was developed and used to evaluate the characteristics of
the optimal air-breathing vehicle geometry, propulsion history, and
trajectory as a function of different bounds on the inequality con-
straints. (The software listing is provided in the appendix.)

Cases were run fixing the specific force bound while varying
the dynamic pressure bound. Cases were also run fixing the dynamic
pressure bound while varying the specific force bound. The details
of the cases run, the results of the optimizations, and some physical

interpretations are presented below.

7.2 Details of Computer Cases

All cases run imposed the same orbit and ground boundary condi-
tions. The orbit chosen was a 75 mile circular orbit. This represents
the delivery of a payload to an orbit at the outer fringe of the
sensible atmosphere where a small propulsive device similar to the
space shuttle orbital maneuvering system would be capable of trans-
ferring the vehicle to the desired low earth orbit parameters. The
ground conditions chosen represent horizontal sea level takeoff at an
air speed of 250 miles per hour. The takeoff speed was chosen as a
compromise between low takeoff speed tc keep runway requirements down,
and a lift requirement from the vehicle first stage to achieve flight
with minimum wing size.

All cases run assumed equatorial launch to equatorial orbit,
allowing use of two-dimensional orbital mechanics. A consequence of

these assumptions is also minimal energy requirad to achieve orbit.
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(The launch was assumed to be due East.) The results therefore shed
the most favorable light on the potential of the air-breathing

vehicle.

The specific inequality constraints used in each case are
provided in Table VII-1. The dynamic pressure bounds were chosen to
cover the range of values cconsidered reasonable for air-breathing
vehicles in a wide range of studies. The specific force bounds were
chosen to keep g loads endurable on any passengers who may fly the
vehicle (the space shuttle limits are close to 600 psf and 3 g's).

The initial guess used for all runs was the same, and consistently
quite different from the converged solutions. Convergence was assumed
to occur when the gradient magnitude on any iteration was less than

two orders of magnitude smaller than that of the initial iteration.

Table VII-1. Inequality constraints on computer runs.

Dynamic Pressure Specific Force
Case Bound Bound
1bf/ft2 g's
1 1000 3.0
II 800 3.0
I1I 600 3.0
v 800 2.5

7.3 Optimization Data

The data from the optimization runs is presented tabularly and
in plots. Tables VII-2 through VII-5 present the parameters, transi-
tion point times, relevant states at the transition points, and fuel
consumption data for the cases run. Figures VII-1 through VII-20
present the interesting time dependent variables including controls
or control~dependent functions, inequality constrained variables,

two state related functions, and Mach number.

Table VII-2 presents the parameters in units of radians, feet,
slugs, and pounds force. The meaning of each parameter is labeled.

Table VII-3 presents transition point times and other relevant
flight times in seconds from ground takeoff. The significance of each
time is labeled in Table VII-3.

Table VII-4 presents some relevant state variable related data
at the transition points for each case run in feet, radians, and

seconds.
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Table VII-2.

Parameter values.

Param- Physical Variable Case
eter I 11 III IV
P, Nose Angle 0.01925 0.01909 0.01879 0.01912
P, Fuselage Width 34.3 35.2 35.7 34.9
Ps Scramjet Inlet 14.56 15.80 16.66 15.53
Height
P, Turbojet Inlet 9.66 10.25 10.74 9.92
Height
Pg Wing Span 323 293 271 308
Pg Delta Wing 1.340 1.272 1.344 1.313
Angle
P4 TJ/SCRJ Tank 0.417 0.417 0.418 0.417
Volume Ratio
Pg Fuselage Length 151.6 150.9 149.5 151.0
Pq Rocket Fuel 3.16x10% | 3.16x20% | 3.15x10% | 3.15x10%
Capacity
Plo Maximum Rocket  |1.724x10% | 1.738x10%| 1.820x10% | 1.726x10°
Thrust
Table VII-3. Transition and flight times.
Time Physical Meaning Case
I IT IIT IV
ty Scramjet Ignition 42.4 55.3 65.3 47.8
1
tg Turbojet Shutdown 161.7 169.9 183.3 167.5
2
tg Staging 179.0 190.9 213.2 179.6
3
T Total Flight Time 512 521 532 513
-tg Rocket Flight Time 333 331 319 333
3
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Table VII-4.

Transition point state functions.

Transition . Radial Angular Tangential
Point Altitude Velocity Velocity Air Speed
Case £ rx10 - bx10”4 (c+Re) (B-w_) x10°
i
I 1 2.77 781 1.291 1.175
II 1 3.49 634 1.356 1.313
III 1 3.94 573 1.347 1.293
1V 1 3.24 702 1.301 1.196
I 2 7.82 136 2.31 3.32
II 2 7.55 103 2.32 3.33
III 2 7.48 43.1 2.30 3.30
IV 2 7.01 2.92 2.35 3.39
I 3 7.99 186 2.30 3.29
II 3 7.72 231 2.31 3.32
I1I 3 7.72 306 2.30 3.30
IV 3 7.18 344 2.33 3.36

Table VII-5. Ground value of propellant masses.

Turbojet Scramjet Rocket
Fuel Fuel Fuel

Case m1><103 m2X102 m3><104
I 3.16 4.42 3.16
II 3.20 4.45 3.16
III 3.14 4.36 3.15
v 3.17 4.43 3.15
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Table VII-5 presents total fuel consumption for each propulsive
mode in slugs. The first mode is the turbojet using a hydrocarbon
fuel. The second mode is the scramjet using liquid hydrogen. The

third mode is the rocket using liquid hydrogen and liquid oxygen.

Figures VII-1 through VII-20 are plots of the interesting time
dependent variables, and are divided into two groups. The first
group, Figures VII-1 through VII-10, are plots of the cases with zhe
specific force bound held at 3.0 g's and the dynamic presure bound
varied. The second group, Figures VII-11 through VII-20, are plots

of the cases with the dynamic pressure bound held at 800 1bf/ft and

the specific force bound varied.

Within each group of ten plots, the first four show control func-
tions. The first two plots show angle of attack on different time
scales (early flight/entire flight). The third and fourth plots show
throttle setting on the same two time scales. By expanding the time
scale in early flight, more detail is visible in the plots.

The fifth through seventh plots in each group show constrained
variables. The first of these is dynamic pressure, plotted only in
the range where the atmosphere is dense enough to cause the constraint
to affect the vehicle. The other two plots show specific force on

the same two time scales as the control variables.

The eighth through tenth plots in each group present variables
plotted through first stage flight which show interesting structure
in that flight phase only. The radial velocity and tangential air
speed are plotted to show energy, velocity, and constraint tradeoff
effects. The Mach number is presented to correlate other first stage
effects with Mach number, and to show staging Mach number similarities.

7.4 Physical Effects in Optimal Results

A wide variety of physical effects influencing the optimization
results are apparent upon inspection of the results of the different
cases run. These include effects resulting from the dynamic differences
in the two stages, effects resulting from aerodynamic properties of
the first stage, and effects resulting from the influence of the
inequality constraints.
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Figure VII-4. Throttle setting ¢ vs. t. Full flight time.
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Figure VII-5. Dynamic pressure q vs. t. Through dense atmos-
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Figure VII-6. Specific force Fgy vs. t. First 240 seconds.
Specific force bound = 3 g's. Dynamic pressure
bound varied.

90



— 1000 psf
3.0 --- 800 psf

450 600
TIME (s)—
vs. t. Full flight time.
= 3 g's. Dynamic pressure

Specific force Fg
Specific force bound

Figure VII-7.
bound varied.

— 1000 pst
--- 800
g s00| [/ R
b ‘ \‘:
o S
0 60 120 180 240
TIME (s) —
Through first stage
= 3 g's. Dynamic

Radial velocity r vs. t.
Specific force bound

Figure VII-8.
flight.
pressure bound varied.

3000+
& 2000
£
o
3
]
"= 1000t
0 .
0 60 120 180 240
TIME (s)—>
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Figure VII-12. Angle of attack a vs. t. Full flight time.
Dynamic pressure bound = 800 psf. Specific
force bound varied.
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Figure VII-14. Throttle setting ¢ vs. t. Full flight time.
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Figure VII-15. Dynamic pressure q vs. t. Through dense
atmosphere. Dynamic pressure bound = 800 psf.
Specific force bound varied.,
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Figure VII-19. Tangential air speed. r(8-we) vs. t. Through

first stage flight. Dynamic pressure bound =
800 psf. Specific force bound varied.
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Figure VII-20. Mach number M vs. t. Through first stage
flight. Dynamic pressure bound = 800 psf.
Specific force bound varied.

Some trends are common to all cases run, indicating their associa-
tion with the .equality constraints and fuei performance cost function
contributions. Other trends are apparent only upon variation of one
of the inequalily constraints, indicating a tradeoff between vehicle
solution character and inequality constraint bounds.

95



7.4.1 Universal Solution Properties

A variety of state, trajectory, and propellant properties are
apparent in all cases run, indicating their association with the
specifics of vehicle dynamics as well as state and propellant con-

straints.

The most striking similarity in all cases run is seen in Table
VII-5. The fuel consumption is only weakly associated with the in-
equality constraint bounds used. In fact, given the slow terminal
convergence of gradient algorithms, the difference in the propellant
consumption numbers can be attributed as much to small differences
in the degree of optimality achieved at the cutoff of the optimiza-
tion algorithm as it can be associated with genuine physical effects.
In spite of simultaneous application of both inequality bounds, and
substantial variation in each bound in the different cases run on the
computer, it seems that within the range of inequality constraint bounds
studied, fuel consunption effects of constraint-bound variations can

be offset by vehicle confiquration and trajectory changes.

Referring to Table VII-5 it is apparent that the high specific
impulse of the air-breathing system when compared to the rocket leads
to the vast bulk of the propellant consumption occurring during rocket
" flight in spite of the substantial velocity contributions of the
first stage. (Data in Table VII-4 can be used to show air speed
ranges between 3300 and 3400 feet per seceond at staging.) This implies
that the air-breathing propulsion is very desirable, since a large gain
in system energy is achieved with a relatively small fuel expenditure
when compared to expected "first stage" rocket fuel usage rates on the
space shuttle. It also suggests that significant air-breathing system
improvements will only marginally improve overall system fuel usage.

Further reference to Table VII-4 shows that the general altitude
range at the transition points is similar in all cases, with the altitude
changing little between turbojet shutdown and staging. Table VII-3
shows a consistent time lapse of less than 20 seconds between these
last two transition points.

Inspection of Figures VII-1 and VII-11 show consistent early
angle-of-attack patterns during air-breathing flight. All cases start
with relatively high angle of attack to achieve necessary lift for
takeoff. The angle of attack subsequently undergoes a continuous de-
cline in the first 35-45 seconds to a slightly negative value. The
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nadir of the angle-of-attack plots compared with the Mach number plots
in Figures VII-10 and VII-20 consistently occur in the transonic reqgiocn
{(between M = 1.0 and M = 1.2) where the drag coefficient peaks. This

is the consequence of the utilization of stored potential energy (alti-
tude) combined with thrust to rapidly go through the most-dissipative
aerodynamic flight region. An angle-of-attack increase follows to
achieve climb, it peaks, then declines again as air-breathing thrust
capability diminishes with altitude. The angle of attack bottoms out
again at about the time when the turbojet shuts down. (ts in

Table ViI-3 provides the shutdown time.) A pullup maneuve% is then
executed under scramjet power alone. The pullup orients the vehicle

for effective use of the rocket power at staging. Since the rocket

uses fuel much more rapidly than the air-breathing engines, improper
rocket orientation can lead to inefficient use of rocket fuel to achieve
a substantial change in flight path angle. The likely reason for
scramjet power only in a primarily aerodynamic maneuver is the continued
high specific impulse available to that propulsive mode under conditions
where the turbojet specific impulse has dropped considerably. The dom-
inance of the aerodynamic effect on the pullup is apparent upon inspec-
tion of the staging Mach number in Figures VII-10 and VII-20. Staging
consistently occurs between M = 3.3 and M = 3.5. At these low Mach
numbers the scramjet has low mass capture and therefore low power.

The consistency of the staging Mach number is itself an extremely
important effect. Its value suggests that the scramjet provides little
net benefit while contributing a high dry mass penalty to the first
stage. Recalling that the scramjet mass model is based on the high
mass of a system capable of tolerating the heat soak of high Mach num-

bers, this conclusion may in part be a consequence of design conservatism.

Figures VII-2 and VII-12 plot the angle-of-attack histories for
the entire flight, consistently showing a large peak in the early phase
of rocket flight followed by a dropoff to near zero. This effect is a
consequence of the need to achieve a substantial radial velocity com-
ponent in order to obtain the desired altitude at rocket burnout. The
dropoff in angle of attack near the flight end is a consequence of
an increasing use of gravity turning prior to orbit insertion.

Figures VII-3, VII-4, VII-13, and VII-14 all plot fuel throttle
settings. They show a characteristic throttled-down setting at
takeoff to prevent excessive vehicle loading that could result from the
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high mass capture rate and high lift that the dense atmosphere and high
angle of attack induce. The throttle setting increases subsequently

to achieve high thrust through the dissipative transonic region, fol-
lowed by a slight throttling down in the less dissipative supersonic
environment, and then a move toward maximum thrust is made (hence
maximum acceleration) until specific force effects dominate in the

late phases of rocket flight. The failure to achieve full throttle
settings (¢ = 0.97 rather than ¢ = 1.00) is a consequence of the slow
terminal convergence of the gradient algorithm to the optimum and the

optimization algorithm cutoff point.

In Figures VII-8 and VII-18 radial velocity through first stage
flight is plotted showing a persistent double peak effect and pre-
staging climb out. The second peak is affected by constraints which
are discussed later. The first peak is a consequence of the transonic
negative angle of attack followed by a need to stay in a sufficiently
dense atmosphere to hold turbojet thrust levels high, permitting con-
tinued tangential velocity acceleration. The second peak seems to
be a consequence of Mach number associated gains in rate of mass
capture, permitting higher altitude flight with continued acceleration.
The pullup, as discussed earlier, permits good vehicle orientation

for rocket ignition.

Fiqures VII-9 and VII-19, the tangential air speed through first
stage flight, show consistent acceleration except early and late in
flight. The acceleration demonstrates that the main orbital energy
benfit from the first stage comes in the tangential velocity component.
The late velocity dropoff is a consequence of a combination of atmos-
pheric rarefaction, reducing thrust, and finally an aerodynamic energy
transfer to radial velocity to achieve vehicle pullup. The early
flight tangential velocity dip is associated with a preferential early
radial velociiy gain to permit a subsequent altitude gain while
accelerating. This effect permits vehicle load relief discussed later

in more detail.

7.4.2 Dynamic Pressure Constraint Effects

A variety of trends in the vehicle geometric parameters, transi-
tion times, and time dependent behavior are apparent upon variation of
the dynamic pressure inequality constraint bound. Three cases were run
with the specific force bound held at 3.0 g's and the dynamic pressure
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bound set at 1000, 800, and 600 pounds force per square foot. Tables
VII-2 through VII-5 and Figures VII-1 through VII-10 present the
results of optimization with these bounds. (Table VII-1 specifies

which bounds apply to each case run.)

Table VII-2 shows definite dynamic pressure related trends in
the parameters < through Pgs Pg and Pig* Parameters P, through I
all define inlet areas for the air-breathing propulsion systems, and
all grow with a decline in dynamic pressure bound. Comparison of
altitudes at the first transition point in Table VII-4 shows a steady
altitude increase for this point with the decrease in dynamic pressure
bound. These effects taken together permit the vehicle to hold down
the dynamic pressure due to the lower air density at higher altitude
while keeping reasonable levels of air-breathing thrust as a result of
larger propulsion system intake. Table VII-5 shows fuel consumption
to be relatively constant during air-breathing flight for all cases
run. An increase in P, combined with the constraint that demands the
propellant volume to match the tank volume requires a decline in other
fuselage dimensions. Thus, parameters P, and Pg decrease. A secondary
effect of increasing air-breathing propulsion system inlet size is to
increase available thrust at takeoff, permitting somewhat reduced wing
lift capability for the vehicle. A decline in Py, the wing span,
results with reduced dynamic pressure bound reflecting the lower 1lift
requirements when combined with the delta wing sweep angle, Pg and the
ch/da data in Table II-1. The increase in Pig’ maximum rocket
thrust, with declining dynamic pressure bound has an effect apparent
in the bottom entry of Table VII-3, a decline in rocket flight time.
With the staging states very similar, as seen in Table VII-4, the
cause of the rocket thrust effect is obscure.

The time dependent variable plots show a great deal of dynamic
pressure bound related structure. Figure VII-5 shows the dynamic
pressure plotted through dense atmospheric flight. The most obvious
effect is the close tracking of the dynamic pressure bounds, in all
cases, until the decline in atmospheric density reduces the value below
the bound for the remainder of flight. With less stringent constraints
the bound is less precisely tracked. This is a result of the vehicle's
ability to more closely approximate the desired unconstrained behavior.
As the bound is decreased more time is spent near the limit, which is
a consequence of greater constraints on acceleration. The increasing

99



acceleration limits are seen in Tables VII-3 and VII-4 which show
in:reasing amounts of time spent in air-breathing flight in spite of
very similar staging states. The dynamic pressure plots also all

show a temporary rise in dynamic pressure after staging as a result of
velocity increase effects initially exceeding the atmospheric density
decrease with altitude when the vehicle begins the high rate of rocket

acceleration.

The angle-of-attack histories seen in Figures VII-1 and VII-2
all show similar structure. It is interesting, however, to note the
differences in the pairs of air-breathing flight angle of attack valleys,
the magnitudes of which are secondary effects of reduced wing lift
capability. 1In the transonic negative angle of attack region a more
negative angle of attack is permitted for tighter dynamic pressure
bounds. The result is similar net negative lift, and similar first
peak radial velocity behavior, seen in Figure VII-8, eventually leading
to similar terminal first stage states. The second angle of attack
valley is just prior to pre-rocket ignition pullup. Reduced wing
lift capability results in a somewhat greater angle of attack to
help keep up the net lift for the flight phase immediately preceeding
the aerodynamic pullup maneuver. In spite of the higher angle of attack,
net lift does decline with wing span in the flight region before the
second radial velocity peak. The reduced lift also pulls down the
magnitude of the second peak, and causes lower radial velocities just

before the aerodynamic pullup.

Figure VII-6, specific force during early flight, shows one
significant dynamic pressure bound dependent structure. The second
peak declines with decreases in the bound. This effect is strictly
aerodynamic, being a consequence of reduced lift from the reduced
wing size, with inadequate increases in the angle of attack to

compensate for the smaller wing.

The first stage tangential air speed, plotted in Figure VII-9,
also shows one significant dynamic pressure bound related effect in
early flight. The velocity component declines once in early flight
in all cases run, with the decline becoming more pronounced as the
dynamic pressure bound is reduced. The vehicle with a reduced bound
needs to achieve higher altitude early in flight to keep air density
down, controlling the dynamic pressure magnitude. The radial velocity
component is given preference to achieve the altitude increase. There-
fore, as the bound is reduced, greater emphasis is put on the radial

¢
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component, leading to less energy being fed into the tangential compo-
nent. The result, when aerodynamic dissipation is included, is a

greater dip in magnitude of the tangential air speed.

7.4.3 Specific Force Constraint Effects

There are some physical phenomena apparent in the optimization
results that are clearly a consequence of the specific force bounds.
There is, however, more limited data from cases run in which the
specific force bound was varied, making it necessary to be more cautious

on conclusions drawn about the subtler effects.

Table VII-2 shows a trend in Py through Py the air-breathing
propulsion system inlet sizing parameters. A decline in the specific
force bound from Case II to Case IV results in a small but consistent
decrease in all three parameters. Figure VII-16, the plot of specific
force versus time in early flight shows that with the more constrained
case the bound is reached in early air-breathing flight. The influence
of the constraint would be expected to hold down the propulsion system
size since acceleration is limited by the bound. Since this specific
force peak precedes initiation of scramjet use the effect is principally
on p, and Py the turbojet inlet dimensions. The effect on p3 may be
a consequence of reduced system dry mass with the decline in the turbo-
jet size. The parameters Py and Pg would be expected to show a small
increase with a decline in P, due to the nearly constant fuel consump-
tion fiqures of Table VII-5, combined with the propellant volume/tank
volume matching constraint, which is in fact seen to be true, though

it is a very small effect.

There is a significant increase in Pg the wing span, with the
decline in specific force bound. This effect, combined with the in-
crease in Pg and the effect on ch/da given in Table II-1, actually
has little effect on wing lift capability. Therefore, no trends can

be extracted from the phenomena.

Figure VII-14 shows the most obvious effects of the specific force
bound on time varying flight controls, the continuous decline in throttle
setting in the later phase of rocket flight. The reason for the effect
is clearly seen in Figure VII-17, the need to stay within the specific
force bound as the rocket mass declines. Figure VII-14 shows that the
lower specific force bound results in a steeper and greater decline in
throttle setting, a consequence of similar rocket stage mass properties
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and maximum rocket thrust magnitudes, with substantially reduced accel-

eration bounds.

Figure VII-15 shows a more extended time spent near the dynamic
pressure bound for the lower specific force bound case. This effect
is a consequence of the lower staging altitude combined with high
rocket acceleration in the denser atmosphere, pushing the dynamic
pressure back up temporarily. The lower staging altitude also causes
the higher specific force during the prestaging aerodynamic pullup
maneuver, as seen in Figure VII-16. The higher atmospheric density

generates more lift, leading to the higher specific force.

7.4.4 Conflict Between Inequality Constraints

There are circumstances under which application of stringent con-
straints in both specific force and dynamic pressure can force substantial
changes in solution character making it difficult to satisfy both bounds
while still matching the requirements of the terminal equality constraints.

A case was run where this effect was evident.

A run with a dynamic pressure bound of 2.0 g's was attempted.

Table VII-6 and Figures VII~21 through VII-23 present some relevant

results,
Table VII-6. Data from 2.0 g's, 800 psf bound case.
(Not a fully converged solution.)
Data Type Value Transition Point Time | Altitude
(s) (103 £t)

Fuselage Width 35.1 ft Scramjet Ignition 27.1 22.9
Scramjet Height 16.21 ft. Turbojet Shutdown |171.9 73.2
Turbojet Height 9.76 ft Staging 173.7 73.4
Max. Rocket Thrust 1.679><106 1bf
Staging Mach No. 3.56
Rocket Flight Time | 348 s
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As one would expect with reduced specific force bounds, both the
rocket and turbojet thrust capabilities decline, though slightly. The
maximum rocket thrust is less than both cases II and IV, and the turbo-
jet thrust capability, proportional to the product of the fuselage width
and turbojet height, is less than both cases II and IV. However, inspec-
tion of Figure VII-21, the dynamic pressure in the high g range, and
Figures VII-22 and VII-23, the specific force plots, show substantial
violation of both bounds in spite of configuration and trajectory adjust-

ments.

Comparison of Figures VII-21 and VII-22 show that the early flight
specific force bound violations overlap the first peak in the dynamic
pressure bound violations. Also, the dynamic pressure peak in rocket
flight, at the right of Figure VII-21, hits the dynamic pressure bound
at the same time as the second specific force bound violation peak
occurs in Figure VII-23. This demonstrates that a conflict exists
between the two bounds. The violation of the specific force
bound in late rocket flight, seen at the right in Figure VII-23, is
probably indirectly the result of the earlier time-bound difficulties
combined with the continued requirement to satisfy the terminal equal-

ity constraints.

As a consequence of the overlapping violations, attempted satis-
faction of one bound can adversely affect the magnitude of the violation
of the other. The relative viclation in the two different constraints
depends on how heavily each violation is penalized.

The root of the problem is apparent upon inspection of the alciitude
of the first transition point. Comparison with cases II anrnd IV show the
altitude at scramjet ignition to decline with specific force bound. A
lower altitude profile for the entire air-breathing flight, until near
the staging point, results. With a similar staginc altitude and Mach
number to the other cases, higher Mach number flight at the lower alti-
tudes results. The higher atmospheric density at the lower altitudes
affects both dynamic pressure and specific force. Large changes in the
early flight profile are likely to be necessary to get a suitable solu-
tion. The second order effects are likely to undergo major changes as
well. This affects the choice of the metrics U and V, and makes the task

of achieving convergence difficult.

7.5 Some Comments About the Scramjet

The low staging Mach number in all cases run on the computer pro-
vides little support for use of a scramjet in a vehicle with the flight
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profile and configuration studied. However, this should not be interpreted

as a universal condemnation of tne supersonic combustion propulsion system.

The turbojet system model includes a rapid dropoff of specific
impulse near the staging Mach number. When this effect is coupled
with the dynamic pressure constraint, thrust diminishes rapidly. The
scramjet mass capture ratio remains well below unity, limiting its
thrust contribution, and forcing vehicle staging to sustain acceleration
under rocket power.

Several changes in the vehicle design considerations could change

the scramjet contributions.

Use of a rocket in the first stage, or a single-stage-to-orbit
vehicle, which could overlap with air-breathing propulsion, could drive
the vehicle to a Mach number range where the scramjet thrust could sus-

tain vehicie acceleration to a considerably higher Mach number.

Development of a higher temperature tolerant turbojet system,
with the resulting higher impulse, could accelerate the vehicle to the
Mach number range where scramjet thrust propogates the air-breathing

flight to higher velocities.

Reduction in scramjet system mass by development of light weight
high temperature tolerant materials (i.e., ceramics) could sufficiently
reduce first stage dry mass to permit the diminished low Mach number
scramjet thrust to continue to accelerate the vehicle to the higher
scramjet thrust Mach number range, again permitting the continuation
of air-breathing flight until the scramjet impulse declines, and atmos-

pheric density is insufficient to permit much thrust.

7.6 Summary
A variety of physical effects are evident as a result of the
optimization cases run. The effects are seen to depend both marginally

and heavily on the inequality constraint bounds.

Fuel consumption is very weakly associated with the magnitude of

the inequality constraint bounds within the ranges studied.

Staging consistently occurs near Mach 3.4 for all cases studied
implying little if any gain from scramjet propulsion, though this
could be partly the consequence of the conservatively high scramjet

mass model.
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Air-breathing propulsion fuel consumption is small for the sub-
stantial velocity gain that results.

Throttling capability is essential to stay within specific force
bounds at both takeoff and in late rocket flight. The slope in the
throttle history plots during rocket flight is a function of the bound.

The altitude and time of the first transition point, and the times
of the second and third transition points are strongly tied to dynamic
pressure bounds. The air-breathing propulsion inlets are also a func-
tion of the dynamic pressure constraints. Lower air density at higher
altitude, and larger inlets to retain sufficient mass capture combine

to meet increasingly stringent dynamic pressure bounds.

The relative rate of energy gain in the two velocity components
is a function of constraints, and affects the structure of the plots in
first stage flight.

Finally, the angle of attack plots show effects from physical
influences of the environment. Required lift for takeoff results in
a high angle of attack in early flight, with dissipation properties in
transonic flight forcing it negative. An aerodynamic turn preceeding
rocket ignition causes an increase, and radial velocity requirements
after staging result in a sharp peak. Gravity turning then permits
the angle of attack to approach zero at powered flight completion.
The size of the effects in air-breathing flight are bound-dependent.
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CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

8.1 An Overview

A gradient type algorithm for two-point boundary value optimiza-
tion problems, permitting evaluation of optimal parameter values,
optimal dynamic discontinuity locations, and optimal history of time
varying controls, has been developed and applied to a two-staged air-
breathing launch vehicle concept. Mathematical peculiarities of the
algorithm, and physical characteristics of the air-breathing launch
vehicle have been evaluated. Many interesting conclusions can be
drawn from the work already done. Some significant research areas
have been identified which, if pursued, could significantly expand the

capabilities of this approach to flight vehicle design analysis.

8.2 Conclusions

It has been demonstrated that a gradient-type algorithm incor-
porating several classes of controls, including time varying control
histories, time invariant design parameters, and locations of dynamic
discontinuities, and permitting application of equality and inequality
constraints can be derived and successfully applied to a design prob-

lem involving complex system dynamics.

The stability and rate of algorithm convergence are highly sensi-
tive to several factors. An initial guess at the solution is necessary
and will violate the equality constraints to some degree. A gradient
correction term for the violations is included, but excessive initial
constraint violations will destabilize the algorithm. The algorithm
incorporates weighting matrices for each control vector element, referred
to as metrics, whose element magnitudes strongly affect convergence rates.
Guesses at system second derivative properties provide a basis for good
selection of the metric elements. The algorithm step size is tied to a
desired improvement in performance per iteration, and inappropriate
assignment of the specified improvement can also adversely influence

convergence rates.
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The algorithm can in principle handle any system with any number
of elements in the control vector or constraint set, though practical
considerations limit this. The computation time grows rapidly with
system dimension, and resolution of the numerical problems listed

above becomes much more difficult with growth in system complexity.

The algorithm has been successfully implemented on a digital
computer and applied to a hypothetical two staged launch vehicle with
an air-breathing first stage and rocket second stage.

The most significant conclusion about the proposed launch vehicle
concept is that overall fuel consumption to deliver a space shuttle
sized payload to low earth orbit is relatively insensitive to substan-
tial variations in the inequality constraint bounds on dynamic pressure
and specific force when vehicle geometry modifications, propulsion mode

change time modifications, and trajectory changes are all allowed to
accommodate the constraint-bound variations.

In all cases run, the staging Mach number, the transition from air-
breathing flight to rocket flight, occurred between M = 3.3 and M = 3.5.
The relatively low staging Mach number in spite of the availability of a
supersonic combustion ramjet, implies that little is gained from an
air-breathing system suited to high Mach number flight. Turbojet power
alone in the first stage, followed by rocket flight, is likely to pro-
vide similar performance with a less complex system. These effects may,
however, be propulsion system mass model dependent.

Highly variable throttle settings in the propulsion systems are
necessary to accommodate the specific force bounds imposed on the
vehicle. The effect is particularly obvious in the later stages of
rocket flight when the bound is followed in spite of declining system

mass.

Reducing the dynamic pressure bound expands the air-breathing
propulsion system inlets and raises the early low Mach number flight
altitude, though staging states are very similar.

There is no reason to suppose that application of other inequality
constraints will produce results any less interesting. The general
approach seems to work well with definite trends apparent after a

limited number of optimization cases are run to completion.
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8.3 Suggested future Research

The material presented in this dissertation may be perceived as a
demonstration of a design technique on the simplest possible mathematical
model of an air-breathing launch vehicle. This was done to keep computer
software complexity within reasonable limits. It is clear that a number
of research extensions would be worthwhile in characterizing the detailed
behavior and physical properties of the desired launch vehicle. Some of
these areas are suggested below, and active investigation of each is
encouraged.

8.3.1 Rollout Fuel Consumption

A factor contributing to fuel consumption of the air-breathing
launch vehicle not considered in the dissertation is fuel consumed in
accelerating to takeoff speed. Due to the high thrust nature of the
vehicle, and short flight time of the air-breathing stage, this accelera-
tion may have a non-negligible effect on performance. It would be worth-
while to incorporate it into the dynamics model. Also, an optimal take-
off speed would result, eliminating the effect of fixing it as was done
in the dissertation research.

8.3.2 Benster Flyback

A fully reuseable launch vehicle will require first stage flyback
with corresponding fuel consumption and aerodynamic effects. The algo-
rithm has not been designed to treat two separate vehicle trajectories
simultaneously as would be required to track the booster stage after
separation. Extension of the technique to handle the flyback booster
problem would be enormously useful.

8.3.3 Scramjet Removal

The low staging Mach number and high scramjet structural weight
suggest marginal benefit of a propulsion system that will require large
economic investment to develop. Investigation of the comparative per-
formance of a vehicle with turbojet and rocket propulsion only would be
useful.

8.3.4 Better Wing Models

Development of a software package allowing greater wing shape flex-
ibility and characterizing fuselage wing interaction explicitly would
lead to more realistic configuration conclusions.
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8.3.5 Aerodynamic Interaction Between Stages

Aerodynamic interaction between stages in the noted configuration
was ignored. The drag contributions due to interference effects are
probably not negligible. Though modelling these effects is complicated

it would be a worthwhile endeavor.

8.3.6 Variable Rocket Fuel Mix

Work has been done elsewhere[33'34]

evaluating methods of mixing
fuel types or changing fuel/oxidizer ratios in rockets to improve launch
performance. Applying these techniques to the rocket flight portion of
the air-breathing launch vehicle may result in some performance improve-
ment. To permit comparison of the air-breathing vehicle to the pure
rocket confiqurations incorporating these technologies requires variable

rocket propulsion models to be included in the analysis.

8.3.7 Interactive Design

Many design considerations are not easily expressed mathematically,
but can be perceived by an experienced engineer upon inspection. Per-
mitting interactive optimization via CRT monitored results and plotting,
and allowing interactive constraint adjustment may lead to rapid proto-
type design development. While improved computer processing rates may
be necessary to make this technique effective, development of inter-

active software packages and CRT driver routines would be worthwhile.

8.3.8 Adaptive Metrics

Convergence of the optimization routine is not generally uniform
in all dimensions, leading to the need to adjust the metrics to accommodate
changing second derivative properties in the different control elements
as the extremal point is approached. Devising a method to automatically
adjust the metrics on a per iteration basis would be useful and would

save substantial computer processing time.

8.3.9 Higher Fidelity Vehicle Dynamics Model

A variety of improvements to the dynamics model of the vehicle
already studied can be applied to permit study of more detailed system

behavior.
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System rotational dynamics could be included, requiring aero-
dynamic pressure distributions as well as vehicle inertial properties.
This would clearly affect the rate of change allowed in angle of
attack.

Three dimensional orbital mechanics could be included, allowing
study of the effects of inclined orbits and crossrange requirements

on system behavior and performance.

Internal modeling of air-breathing propulsion dynamics could be
developed to permit separate optimization of turbine and compressor
sizing as well as inlet diffuser and outlet expansion nozzle shape.

More accurate system dry mass properties would result.

The consequence of all the improvements mentioned above is a
considerably higher control vector dimension, more state variables,
and more constraints resulting in greatly expanded computer processing

time requirements.

8.3.10 Single Stage to Orbit with Air-Breathing Propulsion

Some work has been done on single-stage-to-orbit launch vehicles
including air-breathing propulsion in the lower Mach number flight

. {35]
regions.

Optimization efforts could lead to interesting conclu-
sions, particularly with the possibility of overlapping air-breathing

and rocket power.

8.3.11 Less Conservative Scramjet Mass Models

The low staging Mach numbers obtained in the cases shown in
Chapter VII suggest that the scramjet mass models may have been based
on too high a heat flux tolerance. Comparison of results with cases
using a more optimistic dry mass model would be useful to judge the
true scramjet launch vehicle potential.
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APPENDIX

OPTIMIZATION SOFTWARE PROGRAM

The following material is a compilation listing of the software
implementation of the algorithm in Chapter IV with the dynamics and
boundary conditions given in Chapters II, III, and V. All system-

dependent references and debugging routines have been extracted.

The code is HAL, a language developed for use in the space shuttle
program, and should be easily read. A few notes on how to read some
keys in the code, how to recognize certain mathematical operands, and

how to use the cross reference are useful.

Within the code listing, on the left, one will note statement
numbers followed by the letters C, E, M, or S. The letter C simply
denotes a nonexecutable comment. The other three letters specify the
type of code line to the right. E represents the exponent line, if
any, to operate on the M line representing the middle or main code line.
S represents subscripts, and can occur more than once in a given state-

ment if subscripts are nested.

To the right, after each statement, is a note of the procedure

in which the statement is contained.

At the end of each procedure a listing of variables used within,
but defined outside, is given. The mention of a compool is a reference
to the HAL equivalent of a common block, found at the beginning of the
listing in RUN_POOL.

Most mathematical operations are self-evident, but the notation

for different multiplication routines may not be obvious.

For a scalar multiple of any function, a space is used. For
vectors, the inner product uses a period (the "dot" product), the outer
product uses a space, and the cross product uses a single asterisk.
Matrix/vector multiples use a space. Division uses a slash.
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The cross reference contains much useful information. For each
variable, a specification to type of usage in each statement is given
to the left of the statement number. The key is at the top of the
cross reference. Multiple types of usages in a single statement add
together in the key. At the end of the cross reference is a listing
of preprogrammed function calls. This includes normal math functions.
Some nonstandard functions are also included. These are Modulo Counters
("MOD"), scalar-to-integer roundup and round down functions ("CEILING"
and "FLOOR"), scalar to integer truncation ("TRUNCATE") and matrix
transposition ("TRANSPOSE").
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