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ABSTRACT

As the problems of modern science and technology become more
complex, the need arises for digital computers of greatly increased
speed and storage capacity. Previous work has indicated that computer
components may be made from thin metallic films, and that the possible
switching times of such components may be such that the overall speed
of the computer will be limited by the transit time of a signal from
one part of .the computer to another, rather than by the speed of the
components themselves. In order to fully exploit the speed of such
components, while maintaining large computer storage capacity, it
becomes necessary to pack a very large number of components into
a small volume.

One approach to miniaturization is to etch components and circuits
in a thin film by heating microscopic regions of the film to evaporation
temperatures with an electron beam. This thesis presents a study
of the heat flow problem, which is simplified to the problem of finding
the temperature rise on a thin plate, with a uniform circular source
of heat in uniform rectilinear motion on the plate. The temperature
was found as a function of position and velocity in terms of a double
integral. An IBM 704 computer program was written to perform
the numerical evatuation of the integral.

Thesis Supervisor: Ewan W. Fletcher
Titlec Associate Professor of Electrical Engineering
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CHAPTER 1 6.

I. Introduction

The modern high-speed digital computer has been invaluable in dealing
with the complex problems of modern science and technology. Not only
have computers immensly shortened the time required to perform
laborious and tedious mathematical and logical operations, they lmve also
maide possible the solution of problems which were heretofore insoluble
in practice because of the great amount of time required to perform
calculations. As problems of increasing complexity arise, however,
it is found that computers of greater speed and storage capacity are
needed.

Considerable research is being done at present toward the development
of ultra high-speed computer components. Efforts to find ways of making
such components from thin metallic films have shown considerable promise
of success. Memory planes composed of thin films of ferromagnetic
materials and thin film versions of the cryotron, a superconducting switching
device, are examples of components that seen feasible.

Work at M.I.T., and elsewhere, has indicated that switching times
approaching 10—9 seconds may be possible in some of these devices.
When switching speéds of this order of magnitude are attained, the speed
of a computer becomes limited by time required for a signal to propagat
from one part of the computer 1o another. If the computer is to have both
high speed and large storage capacity, it then becomes necessary not only
to increase the switching speed of the individual components, but also to
miniaturize the components and circuits so that the distance through which
a signal must travel between cycles is short.

One approach to miniaturization is to make components and .circuits by etching
a uniform thin film in such a way the desired geometry results — a sort of
"orinted circuit' technique in miniature. Such a procedure is under
investigation at the M.I.T. Digital Computer Components and Systems Group

(DCCSG). It involves the projection of an electron beam image of the desired
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configuration on the film. The electron optics are such that the image is
greatly reduced in size, so that complex configurations may be projected
on a very small area. The electron beam seems to catalyze a reaction in
the residual gasses in the vacuum system, causing a carbonaceous deposit
to appear on the film in regions of high beam intensity. After a deposit
of suitable thickness has beenformed, the electron beam is turned off,
and a corrosive gas, such as chlorine, is admitting to the system. The
gas reacts with the portions of the metallic film which are not protected
by the carbonaceous deposit causing them to be etched away. The deposit
and the products of the etching reaction may then be removed, leaving the
desired configuration in the film.

The above process, however, has the disadvantage that foreign gasses
must be admitted to the vacuum system. This could be very troublesome
in i‘nany instances, especially if the same system is used for the formation
of the film by evaporation, If films of high puﬁty are to be made, the re-
quirenents for good vacuum are quite stringent, so that any contamination
of the vacuum system is to be avoided if possible.

An alternative method is suggested of etching the film without having to
contaminate the vacuum system. If an electron beam of sufficient intensity
could be focussed upon the film, it is expected that enough heat would be
produced in the film to cause sublimation or vaporization to take place
in the locality of the beam. The beam could be deflected to scan repeatediy
over the regions of the film to be removed, until evaporation had removed
all of the undesired material. Such a system could be a powerful tool in the
construction of compu er circuits, for the configuration of the circuitry would
be under electronic control, hence adaptable to methods of automation. The
further possibility suggests itself of placing the entire system under the control
of a computer, so that the computer would both design and build the circuit,
thereby producing highly complex logical circuits with a minimum of human

effort.



The topic of this thesis is the study of the heat flow problem in the film
as it is bombarded by the scanning electron beam, to determine the feasibility
of using such a method to evaporate parts of the film. Some simplifications
are made, as explained in the next chapter, to obtain at least a first approximation
of the conditions to be expected. The heat flow problem is reduced to the
problem of finding the temperature distribution over a conducting plane which
contains a circular heat source in uniform rectilinear motion, emitting heat
at a constant rate, uniformly over its area. Although the immediate application
of this study is directed toward the electron beam scanning problem, it is
possible that practical applications may exist elsewhere, such as the arc

welding of flat plates, machining or buffing of plates, etc.



CHAPTER 1I

II. Nature of the Problem

It would be desirable to develop a system which can etch configurations
on films to a tolarance approximately equal to the film thickness, which is
of the order of a few hundred to a few thousand Angstroms. This places
rather stringent requirements on the electron focussing system, for the
beam must be focused down to a diameter of the order of 1000 Angstroms,
and yet have sufficieht intensity to heat the film to a temperature of
vaporization or sublimation. Moreover, the energy of the electrons
in the beam is limited to a point where most of the electrons penetrate
completely through the film. According to Whiddington's law, if the
energy of the electrons is further increased,the energy which they lose to
the film, when passing through it, will decrease. It is expected that the
optimum energy will be of tte order of a few thousand electron volts. It
therefore becomes necessary to increase the current of the beam in order
to increase its heating effect upon the film. It is, however, quite difficult
to produce an electron gun which will focus a high current electron beam
to a diameter of 1000 Angstroms. The objective of this thesis is the
determination of the scanhing velocity and quantity of heat required to
produce a suitable temperature distribution on the film, so that the
feasibility of using on electron beam to heat the film to sublimation or
vaporization temperatures may be accurately evaluated. It is expected
that a compromise will have to be found between a high scanning velocity ,
which would give a temperature distribution such that the film temperature
in the \path of the beam is relatively high but falls off rapidly at positions
away from beam's path, and a low scanning velocity, which would give
a more uniform temperature, but would give a higher maximum temperature
for the same beam current, due to the fact that the beam remains in a given
region for a longer period of time. The temperature difference between
a point in tke path of the beam and a nearby point outside the path of the
beam should be as great as is practical, so that the sublimgtion or vapori-

zation of the film will occur only in the desired locations.



10.

In order to find an approximate solution of the heat flow problem, certain
simplifying. assumptions will be made. It is assumed that a metallic film
is deposited upon a substrate of much lower thermal conductivity, such as
glass. The scanning electron beam moves in a straight line at constant
velocity. As the beam repeatedly scans a line in the film it is assummed . . . -
that the time between scans is sufficient for the region under consideration
to reach a uniform temperature. The current density of the focused beam—
the numb er of electrons crossing a unit cross-section area per unit time—
is agsumed to be constant within the beam .diameter, and zero outside.

This will not be the case in practice, but the results from this assumption

are expected to provide a first approximation. Moreover, results of

better accuracy may be found by superimposing uniform beams of differing

diameters to attain an approximation of the true current density distribution.

The temperature distribution on the film may then be approximated by superimposing
the temperature distributions for the uniform beams.

It is also assumed that the demsity, thermal conductivity, and thermal
capacity of the film remain constant as temperature varies. This is not
strictly true in practice, for these ' constants' may vary by as much as
twenty or thirty percent for temperature changes of 100°C. Even larger
variations are to be expected as the melting point of the film is approached.
Moveover, film constants, such as these, are very difficult to measure
accurately, for they differ in general from the constants of the material in
bulk form. It is again expected, however, that a reasonably good first
approximation may be found by assuming bulk characteristics, and by
assuming that they donot vary with temperature.

Finally, it will be assumed that the temperature is uniform through the
thickness of the film, so that two dimensional geometry may be used, and
that no heat is lost from the surfaces of the film. Heat will be condicted
away from the film by the substrate, in practice, but the thermal conductivity
of the film will probably be of the order of 100 to 1000 times greater than that
of the substrate, so that the heat lost to the substrate in the immediate region
of the source is expected to be negligible, to a first approximation. It is

important to note, however, that if the focused diameter of the electron beam
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is large in. comparison to the film thickness, this assumption becomes invalid.

The problem, then, is reduced to finding the temperature distritution on a

con
line at constant velocity. This problem will be solved explicitly in terms of a =
A program for an IBM 704 computer has

ducting plane that contains a uniform circular heat source moving ina straight

double integral in the next chapter.

been written to perform numerical evaluations of this solution.
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III. Derivation of the Equations

The Heat Flow Equation

The temperature at any point in an isotropic homogenious medium is

governed by the well-known heat flow equation:

au _

B . PyPu+ 55 F ay.t) (3-1)
where U = temperature

t = time

a2 = thermal diffusivity
k

= F—C—
k = heat conductivity of the medium
pP= density of the medium
C = thermal capacity of the medium

V2= the Laplacian operator

F(x,y,t) = heat supplied to the medium from a source

It will be convenient here to consider the case where F(x,y,t) is

identically zero.

Frai a v U (3-2)
Since equation {3-2)is linear, it follows that a linear combination of
solutions is alse a solution; the principle of superposition holds.

In this thesis, attention will be restricted to solutions of this
equation in two dimensions. Equation (3-2) when written in terms of

cartesian coordinates becones

5U 22y #%U

i N -z}

{3-3)
ox ay
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and in polar coordinates:

®
c

21 v 5 5 (3-4)

Bt f
Equation (3-4) applies, in particular, to a flat plate parallel to the
x-y plane, provided there is no variation in temperatire in the plate. .
along any line perpendicular to the x~y plane, and provided no heat is
lost from the surfaces of the plate. If the plate is of thickness d, and is
composed of material whose bulk heat conductivity is k', whose bulk
density is P ', and vh ose bulk thermal capacity is C', the constants in

equation (4) are given as follows:

k =d k'

€ =df

C=dC'
2 _k 1 kv 1 2
@' pc " po ~a®

where (a')z is the thermal diffusivity in the three dimensional problem.

The Source Functions of Heat Flow

If a2 is constant, as will be assumed throughout this thesis, a solution
of equation (3-4) which has some useful properties is the heat source

function: s 2

4a2t
U = ——j—z—— e (3"'5)
' 41r’oCa t
This function (3-5) may be interpreted, for positive t, as the temperature
on a plane at distance's from the origin due to a quantity of heat, q,

suddenly released at the origin at time t = 0.

. - R . ] PR
‘ PEEEE . . 3 - .y
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-+ The surface integral of the source function over the entire plane
is equal to q/_C, independent of t, satisfying the requireme nt that heat be
conserved. The function is finite and positive everywhere when t is
greater than zero, it .is zero everywhere when t = 0, except at the origin,
where it goes to infinity, if we take the limit in such a way that the surface
integral over the plane remains continuous.

The source functions for one- and three-dimensional geometries are

listed here for reference:

one dimension (point source on a line) 2
[ s
1 4'a2t )
U= qE 3173 (3-6)
’D (4wa”t)
U 2 8%U
satisfies: 3T 2
9x 2 2
s =X
three dimensions (point source in a solid)C 2
s
I )
U = 1 at (3-7)

PC  (4nat)*/?
2 2 2
satisfies: g—:—l = a2 (aZU + SIZJ + 9 ZU)
9x oy 9z

where s2 = xz + y2 + z2

s = the distance between the source and the point of observation

It will be conveneint to normalize time and quantity of heat as follows:
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T=4a’t (3-8)
. -
Q 7C : (3-9)
where t = real time

T = normalized time
q = real quantity of heat

Q = normalized quantity of heat.

The use of normalized quantities in the following equations removes the
dependence upon the properties of the material, thereby simplifying the
equations considerably. Hereafter, unless real quantities are specified,
any mention of heat and time will be assumed to refer to the normalizéd
quantities, This covention will also apply to quantities which are defined
in terms of heat or time. A normalized velocity V, for example, will be

related to the real velocity v as follows:

v 1 _dx 1 (3-10)

A normalized time rate of heat flow P will be related to the real rate of

heat flow p as:
P _dQ _ 1 dq _ __1

= = (3-11)
dT 4a2{OC dt

L

2k P

o
i

The source functions in one, two, and three dimensions (equations 3-6,

3-5, and 3-7, respectively), when written in terms of normalized quantities

becomes:
2

one dimension: _5
T

Q
U == e
' '(1rT)172

(3-12)
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two dimensions: ~ _§_2_
- 9 T -
U = 7 € (3-13)
. . 2
three dimensions: _ 5
T

Q
= e (3-14)
(x T)372

The source function {3-13) and the principle of superposition permit us
to express in integral form the temperature at any location on the plane at
any time, for a heat source which may be an arbitrary function of both position

and time. Let G(x,y, T) be such a function, defined as follows:

P (%Y, T)
G (x,y,T) = lim —_—
AS— 0 ASAT
AT+ 0

where P is the amount of normalized heat supplied to the incremental area AS
at locatlon (x,y) in the increment of normalized time from T to T + AT. ;
We may now rewrite equation (3-13), replacing Q by the heat coniributed by
the source to a differential area dS, in a differential time dT.
= x2 + XZ
du = %ﬂ e T  dxdydrT

The differential temperature at the point (X, Y) at tlme W is then given by;
_ X~ %)% + (V- )’

G(x,y, T) w-'T
du = (W - T) e dxdydT

remembering that T in equation (3-13) refers to the elapsed time between
the emission of the heat and measurement of the temperature, and s
refers to the distance from the source to the point of measurement.

We n:lay now integrate over the. entire plane, and over time, to obtain

the temperature due to the entire source G(x,y, ,'I":
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_(X-x)” + (Y-y)

ox §f fmmne T e

Equation (3-15) gives the temgerature at any point (X, Y,), at any time ‘W,
o6n.a 'p,laﬁé which contains an arbitrary heat source described by G(x,y, T).

Consider now the case of a point source moving in a straight line at a
constant velocity V (as defined in 3-10). Let the normalized rate of heat
emission be Pp (see 3-11), and let the source move in a positive direction on
the x axis:from x = - o so that it coincides with the origin at time T = 0.

If we introduce the variable:
z=x~VT (3-16)
the function G(x,y, T) will be given by:
G(x,y, T) = P 6 (v, %)

where 6 (y, z) is an impulse function defined by:

|
'8(y,z) =0 when y2 + 22 £0
6(y, z) = ©» when yz + z2 = 0 (3-17)
S g 6(y,z)dy dz =1

-6 -€

Substituting into equation (3-15) for x and G(x,y, T), it is found that:

P W o o (x—.-v'r) + (Y - 3
U=-'—TrP—S g E‘%’—%e w-T dzdydT
. 0 0

(3-18)
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Reference to (3-17) shows that:

o0 00
S j’ 5 (y,2) F (y,z) dy d z = F(0,0)
o0 =00

provided F(y, z) is continuous aty =2z = 0. Therefore:

w X-vrP+Y: .
g 1 Tow-T .
U= S: dT (3-19)
o0

w-T ©

Substitution of the variables:

Z=X-VW
(3-20)
a = - T
yields:
. : 2 2
+
P -2vz S (EEY 4R
U=-E e S—-—e da (3-21)
™ a
0
Now let:
v% 4+ z% = R®
2 (3-22)
=2V a
and equation (3-21) becomes:
2.2
0 4V R
P : 1/2 (B + )
y=-R EVE S le B Tap (3-22)
™ g
o
It can be shown that:*
2

o0
n Z
_z -n-1 _ =1/2(p +=) -
K (Z) =5 3; B e B dp  (3-24)

* See, for example, Reference 20, Chapter 5.
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where Kn(z) is the modified Hankel function (also known in the

literature as the modified Bessel function of the second
kind, modified Bessel function of the third kind, and
Basset's function).

In particular:

0 1 zz
- (B + %)
-1 1 2 P -
Ko(z)-2 S ﬁe dp (3-25)
0
Substituting (3-25) into (3-23):
2P -
v = —R e "%VZg (2VR) (3-26)
p ™ (o]

which gives the temperature at any point in the plane containing a moving

point source of heat.

From (3-20) and (3-22):

Z=X-VW (3-27)

R = (v2 + z2)M2 (3-28)

Reference to the normalizing equations (3-10) and (3~11) shows that
the parameters of equation (3-26) may be expressed in terms of real

physical quantities as follows:

>

V = 12 v (3-29)
4 a
P = —t—p =——p (3-30)

Z=X-VW=X-vt (3-31)
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\"xamination of equation (3-26) shows the following properties. If
a surface is plotted of the temperature U as a function of the coordiantes
X and Y (Figure 1), and its behavior observed’ as time is varied, it will
be seen that the shape of the surface remains unchanged, but that the
entire surface moves in the positive X direction at the same velocity
as the source (this is true whether the velocities and times considered
are normalized or real physical quantities). The geometrical relationship
between the temperature surface and the source remains unchanged in
time. This property is quite helpful inthe physical interpretation of
equation (3-26), for it permits the elimination of any explicit dependence
of the temperature on time. The variables Z and Y correspond to the
coordinates in a cartesian plane moving at the same velocity as the
source. The source is at the origin of the Z-Y plane, and ﬁloves, with
the X-Y plane, in the direction of the positive Z axis. The variable R,
then, becomes the distance from the origin to the point of observation.

A rather interesting property of equation (3-26) is its dependence
only upon the variables (VZ) and (VR), so that only two independent
variables are required to describe the behavior of the function. If the
temperature surface is plotted for a particular value of V, the surface
for smaller or largerV will be obtained if this surface is expanded or
contracted, respectively, uniformly in the Z-Y plane, in inverse pro-
portion to the cla nge in V.

The temperature (equation 3-26) is given by the product of a function
of R and a function of Z. Hence, it can be visualized as the "product’
of a surface of revolution whose axis goes through the origin perpendicular
to the Z-Y plane, and an expongntial cylinder parallel to the Y axis.

The surface of revoliution is described by the function KO(ZVR), the

modified Hankel function. For a real positive argument, this function

has a logarithmic singularity at the point zero, and decreases monotonically
to zero as the argument goes positive to infinity.

As (2VR) becomes small, the function caa be represented asymptotically

by:
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Ko (2VR)~ - 1n (VR)VE:)_(T’ t (3-32)

For large (2VR), the asymptotic representation is as follows:

P
T -2VR
K, (ZVR)~\‘4VR e T2 (3-33)

It will be noted from equation (3-26) that for constant V and R, the maximum
temperature will be found on the negative Z axis. If the temperature is
observed on the Z axis as Z goes toward - ‘0, (corstant V), it is found by
substitution of (3-33) into (3-26) that the exponentials cancel, and the
temperature approaches the following asymptotic representation:

FT—\

U~Pp\ R VRS2 ° (3-34)

The temperature therefore approaches zero as R becomes very large in

any direction.

Uniform Circular . .Source

_Consider now the case of a circular source of unit radius, centered at
the origin of the Z-Y plane, vhose rate of heat emission per unit area
is P inside the unit circle, and zero outside. The temperature observed
the pomt (Z A, Y = B) due to the heat emitted from a differential area
dS at the point (Zl, Yl) is, from equation (3-26):

du =%P e -2V(A-Z,) Ko[ 2V ﬁA-Zl)Z + (B-~Y1)2 ] ds

Cc c

The temperature from the circular source is found by integrating over the

area covered by the source:
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2vz, 3 dS (3-35)

U_(A,B) =%Pc e 2VA S e K [zv/(A-z )"+ (B-Y))

S

where the integration is carried out over the interior of the circle:

For purposes of machine computation, it is convenient to express the

ahove integral as follows:

le
v .2p -zVAS S
c w

\
1K [ZV\[(AZ +B%+ le - 2BY,) - 2A il-le w + ‘(1-Y12)w] dwd¥,

where the substitution

w = 1 (3"37)

has been made.

It is helpful to note that (3-35), consequently (3- 36) are equivalent to
the surface integral of (3-26) over a circular region of unit radius whose
center is at the point (A, B). The temperature due to a moving uniform
circular source may therefore be visualized as being proportional to the
volume enclosed by the following three swr faces: 1) the surface described
by (3-26), which depicts the temperature from a mbving point source
located at the origin of the Z-Y plane, 2) a right circular cylinder of
unit radius whose axis is pei‘pendicular to the Z~Y plane and passes
through the point of observation (A, B), and 3) the Z-Y plane itself
(See Figurel2 ).



A Special Case

The temperature due to a uniform circular source may be found in

terms of known functions in the special case:
A=B=0 (3-38)

In this case, the point of observation is at the center of the source in the
Z-Y plane. The cartesian coordinates (ZI’Y ) in the integral of equation

(3-25) may be replaced by polar coordinates (r, &) by the usual transformations:’

Z1 =r cos 9, 'Yl =r sin 6 (3-39)

from which:
ey z,* (3-40)
The differential area beccmes:
dS =r dé dr | (3-41)
Substitution of (3-'38), (3-40), and (3-41) into (3-35)yields:
1

U (0,0)=2P i rK_(2Vr) Sezvr Co88 4g4r (3-42)
C ™ C o

The integral in 6 can be..shown to be expressible in terms of the modified

Bessel function of the first kind, Io' as follows¥*:

1 2Vr cos ©
IO(ZVr) =5 5 e de (3-43)

*See Reference:20, Chapter 5. CEe L, Sl
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Equation (3-42) may therefore be written as follows:
1
U_(0,0) = 4P, SrKo(ZVr) I (2Vr) dr
o

(It may be noted that if the integration si
at the center of a moving ring

(3-44)

gn is removed fom (3-34), the

resulting equation gives the temperature

source of radius r:

U_(0,0) =4 P r KO(ZVr) I (2Vr) (3-45)

where Pr = rate of heat flow per unit length from the circumference

or the ring source)

It is easily shown that the fallowing equation holds:

2
. X
Sx Ko(ax) Io(ax) dx = —2-[Io(ax) Ko(ax) + Il (ax) Kl(ax)] (3-46)
this may be verified by differentiation of the right hand side, using the
formulas:
d 1/ v
o [* K (x)] =-x K () (3-47)
d v _JV -
ol IV(X)] =x L _, (% (3-48)
and the properties:
1 (2) =1 (2), K_(z) =K (2) (3-49)

(These, amd other properties of modified Bessel functions are discussed

more fuily in Chapter 4.)
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Equation (3-44) may be expressed, with the help of (3-46), as:

1
U, =2P rz‘[xo(er) K, (2Vr) + 1,(2Vr) K, (2Vr)] . {3-50)

Evaluation of this function at r = 0 produces an indeterminate result,

for the functions Ko and K1 are infinite at this point, while the functions
r2 and Il are both zero. It is shown in chapter 4, however, that the limit
of the function to be evaluated in (3-50) is zero, as r approaches zero,

Equation (3-50) then becdmes:

Uc =2 Pc [IO(ZV)KO(ZV) + II(ZV)KI(ZV)] (3~51)

(Source of unit radius )

This result may be generalized somewhat by noting that if the radius
of the source is Fr’ rather than unity, the integration in {3-44) will be

carried out from zero to Fr' Hence, by (3-50);
2
Uc (Fr) = ZPcFr [IO(ZVFr) KO(ZVFr) + I1 ([ VFr) K1 (ZVFr) 1 (3-52)

Equation (3~52) will be found useful in evaluating the temperature at
points inside the uniform circular source where A and B are not both
zero, The  nunierical evaluation of equation (3-35) or (3-36) leads to
difficulty in the region because of the singularity of the integrand at the
point:

Z1 = A, Y =B
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Summary _of the Equations

Recapitulating, the temperature at point (A, B) due to a point source
moving at Vélocity V, with rate of leat emission Pp (normalized) is,
from (3-26):

, “2VZ
U (AB,V,P)=P e K _(2VR) (3-53)

where: R = JAZ + B2

The temperature at (A, B) due to a uniform circular source of unit
radius ceniered at the origin, emitting le at at the rate Pc per unit area

is, from (3-35):

Uc (A, B,V,Pc) = Pc s e K0 [ZVJ(A-ZI) + (B-Yl) ]das

s
(3-54)

where the integration is carried out aver the Z I-Y1 plane on the interior

of the circle:

If the total amount of heat emitted by the circular source per unit time

(normalized) is P,, equation (3-54) may be written:

t

2VZ
U,(A,B,V,P,) =2 P, o 2VA S‘e 1 K [zvﬁA-zl)?‘ + (B-Vl?‘] ds
B (3-55)

for the totgl heat emission per unit time is:

P =SP =xr’P =nP
t c c c
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If A'= B =0, equation (3-54) reduces to {3-51):

U_(0,0,V; Pt) =2P, [IO(ZV) Ko(zV) +1, (2V) K, (2V) ] (3~56)
and (3-55) becomes:

Ut(O, 0,V, Pt) =27 Pt [Io (2V) Ko (2V) + I1 (2V) Kl (2v) ] (3~57) |

The normalized parameters, P and V, are related to the real physical

quantities p and v as follows:

real rate of heat emission = P, = 4k Pa

real velocity £ v = fo—i— v

The constants k,,/O, and C, are related to the bulk ch aracteristics of

the material, k',tO', and C', by:

k =dk'
prep
C=dC'
where d is the thickness of the material.
In the more general case where the radius of the source is F, rather
than unity, a suitable change of variables in (3-35) leads to the following

relations. Denoting by primes the temperatures due to the source of

radius F':
. B 2
U,'(A,B,F,V,P ) = Uc'(-%f-, 5+ VF, F°P ) (3-58)
i c.f, (3-52)
U,"A,B,F,V,P,) =U,& B, v, p) (3-59)
) t 0 ] > k] F t t F’ FO f t
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e

IV. Modified Bessel Functions™*+" '~

A short discussion of modified Bessel functions is given here,
and it is shown how the use of their properties leads to certain limiting
expressions for the solutions of the moving source problem which were
derived in the last chapter.

Bessel functions may be regarded as solutions of the differential
equation: 2 i ) )
——+ZE;+(Z -p)w=0 (4-1)

This is a second order ordinary differential equation, hence it has two
linearly independent solutions. One solution can be expressed as a power

series, aml is known as the bessel function of the first kirid of order p:

o0
2m + p
_ _ym (z72) -
Jp(z) - 2 (-1) m!I'(m+p+1) (4-2)
m=0

where I (x) is the generalized factorial function:

0

I'(x) = gtx~1et gt
'(x+1) = xI'(x)

T'(n+l) = n!
A second solution of (4-1) is found to be:

NPCZ) [J (z) cos (pm) - _p(Z)] (4-3)

81n(p1r)

p not an integer
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In the case where p is an integer n, (4-3) becomes indeterminate, and the
function Nn(z) is defined as the limit of (4~3) as p approaches n, The function
N (z) is known as the Bessel function of the seconl kind, or Neumann's

function.
The Hankel functions, or Bessel functions of the third kind, are
found useful in certain applications, and are given as follovrs:
(1)
H z)=J (z) +i N (z
o (z) p() p()
(2)
H z) =J {2z} -i N _(z 4-4
p (z) p( ) p( ) (4~-4)

i= 1

If z is replaced by iz, Bessel's equation (4~1) becomes:

2
zzg.--‘g + g—v! ~(zz+p2)w=0 (4-5)
dz z

Two linearly independent solutions of (4=5) are Ip(z), and Kp(z) «=the
modified Bessel function of the first kind, and the modified Hankel function.
K (z) is also referred to in the literature as the modified Bessel function of

the second kin#t, modified Bessel function of the third kind, and Basset's

function.
The modified Bessel functions Ip (z) and Klp'(z) are given as follows:

- 2m+p
_ (z/2) -
I(z) = Z m!Il{m+p+1) (4-6)
m
and:
“ -
KP(Z) = S Sin(pn) [I_p(Z) - Ip(z)] (4-7)

p not an integer
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I (x) and K (x) are real when p is real and x is real and positive,

For the case p = n, an integer, K (z) is defined as the limit of

(4-7) as p approaches n, and becomes.*

n=l
Kn(Z) = (-1:)n+1 In(z) ln(z/z) + 1/2 z (-l)m (Z/Z)Zm-n (n -mn!l -1
m=0
00
Ly 2min Ym+n+l)+Yim+1) (4-8)
+2( Y z (2/2) m! (m + n)!

m=0

where Y (x) is the logarithmic derivative of the gamma function:

dln I‘(x)
P(x) = =g

In the case where x is a positive integer, q) (x) can be expressed as

follows:

Y =-Y
wn+1)=1+1/z+1/3+...+1/n-Y‘ (4-9)

where Y is Euler's or Mascheroni's constant:

=0.577 2156649 . .

un z /n-lnm

\nl

From (4-6) and (4-7) it is seen that:

I (z)=1I(2)
-n n (4-10)

K_p(Z) = Kp(Z)

% If n=0, the first summation in (4-8) becone s identieally zero.
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Term by term differentiation of (4-6) shows that:

EI2° (@) = L1 (2) (4-11)

p-1
LIPR @] =- K () (4-12)

The modified Bessel functions of real argument X, In(x) and Kn(x);

are related to ordinary Bessel functions as follows:

L(x) = (-i)™ J_(ix) (4-13)
_m.n+l (1),

Kn(x) =3 i Hn (ix)
-2 g B
= - % Re [i" N_(ix)] (4-14)

Asymptotic Expansions

For large argument, X, the functions Ip(x)'..and Kp(x) may be expressed

asymptotically in terms of the convergently beginning series:

Cls)=1+5 6
1-3 [ 3 0
+ = - +49+ (4-15)
8 28 9s

1-30s5 (5 1sap® | 1moirpt 170178° |,

+ -
83 Z‘é”a 505s 27087 48689
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The series must be stopped when the terms no longer decrease.

If the m'th term is written in the form:

m
(2m - 1)(2m -3)...1 z c_ (_l)n (p/S)Zn
(88)™ n=0

the coefficients Cm q &re given by the relations:
2

2k +1 . }
c [ (2k-3)C + (kD) Co,npa]  (4716)

m+l,n+l - (2m * )k + 1)

k=m+2n+2
co,o‘1

Cm, -1° Cm, m+

The functions I _(x) and Kp(x) of large argument can then be represented

asymptotically as follows 2k

p/2 __
I (x)~T1—r (f’—‘i’) eS Cl(s) (4-17)
K (x)~i zsﬁ (s +P\" " "8 C(es) (4-18)

where: s = ,’xz + p2

As x becomes large:

8 /X
C(s)—1

C(~8)—1

#* See Reference22, Chapter 8.
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Limiting Cases of the Moving Source Solutions

The expansions (4~6) and (4-8) are sufficient to evaluate expression

(3-50). It is desired to fim :

lim F(r)
r—>0
F(r) =2% [ 1,(2Vr) Ky(Vr) + (2Vr) K; (2V7) ]

Neglecting higher order terms, this function can be written as follows,

by use of (4-6) and (4-8):
F(r)Nr [ = Infw) + Vr(ln Vr + ZVr) ]
Noting that:

lim [ r In(Vr)] =1lim ln(Vr Fy=1n1=0
r—0 r->0

it is easily seen that:

lim F(r) =0
r—>»0

Source of High ¥ eiocigz
Consider first the case of the moving paint source. The temperature

U is given by equation (3-26), which is repééted here:

2P
U =—2R "2V2 K, (2VR) (4-19)
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If the temperature is observed at a point on the stationary X-Y ptane as
a function of time for large velocity, it might b expected that, in the limit,
the témperature would be described by the one~dimension source functicn (3-12).
The source;moves past the vicinity of the point of observation in a very short
time, depositing a certain amount of heat on the line of its path. By the
time this heat has diffused appreciably away from the line, the source is
far away, and has little effect on the temperature at the point of observation.
The case is similar to the case where a quantity of heat, uniformly distributed
along a straight line, is suddenly released on the plane, a situation where
(3-12) applies, and it will be’ shown here that in the limit of large velocity,
(4-19) does, in fact, reduce to (3-12).

First, it is convenient to adjust Pp’ the rate of Ie at emission from the

sowr ce, such that one unit of heat is emitted per unit distance travelled:
P =V (4-20)

7 and R can be expressed in terms of time W from equations (3-27) and
(3-28). Setting X equal to zero, it is found that W is the elapsed time
between: a) the time of closest approach of the source to the point of
observation, and b) the time of observation. Y, then, becomes the
distance from the path of the source to the point of observation. Making
these substitutions in (4-19):

2
U =E_Y_e2VWKO[2v v + VeW? ]

P ™

(4-21)

The radical in (4-21) can be expanded by the binomial theorem:

2
, 2.2, 2 Y© .
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As V becone 8 large, higher order terms may be neglected, Also, from

(4-18), it is seen that, for large V;
m ' -2VR
KO(ZVR)M R © (4-23)

Substituting (4-22) and (4-23) into (4-21):

2 A 2 2

UNgeszfz 1rz e-ZVW—Y/W-...
P WEW H2YS /WL .

Simplifying, and neglecting higher order terms, it is found that:

2
1 -Y“/W
UA~v—e_ e 4-24
p "VW { )

Which is, indeed, of the same form as (3-12).

Congider now the temperature at the center of a moving uniform circular
gource as the velocity becone s large. The temperature is given by (3-41)

for a source of unit radius:
U =2 VPC [Io(zw, K 4(2V) + II.(TZV))KI(ZV)] (4-25)

If the center of the scurce passes over a point on the stationary X~-Y
plane at sufficiently large velocity, there will be negligible conduction
away from thepoint while the source is in the same vicinity. The
amount of heat at the point when the center of the source coincides with
the point will be the amount of heat deposited by the part of the source
which has already passed over the point. Since the radius of the source
is unity, heat will have been deposited at the rate Pc for a length of time

1/V. The temperature will therefore be:

Pc
Uc~ v (4-26)
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It will be shown that {4-25) does indeed approach (4-26) in the limit of

large velocity.
From (4-17) and (4-18) it is seen that, as V becomes large:

1
Ip_(ZV) Kp (2V) = (4=27)

Substitution of (4-27) into (4-25) gives:

P

Yoo ——
C

which agrees with (4-26).

Small Velocity, Moving Point Source

If the velocity is now permitted to approach zero, it becomes apparent
that the solution for the moving point source should approach the steady state
solution of a stationatry point source emitting heat continuously. Solving first
‘he steady state problem, it is seen that the temperature is a function of R
only, where R is the distance from the source. Expressed in.\terms of the

real rate of heat emission pp’ the temperature is governed by the differential

equation:

. dU
pp—-zvlide (4-28)
where p is the rate of heat flow across a cylindrical surface of radius R,
whose axis passes through the source. The normalized rate of heat flow,

Pp, is given by (3-30):

]
Po=Tx Pp
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so that:

w dU
P =3 R (4-29)

Equation (4~29) may be solved 'by the usual methods to give the difference

in temperature between two vaiues of R:

2P
- o —E -
U -0, = la{b/a) (4-30)
.l where Ua = temperaturé.at R = a

Ub = temperature at R = b

Consider now the case of the moving point source, which gives solution
(4-19). The difference between tle temperatures at R = a and R =bis

found to be:

2P -2V Zb -2V Za
Upa - Upb = —Bﬂ_ [ e KO(ZVb) -e KO(ZVa)] (4-31)

As V become s small, the exponentials approach unity, and from (4-8):
KO(ZVR)~ - In(VR) (4-32)

Equation (4-31) can then be represented as:

2P 2P
U Upé\-*-—f— [ 1n(Vb) - In(Va) ] =—-;21n(b/a) (4-33)

which agrees with (4~30).
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CHAPTER .V

V. Mathematical Analysis for Computer Programming

The temperature on a plane at point (A, B) cue to a uniform circular
gourcemoving at constant velocity V may be found by evaluating expression
(3-35). This expression involves a surface integral, which may be expressed
aé an equivalent double integral over the two variables Z1 and Yl' Unfortunately, -
no method was found of performing this integration by analytical techniques,
so it became necessary to use numerical methods.

Although double integration by numerical methods presents no basic diffi-
culties other than those found in integration over a single variable, the actual
procedure becomes much more tedious pbecause of the many points at which
the integrand must be evaluated. The task is further complicated in the
problem considered here in that the double integral is a function of three
parameters: A, B, and V. If it is desired to compute: tables of the values of
the integral for, say, twenty values of each parameter, in all combinations,
the integration would have to be carried out 8000 times, a considerable task
even for a mbdern large scale digital computer. It therefore becomes expedient
to find a method of numerical integration which requires that the integrand be
ev"aluat_ed at a comparatively small number of points, while giving a result
of sufficier:t accuracy.

A convenient specification of the accuracy of a method of numerical
integration is its "'degree of precision.' Suppose that the expression:

b
Sw(x) f(x) dx (5-1)
a
is to be evaluated by numerical methods, where w(x) is some weighting
function. If the numerical method gives an exact result when f(x) is any
arbitrary polynomial of degree r of less, but fails to give an exact result

for at least one polynomial of degree r+l; the me thod is said to I ve degree

of precision r.
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Suppose now that f(x) is an arbitrary function. Integral (5-1) may be evaluated
approximately by evaluating f(x) at n values of x, finding a polynomial whichtpasseg
through these points, and computing the integral of the polynomial. Since
n points determine a polynomial of degree n-1, it would be expected that
a formula for numerical integration could be derived which has degree of
precision n-1, and this is indeed the case. Such a formula can be expressed

in the form:

Sw(x) f(x) dx~ z hi f(xi) (5-2')
i=1

~

where the h, are determined by the x,'s and the weighting function w(x).

Now sup;ose that both f(x) and f'(xi --the derivative of f(x)--are sre cified
at the n points Xpp Xpe o o o X - These data are sufficient to determine
uniquely a ploynomial of degree 2n-1 which has the same ordinate and slope
as the function f(x) at each of the points X,. Integral (5-1) may then be

approximated by a formula of the form:

gw(x) f(x) dx~= Z h f(x ) + z h f'(x ) (5-3)
i=1 i=l

which has degree of precision 2n-1.

It turns out that for many weighting functions w(x), and suitable limits
a and b, that the points X, may be chosen such that all of the coefficients
h become zero, so that (5-3) becomes independent of f'(x ). This leads
to the remarkable result that a degree of precision 2n-1 may be attained in
numerical integration in a process which requires the evaluation of f(x)
~ at only n points! Numerical integration of this type is known as Gaussian
quadrature.

Two weightiqg functions, w(x), are of particular interest here, namely:

wix) =1 (5-4)



and

w(x) = \/1 - x2 (5-5)

a = -1, b =1

In the first case, where w(x)*is identically equal to one, it is convenient
to set the limits of integrafion, aandb, to -1 and +1, respectively. Any
definite integral of the form (5-1) can be expressed as an integral between
limits -1 and +1 by a suitable change in the variable of integration.

Formula (5-3)becomes:
1 ' n
S’ £(x) dxm Z h, £(%)) (5-6)
-1 i=1

The point: x; is then prescribed to be the i-th zero of the n-th Legendre

polynomial, Pn(x). The coefficients hi become:

2(1-x.2)
: (5-7)

h. =
i a2 2
wi)? [P, (x,)]

In the second case, where the weighting function and limits of

integration are given by equations (5-5), the integration formula may

be expressed as follows:

1 n
S\/l - %% f(x) dx~ Z Ay £6%) (5-8)
-1 =1

The points X, and the coéfficients )‘1 are, in this case, associated with the

1

Tchebicheff polynomials of the second kind; they may be expressed in

terms of trigonometric functions as:

i
X, = - €08 T ™ (5-9)
) VRS SEY N S .
i n+1sin n+1“ (5-10)

i'-l,z’ 3,...,!1"’1,1‘1
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These two cases, where w(x) is equal to unity, and where w(x) is equal to
\/ 1- x2 are known as Legendre-Gauss quadrature and Tchebichef-Gauss
quadrature, respectively. If nis the number of the points X both of the
formulas (5-6) and (5-8) have dggree of precision 2n-1, provided the points
x, are chosen as directed. A development of these ideas will be found in
Referencel3, ChapterlQ, A large amount of useful information on orthogonal
polynomials, which are involved in the derivation of Gaussian quadrature
formulas, appears in Reference 17, Chapter 10,

Numerical integration by Gaussian quadrature must be used with
discretion, for there ar;e cases where other integration procedures are
to be preférred. If the function f(x) has a singularity in, or near, the
interval of integration, Gaussian quadrature may lead to results of very
poor accuracy. If the number of points, n, is increased, the accuracy of
the result may very well decrease, a situation being reached where the
results from Gaussian quadrature oscillate with increasing amplitude about
the true value of the integral, as the number of points is increased. In such .
cases, integration by the trapezoid rule, or by Simpson's rule, may be
appropriate.

In evaluating integral (3~ 35), three different cases are considered,
depending on the location of the point of observation (A, B) in relation
to the source.

Case I, JAZ + Bz >2

In this cage, the point of observation is far enough from the source

so that the singularity of the integrand at (A= Yl' B = Zl) is not expected
to cause difficulty in integration by Gaussian quadrature. Equation (3-35)
is expressed in the form (3- 36). It will be seen that the outer integral

of (3-36) is of the same form as (5-7), so that integration may be done by
Tchebichef-Gauss quadrature. The inner integral of (3-36) is evaluated

by Legendre-Gauss quadrature.
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Case 11, 1,05<[A2 +B2 <2

In this case, the singularity is nearthe region of integration. The integration'
is done according to equation (3-36), but the inner integral is evalu&ted by Simpson's

rule, while Tchebichef-Gauss quadrature is.used to evaluate the outer integral.

Case III, \}Az + B2 <0,95

In this case, the singularity is wi thin the region of integration, so that special

techniques must be used te obtain accurate results.

The integration 1h (3-35) is to be carried out over the interior of a unit circle
whose center is at the origin of the Xl-Y1 plane. It is convenient to separate
this region into two parts, and carry out the integration in each part separately.
Consider first the region on the interior of a circle whose center is at
(A, B), and which is tangent to the unit circle, as shown in Figure 2. The '~

integral over this region is given by (3-50), where F;: is given by

Fr=1- JAZ + B2 (5-9)

r

The integral over the remaining area inside the unit circle may be expressed as:

SR R.
1+‘/ 2+B2 a?-( 1)

2 2VR cos®
p ?c S R1 Ko (ZVRI) S e 1 de de (5-10)

2
1 -,A +B al(Rl)

where:

2 2
R, = \/TA-zl)} +(B-Y))
a,(R)) =F + |8l

a,R) =f§ + 2m - | Byl

l-JA2 + B -1'\‘.1Z
cos By = T
ZRI A" +B



g = cos™ ! TZ’A—E"
A +B
Integral {3-35), then, is equivalent to the sum of (5-12) and (3-50),
with Fr Given by (5-9). Evaluation of the inner integral of (5-12) is
done by Legendre-Gauss quandreature; the cuter integral is evaluated

by Simpson'a rule,
Finally, in the region 0. 95 \/A + B® 1,05, the integration is not

to be carried out at’all, since it would be necessary to compute the
integrand at a large nmber of points to obtain accurate results, due
to the close proximity of the singularity to the region of integration,
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CHAPTER VI

VI, Programming Techniques

General

An IBM 704 computer program entitled HOT SPO';‘ has been written to
evaluate the temperature on a plane containing the uniform circular’heat
source in uniform rectilinear motion

The IBM 704 computer at the Magsachusetts Institute of Technology is
a large-scale digital computer with a full complement of peripheral equip-
ment. It has 32,768 registers of random access magnetic core storage,
each register providing storage for 36 bits of binary information. Inview
of the large storage capacity, the general philosophy of programming this
problem has been to consider speed of execution to be of primary importance,
with only secondary regard for minimizing the -storage space required for
the program. ’

~ For purposes of discussion, the program may be conveniently divided into

sections as follows:

>

Initialization
Administration of computation

Q w

Report of results

o

Subroutines for evaluation of integrands

2

Integration subroutines
Subroutines for evaluation of modified Bessel functions

Subroutines for evaluation of other functions

= oo

Post-Mortem and Printing routines
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Sections A, B, and C.

The flow diagram through Sections A, B, and C is shown in Figure 3.
Section A includes the blocks labelled "Initialize" and "PVR1". The
"nitialize" block paces initial quantities in certain of the storage registers,
e.g., it places zero in the register containing the run number. PVRI is
a parameter variation routii;e, which selects values for A, B, and V from
tables stored in the computer memory. It is a closed subroutine whose

calling sequence is:

L TSX PVRI,4

L+1 PZE Pl,O,bﬂ

L+2 PZE P2,0,Nl

LL+3 PZE P3,0,N3

L +4 (RETURN AFTER ALL VARIATIONS HAVE BEEN MADE)
L +5 (RETURN AFTER EACH VARIATION)

Pl, P2, and P3 are the addresses of the tables from which the parameter
valves are to be gelected; N1, N2, and N3 are the numbers of values to be

chosen from each table. Each quantity in the tables is considere& by the

routine to occupy two registers of storage, SO that if only one register is

needed, as is true in this program, the successive values in tables P1, P2,
and P3 should be placed in every gsecond register. For example, if the first
three values to be used for the parameter which is listed in table Pl are to

be 1.0, 2.0, and 3.0, the table would appear as follows.

Pl DEC 1.0
PZE 0
DEC 2.0
PZE 0
DEC 3.0
PZE 0
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As the routine is entered repeatedly, it picks up gucceeding valyes in each

table and stores them in locations A, B, and V respectively, in such a way

that all combinations of the walyes for the three parameters are eventually chosen.
If, for example, the first three values in tables P1, P2, and »3 were (1, 2, 3},
(4, 5, 6), and (7, 8, 9) respectively, the contents of registers A, B, and V after

successive entries to tke routine would be?

ClA) C(B) c(v)
after 1st entry 1 4 7
after 2nd entry 2 4 7
after 3rd entry 3 4 7
after 4th entry 1 5 7
after 5th entry 2 5 7
after 26th entry 2 6 9
after 27th entry 3

After values lave been selected for A, B, and V, tke evaluation
of the double integral is done. The type of integration and the number of__‘
bolnté-to be usedds first decided on the basis of the magnitude of JAZ + B’
(See Chapter 5), and control is transferred to the pertinent computation
routine, which performs the evaluation of tie double integral. The results
of the computatiori and certain statistics are stored in core memory to be
printed and/or punched out at the end.of the run. Storage space is
provided for 1000 computations. If desired, the results of the evaluations
‘of the inner integral, along with certain other intermediate results, may be
printed out by placing sense switch 2 in down position. This is not re-
commended for long runs however, because of the large amount of printed

material which will be produced.
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After the results of the computsation are stored, control is normally
transferred back to PVRI1, which selects another combination of parametric
values, and proceeds as before. Provision has been made, however, to print
out the results and terminate the computer run at any time, by placing switch
6 in "down'' position. .

, The results and statistics of the run are printed in separate tables. The
table of results lists the values of A, B, V, the result for U(A, B)—the tem-
perature at point (A, B) from a source of unit radius moving at velocity V,
emitting normalized heat at a total rate (not density rate) of unity. For
purposes of comparing curve shapes for different values of V, the ratio of
U(A, B)/U(0, 0) is also listed under "Normalized U'".

A table of statistics is printed which lists the region in which the point
is located (region }]—inside source, region 2—outside source), the number
of points used in the evaluation of the outer integral, the minimum and
maximum number of points uged in evaluation of the inner integral, and

“the factor—U(0, 0)-used in computing the "Normalized U."

Sections D and E

The subroutines for evaluating the integrals are all quite similar in
their flow diagramg, SO only the diagram for the routine used in Case III
( \/A + B“ <0.95) is shown hereas an example. (Figure 4)

The integration subroutines themselves first assign a value to the
variable of integration,, then refer repeatedly to a satellite subxroutine to
evaluate the integrand at the assigned points, multiply these evaluations
by the appropriate factors, and perform the summation. In case III, the integration
routines also compute the limits of integration, although this is unnecessary
in cases I and II, since the limits are always -1 and 1.

The values of the independent variable are assigned by the integration
formula in the Gaussian quadfature integrations. In the case of Simpson's
rule, however, arbitrary points may be chosen. In this program, the
spacing of points for Simpson's rule is determined such that the area

under the curve of the integrand between two adjacent points X, is
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approximafely the same for all pairs of adjacent points. This is accom-
plished, in the program, by evaluating the integrand at the beginning
of the interval of integration, and setting the distance to the next point to
be evaluated, equal to a constant divided by the integrand at the first
point, This procedure is repeated until the end of the interval is reached.
The constant is computed ffom a first approximation of the integral by
an evaluation using five equally spaced points, and from information
supplied previously as to the number of points to be used. The approxi-
mate ni mper of points to be used must be stored in location PARN
before the routine is entered. The actual number of points will appear in
location PARN+! upon exit from the routine.

The subroutine for performing integration by Simpson's rule has

the following calling sequence:

L TSX SIMRI, 4
L+1 NOP
L+2 (NORMAL RETURN)

The routine is to be entered with the lower limit of integration in the
AC, the upper limit in the MQ. A satellite subroutine for evaluation
of the integrand must be in core storage, and must have the calling

sequence:

TSX FOFX, 4
(ERROR RETURN)
(NORMAL RETURN)

The integration routine SIMRI first assigns values to the variable of
, integration, evaluates the integrand at these points, and stores these
data in tables in core storage. The integration is done by the SHARE

subroutine UA CLINT4.
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The number of points for the Gaussian quadrature subroutines
is specified in the calling sequencé. There are three such subroutines in

this program, with calling sequences as follows

TSX GQI, 4 TSX | HQIL 4 TSX GQT, 4
PZE N,0,1 PZE N,0,1 PZE N
(NORMAL RETURN) (NORMAL RETURN) (NORMAL RETURN)

N is the number of points to be used in evaluating the integral. The

respective satellite subroutines must have the following calling sequences

TSX FQOFX,4 TSX HOFX, 4 TSX FOFY,4
(ERROR . RETURN) (ERROR RETURN) (ERROR RETURN)
(NORMAL RETURN) (NORMAL RETURN) (NORMAL RETURN)

The subroutine GQI is a relativized SHARE subroutine (BS GQI). Sub-
routine HQI is identicalto GQI except that the symbols have been changed
to permit both routines to be used concurrently. These routines will
perform Legendre-Gauss quadrature integration between arbitrary limits.
Upon entry to the subroutines, the AC must contain the lower limit, the
MQ must contain the upper limit, upon exit from the routine, the AC
contains the value of the integral.

Subrodtine.,GQT is a Tchebichef-Gauss quadrature routine, written
especially for this program. (See Chapter 5, equations 5-8, 5-9, and 5-10).
The number of points, N, must be one of the following: 1, 2, 3, 4, 5, 8,
11, 14, 17, 29, or 35. If N, as specified in the calling sequence (see above),
is not equal to one of these, an error stop will result. The routine contains
tables of x; and (N-.l-l))‘_.i(see Chapter 5) for N=29 and for N=35. If it is
desired to use a number of points n which is not equal to 29, or 35, the

x, and Xi may be found from the tables as shown in the following example.

i
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Suppose it is desired to use 4 points in evaluating the integral. Reference

to equation (5-9) shows that the x, may be found by taking every sixth value

from the table of X, 's for N=29. The values of X, X50 X and x 4 would be the
6th, 12th, 18th and 24th values in the X; table for N=29. Similarly, equation
(5-1:0) shows that the coefficient A for n-4 may be found by selecting (N-bl))\
and dividing theése V¢1ues by ntl ( :5), The procedure may be simplified by
performing the dwision _after the sum has been taken (equation 5-8), so that only
one division need be performed.

The satzllite subroutines for evaluation of the integrands perform straight-
forward computation as indicated by the pertinent equation, as explained in
Chapter 5 The same subroutines are used in Cases I and II, where

J— + B >1.05, and have the calling symbols FOFY for the outer integrand,
and FOFX for the inner integrand. In Case III, where A + B <0,95,
the subroutines which evaluate the outer and inner integrand.have the calling symbols
FOFXB, and HOFX, respectively. The integration routine SIMRI is used in
both Cases II, and III, and refers to FOFX for evaluating the integrand, so
that some means must be provided to distinguish beiween the two cases when
the integrand is evaluated. The program does this by placing the instruction ~
NOP in lecation FOFX during computation in Case II, and by placing the
instruction TRA FOFXB in location FOFX in Case IIL.

Section F

It was found necessary to write subroutines for the evaluation of the
modified Bessel functions Io(x), Il(x), Ko(x), and Kl(x). In view of the
similarities in the expansion of some of these functions, these subroutines
were incorporated into a single package.

For an argument which is not too large, the functions Io(x) and Il(x)
are conveniently expanded as infinite series; the functions K (x) and
K (x) may be expanded in terms of a known function plus an irfmite series,
as explained in Chapter 4. For large argument, (x>9.9) the number of
terms which must be taken to obtain results of sufficient accuracy becomes
excessive, so that it is preferable to use asymptotic expansions. Computation

of the functions Ko(x) and Kl(x) for arguments between x=2 and x=10 becomes
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complicated by the behavior of the terms in the series expansion (4-8).
As x becomes larger, the infinite series, and the term containing the
logarithm both become large in magnitude, but their sum becomes

quite small, so that it becomes necessary to use double precision

e e e AN AL b SR L e o

programming to attain sufficient accuracy. Since double precision arithmetic
takes considerable computer time, it was decided to use a table look-
up and interpclation procedure to find Ko(x) and Kl(x) when 2,0<x <9.9.
The SHARE subroutine WK LIN1 is used for this purpose. This .
subroutine ig entered with x on the AC, it thenlocates the three best
table values, and applies a three-point Lagrangian interpolation
formula to find the value of Ko(x) or Kl(x).

The modified Bessel function package also contains subroutines for
the evaluation of the products Io(x)Ko(x), and Il(x) Kl(x), and products
of exponential functions by modified bessel functions. Although these sub-
routines are not particulariyzus”eful;mméllx they permit computations to
be made for larger arguments than would otherwise be possible. Consider,

for example, the function: ~
y
e Ko(x)

where x and y are positive and almost equal. If the exponential and the
modified Bessel function are computed separately and multiplied,: it:willsbe
found that if their arguments are greater than approximately 67, computer
overflow will result in the case of the exponential, and underflow will
result in the case of the Bessel function. If, however, Ko(x) is expanded
asymptotically by (4-18 ), and the arguments of the exponentials combined
b_e_t;gg_qithe function is evaluyated, the computation can be carried out for
arguments up to about 1038!

It is found that the infinite series expansions for the modified Bessel functions

méy all be expressed in the following form:

Z(x) = G(x) + Hx)[C_ + C F(x) + cZFz(‘x‘) ...
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If Z(x) equals Kl(x), for example, reference to (4-8) shows that:
- 2
F(x) = (3)

G(x) = I,(x) In ) + 31;

H(x) =

oK

The constants Co’ Cl’ - - ., depend upon the particular function to be
expanded. The series expansions in the modified Bessel function package
are evaluated by a satellite subroutine which was incorporated within the
package, and which evaluates the series when given F(x), G(x), and H(x),
and the address of a table containing Co’ Cl’ etc. In order to attain
maximum speed of computation, tables of the constants Co’ Cl’ CZ' . v e,
are stored in core memory, as well as tables from which may be deter-
mined the number of terms to be computed in the series. If the number of
terms in the series is known,the computation may be performed by

expressing the series in the form:
Co -l~x[Cl + .X(Cz +...)]

and performing the computation by the loop:

LXA N,1
LDQ C-1,1
TRA *42

LDQ SUM
FMP X

FAD GC,}.
STO SUM

TIX *-4,1,1
FAD C
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where N contains the power of the highest order term.
Each coefficient Cn is stored in location C - n - 1.

It will be noted that only one multiplication and one addition are necessary
for each additional term in the series.

If, on the other hand, the number of terms is not known, each term
must be computed separately, requiring two multiplications, and compared
with the cumulative sum to determine when an adequate number of terms have
been taken. Since each floating point multiplication takes twenty cycles of
computer time '_(compared with two cycles for most comparing, storage,
and transfer operations), this method requires considerably more computer
time than the first method.

" The number of terms required is determined, by a satellite subroutine,
from a table which lists the arguments of the series in the order of the number
of terms required. The maximum argument for = “wich teterms myayzbe.used-
- appearsd in location L-n, the maximum number of terms which may be used in
any series appears in the address part of location L + 1. The subroutine is
entered with the argument of the series in the AC. The routine then searches
the table of arguments, indexing on I.R. 2, until it finds the number of terms
needed, then leaves the subroutine with the power of the highest order term in
I. R.2. The subroutine which evaluates the series may then be entered
directly. |

The calling sequences for the modified Bessel functions are identical

except for the calling symbol:

TSX SYMBOL; 4
(NORMAL RETURN)
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SYMBOL FUNCTION COMPUTED
BSIO I(x)
BSI1 I, (x)
BSKO K (x)
BSK1 K, (x)
BSPO I x) KO(X)
BSP1 I,(x) K, (x)
BXI0 e'1 o(x)
BXI1 1, (x)
BXKO ev Ko(x)
BXK1 | 'K (x)

The subroutined are entered with x in AT, and (where applicable) y in the
MQ; upon return, the function appears in the AC. For example, if the

contents of ARG is x, the sequence:

CLA ARG
TSX BSID, 4
STO Z

will place Io(x) in location Z.

Sections G and H

The binary decks MI-PMPK and REAL-FUNCTIONS-PACKAGE

must be read into core memory before computation can begin.
REAL-FUNCTIONS-PACKAGE contains subroutines for evaluation of

various functions, of real argument,such as the exponentials, sine,

cosine, square root, etc.. MI-PMPK contains various output, error

checking, and post-mortem routines.
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Error Detection and Post Mortems

Virtually all floating point addition, subtraction, multiplication and

‘division . instructions are followed by cne of the instructions:

TSX ASMOV, 4
TSX DIVOV,4

These subroutines check the status of the overflow and divide check
indicators to determine whether overflow or underflow has occurred,
or whether an illegal division (such as division by zero) has been
attempted. In case of underflow, control is returned to the program
with the result of the attempted operation set to zero. An overflow
or attempt at illegal division results in a transfer of control to the
post-mortem program, which prints out the machine conditions and
the location of the TSX ASMOV or TSX DIVOV instruction which led
to the post-mortem. Control is then transferred to location HSPPM,
which prints out the contents of certain regions of core memory, to
facilitate diagnosis of the error. After the first three error stops,
control ie transferred to location START, from which the program
proceeds with the next computation. After the fourth error stop,
however, control is transferred to REPORT, resulting in the print-

out of results and termination of the run.

Instructions for use 2{ :the Program

1) Place the values tobe used for A in locations TABLA, TABLA+2,
TABLA+4, etc. (Space reserved for 31 values).

2) Place the values to be used for B in TABLB, TABLB+2, etc.
{Space reserved for 22 values).

3) Place the values to be used for V in TABLYV, TABLV+2, etc.
(Space reserved for 25 values).

4) Place the following pseudoinstructions in the indicated locations in
the program deck.
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STARTH7 PZE ‘TABLA, 0, N1
START+8 PZE TABLB, 0, N2
START+9 PZE TABLV, 0,N3

N1, N2, N3 are the number of values of the respective parameters

to be used. Caution: the number of combinations equals N1 x N2 x N3,
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CHAPTER VII

VII. Summary and Conclusions

Use of the Computer Program

The computer program, which was discussed in the last chapter,
evaluates the temperaturé rise, Ut(A’ B,V, Pt)’ at point (A, B)
on a flat infinite, perfectly insulated plate, if there is a uniform
circular source of heat moving in a straight line on the plate at
a constant normalized velocity, V. The source is of unit radius,
and emits one unit of normalized heat per unit normalized time,

i. e. Pt is equal to unity. In order to make practical use of these
solutions, it is necessary to relate the normalized rate of heat.

flow, P and the normalized velocity, V, to the real physical
quantities this is done by the expressions following equation (3-57).

If the radius of the source is equal to some number F, rather than
unity, the temperature rise on the plate is given in terms of the temp-
erature rise from a source of unit radius by equation (3- 59).

The use of the program in the electron beam etching problem, discussed
in Chapters I and II, is expected to be along the following lines. First
it will be necessary tb decide, from the nature of the film, the temperature
rise necessary to produce a sufficient rate of sublimation or evaporiz-
ation, and the degree to which the temperature rise must be confined
within the vicinity of the scanning electron beam in order that sublimation
or evﬁporation occur only at the desired locations. The computer program
may then be used to find- an estimate of the seanning veloeity and rate
of heat flow required.

a trial and error method will have to be used in making these
computations on the computer, where calculations are made for several
different velocities to find the velocity which gives the required temperature
distribution. It would be advisable to make initial computer runs

to calculate tables of the temperature distributions at severalvélocities,
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so that a first estimate of the velocity required may be found in
any particular problem, as a guide to the selection of velocities
for further computations. Such tables need not be extensive at first,
but should be expanded as more calculations are made from time
to time.

If the maximum temperature rise for a given velocity, source
radius, and rate of heat input, is desired, a fairly good approximation
may be found by calculating the temperature at the point (0, 0) from
equations (3-57):;and (3-59). The asymptotic behavior of the temperature
distribution for small.ard large velocities would lead one to expect
that the maximum temperature on the plane would be somewhere
between the temperature at the point (0, 0) and twice the temperature
at the point (0, 0).

Suggestions for Further Work on the Computer Program

As the program now stands, the number of points used in the
evaluation of the inner integrals is equal to the number of points
used in evaluating the outer integral, as determined in Section B
of the program. It would be advantageous to find a way to modify
the program so that, in a single evaluation of the outer integral,
the number of points in the inner integral is varied sﬁch that those
integrals which make a large contribution to the result are evaluated
by use of many points, while those making a small contribution are
evaluated by taking few points. The time required for computation
could probably be reduced by a factor of one-third by such a
modification.

The number of points to be used in evaluation of the integrals
is determined by the contents of the blocks of ten registers of core
storage preceding each of the symbols HANO, HBNO, HCNO.

(See program listing) It may be advisable to perform some

experimexitation to determine the optimum figures for most efficient
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computation. An error analysis of the numerical integration techniques
would be most helpful in deciding the number of points to be used.

If extensive use is to be made of the program, it is strongly
suggested that some sort of error evaluation be made. This can
probably be most easily done by making calculations for a few sample
combinations of parametric values. Two calculations could be made
for each combination, using different numbers of points in the num-
erical integrations. Comparison of the results should provide a

reasonably good criterion for estimating the accuracy.
| Concluding Remarks
The material presented here, and the I. B. M. 704 computer

program, should provide a basis for further study of the electron
beam etching problem. Care should be exercised in the use of

the computer results, however, so that they are not applied outside
of the regions where they are valid, as discussed in Chapter II.

If such precautions are observed, however, it is expected that this
work will provide a better understanding of the potentialities and
limitations of the production of micro-miniature components and

circuits by electron beam etching.
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List of Symbols

U = temperature
Up = temperature due to a point source in uniform rectilinear motion

Uc = temperature due to a uniform circular source of unit radius
in uniform rectilinear motion, in terms of the rate of heat
flow per unit area of the source

Ut = temperature due to a uniform circular source in uniform recti-
linear motion, in terms of the rate of total heat flow from
the source

Uc’ = temperature due to a moving circular source of radius F,
in terms of the rate of heat flow per unit source area

Ut' = temperature due to a moving circular source of radius F,
in terms of the rate of total heat flow from the source

t = real time

T = normalized time

q = real quantity of heat

Q = normalized quantity of heat

v = real velocity

V = normalized velocity

p = real rate of real heat flow

P = normalized rate of normalized heat flow

k' = bulk thermal conductivity

P' = volume density

C' = volume thermal capacity

k = two-dimensional thermal conductivity of a plate
p = area density Qf a plate

C = area thermal capacity of a plate

d = plate thickness

a'? = bulk thermal diffusivity

a2 = two~dimensional therm=»l diffusivity of a plate
In(x) = the. modified Bessel function of the first kind, order n
Kn(x) = the modified Hankel function of order n
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Figure 1: Temperature Surface from Moving Point Source

Surface depicting the temperature on a plane due to a point source of
heat located at the crigin, and moving in the positive Z direction at velocity.
Vv=0.1, The Z,-Y coordinates move with the source. The temperature

1
observed at point (A, B) due to a uhiform circular source centered at the

origin is proportional to the shaded~-in volume,
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Regions of Integration in Case III

Evaluation of (3-35) in Case III ( ,/A + B” <« 0.95). The
integral over the smaller circle is given by (3-50). The integral
over the area outside the small circle and inside the large

circle is given by (5-9).
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