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ABSTRACT

This thesis considers the problem of the stochastic control of
discrete-time systems for which there exist explicit constraints on
the state variables and on the control laws. The presence of the
control constraints implies that stochastic dynamic programming can-
not be applied in a straightforward manner. Necessary conditions for
the optimality of a control policy are thus obtained by deriving
maximum principles for a finite time horizon equivalent deterministic
problem.

The state variable constraints are incorporated into the maximum
principle derivation by formulating the equivalent deterministic problem
as a nonlinear programming problem in Banach spaces. The solution of
this problem requires the extension of results known from nonlinear
programming in finite dimensional spaces.

The extension of this problem formulation to infinite time horizon pro=
blems almost always precludes the existence of a stationary feasible con-
trol law. A new problem formulation is thus introduced for which an
optimal stationary control policy exists. Necessary conditions for the
optimality of a control policy are derived in a manner similar to that
in the finite time horizon problem.
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CﬁAPTER I
Introduction and Overview
Section I.O0. Introduction

The basic problem that we shall consider in this thesis can be
described as follows. We are given a fixed dynamical system and are
allowed to make noise cor:upted, partial observations of its state.
>Our task is to'design a control strategy which chooses inputs to the
system based on ﬁhe observatiqns previocusly made so as to force the
system to behave in a desired manner.

Typically this problem is attacked by developing a mathematical
model of the dynamical system. Unpredictable disturbances are modeled

as random inputs to the dynamical system with known probability distri-
butions. A cost is aséociated with each sequence of state and control
values. Since there ére randam inputs into the dynamical system, for
each control strategy the cost is a random variable. Our task reduces
to minimizing the expected value Qf the cbst over the set of all accept-
able control strategies.

While this aéproach, known as stochastic optimal control, has been
successful in producing analytical.salutions to certain classes of problems
(most notably LQG problems) its fundamental merit lies in that it pro-
vides a structured épproach to the solution of the basic problem. In the
many cases where no analytical solutions are available this approach
allows one to gain insight into what good control st;ategies are like and
it allows one to evaluate competing suboptimal control strategies.'

There are, however, several problems associated with this approach.

One is that it is quite difficult to model complex systems in a way in




which the mathematical model leads to a tractable problem. Often this
problem can be alleviated by allowing side constraints to be placed on
the state of the mathematical model. 1In the problem formulation of
Chapter III we shall allow explicit state constraints.

Another problem that occurs is that the "optimal control strategy"
. is undesirable because some physical constraint could not be incorporated
into the mathematical formulation. For example, it may be that the
control strategy is to be'implemehted on a small real time computer and
thus the optimal control strategy must be simple enough to be implement-
able. Typically this problem is handled.by specifying a priori a set of
acceptable ¢ontrol strategies. The problem formulation of Chapter 11T
will also allow one ﬁo Place restrictions on the set of acceptable
control strategies.

Also we note that it is often difficult to assign compatible costs
to all the criteria with respect to which one wishes to optimize. For
example, it may not be clear how to incorporate into a single cost func-
tion economic efficiency and envirommental pollution. This problemvalso
occurs when there are several competing criteria (which may be "compatible")
for which the weighting is determined in a nommathematical manner
(e.g., by voting or committee discussion). To handle this type of
problem we will allow vector valued objectives. Tie optimization (con-
sidered in section 3.9) now serves as a preprocessor which eliminates
inferior solutions (that is, solutions for which there exists a strategy
which produces a lower cost in all criteria).

Finally we noté that will assume that the mathematical medel has
been formulated in discrete-time. We do this since it allows the con-

_trol strategy to be implemented directly on a digital computer.

7
’



Section 1.1. Related Literature

The approach we shall take in attacking the problem just formulated
is to reduce the basic (stochastic) problem to an equivalent determinis-
tic problem by considering the evolution of the probébility measure of
the state variables. Necessary conditions for optimality will be developed
by deriving a maximum principle for this équivalent deterministic problem.
We are thus interested in two bodies of literature: that on the maximmum
principle for discrete-time deterministic systeﬁé and that on nonlinear
mathematical programming in infinite dimensional spaces. The second Body
of literature is of interest because the maximum principle will be derived
via a reformulation of the dynamical problem as a static mathematical
programﬁing problem in which the variables (probability measures) may
be infinite dimensional. |

A maximum principle for discrete-time systems which are- déscribed”
by the sum of term linear in the state and a term nonlinear in the control
was first deri&ed by Rozonoé? [Roz 1]. He was also the first to point
out the difficulty in directly applying the maximum principle of Pontryagin
et. al. [Pon 1] Fo discrete-time systems nonlinear in the control.
Halkin [Hal 1] seems to have been the first to give a rigorous and cor=
rect derivation of the discrete-time maximum principle for systems non-
linear in the state. The assumption under which this derivation was =
valid was that of thevconVexity of certain reachable sets. This condi=
tion was later weakened to that of directional convexity by Holtzman:
[Hol 1]. The concept of directional convexity was extended so as to be
applicable to problems with a vector valued objective by DaCuna and Polak
[Dac1]..

The problem of deriving a maximum principle for nonlinear discrete
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systems with phase (state) constraints was considered by several people.
The most general formulatibn seems to be that of Cannon, Cullum and Polak
[Ca 1] and [Ca 2].

A related approach which does not make the convexity assumptions
but which makes certain differentiability assumptions was considerasd in
Jordan and Polak [Jo 1]. This approach is subsumed by the results in
[Ca 1].

None of the abové considered the case in which the space was in-
finit;_dimensiopal. In Chapter III we extend some of the results of
[Ca 1] tb arbitrary Banach spaces. Since the problem formulation of
[Ca 1] is that of a static mathematical pProgramming problem we now con-
sider infinite dimensional mathematical programming.

The LagranQE‘multiplier rule was extended to arbitrary spaces by
Lynsternik and'Sobolev [Ly 1]; the multiplier rule of Fritz John for
inequality constraints was considered in arbitrary spaces by Hurwicz
(Hur 1]. Since the requirements for separating convex cones are stricter
in infinite dimensional spaces the multiplier rule for equality and
inequality constraints of Mangasarian‘and Fromovitz [Man 2] was not
immediately extended to Banach spaces.

Ioffe and Tihamirov [Io 1] consider the case in which the inequélity
constraihts are defiﬁed in a finite dimensional space and the equality b
constraint is defined in an infinite dimensional space. The case in
which the ihequalities are defined in an infinite dimensional space and
the equalities are defined in a finite dimensional'space is considered
by Halkin [Hal 3] and Dubovitskii and Mityutin [Dub 2]. Other related
cases are qonsidered in [Var 1], [Nag 1] and [Las 1].

Girsanov [Gir 1] extends [Dub 2] to handle infinite dimensional
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equality constraints but makes a restrictive assumption on set constraints.
The problem with infinite dimensional equality and ineqﬁality»constraints,
has been cpnsidered by Bazaraa and Goode [Baz 1], Neustadt [Neu 2], and
many others (e.g., [Io 2], [Kur 11, [Tu 1], [Zo 1] and [Hal 2]). The
work of Neustadt [Neu 1] subsumes almost all of these results and many
of those on the maximum'principle; He does not consider arbitrary linear
equalities but the restrictions placed are weak enough that most inter-
esting problems satisfy them.

We do note, however, that the assumptions made by Neustadt in

[Neu 1] on certain set constraints are stronger than those of [Ca 1].

Section 1.2. Summary of Thesis

In Chapter II we extend the results of [Ca 1] to arbitrary Banach
spaces. Here we concern ourselves only with nonlinear mathematical
programming results of [Ca 1]; they.will be applied to our basic pro-
blem in Chapter III. While it is possible to weaken the assumptions of
[Neu 1] and obtain slightly more general results than we do in this
chapter it requires considerably more sophisticated proofs. Thus for
clarity we follow the format of [Ca 1].

In this Ehapter we also introduce the notion of K-linear indepen-
dence, which is a natural extension of positive linear independence. The "
results of [Ca 1], derived under an assumption of linear independence of
the active inequality gradients, hold under an assumption of positive
linear independence. Thus our extension yields conditions weaker than
those in [Ca 1].

In Chapter III, section one we introduce our problem formulation and
derive an egquivalent deterministic problem based on [Wit 2] and [San 1].

In section two we show that the problem formulation is quite general by

’
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reducing a variety of problems to that:form. In section three we consider
the relationship of a maximum principle for an unconstrained (in. the:
state) system to the dynamic programming-algorithm. In-section four we
compare our formulation with that of previous work. In sections five and
six we extend maximum principle of [Ca 1] and apply them to our problem
formulation. Extensions of these results are considered in seétion eight
and the vector valued objective function is considered‘in section nine.
Scame concluding remarks are made in section ten.

Chapter IV, section one contains the extension of the problem to the
infinité time horizon. An average cost per stage problem formulation is
introduced in section two and we extend results for finite and countable
state spaces to this formulation. 1In section three we intrcduce a new
problem formulatiocn, the steady state constrained problem formulation.

A maximum principle is derived for this problem formulation. In section
four we make some concluding remarks. Chapter V summarizes the thesis

and contains some direction for future research.

Section 1.3. Contributions of the thesis
The following are felt to be the most significant contributions
of this thesis.
1. Extension of the results of Canon, Cullum and Polak to Banach
spaces.
2. Introduction of the notion of‘positive linear independence to
Banach spaces.
3. Extension of the resulté of: Witsenhausen and Sandell to problems
withhéxplicit:state;constxaints;
4. Extension of the results for the averége cost per step problem

formulation from countable state spaces to Euclidean state space.
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5. Introduction of the steady state constrained problem formulation.
6. Derivation of maximum principles for the steadf state constrained

problem formulation.
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CHAPTER II

NONLINEAR PROGRAMMING

Section 2.0. 1Introduction

In this chapter we consider necessary conditions for the optimality
of a solution to certain types of mathematical programming.problems.
The terminology, notation and basic results that we shall be using are
contained in Appendix A.

We consider problems of the form:

min £ (x) (P)
subject to
R(x) = 0. G(x) e K x e
where R: X~>Y,G: X=>2Z K, £: X +|§,

Qe X, and X, Y and Z are Banach spaces.

Necessary conditions that any % solving (P) must satisfy can be
formulated in many ways, however we are looking for conditions of the
following form:

A < VE(X),8x>+<¢,TR(X)6x> +<P, G (x) §x> < O

Véx € (D). ()
Here Vh(x) indicates the Frechet derivative of h(x) at %, A € R,
¢ € Y*, Y € Z* where Y* and Z* are the dual spaces to Y and Z (see
Appendix A), and P(Q) is some transformation of the set Q.

If the spaces Y and Z are finite dimensional then a triple
A, o,9) satisfying (N) exist under Very weak assumptions on the set Q.
If the spaces are infinite dimensional then in general additional

assumptions are required. In this chapter several different sets of

such assumptions will be considered. 1In spite of the differences
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between assumptions, the proofs of theitheorems all consist of the
following steps:

(1) convex approximations to various sets in (P) are constructed,

(ii) it is shown that if these sets have a nonempty intersection
then x is not optimal, and

(iii) it is‘shown that if these sets have an empty intersection
then they can be separated, which implies conditions of the form (N) .

Two different types of assumptions will be made in this chapterQ
The first type is concerned with the existence of convex approximations
and their separability. These assumptions are made primarily in
Section 2.2 and are of similar nature to those made in [Ku 1], [Gi 1]
and [Neu 1] for example.

The second type of assumption is concerned with the ekistence‘of
hyperplanes of 'a particular’ type, ones for which, in the cﬁntext éf Ny,
X # 0. The concept of K-linear independence,’introduced in Section 2.3,
is an assumption of this type. This concept is an.extension of positive
linear independence [Man 1] to arbitrary Banach spaces and leads to
weaker condition; than the usual notion of linear independence.

While the existence of h&perplanes for which A # 0 is important we
shall not dwell long on this issue. The reason fér‘this is twofold.

(1) it is frequently easier to attempt to find a set of multipliers
with A # 0 than to cheék that the assumptionsvare satisfied, and

(i), most assumptions aﬁe*tCO“strqng;-thaﬁiis;-they imply every
triple (XA,¢,y) satisfying (N) has A # O when only one su&h triple is
required.

In Sections 2.1 through 2.3 wekCOnsider problem (P) under various

assumptions on 2 and R(x). While the results are in some cases only
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slight extensions of existing results the proofs are new and simpler than
existing ones. Consequently, the extension of the results in Sections
2.1 through 2.3 to nonscalar objective functions in Section 2.4 is very
straightforward.

The results in Sections 2.1 through 2.3 are extensions of the
results in [Ca 1] to Banach spaces. Section 2.4 extends the results of
[Dac 1] from Euclidean space to arbitrary Banach spaces and the results
of [Ku 1] and [Zo 1] from scalar optiﬁization to vector valued

optimization.

Section 2.1. Mathgmatical Programming

In this section we consider first order necessary conditions for .
the optimality of ; in.the follbwing problem:

min £ (x) ' ' (2.1.1)
subject to
r(x) =0 xeQCX

where £f: X +R, r: X > Rn, X is a Banach space and f(x) and r(x)
are contihuously Fréchet differentiable on X with derivatives V£ (x)
and Vr (x).

The following notation will be useful:

(i) co{dx ka} is the convex hull of the set {le,...,dxk}

Lo
(see Appendix A),
(ii) A-x={z|z=y-x, y ¢ A}, and

(iii) o(x) denotes a function such that

1im o) /lIxll = o .

Recall that necessary conditions are to be derived by showing

that the optimality of X implies the separation of certain convex sets.
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Those convex sets, based on definitions in [Ca 1] and [Dac 1], will now
be introduced.

A quasilinear conical approximation to the set Q at x, denoted

C(:;,S'Z) + 1s defined as any convex cone such that for any finite collec-
tion {le,..., ka} of linearly independent vectors in C(x,Q) there
exists an €* > 0 and a continuously Frc.;.chet differentiable map 7 from

co{sts_?xl,..., e-ka},»for 0 <e<e*, into Q - x of the form

Z(dx) .= 8x +: o(6x) Vst:coﬁEle,...,edxk} , : (2.1.2)

O<ecze*

with ' (0)

I.

A conical approximation C(x,Q) to Q at x is a quasilinear conical

approximation for which Z(dx) = 8 x. Both of these sets can be consider-
ed as "first order" approximations to Q at :; since if 8x ¢ C(;:,S'Z) then
X +€6x is in Q or "almost" in Q for € small enough.

We shall also need the following sets:

(i) K(x) = F(x)C(%X,Q) where F(x) = [f(x)J (2.1.3)
r(x)
(ii) K (%) = Vr(x)C(x,Q) and , (2.1.4)
n+l

(iii) D = {z:e R |z = g(-1,0,...,0), B8 > O} . (2.1.5)
Their interpretation will be considered in the proof of the following
theorem.

Theorem 2.1.1 Let :; be an optimal solution to problem (2.1.1).

For any C(:;,Q) which is a quasilinear conical approximation to Q at x,

‘n+l

there exists a nonzero vector (k,wl,...,lpn) € R with A < 0 such
that
A< VE(x),8x> + <y,Tr(x)éx> < 0 VOx & C(R,0). (2.1.6)

Proof: We outline the proof here. For more details see Appendix
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The strategy in this’proof is to show that if D and K(ﬁ) are not
separable then %X is not optimal and if they are separable then equation
(2.1.6) follows. If DN K(x) # ¢ then there exists a 8x ¢ C(;:,Q.) such
that Vr (;z)Gx = 0 and V£ (;:)Gx < 0. Thus if € is small enough x + g8xis
almost in Q, r(x) +€Vr(x)6x = 0, and £(x) +eVE(x)8x < £(X). Thus to
"fi:"St order™, D Nt K(:E) # ¢ contradicts the optimality of X.

The actual contradiction is produced by showing that if D and K(x)
are not separable .1:1:1en

(i) DN K(x) # § and

(i1) K (®) = R,

The second fact is used to generate a "second order correction”
o(8x) such that for x = x +eéx + 9(edx), r(x) = 0 and x € Q for e
small enough. We then use the fact that the correction is of second
order to show that, for € small enough, f£(x) < f(:A:) . This contradic-
tion of the optimality of X implies D and 1((12) are separable.

The separability of D and K (%) implies that there exists a

n+
TP ER l, not zero, such that

<4,y> > 0 > <¢,2> Vy e D, Vz & K(x) (2.1.7)

which then implies, by equation (2.1.3), that A < 0 and
A < VER),8x> + <P, Ur(R)éx:< 0 Véx e C(x,8), (2.1.8)

where ¢ = (A,y). The continuity of Vf (x) and Vr(x) then imply
equation (2.1.6).
In Chapter III we shall need to be able to consider nonlinear pro-

gramming problems with operator equality constraints where the operator
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is a mapping between infinite di.ﬁensional Banach spaces. Thus we now
extend Theorem 2.1.1 to problems which include linear operator equali-
ties. Consider the following problem:

min £(x) (2.1.9)
subject to

r(x) =0 ™ =0 xe X

where £, r and X are as before (problem (2.1.1)) and T is a linear map
from X to ¥, a Banach space.

Assumption 2.1.1 R(VT(x)) is closed.

Theorem 2.1.2 If x is an thimal solution to problem (2.1.40),
C(x,Q) is a conical approximation to Q at x and Assumption 2.1.1 holds,
then there exists a A ¢ R, A <0, and ¥ € R" and a ¥Y* € Y*, not all
zero, such that

A<VE(x),6x> + <P,Vr(x)8x> + <y*,Téx> <0 VéxeCx,Q (2.1.10)

-Proof: We will reduce problem (2.1.9) to one in the same form as
problem (2.1.1) and apply Theorem 2.l.lb to deduce equation (2.1.10).
We outline the proof here, for the full proof see Appendix B.

An equivalent problem for that given in (2.1.9) is

| min f (x) ' (2.1.11)
subject to |
rx) =0 x e Q NNETE),
where N(VT(X)) is the null space of VT(x) (see Appendix A). Since T
is linear N(VT(X)) = N(T). We then show that if C(x,Q) is a conical
approximation to , C(x,Q) N N(T) is a conical approximation to
@ N N(T). Theorem 2.1.1 then implies the existence of a )\ < 0 and ¢,

not both zero such that

ASVE(R) ,6x> + <¢,Vr(R)6x> < 0 Véx € C(%,Q) N N(T) (2.1.12)
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Let PN be the projection of X onto N(T). We are able to argue that
(2.1.12) implies that there exist A', ¢' such that
AT <VE(X) B 8x> + <¢',Vr_(£)pN<sx> Véx e C(%,2) =0 (2.1.13)
Equation (2.1.13) can be rewritten
AT<UE (%), 6x> + <¢',Vr (R)Sx>

(2.1.14)
- M'<VE(R),P0x> = <9',Vr(x)P,dx> Véx € C(x,2) 2 0

where PN =1 ~-P The assumption. that R(T) is closed leads to the

v
fact that PM'is continuous.

Using the fact that PMx = 0 for all x ¢ N(T) we can show that

)\'PM*Vf(i) + PM*Vi-* (X)9' € [N(T)]J' = R(T*). (2.;.15)

This implies that equation (2.1.14) can be rewritten

A'VE(R) ,8x> + <¢',Tr(R)8x> +<y*,T6x> < O (2.1.16)

Vox € C(x,Q)

which is the desired result.

Wé shall discuss the assumption that R(T) is closed and why it is

reasonable in Section 2.5. If, however, R(T) is not closed we still

have the follbwing.

k Corollary 2.1.1 1If R(T) is not closed then the results of Theorem
2.1.2 hold but y* need not be continuous. |
Procf: The same as that of Theorem 2.1.2 except that PN and PM are
not continuous so that y* need only be a linear functional on Y (it need
not be continuous).
It is sometimes useful to have conditions for A < 0. As discussed
in Section 2.0 we shall not consider this issue in detail, however, we

have:

Corollary 2.1.2 If <VE(x),8x> > 0, Véx e C where

c = {&x|Téx = 0, Vr(®X)éx = 0, Véx € C(%,Q)}

b w cwet REE BENEERE R BT e
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and all the assumptions of Theorem 2.1.2 hold then there exist A < 0,
Y e Rn and y* € ¥* (the space of continuous linear functionals on Y)
such that equation (2.1.10) holds.

Proof: This assumption clearly implies that

D ¢K(i) (2.1.17)

where K(ﬁ) = VF(ﬁ)(C(ﬁ.Q)fTﬁKT)). Thus D and K(X) can be strictly
separated so that \ ean be chosen strictly leés than zero.

The following extensions of Theorem 2.1.2 will prove useful in
Chapter III.‘ They allow one to apply the results of Theorem 2.1.2 to
problems for which it is not easy to find a conical approximation
c(x,Q).

Corollary 2.1.3 Suppose that x is a feasible point for problem

(2.1.9), that is, x € Q, r(x) =0, and Tx = 0. 1If

(i) . DA KX #¢ and ' (2.1.18)

n

(ii) L Ke(x) =R (2.1.19)

N
then there exists an x ¢ Q such that r(¥) O,T& = 0 and £(¥) < f(x).
Proof: This is proved in the course of proving theorems 2.1.1 and
2.1.2. The only difference is that we have not assumed x is optimal

so this result does not contradict any assumptions.

Corollary 2.1.4 Let Q' be any set such that if x' e Q' then there

exists an x ¢ Q such tﬂat
L) - r(x) =r(x'), ™ = ™', and (2.1.20)

(i) o E(x) < F(x') . (2.1.21)

If X € Q' is a solution of problem (2.1.1) and C(x,Q') is a conical
approximation to the set Q' at x then the results of Theorem 2.1.2 hold

for all 6x e C(x,0').
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Proof: Assume that
(i) . DAK(KX) # ¢, and (2.1.22)

(i) R &) =R (2.1.23)

where K(x) and Ke(i) are defined using C(%,R') N N. Then since x is
feasible, Corollary 2.1.3 implies that there exists an x'e Q such that

r(x') =0, T™x' =0 and £(x') < £(X). But by assumption this implies

that there exists an x* € Q such that r(x*) = r(x') =0 and £(x*) < £(x"),

so that
(1) D f(x*) < £(x) (2.1.24)
(ii) Lo r(x*) =0 (2.1.25)
(iii) .ox* g Q. (2.1.26)

‘This contradicts the optimality of %, thus the assumptions (2.1.22) and
(2.1.23) are not true and the result of the theorem follows from the

proof of Theorems 2.1.1 and 2.1.2.

Corollary 2.1.5 If problem (2.1.9) is modified so that
T(x) = %x + t = 0, that is so T(x) is affine, then Theorem 2.1.2 holds
for this new problem with equation (2.1.10) replaced by

A<TE(X) ,6x> + <P, Vr(x)6x> + <y*,Téx> < 0 Véx € C(x,Q). . (2.1.27)

Proof: follows from the proof of Theorem 2.1.2 and the fact that
n
N(T) is a conical approximation for the set

N = {x|Tx) =0} . (2.1.28)

Section 2.2. Extensions
In this section we will consider an extension of Theorem 2.1.2 to
a problem with infinite dimensional nonlinear equality constraints.

Consider the following problem:
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subject to (2.2.1)

where £: X R, T: X -+ Y, X and Y Banach spaces and f and T Fréchet
differentiable.

By analogy with Theorem 2.1.2 and finite dimensional problems one
.might imagine that if x solves (2.2.1) then there would exist a A <0,

v* £ Y* not both zero such that

A<VE (x) ,8%> + <y*, VT (x)6x> < O
{(2.2.2)

Véx e c(x,Q)
where\C(ﬁ,Q) is a conical approximation to  at x. As the following
example shows however, equation (2.2.2) does not always hold true.

Consider the problem in X = ¢

2’
. 4 ® 2 }
min £f(x) = %(xl+1) + I X, f: X >R
- i=1 %
subject to
F%,7 197
T(x) = < | =]s T: X > X (2.2.3)

x €°Q = {x|xy 5_-n2|xn], n > 1}.

Clearly the minimum occurs at §.='9_since T(x) = 0 and x € Q@ imply that

x, < 0 and x = O,n = 2,... but £(x) is an increasing function in lel.

1

To obtain equation (2.2.2) we must separate the sets D and K(x)

where
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D={x[x; <0, x, =0, n=2...] (2.2.4)

K(x) = VF (x)C(x,Q), ' | (2.2.5)
R £ (x)

Fx) = | _ |- (2.2.6)
T(x)

Note that R(VT(x)) = X.

Now O is a closed convex cone so, since x = 0, C(X,R) = Q. Note that
D cK(x) = Q.
If (A,y*) is to separate D and K(x) (which one might hope is

possible since int K(x) = ¢) then it must be that
<(A,y*),d> =0 < <(A,y*),z> VdsD Vz ¢ K(x) . (2.2.7)

However, (2.2.7) implies that A = 0 and so y* must separate O and
VT(x)C(x,Q). But VI(x)C(xX,Q) is dense in X and thus has no support
points. The conclusion is that D and K(x) cannot be separated.

The basic problem is that, while closed convex subsets have support
points dense in their boundary, it is possible to construct problems in
which the ray of decreasing cost does not intersect any support points
of the feasible set even though the ray is in the boundary of the set.
Clearly additional assumptions must be made concerning the functions
and sets in problem (2.2.1). Initially we shall assume  is a convex
set with nonempty interior. Later, in corollaries 2.2.1 and 2.2.2 we
shall weaken this assumption. |

Consider the following problem:

min £ (x) (2.2.8)

subject to

N p——
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r(x) =0 T(x) =0 x e R L.
where f: X >R, T: X > Y, r: X -+ Rny X and Y are Banach spaces, £,
r, and T are continuously Frechet differentiable on X with derivatives
VE(x),Vr(x) and VT(x), and R C X is a set such that int Q # ¢ and
Q # X.

Define [Ca 1] the radial cone, RC(x,Q), to the set Q at x by
RC(x,0) = {6x|da> 0 3 x + adéx € Q} . (2.2.9)

Note that, since @ is convex RC(X,Q) is a convex cone.

Theorem 2.2.1 If x is a solution to problem (2.2.8), R(VT(x)) is

closed, Q is convex, int @ # ¢, and RC(x,R) is a radial cone to the
set Q at x then there exists a \ 20, %€ R" and a Yy* € Y*, not all zero
such that

AV<E (R) ,6x> + <¢,Vr(x)8x> + <y*,VT(X)8x> < O (2.2.10)

Vsx & RC(x,Q)

Proof: We Qill outline the proof here, for more details see
Appendix B. |

The proof of this theorem is very similar to that of Theorem 2.1.2.
The only significant difference.is that we use Luisternik's theorem to
show that VT(ﬁ) is a quasilinear conical approximation to the set
A = {x|T(x) = 0}. We then rewrite problem (2.2.8) by using
C(;’&‘-,.Q)ﬂ‘N(Y,T.(;)‘). as..a. .quasilinear conical -approximaticn t5.Q N A.

One of the reasons for our assumption that inf-Q # ¢ is now_clear -
it guarantees that x + Z(€6x) € Q for € small enough, where z(:) is
the function used in the definition of a quasilinear approxihation.

The rest of the proof mimics that of Theorem 2.l1.2 except that
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z(€8x) is used in piace of efx. Since Z(edx) = Ox + o(edx) this
introduces no difficulty.

The assumption that R is a convex set and int Q # ¢ is quite
restrictive and is not satisfied by scme important sets (cnes defined
by inequality constraints, for:'example). The following two corollaries
weaken the assumption on Q under which Theorem 2.2.1 was derived.

Corollary 2.2.1 The results of Theorem 2.2.1 hold without the

assumption that Q is convex if a conical approximation C(x,Q) is used
such that
C(x,2) = RC(x,uw) (2.2.11)

where w is a convex set in Q such that int w # ¢.

Corollary 2.2.2 The results of Theorem 2.2.1 hold without the
assumption that Q is convex if a conical approximation C(x,R) is used
with the property that for each 6x ¢ c(x,Q) theie exists an ¢* > 0 and

a § > 0 such that for all 6z in a sphere of radius §

x +eldx +82z) ¢ @ ec [0,&%]. (2.2.12)
Proof: This property is used in equations (B.59) through (B.61)

in place‘of the convexity of @ in the proof of Theorem 2.2.1.

Section 2.3. Inequality Constraints

In this section conical approximations will be given for sets
defined by inequality constraints. These conical approximations will
then be used to introduce inequality constraints into the mathematical
programming problem.

Let g, X - Yi' i=1,...,k be continuously Frechet differentiable‘
on X with derivatives Véi(x). Let Ki be a closed conﬁex cone in Yi

such that int Ki #¢, i=1,...,k. Define the set Q& by

’
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Q= {x|~gi(x) e Ky, i=1,...,k} (2.3.1)

Let I(x) = {i|gi(£) € K, gi(i) £int X, i¢ (1,...,k}.

The internal cone [Ca 1] to Q at x is defined by

IC(%,Q) = {&x|d8 > 0 3 gi(£)+6Vgi(f:)6xiaintKi,‘VisI(i)}U{O}.
(2.3.2)
The internal cone can be considered as a "first order™ approximae-
tion to Q at x since, for i e I(X) and 6x & IC(%X,Q), gi(ﬁ) %Végfﬁ)ﬁx € K-

Theorem 2.3.1 IC(X,Q) is a conical approximation to the set

Q = {xlgi(x) € X,y i=1,...,k} at the point x.

Proof: IC(Q,Q) is a convex cone so there remains to show only
that, for every finite set of independent vectors {ze}tiC(ﬁ,Q), there
exists an € > 0 such that

Ipwca{x, x+edx x+edx )} c q. (2.3.3)

RARE

Each vector x € @ can be written

2
x=x +€X I a, Ox, (2.3.4)
i=1 %
L
where a, >0, i =1,..., &, Z-a, =1 and X e [O0,1].
1 - ) i=] 1

Let B,. be such that g.(X) + B..Vg. (X)6x. € int K. and
t 8, be s 9y (R) + 8, 79, (R 6x; ;

define B = min Bi”' Let § > 0 be such that the open sphere of
1€(0,...,0) -3
jeI(x)

radius § centered at gj(§)+Bng(§)6xi, which we denote
S(g. (x) +8Vg, (x)8x.,8), .3.
(qj(x) ng(x) X ) (2.3.5)

is contained in Kj for all 1 € (0,...,2) and for all j ¢ I(ﬁ). Because
Kj is a convex cone and gj(ﬁ) € Kj

L

S(gj(x)+XB iﬁl angj(x)fo é) € Kj (2.3.86)

’
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2
VYie (0,...,8), ¥ieIx, VYrelol], Va,-20 L a, =1.

Since gj (x) is continuously Frechet differentiable
L L
qj (x+ABi£lai5i) = gj (x) + Asiilangj (x) Gxi + o()‘Bng (x) Gxi) . (2.3.7)

The set co{x, i+€6xl,...,§+e.6xk} is compact, so there exists an ¢' > 0

such that
HQ'(E.ng x| < ez xe Teg v Yeelo,e']l, Vie I(x). (2.3.8)
Let €" = min(e',1)B so that
. :K. j " .3.
Iy (x) €K, Vi e I(x) Vxe Ze,, (2.3.9)

If j ¢ I(x) then 95 (x) € int K- Since co{x, £+e6xl,...,£+edxk}
is compact and since gj (x) is continuous, there exists an Z > 0 such
that

7, (rsx) € Ky V3 ¢ I1(%) VA e[0,€] (2.3.10)

V6x e coldx

l,...,ka}.

If e* = min (&" ,&) then Ze* c Q and IC(x,Q) is a conical approximation.

Theorem 2.3.2 If IC(x,Q) # {0}, Ky=95 (x) is contained in the
range of ng () (R(ng (x)) and R(ng (fz)') is closed, j € I(x), then the
closure of IC (i,ﬂ) is given by

C(z,2) = {6x|vg, (x)6x € Ej X), 3 € I} (2.3.11)

where %J = {xlx = a(y'—-gj(ﬁ)), y € Kj, a > 0}.

Proof: Let Aj = {6legj (x)8x € I'\fj (x)} and let Nj denote the null-

~ space of ng (Xx). Let X be written as the direct sum of Nj and a Banach
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" space Mj' (Such a space exists by [Hol, Theorem 1C]). The set Aj can ‘
be written

=1 A
Aj = Nj + Bj (Kj (x)) (2.3.12)

where Bj is the bijection between Mj and Zj = R(ng(i)) defined by

Bjx = ng (x)x Vx ¢ Mj. : (2.3.13)

For any surjective linear éperator Tj € B(M'j,zj) and subset U ¢ X,
the set T,0 is closed if and only if U + N (Tj) (where N crj) is the
null space of Tj) is closed [Ho 1, Lemma 17H].

Thus A, is closed since ng(ﬁ)(Bj-lij(ﬁ)) = kj(ﬁ) which is closed.

~ Also

A(x,Q) = n LA, = {8x|Vg. R)éx e R (R), § & I(X)} (2.3.14)
‘ je I I J J ‘

is closed since the intersection of a finite number of closed sets is
closed.

Clearly IC(x,2) € A(x,Q) and, since A(X,R) is closed, IC(X,Q)A(%,Q).
Since'IC(x,Q) # {0}, there is a nonzero-vector §x* e IC (x,Q).
Let 8x be any vector in A(x,R). Since for any convex cone K, x £ int K,

y € K implies x+y ¢ int K,
;rdxa é"%rGXI ¥, 8x ¢ IC(X,Q) . (2.3.15)

But chj ‘converges to 6x so that A(%,Q) ¢ IC(x,Q) thus
A(X,2) = IC(X,Q), (2.3.16)

and equation (2.3.11) follows.

Corollary 2.3.1 If Yj is finite dimensional for all j = 1,..., k,

then Theorem 2.3.2 holds without the assumption that
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Ej (%) CR(vg; @) = Rivg, RN (2.3.17)

. X 1n N

- Proof: The set ng(x)(Bj lKj) is closed since Kﬁ is closed,
convex and in a finite dimensional space and Vg‘j(;:)B:.‘-l is a continuous
mapping. [Ho 1, Lemma 17I].

Theorem 2.3.3 The internal cone IC(x,Q) defined in equation (2.3.2)

is such that, if 8x ¢ IC(X,Q) then there exists ang* > 0 and a 6* > 0

such that

X +€(0x+62) € @ VYee [0,e*] VSz € S(0,8%). (2.3.18)

Proof : Since gj(i) is Fréchet differentiable
95 (x+adx) = 9 (x) + a¥q; (X)6x + 95 (28x) . (2.3.19)

Let B be such that
gj‘(:‘:) + Bng (x)8x € int Ky Vie I(x) (2.3.20)
and let a be defined by

a= max || Vg, @] .
jerIx) I

Choose vy > 0 as the»radius of a sphere such that

g, (%) +87g, (R)6x + 8y € K, Vi ¢ I(X) Yy e s(0,y) C(2.3.21)

and let €(8) be such that
|loj (A8Yg (x) (8x+8y))|| < A8|| BVq (x) (8x+8y)||
Vel ABYg, (x) (6x+sy)|| € [0,€(8)]
V3ie I (2.3.22)
For j € I(x) we can write
9 (X +AB(8x+8z)) = 95 (x) +A3ng (%) 6x + ABVg (X)6z + o(AB(8x+6z)). (2.3.23)

J

and, since Kj is a convex cone,




95 (x + AB(8x+62)) € K, '
if
I A8Yg, (%) 8z + o (AB(8x+62))|| < Ay .
If 8z € S(0,68), equation (2.3.25) becomes

XBad + ABad(|[8x| +6)< Xy
if X 3 reB(S+(l6d]) < (o).
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(2.3.24)

(2.3.25)

(2.3.26)

Let 6' = v/(20B||8x|[), §' = v/(208(1+8)) and A' =¢(8)/aB(5+|sx|])

so that (2.3.18) holds for all j € I(x) with €* = A'B and §*

If j e I(ﬁ) then gj(ﬁ) € int Kj. Let Yy be such that

gj(:“n +dvexr Vif I(x) W8y € s(0,y) .

Define

e = max |Fg. ()|
j I

énd €(9) so that
|[c>j (A7g, (X) (8x+82)) || < r8|lsx+8z|]

Y 3 a|sx+éd| e [0,e(8)]
Vi £ I(x)

Cleafly,

9y (X + A(8x+62)) € Ky V3 ¢ 1)
if

]]Ang (x) (5:;+az)+o(x\7gj (x) (8x+8z))|| < v .
But equation (2.3.31) is satisfied if

Aa(|lsx||+8) + are(|sx]|+8) < v

and 6z e S(0,8) and A satisfies (2.2.29).

Let §' =1, 8'

1 and A' = v/ (2a(|l6x]|| + 1)) so that (2.3.

= 4§'.

(2.3.27)

(2.3.28)

(2.3.29)

(2.3.30)

(2.3.31)

(2.3.32)

18)
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is satisfied with 5*,‘= §', e* = ', for all j £ I(x). Clearly by
taking the minimum of the two just derived §* and €* equation (2.3.18)
is satisfied for all j =1,...,k. |

We can now extend Theorems 2.1.1 and 2.1.2 to the case where
includes inequality constraints. The following lemmas will be required.
Recall (see Appendix A) that if. K is a cone the dual cone K* is the
set of continuous linear functionals positive on K.

Lemma 2.3.1 If Kl and Kz are closed convex canes then

(Kln Kz)* = Kl* + Kz* . (2.3.33)
Proof: (following Girsanov [Gi 1])

Note that K* = (co(K))* since K* consists of linear functionals

positive on K. Let Q = (1(1* + Kz*) , then

Q_=co(K * U K,*)  (2.3.24)
Thus
Q* = (CO(Kl* &) KZ*) )*
= (K™ U Ky*)* (2.3.35)
But clearly (Ki* V) Kz*)* = Kk** r\Kz** so that the theorem is

proven if K** = K.

It is obvious that K C K**, Assume that there exists an X € K**
such that x ¢ K. Since K is a closed convex cone X can be strictly
separated from K, that is,

dx* ¢ X* 3 <x*,2> > 0 Vzek-
(2.3.36)
<x*,x> < 0.
Clearly x* e K*, but if <x,x*><0 for some x* € K*‘then‘ x ¢ K**., The
contradiction implies that K = K** and thus that

(Klﬂ K,)* = Ry* + K,* (2.3.27)
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as desired.
The following generalization of linear independence will be useful.
A set of linear operators {Ai}, where

Ai € B(X,Yi), i=1,...,k, (2.3.38)

and X and Yi' i=1,...,k are Banach spaces is said to be linearlz
independent if

<Y AX> = <y R AX> 4oL+ <y*Ax> = 0 Vx e x (2.3.39)

implies that y* = (yl*,.. .,yk*) = 0.
Lemma 2.3.2 The linear operator A ¢ B(X,le ...xYk) defined by
Ax = (Alx,...,Akx) is surjective if and only if the set {Ai} is linearly
independent and R(Ai) is closed for i =1,...,k.
Proof: If A is surjective then clearly R(A) = ¥ and R(Aiv) =Y.
Thus if <y*,Ax> = 0 ¥ x ¢ X then
<y*y>=0 Vyev (2.3.40)
which implies that y* = (yl*,...,yk*) = 0.
If {Ai} is linearly independent then
<y*,Ax> = <A*y*,x> = 0 Vx e X ‘ (2.3.41)
implies that y* = 0. ‘But (2.3.41) implies A*y* = 0, so clearly
y* € N(A*) implies y* = 0. That is,
N@a*) = {0} (2.3.42)
Recall (Appendix A) that for a set U & X, [Ui+'is defined as the set
{x* e X*|<x*,u> = 0, Vue U}.
Thus [Theorem A. 5.1] N(a*) = [RAa)]" = 0. Define, for X C. v+,

“x] = [K]™N v. Clearly *[0] = v, and by [Lu 1; Theorem 5.7.1], if M

is a closed subspace in X then ~"7[M"'] = M. Thus R(A) = Y and A is

surjective.
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Let {Ai} be a set of linear operators, Ai € B(X,Yi), where X, T
i=1,...,k are Banach spaces and let Ki c:Yi, i=1,...,k be closed
convex cones with nonempty interiors. The set {Ai}'is K=linearly

independent if, for any y* = (y.*,...,7,*) € K*¥ = K, *x...xK *.
1 K 1 %

<y*,Bx> =0 Vxe X (2.3.43)
implies that y* = O.

Theorem 2.3.4 ]'..et:_‘A:.L £ B(X,Yi) and R(Ai) be closed where

X,Yi, i=1,...,k are Banach spaces. Let Ki CLYi be closed convex.cones
with nohempty interiors. Define

D={x|axeX,xecX i=1,...k} (2.3.44)
Then D # {0} if and oply if {Ai} are K-linearly independent.

Proof: 1f D = {0} then R(A) N K = {0} and R(A) N int {x} = o.
Since R(A) and int {K} are convex sets they are separable, and since
R(A) is a linear variety the separating functional is zero on R(A).
That is, there exists a 0 # y* £ Y* such that

<y*,y'> = 0 < <y*,y"> Yy' ¢ R@A) Vy"e K. (2.3.45)
But clearly y* € X* and so {Ai} are K~-linearly dependent.

If {Ai} are K-linearly independent then y* ¢ K* and

<y*,Bx> =0 Vx e X | (2.3.46)
implies that y* = 0. But (2.3.46) is equivalent to A*y* = 0, so K-
Iinear independence implies that

Na=) N x* = {0} . (2.3.47)
Since N(A*) = R(A) this implies

R@) N x* = {0} . (2.3.48)
Because K* is the set of continuocus linear functicnals positive on K |

K* = (K)* . (2.3.49)
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However int K # ¢ so (M} = K = K since K is closed. Note also that
R(a)t = R(a)* so that
R@a)* N (int R)* = {0}. : (2.3.50)
Now if R(A) ) int K = ¢ then R(A) and int K are separable. That is,
there exists a 0 # y* ¢ ¥Y* suchvthat
<y*,y'> = 0 < <y*,y"> ¥y' ¢ R@A), ¥y" e int K. (2.3.51)
Clearly y* € (int K)* and y* ¢ R(A)* so that |
R@) Nint X = ¢ =5 30 # y* 3 y* ¢ R(A)* N (int K)*. (2.3.52)
However equation (2.3.50) implies that if v* ¢ R(A)* N (int K)* then
y* = 0 so (2.3.52) implies that
R@) N int K # ¢. (2.3.53)
Since 0 £ int K this implies that there exists a y # 0 such that
y € R(a) N K, but then D # {0}. |

Theorem 2.3.5 If {Ai} are K-linearly independent then

B* = AXK*
where B = {x|ax ¢ K}.
Proof: From equation (2.3.48)
R(A)TN x* = {0} (2.3.54)
and clearly R(A) = R(A)* so Lemma 2.3.1 implies
R(A)** + R** = {Q}* (2.3.55)
but R(A) and K are both closed aﬁd convex so
R(A) + K = Y. ‘ (2.3.56)
An application of a theorem by Kurcyusz [Ku 1, Theorem 2.1l] to
equation (2.3.50) yields the desired result.
Conﬁider the following problem:
min £ (x) (2.3.57)

subject to
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r(x) =0 xe Q

T(x) =0 Gi(x) € Ki i=121,...,k

where r: X - Rp, £: X -+ R, Gi: X > Yi’ i=1,...,k are continuously
Frechet differentiaﬁle functions on X, T ¢ B(X,Zi, X, Yi' i=1,...,k,
Z: are Banach spaces, Ki’ i=1,...,k are closéd convex cones with non-—
empty interiors and Q is an arbitrary set for which there exists a
conical approximation C(x,Q). Let Eitfcﬂ{xl;a;s >0 a3x = B(}('--Gi (x)),

Y € Ki}.

Theorem 2.3.6 If x is a solution to problem (2.3.57) and R(T),

R(VG, (), i = 1,...,k are closed then there exist A < 0, § ¢ R,

N
z* ¢ 2%, yi* € -Ki*, i=1...,k, not all zero such that

- - k -
A<VE (x) ,6x> + <¢,Vr(x)dx> + <z*,Téx> + 'Zl<yi*'VGi(X)6x> <0
1=

Véx £ C(x,9) (2.3.58)

Proof: Let I(x) = {i|G,(x) £ int K, i e {1,...,k}}. 1If
{6, ()}, i ¢ I(X) are X-linearly dependent then (2.3.58) can be satis-
fied trivially. Assume there that {VGi(i)},i e I(x) are k—lineariy
independent.

Let Q' = QN w where w = {lei(x) e K;, i =1,...,k}. Clearly
c(x,9) N IC(x,w) is a conical approximation to Q'. An application of
Theorem 2.1.2 to problem (2.3.57) with Q' replacing Q and the in-
equality constraints implies that there exists a A <0, ¢¢ R™ and

z* £ Z* not all zero such that

A<VE(X) ,86x> + <¢,Vr(x)dx> + <z*,Téx> < 0 (2.3.59)

Vsx ¢ c(x,Q) N IC(x,w)
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But equation (2.3.59) implies that

AVE(X) + Vr*(R)¢ + T*z* ¢ - [C(X,Q) N IC(X,w)]* , . (2.3.60)
since int [IC(X,w)] # ¢ and C(%,Q) N IC(X,w) # 4.

Lemma 2.3.1 implies that

S(AWVE@)+ r(R)g +T*z*) € C(R,Q)* + IC(X,w)* (2.3.61)

so there exists a k* € IC(%,w)* such that

A<VE (x) ,6x> + <¢,Vr(x)dx> + <z*,Téx> - <k*,8x> < 0 (2.3.62)

Véx € C(x,9).

‘= , ] ", . ~
Theorem 2.3.5 implies that there exist yi* € Ki*’ i e I(x) such that

k* = z VG.*(X)y.*. Setting y.* = 0 for all i g I(x) yields
isl(ﬁ) 1 1 1
-~ ~ k- ~
A<VE (%) ,8x> + <¢,Vr(x) x> + <z*,Téx> ~- Z<yi*,VGi(x)6x> <0
i=1l -
Véx £ C(x,Q) (2.3.63)

Corollary 2.3.2 1f {VGi(x)} ie I(iv) are rlE—linearly independent
thep‘there exist A < 0, ¢ € R" and z* ¢ 2z* not all. zero and-yif € kif
i=1,...,k not all zero, such that (2.3.58) holds.

" Theorem 2.1.3 can also be extended in a similar way. Consider
the following problem:

min f (x)
subject to
f(x) =0 % € Q  (2.3.64)
T(x) =0 Gi(X) e K, i=1...,k

where all assumptions aré as in (2.3.57) except T: X ~ 2 is a con-
tinuously Fréchet differentiable mapping and R(VT(x)) is closed. Also

assume that either
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(1) @ is a convex set and imt Q- # ¢.
(ii) a C(x,Q) exists as described in Corollary 2.2.1, or
(iii) a C(k,0) exists as described in Corollary 2.2.2.

‘Theorem 2.3.7 If x solves problem (2.3.64) and R'(vc;i(ﬁ)),

i =1,...,k are closed then there exist A < 0, ¢ € Rn, z* ¢ Z* and.

yi*.e Ki*, not all zero such that

- = . k N
CAVE(X) ,8x> + <¢,Vr(x)8x> + <z*,VT(x)8x> - L <yi*,VGi(x)6x> <0
i=1 - -

Véx € c(x,Q). (2.3.65)

Proof: As in the proof of Theorem 2.3.6.

Corollary 2.3.3 If <Vf(x),6x> <0 V¥éx e cC

where C = {6x|Vr(X)éx = 0, VI(X)6x = 0, &x ¢ C(%,Q) N 1C(X,0)}
and {VGi (x)} are %—linearly independent, then there exist A < 0, ¢,
z* and yi* satisfying (2.3.65).

Proof: follows from Lemma 2.3.1, Theorem 2.3.5 and Corollary

2.1.2.

Section 2.4. Vector Valued Criteria

In this section we consider the extension of the results in the
preceeding three sections to the problem in which a nonscalar valued
criterion of optimality exists. Clearly a total ordering of solutions
is not in general possible and thus minimization of the cost is not
usually possible. The problem of minimizing a scalar function will
thus be replaced with the problem of finding a K-noninferior solution
when the criterion is not scalar valued. A vector ¥y € ¥ DK will be

said to K-noninferior over Q if v € Q and for all y € Q

T s



39

F-verR=§ =y. (2.4.1)

Of course ¥ is not generally unique.
In what follows K will be assumed to be a closed convex cone with

nonempty interior such that K is not the whole space Y. This implies
0 £ int K. (2.4.2)

This notion of K—noninferiority reduces to Pareto optimality if Y is
finite dimensional and K is the positive orthant.
Consider the following problem (analogous to problem (2.1.1)):
opt £ (x)
_ (2.4.3)
subject to r(x) =0, X e Q )
where £: X > ¥ 3K, r: X +_Rn are continuously Fréchet differentiable

mappings, X and Y are Banach spaces. Assume that a quasilinear conical

approximation to Q exists.

Theorem 2.4.1 If % is a K-noninferior.solution to problem(2.4.3)
~and C(x,Q) is a quasilinear conical approximation to Q at x then there
exists a vector ¢ e Rn and a y* € ~K*, not both zero, such thaﬁ
<y*, VE(X) 8x> + <3,v£(£)5x5 <0 Vx e C(k,Q. (2.4.4)
Proof: Similar to the proof of Theorem 2.1.1, see Appendix B
for details.
The following theorems follow immediately from Theorem 2.4.1 since
they do not depend on the cost function.

Assumption 2.4.1 The conical approximation C(x,Q) has at least

one of the following properties:

(1) C(x,2) = RC(X,Q) where Q is convex and int-Q #-¢.

(i1) C(x,Q) = RC(x,w) where w C€Q is a convex set and int-w # ¢.

(iii) for every 6x e C(X,Q) there exists ang* >0 and a § > 0
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such that
x +e€6x+8z) ¢ @ Vece [0,ex] Vsz e s(0,68) . (2.4.5)

Consider the following problem
opt £ (x)
subject to r(x) =0 T(x) =0
(2.4.6)
xe § QX
where r: X »R", T: X + Z, £: X > ¥ DK are Fréchet differentiable
mappings, K a closed convex cone such that int K. # ¢ and K # ¥, and

R(VT(x)) is closed.

Theorem 2.4.2 If X is K-noninferior for problem (2.4.6),

T ¢ B(X,Z) and a conical approximation C(x,R) to @ at x exists then
there exists a y* e Y*, ¢ ¢ Rn, z* ¢ Z* not all zero such that
-y* ¢ K* and

<y*,VE(X)8x> + <¢,Vr(x)dox> + <z* Téx> < 0 7 (2.4.7)

Vsx e C(x,9).

Theorem 2.4.3 If X is K-noninferior for problem (2.4.6) and a
conical approximation C(x,0) to Q at X exists which satisf‘ies‘Assu-.mption
(2.4.1) then there exists a y* ¢ Y*, ¢§ ¢ ar, z* ¢ Z* not all zero such
that -y* ¢ K* and

<y*,VE(R) §x> + <¢,Yr (X)8x> + <z*,VL(X)6x> < O ‘ (2.4.8)

Véx ¢ C(x,9Q) .

Corollary 2.4.1 Let Q' be any set such that if x' ¢ Q' then

there exists an x € Q such that
(i) r(x) = 0, T™x = 0, and (2.4.9)

(i1) £(x') - f(x) € int K. (2.4.10)
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If X € Q' is a solution to problem (2.4.6) with T € B(X,Z) and C(x,2")

is a conical approximation to the set Q' at X then the results of

Theorem 2.4.2 hold for all 8x ¢ C(x,0').

Proof: see Corollary 2.1.4 and Theorem 2.4.1.

Section 2.5. Concluding Comments

In the next chapter it will be seen that the requirement that
intQ # ¢ is unacceptable in Theorem 2.1.1. Thus a derivation like
Dubovitskii and Milyutin's [Dub 1] in which is Q assumed to have a
conical approximation satisfying Assumption 2.4.1 (iii) is not possible.

On the other hand, the requirement that Assumption 2.4.1 hold in
theoréms 2.1.2 an& 2.4.3 is not unreasonable. Basically it’will be
satisfied if a system is not overparameterized. It is possible to
derive theorems for sets Q such that.int I # ¢, which allow conical
approximations, but restrictions must be placed on T(x). However,
there are restrictions which allow all the results of successive
chapters to hold. (For example‘one could extend the theorems of
Neustadt [Neu 1] from the sets he called finitely open in themselves to
sets that have’conical approximations.) These theorems are, hoWever,
much‘more difficult to derive and, for the cases we will consider, do
not lead to significantly greater generality.

Another direction in which the theorems of this chapter could be
generalized is to gonsider constraint and/or objective spaces in which
the positive orthant K has an empty interior. However, the formulation
in the hext chapters is such that all constraints and/or objectives
can naturally be formulated in either finite dimensional Euclideap

space or infinite dimensional spaces in which int XK # ¢.
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A third possible generaiization of these results is to weaken the
assumption of Frechet differentiability. A significant amount of
effort has gone on in this area ([Ps 1], [Baz 1],. [Gi 1], etc.), hpwever'
it should be noted that no weakening of the differéntiability assump-
tion on the equality constraints has been developed. The reason for
this is that quasilinear conical approximation to the equality constraints
in the nondifferentiable case do not generally exist except under very
severe assumptiéns. Consider the case where r(x) has a Gateaux differ-
ential in all directions at kX. Clearly then for any 8x e X

g&+adx) = g(X) + Vg(Xsa 8x) + o(a 6x) (2.5.1)
where Vg (%;8x) denotes the Giteaux differential at x in the direction
§x. If Vg(x; 8x) is "almost" linear, then it can be shown that there
exists a mapping ¢ (§x) such that

gE+adx +¢ (a6x)) =0 Véx e C a >0 (2.5.2)

where C = {x|Vg(xX;8x) = 0} and

lim. ||¢ )|/ ||xl] = o. (2.5.3)
|-a
(See [Io 1, Theorem 0.2.4] for exact details). The assumption that C

is convex is, however, very severe since, if Vg(x;8x) is linear, C is
usually a subspace, thus if Vg (X;6x) is nonlinear C is likelf to be a
hypersurface, which is rarely convex.

While it is possible to consider nondifferentiable inequality con-
straints this is not a significant generalization as far as the appli-
cations in the following chapters are concerned. Unfortunately the

assumption that the equality constraint is differentiable is restrictive

since that will correspond to assuming that, in an optimal control
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problem, the system dynamics are differéntiable in the control.

Fortunately this problem can be circumvented by an ingenious
application of Theorem 2.1.2, however, other severe assumptions on the
convexity of certain sets must be made.

Finally, consider the assumption made in many of the theorems:
That R(VT(x)) be'closed. This assumption is related to the difference
between absolute and approximate reachability [Ku 1] and has a
particularly nice interpretation if T(x) represents the;linear'dynamics,
of some system.

Example 2.4.1

Let T(z) = x - Au where A is the linear dynamics of some system,
X 1s a terminal state and u a control input. If there is a terminal
state constraint then the requirement that REA) =Y (range of A is
dense in Y) is equivalent to the statement that there exists a control
u sucﬁ that x is arbitrarily close toAany desired state x'. Superfi-
cially this seems to be a desirable property.

Consider the following choice for A ¢ 3(22,22)

= 1 1
Au (ul, E_uz, 3_u3...).
The operator A is one-to-one but R(A) # 22 since y = (l,%J%J...) Z
R(a) even though y e 12 (it cannot be in R(A) since that would require
that (1,1,1,...) ¢ 12). R(a) = 12 since every finitely nonzero vector
is in R(a).

If the terminal state constraint is to have x within & of
' (l,_;_,%,...) then this is clearly possible but as €+ 0 ||lu]| > =.
In fact it can be shown that for any segquence {uﬁ} such that

Au  +x £ R(a) [h:” + +®. Thus in some sense, the problem has been




misformulated if R(A) is not closed since points which are "close" in
the state space can correspond to points which are not at all close in
the control space. Some work»has been done on choosing the topology of
the range space so that R(A) is closed, that is, choosing a topolegy

so that a problem is well formulated. See [Ku 1] for more details.
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CHAPTER IIT

MAXTMUM PRINCIPLES

Section 3.0. Introducticn

In this chapter necessary conditions for the optimality of
solutions to certain stochastic dynamic optimization problems will be
developed. In the spirit of Chapter I the problem formulation will be
generai enough to include problems of decentralized control énd
problems with qu;te general types of constraints.

In Section 3.1 we will formulate the problem and derive an equi-
valent formulation. In Section 3.2 several examples will be given to
illustrate the generality of the problem formulation.: Section 3.3 will
contain a comparison 6f this problem with others. In Section 3.4 a
straightforward extension of the minimum principle in [San 1] is given
and shown to be strongly related to dynamic programming algorithms.
Sections 3.5 through 3.8 will contain maximum principles based on the
results of Chapter II, as well as some examples. The proofs of Theorems
3.5.1 and 3.6.1 are extension to Banach spaces of the proofs in [Ca 1,.
Chapter IV]. Section 3.9 contains an extension of these results to the
vector valued objective case. Theorem 3.9.2 is an extension‘of [Dac 1]

to Banach spaces. Section 3.10 contains some concluding remarks.

Section 3.1... Problem Formulation

One of the problems faced in formulating a mathematical model for’
>optimal control is choosing a cost function which penalizes appropriately
all the undesirable types of system behavior. For example, minimizing |
a weighted sum of squares of state and control values‘may prodqce a

control strategy that generates an unacceptably large transient in the
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control values. Likewise, minimizing the maximum control value may
‘produce a control strategy that wastes énergy. While it is sometimes
possible to incorporate constraints on control and state values into
the model of the system this can often produce an unacceptably complex
model.

An alternative is to allow state and/or control constraints to be
specified during the problem formulation. It is useful to define two
different'types of’cbnstraints. A‘structuralvconstraint is one which |

specifies a class of acceptable parameters (i.e. linear or decentralized

control laws). An operational constraint isvone which specifies accept-
able behavior for the dynamical system (i.e. upper and lower limits on
control and state variables). This division of constraints is not
always clear cut:(for‘e#ample, consider the class of control laws for
which ||ul| j_i) but it does indicate the types of constraints that need
to be considered.

'In a deterministic problem the introduction of operational con-
straints leads to either a feasible or an infeasible problem. That is,
either there exists a control stratégy which satisfies the constraints
or there doesn't. In the stochastic procblem the situation is not so
clear cut. Thé feasibility of the problem may depend on the values
taken on by the random variables and thus a particular control strategy
may either meet or violate soﬁe qf the constraints.

Clearly the optimal control strategy must always satisfy the
constraints. If the constraints are deterministic then this implies that
for evefy sample path of the stochastic process the control must produce
a feaéible solution. We will consider deterministic constraints which

are a function of the control law (rather than control values) only.
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When considering state space constraints we shall allow a broader
formulation. |

We shall allow constraints which require that the expected value
of a function of the state lie in some region or which require that
the probability of having some function of the state lie in a certain
region be greater than or equal. to: a given threshold. Such constraints

will be called soft constraints. Note that these constraints can be

"hardened" by setting the threshold to one. In this case the optimal
controller must produce a feasible solution for almost all sample
paths of the stochastic process.

SOft constraints thus can be seen to "almost" subsume deterministic
constraints and to be capable of handling a wide variety of conditions
on state variables. Soft constraints may also have some interest in
their own right in problems where it is desired to prohibit certain
types of dangerous operation during normal (high probability) conditions
and to allow that type of operation during emergency (low probability)
conditions.

The structural constraints can often be incorporated into the
system dynamics or the parameter set over which one is optimizing. This
will become clear in Section 3.2 where several examples‘will be consi-
dered.

Consider the following dynamical equation:

xt+l = ft(xt, wt, ut), t=0,...,t=1 (3.1.1)

where X, and xt+l denote the system state at times t and t+l, where

wt is the disturbance at time t. and ut is the control at time t.
' Ny My
Assume that xt € Xt =R , wt € wt =R and that the control

- MR N releim————— ¢ § . W O ——— e i e iimpreets” Wg 6
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3 .
u_ € Ut =R t. Let Ft be an arbitrary set of Borel measurable functions

from xt to Ut' Assume also that ft 1s jointly measurable in all of its

argquments. For any Y, € ', equation (3.1.1) can be written
t t

X ='ft(xt’wt’7t(xt)) t=0,...,7-1, (3.1.2)
and will also be written
Xepp = T lrorvoivy) t=0,...,T=1. (3.1.3)

A cost is associated with each sequence of {xt}, t =0,...T,

Lut}, t=20,...,T-1 by

Ip. = tzo hy (xoa)s by (peun) A B () (3.1.4)

where ht: xt x Ut € R is jointly Borel measurable in both arguments.

For any choice of Ye € r, +=0,...,T-1, equation (3.1.4) can be

t’
written
3' = L h (x_,v.(x.)) (3.1.5)
T - T AL R
t=0
and'will also be written
' = I A (x.:v.) (3.1.6)
T oo e e e

£=0

We assume that x , w_,...,w are independent random variables

o] o] T-1

with associated probability measures wo,uo,...,u . The probability

T-1
space (2,B8(R),P) is defined by

(B ) (3.1.7)

P(C) =7 @A)u (B)...

Hpop YPrpo1

< Q,

where ACXO,,BiC Wi’ i=20,...T-1, C = AxBox...xBT_l

Q= Xo b Wo X...XW and R(Q) is the set of all Borel sets of Q.

T-1
Let the state transition stochastic kernal [Bert 1] be defined by
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P, (Blx ,u) = u ({x|£, (x ,wu):e B}). | (3.1.8)

As usual.aif v£ € I’t is chosen (3.1.8) may be written

P, (Blx iv)) (3.1.9)
Note that 12 is a/Borel meésurable function for fixed B and is a
probability measure for fixed xt,ut‘(or Yﬁ'Yt) [Bert 1, Proposition
26.1] . Furthermore, for any policy y = (+o""'YT-1) inT = Fox...PT_l

and any LIS there is a unique probability measure ﬁ(y,wo) induced on

X =X X...xX via equation (3.1.3) [Bert 1, Proposition 7.45]. That

T

is,

X

/h Qn(y,wo) = i oo J hcxo”'”xT)pT-l(de{xT-l;YT-l)"'
o T

(3.1.10)
B, (dxll X 1Y) T (dx )

for any h: X'+-Rf'(R+>= R U {+=}) which is Borel measurable and for
which - fh-dH(Y,wo) < = where h™ (x) = min(h(x),0). It is now clear that
the expected value of J; is well defined for each vy if - IJ;-dw(y,no)<'+a:

and is given by
{3’} = 5 3¥ dan(y,m) (3.1.11)
T I T ! o]

Suppose that qt(xt) is a Borel measurable function from XT to

T , :
‘R t and that wt(y,vo) denotes the marginal distribution of n(y,ﬁo) on

XfL Then the expected value of qt(ﬁt) is defined and is given by

E{qt(xt)} = €( qt(xt)dﬂt(Y,nor (3.1.12)
t

The basic problem (BP) to be considered in this thesis can now be
given:

min E{J;} ) (3.1.13)
vel
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subject to
Xppp = £, (ke Wiy, t=0,...,T-1 (3.1.14)
E{gt.(.xt)} e K, | t=1,...,T (3.1.15)
E{rt(xt)} =0 t=1,...,T (3.1.16)

where equation (3.1.14) is defined by equation (3.1.3), g£ and r_ are

defined as is qt'abcve, where r. is equal to kt and ¢, respectively,

t

k
Kt is the positive orthant in R t and J} is defined by equations (3.1.4)

through (3.1.6).

We have also have from [Bert 1] that .

WE+1(Y'WO)(S) ==é’ é pt(dxt+i[xtyyt)dwt(y,no) (3.1.17)
t
for any Borel subset:in xt+1 and that
o T
E{Jp} = tgo £tht(xt;Yt)d"t(Y’“o)' (3.1.18)

If v and T, are given we shall sometimes write (3.1.17) and (3.1.18)

as

( ) = [ Pt(xt+l|xt;yt)ﬁt(dxt) (3.1.19)

Terl Fetl
and

T
E{JT}= tgo S ht(xt;Yt)“tcdxﬁ)' (3.1.20)

Note that T can be considered as an element in the Banach space-IIt
of signed measures on (Xt,B(Xt)) with the .total vafiation norm. Equa-
tion (3.1.19) thus defines a linear operator from Ht into Ht+l which

will be denoted Pt(yt). Equation (3.1.19) becomes

vt+l‘= Pt(yt)wt. (3.1.21)
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We will assume that Pt(yt) € B(Ht,II ) for all Ye € T

t+1l t

. Equation
(3.1.20) maps Ht into IR ‘and thus defines a functional on Ht'. We also
assume that linear equation (3.1.20) can be represented using elements
from the dual space HZ (recall from Appendix A that H; is the épace

of continuous” linear functionals on Ht). Equation (3.1.20) thus
defines T+l functionals on Il which will be denoted h:(ytj. Equation
(3.1.20) can be written |

: T *
E{JT} = tio <h (y ) ,m> . (3.1.22)

Recéll (from Appendix A) that <x*,x> denotes the evaluation of the
functional x* at the boint x; it should not be confused with the

inner product notation sametimes used in Hilbert spaces. The star in
h;(yt) indicates that it is an element of H;, which in this case is an
integral functional with a kermnal given by ht(xt;yt).

Uhder'similar assumptions on 9. and r_ (3.1.15) and (3.1.16)

t
- become
E{gt(xt)} = J‘gt(xt)wt(dxt) e X, (3.1.23)
and
E{ry(x )} = [fr (x)m (a&x) =0 (3.1.24)
or
Gtwt € Kt (3.1.25)
and
R T, = 0. (3.1.26)

Note that the basic problem (BP) has a corresponding equivalent

deterministic problem (EDP) given by:

T
min I <h*(y.),m_> (3.1.27)
el =0 e e

— o oE W "
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subject to
Mgl = Pt(Yt)WE t=0,...,T-1 (3'1728)
tht € Kt t=1,...,T (3.1.29)
Rtvrt =0 t=1,...,T (3.1.30)

where, as before, hT(YT)=é hT'

Note that, while m_-contains measures which are not probability

t

measures, we do not need to constrain Te to be in the set of probability
measures. This occurs because Pt(Yt) is such that, if e is a probabil-

ity measure, then T is a probability measure. Since TS is given

t+1

and is a probability measure it follows that 7 _, t = 1,...,T are also

tl
probability measures.
Note that the EDP is a deterministic control problem if the state

is taken to be w,_ and the control is Yeo The EDP is thus linear in the:

t
state and nonlinear in the control.
Now assume that qt: xt + R is a Borel measurable function and a

constraint is given by

T ) (xgla k) <ah) 2 a0 (3.1.31)

where o € [0, 1], then the constraint is equivalent to

E{I(q ,d)} >« (3.1.32)
where
1 (x.) <4
I(q,,d) () = T e ] (3.1.31)
{0 qt(xt) > 0

Note‘that I(qt,d) is Borel measurable so that (3.1.32) is well defined.
Thus constraints of the form (3.1.32) can be reduced to ones of the

form (3.1.15) by noting that equation (3.1.32) isvequivalent to
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E{I(q.,d) - a} >0 (3.1.32)

and thus can be written as

E{I(qt,d) - a} € K (3.1.33)

where K = {r ¢ R|r > 0}.

While constraints of this type are not différentiaﬁle with respect
to X, this will be unimportant in what follows. This occurs because
we'shall consider the EDP, which is differentiable with respect to the
"state" M-

Finally, note that the EDP is nonlinear mathematical programming

problem in a Banach space, thus the theory developed in Chapter II is

applicable.

Section 3.2. Generality of the Problem Formulation

fhe purpose of thié.section is to illustrate the generality of the
basic problem. formulation. This will be done by reducing several more
common problems tovthat form. Throughout this section we shall assume
that the measurability assumptiops of Section 3.1 are satisfied by all
, etc.).

system functions (i.e. £ P ht' r

£’ ¢ £

Example 3.2.1 Full State Feedback (Noiseless Observations) The

problem here is to

T
minimize E{ I h_(x_,u,)} (3.2.1)
u_ €U g=0 © EE
t t
subject to
Xl = ft(xt'wt'ut) t=0,...,T-1 (3.2.2)
by choosing a function Ye! Xt -+ UT' Assume that xo,wo,...,wT_l‘are

independent random variables.
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This problem is trivially identified with the BP if we restrict
yttto.befBorel measurable. Since Borel measurable‘mappings include
every practical feedback function this is not a severe restriction.
This restriction does, however, preclude the straightforward application
of dynamic progr;mming algorithms. The reason is that Borel measurability
of the cost-to-go is not necessarily retained under the operations in
an iteration of the dynamic programming algorithm. For a detailed
discussion of this and other measure theoretic problems see [Bert 1],
[str 1], [Min.1], etc. ‘

Example 3.2.2 Noisy Observations and Perfect Memory The problem

is to
I3 1] 0 T » 3 2 3
Elnlm;ze E {tio ht(xt’ut)} (3.2.3)
£t Ve
subject to
xt+léft(xt,wt.ut) (3.2.4)

by choosing functions Yt Yt - UT where Y. € Yt is defined by

Y, = (zt,...,zo,ut_l,...,uo) (3.2.5)
and

Z, = gt(xt,vt) . (3.2.6)
Assume that xo'wo"'°'wT-l’Vo""’VT-l are independent random

variables.

, ‘ : "
Define the augmented state variable-xt by

2"
X, = (xt,yt) (3.2.7)

- a new system equation by

n Ny ) :

Xep1 = %t(xt'wt7Yt) = G i) Gy (B Grpwiivy) v 1)
) (3.2.8)
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where w, = (w

e ). Let the cost be determined by

t+l

B, (% =h
tmtmt)- tmgug . (3.2.9)

This problem can now be rewritten

min E{ z h (x 'ay )} (3.2.10)
: £=0 t
u,. € U
t
subject to
a¥)
X1 “t‘t(xt,wt,ut) (3.2.11)

by choosing functions Yt Xt X Yt +'Ut such that Yt((xé’yt)) =

" tooom .
yt((xt,yt)) for all X.r X, 1In Xt

Clearly this last restriction defines Pt and (3.2.10) and (3.2.11)
are already in the form of the BP. Note again that we require Ye to be

Borel measurable.

Example 3.2.3 Linear Decentralized Control with Soft Constraints

The problem is to

1' 1 1. 2' .2 2 ’
mlplml%? E{ Zo(xtQ x, +up Rtut +ug Rtut)} (3.2.12)
uz?, u.
t t 2
(R = RT = 0)
subject to
- 1 l 2 2
xt+l Atxt + Bt t t N + ct (3.2.13)
and
]
E{x,D.x } < at (3.2.14)

by choosing linear functions Yt= Yt > Ut' Yi‘ Yi > Ui

1 1 2 2 .
where Yt € yt and yt € Yt are given by:

1 1. .1 .
Y. = Ctx£ +_et (3.2.15)
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2 .

1 2 2 . ,
T=1' @o""'eT-l are independent

1
Assume that xo’co""’cT—l' eo,...,e
random variables.
Since Yt and Yi are linear functions they can be characterized

by matrices Gt and Gi, thus equation (3.2.13) can be rewritten

l 2 l l 2
t

X =A X + B G C G, C x G, © t e + Ct . (3.2.17)

1 2
t+l tt t tt tt t t

Thus the structural constraint that Yt and Yi be linear has been in-
corporated into the system dynamics. Equation (3.2.14) is obviously
equivalent to

1
B{d -x_D_x.12>0. (3.2.18)

But equations (3.2.12), (3.2.17) and (3.2.18) are obviously in the
. _ ;.1 .2
form of the BP with I'_ = {(Gt,Gt)}-

Example 3.2.4 Estimation Here we are given a system and allowed

to make noisy measurements

Xepp = Felrprwy) t=0,...,T-1 (3.2.19)

Yo = 9 .(x v) . (3.2.20)

The problem is to develop an estimate it of the state based on the
measurements (yo,...,yt) so as to N
. T ) ' ‘
minimize E{ I ||x -xé[ }o. (3.2.21)
— t
t=0
Since an optimal estimator is usually quite difficult to determine a
suboptimal (but hopefully goed) estimator is often used. A common one

is

xt+l = ft(xt,wt) + Ht(yt - gt(xt,vt)) t =0,...,T=1 (3.2.22)




57

where ;; = E{wt}, ;; = E {vt} and {Ht} is a sequence of matrices

which map X, into Y_. The optimization problem is to choose {HE}

SO as to perform the minimization in (3.2.21). We assume that
Vo""vT-l’ wo""’wT-l are independent random variables.
This problem is easily put into the form of the BP by augmenting

the state X, with x,_ and letting I, = {Ht}.

Example'3.2.5 Communications

Consider a communication problem in which it is desired to send a
message~(xo) over a noisy channel. We require that the encoding and
decoding be recursive, that is, the transmission at time t, denoted
2y, depends only on X, and Zo_yv and the estimate of X, at time t,
denoted xt depends only on xt—l and Yt-l =-zt_1 + Vt_l, where
vo,...,vT are the independent random variables:representing the channel
noise. We wish.to~minimize||iT-x°jF subject to the constraint that
T-1 2 - .

Z ||z ” < 1. Assume x_is given.

t=0 t - [@]

This problem can be put in the BP form as follows: choose'qt and

ft' t=0,...,T-1 so as to
0 .« . - -~ ' - -
minimize E{(x° xT) I(xo xT)} (3.2.23)
subject to
x ] [x ]
~ ° °
Zrel qp (xgr2e)
n, L [a ") n,
Keop = Vo] =lz + v = %’t(xt,w;yt) (3.2.24)
el LI
Perr)  [Pe T %eIZ

where -
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1 u z_d

I(u,d) = (3.2.27)
0 u §'d

" 1 u=4d

I(u,d) = . (3.2.28)
0 u #d

Note that this example illustrates two features of this pioblem
formulation.
(i) it is possible to include non-additive cost function by
augumenting the state dynamics, and
(ii) it is possible to. handle "global" constraints (that is,
constraints which affect:staté and/or control variables at
several time instances) by augmenting the state dynamics.
Of course augmenting the state dynamics increases the complexity but it
allo&s oﬁe to handle much more sophisticated problems.

Example 3.2.6 Control with Information Constraints In decentral-

ized control problems it is interesting to consider situations in
which each controller is allowed to act not only on local information
but also on some delayed information from other controllers and/or

observers [Wit 1]. The problem here is

T .
minimize E{ T h_(x_,u 7...,u"}1} (3.2.29)
3 ; _ tTt Tt t
ul ¢ ut t=0
t t
subject to
X, . = £_(x_ur Nwu) t=o0 T-1 (3.2.30)
e+l e Ko t,...,ut, £ : feeay 2.
by selecting functions gt, t=0,...,71, i=1,...,N which map the

. , . i . . . .
information set I_ into control values u_. The information set consists

t

- of observations y_ and controls ui available to controller i at time t

A & o H




from any of the K observers and N controllers.
This is obviously in the BP formulation Pt is identified with the

set of Borel measurable maps from It into Ut.

Section 3.3 Comparison with Other Formulations

The basic problem formulation is based on the "Standard Form" of
- Witsenhausen [Wit 2] since the unconditional probability measufe is
used asvth;'"state". There are two basic differences:

(i) We allow explicit state space constraints (the operaticnal

constraints of Section 3.1), and

(ii) We use the state evolution equation introduced in the finite-

state, finite-memory problem of Sandell [San 1].

The first difference precludes the use of the minimum principles
developed in [Wit 2] and [San 1]. This requires us to. make certain
dﬁﬁmmmMHWammrmmuﬁywm@ﬁmsmucumtmminme
discrete-state formulation of [San 1]. The second difference allows us
(as it did sandell) to extend the results derived for finite time
horizon problems to infinite time horizon problems. This will be con-
sidered in Chapter IV.

The extension of this formulation to a vector valued cost criterion
can be considered as a problem with several teams, each of which have
their own cost criterion. Howevé;, we assume that the teams are

v
cooperating and thus the game formulation of Castanon [Cas 1] does not

arise.

Section 3.4 Relationship to Dynamic Programming
In this section we convert the minimum principle in [Wit 2] (as

formulated in [San 1]) to a maximum principle applicable to our basic
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problem formulation. The extension is very straightforward and involves
primarily a change of notation. - We then showvthat this maximum princi-
ple is strongly related to the dynamic programming algorithm. To do
all of this requires that we restrict our attention to the following

unconstrained version of the EDP introduced in Section 3.0.

T
z *
min <h, (y,),7m > (3.4.1)
yer t=0 t tt
subject to
ﬂt+l = Pt(yt)nt t=20,...,T-1 | (3.4.2)
LA given.

Define the forced adjoint (or costate) equation by

%
* * *
b =P YO .~ B (v 6, F -hy O (3.4.3)

: * %
Note that this is a functional difference equation since ¢t € Ht.

Lemma 3.3.1 Let y = (Yo""'YT-l) be given and let the correspond-
ing states and costates be given by equations (3.4.2) and (3.4.3)

where Ty is also assumed given. Then

* * .
<¢tl“t> = = th<hT(YT)IﬁT> (3.4.4)

Proof: By backward induction. Equatioﬁt(3.4;4) obviously holds

for £ = T, so assume it holds for an arbitrary t < T. Then

%

. I * '
byl = Penplye ) — B (v )T g7 (3.4.5)

* *
b P () Teg> = B (e )My

* *
= 9pme> T SR (v e g

*
-t£t<ht(YT)'WT> !
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so that (3.4.4) also holds for t-l. Thus‘(3.4.4) is valid for

t=0,...,T.

Theorem 3.4.1 If § = (?o, ) is. optimal in the problem

¥y

defined by equations (3.4.1l) and (3.4.2) for a given "o’ and the corres-

ponding states and costates (generated by equations (3.4.2) and (3.4.3))

~ 4\*
are denoted “t and ¢t then

* * -
<Pt (Yt) q’t+1 t+l (Yt+1) “ >z <P o )¢t+l 1'1t+]. (,Yt)’"t> (3.4.6)
Wy e T,
. V= (Y > iy .. iy 1
Proof: Let v (Yo"°"Yt-l'Yt’Yt+l' 'YT—l) and let Wt and

*
¢t' denote the corresponding states and costates. Note that

T = T=0,...,t (3.4.7)
T T
since ﬂt”depends only on Yo""'Yt-l,and note that
et 3.4.8
= = t+l,..., .4.
LI | T 1;1 T ( )

) *
since ¢t depends only on Yt+l""’YT’ Let

Ak L 1 *
Tp = =<boiip . dL = =<ontm L . (3.4.9)

From Lemma 3.4.1 and the optimality of Y one has

I, <3 . (3.4.10)

By the definition of y' and equation (3.4.10)

*
Zt<h (Y ), wT> 3 £t<hT(YT ),nT> . (3.4.11).

which by Lemma 3.4.1 is just

<¢t,nt> > <¢ t'>. (3.4.12)

Now equations (3.4.3), (3.4.7) and (3.4.8) imply

<¢.1r>><P (Y)¢

* -
t g4l T Pear V) My Vg e T - (3.4.13)

t
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Clearly (3.4.13) implies (3.4.6).

While we are interested in problems which are noﬁ readily handled
by étandard dynamic programming techniques it is interesﬁing to note
that Theorem 3.4.1 leads to Bellman's equation for two interesting
problems. Before showing that this is the case however, we need to
make two points. The first is that Theorem 3.4.1 is only a necessary
condition of optimality while dynamic’programming yields necesséry and
sufficient condition for optimality. Thus our derivation of Bellman's
equation yields only a necessary condition of optimality.

The second point is that our derivation is a formal one. For
example, we will, to facilitate compa;ison with standard results, assume
that probability densities exist. Furthermore we wi;l manipulate
equations without providing justification of a measure theoretic nature.
Note, however, that such justifications are needed (and provided in
[Bext 1]) in any derivation of the dynamic programming algorithm. Thus,
with a great deal of effort, it is possible to provide mathematically
rigorous justification (under very mild assumptions) for all the steps
in thé following derivations. |

Example 3.4.1 Consider the following problem: choocse a sequence

of functions Yet X, - UT so as to

t
minimize E { E ht(xt,ut)} (3.4.14)
+=0
subject to
xt+1 = ft(xt’wt'ut)' t=20,...,T-1 (3.4.15)
where . = Yﬁ(xt)’ a probability measure T for the state xo'is given,
and wb,...,wT_l'are independent random variables. An equivalent
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deterministic problem is given by

T *
minimize Z <h_(y I,ﬂt>. (3.4.16)
R e I +=0 t t
Ye t
subject to '
Teel = Pt(Yt)"t, t=0,...,T7-1, (3.4.17)

where “o is given.
It will be shown in Section 3.7 that since hT(xT) is Borel measur-

able and since

(dx_ .) (3.4.18)

qlx) = Sp G lxvm

t+1 t+1 £+l

is Borel measurable the costate variables defined by (3.4.3) are such

that

<¢t,vt> = JT¢t<xt)wt(dxt) (3.4.19)

where:¢t(xt) is a Borel measurable function. Thus if probability

densities pt(x ) ,. corresponding to the probability measures m,_, exist

t

then Theorem 3.4.1 becomes

1% | x ,Yt)dx -hy (x,5¥,) 1B, (x,)dx, (3.4.20)

e+l Feap ) Pe ey e+l e X

= max {f[f $

by |y dax,  -h Gy ) 1D (e )ax, )

41 Frar) Be By e+1 e By

=me‘[f¢u1(u1mtmtu
u €U

t t

| = g9 X (xpu) I e )dx,

and ?t

but by equation (3.4.3) and the definition of Gt

¢t(xt) = min {/-¢

ute Ut

| x prag)dx R (x,u) ) (3.4.21)

e+l Fep1Pe Ky e+l e KUy

which is exactly Bellman's equation for stochastic dynamic programming

in the case of noiseless observations [Bert 2] with ¢ ) the

t+l e+l




expected cost-to-go from xt+l'
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Example 3.4.2 Consider the following problem: choose a sequence

of functions Yt Xt X Yo:x...x Yt - Ut such that

Yt(xt,yo.-.-,yt) = Yt(xt ,yo,---,yt) th,xt e X,
so as to
. 3 ] T ) t
minimize E{tEO ht(xt,u = v (XY 1)}
subject to
xt+l = ft(xtlwtrutl t = O"."T-l

. t
where u, =y _(x,_,y") and
t
Y= (ygseee0yy)
and

Yo = Ie(xrvy)

and w ,...,w are independent random variables.

o l' T—l

An equivalent deterministic problem is:
Il I . » T *
< >
mln:m;ze tzo ht(Yt),Wt
Te t
subject to

Terr = Pplrgdme

(3.4.22)

(3.4.23)

(3.4.24)

(3.4.25)

(3.4.26)

(3.4.27)

(3.4.28)

where ﬂo is given and equation (3.4.28) is a recursive equation for

probability measures corresponding to the augmented states (xt,yt).

Assuming that probability densities exist, Theorem 3.4.1 becomes,

for this example,

t+l t +1

IIrrd

e+1’Y

41 O t+1'y )pt(x

(x IY de dY‘=

ey ,Yt)dxt+l -ht(xt;Yt)]
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t+l

. e+l t+l{ _t
max ﬂTﬂj¢ (xt+er ‘ )Pt(xt+er lxt’y 'Yt)dxt+ldy

-ht(xt;Yt)]‘l
EFt

t+1
Ye

_ t t
Pt(xt,y )dxtdY

t+1 £+l t t+1
umaxu[f£m$t+l(xt+l,y )P (X g0y X ey suddx Ldy; T-h(x,up )]
t® ¢
A t O R -
o pt(xtly Yax, 1B, (v )dy ’ (3.4.29)
Now
. t+1 t ~ t t+1l, t X
L (kY Xy )b x|y =B Gy |Yoauy) (3.4.30)
and
fh(x_,u)p, (x, |yTrax, = E(h, (x,_,u) |y ,u,} (3.4.31)
1A S A A t £t e Tt - i

and also note that

t+l,_t t+l €
y |y eu

p, x|y .y e, T yS )
£ Tt+l A e e

PeRpyy s £)
_ t+1 t+l, t
=p x|y su)p (v |y ey (3.4.32)

so that (3.4.29) becomes

2 t+1 t+1 t .
fomax (B8, (ke 0¥ P (ke ly supax, o -h Geee) |yl
u_eU
t t
~ t
B yDay" . (3.4.33)
Now let
2 t n £t~ t
T (P e |¥)) = =fé ) (k¥ )P (x |y ) dxy (3.4.34)

which is clearly the expected cost-to-go given that the observations have

implied a conditional density pt(xt|yt). Thus equation (3.4.3) implies
that

3 (p,_(x iyt)).= min E{J (p,_(x |yt u,))+h (x u:)iyt u, }

£ttt t+1 e e e {h e

u el
(3.4.35)
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which is Bellman's equation for stochastic dynamic programming with
imperfect state information [Bert 2].

Theorem 3.4.1 thus subsumes the. necessary conditions of dynamic
programming when the problem is such that dynamic programming is
applicable. 1In cases where the problem has structural constraints
dynamic programming is not readily applied; we shall see in the. next

sections that Theorem 3.4.1 and its generalization are still applicable.

Section 3.5 A.Maximum Principle -

In this section we shall derive a maximum principle for the basic
problem. As might be expected from the development in Chapter II some
assumptions must be made about the nature of the sets and functions in
the BP.

Consider the following problem:

o T ‘
minimize E{ Z ht(xt,yt)}; hT(xT)=é hT(xT,YT) (3.5.1)
Y. eT t=0
€ t
subject to
xt+l = ft(xt,wt;yt) t=0,...,T7-1 | (3.5.2)
and
E{gt(xt)} e K, t=1,...,T (3.5.3)
E{rt(xt)} =0 t=1,...,T (3.5.4)
17 tha ng me o Ly
X - = H > =
Recall t X, € Xt R -, wt € Wt R , V! Xt £ R -, |
kt . . ke .
g,: X_-+R ~, K is the closed positive orthant inlR , r_,: X_->R ,
t t t t t
+ .
ht: Xt X Pt + R, ft: xt x Wt X Ft +'Xt+1 gnd Pt is a set of Borel

n 2
measurable mappings from R € into R‘t. All the measurability assump-

tions of Section 3.1 are assumed to hold.

Recall that an equivalent deterministic problem corresponding to




67

‘equations (3.5.1) through (3.5.4) exists and is given by:

*

mifzm%ze t£0<ht(yt),wt> (3.5.5)
subject to
eey = PeOrTL £=0,...,7=1 (3.5.6)
G, € K, £=1,...,T (3.5.7)
RT, =0 t=1,...,T - (3.5.8)

The following generalization of convexity [DaC 1] will be needed
in what follows. Note that it is a weaker notion than convexity in
that it is implied by but does not imply convexity.

Let P be a convex cone in X. A subset S of X is P-directionally

convex if, for every x. and X, in S and A ¢ [0,1], there exists an

1
x(\) € P such that

Axl + (l-k)x2 + x(A) € S ' (3.5.9)

Let Mt denoteithe set of all measures in Te which are probability
measures. Let M* be the polar cone for M (that is M* = {m* ¢ II*|<m*,m>
> 0, \fm.e M}). Note that M* is a convex cone and M is.a convex:':

set.

Define, for £t = 0,...,T=1, the set
, _ e R YD e T
Ft (I't) = {(n*,p) g II* x-B(lIt,Ht+l) l<1r*,1=> = (ht(th'gt(’{Q.)Y'tEPt} (3.5.10)

*
and let FT = (ht,O).

! )
Assumption 3.5.1 The set Ft(Ft) is (-Mt,g)-directionally convex,

t=0,...,T-1.
This implies that

(i) Pt(rt) is a convex set, and
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(ii) if, for any Y;, Y; € Pt, Yt(X) is such that

Py ()= AP (y) + (1-A)P ()
then g (3.5.11)
* 1 * " %
Kht(Yt) + (l-k)ht(Yt) - ht(Yt(X)) £ M*.
Define: the:. set Ft(Ft)wt by - (3.5.12)

F (T = {7 ) eRxT

*
rY =2 <, W >,T
IMerl I rhe

t+1 t+1

Lemma 3.5.1 If F_(T,) is (-M},0)-directionally convex then

_Ft(l‘t)wt is (-1,0)-directionally convex for all T, e M.

Proof: Let z_ ¢ F£(Pt) be denoted (r*,P) By assumption for any

t t’
zt,...zt € Rt(rt) and A £ [0,1] there exists zt‘k) such that

»* 1 - * " %*
Alr™,P) L+ (1=A) (m B+ (m A,y e Ft(Ft) (3.5.13)

*

i Thus, since 7, ¢ M

S *
where 7 (A) € =M " £

* L - * " ’*4 B o \
Almw .P)twt_+ (1=A) (m ’P)t"t‘+ (q.(l),Q)tﬁtte gt(zt)wt (3.5.14)

implies that, for some Bt >0

* ] * "
Adm ,P)twt + (1=-2) (w ,P)tTrt + Bt(-l,g) € Ft(I't)'rrt (3.5.15)
that is, Ft(rt)wt is (-1,0)-directionally convex for all ﬂt € Mt'
o .1
Let VT <hT,wT> and let vt‘e Ft(I't)Trt be denoted (vt,vt) where
0 1 . .
Ve € R and vy € IIt+1f Let z € Z be defined by
2 =‘(nt,...,wT,vo,...,vT) (3.5.16)
where
zZ = Hl X...X HT xR x Hl X...X R x IIT x R. (3.5.17)
Define the affine map T from Z into I} x...x HT by
TV
Tz = - , o (3.5.18)
T -V

*oy
='Pwt,(nLP);a Et(Pt)}
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e e
R: Z2-+R L X...X R T by

Rz = [lel,...,RTnT] (3.5.19)
and let st be defined by
S, = {“tht“t e K.}, t=1,...,T (3.5.20)

It is now possible to rewrite problem (3.5.5) (hereafter a problem

is referred to by the equation number of the cost. function) as:

minimize £(z) = T (3.5.21)
z € Q t=0 F
subject to
Tz = 0, Rz =0 ' (3.5.22)
where
Q= {zITrt € St,.tv=1l,...,T, vt € Ft(rty"tf t=20,...,T}. (3.5.23)

Note that R(T) = @I, X...X HT’ that is, R(T) is closed. Thus Problem

1
(3.5.21) is now in a form to which the theorems of Chapter II can be
applied. Since a conical approximation to Q is not easily found we
shall (following [Ca 1) intioduce another set Q' for which a conical
approximation can be determined. It will be shown that this set satisfies
the assumptions of Corollary 2.1.4 and thus the results of Theorem 2.1.2
hold with @ replaced Q'.

Let Q' be defined by . -

Q' = {z|r_esS_, t=1,...,T, v, e cOF_(T)m),t = 0,...,T}. -(3.5.24)

t

If z = (nl,...,wT,vo,...,vT) € Q' then, since F_(T )w_ is (~1,0)-

t 'ttt
. . . N N1 1
directionally convex, there exists v_ € F_(T_)w_ such that v_ = v
t t 'ttt t t
o o Y N ~
and v, ﬁ_vt, t =0,...,T. Thus if z = (nl,...,wT,vo,...,vT) then

Tg = Tz, Rg = Rz and f(g)_i f(z). This implies that Q' satisfies the
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the hypothesis of Corollary 2.1.4, witﬁ respect to the set 2 and T and
R as defined in equations (3.5.18) and (3.5.19).

Assume that z is an optimal solution to problem (3.5.21). We now
show that a conical.approximation to Q' exists at z.

Lemma 3.5.2 Let C(z,Q') be defined by
C(2,8") = {82 = (87 ,...,8m ,8v ..., 8v ) |dm e IC(T ,S), € = 1,...,T,

5V£ -'Ft(y)cSTrt € RC(vtfco(Et(rt)ﬁt))' t=20,...,T ‘ ' (3.5.25)

then C(%,Q') is a conical approximation to Q' at z where Q' is defined
in (3.5.24). (IC(-,-) is defined in equation (2.3.2) and RC(:,*) is
defined in equation (2.2.9)).

Proof: Recall that IC (%t,st) is’a coniqal approximation to St
at %t and that Rc(;t'co(Ft(rt)%t)) is a conical approximation to
co(Ft(Pt)wt) since it is convex. It is eésy to verify that C(z,Q') is

a convex cone, thus we need only show that for any finite set of inde-

pendent vectors {Gzl,...,dzl} there exists an € > 0 such that

zZ + 8z Q' Ysz e co ( '6zl,...,.:az ). (3.5.26)

L

). Since IC(-,*) and RC(-,-)

Let sz = (Gwlj,...,GWT,SvOj,...,Gv

TJ

are conical approximations there exists an g¢* > 0 such that, for

t = l' . e 'T,V6‘~Er [016*]

L the:StKVSﬁt e-co(swtl,...,antl) (3.5.27)
and, for £t = 0,...,7, Ve e [0,e*]
Ve + (&vt-Ft(Yt)Gﬂt) € co(Ft(I't))Trt (3.5.28)

\/(SVt-Ft(yt)dwt) € CO(8V 1 =F (Y ) 8T vy Vo, ~F (Y )67 ,).

. ) 4
That is, for all a; > 0, 1=1,...,2 such that I a, < 1,
- i=1 7
- ¥ oas S t =1
Te ¥ ojE %%Mes 8 Sy B S LT (3.5.29)
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2: -~ ' - -~
v, + * T a -Ft(yt)éwti) € CO (Ft(rt))ﬂt, t=0,...,T,

£ o 10
(3.5.29)
or
T+ *T (@) € S, t=1,...,T (3.5.30)

G+ %v (@) £ O (T))T, + *F oM (@)

€ CO(F (T )) (M, + *T (@), t=0,...,T
(3.5.31)
where a = (al,...,al).

But then ¢* is such that z = z + §z € Q' for all §zeco( 8zy,..., 62))

since z = z + 8§z is such that the corresponding T, = ﬁt +m. and

v, =V, + th satisfy T, € St’ t=1,...,T and v, € co(Ft(rt))wt,

o
0

' 0,...,T, thus C(z,2') is a conical approximation to the set Q' at

All the requirements of Corollary 2.1.4 are now satisfied, thus

we can apply Theorem 2.1.2 using Q°'.

N N AV ' ' e =
Let K} be the dual cone to K, where K _ = {y|]3 e8>0 3y G, T, € Kt}

Theorem 3.5.1 (Maximum Principle)

If vy = (?o,...,?T_l) is optimal in problem (3.5.5), Assumption

3.5.1 holds and (%o,...,ﬁT) is the corresponding "state" trajectory,

* * Lk Vg
£ € Ht, vectors kt e K

then there exist costates ($:,...'$;), $ +

, a
* Cr_*
scalar A < O, and vectors wt € (R '] , not all zero,.such that:

w;,~t=m-1,...,o, (3.5.32)

(1) 8% = PR(3,)85, + Anp(¥y) + Gk} + R]

.. n *, k| ok ok

(iii) <k*,G.#.>=0, t =1,...,T  (3.5.34)
. A 7 -~ n* ~ .A* = _
(iv) H (Fo Y88, 2B Mool ) Yy el £=0,...,11
(3.5.35)

where
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~ “ % _ * - ~dk ~

Proof: For the full proof see Appendix C. We outline that
proof here.

(i) if R, is not surjective or if Gt is not positively linearly

independent in the rows. corresponding to Gt%t'=’0 then the

Theorem follows trivially. Under the opposite. assumption

(3.5.34) holds.

(ii) Corollary 2.1.4 implies the existence of A < O, 3; € H;

= C+_ *
and wt e:ﬂRhF] not all zero such that

T 5 o T-1 Ade 1 T * A '
- - v o< .
xtzo ve + t~£0 < ¢t+l'6"t+l svt> + tzo tbt,RtSwt> <0 Va; e C(z,0")

(3.5.37)

(iii)  if 6z = (0,...,0,6v_,0,...,) € c(z,2%),t = 0,...,T-L then

9 4 <p*
Ave L

,8vE> < 0 Vv, e RC(F,,co(F, (T ))T,) (3.5.38)
. this, and ‘properties &f radial cones implies.(3:5.35).
(iv) if §z = (0,...,0,87,0,...,0,8v,) where év, = h 67 , then
(3.5.37) plus Theorem 2.3.5 implies (3.5.33) and
(v) if 8z = (0,...,th,o,...,o,avt,o,...,O), t =0,...,T7T-1 where
| F(Yg)om = 8v, (3.5.39)
then (3.5.37) plus Theorem 2.3.5 implies (3.5.32).
We note the following about Theorem 3.5.1.
1) We have assumed that Kt is the positive orthant in Rkt, thus
Kt is the set of vectors the components of which are each greater than
or equal to zero. This assumption is used in the derivation of equa-
tion (3.5.34) |
2) No differentiability assumptions have been made about the

r

original problem (problem 3}5.1). . In fact, the functions ft’ ht' N
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and gy need not even be continuous with respect to Xy - Of course,
severe restrictions are placed on ft and ht by the convexity assumption
(Assumpticn 3.5.1).

3) Assumption 3.5.1 corresponds to the directional convexity
assumptions of [Ca 1] which are usually placed on the reachable sets.
Since the equations of the EDP are linear in T convexity of the

reachable set corresponding to any one wm_ implies the convexity of the

reachable set for all wt's. Thus Assumption 3.5.1 is in terms of Ye

t

only.
4) Note that Q and Q' do not contain any interior points since
My does not. This is why it was important in Chapter II to consider
sets which contain no interior points (that is, which do not satisfy
the conditians of Corollary 2.1.1 or 2.2.2).
The following corollaries consider various sets of assumptions:
under which the results of Theorem 3.5.1 can be strengthened or extended.
et G.: I, »RT be d d int ¢t 1 -m, i=1 K
£ ¢ TR e decomposed into maps G, : " , 1 reeeky
i, I i i, in
and let {Gt} be the set of maps such that‘Gt € {Gt} implies Gtﬁt = 0.
Let Kt = {r elR|r > 0}. Note that for this decomposition of K.,
Kt-linear independence is equivalent to positive linear independence.

Corollary 3.5.1 If, in addition to the assumptions of Theorem

3.5.1, the following hold:

(1) R, is surjective, t =1,...,T, and
1

(i1) {Gt} are positively linearly independent, then the results_aff

Thearem3.5.1held and (¢7, ..., ¢) /A, (q;’i,...,qa;) are not all zero.
Proof: Follows immediately from the proof of Theorem 3.5.1.

0, t=1,...,T then Theorem

Corollary 3.5.2 1If Rt = 0 and Gt

3.5.1 holds with A = =1.
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Proof: If not, $; 2 0 and thus, by equation (3.5.32) $z =0,
t =0,...,T-1. But this contradicts the existence of a nonzero multi-
plier. Thus X < 0 and clearly all $; can be normalized so that A = -1.
If Kt is not the poSitive orthant then Theorem 3.5.1 and Corollary
3.5.1 do not hold. The reason is that an active constraint need not
have the form Gtﬁt = 0, rather an active cohstraint is one for which
G.T, € 3K,.

£/GT> 2 0,

Corollary 3.5.3 If equation (3.5.34) is replaced by <k
t=1,...,7, R(G,) is closed and X_ CR(G,), then Theorem 3.5.1 holds
for any set of closed convex cones {Kt} such that int Kt'# o.

Proof: Follows from the proof of Theorem 3.5.1 and Theorem 2.3.2.

Corollary 3.5.4 If

(i) Rt is surjective, t = 1,...,T, and

(ii) éither-Gt is Kt-linearly independent or Gt%t € int Kt'
t =1,...,T, then Corollary 3.5.3 holds and ($:,.J.,$;),A,
(WI:---r¢;) are not all zero.
Proof: Follows from the proof of Theorem 3.5.1.
The assumption that Gt has its range in a finite dimensional space
 is inessential. Theorem 2.1.2 which was used in the proof of Theorem
3.5.1 is valid if Gt has its range in any Banach space. Of course the
function gt(xt) corresponding to Gt must be measurable, thus the range
of = must be in a measurable space. But Borel sets alwaYs exist in
a Banach space (they are generated by the spﬁeres with rational radii),

thus it is meaningful to require that gt(xt) be Borel measurable.

Corollary 3.5.5 Theorem 3.5.1 and Corollaries 3.5.1 through 3.5.4

hold if I.: xt +-Yt is a Borel measurable function and Yt is a Banach

space.
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Proof: As above.

Corollary'3.5.5 is interesting because £_ is a Banach space and
its positive orthant has a nonempty interior. Thus it is possible to-
consider a problem with acbuntaukyinfinite number of inequality

constraints.

Section 3.6 Another Optimality Condition

In Section 3.5 we had to make Assumption 3.5.1 to derive Theorem
3.5.1. It is, of course, a very restrictive assumption and it is the
purpose of this section to consider a weaker result that can be
derived under different conditions.

Recall that the EDP is:

T

minimize & <h.,(8.),m. > (3.6.1)
= £V e

yeTl
subject to

Wt+l = Pt(Yt)wt t=0,...,T-1 (3.6.2)

Gt"t € Kt ; t=1,...,T (3.6.3)

Rt"t =0 t=1,...,T (3.6.4)

where all the sets and functions are as in problem (3.5.5).
We make the following assumptions.

Assumption 3.6.1 The functionals h;(yt), t =0,...,7-1 and the

linear operators Pt(#t), t=20,...,T-1 are continuocusly Frechet differ-

entiable on T t=20,...,T=-1.

tl
Note that this is a condition on the EDP. Later in this chapter

we will consider this assumption in terms of the BP.

Assumption 3.6.2 The sets Ft, t =0,...,T~1 each lie in a Banach

space Gt’ £ =0,...,7-1 and each set satisfies at least one of the follow-

ing conditions:
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(i) Pt contains a convex set A, such that int At # ¢, or

t
(ii) Ft contains a set Bt such that if ?t + GYt € Bt then there

exists an 6;,> 0 and an a; > 0 such that

- } * *
Y + €8y +8T,) € B, Yec [0.€5], v‘sct € S(0,a}) . (3.6.5)

Let us consider for a moment the assumption that Pt C:Gt where Gt
is a Banach space. We shall see that this is always true if we slightly
modity the set T..

Let nt(yt,ﬁt) be a probability measure on Ut defined by

e (resm) (B) = m ({x|y, (x) € BD) (3.6.6)
where B is any Borel set in Xt and Ye € Ft’ where Pt is an arbitrary set
in the space M(xt’Ut) of Borel measurable mappings from Xt into Ut‘

Let.N(m) = {g, & M(X_,U) I_wt({xl lz. ) || > b =0, Va >0}. me
set N(wt) induces equivalence classes in M(XtyUT) if Y, and—y2 in

M(Xt,Ut) are said to be equivalent whenever Yy " Yy € N(nt), this will

2
be denoted Yl = Yoo
If e} = Yy then [Du 1, Definition 3.2.13]

wt({lel(x) e B}) = nt({xlyz(x) e B}) (3.6.8)

for any Borel set B. Thus

The mapping (I,yt), where I is the identity mép in x,'thus induces a

unique probability measure on xt.x'UT for all equivalent Ye- Then

ft(xt’wt’ut) induces a unique probability measure Teypp OR Xt+l for all

equivalent Yo

By [Du 1, Theorem 3.6.5] M(Xt,Ut)/N(wt) is a Banach space if the

norm is defined by
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|£]] = inf arctan {a + ™ ({x||£x)] > a}.wt)} (3.6.7)
a>0 e

where TV (E,m) is the total variation [Du 1, page 97] of the set E with
respect to measure w. Note that the principle value of the arctan is
used in equation (3.6.7).

Thus*Pt/N(wt) lies in a Banach space. Note that restricting
attention to Ye e‘Ft/N(wﬁ) does not change the cost associated with
problem (3.6.1l) so this substitution is innocuous. Thus, without loss
of generality, we may always assume that Pt lies in a Banach space Gt'

Note, however, that it is not always advantageous to take Gt as
the space just defined. 1If, for example, Pt is a subset of continucus
linear maps then int Ft = ¢ if Gt is taken to be M(xt’Ut)/Nt("t)'
However Pt may have interior points when considered as a set in the
closed subspace.B(xt,Ut) of M(Xt,Ut)/N(wt).

For notational convenience we shail continue to write Tt even
when it refers to an equivalence class of functions.

The purpose of Assumption 3.6.2 is to allow us to construct conical

approximations of a type that will allow us to apply Theorem 2.2.1.
Clearly if part (i) holds then a conical approximation exists which
satisfies Corollary 2.2.1 (where, if Ft is convex we take At = Ft).
If part (ii) holds then there exists a conical approximation satisfying
Corollary 2.2.2. For the:remainder of this section we shall assume that
any conical approximation to Pt at ?t is constructed so as to satisfy
Corollary 2.2.1 or Corollary 2.2.2.

To transform problem (3.6.1) into a form to which Theorem 2.2.1

can be applied we need only define

z = (ﬂl,...,wT,yo,...,yT_l) (3.6.9)
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Z = Hl X...X HT X Po X...X rT—l (3.6.10)
R(z) = [R T ..,RTwT] (3.6.11)
L " -‘?O(Yo)wo
T(Z) = : (3.6.12)
Te = Py Yoy Mg
s, = {wtlctwt e K.} t=1,...,T (3.6.13)
= * - . ‘
£(=z) tio <ht(Yt),“t> (3.6.14)
and Q= Slvx...x ST X Fo X...X rT—l (3.6.15)
Problem (3.6.1) can now be written
minimize £ (z) ’ (3.6.16)
z e Q
subject to
T(z) =0 Rz =0 (3.6.17)

Note that C(z,R) = IC(wl,Sl) X...X IC(wT,ST) X C(Yo,rb) X...X C(YT_l,TT_l)

is a conical approximation to Q at z.
Recall that R(VT(x)) must be closed to be able to apply Theorem

2.2.1 to problem (3.6.16). But VT(z) is given by

[ 1 0 0 =7 P_(Y,)", 0 0

2, (y)) I 0. . .0 N AL 0...0

_ Pronf¥ey? T 0 “VyPr-1 V) Mg
(3.6.18)

It is now clear that R(VT(z)) =1 x:..x:HT since for any

1

ny o V]
m —~(ﬂl,...,ﬂT) € Hl X...X HT one can choose

"%; - ('\: Ny +P (A
RS RAC SRS RS ]

") V] - n
T e Tty G g 0 ©) (3.6.19)
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so that 1 = T(g)g and thus R(VT(2)) is closed.
" The application of Theorem 2.2.1 (and Corollaries 2.2.1 and 2.2.2)
to problem 3.6.16) thus yields the following theorem:

Theorem 3.6.1 (Quasi:Maximum Principle)

If ; =-(?o,...,§T_l) is optimal in problem (3.6.l1l), Assumptions
3.6.1 and 3.6.2 hold and (%o,...,ﬁT) is the corresponding "state"
trajectory, then there exist costates (3:,...,3;), $; € H:, vectors

A ey *

k; € K;; ¢: e IR I, t=1,...,T and a scalar A < 0, not all zero and
conical approximations, c<§t,rt), to the set Pt at ?t, t=0,...,T=1

such that

. "*athf‘ * A ¥4 % % % = Me
(1) ¢t Pt(yt)¢t+l + kht(yt) + Gtkt + Rtwt’ t=T-1,...,0, (}.6.20)

. s g 3 = *a. % 4 * :
(ii) ¢T GTkT + RTwT + lhT (3.6.21)
ves * o~ - - . )
(iii) <kt,Gtﬁt> =0, & L...,T C . (3.6.22)
. A A A P — ' L
(iv) VY‘EHt("t'Yt'(bt*l) 8y, 20 VﬁYt € C(Yt,f't), £=0;44.,T=L- (3.6.23)
A ~ At N . . .
where Ht("t'Yt'¢t+l) is given in equation (3.5.36).

Proof: For the full proof see Appendix C. We outline that proof
here.

(1) 1if Rt is not surjective or if Gt is not positively linearly

independent in the rows corresponding to Gtﬁt = 0 then the

theorem follows trivially. Under the opposite assumption
(3.6.22) holds.
(ii) Theorem 2.2.1 implies the existence of a A < 0 and ¢; € HZ
* € *
and wt ellR H'ﬁn:all zero such that




80

T-1 . T-1 . . R .
A(tal{htﬂyt),éwt> + tEOSVYht(Yt)GYt,wt> + <hT6wT>) +
T * ) g N -~ A
1:,Ec)<‘1"c+3.'67r1;+'1 “ Polyom, = VR (Y )8y T >+
b A
tZl<wt,Rt61rt> 20 Véz_ e C(z,Q) (3.6.24)

(iii) if 82 = (0,...,6v,,0,...,0) € c(“z,m, t = 0,...,T-1 then
equation (3.6.23) follows,

(iv) if 6z = (0,...,0,6m_,0,...,0) € C(2,2), ¢ ;~o,...,fr-1

then Theorem 2.3.5 implies equaﬁion‘(3.6.20), and
(v) 4f §z= (0,...,0,8Tpy,...,0) € C(2,Q) then Theorem 2.3.5
implies equation (3.6.21).
We note the following about Theorem 3.6.1:

1) All the Corollaries of Theorem 3.5.1 also hold for Theorem
3.6.1 since they all deal with.conditions under which the Farkas~
Minkowski lemma (Theorem 2.3.5) hold.

2) 1If Pt is a Baﬁach space, then‘equation (3.6.23) clearly holds
with equality for all §Y -

3) Note that Assumption 3.6.2 requires that Ft have interior
points. We have seen that if Ft is the class of linear feedback laws
then this holds trivially. In many cases Ft will be a parameter set for
a class of feedback laws (e.g. matrices in linear laws, coefficients in
polynomical laws, etc.). In this Pt will have interior points if the
class of feedback laws is not "overparameterized", and thus it should
not.be too difficult a requirement to meet.

4) As was noted in section 2.5, Assumption 3.6.2 can be weakened
to a requirement that a conical approximation exists. However, the
proofs required to demonstrate this are significantly more complex‘than

those of Chapter II. We do not feel that the concomitant loss of
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clarity is justified in this case.

5) The requirement of Frechet differentiability in Assumption
3.6.1 is on the functionals and ﬁperators of the EDP. While this is
still much weaker than Assﬁmption 3.5.1, it is not easily checked.

We shall now consider a class of problems for which the require-

ment of Frechet differentiability can be stated on the BP. Recall that

the BP'is;
inimi { E h } h 6.25
minimize E 2o £ (Xpivy) ihn (Xoivp) 4 p (Xmp) - (3.6.25)
yeT
subject to
xt+l = ft(xt,wt;yt) t=0,...,T-1 ) (3.6.26)
and
E{gt(xt)} € K t=1,...,T (3.6.27)
E{rt(xt)} =0 | t=1,...,T. , (3.6.?8?

Also, He is the probability measure associated with the random variable
w_ so that the state transition stochastic kernel is given by
P (Blx vy = u (wlf (xw v) e BD) - (3.6.29)

for all Borel sets B in xt+l'

If ft(xt'wt;Yt) has the following form:

xt+l = ft(xt;yt) +»wt t=1,...,7-1 (3.6.3Q)
then (3.6.29) can be written
P, (Blx ivy) = é Meldx, o= £ (xivy)). (3.6.31)

If My has a correspdnding density pi then (3.6.31) becomes
w
P (Blx iv,) g Pplxy,g - E(xiy)ax, (3.6.32)

and we write (3.6.26) as
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Pryg Fppy) =)j; pt(xt,_,_]_lxt;*(,‘:)pt(xt)dxt (3.6.33)
t
or
[]
Prip Zegp) é Ppl®iyq ~ Fetxpiv)Ip (xp)dx, - (3.6.34)
t
Thus VYtPt(Yt)vt becomes
L B¥x . - £ (x.5v,))p, (x )dx (3.6.35)
A £ Y 1P X/ Ky -0
t

which, by [Rud 1, Theorem 9.42] can be written as

Y

Dol - £, (xivg) )P (R )X, (3.6.36)

/. z—pP .
dyt t e+l

X_“: |
if‘pz(xt+l - ft(xt;yt)) is a continuous function of Yi This is
certainly the case if ft(xt;yt)'is Fréchet differentiable with respect
to v, and if pué(x) is differentiable. Then (3.6.36) becomes

ey k- £ (x v ) ) £ (x5, )P, (X ')dxv (3.6.37)
thdXttﬂ eoel e dy, Te e e e e
by the Fréchet derivative chain rule (Theorem A.7.1).

Thus if He is twice differentiable, ft(xt,wt;yt) has the form
specified in equation (3.6.30) and if ft(xt;Yt) is Préchet differen-
‘tiable with respect to Yf' then Pt(Yt) is Frechet differentiable with
respect to Yi- If ht(xt;yt) is also Fréchet differentiable with respect
to v then Assumption 3.6.1 is satisfied.

Note that differéntiability of £_(x.;y,) and h _(x, ;y,) with respect
to'xt is not required, in fact continuity is not required. Also note
that Fréchet differentiability with respect to Ye implies nothing about
the continuity or differentiability of Yt(x).

By the definition of Frechet differentiability (section A.7) we have

that
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e . o
d‘r £ (xt,yt) Ad £ (x,_,ut1 (3.6.38)
=if(x Y (x.) +&8v, (x.)) (3.6.39)
d tl't 7t i o} e
e=0
=y (£,))8
=gs Ty, Yt(x ). (3.6.40)

thus we need only ;equlra that ht(xt’ut) and ft(xt’wt’ut) be differ-
entiable with respect to Y.
Thus we have:

Theorem 3.6.2 If in problem (3.6.25) the functions ht(xt’ut) and

ft(xt,wt,ut)(defined by equation (3.6.30)) are differentiable with res-—
pect to uy, the measures B, are twice differeﬁtiable and Assumption
.3.6.2 holds then the results of Theorem 3;6.1 follow.

Proof: Already given.

Corollary 3.6.1 If Pt.is a class of linear feedback laws for

which Assumption 3.6.2 holds then the LQG problem satiéfies the asSump-
tions of Theorem 3.6.1.

Proof: Since the.cost is quadratic in u,éht is differentiable, since
the dynamics are linear in ut’ft is differentiable and since He is
Gaussian it is twice differentiable. Theorem 3.6.2 then implies that

Corollary 3.6.1 holds.

Section.3.7.. Extension: and:Alternate. Derivation
In this section we consider slightly stronger versions of Theorems
3.5.1 and 3.6.1 as well as an alternative derivatiqn of these theorems.
One of the drawbacks of Theorems 3.5.1 and 3.6.1 is that, in.
general, a satisfactory representation of the continuous linear funq-
tionals on 1 is not available (Du 1, Section 4.15]. However, due to

the special étructure of those problems it is possible to give an
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effective rapresentation of ¢; if ht’ I, and r_ are bounded fugctions.

Note that we are distingquishing between ¢;, which is a functional
on Ht and ¢t(xt)which is a Borel measurable function oannt. For
example

» = .
<hp,Tp>>= [ hp(xp) T, (dx) - (3.7.1)

thus_h; is defined by an integral functional on HT with a kermel hT(xT)
which is Borel measurable. What we afe doing is shdwing that ¢t h&s
a similar representation and that Theorems 3.5.1 and 3.6.1 can be
wfiéten in texrms of these kernels.

Recall from Theorems 3.5.1 and 3.6.1 (specifically equations

(3.5.33) and (3.6.21)) that

d - * P * Kk .
¢ = AhT + Grkn + Robo (3.7.2)
* *: 21 ‘ L . . *
whera bT £ HT, GT' HT - R -, RT‘ HT,+1R , kT e [ R 7]
* L
and wT e (R "1 . Also,
P BTy = %
<GTkT,WT> <kT,GTwT> (3.7.3)
2
e Tt g (@x) (3.7.4)
jope ? I tEp) Ty e
T i i +
= (iilkTgT(xT))wT(de) (3.7.5)
and similarly é
<R*,y > = f (Fooiet e T ax) - (3.7.6 .
oV Tp pop T O T
Clearly '
%* B
<¢T,WT> / ¢T(xT)wT(de) (3.7.7)

" This is valid since k_ < +=. If kp = += (as in Corollary 3.5.3) then

we need to make further assupmtions about g%(xT). For example, if g%(xT)zp
for all i then Lebesque's monotcne convergence Theorem [Rud 1] implies
(3.7.5). We shall see however that other problems arise when kt a 4o,
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where ¢T is Borel measurable and bounded since g, h and r are Borel
measurable and bounded.
Also recall

%*

%* * 5
Prpoy Tqog OpeTpoy™ = OqprPpy O )70y (3.7.8)
= Soqteg) U/ py (@[3 y vy )T ) (@xp )]
(3.7.9)
= S Ubgrplpg (x| xg g5y ) Imy ) (@)
! (3.7.10)
By [Bert 1, Proposition 7.29].
[ optxg)pp_q (@ lxo ivy) - (.71
is a bounded Borel measurable function of xT—l' An argument
similar to that leading to equation (3.7.7) implies
* X
WpoyrTpay” = Soq g T (@ 1) . (3.7.12)

A trivial induction argument then yields éhe fact that ¢: has a

represeﬁtation as an integral functional with a Borel measu;able kernel.
Theorem 3.5.1 and 3.6.1 can now be written in terms of these

kernels. Since the equations for both theorems are similar we give

only those corresponding to (3.5.32) through (3.5.36).

el = Lo (e )P E@x o [xivy) + N A )
e e . . ' (3.7.13)
+ glklgl(x ) + I yiri(x,) t = T-1 0
=1 et Tl Ve e e
b_(x.) = Ah_(x.) + Ztkii(x)+e2tq)iri(x) (3.7.14)
¥ o SO R R jap LT -
k
ztkifi( )T, (dx,) = 0 t=1 T (3.7.15)
t gt xt t t y oo ey . -

i=1
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Z_Ht(ﬂ ) k/ytisgrt’t =0,...,T=1 (3.7.16)

tIYtI ¢t+l

Ht(wt,vt,d>t+l)

where

He (TerYyrbypyy) = Mh Ry dm (dx, )+ [y (e )P (X Xy ) Im (dx,)

(3.7.17)

where Yt = L _ then the positive

| . h:_ < . .
Note that if = & X Pt Yt
orthant Kt is a convex cone with nonempty interior. Here we could
consider decomposing gt(xt) such that

gt: X, x T_ >R . i=l,...,+® (3.7.18)

However, in general we cannot characterize 2: as a sequence and thus
(3.7.4) does not necessarily follow from (3.7.5). Thus we cannot
 determine whether ¢: has a representation as an integral functional
with a Borel measurable kernel by proceeding in a similar manner to
tha£ in equations (3.7.1) through (3.7.12). It is not clear tothe
éuthor whether such a representation exists.

In théoreh 3.4.1 the function -¢t(xt) has the interpretation'of
"the expected-cost-to-go" given that the state is X, and the optimal
control law is used over the remaining time sﬁeps. Such an interpre-
tation is not available for Theorems 3.5.1 and 3.6.1. However —¢t(xt)'
is .closely related to thevcost-to-go fuhctioh of dynamic programming
and ah interesting result is available.

Consider a BP for which I' is a particular class of control laws
(e.g. linear). Standard:dynamic programming results are not applicable
to this problem since one cannot minimize the expected cost-ﬁo-go as
a function of x_. Rather, one must choose a single control law which

t

will be used for all values of X such that the expected cost-to-go is

minimized. Clearly this minimization will depend on Tor thus it ‘is
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appropriate to apply dynamic programming to the EDP.
If we proceed as in [San 1, Chapter IV] the dynamic programming

recursion is given by

= *
VT(ﬂT) <hT,nT> (3.7.19)‘
. * .
Velme) = i TRy Crgd me >+ Vo B lrdmy)
Tefte
: G£+1Pt(yt)wt € Ky Rt+lPt(Yt)wt =0}, £t=0,...,7-1 (3.7.20)

The dependence of the control law on T, can then be eliminated by use
of the forward equation

T (wt))ﬁt t= 0,.7.,T-l . (3.7.21)

e+l PelTe

Note that the dynamic programming iteration leads to a mapping
;t(wﬁ). The ;t in the theorems of preceeding sections corresponds to
;t(ﬁt). This embedding of a single problem in a family of problems
is, of course, the distinguishing feature of dynamic programming.

Under conditions discussed in Chapter II and section 3.5 multi-
pliers exist such that

Yt(wt) = argmin{k(<ht(yt),nt> + Vt+l(Pt(Yt)Wt)) +

k (3.7.22)

* *
e+18e+1 P (Y e * lpt+1Rt+1Pt(Yt)“t|’.'zt e L.}

We can write V (Pt(Yt)ﬂt) as

t+1
T * A -
t=12:+1<h1_(¥_r,(1r,.r)).PT(YT(nT))...P

t+1(Yt+1("t+1))Pt(Y£)"t> (3.7.23)

where the m 's are determined by equation (3.7.21).

It is easy to verify that <$;+1,Pt(yt)wt> is given by

£ (A<h* (Y (7)) + &%k* + R*y*, P (Y (7 ))...
T'_=t+l{ T(Y(“T ) T T TwT T YT T ; (3.7.2_4)
( NPB (YT >},

Perr Mesr Meg
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A . . *
If Yy © Tt and wt‘a Wt then, because <kT,GTﬂT> = Q0 and
<w*,RT?rT> = 0, |
* A ~ - = ~ ~
PP P> = AV (P dTe) (3.7.25)

Clearly this result. depends on the linearity of Gt"t and Rt"t in Ty

and upon evaluating both functionals at ﬁt+l'

Section 3.8. Examples

Let Ht be the spéce of signed measures of bounded variations then
quadratic functions induce continuous linear functionals on nt‘and we
can consider the following LQG problems.

Example 3.8.1

Consider the following problem which is usually solved by use of

the matrix minimum principle [Ath 1].

minimize E{x,;:QTx’T + TE;x'Q X_+ ul;ﬁ%%1&+:ﬁ%'R2ﬁ2 (3.8.1)
1 2 tmQ T T T T TT T TT

Gt'Gt

subject to
X,y = A, * Byuy + Bup + T, t=0,...,T-1 (3.8.2)
yt = Ctxt (3.8.3)
§% = CiXi (3.8.4)
ut = -tht (3.8.5)
ui a -Giyi (3.8.6)

where (of course) xo,co,...,;T 1 are uncorrelated zero mean Gaussian
random variables with associated covariances of Zé,iso,...,z

This can be rewritten as

T-1
minimize E{x.Q + I x
1 2 T TxT =0 T

Gt'Gt

x_} (3.8.7)
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subject to
X = X;xt * T, t=0,...,T-1
where
K; = A - Bt ct - Bi c | (3.8.9)
9, =0, + ct' L t t " ct>§i'aieici (3.8.10)

Note that ¢, (x.) as determined by equation (3.4.3) is a quadratic
form as the following induction argument shows.

Clearly ¢,,(x.) = -x'Q is quadratic. Assume that ¢ )
T *r T

t+l el
is quadratic, that is

Per1 Ferr) T e Fenr®ee * Ko A (3.8.11)

then
6. (x) = fo_. (x.. ) e sy 60 ax | - x5 x (3.8.12)

£ %t 1 T B Ry X 0GL G AR, ) - x O x "S-
= Bl g ) |xg ) - 20 x (3.8.13)
= E{(Atxt +Ty) Kt+1(A X_+z )}-+kt+l}- x Q% (3.8.14)
= xt[At KBy = Qx, + tr{xK 13 t} + kt+l (3.8.15)
= xthxt + kt

where
Kt = At K£+1At Qt. | (3.8.17)
k, =k + tr{x z .} (3.8.18)

t t+1 t+1 t
thus ¢t(xt) is a quadratic form.
) can be calculated as:

Now H (T r¥erder
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S b, t+l)p(xt+l|xt,Gl,G2)dx - xQ% Jdx_ = (3.8.19)
[xt(Ath+l . §t)xt + k] p (x )dx = : (3.8.20)
tr (Ath+l .- Et). . + K (3.8.21)

where

it+l a AtZtAL + = I_ given . (3.8.22)

Let ﬁt’ ﬁt and Et correspond to.$t and %t so that equation

(3.4.6) becomes

2y %

82

H(w , (G ) = max[tr{(Af( A 4§t)2}+1?.]. (3.8.23)

Al
t t+1
We pexrform the maximization by setting the Frechet derivative to zero.

Recall that this derivative is given by (section A.7)

) (3.8.24)
€=0

4 ~1 1 ~2 2. -
i Ht(Trt,(Gt +es<;t, Gt +€6Gt) , ¢t+l

Expanding (3.8.24) yields

: 1.-~1 1.1 2 ~2 2. 2 %~
t: - - R
r{ [(At Bt(Gt +56Gt)ct Bt(Gt +66Gt)Ct) K

t+1

(A, - Bt(ét +e GGt)Ct i(ci +66Gi)ci) -
0, *+ CL (Gl +e8G) "RL(GL +€8GLICy + C2 (G2 +€860) 'RE (62 +eseCE )
sk, (3.8.25)

If we differentiate (3.8.25) with respect toe , evaluate itat &= 0

and the set the.result to zero then one has
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1’ 1 1 1'~1' 1 1
1 ]
tr{[C GGt R Gt et ct RtsG e *
t L} -~ | 1
c?'s62'r%%? + '8 Rkl + |
(3.8.26)
1, 1" 1 _ 1~1 _glal 1l - 1.11
Cy act B K t+l(At BLGCY) + (At BthCt) Kt+lBt6GtCt +
2 2" 2va 2222 222 2 2,2,
Cy G, By Ky BeBGC) + (A =BG CL! Rer1Be8GC ]z e = 0.
Using the properties of the trace operator yields
1' 1~1 1, _1° 1'~ 111 5 1
2 tr{GGt[Rt tctzt;t + Bt Kt+l@At Bt tct)ztct 1} + (3.8.27)
202 o2 2'A 242 2 a4 2!
2 tr{GGt[R e £Le * B t+l(At-Bt tct)ztct 1} =0
which, since 8G_ and 8G* are arbitrary, implies
121 1a 1 1' A 11 1. _1'
Ry tctztct + B, t+1( £ By tct)ztct =0 (3.8.28)
and
242 2a 2! 2'A 242 2.8 _2'
Ry 1:cv:t’ztct + B_ Kt+L(At-Bt tct)}:tct =0 (3.8.29)
la _1' 22 2! 1 1'a 1 2 2'4 2 , )
If CtZtCt ’ CtZtCt , Rt - Bt Kt+1Bt’ and Rt - Bt Kt+lBt are invertible,
then
A1 1 1'- ~1.1 & 1' 1a 1' I ‘ (3.8.30)
G = ~(R.-By Kt+lBt) Be KepPeleCp (Gl
A2 2 2'~ - -1_2'~ a 2" 2. 2' -1
G, = - (R - BL Kt+lBt) By Kt+lAtZtCt (Cl.cp) . (3.8.31)

Of course to obtain the values for ét and éi requires the solution
of a nonlinear two point boundary value problem.

Example 3.8.2 Consider the same problem as in Example‘3.8;l

except the following additional constraints are introduced:
E{d - tDtxt}i 0 t=1,...,T (3.8.32)

It is easy to show that for this problem ¢t(xt) also has a

quadratic form. Clearly
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(] ]
bp (Kp) = AXpQpXo + up(dg = XDoX)
: 3,8,33)

, ,
= -— +
Xn( Q= HoPplXp + updy

is quadratic (here Mo corresponds to k; in equation (3.6.21)). And if

Perg Frar) ™ X ¥enrFesr T Ferl ' (3.8,34)
then
o () = xt[At Kt+l £ AQt]x + tr{Kt+1 z Jrk,
- '
+u @ - xDx.) : (3.8.35)
xt[At Kt+1At + XQ N E tri{k = o

_+kul+L%d

t r
which is also quadratic. Equations (3.8.17) and (3.8.18) are thus
replaced with

K, = A K Ao +2Q_ = u,D . , | (3.8.36)

k, =k + tr{K

£ 41 t} + utdt . ’ (3.8.37)

t+1

The equation for H is now given by:

. ~%
e TerYerPeyy)

a 1 2 A A S - - .
Ht(zt'(Gt'Gt)'(Kt+l'kt+l)) = tr{(Ath+1At * th - “Dt)zt} +"ktf

(3.8.38)

Note that equation (3.6.23) holds with equality since Ft =‘B(Xt,Ut)

and thus leads to almost the same optimality condition as in the pre--

vious example since D, is independent of Gt and Gi. The only differ-

ence in fact is the presence of A. Equations (3.8.30) and (3.8.31)

become:

G' = (AR + BK. .BY) B K, .A L C. (C ) (3.8.39)

, ' 1,-1_1'~ s 1,1
t the+l t e+l e Tt
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z -1

LIS - ~ 1
2 2)7152 2 ) . (3.8.40)

~2 2 ul ; 2.
G = (AR + B_ K 1B) "BiK AL, CL (CLT.Co

Thus if A < O the only difference between the solutions of
these two problems in the equationifar‘Kit‘ For’the censtrained ..
version

—l e pa—

K, =2 24K

N & t+lAt - Qt - ulD (3.8.41)

t t
where
. . t
Hy = 0 if E{xtDtxt} < dt apd

. ) . ! =
Pt 3;0 if E{xtDtxt} d, -

Example 3.8f3 Consider the same problem as in Example 3.8.1

except that we also require that ét and éi satisfy
sl 1 2 2 |
Gt’e Kt Gt € Kt (3.8.42)

where Kt and Ki_are the cones of matrices with only non-negative

entries. The associated conical approximation C(Gt,Té) is

AL, 1 A2 . 2 Al . 1 R
IC(Gt,lnt Kt) X IC(Gt,lnt.Kt), where IC(Gt,lnt Kt) = {0} if

1

Al . 1 . 1 . 1 e o1 . 1
Gt ¢ int Kt and IC(Gt,Lnt Kt) int KtIJ {0} if Gt e int Kt and

similarly for 1(&7,int KJ).
The derivation proceeds as in Example 3.8.1 up to equation

(3.8.22). We now, however, apply equation (3.6.23) so that we have

d A~ oAl 1 a2 2. 2
ag He (Mo (G +esGy, 6] +esa)) b, 1) L 20
=0 (3.8.43)

1.2 =
\'4 (8G,8G7) € C(G,.,T,) -

This implies that there exist elements kzl and k*2 (not to be confused

t
, , 1.* 2. *
with kt) in (Kt) and (Kt) such that
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1-1_1 1 a A1l 1.2 1
tr{ﬁG [-ARt tct tct + Bt Kt+l(At BtG ct)ztct 1 +
2" 2~2 24 2° 2'~ 2,2 2. a4 2"
tr{8G, [-AR GO B cL + By R, (A -BGCHT CL T =
* 1 * 2
(<kt GGt> + <kt,GGt>). (3.8.44)
i .

Since Gl and G are matrices the space in which they exist is

isomorphic‘to a finite Euclidean space, thus every linear functional

on Gt’z can be expressed és a weighted linear combination of the entries
in Gt'z Thus if SGt is an mt by ni matfix( i= lf2, t=20,...,T, and
ai is an ni—vectgr, bt is an ni—vector and Bt is an mi by nt matrix then
<k;i,6Gi> = at'BtGthi
a tx{ at.'BtSthit} (3.8.45)
=—tr{6G (bl 1% ) } R tr{aGt'D }

i

. . i i Y
for some appropriate choice of at, bt.and Dt

Thus (3.8.44) becomes

1~1 1a 1' _1'» 1~1 1.~ _1' -1
tr{GG [ ARt tctztct +Bt Kt+l(At-Bthct)ztct +Dt} +
. (3.8.46)
2! 222 2~ 2' _2'. 2a 2
tr{SGt [-ARthctztct +B Kt+l(At-Bt N )ztct +D } =0

which, under the invertibility assumptions of Example 3.8.1 implies,

since GGt and GGi are arbitrary, that

Al 1 1'» 1.-1,_1'~ 1 1' -1

Gt = (AR +Bt t+lBt) (Bt Kt+lAtZtct +D )(C tCt y (3.8.47)

~2 2'~ 2.-1,_2'~ 2' 2'

Gt = ()\Rt+Bt Kt+1Bt) (Bt Kt+1AtZtct +D )(c tCt ) (3.8.48)
1 2 .. al A2 . . . 1l 2

where Dt or Dt are zero if Gt or Gt are in the 1nterlor of Kt or Kt

. ~ A . . 1
respectively. If Gt or Gi are not in the interior of Kt or Ki then
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clearly Di or Di are in the set of rank one matrices with non-negative

entries.

Section 3.9. Extension of Results to Vector Valued Criteria

The vector valued cost criterion can be a useful tool for formula-
ting certain types of 0ptimization problems [Pol 1]. For problems in
which the various criteria do not have any units that allow a natural
comparison (e.g. kilowatt-hours and pollution index) the use of a
vector cost criterion provides an alternative to arbitrary amalgamation
of the.criteria. Of course a solution must eventually be chosen;‘the
value of this approach is in problems where some sélection scheﬁe is
availablé which:is not easily formulated in a mathematical setting
(e.g. voting or discussion among intérested groups) [Zio 1.

The vector valued optimization procedure is thus a preprocessor
which eliminates inferior solutions. While an interesting problem is
how one can generate new noninferior points in response to a. higher
level decision_prOCess we shall consider the more basic problem of
necessary conditions for noninferiority.

Recall that a point is noninferior with respect to a set of feasible
points Q CX and a cost cone KC X if ¥ ¢ Q and, for all x ¢ Q, x -xe K
implies that x = x. We assume that the cone K is such that K # X.

N An alternative definition is in terms of a Set of con-

. . . * . A . . .
tinucus linear functionals K*. 2 point x is noninferior if there does

*

1

* * A . P . . .
r <k7,x> < <k”,x>. These two definitions are equivalent if K is

*

1 ,§> and, for all

not exist an x € 2 and a k. e K* such that <k;,x> < <k

k* e &*
the intersection of the dual cone of K* (K** ¢ X**) and X.

In extending the results of Chapter III to vector criterion there
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are two alternatives. One is to reduce the dynamic vector optimization
problem to a sequence of static vector optimization problems. The
other is to reduce the dynamic vector optimization problem to a sequence
of static scalar optimization problems. We shall use both approaches,
the first in Theorem 3.9.1, and the second in Theorems 3.9.2 and 3.9.3.

Consider the following problem:

T
optimize E{ ’Z ht(xt;vt)};hT(xT;vT) A hp(xg) (3.9.1)
yeT £=0

subject to
X = ft(xtfwt;Yt) t=0,...,T=1 (3.9.2)
E{gt(xt)} € K. t=1l,...,T . (3.9.3)
B{r't(xt)} =0 t=1,...,T (3.9.4)

where all functions and sets are as in section 3.1 except

x_ + RS and aoptimality is

c
h : Xt X Ft +R”, £=0,...,T-1, hT: T

t
defined with respect to K (the positive orthant ofch).

The equivalent deterministic problem is given by:

T
optimize I H

yer t=0 e | (3'.9'5)
subject to
L Pt(yt) £ t=0,...,T-1 (3.9.6)
Gt“t € Kt t=1,...,T , (3.9.7)
Rtwt =0 t=1,...,T (3.9.8)

where H,(vqn) 4 Hp.

To derive the theorem corresponding‘to Theorem 3.4.1 we shall need
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to expand the notion of an adjoint operator. Let X, Y and Z be Banach
spaces and let T € B(X,Y). Define an operator ¢ mapping X into Z by
the relation

?x = B'Tx : ' (3.9.9)

where B' is a fixed element in B(Y,Z). Clearly ¢ is a linear operator
and since B' and T are bounded linear cperators, so is ¢ [Lu 1, _Bropasi-
tion 6.2.3]. But then ¢ is continuous [Lu 1, Proposition 6.2.1] so
.Q e B(X,2).

Now consider the relation Tf associating to each B € B(Y,Z) the
corresponding AB e B(X,Z), as just defined. We call,T+ a generalized

adjoint. Note that

AB =T B (3.9.10)
where
ABx;=-BTx x € X, (3.9.11)
so that
Aan = aBTx =!aABx (3.9.12)
and
A . = (B;+B,)Tx = A_ x + A_ X . (3.9.13)
By+B; - TlT2 B, B,
Thus TT is a linear operator mapping elements of B(Y,2) into elements

in B(X,Z). Also note that

el = (el < Il 3]l [l=]] =] (3.9.14)
so that
1%l < 1l 2l 1 8] (3.9.15)
and

=" < fell - (3.9.16)
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so
o ¢ B(B(Y,2),B(X,2) 3.9.17)
We can now state the equivalent of Lemma 3.4.1. Define the forced
generalized adjoint equation (costate equation) by

+ o
9, =P (ro - H (Y )id, = =By (3.9.18)

t
Lemma 3.9.1 Let vy= (Yo ,...,YT;I);be_given_and let the
corresponding states and costates be given by equations (3.9.6) and

(3.9.18) where.wo is assumed to be given. Then

T
¢t"t a - Et HT(YT)WT. (3.9.19)
T
Proof: By packward induction. Equation (3.9.19) obviously holds

for £ =T, so assume it holds for an arbitrary t < T. Then

P
bpg Mooy = Poog Meop) ey ~Hey (o) omey> 39-20)
= 0P M) Memn T Fen e e (3.9-21)
= ¢ttt -'Ht-l(Yt-l)"t-l (3.9.22)
T
2 1z Ho(y)m. = He 1 (o) Temn (3.9.23)
=t
T N
= Tit_lnT(yT)wT, (3.9.24)

so that equation (3.9.19) holds for t = 0,...,T.

Theorem 3.9.1 If y = (?o,...,QT_l) is optimal in problem (3.9.5)

for a given T and the corresponding states and costates are denoted

T and ¢t then, for all Y € Ft' if
e G b - (5 NF. = (Ply ), = H_ (y )T € - K (3.9.25
£ e Pes1 e+l Te+l’ e £ e’ Peel e+l e+l Nt

then

T A " ~ - + N -
(PLY By = Hopq (YT = (Blyddy,y = B O™ (3.9.26)
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PN -~ A~ A )
Proof: Let y' = (Yo"7"Yf-l’Yt’Yt+l""'YT—1) and let Lo and

¢; denote the corresponding states and costates. Note that ﬁfa n;,

~

]
T = t+l,...,T. Let J ¢ o and J, = -¢;no.

T=O,-.-,tam¢=¢ T

1
T’

By the optimality of vy and equation (3.9.19) one has that, if

3T - Jé e K ' | (3.9.27)

- 1 .
then JT JT. Thus if

T ™ ,
- I H (v )T+ L H (Y )W K (3.9.28)
T=t T T3t T
then
T T
z H (Y )w = I H (y )n p (3.9.29)
=t =t T

which, by equations (3.9.6), (3.9.19) implies equations (3.9.25)
and (3.9.26).

Théorem 3.9.1 is useful if a method for solving static vector
optimization problems is available (e.g. [Lin 1]). Otherwise it may
be more useful to convert the static vector optimizations into static
scalar optimizations. This can be done by deriving the analogues of
Theorems 3.5.1 and 3.6.2 using Theorems 2.4.2 and 2.4.3. Since this
derivation is almost identical to that of sections 3.5 and 3.6 we'merely
comment on the differences and state the analogcus theorems without
proof.

To derive the theorem corresponding to Theorem 3.5.1 we introduce
the mapping

Folyy) = (B (v) P (y,) (3.9.30)
F.=H_ . (3.9.31)

T T

LettB(Mt,K) be the set of linear operators in B(wt,Rc) that map
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elements in Mt into elements in K. The appropriate assumption to make

is

Assumption 3.2.1 The set Ft(Pt) is (-B(Mt,K),Q)-directionally
convex, t = 0,...,T-1.

This assumption implies that Ft(I't)Trt is (-X,0)-directionally
convex for all T, € Mt' As before, the reason the assumption does not
depend on T is the fact that the problem is linear in Te-

Corresponding to Theorem 3.5.1 we have

Theorem 3.9.2 (Vector Maximum Principle) If ? =»(§o,...,§T_l)

is optimal in problem (3.9.6), Assumption 3.9.1 holds and (%o,.,.,ﬁT)

is the corresponding "state" trajectory then there exist costates

2% ke ok * * Nk
(¢o,...,¢T), ¢t € nt, vectors kt € K

* g *
£ vectors wt e R 1, t=1,...,T,

*

and an element A\*, not all zero, such that, -x" € K* and

; ak ok SOk Lk A sk ke ® ok L om
(1) ¢_ = Pt(Yt)¢t+l + Ht(Yt)l + Gtkt.+ Rtwt' t =7T-1,...,0, (3.9.32)

t
.. % %, % * %k P
(ii) ¢T = GTkT + RTwT + HTA (3.9.33)
(1ii) <k’;:,Gt1?t> =0, t=1,...,T (3.9.34)

. A -~ A*v -~ Ao = -
(1v)  Ho(m Y0y, ) 2 B (Moyerde ) Yy.eTg £=0,...,T-1 (3.9.35)

where -

Ht(%t"Yt'$;+l) = A E ()T <$’;+i'Pt'S.Yt)'%E>" N K XD

Proof: The same as that of Theorem 3.5.1 except that Corollary
2;4.1 is used in place of Corollary 2.l.4. '

Since none of the comments and corollaries in sectiqn 3.5 depend
on the cost function they also apply to Tﬁeorem 3.9.2. bThé remarks in .

section 3.7 on a representation of $; also apply to Theorem 3.9.2 since

A*$; is the sum of bounded Borel measurable functions.
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Corresponding to Assumption 3.6.1 we have

Assumption73.9.2 The linear operators Ht(Yt), t=0,...,T-1
and Pt(Yt)' £t =0,...,T-1 are continuously Frechet differentiable on

r t = 0,...,T-1 respectively.

t’

Corresponding to Thecrem 3.6.1 we have

Theorem*3.9,3’ (Vector QuasiMaximum Principle) If
Y = (?o,...,§T_l) is optimal in problem (3.9.6), Assumptions 3.9.2 and
3.6.2 hold and (%O,...,nT) is the corresponding "state" trajectory,
~ ~ ) *
then there exist costates (¢;,...,¢;), ¢t € Ht’ vectors k; e ¥*,
* Cp * *
vectors Y. € R - ,t=1,...,T an element A* € -K", not all zero,
and conical approximations, C(?t,rt), to the sets Ft at ?t’ B

£t=0,...,T-1, such that

. 1% A ~de * 2 * *q % % * - e
(n.¢t thg¢ul+Htwgl +Q§t+RJ%'t T~1,...,0 (3.9.37)

s 2* L aF* % *q 3
(i1) . ¢q = Gpkp + Ry + HTX, (3.9.38)
P2 * -~
(11i) <k[,G 7> =0, £ = 0,...,T (3.9.39)
. -~ A~ A* . —h_
(1v) Ty B (T 700,087, <0 Yoy, e iy, Ty (3.9.40)

t't t

where Ht(%t’§£'$;+l) is given in equation (3.9.36).

Proof: The same as that of Theorem 3.6.1 except that Theorem
2.4.2 is used in place of Theorem 2.2.1.

Again, all the comments in section 3.6 apply to Theorem 3.9.3 ahd
32 can be represented as an integral functional with a Borel measurable
kernel.

Finally, note that the assumptions that H : X, % Tt > RS and K’
is the positive orthant in RC are inessential. An arbitrary Banach

space Y can replace R and any convex cone K such that K # Y and

int K # ¢ can be used and Theorems 3.9.1 through 3.9.3 will still be
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correct. However it need not be the case that ¢; will have a repre-
sentation as an integral functional with a Borel measurable kernel.
(See the comments in section 3.7 regarding the extension of Kt to

arbitrary Banach spaces).

Section 3.10. Concluding Remarks

The convexity assumption‘of section 3.5 is clearly very restrictive.
If it is possible to find a subéet of Tt for which it holds then if 2
is in that sqbset a necessary condition for optimality can be formulated
in terms of that subset. Of course it is not easy to determine an
appropriate subset.A

Theorem 3.6.l1 seems much more useful than Thebrem 3.5.1 since the
differentiability assumption is mofe likely to be true than the convexity
assumption. It is interesting to hote that differentiability or con-
tihuity of any function with respect to x was néver assumed. This is
due to the form of the equivalent deterministic problem which has as .

and u,. This justifies the comment in section

its only variables T

2.5 that it was not necessary to consider extending the theorems of
Chapter II to problems with nondifferentiable constraints.

We have not considered problems with an unspecified horizon.
Unlike the continuous time problem there are not boundary conditions
thét imply‘when a final time can be optimal. Obviously this occurs
since a disérete—time problem is not differentiable with respect to

time.
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CHAPTER IV

An Infinite Horizon Problem Formulation

Section 4.0. Introduction

In the previous chapter we have considered the necessary
conditions for optimal control of a constrained dynamical system over
a finite time horizon. In this chapter we consider the same problem
except that the time horizon is infinite. The reason for considering
this extension is that it often provides insight into the control of
a system over a'long (but infinite) time horizon. 1In particular, if the
optimal infinite time horizon control policy is stationary it may be
desirable, for'reésons of simplicity, to use it as a finite time horizon
control policy.

In section 4.1 we will consider the basic infinite time horizon
problem and its equivalent deterministic problem. Tﬁis has been
considered in detail by Bertsekas [Bert 1, Chapter 9] so we will merely
present the results that we will need. In section 4.1 necessary
conditions for the optimal policy for the infinite time horizon
problem will also be developed. .BeCAuSe of the explicit state constraints
the optimal pélicy is rarely stationary. 1In section 4.2 we modify the
problem by introducing a new cost criterion. We then extend results
for finite or countably infinite state spaces to our continuous
state formulation. Finally we develop an equivalent deterministic
problem.

In section 4.3 the EDP is modified by introducing state constraints.
Necessary conditions for an optimal stationary policy are then derived.

Finally in section 4.4 we make some concluding remarks.
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' Section 4.1. An Infinite Horizon Problem

Consider the following problem:

$i2 ?{tgoht(xt;Yt)} (4.1.1)
subject to '

xt+l = ft(xt,wt;yt) t =20,... (4.1.2)

E{étl(xt)} e Kp t=1,... (4.1.3)

E{r (xy)} -0 t=1,... | (4.1.4)

where hy, ft, J¢ and r, are defined as in section 3.l1. To make the:
problem well-defined and to allow us to derive a meaningful equivalent
deterministic problem we must place some restrictions on ht(xt;yt).

Following Bertsekas [Bert 1] we consider the following three

cases:
(1) 0 2 h(xeive) for all x_ € X, and y_ € Te (4.1.5)
(ii) 0 > helx ;yve) for all x4 € X and Ye €Ty (4.1.6)
(1ii) B, (Ko5ve) = a© B, (xery,) where |R (xgiv)| £ b <@ (4.1.7)
t tlYt t t’Yt t tlYt —_— . A

for all X, € xt and Ye € Ft and a € (0,1) .

For these three cases it can easily be shown that E{ z ht(xt;Pt)} is
t=0

well-defined (that is, lim inf E{ I h _(x_v)} and lim sup E{ I h (x iy )}
£=20 t

T > @ t=0 T > ®
are equal, though they may both be % »). It can also be shown that to

each policy Y= (YO,Yl,...) there corresponds a unique sequence of
probability measures {wtty,no)} (as before T is assumed to be given)

such that

E{tEO ht(xt;'\rt)} = t=Z-O ! ht(xt;Yt)‘rrt('Y,Tro) (@x,) (4.1.8)
E{gt(xt)} = i) gt(xt)wt(y,wo) (dxt) (4.1.9)

and
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E{r (x)} =/ ry (e ) mely,m ) (dx) - (4.1.1.0)
As before we shall usually suppress-the arguments and write‘wt for
. *
wt(y,no). We make the same assumptions on Pt(Yt), ht(yt), Gt and Rt as

before.

The equivalent deterministic problem can thus be written as:

min I <hi(y,),me> (4.1.11)
yel =0

subject to
Tepl = Pt(Yt)'rrt t=0,... (4.1.12)
Gtwt € Kt t=1,... (4.1.13)
Rtﬂt =0 t=1,... (4.1.14)

Tﬁe probability measures Rt’ t = 0,... are again considered as.
elements of the Banach space Ht of signed measures. Note that the
product space Il =-Hx x‘Hl X... 1s also a Banach space if we take the
norm on II to be

il = [l ¢romy oo oll = sup (LN (4.1.15)
j e (0,...)
where||njH is the total variation norm on TS

The development of a maximum principle and a quasi maximum principle
now proceeds as in sections 3.5 and 3.6. The only difference is that
the equality constraint

Rz = [lel,szz,...] =0 (4.1.16)
is included in the constraint T(z) = 0. We do this since R(R) is
infinite dimensional. Clearly the same assumptions as in Chapter III
lead to the same results (except for the terminal constraints, equations

(3.5.34) and (3.6.21)).
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Théorem»4.l.l (Maximum Principle) If ? = (?O,Ql,...) is optimal

in problem (4.1.11), Assumption 3.5.1 holds for t = 0,1,... and

(%O,% ,...) is the corresponding "state' trajectory, then there exist

1

. .
Ad A Ade % t *

costates (¢°,¢;,...), ¢t € H;, t=0,1,..., vectors.kt € ﬁz, w; e [R T,

t=1,... and a scalar A < 0 not all zero, such that

: PR NS * (5 *y k * * =
(1) 8 = PR(T8L, + Anf(yy) + Gik} + RUL, t=0.1,... (4.1.17)
(ii) <k’;,Gj’:?rt> 20, t=21l,... (4.1.18)

> %% - 2% : =
(iii) Ht(wt,yt,¢t+l) > H T,y r95,) Vyt el € 0,1,...(4.1.19)

where

= A<h;(yt),%t> + <% pt(yt)% >, (4.1.20)

Hy (T e+1’ t

Ly
tlYtI¢t+l)
Proof: see proof of Theorem 3.5.1.

Theorem 4.1.2 (Quasi Maximum Principle) If ? ='(§o’§l"") is

optimal in problem (4.1.11), Assumptions 3.6.1 and 3.6.2 hold for

¢t =0,1,..., and (ﬁo,% ) is the corresponding "state" trajectory,

IRARE

then there exist costates ($2,$;,...), ¢; € Hz, t=20,1,..., vectors

* f\,* * et *
kt € Kt’ ¢t e[R 17, t=1,..., and a scalar A < 0, not all zero, and

conical approximations, c(?t,Ft), to the set Ft at ?t, t=20,1,...,

such that:
(1 9] = p:_(§t)$t+l + xh’;(§t) + GIKk} + RpYE, £=0,1,... (4.1.21)
(ii) <k§,a;‘:%t> =20, t=1,... (4.1.22)
(iii) 'vyéat(%t,§t,$;+l)57t <0 Yoy, e cly.Ty) (4.1.23)
where Ht(%g’;t’$z+l) is given by equation (4.1.20).

Unfortunately neither of these theorems is very useful for develop-
ing a stationary optimal policy. In fact it is clear that in general
no feasible stationary policy exists even if all the mappings ft’ ht’

re and g, are time invariant. The reason for this is clear: the
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state constraints may require a time varying control pelicy even if the
cost-to-go does not.
Section 4.2. An EDP for an Unconstrainted Problem

In this section’ we.consider necessary conditions for an optﬁnal
policy to be stationary. Since the formulation of section 4.1 does
not usually allow a feasible stationary policy we will consider a
different problem in this section. The unconstrained version of the

problem is:

. 1 T
min lim =——— E{ I h(x_;v)} (4.2.1)
yel Tom T+1 =0 t
subject to
X1 = f(xt,wt:y), t=20,1,... (4.2.2)

where h, £ and T are tihe invarient, (wo,wl,...) are independent
identically distributed randeom variables and the policy is (y,y,...).
We consider this problem formulation because it leads to an
equivalent deterministic problem which is easily extended to problems
with state constraints.’ Unfortunately this formulation has several
technical problems associated with the existence of certain limits.
Before conﬁidering these problems note that if f and h satisfy the
measurability requirements of section 3.1 then there exists a stochastic
transition kernal p(xly;y) which maps probability measures on X into

'probability measures.on X. For each y € T and w_ there corresponds a

o
sequence of probability measures {ﬂt} such that

LS - T

1 T 1
lim =—E{ I h(x_;y)} = lim —=— ¢ hx;v)T_(dx) (4.2.3)
- T+1 +20 efY T+l =0 YTy

Again we can write (4.2.3) and (4.2.2) in functional operation by
letting Te be an element of NI, the space of signed measures on X, by

assuming h*(y) is an element of II* for all Yy € T and by
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letting P(y) denote a linear operator in B(X,X) such that

[ n(xsy)m (dx) = <h¥(y),m > *’ (4.2.4)
[ pxlyivin (@y) = Ply)m, - (4.2.5)

The problem can thus be written

oL 1T -
min lim =—— ¢ <h (y),mr > ‘ (4.2.86)
. T+l o9 t
YET T v
subject to
Tyl = Pl)me (4.2.7)

where Ty is given.

Before deriving another equivalent deterministic problem let us
consider some properties of problem (4.2.6). These will be extensions
of the results in [Kus 1], [Berf 2], [Ros 1] and [Ito 1]1. The follow-
ing definitions are required.

A finite invariant measure for P(y) is defined as any measure

m(y) e I such that
| m(y) = Ply)m(y) (4.2.8)
S mly)(@x) < = (4.2.9)

(n

The n-step stochastic transition kernal p )(xly;y) is defined by

2™ xyiy) = £l ziy)p O @z| v (4.2.10)
(0)
P (x|yiy) = px|yiv). (4.2.11)
Let the corresponding linear opérétor be denoted P(n)(y) and let
T 1T (v
P (y) ) tEO P CO (4.2.12)

Recall that g(X) is the set of Borel sets of X. Let m be any

measure defined on B8(X) and let LP(X,B(X),m), 1 < p<=», be defined
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[Yos ‘I, page 32] as the space of Borel measurable functions £ such that
P
JEx) | Tmidx) < . (4.2.13)

Let

| f||p= (7 ]£x) | Pm(ax) /P (4.2.14)

and consider the space LP(X,B(X),m) of equivalence classes in

LP(X,B(X),m) defined by the equivalence relation

£) % £, if [|£,0) - £,60 | m(ax) = 0 .
This space is a‘Banach space.

Let xp* denote the space of continuous linear functionals that
can be represented by an integral functional with kernal in LPIX,B(X),m).

Note that XI is a subspace of I¥,

Assumption 4.2.1 An invariant probability measure m(y) exists for

P(y) for each vy ¢ T. -

By [Yos 1, Theorem 13.1.1] the. adjoint operator for P(y), denoted
P(¥), can be defined so that P*(y) ¢ B(X;,X;), where m =:7(y). Since
Lz(x,B(x),n(y)) is reflexive [Lﬁ 1, Section 5.6], it is a locally sequen=
tially weakly compact space [Yos 1, Theorem 5.2.1] and thus the .corollary
to [Yos 1, Theorem 8.3.1] can be applied. Thus for each f ¢ x; there

exists a %* € x; such that

(1) lim [T - £),=0, (4.2.15)
Tox
. ® * . o * e | _x . @ * * %
if P (y) 4is defined by P (Y£° = £° then P (y) ¢ B(X2,x2) and
(11) P (y) = 5%y = 2 (EE) = £ Pt (y) . (4.2.16)

(iii) R(EXy)) = NI - p*(y)) (4.2.17)

(iv) N(™y)) = R(T =B (y)) = R(I - > (y)), and

(v) X, = R(Z = P*(y)) + N(I - P*(y)). (4.2.19)
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Lemma 4.2.1 If Assumption 4.2.1 holds and R(I =~ p* (v)) is closed
. * '
then the linear operator I - P*(y) + Pw(-y) is invertible.

Proof: By equations (4.2.17) and (4.2.19)

R(I -2 (y) +27(y) =X, . (4.2.20)

By [Yos 1, Theorem 8.3.1], R(z - 2" (y)) N N(T - 2" (y)) = {0} so
R(I - P*(y)) N N(I - P*(y)) = {0}. Thus by equation (4.2.17)
R(T - 2*(y)) N N(E(y) = {0}, that is, if x* is such that

(I = P (y)N)x" = =BT (y) *x* (4.2.21) -
then

(I = P*(y))x* = ™ Ty)x" =0 . (4.2.22)
Equivalently x* ¢ N(I = P (y)) and x* ¢ N(®"(y) = R(Z - P (y));
Equation (4.2.19) now implies x* = O. Thié, however, implies

N(T = P*(y) + P~(})) = {0} since

N(T - PR +R () = (xMlE - PY(y)x* = Tl x*). (4.2.23)

* .
Clearly I - P* (y) + Pm(y) is one-to-one and thus is is invertible.
Lemma 4.2.2 If the assumptions of Lemma '4.2.1 hold and

*

*
h*(y) € X; then there exists a ¢(¥) € X2 such that

Fy) + 6% (y) = 0" + By | (4.2.24)
where J"(Y) is defined by
J*(y) = P h* (y). - (4.2.25)
Proof: (following [Bert 1]).

From equation (4.2.15) J* (Y) exists. By Lemma 4.2.1 we can define
ok - ook . ‘ l
6% (y) = (1 - 2°(y) + PT() Tz - PT(VR* ()  (4.2.26)
which clearly exists in X; Now equation (4.2.26) implies, by equation

{4.2.16), that
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P n*(y) = o. (4.2.27)
Thus (4.2.25) and (4.2.26) imply
T+ 0% y) = h'(y) + Priy)et(y) . (4.2.28)
These results can be extended to the class of functions in which
we are really interested: Ll(x;B(X),w(Y)).fo [Yos 1, Theorem 13.1,1]

P*(Y) can be defined so that P*(y) 5 B(XI,XI), where m = 7w (y). Because

* *

X2 is xl-dense in x; (that is, for every € > 0 and for every £ ¢ X~,
there exists an f*-¢ X; X3 such that |[£* - %*HJ;<6) [Yos 1, Theorem

13.2.2] and since P*(y) is such that
* * R K * *
e (y£ Iy < Il I, Ve e X0 p = 1,2 (4.2.29)

[Yos 1, Theorem 13.1.1] we have

*

Lemma 4.2.3 If Assumption 4.2.1 holds then for each f£* ¢ Xl

there exists an,g* € Xl such that

1m || 2% £* - ¥l =0, (4.2.30)
T '

and iZ P"ly) is defined by P™{y)£* = ¥* then p™{y) ¢ B(X],X]) .
If R(I - P*(y)) is closed and if h*(y) ¢ x; for all y € I', then there

exists a ¢*(Y) € X; such that

3 )+ 0Ty =Ty + P (et ), (4.2.31)
where
() = 2"t (). (4.2.32)
Proof: If f*.¢ Xg then £*:e xI since by Schwartz' inequality
||f.*||l < e, '[J;{w(v)(dx)]l/z =||£7],. Thus (4.2.30) holds if
£* ¢ XIIT X;. Since X2 is‘Xl—dense in Xl’ for any € > 0 and for any
£ € X, there exists an fzvs Xy n X, such that|[f: - fﬂll <& . But by

(4.2.29)
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T

1270 g - 2T et <l - iy <e (4.2.33)

and since (4.2.30) holds for f; it holds for £*. The corollary to
[Yos 1, Theorem 8.3.2] can now be applied to yield the analogues to
(4.2.15) through (4.2.19). The results corresponding to Lemmas 4.2.1
and 4.2.2 clearly hold and imply equations (4.2.31) and (4.2.32).

| These results can be extended to yield a pointwise convergence
theorem (note that this is not now the case since Pm(y)* is defihed
implicitly by equation (4.2.30)).

Theorem 4.2.1 If Assﬁmption 4.2.1 holds, R(I - P*(¥)) is closed

and h(y) € Ll(X,B(X),W(Y)) for all y € ', then there exists a

6(y) € L1(X,8(y),m(y)) such that

J) (%) + 6(y) (x) = h(y) (x) + fo(y)p(@y|x;y) T(y)-a.e. (4.2.34)

where

(

1 T (8
Jy) (x) = lim =— I Jh(y)p  (dy|x:v) (4.2.35)
T

T+1 £=0

and the limit in (4.2.33) exists and is finite w(y)-a.e.
Proof: From Lemma 4.2.3
Lim |[2T () n* () + 6" (f) - h*(y) - P* (y)¢*(f)ll"l =0 (4.2.36)
T
and by [Yos 1, Theorem 13.3.5] and the definition of x; equation (4.2.33)
follows. -
Note that Tﬁeorem_4.2.l extends similar results in [Bert 1] and
[Kus 1] which were derived for finite and countable state spaces. Note
that for a finite state space, Assumption 4.2.1 always holds and
T(y)-a.e. convergence reduces to the usual notion of pointwise conver--

gence.
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We shall not extend this analysis further. The reason is that to
do so would require examining the conditions under which
JE ()T (y) = J*(Y)WO- While this can be done in asatisfactory manner
if Ty is absolutely continuous [Hal 5, page 124] with respect to
T(y) (see Halmos [Hal 4] and Ito [Ito 1] for details) it is often the
case that w(y) is not absolutely continuous with respect to Lo espe="
cially if wo-is degenerate. Thus we shall make the following assump;

tion.

. T
Assumption 4.2.2 Let vT(Y) = L L m_ where the 7 _ are generated
by equation (4.2.7). Assume that NT(Y) converges weakly (in the sense
of [Bil 1]) to an invariant probability measure w(y), that is
. T .

lim / h(x)n  (y) (dx) = [ h(x)m(y) (dx) (4.2.37)

T :
for all bounded uniformly continuous functions h(x).

Note that m(y) is independent of To thus m(y) is a unique invariant
probability measure. This implies [Do 1, page 214] that only cne

ergodic class exists. Note that we have not assumed that T converges

t
to m(y). The convergence assumption is a Cesaro convergence assumption
on nt(y), thus we.allow cyclically moving sets [Do 1, page 211].
Lemma 4.2.4 If w(y) is the unique invariant probability measure
for P(y) then w(y) is the unique solution to
T(y) = P(y)m(y) (4.2.38)
Sm(y)(@x) =1 . ' (4.2.39)
Proof: If w(y) is not the unique solution then let %(Y) be
another solution. Clearly %(Y)(x) is not greater than or equal to

zero for all x since then %(y) would be an invariant probability measure.,

and (4.2.39) implies that #(Y)(x)‘is not less than zero for all x. Thus
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the Jordan decompbsition of‘%(y) [Hal 3, page' 123] is nontxivial.  That is,
there exist sets Q+ and Q_ in X such that Q+r1 Q_ = ¢, positive measures

?r'(y)+ and %(Y)_isuch that

Tl = T, - T (4.2.40)
Ty, (@) =0 ifAanQa =4 (4.2.41)
T(y)_(&) = 0 if AN Q_ = . (4.2.42) -

Let [F(y), (dx) = m_and /F(y)_(ax) = m_. Since T(y) is totally finite

so are #(Y)+ and ﬁ(Y)_, that is, m+ and m_ are finite. Clearly P(y) is
such that
Ay : n ‘
IQ+P(Y)n(Y)+(dx) = GCP(Y)H(Y)+(dx) =m_ | (4.2.43)
[ POOT) (@) = [PONTO_(@x) =m_ (4.2.44)

and, if we let

T, = PMT, | (4.2.45)

Fy)_ = P(MT(Y)_ (4.2.46)

then ﬁ(Y)+(x) and ﬁ(y)_(x) are greater than or equal to zero for all x
PN ~ n
and F(y), - TlY)_ =T =T

Pick A C.Q+, then

A, @) - T _@) =T, @), (4.2.47)

If 7(y) (&) <<¥(y), (A) then (4.2.46) cannot hold since T(y)_(a) > 0.
1f %(Y)+(A) > %(y)+(A) then m(y)_(a) > 0. But then Al Q_ = ¢ con-
tradicts (4.2.43), thus %(y)+(A) = %(y)+(A) for all Borel sets A< Q-
A similar argument shown the same holds for %(Y)_ and ﬁ(y)_. But this

implies the existence of two finite invariant positive measures for P(y)
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different fram m(y). Thus T(y), and T(y)_ can be normalized so that -
they are invariant probability measures. This contradicts the unique-
ness of w(y) and-thus the lemma is proved.

This lemma is useful since it allows us to uniquely describe the
invariant probability measure without using inequality constraints to
ensure positivity. |

Assumption 4.2.3 For each vy € T, h(x;y) is a uniformly continuous

bounded function on X.

Problem 4.2.6 can now clearly be written as

min <h*(y),m(y)> ’ (4.2.48)
yel

subject to
m(y) = P(y)m(y) (4.2.49)
S mly)(dax) = 1. (4.2.50)

Section 4.3. A Constrained EDP
In this section we will introduce a variation on the state con-

straints of section 4.1. We shall require ; e I' be such that

lim J r(x)77 (y) (dx) = 0O (4.3.1)
T—)@

and
lim / gx)7 (y) (dx) e X | (4.3.2)
TV

where K is a closed convex cone with nonempty interior. Constraints
(4.3.1) and (4.3.2) can be considered as "asymptotic constraints”, that
is, they act to constrain the steady state behavior of the system.

e
Assumption 4.3.1 The functiqns r: X-+R and g: X » R# are

uniformly continuous and bounded.

The constrained equivalent deterministic problem can now be stated
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min<h*(¥),v(f)> o (4.3.3)
yel
suhject to
m(y) = P(y)m(y) (4.3.4)
Gm(y) € X | (4.3.5)
RT(Y) = 0 (4.3.6)
4 (y) =1, ' (4.3.7)
where
r(y) = 7 w(y) @x). (4.3.8)

The EDP is now formulated in a manner in which the theorems of
Chapter II can be applied to yield results .paralleling those in
Chapter III. The following assumption is needed.

‘Assumption 4.3.2 R(T - P(Y))vis closed for all vy € P%‘

Since the: null space of I — P(y) is not empty Assumption 4.3.2

implies that R(T) is closed where

1
T =[ ] (4.3.9)
I - P(y) ' :

PO = {(r*%,p) ¢ T"xB(, M| (x*,2) = " (v),P(y)),yel} (4.3.8)

Define F(T) by

Assumption 4.3.3 F(T) is (—Mfg)-directionally convex, where, as

in section 3.5, M* is the polar cone to M,the set of probability measures.
. '\J.‘v. . N
As usual K is defined as

N ~ A
K = {x|x = B(y - GT{Y),y € K,B > o} . (4.3.9)

Theorem 4.3.1 (Stealy State Maximum Principle)

If Assumptions 4.2.2, 4.2.3, 4.3.1 and 4.3.3 hold and Yy is optimal
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. .
in problem (4.3.3) then there exist a ¢% ¢ 1%, k* ¢ ¥ and y* ¢ [R%]"

and scalars A, and ¢, not all zero, such that } < 0 and

(1) % = P*§)™ + Ah* () + G*,k* + R¥y* +c * (4.3.10)
(i) <kx*,6r(§)> =0 : (4.3.11)
(i) Hr(y),v,$™> = max H(r () ,y,3%) (4.3.12)
yerl '
where
H(n(?).Y,$* = <P*(Y)$* + Ah* (y) ,r () > (4.3.13)

Proof: Straightforward modification of the proof of Theorem
3.5.1.

Corollary 4.3.1 In Theorem 4.3.1, ¢ = =<Ah(§),n(3)>..

Proof: From (4.3.10) we have
< m§)> = <P ()45, 7 (§)> #a<h(§) ,m () > + <G*k* 1 (3)>

re<r’,m(3)> + <R¥*, 1 (5)>. . (4.3.14)

But (4.3.11) implies <G*k*,n(y)> = 0 and the optimality of T(y) and
the linearity of (4.3.6) implies <R*y*,n(3)> = 0. Since m(y) is an in-

variant measure for P(y) we also have
<PTOIT T E)> =<2 I G)> = <Gr,(F)>. (4.3.15)
Thus (4.3.14) becomes, since <q*,m(y)> = [ (§) (dx) = 1,

a =r;<h*(§),w(§)> o (4.3.16)
which implies the‘corollary.
The theorem corresponding to Theorem 3.6.1 is easily derived. The
appropriate assumptions are:

Assumption 4.3.4 The set TI' lies in a Banach space G and satisfies

one of the following conditions:

(1) T contains a convex set A such that int A # ¢, or
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(ii) T contains a subset B such that if 8y ¢ B then there exists

an &* > 0 and an a* > 0 such that:

Y +edsy+sz) e T Y ece [0,€], V¥ oz € s(0,a%) (4.3.17)

Assumption 4.3.5 The functional h* (y) and the linear operator P(y)
are continuously Frachet differentiable on T.

Theorem 4.3.2 (Steady State Quasi Maximum Principle) If

Assumptions 4.2.2, 4.2.3, 4.3.1, 4.3.2, 4.3.4 and 4.3.5 hold and v is
optimal in problem (4.3.3) then there exist a ¢* ¢ I*, k* ¢ ¥* and

. ,
w* € URe] and scalars A and c not all zero and a conical approximation;

C(Q,P), to the set I' at ¥, such that A £ 0 and

(1) ¢* = P*($)3* +Ah* () + G*k* + R*y* +c * (4.3.18)

(ii) <k*,Gw(y)> =0 (4.3.19)

222 ~ A A% . . e . )

(iii) VH(T(),Y,87)8r 0 Y sy € c(y,T) (4.3.20)
where

Hm (3).7,8%) = <P*($)8* + AD* (1), m(¥)>. (4.3.21)

Proof: Straightforward modification of the proof of Theorem 3.6.1.
Of course Corollary 4.3.1 also applies to Theorem 4.3.2 as do
many of the corollaries of Chapter III. Since these are quite obvious

we do not consider them_here.

Section 4.4.

The introduction of thé cost criterion which represents the average
cost per stage in section 4.2 brought with it several difficultiés but
it allowed us to’introduce the "asymptotic constraints". These con-
straints allowed us to derive necessary conditions for optimality of é

stationary policy. This would not have been possible if the exponentially
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weighted cost (h;(y) = ath*(y)),had been used since the cost cannot be
described solely in terms of the invariant probability measure.

The value of "asymptotic constraints" does not lie in having
many problems fit that formulation (since there aren't many); rather it
would seem to lie in the insight that can be gained into steady state
control laws. |

Note that in this problem formulation we must assume that the range
of I - P(y) is closed. 1In Chapter III we were able to show that the
range was ciosed in the finite horiéon problem. The reason for this is
that we have iost one degree of freedom in transforming the "state“
equation to steady state form. As we noted in Chapter IT this does not -
seeﬁ to be an unreasonable assumption.

The boundedness- assumption made on the se£ and constraint functions
is not.restrictivé on physical grounds. Certainly infinite values would
be unreasonable physically. For mathematical simplicity however
unbounded costs are sometimes used (for example, in LQG problems) and
vthese cannot be handled in the formulation of section 4.3. These
problems can, however, often be ﬁodified so that these assumptions are
valid or they can be handled by other methods (for example the LQG
problem is handled by a wide variety of techniques [San 3], [Ath 1],

etc.).
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CHAPTER v
Summary, Conclusions and Suggestidns for Future Research
Section 5.0. Introduction
- This chapter summarizes thg results of this thesis and considers
some of the conclusions that can be drawn from this research. Some

suggestions of.areas for future research are made.

Section 5.1. Summary

In Chapter I we consider some of the problems that can arise in.
large scale or nonclassical problems. These considerations lead natur-
ally to the study of constrained systems which is the problem formula-—
tion that we use in the remainder of the thesis. A survey of related
topics and results that will be used later is then given. An overview
of the remaining chapters closes Chapter I.

Chapter II is concerned with nonlinear mathematical prqgramming
in Banach spaces. The results in this chapter are extensions and/or
simplifications of existing results. We also extend these results
to aproblem formulation whvich includes a nonscalar objective function.

In Chapter III the mathematical»formulation of the problem of
Chapter I is introduced. An equivalent deterministic problem formula-.
tion is given and shown to be general enough to subsume several types
of problems. The results of Chapter II are then used to prove a maximum
and a quasimaximum principle. These theorems are‘extended to problems
with nonscalar objective functions and are compared to the results of
dynamic programming. Consideration is also given'to different assump-
tions under which these theorems hold. These results are then applied

to three different constrained LQG problems.
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In Chapter IV the infinite time hofizon problem is introduced and
maximum and quasi maximum principles are derived. It is seen that the
optimal control law for these problems is rarely stationary so a new
problem formulation, known as the. steady state constrained problem
formulation, is introduced. Several results are derived for this problem
which are extensigns of results known for finite ;nd countable state
spaces. Finally, under an erogicity assumptibn, a maximum and a quasi
maximum principle are derived for the steady state constrained problem

formulation.

Section 5.2. Conclusions

The fundamental problem with the necessary cénditions that we have
derived in this thesis is the restrictive conditions that have been
required for them to hold. In particular the directional.convéiity
assumption required for the maximum principle is not easily satisfied
(even for LQG problems!). The differentiability assumption required
for the quasi maximum principle, while not as restrictive as directional
convexity, is not satisfied for some interesting problems. These pro-
blems are, of course, common to all applications of maximum principles
to discrete time systems.

Another drawback to the formulation of this thesis is that the
‘results are necessary conditions for optimality and thus are not as
strong as those obtained via dynamic programming. However this- is often
hot a serious difference since the constrained optimization pérformea in
each DP iteration is often done by solving necessary conditions for
optimality.

The necessary conditions are satisfied for locally optimal solutions




122

and thus clearly need not be sufficient. This can be seen in problems
for which a signalling strategy ([San 1], [Ho 1]1) is optimal: ~

the necessary conditions are satisfied for any strategy which cannot be
improved by a change made in one time instant. Since the signalling
strategy requires cooperation between control strategies at various time
instances there will ciearly be many locally optimal solutions to the
necessary conditions.

often, however, we are uninterested in signallihg strategies and
the abdve mentioned problem doeg§ not arise. This particularly true in
cases where a class of control strategies of interest.are selected a
priori.

The major benefit of the probiem formulation of this thesis is
that control and state constraints are handled in a natural and explicit
manner. Thus one would expect that insight into the- optimal controi:straP'
tegy could be obtained in a broader variety of problems than when dynamic
programming is used. This is especially true when constraints on the
complexity of the. control law exist, since dynamic programming cannot be
'applied in an intuitive manner.

While we have not considered algorithms for using the necessary -
conditions to obtain a solution,.the maximum principle formulation has
some advantages over the dynamic programming formulation. This is
particularly true if an initial‘feasible solution is known sincevsucces—
sively better soluﬁions can then be obtained by using»the gradient of
the Hamiltonian. Thusba recursive algorithm can be formulated using the
maximum principle.

If dynamic programming can be applied to the basic problem then a

one point boundary value problem results as opposed to the two point
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boundary value problem that results from using the results of this
theéis. Thus our results are most useful when dynamic programming can-

not be applied to the basic problem.

Section 5.3. Suggestions for Future Research

There are many different afeas in which further work is required.
We shall make some comments in three areas.

A major difficulty in the straightforward application of existing
algorithms for the solution of necessary conditions to this problem.is
that it is posed in an infinite dimensional space. Two possible tech-
niques for circumventing this problem are discretizing the state (the
probability measures) and parameterizing the space of measures. Both
techniques work by reducing an infinite dimensional problem to an approx-
imate finite dimensional problem.

An altérnatiﬁe#app;nachLis.tc:notEethattwa‘dounnt:need.tnuevalﬁatee
the wt's, we ohly need to know <h;(Y),w >, Gtwf’ etc. It is possible
to use Monte Carlo simulations to evaluate these quantities for any
given y. An ite£ative procedure can then be developed to minimize the
Hamiltonian. Two different approaches seem reasonable: (i) for the
finite horizon problem, multiple simulations of the system over the
whole time horizon could be used to evaluate the expected costs [Qua l},
(ii) for the infinite horizon problem, under stationarity and ergodicity
assumptions, the cost could be evaluated by one long simulation.

Another interesting area concerns extending the class of constraints
that are allowed in our problem formulation. In this thesis we have
allowed constraints on Yt and constraints on Tei an interesting extension

is to consider constraints on Ye and L together (e.g. E{g(ut)} € Kt).

Scme results have been obtained in this area [Lea 1] but only under very

.




‘124

restrictive assumptions and in the finite‘dimensional case..
A third area of interest is that of using the structurecof thec
problem to obtain further results. In particular, we are interested
in the following questions:
(i) if we consider probabalistic (mixed) control strategies does
tﬁis allow us to prove directional convexity?
(ii) is there an analogue to the bang-bang principle?
(iii) is there a compromise between the assumption of directional
convexity and differentiability that=will allow the derivation

of a maximum principle?
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APPENDIX A
MATHEMATICAL PRELIMINARIES
A.l. Linear Topological Vector Spaces

A collection S of subsets of a set X forms a topology for X if:

(1) ¢ ¢ X, X e s (A.l)

(ii) Xl(\ xz e S if Xl, x2 £ S (A.2)
-]

(1i1) iglxi e S-if xie s, i=1,2,... . (A.3)

The pair (X,S) is called a topological space.

A collection F of subsets of X is said to be a basis of the

topology S if
(1) X, eF=>X €5 (A.4)
(i1 X es= x eF §x =x_. (a.5)

, =1
Thus, if a basis F is given, the topology consists of all sets that

are unions of sets in F.
The sets of S are open sets in X. Any open set that contains a

point x € X is a neighborhood of x. If A is a set in X then a ¢ A is

an interior point if there exists a neighborhood of a contained in A.

A set B in X is closed if its complement B\X is open. The closure
of B is the intersection of all the closed sets containing B.

A sequence {xn} of points in X converges to x if, for any neighbor-
hood of x, there exists an N such that all X, 10 > N are in the neighbor-
hocd.

We will be interested only in locally convex Hausdorff topological
spaces, that is, topological spaces in which there exists a basis of the
topology consisting of convex sets and in which for any two distinct

points there exist nonintersecting neighborhoods of those points.
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If X, and Xz are topological spaceé with topologies Sl and 52 then

1
the topological product of xl and X2 is denoted Xl X Xz. The topologi-

cal space Xl X x2 consists of all pairs (xl,xz) where X € Xl and

X5 € Xz. The basis for the topology of Xl X Xz is defined as all sets
of the form:
{(xy,%,)|%y € A, x,°¢ Ay, Ay € Spp By e Syl (A.6)

It is knqwn that the topological.product_of locally convex
Hausdorff spaces is a locally convex Hausdorff space.
Now consider a mapping f: xl - X2 where (xl,sl) and (xz,sz) are

topological spaces. The mapping f is continuous at X, if, for any open

set Az C;Xz_with f(xo) € A there exists a neighborhocd A

97 of xo such

1
that f(Al) C:Az. Almapping f is continuous if A 1is. continuous at every
point x ¢ X

If X is a real linear space then (X,S) is a real linear topological

space if S is such that £(x,y) = x+y: X X X + X and g(A,x) = Ax:E' x XX
are continuous, where El is the space of real numbers with topology
defined by the basis of sets of the form {A| IA-AOI < r}.

If a linear space is normed then a topology can be defined via a

basis consisting of all sets of the form

S(x,x) = {x|||x-xo“ <.r}l , (A.7)
where ||x|| is the: norm on the space. This topology is the natural
topology for a nofmed linear space. In'a normed linear space with the

natural topology a sequence {xn} converges if and only if

lim |k x| >0 . (A.8)
n -+ o ' :
N A sequence {xn} in a normed linear spaceT is a Cauchy sequence if,

T the natural topology is assumed unless otherwise specified.
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for any € > 0, there exists a number N such that Hxhjxm||< € for all
n,m > N. Clearly if {xn} converges to x then {xn} is a Cauchy sequence,
however, the converse is not generally true. A normed linear space X
is complete if every Cauchy sequence converges to an element in X. A

complete normed space is a Banach space.

Note that if B, and B, are Banach spaces with norms |

Il and

]- |- then the produce topology induced by the metric (x ,xﬁﬂ =
2 . | 1772

|lxﬂ|i +||le|2 makeS'Bl\x 32 a Banach spacé.

A.2 Properties of Normed Linear Spaces

The dimension of a linear space X is defined as equal to the
maximum number of linearly independent elements in X. We shall see
that the properties of finite and infinite dimensional spaces have
some interesting differences, but fi:ét, some more definitions.

A set Ao € X is compact if, for every sequence of open sets {Ai}‘
with the property .; Ai}a Ao, there exists a finite subsequence

i=1

n
Ai-i' .. ,Aiﬁ.such that jgl Ai':L] > Ao.

A set AO C X is sequentially compact if every sequence of points

in Ao' {ai} has a convergent sequence.

Theorem A.2.1 In a normed linear space a set is sequentially

compact if and only if it is compact.

25225:- see Dunford and Schwartz [1958] pg. 22.
Let us define, for a normed linear space X, the closed unit sphere
5(0,1) = {x]x ¢ x, ||x|| < 1l

Theorem A.2.2 The closed unit sphere‘EYO,l) is compact if and

only if X is finite dimensional -
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Proof: see Dunford and Schwartz [1958] pg. 245.

Thus in an infinite dimensional space a closed and bound'ed set
need not be cdmpact. Compactness is, therefore, a much more restrictive
requirement in infinite dimensional spaces than in finite dimensional
ones. This is important because, for a large class of functionals, a
maximum is attained on a compact set.

An upper semicontinuous functional is a mapping £: X - R such
that, for every € > 0 and X ﬁher.e exists a S(xov,e.)‘ > 0 such that
£(x) - £(x ) <& for all x such that lx=xJ| < s(x_,e.

Theorem A.2.3 An upper semicontinuous functiocnal on a compact

subset K of a normed linear space X achieves a maximum on K.
Proof: see Luenberger [1969] pg. 40.

A set K CX is dense in X if the closure of K, K, is equal to X.

Theorem A.2.4 There exist two complimentary dense sets in X if
and only if X is infinite dimensional. |

Proof: see [x1le 1] .

Thesg sets will have to be excluded in a later section on separating
hyperplanes. |

A set A ina-linear space X is convex if XX, € A imply that
Axl + (,l-k)x2 e A for all A ¢ [0,1].

The convex hull of a set A is the smallest convex set that contains

A and it is denoted coA. If A € X a linear topological space then the

closed convex hull of A,ch, is the set of points

n
Axgo % e X, Ay =104 20, n2 1} . (3.9)

{x|x = b
i=

1

“ A convex cone C is a set such that if x € C then Ax e C for all

A >0 and if x,y € C then x + y € C.
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Convex cones will be used in two ways in this thesis. First,
they will be used as approximations to certain sets that arise in
optimization problems. This is important since we can only separate
convex sets. Second, they will be used to induce a partial order on a
space. This partial ordering generalizes the notion of inequality
associated with scalars.

This partial ordering property will be used in two different ways.
If K is the positive orfhant'in R™ then g(x) € K is equivalent to
gi(xi >201i=1,...,n. Thus if K is an arbitrary cone in a Banach space
¥,g(x) € K is a generalization of the inequality constraint.

A cone K can also be used to induce a notion of optimality. If
Q CX is a set of feasible points in X and K is a cone in X then x ¢
is noninferior on Q with respect to K if for all x € @, x = x € K
implies x = x. If K is the positive orthant of R"” this just requires
that there exist no feasible point x # x less than or equal to x in
each component.

\

Example A.2.1 A convex cone without any interior points, dense in

the whole space.
Let X = 12 and define C+ as the set of finitely nonzero sequences
for which the last nonzero element is positive, that is,

c, = {x|x = (a;,...,a,0,0,...),a_ >0, n > 1}.

Furthermore, if C_ = {x|-x ¢ C,JU(0}, then cuc_ =2 , and cC=C_ =21

2’ + 2°

Clearly C+ and C_ are convex cones without interior points.

Examgle A.2.2 A closed convex cone without any interior points,

not contained in a proper subspace.

Let X = 22 and define P+ as the positive orthant, that is
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P = {x|x = (al,...,an,....), a

+ >0, n=1,2,...} .

n
The set P+ is clearly closed. That it has no interior points can be
verified by noting that for any €> 0 and x' = (al',az’,...) € P;

there is an x £ P+.such thatllx'—x]|<éi. This occurs because lim lx | = 0.
nva 1

A.3. Conjugate Spaces

Let B denote a pormed linear space and let R denote the real
numbers with the Euclidean topology. A functional f is a mapping
f: B +~ R. A functional is continuous at xé if and only if, for every
€ > 0, there exists a § > 0 such that

) - £x ) <€ x lx=x Il < & .

‘A linear functional is continuous everywhere if it is continuous at any
point. It can also be shown that a linear functional is bounded if
any only if it is continuous. A functional f is bounded if there exists
a constant M such that
e | s lx]] V= (A.10)

Let B* denote the space of all continuous linear functionals
defined on B. B* is conjugate (or dual) to B. The space B* is a
linear space since the operations of addition of functionals and scalar
multiplication can be defined:

(f1 + fz)fx) = fl(x) + fz(x) (a.11)
(kfl)(x) = Afl(x) . (A.12)

Henceforth we denote arbitrary functionals in B* by x*, y*, etc., and
we denote the real number resulting from evaluating x* at x by <x*,x>.
A topology for B* can be defined in various ways. The strong

topolo of B* is generated by the basis consisting of all sets of
topo ogy 9
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the form

V(X,r,x *) = {x*|sup|<x*,x> - <x *,x>|<r}
o e o

where X is any bounded subset of B, that is, a set such that, for any
neighborhood N of the origin, there éxists a A < » such that X € AN.
If X is a normed linear space then this topology can also be generated
as the natural topology corresponding to the norm

[ x*[| = sup~ <xrsx>. (a.13)
=<2

Another interesting topology for B* is generated by basis of the

form
W(X.r,xo*) = {x*||<x*,x>-<x55x> <r, x ¢ X}
where X is any subset of B which contains a finite number of elements

X, € B. © This topology is known as the weak* topology. It is interest-

ing to note that the weak* topology is not induced by any metric unless
B* is finite dimensional.

This can be seen by recalling from Theorem 2.2.2 that the closed
unit sphere is compact in a normal space if and only if the space is
finite dimensional and noting that

Theorem A.3.1 The closed unit sphere in the conjugate space B* of

the Banach space B is compact in the weak* topology.

Proof: see Dunford and Schwartz [1958] pg. 424.

The basis defined by V(x,r,xo*)‘and W(X,r,xo*) are identical in
finite dimension spaces; thus the weak* and strong topologies are iden-
tical in finite dimensional spaces.

It can be shown that, if B is a normed linear space, then B* is
complete, and thus a Banach space in its strong topology but B* is a

Banach space in its weak* topology if and only if B* is finite dimen=-
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sional. Note also if B = Bl x 32 then B* = Bl* b4 Bz*.

Since we have defined two different topologies on B* the terms
open, closed, convergent, compact, etc. have two different meanings.
If no topology is specified then the strong topology is assumed. Note
that since every open set in the weak* topology is open in the strong
topology, strong convergence implies weak* convergence and strong
compactness implies weak* compactness, however, since a set is closed
if its complement is open, sets that are Qeak* closed are strongly
closed, but not necessarily conversely.

If K is a convex cone in a Banach space B, then we can define the

dual (or conjugate) cone K* in B*:

K* = {x*|x* ¢ B*, <x*,x> > 0 Vx e K}. (A.14)
It is easy to verify that K* is a convex cone in B* and that, if

E'# B, K* contains nonzero elements. In fact we can show that.

Theorem A.3.2 If K is a convex cone, then the cone K* is Weak*
closed.
Proof: Pshenichnyi [1971], pg. 34.

Example A.3.1 A éet closed in the strong topology but not in the

- weak* topology.
Let S = {x*| l|x*|| = 1}.. s is clearly closed in the strong tapolagy,
however it can be shown (see Bourbaki [Bo 1]) that S is not closed in

the weak* topology.

A.4. Separation Theorems and Support Points

One of the more important theorems from functional analysis (at
least with respect to optimization problems) is the Hahn-Banach Theorem.

Theorem A.4.1 Let Kl and K, be convex sets in a real normed
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linear vector space X. such that Kl has interior points and K2 int
Kl # ¢. Then there is a closed hyperplane H separating Ki and K2;
that is, there exists an x* ¢ X*, x* # 0, such that
sup <x*,x> < ‘inf <x*,x> (A.15)
xe:Kl xe;Kz

Proof: see Dunford and Schwartz [1958] , pg. 412.

Corollary A.4.1 1If X is a finite dimensional space then the

requirement of an internal point can be_removed. TwWo convex éets are
separable if

(i) their union is contained in a subspace, or

(i1) the intersection of their relative interiors is empty.

g;ggg; see Canon, Cullum and Polak [1970] pg. 247.

The reqﬁirement of an interior point in infinite dimensional spaces
can be eliminated if Klu Kz C M, a subspace such that dim M < dim X.

If X is a locally convex linear topological space then we can ﬁse
the following theorem to get stronger results.

Theorem A.4.2 1If Kl and Kz are closed convex subsets in a locally

convex linear topological space X and Ki is compact, then Kl + K2 is
closed and convex.
Proof: Dunford and Schwartz [1958], pg. 4I4.

Theorem A.4.3 If Kl and Kz are disjoint closed convex subsets in

a locally convex linear topological space X and if Kl is compact, then
there exist constants ¢ and €, €> 0 and a continuous linear functional
x* ¢ X*, x* # 0, such that

<x*,x> < c-e <c < <x*,y> Yx e K, Yy ex (A.16)

1

Proof: (Du 1, Theorem 5.2.7.10]. We can separate Kl and K, if
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and only if we can separate K,-K, and {0}. By theorem 2.4.2 K =K,

is closed and convex and since Kl K2 = ¢, 0 g Kl-K .- Thus there

2
exists an open neighborhood N about 0 disjoint from Kl-Kz, so by the

Hahn-Banach theorem we can separate N and K,-K Since x* # 0 there

172
exists a y € Kl-K2 such that <x*,y> = 1, but ay € N for a small encugh
which implies that <x*,x> > ¢ for some € > 0 and all x ¢ Kl—Kz. The

theorem follows by placing ¢ = in £ <x*,x> and using the linearity of

xs:K:L

x*.

Using theorems A.4.1 and A.4.3 we can now separate a point p from
any set with an interior point or from any closed set if the point is
not in the set. We can strengthen these results by insisting that X
be a Banach space.

Let A be a closed convex subset in X. We say that x* supports

A at a point p, and that p is a support point of A if <x*,p> = ¢ and

<x*,x> > ¢ for all x € A.

Theorem A.4.4 If A is abclosed convex subset of a Banach space X,
then the support points of A are dense in the boundary of A. . |

Proof: see Holmes [1975], pg. 166.

If A is a convex set in X and X'# X then this theorem-shoﬁs that
the set of points {plp ;f‘A, pehd, and J x* =0, ¢ X<x*,p> = ¢,
<x*,x> >c Vx ¢ A} is dense in the boundary of A. That is, the set
- of points that can be separated from a convex set A is dense in the

boundary of A.

Example A.4.1 A closed convex set with boundary points which are
not support points.

Let X =-£2vand define S by .
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s ={x|x = (@)sreeera sees)s o e [0,17i], 1 = 1,...}.

Since S C.P+ (see Example A.2.2) S has no intgrior points, thus all
X € S are boundary points. The point p = (%;éy%'...) is not a support
point as the following argument demonstrates.

If x* # 0 supports S at p then there exists a.c such that <x*,p> = ¢
and <x*,x> > ¢ Vx ¢ S. Since 0 ¢ s, ¢ <0. Ifc<O thenx'=
(1,1/2,1/3,...) € S is such that <x*,x'> = 2c < <x*,p>, thus c = Q.

If <x*,p> = 0 then x* = (al*;aé*,...) must be such that aj* < 0 for
some j > 0. But then x = (O,...,O,ai,O,..-) € S where a, = 1/1i is
such that <x*,x> < 0, thus no x* ¢ X* separates p and S.

Note, however, that for any &> O there exists a p' ¢ S such that
I]p—p'll <& and p' is a support point of S. If 1l/n < & then let
p' =p - (0,...,O,an,0,...) whgre a, = %—, and let x* = (0,...,O,an*,
0,...) where ah* = 1, so that <x*,p'> = 0 and <x*,x> >0 X ¢ S. Thus
the set of support points is dense in S..

Example A.4.2 A convex cone S with no interior points which

cannot be separated from points not in S.

Let X = 12 and define s = C+'(see Example A.2.1). If x* separates

P £ S and S then by continuity it also separates P and S. Since S = 22

no x* separates p £ S and S.

A.5. Linear Operators'and Adjoints
Consider two normed linear topological spaces X and Y and let the
mapping A: X - Y be linear. It is easily seen that a linear operator
is continuous at every point in X if it is continuous at any point.
The space of all linear operators from X into Y is denoted B(X,Y)

and it is clear that B(X,Y) is a linear space. This space can be
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- topologized by introducing the metric

la]l = sup ||ax]|| . (A.17)
xlf}

As was the case with iinear functionals it can be shown that a. linear
operator is bounded if and only if it is continuous. Finally, note
that if Y is a Banach space then B(X,Y) is also a Banaqh space.

If A & B(X,Y) then a functional ¢* on X ﬁéy be defined by
‘¢*(x) = <y*,Ax> where y* ¢ Y*. It is easily seen that ¢* is linear
and continuous, thus ¢* ¢ Xx*. Note that ¢* associates a particular x*
to each y*; this mapping will be denoted A*. It can be seen that A* is
linear and continuocus in the weak* (and thus in the strong) topologies

of X* and Y*. The adjoint operator A* e B(Y*,X¥) associated with.

A € B(X,Y) is thus defined by the equation
<x,A*y*> = <Ax,y*> . (A.18)
Let R(A) denote the range of A, that is,
R@a) = {y|ly = ax, x ¢ X}, (A.19)

Let N(A) denote the null space of A, that is,

N@) = {x|ax = 0, x ¢ X} (A.20)

and define, for a set S X, the orthogonal complement (annihilator)

of S by

[s] = {x*|x* ¢ X, <x*,x> = 0 for all x ¢ S}. (A.21)

Theorem A.5.1 Let X and Y be normed spaces and let A £ B(X,Y).

Then [R(A)]J'= N(ax).
Proof: see Luenberger [1969], pg. 155.

Theorem A.5.2 Let X and Y be Banach spaces and let A e B(X,Y).

‘Let R(A) be closed. Then




137

R@*) = [N@)]™. | (a.22)

Proof: see Luenberger [1969], pg. 156.

Example‘A.S.l An operator A such that R(A) is not closed.
Let As lé +i£2-bé defined by
1

Ax = A(al,az,...) = (a,,=~a

1’2 -.--)-

o
23 73

If x is finitely nonzero (see Example A.2.1) then x e & Ax is finitely

2’
nonzero and Ax e 12. Since the set of finitely nonzero sequences is
11

dense in %o R@) = %,. But R@A) # 12 since (1,3;,§f,...) e R@A)

would imply (1,7 1l)- ...) ¢ 22 which is not true.

A.6. Minkowski-Farkas Lemma

Let X be a linear topological space, Y a locally convex linear
space and let T‘e B(X,Y). We let Pyt: Y be a closed convex cone and
define y' > y" to mean y' - y" ¢ Py. Denote the dual cone to

Py by Py* and define y*' > y*" to mean y*' - y*" ¢ P *,

Y
Define:
Zg = {x* ¢ X*|x* = T*y*, y* > 0} (A.23)
and
VT = {x* ¢ X[ x € X, TX > 0 =><x*,x> > 0} . (A.24)

Theorem A.6.1 (Minkowski-Farkas Lemma) ZT = VT if and only if

zT is convex and closed in the weak* topology.

Proof: Hurwicz [Hu 1].

Recall that in finite dimensional Euclidean spaces Farkas' lemma
states that [Ca 1]:

If Ayreeesay and b are a finite set of vectors in E", then

b'x > 0 (A.25)
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for all x € o satisfying

af>20  i=1,...k (3. 26)
if and only if
b= f ua
= H:Qsy
i=1 **

with ui'i 0 for i =1,...,k.

The Minkowski-Farkas Lemma can be seen as a generalization of the
above if we note thatv(A.26) can be rewritten as Ax > O if we let the
a, define a mapping A: En - Ek and if we define > by the positive

orthant of Ek.

A.7. Fréchet Derivatives
The concept of derivative and differential can be extended to
normed linear spaces. In the follbwing let X and Y be normed linear
spaces and let £ be a (possibly nonlinear) transfqrmation:
£: X - Y. |

The function f is Frechet differentiable at x if for each h ¢ X there

exists 8f(x;h) £ Y which is linear and continuous with respect to h
such that

lim || n|"Y| £ x+n) - £x) - sEx:h)|| = O, (3.27)
lInl{~0

and 6f(x;h) is known as the Frechet differential of f at x with incre-

ment h.
If £ is Fréchet differentiable at x then it is continuous at x.
The Fréchet differential is unique and is given by

a
f(xjh) v f (x+ah) (A.28)
a=0 .

Since 8f(x;h) is linear with respect to h it has the form
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6f(xjh) = ff(x)h (A.29)
where

f': X+ B(X,Y). (A.30)
The mapping f£' is the Frecheﬁ derivative of £ and the linear
operator £'(x) € B(X,y) is the Frechet derivative of f at x. If f is
a functional the f' is also called the gradient of f at x.

Let X = X' x X" be the Banach product of the two Banach spaces

X' and X". 1If

f: X =X"x X" >vY (A.31)
then Gx,f(xojh) is the partial Fréchet differential of f with respect

to x' at X and is defined by

Gx'f(xofh) = Gf(xof(h,ox")) E(A.32)

where

heX', 0.,¢X"and (h,0,) X=X'xXx"

Frequently the Frechet derivative of £(x) at x will be denoted
VE(X). Partial Fréchet derivatives will be denoted VEG X)),
where i denotes the érgument being differentiated.

Finally we have the following extension of the chain rule of
differentiation.

Theorem A.7.1 Let S map an open set D « X into an open set

E CY and let P map E into a normed space Z. Let T = PS and suppose S
is Fréchet differentiable at x € D and P is Frechet differentiable at
y‘= S(x) € E. Then T is Frechet differentiable at x and

T'(x) = P'(S(x))S"' (x).

Proof: see [Lu 1, page 176].
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A.8. The Implicit Function Theorem

Theorem A.8.1 Let X and Y be Banach spaces and let f: XxY X

be continucus in an open neighborhood N of a point (xo,yo) for which
f(xo,yo) = 0. 1If Bxf exists in a neighborhocd of (x.o,yo) , 1s continu-
ous at (xo,yo) and if 'ax'f(xo,yo) is nonsingular then there exist open
neighborhoods Nl C X of X, and Nz cy of Yo such that, for each x ¢ N2
the equation |
f(x,y) =0 (A.33)
has a unique solution x = g(y) where g: Nz' €'Y + X is continuous.
If Byf exists at (xofyo) then g is Frechet differentiable at Y,
and
' , -1 ,
g'(vy) = -3 Ex ,y,)] B EEx,Y ). (3.34)

Proof: see Ortega and Rheinbolt [l970]> pp. 128-129.
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APPENDIX B

The notation used in this and the following appendices as well as
many theorems from linear and convex analysis are given in Appendix A.

Proof of Theorem 2.1.1: Recall the following three sets defined in

Section 2.1:

A - ~ -~ = f(X)
K(X) = F(x)C(x,Q) where F(x) £ (x) (B.1)
xe(i) = r(x)c(%,Q) and (B.2)
D={zeR™|z=08(1,0,...,00, 8 >0} (B.3)

Assume that D and K(xX) are not separable. We now show that this
contradicts the optimality of x. Note that D and K(X) not separable
implies that |

(1) . DAKEX) # ¢ (B.4)

(ii) S e R® . (B.5)

Equation (B.5) follows from Corollary A.4.1 which implies that if
0 £ int Ke(i) then a nonzero vector ¢ exists such that

<$,y> <0 VYye Ke(i). (B.6)

But then (0,¢) would separate D and K(x). Thus O ¢ Ke(ﬁ) and, since
Ke(ﬁ) is a cone, Ke(i) = R".

Let N = N(Vr(x)) and decompose X into the direct sum N + M where
M is isomorphic to X/N. Since Vr(x) is surjective there exists a

bijective map A: M<—>[Rn such that

Ax = Vr(x)x Vx € M. (B.7)

Let I be a simplex in Rn with vertices Ygreeer¥, such that

i) ‘ 0 ¢ int T and , (B.8)
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(ii) T Vr(X)x' =0 (B.11)
Such an x' exists since, from (2.1.7), D NK(x) # ¢.

Because 9 is a simplex in X (let its vertices be xo,...,xn)

<VE (X) ,x>

| A

max <Vf(ﬁ),xi> Vx e 0. (b.12)
i=0,...,n

Thus there exists a A > 0 such that

<VE (%) ,x> < O Vxe Ax' + 9, . (B.13)
where - Ax' + & € Ci(x,Q). (B.14)
Let x = Ax'.

Define g(x,y) by

g(x,y) = r(x + z@a Tty + x)) (B.15)

and note that | |
(i) g(0,0) =0 (B.16)
(1) 7,90y = V@ + L@ ye))gt By (8.17)

(110) Vg0 y) = Tr@ + g @ Ty )g! B yenT (8.18)

(B.19)

i
-

(iv) Vzg (0,0) =

By Theorem A.8.1 equations (B.16-B-.19) imply that there exists a

neighborhood U of {0} ¢ X and a function y(x) such that

(1) p) =0 (B.20)
(1i) r(x + c(A‘lw(,x) +x)) =0 Vxel (B.21)
(1ii) ¢'(0) = -Vr (%) . (B.22)

Choose X = o% and recall that x € N so that
y(\) = p(AX) = $(0) + AY'(0)x + a(Ax) = a(Ax), (B.23)

where

1im [|o@x)||/|e] = O. (B.24)
1& -0
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In light of equation (B.24) it is clear that there exists an € > 0 such

that
lyonll < xe YA [0,€] (B. 25)
Thus
X + ATy () € A(X +0) € C(%,Q) (B.26)
¥r e [on].

Now by the definition of 7 there exists an n e (0,€] such that

X+ X +ATY)) €2 VA e [0,9]. (B.27)

Recall that f(x) is differentiable so that
ﬂ%ﬁ@%ﬁde))=f@)+wfﬁbcurmdymn>+a@nmmﬂyun)(Bam
which, using (2.1.2) and (B.23) can be written
E(R + COXAATTY(N))) = £R) + <VER),AB> + o' (AR . (B.29)

Now since
<VE(X),Ax> < 0 (B.30)

there exists an n* ¢ (0,n] such that, letting &x* = C(n*>_:-+A-ly(n*)) ,

(1)  £(x+6x*) < £(x) (B.31)
(ii) r(x+ éx*) =0 (B.32)
(iii) x + &x* ¢ Q (B.33)

but this contradicts the optimality of x thus D and K(X) are Separable.

. . +
That is, there exists a vector Q_ £ [Rn L such that I3 # 0 and

<$,¥> > <¢,2z> ¥y € D Vz ¢ K(X) . (B.34)

Since 0 ¢ K(X) <¢,y> > 0 Vy € D, which implies that ¢_ < 0. Now if

e}

there exists a z' ¢ K(X) such that <¢,y> > O then, for any y in D,
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there is an o > O such that az' ¢ K(%) and <az',¢$> > <y,¢>, thus
<$p,2z> < 0 for all z ¢ K(X). Clearly continuityiimplies then that

<¢,z> < 0 Yz e K(X) (B.35)

~

However, VF (X)C(x,R) C K(X), so letting ¢ = (A,y) and using

equation (2.1.3), one has

A<VE (), 6x> + <p,9r(R)8x> < 0 Vx e C(x,9) (B.36)

Proof of Theorem 2.1.2: Let N = N(T) and let X = N + M. Consider
the set C(%,0) N N. For any finite set of linearly independent vectors

{8z, } C C(%,2) A N clearly there exists an €> 0 such that

x+8x e Véx e;'.‘c.o_{éxl,...,dxk} (B.37)
Ifx e R AN,
X +8&xe QNN xexco{le,...,ka} (B.38)

so that C(X,Q) N N is a conical approximation to the set Q AN at
x e Q0O N.

Since T(x) is Frechet differentiable VT(x) = T € B(X,Y) and thus
[Lu, Prob. 6.8] N = N(T) is closed so that M = X/N is a Banach épace
[Lu 1, Prop. 2.14.1]. Note that R(T) = 2 is closed so it is also a
Banach space. The restriction of T to M, T M > Z, is in B(M,Z2) and
is bijective. The Banach Inverse Theorem [Lu 1, Theorem 6.4.1] then
implies i_l € B(Z2,M). Clearly 2 ; X/2 = Y is closed, thus [Ho 1,
Lemma 17H] M = T-l(Z) is closed and [Ho 1, Theorem 17I] the.projec- -
tion operatér PM: X >+ Mis continuoué as 1is PN =1I1-P : X > N.

M
Note that problem (2.1.9) can be written
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min f(x)
subject to ' (B.39)
r(x) =0 x e QN N.
An application of Theorem 2.1.1 leads to the existence of a ¢ € Rn+l
such that
<¢, F(X)8x> < 0 Yeéx ec(x,QNN. (B.40)

Note that the conical approximation in equation (B.40) can be chosen
to be

CEX,QNN) =Cx,Q N N. (B.41)

Recall that in the proof of Theorem 2.1.1 ¢ was chosen to

separate the sets D and K(x). In problem (B.39)
R(R) = VF(X)C(X,Q N N) = VF(X)C(x,Q) N VF(X)N. (B.42)
-~ n+l A A A . .‘
If VF(Z)IN = R then K(x) = VF(X)C(x,Q) in which case

A<VE(R),8x> + <¢,Vr(X)8x> + <y*,T6x> < 0 Vx ¢ C(x,Q) (B.43)

where y* ¢ [R(T)]Ji If VF(X)N = Rm, m < n+l, then clearly ¢ # O

can be chosen so that

<¢$,z> = 0 Vz ¢ VF(x)N (B.44)
and thus so that _
<¢,2> = 0 Vz e VF(X)PC(%,Q) (B.45)

That is, ¢ separates D and K'(X), where

K'(R) = VF(ﬁ)pNC(:E,m (B.46)

This implies that there exists a A < 0and a y € Rn, not both zero,

such that
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X<VE (X) ,8x> + <y, Vr(x)éx> < 0 Véx ¢ PC ®,9) (B.47)
or
X<VE(R) P 6x> + <P, Vr(X)Péx> < 0 Vox e C(&,Q). ~ (B.48)

Since PN = I - P equation (B.48) becomes

M
X<VE (%) ,8x> + <y,Vr(x) x>
- A<VE(R),P,0x> - <y, Vr(X)P,8x> < 0 Véx e C(X,Q) (B.49)

But

A<VE (%) B 6x> + <y, Vr (X)P 6x> =

(B.50)
AR FVE(R) + P *Vr*(R)p,8x> =0 Véx e N,
thus, since P,* and Vr* (X) are continuous,
AR FVE(R) + BATIH(R)Y € N]Te x*. (B.51)
However R (T) is closed and thus, by Theorem A.5.2
L
[N]™ = R(T*) (B.52)
so that there exists a y* € Y* such that
-T*y* = AR AVE(R) + P FVr*(X)Y . (B.53)
Equation (B.49) thus becomes the desired
A<VE (R) ,6x> + <y, Vr(R)6x> + <y*,T6x> < 0 Véx e C(R,Q) (B.54)

Proof of Thedrem 2.2.1: TIf R(VT(x)) # Y then clearly there exists

a nonzero y* ¢ Y such that

<y*, IT(x)8x> =0 Véx e X (B.55)

so that (2.2.10) can be trivially satisfied. Assume then that
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R(VT(x)) = Y.

Let N = N(VT(X)) and X = N + M. By Luisternik's Theorem
Lui 1, Theorem VI.46.1] there exists a function that maps N into A
where A = {x|T(x) = 0}. In particular, there exists a mapping vy (x)

such that

T(X+y(8x) = 0 Véx e UN N (B.56)

where U is some neighborhood of % and

y(8x) = 8x + a(8x) (B.57)
where

lim |le)|/||«] = o . (B.S8)

x| ~o

This implies that N is a quasilinear conical approximation to A with
Z(8x) = y(dx).

Consider a finite set of linearly independent vectors {le,,..,axk}
in RC(x,2°) N N. Clearly RC(%,Q°) is a conical approximationbto the
set Q° since RC(X,0°) is convex. Thus there exists an € > O such that

X + 6x g Q° xs‘cc{eﬁxl,...,eﬁxk} . (B.59)

Since x-beéxj € 2%, j =1,...,k there exist o >03=1,...,k such

that
X tefx, + 6z e Q0 Véze $(0,a) 3 = 1,...,k _ (B.60)
Let ¢ = min o.. Since Q° is convex
i=1,..3,x
. k
X +€73 Bijj +68z e Q° W8z e s(0,a) . (B.61)
j=1

k
where I B, =1, B. > O.
j=1J 3 =
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Now by the definition of Z(8x) = y(6x) in eguations (B.57) and

(B.58) there exists an €* > 0 such that

, k k
Z(A6x) € S(Aéx,Aa) Véx = I g.Bx,, LB, =1,8,2>0 (B.62)
But (B.62) implies that
£ +z(8x) e VYex e:Co{e*le,...,g*ka}, (B.63)

and thus RC(X,R°) /1 N is a quasilinear conical approximation to the set

QNA.

Arquing as in the proof of Theorem 2.1.2 yields the existence of

aA<0Qand a ¢ ¢ R" not both zero and a nonzero y* € Y* such that

A<VE (X) ,8%x> + <¢,Vr (X)8x> + <y*,VTX]I6x> < Q (B.64]

V¥6x € RC(x,2°)

Note that

RC(%,09 = {(sx| 3 8x, (€) ¢ RC(X,0°), €> 0 || 6x-6x, (@)} e} (B.65)
RC(X,0Q) = {6x| 3 sx,(e) ¢ RC(X,Q), €> 0 Hch—ﬁxz(e)H <&} (B.66)
RC(%,2) = {sx]Ix(€) e 2°, > 0, 3 [[x(e)-(x+sx)|| <E}. (B.67)

Choose 8x ¢ RC(x,Q) and note that if

§xy(n) = x(n) - % (B.68)
where Ekn) g Q° is defined in (B.67) then
6x3(n) € RC(x,Q°) . (B.69)

Corresponding to 8x is a 6x2(¢) such that
8%, (¢) € RC (X,Q) (B.70)

and R
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de-6x2(¢ﬂ|.i ¢, (B.71)
so that there exists a §x,(n,¢) & RC(X,2°) such that
6% (n,8)=6x, (0| < n . (B.72)

Letting ¢ = n = €/2 ocne has that there exists a 6x3(€/2,é?2) € RC(X,0 )

such that
|| 6x-6x, (&2, &2)|| < [l 6x-6x, (/2| + || 6x, (€/2)-6x, (&2, &2)]| < e

(B.73)

sa that 6x € RC(%,0°).

Clearly RC(%,R°) C RC(x,R) so that (B.73) implies RC(x,Q°) =

RC(x,Q) = RC(x,Q) and thus

- XSVE(R),8x> + <¢Vr(X)6x> + <y*,VT(X)8x> < O (B.74)

¥ 6x € RC(x,Q).

Proof of Theo:em 2.4.1: Define the following three sets:

Ay - A _ £(x)
K(x) = VF(x)C(x,f) where F(x) = £ (x) (B.75)
Ke(i) = Yr(x)C(%,R) and (B.76)
D={ze¥xRlz= (-k,0), k € int K}. (B.77)

As before we show that if D and K(X) are not separable then x is not

optimal. Note that if D and K(x) are not separable then

(i) DAKE # ¢ (B.78)
(11) K (%) = R (B.79)
n

Let N = N(Vr(%)), X = N + M and A be a bijective map A: M -+ R




150

equal to Vr(ﬁ) oi M. Let I be a simplex in RP with vertices vo,...,v

n
such that
(1) 0 €8(0,p) Cint Z for some p > O (B.80)
(ii) ® = A"'% € C(k,Q). (B.81)

Since, from (B.78), D N K(X) # ¢, there exists a x' € C(%,Q) such that:
(i) =VEX)x' ¢ int K (B.82)
(ii) vr(x)x' = O. (B.83)
Let the vertices of ¢ be denoted RoreeeiXy and note that

lveix|l < max  |[vE0x]| Yx e o. (B.84)
i=0,...,n

Thus there exists a A > 0 such that
-VE(X)x ¢ int K Vx € Ax' + 0 (B.85)

where ' + 2 CcCx,0) (B.86)

Let X = Ax' and define g(x,y).by

glx,y) =& + @A Ty + x) , (B.87)

and note:
(1) g(0,0) =0 - (B.88)
(1) Vv 9(x.y) = Vr(:“c+c(A'ly+x))c' (A'ly+x) (B.89)
(1ii) Y, g(x,y) = Vr Gz Ly ot @ Ty aTt (B.90)
=1 (B.91)

(iv) Vzg(O,Q)

Theorem A.8.1 again implies that there exists a neighborhood U of

{0} & X and a function ¥ (x) such that

(1) ¥(0) = O (B.92)
(11) rG+z @ o x)+x)) =0 VxeU (B.93)

(iii) ¢'(0) = =Vr(x). (B.94)

Let x = a; € N so that
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YOO = P(AD) = o () (B.95)
where

lim |lo(ex)||/|a]= 0 . (B.96)

a({=0

Let € > 0 be such that
Hy M| < xe Vie [0€] (8.9
Clearly

AX + A'ly(x) € A(§+¢) C C(x,0) VX e [0,e] (B.98)

thus there exists an n ¢ (0,€] such that

2+ v 0) e @ Y e [0,n] (B.99)

Recall that

£G + (X ly (D)) = £G) + VER) ZOTR Y ()) +

ozOx + 2~y )

£(x) + AVE(X)X + o' (AX) (B.100)

Since -V£(X)x € int K there exists a § > 0 such that

VfQE).; + 8y € int K. Y8y ¢ 5(0,8). .Let n* & [0,n] be such that
llo* (xx)|| < A8 V¥ A e [0,n*] (B.101)

Thus x* = Z(n*X + A_ly(n*)) is such that:
(1) £(x) - £(x + &x*) € int K (B.102)
(i1) r(x + 6x*) =0 (B.103)
(lii) X + 8x* € Q
but since O £ int X, £(Xx) # £(X + 6x*) which contradicts the K-non-

inferiority of x, thus D and K(x) can be separated. That is, there

exists a z* ¢ [Y x tRn]* such that z* # 0 and

.<z*,z'> > <z*, z"> Yz' €D Vz" ¢ K(ﬁ) (B.105)
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since 0 ¢ K(x)
<z*,z'> > 0 h/z' €D (B.106)
but the definition of D (equation B.77)) implies then that z* = (y*,9)
with -y* ¢ K* and $ € R".
The definition of VF(x) and continuity then imply that

<y*,VE(X)6x> + <9,Vr(R)éx> < 0 Véx e C(X,Q) . (B.107)
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X(v -v ) + <¢t+l

Proof
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APPENDIX C

of Theorem 3.5.1:

(1)

(ii)

t=0

If Rt is not surjective then there exists a nonzero wt
such that R;w; = 0 and Theorem 3.5.1 can be satisfied trivially.

Thus assume Rt is surjective for t = 1,...,T. If {Gt} (as

defined for Corollary 3.5.1) are positively linearly dependent

* ",
then a nonzero kt £ K; exists such that sz; = 0 and thus

Theorem 3.5.1 can be satisfied trivially. Thus_assumei{Gt}I
is positively linearly independent for t = 1,...,T. Note

that <k;,Gt%t> =0, t=1,...,T since we can choose kt = 0

if (Gtr“rt)l # 0, thus equation (3.5.34) holds.

Theorem 2.1.2 and Corollary 2.1.4 imply that there exists a

got...+ep

A <0, € R ST, —0* € (II1 x...x.HT)* not all zero

e

such that

-1 e T

1
Z Gv + I <=9 ,SW - GV > + I <+wt,Rtént> <0

+=0 t+1 +1 +=0

Sz € C(2,Q") (C.1)

where we have made use of the fact that

(iii)

Q ~ %
Advt * <¢t+1

-~ % - A* A% A* % -
[y (¢1,...,¢T), ¢t,€ Ht' t 1,...,T and

e
b= Wyreenaby)s Uy elR €= I,..,T

Consider equation (C.l). Let 6z = (0,...,0,6vt,0,...,0) be

in C(2,Q'). Then (C.l) implies that

1 - - ‘
,th> <0 th € RC(vt,co(Ft(Pt) ﬂt)) (C.2)

Note that this can be written

><0 Ve € vt + RC(v ,co(F (Pt)ﬂ )) (C.3)




and by continuity

* lAl PN A‘ - ~ '
t+1,vt-vt> <0 v, € (vt+RC(vt,co(Ft(Ft)wt))).

o) ~0 -
A(vt - vt)-k<¢ &

It is readily verified that, for a convex set U,

4+ RC(Q,U) U

SO

v, o+ §C(Gt;co(rt(rt)%£j) co (Ft(rt)%t) F (T )m,.
Thus
»A(;Z - vi) + <$t+l,;i—Vt> >0 v, € Ft(rt)%t
SO
MR (T T> = <hlyg) >) + <o) POT, - BLY)T> 20
Ye € Pt'

which obviously implies (3.5.35).

(iv) Now let Sz = (0,...,O,GWT,O,...,O,SVT,O,...,O) where

GWT € IC(WT,ST ),

and GVT = h;dnT. Equation (C.l) becomes

* oA %* ~
A<hy,8y> + <=§%,8m > + <yi,RSm > <0 &m_ e IC(T,S)

thus

A%k

- * ok k = *
¢T AhT RTWT € [IC(ﬂT,ST)] .
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(C.4)

(C.5)

(C.8)

(c.7)

(C.8)

(C.9)

(C.10)

(C.11)

By assumption {G;}I is positively linearly independent so

that Theorem 2.3.5 implies that there exists a k; €
such that

Ak * x % *x, %

¢T )\hT RTwT GTkT

which is just equation (3.5.33).

Yk

K1

(C.12)




.

(o] *
- > 4+ <
Avt <¢t,6vt ¢

155

Let 82 = (o,...,o,snt,o,...,o,avt,o,...,0) where

th = Ft(yt)Gﬂt (C.13)

and 6m_e IC(Ty,S,), t = 1,...,T-1.

Equation (C.l) becomes

1 *
* ,th> + <¢t,Rt6nt> <0

t+1
- (C.14)
Gnt € IC(wt,st)
which can be written
* A * * ~
SA<h (Y )BT > <4, 8> = <h g P (Y ST > = <Y R ST> 2 0
- (C.15)
th € IC(ﬂt,St)
Theorem 2.3.5 then implies
* LI * _ * 0 _ n*ox *y %

bp = Pe(Ydei,, - ALy - ROV € Gékt (C.16)

which is equivalent to equation (3.5.32), for t = 1,...,T-1.

Equation (3.5.32) is then used to define ¢g

Proof of Theorem 3.6.1:

)

. S . - . . *
If Rt is not surjective then there exists a nonzero wt such

that szz = 0 and Theorem 3.5.1 can be satisfied trivially.

Thus assume R, is surjective for t = 1,...,T. If {Gt}I (as

defined for Corollary 3.5.1) aré positifely linearly dependent

*

* 0,
then a nonzero kt € Kt

exists such that G;k: = 0 and thus
Theorem 3.5.1 can be satisfied trivially. Thus assume {Gt}I

is positively linearly independent for t = 1,...,T. Note that

* - . i .
<kt,Gtﬂt> =0, t=1,...,T since we can choocse Kt = 0 if

(Gt?rt)l # 0, thus equation (3.5.34) holds.
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(ii) Theorem 2.2.1 implies that there exist a A <0,

e L *x -
v e [R Feeer +] , 6" € [Hl X.o..X HT]* not all zero such

that

Ry b h(y,.),s T§l V.ot (Y )8y, T, ) §
< Y.) 0 > + < Y Y., +
tm] EE t emg Y EE e T
T-l ~de A ~ ~
t50<'¢t+1'5"t+1 T Pelyedom - VP (Y 8y T >+
'f<* }6 ><0 s (2,0 17
£=0 VprRST> <0 2e € Clz/) (.17)

(iii) Consider equation (C.l7). Let 6z = (O,. .,O,GYt,O,...,O)

where £t = 0,...,T-1, be in C(E,Q). Then

*

* " ~ ~ . ~ A
A<VYht(Yt)6Yt,ﬂt> + <¢t+1’ VYPt(Yt)Gtht>‘i 0 _ (C.18)

Syt £ C(Ytirt).

which is just equation (3.6.23).

- (iv) Let 8z = (O,...,Swt,o,...,O), where t = 0,...,T-1, be in

C(z,R). Then equation (C.l1l7) becomes

*

- ~ % *
t+l'Pt(Yt)5"t> - <¢t,6wt> + <Y _,REm > < O

* , "~ A
A<y (ve), 8me> + <9 £ R0

(C.19)

th € IC(nt,st)

Theorem 2.3.5 now implies that there exists a k* ¢ ¥* such

that

* L pr (e e * ** *0* a - (C.20)
by Pt(Yt)¢t+l + Aht(yt) + Gtkt + Ry, t=7T-1,...,0

which is juét equation (3.6.20)
(v) 1If 8z = (0,...,6wT,O,...,0) the same argument implies equation

(3.6.21).




{(Ath 1]

(Ath 2]

[Baz 1]

[Baz 2]

[Bert 1]
(Bert 2]
[Bil 1]

[Bo 1]

{Bou. 1]
[Ca 1]

[Ca 2]
[Cas 1]

[Cra 1]

[DaC 1]

157

BIBLIOGRAPHY

M. Athans, "The role and use of the stochastic linear-
quadratic-Gaussian problem in control system design",
IEEE Trans. A.C., vol. AC-16, no. 6, 1971.

M. Athans, "The matrix minimum principle", Inf. and Contr.,
vol. 11, 19é8. -

M. Bazaraa, C. Shetty, J. Goode and M. Nashed, "Nonlinear
programming without differentiability in Banach spaces:
necessary and sufficient constraint qualification", J. Appl.
Func. Anal., vol. 11, 1977.

M. Bazaraa and J. Goode, "Necessary optimality criteria in
mathematical programming in normed linear spaces", J. Opt.
Th. Appl., vol. 11, no. 3, 1973.

D. Bertsekas and S. Shreve, Stochastic Optimal Control:

The Discrete Time Case, Academic Press, N.Y., 1979.

D. Bertsekas, Stochastic Optimal Control, Academic Press, N.Y.,
1976.

P. Billingsley, Convergence of Probablllty Measures, John
Wiley and Sons, N.Y., 1968.

N. Bourbaki, Espaces Vectoriels Topologigque (Eléments de
Mathematique, XVIII, Premlere Partie; Livre V), Hermann et
Cie, Paris, 1953.

D. Bourgin, "Linear topological spaces," Amer. Jour. Math.

LXV, 1943.

M. Canon, C. Cullum, Jr. and E. Polak, Theory of Optimal Control
and Mathematical Programming, McGraw-Hill, N.Y., 1970.

M. Canon, C. Cullum, Jr. and E. Polak, "Constrained minimization
problems in finite dimensional spaces," SIAM J. Contr., vol. 4,
1966.

N .
D. Castanon, "Equilibria in Stochastic dynamic games of
Stakleberg type", Ph.D. dissertation, Electrical Englneerlng,
M.I.T.

B. Craven, "Nonlinear programming in locally convex spaces",
J. th Th. Appl., vol. 10, no. 4, 1972.

N. DaCunha and E. Polak, "Constrained minimization under vector-
valued criteria in linear topological spaces" in Mathematical
Theory of Control, A. Balakrishnan and L. Neustedt, Eds.,
Academic Press, N.Y., 1967.




(Di 1]

[Do 11

[Du 1]

[Dub

(Dub

[Gir

[Hal

[Hal

[Hal

[Hal

[Hal

[Hol

{Hin

1]

2]

1]

1]

2]

3]

4]

5]

1]

1]

[Ho 1]

[Ho 2]

[Hur

1]

158

J. Dieudonne, "Sur le theoréme de Hahn-Banach", Bull. Soc.
Math. France, vo. 50, 1922.

J. Docb, Stochastic Processes, John Wiley and Sons, N.Y.,
1953.

N. Dunford and J. Schwartz, Linear Operators Part I: General
Theory, Interscience Publishers, N.Y., 1958.

A. Dubovitskii and A. Milyutin, "Extremum problems with
constraints", Soviet Math. Dokl., vol.4, 1963.

A. Dubovitskii and A. Milyutin, "Extremum problems in the
presence of restrictions”, USSR Comput. Math. and Math. Phys.,
vol. 5, no. 3, 1965. :

I. Girsanov, Lectures on Mathematical Theory of Extremum
Problems, Springer-Verlag, N.Y., 1972.

H. Halkin, "A maximum principle of the Pontryagin type for
systems described by nonlinear difference equations", SIAM
J. Contr., vol. 4, 1966.

H. Halkin, "A satisfactory treatment of equality and operator
constraints in the Dubovitskii-Milyutin optimization formalism",
J. Opt. Th. Appl., vol. 6, 1970.

H. Halkin, "Nonlinear nonconvex programming in an infinite
dimensional space"”, in Mathematical Theory of Control, A.
Balakrishnan and L. Neustadt, Eds., Academic Press, N.Y., 1967.

P. Halmos, Measure Theory; Springer-Verlag, N.Y., 1970.

P. Halmos, Lectures on Ergodic Theory, The Mathematical Society
of Japan, 1956.

J. Holtzman, "Convexity and the maximum principle for discrete
systems", IEEE Trans. A.C., vol. AC-1l, no. 1, 1966.

K. Hinderer, Foundations of Non-stationary Dynamic Programming
with Discrete Time Parameter, Springer-Verlag, N.Y., 1970.

R. Holmes, Geometric Functional Analysis and Tts Applications,
Springer-vVerlag, N.Y., 1975.

Y. Ho and K. Chu, "Team decision theory and information struc-
tures in optimal control problems - part I", IEEE Trans. A.C.,
vol. AC-17, no. 1, 1972.

L. Hurwicz, "Programming in linear spaces", in Studies in Linear

and Nonlinear Programming by K. Arrow, L. Hurwicz and H. Uzawa,
Stanford Univ. Press, Stanford, 1958. ‘




[IQ 1]

[Io 2]

[Ito 1]

[Jo 1]
(Kle 1]

(Kur 1]

[Kus 1]
[Las 1]

[Lea 1]

{Lu 1]
(Ly 1]
[Man 1]
[Man 2]

[Mau 1]

[Nag 1]

[Neu 1]

159

A. Ioffe and V. Tihamirov, Theory of Extremal Problems, North-
Holland Publishing Company, N.Y., 1979.

A. Ioffe, "Necessary and sufficient conditions for a local
minimum, l: a reduction theorem and first order conditions',
SIAM J. Contr., vol. 17, no. 2, 1979.

Y. Ito, "Necessary and sufficient conditions for an invariant
measure", in Ergodic Theory, F. Wright, Ed., Academic Press;
N.Y., 1963.

B. Jordan and E. Polak, "Theory of a class of discrete optimal
control systems", J. Elec. Contr., vol. 17, 1964.

V. Klee, Jr., "Convex Sets in Linear Spaces", Duke Math. J.,
XVIII, 1951.

S. Kurcyusz, "On the existence and nonexistence of Lagrange
multipliers in Banach spaces", J. Opti Th. Appl., vol. 20,
no. 1, 1976. ’

H. Rushner, Introduction to Stochastic Optimal Control, McGraw-
Hill, N.Y., 1970.

I. Lasiecka, "Generalization of the;Dubovitskii-Milyutin
optimality conditions”, J. Opt. Th. Appl., vol. 24, no. 3, 1978.

J. Leake and J. Ortega, "A discrete-time maximum principle
for systems with state constrained controls", SIAM J. Contr.,
vol., 15, no. 3., 1977. '

D. Luenberger, thlmlzatlon by Vector Space Methods, John Wiley
and Sons, N.Y., 1969. :

L. Lyusternik and V. Sobolev, Elements of Functional Analy51s,

Frederick Ungar, 1961.

0. Mangasarian, Nonlinear Programming, McGraw-Hill, N.Y., 1969.

O. Mangarsarian and S. Fromovitz, "The Fritz John necessary
optimality conditions in the presence of equality and inequality
constraints", J.Math. Anal. Appl., vol. 17, 1967.

H. Maurer and J. Zowe, "First and second-order necessary and
sufficient optimality conditions for infinite diemensional
programming problems'", Appl. Math. Optim., vol. 5, 1979.

Y. Nagahisa, and Y. Sakawa, "Nonlinear programming in Banach
spaces", J. Opt. Th. Appl., vel. 4, no. 3, 1969.

L. Neustadt, Optimization, Princeton University Press,
Princeton, 1976. ' '

PEERE B BN 1 BN B e i W = e . . .-y




160

[Nue 2] L. Neustadt, "An abstract variational theory with' applications
to a broad class of optimization problems I:: General theory",
SIAM J. Contr., vol. 4, 1966.

[Or 1] J. Ortega and W. Rheinboldt, Iterative Solutlon of Nonlinear
Equations in Several Variables, Academic Press, 1970.

[Pol 1] E. Polak and A. Payne "On multicriterion optimization”, in
Directions in Large-Scale Systems, Y. Ho and S Mitter, Eds.,
Plenum, N.Y., 1976.

[Ps 1] B. Pshenichnyi, Necessary Conditions for an Extremum, Marcel
Dekker, N.Y., 1971. ' ' ’

[Qua 1] J. Quadrat, "Methodes de simulation en programmation dynamigque
stochastique"”, Docteur-Ingenieur These, Mathematigque, Sciences
de Paris VI.

[Ros 1] S. Ross, "Arbitrary state Markovian decision models", Annals
Math. Stat., vol. 39, 1968.

[Roz 1] L. Rozonoér, "The maximum principle of L.S. Ppntryagin in
optimal systems theory III", Automat. Remote Contr. vol. 20,
1959.

[Rud 11 W. Rudin, Principles of Mathematicai Analysis McGranHill,
. N.Y., 1976. ‘

[san 1] N. Sandell, Jr., "Control of finite-state, finite-memory
stochastic systems", Ph.D. dissertation, Eelctrical Engineering,
M.I.T.

[san 2] N. Sandell, Jr., P. Varaiya, M. Athans and M. Safonov, "Survey
of decentralized control methods for large scale systems"”
IEEE Trans. A.C., vol. AC-23, no. 2, 1978.

[san 3] N. Sandell, Jr. and M. Athané, "Solution of some nonclassical
LQG sotchastic decision problems", IEEE Trans. A.C., vol. BAC-19,
no. 2, 1974.

[str 1] C. Striebel, Optimal Control of Discrete Time Stochastic
Systems, Springer-Verlag, N.Y., 1975.

[Tu 1] H. Tuy, "On necessary conditions for optimality"”, in Colloquia
. Mathematica Societatis Janos Bolyai 12. Progress in. Operations
Research, Eger, 1974.

[Var 1] 'P. Varaiya, "Nonlinear Programming in Banach space”, SIAM
J. Appl. Math., vol. 15, no. 2, 1967.

[Wit 1] H. Witsenhausen, "Separation of estimation and control for
discrete-time systems", Proc. IEEE, vol. 59, no. 9, 1971.




161

(Wit 2] H. Witsenhausen, "A standard form for sequential stochastic
control”, Math. Sys. Th., vol. 7, 1973.

[Yos 1] K. Yosida, Functional Analysis, Springer-Verlag, N.Y., 1971.

(zio 11 S. Zionts and J. Wallenius, "An interactive programming
method for solving the multiple criteria problem"”, Management
Sci., vol. 22, 1976.

[Zo 1] J. Zowe and S. Kureyusz, "Regularity and stability for the
mathematical programming problem in Banach spaces", J. Appl.
Func. Anal., vol. 10, 1976.




