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ABSTRACT

A computational study was carried out on the

rarefied hypersonic gas flow past a circular disc by the

use of the direct simulation Monte Carlo method for the

case of Knudsen number unity and the temperature ratio

between the disc and the undisturbed gas unity.

. The results showed that the disturbed region

was confined to a small region due to the low temper-

ature of the wall, although the temperature disturbance

extended more widely than the velocity or density

disturbance. The study of the near axis flow properties

clearly showed the existence of the bow shock. Both of

the heat transfer rate and the pressure drag data showed

small values compared with the free molecule values.

Thesis Supervisor: Dr. Leon Trilling

Title: Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

The direct simulation Monte Carlo method has proved

to be a valuable tool in the study of rarefied gas flow

problems [1-71. The present paper treats the axisymmetric

flow past a circular disc in the transition regime.

In the study of rarefied hypersonic transition flow

over axisymmetric blunt bodies, interest has generally focused

on bodies such as cylinders, hemispheres, spheres, and blunted

cones, and those problems have been treated extensively from

both continuum and kinetic theory viewpoints. Relatively

little attention has been given, however, to flat-faced

bodies, which might be regarded as the limit of maximum

bluntness. Potter and Miller [8] and Bailey and Sims [9]

conducted experiments to measure the characteristics of this

shape in the transition regime.

Victoria and Widhopf [10] have compared the results

of their finite difference solutions to the complete Navier-

Stokes equations with the direct Monte Carlo calculations of

hypersonic flow over a sphere with cold wall at low Reynolds

numbers in order to assess the validity of the continuum

approach. They found that the structure of the flow field

near the body was comparable for the two calculations, but

9
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that there were substantial differences within the outer por-

tion of the shock wave. The stream line solution of Levinsky

and Yoshihara [11], who assumed that the total disturbance

region is thin compared to the radius of the body, neither

velocity slip or temperature jump being considered, differs

substantially from both the Monte Carlo results and the

Navier-Stokes solutions over almost all the flow. This

is also shown by Jain and Adimurthy [12], who examined the

effects of slip boundary conditions on the thin layer and

the complete Navier-Stokes solutions on the stagnation line

at low Reynolds numbers.

In the present paper, direct simulation Monte Carlo

results for the axisymmetric rarefied hypersonic flow past a

flat-faced circular disc at Knudsen number unity are pre-

sented. Near-axis of symmetry flow properties, average heat

transfer to the disc surface and pressure drag are also pre-

sented together with the density and temperature distribu-

tions in the flow field upstream of the disc.



CHAPTER 2

THE BOLTZMANN EQUATION AND THE MONTE CARLO METHOD

2.1 The Boltzmann Equation

The Boltzmann equation can be written in the form [13]

9(nf) + C - 9(nf) + F (nf)
@t Dr - 3c

00 4 7

= n2 (f*f 1* -

_ffi)crraddc_ (2.1)

or

U DF F DF.

+t_- r F-

00 b 2ff

= r0bmaxf 2  (F*F*1 - FF 1)crbd s dbdd 1  (2.2)
o o

where f = f(c) and F = F(c,r,t) = nf. A bar under a quantity

denotes the vector quantity. The te.rm on the right-hand side

of the Boltzmann equation is called the collision term. Its

integral form contrasts with the partial differential form of

the terms on the left-hand side which express the space and

time dependence of nf, and is responsible for much of the

mathematical difficulty associated with the Boltzmann equa-

tion. On the other hand, nf is the only dependent variable

11
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in the equation. This might be considered an advantage when

comparing the Boltzmann equation with the Navier-Stokes equa-

tions of continuum gas dynamics, since these have the velocity

components and two thermodynamic properties as dependent

variables. However, the advantage is far outweighed by the

addition of the velocity-space coordinates to the list of

independent variables.

2.2 The Moment Method

This approach employs the moment equations which are

obtained by first multiplying the Boltzmann equation by a

molecular quantity, and then integrating it over velocity

space. The moment equation for Q is given in the form

(n5) + V - (ncQ) - nF c = A[QI (2.3)

where

A[Q] = n2Q(f*fl - ffl)cradQdcldc. (2.4)

A bar over a quantity denotes the average over all the

velocity classes. The macroscopic quantities are defined

in terms of the average of the microscopic molecular quanti-

ties Q. The substitution of various values of Q into Eq.

(2.3) leads to a series of equations in the macroscopic quan-

tities. However, the presence of cQ in the second term means

that, as Q progresses to successively higher order of c each



13

equation involves a moment of still higher order. This can

only be overcome by using some method of truncation, to form

a determinate set of equations.

The Chapman-Enskog solution [14] of the Boltzmann

equation is based on a series expansion of the distribution

function f as

f = fo 1 + ai(Kn) + a2(Kn)2 + .-- (2.5)

where the coefficients a are functions of p, co, and T only.n

The first-order solution is the local equilibrium of

Maxwellian distribution function fo. The conservation equa-

tions obtained by setting Q equal to m, mc and mc2 are the

five moment equations and reduce to the Euler equations of

inviscid flow. The second-order Chapman-Enskog solution

leads to the distribution function which enables the conser-

vation equations be reduced to the Navier-Stokes equations of

continuum flow. From the kinetic theory point of view, both

the Euler and Navier-Stokes equations may be regarded as "five

moment" solutions of the Boltzmann equation, the former being

valid for the K +0 limit and the latter for Kn << 1. If a
nn

higher order of perturbation isused, the Burnett [15,16]

thirteen moment equations result. Grad [17] expanded the

distribution function in Hermite polynomials, the termination

scheme being to equate the higher order coefficients to zero,

and obtained a different set of thirteen moment equations.

However, for the region such as boundary layers or
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shock layers where the velocity, density, and temperature

profiles tend to be very steep, the solutions of the inviscid

fluid equations cannot be improved to describe such layers

even by taking into account higher order corrections obtained

by expansion in powers of a single parameter. The solutions

on either side of shock layers, for example, cannot be

obtained from a single set of equations which is uniformly

valid both upstream and downstream flow field [18].

2.3 The Test Particle
Monte Carlo Method

The Monte Carlo method was developed through reference

to the physics of the gas flow. This is in contrast with most

numerical methods which are developed through reference to the

mathematical description of the flow.

, The Monte Carlo method, associated primarily with

Haviland [19,20] being best termed the test particle Monte

Carlo method, is based on the principle that, in a steady

flow maintained over a time period t for which t + , the

average time spent in any region in phase space is propor-

tional to the density distribution function F(x,u). Thus,

if the motion of a molecule can be represented analytically,

and if a suitable model can be set up to represent random

collisions with other molecules, the density distribution

can be computed from the time spent in each element of phase

space, together with any of its moments.

This can only be done if there is already a

IN
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representation of the complete flow field. Since this cannot

be done directly, an iterative procedure is employed, in which

the distribution obtained in the previous iteration is used as

the distribution function of the "target" molecules. Follow-

ing Haviland's notation applied to the one-dimensional station-

ary flow with no external force fields, it is equivalent to

solving the Boltzman equation by the iterative scheme

3 (r) 00bma - 2 7

Ux - 2RFr(x,c) = dci J ax bdbOd Fcr

- F~r (x,,c_*)F(r1 (x,,c_*) - F(r (x,,c_) F( r-) Xc)

(2.6)

where F (r) and F (r-l) are the results of successive iterations.

The distribution function so chosen is stored at a discrete

number of points in phase space. A latge number of test mole-

cule trajectories are computed with the assumed distribution

for the computation of typical intermolecular collisions.

When convergence has been obtained, so that F(r) =F r-l) = F,

we have a solution to the Boltzmann equation:

V [b f2T

U -F(x,c) = dc bmax bdb 2j d E cr
X ax -- _0 - r

0 0

- {F(x,c*) F(x,ci*) - F(x,c) F(x,ci) .

(2.7)
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2.4 The Direct Simulation
Monte Carlo Method

The alternative to the test particle approach is to

follow the trajectories of a very large number of simulated

molecules simultaneously. This process commences from a

specified initial state and then proceeds through a physi-

cally real unsteady process. An initial estimate of the flow

field is not required and there is no iterative process.

This direct simulation scheme was first adopted by

Alder and Wainwright [21] treating the molecular dynamics

as completely deterministic. Each time a single molecule

is considered, all other molecules must be examined as possi-

ble collision partners. This process requires computing time

proportional to the square of the total number of molecules

in the region and all but the most elementary problems are

beyond the scope of the method.

Bird [22] first applied the direct simulation Monte

Carlo method to the homogeneous gas relaxation problem, adopt-

ing probabilistic rather than deterministic procedures for the

computation of collisions, thus making the computing require-

ment manageable.

This direct simulation Monte Carlo method by Bird is

adopted in the present paper to calculate the transition

regime gas flow past a circular disc and is discussed in

detail in the following chapters.



CHAPTER 3

FUNDAMENTAL RELATIONS

In this chapter, some fundamental relations of the

kinetic theory will be reviewed so that they can be referred

to and be used directly in the following chapters.

3.1 The Molecular Model

For sufficiently low densities, the molecular spacing

is large compared with the effective molecular diameter.

Under these circumstances, only a small portion of space

is occupied by molecules. Each molecule moves, for the most

part, freely in space outside the range of influence of other

molecules. Moreover, when it suffers a collision, it is over-

whelmingly likely to be a binary.collision involving only one

other molecule. This situation defines a dilute gas.

The time scale of the microscopic process is set by

the mean collision time which is, by definition, the mean time

interval between the successive collisions suffered by a

typical molecule. The reciprocal of this quantity is called

the mean collision rate or collision frequency per molecule.

The mean collision rate is obtained by summing the number of

collisions for a test molecule per unit time with a class c

molecule over all velocity classes and therefore over all

17
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values of relative velocity. That is,

v = nicrC (3.1)

where n is number density, aT is total collision cross-section

and cr is relative speed. A bar over a quantity denotes the

average value over all molecules in the sample gas.

The total number of collisions per unit time per unit

volume of gas is given by

Nc = nv 1 n20cr. (3.2)

The symmetry factor 1/2 is introduced because each collision

involves two molecules. The mean free path is the average

distance traveled by a molecule between successive collisions

And is therefore equal to the mean speed c' of a molecule

divided by the mean collision rate, i.e.,

S= -/v {n( icr/Efl}~'. (3.3)

If UT is regarded as a constant, the mean collision rate and

the mean free path are

v = noTcr =nrd2 r (3.4)
Tndr

and

A ={(E~/Ewd2 F-.. (3.5)(3.5)
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The mean free path is defined in a frame of reference moving

with the free stream velocity of the gas. The prime on the

mean molecular speed WE denotes that this quantity is measured

relative to the stream velocity.

3.2 Binary Collision

The precollision velocities of the two collision

partners in a typical binary elastic collision may be denoted

as cj and c2. The postcollision velocities ci* and c2* will

be determined. Using the relationship of conservation of

linear momentum and energy in the collision, we get

m1 c1 + m2c2 = mici* + m2c2* =m + m2 )c (3.6)

and

mici2 + m2c22 = mici*2'+ m2c2*2 (3.7)

where mi and m2 denote the masses of the two molecules and c
-m

is the velocity of the center of mass of the pair of molecules.

The precollision and postcollision relative velocities between

the molecules are given by

Cr = CI - C2

and (3.8)

Cr = C* -2

Eqs. (3.6) and (3.8) may be combined to give
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Ci = cM + m2Cr/(mi + m2)

(3.9)

C2 = c - iCr /(Mli + m2).

As can be noticed from Eq. (3.9), the collision is

planar in the center of mass frame. Similarly, postcollision

velocities may be obtained from Eqs. (3.6) and (3.8) as

C*=c + Mia2-in MI + Ma2- I(3.10)
C2 =C-. ii 0 *.

-m Mi + m2 -r

This shows that the postcollision velocities are also

parallel in the center of mass frame. The conservation of

angular momentum requires that the projected distance between

postcollision velocities be equal to the projected distance

between the precollision velocities.

Eqs. (3.9) and (3.10) show that

mici2 + m2c22 = (mI + M2)Cm2 +MrCr

and (3.11)

mTCIl*2 + M2C2*2 (Mi + M2)C 2 + M C *2

where

Mr= iMiM n(3.12)
rc A cm)2

is called the reduced mass. A comparison of Eq. (3.11) with
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the energy equation (3.7) shows that the magnitude of the

relative velocity is unchanged by the collision, i.e.,

cr*=cr' (3.13)

Since both c and c may be calculated from the precollision-m -r

velocities, the determination of postcollision velocities

reduces to the calculation of the change in direction of the

relative velocity vector.

3.3 Distribution Function
in an Equilibrium Gas

The equilibrium velocity distribution function is

defined as

fo= -3 exp(-s2 c'2 ) (3.14)

where

S = (2RT) = {m/(2kT)}. (3.15)

The fraction of molecules that are located within a velocity

space element of volume dc and located at c', therefore, is

n 3/2 expc-1 2 c'2)dc'. (3.16)
Tr

The equilibrium speed distribution function is defined as

f' 4 C2 expQ-5 2c' 2) (3.171
Tr
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The function f0 , is zero when c' is zero, increases to a

maximum value when Sc' is unity, and then decreases as c'

increases. The parameter 5 is, therefore, the reciprocal

of the most probable molecular thermal speed c'm 4i.e.,

c'm = I/ . (3.18)

The average of any quantity depending upon the molecular

thermal speed may be obtained through the mean value principle.

The average thermal speed c' is

00 00

= g'fdc 4c' 3 exp(- 32c' 2 )dc'I

or

c 2= .(3.19)

The fraction of molecules with a velocity component

within a given range, irrespective of the magnitude of other

components, is obtained by integrating Eq. (3.14) over these

other velocity components. The fraction of molecules with a

thermal velocity component in the x direction between u' and

u' + du' is

f f ,. exP-s 2 (u'2 + v'2 + w' 2 )}dv'dw'du'
77- )'O-3

-r4exp(-5
2u'2)du'-. (3.20)

7r
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The distribution function for a thermal velocity component is,

therefore,

f, - exp (-f 2 u' 2) .(3.21)
- Tr

3.4 Collisional Quantities
in an Equilibrium Gas

General expressions for the mean collision rate and

mean free path in a dilute gas obtained in the previous

section involve the mean value of the product of the colli-

sion cross-section and the relative speed. For the special

case of hard sphere molecule with a fixed cross-section, the

mean value of the magnitude of relative velocity is the only

one that has to be taken into consideration.

The relative velocity in a binary collision is

c = c1 - C2, where the subscript 1 and 2 denote the two

molecules that are involved in a collision. Assuming molecu-

lar chaos, the two particle distribution function is equal to

the product of the two single-particle distribution functions

f, and f2 . The required mean value .is then

Cr~ = f0 IL0c fif2dcidc2 (3.221
r _ , r- -

and for an equilibrium gas

- mim2 OD c exp - (m1 c1 2 + m2 c 22) dcdC2. (3.23)
r (27akT) 3 r 2kT - d
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This equation can be integrated to give

-2 (2kT) -

Cr = 4( mT (3.24)

For a simple gas, mr = m/2 and the result is

.or= = 23 / r ) = 2 c . (3.25)

The mean collision rate per molecule in an equilibrium simple

gas of hard sphere molecules is then given by the substitution

of Eq. (3.25) into Eq. (3.4), i.e.,

vo = 2 ud2nc'. (3.26)

The number of collisions per unit time and unit volume follows

from Eqs. (3.2) as

N = 2 'rd2n2C,. (3.27)
Co

The mean free path in an equilibrium gas of hard sphere mole-

cules is then given by Eqs. (3.26) and (3.3) as

A0 = (2 Trd2n)1. (3.28)

3.5 Flux Quantities in
an Equilibrium Gas

The flux of molecular quantities across a surface

element in an equilibrium gas will be considered. The stream

velocity is inclined at the angle 0 to the unit normal vector

e to the surface element, as shown in Figure 3.1.
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y.

z

- co

x

Fig. 3.1.--Molecular flux across a surface element.

Without loss of generality, we may choose Cartesian

coordinates such that the stream velocity lies in the x,y-

plane and the surface element lies in the y,z-plane, with

the x axis in the negative e direction. Each molecule has

velocity components

u = u' + c0 cos0

v = v' + c0 sin0

(3.29)
and

w = w'.

Therefore, the inward (i.e., in the negative e direction) flux

of some quantity Q is

nQu

or (3.30)

;zfii JOQufdudvdw
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where consideration has been limited to those molecules moving

in the negative e direction. For an equilibrium gas, the

function fo may be substituted from Eq. (3.14) to give the

inward flux of the quantity Q across the element as

7 3/2 f_ f u exp{-(u' + v'2 + w 2 )}dudvdw (3.31)

per unit area per unit time. Eq. (3.29) enables this to be

written in terms of the stream velocity and the thermal

velocity components only, i.e.,

3/2 cocose Q(u' + cocos)

- exp{-t32 (u'2 + v'2 + w'2 )}du'dv'dw'.

(3.32)

The inward number flux N. to the element is obtained

by setting Q = 1 in Eq. (3.32). The variables in the multiple

integral may be separated to give

N. = 3 exp(-S2 w' 2)dw' I0 exp (-S2v, 2 )dv'
1 T3/2 j _00_00

- cosO(u' + cocose)exp(-j
2 u'2 )du'. (3.33)

The right-hand side of this equation can be integrated to give

N. 2 n exp(-s2 cos2 O) + f1S cosO{l + erf(s cosO)}] (3.34)
2a1T
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where

S = coj = cO/cM' = co/(2RT)

is called the molecular speed ratio. For a stationary gas

where co = s = 0, this reduces to

n
2 Sir 4 nc4

(3.35)

The inward

by setting

normal momentum flux pi to the element is obtained

Q = mu = m(u' + c 0 cos6) in Eq. (3.32) as

p.- mn53  e tCO:)d '
7ZJ 3 _exp 2wt)dw
Iff32T*d. 0

exp(-5 2 v'. 2 )dv'

Cu' + cOcose) 2 exp(.- 2 u' 2 )du'

or

P. = 2 s coseexp(-s 2cos 2
e)

2 + _ so } +

+ ffl{f + erf(s cose)} + s2 Cos 2e. (3.36)

The inward parallel momentum flux Ti to the element

is obtained by setting Q = my = m(v' + cosinO) in Eq. (3.32)

as

r0c)

.0-cocose
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n = 3Vii:exp(-S2w'2)dw' (v' + cosin6)exp (-32v' 2 ) dv'

-r
-cocosO

(u' + cocos6)exp(-S2 u'2 )du'

T. = ' s sinO[exp(-s 2 cos 2 6) + 7T s cos6{l + erf (s cose) }].
2 Iz1 21T z

(3.37)

The inward translational energy flux q to the element

can be obtained by setting Q = Mc2 = 1m(u 2 + v2 + w 2 ) in
2 2

Eq. (3.32) as

i 9/2 1 C rcoos
27T- .00 -* 4-c o Cos6

(u' + cocos6)2

+ (v' + cosin6) 2 + w' 21

- (u' + cocos6)exp{-$ 2 (u'2 + v' 2 + w' 2 )}du'dv'dw'

or

. = - (s2 + 2)exp(-s2cos26)

+ h s cose s2 + 5){l + erf(s cose)}. (3.38)

From the same discussion that leads to Eqs. (3. 30) ,

(3. 31), and (3.32), the fraction of molecules with velocity

or
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normal to the element between u' and u' + du', irrespective

of the magnitude of the other components, is obtained as

dn_ 3 { (u' + cocosO)
n 7T3/2 f_0f00

exp{-32(u'2 + v' 2 + w'2 )}du'dv'dw' (3.39)

or

dn= (u'n + cocose)exp(-s 2 u'n2 )du'n. (3.40)

Here u' has been replaced by u'n in order to make it clear

that this is the normal component. The distribution function

for the thermal velocity component'u'n normal to the boundary

element is, therefore,

ful = (u'n + Qocose)exp(-S 2 u'n2 ) (3.41)
n 'ir

or

f U,1 1 un + Sne' 2U'n) (3.42)

n S

where sn is the component of the stream velocity normal to

the boundary element.

The distribution function for .a reflecting velocity

component normal to a diffusely reflecting surface follows

from Eq. (3. 30) . This is

IN.



30

fu = Cuexp(-S 2 u2 ) (3.43)

where C is a constant. Now

fudu = Cuexp(-132 u2 )du = 2 Cexp(-S 2 u2)d(u2 )

so that the distribution function for the square of the

normal velocity component is

fu2 Cexp(-$2u2)

The constant C may be evaluated through the norihalization

condition of Eq. (A.4) to give

fg2u2 = exp(-$2u2 ). (3.44)

'3.6 Free Molecule Flow Properties

Since the results from the free molecule theory

provide the limit K + c, they serve as important references

and are used during the data reduction in Chapter 6. The

surface properties follow from the application of the flux

equation in Section 3.5 to the incident and reflected mole-

cules. The reflected flux is discussed for the diffuse

reflection. The subscripts i and r will be used to denote

the incident and reflected molecular streams.

The values of the inward normal momentum flux pi,

inward parallel momentum flux 'tj, and inward translational

energy flux gi are given directly by Eqs. (3.36), (3.37),

N
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and (3.38), respectively.

In diffuse reflection, the molecules are brought to

rest relative to the surface and are reemitted with the

equilibrium distribution corresponding to a temperature Tr'

The quantities pr and qr are, therefore, given by the flux

equations for stationary gas with s = 0. The reflected

parallel momentum Tr is, of course, zero. From Eq. (3.36)

n m
Py=4r (3.45)

r

and, from Eq. (3.38),

nrm

q =.(3.46)

r

The number density nr may be found from the condition that

the net number flux to the element is zero, i.e.,

N = N. + N = 0. (3.47)
net i r

Substituting from Eq. (3. 34) for the incident number flux and

from Eq. (3.35) for the reflected number flux into Eq. (3.45),

we have

0[exp(-s2 cos 2 e) + iv s cos6{l + erf (s cos)1}] - r= 0.
2w $, 2w0

Therefore,
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T

=n = 0n[exp(-s'cos2e) + Trs-cosO{l + erf(s cosO)}.(3.48)
r

The above results may be combined to give, the following

results for the pressure, shear stress, and heat transfer

at the surface.

20= 2 (p + pr

P 00 T 0

= 1s cosO + ~(} }exp(-s2cos2e)

+ + s2 cos2 O + s cose(Tr] {1 + erf(s cos6)}j,(3.49)

2Q 2
T

PC0  . P

ssinO 00

s sne[exp(-s2 cos2e) + 3
2 s cos6{l + erf(s cose)J], (3.50)

and

0g 3 q Pry3 (cij- qir)
P p

00 00

= {(S2 + 2) - 2 {}exp(-s2 cos2 6)

+ +oTo(

R2 5Tr
+ + - s cosell + erf (s cose) }. (3.51)



CHAPTER 4

THE DIRECT SIMULATION MONTE CARLO METHOD

4.1 General Procedure

The direct simulation Monte Carlo method is a tech-

nique for the computer modeling of a real gas flow. The

process cormnces from some initial configuration and com-

putes the trajectories of some.thousands of simulated mole-

cules. The simulated molecule is regarded as being represen-

tative of some very large number of molecules in the real

gas in a particular volume element. The simulated region

of physical space is divided into an array of cells, the

,size of which are chosen so that the gradients of any flow

properties are small across the cell. Macroscopic quantities

are sampled in each cell. The velocity components and posi-

tion coordinates of the simulated molecules are stored in the

computer and are modified with time as the molecules are

followed through representative collisions and boundary inter-

actions in the simulated physical space. The ideal procedure

would be to move the molecules simultaneously with the compu-

tation of collisions. However, there is expected to be a

considerable saving in computation time if the locations of

the molecules remain unchanged while a number of collisions

appropriate to some time interval is calculated.

33
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Time is advanced in discrete steps of magnitude Atmi

such that AtM is small compared with a mean collision time per

molecule. Then, the molecular motion and collision are de-

coupled over the small time interval Atm by repeating the fol-

lowing steps:

(a) All of the molecules are moved through distances appropri-

ate to their velocity components and the time interval. Appro-

priate action is taken if the molecule crosses boundaries

representing solid surfaces or the outer boundary of the flow.

Appropriate action is taken when it is needed, if the molecule

crosses a cell boundary, New molecules are generated at boun-

daries across which there is an inward flux.

(b) A representative set of collisions, appropriate to Atm'

is calculated among the molecules. The pre-collision velocity

,components of the molecules involved in the collisions are re-

placed by the post-collision values. The position coordinates

of the molecules are not changed'at this point due to the reason

stated above. Since the gradients of the flow properties are

small across each cell, any one of the molecules in a cell can

be regarded as a sample of the molecules at any instant at that

location. This enables the relative positions of the molecules

within the cell to be disregarded when the collision pairs are

chosen.

The sampling interval is chosen as some multiples of

the time interval Atm. Flow chart of'the procedures is shown

in Figure 4.1. In the following sections, detail procedure
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will be discussed with our attention confined to hard sphere

molecule model.

4.2 Computation of Collision

The collision probability for a particular pair of mole-

cules is proportional to aTcr, as can be shown by a discussion

similar to that which leads to eqn (3.4). Since aT can be re-

garded as a constant and equated to rd2 for a hard sphere mole-

cule, the collision probability is proportional to the relative

speed c r only and the representative collision must be chosen

on that basis.

Appropriate number of collisions Nt over time period

Atm in a cell is determined using eqns (3.1) and (3.2)

Nt = N na c At
m T r m

or, again using eqn (3.4) for hard sphere molecules

Nt = (Nm/2)id 2ncAt (4.1)
r m

where NM is the number of molecules in the cell. One way of

dealing with the problem would.be to calculate either the num-

ber Nt of collisions per Atm or sample the number from a normal

distribution with N as a mean when appropriate. However, noti-

cing the term r in the right hand side of the equation, the
r

computation time required to calculate the mean value c is
r

nearly proportional to the square of the number of molecules



36

READ DATA

SET CONSTANTS

SET ZERO TIME STATE OF SIMULATED

MOLECULES AND BOUNDARIES

MOVE ALL MOLECULES THROUGH DISTANCES

APPROPRIATE TO tm ; COMPUTE INTER-

ACTIONS WITH BOUNDARIES AS REQUIRED

RESET MOLECULAR INDEXING

COMPUTE COLLISIONS APPROPRIATE TO
TIME t ; ADVANCE COLLISION COUNTERS

NO TIME
INTERVAL

YES

SAMPLE FLOW PROPERTIES

NO TIME
INTERVAL

YES

SAVERAGE SAMPLES TAKEN AFTER

ESTABLISHMENT OF A STEADY FLOW

PRINT FINAL RESULTLS

FIG. 4.1 Flow chart of the direct simulation

Monte Carlo method
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in. the cell and is undesirable. This step can completely be

avoided by advancing a time counter for each cell at each col-

lision by

Atc = (2/Nm) (rd 2 ncr)1 (4.2)

Formal proof that this leads to egn (4.1) over a large number

of samples is provided in [Appendix F, 23]. Since the overall

time for the entire flow field is advanced by Atm, sufficient

number of collisions for each cell will be calculated to keep the

cell time counters concurrent with the overall flow time.

The post collision velocity components are calculated

through a direct application of the result of the classical col-

lision mechanics that all the directions are equally likely for

the relative velicity cr * after collision. The magnitude of

this quantity is unaffected as shown in eqn (3.13) by an elastic

collision. An element of solid angle in polar coordinates with

G.as the polar angle and $ as the azimuth angle, is sinOdedP.

Therefore, $ is uniformly distributed between 0 and 27, while

is between 0 and 2ir with a distribution function f& = sin®. Now

the fraction of angle between 0 and ®+dO is

f adG=sinOd® = -d (cosG)

and this si also the fraction of molecules with cosines between

cosO and cosO +d(cos®). Therefore,

fcosod(cos®) = -d(cos®). (4.3)

so that fcoso isa constant and cosO is uniformly distributed

between -1 and +1.



38

4.3 Weighting Factor

In an axially symmetric flow, the volume of a cell must

be calculated from the appropriate annulus. The volumes of

cells located at large distances from the axis of symmetry are

therefore large in comparison with those of cells of similar

cross sectional area near the axis. If the density is similar

in each of those cells, the number of simulated molecules and

consequently the sample size for macroscopic flow properties

is either excessively large away from the axis of symmetry or

excessively small near the axi . This large disparities in

the sample size is undesirable because a small sample leads to

large degree of statistical scatter in the results, while a

large sample leads to excessive computation time.

Each simulated molecule may be regarded as a represen-

tative of some large number of real molecules. There is no

reason why the ratio of numbers of real to simulated molecules

has to be the same in all parts of flow field. This principle

allows us to use weighting factors. The weighting factors are

mainly to be used to compensate for large disparities in cell

volume, although they can be used also to compensate for large

disparities in density distribution. In either case, the pur-

pose of the use of weighting factors is to avoid large varia-

tions in sample size over the entire flow field.

A weighting factor is assigned to each cell. They are

normalized so that the minimum value is unity. If the weight-

ing factor for cell n is Wn, each molecule in the cell represents
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Wn weighted molecules. The relationship between the weighted

molecules and the real molecules is stated as follows. The

number NM of simulated molecules in a flow field of Nc cells

is

Nc
NM =E (nV/Wn ) (4.4)

Nn=l

where n and Vn are the number density and the volume in cell

n. When a molecule moves from a cell with weighting factor Wn

to one with weighting factor Wm, provision must be made either

to duplicate or remove the molecule. The fnumber of molecules

in the new cell should be equal to Wn/WM and, since this will

generally not be an integer, the removal or duplication is

based on an acceptance-rejection method. The number density

in an initially uniform flow containing NM molecules is obtained

from eqn (4.4) as

Nc
nco = NM { E (Vn/Wn)}-' (4.5)

n=1

4.4 Molecular Indexing Scheme

In general, a flow field has open boundaries and pro-

vision must be made for a systematic change in the number of

simulated molecules during an unsteady process. All the mole-

cules in the simulated space are distinguished by the molecule

numbers assigned to them and are ordered in a molecular array.

A molecule is considered to be lost if-it moves out across the
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boundary. Once the locations of the molecules are settled, the

numbers (addresses in the molecular array) of the molecules in

a particular cell are stored in a cross reference array, so

that the properties of the molecules in the cell can easily be

referenced. Reordering of all the molecules in the simulated

region should be made whenever molecular properties in the cells

are referred.

4.5 Initial Configuration

The steady state solution is found as the large time

limit of the solution of the unsteady flow that follows the

instantaneous insertion of a body into a uniform stream. An

alternative initial configuration would be a body in a vacuum,

with the stream commencing to enter from the upstream boundary

at time zero. In either case, the sampling of the required

steady flow properties, therefore, will not be commenced until

some time after the start of the program.

In this paper the former initial configuration is used.

For each cell, some specified number of simulated molecules

are set up, it thermal equilibrium, - to form a uniform stream

of the required speed ratio.



CHAPTER 5

MONTE CARLO CALCULATION OF

RAREFIED HYPERSONIC GAS FLOW PAST A CIRCULAR DISC

5.1 Definition of the Problem

Assuming a uniform parallel flow, a circular disc is

placed normal to the flow direction as shown in Fig. 5.1.

The temperature of the disc is.maintained at a constant value.

The disc has a diffusely reflecting surface, that is to say,

every molecule striking the disc is completely accommodated

when it is reflected or re-emitted from the surface. For a

specific Knudsen number K and speed ratio s, the steady state

,flow properties of the flow field as well as mass, momentum

and heat flux to the disc are sought in this work. The flow

is always unsteady since we are on a molecular basis. However,

the boundary conditions may be considered such that the steady

state can be obtained as a large time limit of an uniteady pro-

cess. It is assumed that whenever a molecule strikes the wall

surface, it is immediately re-emitted.

5.2 Simulated Region of Physical Space

The boundary conditions of this problem at infinity must

be such that the distributions are Maxwellian, the flow prop-

erties being those in a translating equilibrium gas. One of

the difficulties is how to replace the boundaries at infinity

-. - 41
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by boundaries relatively close to the disc. If the boundaries

are too close, it is no longer appropriate to assume a Maxwelli-

an. And if they are too far, it requires excessive amount of

computation time, because the appropriate. size of each cell has

to be determined such that gradients of the flow properties over

a cell should not be large and, accordingly, too large a flow

region requires an excessive number of cells and of simulated

molecules.

An estimate for the appropriate location of the boun-

daries upstream and radially is made from the flow field data

obtained for a sphere by Bird[l] and Vogenitz et al[2]. The

boundary downstream is chosen to coincide with the plane in

which the disc is located since the flow field in the upstream

region is almost unaffected by the flow downstream of the disc

because of the high speed ratio of the undisturbed gas.

A cylindrical coordinate system is adopted to describe

the region. Advantage may be taken of flow symmetry in order

to reduce the number of position coordinates. Since the flow

is axially summetric in this case, only two coordinates i.e.

axial and radial, need be stored for each molecule. All loca-

tions in azimuthal angle are equally likely. The three velo-

city components in the coordinate system must be stored for

each molecule, because collisions must be calculated as three

dimensional phenomena. Note that, because a position radius

is stored a change in its direction must be accompanied by an

appropriate rotation of the reference frame for the velocity

components as well.
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The simulated region of physical space is considered

as a thin slice of the real space and is divided into a network

of cells. Fig. 5.2 shows. the region and the cells.

5.3 Initial Data

The simulated region is divided into 90 cells. The

size of the cells Ar and Ax away from the disc are set equal

to the mean free path X., in the undisturbed gas and those near

the disc are set equal to X./2. The Knudsen number based on

the radius of the disc and the mean free path in the undisturbed

gas is chosen as unity, therefore, the size of the disc is auto-

matically fixed. The number of simulated molecules initially

distributed in each cell varies from 2 to 10, depending upon

the increase in density at the final state so that the varia-

tions in sample size are minimized.

Linear dimensions and flow properties are nondimension-

alized as follows:

distance x x/X,

velocity u u/c' = uSo

time t t/(3X)

temperature T T/TD

density p p/p,

number density n n/n,.

number flux N N/(n,/k)

pressure p P/(P0,/I)

heat flux q q/(p,/63)

1-1.
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where

X, is the mean free path in the undisturbed gas

cm, is the most probable thermal speed in the undis-

turbed gas

S0 is the reciprocal of c'

Too is the temperature of the undisturbed gas

p00 is the density of the undisturbed gas

n., is the number density of the undisturbed gas

and m is the mass of molecule

The most probable molecular speed in the undisturbed

gas c' and its reciprocal 60 are effectively regarded as

having unit value within the program. The mean free path in

.the undisturbed gas X0, is similarly regarded as unity. The

undisturbed gas temperature T and the mass of molecule m are

also regarded as having unit value, so that the Boltzmann

constant k and the gas constant R are both effectively equal

to one half.

5.4 Computational Procedure

The FORTRAN program consisting of a main program.

MCATD1 and a subroutine FINDCELL2 used for this work is listed

as Appendix B.

FORTRAN Variables

We consider a gas of hard-sphere molecules uniformly

distributed within the simulated region formed by upstream
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x = 0 and downstream x = XM boundaries, a boundary at a radial

distance RM, from axis of symmetry and two surfaces of symmetry

with some arbitraty angle between them. This angle is conven-

iently set equal to 2, so that the area of the disc involved

in the simulated region may be fixed to unity. All of the cells

are denoted by the subscripts (I,J). Fig. 5.3 shows the region.

At time zero, the disc of radius DD and temperature TW

is instantaneously inserted normal to the flow direction at the

downstream edge XM of the simulated region. The number of

simulated molecules MC(I,J) distributed initially in cell (I,J),

cell size CHX(I,J) and CHR(I,J), volume VL(I,J) and weighting

factor W(I,J) are read in as data. The time interval Atm is

also read in as a data and is stored as DTM. The integers NST

and NIS set the other times as multiples of At: the sampling

,interval being Ats=NIS*DTM and the one data cycle time AtL=

Ats*NST. NSAM denotes the number of total data cycles. The

data taken over NON cycles will not be accepted as a part of

the steady state solution. The flow field properties are

sampled at time intervals Ats, while the surface properties

are sampled over these intervals. Again, those properties

are not sampled until some time after the start of the program

which is defined by the parameter NON.

The two dimensional array P(L,N) is used for the

storage of the necessary information on the simulated molecules.

The subscript N may be regarded as the molecule number and it

is these numbers that are arranged in order of the cells in

the cross-referencing array LCR(N), which also has the dimension
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N. Since the number of the molecules involved in the flow

region varies with time, the dimension N is taken larger having

enough margin compared with the actual number of molecules.

The subscript L ranges from 1 to 5, with the velocity compo-

nents in the x, r and e directions being storedin L=1 to 3,

respectively. Because of the symmetry of the flow, only the

position coordinates x and r need be retained and stored in

P(4,N) and P(5,N), respectively.

Since the weighting factors are used, molecules are

sometimes removed or duplicated in the cells. The array IP(N)

is required in order to distinguish those duplicated molecules

from others for the systematic handling of the molecules. The

subscript N has the same dimension as in the array P(L,N). A

molecule has been duplicated if IP(N)=-l. Otherwise IP(N)=l.

The value is reset for each AtM

The starting address of the molecules of cell (I,J) in

LCR array is equal to IC(2,I,J)+l and the number of molecules

in the cell is stored in IC(1,I,J). The cell time and the

maximum relative speed of cell (I,J) are stored in the arrays

C.(l,I,J) and C(2,I,J), respectively. They are used for the

calculation of collisions. The array SS(K,NN) is required to

accumulate and store the samples of the surface properties

with the subscript K ranging from 1 to 8 and NN from 1 to 5.

The array SC(K,I,J,NN) is used for sampling of the flow field

information with K ranging from 1 to 7 and NN from 1 to 5.

The program is for hard sphere molecules, and eqn (3.28)

shows that the mean free path in the undisturbed equilibrium
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gas is given by

%o = (2 cTn )l (5.2)

Since the normalization procedure defined in section 5.3 sets

X. as unity, the collision cross section aT is equal to

rT = 1/(2 n.) (5.3)

and is stored as CXS. The average relative speed of collision

pairs in the undisturbed gas follows from eqn (3.25) and is

stored as VRM.

Set Initial State

The coordinates of the initially distributed molecules

are calculated. The probability of radial distance is propor-

tional to the distance and P(5,N) is calculated using eqn (A.8).

The x-coordinate P(4,N) is generated through eqn (A.7). The

v and w velocity components of the molecules are generated

through eqns .(A.18) to (A.20). The thermal velocity component

in the x direction is generated through eqns (A.13) and (A.14),

and the u velocity component is obtained by adding the free-

stream velocity UW to it.

The cell time C(1,I,J) is set equal to a random frac-

tion of the mean time interval that would be added to them for

a collision in the undisturbed gas. The use of this quantity

instead of zero makes allowance for the fact that there must
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be an integer number of collisions over each DTM and that colli-

sions are calculated until C(1,I,J) exceeds DTM. The initial

approximation to the maximum relative speed in each cell is set,

in C(2,I,J), to twice the average relative collision speed in

the undisturbed gas.

Initiate Time

Three DO loops over Atm IAts and AtL are set, the

second and the third are the multiples of Atm through integers

NIS and NST, respectively. The inward flux across the upstream

boundary appropriate to DTM is ?alculated. The axial velocity

component of the incoming molecules are generated' through egns

(A.16) and (A.17), while the other two components are generated

through eqns (A.18) to (A.20).

Then all the molecules are moved in the x and r direc-

tions over DTM, while for the molecules in the inward flux the

time interval DTA is set to random fraction of DTM to avoid the

unreasonable distribution near the boundary. Since a radius is

stored, a change in its direction must be accompanied by an

appropriate rotation of the reference frame for the velocity

components. If a molecule is at radius r1 with velocity com-

ponents vI and w 1 , and moves for time At, the new radius is

r = {(r1 + v1 At)2 + (w1 At)2} (5.4)

Also, the v and w velocity components must be rotated so that

v remains the radial component. The new values of v and w are
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v = {v1 (r + v 1At + w1 2 At}/r (5.5)

and

w = W -- (5.6)

The calculated new coordinates are stored as X and R. The old

coordinates are stored as Xl and Ri.

If X < 0, the molecule is simply considered to be lost.

If X is greater than XM, two possibilities must be considered.

One is that the molecule simply moves out the region and again

the molecule is considered to be lost. The other is that the

molecule strikes the disc. The molecule has struck the disc

,wall if r-coordinate at x=XM is less or equal to the disc

radius DD. In this case, the sampling variables for incident

number, normal momentum, parallel momentum and energy are ad-

vanced by the appropriate amounts. The v and w components of

the reflected molecular velocity may again be generated through

eqns (A.18) to (A.20), although 1/S is now equal to VMW instead

of unity. The distribution function for a velocity component

normal to a diffusely reflecting surface follows from eqns

(3.43) and (3.44). The distribution of u2 in eqn (3.44) is

2
identical to the distribution of r that leads to eqn (A.20)

so that the post-reflection value of u is u ='{-ln(Rf)}/VMW.

The amount of the time interval DTM that remains after the

surface interaction is calculated from geometrical consideration
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as DTR, and the molecule is moved again appropriate to the

reflected velocity components and DTR. The sampling variables

for the reflected properties are then advanced.

If R is greater than RM, the molecule has moved out

the region and the new molecule with the properties in the trans-

lating equilibrium gas is generated, so that the net flux across

this boundary can be maintained at zero. The velocity components

are generated through eqns (A.16) and (A.17) with sn = 0, but

subject to the condition that 3u' (or Sv, in this case) must ben

negative. The time interval over which the molecule is moved

is set to a random fraction of DTM., The new coordinates are

stored as R and X.

Change in Number of Simulated Molecules

Since the weighting factor is used in the present pro-

gram the provision has to be made for a systematic change in

number of molecules if molecules cross the cell boundary. The

cell numbers for old and new coordinates are calculated using

the old and new coordinates (Rl,Xl) and R,X) respectively, by

the subroutine FINDCELL2 as (I,J) and (K,L), respectively. The

number of molecules in the new cell should be equal to W(.I,J)/

W(K,L) and, since this is generally not an integer, the removal

or duplication is based on an acceptance-rejection method. The

routine can best be deduced from the coding which contains 15

lines starting from label 35.

Molecular Indexing

The mol'cular indexing information in the arrays LCR(N)

and IC(2,I,J) is not used prior to the collision calculation
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routine and is most conveniently set between the molecular

motion and collision calculation of the program. The procedure

for this necessarily samples the number of molecules per cell

and, therefore, the number density. The number density is the

only macroscopic quantity required by collision calculation.

This algorithmnis again best deduced directly from the coding

between labels 60 and 65. Subroutine FINDCELL2 is used to

determine the cell number (I,J) directly from the position

coordinates (P(5,N), P(4,N)) of a molecule.

Calculate Collisions

Appropriate number of collisions are calculated in

each cell. No collisions are calculated unless the number of

molecules in the cell is greater or equal to 2. The numbers

of the molecules in cell (I,J) are stored in the cross reference

array LCR(N) for value of N between IC(2,I,J)+l and IC(2,I,J)+

IC(1,I,J). One molecule is selected randomly among those

molecules. A second molecule is then selected in a similar

way to constitute a possible collision pair as long as these

two molecules are different. The relative speed VR between

these two molecules is calculated from three velocity components

of the molecules. Since the probability of collision is propor-

tional to the relative speed VR, the collision pair is retained

or rejected on this basis using the acceptance-rejection method.

If the pair is retained the collision time interval for the

collision is calculated from eqn (4.2) and is added to the cell

time counter C(1,I,J). The collision counter SC(7,I,J) is

advanced by one for each collision.

2
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The post collision velocity components are generated

through eqns (3.10) and (4.3) .

These steps are repeated until the cell time counter

C(1,I,J) exceeds the overall flow time TIME.

Sample Flow Properties

At the sampling intervals At s=NIS*Atm, the sample

22 2
size EN, Eu, Ev, Zu , Ev and Ew2 are sampled, and are stored

in the array from SC(1,I,J,NN) to SC(6,I,J,NN). They are

accumulated over the one data cycle AtL=NST*Ats. At the end

of the time interval AtL, the sampled information is put into

the required form and printed. The flow properties are calcu-

lated fromthe information stored in the SC array. The normal-

ized density in each cell is obtained by dividing EN by the

product of the time multiplicative NST and the number of mole-

cules per cell MC(I,J) in the undisturbed gas. The average

velocities in x and r directions are simply u=(Zu)/(EN) and

v=(Ev)/'(EN), respectively. The kinetic temperature Ty based

on the u component of the velocity is given from the relation

kT = mu 2  m 2- -2)

Thus we have

= M (u2 _ u2) = {(u 2 )/(_N)-u2 }
oX-oinEu kmi

or, noting our normalization

(5.7)T = 2{(Eu2 )/(ZN) - 2}xE)
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The other kinetic temperatures Tr and Ta are obtained in a

similar manner, although w is zero for T0 . The temperature is

obtained as the mean of the three temperature components.

T = 1 (T + T + T0 ) (5.8)
3 X r

The surface properties are based on the sampled flux

of molecular number, momentum and energy incident on and re-

flected from the surface. Since the multiplicative factor

for the velocity components in.the normalization is effectively

unity, the required nondimensional fluxes are obtained by

dividing the sums of the appropriate'quantities by the product

of the total time interval and the undisturbed number density.



CHAPTER 6

RESULTS AND DISCUSSION

6-1 Flow Properties

The computation was carried out for a flow of speed

ratio ten with the surface temperature of the disc equal to

the freestream temperature. The knudsen number is unity and

the corresponding Reynolds number based on freestream condi-

tions and the disc radius is Re, = 17.7. In the definition,

the viscosity coefficient is taken as

and is proportional to T1/2

Flow Field

Information was obtained at a number of discrete

positions representing the cells in.the flow field on the

value of the directed velocity, the local density and the

local temperature. Figures 6.1 to 6.3 illustrate the changes

that occur in these flow quantities. The density and the

temperature are indicated by contour lines which are interpo-

lated between the sampled properties at discrete points. The

directed velocities are indicated by lines of the appropriate

length and direction. The distance from the stagnation point

is normalized with respect to the radius of the disc.

56
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The near-axis density, velocity, temperature and the

kinetic temperature based on the thermal velocities in the

particular directions are presented in Figures 6.4 to 6.7.

Also shown in the figures are the Rankine-Hugoniot conditions

for comparison.

The temperature disturbance seems to extend far from

the disc, although the disturbed region in terms of the density

and the velocity is confined to comparatively small region.

There is no physical explanation why the temperature disturbance

is decoupled from others to such extent. This is probably

caused by the high speed ratio. If

E= mc 2 +-1 2 kT ~ const.

differentiating both sides of the equation, we have

mcdc + 3 kdT ~ 0
2

or

dT~ 2 c 2 dc
T RT c

But for the flow region away from the disc

S .- =S2_ 100

2RT

Thus we have

'dT dc-- ~ -- 133
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in the region away from the disc. Therefore, a 50% change in

T corresponds to a 0.4% change in-c which may not be detectable.

This effect would have been much less if T behind the shock

had been used to normalize the temperature. Further, we should

expect temperature fluctuations to be much larger than velo-

city (or density) fluctuations, as can be clearly seen from eqn

(5.7), from which the temperature is calculated.

Surface Interaction

Figure 6.8 illustrates the average heat transfer rate

to the surface in terms of the Stanton number which is defined

by
q

St = (6.1)

pcUc,(H-HW)

In the figure, the Stanton number St is normalized by the free-

stream value Stfm which can be obtained analytically through

eqn (3.51). Also shown in this figure are the heat transfer

rate to a sphere and cylinder obtained by Bird [1] and to a

bluff-faced cylinder obtained by Pullin et al [24]. It is

reasonable for the present result to take a slightly higher

value than the result by Pullin et al, because the wall temper-

ature is lower and the freestream velocity is larger in our

case. e.

Figure 6.9 shows the drag coefficient data. In the

calculation of the drag coefficient from the pressure data

output, it has been assumed that the pressure on the rear side

of the disc is zero. The data is also normalized by the free

molecule value obtained through eqn (3.49).
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APPENDIX A

SELECTION OF RANDOM EVENTS

The essential feature of the Monte Carlo method is

probabilistic modelling of real physical process in which

variables are distributed in a prescribed manner. The method

requires the generation of representative values of the

variates. This is done through random numbers.

A.l Random fNumbers

Random numbers are generated by the function called

Pseudo-Random Number RAN (Il,I2) supplied by th6 VAX/VMS Vol

as a standard subprogram.

Format : RAN (11, 12)

Arguments: Il, 12

Integer *2 variables or array elements

that contain the seed for computing

the random numbers.

Notes : 1. The values of Il and 12 are updated

during the computation to contain

the updated seed.

2. The algorithm for computing the

random number value is as follows:

If I1=0 and 12=0, set generator base

* x(n+l)=2**16+3 (A.1)

Otherwise

x(n+l)=(2**16+3)*x(n)mod2**32 (A.2)

Store generator base x(n+1) in Il,I2.
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Result is x(.n+l) scaled to a real value

Y(n+l), for 0.0 .LE. Y(n+l) .LT.l.

A.2 Sampling From a Prescribed Distribution

If a variable x follows a random process, the dis-

tribution of the variable may be prescribed by a normalized

distribution function such that a probability of a value

lying between x and x+dx is given by

f dx (A.3)
x

If the range of x is from a to b , then the total

probability is

Tb(fdx=((A.4)
afd

'The cumulative distribution function is defined as

F=fxf dx (A.5)
xa

A random fraction R will now be generated and be set equal

to F . The representative value of variate x is given byx

F =R .(A.6)
x f

A.3 Distribution Functions

We now consider the cases which appear in the main

text of this paper.

(a) The variate x is uniformly distributed between a and b.



72

In this case f = constant and using eqn (A.4)

f =1/(b-a)

Therefore, from eqns (A.5) and (A.6)

F ={ b-1 dx=(x-a)/(b-a)=R

or

x=a+R (b-a) (A. 7)

(b) The variate x is distributed so that the probability

of x is proportional to x

Using eqn (A.4)

2 2f =2x/(b -a )

From eqns (A.5) and (A.6)

2 - 2 2 - 2
Ft=(x -a )/(b -a)=

or

x={a +Rf(b2-a2)}

For a special case where a=0

x=b (Rf) h

(A.8)

(A.9)
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A.4 Acceptance-Rejection Method

Above procedure is applicable only when it is possible

to invert eqn (A.6) to obtain an explicit function for x .

This can be handled by acceptance-rejection method. In order

to make direct use of random number, distribution function fx
is divided by its maximum value, f ,ax' to give

f'=f /f (A.10)
x x max

A representative value of the variate x is chosen on the

assumption that x has a rectangular distribution between a

and b . Eqn (A.7) can be used to give

x=a+Rf (b-a) (A.ll)

The value of f' is calculated for this value of x and comparedx

with a further generated random fraction, Rf. Iff is
fo x

greate; than Rf the value of x is accepted. If f' is less
x

than Rf, the value of x is rejected and the procedure will

be repeated until a value of x is accepted.

Since Rf is uniformly distributed between 0 and 1, the

probability of x being accepted is obviously proportional

to f and the successive accepted values conform to the dis-

tribution.

(a) Consider the distribution function f u' for the thermal

velocity component in an equilibrium gas.

$ 2 2
f' exp2(- u' ) (A.12)
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The function takes the maximum value SlI- at u'=0. Dividing

fu' by the maximum value to get

f',=exp(- 2u'2

The uniformly distributed value of u' is calculated by eqn (A.7)

with a and b set as arbitrary cast-off values instead of

the real values -r and +w in order to make this procedure

effective. If we take 3 times standard deviation for these

values, i.e., -3/S and +3/5 for a and b respectively,

the fraction lying outside of this range is 1-erf(3), or

0.000022. These cast-off values are considered fairly

reasonable unless the tail effect is too significant.

Therefore, from eqn (A.7)

u'=(- 3+ 6 Rf)/ W(A.13)

and

f ,=exp{-(-3+6Rf)} (A.14)

The next value of Rf is generated. "The value of u' is accepted

if f',>Rf. If f',<R the value of u' is rejected and the
u' f u' f

procedure is repeated until u' is accepted.

(b) Consider the distribution function for the thermal

velocity, component normal to the boundary

ft  , - (Su'+S )exp(-52 u' 2) (A.15)
n I nn
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where u' is the thermal Velocity component normal to the
n

boundary and S is the stream velocity normal to the boundary.
n-

2 34
f takes its maximum value at $u'={(Sn +2) 2-Sn}/2 as
Su' n

f 1[{(Sn 2+2) -Sn}/2+Snexp { (Sn2+2) -Sn}2
max ( ) n2p4

The normalized distribution is

f 2(+Sn xp+ {Sn-(Sn2+2) - 2u'2
1 n =- n2-{n- (S +22--S u '
nu Sn+(Sn +2)

Adopting the same range as in (a), eqn (A.7) gives

Su'= -3+6R (A.16)
n f

and

2[(-3+6Rf)+Sn] fi (S 2 2 1

fSu'n (Sn2) +S exp 5 +-{Sn- (Sn2+2) }-(-3+6R )
n (Sn +2) +Sn

(A.17)

The next value of Rf is then generated and, if f u' >Rf then
n

Su' is accepted. If f'u,<R the value of Su' is rejected and
n

the process is repeated until a value of Su' is accepted.n

(c) The alternative way is available for a special case.

This provides the smapling pairs of values from the normal

distribution of eqn (A.12). These values are denoted by u'

and v' and from eqn (A.12),

2 2 2 2 12
fdu'f ,dv'=( /Tr)exp(-u ' )tdu'(0/')exp(-t v )dv'u v

=(S2/')exp{-02(u'2 +v 1 2)}du'dv'
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Now set

u'=r cose

and

V'= r sinG (A.18)

Then, since the Jacobian

6u 6u cosO -r sinG

6(r,G) 6v' 6v' .
-rp -6VI . sinG r cosO

2 2 2
fS du'f ,dv' = (r3 /'r)exp(-f2 r )rdrdG

2 2 2 2= exp(-2 r )d(2 r )dG/2r

The angle 0 is uniformly distributed between 0 and 2r so

that, from eqn (A.ll)

o = 2TrRf (A.19)

2 2.The variable 12 r is distributed between 0 and w and its dis-

tribution function

2 2
f 2 2 = exp(-12r)

is also already in a normalized form. The cumulative distribu-

tion function is

F 2 2 l-exp(-2r2
2 r2
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and noting that R and 1-R, are equivalent functions, eqn (A.6)

gives

r= f-ln(Rf)}/S (A.20)

A pair of values r and 0 may be sampled from eqns (A.19)

and (A.20) using successive random fractions. The normally

distributed values of u' and v' follow from eqn (A.18) and

provide typical values for a thermal velocity component in

equilibrium gas.

A
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APPENDIX B

LISTING OF PROGRAMS

Contained herein are the main program MCATD1 and

the subroutine program FINDCELL2.



PROGRAM MCATD1

DIMENSION C (2911.0.) ,IC (2, 10, 10) ,SC (7pl10, 105) NIM(10) ,
1 SS(Sr5) vW(J.O 1.0)Y(1P(9) ,VRC(3) rCHX(I.0O10)v
1 CHR(1OYi.O) MC(1O 1.0) VL(1Oyi.0) ,P(5y4000),IF'(4000) ,LCR(4000)
READ(3v1> NSAMYNSTNISpNONvNCRpNCXYNCR1,NCX1vIiI2

1 FORMAT(I1I4)
READ (3y2) RMY XM t'DD UW v T W FND ,DTM E:RFUW

2 FORMAT(5F6.2,3F8.5)
READ(3v3) (WIJ,=,C)J1NX

3 FORMAT(10F7.3)
READ(3,4) ( (MC(:r9J) 1 INCR) , J=:, NCX)

4 FORMAT(10I7)
READ(3y5) ( (CHR IJ) ,I=1 NCR) ,JJ=i NCX)

5 FORMAT(10F7.3)
READ(3y6) ((CHX(IvJ)I11NCR)pJ=1 NCX)

6 FORMAT(10F7.3)
READ(3P 7) ( (VL(IvJ) , I1 NCR) ,J=1vNCX)

7 FORMA T(IOF7.3)
WRITE(4 101)

101 FORMAT(' DIRECT MONTE CARL0 SIMULATION')
WRITE(4yi02)

102 FORMAT( ' RAREFIED HYPERSONIC GAS FLOW PA ST A CIRCULAR '
1 ' DISC'//)
WRITE(4p103) DDPXMPTW

103 FORMAT (' THE DISC OF RATIUS'/FI.2,' AT X=' FS.2
1 ' IS DIFFUSELY REFLECTITNG WITH TEMP,'vF6.2)
WRITE(4p104) XMPRM

104 FORMAT(' CONTROL VOLUME IS A REGION FORMED BY X=0.O Y X=' p
1 F.2' AND R=' sF5.2)
WRITE(4v105) UW

105 FORMAT ( ' VELOCITY OF UNIFORM FREE S T REAM IS W:=' ,YF5. 2)
WRITE(4v106) DTM

106 FORMAT(' THE MOLECULES ARE ALLOWED TO MOVE OVER THE'9
1 ' TIME PERIOD'Fl11.7/)
WRITE(4p85)

85 FORMAT(' SURFACE PROPERTIES '/)
WRITE(4y86)

86 FORMAT ( ' NN SAMPLE SIZE NUMBER FLUX PRESSURE
1 / SHEAR STRESS ENERGY FLUX
IJRITE(4,87)

87 FORMA T( ' NONWTT' WT) WT' INCIDENT 'y
1 ' REFLECTED INCTiDENT REFLECTED I NC I DENT REFLECTE'

C SET CONSTANTS
PI=3*.*141593
VMW=SQRT C(TW)

'

')
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CXS=1./(SQRT(2. )*FND)
VRM=2.*SQRT(2. /PI)
DO 13 NN=15
SS(BvNN)m:O,
DO 13 M=1,7
SS(MYNN)=:0.
DO 13 J=4,NCX
DO 13 I=1 Y NCR

13 SC (MP :iJvNN)-=0,.
BB=SPRT (CUW*UW+2.)
A=I1.+ERFUW
FXI = (MC (1 1) *DTM/CHX ( 1, ) ) * (EXP ( -'W*UW) +SORT (T P) *LJW*A ) /
1 (2.*SQRT(FI))
FX2=FND*NCX*CHX (NCRY I ) *DTM*RM/ (W (NCR ,1: ) *DD*DDI*SQRT (PI))

C INITIAL STATE WILL NOW BE SET
N:=0
X2=0.
DO 19 J=,NCX
R2:0.
X1=X2
X2=XI+CHX(1 J)
DO 19 I1>4 NCR
C(1,1 ,J):=2.*RAN( It. 12)/(MC( ITJ)*CXS*FND*VRM)
C (2, I, J):=2.*VRM
Ri =R2
R2=RI+CHR( I rJ)
DO 18 K=1MC(IvJ)
N:=N+1
P(4,N)=Xi+(X2-XI)*RAN(I1I2)
P(5,N) =SQRT ( (R2*R2-R1*R:1 *RAN(11,I2)+Rt*R1)

17 A=-3.+6.*RAN(tI2)
B:=2.# * (A+UW ) *EXP(0.5+0.5*UW*(UW--BB)---*A)/(JW+BB)
BB=RAN( 11 12)
IF(B.LT.BBB) GO TO 17
P( i,N)U:::W+A
B=SQRTO(---ALOG(RAN 11. 12)))
A=2*P1:*RAN(II 1I2)
P(2,N)=B*COS(A)
P (3yN)=B*S:N(A)
I P (N)

1B CONTINUE
19 CONTINUE

NM=N
C INITIATE TIME

DO 1 1 NN=1NSAM
DO 83 JJNST
DO 80 II=1.NtS
TIME=:::: ( ( NN-I) *NST+ ( JJ--1J) ) *NYS+II *D1Tm

C INWARD FLUX THROUGH X=.
K=FX1
B=FXi-1 .*K
NM2=0
DO 14 I=,NCR
A=RAN(1,I:2)

K=FX1
IF(B.GT.A) K:=:K+1
NIM(I)=K

14 NM2:=NM2+N*I M ( I)
K=NM
NM=K+NM2
DO 21 I=ivNCR
DO 21 .1 INC T )
K=K+ 1
P(41K)=0.
A::::RAN(11,12)
I F(I. *GE .,NCR1) GO TO 16
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P (5 K ). =CHR ( 1w1) *S Q RT( ( 2*I -1) *A 1-( -- 1 )*( 1)
GO TO 15

16 P(5,K):=CHR(NCR1,1 )*SQRT((2*I--7)*A+ ( I-4)*(I-4))
15 AA=-3.+6.*RANI(I1J2)

A=.AA+LUW
IF(A.LT.0.) GO TO 15
=2.*A*EXP'(0.5+0 .5*UW*( UW-4B) -M *A A)/(W+flp)

BBB=RAN(I1,I2)
IF(B.LT.BBB) GO TO 15
P(IK) =A
B=SQRT(-ALOG(RAN( 11,1I2)))
A=2.*PI*RAN( 11,.I2)
P(2,K)=B*COS(A)
P(3,K)=B*SIN(A)
IP((K) =1

21 CONTINUE
C MOVE MOLECULES
30 N=0
24 N=N+1

IF(N.GT.NM) GO TO 60
IF(IP(N)4.LT.0) GO TO 24
X1=F'(4,N)
R1=F'(5,N)
P22=P(2vN)
P3=P(3,N)

C ABOVE ARE OLD' COORDINATES
IFE(XI.EQ.0.) GO TO 25

C E-MOLECULES
X=X1+P(1,N)*DTM
R=:SQR T ( (R +Ft2*DTM ) *( R.1 fP2*D3I: tPi 3*K3*1TM*DTVM)
FP(2 N)=(P2*(R1+P2*DTM)+P3*P3*DTM )/R
P(3yN)=P3*Ri/R
GO TO 26

C I-MOLECULES
25 DTA=RAN ( I1wI2) *D TM

IF (DETA.i.LT. 1. *E--10) DTA:=[.-l10
X=X1+P (1, N)*DTA
R=SQRT ( (Ri+P2*DTA) * (Ri+P2*E'TA) +P3*P3* 'TA*T 'JA)
P ( 2 N) = (P2* ( R1+P2*DTA ) +P3*P3*DTA ) /R
P(3,N):=P3*R1/R

C ABOVE ARE NEW COORDINATES
26 IF(X.LT.0.) GO TO 54

IF(X.GT.XM.AND.R.GT.RM) (30 TO 300
IF(X.GT.XM) GO TO 27
IF(R-RM) 35Y35,301

300 RRM=(R-R1)*(XM-X1)/(X-X1)
IF(RRM.LT.RM) GO TO 54

C MOLECULE IS COMING INTO C.V,. THROUGH THE BOUNDARY R:RM
301. A=3.*RAN(1vI2)

B:=SR T (2. ) *A*EXP(0 .5-A*A)
BBB=RAN(I1,I2)
IF(B.LT.BBB) GO TO 301
P(2yN)=-A

302 B=SRT(-ALOG (RAN(I1 I2) ))
A=:2,*PI*RAN( 11,I2)
P(1,N)=UW+B*COS(A)
P(3,N)=P*SIN(A)
DTA=DTM*RAN( I 1.v2)
R=SQRT ( (RM+P (2,N) *DTA) * (RM+P (2 9N) *DTA) 4
1 P(3,N)*P(3,N)*DTA*DTA)
IF(R.GT.RM) GO TO 302
X=XM*RAN(livI2)
GO TO 35

27 RD=R-(R-R1)*(X-XM)/(X-Xi)
C RD IS A COORD. OF THE MOLECULE AT X=XM

IF(RD.GT.I:D) GO TO 54
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C THE MOLECULE STRIKES DISC
C DISC HAS DIFUSELY REFLECTING SURFACE

DTR=DTM*(X-XM)/(X-Xi)
C DTR IS TIME REMAINING AFTER THE MOLECULE. STRIKES DISC

IF(DTR.LT.I.E--10) DTR=1..E --- 10
DTH=DTM--DTR
VD= (P2* ( R1+P2*DTH ) +P3*P3*DTH ) /RD
WD=P3*R1/RD

C SAMPLING WILL NOT BE DONE UNLESS MM IS POSITIVE
MM=NN-NON
IF(MM.LE.O) GO TO 33
CALL FINDCELL2(R1vX1sIyJ)
SS(1,MM)=SS(1 MM)+W( IJ)
SS(2,MM)=SS(2yMM)+P(l1N)*W(lIvJ)
SS(4yMM)=SS(4vMM)+VD*W(I ,J)
SS(6,MM)=SS(6vMM)+0.5*(P(1 N)*P(i 'N)+VD*VD+WD*WD)*W( IJ)
SS(SrMM)=Ss(e8MM)+1.

33 B=VMW*SQRT(-ALOG(RAN(1rI2)))
A=2.*PI*RAN(Ihr 2)
P2=B*SIN(A)
P3=B*COS (A)
P(1vN)=-VMW*SQR T(-ALOG(RAN(1vI2)))

C THE MOLECULE IS REFLECTED WITH P(1N) ,P(2,N) AND P(3vN)
IF(MM.LE.0) GO TO 34
SS (3, MM)=SS (3, MM)-P(IYN)*W (I Y )
SS(5rMM)=SS(5,MM)+P2*W( IJ)
SS(7,MM)=SS(7,MM)+O.5*(P(IN)*P(1,N)+P2*FP2+F3*P3)*W(I,j)

34 X:=XM+P(i YN)*DTR
R=SQRT ( (RD+P2*DTR) *( RD+P2*DTR ) +P3*P3*D T R*DTR)
P (2, N)= (P2*(RD+P2*DTR )+F3*P3*D TR) /R
P(3pN)=P3*RD/R
IF(R.GT.RM.OR*X.LT.O.) GO TO 54

35 CALL FINDCELL2(R1vXiIJ)
CALL FINDCELL2(RXvKvL)

C (IJ) IS OLD CELL AND (KL) IS NEW CELL.
FP(4pN)=X
P(5yN)=R
IF(I.EQ.K.AND.J.EO.L) GO TO 24
B=W(IJ)/W(KyL.)
M=O

50 IF(B.LT.1.) GO TO 51
M=M+1
B=B--1.
GO TO 50

51 A=R AN TI12)

IF(A.LT.B) M=M+1
IF(M.EO.0) GO TO 54
IF(M.EO.i) GO TO 24

C MOLECULE WILL BE DUPLICATED
M=M-1
DO 53 I=i, M
NM=NM+I1
DO 52 J=1r5

52. P(JNM)F(JYN)
53 NIP(NM).=-1

GO TO 24
C MOLECULE WILL BE REMOVED
54 DO 55 ] I15
55 P(IN)-=-I P(IYNM)

IP,(N)=IP(NM)

NM=NM--1
N=N---1
GO TO 24

C MOLECULAR INDEXING
60 00 61. J=1.PNCX

DO 61 *1:NCR
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I C ( 1I:y J ) :()

61 IC(2,I,J)=rn
61 I C (2y IP, J)=0

DO 62 N=1PNM
CALL. FINDCELL2(P(5,N)PP(4vN),I,J)

62 IC(i, I, J)=IC(1 IJ)+1
M=O
DO 64 J:,NCX
DO 64 I=1rNCR
IC(2, IJ)=M
M=M+IC(yl,I ,J)
IC(1IIJ)=O

64 CONTINUE
C IC(1,IJ) IS THE NUMBER OF MOLECULES IN CElL. (.J)
C (IC(2yIyJ)+1) IS THE STARTING ADDRESS IN CEL (I yJ)
C MOLECULES WILL BE COUNTED IN R-DIRECTION FIRST7 THEN IN X---DIR.

DO 65 N=1NM
CALL FINDCELL2(P (5 N) ,P(4 N), I , J)
IC(1, I, J)=IC(1 I:, J)+1
K:=IC(2s,IyJ)+IC(1, I, J)

LCR(K)=N
65 IP(N)=i
C CALCULATE COLLISIONS

DO 79 J=1 YNCX
DO 79 I=i.PNCR
VRDT=C(2 I v J
NP=O
MAX=IC( 1,IJ)*(IC(1(,I,j)+1 )*100

IF(C(1,IYJ).GT.TIME) GO TO 79
IF(IC(1,IJ).GE.2) GO TO 71.
C(lpIv-J)=:C(1,IvJ)+DTM

GO TO 79
C CHOOSE ONE MOLECULE OF COLLISION PAIR
71 NP=NP+i

K=IC(2y IyJ)+RAN(:I1 T2)*IC (1, J) 0+.9999999
IF(K.EQ.IC(2vIJ)) K n=K+1
L=LCR (K)

C CHOOSE ANOTHER MOLECULE OF COLLISION PAIR
72 K=IC(2, I ,J)+RAN( I1 I2)*IC (, Ii ,J)40.9999999

IF(KEQ.IC(2,IJ)) K'>=K+1
M=LCR(K)
IF(L.EQ.M) GO TO 72

C CALCULATE RELATIVE VELOCITY COMPONENTS AND RElATIVE SPEED
DO 73 K=1,3

73 VRC(K)=P(KL)-P(KvM)
VR=SQRT(VRC(1)*VRC(1)+VRC(2)*VRC(2)+VRC (3)*VRCC(3 ))
IF(VR.GT.VRDT) VRDT=VR
A=VR/VRDT
B:=RAN(I:LrI2)

IF(NP.LE.MAX) GO TO 76
C(1,1,J)=C( 1vIvJ)+iTM
GO TO 79

76 IF(A.LT.B) GO TO 71
C COLLISION PROBAE4ILITY IS PROPORTIONAL TO VR FOR 1--ARDESPHERE MOLECULE
C ADVANCE CELL TIME AND COLLISION COUNTER

C(1,IJ):=C(1, I,J)+2,*VL.(IJ)/(ICCII J)*IC(1. IvJ)
1 *CXS*VR*W(IrJ))
MM=NN-NON
IF(MM.LE.0) GO TO 74
SC (7v I, J MM)=:-SC (7, I JYMM) +1 .

C CALCULATE POST COLLISION RE:LATIVE VELOCITY COMPONENTS
74 B=l1.-2.*RAN(I1,I2)

VRC(I)=B*VR
A:=SRT (1. -B*B)
B=2.*PI*RAN( 11i 12)
VRC(2)=A*COS(B)*VR
VRC(3)=A*SIN(B)*VR
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95 FORMAT(1H 2T4,F10.28F11.5)
96 CONTINUE
97 CONTINUE

TI ME=NSA M*NST*N I S*I:T M
WRITE(29200) NM

200 FORMAT(16)
DO 201. J:=,NCX
DO 201 I=1NCR

201 C(i ,J)=C(1,TJ)---TIME:
WRITE(2202) ( (C(1 TJ) EI1. NCR) J1,NCX)

202 FORMAT (10E13.6)
WRITE (2io2O3) ((C( ,I ),I 1N R ~:,NX

203 FORMAT(10E13.6)
DO 205 J=1=NCX
DO 205 INCR
K=IC (1q,t, J)
DO 205 N= YtK
L.L=IC (2,I , J)+N
L=LCR(LL)
WRITE(2.9204) (P(My1.i) yM:1,5)

204 FORMAT(5E13.6)
205 CONTINUE

WRITE (2,206) (TC(1 91YTJ) =::::1,NCR) YJ:=1,NCX)
206 FORMAT(10I15)

STOP
END
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