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ABSTRACT

Biases in artificial intelligence systems and the data they operate over are a major hurdle
to their application in clinical and biomedical settings. Such systems have frequently been
shown to fail to generalize from their training data to the real world environment and often
display differing levels of accuracy over different population subgroups, which has detrimen-
tal effects on patients’ quality of care and on healthcare equality. Here, we introduce an
automated framework for identifying and understanding nontrivial sources of bias in health-
care datasets and AI models. Our framework is data and model agnostic and does not rely
on human-developed heuristics or assumptions to uncover bias. We demonstrate its effec-
tiveness by uncovering serious and nontrivial sources of bias in three widely used clinical
datasets and one biomedical dataset, over the diverse tasks of diabetes risk prediction, lung
cancer risk prediction, and biomolecular toxicity prediction. Our framework is used to un-
cover biases caused by patient BMI and computed tomography (CT) scanner type in the
data used by a cutting-edge lung cancer risk prediction AI model, causing AUC drops on
the order of ten percent.

Thesis supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

AI is very promising for use in clinical settings, achieving better-than-human performance
on various medical tasks [1], [2]. However, although AI models can achieve good average
performance on many tasks, their use thus far remains limited in the real-world clinical
setting. They can exhibit poor performance over certain subgroups of data, exacerbating
biases already present in the healthcare system. Similarly, they can exhibit unexpected
failure cases, causing unwanted false negative diagnoses that a human doctor would not
make, with dire results for patient care [1]–[7]. Current methods for detecting the causes
of these biases are labour-intensive, ineffective, and not interpretable to clinicians and AI
practitioners. In order to enable the widespread adoption of AI in healthcare, we need a
better way to uncover the causes of these biases in the data used to train AI models. This
would enable the correction of bias in the data generation process, more informed use of
AI models, and the reduction of biases in AI models. In this thesis, we investigate the
implementation of such a bias detection framework.

1.1 Background

1.1.1 Defining Bias and Fairness

In this work, we broadly consider an AI model to be biased or unfair if it exhibits differ-
ent levels of predictive performance over different subgroups within the data it is used on
[8]–[11]. It is worth considering how this definition of bias fits into a broader rich literature
on the notion of fairness in AI applications, with many different qualitatively and quantita-
tively defined definitions of bias and fairness. Broadly speaking, research on AI fairness in
healthcare has focused on two main definitions of fairness, these being group fairness and
minimax fairness [4], [5], [9], [10], [12], [13].

In group fairness, the goal is to create an AI model that performs equivalently over dif-
ferent patient subpopulations. One type of group fairness is conditional prediction parity, in
which the model outputs a positive diagnosis with equal probability over different patient
subpopulations; this is rarely useful in most contexts but can promote equal allocation of
medical resources to different patient populations [4]. Two more common varieties of group
fairness are equal opportunity, which aims for equal true positive rates across patient sub-
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populations, and equalized odds, which strives for equal true positive and false positive rates
across subpopulations [4], [13]. Many more variations of group fairness exist, such as to pro-
duce equivalent ROC curves [4] or calibration performance [4] across subpopulations. While
common, optimizing for the group fairness approach often results in AI models that perform
worse over all subpopulations [5], [12] because certain subpopulations may be intrinsically
more difficult for a model to achieve a high performance over.

In minimax fairness, the goal is to maximize the performance of the AI model over its
worst performing subpopulation [5], [12]. This approach aims to improve each subpopula-
tion’s performance separately instead of striving for equal performance. As with group fair-
ness, there are different variations of minimax fairness, which can variously aim to optimize
the model’s loss function, accuracy, calibration, or ROC AUC over different subpopulations
[5], [12]. While also commonly used in fair-ML, the minimiax fairness objective rarely leads
to better AI models when using the latest de-biasing approaches [5], [12] and instead often
leads to tradeoffs with other performance metrics such as classification precision [10].

In addition to these definitions, there are many other proposed variants of fairness, such
as individual fairness, in which a model behaves similarly over similar patients, or coun-
terfactual fairness, in which a model behaves the same even if a patient’s non-pathological
characteristics are changed in a counterfactual manner to an alternate demographic sub-
group [4], [11]. There is ultimately no fully authoritative definition of fairness, with different
formulations providing different benefits and meeting different equity related goals. Fur-
thermore, different definitions of fairness are often incompatible, a mathematically proven
notion known as the impossibility theorems [8], [11], [12], [14]. For example, it is usually im-
possible to simultaneously achieve both demographic parity and equalized odds. Similarly,
it is usually impossible to achieve a well-calibrated AI model while simultaneously achiev-
ing equalized odds. Considering the incompatibility of different fairness definitions and the
tradeoffs between them, it is apparent that there is no one definition that can be applied in all
healthcare contexts, with ethical assumptions required to determine which causal pathways
in the decision making can be considered fair [9].

1.1.2 Causes of Bias in Medical AI

Hidden stratification is the term describing the failure of an AI model over a clinically relevant
subgroup in the data [5], [6], [15]. This can occur for several reasons [6], [9], [15]: (1) Data
imbalances: When a certain subgroup, label, or data attribute is uncommon in the training
data, such as a rare but dangerous cancer, an AI model may fail to learn to accommodate
it. (2) Label/annotation bias : Inaccurate and noisy training labels for a given subpopulation
can prevent an AI system from learning true patterns in the data. This can be a way
that human biases creep into AI models, as human radiologists who label training data may
themselves be biased or less careful on certain groups of radiology scans [2], [10]. (3) Inherent
hardness or presentation disparities: Certain subpopulations may be inherently difficult to
learn, for example because they look very similar to other subpopulations of data that tend
to have a different label. Similarly, certain diseases may manifest differently in different
subgroups of patients or through different imaging modalities. (4) Shortcut learning: AI
models can be tricked by spurious correlations, in which certain data points have features
that are correlated but not causal to a disease [2], [6], [7], [13], [15]–[18]. For example, if a
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certain image background is correlated with disease, the AI model may fail to predict images
presenting disease but without that background. Similarly, if a disease is associated with old
age, a model may learn to rely on age instead of pathology when making predictions. (5)
Finally, shifts in the distribution of different subpopulations from training to testing settings
can make an AI model appear to do well on average over its training data, but then fail in
deployment over certain groups.

Yang et al [10] identifies several such types of train-test subpopulation shifts that result
in biased AI models and are often found in varying ratios in different datasets. One such
subpopulation shift is class imbalance, in which the dataset classes (i.e. positive or negative
for cancer) are found in different ratios in the test and train datasets, which can lead to low
model confidence on classes less prevalent in the training data. Two more such subpopulation
shifts are attribute imbalance and attribute generalization, in which subgroups with certain
attributes (such as ethnicity) are present in different ratios in the test and train datasets, or
entirely lacking in the training data, in the case of attribute generalization. This can lead
to poor performance on subgroups with attributes that are underrepresented in the training
data. Spurious correlations can also be considered a form a subpopulation shift when the
spurious feature is common in the training data but lacking in deployment.

Biases can creep into AI models’ training data from many sources. For example, data
is typically collected from different hospitals and institutions independently and without
enough engagement of developers during the data collection process. Thus, procedures,
equipment, and standards vary significantly [9], [16], [19]. Even within the same hospi-
tal, inpatient departments and emergency rooms may use different equipment [19]. These
factors all lead to data collection procedures rife with spurious correlations, subpopulation
shift, and data labeling errors, leading to hidden stratification of model performance over
different subsets of the data. Furthermore, different hospital systems and datasets may cater
to different demographics of patients, corresponding to populations that are historically un-
derrepresented and underserved by healthcare, which can then lead to the perpetuation and
amplification of societal biases in clinical AI systems [12].

1.1.3 Clinical Examples of Bias

Countless studies investigating in a research setting have demonstrated the failure of common
AI model architectures over subgroups stratified by various protected attributes such as race,
gender, age, or intersectional combinations of these. This can occur for various reasons, such
as due to dataset imbalances, inherent hardness, or shortcut learning in which an AI model
learns to rely excessively on demographics instead of pathology when making decisions.
Seyyed-Kalantari et al [8] demonstrate that common computer vision AI models over three
large chest X-ray datasets underdiagnosed traditionally underserved populations at a higher
rate, especially intersectional populations such as Hispanic female patients. Zhang et al [12]
similarly demonstrate significantly stratified performance on chest X-ray prediction over sex,
race, and age over two major chest X-ray dataset. Yang et al [10], [14] show stratification
of performance over the intersection of race, sex, and age on the common MIMIC-CXR
chest X-ray dataset and 5 other chest X-ray datasets, and they show how unfairness is
generally correlated with the extent to which an AI model encodes protected attributes in
its internal feature representation. They also show how stronger such encodings make the
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models less able to generalize to external test data with a distribution shift. Brown et al
[13] further demonstrate how models use shortcut learning to rely on a patient’s age when
making predictions over various dermatological and radiological datasets [13]. Finally, Pfohl
et al [4] demonstrate big fairness gaps using standard AI model training techniques to predict
patients’ clinical outcomes in a large set of experiments involving 25 combinations of clinical
outcomes, protected demographics, and health record datasets.

Regarding inherent hardness, many real world clinical datasets also have subsets of data
that are inherently harder to predict, even subgroups unrelated to protected attributes.
For example, Sohoni et al [15] demonstrates this also over the ISIC skin cancer dataset,
showing that models they train fail over a subset of images that is more difficult for humans
to visually classify correctly and for which doctors requested a biopsy be performed. In
another example, Oakden-Rayner et al [6], with the help of human radiologists, demonstrate
that models trained on the Adelaide Hip Fracture dataset have low performance over the
subset of fractures that are subtle or in the cervical area, and show that models trained on the
MURA muskoskeletal dataset to classify tissue as normal or abnormal display a stratification
of AUC curves over different subsets of the abnormal data. Fractures are more successfully
flagged as abnormal as opposed to subtle degenerative diseases.

Regarding label biases, Obermeyer et al [20] demonstrate how a patient risk prediction
algorithm widely used in the real world by United States healthcare providers was found to
be plagued by racial bias, significantly reducing the number of Black patients identified as
requiring care. They find that this is because the algorithm was trained using healthcare
spending as a proxy label for care needs, and society spends significantly less money than
required on Black patients compared to white patients. This is an unfortunate example
of how societal biases can work their way into algorithms in the form of noisy labels and
label bias. Another way label biases can be introduced into AI models is through the
common practice of automatic data labelling [8]. For example, the CheXpert[21] labeller,
which converts radiologist’s notes on X-ray scans into a positive or negative disease label,
has been found to perform poorly, especially over certain age groups, by Zhang et al [12].
Unsurprisingly, they find that training AI models on these automatically generated labels
leads to bias, with especially poor performance over age groups for which the automatic
labeller fails.

Another example in which biases reached the real-world, this time caused by shortcut
learning, would be the Moleanalyzer-Pro neural network, which had been approved for med-
ical use in Europe. It was designed to distinguish between benign skin nevi and cancerous
cutaneous melanomas. However, in the clinic, suspicious lesions are often marked by doctors
using gentian violet skin markings. Winkler et al [22] show that skin markings significantly
interfered with the AI’s performance by increasing the melanoma probability scores and con-
sequently the false-positive rate. Some more examples of spurious correlations and shortcut
learning being demonstrated in the literature are presented as follows:

• Varoquax et al [2] demonstrate how academic goals (such as creating an AI model that
performs well on a common benchmarking dataset) are not always aligned with medical
goals (such as translating the AI model to a hospital setting), which results in very few
AI models developed that can can be feasibly used in the real world. In their review
of dataset biases, they mention how a range of factors ranging from image texture
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to patient demographics results in biased experimental AI models in diverse medical
fields, including chest radiology, retinal imaging, brain imaging, histopathology, and
dermatology. They mention how one of the most concerning types of biases that can
occur is when a model spuriously learns to classify a treatment as a disease, such
as an example is demonstrated over a previously published AI model predicts the
pneumothorax collapsed lung condition. They find that the model learns to predict
the condition based on whether there is a chest drain in the image, a type of treatment
for the condition [6]. They find that the AUC on samples without chest drains is low.

• Zech et al [19] demonstrate that CNNs used for predicting pneumonia based on chest
X rays are able to identify the hospital the image is taken at and use the prevalence
of pneumonia at that hospital as a confounding variable in their predictions, instead
of relying on disease pathology. The most glaring example of this is when the models
recognize metallic tokens that certain hospital systems use in the images as laterality
labels.

• Although there are many published papers about AI models that predict Covid-19
based on chest X-rays, there is much variation in the training data used for these, with
some using low quality images and some using pediatric datasets. Thus, Ahmed et
al [16] recreate similar models and demonstrate how they fail catastrophically when
tested on real world data. They demonstrate that the models failed to learn Covid-
19 pathology, instead relying on image artifacts from non-lung areas of the image, as
well as the rib cage size, which is correlated with Covid-19 because few children have
Covid-19 in the training data.

• Sohoni et al [15] further demonstrate potential biases in the commonly used ISIC skin
cancer dataset. They find that a brightly colored patch in the image is correlated with
benign skin markings, which then acts as a spurious correlation causing the model to
fail on images without the patch.

1.1.4 Uncovering Biased Subgroups

Various methods can be used to determine sources of bias in a dataset, but difficulties
remain and more research is still warranted in this area [6]. The most common method is
simply to segregate datasets into different groups informed by human expertise and heuristics,
and separately test the model on each group. The process of stress testing an AI model
like this over different manually curated groups goes by various names, such as stratified
performance evaluation stress testing [3], schema completion [6], or generalization testing
[18]. The vast majority of bias examples outlined above were discovered in this way, and
Oakden-Rayner et al [6] demonstrate how real-world clinicians can participate in the process
by manually labelling training set samples into different pathology subgroups to test model
performance over. Seyyed-Kalantari et al [8] test AI models for their underdiagnosis rates
over different protected attributes such as age, race, sex, and socioeconomic status, including
intersectional combinations of these attributes. Their study over three large-scale chest X-ray
datasets successfully uncovered that underrepresented populations, especially intersectional
underrepresented populations, tended to be significantly underdiagnosed by the AI models.
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It is well known that AI models’ internal feature representations can learn to encode
a patient’s demographics or other attributes, which raises the concern that they are using
such attributes as spurious correlations in disease prediction [13], [14], [23], [24]. As such,
another method that can be used to check for human-expert-informed biases is to investi-
gate whether the AI model’s internal feature representation can be used to predict whether
a patient belongs to a suspected biased subgroup [23]. However, Brown et al [13] demon-
strate that simply encoding an attribute such as age does not mean that the model is using
it unfairly as a shortcut. As such, they developed an algorithm named ShorT that can
confirm whether a suspected demographic attribute is being used unfairly. Their method
entails modifying the degree to which a certain data attribute is encoded by the AI model’s
internal representation, and then investigating how the fairness of the model changes in re-
turn. They successfully demonstrate their method, detecting spurious correlations in several
clinical datasets. However, they warn that not all biases are caused by spurious correlations,
demonstrating a dermatological AI model biased against certain age groups, but for which
age does not get flagged as a spurious correlation using their method.

Another manual method for discovering biases is error auditing, which involves investi-
gating the portions of the testing data over which a model performs poorly to see if there
are any common patterns in these portions that may be causing bias. This method can
pick up on unexpected spurious correlations, as demonstrated in [6], where a radiologist
was manually employed to investigate the falsely predicted images and found that AI model
correctness correlated with the presence of the disease treatment in the image.

An extension to the idea of using a model’s mistakes to find biases is presented by Bao et
al [25], who propose the PI algorithm, first splitting a dataset into different “environments”,
such as different hospitals where data is sourced from, then training separate AI models for
each environment, and then considering the groups of correctly and incorrectly predicted
points in each environment as stratified biased subgroups. One challenge with this, however,
is that the environments to choose are not immediately obvious. Various algorithms further
automate the process of using a model’s mistakes as a guide for detecting biases. One
such algorithm termed environment inference by Creager et al [26] involves using a fixed AI
model’s classification outputs as a learning signal to discover subgroups of data over which
the model may become reliant on spurious features.

Another algorithmic method which can be used to discover stratification in the dataset
is clustering. Each data point is represented differently in the internal feature space of an
AI model. Clustering algorithms such as Gaussian Mixture Models can be used to group
together similar portions of the internal representation space, and it has been shown that
these similar subgroups can be representative of biases such as spurious correlations, under-
represented groups, and difficult to predict subsets in some clinical datasets [6]. Sohoni et
al [15] demonstrate a clustering approach that uncovers a set of skin cancer dataset images
that is more inherently difficult for both doctors and AI models to classify correctly.

While the above methods and algorithms that investigate the mistakes of an AI model
over its training data can uncover some biases, they don’t consider certain factors that can
contribute to an AI model’s mistakes, such as the model’s representation power. If an AI
model is too simple, it may not perform well, even on simple unbiased data subsets. To
isolate true causes of bias instead of errors caused by limited model representation power,
another algorithm called Learning to Split (LS) [17] identifies training and testing subgroups
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such that a model trained on the training group does not generalize well to the testing group.
It works by adversarially pitting a splitting function that splits data into difficult training
and testing sets versus a predicting AI model that tries to do well despite the difficult splits.
LS shows higher performance than the above methods at uncovering the spurious correlation
subgroups in common benchmarking datsets for correcting bias.

None of the bias detection techniques discussed thus far are very interpretable. Thus, an
alternative technique that has been developed to make analyzing an AI model’s decisions
more transparent is creating gradient heat maps that help highlight the portions of an image
that are used by a model to make decisions. Winkler et al [22] use such techniques to confirm
that an AI model is relying on sections of the image containing clinical skin markings instead
of sections of pathological significance.

1.1.5 Overcoming Biases over Known Subgroups

If one knows which subsets of data result in stratification of model performance, then there
are various steps model designers can take to mitigate the impact of biases. The most
effective way to prevent a model’s biases from affecting healthcare delivery is simply to
abstain from using the model in totality or at least over subsets of patients that the model
performs poorly over. Sometimes, this may be the most responsible approach until a better
model is produced [4]. Given the variable effectiveness of algorithmic de-biasing methods,
the first course of action for creating a better AI model should always be to minimize the
cause of bias at the source [4], [5], [12], [14]. This could mean changing the training objective,
relabelling data more accurately, collecting more data for underrepresented demographics,
or abstaining from training and deploying the model on subsets of data with known spurious
correlations, among many more possible courses of action.

If all reasonable efforts have been made to improve the data collection procedures, but
there are still biases found in the model performances, then there are several de-biasing algo-
rithms that can be employed to enforce fairness constraints in the model training. Here we
describe several classes of algorithms that attempt to achieve this when the biased subgroups
in the data are known.

The first class of algorithms we identify focuses on reducing a model’s reliance on a known
spurious correlation:

• Some of these algorithms are ensembling methods, such as in [27] and [28]. These
methods first create a biased model that makes predictions based on the known spurious
correlation, and then involves training the final model in an ensemble, summed together
with the biased model, so that it learns the patterns not already captured by the biased
model.

• A procedure called deep feature reweighting (DFR) [29] can be performed, which entails
taking a trained but biased neural network and then retraining only its last layer on a
held-out dataset which does not contain the known spurious correlation. This works
on the premise that the neural network’s learned internal feature representations are
of high quality and the bias mainly affects the last layer, which seems to usually be
the case.
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• Some adversarial methods such as DANN [30] and CDANN [31] aim to retrain the
internal feature representations of the AI model in order to eliminate any encoding of
subgroup attributes and thus prevent the model from relying on spurious correlations
with such attributes. They use an adversary network trained to recognize the subgroup
from the internal representation, and then train the internal representation to make it
harder for the adversary.

A second class of algorithms try to train AI models that uphold various group fairness
constraints over a well defined set of data subgroups.

• One such method, which we term Fairness Violation Penalization, involves modify-
ing the AI training objective function to penalize violation of the demographic parity,
equalized odds, or equal opportunity fairness constraints between desired groups. Pfohl
et al [4] investigate several such modifications over clinical datasets with mixed success,
finding that increases in a specific fairness constraint were often offset by poor cali-
bration and AUC for many of the subgroups. A related method, REx [32], penalizes
variance in the expected value of the objective function over different subgroups.

• Another set of such methods devise AI training objectives based off of constrained
Lagrangian optimization problems. Invariant Risk Minimization (IRM) [33] constrains
the model to rely on features that are invariant to the subgroup, and FairALM [34]
constrains the model to the equal opportunity constraint directly.

• Another set of methods called imbalanced learning methods strive for fairness by
reweighting [35] or resampling [12] training data points to better represent uncom-
mon groups in AI training. Sometimes [36], only the last layer of the neural network is
re-trained on the group-balanced dataset. Relatedly, importance weighting [37] weighs
different data points according to their relative distributions in the training and de-
ployment scenarios.

Finally, instead of striving for equal performance across groups, one may attempt to
focus more on the minimax fairness definition, with more of a focus on optimizing the model
separately for each subgroup. A simple approach to this is to simply train a different AI
model for each subgroup [7], [12]. Another method proposed with promising results over
clinical data in [38] selects the subgroup with the worst ROCAUC at each step of training
and then trains the model to improve over that group with a custom loss function. A
related and more elaborate way of optimizing for minimax fairness is to use the Group DRO
[39] optimization algorithm, which upweights poorly performing groups during each step of
training; this algorithm is often the standard de-biasing approach, and is very popular in
fair AI literature.

1.1.6 Overcoming Biases over Unknown Subgroups

Finally, there exist several methods that aim to help reduce hidden stratification of model
performance in cases where the sources of bias or biased subgroups are unknown. The most
general set of such methods don’t focus on any specific hidden subgroup of data but rather
aim to make the AI model generally more robust to biases caused by noisy ground-truth
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labels and imbalanced training sets with rare classes of data such as rare diseases, so called
long-tailed distribution class imbalance [40]. Some such methods include the following:

• Imbalanced learning methods that reweight or resample different label classes (but not
arbitrary biased subgroups). One such method is BSoftmax [40], which adapts the
Softmax activation function typically used in neural networks to be more unbiased in
a long-tail setting and learns an optimal sampling rate for each label class. Another
example is presented by Ren et al [41], where an optimal reweighting of different label
classes is learned during training, instead of different sampling rates.

• Data augmentation techniques have also been proposed, such as Mixup [42], which aims
to improve AI robustness against noisy data by creating extra training data points that
are interpolations of real points.

A more general set of de-biasing methods follows the principle of first uncovering biased
subgroups and then using these subgroups with a subgroup-aware de-biasing algorithm, a
method demonstrated by the environment inference for invariant learning (EIIL) framework
outlined in [26]. In this framework, a set of “environments” or subgroups are first identified
(the EI phase) which can result in hidden stratification; this corresponds to the algorithms
described here in section 1.1.4. These biased subgroups are then fed into a subgroup-aware
de-biasing algorithm (the IL phase), such as IRM [33] or Group DRO [39]; this corresponds
to the algorithms described in section 1.1.5. Several similar procedures have been published
using this principle; for example, Creager et al [26] match their own environment inference
algorithm with Group DRO and IRM. Sohoni et al [15] match clustering methods for bias
detection with Group DRO, in a framework they call George. Bao et al have shown success
using their PI algorithm to detect biases followed by Group DRO [25], and even more success
with their LS algorithm followed by Group DRO [17].

Finally, several algorithms exist that are designed to train unbiased AI models by si-
multaneously finding biases in the training data and correcting for them. These tend to be
methods that align with the minimax definition of fairness:

• One set of methods trains an unbiased AI model to learn from the mistakes of a biased
one. One such method named Just Train Twice (JTT) [43] first trains an AI model for
only a few iterations, then trains a second model in which data mispredicted by the
first model is up-weighted; this is essentially a framework for using error-auditing to
de-bias an AI model. Another method named Learning from Failure LfF [44] defines a
training objective function which can be used to simultaneously train two AI models,
amplifying the bias in one of them and learning to correct for these amplified biases in
the other.

• A series of methods use ensembling, similarly to the subgroup-aware ensembling meth-
ods in 1.1.5, except that the biased model is created without prior human knowledge
of the bias. Sanh et al [45] demonstrate this by setting the biased model to be a “weak”
AI model that is too simple to learn complicated patterns in the data.

• Adversarial methods such as Adversarially Reweighted Learning (ARL) [46] frame de-
biasing as an adversarial game between a model that is being trained to find difficult
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data points and a predictive AI model trained to do well on the difficult points. ARL
has similarities to Learning to Split, except that it focuses on re-weighting points in
the training dataset, whereas LS focuses on curating new training and testing sets over
which the predictive model fails to generalize.

• CVaR DRO is a more general version of Group DRO, which focuses on upweighting
data points (instead of defined subgroups of data) that the AI model performs poorly
over during each step of training.

1.2 Motivation

De-biasing algorithms are no silver bullet, understanding and eliminating the
biases in data is the most important step. When choosing an algorithmic method to
overcome biases, there are many tradeoffs that the different options entail, and one must
be conscious that there is no silver bullet to fixing biases, whether the biased subgroups
are known or unknown. First, one must consider the clinical goals, the types of biases
present, and the type of fairness desired, since different de-biasing methods focus on different
definitions of fairness and different biases, as outlined in Section 1.1. Second, one must be
aware that de-biasing algorithms often fail to improve model performance, especially on out-
of-distribution data, and different algorithms may perform differently over different datasets.
Finally, one must consider the impossibility theorems, which imply that correcting biases by
optimizing for one approach to fairness may result in trade-offs in other performance metrics.

The level to which de-biasing algorithms are helpful varies greatly and depends on the
specific circumstances. Several major benchmarking studies have been carried out to directly
compare the performance of different de-biasing algorithms over clinical datasets. Zhang et al
[12] compares nine de-biasing algorithms (both group-aware and subgroup-unaware) over two
chest X-ray datasets. They found some success with group-aware imbalanced learning meth-
ods, but showed tradeoffs in fairness and performance over all subgroups. Pfohl et al conduct
two benchmarking studies for group-aware de-biasing algorithms in the clinical setting; one
focuses on group fairness, comparing several variants of Fairness Violation Penalization [4];
another focuses on minimax fairness, comparing several variants of Group DRO with several
other approaches [5]. Neither study uncovered consistent gains in fairness or worst-subgroup
performance, instead frequently uncovering losses in performance of various metrics. Yang
et al conduct two benchmarking studies. One of these compares 19 de-biasing algorithms
(both subgroup-aware and subgroup-unaware) over 12 datasets, including several clinical
datasets [10]; the other one compares five group-aware algorithms over medical datasets to
see how well they correct fairness in test settings outside of the training distribution [14].
They occasionally find some some limited gains in fairness using Group DRO, DANN, and
subgroup-aware imbalanced learning methods, but note that such gains come with tradeoffs.
Furthermore, they find that these gains only hold when the AI model is tested on data that
matches its training distribution, but the gains in fairness are not robust to shifts in data
from training to testing, a common occurrence in healthcare datasets. In general, there is
much variance in the de-biasing algorithms’ performance over different datasets and differ-
ent biased subgroups. This variance occurs both within and between studies, with no clear
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algorithm consistently working the best.
In addition to the inconsistent performance of de-biasing algorithms, one must also con-

sider how optimizing for one notion of fairness may result in trade-offs in other performance
metrics or notions of fairness. Regarding minimax fairness, [10] empirically demonstrates the
tradeoffs between worst-group accuracy and other performance metrics such as worst-case
precision. Specifically over clinical data, [12] demonstrates over a chest X-ray dataset that
optimizing for minimax fairness using JTT and ARL seems to yield AI models with worse
performance and calibration, and using Group DRO does not yield meaningful gains in per-
formance either. Regarding group fairness objectives, [12] finds that any increases in group
fairness achieved using FairALM or Fairness Violation Penalization comes at the expense
of worse performance over all subgroups of data. Similarly, [4] empirically demonstrates
over a clinical dataset the tradeoffs between demographic parity and equalized opportunity,
AUROC, and precision. They also generally find that penalizing differences in performance
across the patient subgroups results in degraded performance over many of these metrics
throughout the subgroups.

Considering the variance in de-biasing algorithm performance and the tradeoffs between
optimizing for fairness and other metrics, a common point concluded and argued by all of
these prior works is that in order to achieve equitable and reliable delivery of healthcare across
different settings and patient subpopulations, it is crucial to understand the fundamental
sources of bias inherent in the data, create improved data collection processes to mitigate
the biases before training AI models, and consider the societal context affecting healthcare
delivery.

If using de-biasing algorithms, knowledge of the biased subgroups is important.
Firstly, de-biasing algorithms that require subgroup knowledge tend to perform better than
those that do not. Secondly, having knowledge about the type of bias enables one to make an
informed decision about which type of de-biasing algorithm to choose. Finally, having knowl-
edge of which subgroups underperform allows one to check that biases have been corrected
over these groups.

In studies that have compared subgroup-aware and subgroup-unaware de-biasing algo-
rithms, subgroup-aware algorithms tend to do much better at increasing performance over
known biased subgroups. For example, in [10], Group DRO and group-aware imbalanced
learning methods perform the best, with DFR also showing some benefit, and group-unaware
methods such as JTT or general robustness methods performing more poorly. In [12], the
group-unaware methods JTT and ARL seem to decrease performance over a chest X-ray
dataset. For increasing model fairness on out-of-distribution datasets, [14] found that meth-
ods that remove encodings of biased attributes from AI models’ internal feature representa-
tions seem to work the best, with DANN slightly outperforming even Group DRO. Overall,
all of the most consistently effective de-biasing algorithms rely on knowledge of biased sub-
groups and aim to mitigate the AI model’s reliance on these biased attributes. Furthermore,
even if group-unaware algorithms do not require bias annotations in training data, they usu-
ally rely on knowledge of the biased subgroups during the model validation phase in order
to see which model best reduces the bias and to select the optimal training hyperparam-
eters. As such, the results published in papers describing such algorithms, such as JTT
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and the originally published EIIL algorithm [26], are overly optimistic because they assume
bias knowledge during the model validation phase. Yang et al [10] demonstrate that the
effectiveness of group-unaware de-biasing algorithms is further reduced when knowledge of
biases is not known in the validation phase.

When using de-biasing algorithms, it is also important to understand which type of bias
is present because this affects which types of de-biasing algorithms are most effective [9].
For example, most of the algorithms tested in [10] tend to work better at correcting biases
caused by spurious correlations and class imbalance, but less well at correcting biases caused
by attribute imbalance. Furthermore, Group DRO is not very effective at minimizing biases
caused by inherently difficult portions of data [15], in which certain subgroups may have
inherently unpredictable outcomes. Similarly, if biases are caused by noisy and incorrect
training data labels, then certain de-biasing methods focused on such biases, such as Mixup,
may be more appropriate. In fact, de-biasing algorithms are generally better suited for
correcting biases caused by data imbalances, as opposed to label biases or biases caused by
inherent hardness [9]. In any case, though, the best course of action would be to understand
and prevent the cause of bias during the data generation phase.

Considering the variable effectiveness of different algorithms over different datasets and
different types of biases, the optimal de-biasing strategy is likely to involve trying different
algorithms and seeing which one most improves fairness for the biased subgroups while
minimally affecting overall performance. In order to perform such validation and testing, a
detailed understanding of which data comprises the biased subgroups is required.

Existing methods for uncovering biased subsets of data are not sufficient for
use in clinical AI. First, bias detection methods that rely on human expertise are very
labour intensive and can confirm the existence of only a limited scope of biases. Second,
most automated bias detection methods have variable performance and are not guaranteed
to uncover biases. Finally, even if biased subgroups are uncovered by existing automated
methods, they are not usually interpretable to humans, making it hard for clinicians and
algorithms designers to mitigate biases.

Bias-detection methods that rely on human experts have major limitations. For exam-
ple, while stratified performance evaluations can be effective, the biases they can uncover are
limited to the subset of biases that humans could have expected and have the time to test,
which is usually limited to protected attributes. Furthermore, the method requires a lot of
time and energy, either to manually curate subgroups or to test all of them. The cost of per-
forming such an evaluation over intersections of protected attributes, which can have many
permutations, can be prohibitive; thus, studies that have explored intersectional subgroups
[8], [14] have only explored a limited subset of such groups. This means that such a bias
detection method can further marginalize intersectional groups that are not well represented
by common attributes for assessing fairness [4]. Furthermore, while the other major manual
method of error auditing can be less labor intensive than manually curating and testing
subgroups for stratified performance evaluations, it is still an intensive process and is depen-
dent on the auditors’ ability to recognize patterns in misclassified samples. Furthermore, it
can have limited sensitivity for detecting certain biases, especially low-prevalance and highly
discordant biased groups [6].

24



Meanwhile, algorithmic methods for de-biasing, such as clustering, have been rarely tested
over clinical datasets, and it is not clear how consistently effective most of them are. Oakden-
Rayner et al [6] show that such methods can uncover known biases in datasets in some cases
but not in others, with their efficacy potentially limited by how separable the biased features
are in the AI model’s representation space. This shows that they could have some use but
it may be limited and still require human guidance. Additionally, methods that find or
correct biases by learning from a model’s mistakes on the training set, such as environment
inference, ARL, JTT, or group-unaware de-biasing algorithms that use ensembling methods,
suffer from the same efficacy concerns as manual error auditing. Specifically, they may
have limited sensitivity to low-prevalence biases and don’t consider certain factors besides
biases that can contribute to an AI model’s mistakes in its training data, such as the model’s
representation power. Furthermore, a major limitation of many of the publications proposing
bias-detection methods and group-unaware de-biasing methods is that they are largely tested
over standard de-biasing benchmark datasets like Waterbirds, CelebA, and MultiNLI. These
datasets have very well known and annotated spurious correlations that are unlikely to be
so clean in practice, leading to benchmark chasing and potentially poor performance in
practical clinical applications [2] where biases are less well-defined [9]. Most publications
that detect, analyze, and correct biases in clinical data have used manual methods such as
stratified performance evaluation to confirm the existence of already known or suspected
biases stratified by protected attributes such as gender or race. The few publications that
analyze automated bias detection methods over clinical data tend to focus on uncovering
previously known biased subgroups, such as lung X-rays with spurious chest drains [6] or skin
cancer images that contained spurious brightly coloured clinical markings or were difficult for
doctors to diagnose [15]. There has yet to be a proposed algorithmic method demonstrated
to help reliably and interpretably uncover unknown biases in real clinical data.

Finally, bias detection methods proposed to date are not easily interpretable and don’t
elucidate the exact cause of bias in the data in terms of clinical, pathological, or demographic
features, making it hard for clinicians to trust an AI model. Bias detection methods that
rely on clustering or investigating a model’s mistakes can uncover hidden stratification and
subgroups of data over which a model might fail. While these subgroups can be fed di-
rectly into de-biasing algorithms to help mitigate stratification of model performance, these
subgroups are not usually readily interpretable by a human, making it hard to trust the
de-biasing process and hard to correct biases in the data source. In order to understand the
sources of bias, humans must manually investigate these biased subgroups, often with the
labour intensive help of doctors [6]. Similarly, group-unaware de-biasing methods can be
used to simultaneously find biases and de-bias algorithms, but this process does not eluci-
date the bias to the algorithm developer in an interpretable way. Finally, more interpretable
bias-detection methods that use heat maps to analyze the locations of biases in images are
only useful in limited contexts. While they can be useful for confirming suspected spurious
correlations and can be helpful when used to analyze the subgroups isolated by other bias
detection methods, they are of limited use to detect biases on their own because they do not
help narrow down which data points in a dataset are biased. Also, AI models’ decisions are
often made using many portions of the input image, so not all types of biases will be obvi-
ously visible via these gradient heat map techniques. As it stands, there is no bias detection
method or framework that is designed to detect and elucidate biases in terms of clinical,

25



demographic, or or other attributes in a way that is automated and less labour intensive.

1.3 Proposed Interpretable Subgroup Detection

As discussed in Section 1.2, there is a need for a bias detection framework for AI in healthcare
that operates in an automated way and elucidates biases in an interpretable way. In order
to fill this gap, we propose a two part bias detection framework which first uncovers biased
subgroups using the Learning to Split bias detection algorithm, and then uses interpretable
AI models to understand the defining features of these subgroups. This is demonstrated at
a high level in Figure 1.1.

We select Learning to Split as the foundation of our bias-detection framework because it
holds much promise as an effective bias detection tool. Firstly, it overcomes some of the issues
that help limit the effectiveness of other algorithmic bias-detection methods. As described in
Section 1.2, bias-detection methods that investigate an AI model’s mistakes don’t consider
a model’s representation power and can have limited sensitivity to low-prevalence biases.
Similarly, methods that rely on clustering are limited by how separable the biased features
are in the AI model’s internal feature representation space. LS minimizes the effects of these
factors because it (a) relies on increasing the generalization gap in performance between
the training and testing datasets, instead of within just the training set, and (b) it does
not rely on the internal feature representations of the AI model. Secondly, LS is chosen
because it also considers a data point’s annotated label, so it can identify a variety of
different types biases including label bias, unlike some methods such as clustering; Bao et
al [17] demonstrates how LS can effectively isolate noisy labels in its automatically selected
subgroups. Finally, LS is chosen because it has shown promise as a tool to identify subgroups
that can be fed to de-biasing algorithms such as Group DRO, even in settings without bias
annotations in the validation data points. Bao et al [17] show that when feeding the biased
groups identified by LS into Group DRO, the resulting de-biasing process is more effective
than using using subgroups identified by other methods such as LfF, JTT, or the originally
published EIIL algorithm [26], especially when biases are completely unknown including in
the validation data. While Sohoni et al [15] do show that the performance of an AI model
over subgroups created via clustering techniques could potentially be an effective proxy for
model validation, the published results for LS combined with Group DRO still seem to be
better than for the clustering methods proposed in [15] for de-biasing common benchmarking
de-biasing datasets.

Once biased subgroups are detected by LS, the second step of our proposed framework
involves interpreting the causes of bias in terms of clinical, demographic, or other attributes.
We propose to use interpretable AI algorithms—which are designed to make their decisions
easily understandable by humans—to achieve this in a way that is automated and less labour
intensive, and to help catch causes of bias that could be missed when analyzing the biased
subgroups manually. The neural network that is used to split the data into biased subgroups
in LS is itself not directly interpretable, but training AI models to mimic its splitting decisions
can elucidate the causes of bias to clinicians and AI practitioners. The interpretable model
can be trained to identify biases caused by many factors, such as patient demographics,
clinical attributes, image metadata such as imaging equipment type, or patterns within the
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data itself.
Some obvious choices for the interpretable models include decision trees and logistic re-

gression. Decision trees are very easy for humans to understand, visualizing the decision
process as a flowchart over attributes of the data point. Logistic regression assigns a coeffi-
cient to each attribute, indicating how strongly that attribute belongs to one of the biased
subgroups. Despite their simplicity, their straightforward interpretation makes these algo-
rithms useful. Another potentially useful type of interpretable model would be rationale
models [47]. These models highlight which attributes of the data (referred to as rationales)
are most useful in making predictions. As such, they can be used as interpretable models in
which the highlighted rationales reveal the biased data attributes. Invariant rationale mod-
els [48] further aim to ensure that the selected rationales are actual causal to the decision
making process instead of just correlated with it. For example, a true cause of bias may
be a specific type of imaging device data is taken with, but the hospital system the data is
sourced from is likely to be correlated with the imaging device type. Overall, by using and
comparing the outputs of multiple different interpretable models one can further check for
consistency and also gain a more comprehensive understanding of the biases in the data.
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Figure 1.1: Overview of the bias detection framework.
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Chapter 2

Methods and Experiments

2.1 Overview

2.1.1 Overview of Framework

Bias Identification Framework Our bias identification framework, illustrated in Figure
1.1, comprises two primary components: First, the Learning to Split (LS) algorithm devised
Bao et al [17] autonomously detects biased subsets within a dataset. Second, we employ
interpretable AI algorithms to understand the reasons behind the inclusion of certain data
points in these biased subsets. Once sources of biases have been identified, clinicians and
algorithm developers can be alerted to take steps to improve data collection, improve the AI
model, or mitigate the negative effects of the bias.

Learning to Split LS is designed to detect potentially biased subsets of the data by
segregating the data into an LS-train set and an LS-test set such that an AI model trained
on the LS-train set achieves low performance, or fails to generalize, on the LS-test set.
It employs two neural networks: a predictor, with the same architecture as the clinically
relevant AI model, and a splitter. The predictor’s role is to predict the label (i.e. diseased
or healthy) associated with a given data point (i.e. an X-ray scan of the lungs), while the
splitter takes a data point and its label as inputs, predicting whether the data point belongs
in the LS-train or LS-test set.

The LS algorithm operates in a loop, with the splitter and the predictor engaged in an
adversarial game. At the start of each round, the splitter partitions the dataset into LS-Train
and LS-Test splits. A new predictor is then trained over 67% of the LS-Train split, with the
remaining portion used to calculate the predictor’s AUC over the LS-Train split. Then, the
AUC over the LS-Test set is calculated, and the difference between the predictor’s AUC on
the LS-Train and LS-Test sets is called the generalization gap. The splitter is then trained
to increase the generalization gap, enabling it to create a more challenging split for the next
round. LS terminates the loop once the generalization gap no longer increases. This process
is illustrated in Figure 2.1a and is described in detail by Bao et al in [17].
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(a) Overview of the LS Algorithm.

(b) How the LS Splits are analyzed using interpretable algorithms.

Figure 2.1: (a) How LS works and (b) how we use interpretable algorithms.

Interpreting LS Splits Once LS has established the LS-train and LS-test splits, the
second step in our framework is to use interpretable algorithms to elucidate the biases found
by LS. While the splitter is effective as a neural network, it may not be directly interpretable
to human practitioners. To address this, we propose identifying patterns and prominent
attributes in the LS-test and LS-train splits using a simpler and more interpretable algorithm
trained to mimic the behavior of the splitter, which we refer to as the interpreter. We train
the interpreter to predict whether a given data point was put into LS-train or LS-test by
the splitter. The interpreter can be fed either the original data itself or metadata about the
data, such as a patient’s demographics or information about how an image was collected.
We further acknowledge that different biases may arise for different class labels (i.e. diseased
vs healthy), so we retrain the interpreter separately over data with each label. This process
is illustrated in Figure 2.1b.
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2.1.2 Overview of Experiments and Validation

Experiments We ran our bias detection framework over four datasets spanning three
healthcare and biomedical applications: diabetes prediction from clinical data, lung cancer
risk prediction from CT (computed tomography) scans, and biomolecular toxicity predic-
tion. We worked with four types of interpretable models in our studies: RIPPER rulesets,
decision trees, logistic regression, rationale models, and invariant rationale models. These
models helped us to identify the most bias inducing features in each dataset. For further
understanding of the make-up of the LS splits, we also graphed the distributions of various
features in the LS-Train and LS-Test splits, visualizing whether a given feature is over or
under-represented in the LS splits. More details about each dataset and its experiments are
provided later in this chapter.

Validation Methods We performed validation of the biases found by our framework in
two main ways. The first way is useful for AI practitioners who are trying to understand
potential biases while training an AI model architecture over a given dataset. Specifically,
while understanding which features cause bias is useful, we further wished to create manually
curated splits that can act as human-understandable heuristics for the LS splits in terms of
clinical and demographic attributes considered important by the interpretable models. Then,
we trained and tested the AI models on the manually curated train-test splits and calculated
the corresponding generalization gaps. Analyzing these manual train-test splits is useful for
two reasons. Firstly, it is not always feasible to improve an AI model based on the high-
dimensional biases uncovered using LS, which is why it is useful to have simplified heuristics
for the LS splits. These splits are easier for AI practitioners to work with, but one must
validate that they still represent true biases that could cause a specific AI model architecture
to fail over a given dataset. Secondly, comparing the generalization gaps of the manual and
LS splits allows one to assess how much more expressive the high-dimensional LS splits are
compared to splits represented by only one or a few features.

Our second method of validation can be applied to datasets for which there exists a
pre-trained AI model already in deployment and where one is trying to uncover previously
undetected sources of bias affecting the model. We used the biased subgroups uncovered by
our framework as hypotheses for where an existing AI model might fail, and then performed
stratified performance evaluations with the AI models over these subgroups. Specifically, the
models were tested on both the manual train split and manual test splits defined above, and
their performance gaps between the splits were compared.

2.2 Detailed Methods

2.2.1 Using LS

Implementation Details We generally use the LS implementation of Bao et al, with
some minor modifications to enable use with the intricate NLST lung cancer dataset. The
splitter is trained as a typical neural network, using gradient descent to minimize an objective
function. The objective function is designed to push points from the previously allocated
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LS-Test split into the LS-Train split if they were classified correctly by the predictor. In order
to prevent the splitter from allocating meaningless splits, there are two regularization terms
added to the objective function. The split ratio regularizer encourages a desired percentage
of data points to be assigned to the LS-Train split, which is left at 75%, as encouraged by Bao
et al. [17]. This prevents the splitter from increasing the generalization gap by allocating
all samples to the LS-Test set. This term is weighted by a hyperparameter WRATIO, which
controls the importance of the sparsity regularizer relative to the main loss function that
trains the splitter to increase the generalization gap. Meanwhile, the label balance regularizer
encourages that same fraction of data points to have positive labels in the LS-Test and LS-
Train sets. This prevents all of the positive labels from ending up in only one of the splits.
The label balance regularizer is weighted by a hyperparameter WBALANCE .

One can refer to Bao et al. for more implementation details, access to software, and for
thorough validation of the algorithm and how it has been shown to be effective for de-biasing
when using the uncovered LS-Train and LS-Test splits as subgroups in Group DRO. We
present all the hyperparameter values we used in our experiments in Table 2.1. WGAP is the
hyperparameter that controls the weight of the loss function that increases the generalization
gap; WGAP , WRATIO, and WBALANCE are all normalized to sum to one. The Convergence
Threshold defines how long to train the splitter; if the loss has not changed by more than the
convergence threshold compared to the average loss over the previous five iterations, then
splitter training terminates. The Splitter Training Buffer Length refers to a hyperparameter
controlling a modification we make to the LS algorithm to allow it to handle large data such
as the NLST lung cancer CT scans, described in the following paragraph. Other parameters
are defined in the implementation of Bao et al. When selecting hyperparameters, we aimed to
be as consistent as possible with the default choices of Bao et al. However, small adjustments
were sometimes made to the regularizer weights in order to encourage a better compromise
between high generalization gap and effective split size and label balance regularization.

Modifications to Learn to Split Algorithm for Large Data Because of the large size
of the NLST CT scans in computer memory, we could only effectively operate our GPUs
with batch sizes of up to one or two when training the LS splitter. However, the split ratio
and label balance regularizing terms used by the objective function when training the LS
splitter are not compatible with a small batch size. The original LS publication by Bao et
al defines these regularizing terms using KL divergence computed over the training batches
of data; however, when the batch size is on the order of one or a few samples, this KL
divergence computation becomes meaningless. In order to get around this limitation, we
redefined the regularizing terms to operate over a FIFO buffer of data points from previous
training batches; the buffer need not hold the entire CT scans but instead merely their labels
and their probabilities of being assigned to the LS-Train set (as assigned by the splitter).
The length of this buffer is listed as one of the parameters in Table 2.1; we set the buffer to
hold 100 data points during our experiments.

Before describing how our modified regularizing terms work, we describe some notation:
LENGTH defines the number of data points in the buffer, RATIO defines the fraction of
data we wish to be in the LS-Train set, and S defines the output logits from the splitter
neural network for a given data point. For a given data point i in the buffer, its label is
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Table 2.1: Hyperparameters used when running Learning to Split. (Default) signifies the
default parameter used in Bao et al [17]. Multi Layer Perceptron architectures are described
by the number of inputs to each hidden layer.

yi and its probabilities of being assigned to the LS-Train or LS-Test splits, respectively, are
Pi(TRAIN) and Pi(TEST). These probabilities are calculated using the softmax activation
function and the logits S produced by the splitter for that data point. Finally, the indi-
cator function 1[CONDITION] is 1 if CONDITION is true and 0 otherwise. The function
cross_entropy represents the cross entropy function torch.nn.functional.cross_entropy im-
plemented by PyTorch and available at https://pytorch.org/docs/stable/generated/torch.
nn.functional.cross_entropy.html.

The split ratio regularizer ΩRATIO is an objective function that, when minimized, en-
courages a RATIO fraction of samples to be in the LS-Train split. For it, we use the cross
entropy measure of distribution similarity between the splitter logits in the current training
batch and an indicator function informed by the buffer. The indicator function is 1 for every
element of the batch if the current fraction of samples in the buffer assigned by the splitter
to the LS-Train set is less than the desired ratio, and 0 otherwise:

ΩRATIO = cross_entropy(S,1[PBUFF(TRAIN) < RATIO]) (2.1)

We implement the probability PBUFF(TRAIN) of picking a random sample from the buffer
that is assigned to the LS-Train set by the splitter as follows:

PBUFF(TRAIN) =
1

LENGTH

∑
i∈BUFF

Pi(TRAIN) (2.2)

The split ratio regularizer ΩBALANCE is an objective function that, when minimized,
encourages the same fraction of samples to have positive labels in both the LS-Train and
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LS-Test sets. For it, we also use the cross entropy between the splitter logits in the current
training batch and an indicator function. The indicator function is one if the current data
point’s label, Y, is present in a higher ratio in the the portion of the buffer assigned to the
LS-Test split than in the LS-Train split:

ΩBALANCE = cross_entropy(S,1[PBUFF (Y | TRAIN) < PBUFF (Y | TEST)]) (2.3)

We implement the probability PBUFF (Y | TRAIN) of picking a random sample from the
buffer with a label Y, given that the data point is assigned to the LS-Train set by the
splitter, as follows (and similarly for PBUFF (Y | TEST)):

PBUFF (Y | TRAIN) =

∑
i∈BUFF 1[yi = Y]Pi(TRAIN)∑

i∈BUFF Pi(TRAIN)
(2.4)

PBUFF (Y | TEST) =

∑
i∈BUFF 1[yi = Y]Pi(TEST)∑

i∈BUFF Pi(TEST)
(2.5)

2.2.2 Using Interpretable Algorithms

Summary We worked with four types of interpretable models in our studies: RIPPER
rulesets, decision trees, logistic regression, rationale models, and invariant rationale models.
For each one, we trained separate interpretable models over data with positive and negative
labels for the relevant pathology (i.e. positive or negative for lung cancer). All the data
points were labelled as positive or negative according to whether they had been placed in
the LS-Test split by the LS splitter, and then the interpretable models were trained to
predict these labels. We performed Monte Carlo cross validation to assess the performance
of the interpretable models at predicting the LS-split of a given data point: we trained eight
models, each over a different random subset of 67% of the data, and tested the models’
performance over the remaining 33% of the data. When presenting results in Chapter 3, we
present the average accuracy over these 8 runs, the average precision values for the LS-Train
and LS-Test data points, and the average recall values for the LS-Train and LS-Test data
points. All presented averages are accompanied by standard error values.

Decision Trees Decision trees act as a flowchart based on attributes of a data point that
allow one to decide whether the data point belongs in the LS-Train or LS-Test split. For
decision trees, we used the sklearn.tree.DecisionTreeClassifier implementation from scikit-
learn, which we trained with the class_weights parameter set to balanced. This weighs each
training data point inversely proportionally to the frequency of its class, to enable training
despite the LS-Train and LS-Test sets being different sizes. The scikit-learn decision tree
algorithm is trained on all categorical and numerical variables as is and then outputs both
a visualization of the tree as well as feature importances for each feature, which encapsulate
how much the feature is used by the decision tree to make decisions and are normalized
to sum to one over all features. We ranked features as important based on their feature
importances as outputted by scikit-learn, which we averaged over the eight runs in the cross
validation. When presenting outputs of the interpretable models in Chapter 3, we present

34



the three most important features selected by the decisions trees, along with their average
feature importances (in brackets). We ran decision trees to various depths, with the depth
specified in tables where findings are presented.

Logistic Regression Logistic regression performs binary classification by fitting a linear
equation decision boundary to the dataset between the LS-Train and LS-Test data points.
The magnitude of the coefficients for each feature in the linear equation can be used to
decide how much that feature impacts the decision, and the sign (positive or negative) of
the coefficient determines whether the feature. Specifically, the odds is defined as odds =
P(LS-Test)/P(LS-Train), or the ratio of the probabilities that data point belongs in the LS-
Test and LS-Train splits. The odds ratio R = odds(x + 1)/odds(x) is the ratio by which
the odds changes if feature x in a data point changes from 0 to 1. Each feature’s coefficient,
β, can be used to calculate the odds ratio from the equation R = eβ. For experiments, we
used the sklearn.linear_model.LogisticRegression implementation from scikit-learn, which we
trained with the class_weights parameter set to balanced, as with the decision trees. The
scikit-learn logistic regression program outputs the coefficient for each input feature, from
which we then calculate the odds ratio for each feature. We ranked features as important
based on the magnitude of the odds ratio, which we calculated as R = e|β| and averaged
over the eight runs in the cross validation. When presenting outputs of the interpretable
models in Chapter 3, we present the three most important features selected by logistic
regression in this way, along with their average odds ratio magnitudes (in brackets, and with
a negative sign appended if β is negative). When analyzing the odds ratio, it is meaningless
unless compared to a reference category that has an odds ratio of one. For example, if the
male demographic is the reference category, then the odds ratio for the female demographic
describes the change in odds ratio if a data point changes from male to female but all else
is held constant. When pre-processing data to feed into interpretable models, we set all
binary and categorical features to be one hot encoded and drop the reference category for
that feature, since its β is one. To enable comparison between numerical and categorical
features, we convert numerical features to categorical features by splitting the feature into
three quantiles, where the central quantile (which for simplicity is set to include data points
with unknown or undefined values) is set as the reference category. For example, for the
feature of age, the logistic regression would assign odds ratios to the low and high age
categories, whereas the middle age category would be the reference category. For categorical
and binary features, the reference category is dataset-specific.

RIPPER Rulesets For the RIPPER rulesets [49], we used the publicly available Python
implementation from https://github.com/imoscovitz/wittgenstein. The algorithm is trained
on all categorical and numerical variables as is and then it outputs a list of possible logical
rules (for example: “age>50 and BMI>20”), of which at least one must be met for the data
point to be categorized as part of the LS-Test set by the ruleset. When using the algorithm,
we set the maximum number of rules per ruleset to four and the maximum number of
conditions per rule to two. We ranked features as important based on the number of rulesets
the feature appears in over the 8 runs. When presenting outputs of the interpretable models
in Chapter 3, we present the three most important features selected in this manner, along
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with the number of rulesets they appear in (in parentheses).

Rationale Models Rationale models [47] work by identifying a small subset of the input
features that can best be used on their own to predict whether a data point belongs in the
LS-Test set or LS-Train set. They work by training two neural networks simultaneously,
an encoder that selects the top few features (the rationales) and a decoder that uses these
features to predict the output. The output is a mask array that features several ones, rep-
resenting the locations of rationales in the input feature array, and zeroes elsewhere. A
regularizing term added to the objective function aims to ensure that the number of ratio-
nales is close to the desired number (the sparsity); this term is weighted by a hyperparameter
WSPARSITY , which controls the importance of the sparsity regularizer relative to the main
loss function that increases the decoder’s accuracy. Our Python implementation is based on
that in https://github.com/yala/text_nn, so it differs from the original implementation [47]
in that we use a Gumbel Softmax function [50] to output a mask array, with a temperature
parameter controlling how closely the mask resembles only zeroes and ones. The tempera-
ture parameter starts high around one at the start of training, but is gradually reduced by a
fraction every few steps until it is near 0 by the end of training, resulting in all mask values
being close to zero or one. During testing, the mask array values are rounded to either 0
or 1. We re-implemented the code in PyTorch Lightning to suit our needs; furthermore,
the original code was designed to select rationales as words in a paragraph of text, but our
implementation selects rationales as elements from an input array of numerical and categor-
ical features. Instead of Recurrent Neural Networks as in the original implementations, we
used Multi Layer Perceptrons (MLPs) for both the encoder and decoder neural networks.
We trained the models using the typical gradient descent algorithm for neural networks;
further implementation details, such as the sparsity, the training batch size, or the exact
MLP structure, are dataset specific. We pre-processed data by keeping numerical features
as they were and converting all categorical features into one hot encodings (but we did not
drop the reference variable as we did for logistic regression). During training, data points
were sampled with equal frequency for each class. Once trained, the average mask value
was computed for each feature over the test data; a feature’s average mask value equals the
fraction of data points over which that feature is one in the mask array. We ranked features
based on their average mask values, averaged further over the 8 runs. When presenting out-
puts of the interpretable models in Chapter 3, we present the three most important features
selected in this manner, along with their average mask values (in brackets). When training
the rationale models, hyperparameters were selected by experimentation with the goal of
stable convergence upon rationales with the desired sparsity and to maximize the rationale
model’s accuracy at predicting the LS split. We present all the hyperparameters used to
run the rationale models in Table 2.2. In the table, Temp. Steps is the number of training
steps between each lowering of the Gumbel temperature, which is lowered by multiplying it
by Decay Rate ; and MLP refers to the structure of both the encoder and decoder MLPs,
given by the number of inputs to each hidden layer. Remaining parameters, such as those
regarding learning rate, batch size, and number of epochs, refer to the corresponding training
parameters in PyTorch.
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Table 2.2: Hyperparameters used for running rationale and invariant (Inv.) rationale models.
Multi Layer Perceptron architectures are described by the number of inputs to each hidden
layer.

(a) For data points with negative labels.

(b) For data points with positive labels.

Invariant Rationale Models We also worked with invariant rationale models [48], which
we present findings for in Chapter 3. These work in a similar way to rationale models, but aim
to ensure that the selected rationales are causal to instead of just correlated with whether a
data point ends up in the LS-Train or LS-Test sets. They consider that different data points
may have been obtained from different environments, but that the decoder neural network
that predicts the LS split from the rationales should work no matter which environment the
data is sourced from. Chang et al [48] propose a similar framework to the rationale model,
but where a second environment unaware decoder is added and the training enforces both
decoders to achieve similar performance. In order to achieve this, a choice of environment
variable is needed, which can consist of a feature that is known to be largely non-causal to
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choice of the LS-split; this is subjective and dataset-specific. Because it is subjective, we do
not emphasize the findings from invariant rationale models, and merely investigate their use
to measure their potential utility. We implemented the invariant rationale model in PyTorch
Lightning identically to how we implemented the rationale model, except with the addition of
the environment unaware decoder neural network, which we also set to be an MLP. There is
an additional regularizing term in the objective function which enforces minimization of the
performance difference between the two decoders. This regularizing term is weighted by an
additional hyperparameter WDIFFERENCE , which is dataset-specific. We pre-processed data
similarly to for the rationale model, but during training we prepared an extra set of input
features with the chosen environment variable removed. Important features are determined
from the mask values and then presented in Chapter 3 as for the rationale models. We
present all the hyperparameters used to run the rationale models in Table 2.2.

Visualizing Split Statistics For further understanding of the make-up of the LS splits, we
graphed the distributions of various features in the LS-Train and LS-Test splits. An example
of this is Figure 3.1, which shows the fraction of the splits and overall data consisting of each
CT scanner type. This helps to show whether a given device type is over or under-represented
in a given LS split compared to its fraction in the overall data.

2.2.3 Datasets

Lung Cancer Data The lung cancer data consists of low dose computed tomography
(LDCT) series from the National Lung Screening Trial [51] (NLST). NLST is a major United
States lung cancer screening database consisting of X-ray scans from over 50,000 current or
former smokers without lung cancer symptoms, with exams taken at up to three time points
for each patient. We used data from the subset of 15,000 patients in the NLST database
which were used with institutional review board approval for the development of the Sybil AI
model. These patients each feature one initial exam and up to two followup exams, producing
a total of 126,039 X-ray series. Using a similar filtering process used in the Sybil model’s
development, we filtered out unacceptable X-ray series and kept only the densest series (or
thinnest slice thickness cut) from each exam. After filtering, we were left with 41,480 X-
ray series from 14,186 patients to run through our bias detection algorithm. Following the
training process of Sybil, each LDCT was considered a unique data point, and we did not
associate different scans from the same patient with each other. A summary of the data
selection process is presented in Figure 2.2a.

Each X-ray scan we used is a 3D image processed to consist of 200 2D images. When
validating biases on the pre-trained Sybil model, we used 256 × 256 pixel 2D images, as in
the original model. When running our bias detection framework, we used 128×128 pixel 2D
images to reduce computation time. Otherwise, image formatting and image pre-processing
for both test and train images were done using the procedure described in the original Sybil
paper [52].

Each series is labelled as positive or negative for cancer in each of the 6 years following
the imaging date, based on whether biopsy-confirmed lung cancer is diagnosed in or before
a given year. A summary of the number of data points with positive cancer labels for each
follow-up year is presented in Figure 2.2b. Note that the number of cancer cases detected is
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(a) Exclusions we make to the NLST dataset.

(b) Number of valid samples in the NLST
dataset by followup year, including breakdown
with and without cancer.

(c) The male/female ratio, mean years smoked, and mean
BMI in the followup year 0 set of NLST data points. For
the mean BMI, the calculation excludes 136 samples with a
recorded bmi of 0.

Figure 2.2: Some basic properties of the NLST dataset.

cumulative, and the number of valid data points for each year decreases due to lack of follow-
up data and unknown cancer status. In addition, each image is labelled with metadata about
the imaging process and patient demographics. The metadata includes the CT scanner device
vendor (or device type), which is a categorical variable taking on one of four anonymized
corporations; the distribution of these is presented in Table 2.3. The remaining metadata we
analyzed includes: hospital/institution (33 categories for anonymized institutions 0 through
32), race (unknown or one of 6 categories for white, Black, Asian, American Indian or
Alaska Native, Native Hawaiian or Other Pacific Islander, more than one race), education
level (unknown or one of 8 categories for 8th grade or less, 11th grade or less, high school,
post high school training, some college, Bachelors degree, graduate school, other), gender
(binary), average number of cigarettes smoked per day, total years smoked before NLST trial
randomization, years since the patient has quit smoking, age, weight, height, BMI, whether
patient has known lung cancer history, whether patient has known non-lung cancer history,
whether patient family has known lung cancer history, whether patient has a known disease
history (separate binary variables for asthma, asbestosis, bronchiectasis, childhood asthma,
chronic bronchitis, COPD, diabetes, emphysema, lung fibrosis, heart disease, hypertension,
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pneumonia, sarcoidosis, silicosis, tuberculosis), whether patient is known to have worked at
least one year in an at-risk occupation (separate binary variables for asbestos processing,
baking, meat processing, coal mining, cotton/jute processing, farming, fire fighting, grain
milling, steel milling, rock mining, painting, welding), and whether the cancer is in a known
location (separate binary variables for carina, left hilum, lingula, left lower lobe, left main
stem bronchus, left upper lobe, mediastinum, right hilum, right lower lobe, right middle lobe,
right main stem bronchus, right upper lobe).

Table 2.3: Statistics of the NLST dataset sorted by device vendor.

We ran our bias detection framework over the NLST dataset using the Sybil model as the
LS predictor architecture, predicting the probability a patient would develop cancer in each
of the 6 follow-up years after the CT scan. The LS splitter model architecture we selected
is a subcomponent of the Sybil model, specifically the Resnet-18 encoder implemented by
PyTorch as torchvision.models.video.r3d_18, available at https://pytorch.org/vision/main/
models/generated/torchvision.models.video.r3d_18.html. During each iteration of LS, the
predictor was trained identically to how the original Sybil model was trained by Mikhael et
al [52]. We used Sybil’s cancer predictions for the first follow-up year in our experiments;
the LS algorithm maximizes the generalization gap in the ROC-AUC of the predictor for the
first follow-up year between the LS-Train and LS-Test sets. When analyzing the LS-splits,
we fed the metadata of the CT scans into the interpretable models, and not the CT scans
themselves.

In order to compare biases inherent to the NLST data over different AI models, we also
ran our bias detection framework in a case where Resnet was used to predict cancer instead
of Sybil. For these experiments, the Resnet-18 encoder component of Sybil was used as
both the LS predictor and splitter architectures. As the predictor, it was trained to predict
whether cancer occurs during the first follow-up year.

When using the the logistic regression interpretable model, we arbitrarily used the fol-
lowing reference categories: white for race, 8th grade or less for education, male for gender,
device vendor 0 for device type, and institution 0 for the institution. When using the invari-
ant rationale model, we set the environment variable to be the patient’s education level, as
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we posited that education should not be directly causal to any pathologies directly visible
in the CT scan that can determine which LS split a data point belongs to. We acknowledge
that this is a subjective choice and as such do not focus on the findings from the Invariant
Rationale models, only investigating them for completeness.

Clinical Diabetes Data We sampled two datasets of diabetes patients: the first is the
Medical Information Mart for Intensive Care (MIMIC-IV) dataset [53], [54] version 2.2 [55]
and the second is a dataset published by Rich Healthcare Group (RHG) in China [56] for
predicting type 2 diabetes (T2D). A summary of both data subsets we use, some important
features, and statistical summaries are presented in Table 2.4.

We labelled the MIMIC dataset to signify whether a patient has secondary diabetes or
type 2 diabetes, and the data additionally contains the following attributes: age, systolic
pressure, diastolic pressure, BMI, gender (binary), hypertension status, kidney failure status,
pregnancy status, smoking status, and race (6 categories for white, Black, Hispanic, Asian,
Indigenous, or Pacific Islander). We derived the diabetes labels based on ICD diagnosis
codes regarding prior diagnoses documented in the raw MIMIC data files. Specifically, we
labelled patients as positive if they had ICD-9 [57] or ICD-10 [58] diagnosis codes pertaining
to type 2 or secondary diabetes. When selecting hospital admissions to use as MIMIC data
points, we first excluded data points for which the patient has multiple or unknown races.
We then kept only hospital admission records for which the difference between the admission
date and the vitals recording date (the time lag) is within a 14-day window. For each patient
in this filtered dataset, we then kept only the hospital admission with the least time lag, and
we then further excluded records which are missing relevant demographic or clinical data
entries. We labelled patients’ hypertension, kidney failure, and pregnancy statuses based on
ICD diagnosis codes.

The RHG dataset has a label signifying whether a patient will develop diabetes in the
future (the median follow-up time is 3.1 years), as well as the following features: age, systolic
pressure, diastolic pressure, BMI, gender (binary), fasting plasma glucose (FPG), cholesterol
level, triglyceride level, HDL-C level, LDL level, alanine aminotransferase level (ALT), as-
partate aminotransferase level (AST), blood urea nitrogen level (BUN), creatinine clearance
test results (CCR), alcohol drinking status (3 categories for never, current, or previous),
smoking status, and family history of lung cancer. The authors of RHG consider FPG ≥
7.00 mmol/L to be the diagnostic criteria for T2D when labelling their dataset. When select-
ing RHG data points, we filtered out any samples missing relevant data entries. In order to
create a more balanced data subset, we used all diabetic data points and randomly selected
ten percent of nondiabetic data points to use.

Table 2.4: Diabetes datasets summary. Table courtesy of Shrooq Alsenan.

Dataset Num. of
patients Diabetes Definition Diabetes Mean

age
Mean
BMI

Gender Smoker Drinker Family
history

Y N M F Y N Y N Y N

MIMIC-IV 37246 ICD-9 or ICD-10
diagnosis codes 7472 29774 58.89 28.35 15451 21795 5905 31341 n/a n/a n/a n/a

RHG 16450 FPG ≥ 7.00
mmol/L 4174 12276 44.98 24.20 11200 5250 3443 13007 3069 13381 915 15535

The LS predictor and splitter architectures for this task were set to be multi layer percep-
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trons (MLPs), a simple and versatile neural network architecture commonly used in research
studies that attempt to predict diabetes from clinical data [59]–[61]. The predictor takes
in an the array of patient features stored in MIMIC or RHG and returns the probability
that the patient has diabetes (in the case of MIMIC) or will develop diabetes (RHG). When
analyzing the LS-splits, we fed into the interpretable models the same clinical features that
were fed into the predictor and splitter neural networks.

When using the the logistic regression interpretable model with MIMIC data, we arbi-
trarily used the following reference categories: white for race, female for gender, negative for
hypertension, negative for kidney failure, negative for pregnancy, and negative for smoking.
When using the invariant rationale model with MIMIC, we set the environment variable to
be the patient’s race, assuming that this variable is likely to have limited causal relation
to diabetes pathology and the rationale decoder should be able to predict LS split with-
out knowledge of the race (although race may be highly correlated with diabetes pathology
and LS split). We acknowledge that this assumption may not hold (race may be causal to
the LS splitter’s choice) and as such do not focus on findings from the Invariant Rationale
models, only discussing them for completeness. We do not use the invariant rationale model
with RHG data as there is no clear choice of environment variable. When using the the
logistic regression interpretable model with RHG data, we arbitrarily used the following
reference categories: male for gender, negative for smoking, currently drinking for alcohol
consumption, and negative for family history of diabetes.

Biomolecular Data To investigate our framework’s utility on biomolecular design appli-
cations, we leveraged the Tox21 database, a major database of the toxicological properties
of tens of thousands of molecules. We used a subset [62], [63] of 12,707 molecules, where
each one’s structure is represented as a numerical array, and each one is labelled as positive,
negative, or unknown for 12 different toxicological assays (NR-AR, NR-AhR, NR-AR.LBD,
NR-Aromatase, NR-ER, NR-ER.LBD, NR-PPAR.gamma, SR-ARE, SR-ATAD5, SR-HSE,
SR-MMP, SR-p53). We considered the task of creating a neural network to predict the an-
drogen receptor (NR-AR) assay for a given molecule, and used our framework to find biases
in the data that may negatively impact performance over this task.

The LS predictor and splitter architectures for this task were set to be multi layer percep-
trons, with the predictor taking in the molecular structure array and returning the probability
that the molecule is AR positive. When analyzing the LS-splits, we fed the 11 remaining
assay labels into the interpretable models, and not the molecules themselves. For logistic
regression, the reference category for each feature is the unknown category.

2.2.4 Validation

Manually Curated LS-Split Proxies While understanding which features are important
to the LS splitter is useful, we further wished to create manually curated splits that can act
as human-understandable heuristics for the LS splits in terms of clinical and demographic
attributes. To create these manually curated splits, we first reran the RIPPER ruleset
algorithm and decision tree algorithm but only with the top few important features as found
previously by the interpretable models; we forwent logistic regression and rationale models
in this step because they are not very meaningful with so few input features. Findings
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from these runs of RIPPER and decision trees are presented in Chapter 3, similarly to how
we present runs of interpretable models when provided all input features. We manually
investigated the resulting rulesets and trees, coming up with simplified rules that roughly
encapsulated the patterns found across the trees in the Monte Carlo cross validation runs.
These rules can be as simple as segregating a dataset into two parts based on patient age, to
more complicated rules such as the decision trees we manually curated and present in Table
3.2b. When curating these manual splits, we also considered the distribution of the data in
order to ensure that they did not break the LS regularization rules significantly more than
the original LS splits did. The manually curated decision trees presented in Table 3.2b show
how many samples from the dataset belong in the LS-Train and LS-Test splits at each node;
the high levels of discrepancy between these categories in different leaf nodes of the trees
show that the manual splits do a fairly good job of discriminating between the LS splits.

In order to validate that these manual splits represent biased subgroups that can cause
the model training and testing process to fail, we trained models over some of the manually
curated training splits and tested them over the manually curated testing splits. Once tested,
a generalization gap was calculated, just as in LS. In these trials, the AI models and training
parameters were the same as for the original LS predictor, but a splitter was not trained.
Where feasible, multiple runs were carried out and the average train and test accuracies and
generalization gaps were calculated, along with their standard errors (specifically, diabetes
data was put through 5 runs and Tox21 data was put through 6 runs). The generalization
gaps are presented in Table 3.1 and the split size and label balance statistics are further
presented in Chapter 3.

Stratified Performance Analysis We further validated the biases found by our frame-
work in a way that can be applied to datasets for which there exists a pre-trained AI model
already in deployment and where one is trying to uncover previously undetected sources
of bias affecting the model. To do this, we treated the biased subgroups uncovered by our
framework as hypotheses for where an existing AI model may fail, and then performed strati-
fied performance evaluations with the AI model over these subgroups. Specifically, we tested
AI models on the manually curated splits defined above and looked for performance gaps
between the splits.

We perform several stratified performance evaluations with Sybil, with results presented
in Figure 3.3. For a complete understanding of the model performance, we separately tested
the original ensembled Sybil model, as defined by the ensemble of five different pre-trained
model weights from Mikhael et al [52], over its original training (but not validation) data
and its original testing data. We further performed the evaluation over each follow-up year
for which data was available, calculating the ROC-AUC values of Sybil for each follow-up
year. In total, we performed 4 stratified performance evaluations: one of these evaluations
was over subgroups sratified by BMI with a cutoff point of 27.2; one of these was stratified
by device type, with separate groups for device types 0 and 2; one of these was only over
data points with device type 0 but stratified by BMI with a cutoff point of 27.2; and one was
only over data points with device type 2 but stratified by BMI with a cutoff point of 27.2.
Each of these four evaluations led to 24 AUC-ROCS values, obtained as the product of two
stratified subgroups, two datasets (the Sybil training and testing datasets), and 6 follow-up
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years.
We further performed stratified performance evaluations over MLPs trained to predict

diabetes over the RHG and MIMIC datasets. The MLPs were the same as those used in
LS experiments and were trained using the same training hyperparameters and procedures,
except that they were trained over 50% of the data, with validation and model selection
performed using another 20% of the data. The remaining 30% of the data was the test
set. ROC-AUC values are calculated in the validation and test sets independently for high
and low age groups as the stratifying feature. The experiments were repeated with different
random subsets of the data 5 times to calculate the standard errors. For MIMIC, low age is
less than 62; for RHG, low age is less than 45. These ages were chosen to roughly correspond
to the LS-identified age splits.

2.2.5 Error Auditing Baseline

We further assessed the benefit of using our LS-based bias detection framework compared
to a commonly used error auditing baseline bias detection method. We performed error
auditing using the original ensembled Sybil model with its output calibrator, as defined
by the ensemble of five different pre-trained model weights from Mikhael et al [52]. After
running the model on its original test dataset, we computed the error for each data point for
the first follow-up year, which is computed as |p − y|, where p is the probability of cancer
in the first year as predicted by the model and the label y is 1 if there is actually cancer
and 0 otherwise. Then, the data points were ranked by their error values, and the 30% of
data points with the highest error values were placed in a manually curated inaccurate split,
and the 70% of data points with the lowest error values were placed in a manually curated
accurate split. These inaccurate and accurate splits could then be analyzed for biases just
as the LS-Test and LS-Train splits, respectively. We graph distributions of various features
in the accurate and inaccurate splits in Figure 3.4.
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Chapter 3

Results

3.1 Overview

The generalization gaps produced by the LS algorithm for each of the datasets are presented
in Table 3.1. The accuracies of the interpretable models at predicting the LS-split, as well as
the features they identified as biased, are presented later in this section; a summary of the
most important biased features is presented in Table 3.2. We are successfully able to make
manually curated splits—such as the simplified decision trees presented in 3.2b—that act
as simplified proxies for the LS splits and cause generalization gaps during the training and
testing process (These generalization gaps are further presented in Table 3.1). Nevertheless,
we still generally find that the LS splits are more expressive, having higher generalization
gaps, confirming the effectiveness of the LS algorithm at finding highly nontrivial subgroups.
We further corroborate the findings of the interpretable models by graphing the occupancies
of the LS-Train and LS-Test splits for various biased features in Figures 3.1, 3.5, 3.6, and
3.7 for NLST, MIMIC, RHG, and Tox21 data, respectively.
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Table 3.1: Comparing LS splits with manually curated splits.

Manual Splits LS Splits

Dataset Split Curation Train / Test
ROC-AUC (%)

Generalization
Gap (%)

Train / Test
ROC-AUC (%)

Generalization
Gap (%)

MIMIC

Age ≥ 62 Diabetic
Age < 62 Nondiab.

}
→ Train

Age < 62 Diabetic
Age ≥ 62 Nondiab.

}
→ Test

99.3±0.4 /
3.0±0.8 96±1

∼100.0 / 0.3 99.7

Table 3.2b Decision Tree 98.4±0.2 /
9.4±0.3 88.9±0.2

RHG

Age ≥ 45 Diabetic
Age < 45 Nondiab.

}
→ Train

Age < 45 Diabetic
Age ≥ 45 Nondiab.

}
→ Test

99.73±0.02 /
7.3±0.3 92.4±0.3

97.2 / 41.7 55.5

Table 3.2b Decision Tree 98.3±0.1 /
50.4±0.7 47.9±0.8

Tox21-AR AhR- → Train
AhR+ → Test 85±1 / 53±3 31±3 ∼100 / 41 59

NLST (ResNet)
(Year 1)

Device 1 & 2 → Train
Device 0 & 3 → Test 65 / 49 16 77 / 50 26

NLST (Sybil)
(Year 1 unless

noted otherwise)

Device 1 & 2 → Train
Device 0 & 3 → Test 88 / 78 10

88 / 77 11

As above, year 2 85 / 73 12
As above, year 3 81 / 71 11
As above, year 4 81 / 69 12
As above, year 5 80 / 68 12
As above, year 6 79 / 69 11
Device 0 Only

BMI ≥ 27.2 → Train
BMI < 27.2 → Test

73 / 62 12

Device 2 Only
BMI ≥ 27.2 → Train
BMI < 27.2 → Test

77 / 73 4
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Table 3.2: Interpretable model analysis of LS splits.

(a) Summary of important features selected by interpretable models.

Dataset Important Features
Over Positive Labels Over Negative Labels

Rationale Model Logistic Regression Rationale Model Logistic Regression

MIMIC
• Age
• Kidney Failure
• Diastolic

• Young/Old Age
• High/Low Diastolic
• High Systolic

• Age
• Hypertension

• Young/old Age
• Pregnant
• High/Low Diastolic

RHG
• AST
• Smoking
• Age

• High AST
• Smoking
• Old Age

• Age
• BMI
• Gender

• Smoking
• Old Age
• Low ALT

Tox21-AR
• ER.LBD+
• AR.LBD+
• AhR-

• AR.LBD+
• ATAD5+
• AhR+

• HSE-
• AhR+
• ARE-

• HSE+
• ARE-
• HSE-

Rationale Model Decision Tree Rationale Model Decision Tree

NLST with Sybil Inconclusive Inconclusive • Device: 0
• Institution: 0, 2

• Device
• Institution
• BMI

NLST with ResNet Inconclusive Inconclusive • Device: 2, 0, 3
• Device
• Institution
• Weight

(b) Interpretable decision trees summarizing the biased LS splits using only the most important fea-
tures. The numbers represent the number of samples in the LS-Train:LS-Test splits (in 100s of samples,
except for Tox21, which is in 10s of samples). Samples are reweighted to simulate an overall equal
number of LS-Train and LS-Test samples. Significant bias is highlighted in blue.
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3.2 Lung Cancer Results

3.2.1 Uncovered Biases

As highlighted in Table 3.2 (and in more detail in Table 3.3), the primary features revealed
to cause bias in the NLST data by our framework include the CT scanner device vendor, the
institution the image is taken at, and the patient’s BMI or weight. These biases are roughly
consistent irrespective of whether Sybil or ResNet are used as cancer risk predictors. We
note that the majority of the interpretability analysis we do for NLST is on samples without
cancer, as these vastly outnumber the number of samples that are positive for cancer, which
have statistically small sample sizes for some metafeature categories.

These uncovered biases are corroborated in Figure 3.1, where it is shown that the samples
from Device 0 are heavily overrepresented in the LS-Test split whereas samples from device 2
are heavily overrepresented in the LS-Train split. Similarly, samples with higher BMI values
tend toward the LS-Test split whereas samples with lower BMI values tend towards the LS-
Train split. Although institution is also frequently highlighted by the interpretable models
as causing bias, it is not immediately clear whether the institution itself is causal to the bias,
or whether institution is simply correlated with causal sources of bias such as device vendor.
Based on analysis presented in Figure 3.2, we show that hospitals that use devices 1 and 2 end
up largely in the LS-Train split whereas remaining device types tend to end up in the LS-Test
split, indicating that biases correlated with institution are likely to be caused by the device
vendors used by the institution. As such, we focus our analysis on biases related to BMI
and device type. We also investigated whether invariant rationale models can decouple the
effects of device type and institution to find the true causal source of bias. As shown in Table
3.3a, we find that the normal rationale model highlights the most important institutions and
devices as roughly equally important; however, the invariant rationale model considers device
2 with an average mask value of 7, whereas the top institution has an average mask value of
only 1.2, meaning that the invariant rationale models ranks the device type as significantly
more causal to the bias than the institution. Nevertheless, we once again caution against
relying on the findings of the invariant rationale model because of the subjective nature of
their environment selection.

By running decision tree interpretable models using just BMI and device type (with the
results presented in Table 3.4), we uncover a pattern in which BMI affects the LS-split much
more for certain devices than for others. We find this by visualizing an approximation of
the resulting decision trees in Table 3.2b. Specifically, the decision tree indicates that there
is very little difference in the distribution of BMI between the LS splits for data points of
device 2, but that there is a difference in distribution for other device types. The nontrivial
nature of the bias uncovered in this manner highlights a key strength of the framework
we present, and manually graphing the distributions in Figures 3.1e and 3.1f confirms this
pattern highlighted by the interpretable models. Furthermore, despite only using BMI and
device type, the interpretable models achieve almost the same performance as when provided
all features, showing that most of the decision making of the LS splitter is based on these
features.
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Table 3.3: Important features selected by various interpretable models for lung cancer, along
with the accuracies of these models’ predictions.

(a) Analysis performed with Sybil on samples without cancer.

(b) Analysis performed with Sybil on samples with cancer. (Loclmsb refers to cancer in left main
stem bronchus.)

(c) Analysis performed with ResNet on samples without cancer.

(d) Analysis performed with ResnNet on samples with cancer.
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(a) By Device Type - No Cancer (b) By Device Type - With Cancer

(c) BMI Barchart - No Cancer (d) BMI Barchart - With Cancer

(e) BMI Barchart - Only Datapoints from De-
vice 0 without cancer

(f) BMI Barchart - Only Datapoints from De-
vice 2 without cancer

Figure 3.1: Statistics for device type and BMI in the LS-generated train/test splits with
Sybil.
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Table 3.4: Important features selected by various interpretable models for NLST data, when
using only the most relevant features (device vendor and BMI).

(a) Analysis performed on samples without can-
cer. (b) Analysis performed on samples with cancer.

3.2.2 Validating Biases

To validate that the discovered causes of bias cause the model to fail to generalize from
training to testing, we manually curated simplified test/train splits to represent the uncovered
biases, as highlighted in Table 3.1. Some of these splits are segregated purely based on device
type and some are segregated purely based on BMI. We then trained and tested the Sybil
model over these splits to confirm that the biases our framework uncovered actually do
result in generalization gaps over the NLST dataset with the Sybil architecture. Specifically,
training the Sybil model on data containing device 2 and testing it on data containing device
0 results in a generalization gap of 10-12 percent, depending on the follow-up year of cancer
status being used (results for all six follow-up years are presented in Table 3.1); this is almost
as much as the generalization gap uncovered by the LS algorithm. Furthermore, we find that
for data from device type 0, training Sybil on high BMI data and testing it on low BMI data
makes a similarly high generalization gap. However, in line with the predictions made by our
framework, BMI does not seem to act as a significant bias for data from device 2, resulting
in a much lower generalization gap (shown in table 3.5c). All of the manually curated splits,
along with their sizes and label ratios, are presented in totality in Table 3.5.

Since Sybil is a pre-trained and publicly available cancer prediction model, we further
performed stratified performance evaluation (presented in Figure 3.3) to investigate whether
the sources of bias we uncovered in the NLST data affect not just Sybil’s architecture on
adversarial train/test splits, but also whether these biases manifest as poor performance by
the pre-trained Sybil model that currently exists publicly. As shown in Figure 3.3b, we find
that device type does negatively affect the pre-trained Sybil model. In line with what our
framework suggests, Sybil’s ROC-AUC performance on its original NLST test data drops by
up to 15 percentage points on device 0 compared to device 2, depending on the follow-up year
being investigated. Further in line with our framework’s predictions, Sybil’s performance on
patients with high BMI drops by up to 10 percentage points in ROC-AUC for data from
device 0, an effect that is not observed for data from device 2 (see Figure 3.3c).
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Table 3.5: Test-train splits used with NLST, along with their generalization gaps and regu-
larization properties (including both LS splits and manual splits).

(a) Running Sybil model.

(b) Running ResNet-18 model.

(c) Running Sybil model over custom splits based on BMI. By analyzing the LS-generated splits,
we find that overweight BMI values tend to lean towards the train split and vice versa for samples
of device vendor 0. However, this pattern was much less pronounced in datapoints of device vendor
2. This made us hypothesize that the generalization gap caused by an overweight train set would
be much larger for device type 0 than device vendor 2, a hypothesis which is empirically supported
by this table.
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3.2.3 Error Auditing Baseline

We further assessed the benefit of using our LS-based bias detection framework compared
to an error auditing baseline bias detection method, which entails analyzing features of the
data points that are most inaccurately predicted by the pre-trained AI model. Running error
auditing over the pre-trained Sybil model reveals a difference in performance over different
BMI values, but does not reveal significant difference in performance over different device
types or at the intersection of device types and BMI (see Figure 3.4). This demonstrates
the potential of analyzing the expressive splits generated by LS to detect nontrivial biases
compared to other baseline bias detection schemes.
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(a) Institution statistics in the LS splits for Sybil.

(b) The device composition of the most preva-
lent institutions (ordered by prevalence), show-
ing strong correlation between institutions that
use devices from vendor 0 and institutions
placed into the LS-Test set by LS. An aster-
isk indicates that the institution does not follow
the pattern of devices 0 and 3 belonging to the
LS-Test split.

Figure 3.2: Analysis of relationship between institution and device type in LS splits.
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(a) AUCs by BMI (b) AUCs by Device

(c) AUCs by BMI - Device 0 (d) AUCs by BMI - Device 2

Figure 3.3: Visualizations of AUCs by year, stratified by device type and BMI to perform
stratified performance evaluations on the original Sybil model.
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(a) By Device Type - No Cancer (b) BMI Barchart - No Cancer

(c) BMI Barchart - Only Datapoints from De-
vice 0 without cancer

(d) BMI Barchart - Only Datapoints from De-
vice 2 without cancer

Figure 3.4: Statistics of device type and BMI in the error auditing baseline’s accurate/inac-
curate splits.
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3.3 Diabetes Results

3.3.1 Uncovered Biases

As highlighted in Table 3.2 (and in more detail in Table 3.6), some of the primary features
consistently revealed by the interpretable models to cause bias in diabetes data are age and
diastolic pressure in the MIMIC dataset, age in the RHG dataset, aspartame aminotrans-
ferase (AST) levels and smoking status in diabetic samples from the RHG dataset, and BMI
in nondiabetic samples from the RHG dataset.

As there are significant numbers of both diabetic and nondiabetic samples in both
datasets, we were able to analyze the findings of the interpretable models on each group
independently. As with NLST data, we created simplified heuristics for the LS-splits by
running a shallow decision tree algorithm using just the most important features highlighted
by the interpretable models (analysis shown in Table 3.7), with an approximation of the
resulting trees visualized in Table 3.2b. Investigating the resulting trees and the feature
statistics graphed in Figures 3.5 and 3.6, we see that the correlation between a feature’s
value and its corresponding LS split tends to be reversed for diabetic samples compared to
nondiabetic samples. For example, diabetic MIMIC samples with high age are concentrated
in the LS-Train split, but nondiabetic samples with high age end up in the LS-Test split.
Effectively, this means that training an AI model on diabetic samples with older ages causes
it to fail when tested on the less common population of diabetic samples with younger age.
A similar pattern emerges with diastolic pressure, in which training an AI model on diabetic
samples with lower diastolic pressure causes it to fail when tested on diabetic samples with
higher diastolic pressure. Our framework here uncovered that the MLPs used to predict dia-
betes are prone to shortcut learning with age and diastolic pressure when using the MIMIC
dataset, and are brittle when applied over segments of the population such as younger dia-
betic people. This makes sense considering that there is a positive correlation between age
and diabetes in the MIMIC dataset, and considering that diastolic pressure has a negative
correlation with old age and tends to be lower in older diabetics than older nondiabetics [64].

Using our methods further enables discovery of unexpected biases acting over small sub-
sets of the population. For example, the interpretable models picked up on pregnancy as a
potentially serious spurious correlation in the MIMIC data. Although only a small fraction
of MIMIC samples are pregnant, all pregnant diabetic samples end up in the LS-Test set
and virtually all pregnant nondiabetic samples end up in the LS-Train set (Figures 3.5c and
3.5f). Upon closer inspection, it becomes clear that essentially all of the pregnant MIMIC
samples are nondiabetic in the data subset we use, so pregnancy can act as a spurious cor-
relation in the MIMIC dataset that tricks an AI model into thinking that any such samples
are nondiabetic, thus risking failure on pregnant diabetic patients. Although affecting only
a small minority of the dataset and not included in our further decision tree analysis, our
framework flagged a bias that could pose a grave risk to the safety of AI models as applied to
pregnant patients. Similarly, in the RHG dataset, although affecting only the small portion
of patients who smoke, the interpretable models flagged smoking as a major cause of being
put in the LS-Test set for diabetic patients. This is demonstrated further by the decision
trees visualized in Table 3.2b, which show that even though diabetics with low AST tend
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Table 3.6: Important features selected by various interpretable models for diabetes, along
with the accuracies of these models’ predictions.

(a) Analysis performed on MIMIC samples with diabetes.

(b) Analysis performed on MIMIC samples without diabetes.

(c) Analysis performed on RHG samples with diabetes.

(d) Analysis performed on RHG samples without diabetes.
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Table 3.7: Important features selected by various interpretable models for diabetes data,
when using only the most relevant features.

(a) Analysis performed on MIMIC samples
without diabetes, using only diastolic pressure
and age.

(b) Analysis performed on MIMIC samples with
diabetes, using only diastolic pressure and age.

(c) Analysis performed on RHG samples with-
out diabetes, using only BMI and age.

(d) Analysis performed on RHG samples with
diabetes, using only AST level and smoking sta-
tus.

towards the LS-Train set, those who both smoke and have low AST end up in the LS-Test
set. This demonstrates how our framework can uncover informative nontrivial subgroups
that can be used to improve performance for minority subgroups in the dataset, such as
smokers.

3.3.2 Validating Biases

As with the NLST data, we validated the diabetes heuristic train-test splits visualized in
Table 3.2b to see whether they achieve similar generalization gaps as the LS splits. As shown
in Table 3.1, the ROC-AUC gaps are similar, at 88.9± 0.2 with the manual split versus 99.7
with LS for MIMIC, and 47.9 ± 0.8 with the manual split versus 55.5 with LS for RHG.
This shows that the heuristic splits are not only informative from a medically interpretable
perspective, but are also useful for creating AI-failure-inducing groups over which de-biasing
algorithms can be applied. Finally, since age is a major biasing feature for both datasets, we
tested the generalization gaps achieved by simply segregating the data by age (as informed
by the LS splits). We showed that training on younger diabetic people and testing on older
nondiabetic people induces catastrophic failure of the AI models, with AUC reductions on the
order of 90%. Although such extremely spuriously correlated train-test splits are contrived
and unlikely to be encountered in reality, this highlights how our framework uncovered that
age is a feature over which the MLP model is vulnerable to overreliance on for these datasets,
and which AI practitioners should take extra care with. Both the complex manual splits and
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(a) MIMIC Diabetic: Age (b) MIMIC Diabetic: Diastolic (c) MIMIC Diabetic: Preg-
nancy

(d) MIMIC Nondiabetic: Age (e) MIMIC Nondiabetic: Dias-
tolic

(f) MIMIC Nondiabetic: Preg-
nancy

Figure 3.5: Statistics of important features in the LS-generated train/test splits for MIMIC.

the simple manual splits based on age described in detail in Table 3.8. In order to see
how age impacts pre-trained MLPs that predict diabetes, we perform stratified performance
evaluations and find that MLPs have a 10% gap in AUC performance between younger and
older age groups in the MIMIC dataset, even if trained on a random subset of the data (see
Table 3.9).
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(a) RHG Diabetic: Age (b) RHG Diabetic: AST (c) RHG Diabetic: Smoking
Status

(d) RHG Nondiabetic: Age (e) RHG Nondiabetic: AST (f) RHG Nondiabetic: Smoking
Status

(g) RHG Diabetic: BMI (h) RHG Nondiabetic: BMI

Figure 3.6: Statistics of important features in the LS-generated train/test splits for RHG.
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Table 3.8: Test train splits used with diabetes data, along with their generalization gaps and
regularization properties (including LS splits and manually curated splits).

(a) For MIMIC data. The complex manual split refers to the splits described by the
decision tree in Table 3.2b.

(b) For RHG data. The complex manual split refers to the splits described by the
decision tree in Table 3.2b.

Table 3.9: Stratified performance evaluation (by age) over MLPs trained to predict diabetes.
For MIMIC, low age is less than 62; for RHG, low age is less than 45.
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3.4 Biomolecular Results

3.4.1 Uncovered Biases

As highlighted in Table 3.2 (and detailed in Table 3.10), some of the primary features revealed
to cause bias when predicting NR-AR were the fellow assays SR-ATAD5, SR-AR.LBD, and
NR-AhR for molecules that are NR-AR positive, or the fellow assays NR-AhR, SR-HSE, and
SR-ARE for molecules that are NR-AR negative.

These uncovered biases are corroborated for the case of NR-AR positive molecules in
Figure 3.7a, where it is shown that the SR-ATAD5 and NR-AhR positive molecules are
overrepresented in the LS-Test set while SR-AR.LBD positive molecules are overrepresented
in the LS-Train set. To investigate biases at the intersection of these features, we ran the
RIPPER ruleset algorithm for the NR-AR positive case over just these features (presented in
Table 3.11), obtaining a ruleset predicting that datapoints that are not SR-AR.LBD positive
are likely to be in the test set even if they are negative for NR-AhR. This is not immediately
obvious by investigating individual features separately without the interpretable models.
However, it is confirmed by constructing the decision tree in Table 3.2b, then using it to
segregate points, and then noting that the leaf node for points that are neither AR.LBD
positive nor AhR positive is biased to the LS-Test set. This further demonstrates how
interpretable models can be used to efficiently understand how features interact better than
by just looking at individual feature statistics in the LS splits separately.

3.4.2 Validating Biases

As summarized in Table 3.1, we manually curated simplified test/train splits segregated by
whether a molecule is positive or negative for NR-AhR (described in more detail in Table
3.12). This achieves a generalization gap on the order of 30 percent when training an MLP
to predict the NR-AR assay, which is high but also less than the generalization gap achieved
by LS. This demonstrates both that our framework successfully identifies biasing features,
and that the splits identified by LS are more expressive and contain more informative and
nontrivial biases than can be uncovered by investigating single features at a time.
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(a) AR Positive

(b) AR Negative

Figure 3.7: Statistics of various Tox21 assays in the LS-generated train/test splits. For
a given assay, the top row considers samples that are positive for it and the bottom row
considers negative samples. The baseline column refers to all samples with the relevant AR
label. Numbers indicate the number of data points. Important biasing features are encircled
in red.
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Table 3.10: Important features selected by various interpretable models for Tox21, along
with the accuracies of these models’ predictions.

(a) Analysis performed on AR- samples.

(b) Analysis performed on AR+ samples.

Table 3.11: Important features selected by various interpretable models for diabetes data,
when using only the most relevant features.

(a) Analysis performed on AR-, using only
AhR, ARE, and HSE as inputs.

(b) Analysis performed on AR+ samples, using
only AhR, ATAD5, and AR.LBD as inputs.

Table 3.12: Train-test splits used with Tox21 data, along with their generalization gaps and
regularization properties (including both LS and manually curated splits).
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Chapter 4

Discussion

We have proposed a bias detection framework to uncover nontrivial biases in clinical AI
training data, automatically elucidating biased subgroups in the data in terms of clinical,
demographic, or other attributes. The proposed approach does not require human-specified
heuristics, is task-agnostic, and is adaptable to diverse AI models and data modalities. We
have demonstrated the effectiveness of our framework on a variety of real-world datasets.
Without any human intervention, it identified imaging device as a major source of bias
in the NLST lung cancer dataset, as well as biases caused by patient BMI but which are
dependent on the device type. We validated that retraining models with the identified
risky data subgroups does indeed produce poorly performing models. More pressingly, upon
performing stratified performance evaluations, we confirmed that these biases manifest as
performance stratification over different data subgroups in the real world Sybil lung cancer
risk prediction AI model. We similarly identified high-risk precision subgroups on the basis
of age and systolic pressure in two commonly used diabetes datasets, and we validated that
a common AI model architecture is vulnerable to shortcut learning over these features. We
also identified pregnant patients as an unexpected minority subgroup at risk for shortcut
learning in these data, flagging this group to algorithm developers who may otherwise be
oblivious to biases until after algorithm implementation.

Many regulations [65] outline the need to prevent bias but do not mention which tools can
be used to fight bias. Through our experiments, we demonstrated that our framework’s use
as such a tool in the real world is effective, flexible, and complementary to existing tools such
as stratified performance evaluations and de-biasing algorithms. It can be applied to existing
models to create hypotheses about potentially biased subgroups over which the model might
fail, which can then be tested using stratified performance evaluations. Such evaluations can
then be used to decide when or whether to trust the model [4]. Alternatively, the framework
can be applied before training new models to be aware of high risk subgroups in the data
over which the model could fail. By increasing the proportion of training done over these
high-risk subgroups, imbalanced learning methods [12], [35]–[37] can then be used to create
better models. Similarly, the subgroups can be used to de-bias models using algorithms such
as Group DRO or DANN. Most importantly, given the competing definitions of fairness and
the limitations of de-biasing algorithms, our framework can be used to better understand
and then minimize the cause of bias at the source [4], [5], [12], [14]. For example, this could
mean changing the training objective, relabelling data more accurately, or collecting more
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data for underrepresented demographics.
We have empirically demonstrated that our framework can uncover a wider range of biases

than error auditing, which was not able to capture device type as a source of bias in the
NLST dataset. This demonstrates how our framework can be a more sensitive bias detection
method than existing subgroup detection methods—such as algorithms that investigate a
model’s mistakes on its training data distribution [6], [26], [43]–[46] or investigate an AI
model’s internal representation space [6], [15]—because it is not limited by the fact that a
model’s mistakes and internal representations are not always predictive of biases [6], [17],
[29]. Finally, our innovation of using interpretable models for analyzing subgroups overcomes
the limitation that existing methods are impractical and labour intensive, forcing clinicians
to manually investigate uncovered subgroups [6]. The use of interpretable models could even
be an extension to existing bias subgroup detection methods, making them complementary
to the Learning to Split algorithm.

In this thesis, we have discussed findings obtained using the decision tree, logistics re-
gression, and rationale interpretable models in Chapter 3. We also point out that different
algorithms have different strengths and complement each other. For example, whereas ra-
tionalization models can highlight a few specific features, logistic regression [66] can be used
to understand how significant all of the different features are relative to each other. There
are also many more possible options for interpretable algorithms, and many of these are
freely available online, such as through the scikit-learn Python programming library [66].
One possible interpretable model to investigate more is the invariant rationale model [48],
which aims to ensure that selected features are actually causal to the decision making process
instead of just correlated with it. While we did investigate this model, we did not emphasize
its findings due to limitations in the subjective nature of its implementation. However, we
think it is worth researching more in the future, along with other methods more broadly that
aim to decouple causation and correlation when uncovering biased features. One possible
extension to our work would be to use interpretable models that can function over input
images directly, such as the CT Scans themselves, instead of just metadata. There exist
interpretable models that highlight which pixels in an image contribute to the model’s deci-
sions [67]. Such methods have been used to confirm the existence of spurious correlations in
image data, such as radiologists’ markings [19] or surgical markings [22]; integrating them as
interpretable models in our framework would help guide their use towards biased subsets in
a precision manner. Using interpretable models directly over images would further overcome
a limitation of our experiments, which is that the interpretability models we have tested
are limited to uncovering biases that can be described by the metadata provided with the
dataset.

Along these lines, one of the remaining limitations of our work thus far is that it only
provides knowledge of which subgroups might be biased in terms of clinical or demographic
attributes. However, it does not always provide a mechanistic understanding of these biases
or why subgroups may be harder to generalize to, such as why the Sybil model performs
differently on different X-ray scanners. Similarly, it does not differentiate between biases
inherent to the data and those caused by poor choice of AI model architecture [7], [11].
While interpretable models that can analyze images directly will help towards answering
these questions, additional future work should focus on finding ways to translate knowledge of
subgroups into mechanistic understanding of biases. Such understanding would help enable
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AI tools to achieve equitable healthcare delivery with high performance in all subgroups and
minimize the chance of unexpected failures.
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Appendix A

Additional LS Split Statistics
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(a) By Gender - No Cancer (b) By Gender - With Cancer

(c) BMI Barchart - Only Datapoints from De-
vice 3 without cancer (d) Years Since Quit Smoking - With Cancer

(e) Years Smoked - With Cancer (f) Years Smoked - No Cancer

Figure A.1: Some additional feature statistics in the LS-generated train/test splits for NLST
with Sybil.
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(a) Systolic Pressure - No Diabetes (b) Kidney Failure - No Diabetes

(c) Systolic Pressure - Diabetes (d) Kidney Failure - Diabetes

Figure A.2: Some additional feature statistics in the LS-generated train/test splits for
MIMIC.
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(a) RHG Diabetic: ALT (b) RHG Diabetic: FPG (c) RHG Diabetic: Triglyceride
Levels

(d) RHG Nondiabetic: ALT (e) RHG Nondiabetic: FPG (f) RHG Nondiabetic: Triglyc-
eride Levels

(g) RHG Diabetic: Gender (h) RHG Nondiabetic: Gender

Figure A.3: Some additional feature statistics in the LS-generated train/test splits for RHG.
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