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ABSTRACT

The robustness of the stability of multivariable linear time-invariant
feedback control systems with respect to model uncertainty is considered
using frequency domain criteria. Available and new rohustness tests are
unified under a common framework based on the nature and structure of medel
errors. These results are derived using a multivariable version of Nyquist's
stability theorem in which the minimum singular value cf the return dif-
ference transfer matrix is shown'to be the multivariable generalization
of the distance to the critical. point on a single-input, single-output
(SISO) Nygquist diagram. Using the return difference transfer matrix a
very general robustness theorem is presented from which all of the robust-
ness tests dealing with specific model errors may be derived. These latter
robustness tests regarding the stability of the feedback system under model
variations may be divided into two categories: (a) those that use only
+he magnitude of the model erxror and (b) those that use scme aspect of the
model error structure, in addition to its magnitude. The robustness tests
that explicitly utilize model error structure are able tc guarantece feed-
back system stability in the face of medel errors of larger magnitude
than those robustness that do not utilize model error structure and thus
represent an improvement of these latter robustness tests.

The robusiness of Linear—Quadratic-Gaussian (IQG) control systems are
analyzed via this robustness theory and multiloop stability margins are
presented; in particular, a new type of margin, a crossfeed margin, is
introduced. Other fregquency domain analysis and design techniques are
also briefly discussed and their relation tc the present robustness

analysis is examined.
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1. INTRODUCTION

The importance of ogtaining robustly stable feedback control systems
has long been recognized by designers. Indeed, a principal reason for
using feedback rather than open-loop control is the presence of model
uncertainties, Any model is at best an épproximation of reality, and the
relatively low order, linear, time-invariant models most often used for
controller synthesis are bound to be rather crude approximations.

More specifically, a given system model can usually be characterized
as follows. There is a certain range of inputs typically bounded in
amplitude and in a certain frequency range for which the model is a
reasonable engineering approximation to the system. Outside of this
range, due to neglected nonlinéarities and dynamic effects, the model
and system may behave in grossly different ways. Unfortunately, this
range of permissible inputs is rarely spelled out explicitly along with
the model, but is rather implicit in the technology that the model came
from - there is no “truth in modelling" law in systems theory.

The term robustness as used in this thesis will refer to the
extent to which a model of a open-loop system may be changed from the
nominal design model without destabilizing the overall closed-loop feed-
back system designed to control the outputs of the open~loop system.

We stress that inAthis definition, we implicitly assume that the dynamic
compensator is fixed, that is, it does not change if, for whatever reason,
one suspects that the actual open-loop dynamics are different from those
used in the model. Real time changes in the ccmpensator structure (gains

or other changes) lead to adaptive control systems, a topic that will not



be addressed in this thesis. Thus, the term robustness refers the
preservation of closed-loop system stability in the face of model un-
certainty not accounted for in the compensator design.

Robustness issues are not new in control system design; In classi-
cal single-input, single-output (SISO) servomechanism designs, robust-
néss specifications were often specified in terms of gain margin and
phase margin requirements. However, for multiple-input, multiple-
output (MIMO) control systems, similar robustness measures are not
straight forward, and their interpretation must be done with care. Thus,
the major theme of this thesis is to address robustness issues for MIMO

control designs.
The robustness problem can be logically.divided into three distinct
questions:
(a) given a model of a feedback control system how close to
instability is it?
(b) given the class of model errors for which the control
system is stable, does this class include the model

errors that can be reasonably expected for this

particular system?

(c) how can a robust feedback system be designed?

Question (a) is an analysis problem that can be solved exactly by an
appropriate mathemagical formulation. This problem will be addressed
extensively in this thesis and is by far the easiest of the three
questions to answer. Question (b) cannot be answered without a proper
understanding of the physics of the physical system to be controlled

and the assumptions that were made in constfucting a model to be used
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in controller design. Even with a good undefstanding of modelling de-
ficiencies it is difficult to characterize this knowledge in a form that
is mathematically easy to deal with from the analysis point of view.
Question (c¢) combines aspects of both questions (a) and (b) in that a
designer must be able to tell if there exists a controller that would
be able to tolerate the class of modelling errors he believes is reason-
able for a givan open-loop system design model.

However, the robustness properties of a feedback system cannot be

optimized without regard to the deterministic and noise performance

requirements for the control system. For open-loop ‘stable systems, this

is clearly demonstrated since the most robust control system is the open-
loop system with no feedbac%. Of course, for this open-loop stable system
the transient response to a step input command or the response to dis-
turbances may not meet the performance specifications. This underscores
the fact that there is a fundamental tradeoff between robustness,
determinstic performance and stochastic performance (performance with
respect to stochastic disturbance and/or senscr noise inputs). Speci-
fication of any one of these system charactsristics may place constraints
on the achievable performance or margin of stability for the other two

system characteristics. For example, with linear-quadratic-gaussian
(LQG) regulators one may obtain acceptable deterministic responses to
command inputs and have an adequate margin of stability but the adequate
robustness properties may be obtained at the expense of an increased

response to process noise driving tte open-loop plant if the deterministic

pexrformance must be maintained.
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In signal-input, single-output (SISO) control system design these
issues are well understood. The classical frequency domain techniques
’for SISO design naturally handle the robustness characterizationl.

These techniques employ various graphical means (e.g., Bode, Nyquist,
inverse-Nyquist, Nichols diagrams) of displaying the system model in

terms of its frequency response. From these plots, it is very very easy
to determine (by inspection) the minimum change in model frequency response
that leadsvto instability. From the same plots the system's transient
response and response to various inputs can also be estimated. Thus,

the classical control system designer can observe the fundamental trade-
offs that must be made from these plots.

This is in contrast to the multiple-input, multiple-output (MIMO)
case where these tradeoffs are often obscured. Many design technigues
for MIMO systems such as pole placement completely neglect the robustness
issue in placing poles to obtain a good transient response. Other state
space methods attempt to overcome this problem by using state-space
models whose parameters may vary and then assuring that for a range of
parameter values the closed-loop feedback system will be stable. How-
ever, these parameterized state-space models cannot characterize modelling
errors arising from neglected dynamics and, therefore, omit an important
class of variationé in the nominal design model for stability analysis?
In short, many state space methods do not naturally lead to techniques

that adequately account for modelling error.

1 _
See the fundamental work of Bode [6], and any good classical textbook,
but especially [9].

2 . . . . R
If the dimension of parameterized state-space mcdel is allowed to increase

then neglected dynamics could be accounted for.



The presently available frequency domain MIMC design techniques
{1,2,4,5,56] also have the problem that'they do not ensure stability for
‘a sufficiently large class of modelling errors. They basically treat a
MIMO system as a series of single-locp design problems that are essentially
decoupled. They give good stability margins in a coordinate system that
makes the design problem simple but not in the coordinate system of the

input and output of the physical plant, the courdinate system in which

it is important to have robustness and good stability margins. For this

reason, these methods may not detect small modelling errors that could
potentially destabilize the closed-loop feedback system. The measures
of the robustness of a MIMO feedback control.system presented in this
thesis do not suffer the above deficiency; they will always detect the
near instability of a feedback control system. However, in many cases
these robustness tests are conservative and therefore a significant
section of this thesis is devoted to eliminating this conservatism.
These results aré derived in the frequency domain using a multivariable
version of Nyquist's criterion, singular values and the singqular value
decomposition familar from numerical linear algebra [44]. The approaci
taken in this thesis is similar in nature to that of Doyle in [14] and to

that of Safonov in [18].

1.1 Thesis Contributions

The main contributions of this thesis are:

(1) a simplified derivation of available and new robustness
results for linear time-invariant systems.

(2) the unification of these robustness results under a common
framework based on a classification of various types of
modelling errors



(3) the reduction of conservatism of robustness results using
only information about the magnitude of modelling errox
by including information about the structure of the

modelling error.l/2

(4) the interpretation of robustness properties of LQG control
systems via the framework based on model error type.

The results of this thesis summarize and extend the state of the
art on the robustness of multivariable control system. However, the

practical application of these results is far from trivial and requires

sound engineering judgment about the nature of modelling errors based

on the physics of the controlled system. However, it is hoped that

practical experience with physical systems may provide further insight
as to how to successfully apply these new results since engineering
knowledge about modelling errors is not always easily interpreted in the

mathematical framework required by these results.

1.2 Summarv of Thesis

In chapter 2 some matrix theory results that are useful in later

chapters are collected to enable a clearer discussion of control related

1The original motivation for exploring this problem cf conservatism that
lead to the develcpment of these results were discussions with Mr. James
Lewis, a former classmate, working on MIMO control systems for auto-
motive engines [42]. The application of then current robustness results
proved conservative for an engine control system similar to one that had
worked satisfactorily for years on production automobiles. This in

turn lead to the question of how the robustness of a control system

may be assessed when the sufficient conditions for stability are violated.
The nature of the solution of this problem was first suggested by Dr.

David Castanon.

2
These results were further developed due to discussions with Dr. Sherman
Chan, who raised many thought provoking questions with regard to their

practical application.

3For an application of some of these results to contrel of multiterminal
DC/AC power systems the reader is referred to [46].



robustness issues in those later chapters. The basic problem solved in
Chapter 2 is that of finding the nearest singular complex matrix to a

given nonsingular complex matrix under constraints on the class of

singular matrices considered. This is done using singular values and

the singular value decomposition of a matrix which are some of the
fundamental mathematical ﬁools explained in Chapter 2.

The structure of the matrix E of smallest norm that makes A+E
singular, where A is a given nonsingular matrix, is given in the
solution to Problem A. The main new matrix theory result is given in
Problem B. Problem B poses the problem of finding the matrix of smallest
norm that makes A+E singular but where E is constrained to be unlike in
structure to the E matrix of Problem A. Problem C extends a special
case of Problem B to include more complicated structural constraints on

the matrix E.

Chapter 3 formulates the fundamental robustness theorem (Theorem
3.2) using a multivariable vers.on of Nyquist's criterion from which
all robustness tescs for linear systzms in this thesis may be derived.
These rcbustness tests (Theorems 3.3 to 3.6 and 3.9) are formulated in
terms of the sire or magnitude of different types of modelling erxrrors.
They are first explained for SISO systems to demonstrate that the
MIMO case simply geﬁeralizes the idea that if magnitude of the change in
the Nyquist diagram of the nominal system, induced by medelling error,
is less than the distance of the Nyquist diagram to the critical (-1,0)
point, then the clcsed-loop system will remain stable. These tests,

employing various model error criteria are then used to formulate multi-

loop gain, phase and crossfeed stability margins. Corollaries 3.3 ard 3.4
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givé pounds on the amount of cross coupling between feedback channels
that the feedback system will tolerate; that is, they spezify crossfeed
margins. The various robustness tests employing different model erroxr
criteria are then related to the well-known small gain and passivity
theorems [12] (Theorems 3.7 and 3.8). Extensions to simple norlinear

systems are also given. The chapter concludes with a discussion of the

relative merits of the various results.

Chapter 4 begir : with a discussion of how to distinguish between
model errors that inc-ease che margin of stability of the feedback system
and those that decrease the margin of stability of £he feedback system.
This is first explained in the SISO case and generalized to the MIMO case
by using the matrix theory results of chapter 2. The basic resul
volve defining the smallest error that destabilizes the feedback system.
If this type of model error can be ruled out on physical grounds, the

results describe the next smallest destabilizing model error and its

minimum magnitude (Theorems 4.1 and 4.2). This extends the robustness

tests of Chapter 3 enabling them to consider modelling errors of larger
magnitude (that viclate the original tests) by eliminating only those
model errors, of smaller magnitude, that would destabilize the feedback

system, on the grounds that they are not physically realistic or

plausible types of modelling errors. The interpretation of the smallest
destabilizing modelling errors is discussed via block diagrams and

the singular value decomposition of the return difference transfer

matrix. An example is also used to illustrate the nature of these

results.



In Chapter 5 the robustness properties of LQG control systems are
considered. Using the résults of Chepter 3 and the multivariakle Kalman
inequality the robustness preoperties of IQ state feedback regulators are
derived (Thecrem 5.2). The multiloop gain, phase and crossfeed margins
for LQ regulators (Corollaries 5.1 and 5.2) and some variations (Corollaries
5.3 and 5.4) of the IQ regulator with better margins hold in a coordinate
system specified by the control weighting (R) matrix. It is shown that
if R is not selected properly the gain, phase and crossfeed margins
may become arbitrarily small. Using the results for the LQ state feed-
back regulator the stability margins for LQG regulators are explored
(Theorem 5.4). In general there are no guaranteed stability margins for
I0G control systems unless the.Kalman filter embedded in the controller
possesses the correct dynamic model of the perturbed system and then the
stability margins for IQ regulators hold. This is not a practical
assumption and robustness recovery procedures for asvmptotically recover-
ing the LQ guaranteed stability margins at either the input or output of
the open-loop system are discussed. Next, the possibility of recovering
stability margins at both input and output is discussed and related to
the problem of obtaining a characterization of the expected model error.

Chapter 6, very briefly discusses current frequency domain techniques
for MIMO design and’robustness analysis (characteristic Joci, inverse
Nyguist array and principal gain and phase methodologies). These are
placed in perspective with respect to the approach of this thesis.

Chapter 7 summarizes the key results, gives some conclusions, and

outlines some future research directions.
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1.3 Notation

The following conventions will be adopted in this thesis. All
matrices will be denoted by capital lettersl, all scalars by lower
case letters and all vectors by underlined lower case letters. Outside
of the chapter in which they occur, all equation numbe;s, theorem and
corollary numbers and figure numbers will he prefaced with the chapter
number followed by a period and the number occuring within the chapter.
Thus, for example, equation (32) of Chapter 3 will be referred to as

(32) within Chapter 3 and as (3.32) outside of Chapter 3.

] . . . . . .
Jne exception to this convention is the matrix functions f(-) and h(.)
which take matrix arguments and are themselves matrices. These functions

are found in Chapters 3 and 4 respectively.



Notation

.s.t.

tx (B)

det A

A>B

(a,B,C)

-]1-

subject to

trace of the matrix A

complex conjugate transpose of the matrix A
compiex conjugate of the matrix A

transpose of the matrix of A

determinant of A

innerproduct

i-t--'-ll eigenvalue of A

iEE-singular value of A = A*(AHA)

i
pEll order norm

identity matrix

J 1

Euclidean (or Frobenius) matrix norm
inverse of the matrix A

the real numbers

the complex numbers

the space of nxm matrices with elements in €

a is an element of the set A

the product (alaz .. .an)

magnituae of the scalar x

A-B is positive definite

A-B is nonnegative definite

realization of the linear system specified by the
time domain description
X = AX + Bu

Y =Cx
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defined as

loop-transfer matrix

perturbed loop-transfer matrix
multiplicative perturbation transfer matrix

open-loop characteristic polynomial
closed-loop characteristic polynomial
perturbed open-loop characteristic polynomial

perturbed closed-loop characteristic polynomial

N@Q,f(s),C) number of clockwise encirclements of the point

w

SISO

MIMO

by the locus of f(s) as s traverses the closed
contour C in the complex plane in a clockwise sense.

Nyquist contour of Fig. 3.10
segment of DR for which Rel[s] 5.0;
single~input, single-output

multiple-inpuc, multiple-output

ORHP (CRHP) open—-(closed) right-half-plane

OLHP (CLHP) open—(closed) left-half-plane

linear-quadratic
linear-quadratic-Gaussian

Kalman filter
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2. MATRIX THEORY

2.1 Introduction

The purpose of this chapter is to introduce important tools from
matrix theory and prove some results which form the backbone of the robust-
ness theory of later chapters. The specific problem considered in this
chapter is the following. Given a nonsingular complex matrix A, find the
nearest (in some sense) singular matrix A which belongs to a certain class
of singular matrices. Essential use of the singular value decomposition
for complex matrices is made in the solution of this problem as well as in
the definition of an appropriate constraint set to which A must belong.

I+ is thus necessary to review some preliminary definitions and
properties of special complex matrices and different vector and matrix
norms. After this preliminary review and some specialized results for
2x2 matrices the singular values of a complex matrix are defined and
related to siée of the error matrix E which is simply the difference
K-—A. Next the singular value decomposition (SVD) is presented and the
expansion of an arbitrary matrix in the orthonermal basis generated'
by the SVD is discussed. In the final section of this chapter the structure

of the error matrix E is studied via the SVD when E is both unconstrained

and constrained to a certain set of matrices.

2.2 Preliminary Definitions and Properties

The following definitions and properties are elementary and can be

found in the many bocks on linear algebra [44].
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2.2.1 Vector and Matrix Norms

It is useful to have a single number to measure the size of a vector

111

or matrix. This number is called a norm and is denoted by

For vector norms the following relations must hold

[1x][ >0 unless x =0 (1)
llax]| = || ||x]| for any scalar a (2)
[z + gll < =[]+ [zl (3)

Three vector norms that are commonly used are given by

Hall, 2 (g lP + [l oo 12 DR o = 1,2,0) (4)

where x, are the components of x.,and |L§[lm is interpreted as maxlxil. The
i

norm |L§|[2 is the usual Euclidean length ol the vector x.

Two vectors x and y are said to be orthogonal if their innerproduct,

<x,y>, defined by

<x,y> é EEZ
is zero. The Schwartz inequality,
|<x,v>| < |xll,[1zl],
bounding the magnitude of the innerproduct, is important in solving least

équares and minimum norm problems of the type we are dealing with.

Turning to matrix norms, we denote the norm of a matrix A also by IIAII

where the following relations must hold
||a]] > 0 unless & =0 (7
lfaA[]= Ia[ {IA[I for any scalar o : (8)

[lass]| < [lal] + [{3}] ' (9)
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||as] | < [1al} [l - (10)

Corresponding to each vector norm there is an associated induced matrix

norm defined by

lasg | | i

4 max
Al = JEN

which satisfies the conditions (7) to (10) and is said to be subordinate

to the vector norm. For the three vector norms given by (4) the three

induced subordinate matrix norms are

[all, = max a1 (12)
Hall, = max I la 51 (13)
[{ali, = max 11/2 a"2) (14)
i
where ), (aHa) are necessarily real as shown later.
rrom the definition of these norms it is apparent that
IhﬁHpithplbﬂp: p=1,2 (15)

is satisfied for all x. Any matrix norm which satisfies this inequality

is said to be consistent or compatible. Another matrix norm which is used

frequently that is compatible with the vector norm ll'llz is the Euclidean

norm. The Euclidean ncrm for a matrix A is defired by

- 2.1/2
[lallg = 02 ? lay517 (16)

The llAliz norm is referred to as the spectral norm. Some useful relation-

ships involving the spectral and Euclidean nomms that can be developed

are
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1/2
lall, < |lallg < ™2l a7

where A is an n x n matrix. These inequalities follow from the fact that

AHA is positive semidefinite and
: H 2 H H
max A (AA) < Hallg = ex(2"a) < n max M @a%a) . (18)
i i

Also, if X is an eigenvalue of A and X is a corresponding eigenvector,

then for consistent matrix and vector norms

[ax|| = Al Hxll < 1l [1x]] (19)

Al < |]a]] . (20)

From this we can obtain

2 . " -
[[a]12 = max 2, @ < [[a%a]l, < [1al],] 18]l - (21)
1

2.2.2 Special Matrices

There are two types of matrices that will play a special role in

the ensuing analysis. They are known as hermitian and unitary matrices

and have special properties that make them useful.

A . . A . H
Definition 1: A complex matrix A is hermitian if A = A .

e e . . . . H -
Definition 2: A complex matrix U is unitary if U =1U l.

All of the eigenvalues of a hermitian matrix are real.

Property 1:

All of the eigenvalues of a unitary matrix have unit

Property 2:
magnitude.

Property 3: ]EU[]Z =1 if U is unitary.
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If a matrix A is hermitian then there exists a unitary

Property 4:

matrix U such that A = UJ\ﬁH where A is a diagonal

matrix of eigenvalues of A.

Note that Property 4 means that any hermitian matrix has a full linearly

independent set of eigenvectors which are orthogonal to each other. For

example, the columns of the U matrix in Property 4 are eigenvectors of

the matrix A.

e eas . . s . H
Definition 3: A complex matrix S is skew-hermitian if A" = -A.

Property 5: All of the eigenvalues of a skew-hermitian matrix are
purely imaginary.
Property 6: If S is skew-hermitian then jS is hermitian.
Property 7: The diagonal elements of a hermitian (skew-Hermitian)
matrix are purely real (imaginary).
Rayleigh's . s
Principle If A is hermitian then
H
min £ - (@) (22a)
H min
A0 X x
and
H
Ax
max £22E =2 (2) (22b)
max
x#0 x'x

. H H . . .
where the ratio x Ax/X x is known as Rayleigh's quotient

which achieves its minimum (maximum) when x is an eigen-

vector corresponding to A_. (A) (A ___(A)). Note that
min max
|‘5J|2 = 1 can always be assumed and thus the Rayleigh

guotient becomes simply_zﬁAg,

2.2.3 Some Useful Results Involv¥ing Hl IE and | ‘|2

Any complex matrix A can be decomposed into the sum of a hermitian

and skew-hermitian matrix as
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A=A +a, . ' (23)
where

A, =% (a+a") (24)

Aoy = % (a -a7) | | (25)

"A result we will use later is the following

812 = [[a 12 + [[agl]? (26)

which can be seen directly from the following equations

|1al1

H = -
tr(a'a) = tr[(AH ASH)(AH + ASH)] (27)

i

H H
tr(AALl - .tr[ASHAH] +tr(a A ] + trlA Al ]

1

H H
+
tr[AHAH] tr[ASHASH

where we have used the fact that tr(AB) = tr(BA). Some very specialized

formulas for 2x2 matrices that are useful in deriving results in section

2.4 are the following. If A is hermitian then

HAHj = ;\max(AHm = Amax(Az) = max l}\i(A) 2 (28)
i
or
[all, = max{x @] | (29)
i
For any matrix A with eigenvalues Xi
n
tr(a) = ¥ X.(n) (30)
i=1 *
n
det(n) = I Ki(A) ‘ (31)

i=1
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Thus for a 2x2 matrix A

2

- (kl+lz)k + lllz

det (AI-A) (l-X])(X—XZ) = A

22 - tr(A)A + det A (32)

and the eigenvalues of A are given by

\ @ - [_uJ . \/[__.u] 2 ween (33
i 2 - 2

Thus for a hermitian 2x2 matrix we have that

| tr (A) tr(a) |2 : ,
||A|12=l—%——'+ JE—%——:‘ - det A . (34)

L . H .
When A is not hermitian,but still 2x2,we simply replace A by A A 1n

(34) and obtain

H H 2 b
H _ 2 _ tr(a A) tx{A A) _ H
HE Al|2 = IIAH2 ==+ J—'——z det (A"A) (35)
or
2 _ 1 2 1 212 _ 2
A2 = 11al12 + §[2 112012] % - feet al? | 6

2.3 Singular Values and the Singular Value Decomposition [19,38,39,40,44,53,54]

The singular values of a complex nxm matrix A, denoted Gi(A), are

. . . H
the k largest nonnegative square roots of the eigenvalues of A A where

k = min(n,m), that is

o, (a) = xi/z @ara) i=1,2,..., k (37)

where we assume that ci are Qrdered such that Oilz 0i+1. The maximum
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and minimum singular values may alternatively be defined by

[lax] ],
O (B) =max ———= = HAH2 (38)
=0 |zl
| {ax| | -1 -
o_. (A) =min 2 _ a7t Y ie a7t exists . (39)

metT k0 |Ixl,

The smallest singular value Gmin(A) measures how near the matrix A is to
being singular or rank deficient (a matrix is rank deficient if both its
rows and columns are linearly dependent). To see this consider finding

a matrix E of minimum spectral norm that makes A+E rank deficient. Since A+E
must be rank deficient there exists a nonzero vector x such that ilxliz =1

and (A+E)x = o) thus by (38) and (39)
o . () < |[ax|], = |lex|], < |igl], = o, ® . (40}

Therefore, E must have spectral norm of at least ohin(A) otherwise A+E

cannot be rank deficient. The property that

Opin (a) > cmax(E) (41)

implies that A+E is nonsingular (assuming square matrices) will be a basic

inequality usad in the formulation of various robustness tests. The

inequality (41) implies that
ala > &' (42)

which is a useful inequality for algebraic manipulation. However (42)

does not imply (41) except when AdA and EHE share the same eigenvector
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for their minimum and maximum eigenvalues respectively.
A convenient way of representing a matrix that exposes its intermal
structure is known as the singular value decomposition (SVD). For an
nxm matrix A, the SVD of A is given by
H k

a=usvil= T oo @a)u v | (43)
i=l p —11

where U and V are unitary matrices with column vectors denoted by

U= [21' Usyreees _t_zn] (44a)

V = [!ll leo.- ’ Ym} (44b)

and I contains a diagonal nonnegative definite matrix 21 of singular values

arranged in descending order as in

|v

m

=10 (45)

<
Zl O], n<m

and

Zl = dlag[cl, Opreves Gk] ; k = min (m,n) . (46)

H . -
The columns of V and U are unit eigenvectors of AHA and AR respectiveliy

and are known as right and left singular vectors of the matrix A.

Any unitary matrices, such as the U and V produced by computing the
SVD of a matrix, can be used to generate an orthonormal basis in which
to express an arbitrary matrix E. ZLet U and V be nxn unitary macrices

with columns as in (44) and express E as
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n n H . H
E= L 2 <uv., E>uv, (47)
- i=1 j=1 J J -

where the innerproduct for matrices is defined by

<a,B> 2 trafm) (48)

for complex matrices A and B. Note that with this innerproduct the n

rank one matrices Eizg are ortliogonal to each other and have unit spectral
and Euclidean norms and thus form an orthonormal basis. The matrix
<Eizj’ E>ggigg is simply the projection of the matrix E onto the one-
dimensional subspace spanned by gizg. If the elements of Eig? are formed
into a n2 length vector x by stacking the n rows of Eizg and the same
procedure is used to reduce the, matrix E to a vector y thenﬁ<gig§, E> is
equal to the usual §ﬁz innerproduct between these n2 length vectors.

This makes it clear that <311?' E>ﬂEiY§ can be rearranged into a vector

(EFZ)E,WhiCh is just the projection of y in the direction of the vector x.

. H . .
Also, if all the matrices Eizj are formed into vectors, they will all be or-
thogonal to each other and have unit Euclidean length. We will thus think of ths
. 2 . .
n2 rank one matrices as representing n~ orthogonal directions and refer

to <Eiv§, E> as the projection of E along the direction Eizg' This type of

perspective is useful in studying the structure of the error matrix

2.4 BError Matrix Structure

In this section we will use the tools developed in esarlier sections

to solve the problem of finding a singuiar matrix A nearest to

a given matrix. This can be formulated more precisely as a mathematical
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optimization problem:

Problem A

min |iE||
E 2

s.t. det(a+E) =0 (49)

In this formulation the matrix A is simply A+E, where we refer to E as

the error matrix. This is the simplest problem to solve since E is

unconstrained. In what follows we make the following technical assumption.

Assumption l: The matrix A is nxn nonsingular and has distinct singular
values.

The assumption of nonsingularity of A assures us of a nontrivial problem
otherwise E is identically zero when A is singular. The assumption of
distinct singular values is a technical one which allows us to avoid
some combinatoric problems associated with multiple solutions. Once

this section's material has been understood by the reader it is not dif-

ficult to remove this assumption.

Solution to Problem A:

Suppose that A has the SVD given by

a = uIvt (50)
where

L= diag[dl, Oyrennt Gn] P Oy > O\ i1 (51X

U= [u;r Uyreens u ! (52)

V=1I[v,, Vareeer V.1 . . (53)

-1 —2 —n



Now since A+E must be singular there exists a unit vector x such that

(A+E)x = 0 (54)

and thus from (38) and (39) or (11) we have that

Opin® < llaxll, = [exll, < [1el], - (55)

For a minimum ||E||2 equal to Gmir(A) it is necessary that for some
arbitrary 6 that

38, | (56)

X =€
- -n

otherwise

axl| >0 . @ . . (57)

This can be seen by considering
aell, = [ozdsl ], = [zefo Il (58)

and defining a unit vector z as

z Q VH_)E (59)
and thus
2 2 1/2
laxl ], = 112 2ll, = (2 lzld " > o, (60)
. i=1l
unless
ET = [0, O, ...,O,J.]eje, 8 arbitrary . (61)

Therefore, Ax is given by
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and hence
(63)

By similar arguments involving the equation

H
x (A+E) = 0 (64)

one can show that

dE = -5 & . (65)
- mmm

From equations (€4) and (65) we can characterize the form that all solutions

to Problem A must have, namely
!
:
]
E=U]--"- v (66)
i
[}
|

where Ps is {(n-1) % (n-1) and

[p I, <0, = 1lEl, (67)

but is otherwise arbitrary.

. . H H
Recall from equation (47) the interpretation of <uv , E> u v
) -n -n -
. . ) . . H
as the projection of E onto the direction u V . From (66) we see that

all solutions to Problem A have the same projection in the direction

which we shall call the most sensitive direction since this is

H
u v
-n-n
the direction it is "easiest" to make A singular by changing its elements

the "least". Note also the additional conditions that for any two
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.

solutions to Problem A say E., and E2 that

1
H H .
< > =<1 > = 3
u Vj'El u v.,E2 o, j #n (68)
and
<uvi,E. > =<uwv,E.> =0, j#n (69)
—j-n’'"1 =3’ "2 '

requiring the projections of El and E2 to be equal along any directicn

H H . .
u,v and u v. where j =1,2,...,n. In fact, the matrix P given by
~j—n -]

P = utEV ' | (70

is just the matrix of projections onto each of the n2 directions'gizj
(slightly abusing the notion of projection to mean <£&¥§,Ei> instead of
<_'gix;{,E > _gig?) that is,

p,. =<uv,EB . (71)

ij —=i—j
Now suppose that we construct a constraint set for E so that E cannot

have a projection of magnitude on in the most sensitive direction thg.
This means that the matrix A+E cannot become singular along the direction
Eﬁzﬁ and thus l|E|]2 must increase if A+E is to be singular. To

find out ijust how much larger ||E|l2 must become we formulate the con-

strained optimization problem:

Problem B:

min |[[E[], (72)
E
s.t. det(A+E) =0

H i
<uv ,E> < <
l -n—n' <0 %
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Solution to Problem B:

The error matrix E is given by

P | 0
S
S S H
E=U ] v (73)
¢ Y
o y* -¢
where Ps arbitary and
< - = .
eIl < \Jo 0.5 * 8(o, - o,) =llell, (74)
where Y is given by
= — i6 .
Y = \J(¢ + Gn_l)(¢ o e, 6 arbitrary (75)
and A has the SVD
%
(6]
= > .
A=U 2 Voo v o, (76)
(9]
n

The proof of the solution to Problem B is somewhat involved and will be
broken into several steps. However, & geometric interpretation of a
simplified version of Problem B will be given at the end of this section
(this is how I actually first worked the problem). Nevertheless, there
is a need to understand the 2x2 analytical proof of the problem as well

as the next simple Lemma ir order to understand the geometric interpre-

tation.

Lemma 1: If the SVD of A is given by

a=uv 4 (77
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then A+E is singular if and only if Z+4P is singular where

P =UEV ' (78)
and furthermore ilP[lz = IIEfIZ .
Proof:

H

A+E = U(Z+P)V (79)
and thus

|det (a+E) | = |det(Z+P) | (80)
since ldet UI = [det V] = 1 because unitary matrices have only eigenvalues

of the form eJe (Property 2). Therefore A+E is singular if and only if

Z+P is. To show |[E||, = |[B|], write

E = upvh (81)

then from (10), (78) and Property 5 we have

el < 111 el o], = el (62)

and from (81) that

. . (83)
=11, < li=l1,

and thus

(84)

&

The significance of Lemma 1 is that we need only consider the case where

1211, -

A is the diagonal matrix of singular values I, for once this problem

is sclved for P, all we rneed do is use equation (81l). Therefore, from this
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point on we make the following assumption.

Assumption 2: The matrix A is diagonal.

At this point we describe the steps in the soluticn to Problem B.
The first step is modify Problem B in accordance with Assumption 2. The
next step is to show that for the modified Problem B, if a nonhermitian E
solves the modified Problem B, then a hermitian solution EH also exists.
We proceed by finding all hermitian solutions to the 2x2 case and then
show that in the 2x2 case the solution is unique. The final step is to

show that the 2x2 case can be extended to the nxn case.

We now give the modified version of Problem B.

Modified Problem B {MPB) :

min [IBI}
E 2

s.t. det(BA+E) = O, A diagonal and A>0
< <
Ienn, —-¢ Oh
This form of the last constraint occurs since U and V in the SVD of a

positive definite diagonal A are both simply the identity matrix.

We proceed to the next step in Lemma 2.
Temma 2: If a nonhermitian E solves MPB then there exists a hermitian
solution EH to MPB where

EH =

N

(E+EH) (85)

and
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e ll, = lell, - ' (86)

Proof: Since A+E must be singular there exists a unit vector x such that

(A+E)x = O (87)
and

Saseh) =0 (88)

s H

since A = A" and thus

H

X (A+E)x =0 (89)
and

a+EDx = 0 . (90)
Adding (89) and (90) and dividing by 2 we obtain

(91)

o
X (A+EH)§_— o .
Now since A+EH is hermitian, we know from Rayleigh's Principle [55] that

H
0 =x (A+EH)§>2-Amin(A*EH) (22)

. . . . + <
where Kmin(A+EH) is strictly real (Property 1) If Amin(A EH) 0, then

since A > 0 there exists a positive scalar a < 1 such that
A . (AtoE ) =0 (93)
min H

because the eigenvalues of a matrix are continuous functions of their

elements. However,

ez, 11, < @2 t1zl], + 2% 1= allsll, < Hell, - coa

which means that |[E[i2 could not be a minimum if
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< <
le;, | <¢<a, (95)
n,n
which is satisfied since
= < < < 96
IeH I lRe(enn)l —-[ennl-— ¢ <o, (96)
n,n
and thus it must be true that
(97)

A . (a+E) =0 .
min H
Therefore, since ||E|l2 is minimum, from (94) with ¢ = 1 we conclude that

liegll, = Hell, - (98)

The cignificance of Lemma 2 is that any solution E which is not hermitian
has a hermitian part (i.e., E = 1/2(E+EH)) which is also a solution to
MPB. Thus by finding hermitian solutions to MPB we need only determine
if EH + ESH,where ESH is skew hermitian, can be a solution toc MPB.

Continuing our proof, we ncw find all hermitian solution to MPB

for the 2x2 case. In this MPB may be restated as

MPE; 2x2 Hermitian Case:

min |[E] |

= 2

s.t. det(A+E) =0 (29)
lal < ¢ <o

where

g, 0

a = (100)
0 o
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Y*
where
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a b
, a,d real
b* d
Y
-¢

<
|

Proof: Calculating

1=l

or

=l

From the singularity constraint on A+E we

|2

\L01+¢)(02-¢) eje , O arbitrary

|lE||2 via equation (34) we have

a+d| d—a+d 2 _ 2d + lb|2

a+d \i(adz R

= (01+a)(02+d)

and then substitute for lbl2 in (105) and obtain

211, =

1255 + \!(5‘——9)2+ (0,+a) (G ,+d)

Note from (106), and the bound on |d| in (99), that

-0, < a
l_

since Ibl2 >

a and d to locate a minimum. Thkis results in

can determine |b|2 as

(101)

(102)

(103)

(104)

(105)

(106)

(167)

(108)

0. Next we calculate the partial of llE[Iz with respect to
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at+d
llzll, 222 + o,
————% = = |sgn(a+td) + (109)
Ba 2 r 2
a-d
V(—Z) + (ol+a) (02+d)
and
a+d
ollell, 52 o
57 =3 [|son(atd) + (110)
d 2 >
a-ad
(—2—) + (cl+a) (0'2+d)

where sgn(°) is the sign function defined by

1 , x>0
sgn(x) ={undefined, =0 . (111)

‘l r X<0
Note that the partials in (109) and (110) do not exist at a = -4 because
there is a jump discontinuity in their values at that point. It also

happens that 8]|E[|%//éa is never zero but changes sign at a = -d in a

way to indicate a minimum at a = -d. To see this consider the ratio z

given by

(112)

\/ a;d) 2. (0, +a) (0+d)

which can be shown to have magnitude less than unity by the following

computations

02 < Gl (113)

(02+d)02 < Gl(cz+d) . (114)
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since by (99) o.,+d is positive and thus

2
ad + a02 + (02+d) 02 < ad + ac2 + 01(02+d) (115)
(a+d 2 a-ad 2
—2—) - ( ) ) + a 5 + (02+d) 0'2 < ad + a02 + ol (02+d) (116)
2
a+d 2 a-d\ 2
ara g a-c =
( 5 ) + 2(a+d‘) + 02 < ( > ) + (Gl-l-a) (02+d) (117)
2
a+d I a-d
( > ) + 02] < IL(T) + (o +a) (0 +d)] (113)
or 5 :
z- <1 (119)
Now 3||E|i2/8a can be written as
allell, .
——§§~—~ 3 [sgn(a+d) + z] = 5{1}+z] . (120)

and thus a+d and 3[|E||2A/8a have the same sign which indicates that a
global minimum occurs at a = -d and implies that Ial = Idl < ¢ < g,-.
By similar simple arguments, it can be shown that 3||E||2,/3d
is strictly positive for all |a|= hil.i ¢ indicating that the optimum
value for d occurs on the boundary d.= -¢. Thus using (106) the value

of b may by calculated as

b = \/(cl+¢) (02-¢) eje (121)
since .
- a=-d=¢ (122)
and thus )
HE'HZ =\/¢—2+(61+ ) (5,-9) (123)"

and specify E as

COE IR
£ = (124)

b -
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with b given by (121).

The next step is to show that the only solution to the 2xz case of

MPE is hermitian. To do this we use (36) to express {lEllz as

2 _1 2 ﬁ 2.2 _ . 2
Hell2 = 5 [l +¥ G HElD® - laet E] (125)
which is only valid in the 2x2 case. Now suppose that E is nonhermitian

and is decomposed into

- 126
E EH+ESH ( )

where EH is of the form given in (124) and ESH is a nonzero skew hermitian

matrix. From (124) and (125) we note that

2 112
[zgl 12 = 172 115411 127
and that from (126) and (26) we have

2 2 2
2112 = 11zl 12 + [yl 12 (129

Now using (127) and (128), [IE||§ in (125) may be written as

2
l[e] |2

il
N

]IEH + E 2, 2 (129)

sul lz

2 1 2 1 2 2 2
12112 = 2 11s,112 + L fgl12 + < > [zl 13 (130)

where ¢ is some real scalar, the ineguality in (130) follows because

ESH is not identically zero. Thus, any nonhermitian matrix E with hermitian

part E_ that makes A+E singular must have a spectral norm strictly greater

H
than |[E[ [,

Continuing our proof, we must extend the 2x2 case to the nxn case.

This is done by considering two special cases of the case where A is nx2
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and reformulating MPB to the case in which A+E must be rank Gefipient.

when A is of the form

A= 2] = |3 (131)

L (132)

it is clear that for A+E to rank deficient it is necessary that A1 + El

is singular and thus El must be of the form given by (124). Also since
2 _ 2 i 2
lel12 = Helly + 1B, llG (133)

we can conclude by the same argument used in (125) through (1390), that E2
is identically zero. This can be generalized to the case where A is

composed of two orthogonal vectors x and y SO that the SVD of A is given

by
H
A= _}E r Y = UZV (134)
|
where
r' . -
=], o
L= 135)
o vl ‘
_ Y )

Since I is of the form of A in (131) we have just considered, we need
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only solve for the E, that makes I + E, rank deficient with minimum IIEOIIZ
and use the unitary matrices U and V of (134) to calculate the E that makes

A +E rank deficient with minimum IIEIIz. This is of course given by

E = UEOVH (136)

In

We are now finally ready to calculate the nxn solution to MPB.

the general nxn case when A+E is singular there exists a vector x such

that

(A+E)x = 0 (137)
with

x =[x, %] (138)
where x. is an n-1 dimensional vector, with Ilfillz =1, and X 1 the last

1

element in x, is strictly real and nonriegative. Note that x could never be such

that % would be zero since that would require the last column of A+E to

be identically zero which is inconsistent with the bounds in (99). By

defining a special matrix Z we may rewrite (137) as

1

(A2 + EZ) =0 (139)
X
n
where
X : 0
—l : )
7 = ____%_-__ . (140)

(0] : 1

Now note that AZ + EZ must be rank deficient and that
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(2l 1, < 11211, 1zl = Hell, | (1a1)

and also that AZ has the foxm (134) and is given by

w {0
|
A% = |-———q--m—-v (142)
o ! o
= 1 %y
where
w o= [0.%, 0 1 (143)
wo=logx;, OpXpeeeer Opg¥pea
Since Il§1||2 =1 and X1 is real and nonnegative we have that
[y >
lwll, >0, (144)
with equality holding if and only if
T
X = {0,0,...,1l] (145)
Using (124), (142) and (144) we conclude that
2
S _ :
15zl [, 2§ ¢° + (0,_1+) (0,-®) (146)

with equality holding if and only if (145) holds. As will be shown latex
lIEIIZ = IIEZ|12 so the bound in (141) is achieved and thus it is necessary

that ||E2|, is minimized requiring (145) to hold which implies that

—— .

Thus since EZ is known the last two columns of E are determineed. Using

analogous arguments it can be shown that the last two rows of E are also
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completely determined and thus E, the solution to MPB, has the form

P E 0
..-.__.{» _________

E = i i ! (148)

]
o vt -4
where
Y = ejs ‘/(01+¢)(02—¢), 8 arbitrary (149)
2
e I, < Y62+ (0,+0) (0,-0) (150)

but otherwise Ps is arbitrary so that

2 L]
[ell, = ‘/¢ + (0,+0) (0,-¢) = [[E2[[, - (151)

Using Lemma 1 with these results gives the desired solution of Problem B

given in (73) to (75).

At this point we will give a geometric interpretation of a special

case of MPB and possible extensions of constraint set for E.

2.5 Geometric Interpretation

A special case of MPB with ¢ = 0 has a nice geometric interpretation
using vectors. With ¢ = 0 we require that E must have no projection

: . : H . :
in the direction u v . If we think of the cclumns of the matrix A,

i

where
x 0
a; T
(o}
A= 2 , (152}
‘o
0 n
| _
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as orthogonal vectors then in the 3x3 case the A matrix could be displayed

as in Fig. 1.

o, —y.

Fig. 1: Column Vectors of A4 Matrix

In the 2x2 case, MPB simply poses the problem of making two vectors parallel
with minimum "effort" with the proviso that the original component in the
x-direction of the shortest vector must remain unchanged. This is illust¥ated
in Fig. 2 where 81 and 32 are the resultant vectors when o, and g, are changed
minimally in order t6 align them. If there was no ¢ bound as in the case

in Problem A the optimal change would be to shrink the 02 vector to zero.

Note that for MPB when ¢ is zero that the magnitude of the change (i.e.,

[lEl|2 is simply the geometric mean of the two smallest (in this case the

only) singular values which is computed from (103) with ¢=0. If we now
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& X

Fig. 2: Column Vectors of A = A+E

proceed to the 3x3 case of Fig. 1 MPB poses the problem of making the
shortest vector parallel to some linear unitary combination of the other
two vectors without changing the criginal x—component of the 03 vector.

The term linear unitary combination of vectors is nonstandard. It means

that in a weighted sum of vectors, the weights themselves form a vector
of unit length. The solution to this problem is the same as in Fig. 2
and the fact that thére is an additional orthogenal vector makes nc dif-
ference. The solution is depicted in Fig. 3 where only the two shortest
" vectors are changed. The x vector is a unitary linear combination of thé
0. and G. Vvectors and its tip sweeps out an elipse in the y-z plane as

2 1l

the particular unitary combirnation changes. - The "effort" required to
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Fig. 3: Solution to MPB with ¢=0

align o, and x is the geometric mean of their lengths. Thus since the

3
O.. vector always is shorter than x, it is the best vector in the set of

2
vectors generated by unitary linear combinations of Ol and o, to align

with the 63 vector.

The observations allow us to generalize Problem B by accomodating

a much larger constraint set for the E matrix. This is suggested naturally

by supposing that in addition to the constraint

<u VH, E> =0 (153)
-mrn
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in Problem B we also have the constraint

<uv? ,E> <u v ,E>=0 (154)
—mrn-1 -n-1-n

which rules out a solution of the form given by (73) to (75) with ¢=0.
Thus we have ruled out what we will call "the worst perturbation" (i.e.,
an E on the form cf (66)) as well as the "next worst perturbaticn", that
is an error matrix E of the form given by (73) to (75). We use the ad-
jective worst because in our robustness work the singularity of A+4E is
associated with control system instability and thus the smallest error
matrix that makes A+E singular is considered as the worst possible type
of perturbation that is possible. The term "next worst" arises because
in Problem B with ¢=0 we eliminéte the worst type of perturbation from
consideration. Now we could continue this process and eliminate the
next worst perturbation by imposing (154) and ask what is the "next
next worst perturbation” and so on. If we do this a nice structure of
the "successively worst perturbations" emerges and can be formalized

in the following optimization problem.

Problem C:

min IIE!IZ
E
(155)

s.t. det (A+E) = 0

<u,v§,E ><11.vg,E >= 0 for all (i,3j) €
173 =i

where A has the usual SVD given by

H o H
A=UIV = I 0o.(Au.v, - (156)
i=1 1 —1l1
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Solution:
ILet
Ic o, = min 0.0 (157)
3 min L0,
Vk (i,3)¢Q + 3
_ H 39 H -j0
E, =4/99, [w voe +uwv e ] (158)
where
120°, if k=2 ,
6 = (159)
arbitrary, if k#L
then .
E=E + E, (160)
where

[1Eoll, 2 Voo, = 1IE], (161)

and satisfies the projection constraint in (155) and also

H H .
< > = <u. > =
ungi,Eo _glv.,Eo 0, 3

1,2,..., n (162)
k or £

[
[

but E0 is otherwise arbitrary.

What the solutibn to Problém C formalizes is the procedure of finding
the minimum effort required in aligning any two column vectors in the X
matrix or shrinking any of its column vectors and then determining which
of these is-possible given the constraints on how each of the vectors may

or may not be changed or perturbed.
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To make this clearer we will illustrate the solutions to the problem
of finding the matrices E of minimum spectral norm that make A+E singular

under various constraints on the E matrix.

Example:
Let A be given by

9 0 0
a=]0 4 0 (163)
0 0 1
and consider the various constraints on E.
Unconstrained Case: .
E ! 0
s !
i
E = | G (164)
_______ ..:..._......
0 o ! -1
where |IESII2 < 1 but otherwise ES is arbitrary.
e33 = 0 Case:
0
ell 0
E=]o 0 2¢39 ' (165)
0 20 39 0

where lelll‘f-z and otherwise e and 9 are arbitrary.
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e23 = e33 = 0 Case:
[ o 0 3039
E=| o0 e, 0 (166)
| 3¢73° 0 c

where |e22| < 3 and otherwise e and 8 are arbitrary.

e13 = e23 = e33 = 0 Case
— =
ell 0 0
E = 0 -4 0 (167)
e 0 0
| 31 -
where
2 2
Jlenl + ley |7 <4 = [[E]], (168)
. '+— .
but otherwise ell and e31 are arbitrary
< :
|e33|__ 1/2 Case
- 1
ell' 0 ' 0
j9 :
E = 0 1/2 3/2 e (169)
0 32 ¢ 38 -1/2
- wed
. where
V10

le, .| < llEll, = =5 =1.58 (170)



and €1 and 6 are otherwise arbitrary.

It is important to éoint out that we have limited ourselves to
constraints on E of a very special form and in general arbitrary con-
straints on the form of E lead to a mathematical nonlinear programming
However,

problem that does not in general have a closed form solution.

it turns out that the special form of constraints on E will be useful in

obtaining robustness results of Chapter IV. Next, however, we turn tc the

basic robustness problem formulation of the next chapter.

2.6 Concluding Remarks

This chapter has briefly introduced singular values and the singular

value decomposition of a matrix and shown their use in finding the nearest

singular matrix A to a given nonsingular matrix A. The main results are

the solutions to Problems B and C which give the structure of the error
matrix E = A - A when E is constrained to belong to a certain set. The
norm of the matrix E is given by the geometric mean of the two smallest
singular values of the matrix A, when E has no projection in the subspace
spanned by EnX:' where u and v are the left and right singular vectors
associated with on,the smallest singular value of A.

These results were collected in this chapter in order not to entangle
the algebraic aspects of this problem with the robustness issues of feedback

control systems discussed in later chapters, which utilize these results in

the frequency domain via Nyquist's stability criterion.
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3. ROBUSTNESS ANALYSIS FOR LINEAR SYSTEMS
WITH UNSTRUCTURED MODEL ERROR

3.1 Introduction

The purpose of this chapter is to give a very simple explanation of
how to measure the stability robustness of multivariable feedback con-
trol systems using singular values of certain freguency response matrices.
The difference between multiple-input-multiple-output (MIMO), multivariable
and single-input-single-output (SISO) feedback control systems with re-
spect to the robustness problem is illustrated by a worked example and
some of the shortcomings of treating a multi-loop system as a series of
single-loop systems are exposed. In this chapter, we assume that the
only information we possess about the model uncertainty or model error
is described by a single frequency dependent number which measires the

size or magnitude of the model error. Results that use only error

magnitude information are called unstructured. Those that use more

than just error magnitude information are called structured. The un-
structured robustness results of this chapter are first presented in the
SISO case in section 3.2 for additive and multiplicative types of
modelling errors to clearly illustrate the ideas that are later gener-
alized in the MIMO case.

In section 3.3 a multivariable version of Nyquist's theorem is
given and the worked example is given to show that although the stability
of a MIMO sysfem maf be determined from the multivariable Nyquist diagram
the stability margins for the MIMO feedback system cannot be determined
from the multivariable Nyquist diagram. This is in contrast to the

SISO case where the stability margins can be determined by inspection
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of the Nyquist diagram. In fact, in the SISO case, this is the main
reason for the value of the Nyquist diagram; it determines the stability
of a whole class of systems near the nominal system and not just the
stability of the nominal system.

In order to efficiently generalize the SISO results of section 3.1,
a.very general robustness theorem is derived in section 3.4 that forms

the basis of the derivation of all subsequent robustness theorems in

this chapter. This theorem is based on the idea of deforming the Nyquist

diagram of the nominal feedback system into a Nyquist diagram of the
actual system without changing the number of encirclements of the critical
point required for stability in the multivariable Nyquist theorem.

In section 3.5, different kinds of modelling errors are defipned and
it is shown that if the magnitude of these errors are bounded appropri-
ately then the feedback system will remain stable despite these modelling
errors. It is then shown, in section 3.6,'how these errors can be in-
terpreted from a block diagram of the perturbed or actual system that
incorporates these model errors and a comparison of the different theorems
guarding against different types of errors is made.

From bounds on the modelling errors it is shown in section 3.7.1

how guaranteed multivariable gain and phase margins may be defined and

determined. Section 3.7.2 introduces a new type of margin which pliaces
bounds on the allowable amount of crossfeed from one feedback channel
to another. This crossfeed margin is also derived from bounds on the

modelling error obtained in the theorems of secticn 3.5. Using these

robustness results the example of section 3.3 is reworked in section 3.8,
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the stability margins are calculated, and the near instability of the
feedback system that was undetected by single-loop methods is detected

by the methods of this chapter.

In the section 3.9 additional robustness theorems are derived

and related to separating functions. These additional theorems include
versions of the well-known small gain and passivity theorems [i2]. The
separating functions are used to show the basic similarity of the various
robustness criteria to the small gain thsorem. Section 3.10 gives some
simple extensions of the theorems for linear systems to the nonlinear
case. Concluding remarks about the relationships and use of the various
theorens is given in section 3.11.

The major new results of this chapter . are contained in Theorems
2, 5 and 6. Theorem 2 is the general robustness theorem from which all
subsequent theorems are derived. Theorems 5 and 6 concern robustness
results for modelling errors not previously‘consiéered in the literature.
Versions of Theorems 3, 4, 7, 8 and 9 have previously appeared in the
literature [12, 13, 14, 19, 47, 48, 49] and are presented herein so as
to place in perspective the newly obtained results and support the

explicit interpretation of the robustness criteria as bounds on the

allowable meodelling errors.

3.2 Robustness and the SISO Nyguist Criterion

The robustness of a SISO feedback system is determined by the
distance that its Nyquist diagram avoids the critical (-1, 0) point in

the complex plane. Suppose that we have the SISO control system of

Fig. 1



-51-

uc(s) g (s) — —y(s)

Fig. 1: SISO System under Consideration

where g(s) represents the nominal open-loop plant transfer function
together with any other compensation that h;s been introduced. Now
due to modelling errors the actual compensaﬁed plant is better repre-
sented by the transfer function g(s), a perturbed .g(s). Therefore,
we would like to know if the closed-loop system will remain stable when
g(s) is replaced by g(s). This question is answered by drawing the
Nyquist diagram of §(s) and determining if the Nyquist diagram of g(s)
encircles the (-1, 0) point the same numbzr of times as the Nyquist
diagram of g(s) does, (this assumes g(s) and g(s) have the same number
of unstable poles)i Suppose the Nyquist diagrams of g(s) and d(s) are
those illustrated in Fig. 2.

From Fig. 2 one would conclude that the perturbed closesd-loop
system is stable since the number encirclements of (-1, C) is unchanged.

If d(w) denotes the distance to the critical point (-1, 0) and p(w)
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4
3

critical point
- o
N d (wg)
g (wg) '
p(wo) 3w
Perturbed /.. °
g(jw) gljw)

+>Re

Nominal

Fig. 2: Nyquist diagrams of nominal and perturbed systems

denotes the distance between g(jw) and g(jw), then it is apparent, from
Fig. 2, that the closed-loop system will remain stable if d(w) > p(w)
for all w. That is we could draw a graph, as in Fig. 3, denoting the
distance to the critical point {-1, 0) for all w and guarantee the
stability of the perturbed closed-loop system if the p(w) curve lay
below the d(w) curve.

There are several ways to define d(w) and p(w) but the most

natural seems'to be

dw) = |1+g (5w | ] (1)

I

13Gw - g3w | : (2)

P (w)
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—

distance to critical point

/ d(w)

Distance

Fig. 3: Graph of d(w) and p(w) as a function-of frequency, w .

This corresponds to an additive model of the error shown in Fig. 4 where

e(s) = §(s) - g(s) and P(w)y = |e(3w)|.

r—-—-———- - —""—=—7=— A
| — e(s) :
o x!
ug(s)— i = g(s) o O —u(s)
b e e e 1
g(s)
-

Fig. 4: BAdditive Model error e(s).

For a multiplicative model of the error between g(s) and g(s) we define

e(s) as

_3(s) - g(s) (3)

e(s) 3(s)
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With this definition of model error the block diagram of the perturbed

closed-loop system is shown in Fig. 5

[
|
uc(s) > 1+e(s) —= gls)
|
L

Fig. 5: Multiplicative model error e(s).

Also, with this type of model error, the measures of distances, d(w)

and p(w), become

dw = |l+g o | (4)
and
o 9Gw - g(jw)
= j = . 5
P = |e(Gw) | = 500) (5}
Equation (4) is simply obtained by letting §(jw) = =1 in (5) or by using

the additive error robustness criterion that
13Gw) -g(Gwy | < [1+g (Gw) | (6)

then dividing by [g(jw)| to obtain the multiplicative error robustness

criterion that

gjw) - gjw). -1,. -
5G0) < |14 (G | = d(w)

Pw = |le(iu)| =
(7)
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and identifying the quantity d(w) = |l+g-l(jw)| as that which botnds the
magnitude of the modelling error.

In the MIMO case, the multivariable analogs of the criteria of (6)

and (7) will be developed using singular values as well as robustness

tests involving other types of modelling errors. The basic test is to

upper bound the magnitude of some type of model error (i.e., the distance

between the nominal and perturbed systems) by a generalization of the

The key problem in the MIMO case is that

distance to the critical point.

these distances can no longer be measured off of a multivariable Nyquist

diagram or a series of single-loop Nyquist diagrams.

3.2.1 Gain and Phase Margins

Classically, in the SISO case, a measure of the nearness of the
Nyquist diagram to the critical pecint is given by the gain and phase

margins. These margins are defined with reséect to Fig. 6

o a(s) [— gls)

Fig. 6: System for definition of SISO gain and phase margins

The gain margin, denoted GM, is the largest interval (cl, c2) such that

if a(s) = k, k a real constant, then the system of Fig. 6 it stable for
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all k € (cl, c2). The number ey is the downward gain margin and the

number c, is the upward gain margin. The phase margin, denoted PM, is

the largest interval (-cl, cl) such that if a(jw) = eje(w), 6 (w) real,

then the system of Fig. 6 is stable for all 6 € (-c ,cl). These margins

are depicted in the Nyquist diagram of g(s) in Fig. 7.

Im

/ \ /
N y
W

crossover P
frequency ~S~.L -

gljw)

Fig. 7: Nyquist diagram with GM = (a,B) and PM = (~d,9) .

1 is known as the crossover

The largest value of w such that Ig(jw)|

frequency and is used to indicate the bandwidth c¢f a control system

feedback loop.

From Fig. 7 it is apparent that the gain and phase margins measure

the distance of the Nyquist diagram to the critical point (-1, 0) at

some particular values of w. They are generally good indicators of the



-57-

nearness of a system to instability but may not be accurate indicators of

robustness in pathological cases such as the one shown in Fig. 8.

Im
4

Fig. 8: Nyquist diagram with GM = (-%,») and PM = [~-180°, 180°]

In the MIMO case it is also possible to define multiloop gain and
phase margins which also provide an indication of system robustness but
do not rule out the type of situation shown in Fig. 8 appropriately
generalized to the MIMO setting. This will be done in section 3.7.1
but first we turn to the development of multivariable generalizations of

the robustness tests of (6) and (7).

3.3 Robustness and the Multivariable Nyquist Theorem

In this section we discuss a version of the multivariable Nyquist

theocrem [1] and work a simple illustrative éxample that shows single-loop



~58-

type of stability analysis is inadequate when applied to MIMO systems.
The feedback system to be discussed is depicted in Fig. 9 where the loop
transfer matrix G(s) is assumed to incorporate both the open-loop plant

dynamics and any compensation employed.

uc(s) * ] ) > —u(s)

n

Fig. 9: Feedback system where G(s) represents the
open-loop plant plus a compensatoxr

In addition, G(s) is assumed to be derived from a state space realization

so that y(s) = G(s) u(s) is given in the time domain by
X = Ax + Bu (8)
¥y =cx (9)
and thus
G(s) = C(Is-A) ‘B . (10)

The basic issue of concern is to characterize the robustness of the
feedback system, i.e., the extent to which the elements of the loop
transfer function matrix G(s) can vary from their nominal design values
without compromising the stability of the closed-loop system of Fig. 9.
The analysis is based on the multivariable Nyquist theorem which is de-

rived from the following relationship
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¢ (s)
CL -

det[I+G(s)] = ﬁs)_- : (11)
oL

where
¢OL(s) = det(sI-A): open-loop characteristic (12)
polynominal
¢CL(S) = det(sI-A+BC): closed-loop characteristic (13)

polyncminal

and from the Principle of the Argument of complex variable theory.

Definition (Number of encirclements): Let N@,£(s),C) denote the

number of clockwise encirclements of the point @ by the lccus of £(s)

as s traverses the closed contour C in the complex plane in clockwise

sense.

A simple version of the multivariable Nyquist theorem can now be

stated in the following form.

Theorem 1 (Multivariable Nyquist Theorem): The system of Fig. 9 is

closed-loop stable (in the sense that ¢CL(s) has no closed-right-half-

plane (CRHP) zeros)if and only if for all R sufficiently large

N(0, detlI+G(s)], Dg) = -P (14)
or equivalently
N(-1, -l+det[I+G(s)], Dg) = -P (15)

where D, is the contourl of Fig. 10 which encloses all P CHRP zeros

R

1 . . . . . S s
The indentations on the imaginary axis are made to inciude open-loop
jw-axis poles which will be considered as unstable.
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of ¢OL(S) and where N(, £(s), C) is indeterminate if f(so) = ) for some

s eC. Ims
0 4

s —»Res

oL
radius R ‘

_JR

Fig. 10: Nyquist Contour Dy which encloses all zeros
of ¢0 (s) in.the CRHP, avoiding zeros on the
imaginary axis by identations of radius 1/R.
Notice that no controllability or obser&abiliéy assumptions have

been made. If [A,B,C,] is a nonminimal realization [50], pole-zero
cancellations will occur when G(s) is formed, eliminating uncontrollable
or unobservable modes. Nevertheless, it is important to count these
modes in the Nyquist criterion since infinitesimal changes in the matrices
A,B, and C may make them controllable and observable even though it is
not possible to detect the instability of these modes in terms of G(s).
However, by using the zeros of ¢0L(s) instead of the poles of the loop
_transfer matrig G(s), this version of the Nyquist theorem allows one to
test for the internal stability of the closed-loop system. For other

multivariable versions of Nyquist theorem refer to [1-6].
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Remark: When compared with the classical Nyquist theorem for the SISO

case, the multivariable Nyquist theorem is much more difficult to use,
for two reasons.

First, the dependence of det[I+G(s)] on the compensation implicit
in G(s) is complicated, and cannot easily depicted with a Nyquist, Bode or
related plo:t. This fact has motivated a considerable amount of research
on synthesis methods, e.g., [1] - [6]. These will not be discussed at
length since the main thrust of this thesis is primarily analysis.

Second, and this is the key cbservation, one cannot get a satisfactory

notion of the robustness of a feedback system directly from the multi-

variable Nyquist diagram. The following extremely simple example illustrates

this fact.

Example 1:

Consider the linear system 1 specified by

[ ] _
xl 1 0} Xl [i b12 ul
= + (16)
X 0o -1 X 0 1 u
i ZJ 2 t J 2
[, X,
= (17)
] L

which is illustrated in Fig. 11.

1This example is a modified version of one found in [58].
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r— 77/
I X
| * f 1 |
u - )
! e J l '
| I
l b|2 | |
| |
I + X2 |
l - l
I , I
e e e e e e
Fig. 11: Internal Structure of Example 1
If the feedback compensation
ul [kl ucl
= - + (18)
%2 [_xz Ye2
is used the closed-loop system is given by
'31 : -2 -b12 Xl 1 b22 -ucl-
) = + (19)
X, 0 -2 X, 0 1 ucz.

The eigenvalues of this closed-loop system matrix are obviously -2, -2

indicating a stable system. The return difference matrix, I+G(s), is




-G3-

given by ) b
Efg 12
s+l s+l
I+G(s) = (20)
s+2
L I 0 s+1
and thus
det[14a(s)] - 1 = 222, (21)
(s+1)

The multivariable Nyquist diagram for this system is just the usual

Nyquist diagram of 2§i§_5 shown in Fig. 12 where we count encirclements
(s+1)
of the (-1, 0) point to determine closed-loop stability.

-

Im

!

2s+3

Fig. 12: Nyquist diagram of >
(s+1)

Since the system (16) is open-loop stable we also can conclude from Fig.

12 that the closed-loop svstem is stable since the Nyquist diagram does
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not encircle the (-1,0) pointl.

Suppose now that we attempt to interpret this multivariable Nyquist

diagram as a SISO Nyquist diagram and read off the gain and phase margins.
We find that a SISO system with this Nyquist diagram has an infinite
upward gain margin, a gain reduction margin of -1/3 and a phase margin
in the neighborhood c¢f +106°. These margins are usually indicative of
a highly robust system. For example, it is typically assumed that a
46 dB gain margin (i.e., GM = [1/2, 2]) and a 30° to 45° phase margin
is adequate insurance against model uncertainty within a limited band-
width in which the model is accurate and 20 dB upwara gain margin and
+ 180° phase margin above the frequency range for which the model is
valid. ’ .
In practice, stability margins for multiloop systems are often
calculated for each feedback loop separately by opening one feedback
loop at a time while keeping the remaining loops closed and determining
the gain and phase margins for the resulting SISO systems. To make this
clear, consider Fig. 13 where a(s) has been inserted in one of the feed~
back channels.

By determining the allowable values of a(s) for 0(s) a real constant

or of the form ej¢ 2 gain and phase margin for the feedback channel with

0.(s) in it may be determined. Moving the a(s) to different channels,

a gain and phase margin may be associated with each feedback loop.

1Note that the mere determination of stability is accomplished more simply
in the time domain by calculating eigenvalues cf A-BC.
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G(s) -u(s)

Fig. 13: MIMO Feedback system used to measure gain
and phase margins in each feedhack channel.

This is illustrated in Fig. 14 for our current example with the

first loop open and the second loop closed.

e e — — = — =~

|
i_ I Open-Loop1 :
u uq | System | |
SL_ o mx —»f [ L, y,
|+
loop broken here | |
to check margins I b12
Uco=0 + U2
c2
A l e 4 f fyZ

Fig. 14: System with Loop 1 opened and Loop 2 closed -
used to check stability margins for SISO

system with input ul and output Y-



-66-

Carrying this procedure out on our example we obtain (setting ucl =u, = 0)

Loop 1 open; lcop 2 closed:

1
yl(s) = i ul(s) (22)

Loop 2 open; loop 1 closed:

1
yz(s) = uz(s) | (23)

The Nyquist diagram for ;%I is given in Fig. 15.

Im

~
\

»Re

1

. . . 1
Fig. 15: Nyquist diagram of Py

Thus we see that in each feedback locp with the other held at its

nominal value we have the folléwinq stability margins

GM = (-1, @) (24)

PM = (-180°, 180°) (25)
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Again the system would seem to be highly robust (using the pre-
vicusly mentioned typical margin requirements). In fact, if two dif-
ferent ai(s) are inserted simultaneously (instead of one at a time as
in Fig. 13) in the two feedback channels, the closed-loop system will
gemain stable if both ai(s) are such that ai(s) e (-1,‘w) for ai(s)
real and constant and ei e (-180°, 180°) for ai(s) = ejsi. ?hat is,

1
(24) and (25) hold simultaneously in both feedback loops .

‘ote, however, that the Nyquist diagrams of Figs. 12 and 15 do
not depend on the value of the parameter b12 and that as b12 becomes
large the closed-loop system is close to instability in the following
sense. If the open-loop system of Fig. 11 is perturbed slightly to
obtain the system of Fig. 16, the closed-loop system obtained by nega-
tive identity feedback (i.e., u = -y) is unstable and has closed-
loop poles at (;i/§)/2. This situation cannot be detected by inspection
of the multivariable Nyquist-diagram or a series Sf single~loop Nyquist
diagrams. It also cannot be detected by characteristic loci plots
[4,5) which are merely polar plots of the eigenvalues of G(s) for
s € DR which in our case are both éiven by 1/(st+l) plotted in Fig. 15.
Clearly, these eigenvalues do not depend upon the value of bl2’ and
hence are unable, to detect the near instability problem just described.
An example is given in reference [43] which shows also that Rosenbrock's
synthesis prqcedure {1] based on diagcnal dominance has similar de-

ficiencies. This deficiency can be interpreted as a failure to account

1This is not true in general and is one of the deficiencies of the loop-
at-a-time method of determining stability margins; one cannot expect
model uncertainty to conly affect one loop at a time!l
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PERTURBED PLANT

|

I

l |
|
“1lr%
|
!

5 b

I
|
!
!
l
|

|
I
!
I
l _
l
!
l
!

> Y,

Fig. 16: Perturbation in Nominal Opéen-Loop Plant
that makes closed-loop system unstable

for certain types of modelling error.
The difficulty we have uncovered can be explained in the fol-

lowing way. A multivariable system will not be robust with respect

to modelling errors if its return difference transfer function matrix

I+G(jw) is nearly singular at some frequency wo, since then a small change

in G(jwc) will make I+G(jmolexactly singular. When this happens,

det[(I+G(jw0)] = 0 and the number of encirclements of the origin counted
in the multi&ariable Nyquist criterion changes.

In this example, a small change in I+G(jwo) produces a large
change in det[I+G(jmo)] showing that the near singularity of a matrix

cannot be detected in terms of its determinant. Instead, tests such
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as those developed in the following sections must be employed which
utilize the minimum singular value to measure the near singularity of

matrices (see equations (2.70) and (2.41)).

3.4 Fundamental Robustness Characterization

From the example of the previous section, we cah see that the
problem of determining the robustness of a multivariable feedback
system, (i.e., its distance from instability), is of fundamental im-
portance. Some recent work in this area is due to Safonov [7,18], who
generalized an approachof Zames [10, 11]. Safonov's work heavily
_utilizes concepts of functional analysis, as is standard in the modern
input-output formulation of stability theoryl. However, in the finite
dimensional linear—time—inQAriant case, a powerful robustness charac-
terization can be derived more simply in terms of the multivariable
Nyquist theorem.

In order to present the basic robustness theory from which all

the other robustness results that work with specific model error

criteria may be derived, we need the following notation.

Definition: Let G(s) denote the perturbed loop transfer function
matrix, which represents the actual system and differs from the nominal
transfer function matrix G(s).because of the uncertainty in the open-
loop plant model. We will assume that G(s) has the state space reali-

zation (&,8,8) and open- and closed-loop characteristic polynomials

lSee, e.g., [12] or [13].
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given by
¢OL(s) = det(sI-A) (26)
and
$ (s) = det(sI-A+EC) (27)
CL :
respectively. Furthermore, we define G(s,€) as a matrix of rational

transfer functions with real coefficients which are continuous functions

of € for all € such that 0<e<l and for all s € D_, which satisfies the

R
following two conditions
G(s,0) = G(s) (28)
and .
G(s,1) = G(s) (29)

With these definitions we may state the fundamental robustness
theorem of this chapter. This theorem does not adopt a specific model

error criteria but works directly with a perturbed'é(s) from which any

particunlar model error may be computed.

Theorem 2 (Fundamental Robustness Theorem): The polynomial $CL(s) has

no CRIP zeros and hence the perturbed feedback system is stable if the
following conditions hold:

1. (a) ¢OL(s) and 5OL(S) have the same number of CRHP

Zeros

(b) if ¢ L(jwo) = 0, then ¢OL(jwo) =0

O
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(c) ¢CL(s) has nc CRHP zeros

2. det[I+G(s,€)]# 0 for all (s,€) € DRx[O,l] fer all R
sufficiently large.

Proof: For any € in [G,1] and for all R sufficiently large the contour

DR will enclosed all open-right-half-plane (CRHP) zeros of ¢OL(s) and

~

¢0L(s). By virtue of condition 1b and the identation construction of

DR’ DR will enclose all CRHP zeros of ¢OL(s) and ¢OL(SJ. Also, for
R sufficiently large, DR avoids all open-left-half-plane (OLHP) zeros

of ¢y (s), %L(s) and ¢, (s). From Theorem 1 (multivariable Nyquist

theorem) and condition lc we conclude that

N(0, detl[I+G(s,0)1, DR) = =P (30)

where P is the number of CRHP zeros of ¢OL(S) and also of $OL(s) by

condition la. Clearly, det[I+G(s,€)] is a continuous function of €

for all s € DR.

Now suppose that as € is varied continuously from zero to unity
that the number of encirclements given by N(0, det[I+G(s,€)], DR)
changes. Since det[I+G(s,€)] is continuous in (s,€) in DRx[O,l],its
locus on DR forms 2 closed bounded contour in the complex plane for
any € in [0,1]1. The only way to change the number of encirclements

of the critical point (0,0) is for the locus for some € in [0,1] to

pass through the critical point, that is for some eo in (0,1
det[I+G(s,€0)] =0 (31)

for some s in DP'
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Condition 2 eliminates the possibility that det[I+G(s,eo)] equals
zero. This contradicts the assumption that N(O,det[I+G(s,€)], DR)
changes as € is varied from zero to unity, and thus it must be true that
it remains constant at -P for all €. However, this fact along with (20)
imply that

N(o, detl[I+&(s)1, DR) = ~P (32)

and thus by condition la and Theorem 1 (Nyquist's theorem) , $CL(s) has

no CRHP zeros.
Q.E.D.

Remark: The basic idea behind this theorem is that of continuously de-
forming the Nyquist diagram for the nominal system G(s) into one cor-
responding to the Nyquist diagram of the perturbed or actual system

G(s) without changing the number of encirclements of the critical point.
If this can be done and the number of encirclements of the critical
point required for G(s) and G(s) are the same, then no CRHP zeros of
$CL(S) will result from this perturbation.

Imbedding arguments of this type have been previously used,
implicitly by Rosenbrock [1] and explicitly by Doyle [14], in connection
with linear systems and in the more general context of nonlinear and multi-
dimensional systems by DeCarlo, Sacks and Murray [15] - [17], utilizing

homotopy theory from algebraic topology.

Remark: The significance of Theorem 2 is that various multivariable
robustness characterizations can be stated in terms of conditions that
guarantee condition 2 is satisfied. In checking condition 2, it is

unnecessary to consider all s € Dp if [[G(sre)[lz + 0 as |[s| > .
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This will be the case in what follows and it is related to the assumption
that the state-space realizations of G(s) and a(s) have no direct feed-

" through from input to output so that I]G(s)l[z and ll&(s)’]z approach

zero as lsl -+ o, It is therefore convenient to define the segment

QR as
Q. = {s|s e D, and Re(s) < 0} (33)
which is the only part of the Nyquist contour DR on which condition 2

need be verified.

3.5 Robustness Theorems and Unstructured Model Error

In this section, we develop theorems that guarantee the stability
of the perturbed closed-loop s&stem for different characterizations of
model uncertainty (i.e., differ=nt types of model error). This is done
via Theorem 2 by using a specific error criterion to construct a transfer
matrix G(s,€) coptinuous in € on DR x[0,1] that satisfies (28) and (29).
Then a simple test bounding the magnitude of the error is devised which
guarantees that condition 2 of Theorem 2 is satisfied. This procedure
is carried out for four different types of errors. These tests use
only the magnitude of the modelling error and do not exploit any other
characteristics or structure of the model error and hence are based on

the unstructured part of the model error. These different types.of model

errors will emphasize different aspects of the difference between
the nominal G(s) and G(s) and thus under certain circumstances will
give essentially different assessments of the robustness or margin of

stability of the feedback control system.
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Probably the most familiar types of errors ares those cof absolute

and relative errors. Absolute errors are additive in nature whereas

relative errors are multiplicative in nature. One can use both types

of errors to derive robustness theorems. However, the familiar notions
of gain and phase margins are associated only with relative type of
error since these margins are multiplicative in nature.

If we let the matrix E(s) generically denote the particular

modelling error under consideration, the absolute error is obviously
given by
E(s) = G(s) - G(s) (34)

and the relative error, in a matrix sense, by

¢ Lis) [&(s)-G(s)] . (35)

E(s)

In (35) G-l(s) could post-multiply the absolute error and serve as an
alternative definition of relative error in the matrix sense but all
subsequent results will still hold with trivial modifications. Using

these errors we will prove two robustness theorems. However, first

G(s,€) must be constructed.

Using (34) and (35) we can define G(s,€) by replacing G(s) in
(34) and (35) by G(s,€) and E(s) by €E(s) and solving for G(s,€). If

we do this we obtain

G(s,e) = G(s) + €E(s) : (36)

where E(s) is the absolute error given by (34) or

G(s,€) = G(s) [T+€E(s)] | (37)
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where E(s) is the relative error given by (35). Both (36) and {37) imply
the same G(s,8) although they employ different types of errors to arrive

at G(s,€). In either (36) or (37) G(s,e) is simply given by

G(s,€) = (1-€)G(s) + &G(s) (38)

showing that G(s,8) is continuous in € for € on [0,1] and for all
s € DR and that G(s,€) satisfies (28) and (29).

In deriving stability margins based on theorems using different
error criteria, we will find it useful to define a multiplicative un-
certainty matrix L(s) to account for modelling errérs in the open-loop

plant. The perturbed or actual system G(s) in this case is given by

G(s) = G(s)L(s) (39)

which implicitly defines IL(s). Notice that for the relative error

criteria that L(s) is very simply given by

L(s) = (I+E(s)) , (40)

where E(s) is given by (35). However, as will be shown later (40) ;s
not the only description of L(s); there are other types of relative
errors vet to be discussed in which the relationship between L(s) and
the generic E(s) is not so simply given by (31). We will use both L(s)
as defined implicitly in (30) and a variety of error matrices denoted
by E(s) in stating the subsequent robustness theorems.

Two robustness theorems based on the preceedings definitions of

absolute and relative errors in (34) and (35) respectively are the

follewing.
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Theorem 3 [48,49]: The polynomial $CL(s) has no CRHP zeros and hence

the perturbed feedback system is stable if the following conditions

hold:

1. condition 1 of Theorem 2 hclds

2. Oﬁin[I+G(s)] > cﬁax[E(s)] for all s € QR

where E(s) is given by (34), and QR was defined
by (33).

Proof: From (36) we see that I+G(s,€) is given by
I+G(s,€) = I+G(s) + €E(s) .

From the properties of singular values (see -(2.41)) we know that

I+G(s) + €E!s) will be nonsingular if
t > = 0 . 41
omin[IrG(s)] Oﬁax[eE(S)] € cﬁaxlE(S)] (41)

which is clearly guaranteed by condition 2 since € is always between

zero and unity and thus condition 2 of Theorem 2 holds.
' Q.E.D.

Theorem 4 [14,48,49]: The polynomial $CL(S) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:
1. condition 1 of Theorem 2 holds

2. o . [I+Gil(s)] >0 [E(s)] for all s € QR
min max
where E(s) is given by (35).

Proof: From (37) we see that I+G(s,€) is given by
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I+G(s,8) = I+G(s) [I+€E(s)]

= G(s)[I4G T(s) + €E(s)] . (42)

Here by writing G-l(s) we assume it existsl so that I+G(s,€) is singular
if and only if [I+G-1(s) + €E(s)] is singular. As in the proof of
‘Theorem 3, we know from (2.41) that condition 2 guarantees that
I+G-l(s) + €E(s) is nonsingular, hence Theorem 2 is satisifed.
Q.E.D.
Theorem 4 was first proved by Doyle [14] using singular values

and Nyquist's theorem but under the slightly stronger condition that

E(s) be stable. BAn operator version of Theorem 3 is due to Sandell
[48] who was the first to consider additive perturbations. Laub [49]

provides further numerical insights to the relationship of Theorems

3 and 4.

Before we give some discussion of these theorems and some possible
corollaries, we will develop some additional robustness theorems which
are complementary to Theorems 3 and 4 and are derived on the basis of

alternate definitions of the error matrix E(s).

Suppose that instead of measuring the absolute relative errors

1The assumption that G s exists guarantees that any pertrubed system

G can be represented as G = G(I+E). However, if G is singular but

G is in the range space of G then E may ke implicitly defined as a
bounded solution of GE = G-G. In this case Theorem 4 still holds _,
if Oﬁin(I+G—l) is replaced by its egquivalent for all G, G;éx[G(I+G) 1.
which is bounded by condition I if G £ 0. If G is not in the range of

G then G cannot be represented as G = G(I4E).
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between G(s) and G(s), we measure the absolute and relative errors
between E—l(s) and G-l(s). In the SISO case, this would correspond
to measuring the absolute and relative errors between the nominal and
perturbed systems on an inverse Nyquist diagram in which the inverse
loop transfer functions g-l(s) and 5-1(3) are plotted. (The inverse
Nyquist diagram can also be used to determine stability by counting
encirclemnents of the critical points (0,0) and (-1,0) in the complex

plane.)l Therefore, it would be natural to define the absolute and

relative errors between the nominal and perturbed systems as

E(s) = & 1(s) - ¢ Y(s) (43)

for the absolute error and

B(s) = [ Y(s) - G H(s)1G(s) ' (44)

for the relative error. Using (43) and (44) we may define a G(s,€),
again by replacing G(s) by G(s,€) and E(s) by €E(s) in (43) and (44),

and then solving for G(s,€). If this is done, we obtain

a(s,e) = [6 1(s) + €E(s)] T (45)
where E(s) is given by (43) and

G(s,e) = G(s) [T+eE(s)] T (46)

where E(s) is given by (44). Both (45) and (46) give the same G(s,€)

which written in terms of G(s) and G(s) is

1 . . . . .

It is not intended to give a discussion of the inverse Nyquist criterion
[1] but only mention it to suggest that the use of G™l(s) is as reascnable
as G(s) in a definition of model error. ’
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G(s,€) = [(1-€)g " (s) + €G " (s)] (47)

where now we see that € enters nonlinearly and it is not clear that
G(s,8) is continuous in € in [0,1] for all s € DR but is is clear that
it does satisfy (28) and (29). The type of G(s,8) in (47) could be
réplaced by the one in (38) and theorems worked out in terms of the
errors described by (43) and (44). This approach was taken by Lehtomaki,
Sandell and Athans [51] and led to more restrictive and complicated
conditions to check than the approach using (47).

Since (45), (46) and (47) are all equivalent in that they give
rise to the same G(s,€) we may work with any one of them to prove
‘assertions about the continuity of G(s,€) required by Theorem 2. If
E-l(s) and G-l(s) exist, so that E(s) in (44) is well-defined, then we
can see that for G(s,8) to be continuous in € for (s,E€) € DR x{0,1] all
we need to guarantee is that [I+€E(s)] is nbnsingﬁlar . Notice that in

this case L(s) is simply

L(s) = [I+E(s)] t (48)

and that [I+€E(s)] is nonsingular for all € in [0,1l] if L(s) defined by
(39) has no zero or strictly negative eigenvalues. This is true since
if L(s) has no zero or negative eigenvalues, neither does I+E(s) and
thus E(s) cannot have eigenvalues in the interval (-«, -1] so that
€E(s) never ﬁas eigenvaiues of -1. Therefore with these restrictions

G(s,€) is continuous in € on DR x[0,1]. We also see from (46) that

1

if E(s) is bounded (i.e., é-l(s) and & “(s) exist) and L(s) has no

zero or negative eigenvalues that llG(s,e)ilz + 0 as [sl + ® for any
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€ in [0,1]. This allows us to check for the nonsingularity of I+G(s,€)
only on QR><[O,1]in Theorem 2. We may now state the theorems analogous

to Theorems 3 and 4.

Theorem 5: The polynomial $CL(S) has no CRHP zeros and hence the

perturbed feedback system is stable.if the following conditions hold:

1. condition 1 of Theorem 2 holds

2. L(s) of (39) has no zero or strictly negative real

eigenvalues for any s € QR

-1 .
. - >
3 Ghin[I+G (s)1] Gmax[E(s)] for all s € QR
where E(s) is given by (43)

Proof: From (45) we have that

I+ G s + e (s)1 L

I+G(s,€)

z+6 L(s) + eE(s)116 L(s) + eE(s)1 ™t

]

(146 L(s) + €E(s)1G(s,e) (49)

and since G(s,€) is nonsingularl, I+G(s,8) is nonsingular if and only
if [I+G-l(s) + €E(s)] is nonsingular which is true by condition 3..
Condition 2 merely ensures that we have a G(s,€) continuous in € to
work with as required to apply Theorem 2. Thus, Theorem 2 holds

and $CL(S) has no CRHP zeros. : 0.E.D.

I this proof essential use of the fact that G(s) and G(s) are both
invertible on D_ is made. This is different from the case of the

footnote of Theorem 4.
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The next theorem works with the relative error between é_l(s) and
G—l(s) and plays a fundamental role in establishing the properties of

IQ (linear-quadratic) state feedback regulators which will be discussed

in Chapter 5.

Theorem 6: The polynomial $CL(s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition 1 of Theorem Z holds

2. L{s) of (39) has no zero or strictly negative real eigenvalues
- + > f

3 Ohin[l G(s)] Oﬁax[E(s)] or all s € QR

where E(s) is given by (44)

Remark: If condition 3 is satisfied and omin[I+G(s)] <1 then it can

be easily shown via (48) that condition 2 is automatically satisfied.

Proof: From (46) we have that

I+G(s,€) = I + G(s) [I+€E(s)] ~ = [I+G(s) + EE(s)][I+€E(s)] L (50)

s . . 1
and condition 2 not only ensures G(s,€) is continuous™ on DRx[C,l] but

aiso that I+€E(s) is nonsingular on the same set. Thus I+G(s,€) is

lIn this proof no essential use of the fact that -1 and G-l exist is

G
made. If E is implicitly defined by G = G(I+E) rather than (34), then
Theorem € still holds. However, if G is not in the range space of G,
and vice versa, it is not possible to represent & as G = G(I+E)-1l.
Thus, even if G™1 and &~1 do not exist it may be that G(s,€) is
continuous on D.x[0,1] by using the implicit definition of E if &

can be so represented.
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nonsingular if and only if [I+G(s) + €E(s)] is nonsingular which is
guaranteed by condition 3. Hence, again Theorem 2 1is satisfied and

therefore 6CL(S) has no CRHP zeros.
Q.E.D.

o

Theorem 6 is an improved version of a theorem found in [51].

Observation: The condition that L(s) have no strictly real and negative

eigenvalues or be singular can be interpreted in terms of a phase
reversal of certain signals between the nominal and perturbed systems
or as the introduction of transmission zeros by the modelling error.
To make this precise, suppose that for some wo that L(jwo)§_= Ax for
some complex nonzero vector x and some real A.§ 0. Then there exists a
vector u(t) of input sinusoids of various phasing and at frequency wo
which when applied to the nominal system produces an output y(t) and

produces an output A y(t) when applied to the perturbed system. This

is depicted in Fig. 17.

u()—>1 "Sorem 2O

Perturbed
(1) s PETTbRAL o)y (1)

Fig. 17: Relationship between nominal ard perturbed
system for special input u(t) when L(jwo)
has ecigenvalue A. '



-83-

Thus when A is negative the phase difference between the sinusoidal outputs
of the nominal and pertiurbed systems is 180°. If.A=0 then the perturbed

system has transmission zeros at tjwo.

This fact is significant since Theorems 5 and 6 can never guarantee
stability with respect to model uncertainty when the phase of the system
outputs is completely uncertain above some frequency or with respect
to sensor or actuator failures in the feedback channels.

Note that in general that condition 1 of Theorems 3 to 6 and the
state-space description of the nominal and perturbed systems implicitly
place other restrictions on L(s) (and also E(s)). These are simply that
L(s) represent a finite dimensional linear time-invariant system that is
possibly unstable and that L(é) has no purely imaginary poles. Similar

conditions may be derived for each of the four forms of errors used in

Theorems 3 to 6.

3.5 Interpretations of Robustness Theorems

Up to this point, it is probably unclear to the reader what the
significance of the various error criteria are and how they are related.
This can be partly clarified by an understanding of how each error
enters into the structure of the perturbed system from a block diagram
perspective. This is done in Fig. 18 where a very pleasing symmetry
occurs that corresponds to the four basic arithmetic operations of
addition, subtraction, multiplicatibn and division. As can be seen
from Fig. 18 the absolute type of errors correspond to addition and
subtraction whereas the relative errors correspond to nmultiplication

and divisicn. Other types of errors can be represented as combinations
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Block Diagram Error Criterion
of Perturbed System Perturbed Systems and
Stability Test

E(s) = G(s) - G(s)

___J::::E(S)
+ ~
G(S)l‘ &(s) = G(s) + E(s)

+
Gmin(I+G(S)) > Gmax(E(s))

Feedforward
(Addition)

E-l(s) - G-l(s)

L) + BN

_tt(;(s)]_. E (s) |
E(s) , o

-1
cmin(I+G (s)) > crmax(E(S))

Feedback
(subtraction)

¢ L(s) (G (s)-G(s)]

E(s)

E(s)
] + 3(s)
"Jj:"'-j;; 1G(s)—

-1
Ohin(I+G (s)) > Ghax(E(s))

G(s) (I+E(s))

(Multiplication)

E(s) = [G F(s)-G T(s)1G(s)

+ .
G(S)'—'» - -1
- G(s) = G(s) (I+E(s))
E(s)

G . (I+G(s)) > o ___(E(s))
min max

(Division)

Fig. 18: Physical Representation of Perturbed Models -
Corresponding to Various Error Criteria and
Associated Stability Test.
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of these basic types of errors.

For now however, we will defer that topic and discuss the inter-
pretations of the robustness theorems that deal with relative errors
and give some pictorial illustrations of why these theorems ensure that
I+G(s,e) is nonsingular and how they are related.

We shall work mainly with the relative error type theorems since
from them we may derive gain and phase margins for which design engineers
have a more intuitive feel. In the theorems dealing with absolute
type errors it is difficult to account for the effect of the compensator
implicit in G(s) on the model error (i.e., the model error depends on
the compensator used). This does not happen with the relative error
criteria.

To begin with, recall that in Theorems 4 and 6 that L(s) is given

respectively by

L(s) = I + E(s) (51)
for E(s) given by (35) and
-1
L(s) = (I+E(s)) (52)

for E(s) given by (44). If we solve these last two equations for E(s)’

we obtain from (51)

E(s) = L(s) - I (53)

and from (52)
-1 . !
E(s) =L "(s) - I . (54)
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Thus by making |iE(s)|[2 small in (53) L(s) is kept close to the identity
matrix whereas in (54) it is L-l(s) that is kept close to the identity

" matrix by making HE(s)H2 small. This points out the difference in the
types of errors since the same L(s) may make one error quite large

while making the other only moderately ;arqe.

The basic inequalities in Theorems 4 and 6 written in terms of

L(s) are given respectively by

- 1 »
ohin[I+G (s)] > oﬁax[L(S)-I] (55)

for Theorem 4 and by

e

o, [T+G(s)] > o, (L7 (8) = 1] (56)

for Theorem 6. The inequality (55) is the MIMO generalization of the
SISO inequality (7) of section 3.2 but written in terms of 2(s) rather
than g(s). Thus in (55) we see that cminFI+G-1(s)] is just the multi-
variable version of the distance to the critical point (0,0) and
Umax[L(s)-I] is just the generalization of the distance between @(sh

and G(s). Similar interpretations of (56) can be made.

The SISO analogs of (55} and (56) are given by

l14g™ s) | > a > [2(s) - 1 (57)
and

[1+g(s)| > a > |2“1<s>-il ; (58)

respectively. In the form using 2(s) rather g(s), the inequalities

(57) and (58) provide a geometric insight to the relationship of g(s)
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-1
and %(s). The admissable region of the complex plane for -g " (s) and
2{s) satisfying (57) is depicted in Fig. 19. Fig. 20 gives the
analogous regions for g(s) and —l’l(s) satisfying (58). From Fig. 19

it is clear that

-q-l(s) # L(s) (59)

and from Fig. 20 that

-2 s) # g(s) (60)

which simply ensure that l+g(s)2(s) = 1l+g(s) # O or that G(s) does not
pass through (-1,0). Recall that in Thecrem 2 not only must 1+g(s) # O
but we must be able to construct a g(s,8) such that l+g(s,8) # 0 for

€ in [0,1]. However, due to the way that g(s,€) was constructed this

merely results in the requirement that

[1+g-l(s)l > g|2(s)-1] : (61)
in the case of Theorem 4, and

[1+g(e)| > e |27 s) - 1] (62)

fcr Theorem 6. These inequalities are obviously guaranteed by (59)

and (60) since € is between zero and unity.

The main point of this discussion was to show the use of circles
to divide the complex plane into disjoint regions, one in which 2 (s)
(or Q-l(s)) lies and its complement in which -q—l(s) (or g{s)) must lie.
The fact that the radii of the circles can be interpretaed as the magni-
tude of an error or the distance to the critical point is not crucial.

Later on in this chapter we will use the idea of separating the complex

plane into two disjoint regions to derive additional robustness theorems
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Im
A
_—region for -g7(s)
’ region for £(s)
it
5T =a\ 7 e e

Fig. 19: Admissable regions for g > (s) and 2(s)
satisfying |1+g (s)| > a > [2(s)-1]

Im

region for -07(s)
|__—region for g(s)

="

»Re

AN -1+a |0

Fig. 20: Admissable regions for g(s) and -2'1(s)
satisfying [l+g(s)| > a > ll—l(s)-l!
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and clarify their relationships to the well-known small gain theorem
[12].

To continue the discussion on the relationship of Theorems 4 and
6, we make the following observation that in (55) and (56) as Oﬁin(I+G)
and Ohin(I+Gal) increases the bounds on L(s) and the error becomes

less stringent. Therefore, to tolerate both kinds of modelling errors,

one would like to make both ¢ . (I+G) and O . (I+G-l) as large as
min min
possible. However, these two quantities are related algebraically so

that we cannot make them both independently large. Their algebraic

relationship can be derived trivially from the matrix identity [49]

1

1]

L1z, (63)

(I+G) — + (I+G

using the triangle inequality and the simple relationship Ohin(A)

G-l (A_l). There are three inequalities relating o . (I+G) to o_. (I+G-l)
max min min

which are given by

-1 -1 -1 '
>
Opin It@) + o o (I+6 ) > 1 (64)
-1 -1 -1 -
>
0 i (T+6) + 1> g o (I+G ) (65)
-1 -1 -1
G >
Gmin(1+ ) + 1 —-Ohin(I+G) (66)

Two other inequalities relating o ., (G) and @ (G) to o_, (I+G) and
min max min

-1 .
+
oﬁin(I G 7) are given by

Gmin(I+G)
Opax!®) 2———————— >c¢ . (@G . (67)

ma g . (I+G_1) — “min
min
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These inequalities are illustrated in Fig. 21.

Tmin(I+G1)
' A

4 1 >
0 1 2 Tmint{l+G)

Fig. 21: Shaded Area Represents Allowable
Values of (o, [I+G], o . [T+G™1])
min min

ordered pairs.

From Fig. 21 it is clear that when Ohin(G) is large {(i.e., large loop
gain in every feedback loop) that Oﬁin(I+G-l) is necessarily near one
and Gﬁin(I+G) is large. This indicates that Theorem 6 will give a
better indication of control system robustness with respect to the model
error criterion (44) in the typically high performance - low frequency

region than will Theorem 4. Likewise when Omax(G) is small (i.e., all
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feedback loops are rolled off) Theorem 4 gives a better indication of

the vrobustness of the system with respect to the model error criterjon

" (35) since 0_, (I+G_1) is large and 0_, (I+G) is near unity. The exact
min min

sense in which one theorem gives a better robustness indication de-

pending on the nature of G(s) will be made precise in the corollaries

of Theorems 4 and 6 that specify different types of stability margins

discussed in the next section.

3.7 Multiloop Stability Margins

In this section we shall derive guaranteed minimum gain and phase

margins for MIMO systems as functions of both Gmin[I+G(s)] and
Gmin[I+G-1(s)]. We shall also introduce the notion of a crossfeed

-1
tolerance which again is specified by o . [I+G(s)] or o _, [I+G "(s)].
—_— min min

These stability margins are simply corollaries to Theorems 4 and 6 and

are easily obtained by assuming specific forms for L(s).

3.7.1 Multiloop Gain and Phase Margins

In contrast to the SISO case, it is not clear what gain and phase
margins are in a multiloop system since gain or phase changes in one loop
may affect the calculation of the gain and phase margins in another loop.
Therefore, to avoid this problem we shall define what we mean by multiloop
gain and phase margins. This can be done with reference to Fig. 22

where L(s) is chesen to be a diagonal matrix.

Definition: The multiloco gain margin is the pair of real numbers <y

and c, defining the largest intervall (cl, c2) such ;hat when Qi(s)

1 .
We could also use closed-intervals in the definition of these margins.
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i=1,2,...,m in Fig. 22 are all real constants 2i and satisfy the

inequalities

i=1,2,...,m (68)

c, <2, <c¢
1

1 2 !

the closed-loop system remains stable.

Definition: The multiloop phase margin is pair of real numbers cl and

—c1 defining the largest interval (-cl,cl) such that when Ri(jw),
jo. {w)
i=1,2,...,m in Fig. 22 are of the forml e * where ¢i(w) are real

and satisfy the inequality

-c, < ¢i(w) <c i=1,2,...,m (69)

1 1

and the closed-loop system remains stable.

We will denote the multiloop gain margin of (68) by

GM = (cl, c2) (70)

and similiarly we denote the multiloop phase margin of (69) by

PM = (-cl, cl) . (71)

Note that in the SISO case (refer to Fig. 7) that these multiloop
stability margins reduce to the usual single stability margins but

that in the MIMO case they differ from the stability margins cbtainable
a single loop at a time since these stabi;ity margins apply in all loops

simultaneously. Of course, the word "simultaneously" does not mean that

we can apply gain and phase changes simultaneously in the same feedback

- 30, (w)

i
lWe assume also that e has a state space representation in order
to ensure that G(s) has a state space representation.
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loop but that only strict gain éhanges or only strict phases changes may
occur in separate feedback' channels simultaneously within the prescribed
limits of the multiloop stability margins. We emphasize that these types
of multiloop margins consider only a small class of modelling errors de-
scribable by a diagonal L(s). With these preliminaries we are ready to

present the following corollaries to Theorems 4 and 6 respectively.

Corollary 1: If rbCL(s) has no CRHP zeros and

o . (t+6¢ T(s)) > @ (72)
min
for all s € QR then the multiloop gain and phase margins are boundedl in
the following manner
GM D [1-a, 1l+al {(73)

and

-1 (74)

- , a
PM D [-2sin 1 %, 2 sin 7 ].

Proof: From Theorem 4 and (51) we know that ¢CL(s) has no CRHP zeros

if for all s € QR

-1
Gmax(L(s)-I) < Omin(I+G (s)) . (75)

and thus also if

l'l‘he symbol - refers to set inclusion. Thus A 2 B means that B is

contained in A. Thus (73) means that the upward gain margin is at
least as big as 1l+0. and that the gain reduction margin is at least
as small as l1-0. Similar statements apply to (74).
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o __(L(s)-I) <o (76)
max —.
for all s € QR. Now if L(s) is given by
= ai { .
L(s) dlag[Rl(s), 22(5),..., gm.s)] (77)
then (76) implies that for all i
lli(s)-ll <a . (78)
if Zi(s) is real and is denoted by 2i then
l1-a < f'i < l+o, (79)
3¢, (W)
and if £i(jw) is of the form e ° with ¢i(w) being real, then
j¢i(w)
[e -1 <a (80)
j ¢i(m) ; ¢i(w)
e 2 -e 2 <a (81)
¢, (@
-0, < 2 sin > <a (82)
or
(83)

b, @] < 2sin™t & .

The bounds on the multiloop stability margins follow from (79) and (83).

Q.E.D.

Corollary 2: If ¢CL(S) has no CRHP zeros and

cmin(I+G(s)) > (84)



-96-

for all s € QR and o < 1 then the multiloop gain and phase margins are

bounded in the following manner

1 1 '
and
PM 2 [-2 sin_l 2 ,‘ 2 sin_l g . (86)

2 2

Proof: Following the proof of Corollary 1 we similarly deduce that the

corresponding analog to equation (78) is
-1
[2.7s) - 1] <@ (87)

and thus for real li(s) denoted li we must have that

1 1
—_ < < = 8
1+a — 2'1 — 1-0 (88)
3¢, (w)
and for li(jw) of the forme ~ , ¢i(w) real, we have
-i¢; (@) -
le -1 <a (89)

which implies
|¢i(m)1 <2 sin Y(w/2) . (20)

Q.E.D.

It must be emphasized that corollaries 1 and 2 provide worst
case analysis bounds on what the actual stability margins are. This

can be illustrated in the SISO case by Fig. 23 where [1+g(s)| > o for
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all s € DR so that Corollary 2 is applicablel.

—»Reg(s)

Possible Nyquist
diagram of g(s)

Fig. 23: Nyquist Diagram Illustrating Bounds of Corollary 2.

Since the only information about the system g(s) is contained in
the single parameter 0, the only information utilized by Corollary 2 is
that g(s) touches the circle of radius o centered at -1 but that the
Nyquist locus of g(s) never penetrates the interior of the circle. Thus

to derive the worst case upward gain margin the corollary assumes that

lWe have used f1+g(s)] > o racher than ll+g(s)[ > o for convenience. The

only modification of Corollary 2 is to make the bounds in (85) and (86)
open sets.
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g(s) passes through point A. Similarly, the worst case gain reduction
margin and worst case phase margin are obtained by assuming that g(s)
passes through points B and C (or C') respectively. These worst case
margins are then useful bounds on the actual gain and phase margins. We

refer to these bounds as guaranteed minimum gain or phase margins.

3.7.2 Crossfeed Tolerance

The previous stability margins have assumed that L(s) is diagonal.
If this is not true then there are cross couplings from one feedback
channel to another as in the example considered in section 3.3. The
ability to tolerate crossfeed type of perturbations is also determined by
the two quantities oﬁin[I+G-l(sY] and Gmin[I+G(S)] as in the following two

corollaries to theorems 4 and 6 respectively.

Corollary 3: The polynomial 5CL(S) has no CRHP zeros and hence the

perturbed feedback -system is stable if the following conditions hold:
1. condition 1 of Theorem 2 holds

-1
)] <o, (I+ )
2 o [X(e)] <o . (I+G " (s))

and

-1
Oﬁax[Y(s)] < Gmin(I+G (s))

forall s € QR and where L(s) is given by

I X(s)

L(s) = {91)

¥Y(s) I
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Proof: Immediate frowm the form of L(s) in (8i) and Theorem 4.

In this corollary L(s) of (91) represents a bilateral crossfeed
perturbation where X(s) is the fraction of the control signals of the
second group of feedback channels fed intc the first group of feedback
charnels and Y(s) is the fraction of the control signals of the first group
of feedback channels fed intc the second. If either X(s) or ¥(s) is

identically zero, then L{s) of (91) represents a unilateral crossfeed

from one group of feedback channels to another. This is the particular

form of crossfeed considered in Corollary 4.

Corollary 4: The polynomial ¢CL(3) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition 1 of theorem 2 holds

2. cmax[x(s)] < omin[ms(s)]

for all s € QR and where L(s) is given by

I X(s) I 0
(92)

I
o]
o]

L(s)
0 I X(s) I

Proof: Again immediate from Theorem 6 and the form of L(s) in (92).

3.8 Example of Section 3.3 Continued

If was shown that the system of Fig. 11 under the feedback u = -y
is nearly unstable if the wvalue of b12 is very large. This nearness to

instability is easily detected using Theorems 3, 4, 5 or 6 because
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g in[I+G-1(s)] or cmin[I+G(s)] become very small at frequencies below

1 rad/sec. Fig. 24 shows -a plot cf Ghin[I+G(jw)] as a function of w

with b12 = 50.

-7.5 -

-12.5

Magnitude (db)

=175
-20

-22.5
-25 | |

l l l
C.001 0.01 O.1 i 10 100 1000

Frequency (rad/sec)

Fig. 24: Plot of ohiAI+G(jm)) for Example
of Section 3.3 (b12=50), see
Fig. 3.16.

If we use Corcllary 2 we obtain the following bounds on the

multiloop gain and phase margins
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GM D (.93, 1.08) (93)

PM D (-4.1°, 4.1°) (94)

which are very conservative estimates of the multiloop gain and phase
margins. Nevertheless, they indicate a robustness problem which is

exhibited by the very small crossfeed tolerance of Corollary 4 which
gives

chax[x(jl)] < Cﬁin[I+G(jl)] = 0.071 = -23dB, (95)

This again is a worst-case bound on the allowable amount of crossfeed
at w=1 but in this case it turns out that the magnitude of the error
(i.e., E(s) = [é-l(s)—Gnl(s)]G(s)) induced by the crossfeed perturbation
of Fig. 16 is -20d8B, nearly the smallest necessary to destabilize the

closed-lcop system.

3.9 Separating Functions and Additional Robustness Theorems

At this point after having given several different robustness
theorems, whose method of proof depended upon the ability to ensure that

I+G(s,€) was nonsingular on D_ x([0,1],we shall consider a more general

R
framework that allows us to generate stability theorems not necessarily
derived from any particular error criterion as Theorems 4 to 6 vere.

After these additional theorems are generated we shall look for a possible
associated nafural definition of model error which if bounded in magnitude
can not induce instability .

In this section, we will define G(s,8€) of Theorem 2 in terms of

an L(s,€) giving
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G(s,€) = G(s)L(s,€) (96)

where L(s,€) is now continuous on DR:<[O,l]and such that (28) and (29)
hold and find conditions on G(s) and L(s,€) to guarantee closed-loop
stability. Recall from section 3.6, that the explanation of why Theorems

4 and 6 worked is that they ensured (in the SISO case) that
1+g(s,€) = 1+g(s)(s,€) # O (97)

on DR x[0,11. That is they divided the complex plane into two disjoint
regions by using a circle and then ensured that -g-l(s) was in one region
and %(s,€) in its complement. The different theorems used different
circles and thus give different allowable regions where 2(s,€) may be
located. It thus seems natural to generate other theorems by choosing
different circles to separate the values of L(s,8) and -g-l(s).

A simple way to specify a circle or line in the complex plane is

to use a function £(.) known as a bilinear fractional transformation

[52] given bv

_ aztb (98)

£(z) = cz+d

where ad-bc # 0 and z is a complex variable as are a,b,c and d. A

circle or line can be specified by the equation
If(z)l = constant (99)

where different values of a,b,c,d and the constant may give different
lines or circles (refer to Fig. 25 for an egample). The function £(-.)

has the property that it always maps circles and lines into circles and
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Pig. 26:

k=4

Fig. 25:

[£(-g~"(s))|> ¢, (s)

region for-g“(s)/

Example f£(z) =

ITm

ya

2z-(1+])

z+1

=k .

[£(2(s,eNl<c(s)
region for L (s, €)
for e in [0,1]

> Re

/
Q

A

Illustration of separating function in SISO case.
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lines. The inverse function of £(.) denoted f-l(.) also is a bilinear
fractional transformation'and thus shares these properties.

Now if we put -g-l(s) on the outside of a circle and %(s,8) on
the inside of a circle to separate them (Fig. 26) then we have a pair

of inequaiities of the form

HERCHE ey {s) > [£2(s,e)| (1C0)

on DRX[O,I] where cl(s) is a positive scalar. It may be that in (100)
-g-l(s) is on the inside of the circle and %(s,€) on the outside de-
pending on how f£(-) is chosen but the key point is that £(-) in (100)

separates -g-l(s) and %(s,€) and thus will be called a separating function.

In order to develop a test that does not depend explicitly on €

as in (100), we may define %(s,€)
as,e) & e e + ef(a(s)] (101)
so that

£(L(s,8)) = (1-€)£(1) + ef(&(s)) . (102)

Now since (100) must hold for &(s,0) =1 and also for 2(s,l) = L(s),

(102) implies that

l£(2(s. e ] < (1-@) £ | + e[ (sn ] (103)

oxr

leeis,e| < max{|e@) ], [£&N]} (104)

and so we need only verify (100) at €=0 and eé=l. Now if
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|f(-g_1(s))| > cl(s) > |f(£(s))| (105)

we are assured that (100) holds for all € in [0,1] since f(.) must be

picked to separate -g_l(s) from 1 or g(s) from -1 and thus

le(-g"Lsn| > s | | (106)

Of course, the definition of &(s,€) in (101) may place restrictions on
2(s) in order that %(s,€) be continuous on DRx[O,I] that may need to be
checked in addition to (105).

The preceeding discussion of the scalar case can be directly
extended to the matrix case except that the circles become hyperspheres
and the absolute value signs in the inequalities are replaced by oﬁin(°)
or omax(»). The objective now becomes to make sure that I+G(s)L(s,8)
is nonsingular or equivalently (assuming G-l(s) exists) that L(s,€) -
[-G-l(s)] is nonsingular on DRx[O,ll.

Now suppose that we can find a function f(-) mapping mnxn to
™ such that £(A) - £(B) is nonsingular if and only if A-B is

nonsingular for all A and B in e™® for which £(a) and f£(B) are defined.

1

This means that the nonsingularity of L(s,€) - [-G_ {s)] can be checked

in terms of the nonsingularity of £(L(s.€)) - f(-G-l(s)). A simple
sufficient condition that guarantees the nonsingularity of f(L(s,&€)) -

f(—G-l(s)) is the singular value ineguality (see (2.41)) given by
-1
- > { i
Ohin[f( G “(s))] 9 [f(L(s,€))] . (107)

We again call f(.) a separating function since through (107) £(-.)

-

-1 . - .
“separates" -G ~(s) and L{s,8) (i.e., L(s,8) +G l(s) is nonsingular).
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In ‘107) L(s,€) may be defined by

L(s,€) = £ T[(L-€) £(I) + £(L(s))] (108)

which is analogous to (101). In (107) it is assumed again that
-1 )
- S r .
Omin[f( G “(s))] o, (£(I)1 (109)

since with L(s,0) = I the nominal system must satisfy (107) if £(.) is to

be an appropriate separating function. Therefore (107) can be guaranteed

for all € in [0,1] if

-1 .
Ohin[f(-G (s)il > Omax[f(L(S))] (110)

for all s in DR’

.

In the matrix case, the separating functions £(+) may also be given

by the matrix bilinear fractional transformation

£(X) = (AX+B) (cx+1>)":L (111)

where A,B,C,D and X are complex matrices. To verify that they are indeed

separating functions we present the following lemma.

Lemma 1: If the matrices A, CX+D and CY+D are nonsingular then X-Y is

nonsingular if and only if (AX-B)(CX+D)-L - (AY-!-B)(CY+D)-1 is non-

singular.

Proof: Suppose X-Y is singular. Then there exists a vector z such that

. Xz =Yz (112)

and thus
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(113)

(Ax+B)z = (AY+B)z

and
(114)

(Cx+D) z (CY+D)z .

Since CX+D and CY+D are nonsingular, let the nonzero vector ¥ be given

by

v = (CX+D)z = (CY+D) z (115)
or

-1 -1

z = (CX+D) v = (CY¥+D) "v . (116)

Now substituting in (113) for z given by (116) we obtain
, -1 -1
(AX+B) (CX+D) v = (AY+B) (CY+D) "V - (117)

that is (AX+B) (Cx+D) ' - (AV+B) (CY+D) "l js singular. To show the con-
verse, assume that (117) holds for some nonzero vV and define a nonzero

Zz as in (116), then (113) holds and implies that

A(X-Y)z = 0 . (118)

Since A is nonsingular it must be that X-Y is singular.

Q.E.D.

One problem that occurs with the use of separating functions which
are not defined over all of mnxn’ as when CX+D is singular in (111), is
that the matrices X for which f£(X) is not defined must be examined for
their effect on the continuity of L(s,€) de:‘ihed by (108) as well as its

effect on omin[f(—G-l(s))] in (11C) which may alternatively defined as
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Il{f(-G-l(s))}_lllgl (see 2.39) which may be well defined even though

Oﬁin[f(-G—l(s¥)] is not because (AX+B) in (111) may be invertible.
Although in Lemma 1 and (111) the A,B,C and D coefficients are

matrices we will only use scalars a,b,c and d in the presentation of

seyeral additional theorems. The first of these theorems is a somewhat

unusual version of the well-known small gain theorem [12]. This theorem

is obtained by choosing f£(X) = X, using origin centered circles.

Theorem 7 (Small Gain Theorem): The polynomial ECL(S) has no CRHP zeros
and hence the perturbed feedback system is stable if the following

conditions hold:

1. condition 1 Theorem 2 holds

-1, -1
2. o (-G tsN=|lets)|], <1

for all s € QR

3. omin(—c;’l(sn > (L(s))

or equivalently,

e[,z ], <1

for all s € QR.

Proof: In this case L(s,€) is given by
L(s,€) = (1-€)I + €L(s) (119)

. and thus HG(S)L(S,G)H2 is simply bounded by use of conditions 2 and 3 as

[lesints,e ||, = [[(z-ercts) + ec(s)L(s) | ], (120)

f.fl-e)[lG(s)||2 + e[IG(s)IlzflL(s)Il

< (1-8) +e=1 .
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Clearly, from (120}, I+G(s)L(s,e) = I+G(s,e) is nonsingular and by

Theorem 2 $CL(s) has no CRHP zeros.
Q.E.D.

Several remarks about this theoremm are in order. First the name
small gain theorem arises from the fact that condition 3 requires the
loop gain to be less than unity (small enough not to destabilize the

closed-loop system). Furthermore this version of the theorem is rather

unusual in that typically the conditions that ¢CL(s) have no CRHP zeros
(condition lc of Theorem 2) and that HG(S)H2 < 1 are replaced by the
simple conditions that G(s) and L(s) are open-loop stable. Note that
HG(s)H2 < 1 and ¢CL(s) having no CRHP zeros guarantees that G(s) is
open-loop stable. Also L(s) need not be stable as long as G(s) and

G(s) have the same number of CRHP poles. Recall from section 3.4 the
reason we require ¢CL(S) to have no CRHP zegos is that the nominal closed-
loop system must be stable in order to determine its stability margins

and determine if it is robustly stable. We are not merely determining

the stability of some arbitrary system with loop transfer matrix G(s)L(s)

where L(s) = I has no special significance. This the main difference

between robustness theorems and stability theorems. In robustness theozxy

we are trving to determine when stability will be preserved and in stabi-
lity theory we are trying to determine useful conditions under which
stability will occur without the benefit of knowing that with L(s) = I
the feedback system (the nominal system) is stable. Ncte also that

condition 2 is simply condition 3 with L(s) =1 and that condition 2

is the condition given in (109).
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Finally we point out that G-l(s) need not exist since by alter-
nating formulating Gmin[-G-l(S)] as [|G(s)[];l we completely avoid the
problem. However, it is convenient to perform some formal manipulations
with the f(-G—l(s)) in order to gain insight on how to select certaih
useful circles and then go back and determine what assumptions are
actually necessary.

It will now be shown how all robustness theorems using the G = GL
form can be understood as a small gain theorem on an equivalent feedback
which is stable only if the original system is stable. For this purpose
we introduce Fig. 27 where for convenience the matrix L(s) appears in
the feedback loop instead of in series with G(s) and where we have
suppressed the dependence of G(s) and L(s) on s. In Fig. 27-1 we have
the original perturbed system which is transfermed into Fig. 27-2 by
use of a constant scalar multiplier a. Obviously, the systems in Figs.
27-1 and 27-2 are equivalent in terms of stability, that is, one is
stable if and only if the other is stable. To go from the system of
Fig. 27-2 to that of 27-3 we employ what is known as a loop shifting
transformation. This simply adds a pair of feecdback loops with feed-
back gains of *bI arcund the system-% G that cancel each other out
because they have opposite polarity. Then cleverly, the +bI feedback
loop around %-G is moved so that it becomes a feedforward loop around
the alL system. Again it is obvious that the systems in Figs. 27-2 and
27-3 are equivalent in terms of stakility. Next, in ordexr to go from
Fig. 27-3 to 27-4 we define the systems Gl and Ll shown by the dotted

boxes in Fig. 27-3. Now we simply apply the same type of multiplier and
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Ga= [-f(-G1] "= [(c-bd)G-adI][al+bG]”’
L= f(L) - [aL-b1][adL + (c-bd) 1]
0
2 G ] :.,Q—- G |efir
L L =al
-1~ -2-
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e Gt > cl
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| dl|
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P sl I iy
| i L le— Q] = ; ; L1 -(-:-]'_ O
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Loop Transformatiens with Muitipliers Ilustrating
the Relacionship between the Small Gain Theorem
and the use of the 3ilinear Fractional Trans-

formaticn £(-).
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and loop shifting transformation in one step to the system composed of
G1 and Hl to obtain Fig. 27-4. Now, hoﬁever, we have in the léop shifting
‘transformation involving cGl started out by adding two feedforward loops
of opposite polarity around cGl and then moved the +dI.feedforward term
around the %-Ll system so that it becomes a feedback loop. Again, we
claim that the system in Fig. 27-4 is stability equivalent to the system
of Fig. 27-3 and thus stability equivalent to the original system in
Fig. 27-1.

The next thing to notice is that the systems G, and L, defined by

the dotted boxes in Fig. 27-4 can be associated with a bilinear fractional

transformation f(.) by the following equations.

6, = 1-£(-6"H17F = [(c-bA)G - adllfaL + ba] (121)

and

t
il

£(L) = [aL-bI]{adL - (c-b)I1 1 . (122)

Suppose now that we may prove the stability of the G2, L2 system of
Fig. 27-4 by means of the small gain theorem which has the basic in-
equality

IIG?_H2[|L2||2 < 1. (123)

This last condition, however, is equivalent to the condition

-1 )
Ohin[f(—G )] > Omax[f(L)] (124)

where in both (123) and (124) the dependence on s has been suppressed

and must hold on DR. This shows that any particular robustness test as
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in (124) involving bilinear fractional transformation may be formulated
as a small gain test on aﬁ equivalent system. Also, though it was not
done here, the parameters a,b,c and d of the function f(.) can in
general be stable minimum phase rational transfer functions instead of
constant scalars.

Two final theorems which use a different separating function £(-)
will be discussed. They are the well-known passivity theorem [12] and
its generalization due to Barrett [47]. The passivity theorem we shall
state has the same unorthodox assumption that closed-loop system is
stable rather than the usual assumption that the open-loop system is
stable. This again happens because we are using the theorem for deter-
mining robustness of a nominal system under modelling errors rather

then to ascertain the stability of an arbitrary system.

~

Theorem 8 (Passivity Theorem): The polynomial ¢CL(s) has no CRHP zeros

and hence the perturbed feedback system is stable if the following

conditions hold:

1. condition 1 of Theorem 2 holds

2. G(s) + GH(s) >0, s & QR

3. L(s) + L8(s) > 0, seq

Proof: This proof is accomplished most simply without resorting to
explicit use of separating functions and, therefore, they will not be

used. Let YI+G(s,€) by given by

I+G(s,€) = I+G(s)[(1-€)I + €L(s)] = I+G(s)L(s,€) (125)
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and notice that L(s.,€) is such that
H .
L (s, €) + L(s,&) >0 (126)

on DRac[O,l]. Now suppose that I+G(s,; €) is singular for some (s, €)
in DR %x[0,11; then, there exists a nonzero vector x such that

[1+G(s)L(s,8)1x = 0 and hence
X = -G(s)L(s,8)x . (127)

Defining z = L(s,8)x, we note that z is nonzero else x in (127) is zero

and thus

z = -L(s,€)G(s)z . (128)

Condition 2 and (128) imply that
H
otz + 2 (s)z = 276 (s) [L(s,€) + L(s,@)1G(s)z > O
{(129)
and since G(s)g_# 0 a contradiction to condition 3 is obtained and thus

I+G(s,8) is nonsingular cn DR'x[O,l]. Theorem 2 again holds and the

. 1 s,
desired result follows 0.E.D.

Remark: In conditions 2 and 3 the strictness of the inequalities can

be reversed and Theorem 8 still holds.

Specializing to the SISO case illustrates the types of G(s) and L(s)
that are required in Theorem 8. Conditions 2 and 3 keeps g(s) and 2(s)
from entering the OLHP and show (see Fig. 28) that since g(s) cannot

encircle the -1 point, it must be open-loop stable in order to apply the
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Region
for g(s) and L(s)’

Fig. 28: Admissable Region for g(s) and 2(s)
) in Theorem 8 (shaded).
theorem. It is fairly obvious that the phase of g(s)%(s) is strictly
less than 180° and thus g(s)%(s) # -1. We can interpret conditions
2 and 3 as separating -g_l(s) and 2(s) by_the jw-axis since —g-l(s)
lies in the CLHP and 2(s) in the ORHP. The jw-axis can be viewed as
a degenerate circle of infinite radius and we will use this notion to
relate the passivity theorem to the next theorem which generalizes it.
To derive the generalization of Theorem 8 we perform some
algebraic manipulations on condition 2 (and also condition 3) to relate

these conditions to equivalent singular value conditions. First, note
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that from condition 2 we can deduce that
H . H H
2(5 4G) = (I+G) (I+G) - (I-G) (I-G) > O (130)

and hence
a+a e > oo . (131)

this last inequality can be rewritten as
-1.H -1
[(I+G) (I-G) 71 [(I4G) (I-G) "] > I (132)

or
Hsa ' (133)

ohin[(I+G)(I-G)

Similarly we can deduce from condition 3 that

-1
Ohax[(I-L)(I+L) 1 <1 (134)

which when combined with (133) results in

: -1 -1
o il (16 (T-6) 71 > 1> Oaxl (T-0) (T+L) 71 . (135)

In this last inequality, one wonders whether the 1 in the middle of (135)

is really necessary.and that if we use an inequality of the form

o, [(T+G(s)) (1-6ts) ™1 > o [(T-L(s)) (141 (s)) " H (136)

if it will guarantee closed-loop stability when (136) holds on DR. The

answer to this question is yes, provided that we impose some additional

restrictions on L(s). The next theorem formalizes this.

Theoram 9 [47]: The polynomial 5CL(S) has no CRHP zeros and hence the per-

turbed feedback system is stable if the following conditions hold:
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1. condition 1 of Theorem 2 holds

2. L(s) has no real eigenvalues less than or equal to -1

for all s € QR

1

3. 0, [(I4G(s)} (1-G(s) 7] >0 [(E-L(s)) (T+L(s)) 1

for all s € QR

Remark: If condition 3 is satisfied and Omin[(I+G(s))(I—G(s))-l] <1

in condition 3 then it can be easily shown that condition 2 is auto-

matically for all s € QR for which this inequality holds.
Proof: L(s,€) is given by

L(s,8) = £ ‘e £(L(s))] (137)

since £(I) = O where

£x) = (1-%) (1+x) L = £ 1 (x) A (138)

and thus
-1 -1t
L(s,g) = [I - €(I-L(s)) (I+L(s)) ] [I+€(I-L(s)) (I+L(s)) 1

(139)

and is continuous on DR % [0,1] because of condition 2. Since f£(:) is
a separating function, condition 3 implies that I+G(s)L(s,€) is

nonsingular on DR’x[O,l] and hencevTheorem 2 holds.

Q.E.D.

Note that in condition 3, the invertibility of I-G(s) is not

escsential as long as G(s) # I for all s € DR since
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o . L+a(s) (I-6(s) Y = |[a-a(sn masN T 40
min 2

and (I-i-G(s))-l must exist because ¢CL(s) has no CRHP zeros and thus
!I(I-G(s))(I+G(s))—1|[2 is not zero unless G(s) = I. Utilizing condition

3 of Theorem 9 we may derive scme corollaries on the stability margins

of the feadback system.

Corollary 5: If ¢CL(s) has no CRHP zeros and

o . [(I+a(s)) (I-G(s) 1 > a (141)
min

for all s € QR and o < 1 then the multiloop gain and phase margins are

bounded in the following manner

1-0 1+a
@ > [l+a ! 1—] (142)

and

PM 5 [-2 tan Yo, 2 tan la] (143)

Proof: Analogous to the proofs of corollaries 1 and 2.

Note that in the case 0=1 we obtain the bounds on the multiloop gain

and phase margins associated with the passivity theorem which are given
by
GM D [0,®) : (144)

and

- PM D [-90°, 90°] . _ (145)
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Also, as for Theorems 4 and 6 we may derive a corollary involving the
tolerance to crossfeed for systems that satisfy condition 3 of Theorem

9 but this will not be done here because it merely repeats the essential
natures of corollaries 3 and 4.

The similarity between the theorems of section 3.5 and the theorems
of this section is incomplete because it is not clear what type cf
modelling error is being bounded in Theorems 7,8 and 9. It happens that
Theorem 7 cannot be interpreted in terms of bounding the magnitude of any
type of modelling error and Theorem 8 always bounds the magnitude of the
model error by unity. This can be seen by identifying oﬁax[f(L(S))] as
the magnitude of the model error which is true in the case of Theorems
4,6,8 and 9. In Theorem 7, éﬁax[L(s)] # 0 when L(s) = I and thus when
8(s) = G(s) (no model error) the magnitude of the “"error" (i.e., cﬁax[L(s)])
is not zero. Therefore Gmax[L(s)] does not correspond to the magnitude
of a modelling error. Another manifestation of the lack of similarity

between Theorems 4 and 6, and Theorems 7 and 8 is the fact that Theorems

7 and 8 cannot be applied to all G(s) and G(s) that satisfy condition 1.

of Theorem 2 whereas Theorems 4, 6 and 9 can. Theorems 7 and 8 place

additional conditions on the allowed G(s) (i.e., in the SISO case g(s)
must lie inside of the uni% disk in the complex plane for Theorem 7
(Fig. 29) and the CRHP (Fig. 28) for Theorem 8). In Theorems 4, 6 and
9 (again in the SISO case)'the Nyquist diagram of g(s) may approach the
This is not true for Theorems

critical point (-1,0) from any direction.

7 and 8.
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Admissable
Region for g(s)

- Re

NN

ol

.

Fig. 29: Admissable Region for g(s) in Theorem 7

To discover the underlying error criteria associated with Theorems
8 and 9 make the following identification between L(s) and E(s) given

by

E(s) = -f(L(s)) (146)

since in Theorems 4 and 6 it is f(—G-l(s)) + E(s) that is tested for

singularity. Thus, in the case of Theorems 8 and 9 we have that

E(s) = (L(s)+I) T (L(s)~I) (147)
or since G(s) = G(s)L(s)

E(s) = (G *(s)&(s) +1) "L (s) 3 (s) -1) £148)
and thus

E(s) = [&(s)+G(s)] “I&(s)-G(s)] . (149)

Now note that we can write 2E(s) in the two following forms (dropping the

s dependence)
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~ -1

2E = [(G;G) ] (3-G] (150)

or
1 -1 1 _-1.-1

2E = [ B~ +3E, 1 (151)
where

E, = ¢ (&0 (152)
and

B, = el g7he i (153)

From (150) 2E(s) can be interpreted as a relative error between G and G
where the base value is taken as the arithemetic average of G and G.
Another interpretation that is suggested by (151) is that 2E can be com-

pared to a resistance as can the errors El and Ez. Then (2E)_1 is like

a conductance that is merely the average of the conductances E1 and

1 is merely the usual relative error between G and G
is the negative of the relative error.between é-l and ¢ L.

Egl. We note that E

and that E2

In a sense the error criteria for Theorem 9 is a compromise between the
error criteria of Theorems 4 and 6. Note that as E, (or Ez) become

small that 2E approaches E, (Ez), that is 2E picks out the smaller of

the two types of errors and uses that as a measure of the error. Fig.

30 illustrates the nature of this error in a block diagram where by
(147) L(s) is simply [I-E(s)][T+E(s)1 .

This type of error criterion is pleasing in that it leads to the
symmetric (ih a logarithmic scale) gain and phase margins of corollary
5 and correlates well with classical single-—loop simultaneous desigh

requirements on gain and phase margin [47]. To put all the various

theorems presented here in perspective, the Table 1 describes the
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BREOR MATRIX SEP. FUNCTION
THEOREM B L(E) £(x) TEST
3 &G 0 alI*G) > 0, (B)
-1 -1
4 G [G-G) I+E I-X O o(H6 ) > o, (B)
~-1 -1 -1
5 G -G — — u-u(nc ) > om(E)
-1 __~1 -1 -1
6 & *~c 16 (I+E) ) I-X O n(I+6) > 0, (B)
-1
) NONE —_— x TpinlC 1 ” Tpax ™
-1 .
O l(Ite (1=6) 771 2 1
g | -1 -1
8 (&+G) " [3-61 (L-B) (1+E) (X+X) {I-X} -1
o _[(L~T)(I41) 7] < 1
max
PP -1 -1 -1
9 [G+G] " [G-G] (I4E) (I+4E) (X4X) (1-X) O il (I+G) (x-G) ~1 .> Opax®!

TABLE

1z

RELATIONSHIPS OF ROBUSTNESS THEOREMS



-123~

Fig. 30: Physical Representation of Perturbed Model in Theorem 9

separating functions, error criteria and the multiplicative L(s) factor

corresponding to each the robustness test.

In the next chapter, robustness tests will be formulated that
utilize the structure of the modelling errors that were discussed in
this chapter. This means that having an understanding of how errors
enter into the system models will be important if any judgement about

their structure is to be made.

3.10 Extensions to Nonlinear Systems

The pre¢eeding sections have dealt solely with the stability/robustness
properties of iinear time-invariant systems. The- purpose of this section
is to demonstrate that some of the theorems of the previoqs sections have
corresponding nonlinear counterparts. These theorems may be proved by

use of the well-known circle Theorem [10,11] formulated by Zames and
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later generalized by Savonov [7, 18]. However, these theorems will not
be proved here due to the lengthy discuésion of extended function Banach
épaces and other necessary mathematical develoément required. The key
observation to be recognized is that the guaranteed gain margin for
Theorems 4, 6 and 9 remain exactly the same when the multiplicative type
of perturbation represented by the matrix L(s) is replaced by a nonlinear
memoryless operator denoted as N (see Fig. 31). This means the gain of
each feedback loop may be changed as nonlinear function of the output
signal of the plant provided the effective linear gain change is within
the bounds specified by the guaranteed gain margin. This notation of

a gain margin for nonlinear systems is made ﬁore precise in the theorems

of section 3.10.1.

3.10.1 Guaranteed Gain Margins for Nonlinear Systems

One of the first problems encountered in determining the stability
of nonlinear systems is to clarify what is meant by the notion of
stability. Various authors define stability differently but the basic
concept is that of boundedness. Thus, stability must be defined before
discussing the generélizations of Theorems 4, 6 and 9. For the purpose

of this section we define stability in the following manner.

Definition (Stability): A causal system with an arbitrary input u(t)

and corresponding output y(t) is stable if there exists a nonnegative

scalar k such that

[y ], <x [Juw ], (154)
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where l '|l2 is defined as

oc

A T 1/2
Hzo ], =[O/E (t)g(t)dt:l . (155)

The norm in (155) is proportional to the energy in the time signal
z(t).

Using this definition of stability1 we will examine the stability
of the feedback system shown in Fig. 3 where G is a linear time-in-
variant convolutional operator representing the nominal loop operator

and N(-) is a memoryless nonlinear oparator given by

T
N(x(t)) = [nl(xl(t))' n2(x2(t)),..-,nm(xm(t))] (156)

where each ni(-) is a memoryless time-invariant nonlinearity and xi(t)

are the components of x(t).

N pb— G -y (t)

Fig. 31: Nonlinear System

lIn the completely linear time-invariant case this definition of stability
requires that a stable system nave all its poles in the open-left-half-
plane.
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In Fig. 31 we assume that the nominal feedback system with N(Ejt» = x(t)
is stable and that the transfer function of the loop operator G is given
by G(s). Here N is playing the role of L(s) in the completely linear
case (i.e., the perturbed loop operator G is given by GN).

A graph of the ni(xi(t)) components of N(x(t)) in (156) might be

a saturation type nonlinearity shown in Fig. 32.

ni(xi)
A

> X,

Fig. 32: Saturation nonlinearity ni(xi)

In the next two simplified theorems, it is shown that by bounding the
graph of the ni(xi) appropriately the stability of the closed-loop

system is ensured and ncnlinear guaranteed gain margins obtained.
Theorem 10: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) = x
2. N(x) is memoryless and time-invariant and given by (156)

3 for o é inf © .n(I+G-1(jw)) and for all scalar x
w>0

(L-a)x < ni(x) < (1+a) % for all i
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Remark: Here it is assumed for conveience that ¢OL(jw) # 0 for all w.

This theorem is the corresponding analogue to Theorem 4 and gives
bounds on the slope of the graph of ni(x) as shown in Fig. 33. The
bounds on a SISO case for the Nygquist locus of g(s) is shown in Fig. 34.

This is a simple application of the celebrated Circle Theorem {10,11] as are

the next twe Theorems.

Theorem 11: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) = x

2. N(x) is a memoryless, time-invariant nonlinearity given
by (158)

3. for a é inf o ., (I+G(jw)) < 1 for all scalar x
w>o min —

1 1 .
——x < < —
Tt ni(x) 1 X for all i

Again we assume that ¢OL(jw) # 0 for all w and observe that the gain

margin for Theorem 11 is the same as in the completely linear case of

Theorem 6. A similar nonlinear extension for Theorem 9 is available.

Theorem 12: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) = x

2. N(x) is a memoryless, time—invariant nonlinearity given by
(156)

A
3. for a = inf ¢ ,
wo T

[(I~G(jm))-l(I+G(jM))].§ 1l and for all scalar x

i

1-a 1+a o s
— x < n, (x) < T X for alil i.
i 1-q

l-a
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Fig. 33: Bounds of Theorem 10 on graph of n, (x)
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Img(jw)
0 g(jw)
a>1
ﬁ Allowable Region for g(jw)
L g // M
SRE /7[R
{+a a-i '
(a)
Imgljw)

Unallow ble Region ?/ '
for g J‘” / / // a<i
1

—»Re gljw)

1

/ 1+a

(b)

Fig. 34: Allowable regicn (shaded) for Nyquist locus
of g(s) in Theorem 10
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In these three theorems the gquantity ni(x)/x is upper and lower
bounded and can be considered as the effective linear gain. for the iE~
feedback channel when the component xi(t) of the vector x(t) takes on
the numerical. value x. Thus with this interpretation of ni(x)/x as
an effective linear gain the guaranteed gain margins for the nonlinear

system are the same as those for the linear case.

Notice that in the case of a saturation nonlinearity as in Fig.
32 that Theorem 11 cannot be applied since o X 1 in condition 3 implies

that ni(x) > 1/2x which cannot be satisfied for a saturation nonlinearity.

3.11 Concluding Remarks

This section will attempt to give a perspective on the usefulness
and relationship of the robustness results of. this chapter. This chapter
has presented a variety of robustness results and one wonders if there
is a best robustness theorem to use in determining éhe largest class of
model errors that the feedback system will tolerate. Practically, the
answer to this guestion is no but theoretically Theorem 2 characterizes
the largest1 class of allowable perturbed loop transfer matrices {&(s)},
namely those whose multivariable Nyquist diagram is a deformed version
of the multivariable Nyquist diagram for G(s) having the same number
of encirclements of (0,0). However, the only practical way to determine

if this is true is tc use one of the robustness theoorems of sections

. 3.% and 3.9. These theorems work with different types of mecdel error

lLargest under the restriction G(g) and G(s) have the same number of
unstabkle poles.
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and one can only say that one theorem is better than another if a
particular characterization of the model uncertainty has been selected
to be the sense in which better is meant.

For example, if one wanted to use the gain reduction margin as the
criteria for the best theorem, that is, the best theorem would be the
one that gave the smallest number for the gain reduction margin upper
bound. Then of Theorems 4, 6, and ¢ one would say that Theorem 4 is
the best theorem to use since given any G(s), the upper bound on the
gain reduction computed from cmin[I+G-l(s)] is alway§ less than or
equal to the upper bounds on the gain reduction margin computed from
Omin[I+G(s)} of Theorem 6 or from Oﬁin[(I-G(s))-l(I+G(S))] of Theorem 9.

Similarly, if one wanted the best indication of the upward gain
margin, the lower bound computed from Oﬁin[I+G(s)] of Theorem 6 is best.
These observations can be easily deduced via the relationships of cmin[I+G]
and Ohin[I+G_l] of Fig. 21 and similar relationships that may be derived
for omin[(I+G)(I-G)-l] in relation to Omin[I+G] or Gmin[I+G_l]. It
seems likely that in some sense that Theorem 9 should prove best but
at present it is not clear what the particular criteria might be.

Another way to compare Theorems 4, 6, and 9 in the SISO case is to
compare the regions for allowable 2(s) given a nominal g(s). This is
illustrated in Fig. 35 where g(ju,) = 3/4 for some ido- As can be seen
from Fig. 35, Theorem 9 places the least restriction on Q(jwo) in the
sense that forbidden region for R(jwo) in the complex plane has the
smallest érea for any of the theorems. In general, these regions for

l(jmo) may ovérlap but may not be contaired in each other, so that each
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-4/3

Fig. 35: Allowable Regions for (3w if g(jw)) = 3/4
. 0 0
using Theorems 4, 6, and 9.
Theorem 4: strictly inside circle A
Theorem 6: strictly outside* circle B
Theorem 9: strictly outside* circle C

*Except for O ard the negative real axis
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theorem may indicate a tolerance to a certaie modelling error not
guaranteed by either of the other two remaining theorems alone. Note
that each of the circles in Fig. 35 pass through -4/3, the value for
l(jmo) which makes 1+g(jwo)£(jwo) = 0, and since l(jwo) cannot be on
the circle's boundaries l+g(jw0)2(jwo) # 0 is ensured. |

In the MIMO case, drawing appropriate circles cannot easily be done
and comparison of the theorems must proceed by devising some other
appropriate criteria that is easy to check.

The observations made so far, have been made on the basis of only
the algebraic properties of the robustness inequalities of the theorems.
However, using the typical frequency dependence of G(s) some additional

typical comparisons may be made. In order to obtain a good response to

command inputs, typically of low frequency content, the loop gain in SISO
systems is large in the frequency band where good following of the
inputs is desired. The MIMO generalization of the loop gain is given
by 0 . (G(s)) and © (G(s)) where the former represents the lower

min max _
bound on the loop gain of the "slowest” loop of the feedback and the
latter represents an upper bound on the loop gain "fastest" feedback -
loop. The crossover frequency of the SISO case becomes the frequency

range where ¢ ., (G(s)) < 1 and o (G(s)) > 1 in the MIMO case.
min - max -
In the high performance (geod command following) low frequency

range omin(G(s)) is large and thus so is ohin[I+G(S)] (refer to Fig. 21)

and in this region the telerance te the modelling errors of Theorems 5

and 6 is generally good.
In the frequency region above crossover Jmax(G(s)) is small and

thus Omin[I+G-1(s)] is large and, therefore, the tolerance to the modelling
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errors of Theorems 3 and 4 is generally good. This is the frequency
region where it is important to have good tolerance to model error

- since in general modelling error increases as frequency does (because
of unmodelled high frequency dynamics in nominal design model). This
recommends that Theorem 4 always be used.since Theorems 6 or 9 cannot
be applied when the phase of the plant becomes completely uncertain as
it surely will at high enough frequency. A similar discussion of this
nature is given in [43].

As mentioned previously in this chapter, the theorems using a multi-
plicative model perturbation or relative error measure are generally
favored over the ones that use the a&ditive model perturbatiion or
absolute error measure, because the compensation employed does not
affect the measure of modelling error. To make this clear, let Gp(s)
denote the open-loop plant transfer matrix and Gc(s) the compensation

transfer matrix. Then for the relative error criteria of Theorems 4, 6

and 9 with G(s) = Gc(s)Gp(s) we have that

Theorem 4: e Lis) [&(s) - 6(s)] = G L(s) [& (s) - G_(s)] (157)

p P P
Theorem 6: 2t - ¢ Ys)la(s) = [@;1(5) - G;l(s)]Gp(s) (158)
Theorem 9: [&(s) + G(s)1 tiE(s) - G(s)] = [ép(s) + Gp(s)]_l[ép(s)-c;p(s)l

(159)

where & (s) is the perturbed open-lcop plant model. Thus we see that
the compensation Gc(s) does not affect the errcr computation. This is

not true for the additive or absolute error criteria.
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4. ROBUSTNESS ANALYSIS FOR LINEAR SYSTEMS WITH STRUCTURED
MODEL ERROR

4.1 Introduction

The robustness tests of chapter 3 used only the magnitude of
the model error in their formulation. It was shown there that if the
model error magnitude is bounded by a MIMO generalization of the
"Jistance to the critical (-1,0) point" then the closed-loop stability
of the perturbed feedback system is guaranteed. However, there are
many model errors whose magnitude is greater than the MIMO general-
ization of "distance to the critical (-1,0) point" and yet the

perturbed feedback system remains stable.

In this chapter, the robustness tests'of chapter 3 are refined
to distinguish between those model errors which do not destabilize
the feedback system and those that do, but both of which have
magnitudes larger than the MIMO generalization of the "distance to
the critical (-1,0) point", To do this it is necessary to be able
to distinguish between model errors that increase the margin of
stability for the feedback system and those that decrease it. This
cannot be done on the basis of the magnitude of the model error.

Therefore, it must be done on the basis of the structure of the

medel exror.

The structure of model errcr, in general terms, is simply the

numerical relationship of the elements of the error matrix E{s),
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representing the difference between the nominal and the perturbed
loop transfer matrices. In other words, the structure of the model
is specified by magnitude and phase relationships between the

eij(s) elements of E(s). In this chapter the structure of E(s)
_which is important to determine the stability of the perturbed feed-
back system is extracted using the results of chapter 2 and the
singular value decomposition (SVD), to genarate an orthonormal basis
for the expansion of E(s). It will be shown that the projections of
E(s) on only certain elements of the basis need be known precisely
to extract the information relevant for stability analysis. Thus,

only a partial characterization of the modelling error is necessary

and its structure is constructively produced byvthe method of analysis
used in chapter 2. Bnother recently proposed method, principal gain
and phase analysis [57], which uses a somewhat different partial
characterization of the model error to extend th; robustness test in

Theorem 3.4, is discussed in chapter 6.

In order to make a practical use of these results that utilize

the structure of the model error, it is necessary to determine if the

model error of minimum magnitude that will destabilize the feedback

system can be guaranteed not to occur. This assessment must be made on

the basis of engineering judgement about the type of model uncertainties

that are regsonable for the nominal design model representing the phys-

ical system. For discussions on how to practically determine what

constitutes a reasonable modelling error, the reader is referred to
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[42] for a discussion of model‘errors'in an automotive engine
control system and [46] for a similar discussion with regard to
power system models.

Some knowledge of what is a reasonable model error is absolutely
essential since all models are uncertain in some frequency band.
Model error always occurs when the frequency is sufficiently high
and this uncertainty must be accounted for. In MIMO control systems,
the maximum crossover frequency where the loop transfer matrix,
G(s), has a norm of unity (i.e. the maximum & for which
||G(jw)||2=l) must occur in a frequency band where the model still
adequately represents the physical system if stability is to be
ensured. It is up to the désigner to decide how and in what way
the model is uncertain.

Having now briefly described the key role of the model error
structure for the results of this chapter it is appropriate to
outline the remaining sectionsof this chapter. In section 4.2, it
is shown exactly how the structure of the modeling error can be
used to obtained improved versions of the theorems in chapter 3.

Theorems 4.1 and 4.2 show that the necessary magnitude of the
model exror, at a particular frequency, that destabilizes the feed-
back system, but is essentially unlike in structure to the smallest
pcssible destabilizing model error, may be much larger in magnitude
than the magnitude of the smailest destabilizing model error.

This means by differentiating the model errors on the basis of their
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similarity to the structure of the smallest destabilizing exror,
the feedback system can guaranteed to éolezate a possibly much
larger model error.

This is explained first for the SISO case and then generalized
to the MIMO case. Section 4.3 interprets the nature of the model-
ling error of minimum magnitude, that destabilizes the feedback,
via block diagram manipulations. Next in section 4.4, the example
of chapter 3 (illustrating the deficiencies of the single-loop type
of stability margins) is continued to show that the analysis of this
chapter predicts the type of model perturbapion used to demonstrated
the near instability of the closed-loop system. Finally, in section
4.5, the possibility of combihing different robustness tests as a

way of extending their usefulness is discussed. °

4.2 Robustness Tests Utilizing Model Error Structure

In the robustness theorems of chapter 3, the key conditions

ensuring the stability of the pertu:” 2d closed-loop system were

inequalities of the form

Omax[E(S)] < Ohinlh(G(s))] : (1)

where h(-) is some bilinear fractional transformation
(i.e., I+G, I+G-l,(I—G)—l(I+G)) and where (1) must hold for all
SGQR. Recall frem (3.33) that QR is the portion of DR in FPig. 3.10

for which Re(s)<0. This condition assures that the model error
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is surfficiently small sc that a closed-loop system designed on the
basis of G(s) will remain stable when it is replaced by &(s).
However, the approach used to develop these robustness theorems
neglects the fact that there are perturbations or modelling errors
for which (1) does not hold, i.e., the model error is not small,

aﬁd yet the clused-loop systen remains stable. These chapter 3
theorem are conservative if one restricts the allowable type of

model error structure because they guard against absolutely all types
of structure in linear model errors.

One way to reduce this conservatism i; to obtain additional
conditions that distinguish between modelling errors that do not
destabilize the feedback sysiem but violate the test of (1), and
those that violate the test of (1) but also destabilize the feedback
system. Or better yet, obtain some conditions that discriminate

between modelling errors, that violate (1), between those, that

increase and those that decrease the margin of stability of the feed-

back system.

The problem is illustrated in Fig. 1 for SISO systems where two
different perturbed systems él(s) and 52(3) produce exactly the same

size of relative error on the Nyquist diagram. As can be seen from

Fig. 1, the difference between the perturbed systems §l(s) and §2(s)

cannot be determined from the magnitude of the error alone.

Clearly, §2(s) has a smaller margin of stability than the nominal
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Im g(é)

—»Re g(s)

Fig. 1l: Two Different Perturbed Models with the same
Relative Error Magnitude on a SISC Nyquist
Diagram.
systen g(s), and §l(s) has a larger margin of stability than the no-
minal g(s). Since this is a scalar system the only additicnal
information about the error needed to distinguish between §l(s) and

52(3) is the phase of the erxor. .Thus, in the SISO case this gives

us a complete characterization of the error.
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In the MIMC case, the problem is.not so simple because for
an nxn system G(s) thé error matrix E(s) has 2n2 degrees of
freedom (two for each element of E(s) ife., gain and phase or real
and imaginary part), Thus, if a single degree of freedom is eli-
minated from E(s), by information in addition to the norm of E(s),
there are still 2n2-1 degrees of freedom left. Therefore, it is
important that exactly the right additional information about E(s) is
obtained so that only a partial characterization of E(s) is necessary

to distinguish between modellings errors that increase or decrease

the margin of stability of the feedback system., In order to do this it

is necessary to examine the structure of the smallest error that des-
tabilizes the feedback loop. We will call this error the worst error.

In the SISO case, the worst error is illustrated in the Nyquist

diagram of Fig. Z.
Im

A

g(s)

Fig. 2: Illustration of worst type of error in
SISO case on a Nyquist diagram.
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At point A, in Fig. 2, the Nyquist locus of g(s) is nearest the
critical -1 peint and thus the worst error simply moves point A to
.A' by "stretching" the Nyquist locus at that pérticular frequency to
just pick up an extra encirclement of the -1 point (the point A' is

infinitesimally close to -1). It is important to point out that this

type of perturbation could be applied to g(s) in any frequency range

but that it need happen only at one particular fregquency, wo near A,

in order to induce instability. Thus we will speak of the worst

error at a particular value of s€DR.

Notice also that there are any number of curves that we could
pass through A' representing perturbations of the original Nyquist
diagram of g(s) as depicted by'§l(s) in Fig, 2, that induce instability
and are identical to the worst exror at the frequency of point A but
differ at other frequencies. However, these curves will also be
considered as worst errors since it is really their nature at a
single frequency-that is important in distinguishing them from other
curves.

One other point must be emphasized. The system g(s) may be
constructed quite simply by finding a continuous stable

2(s) = g(s)/g(s) that meets as closely as desired the ideal speci-

fications given by

[ -1, .
-g (on) . - s=3wo
(s) =
l (2)

1 ' S#on

2ideal
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where wo is the frequency corresponding to point A in Fig. 2. For

example, one continuous, stable %(s) that approximates zideal(S) in

k2) can be generated simply by taking %2(s) to be of the form

_l .
2(s) =1 - q(s) |1 +g (on)| | (3)
where
_ 20 s-0
als) = — 2 (s+d )c ' (4)
5T +2P0 ST

Tc approximate z'deal(s) closely, p>0 in (4) must be very small so
that |g(s)| is as small as desired whenever [s—jw0|>e for a given

€. The constants a>0 and c=t1 in (4) are used to adjust the phase

of gq(s) without affecting Iq(s)l so that

q(jwo) = exp[j{arg(l+g-l(jwo)}] . (5)

This selection of-p, & and ¢ in (4) makes gq(s) essentially =zero

everywhere except in a suitably small frequency range near wo where

it has the value given in (5). Thus 2(s) is as close as desired to

the specifications in (2) but is still continuous in s and stable.

The %(s) determined by (3), (4) and (5) produces a g(s) essentially

like the one of Fig. 2.

Returning to the MIMO case, we can make all the analogous state-

ments to those concerning Fig. 2, once we have specified the worst

error. Then similarities between the SISO and MIMO cases can be

easily demonstrated using the ideas of chapter 2 developed in
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Problems A and B and by use of the SVD on the matrix h(G(s)) of (1).

Suppose that the SVD of h(G(s)) is given by

h(G(s)) = U(s)Z(s)V (s) (6)
where
U(s) = [w; (8) ,uy(s) suen s (S)] (7
V(s) = [zi(S)’XQ(S)"“'Xn(S)] (8)
I(s) = diag[dl(s),cz(s)....,On(s)]' (9)
0,(s)2 0, (s)2 0 (10)
where the singular values Gl(s) = Oﬁax(s) and on(s) = cmin(s).

Recall from (2.66) that the error matrix E(s) of smallest norm that

will make h(G(s)) + E(s) singqular is given by

' -
]
E,(s) : 0 H
E(s) = U(s)| -===——- e v(s) (11)
]
]
g? ' -0 _(s)
. . . 1 . ’
where [lEo(s)llf_cn(s) but is otherwise arbitrary. provided the

norm of the matrix Eo(s) is bounded by on(s), its structure is
completely unimportant information for the test determining the
singularity or nonsingularity of h(G(s}) + Eo(s)- Therefore, EO(S)

will be taken as identically zerc in the following discussion and

lOf course it must also be such that 5(5) satisfies condition 1 of
Theorem 3.2.
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thus, E(s) given by (11) reduces to

H
E(s) = -on(s)gn(s)y_n(s) . (12)

The E(s) given by (12} will be called the essential structure of

the more general form of E(s) given by (11l) when Eo(s)#o. The

. H . .
quantity Gn(s)gn(s)gn(s) is the comporent of E(s) given by (11)
that alone must be exactly known if it is to be ascertained whether
or not the matrix h(G(s)) + E(s) is singular. Hence, the description

of the E(s) given by (12) as the essential structure of E(s) given

by (11) is justified.

Remark: The fact that E(s) in (12) is singular or that E(s) in (11)
may be almost singular will be important in chapter 6 where a method
that assumes that E(s) is nonsingular or not even close to

being singular is discussed.

Again, as in the SISO case, the error given by (12) need only
occur at one particular complex frequency Sy to destabilize the
feedback system. That is, we may construct a perturbed G(s) having
the same number of unstable poles as the nominal G(s) that has the
property that E(so) satisfies (11) arbitrarily closely and hence
destabilizes the feedback system. The MIMO errox matrix
E(so) = -Gh(so)gn(so)gi(so) is the generalization of the model
errors that produce the g(s) and §1(s) of Fig. 2 passing through point
A' just picking up an extra encirclement of the critical peoint (-1,0).

From (12) we see that for an arbitrary error matrix E(s) that the
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projection,1 <u (s)vH(s),E(s)> u (s)vH(s), of E(s) onto the
-n - “n '-m

one dimensional subspace spanned by En(s)gz(s) can be used to

determine if the component of modelling error in the most sensitive
. . H . . . . .
direction gn(s)gh(s) will move the multivariable Nyquist diagram
of the nominal system nearer or farther from the critical point

(0,0) in the complex plane. The direction of this movement of the

MIMO Nyquist diagram is simply ascertained by determining if

<u (s)v (s),E(s)> 1is nearer or farther than a distance of O_(s)
-—n  -n n

from the point (-Oh(s),O) in the complex plane. However, the quantity

<En(s)z:(s),E(s)> merely determines the effect of one component of
the model error and does not.take into accouﬁt the effect of the
other components of the model error (i.e., the projections
<3i(s)z§(s),E(s)> Ei(s)g?(s)) have on the multivariable Nyquist
diagram. Therefore, some restrictions on these other model error
components must be placed if their effect on the stability of the
closed-loop system is to be easily predicted.

Suppose now that we restrict the component of modelling error in

the most sensitive or worst direction En(s)zn(s) to be exactly zero

(i.e., <En(S)X§(S)'E(S)>=O) so that it has no effect on the

multivariable Nyquist diagram. - Naturally, for this class of modelling
errors, one expects that the magnitude of the error required to

destabilize the feedback system should increase since the worst possible

1 The innerproduct notation <-,.> was defined in (2.48) of chapter 2
where a discussion of projections on subspaces is also given.
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type of error has been ruled out and indeed this is the case. The

elimination of this type of error can only be done using engineering
judgement about what type of error can occur in the physical system.

The next theorem assumes that the worst model error can be ruled out

and extends Theorems 3.4, 3.6 and 3.9, by allowing them to deal with

errors of larger magnitudes than previously allowable.

Theorem 1: The polynomial 5CL(S) has no CRHP zeros and hence the

perturbed feedback system is stable if the following four conditions
hold:
1. (a) ¢OL(S) and $OL(S) have the same number of
CRHP zeros.

(b) if ¢OL(ij)=O, then ¢OL(jw0)=O
(c) ¢CL(S) has no CRHP zeros
2. h(G(s)) is of the form:

(a) h(G(s)) = I+G(s), A (L(s))¢(-=,0] and

el e)-c tisy1ais) or

E(s) =
E(s) = G(s)-G(s) for all se€fly
or () h(G(s)=(TrG(s)) (1-G(s)) T, AL(s))g(-e-1]
and E(s) = [6(s)+G(s)] T[G(s)-G(s)] for all sefy

or .
() h(G(s)) = I+G ~(s) and E(s) = ¢ Lis)[G(s)-G(s)] or

E(s) = [a_l(s)-G—l(s)] and A(L(s))€(-«,0] for all

Q_.
s€E R
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. 1/2
3. o [E()I<IO ()0, ()]

for all s€f) where 0 (s) and O (s) are the two
R n n-1

smallest singular values (assumed to be distinct)

of h(G(s))
4. <u_(s)¥, (s) ,E(s)>=0

for all SGQR where u (s) and v (s) are the left and
- -n
right singular vectors of h(G(s)) associated wit

Gn(s).

Proof: Conditions 1 and 2 are the same conditions used in Theorems
3.3 to 3.6 gnd 3.9 to ensure that G(s,€) is continuous in € on
DRg[O,l] so that Theorem 3.2 can be applied. ' Therefore, we need only
show that h(G(s)) + E(s) is nonsingular. This, however, is
guaranteed by conditions 3 and 4 using the sqlution to Problem B in

chapter 2 (see (2.73) to (2.76)). Q.E.D.

Note that in Theorem 1, conditions 3 and 4 are required to hold for
all SeQR even though they need only be used in the frequency range
where the sufficient conditions (all given by (1) of this chapter) of
Theorems 3.3 to 3.6 and 3.9 are violated.

The significance of Theorem 1 is that by requiring very little
information (cordition 4) in addition to the magnitude of the model
error, the Qofst type of modelling error that could destabilize the
feedback system (and whose exclusion might be justified on physical

grounds) is effectively eliminated. Hence, the "size" of the error
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necessary to destabilize the system may increase significantly if
Gn l(s)>>0n(s). Thus, the conservatism of the chapter 3 theorems

for this class of modelling errors is reduced. The essential structure

of the next worst error (i.e., next smallest error) that destabilizes
the system in this restricted class of modelling errors is given by

(from (2.73) with ¢$=0 because <u_(s)v (s),E(s)>=0)
-n  -n

E{s) =\/0' (s)o (s) [u (s)vH (s)eje(5)+u (s)VH(s)e—je(s)]-
n n-1 -—n -1 -n-1 -

(13)
where (a) 8(s) is real and arbitrary and (b) the vectors
gn_l(s).gn(s), v,-1(s) and v,(s) are the left and right singular
vectors of h(G(s)) corresponding to On_l(s) and Gn(s) respectively.
The spectral norm cf the matrix E(s) in (13) is precisely
,/Gn(s)on_l(s).

However, it must be pointed cut, that it is extremely unlikely that
condition 4 of Theorem 1 will hold exactly for a realistic modelling
error since the model error in the particular direction En(s)zi(s)
will rarely be exactly zero. A more likely expectation is that this
component of the error not be exactly zero but sufficiently small in
magnitude. By requiring only that the modél error in the direction
Bn(s)zi(s) be sufficiently small, Theorem 1 may be modified so that
the essential nature of its results are still valid when the class of

model errors considered is characterized by

[<u (8)vh(s),E(s)>] < c(s)< 0 (s) = a___(s). (14)
“n ' -n = n min

iy
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The positive scalar c(s) in (14) 5ounds the magnitude of the worst
godelling error as a funcfion of frequency to be less than oﬁin(SL
the minimum magnitude of the smallest destabilizing error required
to destabilize the feedback system. Therefore, the magnitude of the
model error in the most sensitive cor worst direction En(s)zz(s)

is not large enough by itself to destabilize the feedback system.

In order to destabilize the feedback system when tpe model errors
satisfy (14), other model error components, besides the model error
component in the worst direction, must contribute to the movement
of the MIMO Nyquist diagram through the critical point (0,0);

This is stated formally in the next theorem.

~

Theorem 2: The polynomial ¢CL(s) has no CRHP zeros and hence the
perturbed feedback system is stable if the following conditions
hold:
1. conditions 1 and 2 of Theorem 1 hold
2. o [E(s)]<[o_(s)O (s)+c(s) [o_(s)-0 (S)lll'/2
max n n-1 n n-1
for all s€ll,
H s
3. |<u (s)v (s),E(s)>|< c(s)< G_{s)
-n -] - n
for all SGQR .
Proof: Tdentical to proof of Theorem 1 except that now the general
solution of Problem B ((2.73) to (2.7€)) via conditicns 2 and 3

guarantees that h(G(s)) * E(s) is nonsingular. Q.E.D.
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The essential structure of the next worst perturbation that

does not violate condition 3 but destabilizes the feedback system

is given by (from 2.73)

- H - H = H * H
E(s) = [c(s)gn_l(s)zn_l(S) c(s)gn(s)zn(s)+Y(>)En_l(S)Xn(s)+Y (S)En(s)!n-l(s)]

(15)

where

172
y(s) = [[c(s) +o ‘S’”c‘s”"n-l‘s”] Jo) (16)

with ¢(s) being arbitrary but real. Note that as c(s)> 0, in con-
dition 3 and in (15) and (16), that we recover the results of Theorem 1.

To make the meaning of the results of Theorem 2 clearer, the following

example is given.

Example 1: Suppose that we wish to determine stability robustness of
a 2x2 control system which actually has a loop transfer function

matrix 5(5) but is represented by the nominal diagonal loop transfer

matrix G(s) given by

1
91, (s) ° s+7.5 0
G(s) = = (17)
1
0 955 (3) | 0 s+0.5
so that the npminal closed-looc system has poles at -8.5 and -1.5.
If we use the relative error crite{ion —-
9y, (8)-97,(s) 9y, (8)
E(s) = G T(s) [G(s)-G(s)] = 9y, (8 9;,(s) (18)

ng(s) 922(5)-922(5)
95,(s) 95, (8) ]




-152-

then the multiplicative uncertainty factor matrix L(s) is given by

r—‘v ~ _1
gll(s) 912(5)
g,.(s) g,, (s)
- _ 11 11
L(s) = I+E(s) = . (19)
921(5) 922(8)
gzz(s) gzz(s)

First, we compute Oﬁin(I+G-l(jw)) to determine the magnitude of

the smallest destabilizing model error E(s). This is simply given

by
-1,. \ i 2 2 .
o, (I+G "(jw)) = {1.5+3w = V(1.5)7+w~ > 1.5 (20)
min -
because
-1 s+8.5 0
I+G (s) = : (21)
0 s+1.5 | '

Now suppose that the error in the loop gain of each loop of

the feedback system is known within +50% of the nominal loop gain,
that is

g, Gw _
0.5 < T Ga) (jw) |< 1.5 (22)

=lg,
911 11

and
922 (Fw)

g,, (3w

= [2._Gw]| < 1.5 . (23)
922 22 ‘

0.5 5‘

Next, suppose that we are more uncertain about the channel crossfeeds

in the sense that we can only assert that
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' o 512(3'!») o
11
and that
. . g,y (30) . (25)
|eqy Gl |= |2, Gad | = g,, (G) 22

It follows from (22) and (23) that we can bound Iell(jw)l and lezz(jm)l

by 1/2 and thus, by (24) and (25), we can only conclude that

leGw ], =0 [EGWI< 2.5 . o (26)

From (26) and (20) it is clearly possible to have

. -1,
O'max[E(ju.))]> o‘min[I+G Gw)l . (27)

Therefore, Theorem 3.4 of chapter 3 does not apply. However, we can
use Theorem 2 to ensure the stability of the perturbed feedback system.

To see this, note that the SVD of I+Gn1(jw) is given by

jel(w)
e 0 [s0+8.5 | 0 1 0
_l . _
I+G " (Jw) = jez(m)
0 e 0 |5w+i.sl) o 1J
28
= UEO GV () (28)
where
Bl(w) = arg[jwt+8.5] (29)
and .
Gz(m) = arg[juw+l.5] . (30)
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Note that condition 3 of Theorem 2 can be satisfied with c(jw)=1/2

since from (28) defining Eg(jw) and zg(jw) and from (23) bounding

222(jw) and thus ezz(jw) we hawve that for all w

i Y H . . H » . . .
|<32(nw)12(Jon,E(Jw)>l=lgz(:m)E(:w)gzc:w)l=|e22(3w) I; 1/2 . (31)

Thus, by (31) and (20) we have
0, (jw)> 1.5 > 1/2 > |<u, Gu)vh () B Gu)>] - (32)

Next, we calculate the right-hand-side of condition 2 of Theorem 2

and a lower bound as follows

1/2
[o’l (jw)csz(jw)+c(jw) [o, (jw) -0, (Gw) ]] = [ija.sl |wt+1.5
1/2 -7
+ 1/2[|jw+1.5|-|jw+8.5|]J / > (8.5) (1.5)+(;)_>_ 3. . (33)

Therefore, using (26) we have that

1/2

crmax[E(jw)]g 2.5 <3 f_[cl(jm)oz (Gw) +c (jw) [0, (Gw) -0, (Jw) ]] Ga)

and so condition 2 of Theorem 2 holds. Assuming condition 1 of
Theorem 2 holds we have shown that the perturbed feedback system is

stable. The next smallest destabilizing error can be calculated

from (15) and (16) with ¢(jw)=0 and w=0
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-1 -1
5 Sy = 1. . {ve
since Ghin(I+G (Jw))__Umin(I+G (0)) =.1.5 and is given by

1/2 3
E(0) = (35)
3 -1/2J
which means that L(s) may be taken as the constant matrix L given
by
r3/2 3
(36)

3 1/2

Thus, we see that (refer to Figs. 3 and 4) crossfeed gain errors of
magnitude 3 and loop gain changes of +50% are required to destabilize

the feedback system if we insist that (22) and (23) must hold.

Nominal Open-Loop System G(s)
R

:. ______

|

C + Uf(S)' i [
" —SF75 [ +Y4(s)

| I

| |

O J + :Uz(S) i ! P

T N | |st05 i S *yo(s)

L _ J

Fig. 3: Nominal Feedback System {(Stable).
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Perturbed Open-Loop System G(s)

—  G—— G D Gm— R N TR — — — — I ——

B 1.
| - !
O + I + U1(S) | | ~
5 | LS T |s+7.5] | *yy(s)
I ¥ |
| 3 ,
' |
| 3 . ,
' ~ |
() 4t u (5) | -
1 - : 05— : s+05 : -4 > ¥,(s)
= N

Fig. 4: Perturbed Feedback System (Unstable)

Remark: One possible exception, to the form of E(s) given in (13)

or (15) occurs when E(s) is such that at least, one of the eigen-
values of L(s) is real and negative. In Theorem 1 and 2, condition 2
places restrictions on the eigenvalues of L(s) which may be violated
when at least one of the eigenvalues of L(s) is real and negative.

In this case, Theorems 1 and 2 do not apply and there may exist a
smaller error that destabilizes the feedback system but yet conditions

4 and 3, of Theorems 1 and 2 respectively, still hold. However, when



~157-

the matrices U(s) and V(s) of the SVD of h(G(s)) are complex it is
very unlikely that L(s)} determined by the E(s) given in (13) or (15)

will even have real eigenvalues.

We can now consider placing additional constraints on the
modelling and further restrict the class of allowable modelling errors

in the manner of Problem C in chapter 2 and derive the next theorem.

Theorem 3: The polynomial $CL(s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. cConditions 1 and 2 of Theorem 1 hold.

2. E(s) is of the form

' -
El(s) E ez(s) H

E(s) = U(s) + v (s} (37)
sg é 0

where 92(5) and EB(S) are vectors whose last
component is identically zerc and where U(s) and

V(=) are defined in (6).
3. Umax(E(S))<‘/dk(s)GZ(s)

where Ok(s)Uz(s) = min Oi(s)c.(s) (38)
(i,3)M

M a {(n,n), (n-1,n) n,n-1)} (39)
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Proof: Direct application of Problem C of chapter 2 and Theorem 3.2

as in Theorems 1 and 2.

Theorem 3 allows us to determine the next larger magnitude of
the "next, next worst model error" required to produce instability
when the smallest destabilizing model error and the next smallesst
destabilizing model error considered in Theorem 1 and given by (13)
are completely eliminated from consideration. Theorem 3 eliminates
these type of errors by requiring zero model error projections in

the worst direction En(s)z:(s) and the next worst pair of directions
(s)vH (s) and u (s)vH( ) Thi f eliminati h
u (s)v 4 u 8 (s). e process of eliminating eac

"successively worst direction" could obviously be continued and

larger magnitudes of these classes of errors wculd then be necessary

to destabilize the feedback system.

4.3 Block Diagram Interpretations of Worst Model Error

In this section, interpretations of the smallest destabilizing
model errcr will be given using block diagramsrevealing the role of
the SVD of the matrices of I+G(jw) and I+G_l(jw) in the input-output
properties cf the feedback system. The types of model error con-
sidered are those of Theorems 3.4 and 3.6 involving the relative errors

-~ -1 ~e
between G(jw) and G(jw) or G ~(jw) and G 1(jw).
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At some particular fregquency wo, let the SVD of I+G-1(jwo)

be given by
16 T (Gu) = UGB I I G )V (e) (40)
1% WWo! 2 LTV %,
so that the closed-loop transfer matrix at wo, GCL(jwo) is given by

n

G, (Jw,) = (I+G'l(jw )'l= v{iw )z-l(jw )UH(jui ) = ) ——— v, (jw )u‘f(jw )
CL™""0 0 0 0 0 . o, (Jw )—+ -0 —2 0’
i=1 i 0
(41)
and thus
1 . (42)

H,. . o
¥ (ug) Gy (Gug)u; Gug) = o, (Guy)

A block diagram of a closed-loop stable system representing equation

(42) is given in Fig. 5.

+

o Jut~e
oS wot —1 Yj (on)f?-’ Gljawg)

\_/jH(jwo) — 0._1_ oS wy!
j(jug)

Fig. 5: Block Diagram Interpretation of SVD of

-l .
+ .
I+G (on)
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This Figure illustrates that the left and right singular vectors
u.(jwo) andlgj(jwo) collapse the MIMO closed-loop system into a SISO
system through which the signal coswot passes with a change of
amplitude by a factor of l/dj(jmo) determined by the singular values.
These vectors can be interpreted as input and output "directions"
where for each different value of the index j input/output direction
pair produces a different SISO system and represents a different route
through the MIMO system for the signal coswot. Therefore, from

Fig. 5 with j=n, we see that if Gn(jwo) = Gmin(jwo) és near zero, then
the system will amplify a sinusoidal signal by a large factor of
1/6n(jwo) in the input/output directions of En(jwo) and Xn(jwo). As
cn(jwo) approaches zero the’amplification factor approaches infinity
until at Un(jwo)=0 the system with a bounded input produces an
unbounded cutput, that is, the system becomes unstable. This is all

. -1 . -1
rather obvious since if Gn(jwo)=0, the matrix (I+G (jwo)) does not

exist and therefore there must be closed-loop poles on the jw-axis at

+jw _.
)

As in the case of I+G—1(jwo) a similar interpretation of the

SVD of I+G(jwo) can be made. If the SVD of I+G(jwo) is given by

H
I+G(Juy) = V(30 )T (je )V (Juy) -making the SVD of [I+G(juy)] 1

-1 -1 B T
[I+G(3w0}] = v(jwo)z (ij)U(3w0)= izl

_ . H..
qi(jwo) Xi(on)Ei(on) (43)
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then Fig. 6 gives the block diagram analogous to Fig. 5. Figure 6

shows that the only change from the previcus case shown in Fig. 5

is that the output is generated from the error signal e instead of

the system output signal y.

v jwo) = cos wg!

Ti(jwo)

cos wot —{yjljwo) [ Gljwo) —>y

Fig. 6: Block Diagram Interpretation of SVD
of I+G(jw0).

Notice that in (41) and (43) the vectors Eﬁ(jwo) and Xi(jwo)
depend on the particular f£reguency wo that is selected when the SVD

is accomplished. Thus the input-output relationship of Figs. 5 and 6

are only wvalid at the frequency Wy Note also that the unit vectors
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Ej(jwo) and Xj(jwo) are in general complex but may be realized by

passive attenuating filters that give the appropriate phase shift

or time delay at freéuency wo.

In the SISO case when G(jw) is a scalar the vectors Ej and.j%
become the complex scalars u and v which have unit magnitude. Since
the input-output relationship in these figures is simply the positive

gain of l/Gj(ij), it must be that at w=u, the phase of the product
u(jwo)v*(jwo) is simply the negative of the phase of

{1+g'1<jw0)1"l or [1+g(jw0)]-1.

Using Figs. 5 and 6 we may interpret the directional nature of
the smallest (according to a particular error criterion) model error
in G(jwo) that destabilizes the closed loop system. The gain from
input to output in Fig. 5, as mentioned before, is ;imply 1/Oj(jw0)-
If the input-output directions En(jwo) and zn(jwo) are used and if
cn(jwo) is small, then a small amount of positive feedback arcund the
system of Fig. 5 will destabilize the system. This is shown in Fig. 6
where the output of the system of Fig. 5 is fedback to the input with
a gain of a. Notice in Fig. 7 that if a=0n(jmo) the system becomes
unstable because the system amplifies the input by [Gn(jwo)-a]-

This additional feedback could be interpreted as a perturbation to the
system of Fig. 5. However, by block diagraﬁ manipulations it is not

difficult to see that this perturbed system is equivalent to those of

Figs. 8, 9 and 10.
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. . {
G(jwg) . \_/nH( jwg) >on(jwo)-acos wot

coSs we! un{jwo)
+

Osa<op

Fig. 7: Destabilizing Feedback in Most Sensitive Direction

. H,, e S
En(jwo)Xﬁ(jwo) for Error Criterion E = G " [G-G].

COSwof
>~ —
onljwg)-a

G(jwp) —~ v H(jw,)

cos wot —un(jwg)

aun(jwo) v (jwo) e

Fig. 8: Equivalent to Fig. 7.
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> v H(jwo) >

c0s wg! =y unlicy) 6 (juwo)[I- 2 unljwe)vi wo)]

onljwg)-a

) + R Hy - COS(lJof
‘ > :
cos wot —* un(jwp) ; Gljwo) ¥n (jwo) onljwe)-a
. Hy: B
I-~aun(jwolva (jwo) e
Fig. 9: Equivalent to Fig. 8.
—— T, T\ T T T 1
G(jwo) |
! COSwot
l
I

3
+ |

|

|

—

. _ H,. . -1
Fig. 10: Equivalent to Fig. 9 where Y = [1 aXn(JwO)En(JmO” .
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In Fig. 10 licit i ion of [T-qu (3w v (5w )vh (50 )]
n Fig. an explicit inversion o agn Jugl v, Jwy)v, Jw,
has been performed to simplify the block diagram.

From Figs. 9 or 10 it is clear that the stability of these equi-
valent perturbed closed-loop systems is completely characterized by

the behavior of the loop transfer function matrix E(jw) which at

w=w0 is given by
(44)

~ . . . . .. H, .
G(on) = G(ij)L(]wo) = G(on) II—GI_JnijO)Y_n(ij)]

Thus, in the error criterion E(s) = G-l(s)[a(s)-G(s)],given in (3.35)

we have that E(jwo) is given by

.

. - ) H,.
E(on) = agn(wo)gn(jwo) (45)

This means that the perturbation matrix L(jwo) that perturbs the

inputs to the open-loop G(jwo) has the same effect as applying

additional positive feedback in the most sensitive direction

. H, . .
u (jw )v (3w ). Just as we have interpreted the worst error as ad-
-n 0 0 )

- s . . . , H, . .
ditional positive feedback in the direction u_ (jw )V (jw.) using the
-n 0’ 0
SVD of I+G—l(jw0), we obtain similar interpretations using the SVD of
I+G(jm0). Using Fig. 6 we may again determine the smallest des-
tabilizing feedback as given in Fig. 11 and its open-loop equivalent

in Fig. 1l2.
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. Coswo'
) S0
onljwo)-a
. u+t e .
cos wot unljwo) — G(jwp) —>y
a (=
Osa<0‘n
Fig. 1l: Destabilizing Feedback in Most Sensitive
.Dlrectlon En(on)gn(on) for Error
Criterion E = [a-l-G_llG.
s T s
| G(jwo)
‘ . dEAU , Hee ) . !
€0 wy —"yn(on)*Ct)T“ (1-a up(juo) v (jwy))
e o e o e e e e e ———

Fig. 12:

Equivalent to Fig. 11.
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Here again the model error criterion of (3.44) gives the model error

as
E(jw.) = -ou (jw )vH('w ) (46)
Jwg) = -on, 1305 ¥, %
and the perturbation L(jwo) as
C . H,. -1
L(oni = (I-a_qn(on)ym(on)) . (47)

Thus, by interpreting E%(jwo) and zj(jwo) as input-output
directions, the model error in a certain direction can be viewed as
the induced additional feedback in the directions specified by the
input vectors gj(jwo) and the output vectors"zj(jwo).

Thus to differentiate between those model errors that increase
the margin of stability and those that decrease the margin of
stability it is necessary to examine their contributions in certain
input-output directions.

A model error will decrease the margin of stability of the feedback

system if it can be interpreted as additional positive feedback in

the input/output directions gn(jwo) and gh(jwo), which are equivalent to the
s . . . H, . .
most sensitive model error direction u (jw )v (jw ), and the contri-
=n "“0'-n 70" —
butions of the model error in the other input/output directions are
negligible.
A model error will increase the margin of stability if it can

be interpreted as additional negative feedback in the input/output

directions Eﬂ(jmo) and zn(jwo) and the contributions of the model

error in the other input/output directions are negligible.



The contributions of the model error in the other input/output
directions are negligible, where the SVD of I+G-1(jwo) is used, if
for all i and j not both equal to n, Xg(jwo)éCL(jwo)Ej(jwo) is suf-
ficiently close to !g(jwo)GCL(jwo)Bi(jwo)- If the SVD
of I+G(jwo) is used, the perturbed closed-loop system éCL(ij) is
replaced by (I+§(jwo))—l and GCL(ij) is replaced by [I‘i'G(jmo)]-1 in
the previous sentence. The contributions of the model error in the
other input/output directions must be negligible because they may

potentialiy cancel out the effect or contribution of the model error

in the input/output directions u (ju,) and Xn(jwo)-

4.4 Example of Section 3.3 <ontinued

Tn this section, the example of section 3.3 is reconsidered
and it is shown how the model error given in Fig. 3.16, that
destabilizes the feedback system, can be predicted by computing the
smallest destabilizing or worst model error by the mgthods of this
chapter. Also, the class of modelling errors is restricted to
completely exclude this type of worst or smallest destabilizing error,
and the next worst or next smallest destabilizing error is ccmputed.
The size or norm of this error is given by Theorem 1 and its structure

is given by (13).

These computations are displayed graphically for beth the relative

. . . R . -1 ,~ ~— -1
and inverse relative error criteria (i.e., E=G (G-G) and E={G -G )G).

To make a comparison of the results with the different error criteria,
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Bode-like plots of the elements of L(jw), the matrix that makes I+G (jw) L (jw)
| singular at every w, are given, These L{ju) matrices correspond to the
minimum modelling errors of a specific criteria within an appropriately
restricted class of modelling errors. As in the SISO case, illustrated

in Fig. 2, the pertubed system E(jw) needs only to correspond to
G(jw)L(jw) (for the L(jw) that makes I+G(jw) L(jw) singular at every w)

at a single frequency in orxder to destabilize the feedback system. The
magnitude of these model error is given by the corresponding plots of

the singular values of I+G(jw) and I+G-l(jw)-

In Fig. 13 the singular values of I+G(jw), for our example, as well

as their geometric mean are plotted in @B versus the frequency, W.

Omax

i
— Wnlz

Magnitude (db)

_10_.

-20+

01 1 10 100 1000

Frequency (rad./sec.)

Fig. 13: Singular Value Quantities of I+G(jw)
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These quantities determine the magnitude of the smallest
and next smallest modelling error (when the class of errors

is restricted by <En(s)xi(s),E(s)>=0) that destabilize

the system when E = [a-lG-l]G. The magnitude of the smallest or

worst error 1is given by cmin and the magnitude of the next smallest or

. . 2 .
next worst error is given by [0 . O ]1/ . The minimum of O . occurs
min max min

near w=1 rad/sec, (c’min = -233B); thus the required magnitude of the

1/2

worst error is -23dB. However, at w=0, [0, o ] ~ 44B, indicating

min max
that the next worst modelling error occurring only in the frequencies
about w=0, is necessarily of a magnitude of 44B in order to destabilize
the feedback system., Since [0 . O 11/2 approaches 0dB as W%,
min max

there exists a modelling error in the high frequency range of the next
worst type that need only have a magnitude of 0dB that will destabilize
the feedback system. Note, however that 0 dB is also the magnitude of
the worst error if the error is restricted to the high frequency range,

since 0 ., = 04B as u-»,
mi -

n
The nature of the worst error corresponding to Ghin in Fig. 13,

is obtained by plotting elements of

L(jw)

(14 GGw)) T (48)

where

6w -6~ 5w 16 (Gw) (49)

"

E(jw)

is such that I+é(jw) is singular at all w. This is displayed in
Figs. 14 and 15. Note that in Figs, 14 and 15 that the diagonal

elements of L(jw) near w=1l, (where qmin ~ -23dB) are essentially unity
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while llz(j) can be considered essentially zero (= -80dB in magnitude)

and that 221(j) is essentially -.0708.

20}
0
s |
2
5 20
2
= 5
o
=]
= _a0-
-60F
_ t 1 | | L 1
800J 1 10 100 1000

Frequency (rad./sec.)

Fig. 14: Magnitude Bode-like plots of elements of L(jw)
for worst model error.
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Thus at w=1, L(j) is given approximately by

1 0
L(3) = (50)
-,0708 1

and represents a crossfeed type of perturbation as in Fig. 3.16 which

has a constant crossfeed perturbation L given by (with b12=50)

200 T T 1
100} . L2 .
)
Q
‘03 - -
o
[3]
z
-0
§ L1242
=
Q. _ -
-100} 221 7]
-200 | ' L
X " . 10 100 1000

Frequency (rad./sec.)

Fig. 15: Phase Bcde-like plots of elements of L(jw) for
worst model error
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(51)

which gives a modelling error of -20dB, Therefore, we see that the
essential nature of the crossfeed perturbation (51) is detected by
the approach presented here as evidenced by L(0) in (50).

The above discussion points out that a control system designer
can generate these plots and determine what type of gain changes or
channel crossfeeds, that were neglected in his nominal design model,
should be examined carefully; because if these gain and crossfeed
errors occur the feedback system can become unstable. The control sys-
tem designer does not need to worry zhead of time about all the dif-
ferent types of model uncertainties that might occur; the nature of
these plots vs. frequency will provide him with gnidance with what
type of modelling errors and in what frequency range he should be
most concerned with.

For comparison, the plots analogous to Figs. 13, 14 and 15 using the
singular values of I+G_l(jw) rather than those of I+G(jw) and thke
error criteria E = G-lIE-G] = IL-I are shown in Figs. 16, 17 and 18
respectively. Note that, for w=l, Figs. 17 and 18 indicate nearly the
same L(j) as in (50). However, as Ohin of I+G(jw) or I+G-l(jw) both

increase as W increases, that from Figs. 14, 15, 17 and 18 that L(j1000)
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100

80—

60

Magnitude (db)

Oma

-20—

0.t

Fig.

16:

i 10 100 {000
Frequency (rad./sec.)

Singular Value Quantities of I+G-l(jw).



Magnitude (db)

-175-

30 T I l
N 21
0
- %122 ~
=30 -
= —
-60
- i 1 |
90
0. i 10 100 1,000
Frequency (rad./sec.)
Fig. 17: Magnitude Bode-like plots of elements of L{jw)

for worst model error.
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associated with o'minII-i-G(leOO)] is approximately given by

F |
] -60
o
o B -
=2
[
w —
o -
£
c
~120}- i
-180 ' l
0.4 1 10 100 1000

Frequency (rad./sec.)

Fig. 18: Phase Bode-like plots of elements of L(jw)
for worst model error,

30¢7 (100%)

30
L(jl000} = (52)
- °
30e77 (1007 30
and L(j1l000) associated with ghin[I+G‘1(leOO)] is approximately
given by _3 o
5 (20°) 0.03e77 (90°)
L(j1l0G0) = . (53)
. - ° - o
30e j (90°) e j (20°)
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Thus, as the tolerable error becomes larger as qmin[I+G(jw)] and

Gﬁin[I+G—l(jw)] become larger {(as showrn in Figs. 13 and 16 respectively),
the type of errors that the different error criteria characterize may

be rather different as (52) and (53) indicate. When both omin[I+G(jw)]
OhinII+G—l(jw)] are sufficiently small the different error criteria

guard against the same type of model error or equivalently L(jw) as shown
by this example. This means that either test using Gmin[I+G(jw)] or
qmin[I+G—l(jw)] will detect the near instability of a control system.
However, they may give rather different estimates of, gain and phase

margin when the feedback system will tolerate a class of modelling er-

rors of larger magnitude.

Now consider, the next worst model error for the two error

criteria used in this chaptexr. Thus, the class of modelling errors

now considered must exclude the worst model error type just discussed.
The model errors now considered will have zero component in the most
.y . . H H . .
sensiti j j i j =0).
ve direction En(jm)zn(jw), (i.e., gn(]w)E(jw)Xn(Jw) 0)

For the [a—l-G_l]G error criterion we may again draw Bode-like

plots of L(jw) that corresponds to the [0 . O 11/2 error magnitude
min max

in Fig. 13. This is shown in Figs. 19 and 20 where the off-diagonal

elements of L(j ) are not plotfed because their magnitudes are

insignificant.



-178-

60 T I T

o
(@)
|

TN
O
I

QH

W
e)
l

Magnitude (db)
n
)
[

o
!

iQZZ

_10¥——'—"r, 1 : L

-1 1 i0 100
Frequency (rad./sec.)

Fig. 19: Magnitude Bode-like plot of elements of L(jw)
for next worst error.
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Phase (degrees)

-100

=120

-140

-160

| 1 i . 1
0.1 1 10 100 1000

Frequency (rad./sec.)

-180

Fig. 20: Phase Bode-like plots of elements of L(jw)
for next worst error.

Recall that the error matrix E(jw) for the next worst error is specified
by (13) where 0 (jw) is arbitrary but real. In Figs., 19 and 20, 6(jw)
has been set to zero in order to calculate a single L(jw). From

Figs. 19 and 20, it is clear that the next weorst type of error is to
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simply reduce the gain in one feedback channel and increase it in

the other while changing the phase of both channels. Here crossfeeds
between the feedback channels play no essential role. The plots
analogcus to Figs. 19 and 20 are given in Figs. 21 and 22 for the error

criterion E=G—1[§-G]=L—I where again the off-diagonal elements of

L(jw) are insignificant.

S50+ -
S 40} -
>
PR — -
s
= 30 -
c . R
o
(@] L —
=

20} o

2,4
10 2 -
o 1 | |
(O} ] 1 10 100 {000

Frequency (rad./sec)

Fig. 21: Magnitude Bode-like plots of elements of L(jw) for
next worst error.
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Phase (degrees)
>
o
|

_80_
| \Qu —
-120+ ]
-160 -
1 1 L
(oR| { 10 - . 100 1000

Frequency (rad./sec.)

Fig. 22: Phase Bode-like plots of elements of L(jw) for
next worst error,

Note that in this case, L(3w) increases the gain in both feedback chan-
nels while changing the phase of both channels. Thus, once more, we
see from Figs. 19-22 that the model erroxr, or I-(jw), the criteria guar

against are essentially different.
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4.5 Improving Robustness Tests by Combining Tests

It has been demonstrated in this chapter that the usefulness of
the various robustness tests of chapter 3 can be extended by restricting
the class of allowable model errors so that the error structure is
exploited. In this sectioﬁ, it is shown that the usefulness of the
robustness tests can be extended by a combination of two tests forming
a single hybrid test. This effectively enlarges the class of allowable
model errors and, therefore, in certain circumstances the stability
of the feedback system may be confirmed when either test alone would
fail to be conclusive.

The basic idea is to use tests that employ the same G(s,€) in
their proof via Theorem 3.2; one uses one test for a certain subset
of frequencies and uses the other test for the remaining frequencies.

The reason that this procedure works is that both tests guarantee

exactly the same thing, that I+G(s,€) is nonsingular for all € in

[0,1] for any s in their respective subsets. Let DR' the Nyquist
contour of Fig. 3.10, be decomposed into two subsets DlR and DZR
whose union is DR and let TESTL and TEST2 denote any of the tests
bbunding the model error magnitude in the thecrems of chapters 3 and

4 that employ the same G(s,€) in their proof. Then the following

theorem may be stated.
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Theorem 4: The polynomial ¢FL(S) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. Condition 1 of Theorem 3.2 holds

= D
2. DR DlRU 2R

3. TEST1 implies I+G(s,€) is nonsingular on Dle[O,l]

4. TESTZ implies I+G(s,€) is nonsingular on DZRg[O,I]

Proof: Condition 2, 3 and 4 guarantee condition 2 of Theorem 3.2 and

therefore by Theorem 3.2, $CL(s) has no CRHP zeros. Q.E.D.

Theorem 4 allows us to combine tests that employ both absolute
and relative error measuras as well as tests that utilize model error
structure and those that do not, provided they can work with the same
I+G(s,€). Even in the case where the tests were originally derived
by use of different G(s,€) matrices it is sometimes possible to find
a single G(s,€) from which versions of the original tests may be
derived via Theorem 3.2. For example, a version of Theorem 3.6 is
derived in [51] by use of the G(s,8) = (1-€)G(s) + €G(s) which is
used in the derivation of Theorem 3.4.

This version of Theorem 3.6 requires more complicated conditions
on the allowable L(s) than the eigenvalue restrictions on L(s) in the

present Theorem 3.6. However, these more complicated conditions are
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. e . -1
automatically satisfied provided cmax(L (s)-1)< 1. Therefore,
under this restriction on L(s), Theorem 3.4 may be used on DlR and

Theorem 3.6 on D2R to prove the stability of the feedback system
under variations in the system model G(s).

To show how tests may be combined reconsider the example

Example 2:

of section 4.2 where G(s) is given by

1 0
G(s) = s+7.5 ' (54)
1
0 s+0.5

and where we use the same constraints on the model given in (22),

(23}, (24) and (25). Notice from (26) that

(3))< 2.
o (EGLDL 2.5 (55)
and that from (20) for all w>1
_l .
+ j = . 547 > . > j
o, (T+6 " (3w) |1.5430]> 2.5 > o (EGw). (56)

Therefore we could uge Theorem 2 for all w<l and Theorem 3.4
which employs the test in (56) for all w>1 to ensure the stability
of the feedback system.

Obviously, the division o£ the frequency axis could be carried
out for n different tests which divide the frequency axis into the
n subsets whose union is the whole frequency axis. 1In fact, as n

becomes large this suggests that a single test that depends contin-

uously on s could be devised. This was mentioned before in the context
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of separating functions whose coefficients themselves could be

transfer functions of s (see section 3.9).

4.6 Computational Considerations [19,49,53]

In this section, we discuss a few key relationships between the
nominal closed-loop system, denoted by GCL(s), and the gquantities
involved in computing bounds on the allowable mcdel error and the
most significant error structures considered in this chapter.

We first make the simple observation that if the SVD of a square

matrix A is given by

A = usvh (57)

then the SVD of A-l (assuming it exists) is given by

At vt ot (58)

This relationship between the SVD's of A and A“1 is useful when

the quantities o . (I+G), 0O_, (I+G-1) and O . [(I+G)(I-G)-l],
min min min

used in Theorems 3.4, 3.6 and 3.9, are required. The relationship

between these quantities can be determined from the following equations{

-1 _ -1
GCL = (I+G 7) (59)
-1 -1
(GCL-l/ZI) = -2 (I+G) (I-G) (60)
-1
(GAr =I) = - (I+G) (61}

CL
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where the nominal closed-loop system GCL is given by

_ -1
Gar, = G(I+G) . (62)

Thus by calculating the SVD's of GCI:aI for o=0, a=1/2 and 0=l
one can easily obtain via (59), (60) and (61l) the sSVD's of I+4G,
I+Gnl and (I-G)-l(I+G). .This is significant since GCL need only
be calcuiated once for the three SVD's; also, no explicit inversion

of G or I-G is needed since if

G(s) = cs-a) 's (63)

then GCL(s) is given by
G, (s) = C(Is-A+BC)-1B (64)
CL _

Another computational saving can be realized if only approximations
to the minimum and maximum singular values of a matrix and not its
full SVD are required. Recall from (2.38) and (2,39) that Gmin(A)

and ohax(A) are given by

-1,-1 65
ci(A)-—HA | (65)
and
= 66
g (@& = [IA[|2 . (66)

Using matrix linear algebra, it can be shown that

= [lall, < llall, < 7/ l]a]] (67)
Vw 1- 2 — 1



-187-

and

1
:EHMusIMHZsﬁWMHw (68)
if A is an nxn matrix. Since the matrix norms llA[Il and IIAIIw
are much cheaper to compute than ][AI[Z, the singular value quantities

-1 -1 .
+ -
o in(I+G), o in(I G ") and O in[(I+G)(I G) ] may be approximated by

-1
= - - 11~
gmin(I+G) = l IGCL II iz —I IGCL Il li (69)
_l _ _l . _1
o @) = [le [ =lle [} (70)

-1 1 -1_1 -1
o . [I-6) " (1+e) 1= 5 |lc;CL-1/21H2 =3 IIGCL-l/ZIHi (71)

within the bounds given by (67) and (€8) whes i=1l ox «, for
computational savings. Note that as n increéses these approximations
may be poor. However, all the robustness theorems of chapter 3 can
be formulated using the 1 or ® norms rather than the 2-norm

(singular values) and approximations need not be used at all.
Nevertheless, the results on the structure of model errors are only

applicable in the case of the spectral or 2-norm.

4.7 Concluding Remarks

In this chapter we have shown how the structure of the model
error may be used to improve the theorems of chapter 3. The nature
of the worst model error was explored through the use of block

diagrams showing that it is equivalent to additional positive feedback



-188-

in the input/output directions éh(jwo)_and gn(jwo). The example
of section 3.3 was used fo illustrate that the nature of the smallest
destabilizing error carn be obtained from Bode-like plots of L(jw).
Also improving robustness tests by combining different robustness
test over different frequency ranges was discussed as well as com-
putational considerations for the efficient computation of quantities
required by the robustness tests of this chapter and those of
chapter 3. .

To place these results in perspective, a design/analysis pro-
cedure is suggested. This procedure assumes that some particular
synthesis procedure, such as the LQG methodology, is used tc obtain

specific controller designs. An outline of the procedure is the

following sequence of steps:

1. Obtain an initial controller design that meets basic
performance requirements but does not produce a con-
troller with 2 bandwidth larger than the upper fre-

quency limit for which the model is valid.

2. Obtain an estimate on the allowable model error

magnitude as a function of frequency and compare

with the wvalues of Qmin of I+G or,I+G-l.

2.1. if the model error magnitude is less than ohin

of I+G or I+G—l, stop.
2.2. If the model error magnitude is larger than Gﬁin
of I+G or I+G-l then go to step 2.2.1.
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2.2.1. Calculate the worst model error and check to see
if this error could possibly'occur. If not go

to step 2.2.1.1 otherwise go to step 2.2.1,2,

2.2.1,1 ralculate the magnitude of the next worst error.
If the model error magnitude in step 2 is less
than this, stop. If not, compute the magnitude
of the "next worst errox" and continue with a

step similar to 2.2.1 etc. (this gets rather
tedious!).

2.2,1.2 Try to improve model to reduce model error or

change contrcller design. Return to step 1.

Exactly how to change the model to reduce model error based on
the analysis methods of this chapter is an open research question.
Also, it is not always clear how changes in controller design may af-

-1
s - ..
fect the quantities Qmin(*+G) and cﬁin(I+G ). This is also an open

research problem, However, in spite of these difficulties (which in
the author's opinion may eventually be adequately circumvented) the
key to making practical use of the results of this chapter depends

on the engineer's ability to determine whether the model error mag-

nitude in the most sensitive direction, i.e., the projection magnitude
I<E,(jw)!:(jw)' E(jw)>[, can be bounded. Clearly, engineering judgement
1

is necesarry; however, this engineering judgement may not easily

translate into this type of bound. Thus, practical experience in
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obtaining these type of bounds is necessary in order to further
improve the type of robustness tests that are appropriate for the
kinds of knowledge about model uncertainty that the designer has

at his disposal.
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5. ROBUSTNESS AND LQG CONTROL SYSTEMS

5.1 Introduction

The previous two chapters dealt with a loop transfer matrix G(s)
that contained compensation as well as open-loop plant dynamics. The
robustness results of these chapters hold independent 6f the MIMO design
methodology used to determine the compensation required.

This chapter will be concerned with deriving robustness result for
feedback control systems designed using the linear-quadratic-gaussian
(IQG) design methodology [41]. This includes results for the linear-
quadratic (ILQ) state feedback regulator and some of its variations as
well as the LQG regulator. The multivariable version of Kalman's inequality
and Theorem 3.6 form the ba;is for the derivation of these results.

"In section 5.2, the IQ and IQG control problems are stated for
completeness and the definition of the loop-transfer matrices for the
feedback systems is given. Section 5.3 continues with a discussion of
the multivariable Kalman inequality derived from the Riccati equation.
The stability margins for IQ regulators is then discussed in section 5.4
where it is shown that these regulators have guaranteed minimum stagiliﬁy
margins which makes them attractive and that the control weighting R
matrix determines the coordinate system in which these stability margins
hold. Stability margins for the state feedback regulator, whose feedback
gain is determined by a Lyapuncv or a nonstandard parameterized Riccati
equation, are also given. Section 5.5 concludes with a discussion of the

stapility margin for LQG regulators. It is shown that stability margins for

IQG regqulators are the same as those for IQ state feedback regulators but
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only at a point inside the LQG compensator. fhese margins cannot be
automatically guaranteed at the physical input or output of the plant
unless the Kalman filter of the IQG compensator has an exact model of the
perturbed open-loop plant, a very restrictive assumption. However,
robustness recovery procedures [35, 36] are discussed that allow a properly
designed 1QG control system to asymptotically recover the IQ state feed-
back stability margins at the input or output to the physical plant pro-
vided that the plant is minimum phase. The significance of having margins
at various points in the feedback loop is also discussed with reference
to modelling error characterization.

Some of the results of this chapter have appeared previously in the
literature. Based upon the deliminary gain margin results in Wong and
Athans [27]1, Safonov and Athans [25] gave the definitive treatment of
guaranteed minimum multiloop stability margins for the LQ state-feedback
requlator allowing for nonlinear perturbations in the feedback loop. It
was later shown by Doyle [33] that there are no guaranteed minimum sta-
bility margins for IQG regulators. Kwakernaak [36], énd Doyle and Stein
[35] have outlined procedures whereby the LQG regulators may asymptotica;ly
recover the ILQ regulator guaranteed margins.

The contributions of this chapter are mainly the simplified derivation
and characterization of ILQ reguiator stability margins. The structure
(diagonal vs. nondiagonal) of the control weighfing'R matrix is shown to
have important dimpact on the stability margins. If R is nondiagonal the
LQ regulator may have arbitrarily small gain margins If R is not a

multiple of the identity matrix it is shown that ability to tolerate
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crossfeed perturbations is drastically reduced. These results also apply

to the variations of the IQ regulators discussed in Section 5.4. Also,

in section 5.5 an inequality is derived that ensures that stability margins

will apply at both the input and output of the physical plant.

5.2 The L and LQG Regulators

For the sake of completeness, the IQ and IQG regulator problems and

their solution will be given for the linear-time-invariant, infinite time

horizon case [41].

5.2.1 LQ Regulator Problem

For the open-loop plant given by
%x(t) = Ax(t) + Bu(t) : (1)

find the optimal control u*(t) that minimizes the quadratic cost functional

J(u) given by

Jw = [ x(00x(t) + o (DRu(t)]dt (2)
0 .

where 0 > 0, R > 0, [A,B] is stabilizable and (a, 9'/%] is detectable.

The optimal control u*(t) is given by

1

u*(t) = -R BTK x(t) (3)

where K > 0 satisfies the algebraic Riccati equation
T

-1
ATK + KA + Q -KBR 'B'K = 0. . (4)

The block diagram of this regulator control ‘system is chown in Fig. 1.
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OPEN-LOOP PLANT
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® @

RIBIK
FEEDSACK GAIN

Fig. 1: IQ Regulator

To calculate the loop transfer matrix G(s) at the input to the plant,

we break the locp at point (:) in Fig. 1 so that now u, and u, are no
longer equal. Next we calculate the transfer function matrix from El to

-u,. This is G(s), the loop transfer matrix at the plant input and is

given by
G(s) = R-]'BTK(IS—A)—IB (5)

To calculate the loop transfer matrix at the output of the plant (at point
(:) of Fig.1l) we follow an analogous procedure. We break the loop at

point <:)of Fig. 1 and calculate the transfer function matrix from X,

to “X, which is given by

1

"52(5) = (Is—A)-lB R BTK 51(8) . (6)
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1BTK is the loop transfer matrix at the output of the plant.

Thus (Is-A) ‘BR™
In general, if Gp(s) denotes an open-~loop plant with input u(s) and
output y(s) and u(s) = -Gc(s)z(s) where Gc(s) represents the transfer

matrix of a compensator, we call Gc(s) Gp(s) the loop transfer matrix at

the input and Gp(s)Gc (s) the loop transfer matrix at the output.

5.2.2 I1IQG Regulator Problem

Let the stabilizable, detectable open-loop plant be given by

£:_(t) Ax(t) + Bu(t) + £(t) (7)

Cx(t) + B(t) (8)

y (t)

where the noises £(t) and O (t) are both Gaussian, white, zero mean, mutually

independent and stationary with

§(t-1); E>0 (9)

[}
(1)

ELE(8)ET (D]

S(t-D: ©>0 . (10)

"
@

E[6(£)67 (1)]

Find the optimal feedback control u*(t) depending causally on y(t) that

minimizes the quadratic cost functional J(u) given by

T
=lin = f M @oxe) + v (BRa(e)1dt (11)
Too 0 .

J (u

~e

where Q > 0 and R > 0. The optimal control u*(t) is given by
u*(t) = -G_X(t) (12)
r—
where X(t) the state estimate is generated by the Kalman filter

X(t) = AR(t) + Bu*(t) + Gely (£) - CR(t)] (13)
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or equivalently

x(t) = [A - BGr - chlgi_(t) + ny_(t) _ (14)
with Gr and Gf being given by

G, = R 1B K ' (15)

G, =12 cfo™1 (16)

1/

with [A, Ql/‘] detectable, [A, E 2] stabilizable, K > 0 satisfying

ATK + KA + Q - KBR 1B'K = 0 ' (17

and I > 0 satisfying

.

A+t +E-z2colczr=0. (18)
From (12) and (14) we see that the transfer function matrix from y(s) to

u(s) is given by

1

u*(s) = -[G_(Is-A + BG_ + G.C) "G ly(s) (19)

and thus the block diagram of the LQG regulator is given by Fig. 2.

0 .+ "(s) C(ls-A)"'B >1(s)

Gr(I1s=A+BG,+G¢C) Gy [+

Fig. 2: IQG Regulator
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From Fig. 2, we see that the loop transfer matrix at the input, G(s), is
given by

- -1 -1
G(s) = Gr(;s-A + BG_ + G£C) GfC(Is -34) B. (20)

5.3 Multivariable Kalman Inequality

The subject of qualitative feedback properties of IQ control systems
is not a new one. An early and fundamental paper by Kalman [21] detailed

properties shared by all LQ regulators in the single-input case. Kalman

showed that the scalar return difference transfer function of a single-input

IQ state feedback regulator satisfies the inequality

|1+g(Gw) | > 1 ; for all w . ' (21)

This is both a classical condition for the reduction of sensitivity at the
feedback input to the system (see, e.g., [19]) as well as necessary and
sufficient for a (stable) state feedback regulator to be optimal with
respect to some quadratic cost index. By inspection of the Nyquist diagram
corresponding to (21), (Fig. 3 with B=1), it is straightforward to observe
[22. pp. 70-76] that a SISO [Q state feedback regulator has a guaranteed
infinite upward gain margin, at least a 50% gain reduction margin and also
a guaranteed minimum phase margin of + 60°. (These margins were defined
in Section 3.7).

Anderson f23] developed a multivariable version of condition (21) as
‘a property of IQ state-feedback regulators; a similar generalized condition

arises in sensitivity theoryl (see, e.g., Cruz and Perkins [24]}). In this

I .
Sensitivity refers to the variation in system responses due to infinitesimal
c@anges in the nominal system parameters. Robustness refers to the de-
lineation of finite regions of allowable variation in nominal system param-
eters that preserve stability.
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chapter we will exploit the multivariable form of (21) together with the

results of Chapter 3 to establish the stability margin properties of 19

and IQG optimal regulators.

Img(s)

1001 /8/ 1))
;// / , j/{/f /ctuq
Y

Fig. 3: Set (cross-hatched region) of allowable
values of g(s) when [l+Bg(s)| > 1.

L Bt R Y P

We will need a precise statement of the multivariable LQ version of
condition (21) in the sequel, and this is provided by the following
theorem. The proof is by straightforward manipulation of the algebraic
Riccati equation is included, for completeness.

For convenience we will assume that in all remaining theorems and
corollaries that the Nyquist contour DR of Fig. 3.10 is chosen with R

sufficiently large so that the theorems of Chapter 3 may be applied.
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Theorem 1 (IQ Kalman Inequality): If the matrix K satisfies the matrix

algebraic Riccati equation

ATK + KA + Q - KBR-]'BTK =0 (22)

with R > 0 and Q > O then

(I+G(s)) PR (I+G(s)) = R + H(s) (23)
where

G(s) = R BTK(zs-a) 1B (24)

H(s) = [(Is-A) BIT(Q + 2Re(s)K) [(1s-a) "1B1 . (25)

Furthermore, If Q > O, B has. full rank and X > 0 then (23) implies that

(1+G(s)) IR (T+G(s)) > R, s € D (26)

Alternatively, if det(jwI-A) # O, for all w, and K > 0 then (23) implies

that

(+G(s))"R(I+G(s)) > R, seD, . @
Proof: Direct manipulation of (22) gives

(s*I-AT)K + K(sI-A) + ¥BR BTk = (¢ + 2Re(s)K) (28)

where s* denotes the complex conjugate of s. Premultiplying and post-

-1 .H -
rulitplying (28} by [(sI-A) lB] and [ (sI-Aa) lB] respectively we obtain

RG(s) + G(s)R + G (s)RG(s) = H(s) (29)
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2dding R tc both sides of (29) gives (23). Now Q + 2Re (s)K will be
positive semidefinite for s € DR if ¢ > 0 and the indentations of QR
are sufficiently small or if Re(s) > 0, s € DR which happens if det (jwI-A) #

0 for all w. Thus under these conditions H(s) > 0 or H(s) > 0 respectively

for all s € DR’
0.E.D.

It is important to point out that this theorem uses GH(s) rather
than GT(-s) as in [23]. These two quantities are the same when s = ju,
but are different when Re(s) # O. Thisvis the case yhen s is evaluated
along the Nyquist DR contour and this contour is indented along the
imaginary axis (Fig. 3.10). It is necessary to use GH(s) in order to
apply the theorems of Chapte} 3. Note, however, that when det(jwI-a) # O,
for all w, (i.e., when the open-loop system has no poles on the jw-axis),
that QR is just the imaginary axis from -jR to jR. 1In this case 27)

could be written as
(4G (§w) ) "R (I+G (50)) > R; for all w , (30)

which is the previously mentioned multivariable generalization of condi-

tion (21).

5.4 Stability Margins of IO Régulators

We can now employ Theorem 1 in conjunction with the results of
Theorem 3.6 to establish the robustness properties of multivariable IQ
requlators. Recall from Theorem 3.6 that one of the key quantities for

multivariable robustness analysis is the minimum singular value ohin(I+G(S))'
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where G(s) is the loop transfer matrix. Unfortunately, the inequalities
(26) and (27) of Theorem 1 do not provide a bound on Gmin(I+G(s)), where

G(s) is the IQ regulator loop transfer matrix defined by (24). However,
if we define

3 3 ‘ (31)

G(s) = R°G(s)R

then (27) (for example) can be rewritten in the form
8 (s B(r+b(s)) > 1, sen, . (32)

Equation (32) provides the bound

0 o (THG(s)) > 1, s € Ry (33)

on the minimum singular value of I+G(s).

To work with G(s) instead of G(s), it is necessary to manipulate the
system of Fig. 4 into the equivalent (for stability analysis) form depicted

in Fig. 5. Then using (26) and (27) together with Theorem 3.6 ieads

directly to the following result. (Recall from (3.27) that $CL(S) =
~ e ~ ~ ~ =1~
det (sI-A+BC) where G(s) = C(Is-A) "B, was used in Theorem 3.2 to

determine the stability of the perturbed closed-loop system.)

Theorem 2: The polynomial $CLKS) has no CRHP zeroes provided the fol-
lowing conditions are satisfied:
1. (a) ¢CL(S) and $0L(s) have the same number of CRHP zeros
(b} 1if ¢OL(3wO) = 0 the ¢OL(3wO) =0

(c) ¢CL(S) has no CRHP zeros
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Fig. 4: Feedback system with multiplicative
representation of uncertainty in G(s).

e N A

| L(s) | G(s) :

+ : L -4 : } ! -1 5
ucls)—( O+ RZL(S)R™Z —— RIG(S)R * -
- l | | i

b e e e —— S I -

Fig. 5: Feedback system for stability margin
derivation (compare Fig. 4). :

» - u(s)



=203~

2. G(s) is specified by (4) where K>0 satisfies (2) and [A,B]
is stabilizable, [A, Qi] is detectable and B has full rank.
. A b -1, -3 : o hold:
3. With y(s) = Umax[R L “(s)R °-I] either of the following hold:
(a) Q>0 and Y(s) <1, s ef

R
(b) ¢OL(jw) # 0 for all w and Y(s) <1, s &€ QR .

Proof: It is well-known that condition 2 ensures that ¢CL(s) has no CRHP

zeros. Defining &(s) é RiG(S)R_%, we see that G(s) has a state-space

H

realization [A, BR ' R-QBTK] and thus its open- and closed-loop charac-

teristic polynomials $OL(S) and $CL (s) are identical to those of

(A,B,R.lBTK). Thus any assumptions about ¢OL(s) and ¢CL(s) obviously

*L(s)a'* ,

A Al D A
apply to ¢OL(s) and ¢CL(s). Similarly, by defining L(s) =R
we may work with @(s) and ﬁ(s) instead of G(s) and L(s). The conditions

(26) and (27) of Theorem 1 are equivalent to Oﬁin[1+G(S)] > 1 and

Umin(1+§(s)) > 1 respectively. The condition 3a and Theorem 1 require

that

A—l ~
Opax (L " (s)-1) <1 <g . (I+G(s)), s €y (34)

and by Thecrem 3.6 we conclude that $CL(S) has no CRHP zeros. Alterna-

tively condition 3b and Theorem 1 require that

~=71 _ ~
Opax (T~ (8)-I) <1 < . (I+6(s)) (35)

which again by Theorem 3.6 means $CL(S) has no CRHP zeros.

Q.E.D.
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Note that the condition cmax(R*L-l(s)R_i-I) 5.1 in condition 3a
can be rewritten as
H
RL(s) + L (s)R - R > O, seS'lR (36)
or with s = jw
LR Y + R o) - R > 05 for all w. (37)

The inequality (37) was used by Safonov and Athans [25] to prove the 1Q
state feedback guaranteed gain and phase margins although their method,
of proof is quite different. They implicity assume that L(jw) is stable,
something which we do not require.

Theorem 2 can now be employed to establish the guaranteed minimum
multivariable gain and phase margins associated with IQ regulators.

Important Remark: We emphasize that these margins are guaranteed

only if the control weighting matrix R is chosen to be a diagonal matrix;
we will subsequently present an example showing that the margins can be

made arbitrarily small for an appropriately chosen non-diagonal R matrix.

Corollary 1: The 1Q regulator with loop transfer matrix G(s) satisfying

(16) with a diagonal R>0 has simultaneously in each feedback loop a

guaranteed minimum gain and phase margins given by

GM DI}, ») (38)

PM D [-60°, 60°] (39)

if >0 and
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GM D (3, «) (40)
PM D (-60°, 60°) (41)
if 9 > 0 and ¢0L(jw) # 0 for all w.
Proof: From Theorems 1 and 2 we know if @ > 0 then
3 -1, =% -1, ) |
Opax R T (s)R *-1) =0 (L “(s)-I) < 1, s € (42)

satisfying condition 3a when L(s) and R are diagonal. If ¢CL(jw) #0

for all w then

-1
Omax(L (s)-1) <1, s € QR (43)

satisfying condition 3b when L(s) and R are diagonal. The remainder of
the proof is completely analogous to Corollary 3.5.
Q.E.D.

Note that the margins of Corollary 1 are based on the inequality
(42). This inequality will not hold for all s e QR for "real world"
modelling uncertainties. In the SISO case, this is clearly demonstrated
by the physical fact that the phase of Q(jw) is completely uncertain at
high enough frequencies. This means that for some Wy s Q(jwo) is real
and negative -- that is, there is a 180° phase difference between g(jwo)
and §(jwo). If £(jwo) is real and negative, then Iz-l(jwo) - l[ > 1
and (42) is violated. This means that a physical system cannot actually

have an infinite upward gain —argin because its Nyquist diagram always

will cross the negative real axis at some sufficiently large frequency.
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Results related to Corollary 1 have been derived by various authors
[26] - [29]; but the definitive treatment including the multivariable phase
margin result is due to Safonov and Athans [25]. The approach of this
thesis, based on relatively simple frequency domain arguments, is new;

If R is not diagonal then the guarantees of Corollary 1 4o not

apply. The following exaﬁple illustrates that the gain margins may become

arbitrarily small.

Example 1:

Consider the IQ regulator specified of Fig. 1 with

3 ( 1 B )
(a,8,0%) =1, , I (44)
M P 2 .

where I2 is the 2x2 identity matrix and R > O is a nondiagonal control-

weighting matrix given by
R = BN K 242k 11 7B , (45)

where K>0 is arbitrary. By section of R in (45), K satisfies (2). Now
let the muliplicative perturbation L(s) be given by the constant matrix

L where

1 0
(46)

-
n

0 1+e

and € # 0 is arbitrary. The zeros of $CL(S) are the eigenvalues of the

perturbed closed-loop system matrix ECL where

~ -1 -L
ACL = a-BLB ~(2I+K _) ) (47)

ox
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o “
- - +
) (pl+2) 1 Bep21 p2+Be (p32)
ACL = - (48)
. +2) -
-(l+€)p2 (l+€)(p3 2) 1J
where we have let K-l be denoted by
I R B
K = (49)
Py P3

-~

For ACL to have no CRHP eigenvalues it is necessary for tr ACL < 0. How-

ever, by inspection of (48), if p2¢o then for any € # 0 there exists a
B that will make tr XCL > 0 and therefore for arbitrarily small €, the
perturbed closed-loop system will be unstable. Thus an IQ design can have

an arbitrarily small gain margin.

The basic problem explosed this example is that the margins are really
guaranteed at a different point in the loop'than where we would like.
This is illustrated in Fig. 6 where the perturbation ﬁ(s) is inserted at
point <:> . When ﬁ(s) is diagonal, as when calculating gain and phase
margins, and R is also diagonal then R_J‘e and £(s) commute and points <:>
and (::)have identical guaranteed gain and phase margins. Point.<:> is
where it is important to have margins (i.e., at the input to the physical
plant) , noct inside the compensator at point (:) . If R is not diagonal
and l|R-%!|2|lR%i|2 >> 1, a "small" perturbation at point (::)may look
like a "large" perturbation at point (:) because of the amplifying effect
of the nondiagonal R matrix scaling. .

Returning to Example 3.1 of the Chapter 3 once more, an IQ feedback

control law is given that has the same closed-loop poles as before,
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[
—
w
1
>
L
@
<

Fig. 6. IQ regulator with margins arantegd at point <:>
for an R > 0 and at both and (f) for diagonal

R > 0.
but avoids the near instability associated with the negative identity
feedback. This example shows that with R=I; ohin(I+G(jw))' the upper
bound on the allowable magnitude of modelling error of (3.44) given by

o ax(L-l(jw) - I), is automatically greater than or equal to unity.

Example 2:

with b1 = 50 in (3.20) as in the plot of oﬁin(I+G(jw)) in Fig. 3.24,

2
an IQ design using R=I and
2501 =50

(50)

-50 1

gives a feedback gain of
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-1.T » | (s1)

and a closed-loop system matrix ACL of

-1.T |
= - = «27T
ACL A BR B K (52)

This makes I+G(s)

[~ -
s+2
s+l 0
;E(e) = | s (53)
s+l
and thus )
2
. w +4
ohin(I+G(Jm) = 2 ! 21 . (54)
w +1

As one might expect the ability of IQ regulators to tolerate cross-
feed perturbations defined in Section 3.7.2 is also affected by the choice

of the control weighting matrix R. This is made precise in the following

corollary.

Corollary 2: The IQ regulator with loop transfer matrix G(s) satisfying

condition 2 of Theorem 2 will tolerate (i.e., $CL(5) will have no CRHP

zeroes) a crossfeed perturbation of the form

I X(s) I 0]
L(s) = or (55)
0 I X(s) I

where

A I 3 ————— .
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02 (X(s)) < mi Amin(Rl) Amin(RZ) en (56
max ($(8)) < mindsTEm= 0 T ®O( ! 5 €y )
max 2 max 1 .

provided condition 1 of Theorem 2 is satisfied and where R ic given by

(57)

and is conformably partitioned with L(s) and either Q > 0 or ¢OL(jm) #0
for all w holds.
Only conditions 3a and 3b of Theorem.2 need to be verified for the

Proof:

L(s) of (55) the rest are satisifed by assumption. Note that for s € QR

o) -R*x(s)R"*
1 2
o (RéL.l(s)R-%-I) =0 or
max max
0 0
o} 0
o (58)
max p -1
-R2 X(s)R1 0
x(s)) maxio_ ®Rho @Y, o __eho _&hH;
S-cﬁax(‘ s)) m max 1’ max 2 '’ ‘max 2’ max 1
and hence if
kiax(R1)' kiax(RZ)
o (X(s)) max 1 = r 1 <1 (59
max AL O(R) A2 (R.)
min 2 min 1

then conditions (3a) and (3b) are both satisifed. However, (59) is
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equivalent to (56).

Note that

A min(R) < min Xmin(Rl) ) kmin(Rz) < Amin (R) } (60)
A max(R) — Amax(RZ) lmax(Rl) — | Amax (R)

which indicates that if the ratio of Amin(R)/Amax(R) is very small that the
ability to tolerate crossfeed perturbations is drastically reduced. As .
illustrated in Fig. 6 the use of R scales the inputs and outputs such that
the stability margins are obtained in the scaled system rather than the

original system. This means that if our original model has the coordinate

system in which we would like to guarantee margins, that R should be

selected as R = pI for some positive scalar p.

The effect of the R matrix on the tolerance of the closed-loop system
to general modelling errors of the form of (3.44) can be accounted for by
using the inequality

i -1 -4 -1 3 -1
- < - .
Opax ® L ()R -1) < [[RT[[|[R*[], o (L "(s)-T) (61)
To guarantee stability via Theorem 2 we must have
3

-l gt :
CaxRL (IR °-I) <1 (62)

which is ensured if

SN Dby Tiedr ool [lmin(R)] 3
Opax L (9)-T1 < THEALHRM 17 = 5205 o (83

From {63), it is clear that the tolerance to model error may be reduced

by a factor \kain(R)/Xmax(R) from the case where R = pI for a positive
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scalar p when equality holds in (61).

5.4.1 Variations of IQ Designs

Since IQ designs have inherently good margins provided B is selected
appropriately, it is natural to search for variations of this mechod. One
such variation, proposed by Wong and Athans [27], is to solve a Lyapunov
rather than a Riccati equation to compute K used in (3).

The Lyapunov equation with Q > 0 given by

AK + KA+ Q = 0O | (64)

guarantees that the eigenvalues of A lie in the OLHP if K > O and [A, Q}]

is detectable. The corresponding Kalman type inequality for loop transfer

matrices G(s) specified by (24) where K > 0 satisfies (64) is given by
RG(jw) + G (3R > 0; for all w (65)

and is the fundamental inequality used to derive stability margins. When
Q > 0 the inequality (65) becomes strict. The stability margins for this

type of feedback are given in the next theorem and its corollaries.

Theorem 3: For G(s) of the form of (24), $CL(S) has no CRHP zeros if the

following conditions hold:

~

1. ¢0L(s) has no CRHP zeros

2. K > 0 satisfies (64) with Q > 0, R > 0 and [A, Q*] detectable,
and B has full rank

3. either of the following holds
(a) @ > 0 and RL(s) + LH(s)R >0, se€ QR

(b) RL(s) + LE(s)R > 0, s e QR .
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Proof: Conditions 1 and 2 and the Lyapunov stébility criterion guarantee

As in the proof of Theorem 2

3

that condition 1 of Theorem 2 is satisfied.
we may work with a(s) = R%G(s)R_i and ﬁ(s) = R L(s)R-i instead of G(s)
and L(s). Condition (65) is simply condition 2 of Theorem 3.8 with G(s)
replacing G(sj, and f.(s) replacing L(s) in its condition 3 is simply
condition 3b. Thus by Theorem 3.8 the theorem is provea when condition
3b holds. When Q > O and condition 3a is satisfied, the strictness of
the inequality of condition 3 of Theorem 3.8 may be changed to > and the

z_of its condition 2 to > and Theorem 3.8 remains valid. Thus when condi-

tion 3a holds the theorem is proved.
Q.E.D.

Corollary 3: For G(s) as in Theorem 3 with R diagonal the guaranteed

gain and phase margins are giéen by

GM D [G, =) (66)
PM D [-90°, 90°] (67)

if condition 3a of Theorem 3 holds and

GM D (0,x) (68)

PM D (-90°, 90°) (é9)

if condition 3b of Theorem 3 holds.

Proof: Similar to Corollary 3,5.

The importance of Corollary 3 is that the standard LQ guaranteed
gain reductior margin of % can be reduced to 0 by using K satisfying the

Lyapunov equation (43) with Q > 0 rather than the Riccati equation (2).
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Of course, it is possible to have a zero gain reduction margin only for

open-loop stable systems. However, standard IQ state feedback does not
guarantee a zero gain reduction margin even in the open-loop stable
case, and has been criticized on these grounds [20]. Having a zero or

small gain reduction margin is important in situaticns where actuators

may fail or saturate, respectively, and there is no opportunity to re-

configure the control system. In fact, the motivation for the thesis
[26] (which in turn lead to most of the robustness developments reported
in this chapter) was a study supporting the design of the automatic depth-

keeping controller for the Trident submarine, in which saturation of one

of the two hydrodynamic control surfaces produced an unstable closed-

loop system.

For G(s) as in Theorem 3 the crossfeed tolerance is given

Corollagx 4:

by
2 Amin (R, ) Amin(R,)
Tpax K () < 41t |y Tmmmyy | 0 %R O

where L(s) is given by (55), R > 0 is given by (57) and $OL(S) has no

CRHP zeros.

Proof: Analogous to Corollary 2.

The significance of Corollary 4 is that using the Lyapunov equation
(64) to desigg the state feedback the tolerance to crossfeed perturbations
has doubled over the crossfeed tolerance of the IQ state feedback regula£or
However, (64) can only be used on open-loop stable systems

in Corollary 2.

and thus even though the guaranteed stability margins for the Lyapunov
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state feedback regulator are better than for the ILQ regulator its use is

limited. What is necessary is a compromise between these design approaches
Ay P

-that is applicable to unstable open-loop systems.
Another way tc modify the LQ design procedure that is a compromise

between Theorem 2 and Theorem 3 applicable to unstable open-loop systems

involves the use of a parameterized Riccati equation given by

aTk + xa + 0 - BxBR 18Tk = 0 (71)

where B is an adjustable parameter and 0 < B < 2. The feedback law is
still given by (3) and G(s) is still given by (24) with K > 0. Since the

B in (71) may be lumped together with the R matrix, (71) is just a standard
Riccati equation and therefore has a unique solution K > O under the
appropriate assumptions (condition 2 of Theorem 2). The standard 1Y

optimal feedback law associated with (71) is given by

u(t) = -8R BTRx(0) . (72)

Instead of (72) we will use u(t) = -R-lBTKx(t) as in (3). Thus depending
on whether 8 > 1 or B < 1 we are merely decreasing or increasing, re-
spectively, the optimal feedback gain by a scalar factor of 1/8. Also

with G(s) given by (24) the standard IQ loop transfer matrix is simply

BG(s). From Theorem 1 we know that if Q > O

[1486(s) 1" FRIL+BG(s) > 5R,  sef (73)
which in the SISO case becomes
1 1
I—B- +q(s)f>§, seq (74)

and is illustrated in Fig. 3. To obtain bounds on L(s) to ensure stability
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L(s) and BG(s) and apply Theorem 2 for the standard

we merely work with B

1Q regulator problem. Doing this we obtain, in the SISO case, the in-

equality

..l -
|82 “(s)-1| < 1, seq (75)

illustrated in Fig. 7. Note that from that the critical (-1, 0) point

is no longer contained inside the circle of Fig. 3 corresponding to (74)

if B>2 and thus there are no guaranteed margins. If B*0 the guaranteed

minimum margins approach those of the Lyapunov feedback case given

Corollaries 3 and 4. In general, for the multivariable case the

ImZ(s)
A

Set of allowable values of 2(s) when
[8273(s)-1] <1 and 0 < B < 2.

Fig. 7.
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guaranteed minimum margins, again if R is diagonal and Q is positive

definite, are given by
GM DI[B/2, =), 0<B<2 (76)

and

1

[S3E e

pM D [-cos , cos-l-g 1., 0<RBR<2. (77)

These guaranteed margins (when B < 1) can also be obtained by similar

but distinctly different procedures reported in [30] and [31] which utilize
standard ILQ regulators with vanishingly small control weights. Recently
[45] it has also been shown how to ensure preselected guaranteed minimum
gain and phase margins by using a Riccati equation with an associated

quadratic ccst index, weighting the product of the state and the control.

5.5 Stability Margins of IQG Regulators

A basic limitation associated with the iQ guaianteed stability
margins is that they are obtained only under the assumption of full state
feedback. State feedback can never be exactly realized, and often it is
impoesible or too expensive to provide enougii sensors to achieve even an
approximate realization. Thus one is motivated to investigate what
guaranteed stability margins might be associated with IQG controllers,
in which a Kalman filter (KF) is used to provide state estimates for
feedback.

Since thé Kalman filter is the dual of the IQ regulator, dual ro-
bustness results are obtainable. They ensure a nondivergent Kalman filter

under variations in the nominal model parameters of the plant whose state

is to be estimated (see section 5.2 for the use of the Kalman filter in
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the IQG regulator). Tc make precise the connection between the regulator

and filter problems, consider the linear system

x(t) = Ax(t) + E(t) (78)

y(t) = cx(t) + (1) , (79)

where_g(t) and 6(t) are zero mean white noise sources with spectral in-
tensity matrices = and © respectively. We wish to estimate x(t) given

y(1), == < 1 < t, such that the mean square error is minimize. Under the

assumption the [A,C] is detectable, it is well-known that the state esti-

mate is specified by

x(t) = AR(t) + I CTO Tw(t) | (80)

v(t) = y(t) - Cx(t) (81)
where

az+3aT + 5 -ictolez =0, >0 . (82)
If we calculate the transfer matrix from V(s) to 2}55 - Qg(s), we find
that

g(s) = lc(xs-a) "tzc® Hv(s) éF(s)y_(s). (83)

Then, if = > 0, T(s) satisfies the dual of (26) given by
(I + F(s)8 (T+F(s)) > 9, seq (84)

which gquarantees the stability of the error dynamics under a range of

perturbations in F(s). Thus, if F(s) is perturbed to ﬁ(s) = F(s)L(s),
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where usual assumptions about G(s) are applied to F(s), the Kalman filter

will remain nondivergent if

-3 -1 3 .
O oy ©@ L T(s) 07 -1) <1, s e (85)

or equivalently,

or¥(s) + L(s)0 -0 >0 . (86)

It is now readily apparent that F(s), the loop transfer matrix of the
error dynamics loop of the Kalman filter, is the dual of G(s) in the
IQ regulator and has the same gquaranteed margins at . its input, v(s), for

diagonal 0.

Safonov and Atkans [32] have developed these dual results for the
nondivergence of the extendeé Kalman filter. Furthermore, they have con-
sidered the stability properties of a nonlinear IGG control system formed
by the cascade of a constant gain extended Kalman filter and the LQ state
feedback gain. The IQ state feedback gain and the constant gain of the
extended Kalman filter are computed from the linearized model parameters.
However, the extended Kalman filter must have the true nonlinear modgl
of the plant. This violates the basic premise of robustness theory, tha£
is, the controller has no knowledye or at most minimal knowledge of the
model erxror. Nevertheless, the result emphasizes that model mismatch
and not control or filter gains are responsible for a reduction in the
margin of stability. We next examine these results in the comp;etely
linear case where the LQG stability margins are much easier to obtain.

The standard IQG control system block diagram is shown in Fig. 8.

with various points of the loop marked. To determine the robustness of
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the LQG control system we insert perturbations at points @ and @ (the

input and output of the physical plant) and find out how large they can be

made without destabilizing the closed-loop 1QG system. It is therefore

convenient to calculate the loop transfer matrices at points @ to @ .
The loop transfer matrix at point @ will de noted by TK(s) and is

calculated by breaking the loop at point @ (see section 5.2) and using

it as the input as well as the output. For the four points indicated in

Fig. 8 we have

Tl(s) = Gr¢(s)B (87)
6 s + 86+ 6.0 Yo cois)B 8
T2(S) = r ¢ S r £ f S] ( 8)
= C$(s)BG (¢'I( ) +BG_ +G.C) e 89)
Ty(s) = Co(s)BG, s r £ £ (
'1‘4(s) = C¢>(s)Gf (90)
where
Gr é R_lBTK = regulator gain ‘ (91)
Ge 2 ZCTO_l = filter gain (92)
6(s) & (zem) 7t (93)

Note that points at @ and @ we have the standard IQ regulator and

Kalman filter loop transfer matrices respectively given previously in
(20) and by F(s) in (83). Thus at points @ and @ (inside the
IQG controller) the IQ and KF minimum guaranteed stability margins apply.

" The following theorem is a much simplified version of a theorem prowved

in [32] and gives LQG stability margins at points @ and @ {the



-222-

input and output of the physical plant), where we denote the open-loop

A -1 A -1
plant as Gp(s) = C(Is-2) B and Gc(s) = Gr(Is A + BGr + GfC) Gf as the

compensator. We use N(s) to denote output perturbations in qp(s) at

point (::) in Fig. 8.

Theorem 4:

The IQG feedback control system of Fig. 8 is asymptotically

stable under variations in the open-loop plant Gp(s) é C(Is-A)-lB if the

following conditions hold:

(a)

(b)

(a)

the perturbed open-loop plant ép(s) = E(Is-i)-lﬁ is such (94)
that the det(sI-i) and det (sI-A) have the same number of

CRHP zeros and if aet(jwor-i) = 0 then det(jw,I-A) = 0.

[A,B] is stabilizable, @ > O, R > 0 and K > 0 satisfies (95)

(22) and B has full rank.
ép(s> = G, (s)L(s) = N(s)G, (s) . _ " (96)

and either

o airtertn <1 (97)
max - .

oxr

omaxce'%N'l(s)e*—I) <1 (98)

hold for all s ¢ QR .

the IQG controller transfer matrix Gc(s) from the plant

output to the plant input is given by

-~ ~ -1 _
I = G - + C
Gc(a) ur(IS A + BGr Gf ) Gf (99}

where Gr and Gf reépectively satisfy (91) and (92).
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Proof: Breaking the loop at point (:) of Fig. 8 we have a loop transfer

function matrix of

Gr(sI—A+GfC)-1[GfC(Is-A) “1g + B] = Gr(sI-A)"ls 4 G(s) (100)
so that
¢0L(s) = det[sI-A + GfC]det[sI-A] (101)
and
(102)

]

¢OL(s) det[sI-A + GfC] det[sI-Al

Since the Kalman filtering error dynamics are stable given (95) and since
(94) holds, corditions la and 1b of Theorem 3.2 hold. Now by direct appli-
cation of Theorem 2 we conclude that the system of Fig. 8 is stable if L(s)

is inserted at point.<::> . However, this is .not the location we desire to

have the margins guaranteed. Nevertheless, by manipulation of the block

diagram of Fig. 8 we may place L(s) at point:<::>if we change B to BL(s)
inside the controller leaving Gr = R-IBTK fixed (see Fig. 9). This,
however, is equivalent to changing (A,B,C) to (X,B,C) inside the controller
leaving Gf and Gr fixed. This also éan be interpreted as giving the

Kalman filter the correct dynamic model of the perturbed open-loop system
without changing either the filter or regulator gains. The same result
follows if we start with the perturbation N(s) at point (::>where the KF
guarantees agply and move it to point (::>changing C to N(s)C (see

Fig. 10.) Again the Kalman filter has the correct model of ép(s).
Q.E.D.
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Notice that in (96) L(s) represents the same perturbation in Gp(s)
at the input to the plant as N(s) represents at the output of the plant
"and that ap(s) is the same in both cases.

Thus the IQ and KF guaranteed stability margins will apply to IQG
controllers at the input and output of the physical plant but under the
restrictive assumption that the system model embedded within the Kalman
filter is always the same as the true system (i.e., the perturbed system).
For the more realistic case in which the internal model of the Kalman
filter remains unchanged, there are unfortunately no guaranteed r;bustness
propertiesl, as Doyle has demonstrated with a simple counterexample [33].
This counterexample is extreme, but it is poésible to obtain IQG con-
trollers with inadequate stability margins that look quite reasonable
in the time domain. Fig. llysnows the Nyqﬁist plot of a single-input

design reported in the literature [34]; note that the phase margin is

less than 10°.

5.5.1 Robustness Recovery

Fortunately, there are two dual procedures that do not require
the Kalman filter to have the true system model and that still recover
the 1O and KF guaranteed minimum margins. These procedures use the
asymptofic properties of the Kalman filter and LQ regulator (see [43]
and can be used only if the plant is minimum phase. If W is a non-

T_T

singular arbitrary matrix, then by selecting Z in (82) as p BWW B

and letting p + « the loop transfer matrix Tz(s) in (88) approaches

lIn other words, the robustness properties of LQG designs will depend
on the actual values of A,B,C,0,R,Z and O. ’



-227-

Im H(jw)

~—_— : Re H(jw)

Fig. 1i: Nyquist diagram for 1QG design in [34]
(H(jw) = loop transfer function).

Tl(S) of (87) if the minimum phase assumpﬁion holds (35]. Thus the
IQ regulator guaranteed margins will be recovered at the input to the
plant. Kwakernaak [36] proposeed the dual of the above procedure to
obtain  low sensitivity feedback systems. His procedure makes T3(s)

of (89) approach T4(s) of (90) by selecting @ in (4) as p CTWTWC and
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letting p*® and thus the KF guaranteed minimur margins will be recovered
at the output of the plantl. However,'it is not always the case that an
IQG controller needs to be robustified by these procedures since in some
cases the IQG control system will have better stability margins than its
full state feedback counterpart ([42]. Also, in this case one must keep
in mind that the stochastic error performance of the robustified IQG
controller may be better (due to lower controller bandwidth) than the

1Q state feedback regulator.

Even when these procgdures are used, the guaranteed stability
margins apply at the input or output of the physical plant but not
necessarily at both input and output. It ié desirable to have maxgins
at both these locations sincer the perturbations in Gp(s) are repre-
sented as either Gp(s)L(s) or N(s)Gp(s) and we would not like .nall
perturbations in either input or output to destabilize the system.

Margins at both input and output can be ensured if the inequalities

Ohin(I+Gc(s)Gp(s))_Z 1 (103)
and

O in(T+C, ()G () > 1 (104)

both hold. The relationship between these two quantities when Gp(s)

and Gc(s) are square matrices is given by the following lemma.

lDowdle [37] has adapted these procadures for use with minimal order
observer based ccmpensators and their duals. )
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Lemma 1: For arbitrary complex square matrices Gp(s) and Gc(s) it is

true that
1
- \
X omin(I+Gp(s)Gc(S), ggmin(HGc(s)GP(S)) < komin(I+Gp(s)Qc(S))
(105)
where
o (G_(s)) a (G (s))
s max_ p max_  c
ks min 577G TS0 o (G (e | = (106)
min p min ¢
Proof: Use the property of matrix norms that IIABII < IIA[| IIBII on the
equation
-1 _ -1 -1
(I + Gp(s)Gc(s)] = Gp (s) [T + GC(S)Gp(s)] Gp(s) (107)

to obtain the left inequality of (105) with k = Gmax[Gp(s)]/cmin[Gp(s)].
The right inequality in (105) is obtained by reversing the roles of

Gé(s) and Gc(s) in (107).
Q.E.D.

The quantity k is the minimum of the condition numbers1 of Gp(s)
and Gc(s) with respect to inversion. From (105) we conclude that if k
is close to unity then approximately the same robustness guarantees will
apply at both input and output. Note that we have no control over
G (s) so that if Gp(s) is nearly singular we must design our compensator
so that Gmax(Gc(s)) = Oﬁax(Gc(s))' On the other hand, if our plant is

well-conditioned with respect to inversion, cur compensator Gc(s) need

not be so severaly constrained, allowing more flexibility in achieving

1tn the numerical analysis of the linear equation Ax = b, the condition
number of A, given by Omax(A)/Gmin(A), bounds the error in the computed

solution x in terms of an equivalent error in b [44].
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performance objectives.

5,5.2 Characterization of Model Errox

Note in (103) and (104) that ensuring that both Ghin{I+Gp(s)Gc(s)]
and cﬁin[I+Gc(s)Gp(s)] are greater than unity gives upper bounds on two
different types of allowable modelling errors. These modelling errors
differ in that one represents the perturbed open-loop model ap(s) as
Gp(s)L(s), an equivalent perturbation in the input to Gp(s), and the
other represents ép(s) as N(s)GP(s), an equivalent perturbation in the

output of Gp(s). These are both relative modelling errors between

a;lis) and G;l(s) and are given by

L syt

~=1 -1
Ei(S) [GP (s)-Gp (s)]GP(s) (108)

N-l(s)-I

~—t1 -1
Eo(s) GP(S)[GP (s)—Gp (s)] (109)

where Ei(s) is tne model error in ép(s) reflected to the input of Gp(s)
and Eo(s) is the model error in ap(s) reflected to the output. The re-
lationship between Ei(s) and Eo(s) is given very simply by (since they

represent the same Ep(s))

_ -l ’
Ei(s) = GP (s)Eo(s)GP(s) {110)

and thus we conclude that

l--
iz.cﬁax(Eo(S))‘i Gﬁax(Ei(S)) <k ohax(EO(s)) (L11)
where

o [G (s)]
max p
o . IG (s)]
min' p

(112)

X =
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If k is very large, (111) shows that what may look 1iké an unreasonably
large error at one point in the loop (either the input to Qp(s) or its
output) may look like a very reasonable size error at another point in
the loop. The stability of the closed-loop system with respect to

. . . 1.
these errors is guaranteed under appropriate assumptions™ if for all

s eSZR

Ohax[Ei(s)] < cmin{I+Gc(s)Gp(s)] (113)
or

ohax[EO(s)] < Omin[I+Gp(s)Gc(s)] . (114)

Now suppose that Ohax[Ei(s)]' from our knowledge of the open-loop system
physics, seems unreasonably large and condition (113) does not hold

but will hold for all reasonable size errors. If the perturbed model
ép(s) however is such that Omax[Eo(S)] seems reasonably small, that is
an error of that magnitude could be justified (again by our knowledge

6f the open-loop system physics), then a sufficiently small value of
Oﬁin[I+Gp(S)Gc(s)] (small enough so tﬁat /114) does not hold) indicates
that there is danger of the perturbed closed-locp becoming unstable.

If we believe that having a reasonable size error, at the input of

the open-loop system, completely characterizes the class of ap(s)
that should be considered then we may rule out the possibility that the
perturbed closed-loop system may become unstable as a result of the

fact that (114) is violated for seemingly reasonably sized errors at

1 o ' )
Conditions 1 and 2 of Theorem 3.6 must be appropriately modified to
also deal with N{s).



-232-

the output. However, our knowledge of vhat class of ép(s) should be
considered may depend on what seem like reasonable errors at both input
‘ggg output to the open-loop system. That is, our knowledge of what
constitutes a reasonable class of Ep(s) to consider is built up from

our knowledge of what errors seem reasonable when reflected as equivalent
perturbations at different points in the feedback loop. In this case,
one could not rule out the small error at the output (i.e., Eo(s)) which
violates (114). Thus it depends on how wevdecide what constitutes a
reasonable class of ap(s) that determines if we need to check to make
sure that both the wvalues Gmin[I+Gc(S)Gp(S)].and cmin[I+Gp(é)Gc(s)] are
sufficiently large or that only one of them is sufficiently large.

In the author's opinion,.it seems most likely that the class of
ap(s) that should be considered is a composite class of the perturbed
models that arise from reasonably sized errors reflected to both input
and output of the cpen-loop system. Therefore, it would seem wise to

check the size of both ¢ . [I+G _(s)G_(s)] and o , [I+G_(s)G _ (s)]i.
min c P min P c

5.6 Concluding Remarks

This chapter hés derived MIMO stability margins for LQ regulators
and their variations including IQG regulators. This was accomplished
using the MIMO versior of Kalman's inequality and Theorem 3.6. The IQ
regulator was shown to have at least a 50% gain reduction margin, an
infinite upward gain margin and i_66° phase margin provided the control
weighting matrix R is diagonal. If R is not diagonal it was shown that

the IQ regulator gain margin may ke arbitrarily small. If R is not a
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multiple of the identity the croésfeed tolerance is also reduced. The
R matrix determines the c;aordinate system in which the stahility margins
hold. The margins in the R selected coordinate system may be much larger
than the actual margins in the coordinate system specified by the inputs
and outputs to the physical open-loop system. Similar comments may be
made for the variations of IQ state feedback using the Lyapunov and
modified Riccati equations.
The guaranteed margins for LQ regulators do not apply to LQG regu-
lators except when the Kalman filter embedded in the IOG coptroller has
a correct dynamic model of the perturbed system, a rather unrealistic
assumption. However, when the open-loop plant model is minimum phase,
there are two procedures that recover the guaranteed IQ margins
asymptotically. These guaranteed margins may be recovered at either
the input or the output of the cpen-loop plant but can only be guaranteed
to be recovered at both input and output when either the open-loop
plant transfer matrix or the compensator transfer matrix has a small
condition number near unity for all frequencies. The necessity of input
and output stability margins is shown to be dependent on the ability
of the designer to characterize the set of reasonable pérturbed models
for which the perturbed closed-loop system stability must be preserved.
It is important to point out that the LQG methodology is inherently
a multiloop design procedure which when coupled with the robustness
recovery methods and used intelligently provides a systematic design
procedure for robust multivariable compensators. This is in contrast

to the characteristic loci (4, 5, 56] and inverse Nyquist array [1,2]
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methods (discussed in the following chapter).which reduce multivariable
controller design to a series of decoupled single loop designs. These
methods obtain good stability margins in the coordinate system of the
decoupled SISO systems but not in the coordinate system of the physical
input and output of the cpen-loop multivariable system. Thus they may
not produce robust controller designs and it is nontrivial, given the
present state of the art to change these designs to obtain better robust-
ness properties.

One word of cauticn is necessary when using the LQG approach to
controller synthesis. It has been popular to reduce many more general
control problems such as the tracking problem to a simple regulator
problem by state augmentation. State augmentation has also been used
to provide integral controllers or provide additional rolloff. When
using augmented versions of control problems solved via the regulator
problem one must be careful to determine exactly the point in the
feedback loop where the guaranteed stability margins will apply. In many
augmented regulator problems the point at which the.guaranteed margins
apply is not the input or output of the physical open-loop plant but a

point associated with the addition of the augmented states.
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6. ROBUSTNESS ANALYSIS WITH FREQUENCY DOMAIN METHODS

6.1 Introduction

The purpose of this chapter is to place in perspective current

frequency domain techniques for controller synthesis and evaluation and

their implications for the robustness characterization of feedback

control systems. We shall not present a full tutorial description of
these methods but only briefly describe their salient features with

regard to their importance in robustness analysis, the main theme of
this thesis.

In section 6.2 the characteristic loci (CL) [5,56] and inverse
Nyquist array (INA) [1,2] methodologies are discussed. It is shown
that these design methodologies ensure stabiiity margins in a coordinate
system based on the diagonalization of the oéen-loop plant transfer
matrix rather than the coordinate system specified.by the physical in-
puts and outputs of the nominal open-loop plant. In some cases, the CL
and INA design methodologies will lead to acceptable stability margins
at the physical input and output of the system; hcowever, in other cases,
the stability margins at the physical input and output of the system will
be drastically reduced. The discussion of this section is not original
but relies heavily on the work of Doyle and Stein [43] and Stein and
Sandell [58].

In sectibn 6.2, the principal gain and phase (PGP) analysis recently
proposed in [57] is discussed. This method of analysis allows one to
ensure stability of a feedback control system by taking into account

the structure of the model in a somewhat different manner than that of
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Chapter 4. The main shortcoming of the PGP approach is that it is ESE
applicable to important classes of loop transfer matrices, G(s), and
important classes of model errors. It is shown that tﬁe PGP method
will fail for model error matrices E(s) that are singular or almost.
singular. Recall that in Chapter 4 (equation (4.13)) it was shown
there exists a smallest déstabilizing error matrix, E(3), that is
singular and thus the PGP analysis is not applicable for this important

class of model erxrors.

6.2 Characteristic Loci and Inverse Nyquist Array Methods

The CL and INA methodologies for the design of MIMC feedback control
systems take advantage of the large body of well-developed tools for
S1S0O control design by reducing the MIMO design problem to a sequence
of independent SISO design problems. To make this precise, consider
the feedback system shown in Fig. 1 where tﬁe nominal open-loop plant
transfer matrix denoted by Gp(s) and the compensator transfer matrix is
denoted by Gc(s) giving a loop transfer matrix G(s) as either Gc(s)GP(s)
or Gp(é)Gc(s) depending on whether the loop is broken at the input or the

output respectively.

Compensator Plant

Uc +>Q £ > Gc(S) , g Gp(S)

Fig. 1: Basic Feedback System
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Both the CL and INA methods assume that Gp(s) can be diagonalized

either exactly or approximately for all s € DR' Therefore, assume that

there exist matrices W(s) and V(s) composed of rational transfer functions
such that V(s)G (s)W(s) is bounded and either diagonal or diagonally

P
dominant1 for 211 s € DR and is denoted by @p(s), i.e.

ép(s) = V(S)GP(S)W(S). (1)

If G (s) is diagonally dominant then the diagonal matrix Gpd(s) given

by

Gpd(s) = diag[qpll(s). gpzz(S)..--,é‘Pnn(s)] (2)

can be used as a good approximation to Gp(s)'within bounds specified by
the magnitude of the off diagenal elements of Gp(s). For the purposes
of this chapter we will assume exact diagonglization of qp(s) by V(s)
and W(s), since all the same observations to be made will apply if
only diagonal dominance holds.

The form of the compensator proposed by the CL and INA methods

is shown in Fig. 2 where K(s) is a diagon~l matrix given by

lAn nxn complex matrix A is diagonally dominant if for i =1,2,...,n

n
la, | > £ o]

j=1 ]
J#L
orxr
n
la ;1 > ji a1
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Compensator
Gels)
{""""@"}" —"@ ! Plant @
+ € I
u + V(s) X+ K(s) = W(s) [+ Gpls) [>Ty
- |
b e J
Fig. 2. Compensatér used by INA and CL Methods
K(s) = diéag[kl(s), k,(s) ,...,kn(s)] . (3)

If the loop transfer function calculated at point i,i=1,2,3,4,is denoted

by Gi(S)' then

Gl(s) (W(s)K(s)V(s))GP(s) Gc(S)Gp(S) (4)

and

Gz(s) K(s)Gp(s) (5)

K(s)(V(s)Gp(s)W(s))
where we note that Gz(s) is diagonal. The CL and INA methods use (5)

1.(s) in K(s) as

to design the compensator Gc(s), by selecting each k
the appropriate robust compensator for each of the SISO systems repre-

sented by the diagonal elements of ap(s), denoted ab;i(s)' Thus, these
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methods produce feedback control systems with good margins inside the

compensator at point (:>'in Fig. 2.

The key question is: when does this design methdology yield good

margins at point (i) , the input to the physical system? To determine

the answer to this question, suppose that we insert the matrix Ll(s)
at point <:) to account for model uncertainty and determine the
stability margins at the input to the physical system by placing bounds

on the allowable Ll(s). If we represent the equivalent model uncertainty

at point @ by Lz(s) then the relationship between Ll(S) and L, (s)

is given by
- w i
Lz(S) =W (S)LL(S)W(S). (6)

In chapter 3, the model error criterion (3.35) was used and is

given in terms of both Li(s) or éi(s) and Gi(S) by

1]

-1 ~ L _
Ei(s) Gi (s)[Gi(s) - Gi(s)] = Li(s) I . (7)

Thus, using (6) and (7), the tolerable model error at point (:) is

related to that at point (:) by
~1
Ez(s) =W (s)El(s)W(s) . : (8)
From (8) and the properties of singular values, we obtain
Gmax[Ez(S)] < C[W(s)]cmax[El(s)] (9)

where c[W(s)] is the condition numberl of W(s) and is given by

3
“The condition number of a matrix is very large if the matrix is nearly
rank deficient or almost singular.
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o __[W(s)]

- max
cli(s)] = F7 e > 1 . (10)
min

Suppose that the model error Ez(s) at point <:> of minimum magnitude

Umax(Ez(s)) that destabilizes the feedback system is such that equality

holds in (9). Then the equivalent model error El(s) at point (:>

1
3 . . . -
etermined from (8) is of magnitude —misy Oy [E,(s)] and also de

stabilizes the feedback system. Therefdre, if the condition number
c[W(s)] is very large, the margins at point (:) , i.e., at the input to
the physical system, may be much smaller than those at point (:) , inside

the compensator.

The CL method selects W(s) to be the matrix of eigenvectors of

GP(S) and V(s) = W—l(s) when this possible choice for W(s) is rational;

otherwise, W(s) is chosen to be as rational approximation of the

matrix of eigenvectors of Gp(s). Since, the designer has no control over

G_(s), this choice of W(s) does not guarantee that the condition number
c[W(s)] is near unity. Similary, the INA method seeks to find a rational
W(s) and V(s) that diagonalize Gp(s), (this is done numerically to

obtain constant matrices W(s) and V(s)) but there is no guarantee that
c[W(s)] is near unity. Similar conclusions may be drawn by breaking

the feedback loop of Fig. 2 at. points (:> and (:) and working with V(s)

rather than W(s).

Therefore, these methocds do not automatically produce robust con-
troller designs. Indeed, in some cases they can lead to nearly unstable
feodback systems (i.e., small stability margins at either input or out-

put) if the diageonalizing matrices W(s) and V(s) have large condition
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numbers at some frequency. They dc produce good margins at a point inside
the compensator but that is not the appropriate place to require good

margins, from an engineering point of view. Doyle and Stein [43] give

a simple example which exposes this deficiency.

6.3 The Principal Gain and Phase Analysis Method

This method [571 utilizes model error structure information
to ensure stability of a perturbed feedback system. It uses the notions

of principal gains, and principal phases of an nxn complex matrix A which

are defined via its polar decomposition.

Definition (Folar Decomposition): Any nxn complex matrix A can be de-

composed into a product given by

(11)

A = Ui

or

A= HLU (12)

where U is a unitary matrix and, HR and HL are positive semidefinite

hermitian matrices. The representation in (11) or (12) is called a

polar decomposition of A.

Note that the polar decomposition in (11) and (12) are easily calcu-

lated from the singular value .decomposition (SVD) of A as follows

A = (V) (VIv) (13)

and

a = wirh (v (14)

. _
where A = ULV is the SVD of A.
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Definition (Principal Gains and Phases): The Principal gains of the

matrix A in (11) (or (12)) are the eigenvalues of HR (or HL) which are

identical to the singular values of A. The principal phases of A in

(11) (oxr (12)) are the arguments of the eigenvalues of U in (11) and (12).
30,

Since the eigenvalues of a unitary matrix are of the form e l,
the identification of the Gi as phases is obvious.
Definition (Spread of less than TM): If the pPrincipal phases of a matrix,

-39,
denoted ¢i' are such that the complex numbers e T can all ba contained

strictly in a half-plane in the complex Plane that has the origin of the
complex plane on the boundary, then the principal phases are said to

have a spread of less than T.

This is illustrated in Figs. 3 and 4.

Fig. 3: Principal phases ¢i with a spread of more than T..
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Fig. 4: Principal phases<%_with a spread less than T

In the scalar case, the matrices HR and HL in (11) and (12) simply

represent the magnitude of the scalar version of the matrix A and the

matrix U becomes a séalar of the form eje and thus the usual notion of

the polar decomposition of a scalar is obtained.

The main theorem of PGP analysis will now be stated after some pre-
liminary definitions. Using the usual notation that G(s) represents
the mxm loop transfer matrix we define GCL(S) as the usual closed-loop

transfer matrix obtained under unity feedback which is given by

= -1 '
GCL(S) = (I+G(s)) "G(s) . (15)
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The model error criterion to be used is given by
E(s) 2 6 a3 (e) - G(s) | (16)

where G(s) as usual represents the perturbed-loop transfer matrix. Let

the principal gains of G, (jw) be denoted as ai(m) where 0 f_ai(w) AR )

GC
and let the principal phases of GCL(jw) be denoted as Bi(w) whera
ei(w) f_ei+l(w). Similarly let the principal gains of E(jw) be de-
noted as Gi(w) where 0 < Gi(m) 5'6i+1(w) and let the principal phases
of E(jw) be denoted as ei(w) where ei(w).s €i+l(w)'

Next, define the condition numbers cl(w) and cz(w) as

o (w)

N4 m .
c (W = ————al(w) >1 (17)

where al is the minimum singular value {or principal gain) and anlis
the maximum singular value (or principal gain) of GCL and

§ (w)

cz(w) =_<S-;(E)_ >1 (18)

where 61 is the minimum singular value and Gm is the maximum singular

value of E. Also defined the quantity wm(d) as

(19)

ald

[c. (W) - 1] 92(¢> )

-1 1
{ = ke
¥y, (W) = tan ( T - e, @-1lc, @

With these preliminary definitions the so-cailed Small Phase Theorem

(SPT) of [57) may be stated.

Small Phase Theorem: The perturbed closed-loop system is stable

if:
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1. E(s) is stable.

2. {ei(w)} and {8; (w) + ej(w)} have a spread less

than T for all w and i,j = 1,2,...,m
3. [cl(w)— l]cz(w) <1 for all w

4. (@) 8 (@) +e (W <T -y (@ for all ©

and

(b) el(w) + el(w) > \Dm(w) -m for all w

This theorem basically characterizés'the tolerable model errors as
those that do not introduce a significant amount of phase shift in the
principal phases of GCL(jw) when perturbed by model error (condition 4).
Conditions 2 and 3 place resérictions on the type of system and the type
of model error that can be considered by the SPT. Condition 1 is simply
a condition that automatically guarantees that the matrices G(s) and
&(s) have the same number of unstable poles. This theorem, as those
presented in Chapter 4 of this thesis uses the structure of the error
matrix E(jw). However, the SPT does this by requiring restrictions on
its principal phases sj(w) in conditions 2 and 4, and, therefore is'
rather different from the characterization of model error in Theorems
4.1 and 4.2 in terms of the projection of the error matrix E(jw) onto
various one dimensional subspaces generated by the singular vectors of
16t () .

The main drawbuck of the SPT is that it cannot be applied in many
cases of interest. This is illustrated by the restrictions condition

3 places on the system and the model error in the following two simple

examples.
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Example 1: The SPT does not apply when the closed-loop transfer matrix is

given by

. 10 1 ]
GCL(S) = diag [EIIE" EIIJ (20)

because the condition number cl(w) defined by (17) is

w2+100

2 3
cl(w) = [EQEKELill] >2 forw?>1.1 (21)
and thus [cl(w) - 1]c2(w) >1 for w> 1.1 since cz(w) > 1 for any matrix

E(s). Hence, condition 3 of the SPT is vielated. The loop transfer matrix

G(s) corresponding to GCL(S) in (20) is given by

1L
(s) = diagl 5 + 31 - (22)

Example 1 demonstrates that closed-loop Eystems with input-output
channels with widely differing bandwidths violate condition 3 of the SPT
because ¢, (w) > 2 for some frequency w. 1In (20) the first input-output
channel with transfer function 10/(s+10) has a bandwidth approximately
10 times as large as that of the second input-output channel with
transfer function 1/(s+l). If cl(w) is to be less than 2 for all w,
it is necessary that all input-output channels of GCL(s) have roughly the same
bandwidth or equivalently the same speed of response. This same restriction
also applies to G(s). Clearly, this restrictive condition eliminates many

systems of interest from the point of view of robustuess analysis via

the SPT.

Example 2: Suppose I+G_l(jw) has the SVD given by
m
Sl s § G VR () = . . H, .
I+G (jw) = UG IZ(GwV (Jw) = Z.0, (Gwu, (Juw)v. (jw) (23)
’ i=1 * o -
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where om(jm) = cmin(jw). If the model error E(jw) is such that for some

W s for which Oh(on) f'Gm(]w) for all w,

. H,.
E(jw,) = -Om(jwo)gm(on)xm(jwo) (24)

then from chapter 4 (equation 4.13) we know that the closed-loop feedback

system is destabilized by the model erxor E(s) but is stable for all model

. , . < . ] , .
errors Eo(Jw) of magnitude ohax[EO(Jw)l Omax[E(on)] That is, E(on)

is the smallest destabilizing model error. However, condition 3 of SPT

requires that

o] (E(jw))
max = c. (W) (25)

— =T < o=
g EGW) | 2 oy @ -1

and thus since E(jwo) is singular cz(wo) = +° and condition (25) is violated

and thus also condition 3 of the SPT. Again, the SPT does not apply.

The results of the above example are significant because in a useful

robustness analysis method it is very important to detect the smallest

possible errors that may destabilize the feedback system and be able to

distinguish them from model errors of equal magnitude that do not de-

stabilize the feedback system. In many systems the smallest possible

destabilizing errors may lead.to a singular error matrix E(jw) at
some frequency. Note that even when E(jw) is not singular, the inequality
(25) is still easily violated if cl(w) # 1 (i.e., all feedback loops do
not have the same bandwidth as illustrated by Example 1).

These two examples have shown the SPT is a fairly restrictive
theorem viewed from the robustness viewpoint. However, in certain cases,

the SPT may be an easy way to most simply characterize a particular class

of model errors.



-248-

6.4 Concluding Remarks

This chapter has briefly examined the characteristic loci (CL)
and inverse Nygquist array {INA) control design procedures and shown
that they do not guarantee good robustness properties of the resulting
control system. The essential deficiency in these methods lies in the
fact that they can only guarantee the desired stability margins at a
point inside the compensator. The true stability margins at the inter-
face between the physical plant and the compensator can be bounded
in terms of the stability margins inside the compensator. This bound
depends on the condition numbers of the matrices used to diagonalize
the open-loop plant during the controller design procedure. If the
condition numbers of these matrices are large, then the stability
margins at the interface of the physical open-loop system and the com-
pensator may be exceedingly small. When this happens, there is no
presently known method to modify or correct the CL and/or INA designs
based on information implicit in the diagonalizing matrices that have
large condition numbers in order to obtain the desired robustness
properties. Current research effortsl are being directed toward
developing methods of diagonalizing Gp(s) with rational transfer
function matrices that are unitary for s=jw. This would guarantee that
the margins that hold inside éhe conpensator would also hold at the
input or output to the physical system

In contrast. to these aforementi...ed difficulties the IQG design

procedure, utilizing the robustness recovery techniques discussed in

lPrivate communication with Professor Bernard Levy.
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Chapter 5, does provide a systematic procedure to synthesize controllers
that are robust or can be made robust if the nominal design model is
minimunm phase. Thus, if an IQG controller is evaluated for robustness
and found lacking, there is a systematic way to restore the desired
robustness properties an? not merely trial and error in the redesign of
the controller in an ad hoc manner. A drawback of IQG controllers is
the large dimension of compensatcer states, often larger than necessary
to meet performance and robustness objectives. However, in this era
of microprocessor and VLSI implementation of control compensators the
dimensionality of the compensator is not as crucial a problem, as was
the case a few years ago. Cuxrent research [59] in the design of reduced
order robust LQG controllers is pregressing.

The other recently proposed principal gain and phase (PGP) fre-
quency domain analysis discussed in this chapter ensures stability
of a feedback system in the face of a special class of model uncertainty
pased on the model error matrix structure exhibited by its principal
phases. It was shown however that this approach is not applicable to
systems whose closed-loop speed of response in different input-output
channels differ significantly. Furthermore, it was shown that PGP
analysis requires a nonsingular error matrix. However, in Chapter 4
it was shown the smallest degfabilizing model error matrix may be taken
to be singular. Thus PGP aralysis, cannot be applied to determine
if a singular model error matrix is stabilizing or destabilizing.
However, it must be said that it offers the potential in the case of
model errors known to be of a small principal phase nature, to provide

a relatively uncomplicated test for feedback system stability.
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7. SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

7.1 Summary

This thesis has addressed the following problem. Given a finite-
dimensional linear-time invariant feedback control system designed using
an inaccurate nominal model of the open-loop plant, th much and what kind
of model error éan the feedback system tolerate without becoming unstable?
Thus, this thesis deals primarily with the evaluation of the robustness
of stability of a feedback control system. This robustness evaluation is
absolutely essential since all models of physical processes are only
approximations to the actual relationship between the system inputs and

In the single-input, single-output (SISO) case, this evaluation

outputs.
is readily accomplished using frequency domain plots, (e.g. using a Bode
diagram)to display the behavior and characteristics of the feedback
system. However, in the multiple-input, multiple-output (MIMO) case,
many generalizations of the SISO methods have proved inadequate because
they have not dealt with the MIMO system as a whole but as a sequence of
SISO systems.

This thesis has avoided this deficiency by utilizing standard
matrix theory concepts and methods appropriate for dealing with the MIMO
case, namely tle singular value decomposition (SVD) and properties of
special types of matrices. These were discussed in Chapter 2, where the
main problem solved was the determination of the nearest singular

matrix, &, to a given nonsingular matrix, A, under certain constraints

on & -A. The solution to this problem (given in Problems A, B and C)
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is fundamental to the control system robustness results of Chapters 3 and
4.
The basic formulation of the control system robustness problem
was considered in Chapter 3 via a multivariable version of Nyquist's
stability theorem.' There, a fundamental robustness theorem (Theorem

3.2) was derived that implicitly characterized the class of perturbed

models that would not destabilize the control system, in terms of the

nonsingularity of the return difference matrix. Various robustness

tests (Theorems 3.3 to 3.9), were then derived which can be used to

test the nonsingularity of the return difference matrix for several

types of model error criteria. These results were then related to the

small gain theorem and some simple extensions for nonlinear feedback

.

control system were presented that demonstrate that the basic robustness
results of Chapter 3 are valid even when certain types of nonlinearities
are introduced.

Chapter 4 heavily utilizes the results of chapter 2 in determining
what types of model error will destablize a given feedback system. Model
errors that tend to destabilize the feedback system are distinguishgd
from those that tend to stabilize the feedback system by examining their
structure as well as their magnitude. The key results, contained in
Theorems 4.1, 4.2 and 4.3, show that the magnitude of the model error
necessary to destabilize the feedback system may greatly increase if the
class of model errors that can plausibly occur does not include model
errors that are essentially alike in structure to the model error of

minimum size that will destabilize the feedback system. This provides
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an important characterization of the model errors that are important in
feedback design. These types of model errors were then interpreted via
block diagrams cf the feedback system.

In Chapter 5, the robustness properties of control system designed
using the linear-quadratic-gaussian (IQG) methodology were presented.
Multiloop guaranteed gain, phase and crossfeed margins‘were obtained using
the robustness theory of Chapter 3. The key results of Chapter 5 are
contained in Theorems 5.2, 5.3 and 5.4 and their corollaries. These
theorems showed that the guaranteed LQ robustness properties hold in a
coordinate frame defired by the control weighting matrix (R) in the
quadratic performance index. It was also shown that LQG control systems
cannot automatically guarantee the same stability margins as the IQ state
feedback regulator unless the internal model of the system embedded in the
compensator Kalman filter is correct. This is a very restrictive condition
and therefore robustness recovery procedures were outlined that do not
require the compensator to have exact knowledge of the correct dynamic
model of the system. These procedures allow LQG controllers to reccver
the robustness properties of IQ state-feedback controllers if the nominal
open-loop plant is minimum phase. |

Chapter 6 contrasts the frequency domain techniques for MIMO analysis
and design (characteristic loci (CL), inverse-Nyquist array (INA) and
principal gain and phase (PGP)), to the methods taken in this thesis and
demonstrates that the CL and INA design methdologies do not ensure robust
controlle; designs and that the PGP analysis is not able to determine the

robustness of important classes of systems and model errors.
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7.2 Conclusions and Suggestions for Future Research

A systematic procedure for the design of robust feedback control
systems is the ultimate goal of any analysis of the robustness properties
of feedback systems. The impact of the analysis techniques developed
in this thesis upon controller design is obviously not that of a new
méthod for obtaining a controller given a model of the plant. Rather,
this thesis has dealt primarily with the characterization of model un-
certainty and how it affects current design methodologies.

The theoretical impact of this analysis consists of the following
developments:

e the formulation of a new robustness theorem that exposes
the fundamental character of all robustness tests which

can be derived from it.

e the unification of various robustness tests by the classi-

fication of the type of model error they bound

e the derivation of new robustness tests based on alternate
types of model error criteria not previously considered

in the literature

e the fundamentally new characterization of model error,
which requires only a partial knowledge of the model

error, based on its projections onto certain subspaces.

The design impact of this analysis is not as clearly defined and
future research to develop design techniques is necessary. However,

the design debelopments that seem possible are:

e controller redesign based on the model error structural

characterization of model errors critical to stability
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e model improvement to reduce model errors critical to

stability

The controller redesign and model improvement go hand in hand. Once
an initial design has been accomplished and the model errors critical
to system stability are identified, these model errors can be incorporated
iﬁto a new model and a new controller design, using this new model,. may
be performed explicitly taking into account the characteristics of the
new model critical to system stability.

Other directions in future research that might prove productive are
tied to specific design methodologies. For IQG controllers, the develop-
ment of procedures for producing robust low order compensators from robust
high order compensators would be highly desirable. To produce a robust
reduced order compensator, the loop transfer matrices corresponding to
the high order and reduced order compensators must be nearly alike. More
precisely, if Gh(s) is the loop transfer matrix re;ulting from the use
of the high order compensator and Gz(s) is the loop transfer matrix re-
sulting from the use of the reduced order compensator then Gz(s) should
approximate Gh(s) in such a way that Opin (I+G2(s)) 2 omin(nc;h(s)) at or
below the crossover frequency range and omin(I+G£l(s)) = Ghin(I+G;1(s))
at or above the crossover frequency range. This is basically a model
reduction problem with the objective of matching singular values and
singular vectqrs of GZ(S) and Gh(s) rather than matching step responses
or other typical model reduction approximation criteria.

The basic appeal of the frequency domain design methods, namely

the characteristic loci (CL)_and inverse Nyguist array (INA) methods,
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is that they, in many cases, produce lower order and simpler dynamic

compensators than the IQG approach. However, as was demonstrated in

.Chapter 6, they do not automatically produce robust compensators because
they use diagonalizing matrices, V(s) and W(s), with possibly large
condition numbers to diagonalize the open-loop plant Gp(s). This implies

that the gain and phase margins at the physical input and output of the

system may be much smaller than those in the diagonal coordinate systemn.

This difficulty would be eliminated if V(s) and W(s) could be guaranteed

to have condition numbers near unity and represent stable finite di-

mensional linear time-invariant systems. If V(s) and W(s) are chosen

as the diagonalizing matrices from the SVD of Gp(s) then they are unitary

and have condition numbers of unity. However, with these choices for

V(s) and W(s), neither V(s) nor W(s) represent stable finite dimensional

linear-time invariant systems. Therefore, approximations to this choice
of V(s) and W(s) must be sought which approximately diagonalize Gp(s).

This is basically a problem in realization theory. Further research is

necessary to determine whether sufficiently accurate approximations of
V(s) and W(s) (so that Gp(s) is almost diagonal) will produce compensators

of lower order than compensators obtained by state space design methods

such as the IQG methodology. If not, then these frequency domain techniques

would seem to lose their original appeal.

The above problems (the design of low order robust compansators
via the IQG method or the frequency'domain CL or INA methods) assume
that the robustness analysis of a control system can be carried out.
The value of this analysis depends crucially on the control system

designer's ability to characterize the uncertainty in the open-loop
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nominal design model in a particular mathematical fashion. Often, the
characterization of model error by its magnitude alone is insufficient
to guarantee the stability of the perturbed feedback system by the robust-
ness tests of Chapter 3. 1In this case, more detailed information about
the possible structure of the error transfer matrix, E(s), is needed in
order to guarantee stabilicy of the feedback system. The robustness
tests of Chapter 4 requr. that the magnitude of the projection of the
error matrix, E(s), orto the subspace spanned by gn(S)gﬁ(s) also be
known. It is thus necessary to determine what magnitude of <gh(s)g§(s),
E(s)> constitutes a physically possible type of model error. If this
model error E(s) gives rise to a perturbed system G(s) that violates the
basic physics of the underlying physical process then E(s) can be elimi-
nated from consideration. However, the control system designer does not
usually have information about the projections of E(s) onto subspacés and
what magnitudes of these projections are physicali& feasible. This
projection information must be somehow deduced from the information that
he doeg have or is able to obtain about the nature of the model error.

Similar model error characterization problems are encountered if
the principal gain and phase (PGP) analysis is used. Again, the structure
of the model error contained in the minimum and maximum principal phases
of the error matrix m-st be known. These quantities, like subspace
projections,rgre not the kind of information about modelling error
structure usually possessed by the control system designer. Often the ‘
type of information available about model error is determined indirectly

by the knowledge of the acceptable range of parameter variations in a
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parameterized state-space model. Alternatively, it may be determined
indirectly from an available set of SISO Nyquist or Bode plots of measured
.transfer functions for certain input and output variables of the physical
system under a number of different operating conditions. This type of
information does not directly provide the.model error structure informa-
tion needed in the robustness analysis. -It is therefore necessary to
devise methods for determining the required structural information about
model error. This information might be obtained by using a mcre detailed
class of models representing truth models of the physical system and
determining if the resulting model errors for this class of more detailed
models can ever have projections onto certain subspaces or ever have
principal phases outside some given range. On the other hand, frequency
domain measurements in certain input-output directions might obtained

from the physical system to determine what model error projections or
principal phases are possible. More experience with practical applications
is needed in order to determine how particular types of model error
structure information may be ascertained.

Another area for future research is the robustness properties and
stability margins fof time delay systems and multi-sampling rate digital
systems. LQG based regulators for time delay systems of the form
x(t) = Aog(t) + Ax(t-T) + Bu(t) can be determined from the solution of
Riccati-like equations. It is not unlikely that these regulators will
have some inherent robustness propefties as does the standard IQ regulator.
However, continuous-time delay systems are infinite dimensional and
mathematically complex and hence it is not clear what type of robustness

results for these systems can be obtained. A possible approach to these
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tyre of'problems is to first consider the optimal requlator for discrete

time delay systems of the form X1 = A0§k + Al§k-n + ng. These systems

are finite dimensional and can by state augmentation be formulated as
standard discrete time systems of the form gk+l = i§k + ﬁgk. Thus, the
optimal regulator for a delay system can be reformulated as standard
optimal regulator problem. The robustness properties 6f thi.s augmented
standard optimal regulator may then be related to those of the regulator
of the time delay system. If this approach proves useful, the analogous
type of results for optimal regulafors of continuous-time delay systems
may be possibly developed in spite of the fact that .these systems are

infinite dimensional.

The robustness properties of multiraté discrete time systems are
closely asscciated with tho;e of discrete time-delay systems and the use
of multiple sampling rates in discrete time control systems is occurring
more frequently in practical applications. However, there is a lack
of robustness theory for this type of control system and most design
is done on a heuristic basis. Sampled data systems, give rise to
mathematically complex continucus-discrete hybrid operators if an
precise description of their continuous time behavior is desired.
Simple approximations are needed to describe this behavior in order to
make design use of the robustness results obtained in terms of these
operators. It would be practically very useful to obtain a method for
determining the sampling rate in terms of the desired stability margins.

Thg mathematical tools used in the analysis of the sampled data

systems are largely the same as for nonlinear systems. In nonlinear

system stability analysis, one of the basic problems is not being able
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characterize the nonlinear systems in a sufficiently simple manner that

is practically useful. There are many stability results like those

mentioned in section 3.10 but these results use only the grossest
characterization of the feedback system operators and hence are often

conservative. To sharpen these results, finer characterizations of the

feedback system operators must be determined and at present only a few

results of this type are known. These stability results involve the

concept of invariant limit sets (Lyapunov stability theory) or utilize

phase plane analysis. They are not part of input-output stability theory

to which the results and framework of this thesis are most similar.

The extension of the robustness results for nonlinear systems analogous to
the extension of the robustness results for linear systems by use of

model error structure in Chapter 4 is not possible because there is no
orthogonal decompositicn such as the SVD available for nonlinear systems.
Other means of determining structure in nonlinear éystems must be developed

and at present it is not clear to the author how this may be accomplished.
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