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ABSTRACT

In autonomous driving, the hybrid task of predicting both high-level actions and low-
level trajectories of human behaviour is fundamental to safe downstream decision-making.
Much of the existing work in behaviour prediction tackle this problem without sufficiently
modelling agent-agent interactions, limiting their ability to capture the full range of possible
joint outcomes. Another key challenge in multi-agent prediction is the intractable prediction
space that grows exponentially in the number of agents and duration of the prediction
horizon. As a result, scalability is a major challenge. This thesis presents two approaches to
address these challenges in multi-agent hybrid prediction.

In our first approach, we model interactions and address scalability by learning to factor
the joint prediction distribution. We observe that agents do not interact with all other agents
in the scene, but rather, there are groups that strongly interact. Therefore, we group agents
and represent the high-level interaction outcomes of groups with discrete variables. We ad-
ditionally assume that inter-group interactions are sparse and can be sufficiently represented
with a directed acyclic graph. These assumptions enable us to factor the distribution into
a product of factors, effectively reducing the prediction space, and providing an order in
which to easily sample discrete values. We evaluate the performance of this method on a
large-scale autonomous driving dataset and show that it exceeds prior methods in coverage
of possible interaction outcomes by 24% to 48% on various multi-agent validation data splits,
while maintaining state-of-the-art prediction error.

Our second approach represents agents in a traffic scene as a set of concurrent hybrid
models and assumes a collision avoidance model of interactions, rather than learning the
model from data like the first approach. Our method begins enumeration based on a simpler
collision-agnostic prior distribution. Based on our factored representation, we determine
the next best assignment to the prior. We extract bounding conflicts to correct the prior
and increasingly reduce the error between the distribution used by enumeration and our
collision-aware posterior distribution. Our experiments show that enumeration using A* with
bounding conflicts (A*BC) is faster than A* and is therefore better at addressing scalability.
In terms of prediction metrics, we find that our collision-aware posterior performs worse than
the collision-agnostic prior and suggest future directions for improvement.

Thesis supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

3



4



Acknowledgments

The past two and a half years have been an incredible journey, and completing this thesis
would not have been possible without the people who have supported me along the way.

First and foremost, I want to express my sincerest gratitude to my advisor, Professor
Brian Williams. Brian’s guidance, encouragement, and insightful feedback have been instru-
mental in shaping this thesis. He taught me how to present my research as one coherent and
intuitive story. He has always taken the time to explain concepts to me and give detailed
feedback on my writing. Brian is also one of the most hospitable people I have ever met.
Many unforgettable MERS memories were made at the Thanksgiving and barbecue dinners
at his house. In addition, Brian goes above and beyond his role as a research advisor to
genuinely care for the well-being of his students, and for this I am truly grateful.

It has been an incredible privilege to be mentored and advised by Dr. Guy Rosman. I
really appreciate his patient guidance, deep insights, and thoughtful and constructive feed-
back. From him, I have learned what it means to be a methodical, detail-oriented, and
rigorous researcher. I will always remember how he has challenged me to perform research
with high standards. Moreover, I am very grateful for his time and availability, even on his
days off. A mentor of his brilliance and dedication is truly rare to find. Guy’s extensive
knowledge about so many different fields has been an inspiration to me and has made an
immeasurable impact on this thesis.

I would like to thank my fellow MERS members – past and present – who helped me
along the way. To Cyrus, Marlyse, Sungkweon, and Yuening – thank you all for your wise
advice as senior students. Cyrus helped me get up to speed on my work early on and stuck
around even after graduating to give advice and bridge the transition. Marlyse mentored
me and met with me frequently. She was always available to discuss ideas and to be a
sounding board. Her contagious positivity has kept me sane through tough times. To Amy,
Annabel, Ingrid, Shashank - thank you for the caffeine and sugar breaks, collection of furry
stuffed animals, shared dark humour, and lessons on how to distinguish between Canadian
and American accents. To all MERS members – Allegra, Amy, Aneesh, Annabel, Anoop,
Cameron, Cecelia, Dominique, Ingrid, Jake, Lucian, Marlyse, Meng, Morgan, Shashank,
Viraj, Weiqiao, Yuening – thank you for giving me two and a half memorable years.

I would not be here without the tremendous amount of encouragement and help from my
MIT Graduate Christian Fellowship (GCF) family. They were a shoulder to lean on and an
outlet from stress and uncertainty. Their support uplifted me when I felt utterly weak and
helpless during the difficult times. The happy moments and time that we spent cooking,
eating, watching movies, and working together, are all memories that I cherish dearly. GCF,
I thank God each time I think of you.

5



Most of all, I would like to express my deepest gratitude to my parents, Eddy and Eva,
and, my brother and sister-in-law, Nathan and Claudia, in Toronto. I am thankful for their
phone calls, visits to Boston, and the time we spent together doing puzzles. I would not
have made it to this point without my family’s unceasing love and support.

Special thanks to Toyota Research Institute for generously sponsoring this work.

6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Behaviour Prediction as a Hybrid Problem . . . . . . . . . . . . . . . . . . . 15
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Learned Factorization and Sampling for Multi-Agent Prediction . . . 16
1.2.2 Collision-Aware Best-First Enumeration for Multi-Agent Prediction . 17

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Problem Statement 19
2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The Multi-Agent Prediction Problem . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Modelling Interactions for Multi-Agent Prediction . . . . . . . . . . . . . . . 21

3 Approach 23
3.1 Behaviour Prediction as a Hybrid Problem . . . . . . . . . . . . . . . . . . . 23
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Learned Factorization and Sampling for Multi-Agent Prediction . . . . . . . 24
3.4 Collision-Aware Best-First Enumeration for Multi-Agent Prediction . . . . . 25
3.5 Preliminaries: Single-Agent Prediction Using Motion TRansformer (MTR) . 29

3.5.1 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 The Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.4 The Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.5 Marginal Trajectory Selection . . . . . . . . . . . . . . . . . . . . . . 31
3.5.6 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7



4 Learned Factorization and Sampling for Multi-Agent Prediction 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Factored Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Interactive Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Approach: Learning to Factor for Multi-Agent Prediction . . . . . . . . . . . 35

4.4.1 Grouping Interacting Agents . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Extracting Group Features . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Determining Inter-Group Dependencies and Sampling Order . . . . . 39

4.5 Approach: Sampling-Based Factored Joint Prediction . . . . . . . . . . . . . 40
4.5.1 Sampling Diverse Interaction Outcomes . . . . . . . . . . . . . . . . . 40
4.5.2 Predicting Joint Trajectory Distributions . . . . . . . . . . . . . . . . 41

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.3 Interaction Mode Coverage and Joint Prediction Error . . . . . . . . 43
4.6.4 Sample Efficiency for Interaction Mode Coverage . . . . . . . . . . . 46
4.6.5 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.6 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Collision-Aware Best-First Enumeration for Multi-Agent Prediction 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Approach: Hybrid System Modelling and Inference . . . . . . . . . . . . . . 52

5.3.1 Agent-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Scene-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 Collision-Aware Inference . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.4 Computing Collision-Free Likelihood . . . . . . . . . . . . . . . . . . 56

5.4 Approach: From Single- to Multi-Agent Prediction via Best-First Enumeration 58
5.4.1 Collision-Aware Distribution as a Search Cost for Best-First Enumeration 58
5.4.2 Extracting Bounding Conflicts using Probability of Collision . . . . . 60

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.1 Dataset and Method Details . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2 Analyzing the Efficiency of A*BC . . . . . . . . . . . . . . . . . . . . 61
5.5.3 Comparing Prediction Performance of the Collision-Agnostic and Collision-

Aware Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Related Work in Multi-Agent Prediction . . . . . . . . . . . . . . . . . . . . 65
5.7 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7.1 Improving the Exact Inference Model . . . . . . . . . . . . . . . . . . 65
5.7.2 Scaling to Multiple Prediction Intervals . . . . . . . . . . . . . . . . . 66

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8



6 Comparing Learned Factorization and Sampling with Collision-Aware Best-
First Enumeration 68

7 Conclusions 70
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Filtering for Interactions 72
A.1 Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3 Intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4 Non-Interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 74

9



10



List of Figures

1.1 An example of joint predictions made by our learned factorization and sampling-
based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 An example of joint predictions made by our collision avoidance and enumeration-
based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 An example of the inputs to the multi-agent prediction problem. The past
observed states of the agents are denoted by the dotted lines. Solid lines rep-
resent the road boundaries and dashed lines represent lanes. Arrows represent
marginal predictions, and associated numbers are their corresponding weights. 20

2.2 An example of the outputs of a multi-agent prediction method. Each square
represents a different joint prediction sample. Agents’ futures are denoted by
solid arrows. The weight of each joint prediction is represented by the shade
of the square border. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Overview of joint prediction by learning to factor. We train a neural network
to factor the joint distribution of discrete interaction outcomes by grouping
agents (with each group representing a factor) and outputting the directed
acyclic interaction graph between groups of agents. We then sample for each
factor following the DAG topology and then decode joint predictions based
on the samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Overview of joint prediction by combining marginal predictions through best-
first enumeration. We use the marginal predictions output by the single-agent
predictor and enumerate joint trajectories in best-first order for a collision-
aware posterior distribution. We begin enumeration using the prior collision-
agnostic distribution and use A*BC to increasingly reduce the error between
the prior and the posterior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Overview of the MTR architecture. [16] . . . . . . . . . . . . . . . . . . . . . 30

11



4.1 Overview of the proposed method. We leverage MTR [15] as a backbone
marginal trajectory predictor to obtain a weighted set of I marginal trajec-
tories per agent. Our method takes the agent embeddings from the encoder
to (1) group agents according to interactions, (2) extract group-level features
(FG), (3) factor the joint distribution over discrete variables representing the
groups, and (4) sample each discrete variable in order according to the di-
rected acyclic factorization. We do this K times to obtain K joint sample
sets. (5) We take the agents’ features from the decoder, their corresponding
group features, and the discrete variables and pass them to the joint intention
selector. For every agent, the selector outputs one group-aware distribution
over the I possible selections for each k = 1, ..., K. . . . . . . . . . . . . . . . 36

4.2 Mode coverage ratio of our method to MTR at varying interaction complexities. 45
4.3 A comparison of MTR and our method in terms of Nmodes covered versus

minADE for 2 ≤ Nyield ≤ 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 The number of interaction modes Nmodes covered by MTR versus our method

at various numbers of joint prediction samples K for the Nyield = 3 validation
data split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Intention points from k-means as in MTR versus learned intention points in
our trained model. The tails of the arrows represent the original k-means
intention points and the heads represent the corresponding learned points. . 48

4.6 Examples of joint prediction samples output by our method. Each row corre-
sponds to a traffic scenario and each image corresponds to one joint prediction
sample. Target agents are in orange and other surrounding agents are in black.
Thick blue lines represent predicted trajectories and thin blue lines are ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 An overview of our approach. We leverage a single-agent trajectory predictor,
MTR [15], to obtain weighted sets of marginal trajectories. Then, we use a
best-first enumeration algorithm, A*BC [34] to obtain the top joint predictions
from marginal predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Graphical model of a hybrid model representing a traffic agent at t = 0. x
represents the continuous variable, z represents the discrete variable, and h
represents the length of the prediction horizon. Arrows represent dependencies. 54

5.3 An illustration of a driving scene that can be modelled using set of concurrent
hybrid models. We assume that discrete modes do not change over one pre-
diction period. Dotted lines represent agents’ past continuous observations,
solid arrows represent trajectory prediction samples. Solid and dashed lines
represent road boundaries and lane lines, respectively. . . . . . . . . . . . . . 55

5.4 Plots showing the probability density of TTCmin (left) and probability of no
collision given TTCmin (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Examples of joint prediction samples output by our method. Each row corre-
sponds to a traffic scenario and each image corresponds to one joint prediction
sample. Target agents are in orange and other surrounding agents are in black.
Thick blue lines represent predicted trajectories and thin blue lines are ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

12



List of Tables

4.1 Interaction mode coverage and joint prediction metrics on various validation
data splits. (↓ indicates lower is better and ↑ indicates higher is better.) . . . 44

4.2 Interaction mode coverage and joint prediction metrics for various versions of
our factoring approach on the Nyield = 3 validation split. . . . . . . . . . . . 47

4.3 Interaction mode coverage and joint prediction metrics when using k-means
intention points versus learnable intention points on the Nyield = 3 validation
split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Average number of search nodes expanded and wall time (seconds) per traffic
scenario with exhaustive search, A*, and A*BC for joint prediction on the
validation split. The bottom section of the table are for data splits involving
up to eight agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Joint prediction metrics on various subsets of the regular and interactive vali-
dation splits. The top section of the table corresponds to two-agent data and
the bottom section consists of scenarios with up to eight agents. ↑ indicates
higher is better and ↓ indicates lower is better. . . . . . . . . . . . . . . . . . 63

6.1 Comparison of joint prediction metrics and wall time (seconds) of our two
methods on the Waymo validation dataset. All data splits consist of up to
eight agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

13



14



Chapter 1

Introduction

In various applications of human-robot interaction, predicting the behaviours of humans is
important to enable robots to act safely. For instance, in service robotics, it is important to
predict the behaviour of surrounding humans so that the robot can interact appropriately and
navigate safely. In autonomous driving, behaviour prediction is an essential task that informs
the autonomous car of possible future motions of surrounding agents (e.g., other vehicles,
pedestrians, and cyclists). This allows the autonomous car to safely navigate its dynamic
environment. This thesis focuses on multi-agent behaviour prediction in autonomous driving.

There are several crucial considerations when predicting behaviour. This thesis aims to
address two key challenges.

1. Scalability. The task of behaviour prediction becomes increasingly challenging as the
number of agents increases. This is because the space of possible futures grows expo-
nentially and becomes intractable. As a result, an increasing number of joint prediction
samples and time are required to accurately approximate the joint distribution. We
address this challenge of scalability by factoring the joint distribution and effectively
reducing the prediction space.

2. Interaction Coverage. In complex applications like driving, agents are highly in-
teractive. Each individual’s future motion is strongly impacted by their surrounding
agents. In order to capture the possible trajectories that agents may take and better
inform downstream planning, it is important to model the interactions and cover a
diverse set of interaction outcomes in joint predictions.

Further details on how we address these challenges are provided in Section 1.2.

1.1 Behaviour Prediction as a Hybrid Problem

Human behaviour consists of hybrid discrete and continuous structure, where discrete factors
are high-level actions and low-level motion are the continuous states. This hybrid structure
has been explored in video activity recognition, where low-level human pose estimation and
high-level activity recognition are closely linked [1]. Beyond activity recognition, hybrid rep-
resentations have been used for human activity forecasting from video [2], where low-level
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trajectory and high-level action are jointly modelled in various applications including predict-
ing household activities [3] and sports-related behaviours [4]. Understanding the breakdown
of discrete factors informs us of the underlying structure of behaviours and provides us with
a way to accurately model and predict it. For example, in sports, when part of a team is
executing a certain play, the trajectories that the players take will correspond to that play.
Being able to understand the breakdown (i.e., who is involved in the play) and predict the
high-level behaviour (i.e., the play) helps to predict low-level motion (i.e., the trajectories).

The prediction problem in autonomous driving has also been viewed as a hybrid discrete-
continuous problem, where the goal is to predict both the high-level discrete behaviours and
low-level continuous states. Discrete behaviours could represent interaction modes between
multiple agents (such as explicit yielding and passing or leading and following patterns [5]–[7]
or implicit latent variables [8]–[10]) or individual maneuvers [11], [12], trajectory goal points
[13]–[19], anchor trajectories that correspond to modes of the future distribution [20], [21],
embeddings that are latent representations of anchors [22], or lanes to follow [23], [24]. The
low-level states of agents represent their continuous-valued trajectories in a global coordinate
frame. This thesis follows this line of reasoning and addresses behaviour prediction as a
hybrid problem. We leverage several tools from the approximate inference and model-based
reasoning communities [25]–[30] and combine them with the expressive power of deep neural
networks to accomplish hybrid prediction.

1.2 Approach

1.2.1 Learned Factorization and Sampling for Multi-Agent Predic-
tion

In our first approach, we learn to factor the joint distribution using neural networks. High-
level interaction outcomes are represented by discrete variables and individual motion by
continuous variables. We learn to factor the joint distribution over discrete variables, and
assume that continuous motion of agents are independent when conditioned on the discrete
variables. For this method, we take inspiration from factorization in Bayesian inference
and model-based reasoning [25]–[27], [31]–[33] and apply them to a neural network-based
predictor.

We learn to group closely interacting agents together and represent each group as a factor.
Each group has a high-level interaction outcome that corresponds to one discrete variable.
Examples of different high-level interaction outcomes could be "A yields to B", "B follows
A", or the order in which agents pass through a shared region on the road (e.g., "pedestrian
B crosses the street between vehicles A and C" or "pedestrian B crosses after vehicles A and
C pass"). We assume that interactions across groups are sparse (i.e., not every group will
interact with all other groups) and therefore sufficiently represented by a directed acyclic
graph (DAG). We learn to output the DAG, where nodes represent groups and directed
edges represent interactions where the source node is the group that influences the discrete
interaction outcome of the target node.

The DAG structure factors the joint distribution over discrete variables in a way that
enables us to sample discrete variables in order, where predecessors are sampled first and
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Figure 1.1: An example of joint predictions made by our learned factorization and sampling-
based method.

successors are conditioned on the predecessor samples. The sampled values of the discrete
variables, along with the groups, are inputted to a neural network decoder to form the final
joint trajectory sets.

Our experimental results show that this method improves coverage of interaction out-
comes by 24% to 48% on validation datasets of various interaction complexity. We also
demonstrate an improvement in sample efficiency by over 33% compared to prior work,
highlighting strong scalability. Examples of joint prediction samples from this method are
shown in Figure 1.1. We discuss this method in more detail in Chapter 4.

1.2.2 Collision-Aware Best-First Enumeration for Multi-Agent Pre-
diction

Our second approach assumes a model of traffic scenes that represents agents as concurrent
hybrid models. Discrete variables represent individual high-level maneuvers and continuous
variables represent the continuous states conditioned on the discrete mode. We assume agents
exhibit collision avoidance behaviour during interactions and discrete modes are independent
given collision-free future behaviour. With this approach, the assumed hybrid model and
interaction model are explicitly defined beforehand, rather than learned from data. Addition-
ally, we explore approximate inference using best-first enumeration for scaling to multi-agent
prediction, as opposed to sampling, to capture the maximum joint probability mass with a
limited number of samples.

We aim to approximate a joint collision-aware posterior distribution using best-first enu-
meration to assign values to discrete mode variables. We begin enumeration by assigning the
best value to a factor according to a simpler collision-agnostic prior distribution. We then
leverage our factored, concurrent representation to extend the partial assignment with the
best assignment of a second factor. We continue this process of assigning values to factors
until we reach a full assignment.

When we reach a full assignment, we compute the joint collision-aware posterior and
compare this probability to the collision-agnostic prior. We extract bounding conflicts [34],
which we use to correct our estimation of the posterior. As the search process continues, the
bounding conflicts are used to re-prioritize regions of the search space and avoid expanding
unlikely assignment until later. At each search node corresponding to a full assignment,
we extract bounding conflicts to increasingly reduce the error between the prior and the
posterior.
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Figure 1.2: An example of joint predictions made by our collision avoidance and enumeration-
based method.

Our experiments show that best-first enumeration using A* with bounding conflicts
(A*BC) [34] is faster than using A*. An example of an output from this method is shown
in Figure 1.2. Chapter 5 discusses further details of this method.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 will formally describe the
multi-agent prediction problem. Chapter 3 describes at a high level the two approaches in
this thesis. Chapter 4 presents the details and experimental results of our learned factor-
ization and sampling method. We then discuss in Chapter 5 our collision-aware best-first
enumeration method. We compare the prediction performance and scalability of these two
methods in Chapter 6. This thesis concludes with Chapter 7, which presents a summary of
contributions and future work.
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Chapter 2

Problem Statement

Here, we present the problem statement for multi-agent prediction. Future behaviour of
agents is commonly approximated with a set of weighted joint trajectory samples to capture
their probabilistic and multi-modal nature [12], [35]. Due to the computational cost of risk
assessment for each prediction sample, real-time systems can only viably process process a
small set of trajectory samples. As a result, it is desirable for the samples to represent a
diverse set of possible futures and provide good coverage of possible outcomes.

2.1 Inputs

The multi-agent trajectory prediction problem takes as input the following:

1. Past observations, O = {ot,n : −Tp ≤ t ≤ 0, 1 ≤ n ≤ N}, which consist of the
observed trajectories of N agents of interest over a past time horizon Tp

2. Scene context, C, which consist of environmental information of each agent’s sur-
roundings, such as neighbouring objects and map coordinates or polylines.

3. A single-agent trajectory predictor, P , that takes O and C and outputs a set of
K weighted continuous-state trajectories for each agent in the scene. These weighted
trajectory sets represent the multi-modal marginal future distribution p(x1:Tf ,i|O,C)
for each agent i = 1, ..., N .

4. A hybrid model, H, that represents a multi-agent traffic scenario with a set of
continuous and discrete variables and a model of interactions. Continuous variables
represent the continuous motion of agents in the scene. Discrete variables can represent
different behaviour modes (e.g., individual maneuvers or interaction patterns) and vary
depending on the methodology.

An example of the inputs of the multi-agent trajectory prediction problem is shown in Figure
2.1. In this example, the inputs are:

1. State variables, which are the observed past trajectories of each agent. These are
represented by the dotted lines.
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2. Scene context, including lane lines and road boundaries, represented by dashed and
solid lines, respectively.

3. A single-agent trajectory predictor illustrated by the solid black rectangle, which uses
the past trajectories and scene context to produce a set of marginal future trajectories
for each agent. In this thesis, we leverage a method called MTR [15], which is described
in Section 3.5.

4. There is no hybrid model for this example.

Single-Agent Predictor

Marginal Predictions
Past Observations and 

Scene Context

p = 0.9

p = 0.1

p = 0.3p = 0.7
p = 0.2

p = 0.8

p = 0.6

p = 0.4

p = 0.6

p = 0.4

Figure 2.1: An example of the inputs to the multi-agent prediction problem. The past
observed states of the agents are denoted by the dotted lines. Solid lines represent the road
boundaries and dashed lines represent lanes. Arrows represent marginal predictions, and
associated numbers are their corresponding weights.

2.2 Outputs

The goal of multi-agent prediction is to estimate the joint probability distribution of future
trajectories of all agents in the scene, denoted by

p({x1:Tf ,i}Ni=1|O,C, P,H) (2.1)

Similar to single-agent prediction, this distribution is inherently multi-modal, as joint be-
haviour can unfold into multiple high-level outcomes. For example, high-level outcomes can
represent interaction outcomes (e.g., whether two interacting agents result in "A yields to
agent B" or "B yields to A") or individual maneuvers (e.g., A turns right while B goes
straight). This distribution does not have a closed-form expression. Therefore, the output
of this problem is a weighted set of K joint trajectory samples S = {(x(k), w(k))}Kk=1. Each
joint trajectory sample x(k) = {x(k)

1:Tf ,i
}Ni=1 consists of one predicted trajectory for each agent

of interest for all time steps in the future horizon Tf . An example of the outputs of the
multi-agent trajectory prediction problem is shown in Figure 2.2. The outputs consist of
joint trajectory predictions and associated weights, which represent prediction likelihoods.
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Figure 2.2: An example of the outputs of a multi-agent prediction method. Each square
represents a different joint prediction sample. Agents’ futures are denoted by solid arrows.
The weight of each joint prediction is represented by the shade of the square border.

2.3 The Multi-Agent Prediction Problem

We define the multi-agent prediction problem as follows:

Definition 2.1 (Multi-Agent Prediction Problem). The multi-agent prediction problem is
to learn a function f(O,C, P,H) that maps the inputs – past observations O, context C,
single-agent predictor P , and hybrid model H – to a set of joint prediction samples S that
minimizes the cost J (S, {xgt

1:Tf ,i
}Ni=1) between the joint prediction samples and the ground

truth future trajectories {xgt
1:Tf ,i
}Ni=1.

In this thesis, we use a combination of neural networks and model-based reasoning to
approximate the mapping. We first train the single-agent predictor P on a dataset with
a set of training scenarios containing O, C, and {xgt

1:Tf ,i
}Ni=1. O and C are inputs to P

during training, and P outputs weighted marginal trajectories for each agent {Si}Ni=1 where
Si = {(x(k)

i , w
(k)
i )}Kk=1. Using {xgt

1:Tf ,i
}Ni=1, we train P to minimize a single-agent prediction

cost that optimizes accuracy. Specifically, we leverage MTR [15] as our single-agent predictor
P due to its strong performance on single-agent prediction. Further details on the neural
network architecture and training cost are provided in Section 3.5.

2.4 Modelling Interactions for Multi-Agent Prediction

In multi-agent prediction, various interactions occur between agents in a scenario. These
interactions must be considered in order to model the traffic scene in a way that supports
accurate prediction. In this thesis, we explore two different ways to model interactions, and
incorporate this into our hybrid model input H.

In Chapter 4, we address hybrid modelling as a deep learning problem by learning to
obtain the hybrid model H for each traffic scenario. To do this, we train a neural network
to identify interacting agents in a scene. We represent the high-level interaction outcome of

21



each interacting group using a discrete variable. We additionally learn to uncover the depen-
dencies across discrete variables in order to factor the joint discrete distribution. Intuitively,
the discrete variable of one group is dependent on the discrete variable of a second group
if the interaction outcome of the first group depends on that of the second group. Inspired
by prior work in DAG approximation in belief propagation [31]–[33], we assume that inter-
actions between groups can be approximated by a DAG, and use this to factor the discrete
distribution in a way that enables efficient inference. In addition to the discrete variables,
continuous variables represent each individual’s continuous motion. Using the learned hybrid
model H, along with O, C, and P , we train a neural network for the mapping f(O,C, P,H)
from inputs to joint prediction samples S.

In Chapter 5, we explore multi-agent prediction based on the idea that agents avoid
collision. As a result, when agents interact, the future trajectory rollouts are unlikely to
involve collisions. Using interaction labels provided in the training dataset, we define a proxy
for collision likelihood based on joint trajectories. We compute the time-to-collision between
all pairs of interacting agents and construct a kernel density estimate of the time-to-collision.
Given a joint prediction candidate, we compute the time-to-collision with the trajectories
and derived velocities and use the estimated probability density as a proxy for the likelihood
of the joint prediction. The idea is that less likely and lower times-to-collision correspond
with unlikely joint maneuvers. In addition to collision avoidance as an assumed model, we
model the traffic scene with a set of concurrent hybrid agent models, where agents’ individual
maneuvers are represented by discrete variables and the corresponding continuous motions
are represented by continuous variables. The concurrent hybrid agent models and collision
avoidance model are used as input H to the multi-agent prediction problem. In this method,
apart from learning the kernel density estimate of time-to-collision, the factored hybrid model
(i.e., conditional independence of concurrent behaviours) is fully assumed beforehand instead
of learned. Together with other input variables O, C, and P , we obtain the joint prediction
samples S from the mapping f(O,C, P,H).

Our two approaches solve variants of the same multi-agent prediction problem, as pre-
sented in Section 2.3. However, they differ in the input hybrid model H. In Chapter 4,
we learn to identify with a neural network the hybrid model for each traffic scene. The
discrete variables represent interaction outcomes of groups of agents. On the other hand,
our approach in Chapter 5 does not learn the hybrid model and instead assumes a set of con-
ditionally independent concurrent hybrid agent models given collision avoidance behaviour,
where the discrete variables represent maneuvers of individual agents. Our two approaches
also differ in inference technique, with Chapter 4 performing inference using sampling and
Chapter 5 using best-first enumeration.
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Chapter 3

Approach

3.1 Behaviour Prediction as a Hybrid Problem

In this thesis, we view the multi-agent driving scenario as a hybrid discrete-continuous sys-
tem and reason qualitatively about high-level discrete behaviours of traffic agents using
inspiration from hybrid methods in the model-based reasoning community [27]–[29]. Prior
works in prediction have represented high-level qualitative states in a traffic scene as a finite
set of single-agent maneuvers [11], [12], trajectory goal points [13]–[19], anchor trajectories
[20], [21], embeddings [22], or lanes to follow [23], [24]. In addition, discrete variables can
represent interactive behaviours [5]–[7]. In this thesis, we present two methods – one that
primarily focuses on discrete modes as high-level multi-agent interactive behaviours and
one that leverages single-agent modes, specifically goal-based maneuvers, to enumerate joint
trajectories from marginal trajectories.

Addressing prediction as a hybrid problem allows us to draw on insights from hybrid
inference [27]–[29] to support accurate and scalable prediction. This thesis explores two
complementary ways of doing so. In the first method, we take inspiration from factored
inference [25], [26] and hybrid sampling [27] to enable better coverage of discrete modes with
fewer samples. Discrete modes represent high-level interaction outcomes of multiple agents.
We provide an overview in Section 3.3. In the second method, we leverage an efficient best-
first enumeration technique [34] to form joint trajectory predictions directly using marginal
trajectories from the output of a single-agent predictor. In this method, marginal trajectories
correspond to single-agent intention points (which represent trajectory endpoints of distinct
maneuvers), and the selection of a particular trajectory represents the discrete choice. We
provide an overview of this method in Section 3.4.

Both methods that we present are general frameworks that can be applied on top of
different single-agent prediction methods. Various types of neural networks have been in-
troduced to encode past observations and context and generate predictions, including RNNs
[35]–[37], CNNs [20], [37]–[39], GNNs [40], [41], and Transformers [15], [42]. In this thesis,
we leverage the Transformer-based method in [15], known as MTR, as our backbone network
due to its strong performance. We outline the necessary details about MTR in Section 3.5.
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3.2 Overview

In this thesis, our approaches to the multi-agent prediction problem defined in Chapter
2 consist of the general algorithm presented in Algorithm 1 after all neural network-based
components of P and H have been trained. Specifics on training are provided where relevant
in Section 3.5 and Chapter 4.

Algorithm 1 Our General Algorithm for Multi-Agent Prediction
1: function Multi-Agent-Prediction(O,C, P,H)
2: Smarg ← {}
3: for i = 1, ...N do
4: Si ← P (O,C)
5: Smarg ← Smarg ∪ {Si}
6: end for
7: S ← Select-Joint-Trajectories(Smarg)
8: return S
9: end function

Generally, our two approaches involve leveraging a trained single-agent predictor P to
obtain marginal trajectory predictions Si for all agents i = 1, ..., N (lines 3 to 6). In practice,
this loop is parallelized as the agent dimension is batched and the neural network forward
pass is done on a GPU, but we illustrate it as a loop here for clarity. Then, the set of marginal
trajectory samples for each agent Smarg = {Si}Ni=1 is used to form the joint trajectory samples
S (line 7). The function Select-Joint-Trajectories differs between our two methods,
with one method performing the selection based on discrete samples that are fed to a neural
network (Section 3.3) and the second method using best-first enumeration (Section 3.4).

3.3 Learned Factorization and Sampling for Multi-Agent
Prediction

In the first method that we present in this thesis, we address both scalability and interaction
coverage. We handle hybrid prediction by factoring the joint distribution to effectively reduce
the prediction space. This allows us to cover the prediction space more easily using fewer
prediction samples [26], and therefore scale better to joint prediction for larger numbers
of agents. In multi-agent prediction, it is important for joint prediction samples to cover
diverse interaction outcomes so that the samples reflect the full range of possible interactive
future behaviours. Therefore, in our method, we focus on achieving diversity of high-level
interaction outcomes, and present a way to factor the joint discrete distribution over these
outcomes.

We observe that agents do not interact with every other agent in the scene, but only a few.
Within smaller groups, agents can closely interact with each other. We view these tightly
coupled behaviours as a group whose high-level interaction outcome can be represented
by a discrete variable. Examples of high-level interaction outcomes are: "agent A yields
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to B" or "agent B follows A". It is also possible for the interaction mode of one group
to affect another. We observe that inter-group dependencies are likely sparse and can be
sufficiently approximated as a directed acyclic graph (DAG), where vertices represent groups
and predecessors are groups that impact successors groups’ interaction outcomes. Therefore,
our method is also designed to capture these dependencies among discrete variables and
exploit the directed acyclic structure for simple and efficient sampling.

In our method, a neural network first groups agents that are closely interacting. This al-
lows us to determine the agents whose interaction outcome corresponds to a discrete variable,
and agents can be assigned to more than one group. Second, a neural network identifies the
underlying DAG structure among these variables. The nodes of the graph are the discrete
variables representing interacting groups, and the edges are interactions with source nodes
as those that are inferred first and influence the outcomes of target nodes. We assume that
interactions across groups are weak and an acyclic representation is sufficient to represent
them. Based on the DAG, we can obtain an order in which to easily sample the variables so
that predecessors are sampled before successors. This allows us to condition on predecessors
according to the DAG.

Using the order, we sample discrete values representing group interaction outcomes, con-
ditioning on the DAG predecessors for each variable. At each discrete variable, the condi-
tional distribution from which we sample is output by a neural network that takes in the
predecessors’ sampled values. Finally, conditioned each agent’s corresponding discrete vari-
ables and groups, past observations, and context, we use a neural network to select joint
trajectories. Of note, we assume that knowledge of groups’ high-level interaction outcomes
provided by the discrete variables is sufficient to reason about joint future behaviour, and
therefore agents’ future trajectories are independent when conditioned on the discrete vari-
ables. We repeat the ordered discrete variable sampling and joint trajectory selection K
times to obtain K joint continuous-state trajectory prediction samples with potentially dif-
ferent high-level interaction outcomes. Figure 3.1 shows an overview of this method. Detailed
methodology, experiments, and results are presented in Chapter 4.

This method is shown in Algorithm 2, with extensions from Algorithm 1 highlighted in
blue. In this algorithm, our method operates on the latent space of the single-agent predictor
P , so we show P into two parts – Penc and Pdec which represent the encoder and decoder of
the single-agent predictor, MTR [15], and correspond to the descriptions in Sections 3.5.3
and 3.5.4, respectively.

3.4 Collision-Aware Best-First Enumeration for Multi-
Agent Prediction

The second method that we present focuses on addressing the scalability challenge of multi-
agent prediction. We model traffic scenarios as a set of concurrent hybrid agent models.
We assume conditional independence given collision-free behaviour to factor the joint dis-
tribution, where a factor corresponds to a single agent. We observe that agents tend to
behave in a way that avoids collision [36], [43]–[45]. We therefore focus on this attribute in
our modelling of interactions. We use a best-first enumeration algorithm, A* with bound-
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Algorithm 2 Learned Factorization for Multi-Agent Prediction
1: function Learned-Factorization-Multi-Agent-Prediction(O,C, P,H)
2: Smarg ← {}
3: F ← [ ], Z ← {}
4: for i = 1, ...N do
5: Fi ← Penc(O,C)
6: F ← append(F, Fi)
7: Si ← Pdec(Fi)
8: Smarg ← Smarg ∪ {Si}
9: end for

10: FG ← Group-Agents(F )
11: A← Determine-DAG-Structure(FG)
12: order ← Order-Discrete-Variables(A)
13: for k = 1, ..., K do
14: z(k) ← Sample-Discrete-Variables(FG, order)
15: Z ← Z ∪ {z(k)}
16: end for
17: S ← Select-Joint-Trajectories(Smarg, F, FG, Z)
18: return S
19: end function

Group Agents

Sample Discrete Group 
Interaction Outcomes (K times)

Decode K Joint 
Trajectories

Determine DAG Structure 
Among Groups

Figure 3.1: Overview of joint prediction by learning to factor. We train a neural network to
factor the joint distribution of discrete interaction outcomes by grouping agents (with each
group representing a factor) and outputting the directed acyclic interaction graph between
groups of agents. We then sample for each factor following the DAG topology and then
decode joint predictions based on the samples.
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ing conflicts (A*BC) [34], to assign values to discrete variables representing agents’ future
behaviour modes.

This method generates a best assignment for one factor based on a prior collision-agnostic
distribution, where the assignment represents a discrete high-level maneuver corresponding to
a continuous trajectory and the factor corresponds to a single agent. Subsequent assignments
to other factors extend upon assignments to previous factors, until a full assignment (i.e.,
maneuvers to every agent) is reached. Upon reaching a full assignment, compute the posterior
collision-aware probability. We learn bounding conflicts as a correction step to increasingly
reduce the error between the collision-agnostic and collision-aware distributions.

To compute collision likelihood given assigned trajectories, we compute the time-to-
collision of every pair of agents in the scene. We estimate the time-to-collision likelihood
using a kernel density estimate on the training dataset. We base the probability of collision
on the time-to-collision likelihood. Intuitively, if two agents come close to each other with a
small time-to-collision, and the time-to-collision has a low likelihood according to the kernel
density estimate, it reflects a higher probability of collision. We use the collision likelihood
to compute bounding conflicts associated with sets of assigned trajectories. This way, we
can keep track of the error between the collision-agnostic prior and collision-aware posterior
to better order search nodes during enumeration.

In this thesis, we use [15] as the single-agent predictor that provides the prior collision-
agnostic distribution. Our method can be applied to any single agent predictor that outputs
multiple weighted trajectory predictions per agent. An overview of this method is shown in
Figure 3.2 and deviations from Algorithm 1 are highlighted in blue in Algorithm 3. We apply
additional trajectory selection to the outputs of the neural network P , as done by [15]. This
post-processing step, which we denote as PNMS, is known as non-maximum suppression and
helps narrow down model outputs to fewer prediction samples, described in Section 3.5.5.
Further details and experimental results are presented in Chapter 5.

Algorithm 3 Best-First Enumeration for Multi-Agent Prediction
1: function Best-First-Enumeration-Multi-Agent-Prediction(O,C, P,H)
2: Smarg ← {}
3: for i = 1, ...N do
4: Si ← P (O,C)
5: Si ← PNMS(Si)
6: Smarg ← Smarg ∪ {Si}
7: end for
8: S ← Select-Joint-Trajectories(Smarg, H)
9: return S

10: end function
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Figure 3.2: Overview of joint prediction by combining marginal predictions through best-
first enumeration. We use the marginal predictions output by the single-agent predictor and
enumerate joint trajectories in best-first order for a collision-aware posterior distribution.
We begin enumeration using the prior collision-agnostic distribution and use A*BC to in-
creasingly reduce the error between the prior and the posterior.
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3.5 Preliminaries: Single-Agent Prediction Using Motion
TRansformer (MTR)

In this section, we introduce the single-agent predictor that we use in this thesis, MTR [15].
In reference to the problem statement in Chapter 2, MTR is the model that we use as the
input P to the multi-agent prediction problem. We describe the architecture and training
details in the remainder of this section.

3.5.1 Inputs and Outputs

MTR [15] is a Transformer-based [46] method for trajectory prediction. MTR takes as input
the observations O and scene context C and outputs a set of weighted trajectories per agent
of interest. That is, for the ith agent of interest, MTR outputs Si = {(x(k)

1:Tf ,i
, w

(k)
i )}Kk=1,

where w
(k)
i = p(x1:Tf ,i = x

(k)
1:Tf ,i
|O,C) and x1:Tf ,i are the predicted continuous states at each

timestep in the prediction horizon Tf for agent i.
The authors also propose a simple way to convert these marginal predictions into joint

predictions based on a factorization of the joint distribution that assumes conditional inde-
pendence given only the inputs O and C. MTR’s factorization of the joint distribution is as
follows

p({x1:Tf ,i}Ni=1|O,C) =
N∏
i=1

p(x1:Tf ,i|O,C) (3.1)

The products of the marginal probabilities are used in an exhaustive search to find the top
K predictions from KN possible combinations of N agents of interest. However, it should be
noted that MTR is designed primarily to achieve good single-agent prediction performance,
and evaluates multi-agent prediction metrics only on two-agent scenarios. We refer readers
to [15] for further details on the results.

3.5.2 Architecture Overview

An overview of the MTR architecture is shown in Figure 3.3. We summarize the key de-
tails of the MTR encoder and decoder necessary for this thesis in Sections 3.5.3 and 3.5.4,
respectively. For more in-depth details, we refer readers to [15].

3.5.3 The Encoder

The encoder of MTR takes as input the past trajectories of agents in the scene O and the
map of the environment C, where each trajectory and each map element is represented as a
polyline. Both sets of polylines are encoded by PointNet-like encoders [47] to obtain agent
and map tokens for each agent and each map polyline, respectively.

The agent and map tokens obtained from the polyline encoders are then further processed
by a Transformer-based context encoder. The tokens are updated via local self-attention,
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Figure 3.3: Overview of the MTR architecture. [16]

where each token attends only to their local neighbouring tokens. The k-nearest neighbour
algorithm is used to determine the k polylines that are closest to each query polyline.

In addition to encoding past trajectory and map information, the encoder of MTR also
includes future information. The agent tokens from the context encoder are used in an
auxiliary prediction task. The goal of this task is to directly predict the future trajectories
of the agents using a multi-layer perceptron (MLP). The predictions are re-encoded using
the same polyline encoder as before. Another MLP is then used to fuse these future agent
features with the original agent tokens, providing us with the final agent tokens that the
decoder uses.

Each agent of interest has a different local coordinate frame. In order to handle this, the
encoding process is completed N times, once for each agent of interest. Each time, the past
observations O and scene context C are encoded in the coordinate frame centered on the
agent of interest.

3.5.4 The Decoder

The decoder of MTR takes as input the agent and map tokens from the encoder and uses them
for the Transformer keys and values. For each agent of interest, the decoder is conditioned
on a set of intention points specific to the agent type (vehicles, cyclists, and pedestrians),
representing trajectory end points. For each agent type, the corresponding intention points
are determined by running the k-means clustering algorithm on the trajectory endpoints in
the training set, with k = 64. At each future time step in the prediction horizon Tf , the
decoder outputs the parameters of a Gaussian mixture model (GMM) with 64 components,
forming 64 trajectories with each trajectory corresponding to an intention point. The pre-
dicted distribution Pt,i(x, y) of the ith agent’s position xt,i = (x, y) at time step t follows the
formulation in [20], [22] and can be written as:

Pt,i(x, y) =
64∑
k=1

pk · N (x− µx,k, σx,k; y − µy,k, σy,k; ρ) (3.2)

where probability p and parameters (µx, µy, σx σy, and ρ) of each component are output by
the decoder. We omit the time t and agent i for clarity.
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3.5.5 Marginal Trajectory Selection

MTR outputs 64 trajectories corresponding to 64 different high-level maneuvers, where each
maneuver corresponds to one of the intention points from Section 3.5.4. In reality, only
a small number of trajectories can be processed due to the high computational cost of
downstream tasks. As a result, MTR further selects samples to narrow down from the 64
trajectories to six marginal trajectories. For each agent, to generate the final set of six
trajectories, MTR uses non-maximum suppression to select the top six distinct predictions
from the 64 predicted trajectories (µx and µy) based on endpoint distances and a distance
threshold of 2.5 meters.

3.5.6 Loss Function

The loss function that is minimized during training includes a term for optimizing the GMM
parameters and a term for the auxiliary prediction task. At a given future time step for
an agent, MTR maximizes the likelihood of the agent’s ground truth position (xgt, ygt) by
optimizing the predicted GMM parameters with the negative log-likelihood. This is written
as

LGMM = −logfh(xgt − µx, ygt − µy)− log(ph) (3.3)

where fh is the probability density function of the selected GMM component for optimization
and ph is the corresponding mixture probability. MTR follows [20], [22] and uses a hard
assignment strategy to select the GMM component using the distance between intention
points and ground truth trajectory endpoints. For the outputs of the auxiliary trajectory
regression MLP (Laux), MTR uses the L1 regression loss. The total loss used to train the
MTR framework is

L = LGMM + Laux (3.4)
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Chapter 4

Learned Factorization and Sampling for
Multi-Agent Prediction

4.1 Introduction

An agent’s future behaviour can be affected by the presence of others and the need to share
space on the road. Therefore, in joint prediction, it is important to model these interactive
behaviours and capture possible high-level interaction outcomes in the prediction samples.
Additionally, due to the computational complexity of downstream risk assessment, only a
small set of predictions can be processed onboard a vehicle. Thus, a joint predictor needs to
achieve good coverage of possible high-level outcomes given a limited number of prediction
samples. It is challenging, however, to cover the joint prediction space because it grows
exponentially in the number of agents and future time steps. In this chapter, we present a
prediction method inspired by approximate inference and hybrid estimation algorithms [25]–
[27], [48] to address the large joint prediction space and improve sample efficiency, which
ultimately allows us to provide diverse joint predictions.

Modelling and predicting human behaviour, can be viewed as a problem with hybrid
structure. In the context of joint prediction, high-level interaction outcomes can be rep-
resented by discrete variables, while continuous variables correspond to agents’ continuous
motion [11], [12]. Different discrete interaction outcomes (i.e., outcomes that are qualita-
tively different) can be identified for specific groups of interacting agents. For instance, for
a pedestrian interacting with two cars, distinct discrete outcomes can represent whether the
pedestrian crosses before, between, or after the two cars. In this way, one discrete vari-
able can correspond to multiple agents. In a traffic scene, there can be multiple concurrent
interactions, each involving a subset of agents in the scene.

Here, we introduce a hybrid prediction method that models the structure of discrete
interactions and continuous motion. We present a method that breaks down the traffic
scene by identifying the discrete variables and factoring the joint discrete distribution. We
represent groups of interacting agents with a discrete variable. We observe that interactions
between groups are weak and therefore the joint distribution over the discrete variables
can be factored. Inspired by directed acyclic graph (DAG) approximation approaches in
belief approximation [31]–[33], we infer a DAG across groups, where edges represent inter-
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group interaction relationships and target nodes of the directed edges are groups whose
interaction outcome is influenced by that of the source node. The DAG allows us to easily
sample values corresponding to each factor in an order and condition on previous factors.
The discrete outcomes are then used to determine individual agents’ future trajectories.
Factoring enables better sample efficiency and has been explored in multi-agent monitoring
to reduce the state space, reduce sample variance, and maintain accuracy with fewer samples
[26]. In this chapter, we explore the notion of neural network-based factorization to reduce
the multi-agent prediction space and enable more efficient sampling of interaction outcomes.

The contributions of this chapter are as follows:

• We take inspiration from factorization in probabilistic inference and model-based rea-
soning and demonstrate how to apply them to neural network-based estimators.

• Our method accomplishes neural factorization and hybrid inference within the task of
multi-agent prediction in autonomous driving.

• In our experiments, we probe the effectiveness of our model for improving high-level
interaction coverage and joint prediction performance, and compare our method to
state-of-the-art methods.

4.2 Preliminaries

4.2.1 Factored Inference

The discrete prediction space grows exponentially in the number of agents and prediction
intervals. Several works tackle this problem of scalability by factoring the state distribu-
tion. For instance, the method in [25] approximates complex belief state distributions with
compact products of factors by clustering strongly coupled state variables and assuming in-
dependence across weakly interacting components in a known dynamic Bayesian network.
Combining particle filtering and [25], [26] introduces the notion of factored particles and
performs particle sampling within each cluster of variables. Compared to particle filtering,
[26] reduces sampling variance and therefore more accurately approximates beliefs in larger
state spaces using fewer samples. It is also able to handle much larger systems than [25]
via sampling rather than exact inference within each factor. In [27], factored particles is
extended to hybrid systems. Inspired by this line of work, we leverage factoring to reduce
the prediction space and achieve better coverage of outcomes given limited prediction sam-
ples. Unlike [25]–[27] which involve problems with known structure, the structure of traffic
scenarios and dependencies among variables are not known beforehand, and change across
different data samples. We therefore train a neural network to map inputs (past observa-
tions and context) of traffic scenarios to their corresponding factored graphical structure.
The methods in [25]–[27] also do not represent relationships between factors. We draw in-
spiration from prior work in DAG approximation in belief propagation [31]–[33] and learn to
determine a DAG structure between groups, where groups correspond to discrete factors.
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4.2.2 Interactive Prediction

In our work, we learn to group interacting agents. A body of work explored how to clus-
ter agents and capture group behaviours [49]–[52]. These methods grouped agents that
are interacting, extracted group features, and leveraged the group features in conjunction
with individual agent features to predict trajectories. Of these works, [49] and [50] group
agents purely using rule-based clustering based on agent positions and proximity. Beyond
rule-based grouping, [51] and [52] neurally inferred hypergraph structure and discrete inter-
action types of each group. Discrete variables were assumed conditionally independent given
past observations. Inspired by these methods, we neurally determine which agents belong
in a group while additionally leveraging rule-based filters to identify interacting agents and
weakly supervise our model’s group assignments to provide semantic meaning. Unlike exist-
ing methods, we additionally infer inter-group interaction relationships. We take advantage
of the inter-group structure to evaluate discrete group outcomes in an order that enables us
to condition on previous groups’ outcomes, instead of assuming independence across group
behaviours.

A number of joint trajectory prediction methods have learned relational structures among
agents to model pairwise interactions [5], [7]–[9], [53]. Among these methods, [5], [7], [53]
address the problem as conditional behaviour prediction by determining a directed acyclic
structure over individual agents and predict in order according to the graph. The focus in [5]
and [53] is on pairwise interacting scenarios, and [7] scales the idea to networks of pairwise
interactions. Other methods [8], [9] learn to infer interaction graphs and corresponding
discrete pairwise interaction types for each edge. We take inspiration from these methods
and learn to determine a directed acyclic interaction graph, but over groups of agents rather
than individual agents. This way, we can capture both tightly coupled multi-agent behaviours
within groups and weaker interactions across groups.

4.3 Approach Overview

The prediction problem formulation follows Chapter 2, where our goal is to output a weighted
set of K joint trajectory samples S = {(x(k), w(k))}Kk=1. In this chapter, we address this as
a hybrid discrete-continuous prediction problem, where the continuous variables {x1:Tf ,i}Ni=1

represent the future continuous trajectories of the N agents in the scene, as defined in
Chapter 2. The discrete variables {zm}Mm=1 represent high-level future interaction outcomes
among groups of agents, which we assume are fixed over the prediction horizon. Although
we focus on interactions, our framework also enables these variables to capture individual
maneuvers as well. Formally, our method estimates the joint distribution over all variables,
p({x1:Tf ,i}Ni=1, z1, ..., zM |O,C), where O and C are past observations and scene context, as
defined in Chapter 2. By the chain rule of conditional probability, this can be factored as

p({x1:Tf ,i}Ni=1, z1, ..., zM |O,C) = p({x1:Tf ,i}Ni=1|z1, ..., zM , O, C)p(z1, ..., zM |O,C) (4.1)

Our inference task in this chapter is to infer the distribution over continuous trajectories,
specifically the first term of the right side of Equation 4.1. In our method, we make two
assumptions that allow us to further factor Equation 4.1. First, we assume that a qualitative,
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high-level abstraction of joint future behaviour is sufficient to capture dependencies across
agents’ futures. That is, given an assignment to the discrete variables, we can assume that
agents’ future trajectories are conditionally independent. Therefore, we can factor the first
term on the right side of Equation 4.1 as follows

p({x1:Tf ,i}Ni=1|{zi = zi}Mi=1, O, C) =
N∏
i=1

p(x1:Tf ,i|{zi = zi}Mi=1, O, C) (4.2)

where zi is the assignment to the ith discrete variable. We additionally observe that across
groups of agents, interactions are sparse. Therefore, dependencies among discrete variables
{zm}Mm=1 are sparse. This motivates our second assumption – that the dependencies among
discrete variables form a directed acyclic graph (DAG), where the source node is the fac-
tor that influences the interaction outcome of the target node. This allows us to factor
p(z1, ..., zM |O,C) to obtain an order in which to conveniently sample the discrete variables,
one at a time, and condition on previously sampled variables. Specifically, we have

p(z1, ..., zM |O,C) =
M∏

m=1

p(zm|parents(zm), O, C) (4.3)

To summarize, we assume the following factorization of the joint distribution over hybrid
variables.

p({x1:Tf ,i}Ni=1, z1, ..., zM |O,C)

=
N∏
i=1

p(x1:Tf ,i|z1, ..., zM , O, C)
M∏

m=1

p(zm|parents(zm), O, C) (4.4)

where parents(·) denotes the parents of a variable in the DAG.
A detailed diagram of our method is shown in Figure 4.1. In the remainder of this

chapter, we discuss details of our approach and present experimental results. To uncover the
interaction structure in traffic scenes and obtain the factorization, our method

1. learns to assign agents to each factor (Section 4.4.1)

2. learns to determine edges between factors (Section 4.4.3).

Using the obtained structure, we then make joint predictions by

1. sampling diverse discrete interaction outcomes (Section 4.5.1)

2. decoding trajectories conditioned on the interaction outcomes (Section 4.5.2).

4.4 Approach: Learning to Factor for Multi-Agent Pre-
diction

This section describes how we obtain the factorization described by Equation 4.3.
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Figure 4.1: Overview of the proposed method. We leverage MTR [15] as a backbone marginal
trajectory predictor to obtain a weighted set of I marginal trajectories per agent. Our method
takes the agent embeddings from the encoder to (1) group agents according to interactions,
(2) extract group-level features (FG), (3) factor the joint distribution over discrete variables
representing the groups, and (4) sample each discrete variable in order according to the
directed acyclic factorization. We do this K times to obtain K joint sample sets. (5) We
take the agents’ features from the decoder, their corresponding group features, and the
discrete variables and pass them to the joint intention selector. For every agent, the selector
outputs one group-aware distribution over the I possible selections for each k = 1, ..., K.
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4.4.1 Grouping Interacting Agents

We begin with a driving scenario containing N agents that are interacting in M groups.
The groups are not necessarily partitions – agents can be part of more than one group. In
order to determine which agents belong in a group together, we aim to approximate with a
neural network the probability that an agent i belongs to group m. Formally, the goal is to
estimate the probability distributions for i = 1, ..., N and m = 1, ...,M

p(Gi,m|O,C) ∈ [0, 1] (4.5)

where Gi,m ∈ {0, 1} represents the event that the ith agent belongs to the mth group. The
observations O and context C are as defined in Chapter 2. We accomplish this using a
multi-layer perceptron (MLP) that takes as input the features from the backbone encoder
and outputs a vector of size M per agent representing group assignment probabilities for
M groups. Our MLP consists of three layers, with sizes of (256, 256, M). Note that the
maximum number of groups M must be selected, and our framework can use fewer than M
groups depending on the scenario.

We sample from the resulting distribution to obtain a final N by M binary incidence
matrix G representing the assignment of agents to groups. During training, we use the
Gumbel-softmax [54] trick to sample in a differentiable manner. Note that groups are not
partitions, so agents can belong to more than one group. In addition, it is possible for agents
to not belong to any group.

We softly constrain the group assignments using our loss terms to encourage certain
desirable qualities in the groups. First, we note that interactions between agents can be
identified by filtering for specific behaviours in the data. These filters can consider informa-
tion including shared space based on the paths of multiple agents, changes in speed in the
presence of other agents, among others. We leverage this insight and filter for interactions
that involve yielding, following, or general intersecting between agents’ paths. Details on the
filtering criteria for each interaction type are presented in Appendix A. We use these filters
during training to encourage semantic meaning in the groups outputted by our network.

We introduce a loss term that encourages agents to be in the same group if they are filtered
to be interacting. Specifically, during training, we use the ground truth future trajectories to
construct a ground truth interaction graph of all agents. We encourage neighbouring pairs
of agents in this graph (i.e., agents that directly interact) to be placed in the same group
using the following

Lsem. dense = 2−max
m

(Gi,m +Gj,m) (4.6)

Intuitively, this term encourages a more dense incidence matrix G based on ground truth
interactions.

We note that for smaller group sizes, there is a lower number of possible interaction
outcomes. As a result, smaller groups require fewer samples to achieve good coverage of
interaction outcomes. Therefore, to encourage better sample efficiency, we prefer to have
more small groups over fewer large groups when possible. With this in mind, in addition
to encouraging semantically meaningful groups by densifying the groups, the inverse can be
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done to discourage overly dense groups. Groups consisting of agents that are not neighbours
in the ground truth interaction graph can be penalized with the following cost

Lsem. sparse =
M∑

m=1

∑
(i,j)∈groupm

(di,j − 1)(Gi,m +Gj,m − 1) (4.7)

where di,j is the shortest distance between agents i and j in the interaction graph. If the
agents are not connected, the distance is set to N . Intuitively, if agents are not adjacent
(i.e., di,j − 1 > 0), this cost term would penalize groups that contain both agents i and j.

We additionally consider two edge cases using margin costs. First, to avoid grouping all
agents into one group – and thereby defeating the purpose of factoring, we softly constrain
group sizes such that groups with more agents are penalized according to

Lsmall groups =
M∑

m=1

max(Nm −marginsparse, 0) (4.8)

where Nm represents the number of agents assigned to group m and the sparsity margin we
set is marginsparse = 3. With this margin, Lsparse groups contributes to the overall objective
when Nm ≥ 4. In terms of the binary incidence matrix G, this loss term is used when the
sum of columns exceed marginsparse.

The second edge case is when agents are not assigned to any group. When this occurs, the
agent does not take part in subsequent feature extraction (Section 4.4.2) and factorization
and discrete outcome sampling (Section 4.4.3) steps. This effectively results in predictions
equivalent to [15]. This is reasonable for agents that do not interact with others. However,
to leverage our method for potential advantages in coverage, we encourage agents to be
assigned to at least one group. The corresponding cost term is computed as

Lmin groups =
N∑
i=1

−min(Mi −marginmin groups, 0) (4.9)

where Mi is the number of groups to which agent i is assigned and marginmin groups = 1
to encourage at least one group per agent. In terms of the binary incidence matrix G, this
loss term is used when the sum of rows is below marginmin groups. For the agents that do
not interact with others, they can still be represented by being the only agent assigned to a
group.

Overall, the loss function for grouping interacting agents and associated coefficients,
selected empirically, are as follows

Lgroups = Lsem. dense + 0.5Lsem. sparse + 0.5Lsmall groups + Lmin groups (4.10)

4.4.2 Extracting Group Features

According to the group assignments, we extract a feature vector representing each group,
which fuses the encoder features of the agents that belong to the group. These group-level
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features are used for subsequent group-level operations, including determining the condi-
tioning structure in the factorization and sampling from the factors to determine high-level
discrete outcomes, as per Section 4.4.3.

We process the agent features from the encoder through a three-layer MLP, with layer
sizes of (256, 256, 256), and obtain a feature vector per agent. To form feature vectors per
group, we take the element-wise weighted sum of feature vectors of the agents that belong
to each group. Feature vectors are weighted according to the group assignment probabilities
denoted by Equation 4.5.

4.4.3 Determining Inter-Group Dependencies and Sampling Order

The next step is to determine inter-group dependencies. We represent this with a M ×
M adjacency matrix representing relationships between groups. The latent variables z =
{zm}Mm=1 represent the high-level interaction outcomes of the groups. To infer the sparse
relations between groups, we assume that dependencies between groups have a directed
acyclic structure. As a result, the joint distribution of latent variables representing the
groups can be factored as

p(z1, ..., zM |O,C) =
M∏

m=1

p(zm|parents(zm), O, C) (4.11)

Based on the factorization, we obtain an order in which to evaluate the latent variables
{zm}Mm=1 that allows us to condition on the other latent variables as appropriate, according
to the factorization.

We use self-attention to determine the adjacency matrix. In our implementation, we use
three three-layer MLPs, all with layer sizes of (256, 256, 256), to map the group features to
keys, values, and queries. We use two attention heads and take the average of the two for
the final attention matrix. We refer readers to [46] for details on self-attention. To train
the network, we draw inspiration from prior work in DAG structure learning [55]–[57]. We
adopt the equation in [57] as a term in our loss function to softly constrain the attention
matrix to have a DAG structure, as follows:

LDAG = tr[(I + ηA ◦ A)M ]−M (4.12)

where η is a constant that we set to 1.
Finally, we follow the post-processing procedure presented in [56] to obtain the DAG

adjacency matrix. This process consists of pruning the weakest connections until the resulting
matrix forms a DAG. This effectively assumes that the weakest inter-group interactions are
negligible. Based on the DAG, we order the variables {zm}Mm=1 by topologically sorting with
Kahn’s algorithm.
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4.5 Approach: Sampling-Based Factored Joint Predic-
tion

This section describes how we obtain joint hybrid predictions described by Equation 4.4,
given the factorization in Equation 4.3.

4.5.1 Sampling Diverse Interaction Outcomes

We aim to obtain K joint discrete samples that cover diverse interaction outcomes. To do
this, we first sample the discrete latent variables according to the DAG order, conditioning
subsequent samples on the previous ones, until we have sampled values for all discrete vari-
ables. This is follows Equation 4.3. We repeat the ordered sampling process K times to
obtain K joint samples of the discrete variables. For each set of {z(k)m }Mm=1 for k = 1, ..., K,
we additionally condition on previously sampled sets of discrete variables, as done in [11].

Specifically, for the kth joint sample of the mth group, we feed the updated group features
from self-attention, encoded features of the parent latent variables, and encoded features of
the previous k − 1 joint samples to a three-layer MLP with layer sizes (768, 768, |Z|). We
represent samples with one-hot vectors with a dimension of |Z|. The sampled vectors of
parent latent variables along with the corresponding groups’ features are encoded using a
three-layer MLP with layer sizes (256, 256, 256) followed by the element-wise weighted sum
to aggregate features from multiple parent groups. The weights come from the adjacency
matrix. The previous k − 1 joint samples are encoded with a two-layer MLP with sizes
(256, 256) and aggregated with max pooling. For the first group and first joint sample,
feature vectors are initialized with zeros. During training, we use the Gumbel-softmax trick
to sample in a differentiable manner. After obtaining K discrete samples for each group, we
associate them back to the relevant agents. For agents that belong to more than one group,
we sum the discrete vectors corresponding to its groups.

The aim of our method is to achieve good coverage of discrete interaction outcomes. We
use two loss terms together to encourage this. The first term encourages high-level semantic
interaction meaning to be captured by the discrete values. For two sets of discrete samples,
if the interaction outcome within a group is different, according to the decoded continuous
trajectories (Section 4.5.2), the corresponding discrete variable should be different. For K
joint trajectory samples, can be summarized as

Ldistinct

=
M∑

m=1

K−1∑
u=1

K∑
v=u+1

isDistinct
(
{x(u)

1:Tf ,i
}Nm
i=1, {x

(v)
1:Tf ,i
}Nm
i=1

)
∗ ∥z(u)m − z(v)m ∥2 (4.13)

To determine whether two interaction outcomes are different, we consider the predicted
continuous trajectories of the agents in the group and construct an interaction graph based
on yielding, following, and intersecting behaviours. Two agents in the group are connected
by a directed edge according to the filtered interaction type. This forms the interaction
graph. If the interaction graphs of different samples are different, we consider the two joint
predictions to be semantically distinct. This corresponds to isDistinct in Equation 4.13.
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The second term we use for discrete interaction coverage is the entropy of the probabil-
ity distribution for each discrete variable. We aim to maximize the entropy to encourage
sampling diverse discrete values. That is

Lcoverage =
M∑

m=1

|Z|∑
d=1

p(zm,d) log p(zm,d) (4.14)

where |Z| is the domain size of the discrete variables.
We empirically set the coefficient of the distinctness term to be twice that of the coverage

term. To summarize, we use the following loss to encourage diverse interaction outcomes

Linteraction = 2Ldistinct + Lcoverage (4.15)

4.5.2 Predicting Joint Trajectory Distributions

Finally, to obtain the joint continuous trajectories, we condition on the discrete variables to
produce a distribution over future trajectory candidates and corresponding intention points.
With the intention point-conditioned agent features from the Transformer decoder (N × I ×
Ddec), group features and sampled discrete outcomes that are associated back to the relevant
agents (N × Denc and K × N × |Z|, respectively), and a one-hot sample index indicating
k (K × Dindex), we repeat tensor dimensions as required and concatenate them to form a
N ×K × I ×Dtotal feature tensor, where Dtotal = Ddec +Denc + |Z|+Dindex. We feed these
features to our joint intention selector.

Our selector consists of two parts. The first maps the feature dimension per agent per
intention point to 1. This is a two-layer MLP with layer sizes (256, 1). After reshaping the
resulting tensor, we obtain a vector of dimension I per agent. Then, we pass all features
through a two-layer MLP with layer sizes (I, I). After applying softmax, we obtain the
categorical distribution over the I intention points and corresponding trajectory candidates
from the backbone method.

For supervision, we use a min-of-K joint cross-entropy loss, which first sums the cross-
entropy over all N agents and takes the cross-entropy corresponding to the most accurate
joint trajectory set out of the K samples. We use the joint min-of-K to encourage joint
diversity among the sampled distributions [58]. We use the intention point closest to the
ground truth trajectory endpoint as the positive intention point for computing the cross-
entropy. Note that we do not use NMS for sample selection per agent. Rather, to obtain K
joint samples, we sample z K times. To summarize,

LJIS = min
k=1,...,K

N∑
i=1

CrossEntropy(I
(gt)
i , JISi(O,C,G, z(k))) (4.16)

The intention points in MTR are obtained by running k-means on single-agent trajectory
endpoints from the training data, without any other information about the trajectories. In
our case, however, the MTR intention points may not be optimally located when the goal is
to achieve good interaction coverage. Therefore, when training the joint intention selector,
we turn the intention points into trainable parameters and also estimate gradients for them,
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updating them at each training iteration. We add an additional term to guide the intention
point training. This term minimizes the distance from the selected intention point to the
ground truth trajectory endpoint for the closest corresponding minimum intention point.
With I

(k)
i as the selected intention point corresponding to the kth joint sample for the ith

agent, this loss is

Lkmeans =
N∑
i=1

min
k=1,...,K

∥xTf ,i − I
(k)
i ∥2 (4.17)

4.6 Experiments

In this section, we evaluate the effectiveness of our method at covering interaction modes
and accurately predicting joint trajectories. We also evaluate the impact of each element of
our factorization on the number of interaction modes captured.

4.6.1 Dataset Details

We train and validate our model on the Waymo Open Motion Dataset [59]. The dataset
consists of 487k driving scenes in the training split, 44097 scenes in the regular validation
split, and 43479 scenes in the interactive validation split. Each target agent has an observed
history of up to one second. Ground truth future trajectories are provided for up to eight
seconds in the future. All scenes are provided at 10Hz.

Training and regular validation scenes consist of up to eight target agents, while inter-
active validation scenes consist of two closely interacting agents as target agents. Previous
work such as [15], [16] and the Waymo benchmark focus on the two-agent interactive valida-
tion split to evaluate joint prediction performance and do not compare joint metrics on the
regular validation set with more target agents. While we provide joint prediction results for
the interactive validation split for reference, our analysis primarily focuses on joint prediction
of complex subsets of the regular validation split, as this provides insights into interactive
scenarios beyond the commonly examined two-agent scenarios.

To identify complex subsets of the regular validation split, we filter for yield interactions.
Further details on our yield criteria are provided in Appendix A. We evaluate our method on
highly complex networked yield scenarios containing at least 2 ≤ Nyield ≤ 5 agents connected
in a network of yield interactions. Two yield interactions are considered to be networked if
one of the agents in the first yield is also involved in the second yield.

4.6.2 Training Details

Before training our method, we initialize the weights that correspond to the MTR backbone
(grey boxes in Figure 4.1) to fully trained MTR weights. These weights are obtained by
training MTR according to the hyperparameters in [15] and taking the best checkpoint with
results as close as possible to [15]. The other weights in our model are randomly initialized.
Then, with the weights of the MTR encoder frozen and all other weights trainable, we train
our method end-to-end in two phases.
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When training our method, our full loss function takes the following form

L = αLMTR + βLgroups + γLDAG + δLinteraction + ϵLJIS + ζLkmeans (4.18)

In the first phase, we train with α = 0.05, β = 1, γ = 1, δ = 5, ϵ = 0.0001, and ζ = 0. We
are not yet training the intention points in the first phase. We train with these coefficients
for two epochs. In the second phase, using a trainable copy of MTR’s intention points, we
jointly optimize them with the other model parameters. We modify the coefficients for this
stage of training and have δ = 10, ϵ = 0.00001, and ζ = 1. α, β, and γ remain the same as
the first phase. We train our model for four epochs in the second phase. In both phases, we
use a learning rate of 0.0001 and train on two GPUs with a batch size of 20.

We sample K = 6 times during training and evaluation, following the Waymo [59] predic-
tion benchmark. We set the maximum number of groups per scene to be M = 8 as there are
up to eight target agents per scene. We set the latent variable z domain size to be |Z| = 10,
sample index dimension to Dindex = 10, and follow [15] for Denc = 256, Ddec = 512, and
I = 64.

4.6.3 Interaction Mode Coverage and Joint Prediction Error

We evaluate our method’s ability to cover diverse interaction modes and accurately predict
joint trajectories. For interaction mode coverage, we compute the number of different inter-
action modes captured by the K joint prediction samples in a scene, and average across all
scenes in the data split. We denote this with Nmodes. To determine whether a joint prediction
sample is a new mode, we construct an interaction graph among agents in the scene based
on the predicted joint trajectories. If two agents are in a yield or follow interaction, or have
paths that intersect, we connect them in the interaction graph. Two joint prediction samples
are considered to reflect different interaction modes if their corresponding interaction graphs
are different. Details on how we filter for yielding, following, or intersecting trajectories are
provided in Appendix A. For joint prediction, we compare performance on standard metrics
– mean average precision (mAP), minimum average displacement error (minADE), minimum
final displacement error (minFDE), and miss rate, as defined in [59].

We evaluate our method on several data splits. We filter for subsets of the Waymo
validation data containing networked yield interactions involving at least 2 ≤ Nyield ≤ 5
agents. Scenes from these data subsets contain at least Nyield interacting agents and up
to eight target agents. Not all target agents are connected in the yield network, but at
least Nyield (and up to 8) of them are. Additionally, we include results on the full Waymo
interactive validation split for reference, as this is the widely accepted data split in which
to evaluate joint prediction. We compare with MTR [15], our backbone marginal trajectory
predictor, which obtains joint predictions assuming independence and factoring the joint
distribution into the product of marginals. MTR takes the top K out of KN possible
combinations of marginal trajectories that have the highest product of marginal prediction
scores. The results are presented in Table 4.1.

From the results on the first four data splits in Table 4.1, we can see that our method
performs best in interaction mode coverage (Nmodes) across all networked yield data splits.
The coverage improvement that we obtain over MTR is 0.466 (23.7%), 0.770 (35.4%), 1.079
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Data Split Method mAP (↑) minADE (↓) minFDE (↓) MissRate (↓) Nmodes (↑)

Nyield = 2
MTR 0.0514 1.1943 2.7445 0.7979 1.965
Ours 0.0251 1.1939 2.7660 0.8181 2.431

Nyield = 3
MTR 0.0561 1.2580 2.9460 0.8768 2.178
Ours 0.0243 1.2419 2.8993 0.8810 2.948

Nyield = 4
MTR 0.1023 1.3246 3.0153 0.9291 2.371
Ours 0.0600 1.2969 3.0276 0.9267 3.450

Nyield = 5
MTR 0.0010 1.3753 3.1082 0.9619 2.625
Ours 0.0009 1.3782 2.7828 0.9517 3.888

Interactive
Validation

MTR (reproduced) 0.2066 0.9375 2.1140 0.4349 1.725
Ours 0.1538 1.0619 2.4595 0.5209 1.485

Validation (full,
N ≥ 1)

MTR 0.1982 1.1248 2.5320 0.6960 1.425
Ours 0.1264 1.1450 2.6176 0.7266 1.663

Validation
(subset, N ≥ 3)

MTR 0.0670 1.1810 2.7682 0.7910 1.596
Ours 0.0513 1.1701 2.7309 0.8065 1.926

Table 4.1: Interaction mode coverage and joint prediction metrics on various validation data
splits. (↓ indicates lower is better and ↑ indicates higher is better.)

(45.5%), and 1.263 (48.1%) for 2 ≤ Nyield ≤ 5, respectively. This is plotted as mode coverage
ratios of our method compared to MTR in Figure 4.2. Notably, as interaction complexity
increases (i.e., as Nyield increases), we obtain an increasing margin of improvement in Nmodes

over MTR, while maintaining comparable minADE, minFDE, and miss rate. Figure 4.3 illus-
trates interaction coverage along with corresponding minADE for MTR and our method. As
yield complexity increases, coverage improvement grows and minADE remains comparable
with MTR. This shows that our method is better at scaling and predicting diverse interaction
outcomes in complex, interactive multi-agent traffic scenes without compromising prediction
error.

Overall, our performance on prediction errors (minADE, minFDE, and miss rate) are
comparable with MTR. However, we observe that our method consistently performs worse
on mAP. Among these metrics, mAP is the only one that considers the prediction weights,
while the others measure errors based only on the predictions’ distances to ground truth.
mAP uses the weights as a relative ranking of prediction samples and measures the area
under the precision-recall curve averaged over various semantic buckets, where each bucket
represents a high-level ground truth maneuver [59]. Our lower mAP, despite comparable
errors, suggests that the gap is ultimately caused by an inferior ranking of joint predictions.
We leave the improvement of the prediction weights and mAP as future work and exclude
it in the remainder of our analyses.

We note that MTR achieves a Nmodes that is 0.240 (16.1%) better than our method on
the two-agent interactive validation data split. MTR’s ability to capture multiple interaction
modes can be attributed to its use of NMS in selecting marginal predictions. NMS effectively
brute-forces diversity for single-agent prediction. Then, when selecting the top K out of K2

options, although MTR does not guarantee joint semantic diversity, the selection process
ensures every joint prediction is composed of a different set of marginal trajectories. On
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Figure 4.2: Mode coverage ratio of our method to MTR at varying interaction complexities.

Increasing yield complexity

Improvement in 
mode coverage

Figure 4.3: A comparison of MTR and our method in terms of Nmodes covered versus minADE
for 2 ≤ Nyield ≤ 5.
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the other hand, our method does not use NMS and relies solely on latent variable z for
diversity. It is therefore possible for different z’s to result in the same set of trajectory
selections. When evaluating traffic scenes with strictly two agents, NMS allows MTR to
still achieve good semantic diversity without reasoning about joint behaviour. However, this
approach fails when more agents are involved, such as in complex networked yield scenarios
and those with more than two agents. The same line of reasoning also explains why our
method performs worse on prediction metrics on the interactive split, but is comparable to
MTR on other data splits.

In the last two data splits of Table 4.1, we additionally show performance on the full stan-
dard validation dataset, which contains one to eight target agents, along with a subset that
excludes scenarios with only one or two agents. From these two data splits, we show that even
without further filtering for the presence of complex interactions, our method achieves better
mode coverage than MTR once we include scenes with more than two agents. Additionally,
when focusing on the scenarios with more agents (N ≥ 3), our method achieves improved
mode coverage and prediction errors relative to MTR. This emphasizes our method’s ability
to cover diverse interaction outcomes in multi-agent scenarios.

4.6.4 Sample Efficiency for Interaction Mode Coverage

In this section, we compare the sample efficiency of our method compared with MTR by
looking at the number of modes covered Nmodes when varying the number of joint prediction
samples K. Sample efficiency is important because a limited number of prediction samples
can be processed in real-time onboard an autonomous vehicle due to the high computational
complexity of downstream tasks. Therefore, it is desirable for our method to cover more
interaction modes even when having fewer prediction samples.

In Figure 4.4, we show the performance of our method compares with MTR when we
vary the number of joint prediction samples for 1 ≤ K ≤ 6. Since two-agent scenarios have
been well studied by past methods, we focus here on the validation subset with Nyield = 3
to highlight performance on scenarios involving at least three agents. We find that the
performance of our method is better than MTR at every value of K. (At K = 1, all methods
are guaranteed to have Nmodes = 1.) This highlights the fact that our method achieves
superior semantic diversity, even when fewer joint prediction samples are afforded. In fact,
with K = 4 samples from our method, we already exceed the Nmodes achieved by K = 6
samples from MTR. This reflect an improvement in sample efficiency of over 33% in terms
of interaction mode coverage.

4.6.5 Ablation Studies

Effect of Factorization on Mode Coverage

In this section, we present an ablation study to show how each step in our factorization
method contributes to interaction mode coverage. As with Section 4.6.4, we present results
for the validation subset with Nyield = 3 to focus on scenarios with three or more interacting
agents. We investigate the impact of the three main elements of our method – the z variable
for obtaining different interaction modes, the grouping of agents for factoring and effectively
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Figure 4.4: The number of interaction modes Nmodes covered by MTR versus our method at
various numbers of joint prediction samples K for the Nyield = 3 validation data split.

reducing the prediction space, and the ordering of the groups for capturing interactions
across groups by conditioning and sampling z values.

The results of this ablation study are presented in Table 4.2. We observe that our full
method performs the best across most metrics. Additionally, when incrementally including
components of our method, we observe performance improvements, particularly in Nmodes, as
expected. The improvement from sampling z shows that varying the latent variable improves
interaction mode coverage, as expected. The results in Nmodes from grouping agents show
that reducing the sample space by decomposing the joint prediction distribution is effective at
improving interaction coverage. Ordering variables for conditioning and sampling z provides
further improvement, reflecting its effectiveness in modelling influences that groups have on
each other.

Sample z Group Order minADE (↓) minFDE (↓) MissRate (↓) Nmodes (↑)

✗ ✗ ✗ 1.2471 2.9111 0.8856 2.810
✓ ✗ ✗ 1.2444 2.8985 0.8827 2.841
✓ ✓ ✗ 1.2430 2.8955 0.8817 2.913
✓ ✓ ✓ 1.2419 2.8993 0.8810 2.948

Table 4.2: Interaction mode coverage and joint prediction metrics for various versions of our
factoring approach on the Nyield = 3 validation split.
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Learned Intention Points

We also examined the impact of learning the intention points after initializing them to MTR’s
points from k-means. We observed that the learned points were shifted towards regions with
a higher density of eight-second trajectory endpoints, and the intention points farther from
the agent’s position at t = 0, (0, 0), shifted more, as shown in Figure 4.5. The k-means
algorithm spreads out k points to cover the ground truth trajectory endpoints as well as
possible, even those that are far away from others. This is not necessarily the best option,
especially if it reduces the ability to choose the right intentions. By making these points
trainable, we can get points that better help us optimize coverage in areas where there are
more ground truth endpoints.

We verified this by comparing metrics on the yield validation split with three or more
interacting agents. By learning the points, we saw an improvement in most metrics including
mode coverage, shown in Table 4.3. This makes sense because when the intention points are
closer to more likely endpoints, they are better able to produce accurate trajectories. This
allows the model to select more diverse points and cover different interaction modes without
an accuracy trade-off. Consequently, learnable intention points improves performance on
most metrics, for both mode coverage and prediction performance.

minADE (↓) minFDE (↓) MissRate (↓) Nmodes (↑)

k-means 1.2396 2.9160 0.8843 2.923
Learned 1.2419 2.8993 0.8810 2.948

Table 4.3: Interaction mode coverage and joint prediction metrics when using k-means in-
tention points versus learnable intention points on the Nyield = 3 validation split.

Figure 4.5: Intention points from k-means as in MTR versus learned intention points in our
trained model. The tails of the arrows represent the original k-means intention points and
the heads represent the corresponding learned points.
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4.6.6 Qualitative Results

In Figure 4.6, we show a few examples of joint prediction samples output by our method.
Each row in the image array corresponds to one traffic scenario and each image corresponds
to one joint prediction sample. Our method outputs different interaction outcomes for tightly
interacting groups of agents. The different outcomes include agents crossing shared space
on the road in different orders and at various timings. In the first row, agent 8 is predicted
to either U-turn or turn left after agents 2 and 6 cross the intersection. Our predictions
account for different durations for which agent 8 may wait before executing its maneuver.
In the second row, agents 22, 23, and 26 show different roundabout interaction outcomes
corresponding to different speeds that agent 26 could take to execute its maneuver in the
shared space. In the third row, the samples show agents 0, 5, and 6 crossing each other’s
paths with different times. In the fourth row, our outputs capture different possibilities
for agents 1, 14, 20, and 124, including whether 20 follows 14 in a right turn or continues
straight, whether 1 goes straight or yields and turns left after 20 passes, and whether 124
crosses the street in front of 1 in either situation.

Figure 4.6: Examples of joint prediction samples output by our method. Each row cor-
responds to a traffic scenario and each image corresponds to one joint prediction sample.
Target agents are in orange and other surrounding agents are in black. Thick blue lines
represent predicted trajectories and thin blue lines are ground truth.
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4.7 Conclusion

In this chapter, we presented a method to perform learned factorization of a hybrid system,
and demonstrated how to leverage the factorization to improve interaction mode coverage
for joint trajectory prediction. In our experiments, we showed that our method exceeded
prior work in interaction mode coverage by 24% to 48% on validation splits of varying
complexity while maintaining state-of-the-art performance in prediction error. Additionally,
when increasing scenario complexity and size, our method demonstrated increasing margins
of improvement. We also showed an improvement in sample efficiency by 33%. In our
ablation studies, we showed that our discrete latent variable, grouping of agents, and ordering
of groups for sampling discrete values all contributed to diversity of interaction outcomes.
We demonstrated that learning the intention points helped improve mode coverage and
prediction errors. For future work, it would be useful to explore how to improve the joint
prediction weights in order to improve weighted measures of performance, such as mAP.
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Chapter 5

Collision-Aware Best-First Enumeration
for Multi-Agent Prediction

5.1 Introduction

Joint prediction of multiple traffic agents is challenging because the prediction space grows
exponentially with the number of agents in a scene. In order to accurately approximate
the joint prediction distribution, existing sampling-based methods designed for single-agent
prediction [11], [60], [61] would require many samples due to the combinatorics of many
agents acting concurrently. However, due to the computational complexity of processing
predictions, only a small set of predictions can be processed for downstream risk assessment
[62]. To cover the largest possible probability mass of the joint future distribution within
the allocated number of samples, we leverage a best-first enumeration algorithm to form the
joint trajectory outputs.

In this chapter, we model traffic scenarios as concurrent hybrid systems. The hybrid
transition function factors into a discrete transition function and a continuous transition
function, which are conditionally independent. The discrete transition function factors into
a set of conditionally independent transition functions, one per agent. We use MTR [15] to
describe the dynamics. We model interactions by assuming agents aim to avoid collisions
with each other [36], [43]–[45]. We assume agents’ discrete transitions are conditionally
independent given collision avoidance behaviour, and use this factorization to enumerate
assignments to discrete variables in best-first order using A*BC.

We begin enumerating based on the collision-agnostic prior distribution provided by
MTR. We then extract bounding conflicts in a correction step to improve the distribu-
tion used by enumeration. This effectively reduces the error between the collision-agnostic
prior and collision-aware posterior by correcting the prior using collision probability. These
bounding conflicts enable us to prioritize search nodes that are more likely under the collision
avoidance-based model of interaction, therefore leading to better scalability in the combi-
natorial challenge of multi-agent prediction. Section 5.4 provides further detail. Figure 5.1
illustrates an overview of our method.

The contributions of this chapter are as follows:

• We present a method that leverages A*BC to enumerate joint collision-aware predic-
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tions based on marginal collision-agnostic predictions. Our method combines hybrid
models with the expressive power of deep neural networks to predict joint trajectories.

• We show that A*BC reduces the number of search nodes expanded and wall time
required compared to A*, and is therefore better at addressing scalability.

• We compare joint prediction performance of the collision-agnostic and collision-aware
predictions and find that our method performs worse than the collision-agnostic base-
line. We present further analyses on specific subsets of data to provide insights on the
performance gap and point to directions for future improvement.

In Section 5.2, we discuss how we model traffic scenarios for this approach. Then, Section
5.4 presents how we leverage this model and enumerate to form joint trajectory sets from
multi-modal single-agent predictions. Experiments follow in Section 5.5.

5.2 Approach Overview

The multi-agent prediction problem follows the formulation presented in Chapter 2. We
take as input the observed past trajectories O, scene context C, a single-agent predictor
P , and a hybrid model of the traffic scene H (discussed in Section 5.3), and outputs a
set of joint trajectory samples S = {(x(k), w(k))}Kk=1. Our outputs are multi-modal, with
continuous dynamics conditioned on discrete states (i.e., modes). In this chapter, we make
two assumptions. First, we model traffic scenes with concurrent single-agent hybrid models,
as described in Sections 5.3.1 and 5.3.2. Second, we assume that traffic agents interact in
ways that avoid collision [36], [43]–[45]. This assumption is further explored and used in
Sections 5.3.3 and 5.4.

5.3 Approach: Hybrid System Modelling and Inference

5.3.1 Agent-Level Model

We model the set of agents (cars, cyclists, and pedestrians) in a driving scenario as a set of
concurrent hybrid discrete-continuous models. We represent multi-agent driving scenarios
at two levels – the agent level and the scene level. An agent-level hybrid model describes a
single agent. Formally, this is a tuple ⟨s,w, F, s0,Z⟩, where:

• s = x∪ z denotes the hybrid state, where z ∈ Z represents the discrete state variables
with finite domain Z and x ∈ Rnx represents the continuous states.

• w denotes the input variables – the scene context C and past observations O.

• F : Z → F denotes the continuous dynamics function for each discrete mode as a set
of learned discrete-time difference equations over the state and input variables.

• s0 represents the initial distribution of the hybrid state, at time t = 0.
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Figure 5.1: An overview of our approach. We leverage a single-agent trajectory predictor,
MTR [15], to obtain weighted sets of marginal trajectories. Then, we use a best-first enu-
meration algorithm, A*BC [34] to obtain the top joint predictions from marginal predictions.
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Intuitively, the discrete states represent high-level maneuvers and being in a mode cor-
responds to the agent taking the maneuver. The continuous transition function F (z) =
p(xt:t+h−1|O,C, zt = z) describes the continuous motion taken by the agent while perform-
ing that maneuver. The dependencies of the hybrid state variables are shown in Figure
5.2.

w x1:h

zt

Figure 5.2: Graphical model of a hybrid model representing a traffic agent at t = 0. x
represents the continuous variable, z represents the discrete variable, and h represents the
length of the prediction horizon. Arrows represent dependencies.

5.3.2 Scene-Level Model

At the scene level, the hybrid models representing the agents in the scene are concurrently
evolving. Instead of joining agent models into a single model with an exponentially larger
state space, we keep the factored representation and exploit this structure for joint prediction
via enumeration. Our scene-level model is described by a tuple ⟨s,w, F, s0,Z⟩, where:

• s = x ∪ z, with x ≜ x1 ∪ ... ∪ xN and z ≜ z1 ∪ ... ∪ zN

• w ≜ w1 ∪ ... ∪wN

• F (z) ≜ F1(z1) ∪ ... ∪ FN(zN)

• s0 ≜ s0,1 × ...× s0,N

• Z ≜ Z1 × ...×ZN

We assume that the mode assignments (i.e., agents’ maneuvers) are independent of each
other when conditioned on the input variables. That is, {zt,i}Ni=1 are conditionally indepen-
dent given w. In Figure 5.3, we show an example of a multi-agent prediction problem that
can be modelled as a set of hybrid models.

In this chapter, we approximate continuous dynamics using a deep neural network trained
for single-agent prediction on a large dataset [59]. Specifically, our method leverages MTR
[15] as the continuous dynamics function (details in Section 3.5). We focus on scaling the
single-agent prediction problem to multi-agent and perform enumeration for one prediction
period h. We present the details of our method in Section 5.4.
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Figure 5.3: An illustration of a driving scene that can be modelled using set of concurrent
hybrid models. We assume that discrete modes do not change over one prediction period.
Dotted lines represent agents’ past continuous observations, solid arrows represent trajec-
tory prediction samples. Solid and dashed lines represent road boundaries and lane lines,
respectively.

5.3.3 Collision-Aware Inference

The single-agent predictor, MTR, provides a set of weighted trajectories per agent Si =
{(x(k)

1:Tf ,i
, w

(k)
i )}Kk=1 representing the multi-modal marginal distribution p(x1:Tf ,i|O,C). MTR

forms joint predictions in a collision-agnostic manner by assuming independence of future
trajectories given past observations O and context C. MTR’s joint collision-agnostic distri-
bution is therefore factored as the product of marginal distributions, with the probabilities
p(x1:Tf ,i|O,C) corresponding to the trajectory weights wi, as follows

p({x1:Tf ,i}Ni=1|O,C) =
N∏
i=1

p(x1:Tf ,i|O,C) (5.1)

In this chapter, we treat the assignment of an agent to one of the K marginal trajectories
as a discrete mode assignment, with the discrete variables representing the selection of the
trajectory. Therefore, we can write the joint collision-agnostic prior distribution over discrete
variables as

p({zi}Ni=1|O,C) =
N∏
i=1

p(zi|O,C) (5.2)

where the probabilities p(zi|O,C) are the weights wi output by MTR.
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Denoting the event of no collision in the prediction horizon X as a proposition that is
true, the joint collision-aware posterior distribution that we aim to approximate is

p({zi}Ni=1|X , O, C) (5.3)

This distribution can be broken down into two parts according to Bayes’ rule, as follows

p({zi}Ni=1|X , O, C) ∝ p(X|{zi}Ni=1, O, C)p({zi}Ni=1|O,C) (5.4)

The first term on the right side represents the collision-free likelihood of the joint motion
and the second term represents the joint collision-agnostic prior from Equation 5.2. We
assume that collision-free probability is independent of past observations O and context C
when given discrete maneuvers {zi}Ni=1, so we can simplify the first term on the right side
of Equation 5.4. We can also substitute Equation 5.2 for the second term. Therefore, our
collision-aware distribution has the following factorization

p({zi}Ni=1|X , O, C) ∝ p(X|{zi}Ni=1)
N∏
i=1

p(zi|O,C) (5.5)

We solve this inference problem using best-first enumeration to output joint collision-
aware predictions that approximate Equation 5.5. This equation therefore forms the basis
of our enumeration search cost, which we will describe in Section 5.4.1. In Section 5.3.4,
we first discuss how we compute the collision-free likelihood p(X|{zi}Ni=1). As previously
mentioned, the second term on the right side of Equation 5.5 is the collision-agnostic prior
that is obtained directly from MTR’s output.

5.3.4 Computing Collision-Free Likelihood

In this section, we describe how to compute collision-free likelihood. First, we observe that
there will be no collisions in the prediction horizon X if there are no collisions between any
two agents in the scene. Letting Xi,j denote the event of no collision between agents i and j
this is

X =

N−1,N∧
i=1,j=i+1

Xi,j (5.6)

We make two assumptions that allow us to factor and simplify p(X|{zi}Ni=1). First, we
assume that the events Xi,j are conditionally independent given the discrete assignments of
future trajectories for all agents {zi}Ni=1 (Equation 5.8). Second, we assume that Xi,j is only
dependent on the future trajectories of agents i and j (Equation 5.9). With this, we can
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factor p(X|{zi}Ni=1) as

p
(
X|{zi}Ni=1

)
= p

(
N−1,N∧

i=1,j=i+1

Xi,j|{zi}Ni=1

)
(5.7)

=

N−1,N∏
i=1,j=i+1

p
(
Xi,j|{zi}Ni=1

)
(5.8)

=

N−1,N∏
i=1,j=i+1

p (Xi,j|zi, zj) (5.9)

According to this factorization, we can compute the collision-free likelihood p
(
X|{zi}Ni=1

)
by

computing the probability of each pair of agents colliding given their discrete assignment,
p(Xi,j|zi, zj), and taking the product.

In practice, it is not possible to compute p (Xi,j|zi, zj) because collisions are rare in reality
and not present in naturalistic datasets. As a result, we need to compute a quantity that can
be a proxy for p (Xi,j|zi, zj). In our method, we assume that risky driving behaviour leads
to higher collision likelihoods and therefore higher costs. Risky behaviour can be captured
by how close an agent comes to colliding with another, measured by the time-to-collision.

We therefore use the minimum time-to-collision (TTCmin) between two agents’ trajec-
tories (zi and zj) to determine p (Xi,j|zi, zj). At each future time step, we compute TTC
by dividing pairwise distance between agents by their relative velocities. We take the lowest
TTC across all future time steps as TTCmin. To construct the probability density function
of TTCmin, we compute the TTCmin over every pair of agents in an interactive subset of the
training data and fitting a kernel density estimate of the TTCmin samples. The resulting
kernel density estimate, which we denote as fKDE(TTCmin), is shown in Figure 5.4a.

The probability density at higher TTCmin is low due to infrequent appearance in inter-
active data samples. In reality, however, higher TTCmin corresponds to lower probabilities of
collision, or higher p(Xi,j|zi, zj). Thus, for all values in TTCmin > argmaxTTCmin

fKDE(TTCmin),
we set p(Xi,j|zi, zj) = 1. For all other values of TTCmin, we set p(Xi,j|zi, zj) = ηfKDE(TTCmin),
where η is a scaling factor to rescale the output of this function to range from 0 to 1. In sum-
mary, Equation 5.10 details how we compute p(Xi,j|zi, zj), and we show the corresponding
plot in Figure 5.4b.

p(Xi,j|zi, zj) =

p(Xi,j|TTCmin) =

{
ηfKDE(TTCmin), TTCmin ≤ arg max

TTCmin

fKDE(TTCmin)

1, otherwise
(5.10)
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(a) Kernel density estimate of TTCmin in an in-
teractive subset of the training data.

(b) Probability of no collision Xi,j given TTCmin

for agents i and j.

Figure 5.4: Plots showing the probability density of TTCmin (left) and probability of no
collision given TTCmin (right).

5.4 Approach: From Single- to Multi-Agent Prediction
via Best-First Enumeration

In this section, we describe how we use best-first enumeration for scaling single-agent predic-
tion to multi-agent prediction. We leverage a single-agent predictor, MTR [15], to obtain a
set of marginal trajectories per agent, Si = {(x(k)

1:Tf ,i
, w

(k)
i )}Kk=1, with each of the K trajecto-

ries representing a different mode. We search through possible combinations of discrete mode
assignments for the agents in a given scene to enumerate joint predictions in best-first order
according to our collision-aware distribution. In this work, a mode assignment represents
the discrete selection of a particular continuous trajectory. Therefore, a mode assignment zi
to agent i directly assigns the joint continuous states x1:Tf ,i without further computation.

Our method forms joint trajectory sets from marginal trajectories in a way that considers
the compatibility of behaviours, rather than assuming futures are independent of each other.
When considering driving scenarios, we take advantage of the intuitive observation that
agents tend to interact in ways that avoid collision [36], [43]–[45], [63]. We incorporate this
as an assumption into our search cost function by enumerating the collision-aware posterior
distribution p({zi}Ni=1|X , O, C) rather than the collision-agnostic prior p({zi}Ni=1|O,C). We
begin by providing details on how we obtain the search cost in Section 5.4.1.

5.4.1 Collision-Aware Distribution as a Search Cost for Best-First
Enumeration

First, we introduce our enumeration search cost. Following the notation defined in Section
5.3, let zi denote the discrete choice of a particular marginal trajectory for agent i. MTR
outputs K marginal trajectories per agent, so the domain size of zi is K (|Zi| = K).
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The cost function takes the form of f(n) = g(n) + h(n) for search node n, where g(n) is
the incurred cost of a partial assignment to the discrete variables and h(n) is an admissible
heuristic cost for the remaining unassigned variables. Admissibility of the heuristic guar-
antees that joint predictions are enumerated in best-first order. This particular search cost
formulation is known as A* search, which guarantees optimality. To convert the Equation
5.5 to a search cost that we minimize, we take the negative logarithm and obtain

f(n) = f1(n) + f2(n) (5.11)

f1(n) ≜ − log p(X|{zi}Ni=1) (5.12)

f2(n) ≜ − log p({zi}Ni=1|O,C) (5.13)

Both terms of the cost function will have corresponding incurred and heuristic costs. At
a given search node, the incurred costs represent the costs associated with the trajectory
selections (i.e., discrete assignments) that have already been made. The heuristic costs
represent an optimistic estimate of the cost to assign trajectories to the remaining agents.

We first look at the second term of the cost function, f2(n). According to the factorization
in Equation 5.2, this becomes

f2(n) =
N∑
i=1

− log p(zi = zi|O,C) (5.14)

This can be computed from the weights output by MTR based on the factorization in Equa-
tion 5.2, as described in Section 5.3.3, by substituting the corresponding weights wi into
p(zi = zi|O,C). The first part of the search cost, g2(n), is the cost for the partial assign-
ment at node n, shown in Equation 5.16. The second part of the search cost, h2(n), is an
admissible heuristic cost that estimates the remaining cost to reach a full assignment (full
joint trajectory set). An admissible heuristic to approximate this cost would be to simply
assume all unassigned agents take their most likely trajectory. To summarize,

f2(n) = g2(n) + h2(n) (5.15)

g2(n) =
∑
i∈n

− log p(zi = zi|O,C) (5.16)

h2(n) =
∑
j /∈n

− log max
zj∈Zj

p(zj = zj|O,C) (5.17)

For f1(n), we wait until reaching a node with a full assignment before computing collision-
free likelihood. Although our factorization in Equation 5.9 enables us to compute the like-
lihood after two discrete assignments, the computation is expensive so we compute the full
collision-free likelihood only at leaf nodes. This is reflected in Equation 5.19. For the
heuristic, we initialize it to h1(n) = 0, which is an optimistic assumption that remaining
assignments will be collision-free. As search progresses, h1(n) will be increased to provide a
heuristic that more closely estimates the collision-aware posterior. We describe this process
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in Section 5.4.2. To summarize,

f1(n) = g1(n) + h1(n) (5.18)

g1(n) =

{
− log p(X|{zi}Ni=1), if n is a full trajectory set
0, otherwise

(5.19)

h1(n) = 0 (5.20)

5.4.2 Extracting Bounding Conflicts using Probability of Collision

During the enumeration process, we extract bounding conflicts to gradually tighten the
heuristic cost for collision-free likelihood, h1(n). This acts as a correction step on the prior
to reduce the error between the prior and collision-aware posterior. To extract bounding con-
flicts, we consider the trajectory selections that contribute to a lower collision-free likelihood
(or higher cost). As a result, we can use our collision-free likelihood factorization in Equa-
tion 5.9 and calculations from Section 5.3.4 to determine a subset of trajectory selections
that contribute to lower collision-free likelihood. We can then associate a tighter cost bound
with these trajectory selections and use the bound in the remainder of the search process to
update h1(n). This idea of extracting bounding conflicts during A* search is known as A*
with bounding conflicts (A*BC), first developed in [34].

The goal is to identify contributors to low probability p
(
X|{zi}Ni=1

)
. We can do this

by taking the factorization from Equation 5.9. We can extract a bounding conflict for
each pair of discrete assignments zi = zi and zj = zj where p (Xi,j|zi = zi, zj = zj) < 1.
The corresponding cost bound will equal − log p (Xi,j|zi = zi, zj = zj). In the rest of the
enumeration process, any partial assignment containing assignments of zi = zi and zj = zj
will have a heuristic cost h1(n) of at least − log p (Xi,j|zi = zi, zj = zj). This cost is a tighter
lower bound than the initial h1(n) = 0.

By extracting bounding conflicts and improving the heuristic, we expect to skip over
regions of the search tree that are considered unlikely according to collision likelihood. We
expect bounding conflicts to be particularly useful on highly interactive multi-agent scenarios.
The more interactions involving low and unlikely times-to-collision, the more generalization
we expect to see from bounding conflicts, leading to fewer search nodes expanded.

5.5 Experiments

In this section, we evaluate the prediction accuracy of our method. We do so by training
the marginal trajectory predictor, MTR [15], on a real world driving dataset, applying our
method to form joint trajectory predictions, and evaluating the joint predictions. First, we
introduce the dataset and model details and then present our results.

5.5.1 Dataset and Method Details

We train and validate MTR on the Waymo Open Motion Dataset [59] following the hyper-
parameters in [15]. The dataset contains 487k driving scenes in the training split, 44097
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scenes in the regular validation split, and 43479 scenes in the interactive validation split,
all at 10Hz. The regular validation split consists of up to eight agents, and we use this to
evaluate scalability with enumeration. The interactive validation split consists of two agents
labelled to be interacting. We use the interactive split to evaluate the prediction performance
of our collision-aware model. In a driving scene, each agent of interest has an observed his-
tory of up to one second. Ground truth future trajectories are provided for up to eight
seconds into the future. To construct the kernel density estimate for TTCmin, we compute
the TTCmin using the subset of training scenes that contain two agents labelled as objects of
interest, indicating interactive behaviour. The scaling factor for our kernel density estimate
is η = 4.65. We use the official evaluation tool to calculate metrics including mean average
precision (mAP), miss rate, minimum average displacement error (minADE) and minimum
final displacement error (minFDE). Following the specifications of the Waymo benchmark,
we enumerate K = 6 joint trajectory sets per traffic scenario.

The architecture of the model is exactly as described in [15]. To align with the design
of MTR and the evaluation for the Waymo dataset, we use h = 8 seconds as the time
interval over which the discrete state is assumed constant. In this work, the discrete state
represents the discrete choice of a particular marginal trajectory, which intuitively represents
a maneuver. We run A*BC to enumerate joint predictions for the first time interval. This
corresponds to the provided ground truth in the dataset, and we use this to evaluate the
joint outputs of our method. It is possible to extend this method to multiple time horizons,
and we describe strategies in Section 5.7.2, but we leave this as future work.

5.5.2 Analyzing the Efficiency of A*BC

Here, we analyze the efficiency of A*BC compared to A* and an exhaustive search baseline.
All three search methods enumerate in best-first order according to the same collision-aware
distribution, namely p({zi}Ni=1|X , O, C). Exhaustive search computes the collision-aware
posterior for every possible KN combinations of mode assignments and outputs the best K
and A* search is done without extracting bounding conflicts. For this experiment, we use
the regular validation split of the Waymo data consisting of up to eight agents. We look
at efficiency benefits 3-agent and 4-agent scenarios and include results for exhaustive search
on these splits. We also filter the data for scenarios that are more interactive by looking at
networked yielding agents (as done in Chapter 4). We report results on subsets containing
at least three and at least four agents engaged in a networked yielding interaction. We omit
the exhaustive search baseline for the networked yield subsets and the full validation set due
to the the exponential time cost required with more agents. We obtain joint predictions on
these subsets, and report the average number of expanded nodes and wall time per traffic
scenario in Table 5.1. Experiments were run in a docker container allotted eight threads of
an Intel i9-10980XE CPU and a NVIDIA RTX A5500 GPU.

From Table 5.1, we can see that extracting bounding conflicts during the search process
allows us to enumerate the top K joint trajectories with fewer node expansions, as expected.
In A*BC, extracting bounding conflicts allows us to generalize insight we gain about a full
mode assignment to tighten the search heuristic as search progresses. This effectively reorders
the search queue to avoid expanding unlikely nodes early in the search process. Overall, we
see that best-first enumeration with A*BC scales better to more agents than A*, reducing
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Subset Search Method Nodes Expanded Wall Time (sec)

3-agent
Exhaustive 216 3.58

A* 13.23 0.72
A*BC 12.80 0.49

4-agent
Exhaustive 1296 44.51

A* 16.60 1.36
A*BC 16.16 0.95

3+ yield network A* 27.78 4.42
A*BC 27.00 4.39

4+ yield network A* 32.24 5.71
A*BC 31.16 5.14

Validation (full) A* 19.01 2.06
A*BC 18.52 1.91

Table 5.1: Average number of search nodes expanded and wall time (seconds) per traffic
scenario with exhaustive search, A*, and A*BC for joint prediction on the validation split.
The bottom section of the table are for data splits involving up to eight agents.

wall time by over 30% on three and four-agent scenarios. For the full validation and network
yield sets which have up to eight agents, there is a smaller reduction in wall time. This is
likely because when there are more agents in the scene, a greater percentage of them are non-
interactive, whereas the three and four-agent subsets have a higher percentage of agents that
are interacting. In a traffic scenario with many agents, it is unlikely that all are involved
in an interaction, and therefore we gain less generalizable information with the bounding
conflicts in proportion to the full prediction space. Regardless, we see an improvement in
nodes expanded and wall time.

Note that in this section, comparison of prediction accuracy and error metrics between
exhaustive search, A*, and A*BC is irrelevant. This is because all three search methods
produce joint trajectories in best-first order according to our collision-aware distribution.
Prediction metrics are therefore the same for all three alternatives.

5.5.3 Comparing Prediction Performance of the Collision-Agnostic
and Collision-Aware Distributions

In this section, we compare the prediction performance of the collision-agnostic distribution
from MTR (Equation 5.2) and the collision-aware distribution in our method (Equation
5.3) to evaluate how well our collision-avoidance method models interactive joint behaviour.
Note that in this section, we are only comparing prediction performance metrics for the two
distributions and the choice of best-first enumeration algorithm is irrelevant because they
will produce the same joint trajectories.

We report results on the interactive validation split of the Waymo dataset [59]. The inter-

62



active set consists of driving scenes in which two interacting agents of interest are identified
for the prediction task. We further show performance on subsets of this data to evaluate
performance on specific interaction types, including yield, follow, and non-interactive. De-
tails on how these scenarios are filtered are presented in Appendix A. We also evaluate on
the regular validation set consisting of up to eight agents, and subsets of the regular valida-
tion set that are filtered for networked interaction scenarios, specifically networked yielding
scenarios. Scenarios with networked interactions are more complex and since our model of
interactions aims to represent such joint behaviour, we evaluate performance on these. We
show results for two splits containing networked yielding scenarios – one where networks
consist of at least 3 agents and the other with at least 4 agents. The results are shown in
the first section of Table 5.2.

Data Split Distribution mAP (↑) minADE (↓) minFDE (↓) Miss Rate (↓)

Validation Interactive
(Full)

collision-agnostic 0.2065 0.9372 2.1134 0.4346
collision-aware 0.1170 1.0178 2.3550 0.4926

Yield collision-agnostic 0.1306 1.0356 2.3542 0.5006
collision-aware 0.0624 1.1201 2.6095 0.5615

Follow collision-agnostic 0.2129 0.9355 2.0800 0.4235
collision-aware 0.1078 1.0192 2.3273 0.4833

Non-Interactive collision-agnostic 0.3756 0.6417 1.4495 0.3342
collision-aware 0.2838 0.6756 1.5329 0.3415

Validation (Full) collision-agnostic 0.1982 1.1248 2.5320 0.6960
collision-aware 0.1626 1.1732 2.6924 0.7229

3+ yield network collision-agnostic 0.0561 1.2580 2.9460 0.8768
collision-aware 0.0183 1.3040 3.1038 0.8938

4+ yield network collision-agnostic 0.1023 1.3246 3.0153 0.9291
collision-aware 0.0331 1.3747 3.2096 0.9427

Table 5.2: Joint prediction metrics on various subsets of the regular and interactive validation
splits. The top section of the table corresponds to two-agent data and the bottom section
consists of scenarios with up to eight agents. ↑ indicates higher is better and ↓ indicates
lower is better.

Based on the results from Table 5.2, we find that our collision-aware distribution does not
perform as well as the collision-agnostic distribution. We can see that among the two-agent
data splits, our approach on the non-interactive subset of data has the smallest performance
degradation compared to the collision-agnostic distribution. This suggests that our time-to-
collision-based criteria for determining likelihood is not an accurate reflection of interactive
behaviour. There can be several reasons for this. First, the collision avoidance criteria
based on minimum time-to-collision could be assigning higher costs to yielding or following
scenarios because these interactions can involve closer agent proximity. As a result, the
most accurate maneuver selection is assigned a higher cost, leading to poorer performance.
Second, abstracting joint future behaviour into a single value – the minimum time-to-collision
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– removes a lot of information about the behaviours of two interacting agents. It would
be interesting to investigate as future work other ways to compute collision-aware joint
trajectory likelihoods.

5.5.4 Qualitative Results

In Figure 5.5, we show a few examples of joint predictions made by our method. Each row
in the image array corresponds to one traffic scenario and each image corresponds to one
joint prediction sample. The shade of blue represents the associated future time step. Our
method outputs a variety of possible joint futures without collisions while capturing different
maneuvers per agent.

Figure 5.5: Examples of joint prediction samples output by our method. Each row cor-
responds to a traffic scenario and each image corresponds to one joint prediction sample.
Target agents are in orange and other surrounding agents are in black. Thick blue lines
represent predicted trajectories and thin blue lines are ground truth.
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5.6 Related Work in Multi-Agent Prediction

A different method that addresses multi-agent prediction from the perspective of combining
marginal predictions is introduced in [64]. This method represents interactions between
agents as a graph and edges are associated with a k×k pairwise potential matrix, representing
joint consistency between k marginal trajectories per agent. This pairwise method is more
tractable than one that jointly models all agents in the scene. The reduction of the shared
space into a set of pairwise joint spaces is most similar to our method, though ours relies
instead on a handcrafted heuristic for enumeration.

A number of other methods approach prediction by factoring the joint distribution of
agent futures and addressing conditional prediction [5], [7], [42], [53]. The resulting joint
trajectories are limited to a query future trajectory. At the core of these predictors is a
single-agent predictor that has strong performance, such as [22] and [14]. Similar to this
idea of building on powerful single-agent predictors, we leverage MTR [15] for multi-agent
prediction.

Another group of methods aim to predict the full joint distribution by assuming agents’
states at time t are conditionally independent given all agents’ states up to t − 1 [17], [35],
[65]. In our method, by modelling the traffic scene as concurrent hybrid models, we make a
similar assumption but with the discrete modes. We assume agents’ future discrete modes
are conditionally independent given all agents’ past states. A difference is that at each time
step in the prediction horizon, the prior methods autoregressively condition on all agents’
predictions from previous time steps and assume independent transitions for one step. On
the other hand, in our setup, we assume modes are fixed for a duration of h = 8 seconds, so
we roll out a future trajectory for the full prediction period and leverage a strong single-agent
predictor to maintain accuracy within h, without conditioning on other agents’ predictions
at every time step.

5.7 Limitations and Future Work

This chapter is a first step towards leveraging A*BC for joint prediction with traffic scenarios
modelled as sets of concurrent agent-level hybrid models. We developed a method to extract
bounding conflicts for enumerating over the space of possible joint predictions, given marginal
trajectories of agents. There are some limitations of our method which provide interesting
future directions.

5.7.1 Improving the Exact Inference Model

The performance and efficiency of A*BC on the trajectory prediction task depends on the
distribution we are trying to approximate. To improve prediction performance, it would be
most effective to improve the joint distribution, specifically the shared variable X . This vari-
able is directly involved in the cost computations and bounding conflict extraction procedure,
both of which are key in providing performance and efficiency benefits.

First, we made some simplifying assumptions about pairwise collision avoidance to enable
factorization for bounding conflict extraction. We assume minimum time-to-collision was
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sufficient to represent such behaviour. In reality, however, interactions involve elements
beyond collision avoidance. For instance, traffic rules and environmental context (lane lines,
crosswalks, intersections, drivable area, etc.) affect interaction outcomes and agent behaviour
[44], [45], [66]. An interesting future direction would be to incorporate these into the inference
problem, and determining a different way to factor the posterior distribution. This would
form a model that is more representative of reality. When considering scene compliance, pre-
pruning of trajectories can also be considered [21], [67]. Additionally, it would be interesting
to use neural networks and explore learning a cost function from data. Ultimately, it is
difficult to develop a full taxonomy of joint driving behaviours, so this would be a crucial
step in improving performance.

5.7.2 Scaling to Multiple Prediction Intervals

Our method primarily focuses on scaling from single-agent to multi-agent prediction and
assumes the discrete mode does not change over the full prediction horizon. However, our
concurrent hybrid model paves the way to model traffic scenarios as concurrent probabilistic
hybrid automata [28], in which discrete modes change. Our framework enables straightfor-
ward scaling to more than one prediction horizon. This can take the form of longer prediction
horizons or subdividing the 8-second horizon in this chapter into multiple shorter intervals.
To incorporate multiple prediction intervals into our method, the same A*BC procedure can
be adopted with one minor addition. A discrete transition function could be learned to model
how high-level behaviours (i.e., the discrete variables) change from one time horizon to the
next. That is, a neural network can be trained to represent T (z) = p(zt|zt−h = z,xt−h:t−1).

The MTR backbone can be modified to experiment with different prediction horizons.
In this chapter, we used a prediction horizon h of eight seconds to follow MTR [15] and
align with the Waymo benchmark. However, agents can take a variety of maneuvers within
this time interval. As a result, it would be interesting to investigate performance when the
method is modified to handle the eight seconds in smaller intervals with a learned transition
function between intervals.

5.8 Conclusion

In this chapter, we first developed a model for joint behaviour that assumes the likelihood
of an agent’s behaviour is conditioned on it being collision-free with other agents. We
then introduced a method for factored inference based on A*BC. Our method begins by
enumerating according to a collision-agnostic prior of future behaviour. During enumeration,
we extracted bounding conflicts to correct the prior and reduce the error between the prior
and our collision-aware posterior.

In our experiments, we showed that A*BC has a lower wall time and enables us to expand
fewer nodes than A*, demonstrating better scalability. We also showed that our collision-
aware distribution method achieves worse prediction performance than the collision-agnostic
distribution. In particular, our method struggles in scenarios that are more interactive, sug-
gesting room for improvement in the joint behaviour model. Future work could investigate
developing a more sophisticated method of computing collision probability, or design a dif-
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ferent distribution based on other factors in addition to collision. Another next step could
be to accomplish joint prediction for multiple prediction intervals.
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Chapter 6

Comparing Learned Factorization and
Sampling with Collision-Aware
Best-First Enumeration

In this Chapter, we compare our two methods. We show joint prediction performance metrics
along with wall time. For computing average wall times, we set the evaluation batch size
to one scene for both methods. We present the results on the regular validation split of the
Waymo dataset [59], which consists of 44097 traffic scenarios of up to eight target agents. We
also present the results for two subsets containing networked yielding scenarios – one where
networks consist of at least 3 agents and the other with at least 4 agents. Past observations
are provided for up to one second and ground truth futures for up to eight seconds, both
at 10Hz. Experiments were run in a docker container allotted eight threads of an Intel
i9-10980XE CPU and a NVIDIA RTX A5500 GPU. Results are summarized in Table 6.1.

From this table, we see that our approach in Chapter 4 is faster, suggesting better
scalability. This can be explained by the fact that computations and sampling in Chapter 4
can be accelerated on a GPU, whereas the search process in enumeration involves steps that
do not benefit from GPU acceleration. Nonetheless, we showed in Chapter 5 that our method
enabled us to generalize information during search and achieve a wall time improvement over
A*.

We also observe that the method in Chapter 4 performs better on joint prediction metrics
overall, especially on the complex interactive splits. This can likely be attributed to a more
representative factorization of the traffic scene, which is identified using a trained neural
network rather than completely assumed beforehand, as in Chapter 5. The method in
Chapter 4 is also designed in a way where the learned factorization can model interactions
in a general manner rather than focusing on collision avoidance behaviour, which does not
fully capture all the nuances of interaction in driving.

The comparisons presented in this chapter lead to potential avenues for future work,
which we discuss in Section 7.2.
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Data Method mAP (↑) minADE (↓) minFDE (↓) Miss Rate (↓) Wall Time (↓)

3+ yield
network

Chapter 4 0.0243 1.2419 2.8993 0.8810 0.71
Chapter 5 0.0183 1.3040 3.1038 0.8938 4.39

4+ yield
network

Chapter 4 0.0600 1.2969 3.0276 0.9267 1.04
Chapter 5 0.0331 1.3747 3.2096 0.9427 5.14

Validation
(Full)

Chapter 4 0.1264 1.1450 2.6176 0.7266 0.53
Chapter 5 0.1626 1.1732 2.6924 0.7229 1.91

Table 6.1: Comparison of joint prediction metrics and wall time (seconds) of our two methods
on the Waymo validation dataset. All data splits consist of up to eight agents.
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Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis, we presented two methods for joint multi-agent prediction that leveraged fac-
toring to address the challenges of interaction coverage and scalability. In our first approach
(Chapter 4), we modelled interactions among multiple agents by grouping agents according
to tightly coupled behaviours and assuming interactions between groups are sparse. We used
these groups and sparse inter-group relationships to factor the joint distribution in a way that
enables simple and efficient sampling of discrete interaction outcomes. We learned to make
this decomposition using neural networks and showed that our method achieves superior
interaction mode coverage and sample efficiency compared to prior work, while maintaining
state-of-the-art prediction errors.

In our second approach (Chapter 5), we assumed that agents interact in a way that avoids
collision. We modelled agents as concurrent hybrid models and formed a factored collision-
aware joint distribution. With this factored distribution, we leveraged A*BC to approximate
the collision-aware distribution. We began enumerating joint trajectory candidates accord-
ing to a simpler, collision-agnostic prior distribution obtained from [15]. Throughout the
enumeration process, we learned bounding conflicts to correct the collision-agnostic prior
and gradually reduce the error between the distribution used for enumeration and the poste-
rior. The use of bounding conflicts enabled us to skip over regions of the search tree that are
unlikely. We compared A* with A*BC and found that A*BC expanded fewer search nodes
and required a lower run time, and is therefore better at addressing scalability. We com-
pared prediction performance of our joint collision-aware predictions with collision-agnostic
predictions and found that ours led to worse errors and accuracy. Nonetheless, this work
provides a first step towards scalable collision-aware prediction using best-first enumeration.

We compared the performance of our approaches in Chapter 6. We found that our first
method performed better on prediction metrics and required a lower runtime. These findings
provide some insights that pave the way for future work, which we discuss in Section 7.2.
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7.2 Future Work

There are several potential avenues for future work. For our learned factorization method in
Chapter 4, our experiments revealed that despite maintaining state-of-the-art performance
on unweighted error metrics, our method performed worse than prior work on mean average
precision (mAP), the only metric that considers joint trajectory weights. This result indicates
that improving the weights would be an important next step to improving mAP, as mentioned
in Section 4.7.

For Chapter 5, we discussed in detail in Section 5.7.1 the ways to improve prediction
performance. Incorporating other elements into the inference model for joint prediction,
such as road structure, instead of limiting it to collision avoidance could help performance.
One caveat would be that the target distribution must take a factored form that enables
simple bounding conflict extraction. Otherwise, the time cost incurred by bounding conflict
extraction could outweigh the benefits of skipping over search nodes. Another potential
direction, described in Section 5.7.2, would be to extend the model of the traffic scene to
hybrid automata. Instead of assuming a constant discrete mode throughout the entire 8-
second prediction period, it could be subdivided into multiple intervals and a discrete mode
transition function could be learned.

Another possibility could be to combine enumeration with sampling [30] for approximate
inference. This could be applied to either the learned factorization (Chapter 4) or collision-
aware concurrent hybrid model (Chapter 5) to further explore options for scalability. For
instance, with the hybrid model in Chapter 5, enumeration can be used to obtain the top
few joint trajectories and the remaining ones can be sampled. The number of enumerated
versus sampled predictions can be adjusted according to any potential time and resource
constraints.

We could also explore combining enumeration and sampling on the learned factorization
in Chapter 4. This would allow us to take advantage of a learned hybrid model of the traffic
scene, rather than a model based only on prior assumptions. There are several technical
challenges with this. To enumerate according to a learned factorization, an open problem
is to consider how to handle the fact that different discrete variable assignments in DAG
predecessors change the discrete distribution at successor nodes. Conditioning structure
across discrete variables is not currently handled in our method in Chapter 5 as we assumed
conditional independence. If attempting to also use enumeration during neural network
training, an important step would be to ensure all operations are differentiable.
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Appendix A

Filtering for Interactions

In this appendix, we describe how we filter for particular interaction types throughout this
thesis.

A.1 Yield

As identified by prior work such as [5], [6], yielding interactions are prevalent in traffic
scenarios. To filter for these, we consider agent i to be yielding to agent j if the following
criteria are met:

• The paths of agents i and j overlap.

• Agent j arrives at the intersecting area first.

• Agent i has a non-increasing speed.

A.2 Follow

When one agent follows another, their behaviour could be influenced by the agent in front.
For example, if the agent in front slows down, the following agent is also likely to slow down.
Agent i is considered to be following agent j if

• The paths of agents i and j overlap.

• Agent j arrives at the intersecting area first.

• The duration of time that both agents spend within the intersecting area is at least t
seconds.

In our implementation, we set t = 1.
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A.3 Intersect

Intersecting trajectories can help us identify interactions because they indicate the need for
agents to share space on the road. This filter is used to include any interactions that may
not be identified by the more specific yield or follow filters. Agent i is considered to have a
trajectory that intersects with agent j if

• The paths of agents i and j overlap.

• Agent j arrives at the intersecting area first.

• Agent i arrives at the intersecting area within t seconds after agent j.

In our implementation, we use t = 2.

A.4 Non-Interactive

This filter is to identify pairs of agents whose behaviours are likely to be independent of each
other. We use the following criterion to consider agent pairs as non-interactive:

• The paths of the two agents do not come within d meters of each other within any
t-second window.

In our implementation, we use d = 20 and t = 6.
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