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ABSTRACT

A probabilistic model is developed that simulates both the varia-

tion of persistence of each of two distinct joint sets within a rock

mass and their combined effect on rock slope reliability.

Each of the sets of joints is pseudo-randomly simulated to form a

joint pattern, and a stability analysis is performed on each simulated

realization. Thus in a typical realization, a number of joint planes

will intersect the slope face to form exit points of potential failure

naths which are generally non planar and pass through joints and
intact rock. Consequently, from a number of realizations, reliability

may be determined for part or the entire slope. Reliability is measured

in the probability of a joint plane exiting on the slope face given

that this exit point belongs to a failure path.

An extensive sensitivity study is made with respect to the main

parameters that influence slope stability. Results obtained aided in

establishing a set of recommendations for design and stability analyses.
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CHAPTER 1

[INTRODUCTION

1.1 The Problem

Rock slope stability crtically depends on uncertain geometric

and strength parameters. The reason for uncertainty is that is is

practically impssible to measure the values of all governing parameters

in a typical rock mass. As a result, present deterministic design

methods incorporate high safety margins. A method of analysis which

takes the stochastic character of rock masses into account is needed.

More precisely, what is needed at the present time is:

(1) An understanding of the reliability distribu-

tion of the various parameters influencing the

stability of a rock mass;

(2) Development of analytical methods that consider

the stochastic character of parameters in making

stability predictions.

The purpose of this thesis is to study the effect of two joint

sets on the reliability of a rock slope. Reliability of rock slopes

was first studied by Glynn (1978) and later by O'Reilly (1980). Both

took into consideration the two criteria mentioned above. A model

is developed and used to study the dependence of rock slope safety

on various parameters.

This introductory chapter gives a brief description of the para-

meters on which rock slope reliability depends. A brief discussion on



the merit of the deterministic approach and the possible merit of a

deterministic-stochastic approach to be .used in rock engineering

Ni11 follow.

2 Slope Stability Parameters

The major parameters affecting slope stability are:

(1) In-Situ state of stress

(2) Intact rock shearing resistance

(3) First joint set orientation

(4) Second joint set orientation

(5) Shearing resistance of the joints

(6) Length of joints

The relative importance and variability of each parameter is

discussed in detail next

State of Stress

The in-situ state of stress can only be determined at a few points

within a rock mass. Shearing resistance of intact rock and discon-

tinuities depends both on rock strength and on the in-situ state of

stress. Accurate methods are complex and generally impractical for

design use (i.e., finite element), and still in the development

stages. Consequently, design approaches must use simplifying assump-

tions.
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Intact Rock Shearing Resistance

Intact rock shearing resistance is uncertain because of:

(1) Natural spatial variability of intact rock

strength parameters.

(2) Measurement errors.

Joint Orientation

The effect of joint orientation on stability is an established

fact included in current rock slope stability analysis.

Joint Shearing Resistance

Failure in a jointed rock slope occurs when intact "wedges" or

"blocks", bounded by joints, move in the directionofoneof the joint

planes. Since sliding is commonly assumed to take place along joints,

a reliable prediction of joints shear strength is critical. Some

degree of spatial variablity in joint resistance will always be found.

Variation in measured values of joint friction angle ¢ and joint

cohesion Cy will be either due to random measurement errors or in-situ

variability

Joint Persistence

Joint persistence is a measure of joint continuity. Quantita-

tively, it can be considered to be the percentage of a "joint plane"

which is actaully discontinuous. For a block bounded by non-completely

persistent joints to fail, intact "rock bridges" must fail. (Refer

to Figure 1.1.)



/
f

J

rd
~ROCK BRIDGE (RBR)

“JOINT SEGMENT (JL)

 ~~
« &gt; JL

YJL+Y RBR
of

/

FIGURE II 2 - DIMENSIONAL JOINT PERSISTENCE (K)



K

Slope reliability is, in general, highly sensitive to variation in

persistence. Due to this high sensitivity, no current design method

satisfactorily treats joint resistance. Commonly the "persistence

Problem" is conservatively ignored by assuming joints with 100% persis-

tence (O'Reilly, 1980).

Predictions of slope performance are made evenmore complex by the

fact that each of these parameters is, to at least some extent, variable

within the slope.

The effects of the cleft water pressure are ignored since they

ire not well known at the present time.

Design Approaches

There are currently two basic approaches to evaluate stability of

a jointed rock slope. The first approach uses limit equilbrium

analysis with single values of the parameters. It yields a factor of

safety against failure for a single 'potential failure body'. Un-

certainty associated with each of the parameters is controlled by

an appropriate selection of a factor of safety.

The second approach yields a probability of failure for 'potential

failure bodies' rather than a safety factor. In such an approach,

varability in parameters affecting stability as well as the expected

number of 'potential failure bodies' are considered. The final goal

of a probabilistic design is to evaluate the probability of failure

of an entire rock slope.

Recently, probabilistic design methods have been developed that

are capable of calculating the probability of failure of blocks or
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wedges within a rock slope rather than a factor of safety. It is

possible to estimate slope reliability as the probability that failure

will occur, rather in the slope. Through simulation, probabilities

of failure of the individual wedges are obtainable. Geometric joint

parameters affecting wedge reliability are assigned distributions and

are randomly generated in each realization of the simulation. A factor

of safety is then calculated for each realization. The probability of

wedge failure is simply the percentage of realizations with factors

of safety less than one.

1.4 Objective

The objective of this work is to develop a model of slope reli-

ability that accounts for the effect of two distinct joint sets. This

is an additional step towards the development of a complete reliability

model which takes into consideration the stochastic character of

geometric parameters, resistances, persistence and water pressure as

well as computation of an overall probability of slope failure.

Chapter 2 will briefly review current methods by which jointed

rock slopes are analyzed andadeterministic resistance model for the

resistance of any failure path, involving either one of the two joint

sets or both joint sets within a rock slope. Chapter 3 presents the

probability model for failures in slopes containing two sets of parallel

joints. The model is based on the calculation of resistance in Chap-

ter 2 and on a procedure to simulate joint geometry. In Chapter 4,

a demonstration run will be presented. In Chapter 5, the program will

he used to conduct an extensive parametric sensitivity analysis that



will assess the influence of the various parameters on the slope

reliability. Chapter 6 will conclude with design recommendations

based on the results of the preceeding chapter and recommendations

for future research.
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CHAPTER 2

DETERMINISTIC ANALYSIS AND

FAILURE PATHS IN

SLOPES WITH TWO

DARALLEL SETS OF JOINTS

2.1 Introduction

In this chapter a realistic mechanical model will be developed to

determine the stability of any potential failure surface within

slopes of the type shown in Figures 2.1 and 2.2, with two parallel

joint sets. Failure surfaces to be analyzed are either "in-plane"

or "en echelon” and typically include both jointed and intact rock

sections.

This chapter will also present the combined effect of joint in-

tact rock on rock mass stability as well as limit equilibrium models

which are used to derive resistance along non-continuous joint planes.

2.2 A Deterministic Mechanical Model

(Lajtai's Direct Shear Model)

Because joint shearing resistance is generally several orders of

magnitude smaller than intact resistance, discontinuities are generally

found to totally govern the performance of a risk slope.
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The model presented here was proposed by Lajtai and used by

O'Reilly (1980) in analyzing a slope with a single set of parallel

joints. We shall consider here the same slope with an additional

parallel joint set. The physical behavior of the rock and jointed

rock will basically be the same. Movement will always be assumed to

take place in the direction of the shallower angled joints, and con-

sequently there will be no frictional resistance between joint surfaces

of the second joint set as relative movement will be away from these

surfaces.

Lajtai suggests that failure resulting from stress applied on

an intact rock bridge connecting two open joints is one of direct

shear as shown in Figure 2.4. According to Lajtai, normal stresses

in the direction of jointing can be assumed to be zero at failure.

He bases this assumption on the fact that a truly "open" joint

cannot transmit stresses to the surrounding intact rock.

Failure of intact rock bridges in a slope can be visualized as

shown in Figures 2.5(a) and 2.5(b). In Figure 2.5(a) a rock bridge

in an otherwise continuous joint plane is about to fail. Failure is

assumed to involve the rigid body motion of rock overlying the joint

planes dewn-dip in the direction of jointing of the first joint set.

set. The direct shear assumption is again attractive because, the

mechanism involved in failing a block of intact rock in a direct

shear device, is analogous to the mechanism of failure of an intact

rock bridge within a slope. Both involve forced rigid body motion
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along a predefined plane under an approximately constant stress, normal

to the joint palne. In a slope with two joint sets, the joints of the

second set transmit no stresses of failure to the surrounding intact rock.

In an actual slope, normal stresses are, more or less, fixed by the weight

of rock overburden.

When a direct shear test is performed at low levels of stress applied

ormal to the joint plane, Lajtai states that the maximum shear resist-

ance can be distinguished as one of two modes. At relatively low stress

levels, the application of shear stress, in the direction of the first

joint set, can lead to a minimum principal stress (05) equal to the tensile

strength of the intact rock. In this mode, failure occurs as tensile

fractures develop at the high angles in the direction of the first joint

set. (Refer to Figure 2.6(a).) These tensile fractures occur when In

(peak shear stress in the enforced direction) is mobilized. This is

fol Towed by shearing in the direction of the first joint set at residual

stress levels. (Figure 2.6(c)

At higher normal stress levels, the minimal principal stress does not

exceed tensile strength. In this case, failure occurs when stress (rt),

in the direction of the first joint set, equals the shear resistance de-

fined by the Coulomb failure criterion (approximately equal to twice

the tensile strength). In this second mode, shear fractures develop at

the moment of peak applied shear stress. (See Figure 2.6(b)). Shear

fracture develops sub-parallel to the enforced direction. Again as

in the tensile mode, peak behavior is followed by shearing which is

parallel to the enforced direction at residual shear stress levels.
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Graphically, referring to Figure 2.7, the center of the Mohr

stress circle remains constant at Oa/2 as the applied shear stress

is raised from its initial value of zero to its value at failure.

Applied shear stress can be increased only until the Mohr circle be-

comes tangent to the failure envelope. At relatively low values of

Oy» this point of tangency is at o = Tes tT = 0 and thus failure

occurs as tension fractures initiate, (mode 1). As oy is increased,

the centers of the Mohr circles move further out along the co axis

away from the tT - axis. Beyond a certain value of Oy» increasing

applied shear stress to failure results in the point of tangency lying

on the linear portion of the envelope. (See Figure 2. 8).

Summarizing; if the point of tangency Ties along the parabola of

failure envelope, failure is by tensile fracturing (mode 1). If the

point of tangency is on the linear portion, failure will be by shear

fracturing (mode 2). After either mode, post peak shear resistance

drops to stress dependent residual values due to secondary shearing

in the enforced direction. Analytically, expressions of peak shear

resistance for intact rock in direct shear will now be presented for

each of the above described failure modes.

Lajtai described mode 1 by the following expression:

Tr

A [T, (T, - 0)" (Eg 2.1)

Plotting Tas a function of 0, leads to what Lajtai terms as

the direct shear parabola (tension). (See Figure 2.9a).
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At high stress levels of Ty close to GO.» We get what is referred

to as the third direct shear failure mode, i.e., failure at ultimate

strength. This develops by formation of a zone of crushed material

in the direction of jointing.

This can be described by the following expression established by

Lajtan

“alt = Ta tan ®t (Eq. 2.2)

where 21t is the friction angle of the crushed rock. Equation 2.2

is plotted in with the composite curve of Figures 2.9c and 2.9d. Lajtai

finally superimposes the ultimate strength (Eq. 2.2) curve to the

composite curve to yield what is termed as the "composite limit curve"

shown in Figure 2.9c.

By superimposing Figures 2.9a, 2.9b and 2.9c, we get a composite

curve which gives, for any applied value of normal stress, the peak

shear stress Ty at which failure of the intact rock occurs in tension

of shear.

Lajtai's mechanical model has the characteristics of being deter-

ministic in the sense that it requires a pre-set value on joint plane

persistence. It is not possible to derive a single persistence value

that can be used in obtaining acceptable slope reliability values from

a deterministic resistance model. The complexity increases when

another set of joints of a different orientation exists. This de-
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By superimposing Figures 2.9a, 2.9b and 2.9c, we get a composite

curve which gives, for any applied value of normal stress, the peak

shear stress Ty at which failure of the intact rock occurs in tension

of shear.

At high stress levels of Oy close to Oo» We get what is referred

to as the third direct shear failure mode, i.e., failure at ultimate

strength. This develops by formation of a zone of crushed material

in the direction of jointing.

a : tst

This can be described by the following expression established by

1

ult
Y tan *1t (Eq. 2.2)

where ®t is the friction angle of the crushed rock. Equation 2.2

is platted in with the composite curve of Figures 2.9c and 2.9d. Lajtai

finally superimposes the ultimate strength (Eq. 2.2) curve to the

composite curve to yield what is termed as the "composite limit curve"

shown in Figure 2.9c.

Lajtai's mechanical model has the characteristics of being deter-

ministic in the sense that it requires a pre-set value on joint plane

persistence. It is not possible to derive a single persistence value

that can be used in obtaining acceptable slope reliability values from

a deterministic resistance model. The complexity increases when

another set of joints of a different orientation exists. This de-
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ficiency is addressed by probabilistic methods that will be discussed

nex"

2.3 Previous Research

The fundamental probabilistic approach was first utilized by Glynn

1979 in his model (JOINTSIM) which incorporates a deterministic mechanical

model and a Monte Carlo simulation program. His program generates

joints randomly within a rectangular block in a stress field. Joint

generation is based on assumed exponential distributions of the joint

plane spacing, joint length and rock bridge length about their

mean values. In each realization the programfinds the paths of

minimum safety margin and the associated apparent persistences.

Values of apparent persistence for all realizations form a dis-

tribution whose mean and standard deviations are determined at the

conclusion of the entire simulation. Glynn found that block

stability is strongly dependent on the geometric properties of the

block and the joints (block dimensions, mean joint length, mean rock

bridge length, mean joint plane spacing) and is relatively in-

sensitive to the ambient stress field and variations in the rock

strength parameters.

"JOINTSIM" has the limitation of analyzing a block, not an actual

slope. Its algorithm has a drawback of influencing failure paths.

"Jointsim" artifically constrains the failure path thus distorting

the inclination of the failure path and apparent persistence. This

is a noticeable limitation especially when joint planes are closely

spaced. This and other drawbacks were alleviated by O'Reilly (1980)
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in his model which is a much closer model of the actual jointed rock

sloce.

Briefly, 0'Reilly's model reduces the major shortcomings en-

countered in Glynn's model. It is a probabilistic model for the

simple two dimensional cases of a single set of slope parallel joints

(See Fig. 2.10). It is a combination of probabilistic simulation

approaches, and deterministic models developed to its date.

2.4 The Mechanical (deterministic) Model "TALAL"

In the remaining parts of this chapter the mechanical model for

the slope with two joint sets is developed and described.

It will be incorporated to determine the stability of any potential

failure surface within slopes of the type previously shown in Fig. 2.1.

This thesis follows the same guidelines and criteria previously

used to establish the mechanical models developed by Glynn and O'Reilly.

In a typical realization, two quantities are computed for a potential

failure path. One is the force resisting downward movement of the

rock overlying that potential failure path, namely resistance. The

other is the force component in the direction of sliding, tending to

displace the overlying rock, namely the driving force.

The method of slices is used to determine driving and resisting

forces. Figure 2.11 is an illustration of this method. The rock

overlying a path is divided into a series of vertical slices. Slices

can be bound by either joint or intact rock bridges. Here, a failure

is assumed to take place as a rigid body movement of material over-
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lying the down slope path in the direction of jointing of the first

joint set. Total driving force (DF) and total resistance (R)along

the path are given by the following relationships:

iF

if

3

y.  Ww

Yo. R

Sq 1 Q 1 (Eq. 2.3)

(Eq. 2.4)

where W, is the weight of a slice and Rs is the peak shear force

mobilized by the portion of the path underlying the i-th slice.

The safety margin.SMforeach slice can be defined as the differ-

ence between resisting and driving forces for that slice:

5M. = R. = W. sin Ql ] (Eg. 2.5)

Thus, the total safety margin SM along the path is given by:

 ny
 ll 1 = £. (R, - W, sina 1) =R - GF (Eq. 2.5)

Failure occurs when SM &lt; 0 (i.e., when the driving force equals or

exceeds resistance).

In the following section, the failure mechanism is described.

Methods to calculate resistance of the intact rock bridge for "in plane"

and "en - echelon" transitions are discussed in detail. Methods to

calculate the rock weight overlying a failure path, are also discussed.
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Finally, the section concludes with a summary of the deterministic

model.

2.5 The Failure Mechanism

In the case of two joint sets, failure is assumed to occur as a

downslope movement of a rigid body of rock which is bounded by a

failure path consisting of joints, fractured rock, as well as the

slope face and the top free surface. Due to the fact that movement

is always downslope along the first joint set inclination, joints

of the second joint set have, consequently, no shear resistance. In

other words, the first set dominates the direction of rock failure

sliding while the second set only enhances this to occur.

This thesis is not concerned with cases where intact rock

strength parameters are so low that the failure mechanism approaches

that of soils (e.g., clay shales) where jointing does not influence

the kinematics of slope failure. Limitations also exist since

certain combinations of stress field magnitude and orientation

(relative to joint inclination) can also lead to failure of intact

rock before full joint resistance can be mobilized. Experimental

model test by Einstein (1970) show that, even in very strong rock,

failure planes are formed without being influenced by discontinuities

in the rock.

According to O'Reilly (1980), two basic failure mechanisms in

intact rock can describe the failure of a rock slope. The first,

ype One, is the most relevant to the research being carried out.
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It is referred to as translational sliding parallel to jointing.

It is the mode originally assumed, especially when joint resistance

is significantly lower than intact rock resistance. The second,

Type Two, is that in which shearing is independent of the existing

joints. This occurs when the stress required to propagate cracks

through intact rock is less than that required to fail joints.

Type Two failure may be due to a combination of factors such as

neak rock in any stress field,arstrongrockinanunfavorablestress

field. The decrease in the percentage of intact rock in a potential

failure path, is much greater for a slope with second set joints

than for a slope with single set joints. Hence, the importance of

Type One failure becomes obvious as the amount of intact rock in the

failure path becomes less. As a result stability of the slope becomes

increasingly dependent on availability of the intact rock.

&gt; 6 "In Plane" and "Out of Plane" Tensile Failures of Intact Rock Bridges

For Tow stress values (0, &lt; 27.) peak shear resistance is mobil-

ized at the moment when tensile fractures develop at an angle 6. from

al. 6, should be approximately equal to 45° for Jow a, values

relative to the intact rock tensile strength (See Fig. 2.15 ) as is

expected for Mode Two failure to occur. Actual failure occurs, when

a continuous fracture develops in the direction of jointing. After

tensile fracturing takes place, a secondary progressive shear fracture

follows. (See Fig. 2.15 ).

The analogy between the direct shear test and "in plane" intact

~ock bridges is acceptable at low stresses, and thus the resistance
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for in-plane transitions is:

where d is the rock bridge length shown in Figure 2.14a and Ty is

given by the following relation from Lajtai:

(1. (T, - 0)?

and where -2T, may be replaced by C,. to yield:

 | os
2) 2

Out of plane transitions, occur when a continuous fracture de-

velops at an angle to a first joint plane up to a point on another

plane, i.e., rock bridges involve a transition from one joint to

another in an overlying plane at an angle B , (greater than al).

In such cases criteria established previously apply. However, the

assumption here is that the block of rock containing a rock bridge

at the moment of failure is in direct shear with zero normal stress

in the direction of jointing of the first set. (See Figure 2.16).

Transitions at BR values that exceed the angle of tensile frac-

turing (i.e., B &gt; 6p + 1) are referred to as high angle transitions. In

such situations, a fracture can develop connecting the discontinuities immed-

iately through a tensile fracture without requiring secondary shearing;
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it is assumed that the tensile strength Te of intact rock is mobilized

along the path segment. The tensile force, acting in direction of

jointing of the first joint set, is the peak shear resistance for high

angle transition.

For "low angle transitions", i.e., B &lt; (64 + al) failure will

occur as "in plane" failure. Peak resistance will be mobilized at the

moment of tensile fracturing followed by rupture when secondary shears

form a continuous fracture connecting the tips of joints forming the

bridge, (See Fig. 2.18). Peak resistance is given by:

) — (Eq. 2.10)

where d is the distance between joint tips defining the bridge and

Ty is the peak shear mobilized in the direction of jointing. Notice

that "in plane" transition (discussed earlier) is one case of the

general "low angle transition".

As mentioned previously, the driving force is due to the over-

burden weight. DF. is taken as the component of weight over a

particular path in the direction of jointing of the first set. (See

Fig. 2.19.)

OF. = W; . sin oy]

Weight calculations are shown in Figures 2.20 - 2.34. Generally,

three types of calculations can be distinguished: the first is for

transition paths lying to the right of the slope apex, the second is

for those lying beneath the slope apex, and the third is for those
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lying to the left of the slope apex, i.e., beneath the slope face.

Fach of these distinguishable groups can be subdivided into two

groups; those with transition angles less than 90 degrees and those

with transition angles greater or equal to 90 degrees.
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CHAPTER 3

THE PROBABILISTIC MODEL - COMPUTER PROGRAMS

3.1 Introduction

An analysis, of the stability of slopes with two distinct

joint sets is performed through the probabilistic model. The pro-

gram is a modification of O'Reilly's (1980) model which was de-

veloped to handle the situation with a single set of joints. Similar

to O'Reilly's model, "Talal" is a Monte Carlo simulation of the rock

slope being snataed in this thesis. In each realization, jointing

patterns are generated stochastically based on distributions of tne

joint parameters (i.e., joint length - set 1, rock bridge length -

set 1, joint plane spacing - set 1, joint length - set 2, rock bridge

length - set 2, joint plane spacing - set 2) compiled from previously

collected data of joint surveys. For each realization, the program

finds for every joint plane of the first set exiting on the slope

face, a "critical path" beginning at the slope face, passing through

the slope till the free surface of which the safety margin SM (the

difference between the sums of resisting and driving forces) is

a minimum. Critical paths may be planar or may involve transitions

to an overlying joint plane. Transitions, betweenajoint plane of

the first set and points in the second joint set, may take place

Pia only in that region of the slope above the joint plane of the first

set (See Fig. 2.19 - 2.43)
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The program divides the slope into intervals of equal height

(see Fig. 3.1). In each realization the program stores the safety

margins of all critical paths that fall within such an interval.

Together, the numerous individual SM values form distributions within

each interval. After the last realization takes place, the mean and

standard deviation of SM for each interval are calculated. Also

found for each interval is the probability of joint plane failure

(Pp); given by"

Pe); = Neo | No (Eq 3.1)

where (Ness is the number of critical paths in the i-th height inter-

val for which SM &lt; 0, while (Ny); is the total number of critical

paths in the interval. By independently evaluating (Pe); and the

distribution of SM for each interval, the program is capable of

evaluating reliability as a function of slope depth.

Programming

Stochastic Generation of Joint Geometry

Three fixed input parameters define the geometry of the slope

to be analyzed, the slope height (ydim), the slope angle (8) and the

inclination of the first joint set (a1). (see Fig. 3.2). The upper

free surface is always taken to be horizontal. Joint patterns for

each joint set, i.e., joint plane spacing, length of joint segments

and length of rock-bridges between adjacent joint segments in a given

joint plane, are expressed as exponential distributions about mean
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values; the latter specified by the user. The distribution of

jointing patterns is simulated by the number of realizations (the

more the realizations, the better the simulation). Generation of

joint planes in each realization for joint set 1 begins at the slope

apex and works its way back towards point E (Fig. 3.2b), the limit

to generating any additional joint planes. This procedure is

the same as the one utilized by O'Reilly (1980), where generation

begins at the slope apex and works until the exit point of the i-th

joint plane exceeds slope depth. The difference in the two procedures

is in the storage method and axes used. Maximum permissible

{ - coordinate in set 1, (ywt) is given by: (Fig. 3.2).

wt = (ydim/sinal) - (ydim/tan 8)

values of Y (i) are generated until Y (i) reaches a value less or

equal to zero. Joint planes with a negative Y (i) are not considered

since they do not exit on the exposed slope face (sos Fig. 3.2).

Next, joint segments are generated while assuming the expon-

ential distribution of joint segment and rock bridge lengths. The

location of each joint tip, in a given joint plane, is determined by

its depth cjoint 1 (i,j) below the upper free surface (see Fig.3.3).

The orientation of each joint plane is fixed and any point can be

defined in terms of the joint plane it belongs to and an x - coordinate.

For example, a cjoint 1 (3,2) equal to 10 stands for the second

coordinate point of the third joint plane in the first joint set

as measured from the free surface and equals 10 units of length.
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The coordinate points on a typical first set joint plane are

generated by the program and are referred to as the dynamic programming

points. These points are compiled from three data sources. The first

source being the set of points on a plane which define the x-coordin-

ates of the intersection of that plane with the free surfaceand slope

face and all the x-coordinates of the joint segments on that plane

(See Fig. 3.12a). The second source being the set of points of

intersection of the joint plane with lines drawn from the right hand

tips of joints of underlying planes at (45° + a1) (See Fig. 3.12b).

Finally, the third source being the set of points of intersection of

the joint plane with planes of the second set (See Fig. 3.12¢c).

Figure 3.12d shows all points superimposed on the plane being ex-

amined. Dynamic programming plane points serve as potential trans-

ition nodes. Transition may take place in plane or out of plane

to a point above the plane which contains the dynamic programming

plane point. Transitions from a point on a first set joint plane

to a point anywhere below that plane are not permissible (see Fig. 3.13a).

Angles of transition within the second set are never less than

the first joint set inclination (al), nor greater than the greater of

either 180° or the sum of the second set inclination (a2) and 90°

(See Fig. 3.14a). Transitions within the second set are only permissi-

ble between two adjacent planes (See Fig. 3.14b).

Restrictions concerning the inclination of paths between the two

joint sets are the same as those for paths within the first joint

set. Generally, a line segment connecting nodes on the critical path
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must be between the angle of the first set inclination (gl), and

the sum of the first set inclination (ql) plus 45° except for trans-

itions within the second set (See Fig. 3.15),

Some of the dynamic programming plane points and some of the

second set points can only be ends of a transition path within the

plane they are in. Such points are left ends of discontinuities of

both sets and points within the first set of discontinuities that are

not intersection points with the second set (See Fig. 3.15).

In each realization, the number of intersection points of each

first set plane with second set planes isstored. This number can

be imagined to represent traces of possible critical paths. As

expected, a critical path would most probably follow the paths cutting

through the second set joints as can be seen from the lines connect-

ing nodes 1, 2, 3 and 4 in Figure 3.16b. A look at Figure 3.7 may

give some more insight into the effect of a jointed region bounded by

a first set plane and either the free surface or another first set

plane. In Figure 3.7, Region A is unjointed, hence the intersection

point there is irrelevant. However, Region C, in the same figure, is

partially jointed and thus one would expect a transition through that

region. However, Region B is fully jointed and will act as a path

between planes 1and 2 as it is the weakest possible transition

from1 to 2 (e.g., path; b-ii-i).

The program establishes the critical paths by finding the lowest

cossible safety margins between every node and the free surface.
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The algorithm begins with the top joint plane and evaluates the

minimum safety margin of each dynamic programming plane point moving

from the top (intersection of the joint plane with the free surface)

to the last (intersection of the plane with the slope face) (See

Figure 3.17a). If and when the plane has points of intersection with

set 2, the program will start by evaluating minimum safety margins

for points on the planes of set 2 that intersect set 1 (See Fig. 3.17b).

These points should be in the region between the first set plane

being analyzed and the free surface if those second set planes

extend to the free surface (Case I) without intersecting other first

set planes. Otherwise these points that lie in the region are

bounded by the plane being analyzed and the first set plane above it

‘Case II) (See Fig. 3.8). Consequently, for any given node, the

program checks possible transitions to overlying nodes within a

given "sweep area" bounded by the kinematic restrictions imposed as

described previously, depending on whether the point belongs to

joint set 1 or set 2. The sweep area for a nodal point of set 1,

point (X55 Yo) is shown in Fig. 3.9a; for set 2, point (X;, Yi), it

is shown in Fig. 3.9b. The program computes the safety margin of

transitions to all nodal points within this area using the mechanical

model presented previously in Chapter 2. The order in which

nodes are considered is always from shallow to deep joint planes,

and down dip within each plane.
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Referring to Figure 3.10, the safety margin SM of any path from

Si» Yi) to the free surface has two components” (A, B,J)» A, is the

safety margin from Ss Ys) to a nodal point (n) while B, is the

safety margin from that nodal point to the free surface:

~|
v A

thus, the minimum safety margin SM (i, j) for the point (X55 Yo) is

the one for which the above sum is a minimum. In this manner the

minimum safety margin for each nodal point within the slope is

systematically found.

The safety margin, of the point of intersection of each joint

plane of set 1 with the slope face, is the minimum safety margin for

the path originating at that point - and rising to the free

surface. The coordinates of nodal points of the path, yielding

this minimum safety margin, determine the critical path for that

joint plane. The program then calculates the weight of rock overlying

the critical path as well as the net angle Oc of the critical path

(See Fig. 3.11). The critical path should not be considered a

failure path unless the calculated safety margin is zero or less.

In each realization, several critical paths could result, some of

which may be failure path(s). For a number of realizations simulating

a joint spacing and length distributions,one can obtain a distribution

of the ratio of failure paths to critical for each interval on the

slope face (See Fig. 3.18b)
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3.3 Program Limitations

Before moving on to a detailed discussion of program input and

output it is important to outline the limitations of the program in

its present form.

(a) - The analysis is two dimensional.

Joint persistence parallel to the strike

of the slope is not considered (i.e., it

is assumed to be 100% - a conservative

assumption).

Side wall resistance transverse toslope strike

is assumed to be neglible. In other words, a

better way to visualize the slope is to imagine

that we have a model with the present dimensions

and generated joint patterns, as described,

1-length unit thick in the third dimension,

considering all joints to extend from one face to

the other (See Fig. 3.19).

'b) Joint and slope geometry is limited to that shown

in Fig. 2.1 and 2.2 with joint set 1 always less

than 90 degrees and theuvoper surface always

horizontal.

Cc) - As a Monte Carlo simulation program, the program

is based on a deterministic resistance algorithm.

Thus, the program is only a reliable as the deter-

ministic algorithm presented in the previous chapter.
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(d) - Application of the program depends on reliable

measurement of joint geometry distribution

parameters (i.e., mean values of joint length,

rock bridge length and joint plane spacing).

The above limitations should be kept in mind specifically with

regard to results presented in the parametric study. Data analyzed

and results arrived at are mainly for research purposes until

more refinements have been performed (e.g., three dimensional

analysis - end conditions) and comparisons with field conditions

and case histories have been thoroughly investigated.
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CHAPTER 4

THE PROGRAM

4.1 Introduction

The purpose of this chapter is to portray the programming details

of the model by discussing a sample program run. The main goals

are to understand the capabilities and limitations of the program,

and to establish an understanding for proper interpretation of the

output data which is used in the sensitivity analysis in Chapter 5.

The sample run is described and shown on the next pages and

is divided into two main parts. The first being the input data

which is user specified. The second being the output generated by

the program.

4.2 Sample Input

Since the program is implemented on an interactive system, the

program will systematically "ask" for the required inputs. For

example, if the computer asks for values of x, y, and z the program

will print, "input, Xx,y,z,". The printer will start a new line and

await the user to input the three values. After this is carried out

the programmoves to the next group of inputs "asking" for their values

This process continues until the user has specified all input values

required
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In this section each input variable will be defined. Along

with the definition, permissible or recommended ranges as well as

the specific values used in the sample run, will be given. As

with any program, the user must always make sure that units are con-

sistent.

theta

The angle in degrees of the slope face relative to the horizontal.

't may vary between 0 and 90 degrees (See Fig. 4.4a).

alpha 1

The angle of joint planes of the first set relative to the

horizontal. It is assumed that the range of alpha 1 is between

zero degrees and 60 degrees, and less than theta (See Fig. 4.4a).

alpha 2

The angle of joint planes of the second set relative to the

horizontal. To remain within program limitations, the range of

values of alpha 2 should be greater than alpha 1 (a must) and less

or equal to180 degrees. For the present, values not greater than

90 degrees are considered for alpha 2 (See. Fig. 4.4a)

ydim

The vertical height of the slope and input in units of length.

Theoretically ydim can be set to any positive value, however, due

to storage limitations and different rock behavior at relatively

high stress levels, ydim must be kept less than 300 feet for most

combinations of input parameters. (See Fig. 4.4a).
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ystar

In units of length, giving the x-coordinate on the slope face

from where joint generation begins. The purpose of ystar is

to allow study of deeper slopes when the storage limita-

tions related to ydim are prohibiting. To analyze the entire slope,

ystar is set to zero.

phijt

The friction angle of joint segments in degrees. It may be

considered to be as friction angle mobilized by the joint at

the moment of intact rock bridge failure and not necessarily the

peak value

cost

Joint cohesion is input in units of stress and must be kept

much smaller than intact rock cohesion (cork) for a realistic

analysis.

phirk

Intact rock friction angle is to be input in degrees and should

be kept between 0 and 45 degrees. Since the present version of the

program assumes failures of intact rock bridges in tension, phirk

has no influence on intact rock strength at stress levels for which

(a &lt; C.) is valid. phirk is a factor in deep slopes (&gt; 200') and

in weak rock (&lt; 25 KSF) where failure is in the shear mode rather

than the tension mode.



104

cork.

Intact cohesion, "cork" is to be input in units of stress.

It must be large enough so that nowhere within the slope is it

axceeded by the normal stress on any joint plane. This assures

that all intact rock failures are in pure tension. If "cork" is

too low for the slope depth considered, the program will print out a

warning to this effect. Keeping "cork" greater than 25 Ksf for

slopes up to 250' should alleviate this problem for most typical

slope configurations. Lower values of cork can be used for

shallower slopes.

phiult

Defined as the friction angle of crushed rock at large strains

in direct shear. It is to be input in degrees and must be less

than or equal to the intact friction angle. Like phirk, phiult

only affects intact rock shear resistance at very high stress levels.

"phiult" can influence resistance only when stress levels within

the slope start to approach the unconfined compressive strength of

the. intact rock. At such stress levels, it is unlikely that the mode

of failure assumed in the model analysis is applicable. Once again

the user is cautioned against using this program for analysis of

slopes in which cork is exceeded by joint normal stress anywhere in

the slope.

gamr

"gamr" is defined as the unit weight of inact rock and is given

in units of weight (force) per unit volume.
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sp31, sp32

The average spacing, in units of length, between adjacent

joint planes for the first and second joint sets, respectively.

Since the program is limited at present to 100 joint planes, input

values of sp31 must be balanced against values of ystar and ydim

such that the limiting value of 100 joint planes is not exceeded.

spjtinl, spjtin2

The average lengths of joint segments within the slope for the

first and second joint sets, respectively. They must be input

in units of length. It is difficult to estimate the minimum values

of the spacings that can be used without exceeding storage limita-

tions since they vary with the magnitudes of other input parameters

If, in a particular realization, too many joint segments (current

Timit is 50 joints per plane) are generated, the program will stop

operating and a message to tnat effect will be printed out. This

is in contrast to "slopesim" where such a realization is ignored

when a similar condition arises and movement to the next realization

takes place causing a bias toward output parameters at the end of the run.

sprkbrl, sprkbr2

The average lengths of rock bridges for the first and second

joint sets, respectively. They must be input in units of lengtn.

iseed

The initial "seed" in generating random numbers. It can be

any value grater than 0. It is used in the random generation of
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jointing patterns for all realizations of a particular run.

ndiv

An integer greater than 0 specifying the number of equal height

increments into which the slope is to be divided for independent

statistical evaluation of ouputs. It is recommended to set the

value of "ndiv" to no less than 4 and no greater than 10.

notpop, notpot, notpod

Are integer input that regulate the type and amount of programout-

put. For any of them set to 1, part of the output will be printed

out. However, setting any one of the above parameters to zero will

not allow the printer to print the ouput. The first, notpop, when

set to 1 will print the input data in a format for easy reference;

the y-coordinates of the starting and exit points of joint planes

of both sets, the maximum x-coordinate for each joint plane, the

x-coordinates of the joint segments in each joint plane, the right

ends of first set joint segments to above projections, the x-coord-

inate of the points of intersection on each joint plane of the first

set, with planes of the second set and finally the x-coordinates of

the dynamic programming points, in ascending order, on each joint

plane within the first joint set.

The second, notpot, when set to a value of 1 will output a

description of each region, the type of jointing pattern within the

region, the minimum safety margin of every coordinate of the joint

segments of the second set, the path length, the transition angle,

the minimum critical weight up to tne point in question in addition
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to the path incremental weight and incremental safety margin con-

tributed by the path, the x-coordinates of the transition path,

the total jointed rock length and finally the total intact rock

length of the critical path, up to that point. This is performed

for every dynamic programming plane point on every first set joint

plane in addition to all points on second set joint plane.

The third, notpod outputs the joint plane number (of the first

set) and next to it the minimum safety margin.

output 1, output 2, output 3

When "output 1" is set to 1, the computer prints a statement

indicating which realization is taking place in the computer.

When "output 2" is set to 1, the computer prints, following

each realization, the dynamic programming results, namely, safety

margin, persistence, weight and plane height for tne dynamic pro-

gramming plane points which are the points of intersection of the

first set joint planes and the slope face.

When "output 3" is set to 1 and after all realizations have been

carried out, the computer will print for every height interval the

distributions of the angles of critical paths, the critical weights,

persistences and the unit safety margin. The computer prints out

the number of critical paths exiting from the height interval as

well as the number of failure -paths (i.e., paths with safety margins

aqual to zero or negative)
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noraa|

Is the number of realizations specified for the simulation run

and should be input as an integer greater than zero up to a value of

no more than 1000 which will yield the best possible results.

dmin

Must be input in units of length. Its purpose is to give the

maximum allowable length of a transition path. Setting it to a large

value has the effect of checking all possible paths.

njump

Is input as an integer greater than or equal to zero. It sets

the number of first set joint planes above a particular point in thatset

from which transition paths are checked, with the purpose of finding

a minimum safety margin. Setting "njump" to zero will only check points

along a given joint plane and will not allow paths (or jumps) to

overlying joint planes. Since the critical path seldom involves more

than two or three transitions, it is advisable to set "njump"

relatively low so that the number of paths checked and nence cost

is kept low. Within the scope of this thesis, it is not recommended

to set it to zero. nor greater than three.

4.3 Sample Output

For purposes of illustration, the sample run used in this study,

consists only of a single realization. The slope geometry specified

by the input parameters discussed previously as well as the joint

pattern geometry for this realization, was previously described.
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Although the output shown on the following pages is self explanatory,

additional discussion on it will follow.

Part (a) is the print-out of the input parameters as inserted

oy the user, primarily, for reference or demonstration purposes.

Part (b) is a print-out of the geometry of the joint planes of

the first set. It starts with the plane number and is followed by

the maximum permissible x-corrdinate on the slope face as well as

the y-coordinate of the joint plane followed by the x-coordinates

of joint segments on that plane. Finally, a statement of the number

of joints and the percent persistence of that plane is printed out.

Part (c) is self explanatory. Each plane projection of rignt-

ends of joints to above planes is listed on the x-axis (x-coordinates).

Part (d) is the same as part (b) except that it is for planes

of the second set. It starts with a printoutofthemaximum per-

missible y-coordinate where a plane can be generated.

Part (e) is a listofthe x-coordinate of the points of inter-

section of each-plane of the first set with planes of the second

joint set.

Part (f) is a list of the compiled x-coordinates of the joint

segments as well as the right ends to above projections and points

of intersection. All are listed in ascending order as can be seen

in the sample output (this list of x-coordinates is referred to as

the dynamic programming plane points)
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Part (g) is the output of the dynamic programming carried out on

every dynamic programming plane point as well as the x-coordinates

of second set discontinuities. It starts with a print out of the

realization number. Next, the type of region being analyzed as

well as the boundaries and type of jointing in that region are

printed out. Following that, each of the dynamic points including

those in the second joint set, as well as the lower and upper x-coord-

inates which might constitute a section of the path of a minimum

safety margin, are printed out. Next, beta, the angle of transition,

and the actual path length (negative if path is within a discontinuity),

are printed out. Average stress on the potential path due to rock

overburden and total weight of overlying rock as well as the incremental

safety margin of that path which connects the two points mentioned,

all follow on the same print out line.

The print out line that follows consists of the total safety

margin of all the points constituting a path from the upper surface

down to the point of interest and the total length of all discon-

tinuities on that path (negative for indexing purposes only) as well

as the total length of that path connecting. points of minimum safety

margin to the upper surface. Finally there is a print cut of the

weight of rock overlying the path just described.

When the exit points of planes of the first set are reached,

a statement indicating the plane reference number and the total

safety margin at that point, is printed out.
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Part (h) is a summary of the preceding. It is a list consisting

of: the number of the plane, the x-coordinate at the exit point,

the angle of the critical path, the minimum safety margin, the unit

safety margin, the apparent persistence and the weight of the critical

path.

Part (i) is most important to the user since it is an arrange-

ment of all the data listed in part (h) in the sample program output.

Notice that this part is an output of the statistical data for

each of the height increments specified by the user. By setting

"ndiv", the user divides the slope to "ndiv" parts. The values

of output parameters (i.e., continuity, SM, USM, etc.) associated

with the exit point of each joint plane that falls within a given

interval, are stored. For each interval, the means and standard

deviations of these parameters are evaluated. These statistics are

based on parameter values of all exit points that fall within a

given interval, independent of realization. For the sample run only

one realization was carried out. This is not a sufficient number

to reliably determine statistical parameters of outputs. However,

results such as distributions (i.e., means and standard deviations)

are more reliable when the number of critical path exit points that

fall within each interval, increase with the increase in the number

of realizations (user specified).

In this part, output of the total number of joints (Nps)

existing within an interval and the total number that fail (Nes)s

i.e., (SM &lt; 0), are also printed out. Again, as was the case fon

the statistics, a running count is made of Nes and No. for each
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interval, i, independent of the number of realizations. From

Nr; and Nes the user can estimate the probability of joint plane

failure P,. for each interval i:

J

Nes | Nes (Eq. 4.1)
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Main Program Variables

D1

alpha 1

alpha 2

theta

phojt

tabht

chork

sinrk

cosrk

tanrk

pl , p2

Xcteta

\ J {

noreal

YS.
¥ =

A
 »

»

. Inclination of the first joint set, in radians

[Figure 4.1(a)].

y Inclination of the second joint set, in radians

[Figure 4.1(a)].

Inclination of the slope face in radians

[Figure 4.1(a)].

Friction angle of jointed rock in radians.

- Tangent of joint friction angle.

Friction angle of intact rock in radians (taken as 0.0).

- sin (phork).

: cos (phork).

: tan (phork).

Average joint persistence defined as (spjtinl/(spjtinl +

sprkbr1)) and (spjtln2/(spjtin2 + sprkbr2)) of the

joint sets respectively.

Center of failure circle tangent to the parabolic

and linear sections [Figure 4.4].

y dim/sin (alpha 1). [Figure 4.1(b)].

number of realizations that will be carried out in

one run: user specified.

perpendicular distance from apex of slope to a

jenerated joint plane [Figure 4.1(a)].

icrotch, icar : define number of random numbers to be generated.

yrand (i) random number produced to generate x - coordinates

for joint planes.
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Main Program Variables (cont.)

yl (i), y2 (i)

°

-

cjoint 1(i),
cjoint 2(i,J)

xdl (1)

xd?

zp (1)

tl (i),
tz (1)

njoint

perconl (i),
percon2 (i)

sumj ln

jp11 , jpl2

xcoor (j,i)

nptint (j)

»

-

.

-

®

.

»

a

Y - coordinate of the i-th joint plane on the y axis

of set 1 and 2, respectively.

random numbers produced by random number

Jqub.
generator

For odd j: cjoint 1,2(i,j) is the depth to the

»ight end of the (j + 1)/2 joint segment in the
ith joint plane. For even j: cjoint 1,2(i,j) is

the depth to the left end of the j/2 joint segment
in the ith joint plane; joint set 1 and 2 respectively.

[Figure 4.2(a)].

x - coordinate of the exit point on the slope face of

the ith joint plane of the first set. [Figure 4.2(a)].

Vertical distance of exit point of the ith joint

plane below the upper free surface of the second

joint set; on either the slope face or the line

designated xj1. [Figure 4.2(b)].

Vertical distance from the anex to the ith joint plane.

[Figure 4.2(a)].

Number of joint points in the ith point plane.

Number of joint segments in joint plane under
consideration.

Average percent persistence of ith joint plane of
joint set one and two respectively.

Sum of joint segment lengths in joint plane under
consideration.

Number of joint planes in realization under consider-
ation of set one and two respectively.

x - coordinate of right end of joint segment to upper

plane for use in dynamic programming.

Number of points of intersection on plane j of set one

with planes of joint set two.
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Main Program Variables (cont.)

ptint (j,i)

y2ptint (j,i)

nwyeptnt (j,i)

dee (i)

nl (3)

plpt (j,i)

vtran (j,i)

sml (3,1)
sm2 (j,i)

sml2 (j,i)

merak (j,i)

last (j,i)

khamsin (j,i)

miura (j,i)

The ith point of intersection on plane j of set one.

y coordinate of the joint plane of set two defined by

the ith point of intersection on plane j of set one

[Figure 4.4b].

Number of the plane of set two defined by the ith

point of intersection on j-th plane of set one

[Figure 4.4b].

Vertical distance from (x = 0.00) to the starting

point of joint plane i of set one.

Number of dynamic programming points on plane j of
set one.

cjointl (j,i), xcoor (j,i) and ptint (j,i) rearranged
in ascending order.

Vertical distance between plane j and n of set one.

Minimum safety margin of the i-th x-coordinate of

plane j in set one and two respectively, [Fig. 4.3].

Minimum safety margin of the ith x-coordinate in

plane j of set two which corresponds to a point of

intersection on a plane of set one.

An integer which describes an arrangement of joints

within a region [Figure 4.4(c)].

Of plane j of set one and coordinate i [Figure 4.5(a)l;

if last equals zero a joint segment intersects point

of interest. If last is greater than zero then the

number stands for the number of the end of a joint

segment of set two, immediately above the dynamic

arogramming plane point pint (j,i).

An integer, either 0 or 1; 0 for a regions between

two planes of set one; a 1 for region between a

plane and free surface [Figure 4.5(b)].

An integer, either 0 or 1; 1 for a point on a first

set discontinuity which is intersected by a joint

segment of the second set; 0 for a point which is

not intersected by a joint segment [Figure 4.5(c)].
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Main Program Variables (cont.

I!10S

ty

wminl (3,1)
amin2 (j,i)
wminl2 (j,i)

2f

~\/

ig?

taufr

rr |

dist

usm (J)

fang (J)

3

y;

Integer which determines type of path to be checked
hy the resistance subroutine. For mpos = 1, the

subroutine considers vertical transitions to the

free surface. For mpos = 0, the subroutine considers

transitions through intact work to other joint planes.
For mpos - 2, the subroutine considers transitions

through joints of the first set. Finally for mpos =10,
the subroutine considers transitions through joints
of the second set.

Safety margin of a particular path under consideration

Weight of overlying "slice" above path of minimum

safety margin (Fig. 4.3)

Force required to cause failure for transition

path under consideration. sf is calculated in
the subroutine - msaf. (sf = df - res) where df is

the driving force and res is the rock resistance.

Resistance of path involving a vertical transition
to the free surface. sv is calculated in the sub-

routine - msaf.

The average component of overburden stress perpendi-

cular to the direction of jointing for a particular

transition path (Figure 4.6(a)).

Peak shear stress on a transition path resisting

downslope motion of overlying material in the

direction of jointing; calculated by msaf

(Figure 4.6(b)).

Weight of overlying "slice" of rock above transition

path in question; calculated by msaf (Figure 4.6(b)).

Length of the joint plane under consideration.

Unit safety margin of the exit point of the jth

joint plane. (Figure 4.3).

Net angle of critical path for the exit point of

the jth joint plane in degrees. (Figure 4.3).
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Main Program Variables (cont.)

appt (J)

vg .

numj (n)

sper (n)

ssgper (n)

sfan (n)

ssgfan (n)

ssm (n)

ssgsm (n)

susm (n)

ssqusm (n)

sapp (n)

ssqapp (n)

swgt (n)

ssqwgt (n)

smleo (n)

apper

bottom

: Apparent persistence of the jth joint plane.

Weight of rock overlying joint plane under
consideration.

: Number of joint planes in the nth height interval.

: Sum of joint persistences in the nth height interval.

Sum of squares of joint persistences in nth height
interval.

Sum of angles of critical paths (in degrees) in

nth height interval.

Sum of squares of failure angles in nth height

interval.

Sum of safety margins in nth height interval.

Sum of squares of safety margins in nth height
interval.

Sum of unit safety margins in nth height interval.

Sum of squares of unit safety margins in nth height
interval.

Sum of apparent persistences in the nth height

interval.

Sum of squares of apparent persistences in nth

height interval.

Sum of the weight of rock overlying the critical

paths in nth height interval.

’

3 Sum of squares of weights of rock overlying the

critical paths in nth height interval.

Number of critical paths in the nth height interval

with safety margins less than zero.

Upper x-coordinate of a particular transition path

(Figure 4.6(a)).

Lower x-coordinate of a particular transition path

(Figure 4.6(a).
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Main Program Variables (cont.)

smpthr (j,i)

smpthj (j,i)

smptht (j,i)

perave (n)

sdper (n)

fanave (n)

sdfan (n)

snave (n)

sdsm (n)

asmave (n)

sdusm (n)

appave (n)

sdapp (n)

vgtave (n)

sdwgt (n)

; xX

(X.?

Total intact rock length of a particular path up to

point i of joint plane j.

Total jointed rock length of a particular

to point i of joint plane j.

path up

: smpthr (j,i) + smpthj (j,i)

»

Average percent persistence of joint planes in the
nth height interval.

Standard deviation of percent persistence of joint

planes in the nth height interval.

Average angle of critical path (in degrees) in the
nth height interval.

+ Standard deviation of angles of critical path (in
degrees) in the nth height interval.

Average safety margin of critical paths in the nth

height interval.

Standard deviation of safety margins of joint planes

in the n-th height interval.

Average unit safety margin of joint planes in the
n-th height interval.

-Standard deviation of unit safety margin of joint

planes in the n-th height interval.

’

Average of apparent persistence of joint planes
in the n-th height interval.

+

Standard deviation of apparent persistence of joint

planes in n-th height interval.

Average weight of rock overlying critical paths of
joint planes in n-th height interval.

Standard deviation of rock weight overlying critical

paths of joints in the n-th height interval.

Top x-coordinate of height interval under consider-

ation (Figure 3.18(b)).

Lower x-coordinate of height interval under consider-

ation (Figure 3.18(b)).
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Variables in the Subroutine Msaf

rt
-

“a«ta

beto

galo 1,2

why 1,2

ex 1,2

area

wlf

tenang

le

tanfjt

~ylt

&gt;

Angle of transition path in degrees measured from

horizontal (Figure 4.6a).

Beta in radians.

Angles to be used in the subroutine. Either can be

alpha 1 and alpha 2 depending on the type of the

path

y-coordinates of plane(s) under consideration for
a particular path of transition (Figure 2.19).

x-coordinates of ends of transition path (Fig. 4.6a).

Area of rock overlying transition path (Fig. 4.6b).

Weight of rock overlying transition path = Area x gamr.

Angle of tension fracture measured from the joint

inclination angle.

Resistance of the transition path to shear in the

direction of jointing.

Shear resistance of jointed transition path.

Resistance of intact rock at ultimate strength.
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t,3CP

common/loga/ v{(200),vyrand{100),y1{100),v2{100),Fans{100),usm{100)per

\cavel 100) ,Fanave{100),sdFan{100) ,smavel{100),5dsmi{100) ;usmava(i00) ,5dusmi{100) a
\crrpave{100),sdprer(100)

common/lser/ wminl(80,80) ,uminl2{80,60) rumin2{(B0,B80),m{(50),arr(50) 54d

\cwat (50) ;watave (30) ,sdarr(50)

common/causa/ ssarer(50),srer(50),sfani{50),s5aFan{50),ssm(50)rssasm(d
\c0) rsusm(3S0) rs53usmi{50) rsarp(30) ,s5aarr{S0) yr swat {50) ,55awat (50), sml20(350) rnumd

\c{50),sm1{100,100),m1{100),utran{100,100)

common/pPizza/ Ptint(75,120),P1Pt(75,120) ,xcoor{79,120),cdointl1(75,120

\e)redoint2{75,120),v2rtint{75,120) »nv2Ptnt{75,120)
common/Kuss/ nptiiBO),nPtint{B0).nPt2{B0).Percani{B0)rerconZ2(B0)zp

\c{B0),xdl(BO),xd2{50)

common/alto/ dee(35),1ast{50,100),miurai{50,50),sn2{B0,100);nerak{40,2
\c¢00) -Khamsin{BO,100) ;crement (80) ;nmPlpt (70,70) ,5m12(B0O,100) ,smPthil{B0, 100) 5m

\eptht1 (80,100) ,smpthri{B0,100),s5mptht2(80,100),smethr2{B0,100),smpthi2{B0,100)

\C,smPtnt12(80,100),smpthri2(B80,100),smPthJlZ2(80,:100)

37435 format{Sx. Joint Plane ‘,i2,6x,’'Safety Marsin ',FB.2)
3748 Format(Sx, Safety Marain =',f7.2:5x%, Jointed RocK;Sum =',Ff7.2,5%:'Cri

\ctical Path Length =',f7.2:5x,'Critical Weight =',f7.2)

3747 Formati{Sx,'In Joint Trancition Within Plane ’,i3.5x,'0f Set ':11)

3748 Format(Sx, 'From Plane ',i3,5%,’'In Set ’,il,3x.’Reference Point ’,i3.7

\cx, ‘Up To Plane ‘,i3,5x,’'0f Set ',il,3x.’'Reference Point ',13})

3749 formati{/,1x: 'Lower x-coordinate = ’',fB.2:Bx:'UPPer x-coordinate = ',f

\cB6.2)

3750 Formati{Sx,'Beta = ':F5.2:5%,'Path = ',F7.2,5x%:'Stress = ';F7.2,5%,' W

\caeisht = ‘:f7.2:5x,' S.F.lpath) =',f7.2)

355 Format {/.3x, ###s#%# Realization Number ‘,13)

457 Format{/5x,; ‘There Are No Points OF Intersection On This Plane’:/)

166 Format(/5x,'No Joints On Plane’.i3,4x,’'OF The Second Joint Set’)

63 Format{/Sx, ‘Region Starts On Slore Face To Plane’ 13,9x: vceordinate

ve=',FB.2)

128 Format(/Sx, 'Resion From Free Surface To Plane’ i3,0x%,'y—-coordinate

\¢ = ',FB.2)

470 Format{/Sx, 'Resion Between Planes’ 13,’ find ',13:3%,’ v-coardinate

\¢ = ',FfB.2)

491 Format(5x,' Joint(s) In Between Oniv’)

452 Format (10x. ’ No Second Set Joints’)

4383 Format (10x, ' Cantinuous Joint Throushout ')

434 Pormat(Sx,’ Joint Intersects Tor Point’)

435 Format{Sx,' Joint Intersects Bottom Point’)

L008 format(///,10x,'5lore Anzle. ',F3.1,' desrees’)

1010 format{(10x, ‘Slope Hight. ', FB.1,' Feat’)

1013 Format{10x, ‘Rock Unit Weisnt. ',F5.2)

1011 Format (10x, 'First Joint Set Inclination. ’,F3.1,' desrees’)

L003 Format{10x, ‘Second Joint Set Inciinaticn: ',F5.1,' dearees’)

[012 Format{//,Sx,'Strenath Parameters’,/.10x,'Phi (Joint) = '.F7.2:° azar

\cees’,/,10x, ‘Cohesion (Joint) =4{,F7.2,/,10x%,Phi(rock)= ',f7.2:;' dearees’,/,

\¢10w%, Cohesion (rock) = 7,F7.2}

1015 format(//:3x,'Path Criteria: ‘,/,10%x, Minimum Spacing =',fB8.1,/,10%,

\C ‘Maximum Transition =',13.///7)
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31.70p

1014 format{//Sx,'Distributional Parameters:;Joint Set One. '/10x, Mean Pla

\cne Spacing =’':f7.2,/10x: "Mean Joint Spacing =',f7.2,/10x,'Mean Joint Lanath

\g=',f7.2)
1004 format(//Sx, Distributional Parameters:;Jdoint Set Twa. ‘/10x: Mean Pla

\cne Spacing =',f7.2,/10x, Mean Joint Seacina =',f7.2,/10%, ‘Mean Joint Length

\c=',f7.2)

10186 farmat{//,10x, Number of Realizatins:’,i3)
1080 Format (10x. Point Considerad.’,//.t20;'Joint Plane = ‘,12x,

¥i5,/,t20,'y-coordinate = ’',9%,F10.3,/,t20, 'x-coordinate = ‘,9x;,

Af10.3,///,' Path no.',8%.,'=-- Junction Point --',7x.’Ansle ';

 4x, 'Strenath’.4x, 'Strenath’,4x, 'Strenath’,;Bx, ‘Minor Prin.’,4x,
¥'Tangent To’,/.18x%x,’'Jt. Pl.’ 3%, y=coor’ 4x, 'x~-coor’',3X,

¥'To Jct.',84x%x,'To Jt. Pt.’ ,4x,'To Edse’,Bx,Total’,10x,’'Stress’,/)

1092 Format {iS,7%:i5:2X,F10.3:F10.3,5%,F5.2:8%,F8.2,8%,FB.2:4x,f8.2,4%x.F7.

\NC2:8%:F7.2)
1088 Format{lx, ‘The Minimum Safety Marsin For y-coor = ',f10.3,;'And x-coor

ve = ',Ff10.3:, is ',F10.2)

1126 Format{t25,’ { To Free Surface ) ")

1127 Format{iS,4x,’ Vert. Transition to Free Surface ’',S5x,’ 20C ',84x,FB.2:4

\CX:'0.0 "Bx, FB.2:7%,F7.2)

{017 Format(//,10x%x, Initial Random Number:’',iB)

1130 Format{//.10x,'Realization Number ’',i4)

1563 Format{//,10x.’'-—Joint Set Cne.Dynamic Progsrammicna Plane Points--')

1131 format{/20x, ‘Number of Joint Planes Is = ’,i3)

(132 Format(/1x,'Joint’,3x,Percent’,8x%x,’AngleOF’,16x,Minimum’3x,Unit’

\cr13x, 'ApParent’,8x,‘WeightOF',/,’Plane’.7x,'Continuity’,7x,CriticalPath’,

\cBx, ‘Safety Marsin’',S5x,’Safety Marein’',Sx, Persistence ’,6x,'Critical Path’:5x»

\¢ 'Heisht')

1133 Format{id,11x,FB.2:18%,F5.2,9%,F11.2:Bx,F11.2,124:FB.2,8%,F10.2:7%:F6

\c.2)

1135 Format{//7x,TheSlopeHightOF ',FB.1,5x%,' Is Divided Into Incremen

\¢ts OF ',FB.1,5x,’ For Statistical Analysis’)

1138 Format{//,20%, 'Interval From ',fB.1.4x,'To '.fB.1.,//:

¥5%y; 'The Number OF Joints Is',1i5.,//:0%:

¥ ‘Percent Continuity:’,/:15x,;'Averasge = ',fB.2./:15%;

%¥’'Standard Deviation = ',FB.2,//,5x,'Net Ansle of Critical Pathi’,

%/,15x, Average = ',fB.2,/,15%, Standard Deviation = ',fB.2://:

45x, ‘Safety Margin. ’,/.15x,'RAverage = ',F1lZ2.1./,10%,

¥’'Standard Deviation = ',f10.1,//:5%x,;’Unit Safety Marain.’./,

%15x, 'Averaze =’ ,f12.1./:15%,'Standard Deviation = ',fFl0.1,//,

 %5x: 'Aprarent Persistence. ’',/,10x,’'Average = ',fB5.2:/:15x%-

&amp;'Standard Deviation = ‘,fB.2://:3%, 'Weisht of Critical Path i’

&amp;%/,15%,'Average = ',f12.2,/.15x%,'Standard Deviation = ’.fl0.2;

%//:9%; 'Tha Number OF Joints With Safetv Marsins &lt; 0.0 Is '»

 2X F5.0)
srint: input theta-alrhal.alphaz.ydim®

read(D5,889)thetaalrhalalrha2,vdim

ATint, "input vstar.ndiv®

read(3,388)vstar.ndiv

erint, "input pPhidt.codt,phirk.cork.Phiuit”

read{5,388)phidt,codt-Phirkcork,Phiult
ATInt input samr®
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71:120p

399

»
"&gt; Hut}

raad (5,389) sanmr
arint, input sP31,5P32,3Pitlnk,spitlin2.cPribrl,sprkbr”

read(5,999)sp31,5p32,5Pitlnl,sPitln2,sPTRDTL,sPTRDTE
eprint. "input iseed®

read(5.888)iseed

arint,"notPoP,notPOtnOtPOd”

read{5,999)notpor,notrotnotrod
Arint."inPut outPutl outPutZ,outpPut3”

read (5,999) outPutl outrPut2,outPutd

print, inPut noreal.distmn,njump”

read(5,9%9)noreal distmn,nJunp

Format (wv)
if{notrPor.2a.0)a0 to BESO

write{B,1008)theta

write(B,1010)vdim
write(B,;1011alrhal

write{s,1009)alrha2

Write{B,1012)phidt-codt,Phirk.cork
write(B,1013)samr

write{B,1014)sp31,spitinl,sprkbrl
write (B,1004)sP32,5PJitIin2,sPTRITZ

write(B,1017)iseed

write{BG,101B8)noreal

write(B,1015)distmn,nJiump

continue
21=3.141592

alphol=alphal*ri/180.
alpho2=alprhaZ#,i/180.
kJl=vdim/sint{alrhol)

theto=theta*pi/1E0.

rhoJt=rhiJjt

tandt=tan{phodt}

shork=pPhirk#ri/180.
sinrK=sin{pnork)

sosrk=cos{rhork)

tanrk=tan{prhorX)

wotetazcork#({1.-sinrk#cosTk)-{1.~{2.%cosrk*sinrk)I#*.3)/sinTK##L,
sotal=1./(tan({theto-aiprnol))
cotbl=1./(tan(airhol))

dil=xJl/{cotal+cotbl)

ysuml=vstar

ysumzZ=vystar

pi=spitini/(seitinl+seribrl)

a2=gpjtin2/{spitlnZ+spribrd)

ifF{theta.e3.30.0)adin=0.0

ifl{theta.lt.50.0Madlin=vdim/(tani{theto))

rhot=xJl#cosizirnol)

y1im=0.0

mat=(ydim/tanialphol))-{yvdim/tan{thetao)?

iflalenaz.11.80.0)vlim=vdim/taniairhod)
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ymax=vtot-viim

iF({ylim.at.adln) ymax=vtot—adin
if{alrna2.e9.90.0) ymax=vtot

iF ((alpna?.at.90.0).and. (alpha2.1t.1B0.0)) vmax=vtot+{ydim/tan({ (180.0
/1B0.0)#r1))

if lalpha2.eq9.180.) ymax=vdinm
Format {//,5%, ‘Maximum Allowable v-coordinate ymax =

do 55 n=1.ndiv

sperin)=0.

ssaperi{n)=0.

sfaninl)=0.

ssafaninl)=0.

ssminl=0.

ssasmin)=0.

susmi{nl)=0.

ssqusmin)=0.

sapp(n)=0.

ssqaprprinl)=0.

swat in)=0,

ssawat(nl)=0,
smlecin)=0.

numd{n)=0

continue

40 1860 mm=1,noreal

ifloutputl.ne.Clwrite(5,465)mm
yeuml=vystar

ysum2=0.00

nreal=nreal+l
ierotch=100 :

call asubi{iseed,icrotch.T)

do 3Q i=l.icrotch
rrand{i)=rii)

continue

do 199 i=1.,50

veuml=ysumi+{sp3l)#aloall./{1.~yrand(i}))
r1({i)=vtot—-{{vsuml/sinl{alrhol))+adln)
if{y1(i).1t.0.0)30 to 201

&lt;3 Formatix, Joint Plane’ i3,7x,'Max x-coordinate =',f7.2:7%, 'y=-coordina

\cte =',F7.2)

155 icar=200

call ssupliseed,icar.m)
iF(r(200).1t.Pl)cdoint1{1,12=0.0
LF (F{200).3e.p1)cdointili,1)=sprikirisaioall./rii))#sinlalernol)
xdl{i)=ysumiz*{xJl/dil)#sinl{alerhol)
wdim=xdl(i)}

ifinotPor.ne.writeid,23)i-xdim,v1(1)
ze{i)=vsumi/cos(alrhol)

\c-aliprhal)

33

30
“9 5

=
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30

20

120

30)

| Sea

&gt;8

588

1288

28

{30

28

139

201

iflcdointili,1).ge.xdimlcdointi(i,1)=xdinm

if(notrpap.ne.Mwritel(B,320)ciointi(i,1)

if(cdointiti,1).eq.xdimlao to 150

jo B80 J=2,50,2

cdointl{i-Jd)=cdointili,J-1)+spitini#aloal(l./r(d))*sin{airhol)
ifl{ecdointiii-J).se.xdiml=o ta BO

iF{notrorP.ne.0dwrite(8,320)cdointiii,J)
edointili,Jj+i)=cdointil{i,d)+sprkbrixaloalli./r{Ji+l))*sinl{alrhal)
ifF{cdointi(i,Ji+l).ze.xdimlgo to 120

if{notpor.ne.0)write(6,320)cdointl(i,+l)
continue ’

cdointl{i,J)=xdim

ifF{notror.ne.0)write(B,320)cdointl{iJ)
neti(id=J

ndoint=J4/2

nrn=J+i

30 to 150

sJointili,J+l)=xdim

if (notrPorP.ne.0dwrite(B,320)cJointli(i,Jj+l)

nptl{i)=J+1

nJoint=4/2.

arn=J+2

sontinue

serconl{i}=0.

iflcdointi(i-1).eq.xdiminjoint=0

if{cJjointili-1).ea.xdim)nPtilid)=]

wi{i)=nptlli)

sumdtin=0.0C

if{nptili).ea.l)a0 to (38

do 160 J=l.,nJoint

NNJt=2%*J

sumJdtlnssumdtin+edointii{i,nnit)-ciointi{i,nnjt-1)

continue

continue

sarconi{i)=sumitln*100./xdim

if (ndoint.at.0)=0 to BBB

iF{notror.ne.0luwrite(6,1288)

20 to 180

if(notpor.ne.0lurite(B,12B)ndoint

Format(i7x,’ No Joints On This Plane ')

Format (17x, ‘Number of Joints On This Plane is ’‘,13)

if {notrpor.ne.0)uwrite(8,28rerconl(i)

Sgrmat{17x, 'Averase Percent Continuity Is ',FB.Z2,/7)

continue

JrPll=i-1
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do 40 i=l,Jrll

jg 41 J=il.,ml(3)

plpti{irJi=cdointili.J)

continue

continue

sam={45.0-3irnal)+pri/180.0
wpl=drll-1

if {notror.ne.Muwrite (6,663)
da 351 1=1,mprl

nZ=1+1

k=0

do 350 i=m2.Jrll

do 349 J=l.nPtilid.2

pdis={y1(1)-v1{i))#tanlairhol)
adinc=0.0

iF lalphal.lt.45.0)adine=¢{{y1{1)-y1{i))*(sinlalrhal)/cos{43.0#pPi/180.
\c0)))*cas{aam))-pdis

if {(pdis+adinc).at.cdointii{i,J))z0 to 349

if (cdointl{i,Jd).ea.xdl(i)) =0 to 330

epp=gJointiii,J)-rdis-adinc
if{ppp.8t.xd1{1))20 to 350

K=k+!

xcoor{l,K)=pPPP

iFlnotPor.ne.0.and.K.eqa.dwrite(B6,1289)1
Pormat{iOx: '--Joint Set Onelldoint Risht End To Above ProJections——"')

iF{notror.ne.0lurite{6,320)xcoor{l,K)
format{ixs‘1=',13,8x, 'K=',13,Bx, 'xcoor(1,K}=',FB.2)

continue

continue

wi (1)=ml(1)+K

do 342 n=i{npti{l)+1),mi(l)

elpt{l,n)=xcoor({l {n-npti{lN))
continue

sgntinue

if {notrPor.ne.0luritel{B,27)ymax
do 13B K=S5S1l.icrotch

i=K-50

reum2=ysum2+{sp32)#aloall./{1.~yrand(k)))
iflalpna2.1t.180.0)v2(1)=ysum2/sinlalrhol)
iF(y2{i).at.ymax)so to 202

if{alrha2.1t.90.0)20 to 11

if{airha2.eq9.50.0)30 to 12

if{lalpha2.1t.1B0.0).and.(alpha2.a1.80.0))80 to 13

if{alphaZ.eq.180.0)20 to 14

sammo=alrhol

iF{ladin.1t.{vdim/taniaipho2))) and. (v2{i).at. (reo-{vdia/tanlalprncz)

\g))))gammo=theto

-1

40

7



126

236,283

xd211)=({(ytot-v2{i))*sin{=ammo)—{vdim*¢cos{3ammo)))*¥sinlialrno2))/sinl
\cgammo—-3irhol)

if{{aipha2.le.theta).and.(v2{i).eq.{vtot-{ydim/tani{alpho2)})})a0 to 1

\CS

iF ({theta.23.80.0).and.{v2{i).at.(vtot={vdim/tanialernoZ)))) I xdZ(1)=1y

\ctot-vZ2{i))#tan{airhol)
go to 70

kd2{i)=vdim

gg ta 70

12 xd2{iY=y2(i)+#tani{airnal)

a0 to 70

13 «d2{i)={y20i)/ ymax) #{ydim/sin{{{1B0.0-alpha2)/1B0.0)#p1) }¥*sin({ (160.0
\c—-alpha2)/180.0)%p1)

20 to 70

¥d2{i)=ysumz

y2{i)=0.0

continue

iflnotPoP.ne.0urite(B,23)1,xd2(1),v2(1)
icarz=200

call asub(iseed,icarz,r)
if (alphaZ.e4.180.0)30 to 308

iflalphaz.at.90.0)s0 to 365

ifl{ltheta.2q.90.0).and.{alrphaz2.ea.80.0))=20 to 17

dd={{{ydim#cositheto))-{{ytot-¥2{i))#sin{theto)))/{sin{alrhoZ-theto))
\e)#{sin{alpno2}))

30 to iB

dd={(y2li)-ytot+adln)/{ymax—-ytot+adin)}*vdim
30 to 1B

dd=0.0

PF ({r{200).1t.P2) and. (¥2{i).at.{ytot-adln}))cjoint2{i,1)=dd

TF UIT{200).1t.P2) and. {¥y2(i).le. (vtot-adln)))cdoint2!i,13=0.0

iF L{r(200).88.P2) and. {y2(1).1le.lytat-adln) Ncdoint2{i,1)=sPrikbrZ#alo
\eg({l./r{1))#sinl{alrho2) .

iFLIP(200) .ae.p2) and. (y2(i).at.{ytot-adln))decdoint2(i,1)={sprkbr2¥al

\coga{l./r{1))#sinl{alrho))+id

208 continue

kdim=xd2{1)

ifledoint2{i-1).2e.xdimrcdoint2(i,1)=xdin
iF({y2{i).1t. {ytot—-adlin)).or.{dd.1t.0.0))=0 to 34

iF {notror.ne.0dwrite(B,320)cJoint2{1,1)

iF{cioint2!li,1).ea.xdim)so to i551

ia Bl J=2,50.2

cdoint2li,d)=cdoint2{i,J-1)+spitin2#aloall./rlid)%sin(alirhol)
if(cdoint2{i,J).ae.xdiml=go to 31

if{notrar.ne.0urite(B,320)cdointZ{i,J}
cjoint?lisJ+iy=cdoint2(i,J)+spribr2%aloall./rli+1))#sin{airhal)
iFledoint2{i,J+1).ge.xdim)=20 to 121

BY

1A
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31

=

if (notror.ne.Qduwrite{5,320)cdoint2{i,i+l)

continue

sdaint2{i.Jd)=xdim

if(natrporP.ne.M)writa{B,320)cJoint2{1,4}
wpt2{i)=d

njoint=4/2

arn=Jd+l

agto 151

cdoint2{i,J+1)=xdim

if(notrop.ne.0)write(B8,320)cJdoint2(i,J+1)
npt2{i)=j+l

AJoint=4/2

arn=4/2

continue

sercon2(1)=0.0

if({cdoint2{is1).ea.xdimindcint=0

if{cioint2(i-1).eq.xdimInpt2{id=1

sumJtin=0.0

jee{i)=0.0

ifF{l{dd.ge.0.0).and.(y2{i).at.{ytot-adln))) deel{i)=4d

if {nPpt2{i).eqa.1) =o to 162

io 181 J=1l.,nJoint

ANJL=2%J

sumjtin=sumdtin+tcdoint2(i,nndt}-cdointZ{i-nnJt
continue

continue

percon2{i)=sumJitin#{100./(xdim~deelid))
if{nJoint.at.0)=ac to B88

if{notrPorP.ne.Odurite{B,1288)

sg to 181

if{natror.ne.0lwrite{B,128)nJoint
ifF{notrPor.ne.0) write({B,2B8)pPerconZii)

continue

ipl2=1-1

iflJjell.le.l)a0 to 4B

Format {/30x, ‘plane ',i3)

Format (10x, '~—Joint Set OneiPts. of Intersection—"')

iF(notror.ne.0duritel(B,1287)

io 45 i=1,Jjrll

if({notPor.ne.0luwrite!(5,128M1

Kk=0

io 44 J=1,Jjrl2

if{yi{i).at.v2{d))=0 to 44

jummy={y2{J)-y1(i))#{coslalpnol)+{cin{alphol)/tan{alrho2-aiprnol)))#si
\cn{aiprhol!

if ({dummy.at.xdi{i))=n to

A

151

‘51

RD

533

181

198

702
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3+
|

'

3

4

re

33

20

10

370

£22

111

131

150

331

300

K=K+1

stint{i-X)=dummy
v2ptint{i R)=v2{J)

nyZetnti{i,K)=Jd

iFlnotror.ne.0duwrite(B,320)dummy
Format(27x,f7.2)

continue

do 43 n=(ml(1)+1),(ml{i2+K)

plrti{irm)=ptint(i,{n-mi{id})

continue

milid=mi{i)+K

nptint{il)=kK

continue

do 10 i=1l,Jrll

do 20 J=1,{mili)-1)

i0 33 K=(Jj+1},ml{1)

dummy=pleti{i,J)

iflelptii-J).le.piptliK))=20to33

plptli,Jd)=priPti{ikK}
alptii,K)=dummy

continue

continue

continue

if{notrop.ne.Murite{B,1863)

do 111 i=1,Jrll

Kak=1

iF{notror.ne.0durite(B6,1289)1

do 222 J=1.m1{1)

if{notrPar.ne.0.Muwrite{B,320)P1Pt{1,J)
ifinptint{i).ea.0)30 to 370

iF{plptiisJi).eq.rtintliKak))nmrlprtli,Kak)=J
iFlplptiisd).ea.ptinti{iKak))Kak=Kak+}
continue

continue

continue

io 450 i=l.,Jrll

sml{i,1)=0.0
continue

do S00 J=1.Jrll

momm=J+1

if {mmmm.at.irlildao to SOO

ic S01 n=mmmm,JrPll

stranid-n)={yilj)=vii{n})*taniaiprhol}

continue

continue
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vtran({i,1)=xdl(i)

K=1

MPOsS=0
n

of

n
&gt;

The Followina Routine Computes TheValues OF

The Minimum Safety Marzsins Required To Initiate

Failure Amone The Various Joint PlanesAccordins

To The Dynamic Programming Alscrithm Preset

do 988 J=1,Jril

werit=0,0

5tr=0.0

3 Routine For Paths Involvins Joint Set Two

if{nptint{J).ea.0.and.notrot.ne.0) writei{B,467)

ifinptint{J).eq.0) 80 to 502

do S03 int=l:nPtint{J)

werakK(J,1int)=0

if{percon2invZetnt{j,int)).ea.0.0.and.notrot.ne.0) write(B,466)ny2rPtn

\gtl{drint)

if{percon2iny2rtnti{d,int)).eq.0.0)20 to 503

mpos=10

ifllJj.at.l.and.vZptint{J-int).le.vi{j-1).and.y2prtintld,intl).2e.v1{J))

\c.or.{dsa(ny2rtnt{drint)).ge.xdl{Jj-1).and.deei{nyZrtntii,int)).le.xdil{d)).or.{J
\¢c.2q9.1)) ao to 488

Routine For Paths Within A Reaion BoundedBv

Two Joint Planes OF The First Joint Eet

Khamsin{(J,int)=1
if{notrot.ne.0}) write(B6,470)YJ,Jd-1,v2pPtint{J,1int)

srement(Jji=vutranij~1,Jid)#caslalphald*sin{alrno2}/sin{{alrhaZ-alrhal)*(

\cPi/1B0.0})

do 498 n=1.,npt2{nv2etntl{d,int)).2

if{{cdoint2inyZrtnt{i,inti,n).3t.Ptint(d,int)).and.{n.ea

s¢ to 412

ifF{notrot.ne.0) write(5,492)

merakiJj,int)=1000

if{cdoint2iny2ptntidint)n+id.at.Printid-inv))30to303

412 iflecdointZ2{ny2ptnti{dintinl.ltu{pPtintl{Jd,rint)-crement{Jd).and.cdoint

\c{nv2epintl{d,int) n+l). lt. (Ptint(dsint)-crementii}l).and. {({n+2).st.nrt2invieintd
\cdrint)d.or.cdoint2iny2etntidint)n+2).8t.Ptint{i,int)))=0to432

ag to 410

iF{notrpot.ne.0)urite(B6,48922

merTak{J,1nt)=1000

1f{cioint2inyZenttdint)n+l).atptintidint?)3ctoS03

410 if{cdointZinv2etnt{J-int):n).ie.{Printl{J,int)—crement(Jj’l.ana.cdoint2

veinv2Prtnt{d-intl).n+l).ge.ptint{d-int)dg0 to 433

=}.

of
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call msaf {cdoint2(nv2etnti{d int) n21):0.0,v2rtintli int),Point,0.0, v2

\crtint(Jsint),mPOS,amr,COTK,PROTRcotPROJLPROULL theto,alPholalPnodsiney
\c,cosTKrtanri,xcteta,ri-betarsf-sursigartaufr-weth,vue)

if(point.ne.{Ptint{i,int)~crement{j))igo to 1333

ioc 2000 Kok=1,nePtintli-1)

ifF{labs{ptint{i=1,Kak)-roint)).1t.(.001))=20 to 2001

continue

esem=smi{j-1,nmPlPt{i-1,KokK))

if{pPoint.eg.cdoint2{ny2etntid-int),n21-1))esem=sm2{nyZrtnti{d-int)nl

2000

2001

13858

\g=1)

ifF{islero.eq.0)30 to 3500

if{{sF+esem).at.dummv2)ao to 3600

islero=1

iflpoint.eqa.lptint{J,int)~crement{Jl)digoto3300

nurlane=ny2ptnt{J,int)

nsetu=2

nref=n2l-1

ag to S301

nuprlane=j-1

nsetu=\{

nref=nmrlrt{J-1:Kok)

bottom=cJdointZ{nyZetnt(J,int},n21)

upPer=point

dummyl=beta

dummyZ2=sf+esem

Jummy3=sisa

jummy4=wpth

dummyS=wpth+umini {J-1,K0K)

iflPoint.eg.cdoint2inyZrtnt{d-int),n21-1)) dummy3=wrth+uminZinvzZrint {J

\¢cr:int).n21-1)

dummyBb=sf

continue

io 3007 KKK=1,nJump

if {{Jj-KkK).1le.0)s0 to 3008

iF{ml{i-kkK}).ea.l)a0 to 3007

do 3008 n3=1.,mi{J-KKK)

noriz=y2etintl{d,-int)+{cJoint2(nv2rtnt(d,int),n21)/tan{airno))-v1(j-k
\vekK)={plpt{{Ji-KKK),n3)/tan{alrhol))

verti=cdoint2{ny2stntij-int),n21)-plpt{{J=KKK)nd)
iF ({horiz#*2,0)+{uertis*2,0))#+0,30)at.distmnigoto3007

anaZli=atan{abs(verti/horiz))

ifl{anaZl.eq.alrho2)ao to 30086

if(ang2i.2t.(30.0#(pPi/1B0.07))g0 ta 3007

mPas=0

call msafi{cJdoint2inyZetntidint),n21),0.0,vZrtint{d,int)Ppipt{(J-HKK}
vernd)oeid J-KKK) ; 0.0, mPos aamr cork PROTK, CoJt PROJ PRoult sthetor-a3lPnols3irhol

\grsinrk,cosrk.tantk,xcteta,risoetarsfrsvrsigsartaufruptn,vt)
if{beta.=2t.30.0)30 to 3007

if{isliero.2q.0)20 to 3501

iF ((sf+sml(J=-KKK,n3)).3t.dummy2)20 to 3601

TL)3

3320

A|
=,
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3301 islerg=1

auprlane=J-rKkK

nsetu=1

nref=n3

bottam=cdoint2{nvZptntid-int},n2l)

upPer=P1lPt{ {J-KKK]},n3)
jummyl=beta

iummy2=sF+sml{i-KKK,n3)
jummy3=sisa

jummy4=wpth

jummyS=wrth+uminl{j-KKK,n3)
dJummyB=sf

continue

continue

continue

continue

ifF{{int-1).eq9.0)20 to 3010

if (merak{d-int-1).eq.111.or.merak{d,-int-1).29.1000)20 to 3010

t1imit=0.0 :

if (Khamsinl(drint=1).ea.1)tlimit=(ptint{j,int-1)-crementi{d))

do 3008 n2n=2,nPt2{nyZetntli,int-13).,2

if {cjoint2{nv2ptnti{J-int-1),nZn).1t.tlimit)a0 to 3008

ifli{cdoint2{ny2rtnt{Ji,int),n21)-cdoint2{ny2rtnt{i,int-1),nZn)}/tan(a
\elphol)).1t.{y2ptint{J-int)-y2ptint{J-int-1))J=0 to 3010

mPos=0

cail msaflcdoint2iny2etntid-int),n21),0.0,v2etint(J,int)cdointZinvip
\etntld,int=13:n2n):0.0,v2etint{J,int-1) ,,mPos,aamr,cork.Phork,codt-Phodt,Phoult
\c,theto-alrphol-alpho2ssinrk,cosrk,tanrk-xctetarrPirbeta,sf.sv,siga,taufrwrth,
\cwWt)

if(islero.es.0)so to 3502

iFl{sF+smZ{ny2prtntid,int=1),nZn)).st.dummvZ)=sa to

islero=!{

auplane=ny2prtntid,int-1)

nsetu=2

nref =nzZn

hottom=cJjointZ{nyZetnt{d,-int),n2l)
uppPer=cJoint2{ny2ptnt{j,-int-1),n2n)

dummri=hbeta

dummy2=sf+smZiny2rtnt{j,int-13,nZn)

jummy3=sisa

jummvad=wprth

jummyS=wpth+wmin2(nv2rentlid-int-1),n2n)
dummyB=sf

continue

continue

3601

3008

3007

3008

E07
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3010 ifinotrot.ne.0)urite(8,3748)bottom,uprer

path={pottom—uprer)/sin{dummyix*{pi/1B0.))
iF (natPot.ne.0lwrite(B,3748)ny2etnt{d,int) 2,n2l,nurlane,nsatu,nref
iFinotPot.ne.0)uriteib,3750)dummyl path, dummy3,dummr4, dummnys
if{nsetu.eq.1l)a0 to 3522

smpthr2(nyZetntidsint) »n21)=path+smpthr2{nuplane,nref)

sm2iny2rtnt{dsint) n2l)=dummy2

smPtht2{ny2Ptntids-int).n21)=path+smptht2{nuplane,nref)
30 to 3523

2922 smethr2(ny2rtntid-int) ,n21)=path+smethrilnuplane,nref)
smptht2{ny2Ptntidrint)n21)=path+smpthtlinurlanenref)

3523 smpthi2(ny2ptnt ids int) ;n21)=smpthr2{ny2ptnt{i,int) N21) -smpihtZ(nvZprt
\ent{J-int),n2l)

sm2{ny2ptnt{j,int) ,n21)=dummyZ _

if (notPot.ne.0lwrite(B,3746)sm2{ny2rtnt{d,int),n21) smethiZinyZrent (J
\e,int)rn21)ssmptht2i{ny2ptnt{J-int),n21},dummyS

ag to 3003

point=cJoint2i{ny2ptntij-int),n2i-1)
iF(n21.eq.Kab)point={ptint{J-int)-crement{di))
start=cJoint2{ny2ptnt{Jsint),n2l)
iF lcjoint2{ny2Ptnt{Jsint),n21).8t. PrintlJ-int))start=prtint{J-int)
wpP0s=10

call msaf (5tart.0.0,v2ptint(Jrint) sPoint,0.0,v2Ptint(Jsint) mpPos,Sanr
\c,cork,phorKscodtsPhoJtsPhoultstheto,alphol alpho2,sintK cosrks tant, xcteta Pl

\c,heta,sFrsvussiaartaufr,wepth,wt)
iF (point.ea.{ptint{d,int)-crement(Jl)}}20 to 1358

psemuzsm2iny2ptnti{dint),n2l-1)
wminuswminZ{ny2etnt{i-int),n21-1)
go to 1897

continue

da BOOO Kaka=1:{(ml(Ji-1))

if{point.at.rlPtii-1,Kaka))so to BOOO

go to 8001

continue

Kaka=Kaka-1

asemu=sml{j-1-Kaka)

wminu=wuminl{(j-1,Kaka)
if ({start.ea.ptint{J,int))a0 to 1386

sm2{nv2rtnt{J,int),n2l)=sF+esemu

umin2{ny2etntijr-int),n21)=wpth+uminu
psem=st+asemu

AMin=WPth+uwminy

go to 18980

do 8002 KokKo=1l,mi{J)

if{plpt{J,Koko).1lt.Ptint(J,int)daotoBOCZ
30 ta 8003 —-

continue

r wy
"re.

¢ 4¥

rr
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500% so. lid,ncA0)=sftasend

Co:Roko)=wPthn+uming

wmin=wminl2idrKoke)

asam=smiZ2{J- Koko)
continue

ifF{notpot.ne.0)write(B5,3749)startPoint
rath=({start-roint)/sintbeta*(pi/1B0,.3)}#(-1.0)
if {notPot.ne.0)write(B,3747 nv2rtntldrint),2

if(notPot.ne.0dwrite(B,3750)betarrath,sigawrthsf
if(point.at.(Ptint{Jsint)-crement(J)).and.start.lt.ptint{i-int))smPth

\et?(ny2ptnt{d-int),n2l)={absi{prath) )+smetht2{nvZrtnt(di,int),n2l-1) :

iF(point.at.(Ptint{J,int)-crement(J)).and.start.1t.Ptint{J,int)¥smPth
ver2(ny2ptnt{J-int)n21)=smpthar2inyZrtntidint)n2l-1)

if (point.ea.(Ptintldrint)-crement{J)).and.start.lt.ptint{i-int)}smPth
\ct2{nyZrtnt{J-int),n21)=(abs(path))+smpthul{j-1,Kaka)

if (Point.ea.(Ptintldsint)-¢rement{J)).and.start.lt.Ptint{d,int})smPth

\er2{ny2ptntid-int)n21)=smpthrliii-1,kaka)
iflstart.lt.Ptint{J-int)IPsem=smptht2inyZrtntid-int) ,nZi)
ifl(start.lt.ptint{d-int))smpthi2inyZ2ptnt{d,int)n21)=(smpthtZinyZrtnt

\elJjrint) n21)-smrthr2iny2rtnt{J,int),n21))#{-1.0}
smpthi=smpthiZ{ny2etnt{d,int),n21)

iFlstart.lt.ptint{Jrint))sm2{nv2rtntldint),n2l)=esen
iF(start.lt.ptintlJ-int)dwmin2inyZrtnt{d-int),n21)=umin
ifF(start.lt.ptintli,nt))a0 to B170

iF (point.at.(ptint{J-int)-crement{J)))smpthtiZ{J,Koko)=(abs({prath))+sm

\eptht2{nyZeptnt{d-int),n2i-1)

iflpoint.at.(Ptintl{Jsint)—crement{Ji)))smpthrlZ2{Jj,KoKo)=smprinrZinyZretn
vetidrint).n21-1)

if{point.ea.{ptint{J,int)—crement (J) ))smrtht12{J,KoKo)={abs{path))+sm

\epthtli{j-1,Kaka)

iFlpoint.eq.(ptinti{J-int)-crement{d)))smpthri2(i -koKo)=smprhrlii-1,Ka

psem=smPthtlZ2{J,Koko)

smPpthil?{J,KoKo)={smptht12{J,KoKo)-smPthrl2{J,KoKko)}*.
smPpthi=smpthil2{JKoko)
sml2{J,KoKo)=esem

wminl2{J.KoKo)=wmin

zontinue

if {notrot.ne.0)write{B,374B)esem,snPthi,PsemWmin
continue

tast{d,int)=0

iFimerakldrint).eq.100.0r.merakij,int).ea.0)1astldr1nt)={nZl-1)
if{lasti{Jrint).2a.0)30 to 3222

iF{l{-1)##last{dsint)).1t.00Pint,"ERROR1°
ifledoint2{ny2PtntlJrint)lastid.-int)).lt.{ptintldrinti-crement{ddi.o

\er.cdoint2{nyZrtntid.int)-1astljrint))..at.ptint{dint))Print,"ERROR2"
3222 continue

 ag to 503

198%

" i JO)

Joutine For Paths Within A Reaion Bounded
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537.5779

2

c

483

\grint)

By The Free Surface And A Joint Plane OF

Set Two

if {notpot.ne.0.and.dee{nyZrtnt(J,int)).eq.0.0lurite{B,46B)J,¥2rtint(J

if (notrot.ne.0.and.deelny2ptnt{d,int)).at.0.0)uritalB,468) J, y2etint i

Khamsin{(J,int)=0

do 497 n=l,net2{nvZ2rtntli,int)),2

ifl{cdoint2{nv2etnt{Jint)n).at.Print{Jint).and.{n.ea.1))a0to415
20 to 416

if{notpot.ne.0)write(6,492)

merak{J,int)=1000

if{cdoint2{nyZrtnt{dint)n+l).at.PtintiJ-int)lanto3503

41b6 iflcJoint2iny2ptnt{Jj-int),n).eq.dee{nvZrtnt{J-int)).and.(cdoint2invip
\etnt{J,int)n+l).ge.Ptintld,int)))s0to411

sp to 444

if{notrot.ne.0)write(5,433)

merak{Jdr-int)=111

if{cJoint2{ny2ptnt{J-int),n+1).3e,.Ptintld-int))a0 to 4000

Ali if{lcjoint2iny2ptntidint),n).eq.dee{ny2rtntij-int))).and.{cioint2{nv
\e¢2ptnti{d-int)n+l).lt.ptintid,int)})30to417

a0 to 446

417 if{notrot.ne.Qiwritei{B,454)

merak{J,int)=100

448 ifledoint2{ny2Zrtnt(Jdint).n).le.Ptintldint)and.(cdoint2inv2pintii-1
\cnt),n+l).ge.Ptint{j,int)))=20 to 418

[0 to 457

if{notpot.ne.0)uwrite(5,493)

if (merak{J,int).ea.100)merak{d-int)=101

if {merak{Jj,int).ne.10i)meraki{d,int)=1001

if{cdoint2{nyZetnti{dint)n+l).g8e.2tint(i,int))=0to4000

continue

if{merak(J-int).eqa.0.and.notrot.ne.Odwrite{B,431)

if (merakl{Jj-int).eq.1000) 30 to 486

do 4118 n2=1,npt2inv2rtntid,int))

islero=0

nupiane=0

nsetu=0

nref=0

bottom=0.0

upPerT=0,0

jummy1=0.0

dummy2=0.0

Jummy3=0.0

dummy4=0.0

\c:int)

 » 1d

ye.
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dummyS=0.0

dummyB=0.0
if(n2.at.1) =o to 4002

if (cdoint2{ny2rtntidsint),n2).3t.0.0) 20 to 4001

nPos=10

n2=2

point=cJjoint2{nv2etntiJ&gt;int),n2}
iFlcjoint2{ny2rtntld,int),n2).at.ptint(Jsint))roint=ptintldsint)
call meaf iPaints0.0,72Ptintidsint) rdeeiny2ptnt{J,int));0.0,y2rtint {ds

\cint),mpos sant,cork, Phork, cots Phot, phoult,theto,alrhol alphoZ, sinrk,cosTk yt
\canrk-xcteta,pi-beta,sF,sursiza,taufrupthsvut)

path=((point-deeiny2ptnt{isint)))/sinbeta*ipri/180.0)))%{-1.0)
iF(Point.es.ptint{d,int))sml2{i,nmelrtidsint))=sf
iF (point.eq.ptint{d,int)Iuminl2{i-nmplert{i-int))=wrPth
iflpoint.1t.ptintldrint))sm2iny2pLni{d-int) nZ)=sf
iF(point.1t.ptint{Jrint))wminZ{nyZetnt{d-int),n2)=weth
iF(point.1t.Ptint{J,int))smpthi2(ny2Ptnt{J,int) nZ}=patn
if(point.1t.ptintldsint))smepthtZ(ny2rtntid int) n2)=path#(-1.0)
iFlpoint.1t.ptint {ds int) )smpthr2{nyZrtnt(J-int) n2)=0.0
if (point.eq.ptint{J-int))smpthri2iny2rintli-int),n2)=0.0

iFlpoint.eq.ptintid,int))smpthil2linmplrtldsint))=path
iF lpoint.eq.ptint(Jsint))smptht12{i,nmplrtidsint))=path#{~1.0)
if(deelny2ptntid,int)).1t.0.0)3c to 400b

if(notrot.ne.0)write{5,374) point deeiny2rtntii-int))
iF (notPot.ne.0lwrite(B,3747)nv2rtntid int), 2
iF(notrot.ne.0)urite(5,3750)beta, Path, sisa -wPth, sf?
iFtnotpot.ne.0)urite(B,3746)sF path, labsirathl) Wurth
89 to 4118

mpas=1

if {deelny2ptnt{J,int)).1t.0.0)30 to 4006

point=cJjointZi{ny2rtnt{d,int),n2}
call weaf (cioint2(ny2etntidsint) ,n2),0.0, v2rtintld,int) deeinyZrtnt ll

\e,int))+0.0sy28tint {ds int) ,mPos 3am, cork, PhoTR, COG, PROJ, PhOULL theta alPhol

\c,alphaZ,sinrkscosTk,tantk,xctata,Pisbetassfssv,sizas taufr wrth yu)
islero=1

nuPplane=ny2eptntli-rint)

nsetu=2

nref=0

bottom=cJointZ{nvZrint{d-intlnd)
ucper=dee{ny2etnt{d,int))
dummyl=beta

dummy2=st

dummy3=siaa

dummyd=wPth

if{int.ea.l)so0 to 4006

if (merak{Jr-int-1).ea.11i.or.merak{,int-1).ea.1000)=0 to 4006

K00
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720,7B1p

3006

if {y2ptintidrint).at.yili))=o to 4008

if{deelny2etnt{J,int)).ge.~0.23)30 to BOOB

print. "ERROR", Jsint,deelnyZrint{d,int)}

30 to 1801

if (notpPot.ne.0luritai5,3749) point, deatny2etntiisint))

path={point-deeinvyZrtnt{J-int)))/sin(neta*(r1/180.0))
if (notPot.ne.0)write(B,3750) beta,path, siga-wpth, cr

if (notPot.ne.0)write(6,37461sfF0.0PathuPth
smPthr2{nyZptnt{j,int),n2)=pPath
smPtht2{ny2ptnt{iint)n2)=patn
sm2{ny2ptnt{i-int)nd)=sf
wainZ2{ny2rtntid,int),n2)=wpPth
80 to 4118

iFl{~1.0)#%¥n2)4003,4003,20C4
iflcdoint2(ny2rtntidint),n2).at.Ptintidsint))20tO436

MP0s =0

pgint=cJoint2i{ny2ptnti{J-int),n2)
call msaf lcjoint2{nyZetnt(Jrint?,n2),0.0,v2rtintlJsint) ciointZinyZrt

\entld»int)sn2-1),0.0rv2Ptintlis int) ,mPos ants cork, PhoTK,c0JLsPhOJL, PROULL the

\cto,alpholsalphu2ssinrk,cosrk.-tanrk,xcteta, pisbetar sf su sisar taufr wrth, vut)
iflislerg.ea.0)=0 to 4500

iF ((sF+sm2{ny2ptntid-int),n2=-1)).8t.dummyZise tao

islero=1

nuplane=ny2prtnt{J,int)
nsetu=2

nref=n2-1

bottom=pPoint

spper=cJoint2{ny2ptnt{J-int),nzZ-1)
fummyl=beta

dummy2=sf+sm2iny2etnt{J,int),n2-1)
dummy3=sisa
dummyd=upth ”

dummyS=wpth+wuninZ(ny2etat{irint),n2-1)
dummyB=sf

continue .

iflint.es.1)30 to 4008

if (merakidrint-1).2a.111.or.merak{J-int-1).e9.1000}a0 to 4008

do 4005 nt=2,npt2{ny2ptntid-int-1)3,2

iFledoint2(nr2etntidsint=1),nt).at.ptint{d.int-1).or.ciointZinyZrinti
\cjrint-1),nt).at.cioint2{nvZetntid-int)nZ))20to4008

amhdo=atani(cioint2iny2etnt li, int),n2)-cdaintZ(nyZrtntidsint=1)sne)l/
\cly2ptint{rint)-y2ptint (J, int=1)+{{cJoint2(nv2eentid,int),n2)-cooinZ(nyZaint

\eldrint-1),nt))¥/tanialprho2))))
ambda=ambdo#{i80.0/P1}

iflambda.lt.alehallso to 2008

nPos=0

point=cjoint2{ny2etntij,int)n2)

S008

500
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782 ,803P
call mwsafFicdoint2(ny2ptnt{d,int),n2),0.0,v2rtint{J-int)ciointZinv2rt

\entldrint=1):nt)-0.0,v2Ptint{Jrint-1),mPos,2amrcork,PhoTK,c0Jt,PROJLPROUIL,L
\cheto-alrphol,alpPho2,sinTk-cosTk,tanTk.xcteta ri detarsfr-svursisa-taufr wrth, vut

\¢C)

3109 if(islero.eq9.0)2a to 4508

if{sf.at.dummy2)=so to 4510

islero=1

nuplane=nyZrtntiJ,int-1)

nsetu=2

nref=nt

hottom=cJdointZ{nyZptnti{J,-int),n2}

Jrper=cJdoint2{nyZptntid-int-1),nt)

Jummyl=beta

dummyZ=sf

Jummy3=siza

jummy4=wpPth
JummyS=wpth

jummyB=sf

sontinue

continue

ag to 4008

mpas=10

soint=cJoint2{nv2rtnt{J,int),nZ)

iflcdeint2{ny2ptntidint)n2).2e.ptint{J,int))pPoint=ptint{d,int)
call msafF(Point.0.0,y2Ptint{d-int}-cdoint2{ny2rPtnt{J,int),n2-11:0.0,v

\e2ptint(J,int) rmPOS,3amr.cork -phork,codt,Phodt,Phoult,theto,2lrhol alrPnoZ, sine
\cK,cosrKstanrK,xcteta,Pi-beta,sfrsvssiza-taufr-wetn,vue)

if{notrPot.ne.0dwurite(B,3749)Pointcoint2{ny2rtnt{d-int)02-1)
pathz={{point-cdoint2{nyZetntiJ-int),n2-1))/sinl{beta*{pi/180.01))*(-1.

iF{notrPot.ne.0)uritelB,3747)ny2ptut(J-int),2
if(notrot.ne.0lwrite{B,3750betaPath,sigawrth,sf
if{Point.ea.rtint{d-int))an to 5700

sm2iny2pPtnt(Jrint) ,n2)=sF+sm2{nv2ptnt{J, int) ,n2-1)

amin2{ny2ptnt{d-int) n2)=wPrth+twminZinyZrentid-int) .n2-1

smPthJZ{ny2rtnt{J int) ,n2)=Path+tsmpthi2invZetnt{Jrint).nZ-1)
smptht2{ny2etnt(i-int) ,n2)=labs{path))+smptht2{nv2rnt{Jsintr,n2-1)
smpthr2iny2etntidsint) rn2)=smptht2iny2rentld int) m2) +smpthiZinviPint

\gl{Jdrint) 02)
smpthdi=smPpthJi2inyZpint{drint).n2)

smPpthtssmpentZinv2etntid,int)nd?
gsem=sm2(nv2ptatid,int)nd)
wmin=wmin2inyZptntid,int),n2)

3p to 5701

tml2(J nmpipt{dsint))=cF+smZ{nvZrtnili-int)n2-1)
wnini? (Jrnmeletlds int) )supth+rumin2inyZrint{dint?),n2~1)

smPthilZ{J,nmPlrpt(Jsint)I=path+smrthuZinrzeint ds int) na-1)
smpthei2ld,nmeirtlirintY)=(absipath)i+smprhtZinyZrint{d-1nt)nd-12
smpthd=smpthilZld naelptidsint))

\ my

gr-
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£04,B845p
smPtht=smprrhti2{d,nmPirtii,int)?}

smpthri2{irnmpirt(J,int))=smPtht+tsmPind

esem=smi2{d,nmeplrt{J,int))
win=wminl2(J,nmrliPt{di,int))

if{notrot.ne.Qlwrite(B:374B6)esem,smpthi,smPtnt wWnin
20 to 4118

continue

if {notrot.ne.Mwritel(B,3748)00ttom,upPpPer
rath={{(bottom—uprrer)/sin(dummri*{pi/180.0)))

IFinotrPot.ne.0lwrite(E,3748)nyv2rtnt(drint)2,n2,;nurlane,nsetu,nraf

ifF{notrot.ne.Nwrite(B,3750)dummyrath,dunmy3,dummy4,dummyb
if(nuplane.lt.nvZrtnt(iint))smethi2inyZrintidint),n2)=smrtht2lnurla

\cne,nt)+p,ath

if (nuplane.lt.nyZrtntlisint))soPthr2inyZrtnt{d,int)n2)=smpthrinurla
\cne,nt)+path

if({nurlane.ea.ny2rtntii-int).and.nref.eq.0)smrtht2invZrtnt{J-int)nd)

208

\c=path

if{nurlane.ea.nyZertnti{jrint).and.nref.ea.0)smrthr2{nv2ptnt{J,int) .n2)
\¢c=path

if (nuplane.ea.nyZrtntiirint).and.nref.st.0)smrtht2{ny2rtnt{Jj.int?.n2)

\c=pPath+smpthtZ2{(ny2etnti{d-int),n2-1)

if{nuplane.eg.nv2ertntii int).and.nref.at.0)smrthrZiny2rtnt{J-int):n2)
\c=path+smpthr2inyZrtnti{d-int).n2-1)

smPthi2{ny2rtntl{d int), n2)=smprthr2{ny2rtnt{irint) n2)-smPrtht2(nvZrint
\c{J-int).n2)

sm2iny2etnt{j-int),n2)=dummy2

winZi{ny2etnt{dint),n2)=dummy&gt;d

if{notrot.ne.0)write{B,3746dummy,smrthJiZinyvZrtntii-int)n2),smpLht2
\ciny2etnt(drint),n2),dummyd

4118 continue
486 lasti{j-int)=0

if {merak{d,int).eq.100.0r.meraki{J-int).eq9.0}last{J,int)={(n2-1)

if{last{J-int).a9.0)20 to 3333 °

iF{{{-1)#+*lastid,int)).1t.0)pPrint,"ERROR1°

iF(cdoint2{nv2rtnt{dsint),lasti{jint)).at.Ptint{J,int))print,"ERROR2
\¢c 11

3333

503

302

A
-f

a

continue

continue

continue

str=0_0

Routing For Paths Within A Fe=ion Bounded

By A Point On A Joint Plane OF Joint Set

Two And A Point OF Either Set Adoue it

do S50 1=l,mi{d)

islero=0

auplane=0

nsetu=0

 ref =)

pcttom=0.0
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EAR,E87P

uprer=0,0

dummv1=0.0

Jummy2=0.0

dummy3=0.0

special=0.0

dummy4=0.0

dummy2=0.0
jummyB=0.0

nen=0

ifFi{plpt{iri1).89.0.0)20 to 850

miurald,i)=0

ifF(nptint{J).eq.0)a0 to 3080

do 3070 int=i,nPtint(d)

iflptint(d-int).eq.rirtl{iridlso to 3071

if{int.eq.nptintidliao to 3072

continue

if (meraki{d-int).eq.1000)g0 to 3072

miurai{Jj,i)=1

if{merak{Jj,-int).eq.0.0or.meraki{j-int).eq.100.0r.meraki{d,int).ea.1000)=

\ca to 3072

do BBO! nunu=l,nptZ(nv2rtnti{d,int)).2

iflcdoint2{nv2rtnt{Jint),nunu+tl).lt.Ptinti{i,int))=0to

nref=nunu

30 to BB0Z

continue
uppar=cdoint2(ny2rtntid-int)nref)

hbottom=pPtint{dJ,int)

islero=1

nurlane=nyzZptnt{d,int)

nsety=2

special=6.0

mpas=10

call msaf(bottom,0.0,v2rtint{j,int),uprrer,0.0,v2Ptintldint)mPosS,32M

\erscorK,Phork,codt,phodt,Phoulttheta,alrPholairPnoZ,sinrk,cosTk,tanrk,xoteta:p
\cil,beta.sf,sv,siqa,taurr,wPth,yut)

dummyli=beta

jummy2=smi2{J,1)

jummy3=sisa

jummy4=wprth

dummyS=uminlZ {J 1?

dummyB=st

zontinue

io 3077 inte=l,nptintidy)

if{mivurald-id.ea.l.and.(merakij-int).aq.100.or.meran{d-intl).2q.101.0

\cr.meraki{d,int).eq.111))ao0 to 30BO

if (merak{J-inte).es.1000.0r.merak{j,inte).29.111)30 to 3077

aB01

5301

0302
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iF ly2etint(Jrinte).at.liplPptidsi)/taniairnol)}+ylli)) 0 +g 3080

do 3979 nnn=2,nPt2{nv2etntid-inte)),2
iFlciaint2iny2etat(i-inte},nnn).3t.PtintiJsinte))s0 vg 3077 .

Fl((cdoint2iny2rtnt{J, inte) ,nnn)/tanialpho2))+vZrtintidsinte)) st. ld

\eplptidrid/tanialrnol))+vi(d)))so to 3077

verti={plPt{isi)-cdointZiny2rtnt{J.inte’ ,nnnl)
horiz=(({plptid,i}/tanlalphol)+yl(i))={y2rtint{dsintel+{ciointZinyZe

\ctnt{J-inte),nnn)/taniairhol)))}
iF ({{yerti#*2,+horiz##2.)#+,5).at.distmn)g0 to 3077

iF(plPpti{J,i).at.rtintlj-inte))=0 to 3077

do 3900 nen=2,npPtildd).2

iF(plptidrid.ea.cjointi(J-nen)dao to 3077

if{plrptidrid.1t.cdointi{J-nen))ao to 3801

continue

continue

sgint=cJdoint2{nyZrtnt(di-inte)nnn)
wpos=0

call meaf(plptidri)syild) 0.0,P0int 0.0, v2(ny2ptntlirinte)) mPos,22MT

\c,cork,PhorK, coJts Phot Poult theto,alphol ,aleho2, sinTk cosTKy tanTk,xotetas Pl

\c,betarsF,sv,sigartanfr.wrth,yut)
if(islero.eq.0)s0 to 4110

iF ({sF+smZiny2rptntliinte)Ann).at.dummy)eoto
islero=1

nuplane=ny2ptntiJinte)
asetu=2

aref=nnn

rottom=plPtij1)
uPpPeTr=PoOint

jummyl=beta

jummy2={sF+sm2{ny2etnt{isintel)nnn)
jummy3=sigsa

dummy4=uprth

jummyS=wpth+wuminZiny2ptntid-inte)nnn)
dummyB=sf

continue

continue

continue

continue

ir

routine For Paths with only in plane transitions allowed

iFtPpiPtlisi).ge.cdointi{d,1)) 20 to C10

if{i.ea.l)pPoint=0.0
ifiplptidr-i).ea.0.0%20 to 850

ifF{i.gat.)eoint=plpt(dsi-1)
nPOs=0 —

cail maf {piptdrid,yild) 0.0,P01nt,v1{J} 0.0, mPOS,QaNT COT, PROTR CO

\c.it,Phodt,Phoultstheto-alphol airho2,sinrk cosTh, tanTh, xetata risgetassfrsy-=l

\caa-tanfr.weth,ywt)

Rie

»
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531.977,

1 -

«11
as

vq® 0

2a

J

esem=0.0

Wwnin=0.0

iF(point.eq.0.0)esem=smlii,1-1)

if{point.eq.(0.0)umin=wminiliJ,i-1)
if(islero.29.0)20 to 4112

iF{{sf+esem).at.dummy2)ac to 4114

islero=1

nuplane=J

nsetu=1

nref=1

ifli.ge.2)nref=1-1

pottom=PrlptiJ1)
UPPET=POLINL

dummyi=beta

dummy2=sf+esem

dummy3=sisa

dummyd=wprth

JummyS=wpth+umin

dummyB=sf

continue

30 to 948

continue
de S60 n=l.nePtll.d)

iP(Plpt{J-i).at.cdointl{i,n)) 20 to 3SBO

"
-

in Plane And To Free Surface Transitions

=

iF({~-1.0)%#¥n)520,520,530
continue |

MPas=0

iFlplptid,id.eq.cdeintl{drn).and.plptiisiY.le.zgld)) mPos=l

po0int=0.0

if{i.at.lYpoint=prlptidi,i-1)

call msafiplptidri),yild):0.0,P0int,v1(J),0.0,mPos,gamr,cork.Phork,co
\cJjt,PhoJt,Phoult,theta-alrhol-alrno2.sinrk,cosTk,tanrk,xcteta,Pi,neta,sf,svssi

\cea,taufr.wpth,;vut)
if{point.eq9.0.0)esen=0,0

if(point.eq.0.0)unin=0.0

if{point.gt.0.0)esem=smi(J,1-1)

if{point.at.0.0)umin=wminl(a,1-12

if(islero.ea.0)20 to 4EB30

if {{gF+esem).at.dummy2)a0 to 4631

islero=l

nupliane=J

nsetu=l1

nref=i-1

bottom=plptii,1)

derer=piptldri-i)

dummyl=bet3a

1
f

85730
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jummy2=sf+osem

dummy3=siga

jummy4d=wpPth

JummyS=wrth+wmin

dummyB=sf

continue

IF{str.at.sv.and.mpos.eq.1)str=sy
if{j.eq.l.or.miurali,id.eq.1)20 to 949

if{vtran{i-i,J).at.plpt{d,1))a0 ta 948

do 3080 Kub=l,nJjume

iF{({J-Kub).1le.0)=0 to 3082

do 3091 Kin=1,{ml(J=-Kub)-1)

ifF(Plpt{J-Kub,Kin).at.{plPt{Jiri)=vtran{i~-1,-d)))ao to 3GS2

npos=0

call msaf{plrPt{i,i),v1(J),0.0,plPt(J~Kub Kin),vi{J-%us),0.0,mPos amr

\c-cork.PhoTk,codt Phodt.rhoult,theto,alrhol,alrPho2,sinrk,cosrktanrkxcteta,pi
\c,beta,sf,sv,siga,taufr,weth,ywt)

if{islero.eq.0)30 to 4632

iF{{sF+sml{J-Kub,Kin)).at.dummv2)a0 to 4GB33

islero=1

nuplane=j-Kub

nsetu=1

nref=Kin

bottom=plpPtii-i)

upper=plpt{Jj-Kub.Kin)

dummrl=beta

Jummy2={sf+sml {J-Kub.Kin))

jummy3=sisa :

jummy4=wpth |

dummyS=wrth+wminl{J-KubKin)
dummyB=sf

cantinue

continue

continue

20 to S549

continue

MPOS=2

call msaf({plet{i,1),vild),0.0,Pipt{d&gt;1~-1),v1{J2,:0.0,mPas,23m ,COTH,PA
\COTK,coJt,PROJt,PhoultthetaalrhalalPhoZsinrX,cosrk,tanrk,xctetarP1,00t3,5F
\g-su,sizartaufr,wpth,yut)

rath=({pPlptld,1)-PlPt(d,i-1))/cin{beta®{pPi/iB0.02)1¢(=-1.0

sPpthi=0.0
iF({i-1).ge.Dsmprnd=smpthdl(J,(i-1))
smPthdl{j-i)=path+smethd

cmPtht=0.,0

iF{{i-1).ge.)smPtht=smethti(j,i-1)

smPthti{Jd-1)={(abpsi{path))+smrtht

1504-

B72
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smPpthri(i,1)=smPihtlii,1)+smPthdlid,1)

smildri)=sF+smiidri~1)

wiinl(d,i=wpth+uminli(J,i-1}

if {miuradi-i).e9.0)30 to 2501

if {merak{J-int).eq,100.or.meraki{d,int).eq.0)30 to 2501

iFlsmi(d,i).1t.sml2{iri))a0 to 2501

smPpthdl{Jri)=smPthdl2(d,1)

sml(dr,i)=smiZ2{J,1)

adminll, 1)=wmini2(j,1)
smPpthti{Jj,i)=gmpthtl12(J,1)

smPthrilJ,i)=smpthtl{j,i)+smPthilldi)

iF{merak{J,int).ne.iil}s0 to B503

if {khamsin{drint).ea.0)rath=rirtiJ,1)/sinlalprhol)

if {Khamsin(J,int).eq.l)rath=crement{dl)/sin{alrho2)

30 to 63504

do 8501 Khari=il,net2i{nv2ptnti{J,int)).2Z

if (cdoint2{ny2ptnti{J.int),Rharil).lt.ptintld,int?.and.ciointZiny2ptnt

\el{drsint)Khari+l).1t.Ptint{d,int))ao to BS0L

20 to B302

continue

path=i{plrtl{d,id-cdaint2(ny2rtnti{d,int).Kharill)/s.
santinue |

rath=pathx(-1.0}

hottom=plpPtii,i)

upper={plprt(J,i)+{path*sin{airho2)))

if lupper.lt.(=0.1))Print"ERROR4%;ds1.1nt,nv2Ptnti{d,int) Knari,upprer

\c:cJdaint2invZeinti{d,int),;Rhari)

iF (upper.it.{(-0.9))30 to 1801

cail msaf(plpt!(J,1),0.0,¥v2Ptint{d-int) uprprer,0.0,v2ptintli int)  mPOS,

\caamr.corkK.Phork-codtPhotPhoult,theta,alrholalpPno2.sinTk-cosTK-tanrik,xctat
\c2,pPi,betarsfFrsy,sigartaufrwrth:yut)

if{j.eq.2.and.i.eq.3)pPrint ,urper

iF{notrot.ne.0duwrite(B,3748)bottam,urper

if{notrot.ne.Qwrite(B,3747)Inv2etntidint),2
iF{notrot.ne.0luwrite{B,3750)beta,rath,sigawptn,sf

if{notrpot.ne.0luwrit2(B8,3748)smli{iri)smpthilld1),,smPihtlid1)wminl{

IJ

\CJd:s1}

2501

iFinotvpod.ne.0.and.i.aq9.mi{J)duwrite(8,3745)drsmilir1)

30 to 950

if(notrot.ne.Muwritel(B,3749)rirtidi).Plrtid,i-1)
if{notrot.ne.0write({s,3747)4,1

ifF{notrot.ne.Qluwrite{B8,3750)heta,rath,siga,wrPth,sf

if{notrot.ne.Murite!(5,374B)mild1),smpthillii)smPrhti{dri)ruminit
\CJds1)

330

cig

ifinotrPod.ne.0,and.i.eq9.ml{d)dwritel3,3745)drsml(ds1)

30 to 950

rgntinue

if{notrot.ne.0lwrita(6,3749)50ttomupper
if{notrPot.ne.write(8,3748)J-1,i,nupiane,nsetu,nref

sath=((bottom—urrer)/sin{dummyi*{pi/180.0)
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smPthr=0.,0

smPptht=0.0

if{special.ne.B.0.0r.(alPha2-dummyi).at.(.01))=0 to 5300

smPthdlldri)=smpPthil2ii1?
smPpthtl{i,1)=smpthti2{i,1)

smll{d,1)=smi2(J,1)

wminl(J,i)=uminl2{i,1i)

smepthrl(j,i)=smpthtli(j,1)+smpthilid,1)

do 817B:mardi=1l,nertint{j)

ifFiplrtid,id.ea.PrtintiJ,mardiddaato8177
20 to 89178

9177 if ((merakl{j-mardi).eqa.10l.or.merak{i,mardi).eqa.1001,.0r.meraki{J-mardi)

\c.89.111).and.path.st.{0.0))rath=Path#{-1.0)

ag to 5178

continue

continue

30 to 83801

iF(nsetu.eq.l.and.i.at.l)smpthr=smpthri({nurlane,nraf}

if(nsetu.eq.l.and.i.at.1)smptht=smpthtl{nurlane,;nref)
if(nsetu.ea.2.and.i.at.l)smpthr=smpthrZinurlane.nref)
if{nsetu.eq.2.and.i.gt.1)smptht=smptht2(nurlane.nref)

smPpthrli{d,i)=path+smpthr

smpthtlld,i)=path+smptnt

if(notrot.ne.0)write{B,3750)dumnylPath,dummy3,dummréd,dummyb
smPpthdlld,1)=(smPthti(Jj,1)-smpthrl{i,i))#{-1.0)

sml{d,1)=dummy2

Wwminl{d,i)=dummyd

1F{notrot.ne.0writalB,374B)smi,1)rsmpthdl{di)rsmPthel{d1)rwminti

S176

3178

5300

Cy i

\CJdsr1l)

150

if (notrPod.ne.0.and.i.eq.mi{iNwrite!(5,3745)drsml{dri)
mpags=0

The Following Calculates The Unit Safety Marsin

dist=xdi{Ji/sinl{airhol)
asmi{d)=smliid,-mi(J))/disse

The Following Calculates Tne Ansie

OF The Critical Path

fFanaldl)=1.000¢

if (outPut3.eqa.1) so to 1381

Fang(Jd)=(atan(l.0/(({wmini{dmii))/qamr)/0,5+{xdl{)##2.0)10+{1.0/t3
ven(thet)))¥#{1BG.0/R1)
(381 dFact=ndiv
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The Following Routine Calculates Tne Apparent

Persistence OF The Critical Patn

wat=,S#aamr#xdl{NN#xdl(J)#{(1l./tanlalphol)-1./tan{thetol)

siga=wat#cos(alirholli#sinl{alrhol)/xal(J)
rr=siza/cork

ce=2./{{Z2.%rr+l.)##.,5-2 #rr#tani{rhodt))
acrit=100.#(1.-rr#cc#(rani{alrhol)-tanirPhodt)))

app{Jjl=acrit-100.*cc*usmid)/cori

4
3

The Following Routine Divides The Slope Into Hiaht

Increments And Performs A Statistical Analivsis On

The Various Parameters Previously Calculated

dxd=vdim/dfact

do 980 ndx=1,ndiv

¥ndx=ndx

iF{xdl{J).at.dxd#xndx) =20 to 8BO

numJd{ndx)=numjindx)+1

sper{ndx)=sper{ndx)+perconl{J)

ssaper{ndx)=ssaprer{ndx)+rerconl{iY+%2,

sfFan{ndx)=sFan{ndx)+fFanal{)
ssafani{ndx)=ssafan{ndx)+fFana{j)#=*2.

ssmindx)=ssmindx)+smi{j,mi{J)) :

ssasmindx)=ssasmindx)+sml{J-mi{J))#*2,

susm{ndx)=susmindx)+usmi{J?

ssqusm{ndx)=ssqusmindx)+usmiJj)#+#2,
sapri{ndx)=sare{ndx)+arpiil

ssaaprpindx)=ssaarpindx)rape)#1,
swat {ndx)=swatindx)+uminl{imi{Jd}

ssawat{ndxY=ssauat {ndx)+umini{J, ml {J} )#x2,

ifF({smlli,mi{i)).le.{0.0))smlecindx)=smlieo{ndx)+l

30 to 582

zontinue

continue

Jontinue

ifF{outrPut2.ea.0)so ta 1505

write(Bb,1131})Jrll

drite(85,1132)

do 1500 J=1,Jrll

Wwrite(B,1133dreerconliid)Fang)rsmi(d,mii))rusm{diapril)uminl{d,
\eml(d)),xdl{d)

1500 continue

1305 zgntinue

{F{mm.lt.noreall=so to 1860

if loutPut3.ne.0)lwritel(B,1138)vdim,dud
do 1800 n=1,ndiv

iFinumdinl).1t.2) 3g ta 1500
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sddiv=numJdin)-1

pavavei{n)=speri(n)/numJin?

sarss=abs{ssarer(n)-spreri{ni#perave(n))

sdperin)={perss/sddiv)#*.D

fanavei{n)=sfanin)/numiin)

Fanss=abs{ssafani{n)-sfanin)+fanavein))

sdfanin)= {fanss/sddivi**.,D
smave(n)=ssmini/numdin)

smss=absi{ssasmin)-ssmin)#*smaveln))

sdsmin)={smss/sddiv)**.D

usmave{n)=susnin)/nuniin)

usmss=abs{ssausmin)-susmin)*usmave(nl)
sdusmin)={usmss/sddiv)#*.,5

appave(n)=sarr(n)/numiin)

appss=abs{ssaappin)-sarri{n)tarpaveinl)

sdapp{n)={(appss/sddiv)#*.35

watave(n)=swat(n)/numiin)

watss=abs{ssawat{n)-swatin)#watave(n))

sdwat(n)={watss/sddiv)#*.5

fxx1={(n=-1)*dxd
KXXZ=n#*dxd

if{ydim.eq.10.)20 to B8S4

if {gamr.eq..151)s0 to BBS4

if {xxx1.1t.80.0)20 to 8955

8394 ifloutput3.ne.Qwrite(B,;113B)xxxl,xxxZ-numdin)peravei{n)sdreri{nl)Fan
\caveln).sdfanin) smavein) sdsmin) ,usmavein) ,sdusmin) -arravein) sdaprini ,watave

\c{n).sdwatin),smleoin)

3955 continue

1300 continue

{860 gontinue

{966 continue

1501 stap

and
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" Tne Following Subroutine Calculates Resistance And Safety

Marain For Transition Paths Checked In The Dynamic Programmi:
3

subroutine msafF lex2,vi2,v22,8xl,v11l, v2) ,mPos,2amr, cork .Phork,coJt,PNC

\cjt,Phoultsthetor-alphol-alpho2,sinrk cosh. tank xcteta pi beta, sf sussisas tay

\cFr.wPth; yut)

»1=3,141583
For paths within the second Joint set

ifFl{viZ.eq9.0.).and.{v11.ea.0.)) 20 to GO4

for paths within the first Joint set

if ((y22.e9.0.).and.(v21.29.0.)) 30 to G03

path From First set point uP to a second set Polnt

if{{yli.pq.0.).and.(y22.29.0.)) =0 to BOZ

path From second sat Point up to 2 First set Point

if({v12.e9.0.).and.{v21.29.0.)}) 30 to BO!

whvl=y2Zl

why2=v22

salol=alpno2

agloZ=alrhol

30 to BOD

whyl=vil

why2=yi2

aalol=alrhol

aalo2=alrhol

ag to 850°

whyl=vZl

why2=v12

3alol=alrho2

aaloZ=alrhol

so to BOS

Jhvl=vil

ahy2=v22

galol=airhol
agloZ2=alrhol

roco={lex2/tanlaaloz))+why2-whyl-(exl/tan(zaiol)
ar=.S#{exl+ex2)

for paths to the right of the slore arex

iF (({ex2/tan(aaloZ)+uhv2).le.vwt).and. ((exl/tan{galold+unvid.ie.vwil)

\c go to BOB

3 for paths under the slope apex

iF (exl/tan{aalol) 1+wnyl) de. vut) and. ({lex2/tan(gaaiod) Y+unvd) .st.

\eywt)) or. {{{{axl/tani{galol))+whri).at.ywt? and. (((ex2/tan{galod) Jruhvil ia. vu

\¢t))) ao to 507

3 for Pathe to the left of the sigre arex

iF({((exl/tan({ealol))+wnri).st.ywt? and. ({{ex2/tani{zaloZ) }+unvi).atl.7
\cwt)) ao to BOB

0B areas=ar+Poco

ag to 60S

area=ar#roco
iF(area.3t.0.) area=area-.3#tanithetor*{{{ex2/tan(2alo2))ruhvZ-yuLles

$

=O

fy

4i) ‘

rw
i

 a 3)
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if{area.lt.0.) area=area+.S%tan(theto)#{({exl/tan{aalol))+tunyvl-vuri#+

\eZ.)

30 to B09

608 areas={ar#poco)~{.3#tanithetol)*({{{ex2/tani{gaiol))+uwhrZ-yut)x2,)-1{{2
\gxl/tan{aalol))+uwhri-vwt}*#2,3))

508 if(area.at.0.0) beta={(atanlabs{{ex2-exl)/pPoco?))*(180./P1))

if(area.eq.0.0) bata=q0.0

iflarea.1t.0.0) beta=180.-({atanlabs{{exZ-exli/Pacal}))#(1B0./P1})

seto=beta*{pi/180.)

iist=abs{roco/cos{airhol))

wif =areaxsamr

ifldist.1t.10.0))siga=.0001

if(dist.at.{0.00))siga=abhs(wif#(cos(alrhcl))/dist)

dt=2.%xcteta

iF(siga.le.cork) rad=.3#{siza+tcork)

if(siga.at.cork.and.sisa.le.dt) rad={cork#sigal)##.5

if{siga.at.dt) rad=s{{siaa/2.)+{cerk/tanTk))*sinrk

xct=sisa/2.

taufr={rad®##2.-({siza/2.)##2,))1#+.35

if{rad.le.xct)taufr=0.0

if (mpos.st.1) 30 to B20

ifF(siga.at.cork) 30 to B40

This Part Examines Failures.InPureTension

if{siga.eq.0.0) si=za=0.00001 |

tenana=.S5#{pi-atan(2.#taufr/sisa))

if {beto.le.{alphol+tenans)) res=taufr#dist*cos(beto-alrhol)

iF(beto.at.{alpnol+tenana)) res={cark/2.)%¥(3ps{ex2-exli#casi{alprnol))

ag to BBO

340

“SO

+
*

"

3

This Part Examines Failures In Shear

res=taufr#dist#cos{beto-alrnol?

ag to BRO

This Part Examines Jeint Failures

tauf je=codt+sigastani{phoit)

ifF{taufit.st.taufr) taufit=taufr

if{mpPos.eq.10)taufJt=0,u

res=taufJt#dist

taufr=taufJjt

ag to 5/0

This Part Checks Failures At Ultimate Stranstn

Cc

350 rult=sigastani{phoulit)*disttcosibeto—-alphol}

if{ruld.3t.res) res=ruilt
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2570

700

sF=res-wlf#sin(alrhol)

JPthzwlf
if {mpos.ne.l) s0 to 700

su=ex2#{cork/2.)*cosl(alrhol)

sus=ex2#{cork/2.)#sin{airhol)

if{sus.g1.5V)sy=8us

return

and

J

r 15:24 11.455 468
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talal

input thetaralphal.alpnal;vala

75 23 35 10

input ystar,ndiv

3 10

input PniJt.cadt.phirk.cork.Priult

30 30 25 30

input Saar

A450
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160

CHAPTER 5

RELIABILITY OF SLOPES CONTAINING A SINGLE

SET OF SLOPE PARALLEL JOINTS

5.1 Introduction.

Slopes with two sets of random joints of the type shown in Fig-

ure 2.1 and 2.2 are rather commonly encountered, especially in sedimen-

tary formations. Their relative simplicity makes it possible to analyze

reliability taking into account all the governing parameters (geometric

and mechanical properties) that affect slope stability. The computer

program described previously is specifically aimed at analyzing slopes

of these types.

In order to run the program, joint spacings and length distributions

are needed in addition to the deterministic values of joint attitudes

and mechanical properties. The program output includes the probability

distribution of the safety margin from which the probability of failure

(probability that the safety margin is negative) can be derived. The

present chapter evaluates sensitivities of the probability of failure

yith respect to the main input parameters. Such a study is important

for two reasons:

1. It provides further insight into slope safety.

2. It may make possible simplified procedures for

slope reliability analysis.
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The main results are presented first, followed by a brief descrip-

tion of input parameters, geometric and mechanical that are relevant

to slope safety. The parametric study constitutes the body of the

chapter and is followed by a summary of results.

5.2

3S

Main Conclusions of Parametric Analysis

The main conclusions from the parametric study can be summarized

follows

Intact rock cohesion (C.) is the parameter which has the

strongest influence on rock slope stability. Its effect is notice-

able in all runs in which C.. was varied. This is not surprising since

the failure algorithm assumes intact rock bridges to fail in tension

with small joint friction angle. Actual slope failures seem to support

this model feature.

2. Mean joint length of the first set at high persistence values

has a strong effect on rock slope stability. This already established

in previous research, sensitivity of safety, to mean joint length is

slightly magnified here due to the presence of two joint sets.

3. When comparing results for a slope with a single joint set

and one containing two joint sets, lower safety values due to the

second set, though not detrimental to slope stability

5.3 Geometric Parameters

The geometry of slopes of the type shown in Figures 2.1 and 2.2 is

described by four deterministic parameters and six stochastic parameters.

The four deterministic parameters are: slope height, slope face angle,
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and angles of inclination of the two joint sets.

Slope height (Yqim) gives the vertical distance from the slope apex

to the foot of the slope. Slope angle (6) is the angle between the slope

face and the horizontal. The angles of joint set inclinations (al, a2)

are the angles between joint planes and the horizontal.

Six more parameters are necessary to completely specify the prob-

abilistic model of joints in the first joint set: mean joint length

(JL1), mean rock bridge length (RB1) and mean joint plane spacing (SP1).

Similarly for the second joint set: mean joint length (JL2), mean rock

bridge length (RB2) and mean joint plane spacing (SP2). Actual joint

lengths, rock bridge lengths and joint plane spacings are generated

stochastically within the program by assuming that all uncertain geometric

parameters are independent exponential distributions. Some comments on

these six input parameters and on derived parameters such as mean joint

plane persistence of set one (K1) and set two (K2), mean joint intensity

of set one (I1) and set two (I2), are given next.

Mean joint length is simply the average length of joint segments “for

each set. In practice, this parameter needs to be estimated from joint

survey data. The model assumes that joint lengths are exponentially

distributed about their mean values JL1 and JL2 for joint sets 1 and 2,

respectively. Mean joint plane persistence (K) has previously been esti-

mated to be:

K = JL / (JL + RB)

shere JL is mean joint length and RB is mean rock bridge length.

he parametric study does not include equivalent consideration of
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RB4 and RB,

Rock bridge lengths, Tike joint lengths, are assumed to be exponen-

tially distributed about the mean values, RB; and RB,,.

The mean joint plane spacing SP is the average spacing between

two adjacent planes within a joint set. Like JL and RB, joint plane

spacings are assumed to be exponentially distributed about the mean

values, SP1 and SP2.

Joint intensities can be derived

T1 K] / i?

from other input parameters as

 YP KZ / SE?

Strength Parameters

Five parameters completely specify intact rock and joint resistance

properties within the slope: intact rock cohesion (C.)» intact rock

friction angle (2.) joint cohesion (C5) joint friction angle (25) and

Jltimate friction angle (2,14) - Of these, C,. and F are most critical

with respect to reliability.

Intact rock cohesion (C.) is defined as the intersection of the

linear portion of the intact rock failure envelope with the shear stress

axis. C. is assumed to be twice the tensile strength (T,) of the intact

rock - see Figure 5.1.

At relatively low stresses (low compared to Cy) within a rock
slope, intact rock resistance is a function of the cohesive

(tensile) component of resistance. Only at relatively high

stress levels can the frictional component of resistance (oy)
olay a role. One of the basic assumptions of the model is that

the state of stress within the slope is low compared to Cy.

-or most slopes in which depth does not exceed 150' and Cy, is

greater than 25 Ksf, the low stress assumption is valid and

Hig rock resistance is essentially independent of ?. (0'Reilly,
1980).
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The ultimate friction angle (®,1¢) is important in the calculation

of intact rock resistance only for high stress levels, higher than

those at which 2. becomes significant. One may therefore conclude that

the ultimate friction angle (2,14) does not affect reliability in the

stress range under consideration.

Joint friction angle (25) which is the angle of the joint failure

envelope, is the parameter that generally determines the resistance

properties of joints; see Figure 5.2.

Since rock bridges ususally fail at low strains before joint frictional

resistance is fully mobilized, it may not be wise to depend on frictional

resistance for the purpose of determining stability. Rather, it is

avisable to use reduced values of 05 at least for the purpose of

sensitivity analysis.

Joint cohesion (Cy) is defined as the intersection of the joint

failure envelope with the shear stress axis (see Figure 5.2). Unless

joints are filled with cohesive material, joints do not possess a true

cohesive component of resistance since they are unable to resist tensile

stresses. Consequently, Cy may be set equal to zero.

The unit weight of intact rock (v,.) affects reliability through

its influence on resistance and driving forces. In all cases analyzed

here, Yy has been set equal to 0.15 KSF. The effect of varying vy, was

not studied because of its small variability compared to other parameters.

5.4 Dependence of Reliability on Various Slope Parameters

The computer program of Chapter IV does not directly give the prob-

ability of slope failure. Rather, it calculates the probability that an
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unstable portion of the slope exists. Calculating Pe values as a

function of slope depth allows the designer to more closely relate fail-

ure probability Pe to failure costs.

The probability of failure is defined as the probability of a joint

plane exiting within a sepcific height interval and that the exit point

is part of a failure path.

5.4.7 Probability of Failure Derived from Safety Margins

The safety margin of a given path through the slope is defined as

the difference between the resisting (R) and driving forces (DF) along

that path.

The driving force is simply the. component of overburden weight

acting parallel to jointing of the first joint set:

SM =R-IF (5.71)

The force mobilized to resist the driving force, R, is derived

from two sources: resistance from the intact rock bridges (or transi-

tions), R. and resistance from the jointed portion of the plane, Rs:

b, + vr (&gt; 2)

As discussed before, intact rock transitions can be in the form of

low angle transitions (including in-plane) and high angle transitions.

Thus resistance R_ is the sume of the respective components:
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Rv = Rel * Ren
(b..
”

i)

where. the Tow angle component RL is given by

Y

al
T

ny
1

4 5.)

in which d is the total length of low angle transitions and Ty is

the peak shear mobilized for low angle transitions. The latter quan-

tity is given by

”~

~ 5 C. /7C +
LA

 . 3)

where C,. is the intact rock cohesive strength and c = a,/C,

with oc the stress acting normal to the joint plane

The parameter T can be estimated from

4  . LC + |
I ~

5 Cp = T.
+

~
Z Jo)

where Te is the tensile strength of intact rock.

Consequently, the total resistance contribution due to low angle trans-

itions through intact rock is approximately

R
~
~~ i (3.7) a

The second component of intact rock shear resistance, Roy» is derived

from all high angle transitions between joint planes. Resistance for

high angle transitions has been derived previously (Chapter 2) as

«

H
(5.42)
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where x is the distance separating the joint planes between which

transition takes place (for transitions between planes of the first

set, other than in plane transitions).

If the sume of the lengths, x, of all such transitions along a

given path is dy» the total resistance derived from high angle trans-

itions is simply

Ry T. dq, \

f =

CT -
4 3)

Thus the total resistance of intact bridges can be expressed as

3 2
1

1

Roy = To (d
4 1 9 U

where dp and dy are independent of the strength parameters o and 25.

Joint resistance (R;) can be expressed in a simple form:

&lt; w'cosal tan D (5.11)
gp

The quantity W' is the weight of rock that overlies the jointed por-

tion of the path, as shown in Figure 5.3. Hence. W' is not larger

than the actual weight of rock (W) overlying the critical path. W' is

a geometric property of the path.

The safety margin of a path can be derived from the above expres-

310n.

IM 2 '; = Wsinal = T, (d, + dy) + W'cosal tan 2 -Wsinal

(5.12)
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Finally, the unit safety margin is defined here as the safety margin

divided by the length (25) of the joint plane

'SM Sm i (5.13)

where the length 2s depends on the exit height (h) of the joint plane

on the slope face - (see Figure 5.3):

17|

Probability of Failure

For each exit point (i.e., for each joint plane) in one realiza-

tion, a number of critical paths are possible, but only one is most

critical. Also for each given realization of the jointing pattern,

there are usually a number of exit points and hence of critical paths

within a given height interval. The probability of failure, Pes within

that interval is the percentage of those ¢ritical paths with zero or

negative safety margins; quantitatively

D = {(Number of Critical Paths) SM &lt; 0 / (Total Number Critical Paths)}x 100
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5.5 Parametric Study

5.5.1 Introduction

The parametric study is carried out by varying the parameters,

one at a time, and observing the effect on slope reliability. Each par-

ameter is described in a separate subsection in this chapter, and for

purposes of clarity, each subsection has the ‘same basic structure:

1. Each subsection begins by defining the input variable whose

affect on reliability is under consideration. Program outputs are then

given and conclusions are drawn. Runs are divided into groups called

"cases", each case consisting of a number of runs with different sim-

qlated realizations of joint patterns. For each group of cases, all

parameters are held constant, except for the parameter in question.

2. Next, the effect of varying the parameter on the prob-

abilities of failure at various depths are examined. Relevant data

plots are included.

3. A particular height interval is selectedtoexaminehowthe

probability of failure of this interval varies within each case. The

height interval selected in all cases is the interval from 90 to 100 ft

This is also the deepest interval in the analysis and is usually the

most sensitive to parameter variations.

For each case consisting of a given set of input parameters all

are held constant except one. The probability of failure is plotted

as a function of the parameter under consideration.

4. Each subsection ends with a summary of results which stress

the practical significance and relative importance of the variable with

respect to slope safety.
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The input parameters examined are, in order of treatment: intact

rock cohesion (C.)» joint friction angle (5). Then for joint set one:

nean joint length (JL1), mean joint plane persistence (K1), mean joint

plane spacing (SP1) and joint intensity (I1), and for joint set two:

mean joint length (JL2), mean joint plane persistence (K2), mean joint

plane spacing (SP2) and joint intensity (I2). Finally we will examine

the angle of slope face inclination (8), the angle of joint inclination

for setone (al) and the angle of joint inclination for set two (a2).

Variables and their range of values used in the parametric study are

listed in Table 5.1.

The effect of varying each parameter is measured in terms of the

mean and standard deviation of the safety margin (SM, SM), the unit

safety margin (USM, USM) and the apparent persistence (K, , K,)- The

distribution characteristics are used to derive the probability failure.

Most of the sensitivity results will be presented as relations between

distribution characteristics of this type and vertical distance from

the slope apex to the midpoint of a height interval. P. as a function

of depth is also calculated.

Three functions are noticed in the following analysis. Namely,

critical persistence (Ke) s the index of reliability (B) and the prob-

ability of a joint plane which is 100% continuous at a given depth (Py).

Critical persistence (K.) is defined as the persistence required

along a joint plane at a given depth to yield a zero safety margin,

SM. Solving for the critical persistence (Kc) of this plane requires the

calculations of de, the critical rock bridge length, such that SM = 0.
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TABLE 5.1

RANGES IN INPUT PARAMETER VALUES

PARAMETER

Intact Rock Cohesion, Ch.

Joint Friction Angel, 2;

Mean Discontinuity Length {set 1), JL1

Mean Persistence-ConstantJointPlaneSpacing
(set 1) Klg [SPT]

Mean Joint Plane Spacing - (set 1), SPI

Mean Persistence - Constant Intensity

(set 1), Kl go |IT]

Mean Discontinuity Length (set 2), JL2

Mean Persistence-Constant Joint Plane Spacing
(set 2), K2 op |SP2|

Mean Joint Plane Spacing-(set 2), SP2

Mean Persistence-Constant Intensity (set 2),
K2 5 |T2]

Rock Slope Face Inclination, ©

Joint Plane Inclination (set 1)-al

Joint Plane Inclination (set 2)-a2

Intact Rock Friction Angle op

RANGE OF VALUES

8 - 500 Ksf

0 - 40°

10 - 40

10 - 80%

2 - 10"

10 - 50%

10 - 40"

10 - 80%

15"2 -

10 - 50%

50 - 90°

10 - 80°

11 - 180°

30°-~ 40°
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Ke may be calculated from the following relation (from O'Reilly - 1980) :

8

- de

1 - = | 100
dj

shere d_. is calculated as (from O'Reilly - 1980):

1
2W (sinal - cosal tan 25)

C, (V2c + T - 2ctan 0)

and by rearranging variables we get (from O'Reilly - 1980):

2c (tan al - tan 2j)

/2c + T - 2c tan 2;

X  1 Dn

where C is intact rock cohesion, 2s is the joint plane length, d. is

the length of intact rock bridges along the joint plane, o, is defined

as the average stress of overburden weight applied normal to the joint

plane. Quantitatively (referring to Fig. 5.3):

Weosol /Q. where W is calculated as:
1,

Al
7

al.  Hy &amp; .1/tanal l/ tan ®)
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and O. is rock unit weight while 2s is quantitatively defined as:

/. 1 / 31000,

and ¢ is o_/C,

The reliability index (B) is the difference between the critical

persistence and the mean apparent persistence measured in terms of

standard deviations of apparent persistence. A negative reliability

index implies an unsafe slope while a positive index implies a stable

slope. B can be calculated as follows:

3
C ‘a

In other words, B is the number of standard deviations between the crit-

ical state and the most likely state; the latter obtained from a model

run.

The theoretical lower bound probability of failure, P,, is calcu-

lated by the following equation (from O'Reilly - 1980):

K[exp(-h/JL1*sinal)]

where K is the mean joint plane persistence.

This closed form equation is to be used as an approximation for

oredicting slope reliability, However, the admissability of such usage

will be examined in the parametric study
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5.5.2 Effect of Intact Rock Cohesion on Slope Reliability

Intact rock cohesion (C.) has been defined as the intercept of

the linear portion of the intact rock failure envelope with the shear

stress axis. It is assumed to equal twice the intact rock tensile

strength (T.). Since failure of a rock bridge is assumed to occur in

tension, C. is the only parameter needed to calculate intact rock

bridge resistance.

Four cases, each consisting of three runs, are analyzed to examine

the effect of intact rock cohesion on rock slope reliability. The range

of values for o is varied from 25 to 500 ksf. Following is a brief

description of each case:

Case #1: Mean joint persistence (K) is set equal to 50 percent

and mean joint length (JL) is set equal to 40 feet.

Same as the above except that mean joint persistence"ase #2:

(K) is increased to 75 percent.

case #3:

case #4:

Identical to Case #1 except that the mean joint

length of the first set (JL1) is reduced to 15 feet.

Also identical to Case #1 except that the mean joint

length of the second joint set (I02) is reduced to

15 feet.

Thus, the influence of intact rock cohesion is studied in cases when

joint persistences are moderate and joint lengths are high (Case #1),

when joint persistences are high and joint lengths are high

{Case #2), when joint persistences are moderate and the mean joint

length of the first set is small while the mean joint length of the
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second set is high (Case #3) and finally when persistences are moderate

and mean joint lengths in both sets are Tow (Case #4).

The Effect of Intact Rock Cohesion (C,) on the Probability of Failure

Pf(h)
The effect of varying C, on Pe (h) while holding all other input

parameters constant is schematically shown in Figure 5.4. For a given

h, program output showed that the probability of failure increases

when C. decreases. The probability of failure also increases as a re-

sult of increasing the driving forces which increase with depth due to

the overburden weight.

The Probability of Failure as a Function of Intact Rock Cohesion

The influence of C. can be seen clearly in Figure 5.5 where the

number of realizations and the jointing patterns are kept constant

such that changes in results are caused by variations in Cp In Fig-

ure 5.5 Pe is plotted as a function of Cpr for the four cases (1, 2,

3 and 4) described previously. In comparison to O'Reilly's (1980)

findings, Pe here, is approximately a linear function of C.- For

slopes with a single set of joints, the probability of failure is less

sensitive to changes in cohesion of intact rock (O'Reilly 1980). From

program output, Pe increases rapidly as C, decreases below 100 ksf.

For C.. greater than 100 ksf, the probability of failure decreases from

approximately 35% to 3% when C. equals 500 ksf.

At a given depth (h=90-100"), comparing cases 2 &amp; 4 with case 3 shows that

decreasing the mean joint length of the first set (JL1) does not effect the
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dependence of Pe on C. except at lower JL1 (Case #3). This may be due

to the presence of relatively long joints of the second set which in-

crease the persistence of potential failure paths. One may expect

slopes with two joint sets to be more sensitive to changes in Cp From

Figure 5.5, the influence of C. on reliability (Pe) can be summarized

by the following:

|. As expected, decreasing C. has the effect of increasing

Pe at any given height h. The magnitude of this increase

]

grows substantially with depth.

Beyond a certain value, depending on other input par-

ameters, C. no longer has a significant effect on Pe

and P. approaches in value the probability of existence

of a 100 percent persistent joint. For failure to

occur the case with high joint persistences and long

joints, C, must be in the high range (500 ksf) so that

the probability of failure corresponds to the probabil-

ity of a fully persistent joint. For moderate joint

persistence and low joint lengths, C. must be greater

than approximately 100 ksf for the above condition to

take place

Effect of Intact Rock Cohesion on Apparent Persistence

In Figures 5.6 through 5.9, mean apparent persistence (K,) &gt; mean

plus one standard deviation of apparent persistence (XK, + K,) and

critical persistence (Ke) s are plotted as a function of C. for the same

four cases described previously. In all, computer output revealed that
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variations in Ky and Ky are semi-sensitive to changes in Cp Sensitivity

appears to increase slightly as C. is decreased. Insensitivity to C.

is due to the fact that apparent persistence is essentially a geometric

property of the critical path. It is more noticeable in the case where

the slope has a single joint set (0'Reilly- 1980). Typically, varying

Cp does not significantly affect the geometry of the critical path es-

pecially in slopes with a single joint set, however, the distribution

of Kn is affected.

Also plotted in each case is the critical persistence (Ke) as a

function of op As Ke approaches Ky one would expect Pe to increase

substantially. When studying the plots of all four cases, one finds

that K, is furthest from Ky in Case #3 (Figure 5.8) which consists

of runs with short-joint lengths (JL1=15). Consequently, one concludes

that Case #3 is the most reliable while Case #2 is the most unreliable

(K1=73%, JL1=40'), thus implying the highest probability of failure.

As discussed previously, the use of reliability index (RB) values

gives a more quantitative description of how Ky» K, and Ke interact

to affect reliability. At depths greater than approximately 50 feet.

Pp

a

f.5)

Ky = Ke

a

The plots of 8 vs. C, (Figure 5.10) for the three cases (#1, 2 and

1) under consideration, at a depth interval of 90-100, show that reli-
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ability (B) increases with increasing Cp Case #3 is clearly the

most reliable.

in many situations, B values can be used to give reasonable es-

timates of Pe without going through an entire simulation process. In

cases where K, and K change very little when the parameter of interest

is varied, values can be estimated from a single model run simply by

assuming that both are independent of the parameter analyzed (Cy. here).

As for the critical persistence (Ko) which is a function of the par-

ameter being analyzed (C. here too), its value can be calculated from

the following closed form equation:

2c (tan al - tan 9.)
} tii YO

/2c + 1 - 2c tan oF

Once K. is determined, 8 values can quickly be found as a function of

C.. without making additional lengthy simulations.

SUMMARY - Effects of Intact Rock Cohesion on Apparent Persistence

The influence of C, on the distribution of K, at a given depth can

be summarized as follows:

Increasing oN results in an increase in Ky and a slight

decrease of K, at deep slope intervals. Mean apparent

persistence sensitivity to C. increases with depth and with

decreasing C.
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2. At a deep slope interval, variations in Ky as a

function of Cp are moderate, approximately 5 to

12 percent. Variations in K, are much less than

those in K,- In the case of a slope with a single

joint set, similar variations are practically non-

existent.

3 For a given height interval, it is possible to cal-

culate the reliability index (8) for a wide range

of C,. values from the output of a single simulation.

Effect of Joint Friction Angle (2j) on Slope Reliability

In most program runs, 2 is set equal to zero. A reason for

this is that sensitivity of the probability of failure (Pe) can be

better examined if Pc is high (&gt; 90%). This is done by

keeping low the other resistance parameter (25). Later on, when study-

ing the effects of the other parameters, both Cp and 2; are kept at

low values so that failure probabilities are high and the influence of

the examined parameter on stability could be demonstrated with better

precision.

Another reason for setting 25 equal to zero has to do with rock

mechanics. In the process of calculating total resistance, peak intact

rock strength and peak joint strength are fully mobilized. However,

this can be unconservative since peak shear resistance along joints is

generally mobilized at strains higher than that for intact rock (0'Reilly-

1980). Also, by keeping £4 equal to zero throughout, one achieves
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the additional benefit of being able to exclude the effects of water

pressures on slope reliability analysis without being unconservative.

In other words, the component that could be affected by water pressure

should and is here set to zero. Future work is expected to provide

information and procedures for including water pressures in reliability

analyses.

In some situations, 2; can have a large effect on slope stability.

This is particularly true in weak rock (C.&lt; 100ksf) as is shown next.

The influence of variation of %; on slope reliability is examined in

Cases 5, through 8. Detailed plots using computer output data to es-

tablish understanding on the influence of 2, on rock slope reliability

are shown in Figures 5.11 through 5.18.

The Effect of Joint Fricition Angle (91) on the Probability of Failure

Pf (h) :

The effects of varying os on P. (h) are shown in Figure 5.12. As

expected, when 2, approaches the angle of the first set inclination (al),

the probability of failure approaches that of a joint plane being

100 percent persistent. This fact holds Ineo of all other

jointing and strength parameters. Hence, decreasing ¢5 has the effect

of increasing Ps at all values of h. In all cases, the influences of

2; increases with depth.

Figure 5.11 presents Pe as a function of 3 for the deep interval

from 90-100 feet. For very low intact rock cohesion (25ksf), program

output shows that P,. is very sensitive to variations in ¢;. For high
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cohesion (100 skf), the data plots whose neglible sensitivity to

variations in 05 In Figure 5.11, one may notice that in rock with

moderate joint friction angles (10 -20°) and a high mean joint length

first set, reliability is high in depths of up to 100 feet.

Effect of Joint Friction Angle (®j) on Apparent Persistence (Ka)

Figures 5.13 through 5.18 are plots of distributions of Ky at

various 25 Figure 5.13 is from O'Reilly - 1980 for comparison.

Figure 5.14 shows results from runs in which C is kept at 25 ksf while

2 is varied between 0 and 40 degrees. Sensitivity of K, to variations

in 2; is moderate. In all, K, decreases as %; is increased.

In cases 5, 6, and 7, the critical persistence curve intersects

the Ky curve at %; approximately equal to 25° which is halfway in the

range. This implies that at least 50 percent of the critical paths

are failure paths.

At higher cohesion values, program output reveals that sensitvity

of apparent persistence (Ky) to variations in 2; decreases. Contrast

to the findings of 0'Reilly (Fig. 5.13), Figures 5.14 through 5.17

show some sensitivity of K, and K, to variations in d5- This may be

explained by critical paths having high persistences and thus implying

lesser dependence on intact rock cohesion and greater dependence on the

joint friction angle.

Reliability index (RB) values, derived for the data points in

Figures 5.14 to 5.17, are plotted in Figure 5.18. As “5 increases, the

plots of RB vs. ?; for cases 5, 6 and 7 level off. This indicates that

as &amp;. increases, reliability increases and becomes less and less
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dependent on intact rock strength.

Summary - Effects of ¢j

The effect of 2; on reliability can be summarized as follows:

2, has a strong influence on the reliability of slopes

in weak rock (i.e., less than 50 ksf).

?

3

As 2; increases, while approaching first joint inclin-

ation, the influence of intact rock strength decreases

until Pg (h) is approximately equal to the probability

of a joint being 100 percent persistent (Py).

Both K, and K_ can be assumed to be dependent on 2;-

This is a result of the critical paths being less

dependent on intact rock cohesion (C,.) as a result of

high persistences.

5.5.4 Effect of First Set Mean Joint Length (JLT)

In a rock slope, joint lengths of the first set are assumed to

be exponentially distributed about their mean - JL1. Effects of

varying JL1 on rock slope reliability are examined by varying intact

rock cohesion and varying mean joint plane spacing of the second joint

VOL

Effect of First Set Mean Joint Length (JL1) on the Probability of

Failure Pf (h)

of

From looking at Figure 5.19, one can see that the probability

failure increases with depth. In all depths, computer output
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reveals that the probability of failure increases when increasing the

mean joint length (JL1). Generally, increasing JL1 at any depth does

not considerably increase the probability of failure except in the deep

sections of the slope (i.e., greater than 80 feet).

The Probability of Failure (P.) as a Function of First Set Mean Joint

Length (JL1) |

Figure 5.21 shows plots of P. vs. JL1 for cases 6, 7 and 8 at a

depth of 90-100 feet. From program output, decreasing intact rock co-

hesion increases the dependence of Pe on variations in JL1 as the

figure clearly shows. The curve for C, equal 100 ksf, is approximately

aquivalent to the 100 percent persistence curve for all JL1. In other

words, as Cp approaches the value of 100 ksf, failures are expected to

occur along 100 percent persistent planes. A similar trend may be

seen in the findings of 0'Reilly --1980, as can be seen in Fig. 5.20.

Effect of First Set Mean Joint Length (JL1) on Apparent Persistence and

the Reliability Index

Plots of mean apparent persistence Ky and mean apparent persistence

plus one standard deviation of apparent persistence (K, + K,) for

cases 8, 9, and 10 are shown in Figures 5.24 through 5.26. Figure 5.23

(figure 6.41 from 0'Reilly - 1980) is included for comparison purposes. In

all cases the variations, of Ky and K, with varying JL1, are small. There-

fore, for practical purposes Ky and Ky may be assumed to be constant. Thus,

the reliability index values (RB) may be obtained by one simulation for each
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case. As expected, B values are higher for the case when C, equal

to 100 ksf (See Figure 5.27). Notice for example that 8 values for

C. equal 100 ksf is the most reliable (highest B - Case 10).

Summary - Effects of Mean Joint Length of Set One (JL1)

The effects of JL1 on reliability can be summarized as follows:

At any given depth in the slope, increasing JLI

decreases reliability.

].

2. Unlike the case for a slope with a single set, Ky and Ky

are sensitive to variations in JLT. As a result, B values

can be obtained from a single model run.

5.5.5 Effect of First Set Mean Joint Plane Persistence (Kl) at

Constant Mean Joint Plane Spacing (SP1)

Mean joint persistence (K) is estimated by the two input par-

ameters, the mean joint length (JL1) and the mean rock bridge length

(RB) as follows:

K = [J01 / (JL1 + RB) ] x 100

Mean joint plane persistence (K), an input parameter, should not

be confused with the apparent persistence (Ky) which is an output par-

ameter. K of a joint set, is the average percentage of joint segment

lengths expected along any joint plane-within that joint set. Actual

joint plane persistence along any plane can vary dramatically from this

mean value. With all this in mind, the following section examines the

effect of varying the mean joint plane persistence while holding con-

stant the joint plane spacing (SP1). The estimate of the first set joint
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plane intensity is defined as:

= K1 /SP1

I1 varies in proportion to KI. In the section which follows, the

effect of varying K at a constant T is examined.

The influence of K1 (at constant SP1) is studied in two cases.

Common input parameters are listed at the top of the pages containing

figures 5.29 and 5.30. In case #14, C, equals 25 ksf while in case #15,

Co equals 100 ksf.

Effect of First Set Mean Joint Persistence (K1) on the Probability of

Failure Pf (h)

The effect of Sncressing mean joint plane persistence (K1) on the

probability of failure is shown in Figure 5.28. At any depth, the

value of Pg increases with increasing Kl. At depths greater than

30 feet, the probability of failure (Pe) increases with increasing

depth

The Probability of Failure (Pf) as a Function of Mean Apparent Per-

sistence (K1)

Figure 5.29 is the plot of the probability of failure (Pe) as a

function of mean joint plane persistence (K1). In case 14, Pe increases

from 10 to 100 percent for Kl values of 12 to 80 percent. O0'Reilly found

that the upper limit was 100 percent at 100 percent Kl. This means that

for low cohesion values (C,.=25) a 100% persistent plane will definitely

fail. With respect to case 15 at hand, a similar trend may be observed

although at a slower rate due to the higher cohesion (100ksf). As a re-

sult of the introduction of a second set, the smaller first joint set per-
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sistence required to induce failure is possibly due to the higher persist-

ence of critical paths. Consequently, smaller driving forces are required

to change a critical path into a failure path.

The Effect of First Set Mean Joint Persistence (K1) on Apparent Persist-

ence (Kj)

The effect of varying mean joint plane persistence (K1) on apparent

persistence can be seen in Fig. 5.31 and 5.32, Fig. 5.30 (from O'Reilly '80)

is included for comparison purposes. Computer output revealed that sensi-

tivity of Ky to variationsinK1is not as dramatic in a slope with two

joint sets as it is in a slope with a single set.

The effect of increasing K1 on Ky is shown in Fig. 5.32. For the case

of a slope with a single joint set (0'Reilly-1980), reliability is more

sensitive to changes in Ky than for cases with two joint sets. In the

former, senstivity of Ky to variations in Ky decreases with increasing co-

hesion as program output shows. Fig. 5.33 is a plot of reliability, ex-

pressed in terms of B. Reliability increases with increasing Ky for both

cases examined. Reliability is not much affected by variations in cohesion

in the range considered perhaps due to the fact that other parameters over-

came the unstable conditions that cohesion variations would cause.

5.5.6 Effect of Mean Joint Plane Spacing of the First Set (SP1) at

Constant Persistence

The effect of mean joint plane spacing of the first set. is ex-

amined in three cases, 16, 17 and 18. The range of values of SP1 is

varied from 3 to 12 feet.

Case 16 examines the influence of SP1 on slopes with weak

rock (C. = 25 ksf) and long mean joint length of the first

set (JLT = 40").

case 17 is similar to case 16 except that C_ is set to 100 ksf.
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Case 18 is similar to case 16 except that JL1 is

reduced to 20 feet.

Effect of Mean Joint Plane Spacing (SP1) on the Probability of

Failure Pf (h)

Figure 5.34 is a plot of the probability of failure as a function

of depth. At any depth, and as one may expect, the probability of

failure increases with decreasing mean joint plane spacing. The prob-

ability of failure increases with increasing depth. Also shown in

Fig. 5.34 is the probability of a 100% persistent plane (Py) which de-

creases with depth, contrary to the curves that are obtained from the

model since in the equation defining Pys the probability of failure is

directly proportional to mean joint length.

For a slope with either a single joint set or two joint sets,

Fig. 5.35-36, program output data shows that an increase in the mean joint

plane spacing of the first set causes a decrease in Pe (h). A greater SPI

causes failure paths to be more in plane in the case of a single joint set.

In the case of two joint sets, an increase in SPI causes failure paths

to be more "in plane" and to use joints of the second set for transitions

to above planes when such discontinuities exist in a way that satisfy

the algorithm.

The Probability of Failure (Pf) as a Function of Mean Joint Plane

Spacing of the First Set (SP1)

The probability of failure P. as a function of mean joint plane

spacing of the first set (SP1) is shown in Figure 5.36. In all cases

‘16, 17 and 18), P. decreases linearly with increasing SP1. Also
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plotted are the lower Timit expressions Py as functions of SP1 for vari-

ous JdL1. As one may expect, the probability of failure curves are higher

and further away from the theoretical curves (P1) for slopes with two

sets than for slopes with a single set. This may be the result of a

higher discontinuity concentration per unit area of the slope's cross-

section. The slopes of the three curves are identical and the prob-

ability of failure for cases with low intact rock cohesion is higher

for a specific SP1. Also, as one may expect, program output shows that

decreasing the mean joint length decreases the probability of failure.

This can be seen by comparing cases 16 and 18.

Effect of First Set Mean Joint Place Spacing (SP1) on Apparent Per-

sistence (Kz)

The effect of varying the mean joint spacing (SP1) on apparent

persistence (K,) is shown in Figures 5.37 through 5.39. Shown in the

curves is the critical persistence for each case. Program data indi-

cates that mean apparent persistence (K,) is approximately constant

for all values of SP1. Also constant in each case is the standard devi-

ation of apparent persistence (K,). As a result, reliability index

values (g) can be calculated from a single simulation for each case

shown in Figure 5.40.

5.5.7 Effect of First Set Mean Joint Plane Persistence (K1) at

Constant Intensity (Il)

Intensity of a joint set is defined as the average jointing per

unit-sectional area of the rock slope (0'Reilly-1980). In the present

study, intensity in either set is defined as follows:
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I1 = Ki/SPI [2 = K2/SP2 (5.17)

The sum of the above quantities, 1, yields the total length of joint

segments in a given unit area of the slope's cross-section.

[ rl / “5.13)

An increase in joint intensity results when K is increased or SP

is decreased in Equations 5.17 or 5.18. Not surprisingly, results of

the parametric study discussed previously have shown that this increase

in intensity, whether achieved through an increase in K or a decrease

in SP, has similar effects on P. , K, and K,- Thus, it would be desir-

able to relate slope reliability to jointing intensity. The extent to

which this can be done is explored in 3 cases, (19, 20 and 21).

In the 3 cases examined, I1 is kept constant (5.0/ft.) K1 and SP1

are varied such that their ratio is constant. By so doing, it is possi-

ble to examine to what extent joint plane reliability is a function of

intensity alone rather than of the separate component K1 and SP1. Be-

sides having common parameters, differences between cases are as follows:

Case 19 had C. equal 25 ksf and JL1 equal 40°.

Case 20 had C,. equal 8 ksf and JL1 equal 40'.

Case 21 had C, equal 25 ksf and JL1 equal 20'.

With increasing depth, the probability of failure increases gradually. At

any depth, the probability of failure increases when increasing either SP1

or K1 and that increase is greater at deeper intervals in the slope.



230

3p! Ki!

Pe
»”

i
y CONSTANT II

™

\
20

-

0M

AC

0.

ND)

LA

fe 0 100

H (ft)

FIGURE 5.41 EFFECT OF MEAN PERSISTENCE (KI) ON

P¢(h) , CONSTANT JOINT INTENSITY II



231

K (%)

rJ#4
J

80

80 —

o

H=90 -100'

Pj=0°
9=60°

a=40°

SLOPE WITH A

SINGLE JOINT SET

20 30 40 50

Oo Cr=25 ksf JL=40

0 Cr=8 ksf JL=40'

JL=20"

Ps (%)

17 ““

20)

J

_, “m= —

—
iI\o

SP (ft)

FIGURE 5.42 Ps AS A FUNCTION MEAN JOINT PLANE

PERSISTENCE K , CONSTANT JOINT

INTENSITY I (FIGURE 6.55-OREILLY-1980)



737

Effect of Persistence (Set 1 and Constant Intensity) on the

Probability of Failure Pf (h)

he effect of varying only SP1 and K1 while holding I1 (and all other

input parameters) constant, is shown in Fig. 5.43. Figure 5.42 is in-

cluded for demonstration purposes. Computer output reveals that at any

depth, increasing both K1 and SP1 (keeping I1 constant) increases Pe.

{owever, as can be seen in the figure, the magnitude of this increase tends

to steadily decrease with increasing depth. Thus at deep intervals (i.e.,

greater than approximately 60 feet), Pe (h) becomes independent of Kl and

SP1 and is only a function of their ratio (I1). For the case of a single

joint set, Fig. 5.42, failure probabilities are Tower than those shown in

Fig. 5.43. This is possibly due to sensitivity to joint length of the

first set rather than cohesion.

The Probability of Failure (Pf) as a Function of Persistence (Kl) -

Constant Intensity (I1)

Figure 5.45 is a plot of the probability of failure (Pe) VS. per-

sistence (K1) and mean joint plane spacing of set one - (SP1) for

the three cases mentioned above in which intensity (I1) is kept con-

stant at I1 = 5. Other input parameters remain constant and are listed

in the figure. In all cases, the probability of failure (for the

depth interval from 90 to 100 feet) increases with increasing persis-

rence (K1) and of joint plana spacing (SP1).

cffect of Persistence (at Constant T1) on Apparent Persistence (Ka) and

the Reliability Index (B)

Each of Figures 5.44 through 5.46 contains plots of mean apparent

versistence (Ky) » mean plus one standard deviation apparent persistence
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(XK, + K,) and critical persistence (Kc) for each of cases (19, 20 and

21). When both persistence and joint plane spacing are reduced and the

intensity of the first set is maintained, a moderate decrease in Ky

occurs. Figures 5.44 through 5.46 also show that standard deviation of

apparent persistence (K,) remains essentially constant when K1 and SPI

are varied while keeping intensity constant. |

The net result, of a decreasing [ and a more or less constant Ky

and a constant Ke (the critical persistence, Kes is independent of Kl

and SP1) on joint plane reliability,asexpressedbygvalues,isshown

in Figure 5.47.

Plots of B as a function of K1 (and SP1) show similar trends; an

increase in 8 (and thus reliability) as K1 and SP1 are reduced. At

values of K1 below 30 percent (or SP1 equal to 6 feet), reliability

decreases at a faster rate. Examining slopes with a single joint set

reveals a 1imit beyond which reliability would be a function of in-

tensity (T1) only. However, this condition is not noticeable in the

present cases.

5.5.8 Effect of Second Set Mean Joint Length (JL2)

Joint lengths of the second set are assumed to be exponentially

distributed about JL2. The effect of JL2 on reliability is studied in

two cases with common input parameters and is listed in Figure 5.50.

Case #22: Intact rock cohesion is set to 25 ksf

Case #23: Intact rock cohesion is set to 100 ksf

Two additional cases (24 and 25), mainly for observational purposes,
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are included. The difference is in the second set mean joint plane

spacing (SP2) for each case. Case 24 considers -effects when SP2 is

set to 5 feet while case 25 considers effects when SP2 is set to 15'.

For cases 22 and 23 this parameter is set to 10 feet.

Effect of Second Set Mean Joint Length (JLT) on the Probability of

Failure Pf (h)

Although the effect of increasing second set mean joint length

(JL2) at any depth (h) in the slope is not significant, it is not

trivial. This can be seen by comparing Pc (h) plots within each of

the three cases shown in Figure 5.48. Like most other cases, Pe

decreases with {noreasing h up until approximately 30 feet beyond which

Pe increases with increasing depth. As a result, an approximately con-

stant trend of Pe as a function of h occurs for the entire range of

JL2 values examined.

 The plot of the probability of 100 percent persistence (P1) is

also shown in Figure 5.48. P1 is not sensitive to changes in JL2

and only varies with changes in depth. This is due to the fact that Pl

is not a function of JL2 and thus the probability of failure (P%) is

not much affected by changes in JL2 as compared to the results of the

analysis of JLI.

Also shown in Figure 5.48 is the variation of the mean apparent

persistence as a function of depth (h) for the three runs. K, (h) is

almost constant for all cases. Figure 5.49 is a plot of the variation

of the standard deviation of apparent persistence as a function of depth.



240

-—

oe 8
a

=0

Kq(%)

80

Ps (%) |

17

0

|

=|

Ka(h)

a
AF

0 Jr2=10'

g
o JL2=20'

a JL2=40'
5
J

Cr=25 ksf pe
op

”

=,

Ar

~g*
 -—

=
a

Et| = p

i £119)
r

/

Py

“N 4) el QU 100

H (ft)

FIGURE 5.48 EFFECT OF MEAN JOINT LENGTH (JOINT

SET 2) ON Ps(h)



247

SC

o JL2=10'

a JL2=20'

ao JL2=40'

20!

a |

&amp;

 N
3

“
Nc

\ 3

\

r

=e

mo

H (ft)

FIGURE 5.49 VARIATION IN THE VALUE OF STANDARD

DEVIATION OF APPARENT PERSISTENCE

WITH DEPTH

~ 20 __
mh 100



2472

K, (h) starts at very high values and levels off at depths greater than

approximately 60 feet. For all cases and at any depth, Ky and K, curves

almost overlap.

The Probability of Failure (Pf) as a Function of Second Set Mean Joint

Length (JL2)

Figure 5.50 shows plots of P. vs. JL2 for cases 22 and 23 at a

depth of 90-100 feet. For low intact rock cohesion (C,. = 25 ksf),

the effect of varying JL2 on Pe is noticeable for JL2 values in excess

of 20 feet. At higher C. (100 ksf), that effect is erratic and tends

to increase slightly with JL2. In cases 24 and 25, the effect of vary-

ing JL2 on Pe for different mean second set joint plane spacing is

rardly noticeable except at high JL2. This can be seen in Figure 5.51.

Effect of Second Set Mean Joint Length (JL2) on Apparent Persistence

and the Reliability Index (8)

Plots for mean, mean plus one standard deviation of apparent per-

sistence (Ks K, + K,) and critical persistence (Kc) are shown for

cases 22 and 23 in Figures 5.52 and 5.53, respectively.

Program output reveals that variations in second set mean joint

length (JL2) have no influence on K, and K, and thus, the reliability

index (B) can be obtained through one simulation. As one may expect,

3 values for smaller Cn are smaller (See Figure 5.54) and consequently

reliability is Tower (case 23)
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5.5.9 Effect of Second Set Mean Joint Plane Persistence (K2)

at Constant Spacing On Slope Reliability

Second set mean joint plane persistence (K2) is estimated by the

input parameters second set mean joint length (JL2) and mean rock

bridge length (RB2) as follows:

(2 J 7 / (JL2 + RB2)] x 100

The influence of K2 (at constant SP) is studied in cases 26 and

27 with common input parameters listed in Figure 5.57. In case 26,

C,. equals 25 ksf while in case 27 it equals 50 ksf.

Effect of Second Set Mean Persistence (K2) on the Probability of

Failure Pf (h)

The effect of increasing second set mean joint .plane persistence

K2) on the probability of failure Pe (h) is shown in Figure 5.55 for

various K2. The value of Pes at any given value of h, increases with

increasing K2. For any K2 value, P increases with depth especially at

depths greater than approximately 50 feet.

Also shown in Figure 5.55 is mean apparent persistence (K,) as a

function of depth. For depths approximately greater than 20 feet, the

value of K, levelsoffforallvaluesofK2.Similar to this is the

variation of standard deviation of apparent persistence as a function

of depth (See Figure 5.56). Beyond depths of 40 feet, gk, as a func-

tion of depth is constant and may be obtained from a single simulation

for practically any depth.
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The Probability of Failure (Pf) as a Function of Second Set Mean

Persistence (K2)

In Figure 5.57 Pe is plotted as a function of second set mean

joint plane persistence (K2). Also plotted is the probability of a

plane being 100 percent persistence (P1) as a function of K2 for all the

input paramters listed. Computer output shows that cases 26 and 27

Pe increases from a value of 5 at K2 equal to 20 per-

cent up to a value for K2 of 40 percent where C. Pe levels off at approx-

imately 20 percent for the case with Cn equal to 25 ksf and a Pe of

approximately 60 percent for the weaker rock (case 26). This im-

plies that the effects of the second set have a limit which depends on

the input paramters used.

Effects on Apparent Persistence (K3) and the Reliability Index (B)

Figures 5.58 and 5.59 are plots of mean (K,) and mean plus one

standard deviation (K, + K,) of apparent persistence and critical per-

sistence for cases 26 and 27, respectively. For practical purposes,

K, and K, may be assumed to be constant for varying second set mean

persistence (K2). For C,. equal to 25 ksf, the effect of reliability

can be clearly seen as Ky approaches and exceeds Ke with increasing

K2. At K2 equal 30 percent, kK, = K. and one may expect a P. value close

to 50 percent as computer output data shows.

Figure 5.60 is a plot of the reliability index (B) as a function

of second set persistence (K2). For values greater than 40 percent for

second set peristence, 8 values are approximately constant. Reliability

is slightly more sensitive to K2 when rock strength (C,.) is low (See
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case 26.

5.5.10 Effects of Second Set Mean Joint Plane Spacing (SP2)

The effect of second set mean joint plane spacing is studied

in two separate cases with common input parameters lised in Figure 5.63.

In both cases, SP2 varies between 2 and 10 feet.

"a. NS #28:

Case #29:

Examines the influence of SP2 in slopes

with weak rock (C. = 25 ksf)

Examines the influence of SP2 in slopes with

strong rock (C. = 100 ksf)

Effects of Second Set Mean Joint Spacing (SP2) on the Probability of

Failure Pg (h)

The effect of varying SP2 on the probability of failure is

shown in Figure 5.61. Except for the shallow depths, increasing SP2

has the effect of increasing Pf. One can see that the influence

of SP2 on Pe (h) is most pronounced in weak rock with long mean joint

lengths of the second set (case in which SP2 = 6 and C.= 25 ksf).

As SP2 decreases, the Pe (h) curve begins to approach the Tower

limit curve (the probability of being 100 percent persistent). For rock

with high KI and Tow strength (C.) joint planes will commonly fail
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without transitions and P will be high even if SP of either set is high

(e.g., greater than 20 feet).

The mean apparent persistence (K,) is insensitive to variations

in SP2 at any depth. Mean apparent persistence remains constant with

depth as may be seen in Figure 5.61. Figure 5.62 is a plot of the

standard deviation of apparent persistence (k,) as a function of depth

(h). For depths greater than about 40 feet, K, reaches a relatively

constant value. Finally, at any depth K, shows no sensitivity to varia-

tions in SP2.

The Probability of Failure (Pf) as a Function of Second Set Mean Joint

Plane Spacing (SP2)

For constant mean joint segments lengths (JL), the influence

of second set mean joint plane spacing (SP2) on the probability of

failure (Pe), in the depth interval from 90 to 100 feet is examined in

cases, 28 and 29, as shown in Figure 5.63. Case 28 analyzes a slope

with weak rock (C,. = 25 ksf) while case 29 analyzes a slope with strong

rock (C. = 100 ksf). For each case, Pe is approximately constant and

shows a slight decrease for SP2 greater than 8 feet. As C,. increases

beyond C._ equal 100 ksf, one would expect that P. would eventually be-

come equal to P. for all
nw

NF™

Effect of Varying Second Set Mean Joint Plane Spacing (SP2) on

Apparent Persistence (Kj)

“rom model runs, variations in SP2 have no effect on neither the
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mean apparent persistence nor the standard deviation of apparent

persistence. Figures 5.64 and 5.65 are plots of mean apparent persis-

tence (Ky) and mean plus one standard deviation of apparent persistence

as a function of SP2 for cases 28 and 29. All plots show constant [

and K, as SP2 varies from 2 to 10 feet. The effect of this variation

on reliability can be studied from the plots of 8 values shown in

Figure 5.66.

3 Ka=Kc

Since Ko 1s independent of SP2 and remains constant for each case, re-

liability remains constant with varying SP2. From styidng the Pe (SP2)

plots, one concludes that case 28 is the least reliable, since it has

both the lowest reliability (highest 8) values and the highest P-

values over the range of SP2 values examined.

As one may expect, decreasing SP2 reduces reliability but this

is only noticeable at spacings less or equal to approximately8feet

within the parameters used in this section.

5. 5.11 Effects of Second Set Persistence (K2) on Constant Joint

Intensity (I2)

The influence of estimated second set persistence (K2) at con-

stant intensity I2, is examined in cases (30, 31 and 32). In all

cases, I2 is kept constant (I2 = 5). It is possible to examine to

joint plane reliability as 4 function of intensity alone rather than
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as a function of the separate components K2 and SP2. All cases had the

common input parameters listed in Figure 5.69.

Case #31:

a  -~ 30) Cohesion (Cp) is set to 25 ksf and

first set mean joint length (JL2)

is set to 20 feet.

Cohesion is set to 8 ksf and JU] is

as above.

case #32: Cohesion is set to 25 ksf and JL1 is

set to 5 feet

Effect of Second Set Persistence (K2) at Constant Intensity (T2)

on the Probability of Failure Pf (h) |

The effect of varying only SP2 and K2 while holding I2 (and all

other input parameters) constant is shown in Figure 5.67. Increasing

both K2 and SP2 by the same percentage (keeping I2 constant) increases

Pe at any depth. However, as shown in Figure 5.67, the

magnitude of this increase tends to decrease with depth. Often at

depth, Pg (h) becomes independent of K2 and SP2, and is a function of

only their ratio; (I2) as indicated by the intersection of the P£ curves.

Shown in Figure 5.67 is the variation of mean apparent persis-

tence as a function of depth which becomes independent of the K2 values

as computer output shows.

Figure 5.68 is a plot of standard deviation of apparent persis-

tence (K,) as a function of depth (h). Up to a depth of approximately

50 feet, K, is highly sensitive to changes in depth
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Effect of Second Set Persistence (K2) on the Probability of Failure (Pf)

Figure 5.69 is a plot of the probability of failure Pe as a

function of K2 (and SP2) for the three cases mentioned above (30, 31

32) in which T2 was kept constant (TI2 = 5). Other input parameters are

also kept constant as shown in Figure 5.69. In all cases, Pe increases

with increasing K2 (and SP2). For very weak rock (C. = 8 ksf), Pe

seems to be independent of K2 (or SP2) and simply a function of T2

only. With less accuracy, the same may be said for cases 30 and 32

as can be seen in Figure 5.69. As expected, when K2 and SP2 approach

zero, joint planes are no longer defined. At such a point, only joint

intensity can then describe jointing within an area of rock. Hence the

orobability of failure becomes a function of that ratio.

Effect on Apparent Persistence (Kz) and the Reliability Index (B)

Figures 5.70 and 5.71 are plots of mean apparent persistence

(K,) and mean plus one standard deviation of apparent persistence

(Ky + kK.) of cases 30 and 31, respectively. In both cases, and over

the range of values considered, Ky and K, may be assumed constant.

This indicates that K, and K, may be assumed to be functions of intens-

ity which is constant in this section.

For both cases, Ke is constant and it is neither a function of

K2 and SP2. Joint plane reliability can be expressed by 8 values as

shown in Figure 5.72. Recall:

2 L(K. SK) 7 KT.
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Plots of g as a function of K2 (and SP2) for cases 30 and 31

are given in Figure 5.72 and show identical trends; an increase in 8

(and thus reliability) as K2 and SP2 are increased. However, as SP2

and K2 are reduced below values of 6 feet and 30 percent respectively

Note, however, that for different jointing intensities and different

combinations of input parameters, the limit values where becomes

indpendent of K2 (and SP2) may be different.

Effect of Slope Face Angle (8)

The slope face angle (6) is defined as the angle between the

slope face and the horizontal. The effect of varying 6 on joint plane

reliability is examined for three cases, 33 through 35. Within each

case, 6 was varied between 50 and 90 degrees while holding all other

input parameters constant. Common inputs to all 3 cases are listed in

Figure 5.75.

Case #33:

Case #34:

Examined the influence of 6 in weak rock

(C,. = 25 ksf) and long mean joint lengths

(JL=40")

Examined the influence of 6 in stronger rock

C,. = 100 ksf) and long mean joint lengths

(JL=40')

Case #35: Examined the influence of 6 in weaker rock

(C,. = 25 ksf) and moderate mean joint lengths

(JL=20")
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Effect of Slope Face Angle (6) on the Probability of Failure Pf (h)

The effect of varying the slope face angle (6) on the prob-

ability of failure Pe (h) is shown in Figure 5.74. Increasing 6 has

the effect of increasing the probability of failure at any given depth

(h) in the slope. The effect of 6 becomes increasingly more pronounced

with depth.

The Probability of Failure (Pf) as a Function of Slope Face Angle (6)

The values of the probability of failure (Pf) at the depth

interval from 90 to 100 feet are plottedinFigure 5.75 as a function

of slope face angle (8). Pe increases very gradually with increasing

6 for all cases. The increase is most noticeable in weak rock (C, =

25 ksf) and long joint segments (JL = 40'), i.e., in case #33.

As © approaches joint plane inclination in a slope with a single

joint set, Pe approaches the probability of a joint plane being 100 per-

cent persistent. This is due to the fact that rock overlying the crit-

ical path approaches zero.weight.

Due to geometric reasons, 6 does not equal to

first set inclination in this research anywhere at anytime.

For high intact rock cohesion (C. = 100 ksf) and moderate mean

joint lengths (JL = 20'), program output shows that a variation of Pe

with 6 becomes very small. This implies that for fixed C. and JL, the

probabilityoffailuremay be assumed constant in the range of high

values of intact rock cohesion. This indicates that at high cohesion

values (&gt;100 ksf), the probability of failure is no longer a function of
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slope face angle.

Effect on Apparent Persistence (Kj) and the Index of Reliability (8)

Figures 5.76 through 5.78 are plots of mean, mean plus one

standard deviation apparent persistence and critical persistence for

cases 33, 34, and 35 for height interval from 90 to 100 feet. For all

the values of 6 examined, K, and Ky are essentially independent of 6.

Insensitivity of Ky to 6 variations is of particular interest because

in most design situations, 6 and slope height are the only slope

parameters which are controlled by the designer. Once Ky and K, are

determined from a single model run, it is possible to investigate joint

plane reliability as a function of © for a wide range of values of

(all other parameters are assumed constant).

Figure 5.79 is a plot of the index of reliability (B) for cases 33

chrough 35. Recall that B is defined as follows:

2
Ke = Kg

The insensitivity of Ky to variations in 6 is useful for the same reasons

as insensitivity of Ky to C. and ®; is useful; it enables estimations

of 8 and P values from a single model run for a wide range of 6 values

without additional lengthy simulations. Case 34 is of a slope with

high reliability as one might expect when comparing it with the others.
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5.5.13 Effect of First Set Joint Plane Inclination (al)

The influence of first set joint plane inclination (al),

measured between the first set joint planes and the horizontal, is ex-

amined in two cases (36 &amp; 37). In each case, al is varied from 20 to

70 degrees while holding other parameters constant. Common parameters

of both cases are given in Figures 5.82 and 5.83.

Case #36:

case # 37:

Examined the influence of al in slopes

with weak rock ( C,. = 25 ksf)

Examined the influence of al in slopes

with moderately strong rock (C_. = 100 ksf)

Effect of First Set Joint Plane Inclination (ol) on the Probabilit

of Failure Pf (h

Figure 5.80 is a plot of the probability of failure as a function

of height. In the same figures, the mean apparent persistence as a

function of depth, (h) is also plotted. Computer output reveals that

at any hgieht, and for all al, P. is maximum for the depth interval

90 to 100 feet.

Mean apparent persistence (K,) as a function of depth is practi-

cally constant for depths greater than approximately 20 feet and for

any value of ol. This indicates that K_ is not a function of «al

nor of depth (See Fig. 5.81)

The Probability of Failure (Pf) as a FunctionofFirstSetJointPlace

Inclination ( al)

o1ots of the probability of failure as a function of first set
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inclination (al) are given in Figure 5.82. Program output reveals

that Pe (al) is a maximum when ol equals 40 to 50 degrees. Changing

intact rock cohesion Cro does not appear to influence the value ofal at

which Pe is maximum. This is in agreement of findings by 0'Reilly-1980.

supporting this fact.

By referring to Fig. 5.83 &amp; 5.84 one may conclude the integrity of the

model developed in this thesis, It is obvious from both said figures that Kj

is a minimum at the angle al that coincides with the value used for the

intact rock friction angle.

As expected, the weaker rock has a higher probability of failure

at all values of al examined. The position of the relative maximum

remains unchanged at al, approximately equal to 40 degrees. While

the influence of C, is large over the entire range of al, the influence

of joint length becomes increasingly less significant with increasing al

‘discussed previously when examining JL).

Effect of First Set Joint Plane Inclination (al) on Apparent Persistence

(Kaz) and on the Index of Reliability (B)

Mean apparent persistence (K))» mean plus one standard deviation

Ky + K,) and critical persistence (Ke) are plotted as functions of al

for cases 36 and 37. Plots of both cases show similar trends with in-

creasing ol; decreasing Ky and increasing K, where K, + K, remains

practically constant. When 6 and ol approach each other (regardless of

which is held constant), transitions become less common (due to the

restriction that the critical path cannot intersect the slope face).

Since transitions are the mechanisms which increase K.and reduce vari-

ability in Ky (i.e., K), then it is not surprising that by increasing

a1 toward [ is reduced and K, is increased.
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How K, , K, and K_ interact as functions of al to influence

joint plane reliability can be seen from plots of 8 (derived from

Figures 5.83 and 5.84) as a function of al. Recall that:

2 c= Ka

In Figure 5.85, B values for the height interval 90 to 100 feet

are plotted as a function of al for both cases 36 and 37. Case #37

is more reliable as one may expect for the range of al greater than

40-50 dearees.

Effect of Second Set Joint Plane Inclination (a2)

Second set joint inclination (a2) is the angle between joint

planes of the second set and the horizontal. The influence of «2

on joint plane reliability was examined in three cases, 38, 39, and 40.

[In each case, a2 was varied between 30 and 80 degrees while holding

all other input parameters constant. Common input parameters for all

three cases are given in Figures 5.88 through 5.92.

Case #38: Examined the influence of «2 in slopes in

weak rock (C. = 25 ksf) and long joints

JL=30').

Examined the influence of «2 slopes in

moderately strong rock (C_ = 100 ksf) and

long joints (JL=30').
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Case #40: Examined the influence of a2 in weak

rock (Cy. = 25 ksf) and short joints

(JL = 10").

Effect of Second Set Joint Inclination (02) on the Probability of

Failure Pf (h)

The effect of varying o2 on Pg (h) is shown in Figure 5.86.

For any value of a2, the probability of failure in any depth interval

does not vary significantly. However, the probability of failure

increases with depth for any a2. For the range of a2 values examined,

the probability of failure is not a function of «2. This fact is more

pronounced in the deeper intervals where data points almost overlap.

Mean apparent persistence as a function of depth is shown in

Figure 5.86. At depths in excess of 20 feet, Ky becomes constant at all

depths and for all o2 values examined. This indicates that [3 is fully

independent of variation in depth of a2 (within at least the range of

+2 values examined - 40° - 80°).

Variation of standard deviation of apparent persistence (K,) as a

function of depth is shown in Figure 5.87. Beyond 40' depth, K, is

constant for any depth and for any of the a2 values being examined.

The Probability of Failure (Pf) as a Function of Second Set Joint Plane

Inclination (a2)

Plots of the probability of failure as a function of second set

inclination (a2) for each case are given in Figures 5.88 and 5.89.
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Program output shows that Pe tends to increase with increasing oZ2.

The most unreliable case is clearly that for weak rock (C,. = 25 ksf)

with long joints (JL=40'). As expected, weakening intact rock strength

and increasing joint lengths, both have strong negative influence on

reliability. In each of these cases, one of these unfavorable input

parameters is improved from a reliability point of view in order to

axamine the combined effect for a range of «2 values.

Figure 5.88 is a plot of cases 38 and 39. Both cases are iden-

tical except that C. is increased to 100 ksf over the 25 ksf of case

#38. Increasing C. clearly has a large positive effect on reliability

for all values of «2 which are less than 90°..

Figure 5.89 is a plot of case #40. Cases #40 and 38 are identi-

cal except that JL has been reduced from 40 to 10 feet. As expected

from the discussion about the influence of JL on slope reliability, this

decrease in JL results in an increase in joint plane reliability

(decrease in P; (h) for the values of a2 examined.

Effect of Second Set Joint Plane Inclination (a2) on Apparent

Persistence (Ki) and the Index of Reliability

Figures 5.90 through 5.92 support the fact that case 39 is the

safest of the three cases (38-40). This may be seen by comparing the

distance between Ke and [3 in each of Figures 5.90 through 5.92 in which

Figure 5.91 shows that the distance between Ke and K, is the largest,

thus the safest. Index of reliability values (B) for the three cases

are shown in Figure 5.93.
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5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each

of the parameters that define-a rock slope (geometric and mechanical)

are briefly reviewed. Interaction of the various parameters that

affect slope safety is described.

5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (Cr)

and Joint Persistence (25)

As a conclusion drawn from results of the parametric study, the

parameter with the strongest influence on reliability is intact rock

cohesion (C.).

Model runs show that the path of minimum safety margin (critical

path) for any joint plane existing on the slope face is almost totally

independent of C. and 25 Increasing either intact rock resistance

(C,.) or joint resistance along any path in the slope but does not change

the location of the critical path. The safety margin and thus reli-

ability of the critical path must also increase. However, there is a

limit to the possible increase in joint place reliability. In other

words, there is a point beyond which further increases in Cn and 2;

will not yield significant further increases in reliability. The exact

values of Cy and 253 at which the probability of failure is equal to

the probability of a joint plane being 100 percent persistent is a

function of the other parameters (joint length, spacing, persistence, etc.).

At high intact rock cohesion values (C.)» program runs have

shown that the probability of failure in a particular height interval
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is equal to the probability of a joint plane, existing in that in-

terval, is 100 percent persistent. This holds regardless of other

parameters even when joint resistance 25 equals zero. The study has

also shown that when 2; is set equal to first set joint plane inclina-

tion, the probability of failure for a joint plane existing in a height

interval, is apprordnately equal to Py (the probability of a joint plane

being 100 percent persistent.)

An important result of the parametric study is that the distri-

bution of apparent persistence (Ky , K.) is insensitive to strength

parameter variation (Cs 25). Thus from a single model run K, and K,

can be generated for any combination of C. and 055 values (all other

parameters held constant). By calculating the critical persistence

(Ke) one can calculate the indices of reliability (8) without additional

simulation. B values can then be used directly or can be converted to

probability of failure values to assess joint plane reliability.

Effect of Slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle (8)

and the inclination angles of the two joint sets (al and a2). First

set inclination (al) has the greatest influence on reliability. The

difference between 6 and al strongly influences reliability. As «al

approaches 6, reliability increases as a result of a reduction in the

driving force (a function of weight of rock between the critical path

and slope face). In such situations, the effects casued by second set

5.6.2

joints are minimal due to their neutral orientation (i.e., that orienta-

tion could not provoke a rock movement within the rock mass). Reliabil-
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ity however decreases as the difference between 6 and al increases

especially for al values of 40-50° and 30-70° for «a2. Reliability

increases when first joint set inclination al approaches joint fric-

tional resistance due to the ability of joints to resist a higher per-

centage of the driving force.

Effect of Joint Geometry Parameters

Of the joint geometry parameters (mean joint plane spacings SP,

mean joint lengths JL and mean persistences K), those with the strongest

influence on joint plane reliability are the mean joint length of the

first set JL1 and the first set estimated mean persistence KI. The

effect of each becomes increasingly more pronounced with depth. Decreas-

ing the means of joint plane spacing of both or either set have a strong

effect on slope reliability, but not as severe as JL1 and K]
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5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each

of the parameters that define a rock slope (geometric and mechanical)

are briefly reviewed. Interaction of the various parameters that

affect slope safety is described.

5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (Cyr)

and Joint Persistence (&amp;j)

As a conslusion drawn from results of the parametric study, the

parameter with the strongest influence on reliability is intact rock

cohesion (Cy).

Model runs show that the path of minimum safety margin (critical

path) for any joint plane exiting on the slope face is almost totally

independent of C.. and 9s Increasing st iher Sntact rock resistance

(C.) or joint resistance for a rock slope while holding all other

parameters constant, does not change the locations of paths of minimum

safety margin. As a consequence, the safety margin and thus reliability

of those critical paths must also increase. However, there is a limit

beyond which further increases in C. and %5 do not yield significant

further increases in reliability. Values of Cp and 25 which define that

limit are a function of other parameters (joint length, spacing, per-

sistence, etc.).

At high intact rock cohesion values (C.)» program runs have

shown that the probability of failure in a particular height interval

is equal to the probability of a joint plane, existing in that in-

terval, is 100 percent persistent. This holds regardless of other
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parameters even when joint resistance 2 equals zero. The study has

also shown that when 2; is set equal to first set joint plane inclina-

tion, the probability of failure for a joint plane existing in a height

interval, is approximately equal to Py (the probability of a joint plane

being 100 percent persistent.)

An important result of the parametric study is that the distri-

bution of apparent persistence (K, , K.) is sensitive to strength

parameter variation (C,. @5). Thus from a single model run K, and Ky

can be generated for any combination of Cn and 253 values (all other

parameters held constant). By calculating the critical persistence

(Ke) s one can calculate the indices of reliability (B) without additional

simulation. B values can then be used directly or can be converted to

orobability of failure values to assess joint plane reliability.

5.6.2 Effect of slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle

(6) and the inclination angles of the two joint sets (al and a«2). First

set inclination (al) has the greatest influence on reliability. The

difference between 6 and al strongly influcences reliability. As al

approaches 6, reliability increases as a result of a reduction in the

driving force (a function of weight of rock between the critical path

and slope face). In such situations, the effects caused by second set

joints are minimal due to their neutral orientation (i.e., that orien-

tation could not provoke a rock movement within the rock mass). Reli-

ability however decreases as the difference between 6 and al increases
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especially for «al values of 40-50° and 30-70° for a2. Reliability

increases when first joint set inclination «al approaches joint fric-

tional resistance due to the ability of joints to resist a higher per-

centage of the driving force.

5.6.3 Effect of Joint Geometry Parameters

Of the joint geometry parameters (mean joint plane spacings SP,

mean joint lengths JL and mean persistences K), those with the strongest

influence on joint plane reliability are the mean joint length of the

first set JL1 and the first set estimated mean persistence K. The

effect of each becomes increasingly more pronounced with depth. De-

creasing the means of joint plane spacing of both or either set have a

strong effect on slope reliability, but not as severe as JL1 and Kl.

The conclusion has been drawn in this thesis that the effect of

a second joint set on slope availability, compared to the same slope

with a single set, is minor but not marginal or trivial. However, one

should not apply this statement to all rock slopes with all Joint

patterns;at least those not covered by the ranges established in this

thesis. One should neither underestimate nor overlook the second set

in a rock slope (the second set defined previously as the steeper joint

pattern). Weight calculations have concluded stability of a slope with

minor effect by the second set. However, potential instability does

exist. A slope with two joint sets may prove to be stable when analyzed

by the model developed in this thesis, but may become unstable from

temperature changes (freezing and thawing), in situ water pressure

changes or earthquake loads.
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CHAPTER 6

DESIGN RECOMMENDATIONS

Perhaps, a matter of controversy would be whether a rock slope

safety is critically effected by having two joint sets as compared

to one with a single joint set. However, in the work associated

with this thesis, the author believes that in most cases, the

effect of having a second joint set on rock slope safety, compared

to one having a single joint set, is small but never in any case

trivial. An example where a second joint set causes instability

is when one set is horizontal and the other vertical. Another is

when the shallower set has a very low persistance and a short mean

joint length and the other joint set has high persistence and a

high mean joint length.

Present design methods do not take into accountthedistribution

associated with rock slope parameters due to the complexity of

such a task. A rather simple method was developed by O'Reilly - 1980

that considers results obtained by probabilistic approaches.

Briefly, a slope can be classified to fall in one of three equal

height intervals (zones), the zone of shallow instability, the

zone of stability and the zone of deep instability. Thus the main

purpose is to attempt to maximize the probability that a particular

slope lies within the zone of stability (See O'Reilly -1980).
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A great amount of research is yet to be carried out to establish

generally acceptable and dependable methods to analyze rock slopes

taking into account the respective uncertainties. The writer strongly

recommends additional work and research aided with field data as

often as it will be possible
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