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ABSTRACT

A probabilistic model is developed that simulates both the varia-
tion of persistence of each of two distinct joint sets within a rock
mass and their combined effect on rock slope reliability.

Each of the sets of joints is pseudo-randomly simulated to form a
joint pattern, and a stability analysis is performed on each simulated
realization. Thus in a typical realization, a number of joint planes
will intersect the slope face to form exit points of potential failure
paths which are generally non planar and pass through joints and
intact rock. Consequently, from a number of realizations, reliability
may be determined for part or the entire slope. Reliability is measured
in the probability of a joint plane exiting on the slope face given
that this exit point belongs to a failure path.

An extensive sensitivity study is made with respect to the main
parameters that influence slope stability. Results obtained aided in
establishing a set of recommendations for design and stability analyses.
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CHAPTER 1
INTRODUCTION

1.1 The Problem

Rock slope stability crtically depends on uncertain geometric
and'strength parameters. The reason fof uncertainty is that is is
practically impssible to measure the values of all governing parameters
in a typica] rock mags. As a result, present deterministic design
methods incorporate high safety margins. A method of analysis which
takes the stochastic character of rock masses into account is needed.
More precisely, what is needed at the present time is:

(1) An understanding of the reliability distribu-
tion of the various parameters influencing the
stability of a rock mass;

(2) Development of analytical methods that consider
the stochastic character of parameters in making
stability predictions.

The purpose of this thesis is to study the effect of two joint
sets on the reiiabi]ity of a rock_sloﬁe. Reliability of rock slopes
was first studied by Glynn (1978) and later by 0'Reilly (1980). Both
took into consideration the two criteria mentioned above. A model
is developed and used to study the dependence of rock slope safety
on various parameters. |

This introductory chapter gives a brief description of the para-

meters on which rock slope reliability depends. A brief discussion on



the merit of the deterministic approach and the possible merit of a
deterministic-stochastic approach to be .used in rock engineering

will follow.

1.2 Slope Stability Parameters

The major parameters affecting slope stability are:

(1) In-Situ state of stress

(2) Intact rock shearing resistance

(3) First joint set orientation

(4) Second joint set orientation

(5) Shearing resistance of the joints

(6) Length of joints

The relative importance and variability of each parameter is

discussed in detail next.

State of Stress

The in-situ state of stress can only be determined at a few points
within a rock mass. Shearing resistance of intact rock and discon-
tinuities depends both on rock strength and on the in-situ state of
stress. Accurate methods are complex and generally impractical for
design use (i.e., finite element), and still in the development
stages. Consequently, design approaches must use simplifying assump-

tions.



Intact Rock Shearing Resistance

Intact rock shearing resistance is uncertain because of:
(1) Natural spatial variability of intact rock
strength parameters.

(2) Measurement errors.

Joint Orientation

The effect of joint orientation on stability is an established

fact included in current rock slope stability analysis.

Joint Shearing Resistance

Failure in a jointed rock slope occurs when intact "wedges" or
“blocks", bounded by joints, move in the direction of one of the joint
planes. Since sliding is commonly assumed to take place along joints,
a reliable prediction of joints shear sfrength is critical. Some
degree of spatial variablity in joint resistaﬁce will always be found.
Variation in measured values of joint friction angle ¢ and joint
cohesion Cj will be either due to random measurement errors or in-situ

variability.

Joint Persistence

Joint persistence is a measure of joint continuity. Quantita-
tively, it can be considered to be the percentage of a "joint plane"
which is actaully discontinuous. For a block bounded by non-completely
persistent joints to fail, intact "rock bridges" must fail. (Refer

to Figure 1.1.)



/\ \ROCK BRIDGE (RBR)

JOINT SEGMENT (L)

‘s YL
YJL+YRBR

FIGURE 1.1 2 - DIMENSIONAL JOINT PERSISTENCE (K)



Slope reliability is, in general, highly sensitive to variation in
persistence. Due to this high sensitivity, no current design method
satisfactorily treats joint resistance. Commonly the "persistence
Problem" is conservatively ignored by assuming joints with 100% persis-
tence (0'Reilly, 1980).

Predictions of slope performance are made evenmore complex by the
fact that each of these parameters is, to at least some extent, variable
within the slope.

The effects of the cleft water pressure are ignored since they

" are not well known at the present time.

1.3 Design Approgches

There are currently two basic approaches to evaluate stability of
a jointed rock slope. The first approach uses Timit equilbrium
analysis with single values of the parameters. It yields a factor of
safety against failure for a single 'potential failure body'. Un-
certainty associated with each of the parameters is controlled by
an appropriate selection of a factor of safety;

The second approach yields a probability of failure for 'potential
féiiure bodies' rather than a safety factor. In such an apprqach,
varability in parameters affecting stability as well as the expected
number of 'potential failure bodies' are considefed. The final goal
of a probabilistic design is to evaluate the probability of failure
of an entire rock slope.

Recentlya probabilistic design methods have been developed that

are capable of calculating the probability of failure of blocks or



wedges within a rock slope rather than a factor of Safety. It is
possible to estimate slope reliability as the probability that failure
will occur, rather in the slope. Through simulation, probabilities

of failure of the individual wedges are obtainable. Geometric joint
parameters affecting wedge reliability are assigned distributions and
are randomly generated in each realization of the simulation. A factor
of safety is then calculated for each realization. The probability of
wedge failure is simply the percentage of realizations with factors

of safety less than one.

1.4 Objective

The objective of this work is to develop a model of slope reli-
ability that accounts for the effect of two distinct joint sets. This
is an additional step towards the development of a complete reliability
model which takes into consideration the stochastic character of
geometric parameters, resistances, persistence and water pressure as
well as computation of an overall probability of slope failure.

Chapter 2 will briefly review current methods by which jointed
rock slopes are analyzed and a deterministic resistance model for the
resistance of any failure path, involving either one of the two joint
sets or both joint sets within a rock slope. Chapter 3 presents the
probability model for failures in slopes containing two sets of parallel
joints. The model is based on the calculation of resistance in Chap-
ter 2 and on a procedure to simulate joint geometry. In Chapter 4,

a demonstration run will be presented. In Chapter 5, the program will

be used to conduct an extensive parametric sensitivity analysis that



will assess the influence of the various parameters on the slope

reliability. Chapter 6 will conclude with design recommendations
based on the results of the preceeding chapter and recommendations

for future research.



CHAPTER 2

DETERMINISTIC ANALYSIS AND
FAILURE PATHS IN
SLOPES WITH TWO

PARALLEL SETS OF JOINTS

2.1 Introduction

In this chapter a realistic mechanical model will be developed to
determine the stability of any potential failure surface within
slopes of the type shown in Figures 2.1 and 2.2, with fwo parallel
joint sets. Failure surfaces to be analyzed are either “in-plane"
or "en echelon" and typically include both jointed and intact rock
sections. |
This chapter will also present the combined effect of joint in-
tact rock on rock mass stability as well as limit equilibrium models

which are used to derive resistance along non-continuous joint planes.

2.2 A Deterﬁinistic Mechanical Model

(Lajtai's Direct Shear Model)

Because joint shearing resistance is generally several orders of
magnitude smaller than intact resistance, discontinuities are generally

found to totally govern the performance of a risk slope.
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a) IN PLANE CRITICAL PATH

b) "OUT OF PLANE" CRITICAL PATH

FIGURE 2.3 CRITICAL PATHS
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The model presented here was proposed by_Lajtai and used by
0'Reilly (1980) in analyzing a slope with a single set of parallel
joints. We shall consider here the same slope with an additional
parallel joint set. The physical behavior of the rock and jointed
rock will basically be the same. Movement will always be assumed to
take place in the direction of the shallower angled joints, and con-
sequently there will be no frictional resistance between joint surfaces
of the second joint set as relative movement will be away from these
surfaces.

Lajtai suggests that failﬁre resulting from stress applied on
an intact rock bridge connecting two open joints is one of direct
shear as shown in Figure 2.4. According to Lajtai, normal stresses
in the direction of jointing can be assumed to be zero at failure.
He bases this assumption on the fact that a truly "open" joint
cannot transmit stresses to the surrounding intact rock.

?ai]ure of intact rock bridges in a slope can be visualized as
shown in Figures 2.5(a) and 2.5(b). In Figure 2.5(a) a rock bridge
in an otherwise continuous joint plane is about to fail. Failure is
assumed to involve the rigid body motion of rock overlying the joint
planes dewn-dip in the direction of jointing of the first joint set.
set. The direct shear assumption is again attractive because, the
mechanism involved in failing a block of intact rock in a direct
shear device, is analogous to the mechanism of failure of an intact

rock bridge within a slope. Both involve forced rigid body motion

"



FIGURE 2.4 DIRECT SHEAR STATE OF STRESS IN ROCK BRIDGE AS
PROPOSED BY LAJTAI (1969)

€l
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DIRECTION OF MOVEMENT AT FAILURE

DIRECTION OF MOVEMENT AT FAILURE

/

as

LIFTOFF - SEPARATION OF
PLANES AT FAILURE

(b)

FIGURE 2.5 (a) & (b) FAILURE MECHANISM OF INTACT
ROCK BRIDGE IN SLOPE
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along a predefined plane under an approximately constant stress, normal

to the joint palne. In a slope with two joint sets, the joints of the
second set transmit no stresses of failure to the surrounding intact rock.
In an actual slope, normal stresses are, more or less, fixed by the weight
of rock overburden.

When a direct shear test is performed at low levels of stress applied
normal to the joint plane, Lajtai states that the maximum shear resist-
ance can be-distinguished as one of two modes. At relatively low stress
levels, the application of shear stress, in the direction of the first
joint set, can lead to a minimum principal stress (03) equal to the tensile
strength of the intact rock. In this mode, failure occurs as tensile
fractures develop at the high angles in the direction of the first joint
set. (Refer to Figure 2.6(a).) These tensile fractures occur when Ty
(peak shear stress in the enforced direction) is mobilized. This is
fol]owed by shearing in the direction of the first joint set at residual
stress levels. (Figure 2.6(c)

At higher normal stress levels, the minimal principal stress does not
exceed tensile strength. In this case, failure occurs when stress (1),
in the direction of the first joint set, equals the shear resistance de-
fined by the Coulomb failure criterion (approximately equal to twice
the tensile strength). In this second mode, shear fractureé develop at
the moment of peak applied shear stress. (See Figure 2.6(b)). Shear
fracture develops sub-parallel to the enforced direction. Again as
in the tensile mode, peak behavior is followed by shearing which is

parallel to the enforced direction at residual shear stress levels.
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Graphica11y, referring to Figure 2.7, the center of the Mohr
stress circle remains constant at Cq/2 as the applied shear stress
is raised from its initial value of zero to its value at failure.
Applied shear stress can be increased only until the Mohr circle be-
comes tangent to the failure envelope. At relatively Tow values of

o., this point of tangency is at o = —TS, T = 0 and thus failure

a!
occurs as tension fractures initiate, (mode 1). As By is increased,
the centers of the Mohr circles move further out along the o axis

away from the t - axis. Beyond a certain value of o_, increasing

a
applied shear stress to failure results in the point of tangency lying
on the Tinear portion of the envelope. (See Figure 2. 8).
Summarizing; if the point of tangencyllies along the parabola of
failure envelope, failure is by tensile fracturing (mode 1). If the
point of tangency is on the linear portion, failure will be by shear
fracturing (mode 2). After either mode, post peak shear resistance
drops to stress dependent residual values due to secondary shearing
in the enforced direction. Ana1ytica]fy, expressions of peak shear
resistance for intact rock in direct shear will now be presented for

each of the above described failure modes.

Lajtai described mode 1 by the following expression:

.- oa)]lz (Eq. 2.1)

Plotting T, as a function of g, leads to what Lajtai terms as

the direct shear parabola (tension). (See Figure 2.9a).



INCREASING Tq
TO FAILURE

POINT OF
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FIGURE 2.7 MOHR'S CIRCLE - FAILURE BY TENSILE FRACTURING
(MODE 1)
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FIGURE 2.8 MOHR'S CIRCLE - FAILURE BY SHEAR FRACTURING (MODE 2)
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At ‘high stress levels of %, close to o_., we get what is referred

&
to as the third direct shear failure mode, i.e., failure at ultimate
strength. This develops by formation of a‘zone of crushed material
in the direction of jointing.

This can be described by the following expression established by

Lajtai:

ult a ult (Eq. 2.2)

where is the friction angle of the crushed rock. Equation 2.2

2utt
is plotted in with the composite curve of Figures 2.9c and 2.9d. Lajtai
finally superimposes the ultimate strength (Eq. 2.2) curve to the
composite curve to yield what is termed as fhe "composite 1imit curve"
shown in Figure 2.9c.

By superimpésing Figures 2.9a, 2.9b and 2.9c, we get a composite °
curve which gives, for any applied value of normal stress, the peak
shear stress T, at which failure of the intact rock occurs in tension
of shear.

Lajtai's mechanical model has the characteristics of being deter-
ministic in the sense that it requires a pre-set value on joint plane
persistence. It is not possible to derive a single persistence value
that can be used in obtaining acceptable slope reliability values from

a deterministic resistance model. The complexity increases when

another set of joints -of a different orientation exists. This de-
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2Ts ~

ULTIMATE
STRENGTH

COMPOSITE LIMIT CURVE

FIGURE 2.9 DEVELOPMENT OF COMPOSITE LIMIT CURVES
AFTER LAJTAI (I1969)



23

By superimposing Figures 2.9a, 2.9b and 2.9c, we get a composite
curve which gives, for any applied value of normal stress, the peak
shear stress T, at which failure of the intact rock occurs in tension
of shear.

At high stress levels of Oy close to O We get what is referred
to as the third direct shear failure mode, i.e., failure at ultimate
strength. This develops by formation of a zone of crushed material
in the direction of jointing.

This can be described by the following expression established by
Lajtai:

T = 0 tan o)

ult a ult (qu 2.2)

‘where is the friction angle of the crushed rock. Equation 2.2

¢)uH:
is plotted in with the composite curve of Figures 2.9c and 2.9d. Lajtai
finally superimposes the ultimate strength (Eq. 2.2) curve to the
composite curve to yield what is termed as the "composite Timit curve"
shown in Figure 2.9c. |

Lajtai's mechanical model has the characteristics of being deter-
ministic in the sense that it requires a pre—set.value on joint plane
persistence. It is not possible to derive a single persistence value
that can be used in obtaining acceptable slope reliability values from

a deterministic resistance model. The complexity increases when

another set of joints of a different orientation exists. This de-
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ficiency is addressed by probabilistic methods that will be discussed

next.

2.3 Previous Research

The fundamental probabilistic approach was first utilized by Glynn
1979 in his model (JOINTSIM) which incorporates a deterministicmechanical
mode]l and a Monte far]o simulation program. His program generates
joints randomly within a rectangular block in a stress field. Joint
generation is based on assumed exponential distributions of the joint
plane spacing, joint length and rock bridge length about their
mean values. In each realization the programfinds the paths of
minimum safety margin and the associated apparent persiétences.

Values of apparent persistence for all realizations ‘form a dis-
tribution whose mean and standard deviations are determined at the
conclusion of the entire simulation. Glynn found that block
stability is strongly dependent on the geometric properties of the
block and the joints (block dimensions, mean joint Tength, mean rock
bridge length, mean joint plane spacing) and is relatively in-
sensitive to the ambient stress field and variétions in the rock
strength parameters.

"JOINTSIM" has the limitation of analyzing a block, notan actual
slope. Its algorithm has a drawback of influencing failure paths.
"Jointsim" artifically constrains the failure path thus distorting
the inclination of the failure path and apparent persistence. This
is a noticeable 1imitat%0n especially when joint planes are closely

spaced. This and other drawbacks were alleviated by 0'Reilly (1980)
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in his model which is a much closer model of the actual jointed rock
slope.

Briefly, 0'Reilly's model reduces the major shortcomings en-
countered in Glynn's model. It is a probabilistic model for the
simple two dimensional cases of a single set of slope parallel Jjoints
(See Fig. 2.10). It is a combination of probabilistic simulation

approaches, and deterministic models developed to its date.

2.4 The Mechanical (deterministic) Model "TALAL"

In the remaining parts of this chapter the mechanical model for
the slope with two joint sets is developed and described.

It will be incorporated to determine the stability of any potential
failure surface within slopes of the type previously shown in Fig. 2.1.

This thesis follows the same guidelines and criteria previously
used to establish the mechanical models developed by Glynn and O'Reilly.
In a typical realization, two quantities are computed for a potential
failure path. One is the force resisting downward movement of the
rock overlying that potential failure path, namely resistance. The
other ié the force component in the direction of sliding, tending to
displace the overlying rock, namely the driving force.

The method of slices is used to determine driving and resisting
forces. Figure 2.11 is an illustration of this method. The rock
over]ying‘a path is divided into a series of vertical slices. Slices
can be bound by either joint or intact rock bridges. Here, a failure

is assumed to take place as a rigid body movement of material over-
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FIGURE 2.10 SLOPE GEOMETRY SINGLE SET OF SLOPE PARALLEL
JOINTS

9¢



24

Rg

7 7 '
SM =iz SM| 22’(R[- Wi Siﬂa|)
=| i=l

7

FIGURE 2.l METHOD OF SLICES



Og
[ W—

4— d —>

AT T

Ta=oatan¢>'j+ Cj
Ri= Ti »d

) .lkah/2 .I d

0y/2

FIGURE 2.12 MOHR'S CIRCLE - JOINT PLANE FAILURE (SET I)

8¢



F adin e YWT 4

YDIM

Og=Yrdcosa
d:d“<d

" FIGURE 2.13 MAXIMUM STRESS LOCATION IN SECTION
OF SLOPE |

6¢



30
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(@) IN PLANE ROCK BRIDGE

(b) OUT OF PLANE TRANSITION

FIGURE 2.14 IN PLANE AND OUT OF PLANE TRANSITIONS
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lying the down slope path in the direction of jointing of the first
joint set. Total driving force (DF) and total resistance (R)along

the path are given by the following relationships:

DF

Z; W sin a 1 (Eq. 2.3)

R = Zi R. _ (Eq. 2.4)

where wi is the weight of a slice and Ri is the peak shear force
mobilized by the portion of the path underlying the i-th slice.
The safety margin SM for each slice can be defined as_the differ-

ence between resisting and driving forces for that slice:

SM, = Ry - W sinal ' (Eq. 2.5)

Thus, the total safety margin SM along the path is given by:

SM = Z (Ri - W, sina 1) = R - DF {Eg. 2.5)

Failure occurs when SM < 0 (i.e., when the driving force equals or
exceeds resistance).

In the following section, the failure mechanism is described.
Methods to calculate resistance of the intact rock bridge for "in plane"

and "en - echelon" transitions are discussed in detail. Methods to

calculate the rock weight overlying a failure path, are also discussed.
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Finally, the section concludes with a summary of the deterministic

model.

2.5 The Failure Mechanism

In the case of two joint sets, failure is assumed to occur as a
downslope movement of a rigid body of rock which is bounded by a
failure path consisting of joints, fractured rock, as well as the
slope face and the top free surface. Due to the fact that movement
is always downslope along the first joint set inclination, joints
of the second joint set have, consequently, no shear resistance. In
other words, the first set dominates the direction of rock failure
sliding while the second set only enhances this to occur.

This thesis is not concerned with cases where intact rock
strength parameters are so low that the failure mechanism approaches
that of soils (e.g., clay shales) where jointing does not influence
the kinematics of slope failure. Limitations also exist since
certain combinations of stress field magnitude and orientation
(relative to joint inclination) can also lead to failure of intact
rock before full joint resistance can be mobi1ized. Experimental
model test by Einstein (1970) show that, even in very strong rock,
failure planes are formed without being influenced by discontinuities
in the rock.

According to 0'Reilly (1980), two basic failure mechanisms in
intact rock can describe the failure of a rock slope. The first,

Type One, is the most relevant to the research being carried out.
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It is referred to as translational sliding parallel to jointing.

It is the mode originally assumed, especially when joint resistance
is significantly lower than intact rock resistance. The second,
Type Two, is that in which shearing is independent of the existing
joints. This occurs when the stress required to propagate cracks
through intact rock is less than that required to fail joints.

Type Two failure may be due to a combination of factors such as

weak rock in any stress field, ar strong rock in an unfavorable stress
field. The decrease in the percentage of intact rock in a potential
failure path, is much greater for a slope with second set joints

than for a slope with single set joints. Hence, the importance of
Type One failure becomes obvious as the amount of intact rock in the
failure path becomes less. As a result stability of the slope becomes

increasingly dependent on availability of the intact rock.

2.6 "In Plane" and "Out of Plane" Tensile Failures of Intact Rock Bridges

For low stress values (oa < 2TS), peak shear resistance is mobil-
jzed at the moment when tensile fractures develop at an angle 6, from
al. 8, should be apprbximate]y equal to 45° for TJow a, values
relative to the intact rock tensile strength (See Fig. 2.15 ) as is
expected for Mode Two failure to occur. Actual failure occurs, when
a continuous fracture develops in the direction of jointing. After
tensile fracturing takes place, a secondary progressive shear fracture
follows. (See Fig. 2.15 ).

The analogy between the direct shear test and "in plane" intact

~rock bridges is acceptable at Tow stresses, and thus the resistance
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ﬁ' a, TENSION FRACTURES

— *
/,;ff% -

SECONDARY SHEAR FRACTURE

FIGURE 2.5 FAILURE MECHANISMS - DOWN SLOPE
MOVEMENT AFTER SECONDARY
SHEARS DEVELOP
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for in-plane transitions is:

where d is the rock bridge length shown in Figure 2.14a and iy %

given by the following relation from Lajtai:

[t

Out of plane transitions, occur when a continuous fracture de-
velops at an angle to a first joint plane up to a point on another
plane, i.e., rock bridges involve a transition from bne_joint to
another in an overlying plane at an angle B , (greater than «al).
In such cases criteria established previously apply. However, the
assumption here is that the block of rock containing a rock bridge
at the moment of failure is in direct shear with zero normal stress
in the direction of jointing of the first set. (See Figure 2.16).
Transitions at B8 values that exceed the angle of tensile frac-
turing (i.e., 8 > et + 1) are referred to as high angle transitions. In
such situations, a fracture can develop connecting the discontinuities immed-

jately through a tensile fracture without requiring secondary shearing;
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FIGURE 2.16 FAILURE STRESS STATE FOR "OUT
OF PLANE" TRANSITIONS
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it is assumed that the tensile strength TS o% intact rock is mobilized
along the path segment. The tensile force, acting in direction of
jointing of the first joint set, is the peak shear resistance for high
angle transition.

For "low angle transitions", i.e., B < (et + al) failure will
occur as "in plane" failure. Peak resistance will be mobilized at the
moment of tensile fracturing fp]lowed by rupture when secondary shears
form a continuous fracture connecting the tips of joints forming the

bridge, (See Fig. 2.18). Peak resistance is given by:
R = 1, . d (Eq. 2.10)

where d is the distance between joint tips defining the bridge and
Té is the peak shear mobilized in the direction of jointing. Noticé
that "in plane" transition (discussed earlier) is one case of the
general "low angle transition”;

As mentioned previously, the driving force is due to the over-
burden weight. DFi is taken as the component of weight over a

particular path in the direction of jointing of the first set. (See

Fig. 2.78.)
DF. = W, . sin «al

Weight calculations are shown in Figures 2.20 - 2.34. Generally,
three types of calculations can be distinguished: the first is for
transition paths lying to the right of the slope apex, the second is

for those 1ying beneath the slope apex, and the third is for those



T=T,l
R=Tsin(8-a,)
I=X/sin(8-a,)

ay

T=Tyl
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I=X/sin(B8-a,)

™~ TRANS JOINT OF SET 2

FIGURE 2.I7 INTACT ROCK RESISTANCE FOR B261+Q,
TRANSITIONS
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TENSILE FRACTURES

R=Tq *d

<
L1

/ SECONDARY SHEAR FRACTURE

FIGURE 2.18 INTACT ROCK RESISTANCE FOR "LOW
ANGLE" TRANSITIONS B<8i+q,



DF;=w; sina,

wi= % Al

FIGURE 2.19 DRIVING FORCE , DF;, FOR SLICE i
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lying to the left of the slope apex, i.e., beneath the slope face.
Each of these distinguishable groups can be subdivided into two
groups; those with transition angles less than 90 degrees and those

with transition angles greater or equal to 90 degrees.
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CHAPTER 3
THE PROBABILISTIC MODEL - COMPUTER PROGRAMS

3.1 Introduction

An analysis, of the stability of slopes with two distinct
joint sets is performed through the probabilistic model. The pro-
gram is a modification of 0'Reilly's (1980) model which was de-
veloped to handle the situation with a single set of joints. Similar
to 0'Reilly's model, "Talal" is a Monte Carlo simulation of the rock
slope being éxamined in this thesis. In each realization, jointing
patterns are generated stochastically based on distributions of the
joint parameters (i.e., joint 1en§th - set 1, rock bridge length -
set 1, joint plane spacing - set 1, joint length - set 2, rock bridge
length - set 2, joint plane spacing - set 2) compiled from previously
collected data of joint surveys. For each realization, the program
finds for every joint plane of the first set exiting on the slope
face, a "critical path" beginning at the slope face, passing through
the slope till the free surface of which the safety margin SM (the
difference between the sums of resisting and driving forces) is
a minimum. Critical paths may be planar or may involve transitions
to an overlying joint plane. Transitions, between a joint plane of
the first set and points in the second joint set, may take place
only in that region of the slope ;bove the joint plane of the first

set (See Fig. 2.19 - 2.43).
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The p}ogram divides the slope into intervals of equal height
(see Fig; 3.1). In each realization the program stores the safety
margins of all critical paths that fall within such an interval.
Together, the numerous individual SM values form distributions within
each interval. After the last realization takes place, the mean and
standard deviation of SM for each interval are calculated. Also

found for each interval is the probability of joint plane failure

(PF)i given by:

(Eq. 3.1)

where (NFi); is the number of critical paths in the i-th height inter-
Va] for which SM < 0, while (NT)i is the total number of critical
ﬁaths in the interval. By independently evaluating (PF)i and the
distribution of SM for each interval, the program is capable of

evaluating reliability as a function of slope depth.

3.2 Programming
Stochastic Generation of Joint Geometry

Thrée fixed input parameters define the geometry of the slope
to be analyzed, the slope height (ydim), the slope angle (6) and the
inclination of the first joint set (a«1). (see Fig. 3.2). The upper
free surface is always taken to be horizontal. Joint patterns for
each joint set, i.e., joint plane spacing, length of joint segments
and length of rock-bridges between adjacent joint segments in a given

joint plane, are expressed as exponential distributions about mean
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values; the latter specified by the user. The distribution of
jointing patterns is simulated by the number of realizations (the

more the realizations, the better the simulation). Generation of
joint planes in each realization for joint set 1 begins at the slope
apex and works its way back towards point E (Fig. 3.2b), the Timit

to generating any additional joint planes. This procedure is

the same as the one utilized by 0'Reilly (1980), where generation
begins at the slope apex and works until the exit point of the i-th
joint plane exceeds slope depth. The difference in the two procedures
is in the storage method and axes used. Maximum permissible

Y - coordinate in set 1, (ywt) is given by: (Fig. 3.2).
ywt = (ydim/sinal) - (ydim/tan 8)

values of Y (i) are generated until Y (i) reaches a value less or
equal to zero. Joint planes with a negative Y (i) are not considered
since they do not exit on the exposed slope face (see-Fig. 3.2).
Next, joint segments are generated while assuming the expon-
ential distribution of joint segment and rock bridge lengths. The
location of each joint tip, in a given joint plane, is determined by
its depth cjoint 1 (i,j) below the upper free surface (see Fig.3.3).
The orientation of each joint plane is fixed and any point can be
defined in terms of the joint plane it belongs to and an x - coordinate.
For example, a cjoint 1 (3,2) equal to 10 stands for the second
| coordinate point of the third joint plane in the first joint set

as measured from the free surface and equals 10 units of length.
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(c) WITHIN SET 2
FIGURE 3.4 JOINT TIPS AS "NODAL" POINTS
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The coordinate points on a typical first set joint plane are
generated by the program and are referred to as the dynamic programming
points. These points are compiled from three data sources. The first
source being the set of points on a plane which define the x-coordin-
ates of the intersection of that plane with the free surfaceand slope
face and all the x-coordinates of the joint segments on that plane
(See Fig. 3.12a). The second source being the set of points of
intersection of the joint plane with lines drawn from the right hand
tips of joints of underlying planes at (45° + «1) (See Fig. 3.12b).
Finally, the third source being the set of points of intersection of
the joint plane with planes of the second set (See Fjg. 3.12¢).

Figure 3.12d shows all- points superimposed on the plane being ex-
amined. Dynamic programming plane points serve as potential trans-

ition nodes. Transition may take place in plaﬁe or out of p]ane_

to a point above the plane which contains the dynamic programming

plane point. Transitions from a point on a first set joint plane

to a point anywhere below that plane are not permissible (see Fig. 3.13a).

Angles of transition within the second set are never less than
the first joint set inclination (al), nor greater than the greater of
either 180° or the sum of the second set inclination (a2) and 90°
(See Fig. 3.14a). Transitions within the second set are only permissi-
ble between two adjacent planes (See Fig. 3.14b).

Restrictions concerning the inclination of paths between the two
joint sets are the same as those for paths within the first joint

set. Generally, a line segment connecting nodes on the critical path
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must be between the angle of the first set inclination (41), and
the sum of the first set inclination (ql) plus 45° except for trans-
itions within the second set (See Fig. 3.15).

Some of the dynamic programming plane points and some of the
second set points can only be ends of a transition path within the
plane they are in. Such points are left ends of discontinuities of
both sets and points within the first set of discontinuities that are
not intersection points with the second set (See Fig. 3.15).

In each realization, the number of intersection points of each
first set plane with second set planes isstored. This number can
be imagined to represent traces of possible critical paths. As
expected, a critical path would most probably follow the paths cutting
through the second set joints as can be seen from the lines connect-
ing nodes 1, 2, 3 and 4 in Figure 3.16b. A look at Figure 3.7 may
give some more insight into the effect of a jointed region bounded by
a first set plane and either the free surface or another first set
plane. In Figure 3.7, Regioh A is unjointed, hence the intersection
point there is irrelevant. However, Region C, in the same figure, is
partially jointed and thus one would expect a transition through that
region. However, Region B is fully jointed and will act as a path
between planes 1and 2 as it is the weakest possible transition
from 1 to 2 (e.qg., path; b-ii-i).

The program establishes the critical paths by finding the lowest

possible safety margins between every node and the free surface.
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FIGURE 3.7 POINTS OF INTERSECTION
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CASE | REGION WITH NO
INTERRUPTIONS TO SURFACE

CASE 2 REGION BOUNDED BY
TWO ADJACENT PLANES

FIGURE 3.8 CASES OF TYPES OF BOUNDING REGIONS
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PLANE | OF SET |
(a) DATA POINTS OF JOINTS

AND JOINT PLANE
TYPICAL COORDINATE

FREE SURFACE

PLANE i

(b) DATA POINTS
OF HIGH HARD TIP

TO ABOVE AT
(45°+al)

450
/Ml

TYPICAL COORDINATE

b PLANE i
TYPICAL COORDINATE

(c) DATA POINTS OF POINTS OF,
INTERSECTION OF SECOND '
SET PLANES WITH PLANE i

SECOND SET JOINT PLANE

- PLANE i

(d) DATA POINTS IN (a), (b) AND (c}
SUPERIMPOSED TO FORM
DYNAMIC PROGRAMMING POINTS

FIGURE 3.12 DYNAMIC PROGRAMMING PLANE POINTS
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T~ SECOND SET JOINT PLANE

(a) TYPICAL ROCK SLOPE WITH JOINT PLANES - DYNAMIC PROGRAMMING
POINTS AND PERMISSIBLE TRANSITIONS SHOWN

(b) TYPICAL ROCK SLOPE WITH JOINT PLANES - DYNAMIC PROGRAMMING
POINTS AND NON -PERMISSIBLE TRANSITIONS SHOWN

FIGURE 3.13 PERMISSIBLE AND NON -PERMISSIBLE
TRANSITIONS FROM DYNAMIC PROGRAMMING
PLANE POINTS
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PATH (i) PERMISSIBLE

PATH (i) NOT PERMISSIBLE
(<al)

PATH (ili) NOT PERMISSIBLE
PATH (iv) NOT PERMISSIBLE

(b)

PATH (iii) NOT PERMISSIBLE

’_‘\\secouo SET JOINT PLANES

FIGURE 3.14 SECOND SET TRANSITIONS
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DISCONTINUITY IN PLANE i
/ «~OF SET |
«—— DYNAMIC PROGRAMMING
PLANE POINT
ARROW SHOWS THE ONLY PERMISSIBLE DIRECTION
WHERE A TRANSITION CAN TAKE PLACE (IN PLANE)
‘ DISCONTINUITY IN PLANE j
«” OF SET 2
. 4 <— DISCONTINUITY IN PLANE i
OF SET |
| & 2 DYNAMIC PROGRAMMING
PLANE POINTS
| =2 PERMISSIBLE TRANSITION
- 2—=n PERMISSIBLE IN SPECIAL SITUATIONS

DISCONTINUITY IN PLANE j
)~ OF SET 2

<e— ONLY PERMISSIBLE TRANSITION
FROM POINT i

“—— POINT UNDER EXAMINATION

FIGURE 3.5 POSSIBLE ENDS OF TRANSITION PATHS
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INTERSECTION POINTS

FIGURE 3.16 POINTS OF INTERSECTION ON SET ONE
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%:,/fﬁ
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-9

/d
b 2
3

d 8 6 ARE THE SAME
X- COORDINATE

SEQUENCE: a-b-¢c-d-|-2----8

(b) JOINT PLANE WITH POINTS OF INTERSECTION WITH THE SECOND SET

FIGURE 3.I7 SEQUENCE IN THE ALGORITHM
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FREE SURFACE

(a) EXAMPLE OF A SLOPE WITH A FACE DIVIDED INTO FIVE EQUAL PARTS

am—

EXIT POINT

FAILURE
PLANES

POTENTIAL FAILURE
PLANES

# FAILURE POINTS _

#POTENTIAL FAILURE
POINTS

xx2
= PROBABILITY OF FAILURE

OF INTERVAL i
(b) TYPICAL INTERVAL WITH EXIT POINTS OF POTENTIAL FAILURE PLANES

FIGURE 3.18 SLOPE FACE INTERVALS AND THE PROBABILITY
OF FAILURE
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The algorithm begins with the top joint plane and evaluates the
minimum safety margin of each dynamic programming planepoint moving
from the top (intersection of the joint plane with the free surface)
to the last (intersection of thé plane with the slope face) (See
Figure 3.17a). If and when the plane has points of intersection with
set 2, the program will start by evaluating minimum safety margins
for points on the planes of set 2 that intersect set 1 (See Fig. 3.17b).
These points should be in the region between the first set plane
being analyzed and the free surface if those second set planes
extend to the free surface (Case I) without intersecting other first
set planes. Otherwise these points that lie in the region are
bounded by the plane being analyzed and the first sét plane above it
(Case II) (See Fig. 3.8). Consequently, for any given node, the |
program checks possible transitions to overlying nodes within a
given "sweep area" bounded by the kinematic restrictions imposed as
described previously, depending on whether the point belongs to
joint set 1 or set 2. The sweep area for a nodal point of set 1,
point (Xi’ Yi)’ is shown in Fig. 3.9a; for set 2, point (Xi, Yi)’ it
is shown in Fig. 3.9b. The program computes the safety margin of
transitipns to all nodal points within this area using the mechanical
model presented previously in Chapter 2. The order in which
nodes are considered is always from shallow to deep joint planes,

and down dip within each plane.
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Referring to Figure 3.10, the safety margin SM of any path from

. Bn)’ A is the

n

(Si’ Yi) to the free surface has two components'(An

safety margin from Gi, Yi) to a nodal point (n) while B, is the

safety margin from that nodal point to the free surface:

thus, the minimum safety margin SM (i, j) for the point (Xi, Yi) is
the one for which the above sum is a minimum. In this manner the
minimum safety margin for each nodal point within the slope is
systematically found.

The safety margin, of the point of intersection of each joint
plane of set 1 with the slope face, is the minimum safety margin for
the path originating at that point - and rising to the free
surface. The coordinates of nodal points of the path, yielding
this minimum safety margin, determine the critical path for that
joint plane. The program then calculates the weight of rock overlying
the critica] path as well as the net angle B¢ of the critical path
(See Fig. 3.11). The critical path should not be considered a
failure path unless the calculated safety margin is zero or less.

In each realization, several critical paths could result, some of
which may be failure path(s). For a number of realizations simulating
a joint spacing and length distributions,one can obtain a distribution

of the ratio of failure paths to critical for each interval on the

slope face (See Fig. 3.18b).
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3.3 Program Limitations

Before moving on to a detailed discussion of program input and
output it is important to outline the Timitations of the program in
its present form.

(a) - The analysis is two dimensional.

- Joint persistence parallel to the strike
of the slope is not considered (i.e., it
is assumed to be 100% - a conservative
assumption). |

- Side wall resistance transverse toslope strike
is assumed to be neglible. In other words, a
better way to visualize the slope is to imagine
that we have a model with the present dimensions
and generated joint patterns, as described,
1-length unit thick in the third dimension,
considering all joints to extend from one face to

the other (See Fig. 3.19).

(b) - Joint and slope geometry is limited to that shown
in Fig. 2.1 and 2.2 with joint set 1 always less
than 90 degrees and theupper surface always

horizontal.

(c) - As a Monte Carlo simulation program, the program
is based on a deterministic resistance algorithm.
Thus, the program is only a reliable as the deter-

ministic algorithm presented in the previous chapter.
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————-
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FIGURE 3.19 THREE DIMENSIONAL SLOPE EXAMPLE
WITH ONE DISCONTINUITY
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(d) - Application of the program depends on reliable
measurement of joint geometry distribution
parameters (i.e., mean values of joint length,

rock bridge length and joint plane spacing).

The above limitations should be kept in mind specifically with
regard to results presented in the parametric study. Data analyzed
and results arrived at are mainly for research purposes until
more refinements have been performed (e.g., three dimensional
analysis - end conditions) and comparisons with field conditions

and case histories have been thoroughly investigated.
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CHAPTER 4
THE PROGRAM

4.1 Introduction

The purpose of this chapter is to portray the progrémming details
of the model by discussing a sample program run. The main goals
are to understand the capabilities and limitations of the program,
and.to establish an understanding for proper interpretation of the
output data which is used in the sensitivity analysis in Chapter 5.
The sample run is described and shown on the next pages and
is divided into two main parts. The first being the input data
which is user specified. The second being the output genérated by

the program.

4.2 Sample Input

Since thé program is implemented on an interactive system, the
program will systematically "ask" for the required inputs. For
example, if the computer asks for values of x, y, and z the program
will print, "input, x,y,z,". The printer will start a new line and
await the user to input the three values. After this is carried out
the programmoves to the next group of inputs "asking" for their values.
This process continues until the user has specified all input values

required.
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weight of critical path (Wg)

critical path

/ angle of critical path
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v/ L alpha

SMj = R¢ = W¢ sin aipha

USMj = SM; / L;

Figure 4.3 Critical Path for Joint Plane 1
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In this section each input variable will be defined. Along
with the definition, permissible or recommended ranges as well as
the specific values used in the sample run, will be given. As
with any program, the user must always make sure that units are con-

sistent.

theta

The angle in degrees of the slope face relative to the horizontal.

It may vary between 0 and 90 degrees (See Fig. 4.4a).

alpha 1

The angle of joint planes of the first set relative to the
horizontal. It is assumed that the range of alpha 1 is between

zero degrees and 60 degrees, and less than theta (See Fig. 4.4a).

alpha 2

The angle of joint planes of the second set relative to the
horizontal. To remain within program limitations, the range of
values of alpha 2 should be greater than alpha 1 (a must) and less
or equal to180 degrees. For the present, values not greater than

90 degrees are considered for alpha 2 (See. Fig. 4.4a).

ydim

The vertical height of the slope and input in units of length.
Theoretically ydim can be set to any positive value, however, due
to storage limitations and different rock behavior at re]atﬁve]y
high stress levels, ydim must be kept less than 300 feet for most

combinations of input parameters. (See Fig. 4.4a).
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FIGURE 4.4 VARIABLES USED IN THE COMPUTER PROGRAM
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FIGURE 4.5 VARIABLES USED IN THE COMPUTER PROGRAM
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FIGURE 4.6 VARIABLES USED IN THE COMPUTER PROGRAM



103

ystar
In units of length, giving the x-coordinate on the slope face
from where joint generation begins. The purpose of ystar is
to allow study of deeper slopes when the storage limita-
tions related ﬁo ydim are prohibiting. To analyze the entire slope,

ystar is set to zero.

phijt

The friction ang}e of joint segments in degrees. It may be
considered to be as friction angle mobilized by the joint at
the moment of intact rock bridge failure and not necessarily the

peak value.

cojt
Joint cohesion is input in units of stress and must be kept
much smaller than intact rock cohesion (cork) for a realistic

analysis.

phirk

Intact rock friction angle is to be input in degrees and should
be kept between 0 and 45 degrees. Since the present version of the
program assumes failures of intact rock bridges in tension, phirk
has no influence on intact rock strength at stress levels for which
(oa < Cr) ié valid. phirk is a factor in deep slopes (> 200') and
in weak rock (< 25 KSF) where failure is in the shear mode rather

than the tension mode.
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cork

Intact cohesion, "cork" is to be input in units of stress.
It must be large enough so that nowhere within the slope is 1t
exceedeq by the normal stress on any joint plane. This assures
thét all intact rock failures are in pure tension. If "cork" is
too low for the slope depth considered, the program will print out a
warning to this effect. Keeping "cork" greater than 25 Ksf for
slopes up to 250' should alleviate this problem for most typical
slope configurations. Lower values of cork can be used for

shallower slopes.

phiult

Defined as the friction angle of crushed rock at large strains
in direct shear. It is to be input in degrees and must be less
than or equal to the intact friction angle. Like phirk, phiult
only affects intact rock shear resistance at very high stress levels.
"phiult" can influence resistance only when stress levels within
the s1opg start to approach the unconfined compressive strength of
theiintact rock. At such stress levels, it is unlikely that the mode
of failure assumed in the model analysis is applicable. Once again
the user is cautioned against using this program for analysis of
slopes in which cork is exceeded by joint normal stress anywhere in

the slope.

"gamr" is defined as the unit weight of inzact rock and is given

in units of weight (force) per unit volume.
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sp31, sp32

The average spacing, in units of Tlength, between adjacent
joint planes for the first and second joint sets, respectively.
Since the program is limited at present to 100 joint planes, input
values of sp31 must be balanced against values of ystar and ydim

such that the limiting value of 100 joint planes 1is not exceeded.

spjtinl, spjtlin2

The average lengths of joint segments within the slope for the
first and second joint sets, respectively. They muét be input
in units of length. It is difficult to estimate the minimum values
of the spacings that can be used without exceeding storage 1imita-
tions since they vary with the magnitudes of other input parameters.
If, in a particular realization, too many joint segments (current
1imit is 50 joints per plane) are generated, the program will stop
operating and a message to tnat effect wi]]_be printed out. This
is in contrast to "slopesim" where such a realization is ignored
when a similar condition arises and movement to the next realization

takes place causing a biastoward output parameters at the end of the run.

sprkbrl, sprkbr2

The average lengths of rock bridges for the first and second

joint sets, respectively. They must be input in units of lengtn.

iseed
The initial "seed" in generating random numbers. It can be

any value grater than 0. It is used in the random generation of
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jointing patterns for all realizations of a particular run.

ndiv

An integer greater than 0 specifying the number of equal height
increments into which the slope is to be divided for independent
statistical evaluation of ouputs. It is recommended to set the

value of "ndiv" to no less than 4 and no greater than 10.

notpop, notpot, notpod

Are integer input that regulate the type and amount of programout-
put. For any of them set to 1, part of the output will be printed
out. However, setting any one of the above.parameters to zero will
not allow the printer to print the ouput. The first, notpop, when
set to 1 will print the input data in a format for easy reference;
the y-coordinates of the starting and exit points of joint planes
of both sets, the maximum x-coordinate for each joint plane, the
x-coordinates of the joint segments in each joint plane, the right
ends of first set joint segments to above projections, the x-coord-
inate of the points of intersection on each joint plane of the first
set, with planes of the second set and finally the x-coordinates Qf
the dynamic programming points, in ascending order, on each joint
plane within the first joint set.

The second, notpot, when set to a value of 1 will output a
description of each region, the type of jointing pattern within the
region, the minimum safety margin of every coordinate of the joint
segments of the second set, the path length, the transition angle,

the minimum critical Weight up to the point in question in addition
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to the path incremental weight and incremental safety margin con-
tributed by the path, the x-coordinates of the transition path,
the total jointed rock length and finally the total intact rock
length of the critical path, up to that point. This is performed
for every dynamic programming plane point on every first set joint
plane in addition to all points on second set joint plane.

The third, notpod outputs the joint plane number (of the first

set) and next to it the minimum safety margin.

output 1, output 2, output 3

When "output 1" is set to 1, the computer prints a statement
indicating which realization is taking place in the computer.

When "output 2" is set to 1, the computer prints, following
each realization, the dynamic pﬁogramming results, namely, safety
margin, persistence, weight and plane height for tne dynamic pro-
gramming plane points which are the points of intersection of the
first set joint planes and the slope face.

When "output 3" is set to 1 and after all realizations have been
carried out, the computer will print for every height interval the
distributions of the angles of critical paths, the critical weights,
persistences and the unit safety margin. The computer prints out
the number of critical paths éxiting from the height interval as
well as the number of failure-paths (i.e., paths with safety margins

equal to zero or negative).
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noreal
Is the number of realizations specified for the simulation run
and should be fnput as an integer greater than zero up to a value of

no more than 1000 which will yier the best possible results.

dmin
Must be input in units of length. Its burpose is to give the
maximum allowable length of a transition path. Setting it to a large

value has the effect of checking all possible patﬁs.

njump

Is input as an integer greater than or equal to zero. It sets
the number of first set joint planes above a particular point in that set
from which transition paths are checked, with the purpose of finding
a minimum safety margin. Setting "njump" to zero will only check points
along a given joint plane and will not allow paths (or jumps)_to
overlying joint planes. Since the critical path seldom involves more
than two or three transitions, it is advisable to set "njump"
relatively Tow so that fhe number of paths checked and hence cost
is kept low. Within the scope of this thesis, it is not recommended

to set it to zero, nor greater than three.

4.3 Sample Output

For purposes of illustration, the sample run used in this study,
consists only of a single realization. The slope geometry specified
by the input parameters discussed previously as well as the joint

pattern geometry for this realization, was previously described.
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Although the output shown on the following pages is self explanatory,
additional discussion on it will follow.

Part (a) is the print-out of the input parameters as inserted
by the user, primarily, for reference or demonstration purposes.

ﬁart (b) is a print-out of the geometry of the joint planes of
the first set. It starts with the plane number and is followed by
the maximum permissible x-corrdinate on the slope face as well as
the y-coordinate of the joinf plane followed by the x-coordinates
of joint segments on that plane. Finally, a statement of the number
of joints and the percent persistence of that plane is printed out.

Part (c) is self explanatory. Each plane projection of rignt-
ends of joints to above planes is listed on the x-axis (x-coordinates).

Part (d) is the same as part (b) except that it is for planes
of the second set. It starts with a printout of the maximum per-
missible y-coordinate where a plane can be generated.

Part (e) is a 1isf‘of the x-coordinate of the pbints of inter-
section of each-plane of the first set with planes of the second
joint set.

Part (f) is a list of the compiled x-coordinates of the joint
segmehts as well as the right ends to above projections and points
of intersection. All are listed in ascending order as can be seen
in the sample output (this list of x-coordinates is referred to as

the dynamic programming plane points).
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Part (g) is the output of the dynamic programminy carried out on

every dynamic programming plane point as well as the x-coordinates

of second set discontinuities. It starts with a print out of the
realization number. Next, the type of region being analyzed as

well as the boundaries and type of jointing in that region are

printed out. Following that, each of the dynamic points including

those in the second joint set, as well as the Tower and upper x-coord-
inates which might constitute a section of the path of a minimum

safety margin, are printed out. Next, beta, the angle of transition,
and the actual path length (negative if path is within a discontinuity),
are printed out. Average stress on the potential path due to rock
overburden and total weight of overlying rock as well as the incremental
safety margin of that path which connects the two points mentioned,

all follow on the same print out line.

The print out line that follows consists of the total safety
margin of all the points constituting a path from the upper surface
down to the point of interest and the total length of all discon-
tinuities on that path (negative for indexing purposes only) as well
as the total length of that path connecting points of minimum safety
margin to the upper surface. Finally there is a print out of the
weight of rock overlying the path just described.

When the exit points of planes of the first set are reached,

a statement indicating the plane reference number and the total

safety margin at that point, is printed out.
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Part (h) is a summary of the preceding. It is a list consisting
of: the number of the plane, the x-coordinate at the exit point,
the angle of the critical path, the minimum safety margin, the unit
safety margin, the apparent persistence and the weight of the critical
path.

Part (i) is most important to the user since it is an arrange-
ment of all the data listed in part (h) in the sample program output.

Notice that this part is an output of the statistical data for
each of the height increments specified by the user. By setting
"ndiv", the user divides the slope to "ndiv" parts. The values
of output parameters (i.e., continuity, SM, USM, etc.) associated
with the exit point of each joint plane that falls within a given
interval, are stored. For each interval, the means and standard
deviations of these parameters are evaluated. These statistics are
based on parameter values of all exit points that fall within a
given interval, independent of realization. For the sample run only
one realization was carried out. This is not a sufficient number
to reliably determine statistical parameters of outputs. However,
results such as distributions (i.e., means and standard deviations)
are more reliable when the number of critical path exit points that
fall within each interval, increase with the increase in the number
of realizations (user specified).

In this part, output of the total number of joints (NIi)
existing within an interval and the total number that fail (NFi)’
i.e., (SM < 0), are also printed out. Again, as was the case for

the statistics, a running count is made of NFi and NTi for each



interval, i, independent of the number of realizations. From
' NTi and NFi the user can estimate the probability of joint plane

failure Pf for each interval i:

Fi Fi | Ny (Eq. 4.1)
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Main Program Variables

s

: Inclination of the first joint set, in radians

[Figure 4.1(a)].

: Inclination of the second joint set, in radians

[Figure 4.1(a)].

: Inclination of the slope face in radians

[Figure 4.1(a)].

: Friction angle of jointed rock in radians.

: Tangent of joint friction angle.

: Friction angle of intact rock in radians (taken as 0.0).
: sin (phork). |

: cos (phork).

: tan (phork).

: Average joint persistence defined as (spjtinl/(spjtinl +

sprkbrl)) and (spjtin2/(spjtin2 + sprkbr2)) of the
joint sets respectively.

: Center of failure circle tangent to the parabolic

and linear sections [Figure 4.4].

: y dim/sin (alpha 1). [Figure 4.1(b)].

: number of realizations that will be carried out in

one run; user specified.

: perpendicular distance from apex of slope to a

generated joint plane [Figure 4.1(a)].

: define number of random numbers to be generated.

: random number produced to generate x - coordinates

for joint planes.
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Main Program Variables (cont.)

: Y - coordinate of the i-th joint plane on the y axis

of set 1 and 2, respectively.

: random numbers produced by random number generator

ggub.

: For odd j: cjoint 1,2(i,j) is the depth to the

right end of the (j + 1)/2 joint segment in the

ith joint plane. For even j: cjoint 1,2(i,j) is

the depth to the left end of the j/2 joint segment

in the ith joint plane; joint set 1 and 2 respectively.
[Figure 4.2(a)].

: X - coordinate of the exit point on the slope face of

the ith joint plane of the first set. [Figure 4.2(a)l.

: Vertical distance of exit point of the ith joint

plane below the upper free surface of the second
joint set; on either the slope face or the line
designated xj1. [Figure 4.2(b)].

: Vertical distance from the apex to the ith joint plane.

[Figure 4.2(a)].

: Number of joint points in the ith point plane.

: Number of joint segments in joint plane under

consideration.

: Average percent persistence of ith joint plane of

joint set one and two respectively.

: Sum of joint segment lengths in joint plane under

consideration.

: Number of joint planes in realization under consider-

ation of set one and two respectively.

: X - coordinate of right end of joint segment to upper

plane for use in dynamic programming.

: Number of points of intersection on plane j of set one

with planes of joint set two.
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Main Program Variables (conf.)

: The ith point of intersection on plane j of set one.

: y coordinate of the joint plane of set two defined by

the ith point of intersection on plane j of set one
[Figure 4.4b7.

: Number of the plane of set two defined by the ith

point of intersection on j-th plane of set one
[Figure 4.4b].

. Vertical distance from (x = 0.00) to the starting

point of joint plane i of set one.

: Number of dynamic programming points on plane j of

set one.

: ¢jointl (j,i), xcoor (j,i) and ptint (j,i) rearranged

in ascending order.

: Vertical distance between plane j and n of set one.

: Minimum safety margin of the i-th x-coordinate of

plane j in set one and two respectively, [Fig. 4.3].

: Minimum safety margin of the ith x-coordinate in

plane j of set two which corresponds to a point of
intersection on a plane of set one.

: An integer which describes an arrangement of joints

within a region [Figure 4.4(c)].

: Of plane j of set one and coordinate i [Figure 4.5(a)];

if last equals zero a joint segment intersects point
of interest. If last is greater than zero then the
number stands for the number of the end of a joint
segment of set two, immediately above the dynamic
programming plane point plpt (j,i).

: An inteager, either 0 or 1; 0 for a regions between

two planes of set one; a 1 for region between a
plane and free surface [Figure 4.5(b)].

: An integer, either 0 or 1; 1 for a point on a first

set discontinuity which is intersected by a joint
segment of the second set; 0 for a point which is
not intersected by a joint segment [Figure 4.5(c)].
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Main Program Variables (cont.)

mpos : Integer which determines type of path to be checked
by the resistance subroutine. For mpos = 1, the
subroutine considers vertical transitions to the
free surface. For mpos = 0, the subroutine considers
transitions through intact work to other joint planes.
For mpos - 2, the subroutine considers transitions
through joints of the first set. Finally for mpos =10,
.the subroutine considers transitions through joints
of the second set.

str : Safety margin of a particular path under consideration

wninl (j,i)

wmin2 (j,i)

wninl2 (j,i) : Weight of overlying "slice" above path of minimum
safety margin (Fig. 4.3)

sf : Force required to cause failure for transition
path under consideration. sf is calculated in
the subroutine - msaf. (sf = df - res) where df is
the driving force and res is the rock resistance.

sV : Resistance of path involving a vertical transition
to the free surface. sv is calculated in the sub-
routine - msaf.

siga " : The average component of overburden stress perpendi-
' cular to the direction of jointing for a particular
transition path (Figure 4.6(a)).

taufr : Peak shear stress on a transition path resisting
downslope motion of overlying material in the
direction of jointing; calculated by msaf
(Figure 4.6(b)).

wpth : Weight of overlying "slice" of rock above transition
path in question; calculated by msaf (Figure 4.6(b)).

dist : Length of the joint plane under consideration.

usm (J) : Unit safety margin of the exit point of the jth

joint plane. (Figure 4.3).

fang (J) : Net angle of critical path for the exit point of
the jth joint plane in degrees. (Figure 4.3).
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Main Program Variables (cont.)

: Apparent persistence of the jth joint plane.

: Weight of rock overlying joint plane under

consideration.

: Number of joint planes in the nth height interval.
: Sum of joint persistences in the nth height interval.

: Sum of squares of joint persistences in nth height

interval.

: Sum of angles of critical paths (in degrees) in

nth height interval.

: Sum of squares of failure angles in nth height

interval.

: Sum of safety margins in nth height interval.

: Sum of squares of safety margins in nth height

interval.

: Sum of unit safety margins in nth height interval.

: Sum of squares of unit safety margins in nth height

interval.

: Sum of apparent persistences in the nth height

interval.

: Sum of sauares of apparent persistences in nth

height interval.

: Sum of the weight of rock overlying the critical

paths in nth height interval.

: Sum of squares of weights of rock overlying the

critical paths in nth height interval.

: Number of critical paths in the nth height interval

with safety margins less than zero.

: Upper x-coordinate of a particular transition path

(Figure 4.6(a)).

: Lower x-coordinate of a particular transition path

(Figure 4.6(a).
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Main Program Variables (cont.)

smpthr (j,i) : Total intact rock length of a particular path up to

point i of joint plane j.

smpthj (j,.i) : Total jointed rock length of a particular path up
to point i of joint plane j.

smptht (j,i) : smpthr (j,i) + smpthj (j,i)

perave (n) : Average percent persistence of joint planes in the

nth height interval.

sdper (n) : Standard deviation of percent persistence of joint
planes in the nth height interval.

fanave (n) : Average angle of critical path (in degrees) in the
nth height interval.

sdfan (n) : Standard deviation of angles of critical path (in
degrees) in the nth height interval.

snave (n) : Average safety margin of critical paths in the nth
height interval.

sdsm (n) : Standard deviation of safety margins of joint planes
jn the n-th height interval.

usmave (n) : Averaqge unit safety margin of joint planes in the
n-th height interval.

sdusm (n) :+Standard deviation of unit safety margin of joint
planes in the n-th height interval.

appave (n) : Average of apparent persistence of joint planes
in the n-th height interval.

sdapp (n) . Standard deviation of apparent persistence of joint
planes in n-th height interval.

wgtave (n) : Average weight of rock overlying critical paths of
joint planes in n-th height interval.

sdwgt (n) : Standard deviation of rock weight overlying critical
paths of joints in the n-th height interval.

xxx1 : Top x-coordinate of height interval under consider-
ation (Figure 3.18(b)).

Xx%2 : Lower x-coordinate of height interval under consider-
ation (Figure 3.18(b)).
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Variables in the Subroutine Msaf

Angle of transition path in degrees measured from
horizontal (Figure 4.6a).

Beta in radians. 7

Angles to be used in the subroutine. Either can be
alpha 1 and alpha 2 depending on the type of the
path

y-coofdinates of plane(s) under consideration for
a particular path of transition (Figure 2.19).

x-coordinates of ends of transition bath (Fig. 4.6a).
Area of rock overlying transition path (Fig. 4.6b).
Weight of rock overlying transition path = Area x gamr.

Angle of tension fracture measured from the joint
inclination angle.

Resistance of the transition path to shear in the
direction of jointing.

Shear resistance of jointed transition path.

Resistance of intact rock at ultimate strength.
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1.,30p

comsion/lago/ T{200),yrand{100),»1{100),y2{100},Fana(100),usm{100) ,per
\cave!100),Fanave{100),sdFan{100) smavel{100) ,5dsmi100) ;usmava (100}, 5dusni(lin),a
\crrave(100) ;sdper(100)

common/lser/ wminl(BO:B0) ,uminl2{80,80) »wumin2(B0.60),m{50) ,apr{50) 54
\ewat (50) rwatave{S0) ,sdarriS0)

common/causa/ ssarer(50),sprer(30),sFfani50)s5aFan{50),3sm(50) rs59sm(S
"\e0) rsusni{S0) ,559usm{50) r5arr(30) ,553aPP(30) ,swat {30}, 55awat (50),smlea(30) »numJ
\e({50),sml {100,100} ,m1(100);utran(100,100)

_ common/Pizza/ Ptint(75,120),p1Pt(75,120) rxcoor{75,120),cdointli75,120

\e)-edoint2(75:120),v2ptint{75,120) rny2Ptnt (73,1200

common/Kuss/ nPt1{B0),nPtint{B0O):nPt2{B0) Perconl{B0),Percon2(B0) zp
\c{B0),xd1(B0),xd2{B0)

common/alto/ dee(35),last{50,100) ,miurai{50,50) ,sm2(B0,100) ,merak{40.2
\c00) rKhamsin{B0,100) ,crement (B0) . nmp1rt(70,70),5m12(BO,100) ,smPthil (B0, 100) ,5m
\cPtht1{B0,100),smrthri{B0,100),smPtht2(80,100),smpthr2(B0,100) ,smpthiZ{B0,100)
\c,smPtnt12(80,100),smPthrl2(80,100) ;smPthilZ(B0O,100)

3743 Faormat(S5x,’'Joint Plane ’,i2,B6x,'Safety Marsin ':FB.2)
3745 Format(Sx, 'Safety Marain =',f7.2,5%, 'Jointed RocK:;GBum =',F7.2,5%,'Cri
\ctical Path Lensth =',f7.2:5x,'Critical Weisht =',f7.2
3747 Format{5x:'In Joint Transition Within Plane ’,13:3x,'0F Set ':il)
3748 Format(Sx,'From Plane ‘,i3,5%,’'In Set ',il,3x.’Reference Point ’,i3.7
\cx,'Up To Plane ',i3,5x.’'0F Set '-,il,3x,’'Reference Point ',13)
3749 formati{/.1x, 'Lower x—-coordinate = ’',FB.2.Bx:'UPPeT X-coordinate = ',f
\cB6.2)

- 3750 FormatiSx,’'Beta = '.F5.2:5%,'Path = ',F7.2,5x:’'Stress = '+F7.2:5%:;" W
\ceisht = *,f7.2,:3x:' S.F.lrPath) =',f7.2)
455 Format (/.3x, "#assses® Realization Number ',i3)
457 Format{/S5x, ‘There Are No Points OF Intersection On This Plane'./)

. 486 Format(/5x,'No Joints On Plane’:i3,4x,'DF The Second Joint Set’)
4568 Format(/5x,'Recion Starts On Slore Face To Plane’,i3,9x: ' vcecrdinate
\e=',FB.2)
458 Format{/S5x,'Reaion From Free Surface To Plane’,i3,5x%:'y-coordinate
\c = ‘yFB.2)
470 Format{/Sx:'Resion Between Planes’',13.’ find ',13,3%,;’ v-coordinate
\e = ‘,FB.2)
491 Format(Sx,' Joint(s) In Betwean Oniv")
4392 Format(iOx,’ No Second Set Joints')
433 Format(10x,' Cantinuous Joint Throughout ')
434 Format(Sx,’' Joint Intersects Torp Paint’)
433 Formati{Sx,' Joint Intersects Bottom Point’)
1008 format(///:10%, 'Slore Anzle: ',F3.1,' desrees’)
1010 format(10x,'Slope Hight: ', FB.L,' Feet’)
1013 Format{l0x, 'Rock Unit Weishtl ‘,F8.2)
1011 Format{10%, 'First Joint Set Inclination:. ',F3.1,’ desrees’)
1009 format{10x, 'Second Joint Set Inclinmaticni: ',F5.1,' dearees’)
1012 format(//.5%x.'Strensth Parameters’,/,i0%x,'Phi (Joint) = '.F7.2.' dz2ar

\cees’,/,10x,'Cohesion (Joint) =4{,F7.2,/.10%, 'Phi {rock} = ',f7.2," dearees’,/,
\cl10w, 'Conesion (rock) = ',Ff7.2) '

1015 format(//:3x,'Path Criterial ‘,/,10x, 'Minimum Seacing =',fB.1,/,10%:
\g'Maximum Transitiocn =',13,///)
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31.70p .

1014 Formati{//S4,'Distributional Parameters:Joint Set One. '/10x,'Mean Pla

\cne Spacing =':f7.2:/10%: "Mean Joint Seacing =',f7.2:/10%, 'Mean Joint Lanath

\e=',Ff7.2) '

1004 formaw(//Sx, 'Distributional Parameters;Joint Set Twa. ‘/10x.'Mean Pla

\cne Spacina =',f7.2:/10x: '"Mean Joint Seacins =',Ff7.2,/1Q%, 'Mean Joint Length

\c=',F7.2)

1018 Format{//:10%, 'Number of Realizatins:’,i3)

1080 Format{10x. 'Point Considerad:’',//.t20;'Joint Plane = ‘:12x,
%i5,/,t20,'y-coordinate = ',9%,F10.3,/,t20, 'x-coordinate = ',3x,
4f10.3,///+' Path no.’':Bx.'-- Junction Point --';7%x,’Ansle ',

&4x, 'Strenath’.4x, 'Strenath’,4x, 'Strenath’,Bx: 'Minor Prin.’:4x,
&’'Tangent Ta’',/.14x,"Jt. Pl.,',3%, 'y—coor’' 4%, 'x-caor',3%,
%'To Joct.'-84x:'To Jt. Pt.',4%,'To Edse’.Bx,'Total’,L10x,’'Stress’»/)

1092 Format{iS,7%x:i5,2%k,F10.3:F10.3,3%:F5.2,:4%,F8.2:4%,FB.2,4x,F8.2:4x:F7.
\cZ2:84x,F7.2) ) :

1088 Format{lx, ‘The Minimum Safety Marsain For v-coor = ',f10.3,'And x-coor
Ae = ',F10.3:7 is ',F10.2)

1126 Format{t2S,’ ( To Free Surface ) ')

1127 format(iS5,4x,’ Yert. Transition to Free Surface ',5x,’ 3¢ ',4x,FB.2.4
\cx:'0.0 ',8x,FB.2:7%:F7.2)

1017 Format(//.,10x,'Initial Random Number:’',iB)

1130 format{//.,10%, 'Realization Number '.i3)

1863 Format{//,10x.'-—-Joint Set CUne.:Dynamic Prosrammicnz Plane Points-—')
1131 Format{/20x, 'Number of Joint Planes Is = ',13)

1132 Format{/1x.'Joint’,39x. 'Percent’,9x,’Anale OF ', 16x, 'Minimum’,8x, 'Unit’

\c,13x%, 'APrParent’,3x, ‘Weight OF',/:’ Plane’:7x,'Continuity’,;7x,;’Critical Path’:
\cBx:'Safety Marain’',Sx,’'Safety Marein',Sx: 'Persistence’,8x, 'Critical Path’:Sx,
\g 'Height')

1133 Format{id,11x,FB.2,18x,F3.2,9%:F11.2:B%,F11.2:12%:FB.2,5%,F10.2:7%x:FB
\c.2)

1135 Format(//7x,'The Slope Hisht OF '.FfB.1,5x%,' Is Divided Into Incremen
\ets OF ',FB.1,5x,’ For Statistical Analvsis’)

113B Format(//.20%,'Interval From '.FB.1.34%x,'To ',FfB8.1.,//:

&3xy; 'The Number OF Joints Is',i5.//,3x:

&‘Percent Continuityi’',/:15%,'Averaae = ',FB.2,/:15x;

%'Standard Deviation = ',FB.2,//.5x, 'Net Ansle of Critical Pathl’,
&/,15x,'Average = ',FB.2:/:15%,'Standard Deviation = ';fB.2,//;
45x,'SafFety Marsin.’s/,15x%, 'Average = ',F12.1./,15%,

&'Standard Deviation = *,f10.1,//:3%,’Unit Safety Marain.’./.
&15x%, 'Average =' ,f12.1,/:15x,'Standard Deviaticn = ',Fl0.1.//,
&5x, 'ApParent Persistencel’,/,15x,’Averase = ,FfB.2,/:15%:
&’'Standard Deviation = ‘,fB.2://,0%, 'Weight of Critical Paian 1/
&/:15%,;'Average = ‘,Ff12.2,/.15%, 'Standard Deviation = '.,Ffl0.2;
&//:3%,'The Number OF Joints With Safetvy Marsins < 0.0 Is ',
&2%.F5.0)

print."inPut thetaralrhal.alrhaZ,ydin®
Tead(3,589)thetaralrhalalrhaZ, vdim

Arint:"inPut vstar.ndiuv®

read(5,-388) ystar.ndiv .

Print."inPut Phidt,codt.Phirk,corR.Phinlt”
readi5,.5898)phidt codt - phirk-cork.Phiult

Print,"input samr®
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71:120p

read {5,389 ) aanr
print,"input se31,5p32,5PJtink,spitln2,sPribrl,sprkdrl”
read(5,999)sp31,5p32,sPitlnl,sPitln2, sPrkbrl, spTkbrd
print.,"input iseed”
read{5.9898)iseed
Print,"notroP,notPat.notrod”
read{5,999)notror,notrot notrod
Print:"inPut outPutl,outPutZ,outPut3”
read(5,999) outrPutl,outPutZ, outputd
print."inPut noreal.distmn.niump”
read(5,959)noreal rdistan,njunp

939 Farmat(v)
if (notrPor.ea.0)}g0 ta BESO
write(B,1008)theta
write(B,1010)vdim
write(B,1011)alphal
write(B,1009)alrhal
write(5,;1012)Phidt-codt-PhirKk.cork
write(B:1013)samr
write{B,1014)sp31,sPitlnl,sPrkbrl
write(B,1004)sp32,;5Pit1n2,sPrkbrZ
write(B,1017)iseed
write({B,101B)noreal
write{B,1015)distmn,niump

6350 continue
Pi=3.141582
alphol=alrhalx*pi/180.
alpho2=alrhaZ#pri/1B0.
xil=vdim/sin{alrhol)
theto=theta%*ei/1B0.
phoJt=rPhiJjt
tandt=tan{phodt)
phork=phirk#pi/1B80.
sinrk=sin{phark)
cosTK=cos{Phark)
tanrk=tan{prhork)

xotetazcork#({l.-sinrk#cosTK)-{1. -{2.*casrk451nrki)** 3)/sinTi#s,

gotal=1./{(tan{theto-airnol))
cotbi=1./{tan(airhol})
dJjl=xJl/{cotal+cothl)

ysumi=vstar

ysumZ=vstar

pl=spitinl/(spitini+spritbrl)
p2=spitinZ/{spitln2+spPribra)
ifF{theta.eq.30.0)adin=0.0
if(theta.1t.30.0)adln=vdim/(tani{thetal)
rtot=xJi*cosi{zirnol) . N
vy1im=0.0
ywt=(ydim/tan{alpnol))-{vdim/tan{theto))
iflalenaZ.1t.80.0)vlim=vdim/taniairhol)



123

121,165p
ymax=vLot-viim
if(ylim.at.adln) ymax=viot—-adin
if{aiPpnaZ.ea.50.0) ymax=vtot
iFt(alPhaz.st.B0.0).and.(alphaz.lt.180.0))vmax=vtut+(ydim/tan(((180.0
\g-alrhaZ)/180.0)#pri))
iflalphaZ.eq.180.) ymax=vdin
27 Format(//:5xs 'Maximum Allowable v-coordinate . vmax = LFT7.2:7017)
do 55 n=l.ndiv
sperin)=0.
ssaperi{n)=0,
sfanin)=0.
ssafanini=0.
ssmin)=0.
ssasmin)=0.
susm{n)=0.
ssausmin)=0.
saprp(ni=0.
ssaaprin)=0.
swatin)=0.
ssawatin)=0,
smleain)=0.
numJdin)=0
93 continue
do 1960 mm=1,noreal
ifloutputl.ne.0)write(B,465) mm
ysuml=ystar
ysum2=0.00
nreal=nreal+!
ierotch=100 .
call saub{iseed.icrotch:T)

do 3Q i=l,icrotch .
yrand{i)=ri{i)

30 continue

3 do 199 i=1.50

ysuml=ysuml+{sp31)#aloa(l./{1.~yrand{i)))}
vili)=ytot={{rsuml/sin{alrhol))+adlin)}
iFly1(i).1t.0.0)30 to 201

Z3 Formatix,'Joint Plane’',i3,7x,'Max x-coordinate =! , Ff7.2:7%; 'y=coordina
\gte =',F7.2)
155 icar=200

cail gsudliseed,icar,r)

iF(r(200).1t.Pl)cdointl1{i,1)=0.0
iF(r(ZOO).se.sl)cduintl(i:1)=5Prkhrl*alos(1./r(1))*sin(alph013
xd1{iY=ysumi#{xJil/dil)#sin{alrhol)

wdim=xdl{1)

ifinotror.ne.0duritelB,23) i xdim, y1{i)

ze(i)=ysuml/cos(alrhol)
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1BB,210p .
iftedointiiir1).ge.xdimdcdointi(i,1)=xdinm
iF(noteor.ne.Mwritel(B,320)cdointi{i, 1)
iflecdointitis1).eq.xdim)ao to 150
do B0 J=2,30:2
cdointlli,Jd)=cdointi{i,J-1)+spitinli#aloa(l./r{i))#sinlairhol)
ifteJdointlil{i-J).ge.xdiml=0 to 80
iflnotroP.ne.0)write{8,320)cdointlli,Jd)
cdointili,J+l)=cdointiti,J)+sprkbrisalogll./r{Jj+1))#sini{alrhol)
if(cdointi{i,J*1Y.g2e.xdim)=c to 120
if{notror.ne.0)writelB,320)cdointi(i,J+l)
BO cantinue ’
50 cdointl{i,J)=xdim )
if{notrop.ne.0)write(B,320)cdainti{i )
nertili)=J
ndoint=J4/2
nrn=J+1
g0 to 150
120 cdainti{i,J+1)=xdim
if{notrPor.ne.0lurite(B,320)cdointl{i,j+l)
nptlli)=Jj+1
ndeint=4d/2.
nrn=j+2
130° continue
rerconl{il)=0.
iflcdointi{i,1).ea.xdimIndoint=0
if(cdointl{i-1).eq.xdimdnPtli(i)=1
miti)=nPtl{i)
sumJtln=0.Q
if{nptlli).eq.1)30 to 159
do 1B0 Jj=l,ndoint
nnJt=2%j
sumitlnssumditin+ecdointl{i-nndt)-cdointi{i,nnit-1)
160 continue
138 continue
perconi{i)=sumdtln*i00./xdim
if{njoint.st.0}s0 to BBB
if{notror.ne.0)write(B,1288)
g0 to 180
888 if{notror.ne.0lwrite(B,128)ndoint
1288 format{i7x,' No Joints On This Plane ')
128 Format{17x,; '‘Nusber of Joints On This Plane Is ‘,i3)
130 . if{noteor.ne.0dwrite(B8,2B)rercont (i}
28 Format{17x, 'Averase Percent Continuity Is '»FB.2,7/)
189 continue
201 Jril=i-\
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41
40

123

do 40 i=1l,Jrll

do 41 J=l.,ml(i)
plptiirJd)=cointili-J)
continue

gontinue
gam=(45.0-alpnal)#*ei/180.0
mpl=Jirll-1

if (notrop.ne.0durite(6,665)

do 351 1=1,mpPl ’
m2=1+1

k=0

do 350 i=m2.Jr1l

do 349 j=1l.nptllil,2
pdis={y1{1)-y1{i))#tanlairhol)
adinec=0.0
iF(alPhai.lt,45.0)adinc=(((Yl(l)-yl{i))*(sin(alphol)/cus(AS.O*Pillao.

\c0)))#*cosigam) )-pdis

B85
B6B

348
350

42
351

11

if {{pdis+adinc).at.cdointlii,Ji))=e to 343
iFlcointl{i,J).eqa.xdi(i)) 30 to 330
ppp=cointiii,J)-rdis~adinc

if(ppp.8t.xd1{1))30 to 350

k=K+1

xcoor{l,K)i=pPP
iFtnotpop.ne.0.and.K.eq.durite(6,128921
format{10x: ‘--Joint Set Onelloint Risht End To Above ProJections-=")
if{notrop.ne.0)write{B,320)xcoor{1,K)

Format{lx, '1='11318Kr 'R=',13:Bx. ’KCOOT‘(HK)=‘rFB.2}
continue

continue

ml(1)=mi{1)+K

do 42 a=inptl{1)+1),0l(1)
plpt{lsn)=xcooril,{n-nptl{l)))

continue

continue

iF{notrPor.ne.Qurita{B,27) ymax

do 198 k=5l.icrotch

1=K-50

veum2=ysum2+{sp32)#aloall./{1,~rrand(x)))
iFlalphaZ.1t.180.0)v2(1)=ysum2/sinlalrhol)
iF(y2{i).at.ymaxlao to 202

iftalrha2.1t.90.0)20 tao 11

iflairha2.es.50.0)20 to 12
if(lalpha2.1t.1B0.0).and. (alpha2.at.80.0))a0 1o 13
iflalpnaZ.eq.180.0)20 to 14

sammo=alrhol
i?({adin.lt.(vdim/zan(althZ))).and.LvZ(i).st.(71ﬁt-{ydim/tan(alph02)

\gl}Y)igammo=thato
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236.283%p

xd“(i}'(((r*ut—v”(i)}*siﬂ{=ammn)-(rdim*cus(sammo)))*sinlalthZ))lsin{
\cgammo-3irho2)

if{(alphaz.le.theta).and.(v2{i).ea.{rtot~- {ydim/tantalpho2)))))g0 to 1
\c3

iF((theta.eq.B0.0).and.(vz(i).st.(ytnt-(vdim/tan(alﬂhnZ)))))de(i)=(?
\otot-vy2ii))stan{airhel) :

a0 to 70
15 Xd2{i)=vdim
g0 ta 70
12 xdZ2{i)=y2{i)#tanl{alrhal)
g0 to 70
13 C xd21i)={y211)/ymax) #{ydim/sin{{ {1BO. 0-alprha2)/1E0C. 0)*?1)}*51n(((180
\c-alrha2)/180.0)#pi)
a0 to 70
14 xd2{i)=ysumZ
y2{1)=0.0
70 continue
iFlnotrPop.ne.0durite(B,23)1i,xd2(1),v2(1)
154 icar2=200

call assubliseed,icarZ.r)

iflalrha2.ea.180.0)s0 to 308

iFlalphaz.at.20.0)=0 to 36D

ifl{{theta.29.80.0).and.{alpha2.eq.90.0))=0 to 17

dd={{(vdim*cus(theto))—{(Ytot-VZ(i})*sin(thetu)))!{sin(alphuz—thetu))
\e)#(sin{alrho2))

ao to 18
365 dd={(y2li)-vtot+adln)/{ ymax—-ytot+adlin))*rdim
g0 to 1B
17 dd=0.0
18 iF({r(200).1t.P2) .and.{¥2{i).at.{ytot-adln)))cjoint2{i,1)=dd

iF((r{200).1t.P2).and.{y2(i).le. (ytot-adln)))cioint2i,11=0.0
iFL{r{200).8a.P2) .and. {y2{1).1e. {ytot-adln)))cJdointZ(i,1)=sprkbr2#alo
\ea(l./r{1))#*sinlalrho2)
iFUIr(200).38.P2) . and. (y2{i) . at.({vtOt- adln)))c;o:ntZ(lrl) KSPr&hrL*al
\coall./r{1))#sinlalrPhal) Y+dd
208 continue
xdim=xd2{1)
ifledoint2{i 1) .2e.xdim)cdoint2{i,1)=xdim
iF((y2(i).1t.lytot-adln)).or.ldd.1t.0.0) )20 to 34
34 if {notrop.ne.0dwrite{8,320)cjoint2(i 1)
iF{cioint2li,1).ea.xdimd=0 to 151
da Bl J=2,50.:2
cdeint2li,d)=cdoint2li,J=1)+spitinZ#aloall./r{i})%sinlalrhol}
if{cJoint2li,J).ge.xdim)ao to 81
ifinotrarP.ne.0)writel(B,320)cdoint2ii )
cjoint2{i,J+1)=cdioint2(i,J)+spribr2*aioal(l./rli+l))#sinlairhal)
iftlcdoint2{i,J+l).2e.xdim)l20 tao 121

-
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121

151

161
162

8398
191
198
202

1283
1287

127

if(notrorP.ne.0)write({5,320)cdoint2{isJ+1)
continue

cJointZ2{i,J)=xdim
if{noteoP.ne.0)writeiB,320)cdoint2(i,J)
npt2li)=i

nJjoint=4/2

nrn=J+l

soto 151

gdoint2{i,i+l)=xdim
if({notror.ne.0durite(B8,320)cdoint2(i,Jj+l)
npt2{i)=J+l

ndoint=J/2

nrn=4/2

continue

percon2(i)=0.0
iflcdoint2{is1).eq.xdimIndcint=0
iflcJoint2{i-1).eq.xdiminpt2{il=1
sumJtin=0.0

deel{i)=0.0

if{{dd.ae.0.0).and. (y2{i).at.{ytot-adin))) deeli)=dd
iFtnpt2{i).ea.1) =0 to 162

do 181 Jj=1rnJoint

nnJt=2%J
sumJdtlin=sumitin+cdoint2(i,nndt)=-cdointZiirnnit-1)
continue

continue
perconZ{it=sumitin#{100./(xdim-deelil)))
if{nJoint.at.0)ao0 to 888
iflnotropr.ne.0dwriteiB,1288)

g0 to 181
if(natrop.ne.0dwrite(B,12B)njoint
iF{notror.ne.0) write(B,2B)rercon2{i)
continue

JpiZ=i-1

iflJjell.le.1)=0 to 4B

Format{/30x,'plane ',13)
Format{10x,'——Joint Set OnelPts. of Intersection—")
iF(notrar.ne.0durite!{B,1287)

do 45 i=1,Jrll
if{notror.ne.0dwrite(5,128M 1

k=0

do 44 J=1,Jjrl2

iflyi{id.at.y2(d))so to 34
dummy={y2{Ji-v1{i))#(coslalrnoli+tcinlalphol)/tanialrhoZ-airnol)) ) *s1

\cn{alphol)

iF (dummy.2t.xdi{i))=o to 44
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341,385¢
K=K+1
ptint(i,R)=dummy
y2etint{i,K)=v21J)
nyZetnt{i,K)=J
iF{notrorP.ne.0)writelB,320) dummy
320 Format{27x,F7.2)
44 continue
do 43 n=(ml{1)+1), (ml{i}+K)
pirt{i,n)=ptint{i,{n-ml{id))
43 continue
mitid=mliid+K
netint{i)=k
43 continue
48 do 10 i=1,Jrll
da 20 J=1,{ml{i)-1)
do 33 K={J+1),m1{1)
dummy=rlrtii,Jd)
if(plpt{i-J).le.plptli,K))=0 to 33
plptii,J)Y=riPt{i.K)
plpti{i-K)=dunmy

33 continue
20 continue
10 continue

if{notror.ne.Quritel(B,1983)

do 11! i=1,Jerll

Kak=1

if{notpop.ne.0duwrite(B,1289)1

do 222 J=1.ml{i)
ifl{notpaP.ne.0.Mwrite(B,320)PlPtii,J)
iF{nptint{id.eq.0)30 to 370
iF{plptii,Jd).eq.rtintli-Kak))Inmerlrt(i Kak)=J
ifF({plptii,d).ea.ptint{i,kak) ) Kkak=Kak+l

370 continue

222 continue

111 continue

431 do 450 i=1,Jrll
smi{i,1)=0.0

430 continue
do 500 J=1l:Jril
mmmm=J+1

if (mmmm.at.delll=o to 300
4o 301 n=mmmm,JrPll
vtran{d-n)={yitj)=vi{n))*tanialrhaol)
501 continue
300 continue
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385:427¢
viran{li,1)=xdl{1)
k=1
mPos=0 :
c
o] The Followina Routine Computes TneValues OF
C The Minimum Safety Mar=eins Resuired To Initiate
c Failure Amone The VYariows Joint PlanesAccordina
c To The Dynamic Proarammina Alaorithm Preset
c
do 398 J=l.Jrll
werit=0.0
5tr=0.0
c
c Routine For Paths Involvinz Joint Set Two
c

if{npPtint{d).ea.0.and.notrot.ne.0) writeig.467)
if{nptint{J).eq.0) =0 to 3502
do 503 int=1l.nPtint(J)
merak(d,int)=0
if(percon2in¥Zrtnt{J,int)).eq.0,0.and.notrot.ne.0) write(B,468)ny2Ptn
\ctldrint) .
if{perconZi{nyZrtntij-int)).eq.0.0)=20 to 503
mpros=10
if({lJ.at.l.and.y2ptint{J-int).le.vi{J=-1).and.v2ZrPtintld,int).ge.v1(d))
\g.or.{deelny2rtnt{drint)).ge.xdl(J=1).and.deel{nyZrtnt{d,int)).le.xdl{dd)),or.(J
\c.eqa.l)) so to 438
c
£ Routine For Paths Within A Regsion BoundedBr
c . Two Joint Planes OF The First Joint Eet
c

Khamsin{Jd,int)=1
if{notPot.ne.0) writel(G,470)J,J-1,v2rPtint{J,int)
crement{J)=vtran{j~1,J)#*caslalrhol)*sinl{alrha2}/sinl(alphaZ-alrhal ) *({
\cPi/180.0)) o

do 498 n=1l.npt2{nv2ptnt(d:int)).2

if{{cJointZiny2rtntidrinti.n).gt.Ptintl{d-int)),and.{n.@a.1)) =20 to 41
céd

g¢ to 412
414 if{notrot.ne.0) write(5,492)

merak{J-int)=1000

iflcdoint2iny2ptntij-int)n+id.at.Piintid-int)) a0 to 303
412 ifFledoint2iny2ptntid-inti nl. 1t {Ptint{drint)—crement{J?).and.cdocint
Aelny2Zeintld-int) »n+l) it tptint{dsint)—crement{J)).and. {{n+2) . at.nrt2invZerint(
\cdrint)l.or.cdoint2iny2etnti{d-int):n+2) . at.Ptint{J,int))) =0 to 432

20 to 410
232 if{notrot.ne.Murite (65,4922

merak{J,int)=1000

if{eioint2inyZrintid-int) . n+ld) . 2t.Ptint i, int)) =3¢ to 303
410 if{cJdointZ{nyZ2etnti{J-int):n).le.{Ptint{d,int)—-crement{(Jjl).anz.cdoint2
\ginv2ptnt{drsintl,n+l) .22, ptint{J-int?)g0 to 433
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call msaf lcioint2invy2etntidrint?,n21) 0.0, y2ptint{drint) ,Poine, 0.0, v2

\crtint{dsint) mPos,gamrscork,PhoTK,coJt s PROJL-PROULL, theto,airhol alrno2, sinrk
\crcasTkrtanrk xctetasPirhetarsfi.sussigartaufr,weth: rut)

2000
2001
1395
\e-1)

3500

3300

5301

if(point.ne.{ptint{i,int)~crement{J))lao to 1339

do 2000 kKok=1l,netint{i-1)

if{labs{ptint{Ji-1,KoK)-eeint)).1t.(.001))=20 to 2001

continue

esem=smi{J-1,nmPlrtli-1,Kok))

if{point.eq.cioint2{nyZrtntid-int) ,n2i-1))esem=sm2{nyZrtntid-int),nil

iflislero.ea.0)=z0 to 3500
if(({sF+esem).at.dummyZ)ao to 3600

islero=1
if{point.ea.lptint{jrint)~crement{i))lao to 3300
nurlane=ny2ertnt{J,int)

nsetu=2

nref=n2i-1

ao to 5301

nurlane=j-1

nsetu=1

nref=nmrlpt{i-1:Kok)
bottom=cJdointZ{ny2etnt{d-int),n21)

uPPeT=pPOint

dummyl=beta

dummyZ=sf+esen

dummy3=sisa

dummyd=wpth

dummyI=wpth+wminl {j=1,KoK)
iflpgint.eq9.cdoint2{ny2rtnt{j-int)n21-1)) dummyS=wrth+uminZinyZrint{J

\crint).n21-1)

3500

dummyB=sf

continue

do 3007 KKK=1,njump

iF({{J-KKkK).1le.0)s0 to 3008

iF{miti-kkK).eqa.l)=0 to 3007

do 3006 n3=1,ml{J-KKK)
horiz=y2etintldrint)+icdoint2{nv2etntid-int),n21)/tan{alrhod) )-v1(J-K

\ekK)={plpt{{J-KKK}),n3)/tan{alprhal))

vertiz=cdointZ{ny2etnti-int) n21)=plPt{ Li=KKK),nd)
iFLC({horize#*2. 00+ uerti#*#2.0)1#+0.50) ,at.distmni=a to 3007
anz2i=atan{abdbs(vertishoriz))

iflana?l.eq.alrhoZ)ao to 3006

iflana?1.2t.(30.0#(pi/1B0.0Y) )30 ta 3007

mpas=0

call msaficJdointZinyzZetntid,int}.n21),0.0,vZrptinttid,int) . pipt { {J-KKR}

\eon3)ovid i-KKK) 0.0, mpos ,2amr,cork - rhoTK codt - PROJL, Phoult  thRto-3iPnol3irhal
\grsinrk,cosTK.tanTk,xctetarPiroetarcsf su,siaa taufr wPtn, vut)

if{beta.=t.30.0)20 to 3007
if{isiero.aq.0)3o to 3501
iF((sf+sml {J=KKK,n3)).at.dummy2)so to 3BO1
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513,553p
3501 islero=1
nuprlane=J-KKK
nsetu=1
nref=n3
bottom=cJointZinvZetntid-int},n2l)
upPer=plpt({ J-KKK),n3)
dummyl=beta
dummyZ=sf+sml { J-KKK.n3)
dummy3=sisa
dummy4=wprth
dummyS=wpth+uminl { J-%KKk,n3)
dummyB=sf
3601 continue _ -
30086 continue
3007 continue
3008 cantinue
ifF({int=-1).ea.0)20 to 3010
if (merak{d,int=-1).eq.111.or.merak{d-int-1).29.1000)20 to 3010
tlimit=0.0 :
if{Khamsin(drint-1).ea.1)tlimit=(ptint{Jrint-1)-crement(J))
do 3009 n2n=2,npt2{ny2etntid,int-1)).2
if(cdoint2{ny2rtntidrint-1),nZn).1t.tlimit)=a0 to 3008
if({{cdoint2{ny2etnt(Jsint),n21)~-cioint2iny2etnt{J,int-1),nZn))/tan(a
\clrhol)).1t.(y2Ptint{Jj-int)-yZptint{J-int-1)))=20 to 3010
mPos=0
cail msaflcdointZinv2etnt{d-int),n21),0.0,¥2rtint(J,int) cdointZinvip
“\etntldsint=-1):n2n):0.0,v2ptint{Jsint=1) ,mpas,aamr.cork.Phork,colt-rPholit,Phoult
\crthetor-alphol,alphoZ2-sinrk,cosrk,tanrk.xcteta,Pi-beta,sf-svrsiga-taufr.wrth.y
\cut)
if(islero.es.0)=0 ta 3502
iFl{sF+sm2{ny2ptnt{d,int=-1),nZn)).at.dummy2)=0 to 3BOZ
3502 islero=l
nuplane=ny2Zeptntid,int-1)}
nsetus=2
nref=nZn .
bottom=cdointZinyZetnt{J-int),n2l)
upper=cJoint2iny2etnt{j,int-1),nZn?
dummyi=beta
dummy2Z=sf+smZiny2rtnt(J,int-1J),nZn)
dummy3=siga
dummyd=wpth
dummyS=wpth+wuminZ(nvZrentld,int-1),n2m)
dummyB=sf
3202 continue
2008 continue
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iflnoteot.ne.0)urite(B,3748)bottam, UPrPET
path={(pottom-upPer}/sin{dunmyi*(pi/180.)) )
iF(notPﬁt.ne.O)urite(S,3748)nyzptnt(J,int)rZ,nZI,nuplane;nsetu:nreF
iF(notpot.ne.O)urite(B;E?SO)dummvl:FathrdummYBydumm74,dummyE
if{nsetu.ea.l)aoc to 3522
smpthPZ(nyzptnt(J,int),n21)=Path+sm9thr2(nuplane,nreF)
sm2{ny2ptntlJ,int),n2l)=dummy2
smpthtZ(nYZFtnt(innt)-n21)=9ath+5mrtht2(nuplana,nreF)

sg0 to 3523
smﬂthernVZFtnt{innt),n21)=Path+smpthr1(nuplane.nreF)
smpthtZ{nYZPtnt(J:int)yn21)=93th+smptht1(nuplane:nreF)

smPthJZ(nVZPtnt(J,int);n21)=smpthr2(nv2Ptnt(J.int).nZl)-smpthtZ(nVZPt

\ent{Jdsint),n2l)

sm2{ny2ptnt{J,int) ,n21)=dunmy2 _

iF(notpot.ne.O)urite(6r374S)st(anPtnt(Jrint),nZI),smPthJZ(nYZFtnt{J

\c,int):nzl);smpthtz{nvzptnttjrint)rn21),dummvs

3005

g0 to 3003

point=cJoint2{ny2ptntid,int).n2l-1
iF(n21.eq.Ksh)Point=(9tint(J:int)-crement(d))
start=cJoint2{nyZetnt{J.int),n21)
iPchointZ(nvZPtnt(J,int)sn21).st.Ptint(J,int))5tart=vtintij,int)
mpos=10

call msa?istart,o.o,YZPtint(J:int),Point,o.orvzptint(drinn):mPos,samr
\c,cork,PhurK,cth,Phth,Phoult,theturalphalralphu2,sinrk,cnsrkytanrk,xctetarpi

\c,betarsFrsvssigartaufr,wrths ywt)

1988

BOOO
2001

1987

1386

BOOZ2

iFf(ppint.ea.{ptint{d,-int)-crement(J)))ao to 1398
esemuzsm2inyZrtnt{J,int) n21-1)
wminuzwminZ{nr2ptntii-int),n21-1)

ao to 1897

continue

do BO0OO kaka=1:(mi{J-1))
if{point.at.Plrpt{j-1,Kaka)l=eo to BOOO
a0 to 8001

gontinue

Kaka=Kaka-1

psemu=sml{J-1.Kaka)
wminu=wminl{Jj-1,Kaka)

if (start.ed.ptint{J,int))a0 to 1986
sm2i{nyZrtnti{J,int),n2l)=sF+esemu
wmin2inyZeptntl{Jr-int)  n21)=wpth+uwminu
gsem=sf+aesemu

wmin=wepth+uminu

g0 ta 1985

do 8002 Koka=i,m1(J)
ifF{plptlisKoko).1t.Ptint(Jsint))g0 to BOOZ
a0 to BOO3 -

cantinue
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587,83
BI03 . ldynoAag)=sFtesenu
: S-50Ra)=WRth+uming
wmin=wminl2ldrReko)
esam=sml2iJ-Koko)
19585 cantinue
if{notrPot.ne.0dwritel{B,3749)start Point
path=({start-point)/sin{beta*(pi/1B0.)))1#{(-1.0)
if {notPot.ne.0)write(6,3747)nv2rtntld-int) 2
if(notPot.ne.0)write(B,3750)beta-Path,siga,wpth,sf
iflPoint.gt.{ptint{Jjsint)-crement{J)).and.start.it.Ptint{J-int))smPth
\et2{ny2prtntldsint)-n2l)=(abs{path) )+smptht2inyZrint(J-int),n21-1)
iflpoint.at.(ptint{Jsint)-crement(J)).and.start.1t.Ptintl{d-int)Ismpth
\er2{ny2etnt{J-int)n21)=smethr2inyZrintld,int) n2i-1)
if{point.eq.(Ptint{d-int)—crement{id).and. start.lt.ptint{Jj-int)smPth
\ct2iny2ptnt(Jrint).n21)={abs{path) }+smpthul (Jj-1,Kaka)
iF{point.ea.{Ptintlid-int)-¢rement{J)).and.start.1t. thnt(dv1nt))smptn
\erZ2{ny2rtntiJrint) n2l)=smpthrlli-1.Kaka)
if{start.lt.ptint{J,int))rsem=smptht2{nyZrtntiisint),nZ1?
if(start.1t.ptint{d-int))smprthi2iny2rtnt{d-int)nZ1)={smptht2inyZrPint
\elJrint)n21)-smethr2iny2rtnt{d,int),n21))#{-1.0}
smpthi=smpthJi2{ny2etntiisint),n21)
iflstart.lt.ptint{J-int))sm2{ny2rtntli-int) n2l)=esem
if(start.1t.ptintlJ,int) Jumin2inyZetnt{d-int),n21)=wmin
if(start.lt.ptint{J,nt))a0 to B170
iF(Point.3t.(Ptintl{Jrint)—crementiJ)))smpthtiZ( i Koko)=(abs(patn))+sm
\erthtZinyZrtnt{Jj-int),n21-1)
ifFtpoint.at.(Ptint{Jsint)—-crement(d)))smpthriZ{i,Koke)=smpthrZinvZetn
Agtldrint).n2l-13 '
iF(Poinz,eq.tPtintCJ,int)—crement(d)))smpthtIZ{Jrknko)=(abs{Path})+sm
\epthtilj-1,Kaka)
iFlpoint.eqa.(ptintlJsint)-crement{J)))smpthri2(i-koKa)=smprhrlii-1,kKa

\JJ
‘u

\cka}
psem=smpthilZ{J,Koko)
smPthil2{i-Koko)=tsmpthtl2{.j,Koko)—smpthrl2{Jj,KoKa))#{-1.,0}
smpthi=smpthil2{Jj:Koko) '
smiZ{J.KoKo)=esem

_ wminl2(J,Koko)=wumin

Bi70 continue
if{notPot.ne.0)urite(B,3746)esem, smpthl,Psem wmin

3003 continue '

3300 last{d-int}=0
if(merakldrint).eq.100,0r.merakijrint).eq.0)iastli-int)=(n21-1)
if{lastlJjrint).eq.0)30 to 3222
iF(l(=-1)##last(J,int)).1t.0)PTint, "ERROR 17
ifFledoint2{ny2rtntldrint) lastidrint)) .1t .{ptintldsinti-crement{Jdi.o

\cr.cjoint2iny2etnt{d.int)-lastlir-int)).at.ptint{d int))Print, "ERROR 2%

3222 continue
20 to S03

Routine For Paths Within A Resion Bounded



134

B37:E77e
o ' By The Free Surface And A Jeint Plane OF
c Set Two
c
483 if{notPot.ne.0.and.deel{nvZptnt{drint)).eq.0.0)write(B,46BY 4, v2rtint(J
\erint) ‘
if({notrPot.ne.0.and.deeinvZptnt{i-int)).2t.0.MwritalB,468) ., v2rtintlJ
\erint)?
Khamsin{(J,int)=0
do 497 n=l.nept2(nv2rtntli,int)}.2
iFledoint2{nv2etnti{d-int) n).2t.Ptintij-int).and.{n.ea.1)s0 to 415
a0 to 41B ‘
415 if({notpot.ne.0)write(B,452)
merak{J-int)=1000
if{cJdoint2{nyZetnt{Jd.int) n+l).at.Ptintld,sint))=o to 303
4iB iF(cdoint2inyZetntiJrint)/n).eq.dee{nvZrtntiJ,int)).and. (cioint2invie
\ctntl{drint).n+l).ge.ptintld,int)))=0 to 411
20 to 444
411 if{notrot.ne.0lwrite(B,493)
merakl{drint)=111l
iF(cJiointZ{ny2ptnt{d-int),n+l1),3e.Ptintld-int) g0 to 4000
434 if(lcdoint2{nyZptntid,int) n).eq.deal(ny2rtnti{j-int))).and.{cdoint2{nv
AeZptntl{drint)n+l) . 1t.Ptintldsint)}) =20 to 417
30 to 446
417 if{notrot.ne.QluritelB,454)
merak({J,int)=100 .
448 iftedoint2inyZrtnt{d-intd n).le.Ptintid-int),.and. (cioint2iny2rintii-i
\cnt)rn+l).ge.ptinti{d-int)))=0 to 418
30 to 487
418 if{notrot.ne.0lwrite(5,493)

if{merak(J,int).eqa.100)meraki{d-int)=101

if({merak{J-int).ne.10i)merakid-int)=1001

if{cdoint2{nv2ptnti{J.int),n+l).ge.Ptint(i-int)) =0 to 4000
497 continue '
8500 iflmerak{J-;int).eq.0.and.notrot.ne.MNuwrite{B,431)

iF{merakld-int).eq.,1000) =0 to 486

do 4118 n2=1l,nPt2inv2rtntii-int))

islero=0

nuriane=0

nsetu=0

nref=0

bottom=0.0

upPer=0.0

dummyl=0.0

dumny2=0.0

Jummy3=0,0

dummy4=0.0
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dummy5=0.0

dummyB=0.0

if(n2.at.1) =0 to 4002

ifledoint2iny2ptntid,int),n2).8t.0.0) 20 to 4001

npPos=10

n2=2

point=cJoint2{nv2rint{d>int),n2}
iF(cJointZ(nYZFtnttJ,int),nZ).st.ntint(d.int))Pnint=rtint(J,int)

call msaFiPuint.O.O,V2Ptint(J,int),dae(nvZPtnt(J:int)),O.Ofvatint(J,

\cint)rMPDSrEBM?:GBPK:PhOPK:COJt:PhOJtrPhﬂultrthEtﬂrElPth:ElPhDZrSinTKrCQSTKrt
\canrk.xcteta;Pi:heta,sF,sursiaa.tauFr,wFth,vut)

Path=((Point-dee(nvZPtnttJ,int)))/sin(beta*lPiIIB0.0))}*(*1.0)
iF(Point.eq.Ptint(J,int)}smIZ(J,nmPIFt{Jrint))=5F
iF(Point.eq.Ptint(J,int))wmian{JrnmPIPt(Jrint))=thh
iFiPoint.lt.Ptint(J,int))st(anPtnt(Jrint).n2)=sF
iF(Pnint.lt.Ptint(J:int))wminZ(nvZFtnt(J,int):n2)=upth
iF(Point.lt.Ptint(J.int))smpthJZ(nYZPtnt(J,int),n2}=Path
iF(POint.lt.Ptint(Jrint})SMPthIZ(nYZPtnt{J:int)rn2}=Path*(-l.0)
iF(Point.lt.Ptint(J:int))smPthrZ(anPtnt(J:int),n2)=0.0
iF(Point.eq.Ptint(J:int))smPthFIZ(nsztnt(J:int),n2)=0.0
iP(Point.eq.Ptint{J.int))smpthJIZ(J,nmplpttj;int})=Path
iF(Point.eq.Ptint(J:int))smrthtlZ(J:nmplﬂt(J,int)}=Fath*(-1.0)
if(deelny2ptntld,int)).1t.0.0)3c to 4006
iP(nutPut,ne.0)urite(6,3749)901nt,dee(nvZPtnt(J-int))
iF(notPnt.ne.O)urite(S:3747)nv29tnt(J,inz),2
iPlnntPot.ne.0)write(8,3730)beta,Path,sisa,thh,s?
iFlnotPut.ﬁe.O)urite18r3?4B)5P,Fathrtabslpath)),wpzh

as to 4118

mpPas=1

if{deeiny2rtnt(J,int)).11.0.0)30 to 4006
point=cJjoint2{nyZetnt{Jd-int),n2)

call usaF(anintzinvzptnt{Jrint),n2),O.O,YZPtint(J.int),deeinyzptnttd

\c:int))rO.O,YZPtinn(J,int);mpos:samr,corkrphorh,cudtrphojt,Phoultrthetnralphol
\caalphOZ,sinrk,cosrk,tanrkyxcteta,Pi,heta,sFrsu.sisa,tau?r,thhrrut)

islero=1

nuplane=ny2pintld-int)

nsetu=2

nref=0
bottom=cJointZinyZrtnt{d.int),n2)
urper=dee{ny2etntid,int))
dummyl=beta

dummyZ=sf

dummy3=siaa

dummyd=wrth

iflint.ea.l)=ao to 4008
iftmerakiJrint-1).eqa.11i.0r.merak{J,int-1).24.1000)20 to 4008
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4006

6006

4002
4003
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ifly2ptintid-int).at.y1{i))=0 to 4009
if{dee(ny2etnt{j-int)).ge.-0.8130 to 5006
print.“ERROR",d-int,deeinyZrintid,int)}

sp to 1801
iPlnotPut.ne.D)write(5,3745)Point;dee(nVZPtnt{J,inz))
Path=(Point—dee(nvZFtnt(Jrint)))isin(neta*lsillBO.O))
iF{nntPut.ne.O)write(5,3750}betarpath.sisarwpth,sf
if(notPot.ne.0)write(6,374B1sF,0.0,Path - wPth
smpthr2{nyZrtnt{J,int).n2)=Path

suptht2{ny2Ptnt{J,int) n2)=path
smZ2{nyZrtnt{Jsint).n2)=sf

wninZ{inyZptnt{d-int) ,n2)=weth

a0 to 4118

iF1{~-1.0)##n2)4003,4003,4004
iflejoint2{ny2rtntld,int),n2).8t.Ptintl{d,int)) 80 t0 4986
aPDSs=0

pogint=cJointZiny2rtni{dr-int) rn2)

call msaF(anintE(anPtnt(J,int)rnZ).O.O:vZPtinttJyint):cJointZ(nvZPt

\ent(&.int).nz-l):0.0,VZPtint(J.int),MFosraamr:can:PhorKrethrPhan,Phuult-the
\ctn.alphnl;alpth:sianrcuerTtanrR,xcteta,Pirbeta:s?,sv.sisa,tauFr:uPthrth)

4500

4501
4007

4008

iflislero.ea.0)z0 to 4500
iFl(sF+sn2(ny2ptnt{d-int),n2-1)) .2t dummy2iso ta 53501

islerg=1

nuplane=ny2etnt{j-int}

nsetu=2

nref=n2-1

bottom=pPaint

upper=cJoint2iny2etnt{J-int),n2-1)

dummyl=bata

dummy2=sF+sm2iny2rtnt{J,sint),n2-1)

dummy3=siaa

dummyd=wpth

dummyS=wpth+uminZ(ny2etat(Jsint),nZ-1) -
dummyb=sFf R
continue
iflint.es.l)=o to 4008
iF(meraK(J.int-l}.eq.lli.or.merak(d,int—l).eq.IDOO)so 1o 400B

do 4005 nt=2.nPt2(nv2etnt{d-int-111,2 )
iP(cJuintZ(nvZPtnt(J:int-l),nt).st.stint(Jaint—l).nr.ujnintZ(nyZPtnt(

S

.

\cj;int-l)rnt).st.cjaintZ{nVZPtnt(Jrint)rn2)) ag to 4008

amhdn=atan((cJuintZ(nvZPtnn(Jrint};n2)-cjuint2{n¥2Ftnt{J;int-l);nz))/

\c(v2ptint(J,int)-vzpaint(J,int-1)+(‘cJaintZ(nvZPtnn{J,int}rnZ)-cJoian(n¥29tnt
zeldrsint-1):,nt)¥/tantaleho2)) )

ambda=ambdo#{180.0/pP1)
iflambda.lt.alernal)so to 4008
mros=0
point=cdoint2{ny2etrntli,int) n2)
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call mwsaflcioint2inyZertntijrint) ,n2),0.0,¥2ptint{i,int)sciointZ{nv2prt

\cnt(J;int-l):nt):O.O,YZPzint(J.intﬂl),mpus,samr,curk,Phork:qutrPtht:Phuultzt
\chetu:alphol:alPhoZ:sianrcosrR:tanrﬁ,xcteta=Pirbeta,sF:sv;sisa:tauFrrupth,th

\g)
4108

4309

4510
4005

4004

iflislero.ea.0)2a to 4508
if{sf.at.dummy2)s0 to 4510
islero=i

nuplane=nyZptnt(d,int-1)

nsetu=2

nref=nt
bottom=cdointZiny2ptnt{J,int).n2)
upper=cdoint2{nyZrtntidrint-1),nt)
dummyl=beta

dummyZ2=sf

dummy3=5iga

dummy4=wpth -

dummyS=wpth

dummyB=sf

continue

continue

a0 to 4008

mPas=10
point=cJointZ{nv2rtnti{d,intl),n2)
iflcdoint2{ny2etntid-int),n2).2e.Ptint{J-int)) point=ptintid-int)
call msafipoint,0.0,v2ptintl{J,int)-cioint2iny2ptntid-int),n2-11:0.0,v

\cZPtint(J;int):mpos,samr,cark,Phch:cujt,PhthrPhault,theto,alphol,alphoz,sinr
\cKscosrKkstanrk,xcteta,Pi-betarsfrsvursizarstaufr wetn, ywt)

el

iflnotrot.ne.0dwrite(B,3749)Point -cioint2{ny2rtnt{dsint) n2-1)
Path=((Pnint-anintZ(nVZFtnt(J,int),nZ-l))lsin(beta*(PiIIBO.O)))*(-1.

if{notrot.ne.0)writelB,3747)ny2ptnt(isint),2
if(noteot.ne.0)write{B,3750 beta Path,siza wuPthn:sf
if{point.ea.rtint{d-int))ao to B700

smZ2iny2etntlj,int) n2)=sF+sm2(nv2Ptnt{J,int},n2-1)
wminZ{ny2etnt{J-int),n2) =wpth+wnin2inyZertntij-int) n2-1)
smPthiZ(ny2etnt{d,int) ,n2)=path+smPthi2inyZertnt{irint) nZ-1)
SMFthtZ(nvZFtnt(Jrint)rn2)=(abs(Path))+5mptht2(nv29tnt(J;inti,n2~1)
smpthr2inyZetntldrint) ,n2)=smetht2iny2etatld,int) nZ)+smpthiZinyieint

‘Agldrint) n2)

E700

smpthi=smPthJ2iny2rint{Ji,int)n2)
smPprhtssmpthtZ{nv2Zrtnt{d int) . n2)

esem=sm2{nvZptatlij,int)n2)}

witin=wmin2{ny2ptnt{Jsintl,n2)

ap to 5701

sml2(J,nmpirt{isint))=sF+sm2(nvZrtnild-int),nZ-1)
wninl2{J-nmelet{d,int) )=wpth+uminZinyZPtntid,int) ,n-1)
sMPthJlZ(d,nmPlPti{drint))=Path+smPthaZinyZetntidsint) s nd-1)
smPthti2ti,nmeirt(drinty)=lans{Path) )+smprhtZinvZetnt{d-1nt)-nd-12
smptadssmpthJlZ{dnaeletid-Int))
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EO4,B45p
smPptht=empPrthtiZ{d,nupirtidrint))
smpthri2{dsynmrlrt(d int) ) =smPtnt+smPind
esem=smi2{i,nmplrt{J,int))
wonin=wminl2(j,nmrlpti{i-int))
5701 if{notrot.ne.Qlwrite(B,3746)esemn,smPthd,smPENt  Wwnin
20 to 4118 :
4008 continue
if{notprot.ne.0)write(8,3749) 00t tom, urpPer
Path={(bottom—urprer)/sin(dummri#*{pi/180.0)))
iF{notPot.ne.0lwrite(B,374BInv2Ptntl{drint),2,n2,nurlane-nsetu-nref
if{notrot.ne.Qlwrite(B:3750) dummyl Path,dunmy3, dummy4, dummys
if(nuelane.lt.nv2rtntli-int))smetht2iny2Zrtntidrint)n2)=smrtht2lnurla
\cne,nt)+Path
if{nuplane.lt.nyZrtntlisint))smptnrZiny2ptnt{d,int) rn2)=smethrZinurla
\cne,nt)+path
if{nurlane.eqa.ny2rtntij,int).and.nref.e9.0)smptht2{nyZptne{irint),n)
\c=prath
) if{nurlane.eq.nvZrtnti{Jrint).and.nref.eq.0)smrthr2{ny2ptnt{J-int),n2)
\c=path
iF{nuprlane.esq.ny2rtntidrint).and.nref.st.0)smrtht2inyZrintiJ,intl n2)
\c path+smertht2{ny2rtnt{drint),n2-1)
iFi{nuplane.ea.nvZrtntid-int).and.nref.at. 0ismrthrZiny2rtnt(J-int) n2)
\c=path+smPthrZinyZrtntid-int)n2-1)
smPthiZ{nyZrtnt(Jd,int),n2)=smpthr2{ny2rtnt{irint) . n2)-smrthtZ{nvZpint
\cld-int).n2)
sm2{ny2etntid,int) n2)=dummyz
waninZinyZetntld,int) nZ2)=dummy>
if{notrot.ne.0luritel(s, 3745)aummy_,smpthJZ(ny7Ptnt(Jpznt),nE},smpfht-
Aclny2rint{drint) ,n2) , dummys
4118 continue
488 lastldrint)=0
ifimerak{Jrint).29.100.0r.merakld-int).eq. O)IHSt{J:IHt) {n2-1)
if{last{Jj-int}.e9.0)20 to 3333
iF{{{-1)*#last{J,int)).1t.0)Print,"ERROR 1"
iF(cdoint2inv2rtnt{drsint)-lasti{j-int)).at.Ptint{j,int))pPrint . “ERROR 2

\cll
3333 continue
503 continue
S02 continue

str=0,0
c
c Routine For Paths Within A Rezion Boundad
¢ By A Point On A Joint Plane OF Joint Set:
c Two And A Point OF Either Set Aigue It
¢

do 330 i=1,ml(Q)

islero=0

nupiane=0

nsetu=g

nref=0

bottom=0.0
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3070
3071
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uprerT=0.0

dummr1=0.0

dummy2=0.0

dummy3=0.0

special=0.0

dummy4=0.0

duymmyS=0.0

dummy6=0.0

nen=0

if{plpt{i,i).e9.0.0)30 to 950
miurald,i)=0

iflnptint{J).ea.0)=20 to 3080

da 3070 int=i,nPtinti{d)
iftetint{isint).eq.rirtiiridigo to 3071
if{int.eq.nptint{dlige to 3072

continusa

if{merak{J-int).eqa.1000)20 to 3072
miurald,il)=1
if{merak{d,int).ea,.0.or.merakii-int).eq.100.ar.merakid-int).eqa. 1000)s

\co to 3072

E301
B302

do BB01 nunu=i,nptZ{nvZrtntli,int)).2
iFlcdoint2{nv2rtnt{Jsint)nunu+ll.it.ptinti{dsint)lao to 8801
nref=nunu

a0 to BBOZ

continue .
upper=cJoint2(nyZetntid,int),nref)

bottom=Ptint(d,int)

islero=1

nuprlane=nyZptnt(d,int)

nsety=2

special=B.0

mpos=10

call msaf(bottom:0.0,v2Ptint(J-int),urrer,0.0,vZrtintldrint) mrPos,2am

\errcoTK: Phorkscodt Phodt,Phoult,theto,alrhol -alrnoZ,sinrk-cosTk-tanrk,xctata:p
\girbhetarsfr-su,sigartaufr,wPth,ywt)

3072

dummyi=pbeta

dummyZ=smi2li. 1)

dummy3=sisa

dummy4=wPth

dummyS=wuminlz{Jj,1)

dummyB=s7

continue

do 3077 inte=l.nPtintlJj

iF{mivrald-i).ea,l.and. (merak{J-int).2a.1001 . or.merakid-intl).eq.101.0

\er.merakl{d,int}.eq.111))a0 to 30QEO

if {merak{Jd,inte).aq9.1000,.0r.merak{j-intel.3a.111)=30 to 3077
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§38,530F
iF(yEPtint(J:inte).st.l(PlPt(Jri?/tan{aIPhol})+v1(J)))su o 3080
4o 2979 nnn=Z,nPt2invZetntli-inte)),2
iF(cJuintZ(nvZPLnttJrinte),nnn).at.;tint{innte})sa tg 3077
iF(((cJeintZ(nvZPtnt(Jrinte),nnn)ftanlalthZ)}+v2Ptint(J,inte)).st.((
\eplptidrid/tanialrnol))+v1{i)))sa to 3077
verti=(P1FttJri)-cJuintZ(nvZPtnt(J.inte}:nnn))
horiz=(((PlPt(J,i)/tan(aIPhcl))+Y1{J))-{?2Ptinttdrinne)+{cénint2{nv29
\ctnt{d-inta),nnn)/tantairho2))))
iF({{verti**2,+horiz**2, )#+.5).at.distmnla0 to 3077
if(plptidri).at.Ptint{jsinte) a0 to 3077
do 3900 nen=2.nptlld).2
if{plptidsi).ea.cdointl(J-nen)laa te 3077
iF{plptldri).1t.cdointl(J,nen))g0 to 3801

3800 gontinue

3901 continue -
point=cJoint2(ny2etnt{j,inte) ,nnn)
mpos=0

call msaF{PIPt(J,i);YI{J),O.O,Point.O.O:y2(nv29tnt(3rinta)JrmPssyaamr
\c:corkrPhurkfcnjt,Phthrphnult;theto,alphul,alphnzrsinrkrcosrkftanrk,xcteta:Pi
\c,betarsF,sv,sisartanfr upth: yut) ‘

if({islero.es.0)=s0 to 4110

if ({sF+sm2iny2Zetnt{d,inte),nnn)).at.dummy2)20 L0 4111
4110 islero=1

nuplanesnyZetntid,inte)

nsetu=2

nref=nnn

bottom=plptidri)

uppeT=POint

dummyi=beta

dummy2={sF+sm2{nyZptnt{d-inte)snnnl)

dummy3=sisa

dummyd=upth
dummyS=wpth+wmin2{ny2rtntii,intel),nnn)
dummyB=sf

4111 continue

3979 continue

3077 gcontinue

3080 continue

routine For Paths with only in Plane transitlons allowed

a0 o0

ifFtpiptlisi).ge.cdointitd,1)) 20 to 310
" iFf{i.es.1l)Point=0,0

iflplPtidriY.e9.0.0)20 tao 950

ifli.gat.Dproint=plpt{d-i-1)

mPos=0 ——

cail msaF(PIPt(Jri)rvliJ),O.O,Poxnt,vltji,O.O,MPus:samrrcafK,Phanzca
\:Jt,Fhqu:Fhoult,thete,alphoi,alphuzrsinrﬂ:ccsrk;tanrﬁyxczena,Pi,beta:s?rsu=si
\caa-tanfr;wpths ywt)
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§31.3977e
esem=0.0
wmin=0.0
if{point.eq.0.0)esem=smili,i-1)
if{point.eqa.{0.0N)umin=wminlli,i-1)
if{islerc.eq.0)so to 4112
if{{sF+esem).at.dummyZ)ao to 4114
4112 islero=1
nuprlane=J
nsatu=1
nref=1
ifFli.ge.Z2)nref=1-1
bottom=prlPt{d,ri)
uPPeET=POINt
dummyl=hata
dummyZ2=sf+esem
dummy3=siga
dummyd=wpth
dummyS=wpth+umin
dummyB=cf
4114 continue
30 to 948
510 continue
do 580 n=1.nPrtlilj}
iF(plpt{J-i).at.cdointli{i,n)) =0 to 35860

¢ in Plane &nd To Free Surface Transitions

iF({-1.0)#%¥n)520,520,530
520 continue ‘

mPos=0

ifFlplptidsid.ea.cdointiid-n).and.Plrtidsid.le.zpld)) mPos=1

point=0.0 '

if{i.at.l)roint=Plprtid,i=1)

~ call msaf(,lptiir,1),v1{3):0.0,P0int,¥1(J}.0. Ozmpes.aamr.curK,Phorn,cn

\cdtrphodt Phoult,theta-alrhol-alPhoZ sinrkrcosrk tanrK-xeteta,Pi,Detarsfssvsi
\cgartaufr.wPth, vut)

if{roint.es.0.0)esemn=0.0

if{point.eq.0.0)wmin=0.0

if{point.at.0.0)esem=smi(d,1-1)

iflpoint.at.0.0)umin=wminlij,1-1?

if(islero.eq.0)=0 to 4B30

if{{sf+esem).at.dummy2iac to 4631
43530 islero=l

nuriane=J

nsetu=1

nref=i-1

bottom=pPlptii, i)

uprer=plptijri-i)

dummyl=het3
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978,1029#
dummy2=sf+esem
dummy3=ciaa
dummyd=werth
Jummyd=wpPth+wmin
dummyB=sf
4831 continue
if{str.at.sv.and.mpos.eq.1)str=sy
if{j.ea.l.or.miuralisid.eq.1)20 to 949
iflvtran{i-1,J).st.prlrt{i-1))a0 to 949
do 3030 Kub=l,njump
if({J-Kub).le.0)g0 to 3092
do 3081 Kin=1,{(ml(j-Kub)-1)
ifF(plpt(J-KubsKin).gt.(PlPt{Jjsi)=vtranii~l,d)))e0 to 3052
mPos=0
call msafipPlpPt{isi),v1(3),0.0,plPt(J-Kub Kin),v1{j=-Kub),0.0:nP0s 3aMT
\cscoTK,PhoTK,codt,PhoJt,Phoult,theto-alrhol alrPho2,sinrk.cosrk-tanrk - xctata, i
\c:beta-sfrsvu,sigartaufr,werth: yut)
if{islero.eq.0)30 to 4632
iF({sF+sml{J-Kub,Kin)).at.dummy2)ao to 4633
4532 islerog=1
nurlane=j-Kub
nsetu=l1
nref=Kin
. bottom=prlet{J:,i)
upper=plpt(Jj-Kub.Kin)
dummyl=heta
dummy2={(sPF+sml{J-Kub Kin))
dummy3=sisa

dummrd=wpth
dummyS=wrPth+wminl {J=Kub-Kin)
dummyB=sfF

4533 cantinue

3091 continue

3080 continue

3082 20 to 345

330 continue
mPOs=2

call msaf(Plreld 1) ,rild),0.0,PIPt{Js1-1),7100),0.0, P05 2320 COTH s PN
\coTKscodt-Phodt,PhOUlttheto,alPhal alePho2 sinrX cosrk, tanrk, xcteta P1,0e%3,SF
\ersussizartaufr upths vut)

path={(pirt{i,1)=-PlPt{Jsi=-1))/cin(betas(Pi/180.0))i¢(-1,0)

sPthi=0.0

iF(li-1).ge.Dsmprhi=smPthil (J, {i-1))

smPthdlldri)=rPath+smethd

smPtht=0.0

ifFtli-t).ae.)smptht=smpthti(j,i-1)

smPrhtl{d-i)=(abps{eath))+snprtht
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smPpthrlili,i)=smpthtili,iY+smPtndl{d-1)
smi{Jjr-i)=sF+smiidri~1) '
wminl{J,i)=wepth+uwminii(i,i-13
ifi{miuraliri).ea.0)30 to 2501
if{merak{J,int).eq,100,0r.merak{d-int?.eq.0)=20 to 2501
2302 ifFlsmi{drsid.lt.sml2(is1))a0 to 2501
smPthdllid,1)=smPthil2{4, 1)
eml{d,i)=sml2ij,1)
wminl(J,i)=wmini2{i,1)
smPthtllid,i)=gmpthtl2{J,1)
smPpthri{j,i)=smethti{j,i)+smpthillJ,1)
iF{merak{J,int}.ne.lil}ao ta B503
if{khamsin(Jrint).eq.0)rPath=rlrtid-1)/sinlalrhol)
if{khamsin{Jsint).ea.l)prath=crementi{J)/sin{alrhoZ)
a9 to B304
B503 do 8501 khari=l,npt2{ny2rtntli,int)).2
if (cdaointZinyZetntid:-int) Kharid.lt.ptint{d-int).and.cdointZinyZptne
\eldrint)Khari+l).1t.Pptint{d,int))ao to 5301

a0 to BO0Z
B301 continue
6302 path={plprt{J id-cdointZ{nvy2rtntidsint),Kharild)/sinlalrhal)
G504 continue

rath=path#(-1.0}

bottom=PlpPtli-1)

urPer={plrt(J,i)+{pPath*sin{airho2) M)

if{uprer.1t.(=0.1))Print."ERROR 4", Jri-int.nv2prtntld-int) .khari,upPer
\¢scJdoint2(ny2Pptnti{dsint),Khari)

if (upper.it.{-0.3))=20 to 13901

call msaf(plptl{J,1):0.0:v2rtint{J-int) ,urper,0.0,¥2ptintlJ-1nt} mPOS,
\caamr:cork.Phork,cadt-PhodtPhoult thetaoralrhol-alrho2 sinrk-cosTK, tanrk, xctat
\ca2,ri,beta-sF,sy,sizartaufr.wrth: ywt)

if{J.ea.2.and.i.e9.3)pPrint  urrer ,

ifinotrot.ne.0)write(5,3748bottom,uPpPer

if{notrPot.ne.Q)uwrite(6,37347Inv2rtnt{d,int),2

iF{notrot.ne.0)writei{B,3750)beta,Path,siga -wrthrsf

if{notrot.ne.0)writa(B,3746)smli{dr1),smPthdlldri),smPihtl{d,1) wminit

\gdr1id) o
ifinotPod.ne.0.and.i.eq9.mi{J)durite(8,3749)d,smilis1)
20 to 8850

2301 if{notrot.ne.Q)urite{B,3748)rirt{i il Plrtld,i-1)
if{notrot.ne.0)urite(d,3747)4,1
iFinotrot.ne.0lwrite{B,3750)beta rath,;siga wrPth:sf
if{notrot.ne.0duritel{6,374B)smild 1) ,smrthilld i) smPprhtl{J 1) reminid

Ncdsid
ifinotrPod.ne.0.and.i.eq9.mi {iNwritelB,3745) drsal(ds1)
ao tog 950

3350 cantinue

54g if{notPot.ne.0lwrita(B8,3748)00ttom, upear

iflnotPot.ne.Mwrite(8,53748)J-1-inuplane,nsetu,nraf
path=({bottom—urrer)/sin{dummyl¥*{pi/180.0)))
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8177

sPpthr=0,0

smPtht=0.0
ifl{srecial.ne.8.0.0r.(alpha2-dummyi).at.{.01))=0 to 5300
smPthdl{d-1)=smpthdl2ij 1)

smpthtl{d-1)=smpthtl2{i,1)

smlld,i)=smi2(j,1)

wainl{Jj,i)=umini2{J,1i)
smPthrl(j,i)=smPthti(i,1)+smpthil{j,1)

do 8176.mardi=1l.nptinti.j)
iflplpPtldrit.ea.ptintid,mardid)ao to 9177

a0 to 8176

if ({merakld,mardi).ea.10l.or.merak{j-mardi).eq.100.0r.merakij -mardi)

\c.e9.111).and.path.st.{0.0))rath=path#*{-1.0)

51786
89178

6300

5201

\edri)

o o o o

€3 L L3 12

ao tg 5178

continue

cantinue

20 to B901
if(nsetu.eq.l.and.i.st.l)smpthr=smpthri{nurliane,nref)
if{nsetu.eq.l.and.i.gt. 1)smPtht=smpthetl(nurlane;nref)
if(nsetu.eq.Z.and.i.at.1l)smpthr=smpthrZinurlane nref)
if(nsetu,eq.2.and.i.gt/1)smrtht=smptht2(nurlane.nref)
smpthrlid,i)=path+smpthr

smethtlly,i)=path+smptnt )
if{notrPot.ne.0lwritelB,3750) dummyl ,rath, dummy3, dummyéd , dummyB
smpthdilld,i)=(smpthti(i,i)-smpthrii{d,12)%{-1.0) :
smildr1)=dummy2

wminl{d-i)=dummy3d
ifF(notrot.ne.0lwrite(B,3746)sml(J, 1) rsmpthiili i) rsmpthel(dsi) rumint

if(notrod.ne.0.and.i.eq9.0i () )writel(5,3745)J,smlildri)
mrPos=0

The Following Calculates The Unit Safetv Marsin

dist=xdl{J)/sinl{airhol)
usmi{Jd)=smlid,mi(J))/dist

The Following Calculates Tne Ansie
OF The Critical Pathn

ans(J)=1.0000
if{outPut3.eq.1) s0 to 1SB1
FanalJdi=l(atan(l.0/(({weini{d mlid)}/8amr) /0. S4(xdl{i)+22.0)))+{1.0/13

\en(theto)) ) ¥#{1BG.0/r1)

1881

-
-

dFact=ndiv
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The Follewing Routine Calculates The Apparent
Persistence OF The Critical Path

wat=,S#aamr#xdi{d)#xdi (J)#{1./tanl{alrhol)-1./tan{thetal)
siza=wat#cos(alirhol)#sin{alrhol)/xalld)d

rr=siza/cork

ce=2./{{Z.#rr+l, ) 2%, 5-2,. #rr#tanirhodt) ]}
acrit=100.#(1.-rrecc#(ranialrholi-tanirhoit)))
appldl=acrit-100.¥cc#usmi{ ) /cork

The Following Routine Divides The Slope Into Hiaht
Increments And Performs A Statistical Anaivsis On
The Yarious Parameters Previously Calculatad

dxd=ydim/dfact

do SBO ndx=1,ndiv

kndx=ndx

iF{xdi{J).at.dxd#¥xndx) =0 to 8EO
numd{ndx)=numi{ndx)+1
sperindx)=sPeri{ndx)+rerconl{J)
ssaper{ndx)=ssaper{ndx)+rPerconliils*2,
sfani{ndx)=sFan(ndx)+Fana{J) '
ssafan{ndx)=ssafanindx)+Fanglj)#+2.
ssmindx)=ssmindx)+smi{d,mi(dd)
ssasmindx)=ssasmindx)+eml(J,m1{J) }x2,
susmi{ndx)=susmindx)+usm{J}
ssqusmi{ndx)=ssqusmindx)+usmi{J)##2,
sarr{ndx)=sapp{ndx)+arp{J)
ssaapp(ndx)=ssaarpindx)+app(J)**2,
swat{ndx)=swatindx)+wminlid,mi{J))

ssquat {ndxY=ssaust (ndx)+umini{d - mi(J))##2,
iF{smlidmildd)).le.{0.0))smleoindx)=smleoindx)+i
sa to SBZ2 . ’
continue

continue

continue

if{outpPut2,eq.0)a0 to 1500
write(B,1131)Jrll

write(5,1132)

do 1500 J=1.ierll

write(B,1133YJsprerconlid) Fansld),smildrmi{id i rusmidiarrlidl wminlid,

\eml{Jd)),xdl{d} 7

1500
1505

continue

continue

ifF{mm.lt.noreall=so to 1860

if loutPut3.ne.0)writel{B6,1135) vdim,dud
do 1800 n=1,ndiv

if{numdin).1t.2) 32 ta 1300
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1155,1186p
sddiv=numJinl)-1
peravein)=speerin)/numiin)
perss=abs(ssarerin)-sperinl#preravei(n))
sdrerin)={perss/sddivi#*.D
fanave(n)=sFanin)/numiin)
Fanss=abs({ssafan{ni-sfaninli*Fanave(n))
sdFanin}= (Fanss/sddivi##*,3
smavei(n)=ssmin)/numdin)
smss=abs{ssasmin)-ssmin)#*smavein))
sdsm(n)={smss/sddiv)#+.5
usmave (n)=susmin)/numiin)
usmss=abs{ssausmin)-susmin)#*usmave(n))
sdusmin)={usmss/sddiv)##.5
arpave{n)=sarrin)/numiin)
appss=abs{scsaarpin)-sarprin)taprpauveinl)
sdapri{n)={aprpss/sddiv)#*,3
watave(n)=swat{n)/numiin)
wetss=abs{ssawat{n)-swatin)s#wataveinl)
sduwat(n)={watss/sddiv)#+.5
Kuxl=(n=1)*dxd
KXNZ2=n#*dxd
if{ydim.eq.10.)20 to BS54
if{zamr.eq..151)30 1o B854

_ iF{xxx1.1%.80.0)=0 to BI53

5954 iFloutput3.ne.OdwritelB, 1138 xxxl  ¥xx2,numiin) speravein) sdrerinl).Fan

\caveln).sdfani{n).smavein) sdsmin) ;usmavein) ,sdusmin) -appave(n),sdarr(n), uatave

\ci{n),sdwat{n),smleoin)

83535 continue
1300 continue
1960 cantinue
19686 coantinue
1801 stap

end
c
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1187,1230p .

c The Followinz Subroutine Caiculates Resistance And Safetv

c . Marain For Transition Paths Checked In The Dynamic Proaramms.. =
c

subroutine msaflex2,v12,v22,8xl, 711,21 ;mPos,3amr,cork,Phork,coJt.ANC
\CJtrPhOUltrthEtOralPhﬂlralPhGZ:SinFKrCDSTKrtEHPKrKCtEZEvPirhEtSrSFrSUrSiSBrtau

\efFr:wPpthy yut)
. pi=3.141583 A .

c for paths within the second Joint set
iFl{vyi2.e9.0.).and.{vil.e9.0.)) 20 to GO4

c : for paths within the first Joint set
ifF((y22.8a.0.).and.(v21.29.0.)) =0 wo BO3

c path From First set point uP to 3 second set point
iF{{yli.eqa.0.).and.(y22.ea.0.)) =0 to B80Z

g path From second s2t Point up ta 2 First set rPoint

if(lv12.e9.0.).and.{v21.29.0.)) 20 to BOL
504 .  whyl=yZl
why2=y22
salol=alpho2
salo2=alrho2
80 to BOS
B03 wnyl=rll
why2=vi2
salol=alrhol
galo2=alrhol
a0 to B05
602 whyl=y21
whyzZ=vl2
galol=alrho2
aalo2=alrhol
30 to BOS
801 whyl=rll
why2=v22
galol=alirhol
aaloZ=alrhol
BOS poco={{ex2/tanlaale2))+why2-whyl-(exl/tan(z2aiold)))
. ar=,5#{exl+exZ)
c far epaths to the risht of the slore arax
iF(((exZ/tan(salu2)+why2).ie.?wt).and.{(exlftan(salnl)+whyi).Ee.rwt})
\c g0 to BOB
¢ for paths under the slore apex
iF(L{tlexi/tan{galol) 1+whyl).le. vut) .and. ({lex2/tan({galod) ) +unvL) .at.
\cyut)).or.(l{(exl/tan(salol))+uhvl).st.th}.and.(((ex2/tanisalc£))+why2).1a.vw
\ct))) ao to BOY
c for paths to the 1left of tne sliaore arPex
iFC{((exl/tan{ealol))+wnyl).et.ywt).and. ({{exZ/tan{=aloZ) }+unv2).at.v
\cwt)) g0 to BOB

ce area=ar#+roco
ag ta GO9S
BY7 area=ar#roco

if{area.3t.0.) areza=atea-.S#tani{thetc)#{ ({ax2/tan(=alo2) ) +uhvZ-yutles
\gZ.) :
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1231,1277pF : :
iflarea.1t.0.) area=area+.J#tan(theto)#{{lexl/taniaaiol))+wnyl-vue)++
\gZa)
ao to BOJ
BOB area={ar+poco)-{.3#tanitheto)*({{{ex2/tani{salio2) ) +uhy2-rut)+x2.)-1{{2
\exl/tani{aalol) Y+whyi-vwtd##2,)))
508 iflarea.=t.0.0) beta={(atanlabs({exZ-exl)/Poco)))*{180./P1))
if{arez.ea.0.0) beta=80.0
iflarea.1t.0.0) beta=180.-{{atanlabs{{exZ-exll/pPoca)))#(1iB0./r1})
beto=beta*{pi/1B0.)
dist=abs{poco/cosi{airnol})
wlf=areasgamr
ifFl{dist,1t.{0.0))s5i2a=.,0001
iF{dist.at.10.00))siga=ahs{wif#{coslalrhcl))/dist)
dt=2.#xcteta
iF(siga.le.cork) rad=.5#{siza+cark)
if(siza.at.cork.and.sisa.le.dt) rad={cork#siga)#*.5
ifisiga.st.dt) rad=s{({siza/2.)+{cork/tanTk)I*sinrk
xct=siga/Z.
taufr=irads#2.~({siga/Z.)##2,) ) %+.5
if(rad.le.xct)taufr=0.0
if{mpos.at.1l) 80 to B30
ift{sisa.at.cork) =0 to 640

This Part Examines Failures. In Pure Tension

if{siza.eq.0.0) 5iga=0.00001

tenang=.S5#(pi-atan(Z.#taufr/sisal)

iF{beto.le.lalphol+tenans)) res=taufr+#dist*cosi{beto-alerhol)
iF(beto.at.{alpnol+tenana)) res={csrk/2.)%¥{ansl{ex2-exl)s*cosialrnal))
ao to BBO

This Part Examines Failures In Shear

40 res=taufr+dist*cos{beto—-alrnal}
ag to BBO

o : This Part Examines Jeint Failures

350 taufJt=coJt+sigastaniphadt)
ifFl{taufit.st.taufr) taufjt=taufr
if{mPos.eq9.10)vaufdt=0.u0
rag=taufjtedist
taufr=taufJt
=0 to 870

c
o This Part Checks Failures At Ultimate Stransth
c

560 rult=siga#tani{rhoult)#dist*cosideto-3irhol)
ifl{rult.3t.res) res=rult
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sf=res-wlf#sin(alrhol)
wPth=wlf '

if {mpos.ne.l) 30 ta 700
sy=ex2#(cork/2.)*cos{alrhal?
sus=exZ#{cork/2.)#sinlairnol)
if{sus.gt.5v)sy=8us

return

end

r 15124 11,485 4868



150

talal

input theta,alphal.alpnaZ:vaia

73 25 55 10

input ystar.ndiv

010

input PRidt.cadt.phirk.cork.Pniuit
00302530

input gasr

150 _

input SF31:5F32:SFJI1H1rSPJtln2|SFFKhrl:SPPKhT2
33 4333

input iseed

§3334 ]
notPoP,NOtPOL.ROLRRd

111

input qutputl outpPut2.outrutd
111

input noreal.distan.niume

1202

Slgpe Analel 73.0 dearees

Slore Hisht: 10.0 Feet

First Joint Set Inclinationi 235.0 desrees
Second Joint Set inclination: U53.0 desrees

Strenath Parametars
Phi (deint) = 0.00 dearees
Cohesion tdoint) = 0.00
Phi {rock) =  30.00 dearees
Conesion (reck) = 25.00
Rock Unit Weisht: 0.19

Distributionai Parasetars:Jloint Set Ons:

Mean Plane Seacing = 3.00
Mean Joint Seacinag = 4.00
Mean Joint Lensth = 4.00

Distributional ParawetersiJoint Set Twa.
Mean Plane Seacing 3.60
Ma3n Joint Seacina 4,00
Mean Joint Lenath 4.00

(a)



1&1

Initial Randos Number. 55834
Nusber of Realizatinsi 1 (a) cont'd

Path Criteria.
Minimus Seacina = 20.0
Maxisus Transition = 2

#x#¥4¥% Realization Numper |
Joint Plane 1 Max x-coordinate = 2.73 y-goordinate
0.00
0.63
2.7%
Nuwber of Joints On This Plane Is 1
fveraze Percent Continuity Is 25.24

13.51

Joint Plane 2 Max x-coordingte = 3.08 y~gcoardinate 1.73

4.41
B.08
9.03 (®)
9.08
Number of Joints On This Plane Is 2
Averase Percent Continuity Is 18,84

Joint Plane 3 Max x-coordinate = 9.40 y-coordinate 1.13
9.00
2.5
7.90
9.40
Number of Joints On This Plane Is 2

fiverase Percent Continuity Is 42,88

--Joint Set OnelJeint Riant End To Above Prodections-- i g

plane |
2.36

0.BS (.}




Tod

Maximum Allowanle r-cénrﬂinate L ovaax = 1B.77

Joint Plane 1 Max x-coordinate = 0.17
0.17
No Joints On This Plane .
Averase Percent Continuity Is  0.00

Jaint Plane 2 Max x-coordinate =  3.36
0.00
3.86.
Nusber of Joints On This Plane Is
Average Percent Continuity Is 100.00

Joint Plane 3 Max x-coordinate = 24
0.00
1.B3
4,58
3.03
5.28
Nusder of Joints On This Plane Is
Averase Percent Cantinuity Is 44.01

Jaint Plane § Max x-cogrdinate = B.3B
0.00
8.3
Nusber of Joints On This Plane Is
Averase Percant Continuity Is 100.00

y-cgerdinate = 0,25

y-goordinate = 35,58
1

y-¢coordinate = 7,37
2

y=goordinate = 12.07

1

(a)
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Jeint Plane 3 May x-ceordinate = 2.77 y-goordinate = 17,57
0,57
2.78 (d) cont'd
2.77
Numper of Joints On This Plane Is 1
Average Percent Comtinuity Is 81.02

|

--Jaint Set DOne:Pts. of Intersection--

plane !
2.74

plane 2
2.58

3,04 (e)
7.18

piane 3
3.08
4,48
7.58

—Joint Set One:Dynamic Prozrammicna Plane Points—

plane 1
- 0.00
0.68
¢.89
2.38
2.74
2.79 !

plane 2
2.B8

4,04 (£)
1,41
5.0B
7.18
7.36
3.03
9.08

plane 1
0.00
2.53
3.08
4,58
7.8
7.50
9.30




keaion Fros Free Surface To Plane i y-coordinate = 17.57
Jointls) In Between Only

Lower x-coardinate = 0.37 Upper x-coordinate = 0.00
Beta = 33.00 Path = 0.70 Giress = 0.0% Height = 0.02 5.F.(path) = 4.81
Safety Marain = 4.8l Jointed RockiSum = 0.00 Critical Path Lensth = 0.70 Critical Weisht

Lower Kx-coordinate = 2.26 Ueper x-coordinate = 0.37
In Joint Transition Within Plane 3 DF Set 2
Beta = 59.00 Path = -2.0B Stress = 0.1 Weight = 0.21 S.F.lpath) = -0.09
Safety Rarain = 4.72 Jointed RockiSum = -2.0B Critical Path Lensth = 2.76 Critical Weight

Lower x-coordinate =  0.B9 Upper x-coordinate =  0.00
In Joint Transition Within Plane | OF Set |
Beta = 25.00 Path = -1.B4 Stress = 0.04 Weight =  0.08 g,F.(path) = -0.03
Safety Marsin = -0.03 Jointed RockiSuw = -1.B4 Critical Path Lensth = 1.BA Critical Weiaht

Lower x-coordinate = 0.B3 Ueper x-coordinate = 0.63 .
From Plane 1 In Set | ReFerenca Point 3 Up To Plane 1 OF Set 1 Reference Point
Beta = 25.00 Path = 0.8 Stress = 0.10 Height = 0.05 - & F.lpath) = 3.72
GaFety Marain = 9.B3 Jointed RockiSus = -1.B4 Critical Path Lensth = 2.10 Critical Weisht

Lower x-coordinaie = 2.38 Upper x-coordinate = 0.B3 |
Frow Plane | In Set 1 Reference Point 4 Up To Plane 1 OF Set 1 Reference Point
Beta = 25.00 Path = 3.48 Stress = 0.20 Weisht = 0.77 g.F.{path) = &3.B0
Safety #arain = 49.23 Jointed RockiSuw = -1.B& Critical Path Lenath = 5.5 Critical Weiant

. Lower x-coordinate = Z.74 Upper x-coordinate = 2.2B .
From Plane 1 In Set | ReFerence Point 3 Ue To Plane 3 OF Sev 2 ReFerence Point
Bata = 595.00 Path = .08 Stress = 0,03 Weiaht = 0.02 5, F.lpath) = 3.96
tafery Marain = B.E? Jointed RockiSum = -2.0B Critical Path Lenath = 334 . Critical Heisht

= 0.02

= 0.23

= 0.08

= 0.50

= 0.25

(&)

ral



Lawer x-gcoordinate = 2,75 Upper x-coordinate = 2,74
Frog Plane 1 In Set | ReFerence Point B Ue To Plane 1 OF Set ) ReFerence Point
Beta = 25.00 Path = 0.02 Stress = 0.00 Weisht = 0.00 S.F.lpath) = 0.22
Safevy Marain = B8.B9 Jointed RockiSus = -2,0B Critical Path Lensth = .36 Critical Reight
Joint Plane | SaFety Marain B.B9

Reaion Fros Free Surface To Plane 2 y-coordinate = 5.98
Continupus Joint Throushout )

Lawer x-coordinate = 2,66 Upper k-coordinate = 0.00
In Joint Transition Within Plane 2 OF Set 2
Beta = 53.00 Path = -3.25 Stress = 0.16 Weisht = 0.37 S.F.lpath) = -0.16
Safety Marain = -0.16 Jointed Rock:Sum = -3.25 Critical Path Lenath = 3.23 Critical Weisnt

Reaton. From Free Surface To Plane 2 y-coordinate = 7,97
Joint Intersects Ter Point

Lower x-coordinate = 1.H4 Upper x-coardinate =  0.00
In Joint Transition Within Plane 3 OF Set 2
Beta = 53.00 Path = -2.24 Stress = Q.11 Weisht =  0.1B S.F.leath) = -0.07
Safety Harain = -0.07 Jointed RockiSum = -2.24 Critical Path Lenath = 2.2% Critical Weiaht

Reaion From Free Surface To Plane 2 y-coordinate = 12.07
Continuous Joint Throusnout

Lawer x-eoordinate = 7.16 Ueper x-coordinate = 0.00
In Joint Transition Within Plane 4 OF Set 2
Beta = 55.00 Path = -B.74 Stress = 0.4 Weisht = 2.69 S.F.lpath) = -1.14
SaFety Margin = -1.1% Jointed RockiBuw = -8.7% Critical Path Lenath = B.74 Critical Heiaht

Lower x-coordinate = 2.66 Upper x-coordinate =  0.00 . :
From Plane 2 In Set 1~ Reference Point -1 Up To Plane 2 OF Set 2 ReFerence Point
Beta = 53.00 Path = -3.25 Stress = 0.18 Weight = 0.37 5.F.(path) = -0.1B6
Safety Marsin = -0.16 Jointed RackiSuw = ~3.25 Critical Path Lepath = 3.25 Critical Weiant

3

0.25

0.37

0.18

2,58

0.37

(e)

cont'd

agl



Lawer x-coordinate =  4.04 Urper x-coordinate = 1.B4
Frow Plane 2 In Ser 1 Reference Point 2 Ur To Plane 3 OF Set 2 Reference Point 2
Beta = 55.00 Path = 2.69 Stress = 0,38 Weiaht = 0.68 5.F.lpath) = 18B.42
Safety Harain = 18.04 Jointed RockiSum = -2.24 Critical Path Lenath = 4.93 Critical Weight = 0.86

Lower x-coordinate = 4.%1 Upper x-coordinate = 4.04
Froaw Plane 2 In Set | ReFerence Paint 3 Up To Plane 2 OF Set 1 ReFerence Point 2
Beta = 25.00 Path = 0.56 Stress =~ 0.52 Weight = 0.50 S.F.{path) = 10.96
Safety Marain = 29.31 Jointed Rock:Sum = -2.2% Critical Path Lensth = 35.B1 Critical Weisht = 1.36

Lower x-coordinate = 6.0B Ueper x-coordinate =  4.41
In Jointy Transition Within Plane 2 OF Set 1 :
Beta = 25.00 Path = -3.94 Stress = 0.6% Weight = 2.81 5.F.teath) = -1.19
SaFety Marsin = 28.12 Jointed Rock:Sum = -G.18 Critical Path Lenath = 9.75 Critical Weisht = 4.17 (g)
. . cont'd
Lower x-coordinate = 7.1B Urper x-coordinate =  0.00
From Plane 2 In Set 1 ReFerence Point 35 Up To Plane 4 OF Set 2 Reference Point 1
Beta = 35.00 - Path = -B.74 Stress = 0.44 Weisht = 2.BS S.F.{path) = -1.14

Bafety Harain = -1.14 Jointed Rock:Sum = -B.74 Critical Path Lensth = 8.74 Critical Weisht = 2.69
Lower ¥-coordinate = 7.5 Upper x-coordinate = 7.1B - T
Fros Plane 2 In Set 1 Reference Point B Upr To Plane 2 OF Set 1 Reference Point 5

Beta = 25.00 Path =  0.55 Stress = 0,81 Weight =  0.95 5.F.(path) = 11.BB
Safety Marain = 10.75 Jointed Rock:Suw = -B.74 Critical Path Lenath = 9.68 Critical Weisht = 3.64

Lawer x-coordinate = 95,03 Upper x-coordinate = 7.58
Frow Plane 2 In Set | feFerence Point 7 Ur To Plane 2 OF Set | Reference Point B
Beta = 25.00 Path =  3.49 Stress = 0,62 Weight = 2.40 S.F.lpath) = 43.G64
Gafety Marsin = 94.39 Jointed Rock Sum = -B.74 Critical Path Lenath = 13,18 Critical Weiaht

6.04

L

9¢



Lower x-coordinate = 9.0B

In Joint Transition Nithin Plane 2 GF Set
Beta = 25.00 Path = -0.10 Stress =
SaFety Harsin = 354.39 Jointed RockiSum =
Joint Plane 2 Safety Marain  54.39

Reaion Between Planes 3 And 2
Continuous Joint Throushout

Lower x-coordinate = 3.08 Upper x-coardinate

In Joint Transition Hithin Plane 2 OF Set
Beta = 99.00 Path = -0.01 Stress =
Gafety Marain = -0.21 Jointed RockiSum =

Reaion Between Planes 3  And 2
No Second Set Jaints
Resion Between Planes 3 And 2

Continuous Joint Throushout

Urper x-coordinate =

1
0.02

-8.84

9.03

y-coordinate =

= 2.B6B

2
0.35

-3.76

y-coordinate

y-coordinate =

Ll

Lower x-coordinate = 7.58 Ueper x-coordinate =  7.1B6
In Joint Transition Within Plane 4 OFf Set 2
Beta = 53.00 Path = -0.51 Stress = 0.91
Safety Marain = -1.27 Jointed RockiSus = -8.25
‘Lower x-coordinate = 2,54 Ueper x-coordinate = 0,00
in Joint Transition Rithin Plane 3 OF Set 1
Beta = 29.00 Path = -6.01 Stress = 0.16
Safety Hargin = ~-0.44 Jointed RecKiSum = -6.01
Lower x-coordinate = 3.08 Upper x-coordinate = 0.00
From Plane 3 In Set 1 Reference Point 3
Beta = 55.00 Path = -3.7% Stress = ¢G.19
Jointed RockiSuw = -3.78

Safety Marain = -0.21

Weisht = 0.00 S.F.(path) =
Critical Path Lenath = 13.28
- 5.58

Weight = 0.13 S.F.{path) =
Critical Path Lenath = 3.76

1.5917

12.07

Heisht = 0.32 5.F.lpath) =
Critical Path Lenath = 8.25

Weight = 1.04 S.F.lrath) =
Critical Path Lenata = 6.0

Up To Plane 2 OF Set 2

Weiaht = 0.50
Critical Path Lenath =

5.F.(patn} =

3.76

~0.00
Critical Meisht

-0.05
Critical Weisht

-0.1%4
Critical Weiaht

-0.44
Critical Keisht

ReFerence Point
-0.21
Critical Keisht

[ 1]

"

6.03

0.00

0.00

1.04

0.00

(&)

cc>nt£1

LS1



Lower x-coordinate = 4.46 Ueper x-coordinate = 4.04

Frog Plane 3 In Set 1 ReFerence Point 4 Up To Plane 2 OF Set 1 Reference Point 2
Beta = 59.00 Path = 0.51 Stress = 0.92 Weisht = 0,18 5.F.lpath) = 3.38
Gafety Marain = 21.B2 Jointed RockiSuw = -2.28 Critical Path Lenath = 5.4 Critical Weisht = 1.04
Laower x-coordinate = 7.58 Upper x-coordinate = 0.00
Frop Plane 3 In Set 1 Reference Point D Up Ta Plane & OF 5et 2 ReFerence Point |
Beta = 53.00 Path = -8.2% Stress = 0.47 Meilght = 3.01 S.F.trath) = -1.27
Safety Marain = -1.27 Jointed RockiSum = =9.25 Critical Path Lenath = 98.25 Critical Weight = 0.00
Louer x-coordinate =  7.90 Upper x-coordinate = 7.58
Frog Plane 3 In Set 1 ReFerence Point B Up To Plane 3 OF Set 1 Reference Point 3
Beta = 23.00 Path = 0.7 Gtress = 0.9 Weisht =  0.B0 5. F.(path) = 9.53
Gafety Marain = 8.28 Jointed Rock:Sum = -8.25 Critical Path Lenath = 10.01 Critical Weisat = 0.BO
Lower x-coordinate = 9.40 Usper x-coordinate = 7.50
In Joint Transition MWithin Plane 3 OF Set 1
Beta = 23.00 Path = -3.%3 Stress = . 0.G] Weight = 2.40 5.F.lpath) = -1.01
Gafety Marsin = 7.26 Jointed RockiSum = -12.80 Critical Path Lenath = 13.56 Critical Meight = 3.20
Joint Plane 3 Gafety Marain 7.26
Ruwber of Joint Planes Is = 3
Joint - Percent ~ hnsle OF Ninimus  Unit Apparent Weisht OF
Flane Continuity Critical Path Safety Marain Safety Marain Persistence Critical Path
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CHAPTER 5
RELIABILITY OF SLOPES CONTAINING A SINGLE
SET OF SLOPE PARALLEL JOINTS

5.1 Introduction.

Slopes with two sets of random joints of the type shown in Fig-
ure 2.1 and 2.2 are rather commonly encountered, especially in sedimen-
tary formations. Their relative simplicity makes it possible to analyze
reliability taking into account all the governing parameters (geometric
and mechanical properties) that affect slope stability. The éomputer.
program described previously is specifically aimed at analyzing slopes
of these types.

In order to run the program, joint spacings and length distributions
are needed in addition to the deterministic values of joint attitudes
and mechanical properties. The program output includes the probability
distribution of the safety margin from which the probability of failure
(probability that the safety margin is negative) can be derived. The
present chapter evaluates sensitivities of the probability of failure
with respect to the main input parameters. Such a study is important
for two reasons:

1. It provides further insight into slope safety.
2. It may make possible simplified procedures for

slope reliability analysis.



The main results are presented first, followed by a brief descrip-
tion of input parameters, geometric and mechanical that are relevant
to slope safety. The parametric study constitutes the body of the

chapter and is followed by a summary of results.

5.2 Main Conc]usfons of Parametric Analysis

The main conclusions from the parametric study can be summarized
as follows:

1. Intact rock cohesion (Cr) is the parameter which has the
strongest influence on rock slope stability. Its effect is notice-
able in all runs in which C, was varied. -This is not surprising since
the failure algorithm assumes intact rock bridges to fail in tension
with small joint friction angle. Actual slope failures seem to support
this model feature.

2. Mean joint length of the first set at high persistence values
has a strong effect on rock slope stability. This already established
in previous research, sensitivity of safety, to mean joint Tength is
slightly magnified here due to the presence of two joint sets.

3. When comparing results for a slope with a single joint set

and one containing two joint sets, lower safety values due to the

second set, though not detrimental to slope stability.

5.3 Geometric Parameters

The geometry of slopes of the type shown in Figures 2.1 and 2.2 is
described by four deterministic parameters and six stochastic parameters.

The four deterministic parameters are: slope height, slope face angle,

A
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"and ang]eé of inclination of the two joint sets.

Slope height (Ydim) gives the verfica] distance from the slope apex
to the foot of the slope. Slope angle (6) is the angle between the slope
face and the horizontal. The angles of joint set inclinations (al, a2)
are the angles between joint planes and the horizontal.

Six more parameters are necessary to completely specify the prob-
abilistic model of joints in the first joint set: mean joint length
(JL1), mean rock bridge length (RB1) and mean joint plane spacing (SP1).
Similarly for the second joint set: mean joint length (JL2), mean rock
bridge Tength (RB2) and mean joint plane spacing (SP2). Actual joint
lengths, rock bridge lengths and joint plane spacings are generated
stochastically within the program by assuming that all uncertain geometric
parameters are 1ndependent exponential distributions. Some comments on
these six input parameters and on derived parameters such as mean joint
plane persistence of set one (K1) and set two (K2), mean joint intensity
of set one (T1) and set two (12), are given next.

Mean joint length is simply the average length of joint segments “for
each set. In practice, this parameter needs to be estimated from joint
survey data. Tﬁe model assumes that joint lengths are exponentialty
distributed about their mean values JL1 and JL2 for joint sets 1 and 2,
respectively. Mean joint plane persistence (K) has previously been esti-
mated to be: |

. K = JL/ (JL + RB)
where JL is mean joint Tength and RB  is mean rock bridge length.

The parametric study does not include equivalent consideration of
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RB1 and R82

Rock bridge lengths, like joint lengths, are assumed to be exponen-
tially distributed about the mean values, ﬁﬁ} and ﬁﬁé.

The mean joint plane spacing SP s the average spacing between
two adjacent planes within a joint set. Like JL and RB, joint plane
spacings are assumed to be exponentially distributed about the mean
values, SP1 and SP2.

Joint intensities can be derived from other input parameters as

1 = K1 /5P 2 = K2/ 5P2

Strength Parameters

Five parameters completely specify intact rock and joint resistance
properties within the slope: 1intact rock cohesion (Cr)’ intact rock

friction angle (@r), joint cohesion (Cj), joint friction angle (¢.) and

J

ultimate friction angle (¢u]t). 0f these, Cr and Qj are most critical

with respect to reliability.
Intact rock cohesion (Cr) is defined as the intersection of the
linear portion of the intact rock failure envelope with the shear stress

axis. o is assumed to be twice the tensile strength (TS) of the intact

rock - see Figure 5.1.

At relatively Tow stresses (low compared to Cp) within a rock

slope, intact rock resistance is a function of the cohesive
(tensile) component of resistance. Only at relatively high

stress levels can the frictional component of resistance (&,)

play a role. One of the basic assumptions of the model is that
the state of stress within the slope is low compared to Cy.

For most slopes in which depth does not exceed 150' and C, is

greater than 25 Ksf, the low stress assumption is valid and

:ntagt rock resistance is essentially independent of e (0'Reilly,
980). -
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The ultimate friction angle (@u]t) is important in the calculation
of intact rock resistance only for high stress levels, higher than
those at which B becomes significant. One may therefore conclude that
the ultimate friction angle (®u1t) does not affect reliability in the
stress range under consideration.

Joint friction angle (®j), which is the angle of the jdint failure
envelope, is the parameter that generally determines the resistance
properties of joints; see Figure 5.2.

Since rock bridges ususally fail ét Jow strains before joint frictional
resistance is fully mobilized, it may not be wise to depend on frictional
resistance for the purpose of determining stability. Rather, it is
avisable to use reduced values of ®j’ at least for the purpose of
sensitivity analysis.

Joint cohesion (Cj) is defined as the intersection of the joint
failure envelope with the shear stress axis (see Figure 5.2). Unless
joints are filled with cohesive material, joints do not possess a true
cohesive component of resistance since they are unable to resist tensile
stresses. Consequently, Cj may be set equal to zero.

The unit weight of intact rock (Yr) affects reliability through
its influence on resistance and driving forces. 'In all cases analyzed
here, Yye has been set equal to. 0.15 KSF. The effect of varying Y, was

not studied because of its small variability compared to other parameters.

5.4 Dependence of Reliability on Various Slope Parameters

The computer program of Chapter IV does not directly give the prob-

ability of slope failure. Rather, it calculates the probability that an
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FIGURE 5.2 JOINT FAILURE ENVELOPE
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unstable portion of the slope exists. Calculating Pf values as a
function of slope depth allows the designer to more closely relate fail-
ure probability Pf to failure costs.

The probability of failure is defined as the probability of a joint
plane exiting within a sepcific height interval and that the exit point

is part of a failure path.

5.4.1 Probability of Failure Derived from Safety Margins

The safety margin of a given path through the slope is defined as
the difference between the resisting (R) and driving forces (DF) along
that path.

The driving force is simply the component of overburden weight

acting parallel to jointing of the first joint set:
SM = R - ODF (5.1)

The force mobilized to resist the driving force, R, is derived
from two sources: resistance from the intact rock bridges (or transi-

tions), Rr and resistance from the jointed portion of the plane, Rj:

R + R: + R (5.2)

As discussed before, intact rock transitions can be in the form of
Tow angle transitions (including in-plane) and high angle transitions.

Thus resistance Rr is the sume of the respective components:
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R, = R, Ry (5.3)
where the low angle component RrL is given by
R = 1. x d (5.4)

in which dL is the total length of Tow angle transitions and Ty, is
the peak shear mobilized for low angle transitions. The latter quan-
tity is given by

c, ZEFT (5-5)

Ta ~ r

o

nof—

where Cr is the intact rock cohesive strength and c = Ga/cr
with 9, the stress acting normal to the joint plane.

The parameter T, can be estimated from

(5.6)

—
1
ro|—
n
| —
o
o
n
—

Cr vec + 1

where TS is the tensile strength of intact rock.
Consequently, the total resistance contribution due to low angle trans-

itions through intact rock is approximately

R T. d {5.7)

rk ¥ 's L
The second component of intact rock shear resistance, RrH’ is derived
from all high angle transitions between joint planes. Resistance for

high angle transitions has been derived previously (Chapter 2) as

.

RPH = TS X (5.8)
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where ¥ is the distance separating the joint planes between which
transition takes place (for transitions between planes of the first
set, other than in plane transitions).

If the sume of the lengths, ¥, of all such transitions along a
given path is dH, the totél resistance derived from high angle trans-

itions is simply

Ry = TS dH (5.9)
Thus the total resistance of intact bridges can be expressed as
Rr = RrL + RrH = TS (dL + dH) 5.10

where dL and dH are independent of the strength parameters C. and Qj.

Joint resistance (Rj) can be expressed in a simple form:

Rj = W'cosal tan ®j (5.11)
The quantity W' is the weight of rock that overlies the jointed por-
tion of the path, as shown in Figure 5.3. Hence, W' is not larger
than the actual weight of rock (W) overlying the critical path. W' is
a geometric property of the path.
The safety margin of a path can be derived from the above expres-

sions:

S J
(5:12)

SM = R.+ Rj - Wsingl = T (dL + dH) + W'cosal tan 3. -Wsinal
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Finally, the unit safety margin is defined here as the safety margin
divided by the length (zj) of the joint plane
USM = SM/QJ (5.13)

where the length Rj depends on the exit height (h) of the joint plane

on the slope face - (see Figure 5.3):

zj = hi/s1na1

Probability of Failure

For each exit point (i.e., for each joint plane) in one realiza-
tion, a number of critical paths are possible, but only one is most
critical. Also for each given realization of the jointing pattern,
there are usually @ number of exit points and hence of critical paths
within a given height interval. The probability of fa{1ure, Pf, within
that interval is the percentage of those ¢ritical paths with zero or

negative safety margins; quantitatively

Py = {(Number of Critical Paths) SM < 0 / (Total Number Critical Paths)}x 100
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5.5 Parametric Study

5.5.1 Introduction

The parametric study is carried out by varying the parameters,
one at a time, and observing the effect on slope reliability. Each par-
ameter is described in a separate subsection in this chapter, and for
purposes of clarity, each subsection has the -same basic structure:

1. Each subsection begins by defining the input variable whose
effect on reliability is under considerétion. Program outputs are then
given and coﬁc]usions are drawn. Runs are divided into groups called
"cases", each case consisting of a number of runs with different sim-
ulated realizations of joint patterns. For each group of cases, all
parameters are held constant, except for the parameter in question.

2. Next, the effect of varying the parameter on the prob-
abilities of failure at various depths are examined. Relevant data
plots are included.

3. A particular height interval is selected to examine how the
probability of failure of this interval varies within each case. The
height interval selected in all cases is the interval from 90 to 100 ft.
This is also the deepest interval in the analysis and is usually the
most sénsitive to parameter variations.

For each case consisting of a given set of input pérameters all
are held constant except one. The probability of failure is plotted
as a function of the parameter under consideration.

4. Each subsection ends with a summary of results which stress
the practical significance and relative importance of the variable with

respect to slope safety.
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The input parameters examined are, in order of treatment: intact
rock cohesion (Crf, joint friction angle (Qj). Then for joint set one:
mean joint length (JL1), mean joint plane persistence (K1), mean joint
plane spacing (SP1) and joint intensity (I1), and for joint set two:
mean joint length (JL2), mean joint plane persistence (K2), mean joint
plane spacing (SP2) and joint intensity (I2). Finally we will examine
the angle of slope face inclination (8), the angle of joint inclination
for setone (al) and the angle of joint inclination for set two (a2).
Variables and their range of values used in the parametric study are
listed in Table 5.1.

The effect of varying each parameter is measured in terms of the
mean and standard deviation of the safety margin (SM, éﬁ), the unit
safety margin (USM, USM) and the apparent persistence (Ké . Ra). The
distribution characteristics are used to derive the probability failure.
Most of the sensitivity results will be presented as relations between
distribution characteristics of this type and vertical distance from
the slope apex to the midpoint of a height interval. Pf as a function
of depth is also calculated.

Three functions are noticed in the following analysis. Namely,
critical persistence (Kc)’ the index of reliability (B) and the prob-
ability of a joint plane which is 100% continuous at a given depth (P]).

Critical persistence (Kc) is defined as the persistence required
along a joint plane at a given depth to yield a zero safety margin,

SM. Solving for the critical persistence (Kc) of this plane requires the

calculations of d¢, the critical rock bridge length, such that SM = 0.
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TABLE 5.1

RANGES IN INPUT PARAMETER VALUES

] PARAMETER RANGE OF VALUES
Intact Rock Cohesion, Cr 8 - 500 Ksf
Joint Friction Angel, @i 0 - 40°
Mean Discontinuity Length {set 1), JL1 10 - 40'
Mean Persistence-Constant_Joint Plane Spacing

(set 1) Kl g |SP1] 10 - 80%
Mean Joint Plane Spacing - (set 1), SP1 2 = 1
Mean Persistence - Constant Intensi y '

(set 1), Kl g |T1] 10 - 50%

Mean Discontinuity Length (set 2), JL2 107— 40"
Mean Persistence-Constant Joint Plane Spacing

(set 2), K28 |SP2| - 10 - 80%
Mean Joint Plane Spacing-(set 2), SP2 - 2 - 15"
Mean Persistence-Constant Intensity (set 2),

K2 o |12] 10 - 50%
Rock Slope Face Inclination, 8 . 50 - 90°
Joint Plane Inclination (set 1)-al 10 - 80°
Joint Plane Inclination (set 2)-a2 11 - 180°

Intact Rock Friction Angle op 30°~ 40°
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K, may be calculated from the following relation (from 0'Reilly - 1980):

dc
KC = [] - ag-] 100

where d_ is calculated as (from 0'Reilly - 1980):

2W (sinal - cosal tan Qj)
Cr,(“ZC + 1 - 2¢ tan ®j)

dC -

and by rearranging variables we get (from O0'Reilly - 1980):

K 2c (tan al - tan ¢j)

g= |1~ x 100
Y2c + 1 - 2¢ tan ®j

where Cr is intact rock cohesion, Qj is the joint plane length, dc is
the Tength of intact rock bridges along the joint plane, ga'is defined
as the average stress of overburden weight applied normal to the joint

plane. Quantitatively (referring to Fig. 5.3):
oy = Ncosal/ij where W is calculated as:

W= % o h? (1/tanal - 1/tan 0)
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and O is rock unit weight while Qj is quantitatively defined as:

-

Qj = h/sinal

and c is aa/Cr

The reliability index (B) is the difference between the critical
persistence and the mean apparent persistence measured in terms of
standard deviations of apparent persistence. A negative reliability
index implies an unsafe slope while a positive index implies a stable

slope. B can be calculated as follows:

In other words, B is the number of standard deviations between the crit-
ical state and the most likely state; the latter obtained from a model
run.

The theoretical lower bound probabi]ity of failure, P1, is calcu-

lated by the following equation (from 0'Reilly - 1980):-
p = Ktexp(-h/JL]*sina1)]

where K is the mean joint plane persistence.
This closed form equation is to be used as an approximation for
predicting slope reliability, However, the admissability of such usage

will be examined in the parametric study.
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5.5.2 Effect of Intact Rock Cohesion on Slope Reliability

Intact rock cohesion (Cr) has been defined as the intercept of
the 1linear portion of the intact rock failure envelope with the shear
stress axis. It is assumed to equal twice the intact rock tensile
strength (TS). Since failure of a rock bridge is assumed to occur in
tension, Cr is the only parameter needed to calculate intact rock
bridge resistance.

Four cases, each consisting of three runs, are analyzed to examine
the effect of intact rock cohesion on rock slope reliability. The range
of values for C, is varied from 25 to 500 ksf. Following is a brief
description of each case:

Case #1: Mean joint persistence (K) is set equal to 50 percent

and mean joint length (JL) is set equal to 40 feet.

Case #2: Same as the above except that mean joint persistence

(K) is increased to 75 percent.
Case #3: Identical to Case #1 except that the mean joint
Tength of the first set (JL1) is reduced to 15 feet.
Case #4: Also identical to Case #1 except that the mean joint
length of the second joint set (JL2) is reduced to
15 feet.
Thus, the influence of intact rock cohesion is studied in cases when
joint persistences are moderate and joint lengths are high (Case #1),
when joint persistences are high and joint lengths are high
(Case #2), when joint persistences are‘moderate and the mean joint

length of the first set is small while the mean joint length of the
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second set is high (Case #3) and finally when persistences are moderate

and mean joint lengths in both sets are low (Case #4).

The Effect of Intact Rock Cohesion (C,.) on the Probability of Failure
P (h

The effect of varying C, on Pe (h) while holding all other input
parameters constant is schematically shoWn in Figure 5.4. For a given
h, program output showed that the probability of failure increases
when Cr decreases. The probability of failure also increases as a re-
sult of increasing the driving forces which increase with depth due to

the overburden weight.

The Probability of Failure as a Function of Intact Rock Cohesion

The influence of Cr can be seen clearly in Figure 5.5 where the
number of realizations and the jointing patterns are kept constant
such that changes in results are caused by variations in Cr' In Fig-
ure 5.5 Pf is plotted as a function of Cr for the four cases (1, 2,

3 and 4) described previously. In comparison to 0'Reilly's (1980)
findings, Pf here, is approximately a linear function of Cr' For
slopes with a single set of joints, the probability of failure is Tess
sensitive to changes in cohesion of intact rock (0'Reilly 1980). From
program output, Pf increases rapidly as Cr decreases be]owl]OO ksf.
For Cr greater than 100 ksf, the probability of failure decreases from
approximately 35% to 3% when Cr equals 500 ksf.

At a given depth (h=90-100"), comparing cases 2 & 4 with case 3 shows that

decreasing the mean joint length of the first set (JL1) does not effect the



179

=l

O: C, 25, high

=

Cr 50, high

A: Cp 25, low JL

100+

80—

40

20

H (feet)

Figure 5.4 Effect of Intact Rock Cohesion (C.) on
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Figure 5.5 Pf as a Function of Intact Rock Cohesion (Cr)
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dependence of Pf on C. except at lower JL1 (Case #3).' This may be due
to the presence of relatively long joints of the second set which in-
crease the persistence of potential failure paths. One may expeét
slopes with two joint sets to be more sensitive to changes in Cr. From
Figure 5.5, the influence of Cr on reliability (Pf) can be summarized
by the following:
1. As expected, decreasing Cr has the effect of increasing
Pf at any given height h. The magnitude of this increase
grows substantia]]y‘with depth.
2. Beyond a certain value, depending on other input par-

ameters, C_ no longer has a significant effect on Pf

o
and Pf approaches in value the probability of existence
of a 100 percent persistent joint.. For failure to
occur the case with high joint persistences and long
joints, C. must be in the high range (500 ksf) so that
thé probability of failure corresponds to the probabil-
ity of a fully persistent joint. For moderate joint
persistence and low joint lengths, Cr mustlbe greater

than approximately 100 ksf for the above condition to

take place.

Effect of Intact Rock Cohesion on Apparent Persistence

In Figures 5.6 through 5.9, mean apparent persistence (Eé)’ mean
plus one standard deviation of apparent persistence (EA # Ka) and
critical persistence (KC), are plotted as a function of Cr for the same

four cases described previously. In all, computer output revealed that
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Figure 5.6 Effect of Rock Cohesion (Cr) on

Apparent Persistence (Ka), Case 1
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Figure 5.7 Effect of Rock Cohesion (C,) on
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184

g, = 25-500 kst e = 80° o<1 = 30° =2 = 60°
H = 90-100" Ej = 15° JL 1 =15 JL 2 = Lo
SP = 10"

100

90+

80

704

60+

50 : + : -
10 25 50 100 500

Figure 5.8 Effect of Rock Cohesion (Cr) on
Apparent Persistence (Ka). Case 3
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Figure 5.9  Effect of Rock Cohesion (CL) on
Apparent Persistence (Ka), Case 4
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variations in KA and Ra are semi-sensitive to changes in Cr. Sensitivity
appears to increase slightly as C. is decreased. Insensitivity to C.

is due to the fact that.apparent persistence is essentially a geometric
property of the critical path. It is more noticeable in the case where
the slope has a single joint set (0'Reilly- 1980). Typically, varying
Cr does not significantly affect the geometry of the critical path es-
pecially in slopes with a single joint set, however, the distribution
of Ky is affected.

Also plotted in each case is the critical persistence (KC) as a
function of Cr‘ As Kc approaches Ka’ one would expect Pf to increase
substantially. When studying the plots of all four cases, one finds
that KC is furthest from Eﬁ in Case #3 (Figure 5.8) which consists
of runs with short-joint lengths (JL1=15). Consequently, one concludes
that Case #3 is the most reliable while Case #2 is the most unreliable
(K1=73%, JL1=40'), thus implying the highest probability of failure.

As discussed previously, the wuse of reliability index (B) vdlues

“~

gives a more quantitative description of how Kﬁ, K. and KC interact

a
to affect reliability. At depths greater than approximately 50 feet.

1]
—h
—
oS
~—

£,

The plots of B vs. Cr (Figure 5.10) for the three cases (#1, 2 and

4) under consideration, at a depth interval of 90-100, show that reli-
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ability (B) increases with increasing Cr' Case #3 1is clearly the
most reliable.

In many situations, B values can be used to give reasonable es-
timates of Rf without going through an entire simulation process. In
cases where RA and Ea change very little when the parameter of interest
is varied, values can be estimated from a single model run simply by
assuming that both are independent of the parameter analyzed (Cr here).
As for the critical persistence (KC), which is a function of the par-
ameter being analyzed (Cr here too), its value can be calculated from

the following closed form equation:

2¢ (tan ol - tan o)
K= 1- J x 100

. /2c + 1 - 2c tan ¢J

Once KC is determined, B8 values can quickly be found as a function of

Cr without making additional lengthy simulations.

SUMMARY - Effects of Intact Rock Cohesion on Apparent Persistence

The influence of Cr on the distribution of Ka at a given depth can
be summarized as follows:
1. Increasing C, results in an increase in Ké and a slight
decrease of Ra at deep slope intervals. Mean apparent
persistence sensitivity to Cr increases with depth and with

decreasing Cr'
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2. At a deep slope interval, variations in KS as a
function of Cr are moderate, approximately 5 to
12 percent. Variations in Ea are much less than
those in RA. In the case of a slope with a single
joint set,lsimi1ar variations are practically non-
existent.

3. For a given height interval, it is possible to cal-
culate the reliability index (8) for a wide range

of Cr values from the output of a single simulation.

5.5.3 Effect of Joint Friction Angle (®j) on Slope Reliability

In most program runs, ®j is set equal to zero. A reason for
this is that sensitivity of the probability of failure (Pf) can be
better examined if Pf is high (> 90%). This is done by
keeping low the other resistance parameter (@j). Later on, when study-
ing the effects of the other parameters, both Cr and ¢3 are kept at
low values so that failure probabilities are high and the influence of
the examined parameter on stability could be demonstrateq with better
precision.

Another reason for setting @j equal to zero has to do with rock
mechanics. In the process of calculating total resistance, peak intact
rock strength and peak joint strength are fully mobilized. However,
this can be unconservative since peak shear resistance along joints is
generally mobilized at strains higher than that for intact rock (0'Reilly-

1980). Also, by keeping ¢. equal to zero throughout, one achieves

J
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the additional benefit of being able to exclude the effects of water
pressureé on slope reliability analysis without being unconservative.
In other words, the component that could be affected by water pressure
should and is here set to zero. Future work is expected to provide
information and procedures for including water pressures in reliability
analyses.

Insome situations, ®j can have a large effect on slope stability.
This is particularly true in weak rock (Cr< 100ksf) as is shown next.
The influence of variation of ¢j on slope reliability is examined in

Cases 5, through 8. Detailed plots using computer output data to es-

. on rock slope reliability

tablish understanding on the influence of @J

are shown in Figures 5.11 through 5.18.

The Effect of Joint Fricition Angle (®i) on the Probability of Failure

Pf (h)

The effects of varying ®j on P (h) are shown in Figure 5.12. As

expected, when ®j approaches the angle of the first set inclination (al),

the probability of failure approaches that of & joint plane being
100 percent persistent. This fact holds indeﬁendent1y of all other
jointing and strength parameters. Hence, decreasing Qj has the effect
of increasing Pf at all values of h. 1In all cases, the influences of
®j increases with depth.

Figure-5.11 presents Pf as a function of Qj for the deep interval
from 90-100 feet. For very low intact rock cohesion (25ksf), program

output shows that Pf is very sensitive to variations in ¢ For high

J-.
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cohesion (100 skf), the data plots whose neglible sensitivity to
variations in ®j. In Figure 5.11, one may notice that in rock with
moderate joint friction angles (10 -20°) and a high mean joint length

first set, reliability is high in depths of up to 100 feet.

Effect of Joint Friction Angle (9j) on Apparent Persistence (Ka)
Figures 5.13 through 5.18 are plots of distributions of Ka at
various ®j. Figure 5.13 is from 0'Reilly - 1980 for comparison.
Figure 5.14 shows results from runs in which'Cr is kept at 25 ksf while
®. is varied between 0 and 40 degrees. Sensitivity of Eg to variations

J
in ©. is moderate. In all, Ra decreases as °5 is increased.

J

In cases 5, 6, and 7, the critical persistence curve intersects
the Kﬁ curve at ®j approximately equal to 25° which is halfway in the
range. This implies that at least 50 percent of the critical paths
are failure paths.

At higher cohesion values, program output reveals that sensitvity
of apparent persistence (Ka) to variations in @j decreases. Contrast
to the findings of 0'Reilly (Fig. 5.13), Figures 5.14 through 5.17
show some sensitivity of Ré and Ea to variations in Qj. This may be
explained by critical paths having high persistences and thus implying
lesser dependence on intact rock cohesion and greater dependence on the
joint friction angle.

Reliability index (R) values, derived for the data points in
Figures 5.14 to 5.17, are plotted in Figure 5.18. As AQJ increases, the
plots of B vs. ®j for cases 5, 6 and 7 level off. This indicates that

as @i increases, reliability increases and becomes less and less
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dependent on intact rock strength.

Summary - Effects of @j

The effect of Qj on reliability can be summarized as follows:

1. ¢J has a strong influence on the reliability of slopes
in weak rock (i.e., Tess than 50 ksf).

2. As ®J increases, while approaching first joint inclin-
ation, the influence of intact rock strength decreases
until P (h) is approximately equal to the probability
of a joint being 100 percent persistent (Pq).

3. Both RA and Ra can be assumed to be dependent on &;.
This is a result of the critical paths being less
dependent on intact rock cohesion (Cr) as a result of

high persistences.

5.5.4 Effect of First Set Mean Joint Length (JL1)

In a rock slope, joint 1ength§ of the first set are assumed to
be exponentially distributed about their mean - JL1. Effects of
varying JdL1 on rock slope reliability are examined by varying intact
rock cohesion and varying mean joint plane spacing of the second joint

set.

Effect of First Set Mean Joint Length (JL1) on the Probability of

Failure Pf (h)

From looking at Figure 5.19, one can see that the probability

of failure increases with depth. 1In all depths, computer output



reveals that the probability of failure increases when increasing the
mean joint length (JL1). Generally, increasing JL1 at any depth does
not considerably increase the probability of failure except in the deep
sections of the slope (i.e., greater than 80 feet).

The Probability of Féi]ure (P;) as a Function of First Set Mean Joint
Length (JL1) '

Figure 5.21 shows plots of Pf vs. JdL1 for cases 6, 7 and 8 at a
depth of 90-100 feet. From program output, decreasing intact rock co-
hesion increases the dependence of Pf on variations in JL1 as the
figure clearly shows. The curve fdr Cr equal 100 ksf, is approximately
equivalent to the 100 percent persistence curve for all JL1. In other
words, as Cr approaches the value of 100 ksf, failures are expected to
occur along 100 percent persistent planes. A similar trend may be

seeh in the findings of 0'Reilly --1980, as can be seen in Fig. 5.20.

Effect of First Set Mean Joint Length (JL1) on Apparent Persistence and
the Reliability Index

Plots of mean apparent persistence E; and mean apparent persistence
plus one standard deviation of apparent persistence (Ké + Ea) for
cases 8, 9, and 10 are shown in Figures 5.24 through 5.26. Figure 5.23

(figure 6.41 from 0'Reilly - 1980) is included for comparison purposes. In

all cases the variations, of K_ and K. with varying JL1, are small. There-

a a
fore, for practical purposes EA and Ra may be assumed to be constant. Thus,

the reliability index values (R) may be obtained by one simulation for each
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case. As expected, B values are higher for the case when Cr equa1
to 100 ksf (See Figure 5.27). Notice for example that 5 values for

Cr equal 100 ksf is the most reliable (highest R - Case 10).

Summary - Effects of Mean Joint Length of Set One (JL])

The effects of JL1 on reliability can be summar1zed as fo]lows
1. At any given depth in the slope, increasing JLI
decreases reliability. |
2. Unlike the case for a slope with a single set, K& and Ea
are sensitive to variations in JL1. As a result, B values

can be obtained from a single model run.

5.5.5 Effect of First Set Mean Joint Plane Persistence (K1) at

Constant Mean Joint Plane Spacing (SP1)

Mean joint persistence (K) is estimated by the two input par-
ameters, the mean joint length (JL1) and the mean rock bridge length
(RB) as follows:

K = [J01 / (JL1 + RB) ] x 100

Mean joint plane persistence (K), an input parameter, should not
be confused with the apparent persistence (Ka) which is an output par-
ameter. K of a joint set, is the average percentage of joint segment
lengths expected along any joint plane-within that joint set. Actual
joint plane persistence along any plane can vary dramatically from this
mean value. With all this in mind, the following section examines the
effect of varying the mean joint plane persistence while holding con-

stant the joint plane spacing (SP1). The estimate of the first set joint
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plane intensity is defined as:

1 = K1 /SPl

I1 varies in proportion to KI. In the section which follows, the
effect of varying K at a constant T is examined.

The influence of K1 (at constant SP1) is studied in two cases.
Common input parameters are listed at the top of the pages containing
-figures 5.29 and 5.30. In case #14, Cr equals 25 ksf while in case #15,
Cr equals 100 ksf.

Effect of First Set Mean Joint Persistence (K1) on the Probability of

Failure Pf (h)

The effect of increasfng mean joint plane persistence (K1) on the
probability of failure is shown in Figure 5.28. At any depth, the
va]ué of Pf increases with increasing K1. At depths greater than
30 feet, tﬁe probability of failure (Pf) increases with 1ncreasin§

depth.

The Probability of Failure (Pf) as a Function of Mean Apparent Per-
sistence (K1)

Figure 5.29 is the plot of the probability of failure (Pf) as a
function of mean joint plane persistence (K1). In case 14, Pf increases
from 10 to 100 percent for K1 values of 12 to 80 percent. 0'Reilly found
that the upper limit was 100 percent at 100 percent K1. This means that
for low cohesion values (Cr=25) a 100% persistent plane will definitely
fail. With respect to case 15 at hand, a similar trend may be observed
although at a slower rate due to the higher cohesion (100ksf). As a re-

sult of the introduction of a second.set, the smaller first joint set per-
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sistence required to induce failure is possibly due to the higher persist-
ence of critical paths. Consequently, smaller driving forces are required
to change a critical path into a failure path.

The Effect of First Set Mean Joint Persistence (K1) on Apparent Persist-

ence (Kz)

The effect of varying mean joint plane persistenée (K1) on apparent
persistence can be seen in Fig. 5.31 and 5.32, Fig. 5.30 (from 0'Reilly '80)
is included for comparison purposes. Computer output revealed that sensi-
tivity of K, to variations in K1 is not as dramatic in a slope with two
joint sets as it is in a slope with a single set.

The effect of increasing K1 on Ka is shown in Fig. 5.32. For the case
of a slope with a single joint set (0'Reilly-1980), reliability is more
sensitive to changes in Kﬁ than for cases with two joint sets. In the
former, senstivity of Ka to variétions in K1 decreases with increasing co-
hesion as program output shows. Fig. 5.33 is a plot of reliability, ex-
pressed in terms of B. Reliability increases with increasing Ky for both
cases examined. Reliability is not much affected by variations in cohesion
in the range considered perhaps due to the fact that other parameters over-

came the unstable conditions that cohesion variations would cause.

5.5.6 Effect of Mean Joint Plane Spacing of the First Set (SP1) at

Constant Persistence

The effect of mean joint plane spacing of the first set. is ex-
amined in three cases, 16, 17 and 18. The range of values of SP1 s
varied from 3 to 12 feet.

Case 16 examines the influence of SP1 on slopes with weak

rock (Cr 25 ksf) and long mean joint length of the first

set (JL1 = 40').

Case 17 is similar to case 16 except that Cr is set to 100 ksf.



220

Case 18 is similar to case 16 except that JL1 is

reduced to 20 feet.

Effect of Mean Joint Plane Spacing (SP1) on the Probability of
Failure Pf (h)

Figure 5.34 is a plot of the probability of failure as a function
of depth. At any depth, and as one may expect, the probability of
failure increases with decreasing mean joint plane spacing. The prob-
ability of failure increases with increasing depth. Also shown in
Fig. 5.34 1s.the probability of a 100% persistent plane (P1) which de-
creases with depth, contrary to the curves that are obtained from the
model since in the equation defining Py, the probability of failure is
directly proportional to mean joint length. -

For a slope with either a single joint set or two joint sets,

Fig. 5.35-36, program output data shows that an increase in the mean joint
plane spacing of the first set causes a decrease in Pe (h). A greater SPI

causes failure paths to be more in plane in the case of a single joint set.

In the case of two joint sets, an increase in SP1 causes failure paths
to be more "in plane" and to use joints of the second set for transitions
to above planes when such discontinuities exist in a way that satisfy

the algorithm.

The Probability of Failure (Pf) as a Function of Mean Joint Plane

Spacing of the First Set (SP1)

The probability of failure Pf as a function of mean joint plane
spacing of the first set (SP1) is shown in Figure 5.36. In all cases

kS

(16, 17 and 18), Pf decreases linearly with increasing SP1. Also
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plotted are the lower Timit expressions Pi as functions of SP1 for vari-
ous JL1. As bne may expect, the probability of failure curves are higher
and further away from the theoretical curves (P1) for slopes with two
sets than for slopes with a single set. This may be the result of a
higher discontinuity concentration per unit area of the slope's cross-
section. The slopes of the three curves are identical and the prob-
ability of failure for cases with low intact rock cohesion is higher

for a specific SP1. Also, as one may expect, program output shows that
decreasing the mean joint length decreases the probability of failure.

This can be seen by comparing cases 16 and 18.

Effect of First Set Mean Joint Place Spacing (SP1) on Apparent Per-

sistence (Kj)

The effect of varying the mean joint spacing (SP1) on apparent
persistence (Kg) is shown in Figures 5.37 through 5.39. Shown in the
curves is the critical persistence for each case. Program data indi-
cates that mean apparent persistence (Ra) is approximately constant
for all values of SP1. Also constant in each case is the standard devi-
ation of apparent persistence (Ea). As a result, reliability index
values (g) can be calculated from a single simulation for each case

shown in Figure 5.40.

5.5.7 Effect of First Set Mean Joint Plane Persistence (K1) at

Constant Intensity (I1)

Intensity of a joint set is defined as the average jointing per
unit-sectional area of the rock slope (0'Reilly-1980). In the present

study, intensity in either set is defined as follows:
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I1 = K1/ SP1 2 = K2 / SP2 (5.17)

The sum of the above quantities, I, yields the total length of joint

segments in a given unit area of the slope's cross-section.
T = T1+712 (5.18)

An increase in joint intensity results when K is increased or SP
is decreased in Equations 5.17 or 5.18. Not surprisingly, results of
the parametric study discussed previously have shown that this increase
in intensity, whether achieved through an increase in K or a decrease
in SP, has similar effects on P. , K and Ra' Thus, it would be desir-
able to relate slope reliability to jointing intensity. The extent to
which this can be done is explored in 3 cases, (19, 20 and 21).

In the 3 cases examined, I1 is kept constant (5.0/ft.) K1 and SP1
are varied such that their ratio is constant. By so doing, it is possi-
ble to examine to what extent joint plane reliability is a function of
intensity alone rather than of the separate component KI and SP1. Be-

sides having common parameters, differences between cases are as follows:

Case 19 had C. equal 25 ksf and JL1 equal 40'.
Case 20 had C. equal 8 ksf and JL1 equal 40'.
Case 21 had C, equal 25 ksf and JL1 equal 20'.

With increasing depth, the probability of failure increases gradually. At
any depth, the probability of failure increases when increasing either SP1

or K1 and that increase is greater at deeper intervals in the slope.
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Effect of Persistence (Set 1 and Constant Intensity) on the

Probability of Fajlure Pf (h)

The effect of varying only SP1 and K1 while holding I1 (and allother
input parameters) constant, is shown in Fig. 5.43. Figure 5.42 1is in-
cluded for demonstration purposes. Computer output reveals that at any
depth, increasing both K1 and SP1 (keeping T1 constant) increases Pe.
However, as can be seen in the figure, the magnitude of this increase tends
to steadily decrease with increasing depth. Thus at deep intervals {1.8:,
greater than approximately 60 feet), Pf (h) becomes independent of K1 and
SP1 and is only a function of their ratio (I1). For the case of a sing]e.
joint set, Fig. 5.42, failure probabilities are lower than those shown in
Fig. 5.43. This is possibly due to sensitivity to joint length of the

first set rather than cohesion.

The Probab11ity of Failure (P£) as a Function of Persistence (K1) -

Constant Intensity (I1)

Figure 5.45 is a plot of the probability of failure (Pf) VS. per-
sistence (K1) and mean joint plane spacing of set one - (SP1) for
the three cases mentioned above in which intensity (I1) is kept con-
stant at I1 = 5. Other input parameters remain constant and are listed
in the figure. 1In all cases, the probability of failure (for the
depth interval from 90 to 100 feet) increases with increasing persis-

tence (K1) and of joint plan2 spacing (SP1).

Effect of Persistence (at Constant 11) on Apparent Persistence (Kz) and

the Reliability Index (B)

Each of Figures 5.44 through 5.46 contains plots of mean apparent

persistence (Rg), mean plus one standard deviation apparent persistence
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(K& + Ra) and critical persistence (Kc) for each of cases (19, 20 and
21). When both persistence and joint plane spacing are reduced and the
intensity of the first set is maintained, a moderate decrease in Ka
occurs. Figures 5.44 through 5.46 also show that standard deviation of
apparent persistence (Ea), remains essentially constant when K1 and SPI
are varied while keepihg intensity constant. ‘

The net result, of a decreasing E& and a more or less constant Ra
and a constant KC (the critical persistence, Kc’ is independent of Xl
aﬁd SP1) on joint plane reliability, as expressed by B values, is shown
in Figure 5.47.

Plots of B as a function of K1 (and SP1) show similar trends; an
increase in g (and thus reliability) as K1 and SP1 are reduced. At
values of K1 below 30 percent (or SP1 equal to 6 feet), reliability
decreases at a faster rate. Examining slopes with a single joint set
reveals a limit beyond which reliability would be a function of in-

tensity (Tﬁ)'only. However, this condition is not noticeable in the

present cases.

5.5.8 Effect of Second Set Mean Joint Length (JL2)

Joint lengths of the second set are assumed to be exponentially
distributed about JL2. The effect of JL2 on reliability is studied in

two cases with common input parameters and is listed in Figure 5.50.

Case #22: Intact rock cohesion is set to 25 ksf -
Case #23: Intact rock cohesion is set to 100 ksf

Two additional cases (24 and 25), mainly for observational purposes,
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are included. The difference is in the second set mean joint plane
spacing (SP2) for each case. Case 24 considers -effects when SP2 is
set to 5 feet while case 25 considers effects when SP2 is set to 15'.

For cases 22 and 23 this parameter is set to 10 feet.

Effect of Second Set Mean Joint Length (JL1) on the Probability of
r

Failure Pf (h)

Although the effect of increasing second set mean joint length
(JL2) at any depth (h) in the slope is not significant, it is not
trivial. This can be seen by comparing Pg (h) plots within each of
the three cases shown in Figure 5.48, Like most other cases, Pf
decreases with increas%ng h up until approximately 30 feet beyond which
Pf increases with increasing depth. .As a result, an approximately con-
stant trend of Pf as a function of h occurs:for the entire rahge of
JL2 values examined. ‘

“ The plot of the prbbabi]ity of 100 percent persistence (P1) is
also shown in Figure 5.48. P1 is not sensitive to changes in JL2
and only varies with changes in depth. %his is due to the fact that Pl
is not a function of JL2 and thus the probability of failure (Pf) is
not much affected by changes in JL2 as compared to the results of the
analysis of JLI1. )

Also shown in Figure 5.48 is the variation of the mean apparent
persistence as a function of depth (h) for the three runs. Eé (h) 1is

almost constant for all cases. Figure 5.49 is a plot of the variation

of the standard deviation of apparent persistence as a function of depth.
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Ké (h) starts at very high values and levels off at depths greater than
approximately 60 feet. For ai] cases and at any depth, Ké and Ra curves

almost overlap.

‘The Probability of Failure (Pf) as a Function of Second Set Mean Joint
Length (JL2)

‘ Figure 5.50 shows plots of P. vs. JL2 for cases 22 and 23 at a
depth of 90-100 feet. For low intact rock cohesion (Cr = 25 ksf),

the effect of varying JL2 on Pf is noticeable for JL2 values in excess
of 20 feet. At higher C/ (100 ksf), that effect is erratic and tends
to increase slightly with JL2. In cases 24 and 25, the effect of vary-
ing JL2 on Pf for different mean second set joint plane spacing is

hardly noticeable except at high JL2. This can be seen in Figure 5.5,

Effect of Second Set Mean Joint Length (JL2) on Apparent Persistence

and the Reliability Index (B)

Plots for mean, mean plus one standard deviation of apparent per-
sistence (K, K& + Ea) and critical persistence (K ), are shown for
cases 22 and 23 in Figures 5.52 and 5.53, respectively.

Program output reveals that variations in second set mean joint
‘1ength (3[?) have no influence on Ké and Ra and thus, the reliability
index (B) can be obtained through one simulation. As one may expect,
B values for smaller Cr are smaller (See Figure 5.54) and consequently

reliability is lower (case 23).
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5.5.9 Effect of Second Set Mean Joint Plane Persistence (K2)

at Constant Spacing On Slope Reliability

Second set mean joint plane persistence (K2) is estimated by the
input parameters second set mean joint length (JL2) and mean rock

bridge length (RB2) as follows:

Ke = [JL2 / (JL2 + RB2)] x 100

The influence of K2 (at constant SP) is studied in cases 26 and
27 with common input parameters listed in Figure 5.57. In case 26,

Cr equals 25 ksf while in case 27 it equals 50 ksf.

Effect of Second Set Mean Persistence (K2) on the Probability of

Failure Pf (h)

The effect of increasing second set mean joint plane persistence
(K2) on the probability of failure Pe (h) is shown in Figure 5.55 for
various K2. The value of Pf, at any given value of h, increases with
increasing K2. For any K2 value, Pf increases with depth especially at
depths greater than approximately 50 feet.

Also shown in Figure 5.55 is mean apparent persistence (Ké) as a
function of depth. For depths approximately greater than 20 feet, the
value of Kﬁ Tevels of f for all values of K2. Similar to this is the
variation of standard deviation of apparent persistence as a function
of depth (See Figure 5.56). Beyond depths of 40 feet, Ea as a func-
tion of depth is constant and may be obtained from a single simulation -

for practically any depth.
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The Probability of Failure (Pf) as a Function of Second Set Mean

Persistence (K2)

In Figure 5.57 Pf is plotted as a function of second set mean
joint plane persistence (K2). Also plotted is the probability of a
plane being 100 percent persistence (P1) as a function of K2 for all the
input paramters listed. Computer output shows that cases 26 and 27
P¢ increases from a value of 5 at K2 equal to 20 per-
cent up to a value for K2 of 40 percent where Cr Pf levels off at approx-
imately 20 percent for the case with Cr equal to 25 ksf and a Pf of
approximately 60 percent for the weaker rock (case 26). This im-
plies that the effects of the second set have a Timit which depends on

the input paramters used.

Effects on Apparent Persistence (Kj) and the Reliability Index (B)

Figures 5.58 and 5.59 are plots of mean (KA) and mean plus one
standard deviation (EA + Ea) of apparent persistence and critical per-
sistence for cases 26 and 27; respectively. For practical purposes,

Eé and Ra may be assumed to be constant for varying second set mean
persistence (K2). For C. equal to 25 ksf, the effect of reliability

can be clearly seen as Ré approaches and exceeds KC with increasing

K2. At K2 equal 30 percent, Kg = K, and one may expect a P value close
to 50 percent as computer output data shows.

Figure 5.60 is a plot of the ké]iabi]ity index (B) as a function
of second set persistence (K2). For values greater than 40 percent for
second set peristence, B values are approximately constant. Reliability

is slightly more sensitive to K2 when rock strength (Cr) is low (See
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case 26.

5.5.10 Effects of Second Set Mean Joint Plane Spacing (SP2)

The effect of second set mean joint plane spacing is studied
in two separate cases with common input parameters 1ised in Figure 5.63.

In both cases, SP2 varies between 2 and 10 feet.

Case #28: Examines the influence of SP2 in slopes
with weak rock (C. = 25 ksf)
Case #29: Examines the influence of SP2 in slopes with

strong rock (Cr = 100 ksf)

Effects of Second Set Mean Joint Spacing (SP2) on the Probability of

Failure P£ (h)

The effect of varying SP2 on the probability of failure is
shown in Figure 5.61. Except for the shallow depths, increasing SP2
has the effect of increasing Pf. One can see that the influence
of SP2 on Pe (h) is most pronounced in weak rock with long mean joint
lengths of the second get (case in which SP2 = 6 and Cr = 25 ksf).

As SP2 decreases, the Pf (h) curve begins to approach the Tower
Timit curve (the probability of being 100 percent persistent). For rock

with high K1 and low strength (Cr) joint planes will commonly fail
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without transitions and P will be high even if SP of either set is high
(e.g., greafer than 20 feet).

The mean apparent persistence (K;) is insensitive to variations
in SP2 at any depth. Mean apparent persistence remains constant with
depth as may be seen in Figure 5.61. Figure 5.62 is a plot of the
standard deviation of apparent persistence (Ra) as a function of depth
(h). For depths greater than about 40 feet, Ra reaches a relatively
constant value. Finally, at any depth Ea shows no sensitivity to varia-

tions in SP2.

The Probability of Failure (Pf) as a Function of Second Set Mean Joint

Plane Spacing (SP2)

For constant mean joint segments lengths (JL), the inf]uencé
of second set mean joint plane spacing (SP2) on the probability of
failure (Pf), in the depth interval from 90 to 100 feet is examined in
cases, 28 and 29, as shown in Figure 5.63. Case 28 analyzes a slope
with weak rock (Cr = 25 ksf) while case 29 analyzes a slope with strong .
rock (Cr = 100 ksf). For each case, Pf is approximately constant and
shows a slight decrease for SP2 greater than 8 feet. As Cr increases
beyond Cr equal 100 ksf, one would expect that Pf would eventually be-

come equal to Py for all SP2.

Effect of Varying Second Set Mean Joint Plane Spacing (SP2) on

Apparent Persistence (K;)

From model runs, variations in SP2 have no effect on neither the
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mean apparent persistence nor the standard deviation of apparent
persistence. Figures 5.64 and 5.65 are plots of mean apparent persis-
tence (K&) and mean plus one standard deviation of apparent persisterice
as a function of SP2 for cases 28 and 29. AIll plots show constant K&
and Ea as SP2 varies from 2 to 10 feet. The effect of this variation
on reliability can be studied from the plots of 8 values shown in

Figure 5.66.

Since K. is ihdependent of SP2 and remains constant for each case, re-
Tiability remains constant with varying SP2. From styidng the Pf (SP2)
plots, one concludes that case 28 is the least reliable, since it has
both the Towest reliability (highest 8) values and the highest Pe
values over the range of SP2 values examined.

As one may expect, decreasing SP2 reduces reliability but this
is only noticeable at spacings less or equal to approximately 8 feet

within the parameters used in this section.

5.5.11 Effects of Second Set Persistence (K2) on Constant Joint

Intensity (T2)

The influence of estimated second set persistence (K2) at con-
stant intensity T2, is examined in cases (30, 31 and 32). In all
cases, I2 is kept constant (I2 = 5). It is possible to examine to

joint plane reliability as & function of intensity alone rather than
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as a function of the separate components K2 and SP2. A1l cases had the

common input parameters listed in Figure 5.69.

Case #30: Cohesion (Cr) is set to 25 ksf and
first set mean joint length (JL2)
is set to 20 feet.

Case #31: Cohesion is set to 8 ksf and JL1 is
as above.

Case #32: Cohesion is set to 25 ksf and JL1 is

set to 5 feet.

Effect of Second Set Persistence (K2) at Constant Intensity (12)

on the Probability of Failure Pf (h)

The effect of varying only SP2 and K2 while holding I2 (and all
other input parameters) constant is shown in Figure 5.67. Increasing
both K2 and SP2 by the same percentage (keeping 12 gonstant) increases
Pe ‘at any depth. However, as shown in Figure 5.67, the
magnitude of this increase tends to decrease with depth. Often at
depth, P (h) becomes independent of K2 and SP2, and is a function of
only their ratio; (T2) as indicated by the intersection of the P¢ curves.

Shown in Figure 5.67 is the variation of mean apparent persis-
" tence as a function of depth which becomes independent of the K2 values
as computer output shows.

Figure 5.68 is a plot of standard deviation of apparent persis-
tence (Ra) as a function of depth (h). Up to a depth of approximately

50 feet, Ea is highly sensitive to changes in depth.



266

100

80

RQ (%) CONSTANT I

0 K2=50 %
60} a K2=20 %
Ps (%)
40
20
1 L .| ]
0 20 40 60 80 100

H (f1)

FIGURE 5.67 EFFECT OF MEAN PERSISTENCE (K2) ON
THE PROBABILITY OF JOINT PLANE
FAILURE Pg(h) AT CONSTANT SECOND
JOINT PLANE INTENSITY I2



267

50

a0}

20

[o] o

H (ft)

FIGURE 568 WARIATION OF STANDARD DEVIATION OF
APPARENT PERSISTENCE (Kq) WITH
DEPTH (h)



268

Effect of Second Set Persistence (K2) on the Probability of Failure (Pf)
Figure 5.69 is a plot of the probability of failure Pf as a
function of K2 (and SP2) for the three cases mentioned above (30, 31
32) in which T2 was kept constant (T2 = 5). Other input parameters are
also kept constant as shown in Fijgure 5.69. 1In all cases, Pf increases
with increasing K2 (and SP2). For very weak rock (Cr = 8 ksf), Pe
seems to be independent of K2 (or SP2) and simply a function of T2
only. With less accuracy, the same may be said for cases 30 and 32
as can be seen in Figure 5.69. As expected, when K2 and SP2 approach
zero, joint planes are no longer defined. At such a point, only joint
intensity can then describe jointing within an area of rock. Hence the

probability of failure becomes a function of that ratio.

Effect on Apparent Persistence (Kgz) and the Reliability Index (B)

Figures 5.70 and 5.71 are plots of mean apparent persistence
(Eé) and mean plus one standard deviation of apparent persistence
(Ké + Ra) of cases 30 and 31, respectively. In both cases, and over
the range of values considered, Eé and Ra may be assumed constant.
This indicates that K; and Ea may be assumed to be functions of intens-
ity which is constant in this section.

For both cases, KC is constant and it is neither a function of

K2 and SP2. Joint plane reliability can be expressed by B values as

shown in Figure 5.72. Recall:

8 = LK - K) / K1
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Plots of g as a funétion of K2 (and SP2) for cases 30 and 31
are given in Figure 5.72 and show jdentical trends; an increase in 8
(and thus reliability) as K2 and SP2 are increased. However, as SP2
and K2 are reduced below values of 6 feet and 30 percent respectively.
Note, however, that for different jointing intensities and different
combinations of input parameters, the 1imit values where g becomes

indpendent of K2 (and SP2) may be different.

5.5.12 Effect of Slope Face Angle (6)

The slope face angle (6) is defined as the angle between the
slope face and the horizontal. The effect of varying 6 on joint plane
reliability is examined for three casés, 33 through 35. Within each
case, B was varied between 50 and 90 degrees while holding all other
input paraméters constant. Common inputs to all 3 cases are listed in

~ Figure 5.75.

Case #33: Examined the influence of 6 in weak rock
(C,. = 25 ksf) and long mean joint lengths
(JL = 40')
Case #34: Examined the influence of & in stronger rock
‘Cr = 100 ksf) and long mean joint lengths
(JL = 40')
Case #35: Examined the influence of 6 in weaker rock
(Cr = 25 ksf) and moderate mean joint lengths

(JC = 20")
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Effect of Slope Face Angle (8) on the Probability of Failure Pf (h)

The effect of varying the slope face angle (6) on the prob-
ability of failure Pf (h) is shown in Figure 5.74. Increasing 6 has
the effect of increasing the probability of failure at any given depth
(h) in the slope. The effect of 6 becomes increasingly more pronounced

with depth.

The Probability of Failure (Pf) as a Function of Slope Face Angle (6)

The values of the probability of failure (Pf) at the depth
interval from 90 to 100 feet are plottédinFigure 5.75 as a function
of slope face angle (8). Pf increases very gradually with increasing

6 for all cases. The increase is most noticeable in weak rock (Cr =

25 ksf) and long joint segments (JL = 40'), i.e., in case #33.

As 6 approaches joint plane inclination in a slope with a single
joint set, Pf approaches the probqbi]ity of a joint plane being 100 per-
cent pers{stent. This is due to the fact that rock overlying the crit-

ical path approaches zero.weight.

Due to geometric reasons, 6 does not equal to.
first sét inclination in this research anywhere at anytime.

For high intact rock cohesion (Cr = 100 ksf) and moderate mean
joint lengths (JL = 20'), program output shows that a variation of Pf
with & becomes very small. This implies that for fixed C. and JL, the
probability of failure may be assumed constant in the range of high
values of intact rock cohesion. This indicates that at high cohesion

values (>100 ksf), the probability of failure is no longer a function of
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slope face angle.

Effect on Apparent Persistence (K;) and the Index of Reliability (B)

Figures 5.76 through 5.78 are plots of mean, mean plus one
standard deviation apparent persistence and critical persistence for
cases 33, 34, and 35 for he%ght interval from 90 to 100 feet. For all
the values of 8 examined, E; and Ra are essentially independent of 6.
Insensitivity of Ka to 6 variations is of particular interest because
in most design situations, 6 and slope height are the only slope
parameters which are controlled by the designer. Once E% and Ra are
determined from a single model run, it is possible to investigate joint
plane reliability as a function of 6 for a wide range of values of
(a1l other parameters are assumed constant).

Figure 5.79 is a plot of the index of reliability (B) for cases 33
through 35. Recall that B is defined as follows:

The insensitivity of Ka to variations in & is useful for the same reasons
as insensitivity of Ka to Cr and ¢j is useful; it enables estimations
of B and P values from a single model run for a wide range of 6 values
without additional lengthy simulations. Case 34 is of a slope with

high reliability as one might expect when comparing it with the others.
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5.5.13 Effect of First Set qunt Plane Inclination (al)

The influence of first set joint plane inclination (al),
measured between the first set joint planes and the horizontal, is ex-
amined in two cases (36 & 37). In each case, al is varied from 20 to
70 degrees while holding other parameters constant. Common parameters

of both cases are given in Figures 5.82 and 5.83.

Case #36: Examined the influence of ol in slopes
with weak rock ( C. =25 ksf)
Case # 37: Examined the influence of ol in slopes

with moderately strong rock (Cr = 100 ksf)

Effect of First Set Joint Plane Inclination (wl) on the Probability

of Failure Pf (h)

Figure 5.80 is a plot of the probébi]ity of failure as a function
of height. In the same figures, the mean apparent persistence as a
function of depth, (h) is also plotted. Computer output reveals that
at any hgieht, and for all al, Pf is maximum for the depth interva1v
90 to 100 feet. |

Mean apparent persistence (E;) as a function of depth is practi-
cally constant for depths greater than approximately 20 feet and for

any value of al. This indicates that Ké is not a function of «al

nor of depth (See Fig. 5.81).

The Probability of Failure (Pf) as a Function of First Set Joint Place

Inclination ( al)

Plots of the probability of failure as a function of first set
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inclination (al) are given in Figure 5.82. Program output reveals

that Pf (al) is a maximum when al equals 40 to 50 degrees. Changing
intact rock cohesion Cr’ does not appear to influence the value ofal at
which Pf is maximum. This is in agreement of findings by 0'Reilly-1980.

supporting this fact.

By referring to Fig. 5.83 & 5.84 one may conclude the integrity of the
mode1 developed in this thesis, It is obvious from both said figures that K3
is a minimum at the angle al that coincides with the value used for the
intact rock friction angle.

As expected, the weaker rock has a higher probability of failure
at all values of al examined. The position of the relative maximum
remains unchanged at a1,‘appr0ximate1y equal to 40 degrees. While
the influence of C. is large over the entire range of al, the influence
of joint_]ength becomes 1nqreasing1y less significant with increasing al

(discussed previously when examining JL).

Effect of First Set Joint Plane Inclination (al) on Apparent Persistence

(Kz) and on the Index of Reliability (B)

Mean apparent persistence (E&), mean plus one standard deviation
(E& + Ra) and critical persistence (K.) are plotted as fuﬁctions of al
for cases 36 and 37. Plots of both cases show similar trends with in-
creasing ol; decreasing K; and increasing ka where EA + ka remains
practically constant. When 6 and ol approach each other (regardless of
which is held constant), transitions become less common (due to the
restriction that the critical path cannot intersect the slope face).
Since transitions are the mechanisms which increase K;and reduce vari-
ability in Ka (i.e., K ), then it is not surprising that by increasing

al toward EA is reduced and K, is increased.
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How Ké " Ra and KC interact as functions of al to influence
joint plane reliability can be seen from plots of 8 (derived from

Figures 5.83 and 5.84) as a function of al. Recall that:

In Figure 5.85, 8 values for the height interval 90 to 100 feet
are plotted as a function of al for both cases 36 and 37. Case #37
is more reliable as one may expect for the range of ol greater than

40-50 degrees.

5.5.14 Effect of Second Set Joint Plane Inclination (a2)

Second set joint inclination (a2) is the angle between joint
planes of the seéond set and the horizontal. The influence of «2
on joint plane reliability was examined in three cases, 38, 39, and 40.
In each case, o2 was varied between 30 and 80 degrees while holding
all other input parameters constant. Common input parameters for all
three cases are given in Figures 5.88 through 5.92.
Case #38: Examined the influence of &2 in slopes in
weak rock (Cr = 25 ksf) and long joints
(dL = 30').
Case #39: Examined the influence of o2 slopes in
moderately strong rock (Cr = 100 ksf) and

long joints (JL = 30').
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Case #40: Examined the influence of a2 in weak
rock (Cr = 25 ksf) and short joints

(JdL = 10').

Effect of Second Set Joint Inclination (¢2) on the Probability of

Failure Pf (h)

- The effect of varying o2 on Pe (h) is shown in Figure 5.86.

For any value of o2, the probability of failure in any depth interval
does not vary significantly. However, the probability of failure
increases with depth for any o2. For the range of a2 values examined,
the probability of failure is not a function of a?2. This fact is more
pronouncéd in the deeper intervals where data points almost overlap.

Mean apparent persistence as a function of depth is shown in
Figure 5.86. At depths in excess of 20 feet, Ré becomes constant at all
depths and for all o2 values examined. This indicates that RA is fully
independent of variation in depth of a2 (within at Teast the range of
«2 values examined - 40° - 80°).

Variation of standard deviation of apparent persistence (Ea) as a

function of depth is shown in Figure 5.87. Beyond 40' depth, Ka is

constant for any depth and for any of the o2 values being examined.

The Probability of Failure (Pf) as a Function of Second Set Joint Plane

Inclination (o2)

Plots of the probability of failure as a function of second set

inclination (a2) for each case are given in Figures 5.88 and 5.89.
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Program output shows that Pf tends to increase with increasing a2.

‘The most unreliable case is clearly that for weak rock.(Cr = 25 ksf)
with long joints (JL = 40'). As expected, weakening intact rock strength
and increasing joint lengths, both have strong negative influence on
reliability. In each of these cases, one of these unfavorable input
parameters is improved from a reliability point of view in order to
examine the combined effect for a range of a2 values.

Figure 5.88 is a plot of cases 38 and 39. Both cases are iden-
tical except that Cr is increased to 100 ksf over the 25 ksf of case
#38. Increasing Cr c]eariy has a large positive effect on reliability
for all values of a2 which are less than 90°..

Figure 5.89 is a plot of case #40. Cases #40 and 38 are identi-
ca1 except that JL has been reduced from 40 to 10 feet. As expected
from the discussion about the influence of JL on slope re1iab111ty,'this

decrease in JL results in an increase in joint plane reliability

| (decrease in Pf (h) for the values of o2 examined.

Effect of Second Set Joint Plane Inclination (02) on Apparent

Persistence (K;) and the Index of Reliability

Figures 5.90 through 5.92 support the fact that case 39 is the
safest of the three cases (38-40). This may be seen by comparing the
distance between KC and Ké in each of Figures 5.90 through 5.92 in which
Figure 5.91 shows that the distance between Kc and Eé is the largest,
thus the safest. Index of reliability values (B) for the three cases

are shown in Figure 5.93. A
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5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each
of the parameters that define-a rock slope (geometric and mechanical)
are briefly reviewed. Interaction of the various parameters that

affect slope safety is described.

5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (Cy)

and Joint Persistence (1)

As a conclusion drawn from results of the parametric study, the
parameter with the strongest influence on reliability is intact rock
cohesion (Cr)‘

Model runs show that the path of minimum safety margin (critical
path) for any joint plane existing on the slope face is almost totally

independent of Cr and ¢ Increasing either intact rock resistance

5
(Cr) or joint resistance along any path in the slope but does not change
the location of the critical path. The safety margin and thus reli-
ability of the critical path must also increase. However, there is a
1imit to the possible increase in joint place re11abi]fty. In other
words, there is a point beyond which further increases in Cr and @i
will not yield significant further increases in reliability. The exact
values of Cr and ¢j; at which the probability of failure is equal to

the probability of a joint plane being 100 percent persistent is a

function of the other parameters (joint length, spacing, persistence, etc.).

At high intact rock cohesion values (Cr)’ program runs have

shown that the probability of failure in a particular height interval
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is equal to the probability of a joint plane, existing in that in-
terval, is 100 percent persistent. This holds regardless of other

j equals zero. The study has

also shown that when ®j is set equal to first set joint plane inclina-

tion, the probability of failure for a joint plane existing in a height

parameters even when joint resistance ¢

interval, is approximately equal to P1 (the probability of a joint plane
being 100 percent persistent.)

An important result of the parametric study is that the distri-
bution of apparent persistence (Eé , Ra) is insensitive to strength
parameter variation (Cr’ Qj). Thus from a single model run K; and Ea
can be generated for any combination of Cr and ®j; values (all other
parameters held constant). By calculating the critical persistence
(Kc)' one can calculate the indices of reliability (B) without additional
simu]atibn. B values can then be used direct1y or can be converted to

probability of failure values to assess joint plane reliability.

5.6.2 Effect of Slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle (8)
and the inclination angies of the two joint sets (al and a2). First
set inclination (al) has the greatest influence on reliability. The
difference between 6 and ol strongly influences reliability. As «al
approaches 6, reliability increases as a result of a reduction in the
driving force (a function of weight of rock between the critical path
and slope face). In such situations, the effects casued by second set
joints are minimal due to their neutral orientation (i.e., that orienta-

tion could not provoke a rock movement within the rock mass). Reliabil-
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ity however decreases as the difference between 6 and &l increases
especially for al values of 40-50° and 30-70° for a2. Reliability
1ncreasés when first joint set inclination al approaches joint fric-
tional resistance due to the ability of joints to resist a higher per-

centage of the driving force.

5.6.3 Effect of Joint Geometry Parameters

Of the joint geometry parameters (mean joint plane spacings SP,
mean joint lengths JL and mean persistences K), those with the strongest
influence on joint plane reliability are the mean joint length of the
first set JL1 and the first set estimated mean persistence Kl. The
effect of each becomes 1ncreésing1y more pronounced with depth. Decreas-
ing the means of joint plane spécing of both or either set have a strong

effect on slope reliability, but not as severe as JL1 and KI.



304

5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each
of the parameters that define a rock slope (geometric and mechanical)
are briefly reviewed. Interaction of the various parameters that

affect slope safety is described.

5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (Cyr)

and Joint Persistence (¢3j)

As a conslusion drawn from results of the parametric study, the
parameter with the strongest influence on reliability is intact rock
cohesion (Cyr).

Model runs show that the path of minimum safety margin (critical
path) for any joint plane exiting on the slope face is almost totally

independent of Cr and ¢ Increasing either intact rock resistance

i
(Cr) or joint resistance for a rock slope while holding all other
parameters constant, does not change the locations of paths of minimum
safety margin. As a consequence, the safety margin and thus reliability
of those critical paths must also increase. However, there is a limit
beyond which further increases in Cr and Qj do not yield significant
further increases in reliability. Values of Cr and @j which define that
1imit are a function of other parameters (joint length, spacing, per-
sistence, etc.).

At high intact rock cohesion values (Cr)’ program runs have
shown that the probability of failure in a particular height interval

is equal to the probability of a joint plane, existing in that in-

terval, is 100 percent persistent. This holds regardless of other




parameters even when joint resistance ¢j equals zero. The study has

also shown that when ®j is set equal to first set joint plane inclina-

tion, the probability of failure for a joint plane existing in a height
interval, is approximately equal to P] (the probability of a joint plane
being 100 percent persistent.)

An important result of the parametric study is that the distri-

~

bution of apparent persistence (K K

a ? is sensitive to strength

"

parameter variation (Cr’ ®.). Thus from a single model run Ké and K

J
can be generated for any combination of Cr and Qj; values (all other

a

parameters held constant). By calculating the critical persistence
(Kc)’ one can calculate the indices of reliability (B8) without additional
simulation. B values can then be used directly or can be converted to

probability of failure values to assess joint plane reliability.

5.6.2 Effect of slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle
(6) and the inclination angles of the two joint sets (al and «2). First
set inclination (al) has the greatest influence on reliability. The
difference between 6 and «l strongly influcences reliability. As al
approaches 6, reliability increases as a result of a reduction in the
driving force (a function of weight of rock between the critical path
and slope face). In such situations, the effects caused by second set
joints are minimal due to their neutral orientation (i.e., that orien-
tation could not provoke a rock movement within the rock mass). Reli-

ability however decreases as the difference between 6 and ol increases
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especially for al values of 40-50° and 30-70° for «2. Reliability
increases when first joint set inclination «l approaches joint fric-
tional resistance due to the ability of joints to resist a higher per-

centage of the driving force.

5.6.3 Effect of Joint Geometry Parameters

0f the joint geometry parameters (mean joint plane spacings SP,
mean joint lengths JL and mean persistences K), those with the strongest
influence on joint plane reliability are the mean joint length of the
first set JL1 and the first set estimated mean persistence K. The
effect of each becomes increasingly more pronounced with depth. De-
creasing the means of joint plane spacing of both or either set have a
strong effect on slope reliability, but not as severe as JL1 and KI.

The conclusion has been drawn in this thesis that the effect of
a second joint set on slope availability, compared to the same slope
with a single set, is minor but not marginal or trivial. However, one
should not apply this statement to all rock slopes with all joint
patterns;at least those not covered by the ranges established in this
thesis. One should neither underestimate nor overlook the second set
in a rock slope (the second set defined previously as the steeper joint
pattern). Weight calculations have concluded stability of a slope w%th
minor effect by the second set. However, potential instability does
exist. A slope with two joint sets may prove to be stable when analyzed
by the model developed in this thesis, but may become unstable from
temperature changes (freezing and thawing), in situ water pressure

changes or earthquake loads.
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CHAPTER 6

DESIGN RECOMMENDATIONS

Perhaps, a matter of controversy would be whether a rock slope
safety is critically effected by having two joint sets as compared
to one with a single joint set. However, in the work associated
with this thesis, the author believes that in most cases, the
effect of having a second joint set on rock slope safety, compared
to one having a single joint set, is small but never in any case
trivial. An example where a second joint set causes instability
is when one set is horizontal and the ofher vertical. Another is
when the shallower set has a very low persistance and a short mean
joint length and the other joint set has high persistence and a
high mean joint length.

Present design methods do not take into account the distribution
associated with rock slope parameters due to the complexity of
such a task. A rather simple method was developed by 0'Reilly - 1980
that considers results obtained by probabilistic approaches.
Briefly, a slope can be classified to fall in one of three equal
height intervals (zones), the zone of shallow instability, the
zone of stability and the zone of deep instability. Thus the main
purpose is to attempt to maximize the probability that a particular

slope lies within the zone of stability (See 0'Reilly -1980).
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A great amount of research is yet to be carried out to establish
generally acceptable and dependable methods to analyze rock slopes
taking into account the respective uncertainties. The writer strongly
recommends additional work and research aided with field data as

often as it will be possible.
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