THE EFFECT OF TWO SETS OF JOINTS
ON ROCK SLOPE RELIABILITY
by

ABDO KAMAL SHAIR'
B.S. (Civil Engineering) Syracuse University
(1978)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JANUARY 1981
(c) MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1981

Signature redaćted
Signature of Author \qquad Department of Civil Engineering
Signature redacted
Signature redacted

Accepted by \qquad Signature redacted

The Effect of Two Sets of Joints
on Rock Slope Reliability
by

ABDO KAMAL SHAIR
Submitted to the Department of Civil Engineering on January 31, 1981 in partial fulfillment of the requirements for the Degree of Master of Science in

Civil Engineering
ABSTRACT
A probabilistic model is developed that simulates both the variation of persistence of each of two distinct joint sets within a rock mass and their combined effect on rock slope reliability.

Each of the sets of joints is pseudo-randomly simulated to form a joint pattern, and a stability analysis is performed on each simulated realization. Thus in a typical realization, a number of joint planes will intersect the slope face to form exit points of potential failure paths which are generally non planar and pass through joints and intact rock. Consequently, from a number of realizations, reliability may be determined for part or the entire slope. Reliability is measured in the probability of a joint plane exiting on the slope face given that this exit point belongs to a failure path.

An extensive sensitivity study is made with respect to the main parameters that influence slope stability. Results obtained aided in establishing a set of recommendations for design and stability analyses.

Thesis Supervisor: Daniele Veneziano
Title: Associate Professor of Civil Engineering
Thesis Supervisor: Herbert H. Einstein
Title: Associate Professor of Civil Engineering

ACKNOWLEDGEMENTS

I am grateful to my Professors and Colleagues who have guided me and helped me in my work in writing this thesis. I am especially indebted to Professors Herbert Einstein and Daniele Veneziano for both their patience and extensive comments and valuable suggestions for its improvement.

Special thanks and particular credit to Kevin O'Reilly who has be responsible for previously establishing the general guidelines and computer methods to be used for carrying out this work; and to Joan McCusker who was endlessly patient and accurate in typing and retyping this manuscript.

TABLE OF CONTENT

CHAPTER 1: INTRODUCTION 1
1.1 The Problem 1
1.2 Slope Stability Parameters 2
1.3 Design Approaches 5
1.4 Objective 6
CHAPTER 2: DETERMINISTIC ANALYSIS AND FAILURE PATHS IN SLOPES WITH TWO PARALLEL SETS OF JOINTS 8
2.1 Introduction 8
2.2 A Deterministic Mechanical Model (Lajtai's Direct Shear Model) 8
2.3 Previous Research 24
2.4 The Mechanical (deterministic) Mode1 "TALAL" 25
2.5 The Failure Mechanism 32
2.6 "In Plane" and "Out of Plane" Tensile Failures of Intact Rock Bridges 33
CHAPTER 3: THE PROBABILISTIC MODEL - COMPUTER PROGRAMS 36
3.1 Introduction
3.2 Programming Stochastic Generation of Joint Geometry 67
3.3 Program Limitations 91
CHAPTER 4: THE PROGRAM
4.1 Introduction 94
4.2 Sample Input 108
CHAPTER 5: RELIABILITY OF SLOPES CONTAINING A SINGLE SET OF SLOPE PARALLEL JOINTS 160
5.1 Introduction 160
5.2 Main Conclusions of Parametric Analysis 161
5.3 Geometric Parameters 161
5.4 Dependence of Reliability on Various Slope Parameters 165
5.4.1 Probability of Failure Derived From Safety Margins 167
5.5 Parametric Study 172
5.5.1 Introduction 172
5.5.2 Effect of Intact Rock Cohesion on Slope Reliability 178
5.5.3 Effect of Joint Friction Angle (Φ_{j}) on Slope Reliability 189
5.5.4 Effect of First Set Mean Joint Length (JLl) 200
5.5.5 Effect of First Set Mean Joint Plane Persistence ($\bar{K} 1$) at Constant Mean Joint Plane Spacing ($\overline{\mathrm{SP}} 1$) 211
5.5.6 Effect of Mean Joint Plane Spacing of the First Set ($\overline{\mathrm{SP}} 1$) at Constant Persistence 213
5.5.7 Effect of First Set Mean Joint Plane Persistence ($\bar{K} 1$) at Constant Intensity ($\overline{\mathrm{I}} 1$) 224
5.5.8 Effect of Second Set Mean Joint Length ($\overline{J L} 2$) 238
5.5.9 Effect of Second Set Mean Joint Plane Persistence ($\bar{K} 2$) at Constant Spacing of Slope Reliability 248
5.5.10 Effects of Second Set Mean Joint Plane Spacing ($\overline{\mathrm{SP}} 2$) 256
5.5.11 Effects of Second Set Persistence ($\bar{K} 2$) on Constant Joint Intensity (I2) 264
5.5.12 Effect of Slope Face Angle (θ) 273
5.5.13 Effect of First Set Joint Plane Inclination ($\alpha 1$).. 282
5.5.14 Effect of Second Set Joint Plane Inclination ($\alpha 2$). 289
5.6 Parametric Study Conclusions 304
5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (C_{r}) and Joint Persistence (ϕ_{j}) 304
5.6.2 Effect of Slope Geometry Parameters 305
5.6.3 Effect of Joint Geometry Parameters 306
CHAPTER 6 DESIGN RECOMMENDATIONS 307

CHAPTER 1
INTRODUCTION

1.1 The Problem

Rock slope stability crtically depends on uncertain geometric and strength parameters. The reason for uncertainty is that is is practically impssible to measure the values of all governing parameters in a typical rock mass. As a result, present deterministic design methods incorporate high safety margins. A method of analysis which takes the stochastic character of rock masses into account is needed. More precisely, what is needed at the present time is:
(1) An understanding of the reliability distribution of the various parameters influencing the stability of a rock mass;
(2) Development of analytical methods that consider the stochastic character of parameters in making stability predictions.

The purpose of this thesis is to study the effect of two joint sets on the reliability of a rock slope. Reliability of rock slopes was first studied by Glynn (1978) and later by O'Reilly (1980). Both took into consideration the two criteria mentioned above. A model is developed and used to study the dependence of rock slope safety on various parameters.

This introductory chapter gives a brief description of the parameters on which rock slope reliability depends. A brief discussion on
the merit of the deterministic approach and the possible merit of a deterministic-stochastic approach to be used in rock engineering will follow.

1.2 Slope Stability Parameters

The major parameters affecting slope stability are:
(1) In-Situ state of stress
(2) Intact rock shearing resistance
(3) First joint set orientation
(4) Second joint set orientation
(5) Shearing resistance of the joints
(6) Length of joints

The relative importance and variability of each parameter is discussed in detail next.

State of Stress

The in-situ state of stress can only be determined at a few points within a rock mass. Shearing resistance of intact rock and discontinuities depends both on rock strength and on the in-situ state of stress. Accurate methods are complex and generally impractical for design use (i.e., finite element), and still in the development stages. Consequently, design approaches must use simplifying assumptions.

Intact Rock Shearing Resistance

Intact rock shearing resistance is uncertain because of:
(1) Natural spatial variability of intact rock strength parameters.
(2) Measurement errors.

Joint Orientation

The effect of joint orientation on stability is an established fact included in current rock slope stability analysis.

Joint Shearing Resistance

Failure in a jointed rock slope occurs when intact "wedges" or "blocks", bounded by joints, move in the direction of one of the joint planes. Since sliding is commonly assumed to take place along joints, a reliable prediction of joints shear strength is critical. Some degree of spatial variablity in joint resistance will always be found. Variation in measured values of joint friction angle Φ and joint cohesion C_{j} will be either due to random measurement errors or in-situ variability.

Joint Persistence

Joint persistence is a measure of joint continuity. Quantitatively, it can be considered to be the percentage of a "joint plane" which is actaully discontinuous. For a block bounded by non-completely persistent joints to fail, intact "rock bridges" must fail. (Refer to Figure 1.1.)

FIGURE I.I 2-DIMENSIONAL JOINT PERSISTENCE (K)

Slope reliability is, in general, highly sensitive to variation in persistence. Due to this high sensitivity, no current design method satisfactorily treats joint resistance. Commonly the "persistence Problem" is conservatively ignored by assuming joints with 100% persistence (O'Reilly, 1980).

Predictions of slope performance are made even more complex by the fact that each of these parameters is, to at least some extent, variable within the slope.

The effects of the cleft water pressure are ignored since they are not well known at the present time.

1.3 Design Approaches

There are currently two basic approaches to evaluate stability of a jointed rock slope. The first approach uses limit equilbrium analysis with single values of the parameters. It yields a factor of safety against failure for a single 'potential failure body'. Uncertainty associated with each of the parameters is controlled by an appropriate selection of a factor of safety.

The second approach yields a probability of failure for 'potential failure bodies' rather than a safety factor. In such an approach, varability in parameters affecting stability as well as the expected number of 'potential failure bodies' are considered. The final goal of a probabilistic design is to evaluate the probability of failure of an entire rock slope.

Recently, probabilistic design methods have been developed that are capable of calculating the probability of failure of blocks or
wedges within a rock slope rather than a factor of safety. It is possible to estimate slope reliability as the probability that failure will occur, rather in the slope. Through simulation, probabilities of failure of the individual wedges are obtainable. Geometric joint parameters affecting wedge reliability are assigned distributions and are randomly generated in each realization of the simulation. A factor of safety is then calculated for each realization. The probability of wedge failure is simply the percentage of realizations with factors of safety less than one.

1.4 Objective

The objective of this work is to develop a model of slope reliability that accounts for the effect of two distinct joint sets. This is an additional step towards the development of a complete reliability model which takes into consideration the stochastic character of geometric parameters, resistances, persistence and water pressure as well as computation of anerall probability of slope failure.

Chapter 2 will briefly review current methods by which jointed rock slopes are analyzed and a deterministic resistance model for the resistance of any failure path, involving either one of the two joint sets or both joint sets within a rock slope. Chapter 3 presents the probability model for failures in slopes containing two sets of parallel joints. The model is based on the calculation of resistance in Chapter 2 and on a procedure to simulate joint geometry. In Chapter 4, a demonstration run will be presented. In Chapter 5, the program will be used to conduct an extensive parametric sensitivity analysis that
will assess the influence of the various parameters on the slope reliability. Chapter 6 will conclude with design recommendations based on the results of the preceeding chapter and recommendations for future research.

CHAPTER 2

DETERMINISTIC ANALYSIS AND
FAILURE PATHS IN
SLOPES WITH TWO
PARALLEL SETS OF JOINTS

2.1 Introduction

In this chapter a realistic mechanical model will be developed to determine the stability of any potential failure surface within slopes of the type shown in Figures 2.1 and 2.2, with two parallel joint sets. Failure surfaces to be analyzed are either "in-plane" or "en echelon" and typically include both jointed and intact rock sections.

This chapter will also present the combined effect of joint intact rock on rock mass stability as well as limit equilibrium models which are used to derive resistance along non-continuous joint planes.

2.2 A Deterministic Mechanical Model

(Lajtai's Direct Shear Model)

Because joint shearing resistance is generally several orders of magnitude smaller than intact resistance, discontinuities are generally found to totally govern the performance of a risk slope.

FIGURE 2.I CASE I

FIGURE 2.3 CRITICAL PATHS

The model presented here was proposed by Lajtai and used by O'Reilly (1980) in analyzing a slope with a single set of parallel joints. We shall consider here the same slope with an additional parallel joint set. The physical behavior of the rock and jointed rock will basically be the same. Movement will always be assumed to take place in the direction of the shallower angled joints, and consequently there will be no frictional resistance between joint surfaces of the second joint set as relative movement will be away from these surfaces.

Lajtai suggests that failure resulting from stress applied on an intact rock bridge connecting two open joints is one of direct shear as shown in Figure 2.4. According to Lajtai, normal stresses in the direction of jointing can be assumed to be zero at failure. He bases this assumption on the fact that a truly "open" joint cannot transmit stresses to the surrounding intact rock.

Failure of intact rock bridges in a slope can be visualized as shown in Figures 2.5(a) and 2.5(b). In Figure 2.5(a) a rock bridge in an otherwise continuous joint plane is about to fail. Failure is assumed to involve the rigid body motion of rock overlying the joint planes down-dip in the direction of jointing of the first joint set. set. The direct shear assumption is again attractive because, the mechanism involved in failing a block of intact rock in a direct shear device, is analogous to the mechanism of failure of an intact rock bridge within a slope. Both involve forced rigid body motion

FIGURE 2.4 DIRECT SHEAR STATE OF STRESS IN ROCK BRIDGE AS PROPOSED BY LAJTAI (1969)

FIGURE 2.5 (a) \& (b) FAILURE MECHANISM OF INTACT ROCK BRIDGE IN SLOPE
along a predefined plane under an approximately constant stress, normal to the joint palne. In a slope with two joint sets, the joints of the second set transmit no stresses of failure to the surrounding intact rock. In an actual slope, normal stresses are, more or less, fixed by the weight of rock overburden.

When a direct shear test is performed at low levels of stress applied normal to the joint plane, Lajtai states that the maximum shear resistance can be distinguished as one of two modes. At relatively low stress levels, the application of shear stress, in the direction of the first joint set, can lead to a minimum principal stress $\left(\sigma_{3}\right)$ equal to the tensile strength of the intact rock. In this mode, failure occurs as tensile fractures develop at the high angles in the direction of the first joint set. (Refer to Figure 2.6(a).) These tensile fractures occur when τ_{a}, (peak shear stress in the enforced direction) is mobilized. This is followed by shearing in the direction of the first joint set at residual stress levels. (Figure 2.6(c)

At higher normal stress levels, the minimal principalstress does not exceed tensile strength. In this case, failure occurs when stress (τ), in the direction of the first joint set, equals the shear resistance defined by the Coulomb failure criterion (approximately equal to twice the tensile strength). In this second mode, shear fractures develop at the moment of peak applied shear stress. (See Figure 2.6(b)). Shear fracture develops sub-parallel to the enforced direction. Again as in the tensile mode, peak behavior is followed by shearing which is parallel to the enforced direction at residual shear stress levels.

(a) FAILURE \mathbb{N} TENSION

(b) FAILURE \mathbb{N} PURE SHEAR

(c) FAILURE AT ULTIMATE STRENGTH

FIGURE 2.6 DIRECT SHEAR FAILURE MODES

Graphically, referring to Figure 2.7, the center of the Mohr stress circle remains constant at $\sigma_{a / 2}$ as the applied shear stress is raised from its initial value of zero to its value at failure. Applied shear stress can be increased only until the Mohr circle becomes tangent to the failure envelope. At relatively low values of σ_{a}, this point of tangency is at $\sigma=-T_{S}, \tau=0$ and thus failure occurs as tension fractures initiate, (mode 1). As σ_{a} is increased, the centers of the Mohr circles move further out along the σ axis away from the τ - axis. Beyond a certain value of σ_{a}, increasing applied shear stress to failure results in the point of tangency lying on the linear portion of the envelope. (See Figure 2. 8).

Summarizing; if the point of tangency lies along the parabola of failure envelope, failure is by tensile fracturing (mode 1). If the point of tangency is on the linear portion, failure will be by shear fracturing (mode 2). After either mode, post peak shear resistance drops to stress dependent residual values due to secondary shearing in the enforced direction. Analyticaliy, expressions of peak shear resistance for intact rock in direct shear will now be presented for each of the above described failure modes.

Lajtai described mode 1 by the following expression:

$$
\begin{equation*}
\tau_{a}=\left[T_{s}\left(T_{s}-\sigma_{a}\right)\right]^{\frac{3}{2}} \tag{Eq.2.1}
\end{equation*}
$$

Plotting τ_{a} as a function of σ_{a} leads to what Lajtai terms as the direct shear parabola (tension). (See Figure 2.9a).

FIGURE 2.7 MOHR'S CIRCLE - FAILURE BY TENSILE FRACTURING (MODE I)

FIGURE 2.8 MOHR'S CIRCLE - FAILURE BY SHEAR FRACTURING (MODE 2)
(a)
(b)

FIGURE 2.9 DEVELOPMENT OF COMPOSITE LIMIT CURVES AFTER LAJTAI (1969)

At high stress levels of σ_{a} close to σ_{c}, we get what is referred to as the third direct shear failure mode, i.e., failure at ultimate strength. This develops by formation of a zone of crushed material in the direction of jointing.

This can be described by the following expression established by Lajtai:

$$
\begin{equation*}
\tau_{u l t}=\sigma_{a} \tan \Phi_{u l t} \tag{Eq.2.2}
\end{equation*}
$$

where $\Phi_{u l t}$ is the friction angle of the crushed rock. Equation 2.2 is plotted in with the composite curve of Figures 2.9c and 2.9d. Lajtai finally superimposes the ultimate strength (Eq. 2.2) curve to the composite curve to yield what is termed as the "composite limit curve" shown in Figure 2.9c.

By superimposing Figures 2.9a, 2.9b and 2.9c, we get a composite curve which gives, for any applied value of normal stress, the peak shear stress τ_{a} at which failure of the intact rock occurs in tension of shear.

Lajtai's mechanical model has the characteristics of being deterministic in the sense that it requires a pre-set value on joint plane persistence. It is not possible to derive a single persistence value that can be used in obtaining acceptable slope reliability values from a deterministic resistance model. The complexity increases when another set of joints of a different orientation exists. This de-

FIGURE 2.9 DEVELOPMENT OF COMPOSITE LIMIT CURVES AFTER LAJTAI (1969)

By superimposing Figures 2.9a, 2.9b and 2.9c, we get a composite curve which gives, for any applied value of normal stress, the peak shear stress τ_{a} at which failure of the intact rock occurs in tension of shear.

At high stress levels of σ_{a} close to σ_{c}, we get what is referred to as the third direct shear failure mode, i.e., failure at ultimate strength. This develops by formation of a zone of crushed material in the direction of jointing.

This can be described by the following expression established by Lajtai:

$$
\begin{equation*}
\tau_{u l t}=\sigma_{a} \tan \Phi_{u l t} \tag{Eq.2.2}
\end{equation*}
$$

where $\Phi_{\text {ult }}$ is the friction angle of the crushed rock. Equation 2.2 is platted in with the composite curve of Figures 2.9c and 2.9d. Lajtai finally superimposes the ultimate strength (Eq. 2.2) curve to the composite curve to yield what is termed as the "composite limit curve" shown in Figure 2.9c.

Lajtai's mechanical model has the characteristics of being deterministic in the sense that it requires a pre-set value on joint plane persistence. It is not possible to derive a single persistence value that can be used in obtaining acceptable slope reliability values from a deterministic resistance model. The complexity increases when another set of joints of a different orientation exists. This de-
ficiency is addressed by probabilistic methods that will be discussed next.

2.3 Previous Research

The fundamental probabilistic approach was first utilized by Glynn 1979 in his model (JOINTSIM) which incorporates a deterministicmechanical model and a Monte Carlo simulation program. His program generates joints randomly within a rectangular block in a stress field. Joint generation is based on assumed exponential distributions of the joint plane spacing, joint length and rock bridge length about their mean values. In each realization the programfinds the paths of minimum safety margin and the associated apparent persistences.

Values of apparent persistence for all realizations form a distribution whose mean and standard deviations are determined at the conclusion of the entire simulation. Glynn found that block stability is strongly dependent on the geometric properties of the block and the joints (block dimensions, mean joint length, mean rock bridge length, mean joint plane spacing) and is relatively insensitive to the ambient stress field and variations in the rock strength parameters.
"JOINTSIM" has the limitation of analyzing a block, not an actual slope. Its algorithm has a drawback of influencing failure paths. "Jointsim" artifically constrains the failure path thus distorting the inclination of the failure path and apparent persistence. This is a noticeable limitation especially when joint planes are closely spaced. This and other drawbacks were alleviated by 0'Reilly (1980)
in his model which is a much closer model of the actual jointed rock slope.

Briefly, O'Reilly's model reduces the major shortcomings encountered in Glynn's model. It is a probabilistic model for the simple two dimensional cases of a single set of slope parallel joints (See Fig. 2.10). It is a combination of probabilistic simulation approaches, and deterministic models developed to its date.

2.4 The Mechanical (deterministic) Model "TALAL"

In the remaining parts of this chapter the mechanical model for the slope with two joint sets is developed and described. It will be incorporated to determine the stability of any potential failure surface within slopes of the type previously shown in Fig. 2.1.

This thesis follows the same guidelines and criteria previously used to establish the mechanical models developed by Glynn and 0'Reilly. In a typical realization, two quantities are computed for a potential failure path. One is the force resisting downward movement of the rock overlying that potential failure path, namely resistance. The other is the force component in the direction of sliding, tending to displace the overlying rock, namely the driving force.

The method of slices is used to determine driving and resisting forces. Figure 2.11 is an illustration of this method. The rock overlying a path is divided into a series of vertical slices. Slices can be bound by either joint or intact rock bridges. Here, a failure is assumed to take place as a rigid body movement of material over-

FIGURE 2.10 SLOPE GEOMETRY SINGLE SET OF SLOPE PARALLEL JOINTS

FIGURE 2.II METHOD OF SLICES

FIGURE 2.12 MOHR'S CIRCLE - JOINT PLANE FAILURE (SET I)

FIGURE 2.13 MAXIMUM STRESS LOCATION IN SECTION OF SLOPE

FIGURE $2.14 \operatorname{IN}$ PLANE AND OUT OF PLANE TRANSITIONS
lying the down slope path in the direction of jointing of the first joint set. Total driving force (DF) and total resistance (R)along the path are given by the following relationships:

$$
\begin{align*}
D F & =\Sigma_{\mathbf{i}} W_{\mathbf{i}} \sin \alpha 1 \tag{Eq.2.3}\\
R & =\Sigma_{\mathbf{i}} R_{\mathbf{i}} \tag{Eq.2.4}
\end{align*}
$$

where W_{i} is the weight of a slice and R_{i} is the peak shear force mobilized by the portion of the path underlying the i-th slice. The safety margin. SM for each slice can be defined as the difference between resisting and driving forces for that slice:

$$
\begin{equation*}
S M_{i}=R_{i}-W_{i} \sin \alpha 1 \tag{Eq.2.5}
\end{equation*}
$$

Thus, the total safety margin SM along the path is given by:

$$
\begin{equation*}
S M=\Sigma_{i}\left(R_{i}-W_{i} \sin \alpha 1\right)=R-D F \tag{Eq.2.5}
\end{equation*}
$$

Failure occurs when $S M \leq 0$ (i.e., when the driving force equals or exceeds resistance).

In the following section, the failure mechanism is described. Methods to calculate resistance of the intact rock bridge for "in plane" and "en - echelon" transitions are discussed in detail. Methods to calculate the rock weight overlying a failure path, are also discussed.

Finally, the section concludes with a summary of the deterministic model.

2.5 The Failure Mechanism

In the case of two joint sets, failure is assumed to occur as a downslope movement of a rigid body of rock which is bounded by a failure path consisting of joints, fractured rock, as well as the slope face and the top free surface. Due to the fact that movement is always downslope along the first joint set inclination, joints of the second joint set have, consequently, no shear resistance. In other words, the first set dominates the direction of rock failure sliding while the second set only enhances this to occur.

This thesis is not concerned with cases where intact rock strength parameters are so low that the failure mechanism approaches that of soils (e.g., clay shales) where jointing does not influence the kinematics of slope failure. Limitations also exist since certain combinations of stress field magnitude and orientation (relative to joint inclination) can also lead to failure of intact rock before full joint resistance can be mobilized. Experimental model test by Einstein (1970) show that, even in very strong rock, failure planes are formed without being influenced by discontinuities in the rock.

According to 0^{\prime} Reilly (1980), two basic failure mechanisms in intact rock can describe the failure of a rock slope. The first, Type One, is the most relevant to the research being carried out.

It is referred to as translational sliding parallel to jointing. It is the mode originally assumed, especially when joint resistance is significantly lower than intact rock resistance. The second, Type Two, is that in which shearing is independent of the existing joints. This occurs when the stress required to propagate cracks through intact rock is less than that required to fail joints. Type Two failure may be due to a combination of factors such as weak rock in any stress field, ar strong rock in an unfavorable stress field. The decrease in the percentage of intact rock in a potential failure path, is much greater for a slope with second set joints than for a slope with single set joints. Hence, the importance of Type One failure becomes obvious as the amount of intact rock in the failure path becomes less. As a result stability of the slope becomes increasingly dependent on availability of the intact rock.
2.6 "In Plane" and "Out of Plane" Tensile Failures of Intact Rock Bridges

For low stress values $\left(\sigma_{a}<2 T_{s}\right)$, peak shear resistance is mobilized at the moment when tensile fractures develop at an angle θ_{t} from a1. θ_{t} should be approximately equal to 45° for low α_{a} values relative to the intact rock tensile strength (See Fig. 2.15) as is expected for Mode Two failure to occur. Actual failure occurs, when a continuous fracture develops in the direction of jointing. After tensile fracturing takes place, a secondary progressive shear fracture follows. (See Fig. 2.15).

The analogy between the direct shear test and "in plane" intact rock bridges is acceptable at low stresses, and thus the resistance

FIGURE 2.15 FAILURE MECHANISMS - DOWN SLOPE MOVEMENT AFTER SECONDARY SHEARS DEVELOP
for in-plane transitions is:

$$
R={ }_{a}^{\tau} x d
$$

where d is the rock bridge length shown in Figure 2.14 a and τ_{a} is given by the following relation from Lajtai:

$$
\tau_{a}=\left[T_{s}\left(T_{s}-\sigma_{a}\right)\right]^{\frac{1}{2}}
$$

and where $-2 T_{s}$ may be replaced by C_{r} to yield:

$$
\left(\frac{C_{r}}{2}\right) \quad \frac{\sigma_{a}}{2}
$$

Out of plane transitions, occur when a continuous fracture develops at an angle to a first joint plane up to a point on another plane, i.e., rock bridges involve a transition from one joint to another in an overlying plane at an angle β, (greater than $\alpha 1$). In such cases criteria established previously apply. However, the assumption here is that the block of rock containing a rock bridge at the moment of failure is in direct shear with zero normal stress in the direction of jointing of the first set. (See Figure 2.16).

Transitions at β values that exceed the angle of tensile fracturing (i.e., $\beta \geq \theta_{t}+1$) are referred to as high angle transitions. In such situations, a fracture can develop connecting the discontinuities immediately through a tensile fracture without requiring secondary shearing;

FIGURE 2.16 FAILURE STRESS STATE FOR "OUT OF PLANE" TRANSITIONS
it is assumed that the tensile strength T_{s} of intact rock is mobilized along the path segment. The tensile force, acting in direction of jointing of the first joint set, is the peak shear resistance for high angle transition.

For "low angle transitions", i.e., $\beta<\left(\theta_{t}+\alpha 1\right)$ failure will occur as "in plane" failure. Peak resistance will be mobilized at the moment of tensile fracturing followed by rupture when secondary shears form a continuous fracture connecting the tips of joints forming the bridge, (See Fig. 2.18). Peak resistance is given by:

$$
\begin{equation*}
R=\tau_{a} \cdot d \tag{Eq.2.10}
\end{equation*}
$$

where d is the distance between joint tips defining the bridge and τ_{a} is the peak shear mobilized in the direction of jointing. Notice that "in plane" transition (discussed earlier) is one case of the general "low angle transition".

As mentioned previously, the driving force is due to the overburden weight. DF_{i} is taken as the component of weight over a particular path in the direction of jointing of the first set. (See Fig. 2.19.)

$$
D F_{i}=W_{i} \cdot \sin \alpha 1
$$

Weight calculations are shown in Figures 2.20-2.34. Generally, three types of calculations can be distinguished: the first is for transition paths lying to the right of the slope apex, the second is for those lying beneath the slope apex, and the third is for those
(a) FROM SET I \rightarrow SET 2
(b) FROM SET 2 \rightarrow SET I
$T=T_{S} \quad$
$R=T \sin \left(\beta-\alpha_{1}\right)=T_{S} X$
$I=X / \sin \left(\beta-\alpha_{1}\right)$
FIGURE 2.17 INTACT ROCK RESISTANCE FOR $\beta \geq \theta_{\dagger}+\alpha_{1}$ TRANSITIONS

FIGURE 2.18 INTACT ROCK RESISTANCE FOR "LOW ANGLE" TRANSITIONS $\beta<\theta_{\dagger}+\alpha_{1}$

FIGURE 2.19 DRIVING FORCE, DF $_{i}$, FOR SLICE i
lying to the left of the slope apex, i.e., beneath the slope face. Each of these distinguishable groups can be subdivided into two groups; those with transition angles less than 90 degrees and those with transition angles greater or equal to 90 degrees.

FIGURE 2.20 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta<90$ TRANSITION WITHIN JOINT SET I

$$
\begin{aligned}
|A| & \left.=\operatorname{abs}\left\{\frac{1}{2}(\operatorname{ex} 2+e x)\right)\left[\left(e x 2 / \tan \alpha_{1}\right)+Y \mid 2-Y \|-\left(e x 1 / \tan \alpha_{1}\right)\right]\right\} \\
\beta & =180-\left\{\tan ^{-1}\left[(\operatorname{ex2} 2-e x \mid) / \operatorname{abs}\left(e x 2 / \tan \alpha_{1}+Y|2-Y \|-e x| / \tan \alpha_{1}\right)\right]\right\}
\end{aligned}
$$

FIGURE 2.21 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta>90$ TRANSITION WITHIN JOINT SET I

FIGURE 2.22 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta<90$ TRANSITION WITHIN JOINT SET I

$$
\begin{aligned}
& A=a b s\left\{\frac{1}{2}(e \times 2+e x I)\left(e x 2 / \tan \alpha_{1}+Y|2-Y I I-e x| / \tan \alpha_{1}\right)+\frac{1}{2}\left(e x \mid / \tan \alpha_{1}+Y I I-Y W T\right)^{2} \tan \theta\right\} \\
& \beta=180-\tan ^{-1}\left\{a b s\left[(e x 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{1}+Y \mid 2-Y I I-e x I / \tan \alpha_{1}\right)\right]\right\}
\end{aligned}
$$

FIGURE 2.23 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta>90$ TRANSITIONS WITHIN JOINT SET I

FIGURE 2.24 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta<90$ TRANSITIONS WITHIN JOINT SET I

FIGURE 2.25 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta>90$ TRANSITIONS WITHIN JOINT SET I

$$
\begin{aligned}
& A=\frac{1}{2}\left[\left(e x 2 / \tan \alpha_{2}\right)+Y 22-Y 21-\left(e x 1 / \tan \alpha_{2}\right)\right](e x 2+e x 1) \\
& \beta=\tan ^{-1}\left[(e x 2-e x 1) /\left(e x 2 / \tan \alpha_{2}-e x 1 / \tan \alpha_{2}+Y 22-Y 2 \mid\right)\right]
\end{aligned}
$$

FIGURE 2.26 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta<90$ TRANSITIONS WITHIN JOINT SET 2

FIGURE 2.27 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta>90$ TRANSITIONS WITHIN JOINT SET 2

$A=\frac{1}{2}(e x 2+e x 1)\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)-\frac{1}{2}\left(e x 2 / \tan \alpha_{2}+Y 22-Y W T\right)^{2} \tan \theta$ $\beta=\tan ^{-1}\left[(e x 2-e x 1) /\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)\right]$

FIGURE 2.28 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta<90$ $\alpha_{2}>90$ TRANSITIONS WITHIN JOINT SET 2

$A=a b s\left\{\frac{1}{2}(e x 2+e x l)\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)+\frac{1}{2}\left(e x 1 / \tan \alpha_{2}+Y 21-Y W T\right)^{2} \tan \theta\right\}$ $\beta=180-\tan ^{-1}\left\{a b s\left[e x 2-e x 1 / a b s\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)\right]\right\}$

FIGURE 2.29 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta>90$ $\alpha_{2}>90$ TRANSITIONS WITHIN JOINT SET 2

$A=\frac{1}{2}(e x 2+e x 1)\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)-\frac{1}{2} \tan \theta\left[\left(e x 2 / \tan \alpha_{1}+Y 22-Y W T\right)^{2}\right.$ $\left.-\left(e x \mid / \tan \alpha_{1}+Y 21-Y W T\right)^{2}\right]$
$\beta=\tan ^{-1}\left[(e x 2-e x 1) /\left(e x 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)\right]$

FIGURE 2.30 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta<90 \quad \alpha_{2}>90$ TRANSITIONS WITHIN JOINT SET 2

$$
\begin{aligned}
A= & a b s\left\{\frac{1}{2}(e \times 2+e x \mid)\left(e \times 2 / \tan \alpha_{2}+Y 22-Y 21-e x 1 / \tan \alpha_{2}\right)-\frac{1}{2} \tan \theta\left[\left(e \times 2 / \tan \alpha_{2}\right.\right.\right. \\
& \left.\left.+Y 22-Y W T)^{2}-\left(e x 1 / \tan \alpha_{1}+Y 21-Y W T\right)^{2}\right]\right\} \\
\beta= & \mid 80-\tan ^{-1}\left[(e \times 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{1}+Y 22-Y 21-e x \mid / \tan \alpha_{2}\right)\right]
\end{aligned}
$$

FIGURE 2.31 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta>90 \quad \alpha_{2}=90$ TRANSITION WITHIN JOINT SET 2

$$
\begin{aligned}
& A=\frac{1}{2}(e x 2+e x \mid)\left(e x 2 / \tan \alpha_{1}+Y|2-Y 2 I-e x| / \tan \alpha_{2}\right) \\
& \beta=\tan ^{-1}\left[(e x 2-e x \mid) /\left(e x 2 / \tan \alpha_{1}+Y|2-Y 21-e x| / \tan \alpha_{2}\right)\right]
\end{aligned}
$$

FIGURE 2.32 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta<90 \quad \alpha_{2}<90$ TRANSITION FROM SET $1 \rightarrow 2$.

$$
\begin{aligned}
& |A|=\operatorname{abs}\left[\frac{1}{2}(e x 2+e x \mid)\left(e x 2 / \tan \alpha_{1}+Y|2-Y 21-e x| / \tan \alpha_{2}\right)\right] \\
& \beta=\mid 80-\tan ^{-1}\left[(e x 2-\text { ex } 1) / \operatorname{abs}\left(e x 2 / \tan \alpha_{1}+Y|2-Y 21-e x| / \tan \alpha_{2}\right)\right]
\end{aligned}
$$

FIGURE 2.33 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta>90 \alpha_{2}>90$ TRANSITION FROM SET $1 \rightarrow 2$

FIGURE 2.34 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta<90$ $\alpha_{2}<90$ TRANSITION FROM SET I $\rightarrow 2$

$$
\begin{aligned}
& A=\frac{1}{2}(e \times 2+e x 1)\left(e x 2 / \tan \alpha_{1}+Y|2-Y 21-e x| / \tan \alpha_{2}\right)+\frac{1}{2} \tan \theta\left(e x 2 / \tan \alpha_{2}+Y 21-Y W T\right)^{2} \\
& \beta=180-\tan ^{-1}\left[(e \times 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{1}+Y|2-Y 21-e x| / \tan \alpha_{2}\right)\right]
\end{aligned}
$$

FIGURE 2.35 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta>90$ $\alpha_{2}>90$ TRANSITION FROM SET $1 \rightarrow 2$

$A=\frac{1}{2}(e x 2+e x 1)\left(\operatorname{ex} 2 / \tan \alpha_{1}+Y \mid 2-Y 21-e x 1 / \tan \alpha_{2}\right)-\frac{1}{2} \tan \theta\left[\left(e x 2 / \tan \alpha_{1}\right.\right.$
$\left.+Y \mid 2-Y W T)^{2}-\left(e x 1 / \tan \alpha_{2}+Y 21-Y W T\right)^{2}\right]$
$\beta=\tan ^{-1}\left[(e x 2-e x \mid) /\left(e \times 2 / \tan \alpha_{1}+Y \mid 2-Y 21-e x 1 / \tan \alpha_{2}\right)\right]$
Figure 2.36 WEight calculations: slice to the left of slope apex $\beta<90 \quad \alpha_{2}<90$ TRANSITION FROM SET $1 \rightarrow 2$

$$
\begin{aligned}
A= & \frac{1}{2}(e x 2+e x 1)\left(e x 2 / \tan \alpha_{1}+Y \mid 2-Y 21-e x 1 / \tan \alpha_{2}\right)-\frac{1}{2} \tan \theta\left[\left(e x 2 / \tan \alpha_{1}+Y \mid 2\right.\right. \\
& \left.-Y W T)^{2}-\left(e x 1 / \tan \alpha_{2}-Y 21-Y W T\right)^{2}\right] \\
\beta= & 180-\tan ^{-1}\left[(e x 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{1}+Y \mid 2-Y 21-e x 1 / \tan \alpha_{2}\right)\right]
\end{aligned}
$$

FIGURE 2.37 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta>90$ $\alpha_{2}<90$ TRANSITION FROM SET $1 \rightarrow 2$

FIGURE 2.38 WEIGHT CALCULATIONS: SLICE TO THE RIGHT OF SLOPE APEX $\beta<90 \quad \alpha_{2}<90$ TRANSITION FROM SET $2 \rightarrow 1$

$$
\begin{aligned}
& A=\operatorname{abs}\left[\frac{1}{2}(e x 2+e x 1)\left(e \times 2 / \tan \alpha_{2}+Y 22-Y \|-e x 1 / \tan \alpha_{1}\right)\right] \\
& \beta=180-\tan ^{-1}\left[(e \times 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x 1 / \tan \alpha_{1}\right)\right]
\end{aligned}
$$

FIGURE 2.39 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta>90 \quad \alpha_{2}<90$ TRANSITION FROM SET $2 \rightarrow 1$

$$
A=\frac{1}{2}(e x 2-e x l)\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x I / \tan \alpha_{1}\right)-\frac{1}{2} \tan \theta\left(e x 2 / \tan \alpha_{2}+Y 22-Y W T\right)^{2}
$$

$$
\beta=\tan ^{-1}\left[(e \times 2-e x 1) / a b s\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x 1 / \tan \alpha_{1}\right)\right]
$$

FIGURE 2.40 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta<90$ $\alpha_{2}>90$ TRANSITION FROM SET $2 \rightarrow 1$

$$
\begin{aligned}
& A=\operatorname{abs}\left[\frac{1}{2}(e \times 2+e x 1)\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x I / \tan \alpha_{1}\right)+\frac{1}{2} \tan \theta\left(e x 1 / \tan \alpha_{1}+Y \|-Y W T\right)^{2}\right] \\
& \beta=180-\tan ^{-1}\left[(e x 2-e x I) / a b s\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x I / \tan \alpha_{1}\right)\right]
\end{aligned}
$$

FIGURE 2.41 WEIGHT CALCULATIONS: SLICE BENEATH SLOPE APEX $\beta>90$ $\alpha_{2}<90$ TRANSITION FROM SET $2 \rightarrow 1$

FIGURE 2.42 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta<90 \quad \alpha_{2}<90$ TRANSITION FROM SET $2 \rightarrow 1$

$$
\begin{aligned}
A= & \frac{1}{2}(e x 1+e \times 2)\left(e \times 2 / \tan \alpha_{2}+Y 22-Y \|-e x 1 / \tan \alpha_{1}\right)-\frac{1}{2} \tan \theta\left[\left(e x 2 / \tan \alpha_{2}+Y 22-Y W T\right)^{2}\right. \\
& \left.-\left(e x \mid / \tan \alpha_{1}+Y \|-Y W T\right)^{2}\right] \\
\beta= & 180-\tan ^{-1}\left[(e x 2-e x \mid) / a b s\left(e x 2 / \tan \alpha_{2}+Y 22-Y \|-e x \mid / \tan \alpha_{1}\right)\right]
\end{aligned}
$$

FIGURE 2.43 WEIGHT CALCULATIONS: SLICE TO THE LEFT OF SLOPE APEX $\beta>90 \quad \alpha_{2}<90 \quad$ TRANSITION FROM SET $2 \rightarrow 1$

CHAPTER 3

THE PROBABILISTIC MODEL - COMPUTER PROGRAMS

3.1 Introduction

An analysis, of the stability of slopes with two distinct joint sets is performed through the probabilistic model. The program is a modification of 0'Reilly's (1980) model which was developed to handle the situation with a single set of joints. Similar to O'Reilly's model, "Talal" is a Monte Carlo simulation of the rock slope being examined in this thesis. In each realization, jointing patterns are generated stochastically based on distributions of the joint parameters (i.e., joint length - set 1, rock bridge length set 1 , joint plane spacing - set 1 , joint length - set 2 , rock bridge length - set 2, joint plane spacing - set 2) compiled from previously collected data of joint surveys. For each realization, the program finds for every joint plane of the first set exiting on the slope face, a "critical path" beginning at the slope face, passing through the slope till the free surface of which the safety margin SM (the difference between the sums of resisting and driving forces) is a minimum. Critical paths may be planar or may involve transitions to an overlying joint plane. Transitions, between a joint plane of the first set and points in the second joint set, may take place * only in that region of the slope above the joint plane of the first set (See Fig. 2.19-2.43).

The program divides the slope into intervals of equal height (see Fig. 3.1). In each realization the program stores the safety margins of all critical paths that fall within such an interval. Together, the numerous individual SM values form distributions within each interval. After the last realization takes place, the mean and standard deviation of SM for each interval are calculated. Also found for each interval is the probability of joint plane failure $\left(P_{F}\right)_{i}$ given by:

$$
\begin{equation*}
\left(P_{F}\right)_{i}=N_{F i} \mid N_{T i} \tag{Eq.3.1}
\end{equation*}
$$

where $\left(N_{F i}\right)$; is the number of critical paths in the i-th height interval for which $S M \leq 0$, while $\left(N_{T}\right)_{i}$ is the total number of critical paths in the interval. By independently evaluating $\left(P_{F}\right)_{i}$ and the distribution of SM for each interval, the program is capable of evaluating reliability as a function of slope depth.

3.2 Programming

Stochastic Generation of Joint Geometry

Three fixed input parameters define the geometry of the slope to be analyzed, the slope height (ydim), the slope angle (θ) and the inclination of the first joint set (α 1). (see Fig. 3.2). The upper free surface is always taken to be horizontal. Joint patterns for each joint set, i.e., joint plane spacing, length of joint segments and length of rock-bridges between adjacent joint segments in a given joint plane, are expressed as exponential distributions about mean

FIGURE 3.1 HEIGHT INTERVALS $\mathrm{H}_{\mathbf{i}}$

FIGURE 3.2 . STOCHASTIC GENERATION OF JOINT PLANES, SET I
values; the latter specified by the user. The distribution of jointing patterns is simulated by the number of realizations (the more the realizations, the better the simulation). Generation of joint planes in each realization for joint set 1 begins at the slope apex and works its way back towards point E (Fig. 3.2b), the limit to generating any additional joint planes. This procedure is the same as the one utilized by O'Reilly (1980), where generation begins at the slope apex and works until the exit point of the i-th joint plane exceeds slope depth. The difference in the two procedures is in the storage method and axes used. Maximum permissible Y - coordinate in set 1, (ywt) is given by: (Fig. 3.2).

$$
y w t=(y d i m / \sin \alpha 1)-(y \operatorname{dim} / \tan \theta)
$$

values of $Y(i)$ are generated until $Y(i)$ reaches a value less or equal to zero. Joint planes with a negative $Y(i)$ are not considered since they do not exit on the exposed slope face (see Fig. 3.2).

Next, joint segments are generated while assuming the exponential distribution of joint segment and rock bridge lengths. The location of each joint tip, in a given joint plane, is determined by its depth cjoint $1(i, j)$ below the upper free surface (see Fig.3.3). The orientation of each joint plane is fixed and any point can be defined in terms of the joint plane it belongs to and an x-coordinate. For example, a cjoint $1(3,2)$ equal to 10 stands for the second coordinate point of the third joint plane in the first joint set as measured from the free surface and equals 10 units of length.

FIGURE 3.3 STOCHASTIC GENERATION OF JOINT SEGMENTS OF JOINT SET I

(c) WITHIN SET 2

FIGURE 3.4 JOINT TIPS AS "NODAL" POINTS

The coordinate points on a typical first set joint plane are generated by the program and are referred to as the dynamic programming points. These points are compiled from three data sources. The first source being the set of points on a plane which define the x-coordinates of the intersection of that plane with the free surface and slope face and all the x-coordinates of the joint segments on that plane (See Fig. 3.12a). The second source being the set of points of intersection of the joint plane with lines drawn from the right hand tips of joints of underlying planes at $\left(45^{\circ}+\alpha 1\right)$ (See Fig. 3.12b). Finally, the third source being the set of points of intersection of the joint plane with planes of the second set (See Fig. 3.12c). Figure 3.12d shows all points superimposed on the plane being examined. Dynamic programming plane points serve as potential transition nodes. Transition may take place in plane or out of plane to a point above the plane which contains the dynamic programming plane point. Transitions from a point on a first set joint plane to a point anywhere below that plane are not permissible (see Fig. 3.13a).

Angles of transition within the second set are never less than the first joint set inclination ($\alpha 1$), nor greater than the greater of either 180° or the sum of the second set inclination ($\alpha 2$) and 90° (See Fig. 3.14a). Transitions within the second set are only permissible between two adjacent planes (See Fig. 3.14b).

Restrictions concerning the inclination of paths between the two joint sets are the same as those for paths within the first joint set. Generally, a line segment connecting nodes on the critical path
must be between the angle of the first set inclination (α) , and the sum of the first set inclination ($\alpha 1$) plus 45° except for transitions within the second set (See Fig. 3.15).

Some of the dynamic programming plane points and some of the second set points can only be ends of a transition path within the plane they are in. Such points are left ends of discontinuities of both sets and points within the first set of discontinuities that are not intersection points with the second set (See Fig. 3.15).

In each realization, the number of intersection points of each first set plane with second set planes is stored. This number can be imagined to represent traces of possible critical paths. As expected, a critical path would most probably follow the paths cutting through the second set joints as can be seen from the lines connecting nodes 1, 2, 3 and 4 in Figure 3.16b. A look at Figure 3.7 may give some more insight into the effect of a jointed region bounded by a first set plane and either the free surface or another first set plane. In Figure 3.7, Region A is unjointed, hence the intersection point there is irrelevant. However, Region C, in the same figure, is partially jointed and thus one would expect a transition through that region. However, Region B is fully jointed and will act as a path between planes 1 and 2 as it is the weakest possible transition from 1 to 2 (e.g., path; b-ii-i).

The program establishes the critical paths by finding the lowest possible safety margins between every node and the free surface.

FIGURE 3.5 CRITICAL PATH COMPOSED OF NODAL POINTS

FIGURE 3.6 SEQUENCE IN WHICH SAFETY MARGINS OF "NODES"
ARE COMPUTED

FIGURE 3.7 POINTS OF INTERSECTION

FIGURE 3.8 CASES OF TYPES OF BOUNDING REGIONS

FIGURE 3.9 JOINT SET I,2 EXAMPLE SWEEPS ARE FOR ARBITRARY NODAL POINT ($\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$)

FIGURE 3.10 SAFETY MARGIN COMPONENTS ($A_{n k}, B_{n K}$)

FIGURE 3.II GEOMETRY OF CRITICAL PATH

(c) DATA POINTS OF POINTS OF INTERSECTION OF SECOND SET PLANES WITH PLANE i

FIGURE 3.12 DYNAMIC PROGRAMMING PLANE POINTS

(a) TYPICAL ROCK SLOPE WITH JOINT PLANES - DYNAMIC PROGRAMMING POINTS AND PERMISSIBLE TRANSITIONS SHOWN

(b) TYPICAL ROCK SLOPE WITH JOINT PLANES - DYNAMIC PROGRAMMING POINTS AND NON - PERMISSIBLE TRANSITIONS SHOWN

FIGURE 3.13 PERMISSIBLE AND NON-PERMISSIBLE TRANSITIONS FROM DYNAMIC PROGRAMMING PLANE POINTS

FIGURE 3.14 SECOND SET TRANSITIONS

FIGURE 3.15 POSSIBLE ENDS OF TRANSITION PATHS

FIGURE 3.16 POINTS OF INTERSECTION ON SET ONE

(a) JOINT PLANE WITH NO POINTS OF INTERSECTION WITH THE SECOND SET

(b) JOINT PLANE WITH POINTS OF INTERSECTION WITH THE SECOND SET

FIGURE 3.17 SEQUENCE IN THE ALGORITHM

(a) EXAMPLE OF A SLOPE WITH A FACE DIVIDED INTO FIVE EQUAL PARTS

(b) TYPICAL INTERVAL WITH EXIT POINTS OF POTENTIAL FAILURE PLANES

FIGURE 3.18 SLOPE FACE INTERVALS AND THE PROBABILITY OF FAILURE

The algorithm begins with the top joint plane and evaluates the minimum safety margin of each dynamic programming plane point moving from the top (intersection of the joint plane with the free surface) to the last (intersection of the plane with the slope face) (See Figure 3.17a). If and when the plane has points of intersection with set 2 , the program will start by evaluating minimum safety margins for points on the planes of set 2 that intersect set 1 (See Fig. 3.17b). These points should be in the region between the first set plane being analyzed and the free surface if those second set planes extend to the free surface (Case I) without intersecting other first set planes. Otherwise these points that lie in the region are bounded by the plane being analyzed and the first set plane above it (Case II) (See Fig. 3.8). Consequently, for any given node, the program checks possible transitions to overlying nodes within a given "sweep area" bounded by the kinematic restrictions imposed as described previously, depending on whether the point belongs to joint set 1 or set 2 . The sweep area for a nodal point of set 1 , point (X_{i}, Y_{i}), is shown in Fig. 3.9a; for set 2 , point ($\mathrm{X}_{\mathrm{i}}, Y_{i}$), it is shown in Fig. 3.9b. The program computes the safety margin of transitions to all nodal points within this area using the mechanical model presented previously in Chapter $2 . \quad$ The order in which nodes are considered is always from shallow to deep joint planes, and down dip within each plane.

Referring to Figure 3.10, the safety margin SM of any path from $\left(S_{i}, Y_{i}\right)$ to the free surface has two components $\left(A_{n}, B_{n}\right), A_{n}$ is the safety margin from $\left(S_{i}, Y_{i}\right)$ to a nodal point (n) while B_{n} is the safety margin from that nodal point to the free surface:

$$
S M_{n}=A_{n}+B_{n}
$$

thus, the minimum safety margin $\operatorname{SM}(i, j)$ for the point $\left(X_{i}, Y_{i}\right)$ is the one for which the above sum is a minimum. In this manner the minimum safety margin for each nodal point within the slope is systematically found.

The safety margin, of the point of intersection of each joint plane of set 1 with the slope face, is the minimum safety margin for the path originating at that point - and rising to the free surface. The coordinates of nodal points of the path, yielding this minimum safety margin, determine the critical path for that joint plane. The program then calculates the weight of rock overlying the critical path as well as the net angle θ_{c} of the critical path (See Fig. 3.11). The critical path should not be considered a failure path unless the calculated safety margin is zero or less. In each realization, several critical paths could result, some of which may be failure path(s). For a number of realizations simulating a joint spacing and length distributions, one can obtain a distribution of the ratio of failure paths to critical for each interval on the slope face (See Fig. 3.18b).

3.3 Program Limitations

Before moving on to a detailed discussion of program input and output it is important to outline the limitations of the program in its present form.
(a) - The analysis is two dimensional.

- Joint persistence parallel to the strike of the slope is not considered (i.e., it is assumed to be 100% - a conservative assumption).
- Side wall resistance transverse to slope strike is assumed to be neglible. In other words, a better way to visualize the slope is to imagine that we have a model with the present dimensions and generated joint patterns, as described, 1-length unit thick in the third dimension, considering all joints to extend from one face to the other (See Fig. 3.19).
(b) - Joint and slope geometry is limited to that shown in Fig. 2.1 and 2.2 with joint set 1 always less than 90 degrees and the upper surface always horizontal.
(c) - As a Monte Carlo simulation program, the program is based on a deterministic resistance algorithm. Thus, the program is only a reliable as the deterministic algorithm presented in the previous chapter.

FIGURE 3.19 THREE DIMENSIONAL SLOPE EXAMPLE WITH ONE DISCONTINUITY
(d) - Application of the program depends on reliable measurement of joint geometry distribution parameters (i.e., mean values of joint length, rock bridge length and joint plane spacing).

The above limitations should be kept in mind specifically with regard to results presented in the parametric study. Data analyzed and results arrived at are mainly for research purposes until more refinements have been performed (e.g., three dimensional analysis - end conditions) and comparisons with field conditions and case histories have been thoroughly investigated.

CHAPTER 4
THE PROGRAM

4.1 Introduction

The purpose of this chapter is to portray the programming details of the model by discussing a sample program run. The main goals are to understand the capabilities and limitations of the program, and to establish an understanding for proper interpretation of the output data which is used in the sensitivity analysis in Chapter 5.

The sample run is described and shown on the next pages and is divided into two main parts. The first being the input data which is user specified. The second being the output generated by the program.

4.2 Sample Input

Since the program is implemented on an interactive system, the program will systematically "ask" for the required inputs. For example, if the computer asks for values of x, y, and z the program will print, "input, $x, y, z, "$. The printer will start a new line and await the user to input the three values. After this is carried out the programmoves to the next group of inputs "asking" for their values. This process continues until the user has specified all input values required.

Figure 4.1 (a) Slope Geometry Parameters

Figure 4.1 (b) Variables Defining Slope Geometry

Figure 4.2 (a) Maximum Possible x-coordinate for Plane i of Set One

Figure 4.2 (b) Maximum Possible x-coordinate for Plane ii of Joint Set Two

$$
\begin{aligned}
& S M_{i}=R_{C}-W_{C} \sin \text { alpha } \\
& U S M_{i}=S M_{i} / L_{i}
\end{aligned}
$$

In this section each input variable will be defined. Along with the definition, permissible or recommended ranges as well as the specific values used in the sample run, will be given. As with any program, the user must always make sure that units are consistent.
theta
The angle in degrees of the slope face relative to the horizontal. It may vary between 0 and 90 degrees (See Fig. 4.4a).

alpha 1

The angle of joint planes of the first set relative to the horizontal. It is assumed that the range of alpha 1 is between zero degrees and 60 degrees, and less than theta (See Fig. 4.4a).

alpha 2

The angle of joint planes of the second set relative to the horizontal. To remain within program limitations, the range of values of alpha 2 should be greater than alpha 1 (a must) and less or equal to 180 degrees. For the present, values not greater than 90 degrees are considered for alpha 2 (See. Fig. 4.4a).
ydim
The vertical height of the slope and input in units of length. Theoretically ydim can be set to any positive value, however, due to storage limitations and different rock behavior at relatively high stress levels, ydim must be kept less than 300 feet for most combinations of input parameters. (See Fig. 4.4a).

Figure 4.4 Circle of Dual Tangency

(b)

FIGURE 4.4 VARIABLES USED IN THE COMPUTER PROGRAM

FIGURE 4.5 VARIABLES USED IN THE COMPUTER PROGRAM

FIGURE 4.6 VARIABLES USED IN THE COMPUTER PROGRAM
ystar
In units of length, giving the x-coordinate on the slope face from where joint generation begins. The purpose of ystar is to allow study of deeper slopes when the storage limitations related to ydim are prohibiting. To analyze the entire slope, ystar is set to zero.
phijt
The friction angle of joint segments in degrees. It may be considered to be as friction angle mobilized by the joint at the moment of intact rock bridge failure and not necessarily the peak value.
cojt
Joint cohesion is input in units of stress and must be kept much smaller than intact rock cohesion (cork) for a realistic analysis.
phirk
Intact rock friction angle is to be input in degrees and should be kept between 0 and 45 degrees. Since the present version of the program assumes failures of intact rock bridges in tension, phirk has no influence on intact rock strength at stress levels for which $\left(\sigma_{a}<C_{r}\right)$ is valid. phirk is a factor in deep slopes (> 200') and in weak rock ($<25 \mathrm{KSF}$) where failure is in the shear mode rather than the tension mode.
cork
Intact cohesion, "cork" is to be input in units of stress. It must be large enough so that nowhere within the slope is it exceeded by the normal stress on any joint plane. This assures that all intact rock failures are in pure tension. If "cork" is too low for the slope depth considered, the program will print out a warning to this effect. Keeping "cork" greater than 25 Ksf for slopes up to 250^{\prime} should alleviate this problem for most typical slope configurations. Lower values of cork can be used for shallower slopes.
phiult
Defined as the friction angle of crushed rock at large strains in direct shear. It is to be input in degrees and must be less than or equal to the intact friction angle. Like phirk, phiult only affects intact rock shear resistance at very high stress levels. "phiult" can influence resistance only when stress levels within the slope start to approach the unconfined compressive strength of the intact rock. At such stress levels, it is unlikely that the mode of failure assumed in the model analysis is applicable. Once again the user is cautioned against using this program for analysis of slopes in which cork is exceeded by joint normal stress anywhere in the slope.
gamr
"gamr" is defined as the unit weight of intact rock and is given in units of weight (force) per unit volume.
sp31, sp32
The average spacing, in units of length, between adjacent joint planes for the first and second joint sets, respectively. Since the program is limited at present to 100 joint planes, input values of sp31 must be balanced against values of ystar and ydim such that the limiting value of 100 joint planes is not exceeded.

spjtln1, spjtln2

The average lengths of joint segments within the slope for the first and second joint sets, respectively. They must be input in units of length. It is difficult to estimate the minimum values of the spacings that can be used witnout exceeding storage limitations since they vary with the magnitudes of other input parameters. If, in a particular realization, too many joint segments (current limit is 50 joints per plane) are generated, the program will stop operating and a message to that effect will be printed out. This is in contrast to "slopesim" where such a realization is ignored when a similar condition arises and movement to the next realization takes place causing a biastoward output parameters at the end of the run.

sprkbrl, sprkbr2

The average lengths of rock bridges for the first and second joint sets, respectively. They must be input in units of length.

iseed

The initial "seed" in generating random numbers. It can be any value grater than 0 . It is used in the random generation of
jointing patterns for all realizations of a particular run.
ndiv
An integer greater than 0 specifying the number of equal height increments into which the slope is to be divided for independent statistical evaluation of ouputs. It is recommended to set the value of "ndiv" to no less than 4 and no greater than 10.
notpop, notpot, notpod
Are integer input that regulate the type and amount of programoutput. For any of them set to 1 , part of the output will be printed out. However, setting any one of the above parameters to zero will not allow the printer to print the ouput. The first, notpop, when set to 1 will print the input data in a format for easy reference; the y-coordinates of the starting and exit points of joint planes of both sets, the maximum x-coordinate for each joint plane, the x-coordinates of the joint segments in each joint plane, the right ends of first set joint segments to above projections, the x-coordinate of the points of intersection on each joint plane of the first set, with planes of the second set and finally the x-coordinates of the dynamic programming points, in ascending order, on each joint plane within the first joint set.

The second, notpot, when set to a value of 1 will output a description of each region, the type of jointing pattern within the region, the minimum safety margin of every coordinate of the joint segments of the second set, the path length, the transition angle, the minimum critical weight up to the point in question in addition
to the path incremental weight and incremental safety margin contributed by the path, the x-coordinates of the transition path, the total jointed rock length and finally the total intact rock length of the critical path, up to that point. This is performed for every dynamic programming plane point on every first set joint plane in addition to all points on second set joint plane.

The third, notpod outputs the joint plane number (of the first set) and next to it the minimum safety margin.
output 1, output 2, output 3
When "output 1" is set to 1 , the computer prints a statement indicating which realization is taking place in the computer. When "output 2 " is set to 1 , the computer prints, following each realization, the dynamic programming results, namely, safety margin, persistence, weight and plane height for the dynamic programming plane points which are the points of intersection of the first set joint planes and the slope face.

When "output 3 " is set to 1 and after all realizations have been carried out, the computer will print for every height interval the distributions of the angles of critical paths, the critical weights, persistences and the unit safety margin. The computer prints out the number of critical paths exiting from the height interval as well as the number of failure paths (i.e., paths with safety margins equal to zero or negative).
noreal
Is the number of realizations specified for the simulation run and should be input as an integer greater than zero up to a value of no more than 1000 which will yield the best possible results.
dmin
Must be input in units of length. Its purpose is to give the maximum allowable length of a transition path. Setting it to a large value has the effect of checking all possible paths.
njump
Is input as an integer greater than or equal to zero. It sets the number of first set joint planes above a particular point in that set from which transition paths are checked, with the purpose of finding a minimum safety margin. Setting "njump" to zero will only check points along a given joint plane and will not allow paths (or jumps) to overlying joint planes. Since the critical path seldom involves more than two or three transitions, it is advisable to set "njump" relatively low so that the number of paths checked and hence cost is kept low. Within the scope of this thesis, it is not recommended to set it to zero, nor greater than three.

4.3 Sample Output

For purposes of illustration, the sample run used in this study, consists only of a single realization. The slope geometry specified by the input parameters discussed previously as well as the joint pattern geometry for this realization, was previously described.

Although the output shown on the following pages is self explanatory, additional discussion on it wili follow.

Part (a) is the print-out of the input parameters as inserted by the user, primarily, for reference or demonstration purposes.

Part (b) is a print-out of the geometry of the joint planes of the first set. It starts with the plane number and is followed by the maximum permissible x-corrdinate on the slope face as well as the y-coordinate of the joint plane followed by the x-coordinates of joint segments on that plane. Finally, a statement of the number of joints and the percent persistence of that plane is printed out.

Part (c) is self explanatory. Each plane projection of rightends of joints to above planes is listed on the x-axis (x-coordinates).

Part (d) is the same as part (b) except that it is for planes of the second set. It starts with a print out of the maximum permissible y-coordinate where a plane can be generated.

Part (e) is a list of the x-coordinate of the points of intersection of each plane of the first set with planes of the second joint set.

Part (f) is a list of the compiled x-coordinates of the joint segments as well as the right ends to above projections and points of intersection. All are listed in ascending order as can be seen in the sample output (this list of x-coordinates is referred to as the dynamic programming plane points).

Part (g) is the output of the dynamic programiny carried out on every dynamic programming plane point as well as the x-coordinates of second set discontinuities. It starts with a print out of the realization number. Next, the type of region being analyzed as well as the boundaries and type of jointing in that region are printed out. Following that, each of the dynamic points including those in the second joint set, as well as the lower and upper x-coordinates which might constitute a section of the path of a minimum safety margin, are printed out. Next, beta, the angle of transition, and the actual path length (negative if path is within a discontinuity), are printed out. Average stress on the potential path due to rock overburden and total weight of overlying rock as well as the incremental safety margin of that path which connects the two points mentioned, all follow on the same print out line.

The print out line that follows consists of the total safety margin of all the points constituting a path from the upper surface down to the point of interest and the total length of all discontinuities on that path (negative for indexing purposes only) as well as the total length of that path connecting. points of minimum safety margin to the upper surface. Finally there is a print out of the weight of rock overlying the path just described.

When the exit points of planes of the first set are reached, a statement indicating the plane reference number and the total safety margin at that point, is printed out.

Part (h) is a summary of the preceding. It is a list consisting of: the number of the plane, the x-coordinate at the exit point, the angle of the critical path, the minimum safety margin, the unit safety margin, the apparent persistence and the weight of the critical path.

Part (i) is most important to the user since it is an arrangement of all the data listed in part (h) in the sample program output. Notice that this part is an output of the statistical data for each of the height increments specified by the user. By setting "ndiv", the user divides the slope to "ndiv" parts. The values of output parameters (i.e., continuity, SM, USM, etc.) associated with the exit point of each joint plane that falls within a given interval, are stored. For each interval, the means and standard deviations of these parameters are evaluated. These statistics are based on parameter values of all exit points that fall within a given interval, independent of realization. For the sample run only one realization was carried out. This is not a sufficient number to reliably determine statistical parameters of outputs. However, results such as distributions (i.e., means and standard deviations) are more reliable when the number of critical path exit points that fall within each interval, increase with the increase in the number of realizations (user specified).

In this part, output of the total number of joints (N_{Ij}) existing within an interval and the total number that fail (N_{Fi}), i.e., $(S M \leq 0)$, are also printed out. Again, as was the case for the statistics, a running count is made of $N_{F i}$ and $N_{T i}$ for each
interval, i, independent of the number of realizations. From $N_{T i}$ and $N_{F i}$ the user can estimate the probability of joint plane failure P_{f} for each interval i :

$$
P_{F i}=N_{F i} \mid N_{T i}
$$

(Eq. 4.1)

Main Program Variables

pi	: π
alpha 1	Inclination of the first joint set, in radians [Figure 4.1(a)].
alpha 2	Inclination of the second joint set, in radians [Figure 4.1(a)].
theta	: Inclination of the slope face in radians [Figure 4.1(a)].
phojt	: Friction angle of jointed rock in radians.
tabht	: Tangent of joint friction angle.
phork	: Friction angle of intact rock in radians (taken as 0.0).
sinrk	: sin (phork).
cosrk	: cos (phork).
tanrk	: tan (phork).
p1 , p2	: Average joint persistence defined as (spjtlnl/(spjtlnl + sprkbrl)) and (spjtln2/(spjt1n2 + sprkbr2)) of the joint sets respectively.
xcteta	: Center of failure circle tangent to the parabolic and linear sections [Figure 4.4].
xj 1	: y dim/sin (alphat 1). [Figure 4.1(b)].
noreal	: number of realizations that will be carried out in one run; user specified.
ystar	: perpendicular distance from apex of slope to a generated joint plane [Figure 4.1(a)].
icrotch, icar	: define number of random numbers to be generated.
yrand (i)	: random number produced to generate x - coordinates for joint planes.

Main Program Variables (cont.)
$y 1(i), y 2(i): Y$ - coordinate of the i-th joint plane on the y axis of set 1 and 2 , respectively.
ri : random numbers produced by random number generator ggub.
cjoint 1(i),
cjoint 2(i,j) : For odd $j:$ cjoint $1,2(i, j)$ is the depth to the right end of the $(j+1) / 2$ joint segment in the ith joint plane. For even j : cjoint $1,2(i, j)$ is the depth to the left end of the $\mathrm{j} / 2$ joint segment in the ith joint plane; joint set 1 and 2 respectively. [Figure 4.2(a)].
xdl (i)
: x - coordinate of the exit point on the slope face of the ith joint plane of the first set. [Figure 4.2(a)].
xd2
: Vertical distance of exit point of the ith joint plane below the upper free surface of the second joint set; on either the slope face or the line designated xjl . [Figure 4.2(b)].
zp (i) : Vertical distance from the apex to the ith joint plane. [Figure 4.2(a)].
nptl (i), npt2 (i) : Number of joint points in the i th point plane.
njoint : Number of joint segments in joint plane under consideration.
percon1 (i), percon2 (i): Average percent persistence of i th joint plane of joint set one and two respectively.
sumjtln : Sum of joint segment lengths in joint plane under consideration.
jp11 , jp12 : Number of joint planes in realization under consideration of set one and two respectively.
$x \operatorname{coor}(j, i) \quad: x-$ coordinate of right end of joint segment to upper plane for use in dynamic programming.
nptint (j) : Number of points of intersection on plane j of set one with planes of joint set two.

y2ptint (j,i)	: y coordinate of the joint plane of set two defined by the ith point of intersection on plane j of set one [Figure 4.4b].
ny2ptnt (j, i)	: Number of the plane of set two defined by the ith point of intersection on j-th plane of set one [Figure 4.4b].
dee (i)	Vertical distance from ($x=0.00$) to the starting point of joint plane i of set one.
m7 (j)	: Number of dynamic programming points on plane j of set one.
plpt (j,i)	: cjointl (j, i), xcoor (j, i) and ptint (j, i) rearranged in ascending order.
$\operatorname{vtran}(\mathrm{j}, \mathrm{i})$	Vertical distance between pl ane j and n of set one.
$\begin{aligned} & \operatorname{sm1}(j, i) \\ & \operatorname{sm2}(j, i) \end{aligned}$: Minimum safety margin of the $i-$ th x-coordinate of plane j in set one and two respectively, [Fig. 4.3].
	: Minimum safety margin of the ith x-coordinate in plane j of set two which corresponds to a point of intersection on a plane of set one.
merak (j, i)	: An integer which describes an arrangement of joints within a region [Figure 4.4(c)].
last (j, i)	Of plane j of set one and coordinate i [Figure 4.5(a)]; if last equals zero a joint segment intersects point of interest. If last is greater than zero then the number stands for the number of the end of a joint segment of set two, immediately above the dynamic programming plane point plpt (j,i).
khamsin (j, i)	: An integer, either 0 or $1 ; 0$ for a regions between two planes of set one; a 1 for region between a plane and free surface [Figure 4.5(b)].
miura (j, i)	: An integer, either 0 or 1 ; 1 for a point on a first set discontinuity which is intersected by a joint segment of the second set; 0 for a point which is not intersected by a joint segment [Figure 4.5(c)].

Main Program Variables (cont.)
$\left.\begin{array}{ll}\text { mpos } \begin{array}{ll}\text { : } & \text { Integer which determines type of path to be checked } \\ & \text { by the resistance subroutine. For mpos }=1, \text { the }\end{array} \\ & \text { subroutine considers vertical transitions to the } \\ & \text { free surface. For mpos }=0 \text {, the subroutine considers }\end{array}\right\}$

Main Program Variables (cont.)

appt (j) : Apparent persistence of the j th joint plane.
wgt
: Weight of rock overlying joint plane under consideration.
numj (n) : Number of joint planes in the nth height interval.
sper (n) : Sum of joint persistences in the nth height interval.
ssqper (n) : Sum of squares of joint persistences in nth height interval.
sfan (n) : Sum of angles of critical paths (in degrees) in nth height interval.
$\operatorname{ssg} f a n(n): S u m$ of squares of failure angles in nth height interval.
ssm (n)
ssqsm (n)
susm (n)
ssqusm (n)
sapp (n)
ssqapp (n)
swgt (n)
ssqugt (n)
smleo (n)
upper
bottom
: Sum of squares of safety margins in nth height interval.
: Sum of unit safety margins in nth height interval.
: Sum of squares of unit safety margins in nth height interval.
: Sum of apparent persistences in the nth height interval.
: Sum of squares of apparent persistences in nth height interval.
: Sum of the weight of rock overlying the critical paths in nth height interval.
: Sum of squares of weights of rock overlying the critical paths in nth height interval.
: Number of critical paths in the nth height interval with safety margins less than zero.
: Upper x-coordinate of a particular transition path (Figure 4.6(a)).
: Lower x-coordinate of a particular transition path (Figure 4.6(a).

Main Program Variables (cont.)

smpthr (j, i)	: Total intact rock length of a particular path up to point i of joint plane j.
smpthj (j, i)	: Total jointed rock length of a particular path up to point i of joint plane j.
smptht (j, i)	: smpthr (j,i) + smpthj (j,i)
perave (n)	: Average percent persistence of joint planes in the nth height interval.
sdper (n)	: Standard deviation of percent persistence of joint planes in the nth height interval.
fanave (n)	: Average angle of critical path (in degrees) in the nth height interval.
sdfan (n)	: Standard deviation of angles of critical path (in degrees) in the nth height interval.
snave (n)	: Average safety margin of critical paths in the nth height interval.
sdsm (n)	: Standard deviation of safety margins of joint planes in the n-th height interval.
usmave (n)	: Average unit safety margin of joint planes in the n-th height interval.
sdusm (n)	:•Standard deviation of unit safety margin of joint planes in the n-th height interval.
appave (n)	: Average of apparent persistence of joint planes in the n-th height interval.
sdapp (n)	: Standard deviation of apparent persistence of joint planes in n-th height interval.
wgtave (n)	: Average weight of rock overlying critical paths of joint planes in n-th height interval.
sdwgt (n)	: Standard deviation of rock weight overlying critical paths of joints in the n-th height interval.
xxx 1	: Top x-coordinate of height interval under consideration (Figure 3.18(b)).
$x \times 2$: Lower x-coordinate of height interval under consideration (Figure 3.18(b)).

Variables in the Subroutine Msaf

beta	Angle of transition path in degrees measured from horizontal (Figure 4.6a).
beto	Beta in radians.
galo 1,2	: Angles to be used in the subroutine. Either can be alpha 1 and alpha 2 depending on the type of the path
why 1,2	: y-coordinates of plane(s) under consideration for a particular path of transition (Figure 2.19).
ex 1,2	: x-coordinates of ends of transition path (Fig. 4.6a).
area	: Area of rock overlying transition path (Fig. 4.6b).
wlf	: Weight of rock overlying transition path = Area x gamr.
tenang	: Angle of tension fracture measured from the joint inclination angle.
res	: Resistance of the transition path to shear in the direction of jointing.
tanfjt	: Shear resistance of jointed transition path.
rult	Resistance of intact rock at ultimate strength.

$1,30 \mathrm{p}$
common/logal r(200), yrand(100),y!(100),y2(100), fans(100), usm(100), per
lcave(100), fanave (100), sdfan(100), smave(100), sdsm(100), usmave(100), sdusm(100), a lcppave(100), siper(100)
common/lger/ wminl $(80,60)$, wminl2 $(80,60)$,wmin2 $(80,60), m(50), a p p(50)$, 50
lawst (50), watave (50), sdapp(50)
common/causa/ ssqper(50), sper(50), sfan(50), ssafan(50),ssm(50), s59sin(5
\c0), $\operatorname{susm}(50), 55 q u s m(50), \operatorname{sapp}(50), 55 q a p p(50), 5 w s t(50), 55 q \omega s t(50), 5 m l e o(50)$, numj $1 c(50), 5 \mathrm{ml}(100,100), \mathrm{ml}(100)$, utran $(100,100)$
common/pizza/ ptint $(75,120)$, plpt $(75,120), \operatorname{xcoor}(75,120), \operatorname{cjoint} 1(75,120$ (c), cjoint $2(75,120), y 2 p t i n t(75,120), n y 2 p t n t(75,120)$
common/kuss/ nptl(GO), nptint(EO),npt2(EO),perconl(EO),percon2(EO), zp
Vc(60), $x d 1$ (60), $x d 2(60)$
common/altol dee(35), last $(50,100)$,miura $(50,50), \operatorname{sm2}(80,100)$, merak $(40,2$ \c00), Khamsin (80,100), crement (80$)$, nmplpt $(70,70), 5 \mathrm{~m} 12(80,100)$, $\mathrm{smpthj} 1(80,100)$, 5 m lcptht $1(80,100)$, smpthrl $(80,100), 5 \mathrm{mptht} 2(80,100), 5 \mathrm{mpthr} 2(80,100)$, $\operatorname{smpth} 2(80,100)$ lc, $5 \mathrm{mptint} 12(80,100)$, $\operatorname{sinpthr} 12(80,100)$, $5 \mathrm{mpth} \mathrm{j} 12(80,100)$
3745 format ($5 x$,'Joint Plane ', i2, $6 x$,'Safety Margin ',f8.2)
 lotical Path Lensth $={ }^{\prime}, f 7.2,5 x$, 'Critical Weisht $=', f 7.2$)
3747 format ($5 x$, 'In Joint Transition Within Plane ', i3, $5 x$, 'Of Set ', il)
3748 format(5x,'From Plane ', i3, $5 x$, 'In Set ', il, $\overline{3} x$, 'Reference Point ',i3r7

3749 format (/,ix,'Lower x-coardinate $=$ ',fG.2,Ex,'Upper x-coordinate $=$, f 1c6.2)
 lceisint $=$ ',f7.2,5x,' S.F.(path) $=$ ',f7.2)
455 format $(/, 3 x$, '****** Reaicization Number ',i3)
457 Format ($/ 5 x$, 'There Are No Points Of Intersection On This Plane', 1)
466 format (/5x, 'No Joints On Plane',i3, $4 x$, 'Of The Second Joint Set')
469 Format (/5x,'Region Starts Dn Slope Face To Plane', i3,5x,'ycoordinate
\c=', FE.2)
45B Format(/5x,'Resion Fram Free Surface To Plane',i3,5x,'y-coordinate
\c $=$, ff6.2)
470 format (/5x,'Region Between Planes',i3,' And ',i3, $3 x, y$-coordinate
lc $=$, fFE. 2)
491 Format($5 x$,' Joint(s) in Between Oni y^{\prime})
492 Format (10x, No Second Set Jaints')
493 format(10x,' Continuous joint Throushout ')
434 format($5 x$, Joint Intersects Top Point')
495 Format(5x,' Joint Intersects Bottom Point')
1008 format(///,10x,'Slope Angle: ',F4.1,' degrees')
1010 format(10x,'Slope Hisht: ', fE.1,' feet')
1013 Format(10x,'rock Unit Weisint: ',fG.2)
1011 format(10x,'First joint Set Inclination: ',f5.1,' jesrees')
1009 format(10x, 'Second Joint Set Inclination: ',f5.1,' deerees')
1012 format (//,5x,'Strensth Parameters', /,10x, 'Phi (joint) = , f7.2,' desr
 lol0x, 'Conssion (rack) $=$ ', f7.2)
 \c'Maximum Transition $=$ ', i3.////)


```
    read(5,999)samr
    qrint,"input sp31,Sp32,Spjtlnt,spjtln2,sprkbrl,sprkbr2"
    read(5,999)sp31,sp32,spjtlnl,spjuln2,5prkbri,5prkjr2
    print,"input iseed"
    read(5.999)iseed
    print,"notpop,notpot,notpod"
    read(5,999)notpop,notpot,notpod
    print,"input output1,output2,output3"
    read(5,999)output1,output2,output3
    print,"input noreal,distmn,njump"
    read(5,999)noreal,distmn,njump
599
format(v)
    if(notpop.eq.0)so to 6850
    write(6,1008)theta
    write(E,1010) ydim
    write(E,1011)alphal
    write(E,1009)alpha2
    write(E,1012)phijt,cojt, phirk, cork
    write(6,1013) samr
    write(6,1014)sp31,5pjtln1,sprikbrl
    write(E,1004)sp32,spjtln2,sprkbr2
    write(E,1017)iseed
    write(E,1016)noreal
    write(6,1015)distmn,njump
G850 continue
pi=3.141592
alphol=alphal*pi/180.
alpho2=alpha2*pi/180.
xjl=ydim/sin(alphol)
theto=theta*pi/180.
phojt=phijt
tanjt=tan(Phojt)
phork=phirk*pi/180.
sinrk=sin(Phork)
cosrk=cos(phork)
tanrk=tan(Phork)
```



```
cotal=1./(tan(theto-aipinol))
cotb1=1./(tan(alpho1))
dj1=xj1/(cotal+cotb1)
ysuml=%star
ysum2=ystar
pl=spjtlnl/(spjtin1+sprkbrl)
p2=spjtin2/(spjtln2+5prkbr2)
if(theta.eq.30.0)adln=0.0
if(theta.1t.90.0)adln=ydim/(tan(theto))
y+ot=xj1*cos(aipno1)
yIm=0.0
ywt=(ydim/tan(alphol))-(ydim/tan(theto))
if(alona2.1t.90.0)ylim=ydim/tan(ai pho2)
```

```
121,165p
            ymax=ytot-ylim
            if(ylim.st.adln)ymax=ytot-adin
            if(aipha2.eq.90.0) ymax=ytot
            if((aipha2.st.90.0).and.(aiphaZ.1t.180.0)) ymax=ytot+(ydim/tan(()(180.0
\c-alpha2)/18(.0)*pi))
                            if(alpha2.eq.180.) ymax=ydim
27 format(//,5x,'Maximum Allowable y-coordinate : ymax = ',f7.2,//)
    do 55 n=1,ndiu
    sper(n)=0.
            ssqper(n)=0.
            sfan(n)=0.
            ssqfan(n)=0.
            55m(n)=0.
            5595m(n)=0.
            susm(n)=0.
            ssqusm(n)=0.
            sapp(n)=0.
            ssqapp(n)=0.
            swgt (n)=0.
            s59wst (n)=0.
            smleo(n)=0.
            numj(n)=0
55 continue
            do }1960\mathrm{ mm=1,noreal
            if(output1.ne.0)write(E,465)mm
            ysum1=ystar
            ysum2=0.00
            nreal=nreal+1
            icrotch=100
            call gsub(iseed,icrotch,r)
            do 38 i=1,icrotch
            yrand(i)=r(i)
30 continue
31 do 199 i=1,50
    ysuml=ysum1+(sp31)*alos(1./(1.-yrand(i)))
    y1(i)=ytot-((ysum1/sin(alphol))+adln)
    if(y1(i).1t.0.0)90 to 201
23 format(x,'joint Plane',i3,7x,'Max x-cooriminate =',F7.2,7x,'y-coordina
\ote =',f7.2)
155 icar=200
    cail gsub(iseed,icar,r)
    if(r(200).it.pl)cjointi(i,1)=0.0
    if(r(200).se.p1)cjoint1(i,1)=spribrl*aiog(1./r(1))*sin(alpho1)
    xd1(i)=ysumi*(xj1/djl)*sin(alphol)
    xdim=xdi(i)
    if(notpop.ne.0)(write{(6,23)i,xdim,y1(i)
    zp(i)=ysumi/cos(alphol)
```

```
15E,210P
    if(cjoint1(i,1).se.xdim)cjointl(i,1)=xdim
    if(notpop.ne.0)write(6,320)cjointi(i,1)
    if(cjointili,1).eq.xdim)so to 150
    do 80 j=2,50,2
    cjointl(i,j)=cjointl(i,j-1)+spjtlnl*alog(1./r(j))*sin(alphol)
    if(cjoint1(i,j).se.xaim)so to 90
    if(notpop.ne.0)write(6,320)cjoint1(i,j)
    cjoint1(i,j+1)=cjointl(i,j)+sprkbrl*alog(i./r(j+1))*sin(alphol)
    if(cjointi(i,j+1).ge.xdim)so to 120
    if(notpop,ne.0)write(6,320)cjoint1(i,j+1)
    continue
    cjoint1(i,j)=xdim
    if(notpop.ne.0)write(E,320)cjoint1(i,j)
    not1(i)=j
    njoint=j/2
    nrn=j+1
    so to 150
120 cjoint1(i,j+1)=xdim
    if(notpop.ne.0)write(6,320)cjoint1(i,j+1)
    nPt1(i)=j+1
    njoint=j/2.
    nrn=j+2
150 continue
    Fercon1(i)=0.
    if(cjoint1(i,1).eq.xdim)njoint=0
    if(cjoint1(i,1).eq.xdim)npt1(i)=1
    m1(i)=nptl(i)
    sumjtln=0.0
    if(npt1(i).eq.1)go to 159
    do 160 j=1,njoint
    nnjt=2*j
    sumjtln=sumjtIn+cjoint1(i,nnjt)-cjoint1(i,nnjt-1)
160 continue
159 continue
    perconl(i)=sumjtln*100./xdim
    if(njoint.gt.0)so to 888
    if(notpop.ne.0)write(E,1288)
    90 to 190
888 if(notpop.ne.0)write(6,128)njoint
1288 format(17x,' No Joints On This Plane ')
128 format(17x,'Number of Joints On This Plane is ',i3)
190 if(notpop.ne.0)write(E,28)perconl(i)
28 format(17x,'Averase Percent Continuity Is ',fE.2,//)
199 continue
201 jpil=i-1
```

211,255p
do $40 \mathrm{i}=1$,jpl1
do $41 \mathrm{j}=1 \mathrm{ml}$ (i)
plpt(i,j)=cjointl(i,j)
41 continue
40 continue
sam=(45.0-3lpna1)*pi/180.0
mpl=jpl1-1
if(notpop.ne.0)write(6,665)
do $351 \mathrm{l}=1$, mpl
$m 2=1+1$
$k=0$
do $350 \mathrm{i}=\mathrm{m2}, \mathrm{jpll}$
do $349 \mathrm{j}=1, \mathrm{npt1}(\mathrm{i}), 2$
pdis=(y1(1)-y1(i))*tan(aiphol)
adinc=0.0
if(alphal.1t.45.0) adinc $=(((y 1(1)-y 1(i)) *(\sin (a l p h o 1) / \cos (45.0 * p i / 180$.
(c0)))*cos(sam))-pdis
if((pdistadinc).st.cjoint1(i,j))so to 349
if(cjoint1(i,j).eq.xd1(i)) so to 350
$p p p=c j o i n t 1(i, j)-p d i s-a d i n c$
if (ppp.st.xdl(1))so to 350
$k=k+1$
xcoor(1,K)=ppp
if(notpop.ne.0.and.k.eq.1)write (6,1289)1
G65 format(10x,'--Joint Set One:Joint Risht End To Above Projections--')
if(notpop.ne.0) write (E, 320) xcoor(1, K)
E66 format $\left(1 x,{ }^{\prime} 1=1, i 3,8 x,{ }^{\prime} k=1, i 3,8 x, ' x \operatorname{coor}(1, k)=', f B .2\right)$
349 continue
350 continue
$m 1(1)=m 1(1)+k$
do $42 n=(n p t 1(1)+1) r m 1(1)$
plpt(1,n) $=\operatorname{xcoor}(1,(n-n p t i(1)))$
42 continue
351 continue
if(notpop.ne.0) write $(6,27)$ ymax
do $198 \mathrm{k}=51$,icrotch
$\mathrm{i}=\mathrm{k}-50$
ysum2=ysum2 $2(5 \mathrm{~s} 32) * \log (1 . /(1,-y \operatorname{rand}(k)))$
if (alpha2.1t.180.0) $\% 2(\mathrm{i})=y \operatorname{sum} 2 / \sin ($ alpho2 $)$
if(y2(i).st.ymax)so to 202
if (alpha2.1t.90.0) so to 11
if (aipha2.eq.50.0) so to 12
if((alpina2.1t.180.0). and.(alpha2.st.90.0))so to 13
if (alpha2.eq.180.0) ${ }^{\text {go }}$ to 14
11 sammo=alphol
if((adin.lt.(ydim/tan(aipho2))).and. (y2(i).at. (ytiot-(ydin/tan(aipho2)
(c)))) sammo=theto

256,295p
$x d 2(i)=(((y \operatorname{tot}-y 2(i)) * \sin ($ sammo $)-(y \operatorname{dim} * \cos ($ sammo $))) * \sin (a l p h o 2)) / \sin ($
\cgammo-alpho2)
if ((aipha2.1e.theta), and. $(y 2(i) . g q .(y \operatorname{tot}-(y d i m / t a n(a l p h o 2))))$ go to 1
1.5
if((theta. 29.90.0). and. (y2(i).gt. (ytot-(ydim/tan(alpho2)))))xi2(i)=(y
latot-y2(i))*tan(aipho2)
so to 70
$15 \quad x d 2(i)=y d i m$
so to 70
$12 \quad x \mathrm{~d} 2(\mathrm{i})=y 2(\mathrm{i}) * \tan ($ aipho1)
so to 70
$13 \quad x d 2(i)=(y 2(i) / y m a x) *(y d i m / s i n(((180.0-a l p h a 2) / 180.0) * p i)) * \sin (((180.0$
(c-alpha2)/180.0)*pi)
so to 70
$14 \quad x d 2(i)=y \operatorname{sum} 2$
$y 2(i)=0.0$
70 continue
if(notpop.ne.0)write(6,23) i, KdZ(i), yZ(i)
154 icar2=200
call sgub(iseed,icar2,r)
if(alpha2.eq.180.0)so to 308
if (alpha2. $9 t .90 .0$) 50 to 365
if ((theta.gq.90.0). and. (alpha2.eq.90.0)) 80 to 17
$d d=(((y d i m * \cos ($ theto $))-\{(y \operatorname{tot}-y 2(i)) * \sin ($ theto $))) /(\sin ($ alpho2-theto 0$))$
(c) $*(\sin (a l$ pho2 $))$

30 to 18
$365 \quad d d=((y 2(j)-y t o t+a d l n) /(y \max -y t o t+a d l n)) * y d i m$
so to 18
$17 \quad \mathrm{dd}=0.0$
18 if($(r(200) .1 t, p 2)$. and. (y2 (i). st. (ytot-adln)))cjoint2(i, 1)=dd
if $((r(200) .1 t, p 2)$ and. $(y 2(i) .1 e .(y t o t-a d l n))) c j o i n t 2(i, 1)=0.0$

lcs(1./r(1))*sin(alpho2)
if $((r(200), 9 e \cdot p 2)$, and. $(y 2(i)$. st. $(y t a t-a d n))) c j o i n t 2(i, 1)=(5 p r k b r 2 * a l$
$\operatorname{lcog}(1 . / r(1)) * \sin ($ alpho2 $))+\operatorname{dd}$
308 continue
$x \operatorname{dim}=x d 2(i)$
if(cjoint2(i, 1).ge.xdim)cjoint2(i, 1)=xdint
if ((y2 (i).1t.(ytat-adln)).or.(dd.it.0.0)) 90 to 34
34
if(notpop.ne.0)write (6,320)cjoint2(i,i)
if(cjoint2(i,1).eq. xdim)so to 151
do $81 \quad j=2,50,2$
cjoint2(i, j)=cjoint2(i,j-1)+spjtIn2*alog(i./r(j))*5in(ヨipho2)
if(cjointZ(i,j).se.xdim)so to gl
if(notpop,ne.0)write(6,320)cjointZ(i, $j)$
cjoint2(i, $j+1)=c j o i n t 2(i, j)+5 p r i k b r 2 * a i o g(1 . / r(j+1)) * \sin (a i p h o 2)$
if(cjoint2(i,j+1).ge.xdim) c_{o} to 121

```
296,340p
    if(notpop.ne.0)write{(6,320)cjoint2(i,j+1)
81 continue
5i cjoint2(i,j)=xdim
        if(notpop.ne.0)write(6,320)cjoint2(i,j)
        net2(j)=j
        njoint=j/2
        nrn=j+1
        goto 151
121 cjoint2(i,j+1)=xdim
        if(notpop.ne.0)write(6,320)cjoint2(i,j+1)
        nPt2(i)=j+1
        njoint=j/2
        nrn=j/2
151 continue
        Percon2(i)=0.0
        if(cjoint2(i,1).eq.xdim)njoint=0
        if(cjoint2(i,1).eq.xdim)npt2(i)=1
        sumjtln=0.0
        dee(i)=0.0
        if((dd.9e.0.0).and.(y2(i).st.(ytot-adln))) dee(i)=dd
        if(npt2(i).eq.1) so to 162
        do 161 j=1,njoint
        nnjt=2*j
        sumjtln=sumjtln+cjoint2(i,nnjt)-cjoint2(i,nnjt-1)
        continue
        continue
        percon2(i)=sumjtln*(100./(xdim-dee(i)))
        if(njoint.gt.0)so to 889
        if(notpop=ne.0)write(E,1288)
        so to 191
889 if(notpop.ne.0)write(5,128)njoint
191 if(notpop.ne.0) write(E,28)percon2(i)
198 continue
202 jpI2=i-1
        if(jel1.le.1)90 to 4E
1289 format (/'30x,'plane ',i3)
1287 format(10x,'--joint Set Une:Pts. of Intersection--')
        if(notpop.ne.0)write(6,1287)
        do 45 i=1,jpl1
        if(notpop,ne.0)write(5,1289)i
        k=0
        do 44 j=1,jpl2
        if(y1(i).st.y2(j))so to 44
        dummy=(y2(j)-y1(i))*(cos(alpno1)+(sin(alphol)/tan(alpinoZ-alphoi)))*si
lon(aiphol)
        if(dummy.et.xdi(i))=0 to 44
```

```
341,385%
    k=k+1
    ptint(i,k)=dummy
    y2ptint(i,k)=y2(j)
    ny2ptnt(i,k)=j
    if(notpop.ne.0)write(6,320) dummy
320 format(27x,F7.2)
4 . 4 ~ c o n t i n u e
    do 43 n=(m1(i)+1),(m1(i)+K)
    plpt(i,n)=ptint(i,(n-ml(i)))
    continue
    m1(i)=m1(i)+k
    nPtint(i)=k
    continue
    do 10 i=1,jpll
    do 20 j=1, (m1(i)-1)
    do 33 k=(j+1),m1(i)
    dummy=plpt(i,j)
    if(plpt(i,j).le.plpt(i,k))so to 33
    plpt(i,j)=plpt(i,k)
    plpt(i,k)=dummy
    continue
    continue
    continue
    if(notpop.ne.0)write(6,1963)
    do 111 i=1,jpl1
    kak=1
    if(notpop.ne.0)write(6,1289)i
    do 222 j=1rm1(i)
    if(notpop.ne.0.0)writa(6,320)plpt(i,j)
    if(nptint(i).eq.0)so to 370
    if(plpt(i,j).eq.ptint(i,kak))nmplpt(i,Kak)=j
    if(plpt(i,j).eq.ptint(i,kak))kak=kak+1
    continue
    continue
    continue
    do 450 i=1,jpl1
    5m1(i,1)=0.0
    continue
    do 500 j=1,jpll
    mmmm= j+1
    if(mmmm.gt.jpl1)O0 to 500
    do 501 n=mmmm,jpl1
    vtran(j,n)=(y1(j)-v1(n))*tan(alphol)
    continue
    continue
```

 \(\operatorname{vtran}(1,1)=x d 1(1)\)
 $k=1$
mpos $=0$
c
c
0
c
c
The Following Routine Computes TheValues of
The Minimum Safety Marsins Required To Initiate
Failure Amons The Various Joint PlanesAccording
To The Dynamic Prosramming Aisorithm Preset
c
do $998 \mathrm{j}=1$, jpll
werit $=0.0$
$\mathrm{str}=0.0$
c
c
Routine For Paths Involving Joint Set Two
if(nptint(j).eq. 0. and.notpot.ne.0) write (6,467)
if(nptint(j).eq.0) go to 502
do 503 int=1,nptint(j$)$
merak(j,int) $=0$
if(percon2(ny2ptnt(j,int)).eq.0.0.and.notpot.ne.0) write(6, 466)ny2ptn
\ct(j,int)
if(percon2(ny2ptnt(j,int)).eq.0.0)so to 503
mpos $=10$
if((j.gt.1.and.y2ptint(j,int).1e.yl(j-1).and.y2ptint(j,int).ge.yl(j))
\c.or.(dee(ny2ptnt(j,int)).ge.xd1(j-1).and.dee(ny2ptnt(j,int)).le.xd1(j)).or.(j
(c.eq.1)) so to 498
c
c Routine For Paths Within A Resion BoundedBy
c . Two Joint Planes of The First Joint Set
Khamsin(j,int) $=1$
if(notpot.ne.0) write(6,470) $j, j-1, \% 2 p t i n t(j, i n t)$
crement $(j)=v \operatorname{tran}(j-1, j) * \cos (a i p h o 1) * \sin (a 1 p h o 2) / \sin ((a l$ phaz-alphal $) *($
\cpi/180.0))
do $499 n=1, n p t 2(n y 2 p t n t(j, i n t)), 2$
if((cjoint2(ny2ptnt(j,int),n).st.ptint(j,int)).and.(n.eq.1)) so to 41
re4
so to 412
414 if(notpot.ne.0) write(5,492)
$\operatorname{merak}(j, i n t)=1000$
if(cjoint2(ny2ptnt(j,int), $n+1)$.st.ptint(j,int)) so to 503
412 if(cjoint2(ny2ptnt(j,int), n).1t.(ptint(j,int)-crement(j)).and.cjoint2
lc(ny2ptnt(j,int),n+1).jt.(ptint(j,int)-croment(j)).and. ((n+2).st.npt2(ny2ptnti
(cj, int)).or.cjoint2(ny2ptnt(j,int), $n+2) . s t . p t i n t(j, i n t)))$ go to 432
so to 410
4,32 if(notpot.ne.0)write (6,492)
meraik $(j, i n t)=1000$
if(c,joint2(ny2ptnt(j,int), n+1).at.ptint(j,int)) so to 503
$410 \quad$ if(cjoint2(ny2ptnt(j,int), n).ie.(ptint(j,int)-crement(j)).and.cjoint2
\c(ny2ptnt(j,int), $n+1$).ge.ptint(j,int))so to 433

470,512p
call msaf(cjoint2(ny2ptnt(j,int), n21), 0.0,y2ptint(j,int), point, $0.0,12$
loptint(j,int),mpos,gamr, cork, phork, cojt,phojt, phoult, theto,alphol,aipho2,sinrk
\c, cosrk, tanri, xcteta, pi,beta,sf,su,siga, taufr,wpth, ywt)
if(point.ne.(ptint(j,int)-crement(j)))so to 1999
do 2000 kok=1,nptint($\mathrm{j}-1$)
if((abs(ptint(j-1,kok)-point)).1t.(.001))so to 2001
2000 continue
2001 esem=5ml(j-1,nmplpt(j-1,Kok))
1999 if(point.eq.cjoint2(ny2ptnt(j,int), n21-1))esem=sm2(ny2ptnt(j,int),n21
(c-1)
if(islero.eq.0)so to 3500
if ($(\mathrm{sf}+\mathrm{esem}) . \mathrm{st}$.dummy2)so to 3600
3500 islera $=1$
if(point.eq.(ptint(j,int)-crement(j)))so to 5300
nuplane=ny2ptnt(j,int)
nsetu=2
nref $=n 21-1$
so to 5301
5300 nuplane=j-1
nsetu=1
nref=nmplpt(j-1,kok)
5301 bottom=cjoint2(ny2ptnt(j,int), n21)
upper=point
dummyl=beta
dummy $2=5 f+e 5 \mathrm{em}$
dummy3=sisa
dumm $14=$ wpth
dummy $=$ wpthtwminl($j-1$, kok)
if(point.eq.cjoint2(ny2ptnt(j,int), n21-1)) dummy $=$ wpth+wnin2 $\ln y 2 p \operatorname{lnt}(j$
(c, int), n21-1)
dumm $y=5 f$
3500 continue
do $3007 \mathrm{KkK}=1, \mathrm{njump}$
if ((j-kkk).le.0)so to. 3008
if(ml(j-kkk).eq.1)so to 3007
do $3006 n 3=1, \mathrm{ml}(\mathrm{j}$-kkk)
horiz=y2ptint(j,int)+(cjoint2(ny2ptnt(j,int), n21)/tan(aipno2))-y1(j-k
(ckk)-(plpt((j-kkk),n3)/tan(alphol))
verti=cjoint2(ny2pent(j,int),n21)-plpt((j-kkk),n3)
if ((((horiz**2.0) $+($ (yerti**2.0))**0.50). at.distmn)so to 3007
ang21=atan(abs(verti/horiz))
if (ans21.eq.alpho2)so to 3006
if(ans21.gt. (90.0*(pi/180.0)))so to 3007
mpas=0
call msaf(cjoint2(ny2ptnt(j,int), n21), 0.0,y2ptint(j,int):plpt((j-ikk)

if (beta.st.90.0)so to 3007
if(isiero.eq.0)so to 3501
if((sf+sm1(j-kkk,n3)).st.dummy2)so to 3E01

```
513,553p
3 5 0 1 ~ i s l e r o = 1
    nuplane=j-kkk
    nsetu=1
    nref=n3
    bottom=cjoint2(ny2ptnt(j,int),n21)
    upper=pipt((j-kkk),n3)
    dummy1=beta
    dummy2=sf+sm1(j-kkk,n3)
    dummy3=5isa
    dummy4=wpth
    dummy5=wpth+wmin1(j-kKk,n3)
    dummyE=sf
3601 continue
3006 continue
3007 continue
3008 continue
    if(<int-1).eq.0)so to 3010
    if(merak(j,int-1).eq.111.or.merak(j,int-1).eq.1000)so to 3010
    tlimit=0.0
    if(Khamsin(j,int-1).eq.1)tlimit=(ptint(j,int-1)-crement(j))
    do 3009 n2n=2,npt2(ny2ptnt(j,int-1)),2
    if(cjoint2(ny2ptnt(j,int-1),n2n).1t.tlimit)so to 3009
    if(((cjoint2(ny2ptnt(j,int),n21)-cjoint2(ny2ptnt(j,int-1),n2n))/tan(a
\clphol)).lt.(y2ptint(j,int)-y2ptint(j,int-1)))so to 3010
        mpos=0
        cail msaf(cjaint2(ny2ptnt(j,int),n21),0.0,y2ptint(j,int),cjoint2!nv2P
lctnt(j,int-1),n2n),0.0,y2ptint(j,int-1),mpos,gamr,cork,phork,cojt,phojt,phoult
lc,theto,alphol,alphoZ,sinrk,cosrk,tanrk,xcteta,pi,betarsf,su,sisa,taufr,wpth,y
\cwt)
            if(islero.eq.0)so to 3502
            if((sf+sm2(ny2ftnt(j,int-1),n2n)).9t.dummy2)s0 to 3602
3502 islero=1
    nuplane=ny2ptnt(j,int-1)
    nsetu=2
    nref=n2n
    bottom=cjoint2(ny2qtnt(j,int),n21)
    upper=cjoint2(ny2ptnt(j,int-1),n2n)
    dummyl=beta
    dummy2=sf}+\operatorname{sm2(ny2ptnt(j,int-1),n2n)
    dumtry3=5isa
    jumm`4=WPth
    dummy }=\mathrm{ =wPtin+wmin2(n`2ptnt(j,int-1),n2n)
    dummyE=sf
3602 continue
3009 continue
```

if (notpot.ne.0)write(6,3749)bottom, upper
path=(bottom-(upper)/sin(dummyi*(pi/180.))
if (notpot.ne.0)write(6,3748)ny2ptnt(j,int), 2, n21, nuplane, nsetu, nraf
if (notpot, ne.0) write (6,3750) dummy1,path, dummy3, dummy4, dummy
if(nsetu.eq.1)90 to 3522
smpthr2(ny2ptnt(j,int), n21)=path+smpthr2(nuplane,nref)
$5 m 2(n y 2 p t n t(j, i n t), n 21)=d u m m y 2$
smptht2(ny2ptnt(j,int), n21)=path+smptht2(nuplane,nref)
so to 3523
3522 smpthr2(ny2rtnt(j,int),n21)=path+smpthrl(nuplane,nref)
smptht2(ny2ptnt(j,int), n21)=path+smptht1(nuplane, nref)
$3523 \operatorname{smpthj} 2(n y 2 p t n t(j, i n t), n 21)=5 m p t h r 2(n y 2 p t n t(j, i n t), n 21)-s m p t h t 2(n y 2 p t$
\ont(j,int),n21)
$5 m 2(n y 2 P t n t(j, i n t), n 21)=d u m m y 2$
if(notpot.ne.0)write $(6,3746) \operatorname{sm2}(n y 2 p t n t(j, i n t), n 21), 5 m p t h j 2(n y 2 p t n t(j$
(c,int), n21), smptht2(ny2ptnt (j,int), n21), dummy
so to 3003
3005 point=cjoint2(ny2ptnt(j,int),n21-1)
if(n21.eq.Kgb)point=(ptint(j,int)-crement(j))
start=cjoint2(ny2ptnt (j,int), n21)
if(cjoint2(ny2ptnt(j,int), n21).st.ptint(j,int))start=ptint(j,int)
MPOS=10
call msaf $(\operatorname{start}, 0.0, y 2 p t i n t(j, i n t)$, point, $0.0, y 2 p t i n t(j, i n t)$, infos, gamr
\c, cork, phork, cojt, phojt, phoult, theto, alphol, alpho2, sinrk, cosrk, tanrk, xcteta,pi
lc,beta, sf,su,sisa, taufr,wpth,ywt)
if(point.eq.(ptint(j,int)-crement(j)))是o to 1998
esemu $=\operatorname{sm2}(n y 2 p t n t(j, i n t), n 21-1)$
wminu=wmin2(ny2ptnt (j,int), n21-1)
so to 1997
1998 continue
do 8000 kaka=1, $(m 1(j-1))$
if(point.st.plpt(j-1,kaka))so to 8000
90 to 8001
8000 continue
8001 kaka=kaka-1
esemu=5m1 (j-1,kaka)
wminu=wminl($j-1, k a k a)$
1997 if(start.eq.ptint(j,int))so to 1996
$\operatorname{sm2}(n y 2 p t n t(j, i n t), n 21)=s f+e s e m u$
Wmin2(ny2ptnt(j,int), n21)=wpth+wminu
esem=sf+esemu
wmin=wpth+wminu
so to 1995
1996 do 8002 koko=1rmi(j)
if(plpt(j, Koko).It.ptint(j,int))so to 8002
30 to 8003
8002
continue

```
597,53%?
8003
1 9 9 5
    asam=sm12(j,koko)
    continue
    if(notpot.ne.0)write(6,3749)startrpoint
    path=((start-point)/sin(beta*(pi/180.)))*(-1.0)
    if(notpot.ne.0)write(6,3747)ny2ptnt(j,int),2
    if(notpot,ne.0)write(6,3750)beta,path,sisa,wpth,sf
    if(point.gt.(ptint(j,int)-crement(j)).and.start.it.ptint(j,int))smpth
lct2(ny2ptnt(j,int),nZ1)=(abs(path))+smptht2(ny2ptnt(j,int),n21-1)
    if(point.st.(ptint(j,int)-crement(j)).and.start.It.ptint(j,int))smpth
\cr2(ny2ptnt(j,int),n21)=5mptnr2(ny2ptnt(j,int),n21-1)
    if(point.eq.(ptint(j,int)-crement(j)), and.start.1t.ptint(j,int))smpth
lct2(ny2ptnt(j,int),n21)=(abs(path))+smptht1(j-1,kaka)
    if(point.eq.(ptint(j,int)-crement(j)).and.start.1t.ptint(j,int))smpth
\ar2(ny2ptntij,int),n21)=5mpthrl(j-1,kaka)
    if(start.lt.ptint(j,int))psem=smptht2(ny2ptnt(j,int),n2i)
    if(start.1t.ptint(j,int))smpthj2(ny2ptnt(j,int),n21)=(smptht2lny2ptnt
\c(j,int),n21)-smpthr2(ny2ptnt(j,int),n21))*(-1.0)
    smpthj=smpthjZ(ny2ptnt(j,int),n21)
    if(start.lt.ptint(j,int))sm2(ny2ptnt(j,int),n21)=esem
    if(start.1t.ptint(j,int))wmin2(ny2ptnt(j,int),n21)=wmin
    if(start.1t.ptint(j,nt))so to 6170
    if(point.gt.(ptint(j,int)-crement(j)))smptht12lj,koko)=(abs(patin))+5m
\cptht2(ny2ptnt(j,int),n21-1)
    if(point.gt.(ptint(j,int)-crement(j))) smpthrl2(j, Koko)=smpthrZ(ny2otn
lct(j,int),n21-1)
    if(point.eq.(ptint(j,int)-crement(j)))sinftint12(j,koko)=(abs(patin))+5m
\cptht1(j-1,kaka)
    if(point.eq.(ptint(j,int)-crement(j)))smpthrl2(j,koko)=smprhrl(j-1,ka
\cka\
    psem=5mptht12(j, Koko)
    smpthj12(j, kako)=(smptht12(j,koka)-smpthr12(j,Koko))*(-1.0)
    smpthj=5mPthj12(j, Koko)
    sm12(j, Koko)=esem
    wminl2(j,koko)=wmin
6i70 continue
    if(notpot.ne.0)write(6,3746)esem, smpthj,psem,wmin
3003 continue
3300 last(j,int)=0
    if(merak(j,int).eq.100.or.merak(j,int).eq.0)Iast(j,int)=(n21-1)
    if(last(j,int).eq.0)so to 3222
    if(((-1)**last(j,int)).it.0)Print, "ERROR 1"
    if(cjoint2(ny2ptnt(j,int), last(j,int)).lt.(ptint(j,intj-crement(j)).0
lor.cjoint2(ny2ptnt(j,int),last(j,int)).st.ptint(j,int))print,"ERROR 2"
3222 continue
    so to 503
```

c
c Foutine For Paths Within A Region Bounded

637,677:

679,719p
dumm $5=0.0$
$\operatorname{dumay} y=0.0$
if(n2.gt.1) so to 4002
if(cjoint2(ny2ptnt(j,int),n2).st.0.0) 90 to 4001
mpos=10
$n 2=2$
point=cjoint2(ny2ptnt(j,int), n2)
if(cjoint2(ny2ptnt(j,int),n2). gt.ptint(j,int))point=ptint(j,int)
call msafipaint, $0.0, y 2 p t i n t(j, i n t), d e g(n y 2 p t n t(j, i n t)), 0.0, y 2 p t i n t(j$,
(cint),mpos, samr, cork, phork, cojt, phojt, phoult, theto,alphol, alpho2, sinrk, cosrk,t
lcanrk;xcteta,pi,beta,sf,su,sisa, taufr,wpth,ywt)
path=((point-dee (ny2ptnt $(j$, int $))) / \sin ($ beta* $(p i / 180.0))) *(-1.0)$
if(point.eq.ptint(j,int))sml2(j,nmplpt(j,int))=sf
if(point.eq.ptint(j,int))wminl2(j,nmplpt(j,int))=wpth
if(point.lt.ptint $(j, i n t)) \sin 2(n y 2 p t n i(j, i n t), n 2)=s f$
if(point.lt.ptint (j,int)) wmin2(ny2ptnt (j,int),n2)=wpth
if(point.lt.ptint(j,int))smpthj2(ny2ptnt(j,int), n2)=path
if(point.lt.ptint(j,int)) $5 m p t h t 2(n y 2 p t n t(j, i n t), n 2)=p a t h *(-1.0)$
if(point.lt, ptint $(j, i n t)) s m p t h r 2(n y 2 p t n t(j, i n t), n 2)=0.0$
if(point.eq.ptint(j,int)) $5 \mathrm{mpthr} 12(n y 2 p t n t(j, i n t), n 2)=0.0$
if(point.eq.ptint(j,int))smpthj12(j,nmplpt(j,int))=peth
if(point.eq.ptint(j,int))smptht12(j,nmplpt(j,int))=path*(-1.0)
if(dee(ny2ptnt(j,int)).It.0.0)so to 400E
if(notpot, ne.0)write(E,3749)point, dee(ny2ptnt(j,int))
if(notpot.ne.0) write(6, 3747)n\%2ptnt(j,int),2
if (notpot.ne.0) write (6,3750) beta, path, sisa, wptin, sf
if(notpot.ne.0)write (6, 3746)sf,path, (abs(path)), wrth
30 to 4118
4001
if(dee(ny2ptnt(j,int)).1t.0.0)so to 4006
point $=c$ joint2(ny2ptnt(j,int), n2)
call msaf(cjoint2(ny2ptnt(j,int), n2), 0.0,y2ptint(j,int), dee(ny2ptnt(j (c,int)), 0.0,y2ptint(j,int),mpos, gamr, cork, phork, cojt, phojt, phoult, thetoraiphol lc,alpho2,sinrk, cosrk, tanrk, xctetarpi,beta, sf,sy,siea, taufr,wpth,ywt)
islero=1
nuplane=ny2ptnt(j,int)
nsetu=2
nref $=0$
bottam=cjoint2(ny2ptnt(j,int), n2)
upper=deg(ny2ptnt(j,int))
dummyl=beta
dumt $Y 2=5 F$
dummy3=sisa
dumma $4=$ WP th
if(int.eq.1)so to 4006
if(merak(j,int-1).eq.111.or.merak(j,int-1).eq.1000)so to 400 E

720,761p
if(y2print(j,int). $3 t . y 1(j))$ so to 4009
4006 ifidee(ny2ptnt(j,int)).se.-0. ${ }^{\text {O }}$)so to 6006
print, "ERROR", j,int, dee(ny2ptnt(j,int))
so to 1901
6006 if(notpot.ne.0)write(S, 3749)point, dea(ny2ptnt(j,int))
path=(point-deg(ny2ptnt(j)int)))/sin(beta*(oi/180.0))
if(notpot.ne.0)write(6,3750)beta, path, siga:wpth, sf
if(notpot.ne.0)write(6,3746)sf, 0.0,path, wpth
smpthr2 $\operatorname{lny2ptnt}(j, i n t), n 2)=p a t h$
smptht2(ny2ptnt(j,int),n2)=path
$\operatorname{sm2}$ (ny2ptnt(j,int), n2) $=5 f$
wanin2(ny2ptnt(j,int),n2)=wpth
so to 4118
$4002 \quad \mathrm{if}((-1.0) * * n 2) 4003,4003,4004$
4003 if(cjoint2(ny2ptnt(j,int), n2).st.ptint(j,int)) so to 496
mpos=0
Point=cjoint2(ny2ptnt(j,int),n2)
call msaf(cjoint2(ny2ptnt(j,int), n2), 0,0, v2ptint(j,int), cjoint2(ny2pt
lent(j,int), n2-1), $0.0, y 2 p t i n t(j, i n t)$, mpos, gamp, cork, phork, coji, phojt, phoult-the
Icto,alphol,alphu2,sinrk, cosrk,tanrk,xcteta,pi,beta,sf,su,sisa, taufr,wpth,ywt)
if(islero.eq.0)so to 4500
if $((s f+s m 2(n y 2 p t n i(j, i n t), n 2-1)) .3 t . d u m m y 2 i s 0$ to 4501
4500 islero=1
nuplane=ny2ptnt(j,int)
nsetu=2
nref $=n 2-1$
bottom=point
upper=cjoint2(ny2ptnt(j, int), $n 2-1$)
dummyl=bata
dutamy $2=5 \vec{f}+5 m 2 \ln y 2 p t n t(j, i n t), n 2-1)$
dummy3=sisa
dummy $4=$ wpth
dumm $y 5=w p t h+w m i n 2(n y 2 p t n t(j, i n t), n 2-1)$
dumay $=5 \mathrm{~F}$
4501 continue
4007 if(int.eq.1)so to 4008
if(merak(j,int-1).eq.111.or.merak(j,int-1).eq.1000)so to 4008
4009 do $4005 \mathrm{nt}=2, n \mathrm{pt} 2(\mathrm{ny2ptnt}(j$, int-1)),2

(cjoint-1), nt).st.cjoint2(ny2ptnt(j,int), n2)) 9o to 4008
amhdo =atan((cjoint2(ny2ptnt(j,int), n2)-cjointZ(ny2ptnt(j,int-1),nt))/

\c(j,int-1),nt))/tan(alpho2))))
ambda=ambdo*(i80.0/pi)
if (ambda. 1t.alphal)so to 4005
mpos=0
point $=c j o i n t 2 \ln y 2$ ptrit(j,int), n2)
$762,803 \mathrm{P}$
call msaf (cjoint2(ny2ptnt(j,int), n2), 0.0,y2ptint(j,int), cjaint2(ny2pt lont(j,int-1), nt), 0.0,y2ptint(j,int-1),mpos, samr, cork, phork, cojt, phojt,phouit,t lcheto, alphol, alpho2, sinrkircosrk, tanrk, xcteta,pi, oeta,sf,su,sisa,taufr,wpth,ywt (c)

4109 if(islero.eq.0)90 to 4509
if(sf.gt. dutmy2)so to 4510
4509 islero=1
nuplane=ny2ptnt (j,int-1)
nsetu=2
nref=nt
bottom=cjointZ(nyZptnt(j,int), n2)
upper=cjoint2(ny2ptnt(j,int-1),nt)
dummy =beta
dummyZ $=5 f$
dumm $y^{\prime} 3=5$ isa
dummy $4=W p t h$
dummy5=wpth
dumm $Y 6=5 f$
4510 continue
4005 continue
30 to 4008
4004
$\mathrm{mpos}=10$
point=cjoint2(ny2ptnt(j,int), nZ)
if(cjoint2(ny2ptnt(j,int),n2).se.ptint(j,int)) point=ptint(j,int)
call msaf(point, $0.0, y 2 p t i n t(j, i n t), c j o i n t 2(n y 2 p t n t(j, i n t), n 2-1), 0.0, y$
\c2ptint(j,int),mpos, ヨamr, cork,phork, cojt,phojt, phoult, theto, alphol, alphoz, sinr \ck, cosrk,tanrk, xcteta,pi,beta,sf,su,siea,taufr,wpth,ywt)
if(notpot.ne.0)write (6, 3749)point,cjoint2(ny2ptnt(j,int),n2-i)
path=((point-cjoint2(ny2ptnt (j,int), nZ-1))/sin(beta* (pi/180.0)))*(-1.
100)
if(notpot.ne.0)write(6,3747)ny2ptnt(j,int),2
if(notpot.ne, 0) write (5, 3750) beta, path, siga,wpth, sf
if(point.eq.ptint(j,int))so to 6700
$\operatorname{sm2}(n y 2 p t n t(j, i n t), n 2)=5 f+\operatorname{sm2}(n y 2 p t n t(j, i n t), n 2-1)$
wmin2(ny2ptnt (j,int), n2)=wpth+winin2(ny2ptnt(j,int), n2-1)
smpthj2(ny2ptnt(j,int),n2)=path+smpthj2(ny2ptnt(j,int),n2-1)
smptht $2(n y 2 p t n t(j, i n t), n 2)=(a \sin (p a t h))+\operatorname{smptht} 2(n y 2 p r n t(j, i n t), n 2-1)$
smpthr2(ny2ptnt(j,int), n2)=5mptht2(ny2ptnt(j,int)rn2)+smpthj2(ny2ptnt
\c(j,int), n2)
smpthj=5mpthj2(ny2ptnt (j,int), n2)
smptht $=5 \mathrm{mptht} 2(n y 2 p t n t(j, i n t), n 2)$
esem=5m2(ny2prnt(j,int),n2)
wmin=wmin2(ny2ptnt(j,int), n2)
90 to 5701
$6700 \quad \operatorname{sm12}(j, \operatorname{nmpipt}(j, i n t))=5 f+\operatorname{sm2}(n y 2 p t n *(j, i n t), n 2-1)$
Wmin12 (j, naplpt $(j, i n t))=w p t h+w m i n 2(n y 2 p t n t(j, i n t), n 2-1)$

smpthj=5mpthj12(j,nmplpt(j,int))

```
804,845p
    smptht=smpthti2lj,nmpipt(j,int))
    5mpthrl2(j,nmplpt(j,int))=5mptnt+5mptnj
    esem=5m12(j,nmplpt(j,int))
    wmin=wminiZ(j,nmplpt(j,int))
6701 if(notpot.ne.0)write(6,3746)esem,smpthj,smptht,wmin
    go to 4118
4 0 0 8 ~ c o n t i n u e
    if(notpot.ne.0)write(6,3749)bottom,upper
    path=((bottom-upper)/sin(dumm>l*(pi/180.0)))
    if(notpot.ne.0)write(6,3748)ny2ptnt(j,int),2,n2,nuplane,nsetu,nref
    if(notpot.ne.0)write(6,3750) jummy1, path, dummy3,dummy 4, dummy6
    if(nuplane.1t.ny2ptnt(j,int))smptht2(ny2ptnt(j,int),n2)=smptht2(nupla
\cne,nt)+path
    if(nuplane.1t,ny2ptnt(j,int))smpthr2(ny2ptnt(j,int),n2)=smpthr2\nupla
\cne,nt)+path
    if(nuplane.eq.ny2ptnt(j,int).and.nref.eq.0) smptht2(ny2ptnt(j,int),n2)
\c=path
    if(nuplane.eq.ny2ptnt(j,int).and.nref.eq.0) 5mptnr2(ny2ptnt(j,int),n2)
\c=path
    if(nuplane.eq.ny2ptnt(j,int).and.nref.gt.0)smptht2(ny2ptnt(j,int),n2)
\c=path+smptht2(ny2ptnt(j,int),n2-1)
    if(nuplane.eq.ny2ptnt(j,int).and.nref.gt.0)smpthr\(n\gamma2ptnt(j,int),n2)
\c=path+smpthr 2(ny2ptnt(j,int),n2-1)
    smpthj2(ny2ptnt(j,int),n2)=smpthr2(ny2ptnt(j,int),n2)-smptht2(ny2ptnt
\c(j,int),n2)
    sm2(ny2ptnt(j,int),n2)=dummy2
    wmin2(ny2ptnt(j,int),n2)=dummy5
    if(notpot.ne.0)write(6,3746) jummy2,5mpthj2(ny2ptnt(j,int),n2), smptht2
\c(ny2ptnt(j,int),n2), dummy5
4118 continue
496 last(j,int)=0
    if(merak(j,int).8q.100.or.merak(j,int).gq.0)last(j,int)=(n2-1)
    if(last(j,int).eq.0)s0 to 3333
    if(((-1)**last(j,int)).it.0)print,"ERROR 1"
    if(cjoint2(ny2Ptnt(j,int),last(j,int)).gt.ptint(j,int))Print,"ERROR 2
\c"
3 3 3 3 ~ c o n t i n u e
5 0 3 ~ c o n t i n u e
5 0 2 ~ c o n t i n u e ~
    str=0.0
c
c
c
c
c
Routine For Paths Within A Region Bounded
By A Point On A Joint Plane of Joint Set
Two And A Point of Either Set Adove It
do \(950 i=1, \operatorname{mi}(j)\)
islero=0
nupiane \(=0\)
nsetu=0
nref \(=0\)
bottom=0.0
```

```
E46,887P
    upper=0.0
    dumm %1=0.0
    dummy2=0.0
    dummy3=0.0
    5pecial=0.0
    jummy4=0.0
    dumm Y5=0.0
    dumm Y }6=0.
    nen=0
    if(plpt(j,i).89.0.0)s0 to 950
    miura(j,i)=0
    if(nptint(j).eq.0)so to 3080
    do 3070 int=1,nptint(j)
    if(ptint(j,int).eq.pipt(j,i))so to 3071
    if(int.eq.nptint(j))so to 3072
3070 continue
3071 if(merak(j,int).eq.1000)so to 3072
    miura(j,i)=1
    if(merak(j,int).eq.0.or.merak(j,int).eq.100.or.merak(j,int).eq.1000)s
1co to 3072
    do 6801 nunu=1,net2(ny2ptnt(j,int)),2
    if(cjoint2(nv2ptnt(j,int),nunu+1).lt.ptint(j,int))so to 6801
    nref=nunu
    so to 6802
G301 continue
6302 upper=cjoint2(ny2ptnt(j,int),nref)
    bottom=ptint(j,int)
    islero=1
    nuplane=ny2ptnt(j,int)
    nsetu=2
    special=6.0
    mpos=10
    call msaf(bottom,0.0,y2ptint(j,int),upper,0.0,y2ptint(j,int),mpos,gam
lcr,cork, phork,cojt,phojt,phoult, theto,alphol,aipnoz,sinrk,cosrk,tanrk,xcteta,p
\ci,beta,5f,5u,sisa,taufr,wpth,ywt)
    dummyl=beta
    dumaty2=sm12(j,i)
    dummy3=siga
    dummY4=WPth
    dummy5=wmin12(j,i)
    dummyG=5f
3072 continue
    do 3077 inte=1,nptint!j)
    if(miura(j,i).eq.1.and.(merak(j,int).eq.1001.or.merak(jrint).eq.101.0
\or.merak(j,int).eq.111))go to 3080
    if(merak(j,inte).e9.1000.or.merak(j,inte).39.111)so to 3077
```

838,930p
if(y2ptint(j,inte). $3 t .((p l p t(j, i) / t a n(a i p n o 1))+y l(j))) s 0$ to 3080
do 3979 nnn=2,npt2(ny2ptnt(j,inta)),2
if (cjoint2(ny2ptnt(j,inte), nnn). at.ptint(j,inte))so to 3077

\cplpt(j,i)/tan(alpho1))+yl(j)))so to 3077
verti $=(p i p t(j, i)-c j o i n t 2(n y 2 p t n t(j, i n t e), n n n))$
horiz= $((\langle p l p t(j, i) / \tan (a l p h o 1))+y 1(j))-(y 2 p t i n t(j, i n t a)+(c j o i n t 2(n y 2 p$
$\operatorname{letnt}(j, i n t a), n n n) / t a n(a i p h o 2)))$)
if (((verti**2. +horiz**2.)**.5).gt.distmn)so to 3077
if(plpt(j,i), st.ptint(j,inta))so to 3077
do 3900 nen $=2, n P t 1(j), 2$
if(plpt(j,i).eq.cjoint1(j,nen))so to 3077
if(plpt(j,i).lt.cjointl(j,nen))so to 3901
3900 continue
3901 continue
point=cjoint2(ny2ptnt(j,inte), nnn)
mpos=0
call msaf(plpt(j,i),yl(j), 0.0,point, 0.0,y2(ny2ptnt(j,inte)), itfos, gams
lc, cork, phork, cojt, phojt, phoult, theto, alphol, alphoz, sinrk, cosrk, tanrk, xcteta, pi
\c,beta,sf,su,sisa,tanfr,wpth,ywt)
if (islero.eq.0)so to 4110
if $((s f+s m 2(n y 2 p t n t(j, i n t e), n n n)) .9 t . d u m m y 2)=0$ to 4111
4110 islero=1
nuplane=ny2ptnt(j,inte)
nsetu=2
nref $=n n n$
bottom=plpt(j,i)
upper=point
dummyl=beta
dummr $2=(5 f+5 m 2(n y 2 p t n t(j, i n t e), n n n))$
dummy $3=$ sisa
dummy $4=$ wpth
dummy $5=$ ispth+wmin2(ny2ptnt (j,inte), nnn)
dummy $6=5 f$
4111 continue
3979 continue
3077 continue
3080 continue
c
c
c
routine for paths with only in plane transitions allowed
if(pipt(j,i).Ee.cjointi(j,1)) 90 to 510
if(i.eq.1)point $=0.0$
if $(p l p t(j, i)$.eq.0.0) 50 to 950
if(i.gt.1)point=plpt(j,i-1)
mPOS=0
call thsaf $\{p i p t(j, i), y 1(j), 0,0, p o i n t, y 1(j), 0.0, m p o s, g a m r, c o r k, p h o r k, c o$ \cjt,phojt,phoult, theto, alphol:aipho2, sinrk, cosrk, tanrk, xcteta, pi, beta:sf,su: si
\csa,tanfr,woth,ywt)

```
531,977p
    esem=0.0
    Whtin=0.0
    if(point.eq.0.0)esem=5ml(j,i-1)
    if(point.eq.(0.0))(wmin=wminl(j,i-1)
    if(islero.eq.0)so to 4112
    if((sf+esem).gt.dummy2)90 to 4114
4112 islero=1
    nuplane=j
    nsetu=1
    nref=1
    if(i.ge.2)nref=i-1
    bottom=plpt(j,i)
    upper=point
    dummy1=beta
    dummyZ=5f+e5sm
    dumm`3=5isa
    dummy4=WPth
    dummy5=Wpth+wmin
    dummyb=sf
4 1 1 4 ~ c o n t i n u e ~
    90 to }94
510 continue
    do 5EO n=1,nPt1(j)
    if(plpt(j,i).st.cjointi(j,n)) so to 560
c
c
c
    if((-1.0)**n)520,520,530
520 continue
    MPOS=0
    if(plpt(j,i).eq.cjoint1(j,n).and.plpt(j,i).le.zp(j)) mpos=1
    point=0.0
    if(i.gt.1)point=plpt(j,i-1)
    - call msaf(plpt(j,i),yl(j),0.0,point,y1(j),0.0,mpos,gamr,cork,phork,co
\cjt,phojt,phoult, theto,alphol,alpho2,sinrk,cosrk,tanrk,kcteta,pi,jeta,sf,su,si
\cga,taufr,wpth,ywt)
    if(point.eq.0.0)esem=0.0
    if(point.eq.0.0) wmin=0.0
    if(point.st.0.0)esem=5mi(j,i-1)
    if(point.gt.0.0) wmin=wminl(j,i-1)
    if(islero.eq.0)so to 4E30
    if((sf+esem).gt.dummy2)s0 to 4631
4530 islero=1
    nuplane=j
    nsetu=1
    nraf=i-1
    bottom=plpt(j,i)
    upper=pipt(j,i-i)
    dumayl=beta
```

```
978,1020p
    dumin y2=sf+esem
    dummy3=5iga
    dummy 4=wpth
    dummy5=Wpth+wmin
    dummy6=5f
4 5 3 1
    continue
    if(str.gt.5u.and.mpos.9q.1)str=5u
    if(j.eq.l.or.miura(j,i).eq.1)so to 949
    if(utran(j-i,j).gt.plpt(j,i))go to 949
    do 3090 kub=1,njump
    if((j-kub).le.0)so to 3092
    do 3091 kin=1,(m1(j-kub)-1)
    if(plpt(j-kub,kin).st.(plpt(j,i)-vtran(j-1,j)))so to 3092
    mPOS=0
    call msaf(plpt(j,i),yl(j),0.0,plpt(j-kubrkin),y1(j-kub),0.0,mpos,gamr
\c,cork,phork,cojt,phojt,phoult,theto,alphol,alpho2,sinrk,cosrk,tanrk,xcteta,pi
\c,beta,sf,sv,siga,taufr,wpth,ywt)
    if(islero.eq.0)so to 4632
    if((sf+sml(j-kub,kin)).st.dummy2)so to 4g33
    islero=1
    nuplane=j-kub
    nsetu=1
    nref=kin
    bottam=plpt(j,i)
    upper=plpt(j-kub,kin)
    dumm>1=beta
    dummy2=(sf+5m1(j-Kub,kin))
    dumm`3=siga
    dummy4=wpth
    dummy5=wpth+wminl(j-kub,kin)
    dummy6=5f
4 5 3 3 ~ c o n t i n u e
3091 continue
3090 continue
3092 so to $49
530 continue
    mpos=2
    call msaf(plpt(j,i),yl(j),0.0,pipt(j,i-1),yl(j),0.0,mpos,gemr, corik,ph
\cork,coju,phojt,phoult,theto,alphol,alpho2,5inrk,cosrk,tanrk,xcteta,pl,geta,sf
\o,su,sisa,taufr,wpth,ywt)
    path=((plpt(j,i)-plpt(j,i-1))/\operatorname{sin}(0.ga*(pi/180.0)))*(-1.0)
    smpthj=0.0
    if((i-1).3e.1)\operatorname{sinpthj=smpthjl(j,(i-1))}
    smpthjl(j,i)=path+smpthj
    sinptht=0.0
    if((i-1).ge.1)smptht=smptht1(j,i-1)
    smptht1(j,i)=(abs(path))+smptht
```

```
1021,1064F
    smpthrl(j,j)=smptht1(j,i)+smpthjl(j,i)
    5ml(j,i)=5f+5ml(j,i-1)
    wminl(j,i)=wpth+wminl(j,i-1)
    if(miura(j,i).eq.0)so to 2501
    if(merak(j,int).eq.100.or.merak(j,int).eq.0)so to 2501
2502 if(sm1(j,i).lt.sm12(j,i))so to 2501
    smpthjl(j,i)=5mpthj12(j,i)
    sm1(j,i)=sm12(j,i)
    wminl(j,i)=wmin12(j,i)
    smptht1(j,i)=5mptht12(j,i)
    smpthri(j,i)=5mpthtl(j,i)+5mpthjl(j,i)
    if(merak(j,int).ne.111)go to 6503
    if(Khamsin(j,int).eq.0)path=plpt(j,i)/sin(alphoz)
    if(khamsin(j,int).eq.1)path=crement(j)/sin(alpho2)
    so to 6504
6503 do 6501 khari=1,npt2(ny2ptat(j,int)),2
    if (cjoint2(ny2ptnt(j,int),khari).lt.ptint(j,int).and.cjoint2(ny2ptnt
\c(j,int),khari+1).lt.ptint(j,int))so to b501
    so to 6502
6 5 0 1 ~ c o n t i n u e ~
6502 path=(plpt(j,i)-cjoint2(ny2ptnt(j,int),Khari))/sin(alphoz)
E504 cantinue
    path=path*(-1.0)
    bottom=plpt(j,i)
    upper={plpt(j,i)+(path*sin(alpho2)))
    if(upper.lt.(-0.1))print,"ERRDR 4",j,i,int,ny2ptnt(j,int),Khari,upper
\c,cjoint2(ny2ptnt(j,int),khari)
    if(upper.it.(-0.9))so to 1901
    cail msaf(plpt(j,i),0.0,y2ptint(j,int),upper,0.0,y2ptint(j,int)rmpos,
\cgamr,cork,phork,cojt,phojt,phoult,theto,alphol,alpho2,sinrk,cosrk,tanrk,xctet
\ce,pi,beta,sf,sy,sigar,taufr,wpth,ywt)
    if(j.eq.2.and.i.eq.5)print,upper
    if(notpot.ne.0)write(6,3749)bottom,upper
    if(notpot.ne.0)write(6,3747)nv2ptnt(j,int),2
    if(notpot.ne.0)write(6,3750)beta,path,sisa,Wpth,sf
    if(notpot.ne.0)write(6,3746)sml(j,i),5mpthjl(j,i),5mpthtl(j,i),wminll
(cj,i).
    if(notpod.ne.0.and.i.aq.ml(j))write(5,3745)j,sm1(j,i)
    so to 950
2501 if(notpot.ne.0)write(6,3749)plpt(j,i),plpt(j,i-1)
    if(notpot.ne.0)write(6,3747)j,1
    if(notpot.ne.0)write(6,3750)beta,path,sisa,wpth,5f
    if(notpot.ne.0)write(6,3746)sml(j,i),5mpthjl(j,i),smpintl(j,i),wminil
\cj,i)
    if(notpod.ne.0.and.i.eq.ml(j))write(6,3745)j,sm1(j,i)
    so to 950
5%0 continue
S45 if(notpot.ne.0)writa(6,3749)battamyupoer
    if(notpot.ne.0)write(6,3748)j,1,i,nupiane,nsetu,nrof
    path=((bottom-upper)/sin(dummy1*(pi/180.0)))
```

```
1055,1107P
    5mpthr=0.0
    smptht=0.0
    if(special.ne.5.0.or.(alpha2-dummyi).gt.(.01))so to 8900
    5mpthjl(j,i)=5mpthj12!j,i)
    smptht1(j,i)=5mptint12(j,i)
    sm1(j,i)=5m12(j,i)
    wminl(j,i)=wmin12(j,i)
    smpthrl(j,i)=5mpthtl(j,i)+5mpthjl(j,i)
    do 9176,mardi=1,nptint(j)
    if(plpt(j,i).eq.ptint(j,mardi))go to 9177
    so to 9176
9177 if((merak(j,mardi).eq.101.or.merak(j,mardi).eq.1001.or.merakij,marij)
\c.eq.111).and.path.st.(0.0))path=path*(-1.0)
    go to 9178
5176 continue
9.78 continue
    so to E901
6900 if(nsetu.eq.1.and.i.st.1)smpthr=smpthrl(nuplane,nref)
    if(nsetu.eq.1.and.i.st.1)smptht=smptht1(nuplane,nref)
    if(nsetu.eq.2.and.i.gt.1)smpthr=smpthr2(nuplanernref)
    if(nsetu.eq.2.and.i.gt.1)smptht=smptht2(nuplane,nref)
    smpthrl(j,i)=path+smpthr
    smptht1(j,i)=path+smptint
6901 if(notpot.ne.0)write(6,3750)dummy1,path,dummy3,dummy4,dumbyb
    smpthjl(j,i)=(smptht1(j,i)-smpthrl(j,i))*(-1.0)
    sm1(j,i)=dummy2
    wminl(j,i)=dummys
    if(notpot,ne,0)writa(E,3746)sml(j,i),smpthji(j,i), smpthtilj,i),wminil
\cj,i)
    if(notpod.ne.0.and.i.eq.mi(j))write(6,3745)j,5mi(j,i)
950 mpos=0
c
c
c
    dist=xdl(j)/sin(aiphol)
    usm(j)=5ml(j,inl(j))/dist
2
: The Following Caiculates The Ansie
                Of The Eritical Patin
=
    fang(j)=1.0000
    if(outrut3.eq.1) so to 1981
    fans(j)=(atan(1.0/(()(wmin1(j,m1(j))/gamr)/0.5*(xa1(j)**2.0)))+(1.0/ta
\cn(theta))))*(180.0/pi)
lab1 dfact=ndiu
```

コ
$1108 \cdot 1154 \mathrm{P}$

980
982
998

The Following Routine Calculates The Apparent Persistence Of The Critical Path

```
wgt=.5*gamr*xd1(j)*xd1(j)*(1./tan(alphol)-1./tan(thetol)
siga=wgt*cos(alphol)*sin(alphol)/xol(j)
rr=siga/cork
cc=2./(l2.*rr+1.)**.5-2.*rr*tan(phojt))
acrit=100.*(1.-rr*cc*(tan(alphol)-tan(phojt)))
app(j)=acrit-100.*cc*usm(j)/cork
```

 \(d x d=y d i m / d f a c t\)
 do 980 \(n d x=1\), ndiv
 \(\operatorname{nndx}=n d x\)
 if \((x d 1(j) . g t . d x d * x n d x)\) go to 980
 \(n u m j(n d x)=n u m j(n d x)+1\)
 sper(ndx)=sper(ndx)+perconl(j)
 s5qper \((n d x)=55 q p e r(n d x)+\operatorname{percon} 1(j) * * 2\).
 sfan(ndx)=sfan(ndx)+fans(j)
 ssqfan(ndx)=ssqfan(ndx)+fang(j)**2.
 \(55 m(n d x)=55 m(n d x)+5 m 1(j, m 1(j))\)
 s595m(ndx) \(=5595 m(n d x)+s m 1(j, m 1(j)) * * 2\).
 \(\operatorname{susm}(n d x)=5 u s m(n d x)+u s m(j)\)
 ssqusm(\(n d x)=55 q u s m(n d x)+45 m(j) * 2\).
 \(\operatorname{sapp}(n d x)=\operatorname{sapp}(n d x)+\operatorname{app}(j)\)
 ssqapp \((n d x)=\) ssqapp \((n d x)+a p p(j) * * 2\).
 swst (ndx) \(=5\) wst (ndx) +wminl(j,ml(j))
 ssqwst \((n d x)=5 s q w s t(n d x)+w m i n 1(j, m 1(j)) * * 2\).
 if \((5 m 1(j, m 1(j)) .1 e .(0.0)) 5 m 1 e o(n d x)=5 m 1 e o(n d x)+1\)
 so to 982
 continue
 continue
 continue
 if (output2.eq.0) 90 to 1505
 write(6,1131)jp11
 write(E,1132)
 do 1500 j=1,jpil
 write(6,1133) \(j, p \operatorname{crconl}(j)\), fans \((j), \operatorname{smi}(j, m 1(j))\), usm(j), app (j), wmini(\(j\),
 \am1(j)), xd1(j)
1500 continue
1505 continue
if(mm.1t.noreai)so to 1960
if (output3.ne.0) write (6,1135) ydin, duid
do $1900 \mathrm{n}=1$, nidiu
$\mathrm{if}(n \mathrm{mmj}(n) .1 \mathrm{t} .2) 90$ to 1500

```
1155,1186p
    sidiv=numj(n)-1
    perave(n)=sper(n)/numj(n)
    perss=abs(ssqper(n)-sper(n)*perave(n))
    sdper(n)=(perss/sddiv)**.5
    fanave(n)=sfan(n)/numj(n)
    fanss=abs(s5qfan(n)-sfan(n)*fanave(n))
    sdfan(n)= (fanss/sddiu)**.5
    smave(n)=55m(n)/numj(n)
    smss=abs(5sq5m(n)-5sm(n)*smave(n))
    sdsm(n)=(smss/sddiv)**.5
    usmave(n)=susm(n)/numj(n)
    usms5=ajs(55qusm(n)-susm(n)*usmave(n))
    sdusm(n)=(usmss/sddiv)**.5
    appave(n)=sapp(n)/numj(n)
    appss=abs(ssqapp(n)-sapp(n)*appgue(n))
    sdapp(n)=\langleappss/sddiv)**.5
    wgtave(n)=5wst(n)/numj(n)
    wgtss=abs(ssqwat(n)-swst(n)*wstave(n))
    sdwgt(n)=(wst5s/5ddiv)**.5
    x<x1=(n-1)*dxd
    x<x2=n*dxd
    if(ydim.eq.10.)so to 8954
    if(samr.eq..151)so to 8954
    if(xx<1.1t.90.0)so to 8955
8954 if(output3.ne.0)write(6,1138)xxk1,xxx2,numj(n),perave(n),sdper(n),fan
\cave(n),sdfan(n),smave(n),5dsm(n),usmave(n),sdusm(n),apqave(n),sdapp(n),wstave
lc(n),sdwgt(n),5mleo(n)
8955 continue
1900 continue
1960 continue
1966 continue
1501 stop
    end
c
```

The Following Suoroutine Caiculates Resistance And Safety
subroutine msaf (ex2,y12,y22,ex1,y11,y21,mpos,gamr,cork,phork, cojt,pno \cjt, phouit, theto, alphol,alpho2,sinrk, cosrk, tanrk, xcteta,pi,beta, sf,su,sisa, tau \cfr,wpth,ywt)
$\mathrm{pi}=3.141593$
c for paths within the second joint set
if ((y12.eq.0.).and. (y11.eq.0.)) so to G04
c . for paths within the first joint set
if ((y22.eq.0.). and. (y21.eq.0.)) so to 603
path from first set point up to a second set point
if $((y 11 . e 9.0$.$) . and. (y22.eq.0.)) 90$ to 602
path from second set point up to a first set point
if((y12.eq.0.).and.(y21.eq.0.)) 90 to 601
604 - why1 $=y 21$
why $2=y 22$
salo1=alpino2
salo2=alpho2
30 to 605
G03 why $1=911$
wh $y 2=y 12$
galol=alphol
salo2=alpho1
so to 605
602 whyl $=$ y21
wh $y 2=y 12$
salo1=alpho2
galo2=alpino1
so to 605
$601 \quad$ why $1=y 11$
wh $y 2=y 22$
salo1=aipho1
galo2=alpho2
$605 \quad \operatorname{Poco}=((\operatorname{ex2} / \tan (\operatorname{agla}))+\operatorname{why} 2-\operatorname{thy} 1-(e x 1 / \tan (3 a i 01)))$
$a r=.5 *(e x 1+e \times 2)$
c
for paths to the risht of the slope apex

le so to 506
e
for patins under the siope apex

 (ct))) 90 to 507
c for paths to the left of the slope apex

\awt)) 90 to 608
EOG area=ar*poco
30 to 609
GO7 area=ar*poco

\a2.)

```
1231,1277p
    if.(area.lt.0.) area=area+.5*tan(theto)*((lex1/tan(gaiol))+wny1-ywt)**
102.)
    30 to 609
608 area=(ar*poco)-(.5*tan(thet0)*((l(ex2/tan(saloZ))+why2-ywt)**2.)-((la
\cx1/tan(gal01))+why1-ywt)**2.)))
G09 if(area.gt.0.0) beta=((atan(ajos((ex2-ex1)/poco)))*(180./pi))
    if(area.eq.0.0) beta=90.0
    if(area.1t.0.0) beta=180.-((atan(abs((ex2-ex1)/poco)))*(180./pi))
    beto=beta*(pi/180.)
    dist=abs(poco/cos(aipho1))
    wlf=area*gamr
    if(dist.lt.(0.0))siga=.0001
    if(dist.gt.(0.00))siga=ahs(wlf*(cos(alphcl))/idist)
    dt=2.*xcteta
    if(sisa.le.cork) rad=.j*(siga+cork)
    if(siga.st.cork.and.siga.le.dt) rad=(cork*siga)**.5
    if(siga.gt.dt) rad=((sisa/2.)+(cork/tanrk))*sinrk
    xct=sisa/2.
    taufr=(rad**2.-((siga/2.)**2.))**.5
    if(rad.le.xct)taufr=0.0
    if(mpos.gt.1) so to 650
    if(sisa.gt.cork) so to 640
C
c
C
    if(siga.eq.0.0) siga=0.00001
    tenang=.5*(pi-atan(2.*taufr/sisa))
    if(beto.le.(alphol+tenans)) res=taufr*dist*cos(beto-alphol)
    if(bet0.gt.(alpiol+tenans)) res={cork/2.)*(aios(exz-ax1)*cos(alpinol))
    go to 660
c
C
C
640 res=taufr*dist*cos(beto-alpho1)
    so to GGO
c
c
c
550
    taufjt=cojt+siga*tan(Phojt)
    if(taufjt.st.taufr) taufjt=taufr
    if(mpos.eq.10)tauf jt=0.0
    res=taufjt*i|st
    taufr=taufjt
    go to 670
c
c
c
80
    \GammaHIt=siga*tan<(Phoult)*dist*cos(beto-alphoi)
    if(rult.3t.res) res=rult
```

```
1278,$p
670 sf=res-wlf*sin(alphoi)
wpth=wlf
if(mpos.ne.1) so to 700
su=ex2*(cork/2.)*cos(alphol)
sus=ex2*(cork/2.)*sin(aiphol)
if(sus.st.su)su=sus
700 return
end
```

w
9
r 15:24 11.495469

```
talal
input theta,alphal;aipna2,yolat
75 25 55 10
input ystar,ndiv
0 10
input pnijt,cojt,phirk,cork,pniult
00302530
input gamr
. }15
input sP31,5P32,5Pjtlnl,5Pjtln2,5Prkbrl,5PTKbr2
3 4 4444
input iseed
63934
notpop,notpot,notpod
111
input output1,output2,output3
111
input norgai,distam,njump
1202
```

Slope Ansla: 75.0 degrees
Slope Hight: 10.0 feet
First Joint Set Inciination: 25.0 degrees
Second joint Set inclination: 55.0 desreas

Strength Parametars

Phi (joint) $=0.00$ degrees
Conesion (joint) $=0.00$
Phi (rock) $=30.00$ degrees
Conesion (rock) $=25.00$
Rock Unit Height: 0.15

Distributionai Parametarsijoint Set Ong:
Mean Plane Spacing $=3.00$
Haan Joint Spacing $=4.00$
Mean Joint Lenath $=4.00$

Iistributionai Paramgtersijoint Set Two:
Hean Plang Spacing $=3.00$
Mean Joint Spacing $=4.00$
Mean Joint Lengith $=4.00$

Initial Randow Nutber: 55934

Number of Reailizatins: 1
(a) cont'd

Path Criteria:
Minimum Spacing $=20.0$
Maximum Transition $=2$
******* Realization Number $\quad 1$
Joint Plane $1 \quad$ Max x-coordinate $=2.75 \quad y$-coordinate $=13.61$ 0.00
0.69
2.75

Number of Joints on This Plane Is 1 Averzse Percent Continuity Is 25.24

Joint Plane $2 \quad$ Aax x-coordinate $=9.08 \quad y$-coordinate $=1.73$
4.41
6.08
9.03
9.08
(b)

Joint Plane $3 \quad$ Max x-coordinate $=9.40 \quad y$-coordinate $=1.13$
0.00
2.54
7.90
9.40

Number of joints On This Plane is 2 Averase Percent Continuity Is 42.99
--Joint Set Une:Joint Right End To Above Projections--

Plane	1
2.36	
0.89	
Piang	2
7.56	


```
    Haximum Allowagls y-coordinate : yaxax = 18.77
Joint Plang 1 Max x-coordinate = 0.17 y-coordinate = 0.25
                        0 . 1 7
    No Joints On This Plane
    Averase Parcent Continuity Is 0.00
Joint Plane 2 Alax x-coordinate = 3.86 y-coordinate = 5.5B
    0.00
    3.86
    Number of Joints On This Plane Is 1
    Averase Percent Continuity is 100.00
joint Plane 3 Max x-coordinate = 5.24 y-coordinate = 7.57
    0.00
    1.84
    4.56
                            5.03
    5.24
    Number of Joints On This Plane Is 2
    Average Percent Continuity Is 44.01
Joint Plane 4 Max x-coordinate = 8.36 y-coordinate = 12.07
                            0.00
                            8.36
    Number of Joints On This Plane ls I
    Augrage Percent Continuity Is 100.00
```

joint Plane $5 \quad$ fax x-coordinate $=2.77 \quad y$-coordinate $=17.57$
0.57
2.26
2.77
Number of Joints On This Plane is 1
Average Percent Continuity is 61.02
--Joint Set One:Pts. of Intersection--
Plane !
2.74
plane 2
2.56
4.04
7.16
piane 3
3.08
4.46
7.58
- Joint Set One:Dynawic Programuicns Plane Points--
Plane 1
0.00
0.69
0.89
2.36
2.74
2.75
plane 2
2.66
4.04
4.41
6.08
7.15
7.56
9.03
9.08
plane 3
0.00
2.54
3.08
4.45
7.58
7.50
9.40

```
    Region From Free Surface To Plane 1 y-coordinate = 17.57
```

 Joint(s) In Between Only
 Lower x-coordinate $=0.57 \quad$ Upper x-coordinate $=0.00$
Beta $=55.00 \quad$ Path $=0.70 \quad$ Stress $=0.04 \quad$ Height $=0.02 \quad$ S.F. $($ path $)=4.81$ Safety Margin $=4.81 \quad$ Jointed Rock;Sum $=0.00 \quad$ Critical Path Length $=0.70 \quad$ Critical Weight $=0.02$

Lower x-coordinate $=2.26 \quad$ Upper x-coordinate $=0.57$ In Joint Transition Within Plane 5 of Set 2 Beta $=55.00 \quad$ Path $=-2.05 \quad$ Stress $=0.15 \quad$ Weight $=0.21 \quad$ S.F. $($ Path $)=-0.09$ Safety Hargin $=4.72 \quad$ Jointed Rock:Sum $=-2.06 \quad$ Critical Path Length $=2.76 \quad$ Critical Weight $=0.23$

Lawer x-coordinate $=0.69 \quad$ Upper x-coordinate $=0.00$ In Joint Transition Within Plane 1 of Set 1

Lower x-coordinate $=0.89 \quad \begin{gathered}\text { Upper } x \text {-coordinate }= \\ \text { Referenca Point }\end{gathered} \quad 0.69$ Up To Plane 1 of Set 1 Reference Point 2 From Plane 1 In Set $1 \quad$ Referenca Point $3 \quad$ Up To Plane $\quad 0.10 \quad$ Height $=0.05 \quad$ S.F.(path) $=5.72$ Beta $=25.00 \quad$ Path $=\quad 0.46 \quad$ Stress $=\quad 0.10 \quad$ Keight \quad Critical Path Length $=2.10 \quad$ Critical Height $=0.13$ Safaty Margin $=5.69$ Jointed RockiSum $=-1.64$

Lower x-coordinatie $=2.36 \quad$ Upper x-coordinate $=0.89 \quad$ Up To Plane 1 Of Set 1 Reference Point 3 From Plane $1 \quad$ In Set L Reference Point $\quad 4 \quad$ Up To Plane \quad Height $=0.77 \quad$ S.F. (path $)=43.60$

. Lower x-coordinate $=2.74 \quad$ Upper x-coordinate $=2.26$ Frou Plane 1 In Set 1 Reference Paint 5 Beta $=55.00 \quad$ Path $=0.58 \quad$ Stress $=0.05 \quad$ Weight $=0.02 \quad$ S.F. $($ path $)=3.96$ Safety Margin $=8.67 \quad$ Jointed Rack;Sual $=-2.06 \quad$ Critical Path Length $=3.34$. Critical Height $=0.25$

```
Lower x-coordinate = 2.75 UpPer x-coordinate = 2.74
    Frou Plane 1 In Set 1 Reference Point 6 Uf To Plane 1 Of Set 1 Reference Point 5
    Beta =25.00 Path = 0.02 Stress=0.00 Weight = 0.00 S.F.(path) = 0.22
    Safety Margin = 8.89 Jointed Rock;Sum = -2.06 [ritical Path Length = 3.36 [ritical Height = 0.25
    Joint Plane 1 Safety Hargin 8.89
    Region From Free Surface To Plane 2 y-coordinate = 5.5日
        Continuous Joint Throughout
Lower x-coordinate = 2.66 Upper x-coordinate = 0.00
    In joint Transition Within Plane 2 Of Set 2
    Beta = 55.00 Path = -3.25 Stres5 = 0.16 Weight = 0.37 S.F.(path) = -0.16
    Safety Margin = -0.16 Jointed Rock;Sum = -3.25 Critical Path Length = 3.25 [ritical Height = 0.37
    cont'd
Lower x-coordinate = 1.84 Üpper x-coordinate = 0.00
    In Joint Transition Hithin Plane 3 OF Set 2
    Beta = 55.00 Path = -2.24 Stress = 0.11 Height = 0.18 S.F.(Path) = -0.07
    Safety Hargin = -0.07 Jointed Rack;Sum = -2.24 Critical Path Length = 2.24 [ritical Weight = 0.18
    Region From Free Surface To Plane 2 y-coordinate = 12.07
        Continuous Joint Throusiout
Lower x-coordinate = 7.16 Upper x-coordinate = 0.00
    In Joint Transition Within Plane 4 Of Set 2
    Beta = 55.00 Path = -8.74 Stress = 0.44 Height = 2.69 S.F.(path) = -1.14
    Safety Margin = -1.14 Jointed Rock;Su^ = -8.74 Critical Path Length = 8.74 [ritical Weight = 2.69
LoNer x-coordinate = 2.66 Upper x-coordinate = 0.00
    From Plane 2 In Set 1 Reference Point 1 Up To Plane 2 of Set 2 Reference Point 1
    Beta = 55.00 Path = -3.25 Stress = 0.16 Weisht = 0.37 S.F.(path) = 0.16
    5afety Margin = -0.16 Jointed Rack;Sum = -3.25 [ritical Path Length = 3.25 [ritical Weight = 0.37
```

Lower x-coordinate = 4.04 Upper x-coordinate = 1.84
From Plane 2 In Set 1 Reference Point 2 Up To Plane 3 Of Set 2 Reference Point 2
Beta = 55.00 Path = 2.69 Stress = 0.36 Heisht = 0.68 S.F.(path) = 18.42
Safety Hargin = 18.34 Jointed Rock;Sum = -2.24 Critical Path Length = 4.93 [ritical Height = 0.86
Lolyer x-coordinate = 4.41 Upper x-coordinate = 4.04
From Plane 2 In Set 1 Reference Point 3 Up To Plane 2 Of Set 1 Reference Point 2
Beta =25.00 Path = 0.8B Stress = 0.52 Height = 0.50 S.F.(path) = 10.96
Safety Hargin = 29.31 Jointed Rock;Sum = -2.24 [ritical Path Length = 5.81 [ritical Height = 1.36
Lower x-coordinate = 6.0B Upper x-coordinate = 4.41
In Joins Transition Within Plane 2 DF Set 1
Beta = 25.00 Path = -3.94 Stress = 0.65 Weight = 2.81 S.F.(path) = -1.19
Safety Hargin = 2B.12 Jointed Rock;Sula = -6.1B [ritical Path Length = 9.75 [ritical Weight = 4.17
Lower x-coordinate = 7.16 Upper x-coordinate = 0.00
From Plane 2 In Set 1 Reference Point 5 Uf To Plane 4 Of Set 2 Raference Point 1
Beta = 55.00. Path = -8.74 Stress = 0.44 Height = 2.69 S.F.(path) = -1.14
Safety Hargin = -1.14 Jointed Rock;Sum = -B.74 Critical Path Length = 8.74 [ritical Weight = 2.69
Lower x-coordinate = 7.55 Upper x-coordinate = 7.16
From Plane 2 In Set 1 Reference Point 6 Up To Plane 2 OF Set 1 Reference Point 5
Beta =25.00 Path = 0.95 Stress = 0.91 Weight = 0.95 S.F.(path) = 11.8B
Safety Hargin = 10.75 Jointed Rock;Sum = -8.74 Critical Path Length = 9.69 Critical Height = 3.64
Lower x-coordinate = 9.03 Upper x-coordinate = 7.56
Froge Plane 2 In Set 1 Reference Point 7 Up To Plane 2 Of Set 1 Reference Point G
Beta =25.00 Path = 3.49 Stress = 0.62 Height = 2.40 S.F.(path) = 43.64
Safety Margin = 54.39 Jointed Rock;Sum = -8.74 Critical Path Length = 13.18 Critical Meight = 6.04

```
```

Lower x-coordinate = 9.0日 Upper x-coordinate = 9.03
In Joint Transition Within Plane 2 Of Set 1
Beta =25.00 Path = -0.10 Stress= 0.02 Height = 0.00 S.F.(path) = -0.00
Safety Hargin = 54.39 Jointed Rock;Sum= -8.84 Critical Path Length = 13.28 [ritical Meight = 6.05
Joint Plane 2 Safety Margin 54.39
Region Between Planes 3 And 2 y-coordinate = 5.58
Continuous Joint Throughout
Lawer x-coordinate = 3.08 Upper x-coordinate = 2.66
In Joint Transition Within Plane 2 OF Set 2
Beta = 55.00 Path = -0.51 Stress = 0.35 Weisht = 0.13 S.F.(Path) = -0.05
Safety Margin = -0.21 Jointed Rock;Sum = -3.76 Critical Path Length = 3.76 Critical Weight = 0.00
Region Between Planes 3 And 2 y-coordinate = 7.57
No Second Set Joints
Resion Between Planes 3 And 2 y-coardinate = 12.07
Continuous Joint Throushout
Lower x-coordinate = 7.58 Upper x-coordinate = 7.16
In Joint Transition Within Plane 4 0f Set 2
Beta = 55.00 Path = -0.51 Stress = 0.91 Height = 0.32 S.F.(path) = -0.14

```

```

Lower x-coordinate = 2.54 Upper x-coordinate = 0.00
In Joint Transition Within Plane 3 OF Set 1
Beta =25.00 Path = -6.01 Stress = 0.16 Weight = 1.04 S.F.(path) = -0.44
Safety Margin =-0.44 Jointed Rock;Sum = -6.01 Critical Path Length = 6.01 [ritical Height = 1.04
Lower x-coordinate = 3.0B Upper x-coordinate = 0.00
Froal Plane 3 In Set 1 Reference Point 3 Up To Plane 2 of Set 2 Reference Point 1
Beta = 55.00 Path = -3.76 Stress = 0.19 . Height = 0.50 S.F.(path) = -0.21
Safety Margin = -0.21 Jointed Rack;Sum= -3.76 Critical Path Length = 3.76 Critical Weight = 0.00

ower x-coordinate $=9.40 \quad$ Upper x-coordinate $=7.90$ Beta $=25.00 \quad$ Path $=-3.55 \quad$ Stress $=0.61 \quad$ Keight $=2.40 \quad$ S.F. $($ Path $)=-1.01$ Safety Marsin $=7.26 \quad$ Jointed RockiSum $=-12.80 \quad$ Critical Path Length $=13.56 \quad$ Critical Weight $=3.20$ Joint Plane $3 \quad$ Safety Margin 7.26 Number of Joint Planes is $=3$

Safety Margin:

```
Average \(=\quad 9.5\)
Standard Deviation \(=13.7\)
Unit Safety Marsin:
Averase \(=\quad 6.5\)
Standard Deviation = 6.4
Apparent Persistence:
Averase \(=48.12\)
Standard Deviation \(=50.89\)
Weisht of Critical Path:
Averase \(=0.66\)
Standard Ieviation =. \(\quad 1.21\)
The Number of joints With Safety Margins < 0.0 Is 1.
```

CHAPTER 5
RELIABILITY OF SLOPES CONTAINING A SINGLE
SET OF SLOPE PARALLEL JOINTS

5.1 Introduction.

Slopes with two sets of random joints of the type shown in Figure 2.1 and 2.2 are rather commonly encountered, especially in sedimentary formations. Their relative simplicity makes it possible to analyze reliability taking into account all the governing parameters (geometric and mechanical properties) that affect slope stability. The computer. program described previously is specifically aimed at analyzing slopes of these types.

In order to run the program, joint spacings and length distributions are needed in addition to the deterministic values of joint attitudes and mechanical properties. The program output includes the probability distribution of the safety margin from which the probability of failure (probability that the safety margin is negative) can be derived. The present chapter evaluates sensitivities of the probability of failure with respect to the main input parameters. Such a study is important for two reasons:

1. It provides further insight into slope safety.
2. It may make possible simplified procedures for slope reliability analysis.

The main results are presented first, followed by a brief description of input parameters, geometric and mechanical that are relevant to slope safety. The parametric study constitutes the body of the chapter and is followed by a summary of results.

5.2 Main Conclusions of Parametric Analysis

The main conclusions from the parametric study can be summarized as follows:

1. Intact rock cohesion $\left(C_{r}\right)$ is the parameter which has the strongest influence on rock slope stability. Its effect is noticeable in all runs in which C_{r} was varied. This is not surprising since the failure algorithm assumes intact rock bridges to fail in tension with small joint friction angle. Actual slope failures seem to support this model feature.
2. Mean joint length of the first set at high persistence values has a strong effect on rock slope stability. This already established in previous research, sensitivity of safety, to mean joint length is slightly magnified here due to the presence of two joint sets.
3. When comparing results for a slope with a single joint set and one containing two joint sets, lower safety values due to the second set, though not detrimental to slope stability.

5.3 Geometric Parameters

The geometry of slopes of the type shown in Figures 2.1 and 2.2 is described by four deterministic parameters and six stochastic parameters. The four deterministic parameters are: slope height, slope face angle,
and angles of inclination of the two joint sets.
Slope height ($Y_{\text {dim }}$) gives the vertical distance from the slope apex to the foot of the slope. Slope angle (θ) is the angle between the slope face and the horizontal. The angles of joint set inclinations ($\alpha 1, \alpha 2$) are the angles between joint planes and the horizontal.

Six more parameters are necessary to completely specify the probabilistic model of joints in the first joint set: mean joint length ($\overline{\mathrm{J}} 1$), mean rock bridge length ($\overline{\mathrm{R}} \mathrm{B} 1$) and mean joint plane spacing ($\overline{\mathrm{S} P} 1$). Similarly for the second joint set: mean joint length (JL2), mean rock
 lengths, rock bridge lengths and joint plane spacings are generated stochastically within the program by assuming that all uncertain geometric parameters are independent exponential distributions. Some comments on these six input parameters and on derived parameters such as mean joint plane persistence of set one ($\bar{K} 1$) and set two ($\bar{K} 2$), mean joint intensity of set one ($\overline{\mathrm{I}} 1$) and set two ($\overline{\mathrm{I}} 2$), are given next.

Mean joint length is simply the average length of joint segments for each set. In practice, this parameter needs to be estimated from joint survey data. The model assumes that joint lengths are exponentialiy distributed about their mean values $\overline{\mathrm{JL}} 1$ and $\overline{\mathrm{J}} 2$ for joint sets 1 and 2, respectively. Mean joint plane persistence (\bar{K}) has previously been estimated to be:

$$
K=\overline{J L} /(\overline{J L}+\overline{R B})
$$

where $\overline{J L}$ is mean joint length and $\overline{\mathrm{RB}}$ is mean rock bridge length.
The parametric study does not include equivalent consideration of
$\overline{\mathrm{RB}}_{1}$ and $\overline{\mathrm{RB}}_{2}$
Rock bridge lengths, like joint lengths, are assumed to be exponentially distributed about the mean values, $\overline{\mathrm{RB}}_{1}$ and $\overline{\mathrm{RB}}_{2}$.

The mean joint plane spacing $\overline{S P}$ is the average spacing between two adjacent planes within a joint set. Like $\overline{J L}$ and $\overline{\mathrm{RB}}$, joint plane spacings are assumed to be exponentially distributed about the mean values, $\overline{\mathrm{SP}} 1$ and $\overline{\mathrm{SP}} 2$.

Joint intensities can be derived from other input parameters as

$$
\overline{\mathrm{I} 1}=\overline{\mathrm{K}} 1 / \overline{\mathrm{SP} 1} \quad \overline{\mathrm{I} 2}=\overline{\mathrm{K}} 2 / \overline{\mathrm{SP} 2}
$$

Strength Parameters

Five parameters completely specify intact rock and joint resistance properties within the slope: intact rock cohesion (C_{r}), intact rock friction angle $\left(\Phi_{r}\right)$, joint cohesion $\left(C_{j}\right)$, joint friction angle (Φ_{j}) and ultimate friction angle ($\Phi_{u l t}$). Of these, C_{r} and Φ_{j} are most critical with respect to reliability.

Intact rock cohesion $\left(C_{r}\right)$ is defined as the intersection of the linear portion of the intact rock failure envelope with the shear stress axis. C_{r} is assumed to be twice the tensile strength (T_{S}) of the intact rock - see Figure 5.1.

At relatively low stresses (low compared to C_{r}) within a rock slope, intact rock resistance is a function of the cohesive (tensile) component of resistance. Only at relatively high stress levels can the frictional component of resistance (Φ_{r}) play a role. One of the basic assumptions of the model is that the state of stress within the slope is low compared to C_{r}. For most slopes in which depth does not exceed 150 ! and C_{r} is greater than 25 Ksf , the low stress assumption is valid and intact rock resistance is essentially independent of Φ_{r} (O'Reilly, 1980).

FIGURE 5.I INTACT ROCK FAILURE ENVELOPE

The ultimate friction angle ($\Phi_{u l t}$) is important in the calculation of intact rock resistance only for high stress levels, higher than those at which Φ_{r} becomes significant. One may therefore conclude that the ultimate friction angle ($\Phi_{u l t}$) does not affect reliability in the stress range under consideration.

Joint friction angle (Φ_{j}), which is the angle of the joint failure envelope, is the parameter that generally determines the resistance properties of joints; see Figure 5.2.

Since rock bridges ususally fail at low strains before joint frictional resistance is fully mobilized, it may not be wise to depend on frictional resistance for the purpose of determining stability. Rather, it is avisable to use reduced values of Φ_{j}, at least for the purpose of sensitivity analysis.

Joint cohesion $\left(C_{j}\right)$ is defined as the intersection of the joint failure envelope with the shear stress axis (see Figure 5.2). Unless joints are filled with cohesive material, joints do not possess a true cohesive component of resistance since they are unable to resist tensile stresses. Consequently, C_{j} may be set equal to zero.

The unit weight of intact rock (γ_{r}) affects reliability through. its influence on resistance and driving forces. In all cases analyzed here, γ_{r} has been set equal to 0.15 KSF . The effect of varying γ_{r} was not studied because of its small variability compared to other parameters.

5.4 Dependence of Reliability on Various Slope Parameters

The computer program of Chapter IV does not directly give the probability of slope failure. Rather, it calculates the probability that an

FIGURE 5.2 JOINT FAILURE ENVELOPE
unstable portion of the slope exists. Calculating P_{f} values as a function of slope depth allows the designer to more closely relate failure probability P_{f} to failure costs.

The probability of failure is defined as the probability of a joint plane exiting within a sepcific height interval and that the exit point is part of a failure path.

5.4.1 Probability of Failure Derived from Safety Margins

The safety margin of a given path through the slope is defined as the difference between the resisting (R) and driving forces (DF) along that path.

The driving force is simply the component of overburden weight acting parallel to jointing of the first joint set:

$$
\begin{equation*}
S M=R-D F \tag{5.1}
\end{equation*}
$$

The force mobilized to resist the driving force, R, is derived from two sources: resistance from the intact rock bridges (or transitions), R_{r} and resistance from the jointed portion of the plane, R_{j} :

$$
\begin{equation*}
R+R_{j}+R_{r} \tag{5.2}
\end{equation*}
$$

As discussed before, intact rock transitions can be in the form of low angle transitions (including in-plane) and high angle transitions. Thus resistance R_{r} is the sume of the respective components:

$$
\begin{equation*}
R_{r}=R_{r L}+R_{r H} \tag{5.3}
\end{equation*}
$$

where the low angle component $R_{r L}$ is given by

$$
\begin{equation*}
R_{r L}=\tau_{\alpha} \times d_{L} \tag{5.4}
\end{equation*}
$$

in which d_{L} is the total length of low angle transitions and τ_{α} is the peak shear mobilized for low angle transitions. The latter quantity is given by

$$
\begin{equation*}
\tau_{\alpha}=\frac{1}{2} C_{r} \sqrt{2 c+T} \tag{5.5}
\end{equation*}
$$

where C_{r} is the intact rock cohesive strength and $c=\sigma_{\alpha} / C_{r}$
with σ_{α} the stress acting normal to the joint plane.
The parameter τ_{α} can be estimated from

$$
\begin{equation*}
\tau_{\alpha}=\frac{1}{2} C_{r} \sqrt{2 C+1} \quad \approx \quad \frac{1}{2} C_{5} \approx T_{S} \tag{5.6}
\end{equation*}
$$

where T_{S} is the tensile strength of intact rock. Consequently, the total resistance contribution due to low angle transitions through intact rock is approximately

$$
\begin{equation*}
R_{r L} \approx T_{s} d_{L} \tag{5.7}
\end{equation*}
$$

The second component of intact rock shear resistance, $\mathrm{R}_{r H}$, is derived from all high angle transitions between joint planes. Resistance for high angle transitions has been derived previously (Chapter 2) as

$$
\begin{equation*}
R_{r H}=T_{s} x \tag{5.8}
\end{equation*}
$$

where X is the distance separating the joint planes between which transition takes place (for transitions between planes of the first set, other than in plane transitions).

If the sume of the lengths, x, of all such transitions along a given path is d_{H}, the total resistance derived from high angle transitions is simply

$$
\begin{equation*}
R_{r H}=T_{s} d_{H} \tag{5.9}
\end{equation*}
$$

Thus the total resistance of intact bridges can be expressed as

$$
R_{r}=R_{r L}+R_{r H}=T_{s}\left(d_{L}+d_{H}\right)
$$

where d_{L} and d_{H} are independent of the strength parameters C_{r} and Φ_{j}. Joint resistance $\left(R_{j}\right)$ can be expressed in a simple form:

$$
\begin{equation*}
R_{j}=W^{\prime} \cos \alpha 1 \tan \Phi_{j} \tag{5.11}
\end{equation*}
$$

The quantity W^{\prime} is the weight of rock that overlies the jointed portion of the path, as shown in Figure 5.3. Hence, W^{\prime} is not larger than the actual weight of rock (W) overlying the critical path. W' is a geometric property of the path.

The safety margin of a path can be derived from the above expressions:

$$
\begin{equation*}
S M=R_{r}+R_{j}-W \sin \alpha 1=T_{S}\left(d_{L}+d_{H}\right)+W^{\prime} \cos \alpha 1 \cdot \tan \Phi_{j}-W \sin \alpha 1 \tag{5.12}
\end{equation*}
$$

FIGURE 5.3 EFFECTIVE WEIGHT (W') OVERLYING JOINTED PORTION OF PATH

Finally, the unit safety margin is defined here as the safety margin divided by the length $\left(\ell_{j}\right)$ of the joint plane

$$
\begin{equation*}
U S M=S M / \ell_{j} \tag{5.13}
\end{equation*}
$$

where the length ℓ_{j} depends on the exit height (h) of the joint plane on the slope face - (see Figure 5.3):

$$
\ell_{j}=h_{i} / \sin \alpha 1
$$

Probability of Failure
For each exit point (i.e., for each joint plane) in one realization, a number of critical paths are possible, but only one is most critical. Also for each given realization of the jointing pattern, there are usually a number of exit points and hence of critical paths within a given height interval. The probability of failure, P_{f}, within that interval is the percentage of those ciritical paths with zero or negative safety margins; quantitatively
$P_{f}=\{($ Number of Critical Paths) $S M \leq 0 /$ (Total Number Critical Paths) $\} \times 100$

5.5 Parametric Study

5.5.1 Introduction

The parametric study is carried out by varying the parameters, one at a time, and observing the effect on slope reliability. Each parameter is described in a separate subsection in this chapter, and for purposes of clarity, each subsection has the same basic structure:

1. Each subsection begins by defining the input variable whose effect on reliability is under consideration. Program outputs are then given and conclusions are drawn. Runs are divided into groups called "cases", each case consisting of a number of runs with different simulated realizations of joint patterns. For each group of cases, all parameters are held constant, except for the parameter in question.
2. Next, the effect of varying the parameter on the probabilities of failure at various depths are examined. Relevant data plots are included.
3. A particular height interval is selected to examine how the probability of failure of this interval varies within each case. The height interval selected in all cases is the interval from 90 to 100 ft . This is also the deepest interval in the analysis and is usually the most sensitive to parameter variations.

For each case consisting of a given set of input parameters all are held constant except one. The probability of failure is plotted as a function of the parameter under consideration.
4. Each subsection ends with a summary of results which stress the practical significance and relative importance of the variable with respect to slope safety.

The input parameters examined are, in order of treatment: intact rock cohesion $\left(C_{r}\right)$, joint friction angle $\left(\Phi_{j}\right)$. Then for joint set one: mean joint length ($\overline{\mathrm{JL}} 1$), mean joint plane persistence ($\overline{\mathrm{K}} 1$), mean joint plane spacing ($\overline{\mathrm{SP}} 1$) and joint intensity ($\overline{\mathrm{I}} 1$), and for joint set two: mean joint length ($\overline{J L} 2$), mean joint plane persistence ($\bar{K} 2$), mean joint plane spacing ($\overline{\mathrm{SP}} 2$) and joint intensity (I2). Finally we will examine the angle of slope face inclination (θ), the angle of joint inclination for setone ($\alpha 1$) and the angle of joint inclination for set two ($\alpha 2$). Variables and their range of values used in the parametric study are listed in Table 5.1.

The effect of varying each parameter is measured in terms of the mean and standard deviation of the safety margin ($\overline{S M}, S M$), the unit safety margin ($\overline{U S M}, U \tilde{S} M$) and the apparent persistence ($\bar{K}_{a}, \tilde{K}_{a}$). The distribution characteristics are used to derive the probability failure. Most of the sensitivity results will be presented as relations between distribution characteristics of this type and vertical distance from the slope apex to the midpoint of a height interval. P_{f} as a function of depth is also calculated.

Three functions are noticed in the following analysis. Namely, critical persistence $\left(K_{C}\right)$, the index of reliability (β) and the probability of a joint plane which is 100% continuous at a given depth (P_{1}).

Critical persistence (K_{C}) is defined as the persistence required along a joint plane at a given depth to yield a zero safety margin, SM. Solving for the critical persistence (K_{C}) of this plane requires the calculations of d_{c}, the critical rock bridge length, such that $\mathrm{Si}=0$.

TABLE 5.1

RANGES IN INPUT PARAMETER VALUES

PARAMETER	RANGE OF VALUES
Intact Rock Cohesion, $\mathrm{C}_{\text {r }}$	$8-500 \mathrm{Ksf}$
Joint Friction Ange1, Φ_{j}	$0-40^{\circ}$
Mean Discontinuity Length (set 1), JL1	10-40'
Mean Persistence-Constant Joint Plane Spacing (set 1) $\overline{\mathrm{K}} 1 \theta\|\overline{\mathrm{SP}} 1\|$	10-80\%
Mean Joint Plane Spacing - (set 1), $\overline{\text { SP1 }}$	$2-10^{1}$
$\begin{aligned} & \text { Mean Persistence - Constant Intensity } \\ &(\text { set 1), } \overline{\mathrm{K} 1} \theta\|\overline{\mathrm{I}} 1\| \end{aligned}$	10-50\%
Mean Discontinuity Length (set 2), JL2	10-40'
```Mean Persistence-Constant Joint Plane Spacing (set 2), \overline{K}2 ө \|.\overline{SP2 }```	10-80\%
Mean Joint Plane Spacing-(set 2), $\overline{\mathrm{SP}} 2$	2-15
$\begin{aligned} & \text { Mean Persistence-Constant Intensity (set } 2 \text { ), } \\ & \frac{\mathrm{K} 2}{} \theta\|\overline{\mathrm{I}} 2\| \end{aligned}$	10-50\%
Rock Slope Face Inclination, $\theta$	50-90
Joint Plane Inclination (set 1)- $\alpha 1$	10-80
Joint Plane Inclination (set 2)- $\alpha 2$	11-180 ${ }^{\circ}$
Intact Rock Friction Angle $\Phi_{\text {R }}$	$30^{\circ}-40^{\circ}$

$\mathrm{K}_{\mathrm{c}}$ may be calculated from the following relation (from O'Reilly - 1980):

$$
K_{c}=\left(1-\frac{d_{c}}{d_{j}}\right) 100
$$

where $d_{c}$ is calculated as (from 0'Reilly - 1980):

$$
d_{c}=\frac{2 W\left(\sin \alpha 1-\cos \alpha 1 \tan \Phi_{j}\right)}{c_{r}\left(\sqrt{2 c+1}-2 c \tan \Phi_{j}\right)}
$$

and by rearranging variables we get (from 0'Reilly - 1980):

$$
K_{c}=1-\frac{2 c\left(\tan \alpha 1-\tan \Phi_{j}\right)}{\sqrt{2 c+1}-2 c \tan \Phi_{j}} \quad \times 100
$$

where $C_{r}$ is intact rock cohesion, $l_{j}$ is the joint plane length, $d_{c}$ is the length of intact rock bridges along the joint plane, $\sigma_{a}$ is defined as the average stress of overburden weight applied normal to the joint plane. Quantitatively (referring to Fig. 5.3):

$$
\begin{aligned}
& \sigma_{a}=W \cos \alpha 1 / l_{j} \text { where } W \text { is calculated as: } \\
& W=\frac{1}{2} \alpha_{r} h^{2}(1 / \tan \alpha 1-1 / \tan \Phi)
\end{aligned}
$$

and $\sigma_{r}$ is rock unit weight while $\ell_{j}$ is quantitatively defined as:

$$
l_{j}=h / \sin \alpha 1
$$

and $c$ is $\alpha_{a} / C_{r}$

The reliability index $(\beta)$ is the difference between the critical persistence and the mean apparent persistence measured in terms of standard deviations of apparent persistence. A negative reliability index implies an unsafe slope while a positive index implies a stable slope. $\beta$ can be calculated as follows:

$$
\beta=\frac{\mathrm{K}_{\mathrm{c}}-\overline{\mathrm{k}}_{\mathrm{a}}}{\tilde{\mathrm{~K}}_{\mathrm{a}}}
$$

In other words, $\beta$ is the number of standard deviations between the critical state and the most likely state; the latter obtained from a model run.

The theoretical lower bound probability of failure, $P_{1}$, is calculated by the following equation (from 0'Reilly - 1980):

$$
P=\bar{K}[\exp (-h / J L 1 * \sin \alpha 1)]
$$

where $\bar{K}$ is the mean joint plane persistence.
This closed form equation is to be used as an approximation for predicting slope reliability, However, the admissability of such usage will be examined in the parametric study.

### 5.5.2 Effect of Intact Rock Cohesion on Slope Reliability

Intact rock cohesion $\left(C_{r}\right)$ has been defined as the intercept of the linear portion of the intact rock failure envelope with the shear stress axis. It is assumed to equal twice the intact rock tensile strength ( $T_{S}$ ). Since failure of a rock bridge is assumed to occur in tension, $C_{r}$ is the only parameter needed to calculate intact rock bridge resistance.

Four cases, each consisting of three runs, are analyzed to examine the effect of intact rock cohesion on rock slope reliability. The range of values for $C_{r}$ is varied from 25 to 500 ksf . Following is a brief description of each case:

Case \#1: Mean joint persistence $(\bar{K})$ is set equal to 50 percent and mean joint length ( $\overline{\mathrm{JL}}$ ) is set equal to 40 feet.

Case \#2: Same as the above except that mean joint persistence $(\bar{K})$ is increased to 75 percent.

Case \#3: Identical to Case \#1 except that the mean joint length of the first set ( $\overline{\mathrm{JL}} 1$ ) is reduced to 15 feet.

Case \#4: Also identical to Case \#1 except that the mean joint length of the second joint set ( $\overline{\mathrm{JL}}$ ) is reduced to 15 feet.

Thus, the influence of intact rock cohesion is studied in cases when joint persistences are moderate and joint lengths are high (Case \#1), when joint persistences are high and joint lengths are high (Case \#2), when joint persistences are moderate and the mean joint length of the first set is small while the mean joint length of the
second set is high (Case \#3) and finally when persistences are moderate and mean joint lengths in both sets are low (Case \#4).

## The Effect of Intact Rock Cohesion $\left(C_{r}\right)$ on the Probability of Failure

 $P_{f}$ (h)The effect of varying $C_{r}$ on $P_{f}(h)$ while holding all other input parameters constant is schematically shown in Figure 5.4. For a given $h$, program output showed that the probability of failure increases when $C_{r}$ decreases. The probability of failure also increases as a result of increasing the driving forces which increase with depth due to the overburden weight.

## The Probability of Failure as a Function of Intact Rock Cohesion

The influence of $C_{r}$ can be seen clearly in Figure 5.5 where the number of realizations and the jointing patterns are kept constant such that changes in results are caused by variations in $C_{r}$. In Figure 5.5 $P_{f}$ is plotted as a function of $C_{r}$ for the four cases (1, 2, 3 and 4) described previously. In comparison to O'Reilly's (1980) findings, $P_{f}$ here, is approximately a linear function of $C_{r}$. For slopes with a single set of joints, the probability of failure is less sensitive to changes in cohesion of intact rock (O'Reilly 1980). From program output, $P_{f}$ increases rapidly as $C_{r}$ decreases below 100 ksf. For $C_{r}$ greater than 100 ksf , the probability of failure decreases from approximately $35 \%$ to $3 \%$ when $C_{r}$ equals 500 ksf .

At a given depth ( $h=90-100^{\prime \prime}$ ), comparing cases 2 \& 4 with case 3 shows that decreasing the mean joint length of the first set ( $\overline{\mathrm{JL}} 7$ ) does not effect the


Figure 5.4 Effect of Intact Rock Cohesion ( $C_{r}$ ) on the Probability of Failure $P_{f}(h)$

$$
\begin{aligned}
& C_{r}=25-500 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \alpha 1=30^{\circ} \quad \alpha 2=60^{\circ} \\
& H=90^{\circ}-100^{\circ}
\end{aligned}
$$



Figure 5.5 $\quad P_{f}$ as a Function of Intact Rock Cohesion ( $\mathrm{C}_{\mathrm{r}}$ )
dependence of $P_{f}$ on $C_{r}$ except at lower $\overline{\mathrm{JL}}$ (Case \#3). This may be due to the presence of relatively long joints of the second set which increase the persistence of potential failure paths. One may expect slopes with two joint sets to be more sensitive to changes in $C_{r}$. From Figure 5.5, the influence of $C_{r}$ on reliability $\left(P_{f}\right)$ can be summarized by the following:

1. As expected, decreasing $C_{r}$ has the effect of increasing $P_{f}$ at any given height $h$. The magnitude of this increase grows substantially with depth.
2. Beyond a certain value, depending on other input parameters, $C_{r}$ no longer has a significant effect on $P_{f}$ and $P_{f}$ approaches in value the probability of existence of a 100 percent persistent joint. For failure to occur the case with high joint persistences and long joints, $C_{r}$ must be in the high range ( 500 ksf ) so that the probability of failure corresponds to the probability of a fully persistent joint. For moderate joint persistence and low joint lengths, $C_{r}$ must be greater than approximately 100 ksf for the above condition to take place.

## Effect of Intact Rock Cohesion on Apparent Persistence

In Figures 5.6 through 5.9, mean apparent persistence ( $\bar{K}_{a}$ ), mean plus one standard deviation of apparent persistence ( $\bar{K}_{a}+\tilde{K}_{a}$ ) and critical persistence $\left(K_{C}\right)$, are plotted as a function of $C_{r}$ for the same four cases described previously. In all, computer output revealed that

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{r}}=25-500 \mathrm{ksf} \quad \theta=80^{\circ} \quad \alpha 1=30^{\circ} \quad \alpha 2=60^{\circ} \\
& \mathrm{H}=90-100^{\circ} \quad \Phi_{j}=15^{\circ} \quad \overline{\mathrm{JL}}=40^{\circ} \quad \overline{\mathrm{SP}}=15^{\prime}
\end{aligned}
$$



Figure 5.6 Effect of Rock Cohesion ( $\mathrm{C}_{\mathrm{r}}$ ) on Apparent Persistence ( $\mathrm{K}_{\mathrm{a}}$ ), Case 1

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{r}}=25-500 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \propto 1=30^{\circ} \quad \propto 2=60^{\circ} \\
& \mathrm{H}=90-100^{\circ} \quad \Phi_{j}=15^{\circ} \quad \overline{\mathrm{JL}}=40^{\circ} \quad \overline{\mathrm{SP}}=10^{\circ}
\end{aligned}
$$



Figure 5.7 Effect of Rock Cohesion ( $C_{r}$ ) on Apparent Persistence. $\left(K_{a}\right)$, Case 2

$$
\begin{gathered}
C_{r}=25-500 \mathrm{ksf} \quad \theta=80^{\circ} \quad \propto 1=30^{\circ} \quad \propto 2=60^{\circ} \\
H=90-100^{\circ} \quad \Phi_{j}=15^{\circ} \quad \overline{\mathrm{JL}} 1=15 \quad \overline{\mathrm{JL}} 2=40^{\circ} \\
\mathrm{SP}=10^{\prime}
\end{gathered}
$$


$\begin{aligned} \text { Figure 5.8 } & \text { Effect of Rock Cohesion }\left(C_{r}\right) \text { on } \\ & \text { Apparent Persistence }\left(K_{a}\right), \text { Case } 3\end{aligned}$

$$
\begin{aligned}
& \mathrm{C}_{r}=25-500 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \alpha 1=30^{\circ} \quad \alpha 2=60^{\circ} \\
& \mathrm{H}=90-100^{\prime} \quad \Phi_{j}=15^{\circ} \quad \overline{\mathrm{JL} 1=40^{\prime} \quad \overline{\mathrm{JI}} 2=15} \begin{array}{l}
\overline{\mathrm{SPRKBR}} 1=\overline{\mathrm{SPRKBR}} 2=40^{\prime} \\
\overline{\mathrm{SP}} 1=\overline{\mathrm{SP}} 2=10^{\prime}
\end{array}
\end{aligned}
$$



Figure 5.9 Effect of Rock Cohesion ( $C_{r}$ ) on Apparent Persistence $\left(K_{a}\right)$, Case 4
variations in $\bar{K}_{a}$ and $\tilde{K}_{a}$ are semi-sensitive to changes in $C_{r}$. Sensitivity appears to increase slightly as $C_{r}$ is decreased. Insensitivity to $C_{r}$ is due to the fact that apparent persistence is essentially a geometric property of the critical path. It is more noticeable in the case where the slope has a single joint set (0'Reilly- 1980). Typically, varying $C_{r}$ does not significantly affect the geometry of the critical path especially in slopes with a single joint set, however, the distribution of $K_{a}$ is affected.

Also plotted in each case is the critical persistence ( $K_{c}$ ) as a function of $C_{r}$. As $K_{c}$ approaches $K_{a}$, one would expect $P_{f}$ to increase substantially. When studying the plots of all four cases, one finds that $K_{c}$ is furthest from $\bar{K}_{a}$ in Case \#3 (Figure 5.8) which consists of runs with short-joint lengths ( $\mathrm{JL}=15$ ). Consequently, one concludes that Case \#3 is the most reliable while Case \#2 is the most unreliable $\left(\bar{K} 1=73 \%, \overline{\mathrm{~J}} 1=40^{\prime}\right.$ ), thus implying the highest probability of failure. As discussed previously, the use of reliability index ( $\beta$ ) values gives a more quantitative description of how $\bar{K}_{a}, \tilde{K}_{a}$ and $K_{c}$ interact to affect reliability. At depths greater than approximately 50 feet.

$$
\begin{aligned}
P_{f} & =f(\beta) \\
\beta & =\frac{K_{a}-K_{c}}{\tilde{K}_{a}}
\end{aligned}
$$

The plots of $\beta$ vs. $C_{r}$ (Figure 5.10) for the three cases (\#1, 2 and 4) under consideration, at a depth interval of 90-100, show that reli-


Figure 5.10 Index of Reliability $(\beta)$ as a Function of Rock Cohesion ( $C_{r}$ )
ability ( $\beta$ ) increases with increasing $C_{r}$. Case \#3 is clearly the most reliable.

In many situations, $\beta$ values can be used to give reasonable estimates of $\mathrm{P}_{\mathrm{f}}$ without going through an entire simulation process. In cases where $\bar{K}_{a}$ and $\tilde{K}_{a}$ change very little when the parameter of interest is varied, values can be estimated from a single model run simply by assuming that both are independent of the parameter analyzed ( $C_{r}$ here). As for the critical persistence $\left(K_{c}\right)$, which is a function of the parameter being analyzed ( $C_{r}$ here too), its value can be calculated from the following closed form equation:

$$
K_{c}=\quad 1-\frac{2 c\left(\tan \alpha 1-\tan \Phi_{j}\right)}{\sqrt{2 c+1}-2 c \tan \Phi_{j}} \quad \times 100
$$

Once $K_{c}$ is determined, $\beta$ values can quickly be found as a function of $C_{r}$ without making additional lengthy simulations.

SUMMARY - Effects of Intact Rock Cohesion on Apparent Persistence
The influence of $C_{r}$ on the distribution of $K_{a}$ at a given depth can be summarized as follows:

1. Increasing $C_{r}$ results in an increase in $\bar{K}_{a}$ and a slight decrease of $\tilde{K}_{a}$ at deep slope intervals. Mean apparent persistence sensitivity to $C_{r}$ increases with depth and with decreasing $C_{r}$.
2. At a deep slope interval, variations in $\bar{K}_{a}$ as a function of $C_{r}$ are moderate, approximately 5 to 12 percent. Variations in $\tilde{K}_{a}$ are much less than those in $\bar{K}_{a}$. In the case of a slope with a single joint set, similar variations are practically nonexistent.
3. For a given height interval, it is possible to calculate the reliability index ( $\beta$ ) for a wide range of $C_{r}$ values from the output of a single simulation.

### 5.5.3 Effect of Joint Friction Angle ( $\Phi j$ ) on Slope Reliability

In most program runs, $\Phi_{j}$ is set equal to zero. A reason for this is that sensitivity of the probability of failure ( $P_{f}$ ) can be better examined if $\mathrm{P}_{\mathrm{f}}$ is high (>90\%). This is done by keeping low the other resistance parameter $\left(\Phi_{j}\right)$. Later on, when studying the effects of the other parameters, both $C_{r}$ and $\Phi_{j}$ are kept at low values so that failure probabilities are high and the influence of the examined parameter on stability could be demonstrated with better precision.

Another reason for setting $\Phi_{j}$ equal to zero has to do with rock mechanics. In the process of calculating total resistance, peak intact rock strength and peak joint strength are fully mobilized. However, this can be unconservative since peak shear resistance along joints is generally mobilized at strains higher than that for intact rock (0'Reilly1980). Also, by keeping $\Phi_{j}$ equal to zero throughout, one achieves
the additional benefit of being able to exclude the effects of water pressures on slope reliability analysis without being unconservative. In other words, the component that could be affected by water pressure should and is here set to zero. Future work is expected to provide information and procedures for including water pressures in reliability analyses.

In some situations, $\Phi_{j}$ can have a large effect on slope stability. This is particularly true in weak rock ( $C_{r}<100 \mathrm{ksf}$ ) as is shown next. The influence of variation of $\Phi_{j}$ on slope reliability is examined in Cases 5, through 8. Detailed plots using computer output data to establish understanding on the influence of $\Phi_{j}$ on rock slope reliability are shown in Figures 5.11 through 5.18.

The Effect of Joint Fricition Angle ( $\Phi j$ ) on the Probability of Failure $P_{f}(h)$

The effects of varying $\Phi_{j}$ on $P_{f}(h)$ are shown in Figure 5.12. As expected, when $\Phi_{j}$ approaches the angle of the first set inclination ( $\alpha 1$ ), the probability of failure approaches that of a joint plane being 100 percent persistent. This fact holds independently of all other jointing and strength parameters. Hence, decreasing $\Phi_{j}$ has the effect of increasing $P_{f}$ at all values of $h$. In all cases, the influences of $\Phi_{j}$ increases with depth.

Figure 5.11 presents $P_{f}$ as a function of $\Phi_{j}$ for the deep interval from 90-100 feet. For very low intact rock cohesion (25ksf), program output shows that $P_{f}$ is very sensitive to variations in $\Phi_{j}$. For high

$$
\begin{aligned}
& C_{r}=25-100 \mathrm{ksf} \quad \theta=80^{\circ} \quad \propto 1=40^{\circ} \quad \propto 2=70^{\circ} \\
& H=90-100^{\circ} \quad \Phi_{j}=0^{\circ}-40^{\circ} \quad \overline{\mathrm{JL} 1=\overline{J L} 2=20^{\prime}} \\
& \\
& \hline \overline{\mathrm{SP}} 1=\overline{\mathrm{SP}} 2=12^{\prime}
\end{aligned}
$$



Figure 5.11 $P_{f}$ as a Function of Joint Friction Angle ( $\Phi_{j}$ )


Figure 5.12 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$ (Qualitative)
$C_{r}=25 \mathrm{ksf} \quad \Theta=60^{\circ} \quad \alpha=40^{\circ}$
$H=90-100^{\prime} \quad \Phi_{j}=0-40^{\circ} \quad \overline{J I}=40^{\circ} \quad \overline{\mathrm{SP}}=5^{\prime}$
No second joint set.

* Notice complete independence of $K_{a}$ from changes in $\Phi_{j}$.


Figure 5.13 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence $\left(K_{a}\right)$
(Figure 6.35) O'Reilly- 1980
cohesion (100 skf), the data plots whose neglible sensitivity to variations in $\Phi_{j}$. In Figure 5.11, one may notice that in rock with moderate joint friction angles ( $10-20^{\circ}$ ) and a high mean joint length first set, reliability is high in depths of up to 100 feet.

## Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence ( $K_{a}$ )

Figures 5.13 through 5.18 are plots of distributions of $K_{a}$ at various $\Phi_{j}$. Figure 5.13 is from O'Reilly - 1980 for comparison. Figure 5.14 shows results from runs in which $C_{r}$ is kept at 25 ksf while $\Phi_{j}$ is varied between 0 and 40 degrees. Sensitivity of $\bar{K}_{a}$ to variations in $\Phi_{j}$ is moderate. In all, $\tilde{K}_{a}$ decreases as $\Phi_{j}$ is increased.

In cases 5, 6, and 7, the critical persistence curve intersects the $\bar{K}_{\mathrm{a}}$ curve at $\Phi_{\mathrm{j}}$ approximately equal to $25^{\circ}$ which is halfway in the range. This implies that at least 50 percent of the critical paths are failure paths.

At higher cohesion values, program output reveals that sensitvity of apparent persistence $\left(K_{a}\right)$ to variations in $\Phi_{j}$ decreases. Contrast to the findings of 0 'Reilly (Fig. 5.13), Figures 5.14 through 5.17 show some sensitivity of $\bar{K}_{a}$ and $\tilde{\mathrm{K}}_{\mathrm{a}}$ to variations in $\Phi_{j}$. This may be explained by critical paths having high persistences and thus implying lesser dependence on intact rock cohesion and greater dependence on the joint friction angle.

Reliability index ( $\beta$ ) values, derived for the data points in Figures 5.14 to 5.17, are plotted in Figure 5.18. As $\Phi_{j}$ increases, the plots of $\beta$ vs. $\Phi_{j}$ for cases 5, 6 and 7 level off. This indicates that as $\Phi_{j}$ increases, reliability increases and becomes less and less

$$
\begin{array}{ll}
C_{r}=25 \mathrm{ksf} & \Theta=80^{\circ} \quad \propto 1=40^{\circ} \quad \propto 2=70^{\circ} \\
H=90-100^{\prime} & \Phi_{j}=0-40^{\circ} \quad \overline{\mathrm{JI}}=20^{\prime} \quad \overline{\mathrm{SP}}=12^{\prime}
\end{array}
$$



Figure 5.14 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence $\left(K_{a}\right)$, Case 5

$$
\begin{aligned}
& C_{r}=100 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \propto 1=40^{\circ} \quad \propto 2=70^{\circ} \\
& H=90-100^{\prime} \quad \Phi_{j}=0-40^{\circ} \quad \overline{\mathrm{JL}}=20^{\circ} \quad \overline{\mathrm{SP}}=12^{\prime}
\end{aligned}
$$



Figure 5.15 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence $\left(K_{a}\right)$, Case 6

$$
\begin{gathered}
C_{r}=50 \mathrm{ksf} \quad \theta=80^{\circ} \quad \alpha 1=40^{\circ} \quad \alpha 2=70^{\circ} \\
H=90-100^{\prime} \quad \Phi_{j}=0-40^{\circ} \quad \overline{\mathrm{JI}} 1=20^{\prime} \quad \overline{\mathrm{JL}} 2=10^{\prime} \\
\overline{\mathrm{SP}}=12^{\prime}
\end{gathered}
$$



Figure 5.16 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence $\left(K_{a}\right)$, Case ?

$$
\begin{aligned}
& C_{r}=50 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \alpha 1=35^{\circ} \quad \alpha 2=70^{\circ} \\
& H=90-100^{\circ} \quad \Phi_{j}=0-35^{\circ} \quad \overline{\mathrm{JL}}=30^{\prime} \quad \overline{\mathrm{SP}}=8^{\prime} \\
& \overline{\mathrm{K}}=50 \%
\end{aligned}
$$



Figure 5.17 Effect of Joint Friction Angle ( $\Phi_{j}$ ) on Apparent Persistence $\left(K_{a}\right)$, Case 8


$$
\begin{array}{ll}
\text { Figure 5.18 Index of Reliability }(\beta) \text { as a Function } \\
& \text { of Joint Friction Angle }\left(\Phi_{j}\right)
\end{array}
$$

dependent on intact rock strength.

Summary - Effects of $\Phi^{\Phi}$
The effect of $\Phi_{j}$ on reliability can be summarized as follows:

1. $\Phi_{j}$ has a strong influence on the reliability of slopes in weak rock (i.e., less than 50 ksf ).
2. As $\Phi_{j}$ increases, while approaching first joint inclination, the influence of intact rock strength decreases until $P_{f}(h)$ is approximately equal to the probability of a joint being 100 percent persistent $\left(P_{\eta}\right)$.
3. Both $\bar{K}_{a}$ and $\tilde{K}_{a}$ can be assumed to be dependent on $\Phi_{j}$. This is a result of the critical paths being less dependent on intact rock cohesion $\left(C_{r}\right)$ as a result of high persistences.

### 5.5.4 Effect of First Set Mean Joint Length (JL1)

In a rock slope, joint lengths of the first set are assumed to be exponentially distributed about their mean - JL1. Effects of varying $\overline{\mathrm{JL}} 1$ on rock slope reliability are examined by varying intact rock cohesion and varying mean joint plane spacing of the second joint set.

## Effect of First Set Mean Joint Length ( $\overline{\mathrm{JL}}$ ) on the Probability of

 Failure $P_{f}(h)$From looking at Figure 5.19, one can see that the probability of failure increases with depth. In all depths, computer output
reveals that the probability of failure increases when increasing the mean joint length ( $\overline{\mathrm{J} l}$ ). Generally, increasing $\overline{\mathrm{JL}}$ at any depth does not considerably increase the probability of failure except in the deep sections of the slope (i.e., greater than 80 feet).

## The Probability of Failure $\left(P_{f}\right)$ as a Function of First Set Mean Joint Length ( $\overline{\mathrm{JL}} 1$ )

Figure 5.21 shows plots of $\mathrm{P}_{\mathrm{f}}$ vs. $\overline{\mathrm{JL}} 1$ for cases 6,7 and 8 at a depth of 90-100 feet. From program output, decreasing intact rock cohesion increases the dependence of $P_{f}$ on variations in $\bar{J} 1$ as the figure clearly shows. The curve for $C_{r}$ equal 100 ksf , is approximately equivalent to the 100 percent persistence curve for all $\overline{\mathrm{JL}}$. In other words, as $C_{r}$ approaches the value of 100 ksf , failures are expected to occur along 100 percent persistent planes. A similar trend may be seen in the findings of O'Reilly - 1980, as can be seen in Fig. 5.20.

## Effect of First Set Mean Joint Length (JL1) on Apparent Persistence and

 the Reliability IndexPlots of mean apparent persistence $\bar{K}_{a}$ and mean apparent persistence plus one standard deviation of apparent persistence ( $\bar{K}_{a}+\tilde{K}_{a}$ ) for cases 8, 9, and 10 are shown in Figures 5.24 through 5.26 . Figure 5.23 (figure 6.41 from $0^{\prime}$ Reilly - 1980) is included for comparison purposes. In all cases the variations, of $\bar{K}_{a}$ and $\tilde{K}_{a}$ with varying $\overline{\mathrm{L}} 1$, are small. Therefore, for practical purposes $\bar{K}_{a}$ and $\tilde{K}_{a}$ may be assumed to be constant. Thus, the reliability index values ( $\beta$ ) may be obtained by one simulation for each


Figure 5.19 Effect of Mean Joint Length (Set 1). $\overline{J L} 1$ on $P_{f}(h)$

$$
\begin{aligned}
& C_{r}=25-100 \mathrm{ksf} \quad \theta=60^{\circ} \quad \propto=40^{\circ} \\
& \mathrm{H}=90-100^{\circ} \quad \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JL}}=10-40^{\circ} \quad \mathrm{SP}=5^{\prime} \\
& \overline{\mathrm{K}}=50 \%
\end{aligned}
$$



Figure $5.20 \quad P_{f}$ as a Function of Mean Joint Length ( $\overline{\mathrm{JL}}$ )
(From O'Reilly-1980)

$$
\begin{gathered}
\mathrm{C}_{\mathrm{r}}=25-100 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \propto 2=70^{\circ} \\
\mathrm{H}=90-100^{\prime} \quad \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JI}} 1=10-40^{\prime} \quad \mathrm{SP}=10^{\prime} \\
\overline{\mathrm{K}} 1=50 \% \quad \overline{\mathrm{~K}} 2=50 \% \\
\quad \text { •: } \mathrm{C}_{r}=25 \mathrm{ksf} \\
0: \mathrm{C}_{r}=50 \mathrm{ksf} \\
\square: C_{r}=100 \mathrm{ksf}
\end{gathered}
$$



Figure 5.21 $P_{f}$ as a Function of Mean Joint length ( $\overline{\mathrm{JL}} 1$ ) (Varying C )

$$
\begin{array}{lll}
C_{r}=50 \mathrm{ksf} & \theta=80^{\circ} & \alpha 1=20^{\circ} \quad \alpha 2=70^{\circ} \\
H=90-100^{\prime} & \Phi_{j}=0^{\circ} & \overline{J L} 1=10-40^{\prime} \\
\overline{\mathrm{SP}} 1=10^{\prime} \\
\overline{\mathrm{K}}=50 \% & & \overline{\mathrm{SP}} 2=10-30^{\prime}
\end{array}
$$

O: Case 11, $\overline{\mathrm{SP}} 2=10^{\prime}$
口: Case $12, \overline{\mathrm{SP}} 2=20^{\prime}$

- Case $13, \overline{S P}_{2}=30^{\prime}$


Figure 5.22 $P_{f}$ as a Function of Mean Joint Length (Set 1, JL 1), Effect of Varying Mean Joint Plane Spacing ( $\overline{\mathrm{SP}} 2$ )
$C_{r}=100 \mathrm{ksf} \quad \Theta=60^{\circ}$
$H=90-100^{\circ} \quad \Phi_{j}=0^{\circ} \quad \overline{J I}=10-40^{\circ} \quad \overline{S P}=5^{\prime}$
$\overline{\mathrm{K}}=50 \%$


Figure 5.23 Effect of Mean Joint Length ( $\overline{\mathrm{JL}}$ ) on Apparent Persistence $\left(K_{a}\right)$
(Figure 6.41) 0'Reilly-1980

$$
\begin{aligned}
& \overline{\mathrm{K}}=50 \% \quad \Theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \alpha 2=70^{\circ} \\
& \mathrm{H}=90-100^{\circ} \quad \Phi_{i}=0^{\circ} \quad \overline{\mathrm{JL}} 1=10-40^{\prime} \quad \overline{\mathrm{SP}}=10^{\prime}
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{r}}=25 \mathrm{ksf}
$$



Figure 5.24 Effect of Mean Joint Length (Set 1, $\overline{J I} 1$ ) on Apparent Persistence ( $K_{a}$ ), Case 8

$$
\begin{aligned}
& \overline{\mathrm{K}}=50 \% \quad \theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \propto 2=70^{\circ} \\
& \mathrm{H}=90-100^{\circ} \quad \Phi_{\mathrm{j}}=0^{\circ} \quad \overline{\mathrm{JI}} 1=10-40^{\circ} \quad \mathrm{SP}=10^{\prime}
\end{aligned}
$$

$$
C_{r}=50 \mathrm{ksf}
$$



Figure 5.25 Effect of Mean Joint Length (Set 1, $\overline{J I} 1$ ) on Apparent Persistence ( $K_{a}$ ), Case 9 .

$$
\begin{aligned}
& \bar{K}=50 \% \quad \Theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \propto 2=70^{\circ} \\
& H=90-100^{\prime} \quad \Phi_{j}=0^{\circ} \cdot \overline{J I} 1=10-40^{\prime} \quad \mathrm{SP}=10^{\prime}
\end{aligned}
$$

$$
C_{r}=100 \mathrm{ksf}
$$



Figure 5.26 Effect of Mean Joint Length (Set 1, $\overline{J L} 1$ ) on Apperent Persistence ( $K_{a}$ ), Case 10


Figure 5.27 Index of Reliability ( $\beta$ ) as a Function Mean First Set Joint Length ( $\overline{J L} 1$ )
case. As expected, $\beta$ values are higher for the case when $C_{r}$ equal to 100 ksf (See Figure 5.27). Notice for example that $\beta$ values for $C_{r}$ equal 100 ksf is the most reliable (highest $\beta$ - Case 10).

## Summary - Effects of Mean Joint Length of Set One (JL1)

The effects of $\overline{\mathrm{LL}}$ on reliability can be summarized as follows:

1. At any given depth in the slope, increasing $\overline{\mathrm{JL}}$ decreases reliability.
2. Unlike the case for a slope with a single set, $\bar{K}_{a}$ and $\tilde{K}_{a}$ are sensitive to variations in $\overline{\mathrm{JL}}$. As a result, $\beta$ values can be obtained from a single model run.

### 5.5.5 Effect of First Set Mean Joint Plane Persistence ( $\bar{K} 1$ ) at Constant Mean Joint Plane Spacing ( $\overline{\mathrm{SP} 1}$ )

Mean joint persistence $(\bar{K})$ is estimated by the two input parameters, the mean joint length ( $\overline{\mathrm{JL}}$ ) and the mean rock bridge length $(\overline{\mathrm{RB}})$ as follows:

$$
\bar{K}=[\overline{\mathrm{JL}} 1 /(\overline{\mathrm{JL}} 1+\overline{\mathrm{RB}})] \times 100
$$

Mean joint plane persistence $(\bar{K})$, an input parameter, should not be confused with the apparent persistence ( $K_{a}$ ) which is an output parameter. $\bar{K}$ of a joint set, is the average percentage of joint segment lengths expected along any joint plane within that joint set. Actual joint plane persistence along any plane can vary dramatically from this mean value. With all this in mind, the following section examines the effect of varying the mean joint plane persistence while holding constant the joint plane spacing ( $\overline{\mathrm{SP}}$ ). The estimate of the first set joint
plane intensity is defined as:

$$
\overline{\mathrm{I}} 1=\overline{\mathrm{K}} 1 / \overline{\mathrm{SP} 1}
$$

Il varies in proportion to $K \bar{T}$. In the section which follows, the effect of varying $\bar{K}$ at a constant $\bar{I}$ is examined.

The influence of $\bar{K} 1$ (at constant $\overline{S P} 1$ ) is studied in two cases. Common input parameters are listed at the top of the pages containing figures 5.29 and 5.30. In case \#14, $C_{r}$ equals 25 ksf while in case \#15, $C_{r}$ equals 100 ksf .

Effect of First Set Mean Joint Persistence (K1) on the Probability of Failure $\mathrm{Pf}_{\mathrm{f}}(\mathrm{h})$

The effect of increasing mean joint plane persistence ( $\bar{K} 1$ ) on the probability of failure is shown in Figure 5.28. At any depth, the value of $P_{f}$ increases with increasing $K 1$. At depths greater than 30 feet, the probability of failure $\left(P_{f}\right)$ increases with increasing depth.

## The Probability of Failure ( Pf ) as a Function of Mean Apparent Per-

 sistence ( $\bar{K} 1$ )Figure 5.29 is the plot of the probability of failure $\left(P_{f}\right)$ as a function of mean joint plane persistence ( $\bar{K} 1$ ). In case $14, P_{f}$ increases from 10 to 100 percent for $\bar{K} 1$ values of 12 to 80 percent. O'Reilly found that the upper limit was 100 percent at 100 percent $\bar{K} 1$. This means that for low cohesion values ( $C_{r}=25$ ) a $100 \%$ persistent plane will definitely fail. With respect to case 15 at hand, a similar trend may be observed although at a slower rate due to the higher cohesion (100ksf). As a result of the introduction of a second set, the smaller first joint set per-


Figure 5.28 Effect of Mean Joint Plane Persistence $(\bar{K})$ on $P_{f}(h)$, Constant Joint Plane Spacing

$$
\begin{aligned}
& C_{r}=25-100 \mathrm{ksf} \quad=80 \quad 1=20 \quad 2=70 \\
& H=90-100^{\prime} \quad \overline{J L} 1=\overline{J L} 2=40^{\prime} \quad \overline{\mathrm{SP}} 1=\overline{\mathrm{SP}} 2=12^{\prime} \\
& \overline{\mathrm{K}}=25-80 \%
\end{aligned}
$$



Figure 5.29 $\quad P_{f}$ as a Function of Mean Joint Plane Persistence ( $\bar{K}$ ), Constant Mean Joint Plane Spacing

$$
\begin{array}{lll}
C_{r}=25 \mathrm{ksf} \quad \Theta=60^{\circ} & \propto=40^{\circ} \\
H=90-100^{\prime} & \Phi_{j}=0^{\circ} & \overline{\mathrm{JI}}=40^{\circ} \quad \overline{\mathrm{SP}}=5^{\prime} \\
\overline{\mathrm{K}}=25-73 \%^{\prime} & &
\end{array}
$$


$\overline{\mathrm{K}} 1$ (\%)

Figure 5.30 Effect of Mean Joint Plane Persistence ( $\bar{K}$ ) on Apparent Persistence ( $\bar{K}_{a}$ )
(Figure 6.46) O'Reilly-1980

$$
\begin{array}{lll}
\overline{\mathrm{K}}=25-80 \% & \theta=80^{\circ} \quad \propto 1=20^{\circ} & \propto 2=70^{\circ} \\
H=90-100^{\prime} & \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JL}}=40^{\prime} & \overline{\mathrm{SP}} 1=5^{\prime} \\
& & \overline{\mathrm{SP}} 2=12
\end{array}
$$

$$
C_{r}=25 \mathrm{ksf}
$$



Figure 5.31 Effect of Mean Joint Plane Persistence $(\bar{K})$ on Apparent Persistence ( $\bar{K}_{a}$ ), Case 14

$$
\begin{array}{lll}
\mathrm{K}=25-80 \% & \theta=80^{\circ} & \propto 1=20^{\circ}
\end{array} \begin{aligned}
& \\
& H=90-100^{\prime}
\end{aligned} \quad \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JI}}=40^{\circ} \quad \overline{\mathrm{SP}} 1=5^{\prime} .
$$

$$
C_{r}=100 \mathrm{ksf}
$$



Figure 5.32 Effect of Mean Joint Plane Persistence
( $\overline{\mathrm{K}}$ ) on Apparent Persistence ( $\bar{K}_{a}$ ), Case 15


Figure 5.33 Index of Reliability ( $\beta$ ) as a Function of Mean Joint Plane Persistence of First Set ( $\overline{\mathrm{K}} 1$ ), Constant Joint Plane Spacing
sistence required to induce failure is possibly due to the higher persistence of critical paths. Consequently, smaller driving forces are required to change a critical path into a failure path.

The Effect of First Set Mean Joint Persistence ( $\bar{K} 1$ ) on Apparent Persistence ( $\bar{K}_{a}$ )

The effect of varying mean joint plane persistence (K1) on apparent persistence can be seen in Fig. 5.31 and 5.32, Fig. 5.30 (from 0'Reilly '80) is included for comparison purposes. Computer output revealed that sensitivity of $K_{a}$ to variations in $\bar{K} 1$ is not as dramatic in a slope with two joint sets as it is in a slope with a single set.

The effect of increasing $\bar{K} 1$ on $K_{a}$ is shown in Fig. 5.32. For the case of a slope with a single joint set (0'Reilly-1980), reliability is more sensitive to changes in $\bar{K}_{1}$ than for cases with two joint sets. In the former, senstivity of $K_{a}$ to variations in $K_{1}$ decreases with increasing cohesion as program output shows. Fig. 5.33 is a plot of reliability, expressed in terms of $\beta$. Reliability increases with increasing $K_{1}$ for both cases examined. Reliability is not much affected by variations in cohesion in the range considered perhaps due to the fact that other parameters overcame the unstable conditions that cohesion variations would cause. 5.5.6 Effect of Mean Joint Plane Spacing of the First Set ( $\overline{\mathrm{SP}}$ ) at Constant Persistence
The effect of mean joint plane spacing of the first set. is examined in three cases, 16,17 and 18. The range of values of $\overline{\mathrm{SP}} 1$ is varied from 3 to 12 feet.

Case 16 examines the influence of $\overline{\mathrm{SP}} 1$ on slopes with weak rock $\left(C_{r}=25 \mathrm{ksf}\right)$ and long mean joint length of the first
$\operatorname{set}\left(\overline{\mathrm{JL}} 7=40^{\prime}\right)$.
Case 17 is similar to case 16 except that $C_{r}$ is set to 100 ksf .

Case 18 is similar to case 16 except that $\overline{\mathrm{J}} 1$ is
reduced to 20 feet.
Effect of Mean Joint Playe Spacing ( $\overline{\mathrm{SP}} 1$ ) on the Probability of
Failure $P_{f}(h)$
Figure 5.34 is a plot of the probability of failure as a function of depth. At any depth, and as one may expect, the probability of failure increases with decreasing mean joint plane spacing. The probability of failure increases with increasing depth. Also shown in Fig. 5.34 is the probability of a $100 \%$ persistent plane ( $P_{1}$ ) which decreases with depth, contrary to the curves that are obtained from the model since in the equation defining $P_{1}$, the probability of failure is directly proportional to mean joint length.

For a slope with either a single joint set or two joint sets, Fig. 5.35-36, program output data shows that an increase in the mean joint plane spacing of the first set causes a decrease in $P_{f}(h)$. A greater $\overline{\mathrm{SP}} 1$ causes failure paths to be more in plane in the case of a single joint set. In the case of two joint sets, an increase in $\overline{\mathrm{SP}} 1$ causes failure paths to be more "in plane" and to use joints of the second set for transitions to above planes when such discontinuities exist in a way that satisfy the algorithm.

## The Probability of Failure $\left(P_{f}\right)$ as a Function of Mean Joint Plane

 Spacing of the First Set ( $\overline{\mathrm{SP}} 1$ )The probability of failure $P_{f}$ as a function of mean joint plane spacing of the first set $(\overline{\mathrm{SP}} 1)$ is shown in Figure 5.36 . In all cases (16, 17 and 18), $P_{f}$ decreases linearly with increasing $\overline{\mathrm{SP}} 1$. Also


Figure 5.34 Effect of Mean Joint Plane Spacing (Set 1, $\overline{\mathrm{SP}}$ 1) on the Probability of Filure with Depth $P_{f}(h)$, Constant Mean Persistence of Set 1 ( $\overline{\mathrm{K}} 1$ )
$C_{r}=25-100 \mathrm{ksf} \quad \Theta=60^{\circ} \quad \alpha=40^{\circ}$
$\mathrm{H}=90-100^{\circ} \quad \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JI}}=20-40^{\prime} \quad \overline{\mathrm{SP}}=2.5-10^{\prime}$
$\overline{\mathrm{K}}=50 \%$
-: Case $10, C_{r}=25, J L=40^{\prime}$
ㅁ: Case 11, $C_{r}=100, J=40^{\prime}$
O: Case 12, $C_{r}=25, \pi=40^{\prime}$


Figure $5.35 \quad P_{f}$ as a Function of Mean Joint Spacing ( $\overline{\mathrm{SP}} 1$ ), Constant $\overline{\mathrm{K}}$
(0'Reilly-1980)
$C_{r}=30-90 \mathrm{ksf} \quad \Theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \propto 2=70^{\circ}$
$H=90-100^{\prime} \quad \Phi_{j}=0^{\circ} \quad \overline{J L}_{1}=20-40^{\prime} \quad \overline{S P}_{1}=3-12^{\prime}$
$\overline{\mathrm{K}}=50 \%$
$\overline{\mathrm{JL}} 2=30^{\circ}$
$\overline{S P} 2=8^{\prime}$
-: Case $16, C_{r}=30 \mathrm{ksf}, \pi 1=40^{\prime}$
口: Case 17, $C_{r}=90 \mathrm{ksf}, \pi 1=40^{\prime}$
O: Case $18, C_{r}=30 \mathrm{ksf}, \quad \mathrm{JL}_{1}=20^{\prime}$


Figure $5.36 \quad P_{f}$ as a Function of Mean Joint Plane Spacing ( $\overline{\mathrm{SP}} 1$ ), Constant $\overline{\mathrm{K}} 1$
plotted are the lower limit expressions $P_{1}$ as functions of $\overline{\mathrm{SP}} 1$ for various $\overline{\mathrm{L}} 1$. As one may expect, the probability of failure curves are higher and further away from the theoretical curves (P1) for slopes with two sets than for slopes with a single set. This may be the result of a higher discontinuity concentration per unit area of the slope's crosssection. The slopes of the three curves are identical and the probability of failure for cases with low intact rock cohesion is higher for a specific $\overline{\mathrm{SP}} 1$. Also, as one may expect, program output shows that decreasing the mean joint length decreases the probability of failure. This can be seen by comparing cases 16 and 18.

## Effect of First Set Mean Joint Place Spacing ( $\overline{\mathrm{SP}} 1$ ) on Apparent Per-

 sistence $\left(\bar{K}_{a}\right)$The effect of varying the mean joint spacing ( $\overline{\mathrm{SP}} 1$ ) on apparent persistence $\left(\bar{K}_{a}\right)$ is shown in Figures 5.37 through 5.39. Shown in the curves is the critical persistence for each case. Program data indicates that mean apparent persistence ( $\bar{K}_{a}$ ) is approximately constant for all values of $\overline{\mathrm{SP}} 1$. Also constant in each case is the standard deviation of apparent persistence ( $\tilde{K}_{a}$ ). As a result, reliability index values ( $\beta$ ) can be calculated from a single simulation for each case shown in Figure 5.40.

### 5.5.7 Effect of First Set Mean Joint Plane Persistence (KI) at Constant Intensity (II)

Intensity of a joint set is defined as the average jointing per unit-sectional area of the rock slope (0'Reilly-1980). In the present study, intensity in either set is defined as follows:

$$
\begin{array}{r}
\mathrm{C}_{r}=30 \mathrm{ksf} \quad \theta=80^{\circ} \quad \propto 1=20^{\circ} \quad \propto 2=70^{\circ} \\
\overline{\mathrm{K}}=50 \% \quad \Phi_{j}=0^{\circ} \quad \overline{\mathrm{JL}} 1=40^{\prime} \quad \overline{\mathrm{SP}} 1=3-12^{\prime} \\
\overline{\mathrm{JL}} 2=30^{\prime} \quad \overline{\mathrm{SP}} 2=8^{\prime}
\end{array}
$$



Figure 5.37 Effect of Mean Joint Spacing (Set 1, $\overline{\mathrm{SP}} 1$ ) on Apparent Persistence ( $\overline{\mathrm{K}}_{\mathrm{a}}$ ), Constant $\bar{K} 1$, Case 16

$$
\begin{array}{lll}
\mathrm{C}_{r}=90 \mathrm{ksf} & \theta=80^{\circ} & \propto 1=20^{\circ} \quad \propto 2=70^{\circ} \\
\mathrm{H}=90-100^{\prime} & \Phi_{j}=0^{\circ} & \overline{\mathrm{JL}} 1=40^{\prime} \\
\overline{\mathrm{K}}=50 \% & \overline{\mathrm{SP}} 1=3-12^{\prime} \\
\overline{\mathrm{JL}} 2=30^{\prime} & \overline{\mathrm{SP}} 2=8^{\prime}
\end{array}
$$



Figure 5.38 Effect of Mean Joint Plane Spacing ( $\overline{S P} 1$ ) on Apparent Persistence ( $K_{a}$ ), Constant $\overline{\mathrm{K}} 1$, Case 17

$$
\begin{array}{llll}
C_{r}=30 \mathrm{ksf} & \theta=80^{\circ} & \propto 1=20^{\circ} & \alpha 2=70^{\circ} \\
H=90-100^{\prime} & \Phi_{j}=0^{\circ} & \overline{\mathrm{JL}} 1=20^{\prime} & \overline{\mathrm{SP}} 1=3-12^{\prime} \\
\overline{\mathrm{K}}=50 \% & & \overline{\mathrm{JL}} 2=30^{\prime} & \overline{\mathrm{SP}} 2=8^{\prime}
\end{array}
$$



Figure 5.39 Effect of Mean Joint Plane Spacing ( $\overline{S P} 1$ ) on Apparent Persistence ( $K_{a}$ ), Constant $\overline{\mathrm{K}} 1$, Case 18


Figure 5.40 Index of Reliability ( $\beta$ ) as a Function of Mean Joint Plane Spacing of the First Set ( $\overline{\mathrm{SP}} 1$ ), Constant Persistence

$$
\begin{equation*}
\overline{\mathrm{I} 1}=\overline{\mathrm{K}} 1 / \overline{\mathrm{SP} 1} \quad \overline{\mathrm{I} 2}=\overline{\mathrm{K}} 2 / \overline{\mathrm{SP}} 2 \tag{5.17}
\end{equation*}
$$

The sum of the above quantities, $\overline{\mathrm{I}}$, yields the total length of joint segments in a given unit area of the slope's cross-section.

$$
\begin{equation*}
\overline{\mathrm{I}}=\overline{\mathrm{I}} 1+\overline{\mathrm{I}} 2 \tag{5.18}
\end{equation*}
$$

An increase in joint intensity results when $\bar{K}$ is increased or $\overline{S P}$ is decreased in Equations 5.17 or 5.18 . Not surprisingly, results of the parametric study discussed previously have shown that this increase in intensity, whether achieved through an increase in $\bar{K}$ or a decrease in $\overline{S P}$, has similar effects on $P_{f}, \bar{K}_{a}$ and $\tilde{K}_{a}$. Thus, it would be desirable to relate slope reliability to jointing intensity. The extent to which this can be done is explored in 3 cases, (19, 20 and 21).

In the 3 cases examined, $\overline{\mathrm{I}} 1$ is kept constant (5.0/ft.) $\overline{\mathrm{K}} 1$ and $\overline{\mathrm{SP}} 1$. are varied such that their ratio is constant. By so doing, it is possible to examine to what extent joint plane reliability is a function of intensity alone rather than of the separate component $\overline{\mathrm{K}} 1$ and $\overline{\mathrm{SP}} 1$. Besides having common parameters, differences between cases are as follows:

Case 19 had $C_{r}$ equal 25 ksf and $\overline{\mathrm{JL}} 1$ equal $40^{\prime}$.
Case 20 had $C_{r}$ equal 8 ksf and $\overline{\mathrm{JL}}$ equal $40^{\prime}$.
Case 21 had $C_{r}$ equal 25 ksf and $\overline{\mathrm{JL}}$ equal $20^{\prime}$.
With increasing depth, the probability of failure increases gradually. At any depth, the probability of failure increases when increasing either SP1 or K1 and that increase is greater at deeper intervals in the slope.


FIGURE 5.41 EFFECT OF MEAN PERSISTENCE ( $\bar{K} I$ ) ON $\dot{P}_{f}(h)$, CONSTANT JOINT INTENSITY Ī
$\bar{K}(\%)$


FIGURE $5.42 P_{f}$ AS A FUNCTION MEAN JOINT PLANE PERSISTENCE $\bar{K}$, CONSTANT JOINT INTENSITY I (FIGURE 6.55-OREILLY-1980)

## Probability of Failure $\mathrm{Pf}_{f}(\mathrm{~h})$

The effect of varying only $\overline{\mathrm{SP}} 1$ and $\overline{\mathrm{K}} 1$ while holding $\overline{\mathrm{I}} 1$ (and a1l other input parameters) constant, is shown in Fig. 5.43. Figure 5.42 is included for demonstration purposes. Computer output reveals that at any depth, increasing both $\bar{K} 1$ and $\overline{S P 1}$ (keeping $\bar{I} 1$ constant) increases $P_{f}$. However, as can be seen in the figure, the magnitude of this increase tends to steadily decrease with increasing depth. Thus at deep intervals (i.e., greater than approximately 60 feet), $P_{f}(h)$ becomes independent of $\bar{K} 1$ and $\overline{\mathrm{SPl}}$ and is only a function of their ratio (II). For the case of a single joint set, Fig. 5.42, failure probabilities are lower than those shown in Fig. 5.43. This is possibly due to sensitivity to joint length of the first set rather than cohesion.

The Probability of Failure ( $P_{f}$ ) as a Function of Persistence ( $\bar{K} 1$ ) Constant Intensity (II)

Figure 5.45 is a plot of the probability of failure $\left(P_{f}\right)$ vs. persistence ( $\overline{\mathrm{K}} 1$ ) and mean joint plane spacing of set one - ( $\overline{\mathrm{SP}} 1$ ) for the three cases mentioned above in which intensity ( $\overline{\mathrm{I}}$ ) is kept constant at I1 $=5$. Other input parameters remain constant and are listed in the figure. In all cases, the probability of failure (for the depth interval from 90 to 100 feet) increases with increasing persistence ( $\bar{K} 1$ ) and of joint plane spacing (SPI).

Effect of Persistence (at Constant $\overline{\mathrm{I}} 1$ ) on Apparent Persistence ( $\bar{K}_{a}$ ) and the Reliability Index ( $\beta$ )

Each of Figures 5.44 through 5.46 contains plots of mean apparent persistence ( $\bar{K}_{\mathrm{a}}$ ), mean plus one standard deviation apparent persistence


FIGURE 5.43 Pf AS A FUNCTION OF MEAN JOINT PLANE PERSISTENCE ( $\bar{K} I)$ AT CONSTANT MEAN Joint intensity (îl)


FIGURE 5.44 VARIABILITY $\mathbb{N}$ APPARENT PERSISTENCE $\left(K_{A}\right)$ AT CONSTANT JOINT INTENSITY
CASE 19


FIGURE 5.45 VARIABILITY IN APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ ) AT CONSTANT INTENSITY (İI)
CASE 20


FIGURE 5.46 VARIABILITY $\mathbb{N}$ APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{A}}$ ) AT CONSTANT JOINT INTENSITY (İI) CASE 21


FIGURE 5.47 INDEX OF RELIABILITY AS A FUNCTION OF PERSISTENCE (OR SPACING) OF THE FIRST SET - CONSTANT INTENSITY (İI)
$\left(\bar{K}_{a}+\tilde{K}_{a}\right)$ and critical persistence ( $K_{c}$ ) for each of cases (19, 20 and 21). When both persistence and joint plane spacing are reduced and the intensity of the first set is maintained, a moderate decrease in $\mathrm{K}_{\mathrm{a}}$ occurs. Figures 5.44 through 5.46 also show that standard deviation of apparent persistence ( $\tilde{K}_{a}$ ), remains essentially constant when $\bar{K} 1$ and $\overline{S P 1}$ are varied while keeping intensity constant.

The net result, of $a$ decreasing $\bar{K}_{a}$ and a more or less constant $\tilde{K}_{a}$ and a constant $K_{C}$ (the critical persistence, $K_{C}$, is independent of $\bar{K} 1$ and $\overline{\mathrm{SP}} 1$ ) on joint plane reliability, as expressed by $\beta$ values, is shown in Figure 5.47.

Plots of $\beta$ as a function of $\bar{K} 1$ (and $\overline{\mathrm{SP}} 1$ ) show similar trends; an increase in $\beta$ (and thus reliability) as $\bar{K} 1$ and $\overline{\mathrm{SP}} 1$ are reduced. At values of $\bar{K} 1$ below 30 percent (or $\overline{\mathrm{SP}} 1$ equal to 6 feet), reliability decreases at a faster rate. Examining slopes with a single joint set reveals a limit beyond which reliability would be a function of intensity ( $\overline{\mathrm{I}} 1$ ) only. However, this condition is not noticeable in the present cases.

### 5.5.8 Effect of Second Set Mean Joint Length (JL2)

Joint lengths of the second set are assumed to be exponentially distributed about $\overline{\mathrm{JL}} 2$. The effect of $\overline{\mathrm{JL}} 2$ on reliability is studied in two cases with common input parameters and is listed in Figure 5.50.

Case \#22: Intact rock cohesion is set to 25 ksf.
Case \#23: Intact rock cohesion is set to 100 ksf
Two additional cases (24 and 25), mainly for observational purposes,
are included. The difference is in the second set mean joint plane spacing ( $\overline{\mathrm{SP}} 2$ ) for each case. Case 24 considers effects when $\overline{\mathrm{SP}} 2$ is set to 5 feet while case 25 considers effects when $\overline{\mathrm{SP}} 2$ is set to $15^{\prime}$. For cases 22 and 23 this parameter is set to 10 feet.

Effect of Second Set Mean Joint Length (JL1) on the Probability of Failure $\mathrm{Pf}_{f}(\mathrm{~h})$

Although the effect of increasing second set mean joint length (JL2) at any depth (h) in the slope is not significant, it is not trivial. This can be seen by comparing $P_{f}(h)$ plots within each of the three cases shown in Figure 5.48. Like most other cases, $P_{f}$ decreases with increasing $h$ up until approximately 30 feet beyond which $P_{f}$ increases with increasing depth. As a result, an approximately constant trend of $P_{f}$ as a function of $h$ occurs for the entire range of JL2 values examined.

The plot of the probability of 100 percent persistence ( Pl ) is also shown in Figure 5.48. Pl is not sensitive to changes in $\overline{\mathrm{J}}$ 2 and only varies with changes in depth. This is due to the fact that P1 is not a function of $\bar{J}$ 2 and thus the probability of failure $\left(P_{f}\right)$ is not much affected by changes in $\overline{\mathrm{J}} 2$ as compared to the results of the analysis of JLl.

Also shown in Figure 5.48 is the variation of the mean apparent persistence as a fiunction of depth (h) for the three runs. $\bar{K}_{a}(h)$ is almost constant for all cases. Figure 5.49 is a plot of the variation of the standard deviation of apparent persistence as a function of depth.


FIGURE 5.48 EFFECT OF MEAN JOINT LENGTH (JOINT SET 2) ON $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$

figure 5.49 Variation in the value of standard dEVIATION OF APPARENT PERSISTENCE WITH DEPTH
$\bar{K}_{a}(h)$ starts at very high values and levels off at depths greater than approximately 60 feet. For all cases and at any depth, $\bar{K}_{a}$ and $\tilde{K}_{a}$ curves almost overlap.

The Probability of Failure ( Pf ) as a Function of Second Set Mean Joint Length (JL2)

Figure 5.50 shows plots of $P_{f}$ vs. $\overline{J L} 2$ for cases 22 and 23 at a depth of 90-100 feet. For low intact rock cohesion ( $C_{r}=25 \mathrm{ksf}$ ), the effect of varying $\overline{J L} 2$ on $\mathrm{P}_{\mathrm{f}}$ is noticeable for $\overline{\mathrm{J}} 2$ values in excess of 20 feet. At higher $C_{r}(100 \mathrm{ksf})$, that effect is erratic and tends to increase slightly with $\bar{J} 2$. In cases 24 and 25 , the effect of varying $\overline{J L} 2$ on $P_{f}$ for different mean second set joint plane spacing is hardly noticeable except at high $\overline{\mathrm{JL} 2}$. This can be seen in Figure 5.51.

Effect of Second Set Mean Joint Length (JL2) on Apparent Persistence and the Reliability Index ( $\beta$ )

Plots for mean, mean plus one standard deviation of apparent persistence $\left(\bar{K}_{a}, \bar{K}_{a}+\tilde{K}_{a}\right)$ and critical persistence $\left(K_{c}\right)$, are shown for cases 22 and 23 in Figures 5.52 and 5.53, respectively.

Program output reveals that variations in second set mean joint length ( $\overline{J L} 2$ ) have no influence on $\bar{K}_{a}$ and $\tilde{K}_{a}$ and thus, the reliability index ( $\beta$ ) can be obtained through one simulation. As one may expect, $\beta$ values for smaller $C_{r}$ are smaller (See Figure 5.54) and consequently reliability is lower (case 23).


FIGURE 5.50 $\mathrm{P}_{\mathrm{f}}$ AS A FUNCTION OF MEAN JOINT LENGTH (SET 2 - JL2) (VARYING $C_{r}$ )


FIGURE 5.5I $\quad P_{f}$ AS A FUNCTION OF MEAN JOINT LENGTH (SET 2 - JL2) EFFECT OF VARYING $\overline{S P} 2$ (MEAN JOINT PLANE SPACING - SET 2)


FIGURE 5.52 EFFECT OF MEAN JOINT LENGTH (SET 2-JL2) ON APPARENT PERSISTENCE (Ka) CASE 22


FIGURE 5.53 EFFECT OF MEAN JOINT LENGTH (SET 2-JL2) ON APPARENT PERSISTENCE $K_{a}$ - CASE 23


FIGURE 5.54 RELIABILITY INDEX ( $\beta$ ) AS A FUNCTION OF THE MEAN JOINT LENGTH OF THE SECOND SET (JL2)

### 5.5.9 Effect of Second Set Mean Joint Plane Persistence ( $\bar{K} 2$ )

at Constant Spacing on Slope Reliability
Second set mean joint plane persistence ( $\bar{K} 2$ ) is estimated by the input parameters second set mean joint length (JL2) and mean rock bridge length ( $\overline{\mathrm{RB}} 2$ ) as follows:

$$
\bar{K} 2=[\overline{J L} 2 /(\overline{J L 2}+\overline{\mathrm{RB}} 2)] \times 100
$$

The influence of $\bar{K} 2$ (at constant $\overline{S P}$ ) is studied in cases 26 and 27 with common input parameters listed in Figure 5.57. In case 26 , $C_{r}$ equals 25 ksf while in case 27 it equals 50 ksf .

Effect of Second Set Mean Persistence ( $\bar{K} 2$ ) on the Probability of Failure Pf (h)

The effect of increasing second set mean joint plane persistence ( $\bar{K} 2$ ) on the probability of failure $P_{f}(h)$ is shown in Figure 5.55 for various $\bar{K} 2$. The value of $P_{f}$, at any given value of $h$, increases with increasing $\bar{K} 2$. For any $\bar{K} 2$ value, $P_{f}$ increases with depth especially at depths greater than approximately 50 feet.

Also shown in Figure 5.55 is mean apparent persistence ( $\bar{K}_{a}$ ) as a function of depth. For depths approximately greater than 20 feet, the value of $\bar{K}_{a}$ levels offfor all values of $\bar{K} 2$. Similar to this is the variation of standard deviation of apparent persistence as a function of depth (See Figure 5.56). Beyond depths of 40 feet, $\tilde{K}_{a}$ as a function of depth is constant and may be obtained from a single simulation for practically any depth.


FIGURE 5.55 EFFECT OF MEAN JOINT PLANE PERSISTENCE (SET 2-K̄2) ON $P_{f}(h)$ CONSTANT MEAN JOINT PLANE SPACING


FIGURE 5.56 VARIATION OF STANDARD DEVIATION OF APPARENT PERSISTENCE WITH DEPTH

## The Probability of Failure ( $\mathrm{Pf}_{\mathrm{f}}$ ) as a Function of Second Set Mean

 Persistence (K2)In Figure $5.57 \mathrm{P}_{\mathrm{f}}$ is plotted as a function of second set mean joint plane persistence ( $\bar{K} 2$ ). Also plotted is the probability of a plane being 100 percent persistence ( P 1 ) as a function of $\bar{K} 2$ for all the input paramters listed. Computer output shows that cases 26 and 27 $P_{f}$ increases from a value of 5 at $\bar{K} 2$ equal to 20 percent up to a value for $\bar{K} 2$ of 40 percent where $C_{r} P_{f}$ levels off at approximately 20 percent for the case with $C_{r}$ equal to 25 ksf and a $\mathrm{P}_{\mathrm{f}}$ of approximately 60 percent for the weaker rock (case 26). This implies that the effects of the second set have a limit which depends on the input paramters used.

## Effects on Apparent Persistence ( $K_{\alpha}$ ) and the Reliability Index ( $\beta$ )

Figures 5.58 and 5.59 are plots of mean $\left(\bar{K}_{a}\right)$ and mean plus one standard deviation ( $\bar{K}_{a}+\tilde{K}_{a}$ ) of apparent persistence and critical persistence for cases 26 and 27 , respectively. For practical purposes, $\bar{K}_{a}$ and $\tilde{K}_{a}$ may be assumed to be constant for varying second set mean persistence ( $\bar{K} 2$ ). For $C_{r}$ equal to 25 ksf , the effect of reliability can be clearly seen as $\bar{K}_{a}$ approaches and exceeds $K_{c}$ with increasing $\bar{K} 2$. At $\bar{K} 2$ equal 30 percent, $\bar{K}_{a}=K_{c}$ and one may expect a $P_{f}$ value close to 50 percent as computer output data shows.

Figure 5.60 is a plot of the rèiability index ( $\beta$ ) as a function of second set persistence ( $\overline{\mathrm{K}} 2$ ). For values greater than 40 percent for second set peristence, $\beta$ values are approximately constant. Reliability is slightly more sensitive to $\bar{K} 2$ when rock strength $\left(C_{r}\right)$ is low (See


FIGURE 5.57 $P_{f}$ AS A FUNCTION OF MEAN JOINT PLANE PERSISTENCE K̄2


FIGURE 5.58 EFFECT OF MEAN JOINT PLANE PERSISTENCE ( $\bar{K} 2)$ ON APPARENT PERSISTENCE $K_{a}-$ CASE 26


FIGURE 5.59 EFFECT OF MEAN JOINT PLANE PERSISTENCE ( $\bar{K} 2-S E T$ 2) ON APPARENT PERSISTENCE $\bar{K}_{a}$-CASE 27


FIGURE 5.60 RELIABILITY INDEX ( $\beta$ ) AS A FUNCTION OF VARYING SECOND SET PERSISTENCE (K̄2)
case 26.

### 5.5.10 Effects of Second Set Mean Joint Plane Spacing ( $\overline{\mathrm{SP}} 2$ )

The effect of second set mean joint plane spacing is studied in two separate cases with common input parameters lised in Figure 5.63. In both cases, $\overline{\mathrm{SP}} 2$ varies between 2 and 10 feet.

Case \#28: Examines the influence of $\overline{\mathrm{SP}} 2$ in slopes with weak rock ( $C_{r}=25 \mathrm{ksf}$ )
Case \#29: Examines the influence of $\overline{\mathrm{SP}} 2$ in slopes with strong rock $\left(C_{r}=100 \mathrm{ksf}\right)$

Effects of Second Set. Mean Joint Spacing (SP2) on the Probability of Failure $P_{f}(h)$

The effect of varying $\overline{\mathrm{SP}} 2$ on the probability of failure is shown in Figure 5.61. Except for the shallow depths, increasing $\overline{\mathrm{SP}}$ 2 has the effect of increasing $P_{f}$. One can see that the influence of $\overline{S P 2}$ on $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$ is most pronounced in weak rock with long mean joint lengths of the second set (case in which $\overline{\mathrm{SP}} 2=6$ and $C_{r}=25 \mathrm{ksf}$ ).

As $\overline{S P} 2$ decreases, the $P_{f}(h)$ curve begins to approach the lower limit curve (the probability of being 100 percent persistent). For rock with high $\bar{K} 1$ and low strength $\left(C_{r}\right)$ joint planes will commonly fail


FIGURE 5.6I EFFECT OF MEAN JOINT PLANE SPACING ( $\overline{\mathrm{SP}} 2$-SET 2) ON $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$
without transitions and $P$ will be high even if $\overline{S P}$ of either set is high (e.g., greater than 20 feet).

The mean apparent persistence ( $\bar{K}_{a}$ ) is insensitive to variations in $\overline{\mathrm{SP}} 2$ at any depth. Mean apparent persistence remains constant with depth as may be seen in Figure 5.61. Figure 5.62 is a plot of the standard deviation of apparent persistence ( $\tilde{K}_{a}$ ) as a function of depth (h). For depths greater than about 40 feet, $\tilde{K}_{a}$ reaches a relatively constant value. Finally, at any depth $\widetilde{K}_{a}$ shows no sensitivity to variations in $\overline{\mathrm{SP}} 2$.

The Probability of Failure $\left(P_{f}\right)$ as a Function of Second Set Mean Joint Plane Spacing ( $\overline{S P} 2$ )

For constant mean joint segments lengths ( $\overline{\mathrm{JL}}$ ), the influence of second set mean joint plane spacing ( $\overline{\mathrm{SP}} 2$ ) on the probability of failure $\left(P_{f}\right)$, in the depth interval from 90 to 100 feet is examined in cases, 28 and 29, as shown in Figure 5.63. Case 28 analyzes a slope with weak rock ( $C_{r}=25 \mathrm{ksf}$ ) while case 29 analyzes a slope with strong $\operatorname{rock}\left(C_{r}=100 \mathrm{ksf}\right)$. For each case, $P_{f}$ is approximately constant and shows a slight decrease for $\overline{S P 2}$ greater than 8 feet. As $C_{r}$ increases beyond $C_{r}$ equal 100 ksf , one would expect that $P_{f}$ would eventually become equal to $P_{1}$ for all $\overline{\mathrm{SP}} 2$.

Effect of Varying Second Set Mean Joint Plane Spacing ( $\overline{\mathrm{SP}} 2$ ) on Apparent Persistence $\left(K_{a}\right)$

From model runs, variations in $\overline{\mathrm{SP}} 2$ have no effect on neither the


FIGURE 5.62 VARIATION OF STANDARD DEVIATION OF APPARENT PERSISTENCE WITH DEPTH


FIGURE $5.63 \quad P_{f}$ AS A FUNCTION OF MEAN JOINT SPACING (SET 2- $\overline{S P} 2$ ) CONSTANT $\bar{K}$


FIGURE 5.64 EFFECT OF MEAN JOINT SPACING (SET 2$\overline{\mathrm{SP}} 2$ ) ON APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ ) CONSTANT $\bar{K}$ - CASE 28


FIGURE 5.65 EFFECT OF MEAN JOINT SPACING (SET 2$\overline{\mathrm{SP}} 2)$ ON APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ ) CONSTANT $\bar{K}$-CASE 29


FIGURE 5.66 RELIABILITY INDEX ( $\beta$ ) AS A FUNCTION OF SECOND SET MEAN JOINT PLANE SPACING $\overline{\mathrm{SP}}$ 2
mean apparent persistence nor the standard deviation of apparent persistence. Figures 5.64 and 5.65 are plots of mean apparent persistence ( $\bar{K}_{\mathrm{a}}$ ) and mean plus one standard deviation of apparent persistence as a function of $\overline{\mathrm{SP}} 2$ for cases 28 and 29. All plots show constant $\bar{K}_{a}$ and $\tilde{K}_{a}$ as $\widehat{\mathrm{SP}} 2$ varies from 2 to 10 feet. The effect of this variation on reliability can be studied from the plots of $\beta$ values shown in Figure 5.66.


Since $K_{C}$ is independent of $\overline{S P} 2$ and remains constant for each case, reliability remains constant with varying $\overline{\mathrm{SP}} 2$. From styidng the $\mathrm{P}_{\mathrm{f}}(\overline{\mathrm{SP}} 2)$ plots, one concludes that case 28 is the least reliable, since it has both the lowest reliability (highest $\beta$ ) values and the highest $\mathrm{P}_{\mathrm{f}}$ values over the range of $\overline{\mathrm{SP}} 2$ values examined.

As one may expect, decreasing $\overline{S P 2}$ reduces reliability but this is only noticeable at spacings less or equal to approximately 8 feet within the parameters used in this section.

### 5.5.11 Effects of Second Set Persistence ( $\bar{K} 2$ ) on Constant Joint <br> Intensity (I2)

The influence of estimated second set persistence ( $\bar{K} 2$ ) at constant intensity $\overline{\mathrm{I}} 2$, is examined in cases $(30,31$ and 32$)$. In all cases, $\overline{\text { I2 }}$ is kept constant ( $\overline{\mathrm{I}} 2=5$ ). It is possible to examine to joint plane reliability as a function of intensity alone rather than
as a function of the separate components $\overline{\mathrm{K}} 2$ and $\overline{\mathrm{SP}} 2$. All cases had the common input parameters listed in Figure 5.69.

Case \#30: Cohesion $\left(C_{r}\right)$ is set to 25 ksf and first set mean joint length (JL2) is set to 20 feet.

Case \#31: Cohesion is set to 8 ksf and $\overline{\mathrm{J}} 1$ is as above.

Case \#32: Cohesion is set to 25 ksf and $\overline{\mathrm{J}} 1$ is set to 5 feet.

## Effect of Second Set Persistence ( $\bar{K} 2$ ) at Constant Intensity (I2)

 on the Probability of Failure $\mathrm{Pf}_{\mathrm{f}}(\mathrm{h})$The effect of varying only $\overline{\mathrm{SP}} 2$ and $\overline{\mathrm{K}} 2$ while holding $\overline{\mathrm{I}} 2$ (and all other input parameters) constant is shown in Figure 5.67. Increasing both $\overline{\mathrm{K}} 2$ and $\overline{\mathrm{SP}} 2$ by the same percentage (keeping $\overline{\mathrm{I}} 2$ constant) increases $P_{f}$ at any depth. However, as shown in Figure 5.67, the magnitude of this increase tends to decrease with depth. Often at depth, $P_{f}(h)$ becomes independent of $\bar{K} 2$ and $\overline{S P} 2$, and is a function of only their ratio; ( $\overline{\mathrm{I}} 2$ ) as indicated by the intersection of the $\mathrm{P}_{\mathrm{f}}$ curves.

Shown in Figure 5.67 is the variation of mean apparent persistence as a function of depth which becomes independent of the K2 values as computer output shows.

Figure 5.68 is a plot of standard deviation of apparent persistence ( $\tilde{K}_{a}$ ) as a function of depth (h). Up to a depth of approximately 50 feet, $\tilde{K}_{a}$ is highly sensitive to changes in depth.


FIGURE 5.67 EFFECT OF MEAN PERSISTENCE ( $\bar{K} 2$ ) ON THE PROBABILITY OF JOINT PLANE FAILURE $P_{f}(h)$ AT CONSTANT SECOND JOINT PLANE INTENSITY İ2


FIGURE 5.68 VARIATION OF STANDARD DEVIATION OF APPARENT PERSISTENCE ( $\tilde{K}_{a}$ ) WITH DEPTH (h)

Figure 5.69 is a plot of the probability of failure $P_{f}$ as a function of $\overline{\mathrm{K}} 2$ (and $\overline{\mathrm{SP}} 2$ ) for the three cases mentioned above ( 30,31 32) in which T2 was kept constant ( $\mathrm{T} 2=5$ ). Other input parameters are also kept constant as shown in Figure 5.69. In all cases, $\mathrm{P}_{\mathrm{f}}$ increases with increasing $\bar{K} 2$ (and $\overline{S P} 2$ ). For very weak rock ( $C_{r}=8 \mathrm{ksf}$ ), $\mathrm{P}_{\mathrm{f}}$ seems to be independent of $\overline{\mathrm{K}} 2$ (or $\overline{\mathrm{SP} 2}$ ) and simply a function of $\overline{\mathrm{I} 2}$ only. With less accuracy, the same may be said for cases 30 and 32 as can be seen in Figure 5.69. As expected, when $\bar{K} 2$ and $\overline{\mathrm{SP}} 2$ approach zero, joint planes are no longer defined. At such a point, only joint intensity can then describe jointing within an area of rock. Hence the probability of failure becomes a function of that ratio.

## Effect on Apparent Persistence ( $\mathrm{K}_{\mathrm{a}}$ ) and the Reliability Index ( $\beta$ )

Figures 5.70 and 5.71 are plots of mean apparent persistence $\left(\bar{K}_{a}\right)$ and mean plus one standard deviation of apparent persistence $\left(\bar{K}_{a}+\tilde{K}_{a}\right)$ of cases 30 and 31 , respectively. In both cases, and over the range of values considered, $\bar{K}_{a}$ and $\tilde{K}_{a}$ may be assumed constant. This indicates that $\bar{K}_{a}$ and $\tilde{K}_{a}$ may be assumed to be functions of intensity which is constant in this section.

For both cases, $\mathrm{K}_{\mathrm{c}}$ is constant and it is neither a function of $\overline{\mathrm{K}} 2$ and $\overline{\mathrm{SP}} 2$. Joint plane reliability can be expressed by $\beta$ values as shown in Figure 5.72. Recall:

$$
\beta=\left[\left(K_{c}-K_{a}\right) / K_{a}\right] .
$$

$\overline{\mathrm{K}} 2$ (\%)


FIGURE 5.69 THE PROBABILITY OF FAILURE $\left(P_{f}\right)$ AS A FUNCTION OF $\bar{K} 2$ AND $\overline{S P} 2$ WITH CONSTANT INTENSITY (İ2)


FIGURE 5.70 EFFECT OF JOINT SET 2 PERSISTENCE (K̄2) ON APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ ) AT CONSTANT INTENSITY (İ2)


FIGURE 5.7I EFFECT OF SECOND JOINT SET PERSISTENCE ( $\bar{K} 2$ ) ON APPARENT PERSISTENCE $\left(K_{a}\right)$ CASE 31


FIGURE 5.72 RELIABILITY INDEX ( $\beta$ ) AS A FUNCTION OF SECOND SET MEAN JOINT PLANE SPACING ( $\overline{\mathrm{SP}} 2$ )

Plots of $\beta$ as a function of $\bar{K} 2$ (and $\overline{\mathrm{SP}} 2$ ) for cases 30 and 31 are given in Figure 5.72 and show identical trends; an increase in $\beta$ (and thus reliability) as $\overline{\mathrm{K}} 2$ and $\overline{\mathrm{SP}} 2$ are increased. However, as $\overline{\mathrm{SP}} 2$ and $\bar{K} 2$ are reduced below values of 6 feet and 30 percent respectively. Note, however, that for different jointing intensities and different combinations of input parameters, the limit values where $\beta$ becomes indpendent of K2 (and SP2) may be different.

### 5.5.12 Effect of Slope Face Angle ( $\theta$ )

The slope face angle $(\theta)$ is defined as the angle between the slope face and the horizontal. The effect of varying $\theta$ on joint plane reliability is examined for three cases, 33 through 35 . Within each case, $\theta$ was yaried between 50 and 90 degrees while holding all other input parameters constant. Common inputs to all 3 cases are listed in Figure 5.75.

Case \#33: Examined the influence of $\theta$ in weak rock

$$
\begin{aligned}
& \left(C_{r}=25 \mathrm{ksf}\right) \text { and long mean joint lengths } \\
& \left(\overline{\mathrm{JL}}=40^{\prime}\right)
\end{aligned}
$$

Case \#34: Examined the influence of $\theta$ in stronger rock

$$
\begin{aligned}
& \left.C_{r}=100 \mathrm{ksf}\right) \text { and long mean joint lengths } \\
& \left(\overline{J L}=40^{\prime}\right)
\end{aligned}
$$

Case \#35: Examined the influence of $\theta$ in weaker rock ( $C_{r}=25 \mathrm{ksf}$ ) and moderate mean joint lengths ( $\overline{\mathrm{J}}=20^{\prime}$ )


FIGURE 5.74 $P_{f}(h)$ AS A FUNCTION OF SLOPE ANGLE $(\theta)$

Effect of Slope Face Angle $(\theta)$ on the Probability of Failure $P_{f}(h)$
The effect of varying the slope face angle ( $\theta$ ) on the probability of failure $P_{f}(h)$ is shown in Figure 5.74. Increasing $\theta$ has the effect of increasing the probability of failure at any given depth $(h)$ in the slope. The effect of $\theta$ becomes increasingly more pronounced with depth.

The Probability of Failure $\left(P_{f}\right)$ as a Function of Slope Face Angle $(\theta)$
The values of the probability of failure ( $P_{f}$ ) at the depth interval from 90 to 100 feet are plotted in Figure 5.75 as a function of slope face angle $(\theta)$. $P_{f}$ increases very gradually with increasing $\theta$ for all cases. The increase is most noticeable in weak rock ( $C_{r}=$ 25 ksf ) and long joint segments ( $\overline{\mathrm{JL}}=40^{\prime}$ ), i.e., in case \#33.

As $\theta$ approaches joint plane inclination in a slope with a single joint set, $P_{f}$ approaches the probability of a joint plane being 100 percent persistent. This is due to the fact that rock overlying the critical path approaches zero.weight.

Due to geometric reasons, $\theta$ does not equal to. first set inclination in this research anywhere at anytime.

For high intact rock cohesion ( $C_{r}=100 \mathrm{ksf}$ ) and moderate mean joint lengths $\left(\overline{J L}=20^{\prime}\right)$, program output shows that a variation of $P_{f}$ with $\theta$ becomes very small. This implies that for fixed $C_{r}$ and $\overline{J L}$, the probability of failure may be assumed constant in the range of high values of intact rock cohesion. This indicates that at high cohesion values ( $>100 \mathrm{ksf}$ ), the probability of failure is no longer a function of


FIGURE 5.75 $P_{f}$ AS A FUNCTION OF SLOPE ANGLE $(\theta)$
slope face angle.

## Effect on Apparent Persistence ( $\bar{K}_{\alpha}$ ) and the Index of Reliability ( $\beta$ )

Figures 5.76 through 5.78 are plots of mean, mean plus one standard deviation apparent persistence and critical persistence for cases 33, 34, and 35 for height interval from 90 to 100 feet. For all the values of $\theta$ examined, $\bar{K}_{a}$ and $\tilde{K}_{a}$ are essentially independent of $\theta$. Insensitivity of $K_{a}$ to $\theta$ variations is of particular interest because in most design situations, $\theta$ and slope height are the only slope parameters which are controlled by the designer. Once $\bar{K}_{a}$ and $\tilde{K}_{a}$ are determined from a single model run, it is possible to investigate joint plane reliability as a function of $\theta$ for a wide range of values of
(all other parameters are assumed constant).
Figure 5.79 is a plot of the index of reliability ( $\beta$ ) for cases 33 through 35. Recall that $\beta$ is defined as follows:


The insensitivity of $K_{a}$ to variations in $\theta$ is useful for the same reasons as insensitivity of $K_{a}$ to $C_{r}$ and $\Phi_{j}$ is useful; it enables estimations of $\beta$ and $P$ values from a single model run for a wide range of $\theta$ values without additional lengthy simulations. Case 34 is of a slope with high reliability as one might expect when comparing it with the others.


FIGURE 5.76 EFFECT OF SLOPE ANGLE ON APPARENT PERSISTENCE $\left(K_{a}\right)$ - CASE 33


FIGURE 5.77 EFFECT OF SLOPE ANGLE $(\theta)$ ON APPARENT PERSISTENCE $\left(K_{a}\right)$ - CASE 34


FIGURE 5.78 EFFECT OF SLOPE ANGLE ( $\theta$ ) ON APPARENT PERSISTENCE $\left(K_{a}\right)$ - CASE 35


FIGURE 5.79 INDEX OF RELIABILITY ( $\beta$ ) AS A FUNCTION OF SLOPE ANGLE ( $\theta$ )

### 5.5.13 Effect of First Set Joint Plane Inclination ( $\alpha 1$ )

The influence of first set joint plane inclination ( $\alpha$ ) ,
measured between the first set joint planes and the horizontal, is examined in two cases ( $36 \& 37$ ). In each case, $\alpha 1$ is varied from 20 to 70 degrees while holding other parameters constant. Common parameters of both cases are given in Figures 5.82 and 5.83.

Case \#36: Examined the influence of $\alpha 1$ in slopes with weak rock ( $C_{r}=25 \mathrm{ksf}$ )
Case \# 37: Examined the influence of $\alpha 1$ in slopes with moderately strong rock ( $C_{r}=100 \mathrm{ksf}$ )

Effect of First Set Joint Plane Inclination ( $\alpha 1$ ) on the Probability of Failure $\mathrm{Pf}_{\mathrm{f}}(\mathrm{h})$

Figure 5.80 is a plot of the probability of failure as a function of height. In the same figures, the mean apparent persistence as a function of depth, (h) is also plotted. Computer output reveals that at any hgieht, and for all $\alpha, P_{f}$ is maximum for the depth interval 90 to 100 feet.

Mean apparent persistence ( $\bar{K}_{a}$ ) as a function of depth is practically constant for depths greater than approximately 20 feet and for any value of $\alpha 1$. This indicates that $\bar{K}_{a}$ is not a function of $\alpha 1$ nor of depth (See Fig. 5.81).

The Probability of Failure ( $\mathrm{P}_{\mathrm{f}}$ ) as a Function of First Set Joint Place Inclination ( $\alpha$ )

Plots of the probability of failure as a function of first set


FIGURE 5.80 EFFECT OF JOINT SET 2 INCLINATION ON $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$


FIGURE 5.8I VARIATION OF STANDARD DEVIATION OF APPARENT PERSISTENCE ( $\tilde{K}_{a}$ ) WITH DEPTH


FIGURE $5.82 \mathrm{P}_{\mathrm{f}}$ AS A FUNCTION OF JOINT SET I INCLINATION ( $\alpha$ I)


FIGURE 5.83 EFFECT OF JOINT SET I INCLINATION ( $\alpha$ I) ON APPARENT PERSISTENCE $\left(K_{a}\right)$-CASE 36
inclination ( $\alpha 1$ ) are given in Figure 5.82. Program output reveals that $P_{f}(\alpha 1)$ is a maximum when $\alpha 1$ equals 40 to 50 degrees. Changing intact rock cohesion $C_{r}$, does not appear to influence the value of $\alpha 1$ at which $P_{f}$ is maximum. This is in agreement of findings by 0'Reilly-1980. supporting this fact.

By referring to Fig. 5.83 \& 5.84 one may conclude the integrity of the model developed in this thesis. It is obvious from both said figures that $K_{a}$ is a minimum at the angle $\alpha$ that coincides with the value used for the intact rock friction angle.

As expected, the weaker rock has a higher probability of failure at all values of $\alpha 1$ examined. The position of the relative maximum remains unchanged at $\alpha 1$, approximately equal to 40 degrees. While the influence of $C_{r}$ is large over the entire range of $\alpha 1$, the influence of joint length becomes increasingly less significant with increasing $\alpha$ l (discussed previously when examining $\overline{\mathrm{JL}}$ ).

## Effect of First Set Joint Plane Inclination ( $\alpha 1$ ) on Apparent Persistence

 $\left(K_{a}\right)$ and on the Index of Reliability ( $\beta$ )Mean apparent persistence $\left(\bar{K}_{a}\right)$, mean plus one standard deviation $\left(\bar{K}_{a}+\tilde{K}_{a}\right)$ and critical persistence ( $K_{c}$ ) are plotted as functions of $\alpha 1$ for cases 36 and 37 . Plots of both cases show similar trends with increasing $\alpha 1$; decreasing $\bar{K}_{a}$ and increasing $\tilde{K}_{a}$ where $\bar{K}_{a}+\tilde{K}_{a}$ remains practically constant. When $\theta$ and $\alpha 1$ approach each other (regardless of which is held constant), transitions become less common (due to the restriction that the critical path cannot intersect the slope face). Since transitions are the mechanisms which increase $\bar{K}_{a}$ and reduce variability in $K_{a}$ (i.e., $K$ ), then it is not surprising that by increasing $\alpha 1$ toward, $\bar{K}_{a}$ is reduced and $\tilde{K}_{a}$ is increased.


FIGURE 5.84 EFFECT OF JOINT SET I INCLINATION ( $\alpha$ I) ON APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ ) - CASE 37

How $\bar{K}_{a}, \tilde{K}_{a}$ and $K_{c}$ interact as functions of $\alpha 1$ to influence joint plane reliability can be seen from plots of $\beta$ (derived from Figures 5.83 and 5.84 ) as a function of $\alpha 1$. Recall that:

$$
\beta=\frac{K_{c}-\bar{K}_{a}}{\tilde{K}_{a}}
$$

In Figure 5.85, $\beta$ values for the height interval 90 to 100 feet are plotted as a function of $\alpha 1$ for both cases 36 and 37 . Case \#37 is more reliable as one may expect for the range of $\alpha 1$ greater than 40-50 degrees.

### 5.5.14 Effect of Second Set Joint Plane Inclination ( $\alpha 2$ )

Second set joint inclination ( $\alpha 2$ ) is the angle between joint planes of the second set and the horizontal. The influence of $\alpha 2$ on joint plane reliability was examined in three cases, 38, 39, and 40 . In each case, $\alpha \mathbf{2}$ was varied between 30 and 80 degrees while holding all other input parameters constant. Common input parameters for all three cases are given in Figures 5.88 through 5.92.

Case \#38: Examined the influence of $\alpha 2$ in slopes in weak rock ( $C_{r}=25 \mathrm{ksf}$ ) and long joints ( $\overline{\mathrm{JL}}=30^{\prime}$ ).

Case \#39: Examined the influence of $\alpha 2$ slopes in moderately strong rock ( $C_{r}=100 \mathrm{ksf}$ ) and long joints ( $\overline{\mathrm{JL}}=30^{\prime}$ ).


FIGURE 5.85 INDEX OF RELIABILITY ( $\beta$ ) AS A FUNCTION OF FIRST SET JOINT PLANE INCLINATION ( $\alpha$ I)

Case \#40: Examined the influence of $\alpha 2$ in weak rock $\left(C_{r}=25 \mathrm{ksf}\right)$ and short joints ( $\overline{\mathrm{JL}}=10^{\prime}$ ).

## Effect of Second Set Joint Inclination ( $\alpha 2$ ) on the Probability of

## Failure $P_{f}(h)$

The effect of varying $\alpha 2$ on $P_{f}(h)$ is shown in Figure 5.86. For any value of $\alpha 2$, the probability of failure in any depth interval does not vary significantly. However, the probability of failure increases with depth for any $\alpha 2$. For the range of $\alpha 2$ values examined, the probability of failure is not a function of $\alpha 2$. This fact is more pronounced in the deeper intervals where data points almost overlap.

Mean apparent persistence as a function of depth is shown in Figure 5.86 . At depths in excess of 20 feet, $\bar{K}_{a}$ becomes constant at all depths and for all a2 values examined. This indicates that $\bar{K}_{a}$ is fully independent of variation in depth of $\alpha 2$ (within at least the range of $\alpha 2$ values examined $-40^{\circ}-80^{\circ}$ ).

Variation of standard deviation of apparent persistence ( $\tilde{K}_{a}$ ) as a function of depth is shown in Figure 5.87. Beyond $40^{\prime}$ depth, $\tilde{K}_{a}$ is constant for any depth and for any of the $\alpha 2$ values being examined.

The Probability of Failure ( $\mathrm{Pf}_{\mathrm{f}}$ ) as a Function of Second Set Joint Plane Inclination ( $\alpha 2$ )

Plots of the probability of failure as a function of second set inclination ( $\alpha 2$ ) for each case are given in Figures 5.88 and 5.89.


FIGURE 5.86 EFFECT OF JOINT SET 2 INCLINATION ( $\alpha 2$ ) ON $P_{f}(h)$


FIGURE 5.87 VARIATION OF STANDARD DEVIATION OF APPARENT PERSISTENCE AS A FUNCTION OF DEPTH


FIGURE $5.88 \quad P_{f}$ ÁS A FUNCTION OF JOINT SET 2 INCLINATION ( $\alpha 2$ )


FIGURE $5.89 \quad P_{f}$ AS A FUNCTION OF JOINT SET 2 INCLINATION ( $\alpha 2$ )

Program output shows that $P_{f}$ tends to increase with increasing $\alpha 2$. The mosit unreliable case is clearly that for weak rock ( $C_{r}=25 \mathrm{ksf}$ ) with long joints ( $\overline{J L}=40^{\prime}$ ). As expected, weakening intact rock strength and increasing joint lengths, both have strong negative influence on reliability. In each of these cases, one of these unfavorable input parameters is improved from a reliability point of view in order to examine the combined effect for a range of $\alpha 2$ values.

Figure 5.88 is a plot of cases 38 and 39 . Both cases are identical except that $C_{r}$ is increased to 100 ksf over the 25 ksf of case \#38. Increasing $C_{r}$ clearly has a large positive effect on reliability for all values of $\alpha 2$ which are less than $90^{\circ}$.

Figure 5.89 is a plot of case \#40. Cases \#40 and 38 are identical except that $\bar{J}$ has been reduced from 40 to 10 feet. As expected from the discussion about the influence of JL on slope reliability, this decrease in $\bar{J}$ results in an increase in joint plane reliability (decrease in $\mathrm{P}_{\mathrm{f}}(\mathrm{h})$ for the values of $\alpha 2$ examined.

## Effect of Second Set Joint Plane Inclination ( $\alpha 2$ ) on Apparent

Persistence ( $K_{a}$ ) and the Index of Reliability
Figures 5.90 through 5.92 support the fact that case 39 is the safest of the three cases $(38-40)$. This may be seen by comparing the distance between $K_{c}$ and $\bar{K}_{a}$ in each of Figures 5.90 through 5.92 in which Figure 5.91 shows that the distance between $K_{c}$ and $\bar{K}_{a}$ is the largest, thus the safest. Index of reliability values ( $\beta$ ) for the three cases are shown in Figure 5.93.


FIGURE 5.90 EFFECT OF JOINT SET 2 INCLINATION ( $\alpha 2$ ) ON APPARENT PERSISTENCE ( $\mathrm{K}_{\mathrm{a}}$ )-CASE 38


FIGURE 5.9| EFFECT OF JOINT SET I INCLINATION ( $\alpha$ I) ON APPARENT PERSISTENCE ( $K_{a}$ )-CASE 39


FIGURE 5.92 EFFECT OF JOINT SET 2 INCLINATION ( $\alpha 2$ ) ON APPARENT PERSISTENCE $\left(K_{a}\right)$-CASE 40


FIGURE 5.93 INDEX OF RELIABILITY ( $\beta$ ) AS A FUNCTION OF SECOND SET JOINT PLANE INCLINATION ( $\alpha 2$ )

### 5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each of the parameters that define a rock slope (geometric and mechanical) are briefly reviewed. Interaction of the various parameters that affect slope safety is described.

### 5.6.1 Effect of Strength Parameters: Interact Rock Cohesion (Cr)

 and Joint Persistence ( $\Phi \mathrm{j}$ )As a conclusion drawn from results of the parametric study, the parameter with the strongest influence on reliability is intact rock cohesion $\left(C_{r}\right)$.

Model runs show that the path of minimum safety margin (critical path) for any joint plane existing on the slope face is almost totally independent of $C_{r}$ and $\Phi_{j}$. Increasing either intact rock resistance $\left(C_{r}\right.$ ) or joint resistance along any path in the slope but does not change the location of the critical path. The safety margin and thus reliability of the critical path must also increase. However, there is a limit to the possible increase in joint place reliability. In other words, there is a point beyond which further increases in $C_{r}$ and $\Phi_{j}$ will not yield significant further increases in reliability. The exact values of $C_{r}$ and $\Phi_{j}$; at which the probability of failure is equal to the probability of a joint plane being 100 percent persistent is a function of the other parameters (joint length, spacing, persistence, etc.).

At high intact rock cohesion values $\left(C_{r}\right)$, program runs have shown that the probability of failure in a particular height interval
is equal to the probability of a joint plane, existing in that interval, is 100 percent persistent. This holds regardless of other parameters even when joint resistance $\Phi_{j}$ equals zero. The study has also shown that when $\Phi_{j}$ is set equal to first set joint plane inclination, the probability of failure for a joint plane existing in a height interval, is approximately equal to $P_{1}$ (the probability of a joint plane being 100 percent persistent.)

An important result of the parametric study is that the distribution of apparent persistence $\left(\bar{K}_{a}, \tilde{K}_{a}\right)$ is insensitive to strength parameter variation $\left(C_{r}, \Phi_{j}\right)$. Thus from a single model run $\bar{K}_{a}$ and $\tilde{K}_{a}$ can be generated for any combination of $C_{r}$ and $\Phi_{j}$; values (all other parameters held constant). By calculating the critical persistence $\left(K_{C}\right)$, one can calculate the indices of reliability $(\beta)$ without additional simulation. $\beta$ values can then be used directly or can be converted to probability of failure values to assess joint plane reliability.

### 5.6.2 Effect of Slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle ( $\theta$ ) and the inclination angies of the two joint sets ( $\alpha 1$ and $\alpha 2$ ). First set inclination ( $\alpha 1$ ) has the greatest influence on reliability. The difference between $\theta$ and $\alpha 1$ strongly influences reliability. As $\alpha$ l approaches $\theta$, reliability increases as a result of a reduction in the driving force (a function of weight of rock between the critical path and slope face). In such situations, the effects casued by second set joints are minimal due to their neutral orientation (i.e., that orientation could not provoke a rock movement within the rock mass). Reliabil-
ity however decreases as the difference between $\theta$ and $\alpha 1$ increases especially for $\alpha 1$ values of $40-50^{\circ}$ and $30-70^{\circ}$ for $\alpha 2$. Reliability increases when first joint set inclination $\alpha 1$ approaches joint frictional resistance due to the ability of joints to resist a higher percentage of the driving force.

### 5.6.3 Effect of Joint Geometry Parameters

Of the joint geometry parameters (mean joint plane spacings $\overline{S P}$, mean joint lengths $\bar{J}$ and mean persistences $\bar{K}$ ), those with the strongest influence on joint plane reliability are the mean joint length of the first set $\bar{J} 1$ and the first set estimated mean persistence $\bar{K} 1$. The effect of each becomes increasingly more pronounced with depth. Decreasing the means of joint plane spacing of both or either set have a strong effect on slope reliability, but not as severe as $\overline{\mathrm{JL}} 1$ and $\bar{K} 1$.

### 5.6 Parametric Study Conclusions

In this section, the major conclusions on the effects of each of the parameters that define a rock slope (geometric and mechanical) are briefly reviewed. Interaction of the various parameters that affect slope safety is described.

### 5.6.1 Effect of Strength Parameters: Interact Rock Cohesion ( $C_{r}$ ) and Joint Persistence ( $\Phi \mathrm{j}$ )

As a conslusion drawn from results of the parametric study, the parameter with the strongest influence on reliability is intact rock cohesion ( $\mathrm{C}_{\mathrm{r}}$ ).

Model runs show that the path of minimum safety margin (critical path) for any joint plane exiting on the slope face is almost totally independent of $C_{r}$ and $\Phi_{j}$. Increasing either intact rock resistance $\left(C_{r}\right)$ or joint resistance for a rock slope while holding all other parameters constant, does not change the locations of paths of minimum safety margin. As a consequence, the safety margin and thus reliability of those critical paths must also increase. However, there is a limit beyond which further increases in $C_{r}$ and $\Phi_{j}$ do not yield significant further increases in reliability. Values of $C_{r}$ and $\Phi_{j}$ which define that limit are a function of other parameters (joint length, spacing, persistence, etc.).

At high intact rock cohesion values $\left(C_{r}\right)$, program runs have shown that the probability of failure in a particular height interval is equal to the probability of a joint plane, existing in that interval, is 100 percent persistent. This holds regardless of other
parameters even when joint resistance $\Phi_{j}$ equals zero. The study has also shown that when $\Phi_{j}$ is set equal to first set joint plane inclination, the probability of failure for a joint plane existing in a height interval, is approximately equal to $\mathrm{P}_{1}$ (the probability of a joint plane being 100 percent persistent.)

An important result of the parametric study is that the distribution of apparent persistence $\left(\bar{K}_{a}, \tilde{K}_{a}\right)$ is sensitive to strength parameter variation $\left(C_{r}, \Phi_{j}\right)$. Thus from a single model run $\bar{K}_{a}$ and $\tilde{K}_{a}$ can be generated for any combination of $C_{r}$ and $\Phi_{j}$; values (all other parameters held constant). By calculating the critical persistence $\left(K_{c}\right)$, one can calculate the indices of reliability $(\beta)$ without additional simulation. $\beta$ values can then be used directly or can be converted to probability of failure values to assess joint plane reliability.

### 5.6.2 Effect of slope Geometry Parameters

Slope geometry parameters are slope depth (h), slope face angle $(\theta)$ and the inclination angles of the two joint sets ( $\alpha 1$ and $\alpha 2$ ). First set inclination ( $\alpha 1$ ) has the greatest influence on reliability. The difference between $\theta$ and $\alpha 1$ strongly influcences reliability. As $\alpha 1$ approaches $\theta$, reliability increases as a result of a reduction in the driving force (a function of weight of rock between the critical path and slope face). In such situations, the effects caused by second set joints are minimal due to their neutral orientation (i.e., that orientation could not provoke a rock movement within the rock mass). Reliability however decreases as the difference between $\theta$ and $\alpha 1$ increases
especially for $\alpha 1$ values of $40-50^{\circ}$ and $30-70^{\circ}$ for $\alpha 2$. Reliability increases when first joint set inclination $\alpha 1$ approaches joint frictional resistance due to the ability of joints to resist a higher percentage of the driving force.

### 5.6.3 Effect of Joint Geometry Parameters

Of the joint geometry parameters (mean joint plane spacings $\overline{\mathrm{SP}}$, mean joint lengths $\bar{J}$ and mean persistences $\bar{K}$ ), those with the strongest influence on joint plane reliability are the mean joint length of the first set $\overline{\mathrm{JL}}$ and the first set estimated mean persistence $\bar{K}$. The effect of each becomes increasingly more pronounced with depth. Decreasing the means of joint plane spacing of both or either set have a strong effect on slope reliability, but not as severe as $\overline{\mathrm{JL}}$ and $\overline{\mathrm{K}} 1$.

The conclusion has been drawn in this thesis that the effect of a second joint set on slope availability, compared to the same slope with a single set, is minor but not marginal or trivial. However, one should not apply this statement to all rock slopes with all joint patterns; at least those not covered by the ranges established in this thesis. One should neither underestimate nor overlook the second set in a rock slope (the second set defined previously as the steeper joint pattern). Weight calculations have concluded stability of a slope with minor effect by the second set. However, potential instability does exist. A slope with two joint sets may prove to be stable when analyzed by the model developed in this thesis, but may become unstable from temperature changes (freezing and thawing), in situ water pressure changes or earthquake loads.

## CHAPTER 6

## DESIGN RECOMMENDATIONS

Perhaps, a matter of controversy would be whether a rock slope safety is critically effected by having two joint sets as compared to one with a single joint set. However, in the work associated with this thesis, the author believes that in most cases, the effect of having a second joint set on rock slope safety, compared to one having a single joint set, is small but never in any case trivial. An example where a second joint set causes instability is when one set is horizontal and the other vertical. Another is when the shallower set has a very low persistance and a short mean joint length and the other joint set has high persistence and a high mean joint length.

Present design methods do not take into account the distribution associated with rock slope parameters due to the complexity of such a task. A rather simple method was developed by 0'Reilly - 1980 that considers results obtained by probabilistic approaches. Briefly, a slope can be classified to fall in one of three equal height intervals (zones), the zone of shallow instability, the zone of stability and the zone of deep instability. Thus the main purpose is to attempt to maximize the probability that a particular slope lies within the zone of stability (See O'Reilly -1980).

A great amount of research is yet to be carried out to establish generally acceptable and dependable methods to analyze rock slopes taking into account the respective uncertainties. The writer strongly recommends additional work and research aided with field data as often as it will be possible.

