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ABSTRACT

Uncertainty in predicting geological conditions in
tunneling often 1leads to design for the worst anticipated

conditions and thus conservative design-construction
approaches. By adapting design to the conditions
encountered during construction potential savings are

possible, however, only 1if changes from one design to
another do not cause costs that exceed the savings.
Optimization of design~construction has thus to consider
the variability of geologic conditions.

In this thesis a probabilistic geological prediction
and updating model based on the concept of Markov processes
is developed. Probabilistic distributions of the geological
parameters and "ground classes" ahead of the tunnel face are
developed. These distributions are modified by observations
made at points along the tunnel axis ahead of the tunnel

face. Before tunnel construction the basic elements
(transition probabilities and transition intensity
coefficients) of the prediction model can be estimated using
frequency data and/or subjective expert knowledge. As

tunnel construction proceeds records of the geological
parameters along the excavated tunnel are made and the
estimates of the basic elements can be updated. B case
study was made in which the state probabilities of the
geological parameters were calculated. Since the parameters
considered were probabilistically independent, ground class
probabilities were readily calculated.

With the probabilistic description of geology,
optimization of design-construction procedures prior to
construction and optimal adaptation during construction
becomes possible.
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List of Symbols

The geological prediction model considers several
geological parameters each of which can take several states.
Each parameter state has an extent and probability of
existence at a certain position along the tunnel. bDue to
these complications a system of symbols employing subscripts

and superscripts has to be used.

Random variables are denoted by capital letters while
their particular realizations are usually denoted by the
corresponding small letters. Matrices are capitalized and
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CHAPTER I

INTRODUCTION

Tunneling involves a high degree of uncertainty arising
from the unknown geological conditions underground and a
lack of precise understanding of the ground-structure
interactions. This uncertainty often translates into a high
cost of tunneling. Since underground construction such as
tunneling and mining is expected to increase to even higher
volumes (estimated $40 billion in the United States alone)
in the near future, efficient tunneling methodologies must
be developed. As a first step to efficiently solve problems

of cost estimation and optimization, a geological prediction

and updating model in tunneling is developed.

In conventional tunneling methods, there is wusually
only one (or a very few) excavation and support design
options for the entire tunnel, This design has to be
determined before tunnel construction and hence a
conservative design has to be adopted based on the worst
expected geological conditions in the tunnel. This
conservatism evidently leads to unecessarily high costs of
tunneling. A new approach has been developed which is
generally known as the observational or adaptable method.
In the observational method different excavation and support
processes are used for different sections of the tunnel,

based on technical and economic considerations. The aim of
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this approach is to minimize the expected cost of tunnel

construction.

Since decisions on choosing among a number of

excavation and support processes for different sections of

the tunnel have to be made, cost optimization in the
observational method can be much more complicated., The role
of gevological prediction is especially important in this
method where uncertainties must be considered. With
probabilistic prediction methods, construction planning

before and during tunneling can be carried out

systematically and optimal strategies can be found.

At the pfesent time geological prediction is usually in

the form of a "best estimate" which represents the
conditions most likely to exist around the proposed tunnel.
This prediction 1is based on the results of exploration,
established geological information and inferences made by

geoclogists. The main disadvantage is that uncertainty is

not considered explicitly. Since "unanticipated" geologies

occur from time to time, this approach is not quite

sufficient for cost estimation and construction planning.

An improvement is made in the Tunnel Cost Model
(Moavenzadeh et al, 1978) which considers the effect of
geological uncertainty on cost estimation. In this model

the tunnel profile is divided into segments inside each of

which only one "“geologic wunit" is assumed to exist (a
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geologic unit is a set of geological conditions which

dictates certain excavation and support processes.) This
assumption of having only one geologic unit inside each
segment is obviously easily violated., If a pre-determined
tunnel segment is not extremely short, there is no reason
why the geological conditions should be the same within that
segment. In addition, there is no systematic procedure
through which geological predictions can be updated as
tunnel construction proceeds., Therefore although the Tunnel
Cost Model can be a satisfactory tool for cost estimation
before tunnel excavation, it cannot be used for construction

planning in search for optimal (cost-minimizing) strategies,

In this thesis a more powerful probabilistic geclogical
prediction ‘and updating model using the Markov process is
proposed. In Chapter I1, technical and economic
considerations required for cost optimization are examined.
The concept of "ground classes" (a set of geological
conditions which dictates certain excavation and support
processes) for individual sections is presented. Chapter
III introduces the Markov process concept adopted by the
geological prediction model. In Chapter IV the geological
prediction model 1is develcoped. The reasons and supporting
evidence for choosing the Markov model are “presented.
Applications of the prediction model and the problem of

parameter interdependences are discussed. Chapter v

considers estimations of transition intensity coefficients
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and transition probabilities (the basic elements of a Markov
process) to be wused in applying the prediction model in
practice. Both frequency-based and subjective probability
derivations are discussed. Chapter VI shows how the
coefficients and probabilities used in the prediction model
can be updated when excavation proceeds and more geological
information is gathered. To exemplify some actual
applications of the concepts developed in this thesis, a
case study on the construction of a water tunnel (7662 feet
long) is made in Chapter VII. Chapter VIII concludes the

thesis.
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CHAPTER 11

THE PERFORMANCE MODEL AND COST OPTIMIZATION

2.1 Introduction

Tunnel construction and planning are greatly affected

by the ground conditions along the tunnel axis. Since

geological conditions often cannot be determined before
excavation, it seems promising to apply methods of decision
analysis under uncertainty so that the expected total
construction cost is minimized. Before describing formal
procedures for cost optimization the general tunnel

construction process and the observational tunneling method

are described.

2,1.1 General tunnel construction process
Two of the main components of tunnel construction are
excavation and support placement. Excavation is the removal

of rock and/or soil by hand, by drilling and blasting, by

machinery or by combinations of methods. It is done in
cycles (rounds) that can have a length between less than one
meter to about four meters depending on standup tiﬁe and on
equipment characteristics. After one or more rounds the
excavation process is stopped to allow for the application
of initial supports to the newly excavated part of the
tunnel. After the initial support is placed excavation is

resumed and the cycle is repeated. At some distance from
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the face the tunnel (wher excavation is taking place)

the final support is applied. 1In cases where the geological

conditions are of high quality, no initial and somtimes no

final supports are required.

2.1.2 Observational tunneling method

In conventional tunnel methods, the excavation and
support processes (full face or partial face excavation,
types of initial support, methods of installation) are to a
large extent predetermined before the constructicon of the
tunnel starts (or at least before the "production phase of
construction.} Only minor changes of these processes are
possible during construction. Consequently the choice of
excavation and support processes are often based on the
worst expected geological conditions because no oOr limited
adaptation is possible and hence over-conservatism is often
inevitable. In contrast the observational tunneling method
allows for adaptation of design during tunneling. Basically
the design is optimized in situ by adapting it to the
observed geological conditions. The observational tunneling

method is composed of the following steps :

1. Exploration --- available information on the particular

geology of the tunnel area is collected and additional

geotechnical exploration is carried out to describe the

engineering properties of the tunnel ground. (This step is
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common to both "conventional" and observational methods.)

2. Preliminary design --- alternate excavation procedures
and support designs for different geological conditions
classified in terms of ground classes (see section 2.2) are
developed. These alternate designs can be modified when
more experience is gained during tunneling. New designs can
be added when unexpected geological conditions occur.

3. Tunnel construction --- appropriate excavation and
support processes are selected for each round based on
observations and monitoring {see below) in the preceding
tunnel sections. Thus, technically and economically optimal
excavation and support procedures are chosen.

4, Obgservation and monitoring --- geological conditions of
newly excavated parts of the tunnel are observed and
recorded. Observation of geological conditions forms the
basis for ground classification and the above-mentioned
selection of excavation and support procedures. Monitoring
of deformations helps to maintain safety and to get a better
understanding of the ground-structure behaviour. Monitoring
will thus indicate if the support performs as anticipated or
if the design has to be changed.

5. Adaptation to particular geological conditions --- the
appropriate excavation and support method for each round is
chosen. Also design is modified based on results of
monitoring. New designs are added if necessary.

6. Steps 3 to 5 are per formed simultaneously and

repetitively during tunneling until construction is
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finished.

The main reason for using the observational method
instead of the conventicnal one is that over-conservatism
can be minimized and hence the tunnel construction costs can
be lowered. In addition, the flexibility of the

Observational approach makes it easier to cope with

unexpectedly adverse situations.

2.2 The performance model

A technical understanding of the interaction of the
tunnel ground with different excavation and support
processes is esgential 1in the choice of them. The

performance model is introduced to describe how a tunnel

section with given geological conditions will perform as a

certain excavation and support process is applied.

The performance model expresses the performance of a

section of the tunnel as a function of the geological

conditions and of the excavation and support processes

applied to that section i.e.

P =f(g, € 8) eoie. (2.1)

where P is the vector of performance parameters such as :

(1) Ground behaviour during excavation (i.e. overbreaks.)

(2) Convergence of tunnel at a fixed distance after initial
support is applied.

(3) Convergence rate at a fixed time after initial support
X
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is applied.
{4) Afterbreaks.
(5) Support performance (e.g., amount of displacement.)
(6) Water inflow during excavation and application of
initial support.
(7) Water inflow after application of initial support.
(8) Time required for construction (including time spent

in excavation and applying initial support.)

g includes all the relevant geological parameters which
affect the choice of excavation and support processes and
the performance of the tunnel after construction. g may
include the following geoclogical parameters :

(1) Rock type.
(2) Faulting.
(3) Degree of jointing (or RQD.)

(4) Availability of ground water at tunnel grade.

(5) Overburden.
(6} 8oil type (e.g. soils with different degrees of

cohesiveness, mixed face - boulders and soil.)

Parameters (1) to (5) are more important in hard rock

tunneling particularly at great depths while parameters (4)

to (6) are more important in soft ground tunneling at

shallow depths.

‘@ is the vector of excavation parameters such as :

(1) Excavation method (e.g. Tunnel Boring Machine,



27

shield, drill and blast, or cut and cover.)

(2) Round length.

(3) Amount of over-excavation.

S contains the support parameters such as :

(1) 1Initial support {(e.g. steel ribs and lagging, rock
bolts with a certain spacing, shotcrete with a
certain thickness (e.g. 3 in, 5 in), liner plates
with a certain thickness and bolt spacing, oOr
segmental lining.}

(2) Final support (e.g. shotcrete with a certain
thickness, cast-in-place concrete with a certain
thickness, or segmental lining.)

(3) Face support (e.g. no face support, breasting, or
shotcrete,)

(4) 1Invert support.

(5} Initial support distance delay (i.e. distance between
tunnel face and section where initial gupport is
applied.)

(6) Initial support time delay (i.e. time between finishing

of excavation and application of initial support.)

(7) Final support time delay.

When examining the above parameters, it can be seen
that some of them are qualitative while the others can be
expressed quantitatively. It is often convenient to

discretize some of the quantitative parameters (if their

states are not already expressed in discrete terms.) For
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example, convergence of the tunnel can be expressed by
values such as 2 inches, 4 inches, 6 1inches, 8 inches or
greater, but not 1.54 inches. Thus, for example, "c (the
symbol for convergence) =3" can mean that the convergence is
6 inches. Thus, basically guantitative parameters can also
be expressed qualitaively (gqualitative parameters are always
discrete.) For example, c=1 can mean that the convergence is
small while c¢=5 can mean that the convergence is
intolerable. In the case of geological parameters, only
discrete states will be used in the geological prediction
model (see Chapter 4) because geological parameters are
either gualitative (e.g. rock type, faulting, c¢ohesiveness
of soil and even sometimes the degree of jointing) or
discrete values are sufficiently accurate for technical

considerations.

2.3 Cost optimization

As discussed in section 2.1, one wants to optimize the
construction of a tunnel section economically and
technically. Thus, for given geological conditions, a
conbination of excavation and support processes should be
selected which results in the smallest cost while the
performance of the tunnel, as derived from relation (2.1),
will be satisfactory. Satisractory performance essentially

means that the tunnel is usable and that sufficient safety

against collapse is maintained. The optimal excavation and
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support processes c¢an be chosen independently for each
tunnel section (round) as will be discussed in section
2.3.1. Ideally, and as described in section 2.3.2, cost
optimization should involve the entire tunnel where the
choice of excavation and support methods for a section
(round) 1is also affected by the conditions in the other

sections.

2,3.1 Optimization of individual sections (rounds) -
"ground classes"”

If cost optimization 1is carried out for every
geological condition g {there is a finite number of possible
geological conditions since all geological parameters are
discrete), it will be found that different sets of
geological conditions require different optimal combinations
of excavation and support processes. It is often convenient
to denote these sets of geclogical conditions by ground
classes (GC) such that if a particular geological condition
gl belongs to a certain GC, the excavation-support process
(ES) corresponding to this GC 1is optimal for gl.
Consequently, the optimal excavation~support process

corresponding to the ground class GCi is denoted by ESi.
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The phrase "ground class”" is in fact borrowed from the

terminolgy of the New Austrian Tunneling Method (NATM) (see

Steiner, 1979) where a certain ground class would dictate a

certain excavation- support method and a "section" is a

round of excavation. In the NATM there are usually about 6

or 7 ground classes.

2.3.2 Optimization involving the entire tunnel -
"cost of change”

S0 far only the cost optimization for individual
sections was discussed. In fact using ESi for GCi is the
optimal choice only if a single section is considered. If
the construction of the entire tunnel is considered,
complications arise because a certain ES requirés man-power,
machinery, and set-up time before it can be applied. When a
currently used ES has to be replaced by another ES for a new

section, the change will involve additional costs needed to

replace or modify equipment and procedures.

Example : (see Figure 2.1)

Section 21 22 23

Figure 2.1 Fffect of cost of change.
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Given : - 3 ground classes and Cl (unit cost of ESl) < C2
< C3;
- ES3 can also be applied to GCl and GC2 with

technically satisfactory performance.

- ES2 can also be applied to GCl1 with technically

satisfactory performance.
Determine : the optimal choice of ES in sections 21, 22,

and 23.

It is probably not justified to use ES2 for section 22

because the cost of change from ES3 to ES2 may well exceed

the saving in constructing section 22 (which is short.)

Therefore the optimal strategy for this part of the tunnel

is to continue using ES3 through section 22 and then change

to ES1 for section 23.

Thus for a given ground class profile, the optimal

strategy for choosing the ES for each section has to be

obtained from considering the construction cost of each

section and the costs of change. In this way the total

construction cost of the tunnel is minimized as a result of

overall planning.

2.3.3 Uncertainties considered
As was mentioned before, the high costs of tunneling

spring in part from uncertainties in geology and

construction which essentially include :
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.

(a) Model uncertainty --- the interaction of the ground
with different excavation and support processes is usually
not known accurately i.e. there 1is8 uncertainty in the
performance relation (2.1.) Probably a performance relation

derived from experiment and theory is applied. The relation

can be updated when construction proceeds and more

observations are made (see Rollin, 1979.)

(b) Geological uncertainty --- the "ground class profile"
is usually not known deterministically before the tunnel is
excavated, Hence the optimal strategy as described in

section 2.3.2 cannot be cbtained before excavation.

(c) Construction uncertainty --- the time and cost
required for applying a certain ES vary due to factors such

as machinery breakdowns, strikes and resource market

£fluctuations.

Due to the above three main types of uncertainties, the
minimum construction cost of the tunnel cannot be estimated
deterministically. But if appropriate probabilistic models
are used to take these uncertainties into account, an
"optimal strategy” can be found which minimizes the expected
cost of construction. The main purpose of this research is
to find an appropriate probabilistic model for geological
uncertainty which can be incorporated into the expected cost

optimization to find the optimal strategy.
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CHAPTER III

THE MARKOV PROCESS

3.1 Introduction

After examining the effect of ground conditions on
tunnel construction decisions (Chapter 1II), the basic
concepts underlying the geological prediction model (which
will be introduced in Chapter 4) are presented in this
chapter, Since geological prediction involves not only
ground parameters but also their respective locations, the
concept of stochastic processes has to be used. A
stochastic process involves random variables which are
functions of a "time" parameter. For example, the number of
people N in a gqueue can be regarded as a random variable
which depends on time. Thus at a given time t, the number
of people is a random function N{t) which has a certain

probability distribution PN(n,t).

An example is shown in Fig. 3.1 where PN(n,t) is the
PMF (probability mass function) of N(t). PN(n,tl) and
P (n,t,) are shown as PMF's of N at times t; and t,
respectively. Thus for example at t=ﬁ., P[N=2] = 0.25 while

at t=t2, P[N=2] = 0.5.

The Markov process (Howard, 1971; Veneziano, 1980;
Cox and Miller, 1965) is one of the best known stochastic
processes and is sophisticated encugh to deal with complex

systems, like the geologic environment. The characteristic
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Figure 3. Example of a stochastic process
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of the Markov process is that of a single-step memory :
past history apart from the most recent event is neglected
in forming predictions about the future. This 1is a very
restrictive condition but the most recent step should
usually be the most important step for forming predictions
about the future. In fact a significant advantage for
assuming a single-step memory instead of a multiple-step
memory is that probability calculations are considerably
simpler and full probability distributions can often be

found.

For a probability distribution Px(x,t) to be governed

by a Markov process, the condition holds that

P (x,t x(t x(t, oo
ME N LIPS {CUPR AP
=Px(x,ti+1|x(ti)) ceees  (3.1)
where x(ti), x(ti_l), ... are the outcomes of the random
variables X(t ), X(t, _), ... respectivelyand t, . > t >
i i-1 i+l i
t. N > «». Thus the history of the past events except the
11—
most recent one has no effect on the probability

distribution of the random variable at a later time.

In the previous example about the number of people in a
queue, 1if ?x(n,t) obeys the Markov process, then the
prediction on N(t") (i.e. P“(n,t*)) depends only on the
number of people known at ; time most recent to t* and not

on the number at any other time before.



In this thesis "time" is equivalent to the position
along the tunnel axis where position is identified by the
distance 1 from a certain fixed point (e.g. the poftal of
the tunnel.) The situation is shown in Fig. 3.2 where the
direction of the advance of construction 1is the positive

direction of 1.

tunnel

h 4
=

bt

Portal tunnel face

Figure 3.2 Definition of "time" in the Markov process.

3.2 Basic elements of the Markov process
Central to the Markov process are the concepts of
state, state transition, and extent. These three basic

elements are introduced in the following sub- sections.

3.2.1 State

The states of‘a random variable are the possible values
that it can take. For example, for the ground parameter
"Rock Type", the parameter states r can be defined as

follows :
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r Definition

1 Schist

2 Metaquartzite
3 Diorite

4 Quartzite

such that "r=3" means that the state of rock ¢type 1is

Diorite,

3.2,2 State transition

A ground parameter X at a certain position 1 can be
regarded as a random variable X{(1l). BAs 1 increases from O,
X(1}) changes its value (see Fig. 3.3.) Each of these
changes 1is called a state transition. If at a certain
position x(1)=i, the probability that the next state is j is
Kij' the transition probability from state i to state 7.
For example, if in Fig. 3.2 x(10)=1, then the probability
that the next state is 2 is PX12° Since the "next state" is
always assumed to be different from the present state,
P =0.

{ii

state transitions take place

s

/ [
2 3 )1

-
"
[

1

[
>

Figure 3.3 State transitions.
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3.2.3 Extent

After a parameter X{1l) has entered into a certain state

i at 10, the interval for which X will remain in state i is

called the extent HX of state i at 10' Hxi can be thought
1

of as the "horizontal thickness"” of state i1 and is depicted

in Fig., 3.4 (kx #1i # j.)

e HX,

X = k i 3
)

Figure 3.4 Extent.

For the continuous space Markov process [in which space
(i.e. position) is measured with a ceontinuous scale]
considered in this thesis, the transition intensity
coefficient c;ﬁ‘of state 1 of parameter X can be defined
such that cvidl is the probability that a state transition

Xi
is made (i.e. the extent terminates) within the
infinitesimal interval dl, given that state i1 exists at the
beginning of the interval (Fig. 3.5.) Thus the probability
that a transition occurs within the interval from 1=1, to

1=1_441 is c_. dl.
1 i

X



+ dl

N o

1

—f l— ai

Figure 3.5 Probability of making a transition

Neglecting the small probability that there 1is more
than one transition within dl, the PDFf of Hxi can be derived
by first considering the CDF (cumulative density funtion) of
HXi:

FHXi(h) = P[Hxi <h] ..... (3.2)

If h is divided into m equal segments of infinitesimal

length dl each, then

P[Hxi>h] Pfno transition occurs within h]

Plno transition occurs within

i

each of the m segments]

m
lim (1 - c__ dl)

K4
M - o
m
= lim (1 - Cy3 h/m)
m —» oo
-C h
= a ZXi

From (3.2), P[Hxi>h] =1 - FHXi(h)

~oxi B
Hence FHXi (h) - 1 - e s 8 0 e (303)

By differentiating both sides of (3.3), the PDF of

extent HX , is given by

-

-

fzm(h)=cﬁe"°x1 ceene (3.4)
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which is the familiar exponential distribution with mean

l/e X,and standard deviation l/CX' . In cther words, the
i i

extent of a state is exponentially distributed under the

single~step memory assumption of the Markov prccess.

3.2.4 Intermediate summary

The elements (state, state transition and extent} of
the continuous space Markov process have been introduced.
The assumption of a single-step memory leads to transition
probabilities PXij and exponential distributions of state
extents (3.4).

3.3 state prediction at a future point

Based on the Markov process concept the probability of
a parameter X being in a certain state at a future point can
be calculated. This probability is of great interest since
the state prediction of X at a point ahead of the tunnel
face is often desired, The situation is depicted in Fig.
3,6 in which the probability of X being in state j at an
interval u from the tunnel face lO is wanted, given
x(lo)=i. This _robability cannot be found easily since
within the interval u any number of transitions (including

no transitions) can take place, It is therefore expedient

to introduce matrix notations which express calculations in

a compact form.
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state = i state = ?

1g
g/ /
— —

Figure 3.6 State prediction.

As will be shown later one needs for predicting states

at "future points" the transition intensity matrix A of

X
parameter X such that
A, = fa_ }
—X Xij
where a = -c (i=7
Xij { Xi 3)
c._ P i#1
Xi Xij (i#3)
Hence é C P c._ P c P )
z1 %1 x12 “x1tas 7t X1 n
o = c P -C_ C P * e C P
—_— 12 X2t X2 X2 X213 X2 Xon
P . L] ] -C
. %o xm1 X
0 0 00 (305)
-EX contains Cx3 and P,{;_.I and hence defines the Markov
process completely. Ei? is especially wuseful in making

state probability predictions which are discussed in the

following sub-sections.
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3.3.1 Interval transition probability (see Veneziano, 1980)

For the situation shown in Fig. 3.6, given that the
parameter X is in state i at the tunnel face, the
probability that X is in state j at a distance u behind the
tunnel face 1is required. This problem of state prediction
can be solved by introducing the interval transition
probability matrix

Vylu) = {VXij (u)]

where

inj(u) = P[X will be in state j after an interval
u given the present state is i)
Generally, _zw(u) satisfies the forward Kolmogorov

differential equation,

d_&{(u) = -!k(u)-ﬂk cesses (3.6)

du

To prove (3.6), let du be a small interval,

v {u+du)
Xij
v__ {u) v__ _(du) +3 v (u) v_ _(du)
1 J 4';. J J k# -‘I .-‘-.1.{. .n...’:J

o

- a
Vgig (1) (1= dw) *gj gy (1) 2ge; M

Thus vkij(u+du) - inj(u)

= -y Xij(u) s du + lg-i Ves (u) a}{kj uu

Dividing both sides by du and taking the 1limit as du
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appreoaches zero,

d ] > " s 8 »
iy (W) Vegg (0) g+ k%j Vs (W) 3y, (3.7)

&

du

Equation (3.7) is identical to (3.6) which 1is in matrix

form,

The solution of (3.6) can be written as

v _(u) = exp [u _a_X]

2 2
X X

+ 1/mli uﬁé; + veees (3.8)

In practical cases this series may converge very

guickly and one can use only a few terms to get satisfactory
accuracy. If convergence is not quick.or high accuracy is
needed, one c¢an use the spectral resolution c>f.§\__X (Cox and

Miller, 1965, pp. 183 - 184) such that

A_ = B diag (11, 12, ... 1n)_g?

where 11, 12, ... 1ln are eigenvalues of_éx and 11 = 0. The
T
matrices B and C are formed £rom the left and right

eigenvalues of_éx with the condition

B C = 1

Hence yk(u) = exp uixtﬂ

B diag (ell "o, elnu) _(;_T

Another way to find a closed-form expression for _zxxu)

is by wusing exponential transforms (see Howard, 1971,

P.710.) Howard also showed that v _  (u) is equal to the sum
Zij

of a constant {(the limiting state probability; see section

3.3.3) and (n-1) terms such that
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in.(u) = VTj + k1 e]'q+ e +knet M., (3.9)

P
where v = limiting state probability of state j,
ol

kl, k2, ... kn = constants,

and 12,13,...1n = eigenvalues with negative real parts.

3.3.2 State probabilities

According to the results of section 3.3.1, if a
parameter X is in state i at 1 , the probability that X will

be in state j at (1 _+u) is Voo (u). When the state of X at

0 il

10 is not known deterministically but only a PMF %{(x) at

l0 is given, the probability of finding " state j at an

interval u later can still Dbe found. Let sx_(u) be the
probability of having state j at (lo+u) ’
SXj(u) = PEX is in state j after an interval u]
= ;[ Pt(i) P[X is in state j after an interval

1:1 i
u given present state is il
n
= P (1) v__ (u)
i=1 i AL
n
= s (0) v (u) oeevse {3.10a)
) Xi Xi
i=1

since s_. (0) gk(i) by definition of s _ (u) above.
i

X3
To éxpress equation (3.10a) in a more compact form, let

S (u) be the row vector of state probabilities such that
X

§X(U) = (sn(u) sz(u) sxn(u))-

Then (3.10a) can be expressed as

§X(u) = §_X(0) lx(u)

§K(O) exp[éxu] vesss (3.10b)
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3.3.3 Limiting state probabilities

As the interval u increases, the effect of the present
state on the probabilities of future states at an interval u
later becomes smaller and smaller. When u approaches
infinity, the probability of finding a certain state j at an
interval u later becomes a limiting constant and is
independent of the present state i. This limiting constant

is called a limiting state probability VK’ and is given by
J

\' = lim v (u)
X3 U —oco Xij
Furthermore, let S = (v v .o v ) be the
—X 1 X2 in

limiting state probability vector. When the transition

intensity matrix,ﬁx:is given, vx_ can be found by first
J

differentiating (3.10b) with respect to u

dlgx(u) = §X(O) d exp[&xu]

du du

il

5 (0) explA A
-:c( ) p[_xu] A

&x(u) By ecenn (3.11)

As u approaches infinity, §X(u) approaches §K and

d d
(3.11) becomes — S _ = S _A._. Since— 8 = 0 (s8_1is
Pl X=X ¢ X
constant),
s A =20
X X
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v -¢c )Y+ v (e P } + «..o v {(c P }) =0
X1 x X2 42 X21 Xn  Xn Xal
+ - + LI = O
Ver (€ xFx1a) * Vo (79 xn) Ven (C 2nfns ]
+ + - e 8 - = 0
Ve (€ Pran? * Vo€ 2P xon? Y %n' "xn

ensre (3.12)

Equations (3.12) are linearly dependent since when all
the equations are added together, the left-hand-side
vanishes (the coefficients of vKi vanish) and is identically
equal to .ane right-hand-side. One more equation is thus
needed which is

v + v + s + v = 1, seasn 3.13
Y4l X2 in ( )

since the parameter can occupy one and only one state at a

time.

Thus solving (n-1) equations from (3.12) simultaneously

with (3.13) will give the values of v. . On the other hand,
i

if Vv (u) is already found in a closed form (section 3.3.1),

-

then v can easily be found by taking the limit as u
i
approaches infinity.

The physical significance of Vi' is that it 1is the
i

relative percentage of the occurence of state j. If in a

certain region gtate j (e.g. Granite) of a parameter X

(e.q. Rock Type) occurs 70% of the time, ?k' = Q.,7. For a
J
tunnel of length L in such a region, the expected total
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length of Granite is vx.1.= 0.7 L.
J

3.4 Summary

Based on the elementary concepts of the Markov process
introduced 1in section 3.2, probabilistic state predictions
of a parameter X at a certain interval u after the present
point c¢an be calculated. As the interval u increases, the
state probabilities are 1less dependent on the present
situation. In particular, the interval transition
probability V'Kijhl) approaches a constant ng (the 1limiting
state probability) as u approaches infinity. In addition,
since the transition intensity coefficients and the

transition probabilities mentioned so far are regarded as

constants {independent of "time", or 1), the Markov process

is said to be "homogeneous".
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CHAPTER IV

THE GEOLOGICAL PREDICTION MODEL

4.1 Introduction

As was shown in Chapter 11, geological conditions are
an essential factor in selecting excavation and support
methods. Since usually little or none of the geological
conditions ahead of the tunnel face are known, it is
desirable to predict them in a manner reflecting
uncertainty. Methods of decision analysis under uncertainty
can then be used to minimize the expected cost of tunneling.
How the method of decision analysis can solve the problem of
choosing excaQation and support processes (ES) can best be
shown by a simplified example :

Problem : chocsing an‘ES for a short tunnel of length
L ft. at 100 ft. below ground level.

General geology of tunnel region : 50 to 200 feet of
clayey soil in contact with a metamorphic rock.
Geological uncertainty : since the tunnel is short,
it is assumed that the whole tunnel is either in

clayey soil or metamorphic rock.

Ground class classification ; according to an
established performance relation (section 2.2),
gseveral ES's are found technically satisfactory for
tunneling in the metamorphic rock. The cheapest
(optimal) one among them is [drilling and blasting,

5 inch shotcrete and steel sets]. The optimal ES
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for tunneling in the clayey soil is [tunnel boring
machine, 3 inch gshotcrete]. Therefore the ground
class classification is :
GC1 = clayey soil
ES1l = [tunnel boring machine, 3 inch shotcrete]
GC2 = metamorphic rock
ES2 = [drilling and blasting, 5 inch shotcrete
and steel sets]

Other information : for ESl, set-up cost = Sl, unit
cost = Cl (dollars per unit length); £or ES2,
set-up cost = 82, unit cost = C2; cost of change
from ES1 to ES2 = Cl12; cost of change from ES2 to

ES1 c21; Sl » s2; C1 < C2,

After an ES is chosen, excavation starts and after a
short length the actual geological conditions (either rock
or soil) can be determined. If ES2 was chosen and if the
tunnel is found to be in rock, then ES2 will be used for the
tunnel and the total cost is (82 + C2*L). 1f afFer choosing
ES2 the tunnel is actually in soil, it is cheaper to change
to ES1 and the total cost is (82 + C21 + Cl*L). If ESl was
chosen and if the tunnel is found to be in soil, then ES1
will be used for the entire tunnel and total cost = (Sl +
Cl*L). If after choosing ES1 the tunnel is actually in
rock, ES2 has to used (ES1 is not technically satisfactory

for GC2) and the total cost is (S1 + Cl2 + C2*L). These

considerations are summarised in the decision tree shown in



Fig. 4.1.

This problem of selecting an optimal ES cannot be

solved rationally without considering the geological

uncertainty involved. To quantify the geological

uncertainty, a (probabilistic) geclogical prediction model

can be used. Suppose according to the results of the

geclogical prediction model the probability that the tunnel

is in rock is p. Then a decision analysis under uncertainty

can be carried out by calculating the expected cost

associated with choosing each ES.

Expected cost of choosing ES1

El= P[tunnel is in soil]l*(total cost when tunnel is in soil)
+P[tunnel is in rock]*(total cost when tunnel is in rock)

= p*(S1 + C1*L) + (1 - p)*(S1l + Cl2 + C2*L)

Expected cost of choosing ES2

E2= P{tunnel is in soil]l*(total cost when tunnel is in soil)
+P[tunnel is in rock]*(total cost when tunnel is in rock)

= p¥(S2 + C21 + CL*L) + (1 - p)*(S2 + C2*L)

The expected cost of choosing a certain ES c¢an be

regarded as the average cost of choosing that ES in a large

number of similar tunnel projects. Thus the ES with a lower

expected cost should be chosen.

In actual tunnel projects complications arise because
there are other important geological parameters (e.qg.

Faulting, RQD, Availability of Water) in addition to Rock



Choice Qutcome Totat cost

soit
SI + Cl - i
P
ESI
I-p
rock
St + Cl2 + €2 - L
soil
D s2 + C21 + CI - L .
ES2
-p
rock

s2 + €2 - L

Figure 4.1 Decisionr tree for choice of ES
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Type. Hence more ground classes are used (e.g. in the New
Austrian Tunneling Method typically there are 6 or 7 ground
classes.) Another complication 1is that there are usually
many sections within the tunnel having different ground
classes (the previous example is about a case with one
section only.) In the example above the geological
prediction is Jjust the value of p but generally many more
predictions are required. For example for planning purposes

(e.g., resource and equipment mobilisation, cost estimation)

very often the following questions need to be answered :

Given that the face of the tunnel is in a certain state
(e.qg. Granite) of a certain state of a parameter X (Rock
Type) ,

(1) How long will the present state persist ?
(2) What is the next state ?
(3) what is the state at a certain distance ahead of the

tunnel face 7

The geological prediction model developed in this
thesis will be used to answer these three common questions
probabilistically. By modeling the random variable X with a
Markov process, the answers to these guestions are given by

(1) extent distributions (section 4.2.2), (2) transition

ca s . : ition
probabilities (section 4.2.3), and (3) interval transitl

probabilities (section 4.2.1) respectively. [Among these
three probability distributions, (3) will be discussed first

because the updatings of (1) and (2) based on point



observations have to make use of (3).]

Another very important use of the geological prediction
model is that the extent distributions and the transition
probabilities of a parameter X can be used to simulate
profiles of the states of X in the unexcavated part of the
tunnel (section 4.5.1.) When all the parameter profiles are
simulated they ~an be combined to form a ground class
profile (section 4.5,2.) After a sufficient number of ground
class profiles are simulated, &a certain construction
strategy ~an be carried out for each profile. Examples of
construction strategies are (assuming that there are 7
ground classes) :

{1) Conventional method --- use ES7 for the whole tunnel.

(2) Start with E£S5; change to ES7 when GC6 or GC7 is
encountered and then keep using ES7 for the rest of the

tunnel.

(3) Change immediately to the corresponding ES whenever a
new GC is encountared.
(These three construction strategies serve as simple

examples only.)

When o2 of the above strategies is carried out for a
simulated ,.ofile, a total cost for +tunneling can be
calculated. After the total costs are calculated for all
the simulated profiles, the mean cost (and the standard

deviation) of using that strategy can be calculated. If all

the three strategies are tried in term, the best (optimal)



strategy can be chosen based on minimum total cost and/or
standard deviation of total cost. Thus expected cost
optimization can be achieved through this straightforward

method.

In the following parts of thie introductory section
(4.1) the theoretical development of the geological
prediction model will be discussed. The reasons for
choosing the Markov process (Chapter III) for modeling all
dgeological parameters are presented, together with the
" advantages and disadvantages. Section 4.2 presents the
geological prediction model and its applications under
actual conditions. A discussion in section 4.3 shows how
all the geological parameter predictions can be combined to
form predictions on the ground classes. The problem of
parameter interdependence and a proposed solution will bDe
presented in section 4.4. Monte Carlo simulation of the

tunnel profile will be discussed in section 4.5. In section

4.6 the chapter summary will be ~iven.

4.1.1 Requirements on the prediction model

As E, E, Wahlstrom suggested (Robinson, 1972), in
addition to the particular exploration of the site in
question, a knowledge of the regional geology, the g=20logic
history of the area, and thorough appreciation and

understanding of the way in which rocks respond to changing

geclogical environments, may be egually important.
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Therefore the first requirement on the prediction model 1is

that both the general and particular geological knowledge
about the tunnel site should Dbe wutilized to yield the
predictions, The general information about the tunnel site
will remain essentially unchanged as tunnel construction
proceeds while the particular information increases when
more reccrds are obtained during construction. It is
therefore disirable that the predictions about the geologies
of the unexcavated parts of the tunnel can be updated Dbased
on new observations. Furthermore, since subjective judgment
is often necessary in geological predictions, the prediction
and updating processes should be capable of incorporating
subjective assessments; subjective biases, however, should

be minimigzed.

The prediction model should include all geological
parameters affecting tunnel performance considerably (e.g.
“Color of Rock" by itself should not be included), such as
those given in section 2.2. The prediction model should
therefore have the flexibility of including unexpected but
important parameters encountered during tunneling. Most
importantly, the model should be capable of simulating
possible tunnel geology profiles to facilitate overall
construction planning, The profiles thus generated should
not contradict the general expectations about the profile,
which means : (1) each generated profile should not

contradict observations on the parameters known before
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construction;: (2) most of the generated profiles should not
deviate considerably from the general geology of the tunnel

region.,

All these requirements for the geological prediction

model can be summarised as follows :
(a) Tunnel profiles generated by the prediction model should
be compatible with general expectations of the actual

profile,

(b} The knowledge on both the general and particular geology
of the tunnel region should be incorporated.

(c) Predictions can be updated as excavation proceeds and
more information is gathered.

(d) The prediction and updating processes should be capable
of including subjective judgment when necessary.

(e) The prediction model should include all relevant
parameters and the entire ranges of their possible
states. However, when unexpected important parameters
are encountered, the model should be capable of

including them also,

4,.1.2 Reasons for adopting the Markov process

The Markov process model provides good solutions for

the five requirements stated in section 4.1.1. Specifically
the Markov model satisfies these requirements in the

following manner :

(a) Tunnel profiles generated by the prediction model
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should be compatible with general expectations of the

actual profile,

This requirement implies that the underlying concept of
the prediction model should correspond to or at least be
compatible with the actual situation. Whether geologic
processes generally take place according to the Markov
process 1is still an open question. However, observed
thickness distributions of lithologic units show that they
are elither lognormally or exponentially distributed
(identical to geometrical distribution when a discrete space
approach is used.) Exponential (or geometric) distributions
on the other hand are characteristic of the Markov process.

Krumbein and Dacey proposed a simple genetic process model

of sedimentation which leads to a geometric distribution of
lithologic unit thicknesses. The derived geometric
distribution is in fact the “"discrete-time"” analog of the

exponential extent distribution of section 3.2.3.

The form of extent distribution was examined using the
recorded extents of sections with various degrees of
jointing in one of the Seabrook water tunnels. Degree ©of
jointing was expressed as RQD (with states low, medium, and
high) and the lengths (extents) of different sections in
each state were recorded. The recorded extent distributions
of medium and high RQD sections were fitted with exponential
distributions and then tested by Chi-square tests (see

Appendix A.) The results of the two tests confirm the
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possibility of an exponential extent distribution. It
should be noted that the appropriateness of using transition
probabilities cannot be tested likewise. For a parameter
with n states, there are (n - 2n) independent transition
probabilities. These (n - 2n) probabilities can always be
chosen so that they fit any data set of actual transitions
perfectly since the data set also has {(n ~ 2n) independent

values only (see section 5.2.)

Since at present geologic processes usually are not
fully understood and since there are indications that some
geologic processes {concerning lithologic wunit thicknesses
and RQD unit thicknesses) do show exponential extent
distributions, the Markov model seems satisfactory. The
prediction model is thus compatible with several of the more
important aspects of actual geology.

(b) The knowledge on both the general and particular

geology of the tunnel region should be lincorporated.

Assuming that a parameter X in the tunnel region
actually obeys the Markov process in the direction of the

tunnel axis, the transition probabilities P and

transition intensity coeficients ¢ can be assessed from
recorded frequency data or expert knowledge of geologists

about X (as will be shown in sections 5.2 and 5.3.) Thus the

knowledge of the regional geology is incorporated.
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Particular geological knowledge of the tunnel area
consists of known facts and exploration results about areas
in the vicinity of the tunnel axis. Usually explorations
include geologic mapping, geophysical investigations,
trenching and core drilling. This kind of information can
be regarded as "observations" of the parameter at different
positions along the tunnel axis. If such an cbservation can
determine the state of a parameter, then a deterministic
statement (e.g. "the rock type at 1=1000 ft. 1is Diorite")
can be made at the point of observation. If the observation
is non-deterministic, subjective judgment is needed (see (4d)
below) and only probabilistic statements about the parameter
at the place of observation can be made. Examples of how
these observations can be incorporated in the prediction

model will be shown in section 4,2.

Thus general geological knowledge is incorporated when
the values of P___ and ¢ _ are assessed. Particular
aij Xi
geological knowledge in the form of records from the
excavated part of the tunnel is also used to update
predictions as shown in (c) below.

(c) Predictions can be updated as excavation proceeds and

more information is gathered.

Suppose a parameter X is in state i at the tunnel face.
The probability of X being in state j at an interval u ahead
of the tunnel face is given by the interval transition

probability vx_jﬁ)@ection 3.3.1.) As excavation proceeds the
1]
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above probability changes (is updated) because u decreases

and i may change. Thus predictions are continuocusly

updated.

Another higher 1level of updating is <hat of the

geological prediction model itself (Chapter 6) :
1) If the transition probabilities P " and transition
1]

intensity coefficients <c y; Aare estimated from a set of
e

existing data, new data derived from the ‘:xcavated part of

the tunnel <¢an be poo’:d with the existing data and new

astimates can be calculated,

2) 1£ P_. . and c_. a‘e originally established by subjective
xij il

judgment, they can be updated using the concept =of
“competing hypotheses"”, If different geologists or
different opinions of a geologist are consulted, several
estimates (c r C 4 wee C ) of a transition intensity
1331 2ai yXi
coefficient can he established. Each of tnese y values
represents a "competing hypothesis" H (m =1, 2, ... Y)
m

which has a probability of being true P (see Fig. 4.2.) At
first each Pm is assigned a value 1l/y (i.e. a vague prior
is used.) Then before tunnel excavation they are updated
based on available records using Bayesian updating. The
weighted mean

c = P ¢ +P cC S + P ¢
Xi 1 1%i o 2Xi y i

is used in the geological prediction model. As construction

starts and new records on extents of state i are taken, the

likelihocod of each competing hypothesis is calculated. Then
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H  : c equals ¢ :
1 i 9 1Xi

Hy s cXi equals C2Ki:

H e

v X3 equals ¢ .

wXi

o

td

P[H!nis true] = B, s m=1l, ...

The weighted mean

c,. =P, c._. +PC___ 4+ ... +Pc _.
k&1 1 134 2 231 y y¥i

is used in the geological prediction model.

When each P

m

is updated, c¢ . is updated.
Al

Fig. 4.2 Concept of competing hypothesis.
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P[n(and thus c¢.,.) are again updated using the Bayesian

Xi
technique (section 6.3.) The updating of transition
probabilities which are established by the subjective
judoment method is similar. When a “row" of transition
probabilities %Hl ' PKia' cee PKin is estimated, different
opinions can be used to yield different rows of
probabilites. Each of these rows represents a competing
hypothesis whose probability of being true can be updated
based on new records of transitions (section 6.3.)
Predictions c¢an therefore be updated based on new
information from the excavated part of the tunnel.

(d) The prediction and updating processes should be

capable of including subjective judgment when

necessary.

If the amount of existing data is not sufficient to

form best estimates of the transition_probabilities E)Xij and
transition intensity coefficients Cps of a parameter X,
subjective judgment can be used instead (see sectipn 5.3,)
Another important use of subjective Jjudgment 1is in the
formation of non-deterministic observations at places ahead
of the tunnel face. At a certain point the state of a
parameter X is known with uncertainty due to imperfect
(non-deterministic) explorations and geclogical inferences.
A DPMF of X can be established subjectively at that point.

This PMF is regarded as the posterior (final) probability

distribution of X at that point (while the prior is the
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original prediction of the geological prediction model,)
Using Bayesian updating (or conditional probabilities) this
PMF can be incorporated inte the probability analyses as

shown in section 4.2.

Hence subjective judgment can be used to establish the
transition probabilities and the transition intensity
coefficients. It can also be used to form non-
deterministic observations ahead of the tunnel face.

{e) The prediction model should include all relevant
parameters and the entire ranges of their possible
states. However, when unexpected important parameters
are encountered, the model should be capable of

including them also,

When a new and important parameter X is encountered in
the course of construction, the corresponding transition
probabilities and transition intensity coefficients c¢an Dbe

established in the same way as the other parameters. Thus

unexpected important parameters can also be included.

It was shown above that the geological prediction model
‘using the Markov process can satisfactorily fulfil the five
requirements listed in section 4.1l.1. However, there are
several important assumptions associated with the Markov
process adopted in the prediction model. These assumptions
together with their respective advantages and disadvantages

are discussed in section 4.1.3 below.
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4,1.3 Assumptions --- their advantages and disadvantages
4.1.,3.1 Single-step memory

In order to adopt the Markov process concept, a
single-step memory has to be assumed. This assumption
implies that probabilistic predictions depend only on the
most recent step, which is usually the most important step
in the past history. 1In the case of a tunnel, it means that
geological predictions of a parameter depend only on the
state of the parameter at the tunnel face and not on those
states at points preceding the tunnel face. The advantage
is that calculations become simpler and manageable with this

assumption,

The disadvantage is that in some cases past history
(apart from the most recent step) which may also be
important in forming predictions is not used. As a simple
but extreme case the cyclic structure shown in Fig. 4.3 can
be considered. Assuming a single-step memory, the best
value that can be assessed for PK23 is 0.5, which actually
corresponds to the cyclic process because if the present
state is 2, 50 out of a 100 times it will happen that the
next state is 3. But if one more step of past history (i.e.
a double-step memory) is used, the prediction model
obviously becomes superior to the previous one because by
"remembering" the present and the preceding steps, the next
state can be determined. . For example, if states 1 and 2 are

encountered in succession, the probability that the next
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Figure 4.3 Example of a cyelic structure.
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state is 3 is 1.0. This defect of the single- step memory
can be lessened using subjective judgment (e.g. if state 1
and then state 2 are encountered, an "observation" is added

subjectively which states that the next state is observed to

be 3.)

To summarise, the assumption of a single-step memory
greatly simplifies calculaticons but some "predicting power”
may be sacrificed in cases where past history apart from the
most recent step is also important in forming predictions.

3
4,1.3.2 Regional homogeneity

The Markov process used in the geologica} prediction

model 1is assumed to be homogeneous i.e. P, and ¢ are

Xij X
constants independent of_position 1. There are two cases in
which this simplifying assumption has to be modified. The
first case is that of a tunnel crossing terrains of very
different geologies. %ﬁj and cXi of a parameter X may be
significantly different in some of these terrains. Each of
these terrains should be treated as an "homogeneous region’
inside which X is governed by an homogeneous Markov process.

For example, if X represents Rock Type and the tunnel goes

through a sedimentary rock terrain and then an igneous rock

terrain (see Figqg. 4.4), different values of P~ and
AL J
¢ _, (i.e. different transition intensity matrices) have to

P}

be used in these two terrains.
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Region A Region 3

(sedimentary rocis) {(igmeouvs. rocks)

b A LhA]

Aunnel face

Figure 4.4 Tunnel crossing terrains of different geologies.

The second case is that, if P and ¢ at a certain

Xij Xi
position depend on the state of another parameter Y at that
position, then the Markov process for X cannot be
homogeneous throughout the entire tunnel (unless Y is in the

same state throughout the entire tunnel, which is unlikely.)

Therefore 1in regions where different states of Y exist,

different transition intensity matrices for X have to be
used. An example is the case where X represents "Degree of
Jointing" and ¥ "Rock Type". 1In a certain tunnel region the
degree of jointing may vary strongly with rock types. Thus
different transition intensity matrices for X have to Dbe
used in regions with different rock types. Each of these
regions is an "homogeneous regiocn" for X. This case of
parameter interdependence can be neglected if it is weak
(e.g. the different transition intensity matrices for X in
regions where different stétes of Y exist are approximately
equal,) The advantage is that only one transition intensity

matrix needs to be established for each parameter and
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calculations to predict the ground classes at a certain
point are greatly simplified and manageable (section 4.3.)
If parameter interdependence is significant and cannot be

neglected, the problem and its solution are discussed in

section 4.4.

4.1.3.3 Intercommunication of states

In the prediction model it is also assgmed for
simplicity that there is intercommunication between every
two states i and j. This means that if x(lo)=i, then there
is a non-zero probability that x(lo + u)} = j. This means
that there are no "transient states" which have essentially
no probability of occuring after a great distance from the
present position. This assumption seems to be reasonable
within the context of this thesis : there is no reason why
a certain state cannot occur at a great distance from the
present position. For example, if the degree of jointing at
the tunnel face is high, there is no reason why it cannot be

low at a great distance ahead.

4.2 The model and its applications

After the development of the geological prediction

model in section 4.1, the model and some of its applications
are presented in this section. Basically the Markov process
(with the assumptions- given in section 4.1.3) is used to

model all relevant geological parameters which exist along
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the tunnel axis. The "time" parameter in the Markov process

is equivalent to the distance measured along the tunnel axis

from a fixed point (e.g. the portal; see Fig. 4.5.)

Once the transition probabilities P-x.hand the
1]
transition intensity coeffients CX' of a parameter X are
i

established, predictions on the states (in the form of the

interval transition probabilities VX.@Jand the transition
1]

probabilities PXij) and state extents (extent distributions)

can be calculated.
In addition, if appropriate simplifying assumptions
are made, suimple empirical prediction rules can be
established. An example is a "proximity rule" (see
Lindner, 1975) which gives the probability of
finding a state at a point given the same state is
found at a certain distance from that point. 1In

Appendix B the "proximity rule"” is derived wusing

simplifying assumptions and approximations.

In cases where there are point "observations" on

parameter X ahead of the tunnel face, Vv (u), P and the
Xij Xij

extent distributions will be modified (updated.) These point
observations are generally the results of geologic mapping,
geophysical e#plorations, trenching, core drilling and
subjective judgment. [These point observations are
different from the data (in the form of transition c¢hains)
from which P___ and c__ are established before tunneling. ]

Xij Xi
An example of such observations is shown in Fig. 4.5 :



Portal \
i {=2500 \«

o N ri

— _/
~————— tunnel advance tunnel face bore hole

Figure 4.5 Observation using bore drilling
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A borehole was drilled to explore the ground conditions

at a distance of 2500 ft. along the tunnel axis (i.e. at 1
= 2500) from the portal. At the intersection o©f the Dbore

hole and the tunnel axis it was found that the rock type was

Granite and that the rock was moist.

Hence a deterministic observation on Rock Type is made
at 1 = 2500. On the other hand, the exploration result on
the availability of water 1is imperfect and subjective
judgment 1is needed. Observing the geologic environment
around 1 = 2500 and other information including records from
the excavated part of the tunnel, the following PMF is
subjectively assigned to the Availability of Water W at 1 =
2500 :

Pl{low availability of water] = P[w(2500})=1] = 0.2
Plmedium availability of water] = P[{w{2500)=2] = 0.6

P[high availability of water] = P[w(2500)=3] = 0.2

The above deterministic observation on Rock Type can
now be used to “update" (or improve) the predictions on its
states and state extents. Also the non-deterministic
observation on Availability of Water can be used to update
the predictions on its states and state extents. The
details of updating based on different kinds and
combinations of observations are presented in sections 4.2.1

to 4.2.3 below.
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4,2.1 State prediction at a point
4,2.,1.1 No observations

This is the base case. At the face l0 (Fig. 4.6) of
the tunnel, the state of a parameter X 1is 1. The
probability that at position 1 (> 10) the state is J 1is
given by the interval transition probability (section 3.3.1)

PLx(1)=3]x(1)=1] = v, (1-10)

1
0

]

Figure 4.6 State prediction at position 1.

v
|

4.2.1.2 One deterministic observation
There is a deterministic observation at 11 (x(ll)=k,

see Fig. 4.7.) The probability that at 1 (>10) the state is

j is given by the updated interval transition probability

d
v (1-1) = Plx(1)=3|x(1 )=i, x(1 )=k]
Xij 0 0 1

(The superscript "d" stands for "deterministic".)

For 1 <1 < 1_,
1

Xij
= = =1 = ! =i =
PLx(1) JIX(lo) i] P[x(ll) k'x(lo) i, x(1)=j]

v (l—lo)

Elx‘l )'—k‘x.(l )'—ll a8 & 8 o 4.1

P[x(l)=jix(l )=i] = v__ (1~1 ),
0 Xij 0
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PLx(1 )=k |x(1 )=i, x(1)=3] = Px(1 )=k [x(1)=3]

=v__ {1l -1} and
ik 1
P[x(ll)=k|x(lo)=1] = Visy (37150,
(4.1) becomes
d
v (1-1 ) = v (1-1 ) v (1 -1)
Xij 0 Xij 0 Xjk 1
v_. . (1.-1)
ik 1 0O
For 1 > 11,
d
1-~1 = 1)=5 =i, =
inj( o) = PLx(1) j[x(lo) i, x(1,)=k]
= Plx(1)=3[x(1,)=k]
= 1-1
Vs
Thus
e (1-1 ) (1-1 (1 1 ¢l<l
\ - = - -1 §
Xij 0 VXij o) v}[jk 1 ) (o 1)
ink(ll"lo) ) (4.2)
Vi3 (1-11) (1;11)
1 1 state k observed
0 l,u/
‘E’ /
i ¢
» 1

Pigure 4.7 Case with om deterministic observation.

4.2.1.3 One non-deterministic observation

In the case that the observation at 11 is

non-deterministic (see Fig. 4.8) but is expressed in the

probabilistic form (n is the total number of states)

P[x(ll)=m] = plm .(L 1, 2, eee N)y, ceeee (4.3)
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v (1-1 ) is updated to vn {1-1 ) where
Xij 0 Xij 0

{the superscript "n" stands for "non-deterministic”)

n » — —
> P[x(1 )=k] P[X(l)=3IX(lq)—l.x(ll)—k]

n
Viigtitto) &

= > bp vd_(l-l creee  (4.4)

)
k=1 1k Xi J 0

FIMF given
1O 1%p/ gl
4 /
i
4

>1

Figure 4.8 Case with a non-deterministic observation.

4.2.1.4 Several deterministic observations

When there are several determinisic observations at 11,

12, evs 1 (Fig. 4.9) such that
8

Q
[
[\

0

e

A / i

states lknown

Pigure 4.9 Several deterministic observations.

x(1 )} = % (t=1, 2, ...s8), ceees {(4.5)
t + a

inj(l—lo) is updated to vxij(l-%)) ("ds" stands

deterministic-several.) Due to the assumption of

for

a
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single-~step memory, Xlg(l l ) is dependent on the known

states immediately preceding and following the position 1.

Thus for lO £ 1 < 11,
ds

1-1 = Plx(1)=3 1 )=i, x(1_ )=k

VXi;j( o) Cx{1)=] |x(1 ) ( 1) 13

which is the same probability given by (4.1) with k=k ;.
Again because of single-step memory,

for l.t_l\< l < l.t (t = 2, 3; . s S),

if (1-1,) = PLx(L)=3|x(1 , )=k, ;  x(1,)=k ]

P[X(l)—j x(lt—1)=kt—1] P[x(lt)=ktlx(lt—l)=kt—l'x(1)=j]

P[x(lt)= t|x(1_t_l)=k ]

-1
= Voepoyy gy ) PEx(L )=ktlx(1)=3]
ittt (el gy
= Vet E7leg) Vigey (D)
Yottt g 7L o1
For 1 » 1 _,
S
ds )
(1 1 ) = P[x‘l)=3 x(ls)=ks]

sta(l -1 )

Thus to sum up (k is equal to i, the state at the tunnel

face),
(13(1 ~10) = [ Vigegoay (L=Lpo1 ) Vyges (14-1) (141 €1<ly)
v, .(1-1)) (121 )
xsj s 5

ceees  (4.6)

]

4.2.1.5 Several non-deterministic observations

There are s non-deterministic observations at 11, 12
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.o 1s (see Fig. 4.10) which are given by the PMF's
P{x(1ly )=m] = py, (m=l,...n)

(t=1, «+.8) cosee (4.7)

1 lr 1 o L ] - 1
0 1 2 <
i
< Z ,/’/
T
PMF's given

Figure 4.10 Several non-determinisiic observations.

ns
\4 (l—lO) is updated to v _ (1-1 which depends on the

)
Xij 1{13 0
non-deterministic observations immediately preceding and

following position 1 {"ns" stands for "non- deterministic-
several”) :

For 1, ,¢ 1 < 1, (t=1,2...5),
vns
Xij t-1

n L) — [}
m§1 P, PLx(1)=] ]x(lt_1 )=m,observation at 1]

(l-lo) = P[x(l)=jl0bservations at 1 and lt]

(let p . =1 and p = 0 for r = i)
01 Or

Tl I .
= P s B, P[x(1)=3|x(1 _ )=m,x(1 )=k]
2 Pam 2 B el 4

where

PLx(1)=3|x(1,_,)=m x{1,)=k]

PLx(1)=3|x(1, ;)=m] Px(1,)=k{x(l, ,)=m,x(1)=]]

P[x(lt )=k x(lit_1 }=m]

(1-1

s-1 ) Viix (1,-1)

V xmj

Vome (Lg=1goy )

For 1 » l":

=

vﬁij(l-lo) = P[x(1l)=j|Observation at ls]
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-5 pskp[x(l)=j|x(ls )=k ]

7
= e . (1=1
éél psk Vﬁka( s)

To sum up,

vyi s (1=1p)

n 1
= v 1=-1 v l -1

. Pim & Py ij( o1 Xjk(t )

o k=1 v. (1 -1 _)
Imk t t-1
(lt-1‘< 1 < 1t" t =1, ...8)
n
- T R 4.8

Z P vxkj(l 1) (1>»1) (4.8)

=]
4.2,2 Extent distribution
4.2.2.1 No observations

This is the base case. At a certain point le a

parameter X enters into state i (see Fig. 4.,11.) The CDF of

the extent Hxi at 1e is given by (section 3.2)

-Cy: h
FHXi(h) =1 - e X3 T EE R (4-9)
The PDF is
fq:{i(h) =c,.e =exi b L., (4.10)

1
e
_E atate i entered
L.
[‘

4ﬂ

HXs

Figure 4.11 Transition to state i encountered.
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If excavation continues up to 1 = 1O > 1 e(see Fig.

4.12), and state i still persists, the updated CDF 1is
1
F E{i(h) = P[Hxi5h| HX . » 10-1e]

For h » 1_- 1 ,
, 0 e

F HXi(h)

P[HX.< h and HX >» 1 -1]
i i O e

PlHX > 1 -1 ]
i 0O e

Fogs(B) - FE{i(lO—le)

1 - FHXi(lO—le)

-t oy _ emxillome)

1 - [1 - e'CXi(lo"le) ]
L o Cxi -(10-1)]

There fore Fgﬁ'(h)

= {o (hel -1 )
1 - %Ki (- (15-1¢) (h>1 =1) «eeno (4.11)
L
a f£' (h
an HXi( )
\
cXie‘CXi[h“(lo"leJ (h>1y=1_) +evvr (4.12)
1
e 1O
i 7
ke 2
k
HX;

Pigure 4.12 State i persists as excavation proceeds.

Thus the exponential shapes of the CDF and PDF are

maintained with a shift of magnitude (lo_lp) {see Fig.

4.13.) the PDF vanishes for h < % ~le because the extent
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i ()

(a) PDF of HKi-as parameter enters state i at 1.

0 (1O - 1e)

(v) Updated PDF of HX.as excavetion proceeds from 1, to 1,

and no transition occurs.

Figure 4.13 Commarison of prior and updated PDF's of HXi-
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must be greater than that value (Fig. 4.12.)

4.2.2.2 One deterministic observation

If there is a determinisic observation as shown in Fig.

4.14 and k ¥ i, ff&ﬁ(h) is updated to
1 1 1 state k observed
e p épv/
i E
HX3

Figure 4.14 Case with one deterministic observation.

d '

£ grs (M) = £, (h) PLx(1,)=k|HX =h]

PLx(1,)=k|x(1,)=1]
where P[x(1,)=k|HX =h]

= P[x(ll)=k[state i exits at (1_+ h)l.

After state i exits, X can enter any other state b and

can then be in state k at 11,

n
= as = - -h
PLx(1)) k]HXi h] ggi Prsv Vogelly~L .0
Therefore for 1.-1 ¢ h il 1-Llo
é ' -
i (D) = £y (R) bz_l Prjr Vo (4 ~1,7D)
v:{i}((ll-l()) LI ] (4-13)

For h < 1,-1_or h» 1 -1,

d
f'E\.','.fl"(h) = 0 «as a0 (4.14)
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If k=i, there is a possibility +that state 1 will

persist past the point 1,. The updated PDF is found using

Bayesian updating :
d )

£ .. (h) =¢C £
=k

- rIXi(‘n) [likelihood of observation 1

H:}(i=h] U O (4015)
[likelihood of observation[HXi= h]

= P[x(ll)=ilstate i exits at (1e+h)]

n
= b§1 Prip Vipi (1p7tem) (-1 ¢h<l =1))
1 (h)ll-le)
where Pysy is the transition probability of parameter X from
state i to state b.
Therefore, from {4.15),
d
fHXi=k(h) = 0 n(h<lo-1 e)
[
c £ __{(h) I P.. Vv, .(l1 -1 =h)
m g KR %a e
e e

c £___ . (h) (h>1 ~1 )
1 e

HX1 teee. {4.16)

C is a normalising constant such that

SO f I-Ki=k(h) dh = 1

which implies

1,-1
1 e . n
c=r) ™ 2 P iy Ve (f ~1e7h) dn
1.-1 =
0 e oo . -
+ S £ pi(0) dh ]
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=1 - [1 - e-CXi(ll—le) ] = e-'.Q}Ci.(ll_le':!)
11—1e ' "
Therefore C = [ S fix; (h) E: Pxip vai(ll-le«h) dh
lO"le ' = + e—-cx_i(ll—le) ]-I

ceese {4.17)

X
transforms or spectral resolution (see section 3.3.1), then

If v,ij(u) is already found in closed form using exponential

{4.17) can be calculated in a closed form.

t
d
As an illustration, the shapes of £ __ (h), £__  (h)
a HXi BXi#k
and fHXi-k(h) are plotted in Fig. 4.15 for comparison.
. H{i=
fHK'(h) is a shifted exponential distribution given by
i
(4.12). It has zero probability density for h <
15-1 , because the tunnel face is at 1, and the extent of
d
state 1 must be reater than (1 -1 ). £ h) is the
d ( 0 e) HXi#k( )

updated extent distribution given that the observation at

1l is k (#i.) It has zero probability density for h >

1 -1e because HX; cannot persist up to point 1, at which the

1
. d
state is k (#i.) £__.  (h) is the updated extent
H{i=k
distribution given that the observation at 1, is k (=i.)

1
There 1is a non-zero probability that HXi > ll--le because

Hxi can persist past point 1,. There is a jump at h =

11—1e due +to the observation at 1

(ll-le) from the left (i.e. from lower values), there is a

1° As HXi approaches

decreasing probability that Hxi ends Dbefore 11. The

probability that HX; ends at any point near to 11 given

that X 1is in state i again at 11 is small : X has to make

at least one further transition between that point and 11 to
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! d
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Figure 4.15 Shapes of different updated PDF's of extent.
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go Dback to state i. This fact can easily be seen by taking

the limit as h approaches (11—1?) from the left in (4.16)
n

d
lim - £ores (h) = ¢ £_...(h) z: P... V A{0)
h—*(ll—le) Hii=k HXi o] Xib Xbhi

[} n
=Cf 1 Z P i Vo (O * Pyys Voxss(00]
b=1

b#i

= C £ HXi“j) (0 + 0) =0

Therefore the probability density approaches zero as h

approaches (ll-le) from the left. For h » (11-1 ), state 1i
e

at 11 is "connected” with state i at le' There i3 a

non-zero prokcability that this happens and so the
probability density jumps from zero to some finite value at

1 The extent distribution after (11—16) again takes an

1.

exponential shape, as can readily be seen in (4.15) .

4.2.2.3 One non-deterministic observation

When the observation at 11 is non-deterministic as

n
shown in Fig. 16, the PDF of extent is updated to fHXi(h)
which is given by
n
f g(h) = PLx(1,)=1] (updated PDF|x(1,)=1)
+ - o =

+ P[x(ll)=n] (updated PDFIx(ll)=n)
= kzzl P 1y (updated PDF]x(ll)=k)
n ) )
= 2: plk(updated PDF[x(11)=k%1) + pli(updated PDF x(ll)=i)
k=1
ki



t g ,

PMFP given 3

P[x(ll)] =M = le

(m = 1’ 2, RN n)
where n = total number of gstates of X.

Figure 4,16 Case with one non-deterministic observation.
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Using the two updated PDF's derived in (4.13) and (4.15),

n n d d
s ™ = 5 Pocf maa®) + Py F (M)
k=1
k#i 2 s 800 (4-18)

4.2.2.4 Several deterministic observations

There 1is a combination (K) of s deterministic
observations (see Fig., 4.17) such that

X(lt) = kt (t=1,2,...8.)

It should be noted that if x(lt) = kt # i, then the extent
cannot persist past point 1, and observations at points
after lt have no effect on the PDF of Hxi. The updated PDF

when a combination K of observations is given is denoted Ly

K
£ (h).
HX3
If state i is not observed at all of the points ll' 12,
o ls, let lt be the first point where state i is not
observed i.e. x(lt)zkt#l and kb4.= kt-2= cas = k1= i. The
updated PDF is given by
: _
£ gkﬂh) = C £fir; (h) [likelihood of K given HX ; = h]
(L.~1 < h <1 =1
0 e t e
0 (h < lo-le or h > lt—l )

ceeve T(4.19)
where [likelihood of K given HX ;= h]

= PLx(1,)=k s .00 X{1 )=k _ |Hxi =h]



The state at 1, (t w1, 2, ... 8) is known 3

x(lt) = k't

Figure 4.17 Case with s deterministic observations.

-
3
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Z PX:.b kal(l’l 1 ~h) V}{klkg i 1)"'V>(ks | kS )(l_.; -1l5., )

=] -13\. ;"le
S B, V., (1 "lemh) v (1-1,)e..v (1,1, )
Xks- 3 -
o xb xekz 2 B Xk (L ¢on €T AYe) '
1
1 -1_-h 1 -1
Z le'b VkaI ( t le ) katkt'fl'( t+ t.‘), (l -1 )
b=1 Y A ks-t kS s -1
(1, -les h <1, -1g
. _ _ v
Since Vo kLK tH] (lt+; l‘t) V‘:(ks-nks (1s l,_,) 1is a
common factor in each of the above expressions, let
= - L "l .
Cce=C Vthktn(lt* 14) Vks-1ks (15-15.;)
Then from {4.19) and replacing kX,, k,, ... k; by i,
. ()
=" 0 (h < 1,-1,.)

Cy fH”(h) Pxib vy (l, -l ~h) vx,, (1z-l|)
(1,-1, ¢ h <« 1 -1 )

o
4k

’ 14}
Ce fuxs (h) Z Paib Vxb (1 -1.-h) v;; (1;-1,)
b=| V)(ukt (lg=14 ;)
(ll—lesh < 1,-1.)

/

n
CK foi (h) ; xw bk%(lt -le "h)
= tl

-0 (h » 1,-1,)  .evo.  (4.20)

where CK= normalising constant



= [ (h) P v, . (1,-1.-h)
S i LZI *ib AR o' S -1, ) an
lo-1e Kikt t tod
+ e e
It-le £ (n) ! p (1, =1_~h) dnl’
+ v e
S HX ZE; Xib Abkt Tt ®
lt-,"le b= R (4021)

If state i is observed at all the points 1,, l,;, ...

1 (i.e. k;=k,= ... =k,= i), then
K
HX

£ (h) = c £’ .(h) [likelihood of K given HX:; = h]
i K HX» i
' (h » 1,- 1.)

0 (h < 10-1

ceelS Ta.22)

where [likelihood of K given HX . =h]

P v (1-l,-h) v o (1=l

Xib  Xbi :)"'ini(ls‘ls—a>

I (10--1e & h ¢ 1‘—1e)

P v Z—le—h) VK

Xib Kbi (L= ) vy (=1 )

H (11-1e ¢ h<1,-1.)

3

b=l

k4!
P v (1 ~«1 -h) (1 -1 < h <1 -1)
Xib  Xbi s e s s e

b=l
- 1 (h » 1_-1,.)

Then from {(4.22),



£ .
HX1
= ~ 0 (h < lo-' le)

c £ (h) > P?ib Vi (L =le=h}...vo (1,1, )
o]

~le ¢ h < ll-le)

n
C f (h) Z Px‘lb be'- (lz"le-h)oo.v i (ls "'"ls )
b3

K HXI - _ K -}
< (1,-1g ¢ h < 1,-1))

c £ (n) S Py Vypi(lg=lg-h)

K HX: - -
’ b=| (ls-: le“ h < ls le)
-CK fHXi (h) (h > l.s"le)

vesse (4.23)

where C = normalising constant

= 1-le g7 (h) = P v (1 -1_-h)
S i Z Xib  Xbi 1 7€

Hxi
lo—le b:i es s V R (l "'l ) dh
Xt S s-
+ * 0
+ 8 £ (h) @l ..e.. (4.24)
1.-1 HX1
s [ =4

The shapes of the updated PDF's are shown in Fig.
4.18. In (4.20) state i 1is observed at 1,, 1, ...
l1,., while in (4.23) state i is observed at all points 1 ,

}

e 1 In both PDF'é the probability density drops to

T
zero when h approaches each point of observation (where the
state is 1) from the left. The probability that HX. ends
near to a point where the state is observed to i is small
because if it does so X has to make at least one further

transition to go back to state i at the point of

observation. The main difference between (4.20) and (4.23)
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f;1i<h)
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=k

(2) ky=k,= oo =k y=igky (v) ky=ko= oon =k_

Figure 4.18 Urdated extent distribution given several determinisitc observations.



is that {4.23) has a "tail" which extends to infinity while

(4.20) has =zero probability density. for h > 1, because

kt F i.

4.,2.2.5 Several non-deterministic observations
When there are several non-deterministic observations

as shown in Fig. 4.19, the extent distribution is updated

to f;;I(h) which can be found by considering all
combinations of observations con X at ll, 1,, «». ls. There
are n X Nt X s+ N = (n)S different combinations altogether.
Let Kn‘(m = 1, 2, «.-. (nf ) represent a combination such
that

x(ll) =K, ¢ x(1,) = Koo enes x(ls) =K . According to

ms

the PMF's given by the observations,

PLK occurs] =
L m ] me

i

P[x(l])=K"”. x(12)=Km2,..., x(15)=KMS]

= Pikmi Pakma """ Pswms
Then
_nS
N »
foy(h) = zz: P{K occurs] (updated PDF given K,, occurs)
ma |
n® Km
= p .(h) e 0 s (4-25)
Km HXi
m=|
If K =Kg.=.. =K = i, then (4.23) is wused for
KEm
(h). Otherwise (4.20) is used.
HX)

4,2.3 Prediction of next state - transition probability



The observation at 1, (t =1, 2, ... 8) is
non-deterministic and is given by the PMF

P[x(lt) = m] = Pin
(m =1y 2, ¢oe n)

where n = total number of states of X.

Figure 4.19 Case with s non-deterministic observations.

£6



4,2.3.1 No observations

This is the base case, Given that the state of a

parameter X at the tunnel face is i, the probability that
the next state is j is Px'j (see section 3.2.2) which is a
{

basic component of the Markov process.

4,2.3.2 One deterministic observation
If there is a deterministic observation ahead of the
tunnel face as shown in Fig. 4,20, the transition

d
probability Px" is updated to Pxii where

i)

state k observed

H
e o
N

v

Fipure 4.20 Caze with one deterministic observation.

Pd

i P[next state (after i) is jjx(1, )=kl
!

C PX_J[likelihood of x(ll)[next state is j] ...
i
(4.26)

The next state (after i) is the state just following state

i.

In the case that k+#i,

[likelihood of x(1,) | next state is j]

= Plextent of state i at 1, terminates at some point
between 1  and 1, and the next state is jJ

and x(1,) = k i next state is j]
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"'l,"lg ’

= 1 -1 _-h) dh
3 fo;(h) vXJk( roe )
lo-1le

Therefore from (4.26)

l"_l ’
Pd N = C P .. S l € f _(h) v (l —l _h) dh e 2 (4.27)
Xid XiJ HXi XJk ! e
10"].9.

where C = normalising constant

n lt'le ’ -}
= Z Pl S £, (h) vmk(l,-le—h) dh]

J:l lo'le L B (4.28)

In the case that k = i,

[likelihood of x(1,) next state is jJ

= Plextent of state i at 1 » 1 -1,]

+ Plextent of state i at 1, terminates at some point

between lo and 1| and the next state is j

and x(ll) = i J next state is jl

e Ll
= £f (h) dh + S £ () v .. (1 'le'h) dh
1,-1, HXi 1-1. HX Xar |
= e_cﬁflf'l°) + Sl’-le £ (h} v (1 -1_-h) dh
HX i xJjrp €
lo‘le
Therefore from (4.26),
d
Pxij
-Cc . —_ 1 -
mep [l (Wle ooy L Gy ang
Ki HXi xsi 1€
Lo-1le ceee.  (4.29)
where C = normalising constant |
n - ’
= p  [e Sxi(li-1o)y Li-le ¢ (h)v . (1 -1 _-h)dh]
2: Xii HXi Xii 1 & :
.=' * 10"16

ces.e. (4.30)



4,2.3.3 One non-deterministic obsgervation

When there is a non-deterministic observation as shown

in Fig. 4.21, PX" is updated to Piii where
I J
n n
P = 1,)=k] P t state is 3 1 )=k

Xii 'zi P[x(1,)=k] P[next state is j|x( ;)=k]
k=
n d

= Z p P .. eeene  {(4.31)
Ik Xi3

k =

4,2,3.4 Several deterministic observations
When there is a combination (K) of 's deterministic

observations (see Fig. 4.22), the updated transition

probability is denoted by Pf .. If state i is not observed

1J
at all of the points 1/ 1,0 oo 1., let 1, be the first

point where state i is not observed 1i.e. x(lt) = k, #+ i

and k = k = . =k = i. The updated transition
t-) t-2 |

probability is

K . . . L
Pxi‘ = C Px}j[llkellhood of K given next state is j]J
J

where [likelihood of K given next state is jl

= Px(1,) =k, , x(1,) =k eae x(1,) = EJnext state is j]

2'

P{ (extent Hx} terminates between lo and lI and K occurs)

or (Hx;terminates between 1iand 12and K occurs) Or ...

or (HX. terminates between lf and lt and K occurs)
: -

given next state is j]



pd

/\/

PMF given 3

PEx(llﬂ =® = Py

(me=1, 2y, «c. n)
where n = total number of atates of X.

Figure 4.21 Case with one non-deterministic observation.
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The state at 1, (t =1, 2, «ve 8} is known :

x(lt) = k,

Figure 4.22 Case with s deterministioc observations.



1, -1e 4 i )
= 5 £, . (0) v (1 -1.-h) an v (11

HX:
I~ 1e
> o V l '-l . e 8 V l _l
thkt+l( i t) st-;ks( s 5"!)
+ - 8 @
+ Le £ (m) (1, -1_-h) dn (1 1)
g HXi Yxikt Tt e’ UXktite] ter Tt
Loy
.o VXkSﬂks(ls 1,_,)
Since vthkf+,(lt+l—lt) e vka_,ks(ls-ls_l) is a common
= C l "'l .
factor, let C, katkt+f e t)
Xks-1ks S S5-I
Then from (4.32).
K
P ..
X2
hole oo 1 h) dh
=GPl S wxi B v (L m1goh) Ve (7))
I,-1, (1 -1 )
s s v —
Xikt t t-)
+ [ B B
I'f. s
+ S £ (h) v (L,-1_=h)} Ah] evee. (4.33)
| HX i Xikt t €
£
where CK = normalising constant

n =le
DI I £/ () v, (1, -1,-h) dn

L:’:I lo_le Xii (lz-lf)... vx;kt(lt-lt-—] )
+ L I B
l‘t f.r . -1
+ h 1 -1 -h) d&h
Sl Hxi( ) vxjkt( ¢~le -R) ]]
t—.l " e 0 (4.34)
If state i is observed at all points 1,1, ... ls, then

[likelihood of K given next state is j]



P[ (extent HX . terminates after 1)
or (extent terminates between 1 and 1 and K occurs)
Or ...
or (HX; terminates between ls_, and ls and K occurs)

given next state is j]

4
= j £ (h) dh

le~1e HX}

1|"le ’
+ S £ .(h) v (1,-1,-h) dn

] Ji _ _

lD— le I VXII (12. l‘) LI} Vxli (ls lS—-')

» % & 3 ’ - h
+ + gls-l fo; (h) vx,}i(ls ls-l) d

Then from (4.32) and using CK,in place of C
K

PX"
1J
) ey (Ig-1,)
- CK Pxij L e "xins

L-le

j £ (h) v (L -1-h) & v .. (1 -1)

HX M ! e X 2 I
lo"le, v
LI ) v i‘l,(ls_ls— )

+ . & @

1, ,
+ S £ (h) v
Xi

L (1,-1,_ ) @hl ..... (4.35)

XJdg

where Ck.= normalising constant

) {ﬁi P [ e xillamly)

ll"le ’

+ S fo;(h) vxji(ll-le—h) dh vx;i(yz-ll)
10" le

eee V (l '-l )

. Xii s 371

H

-1
(1 -1 ) dh]@
ls—l T ) = 7

1s ,
+ g. £ xi(h) vx
eeess (4.36)



4.2.3.5 Several non-deterministic observations

When there are several non-deterministic observations
as shown in Fig. 4,23, the transition probability is
updated to PN.. which can be found Dby considering all

X))

combinations of observations at lr' 1 «ss 1 . There are

2' s

s
nxnsx.. n = (n) different combinations altogether.
Let K, (m=1, 2, ... n )} be a combination such that

x(l])=Khl' X(12)=KMZ' L ] X(15)=Km5u

According tc the PMF's given by the observations,

P[K, occurs] = p
= P[x(1,)=K,_ , x(1,)=K__, ..., x(1.)=K ]
—’%KMIPZKmZ...pSKmS
Then
N n’
Px" = P[K_ occurs] (updated PMF given K_ occurs)
[
i=
S
n
K
- Z p P m * 0 @08 (4-37)
Km X33
=1
. , Km
If K, =K,,=-..=K_, =i, then (4.35) is used for P ...

Otherwise (4.33) is used.

4.3 Ground class formation
So far some important calculations conce: ~ing a single
geological parameter have been discussed. Subsequently, all

the parameters predicted have to be combined to yield ground
class predictions. Let g(l) be the vector of geological

parameters at point 1 :



ne
.
3
»

The observation at 1, (t = 1, 2, +.. s) i8
non-deterministio an& is given by the PMF

P[x(lt) = m] = Pim
(m =1, 2, 4s. n)

where n = total number of states of X.

Figure 4,23' Case with s non-deterministic observations.
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g(1) = (r(1) £(1) 4(1) w(l) ...),
where r(l1), £(1), 4(1), w(l) ... are the states of Rock
Type, Faulting, Degree of Jointing, Availability of Water
++»s at 1 respectively. Thus given g(l) the ground class at
1 can be determined. The probability that the ground class
at a point is GCi 1is Pl[g(l) Dbelongs to GCil. Suppose

according to the ground class classification a certain

ground class GCi contains the geological vectors §1l, g.,
i ]

L

e ﬁ.m such that

(j = 1, 2' .« e mt)
For example GCl contains 2 vectors

g, = (, £, 4, w, )

I i

= (1 1 1 1)

12 (rLZ f|2 dll w:z)

= (2 1 1 1)

\aj
it

where r = 1 means Diorite;
r = 2 means Quartzite:;
f = 1 means no faulting;:
d = 1 means low degree of jointing;

w = 1 means low availability of water.

The probability of having GCl at 1 is then

P(g(l) belongs to GCl]

—

PLG(1) = g, or g(1l) = 6}2]

plg(l) ='§11] + Plg(1) = 3,2]

]

P{r(l)=1 and £(1)=1 and d4(1)=1 and w(l)=1]

+ P[r(l)=2 and £(1l)=1 and d4{(1l)=1 and w(l)=l]
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If the above parameters are independent,

P{3(1l) belongs to GCl]
= Plr(l)=1]*p{£(1)=1]*P[d(1)=1]*P[w(1l)=1]

+ Plr(l)=21*pP[£(1)=1]*pP[d(1)=1]*P[w(1l)=1]

seve.(4.38)

Thus ground class probability calculations can be reduced to
that of single parameters in the case with independent
parameters. Fér interdependent parameters the problem is

much more complicated and is discussed in section 4.4 below.

4.4 Parameter interdependences

When the list of geological parameters (see section
2.2) is examined, it can be seen that there may Dbe
probabilistic interdependences (correlation) among most of
them, For example, in the tunnel region faulting may occur
more frequently in one rock type than in another. Thus the
probability prediction of one parameter can also depend on
the status of the other parameters. This implies that the
transition intensity matrix of a parameter may depend on the

states of other parameters.

When this problem of parameter interdependences has to
be incorporated considerable complications arise. One

approximate solution +to this problem is to assume a

hierarchy of dependences 1in which the parameters are

arranged in order of decreasing average extents. The
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average extent of a parameter is defined to be the overall
average of the average extents of its states 1i.e. average
extent of X = (1/c , + 1/c,, + eee # 1/c,,)/n. Suppose the
hierarchy-sequence is X1, X2, X3, ... XN where the average
extent of XI is greater than that of XJ for I < J. Then the
assumption of hierarchy of dependences states that XI is
probabilistically independent of XJ while XJ may depend on

XI for I < J. Thus X1 is an "independent" random variable

while X2 may depend on X1 and X3 may depend on X1 and/or X2

and so on. Us .ally it should be sufficient to assume a

certain parameter XJ to be dependent on at most two other

parameters higher on the list of hierarchy. Examples of
possible parameter interdependences are :

(1) High availability of water exists in a region of high
degree of jointing more frequentoy i.e. ground water is
more "available" to the tunnel in highly jointed rock
than usual.

(2) Degree of jointing in a certain rock may usually be

higher than that in another.

It should be noted that the assumption of hierarchy of
dependences is intrinsically contradictory because if XJ is
dependent on XI then XI should also depend on XJ. An
example is given that gas is found more frequently in
Schist than in other rocks, then, if gas is found in a
certain place, the rock at that place is more probable to be

Schist than usual, However, the hierarchy assumption can be
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shown to be a reascnable approximation by considering two

parameters with different average extents as shown 1in Fig.

4,24, In a region where x1 = 1, X2 is governed by a Markov
process with a certain transition intensity matrix

éﬂﬁzﬁ while in another region where x1 = 2, X2 is governed

by another Markov process with A

__X%Z. However, the

dependence of .5¥J on X2 is much less significant since a

state of X1 can easily outlast several states of X2 and the

dependence is weakened.

In assuming a hierarchy of dependences, the probability
calculations (states, extents) for X1 are the same as before
(where there were no dependences) but those for X2 still
depend on the states of Xl. For the situation in Fig.
4.24, probability calculations concerning X2 are grouped

into 3 regions separated by l|' 1 1_ and l4 as shown. For

2! 2

region 1, A is used up to point 1,. Then another Markov

process for X2 starts at 1, and.g\_XZ 3 is used, while in

region 3 A is employed., Thus regions 1, 2, and 3 are

xX2,2
three different “homogeneous regions" for X2 (recall that
A is constant in a homogeneous region of X.) With the
hierarchy assumption, ground class profiles can be simulated

using Monte Carlo simulation methods introduced in section

4,5 below.

4.5 Monte Carlo simulation of tunnel profile

Another very useful result of the prediction model 1is



region 1 region 2 region 3

X1 1 3 2

X2 1

Pigure 4.274 Two parameters with different average extents.
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the sgtraight- forward Monte Carlo simulation of the tunnel
profile. The concept of the Monte Carlo method is simple :
a large number of experiments on a random variable X are
carried out according a given probability distribution of X.
The outcomes of the experiments should follow approximately
the same distribution as the given probability distribution.
For example, 1if X 1is the numner on the top face of an
unbiased dice after it is thrown, the PMF of X follows a
uniform distzibution :
Px(x) = 1/6 = constant
(x =1, 2, +.. 6)

If the dice is thrown 1000 times and the outcome of each
throw (experiment) 1is recorded, the outcomes should also
follow approximately a uniform distribution i.e. the number
of times each number (1, 2, ...6) comes up is about 167. 1In
actual simulations no physical experiment is necessary but
1000 random numbers are generated instead. Six categories
Ci {(i=1, 2, «.. 6) are set up such that the probability
of a random number generated being in Ci is Px(i) (= 1/6 in
this case.)} After each random number is generated it is
inspected to determine to which category it belongs. If it
belongs té Ci then the outcome of the experiment is i. Thus
generating 1000 random numbers is the same as actually
throwing the dice the same number of times. By examining
the distribution of the outcomes of the 1000 experiments

sceme statistics (e.g. mean, standard deviation) of X can be

derived.
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If X is continuous (e.g. a state extent), it has to be
discretized and its PDF is converted to the corresponding
PMF before simulations can be made. Monte Carlo methods are

used to simulate parameter and ground class profiles in

sections 4.5.1 and 4.5.2 respectively.

4,5,1 Parameter profile simulation

If a parameter X enters state i at 1, as shown in Fig.
4.25(a), the unknown part of the X-profile can be simulated
by first simulating the extent at 1, Then the next state
(after 1) j is simulated and then its extent also. The next
state after j can then be simulated and the process is

repeated up to the end of the tunnel (see Fig. 4.25.)

The PDF wused +to simulate HXi is given by (4.12},

(4.13), (4.16), (4.18), (4.20), (4.23), or (4.25), depending

on the kinds of observations ahead of the tunnel face. The
PMF used to simulate the next state after state i is given
BY Py:;

Plnext state = j] =p_ ..
Ard
When there are observations ahead of the tunnel face, the

PMF's of the next state used are not the same as (4.27),

(4.29), (4.31), (4.33), (4.35) or (4.37) because now there

is one more condition the extent of state i given by
simulation is known. The required PMF's with different
kinds of observations are derived in Appendix C which can be

used to simulate the next state j.
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(a} point abservations
S

le Io Il |2 P |s

(b)

next state simuiated
o /_ I S s

(c)

HX. HX;

Figure 4.25 Steps in simulation of parameter profile:
extent of present state, next state, and
the extent of next state
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4.5.2 Ground class profile simulation

If parameter interdependences are weak and can be
neglected, all the parameter profiles are simulated
indeperdently and then combined to form a GC-profile (see
Fig. 4.26.) I1If the parameters are correlated, the hierarchy
of dependences is assumed and the parameter profiles are
simalated one by one, starting with the independent
parameter at the top of the list of hierarchy and moving
down. After the first independent parameter (X1) profile is
simulated, the homcgeneocus regions for X2 are determined and
a X2-profile can be simulated in each homogeneous region.
After X1 and X2-profiles are simulated X3-profile can be
simulated and so on until all the parameter profiles are

simulated., Then they can be combined to form a GC profile

(Fig- 4-26.)

4.6 Summary
The development of the geological prediction model 1is
presented in section 4.1. The Ma.Xkov process concept is
found to be a satisfactory solution to the general
requirements of a geological prediction model which are :
{(a) Tunnel profiles generated by the prediction model should
be compatible with general expectations of the actual
profile.
(b) The knowledge on both the general and particular geology

of the tunnel region should be incorporated.
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(¢) Predictions can be updated as excavation proceeds and
more information is gathered.

{3) The prediction and updating processes should be capable
of including subjective judgment when necessary.

(e) The prediction model should include all relevant
parameters and the entire ranges of their possible
states. However, when unexpected important parameters
are encountered, the model should be capable of
including them also.

The Markov model is then adopted and its assumptions are

presented in section 4.1.3, together with the advantages and

disadvantages.

The prediction model and its applications are presented
in -section 4.2. the "time" parameter in the Markov process
is equivalent to the distance measured along the tunnel axis
from a fixed point such as the portal (Fig. 4.5.) State
predictions at a certain point ahead of the tunnel face are
given by interval +transition probabilities. After the
tunnel enters into a certain state, the length in which the
tunnel will remain in the same state 1is predicted
probabilistically by extent distributions, The probability
of running into a certain state following the state at the
tunnel face is given by the transition probabilities. All
these three probability distributions (interval transition
probability, extent distribution and transition probability)

are modified (updated) when there are "observations" of the
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parameter ahead of the tunnel face. These observations can
be "deterministic" (the state is determined at the point of
observation) or "non- determinstic" (only the PMF of the

parameter at the point of observation is known.) The updated

expressions for these probability distributions based on

these observations are also formulated,

In section 4.3 probability calculations involving
ground classes are presented. Since a ground class is a set
of geological vectors (a combination of parameter states
which dictates the geological condition) , its PMF can be

calculated from the PMF's of the parameters.

The problem of parameter interdependences is discussed
in section 4.4. A "hierarchy of dependences" is assumed in
which the parameters are arranged 1in order of decreasing
average extent. The transition intensity coefficients and
transition probabilities of a parameter in the 1list may

depend on the states of the parameters higher in the list.

The simulation of parameter profiles 1is presented 1in
section 4.5.1. The extent of the state at the tunnel face
is first simulated using expressions for extent
Giztributions given in section 4.2.2. Then the next state
(after the state at the tunnel face) is simulated using the
expressions for tranrsition probabilities given in Appendix
C. The simulation processes are repeated until the entire

parameter profile is simulated. If the parameters are



independent, simulated ground class profiles (section 4.5.2)
can  be directly obtained from individually simulated
parameter profiles, If the parameters are interdependent,
the profile of the first parameter on the hierarchy list is
simulated first, then the second parameter profile 1is
similated and so on. When all the parameter profiles have
been simulated, the ground class profile can be obtained.
On the whole, simulation methods can be a solution to many
complicated cases, especially when there are parameter

interdependences.
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Chapter V

INPUT REQUIRED FOR THE GEOLOGICAL PREDICTION MODEL

5.1 Introduction

Before the geological prediction model (developed 1in
Chapter 1IV) is used to make probabilistic predictions, the
input required for the model have to be derived. The

necessary inputs to the model for a parameter X are the

transition probabilities PX" and the transition intensity
1
coefficients C Generally there are two ways of assesing
1
the values of Sy and Px‘j :  the frequency~ based method
1

and the subjective judgment method. These two methods are

discussed respectively in sections 5.2 and 5.3 below.

5.2 Frequency-based method

If there are sufficient relevant data, c X and Px;a
can be estimated directly. The data are relevant if they
are recorded in regions in which phe same Markov process as
that around the tunnel axis governs. Therefore the recorded
data should be from a region of similar geology as that of
the tunnel. The best data should be from the tunnel region
and measured in the direction of the tunnel advance at
tunnel grade depth. The amount of data is regarded as
sufficient if the statistical significance of a given set of

probability wvalues c¢an be tested. Thus to set up the best

estimates of P_. ,P_ ., +,ee+ P_. ,the required number of
Xil Xid N
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transitions recorded is wusv-1ly about 10(n - 1) (n is the
total number of states of X: see section 6.2.2.) To

calculate the best estimate of at least about 10

c)\f'

extents of state i have to be recorded (see section 6.2.,1.)

There are two main sources of data : maps and existing
tunnel profiles from regions with similar geology as the
tunnel region. When maps are used, a line parallel to the
tunnel axis 1is drawn (see Fig. 5.1.) The states of the
parameters encountered by the 1line are recorded and
converted into a "transition chain" of the parameters. 1If
the parameters considered are X1, X2, ... XN in order of
decreasing extents, the form of a transition chain is shown
in Fig. 5.2. If more data (transition chains) are desired,
other parallel lines can be drawn, but they have to be at a
distance far enough from each other so that essentially the
same data are not recorded twice. When there are existing
tunnel profiles from regions with similar geology as the
tunnel region, it should be noted that only those tunnels
with a directon approximately equal to that of the proposed
tunnel should be used. Each tunnel profile is regarded as a

transition chain.

After all the relevant data are collected in the form

A ~ .
of transition chains Sy and Pyis (the best estimates of
|

CX' and Pxij respectively) of a parameter X can readily be
I
calculated. When the parameters are probabilistically

independent, each parameter is treated individually (section
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tunnel region

Figure 5.1 To obtain data from a map.
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Figure 5.2 A transition chain for X1, X2, ... XN.



120

5.2.1.) When there are parameter interdependences, a

hierarchy of dependences is assumed and parameters X1, X2,

... XN are treated successively (section 5.2.2.)

5.2.1 Independent parameters
at
To calculate C i the extents of state i of parameter X
from the transition chains are considered. From this sampile

of extents the average extent can be calculated. Since the

extent of state i is exponentially distributed (section

N
3.2.3) €., can be taken as the reciprocal of the average

extent. Another method is to take the reciprocal of the
LN
sample standard deviation as e It should be Dbetter to

use both methods by taking the average of the calculated

faY
values of Cx"
]

AN
P_,; can be calculated by considering the transitions
t
made by parameter X in a given set of transition chains.

Let E‘Xi' be the number of times that a transition is made
J

from state i to state j in the set of transition chains

(Fig.5.2.) The number of times that state i appears as the

first state of a "transition pair" {(i.e. two consecutive

states in a transition chain) is Bxi where

B .=F . +F .+ «e0o + F ceees  {5.1)
by Xil X1 Z Xin
Therefore the best estimate of Pxij is
N
= - e 8 & @ 5.2
PKU FX}J/BXi ( )

For i=1l, (5.2) can be used to form the best estimates

of a "row" of transition probabilities Px1i {=0), PXll' ces
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ant The remaining (n-1) rows of transition probabilities

are similarly estimated. The least amount of data required

to evaluate the Dbest estimates of a row of transition

probabilities is usually about 10(n-l1) recorded transitions

because the same number o0f recorded transitions is required

to test the statistical significance of a row of transition

probabilities (see gsection 6.2.2.) This means that BXi has

to be at least about 10{n-1) so that PX]I' lez, .o Px.|n

can be estimated by the frequency-based method. If BXE is

less than 10(n-1), the row of transition probabilities

should be estimated by the subjective judgment method

(section 5.3.)

An interesting point to make is that for a given set of

transition chains the recorded freguencies FXiJ are not

independent. IlLet Gx‘ be the number of times that 1 appears
]
as the second state of a transition pair. Then

-If state i is never situated at the beginning or end

of a trangition chain, then Bxi is equal to G,

which means that

+ F F oaee +

FXil Xi2 = F + F + ¢ + F

Fxin = Fyyj X2i X7 i
-If state i appears B, times at the beginning and E.

times at the end of the chains, then

= +B. - E.
BXi Gxi ] 1

l.eI

F + sa . = + s +F _+B_ "‘E-
il * FXJ" Fxf} AN i I
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In either of the two cases above there 1is a linear

dependence among (i.e. a linear equation involving ) FX'I'
1

oo s e . £ for n states
inz, E&in' Fxli Fxn, Therefore
there will be n such linear dependences and the number of

independent transition frequencies inside a transition chain

= number of non-zero FX"'S -n
by
2 2
= (n-n) -n = n-2n
Since there are also n linear dependences among

transition probabilities in the form

PX.I +PY\|2+... +PXIT]=1' s e s o0 (5.4)

the number of independent transition probabilities

number of non-zero Px"
(Y]

S - n
2 2z
=(n - n)-n = n - 2n.

Therefore the best estimates of Pxﬁ‘ (5.2) fit the data set

iJ

perfectly,. This result invalidates any significance tests

using a single set of data (transition chains) to test the

appropriateness of the transition probability concept with

the assumption of a single-step memory.

5.2.2. Independent parameters
When there are probabilistic interdependences among the
parameters, a hierarchy of dependences is assumed (section

4.4.) The parameters are arranged in order of decreasing

average extents : X1, X2, .... XN. Since X1 is regarded

N

. A
as an independent parameter, cXﬁ and PX" are evaluated
i N
as shown in section 5.2.1l. For the other parameters if XI
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is dependent on XJ, P a

XLid
values in regions with diffe
Degree of Jointing (XI) may

for regions with different

probabilities and transiton

be evaluated for Degree of

is a homogeneous region for

be evaluated from the transi

5.3 Subjective judgment meth

In actual situations th
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faY
né c¢ . will have different
KL

rent states of XJ. For example,

depend on Rock Type (XJ). Thus

rock types, different transition

intensity coefficients have to
Bach of these regions

~
and c

Jointing.

Fal
XI and PXiIJ X1 have to

tion chains in the region.

od

e amount of data available may

not be sufficient for the frequency- based method to be
used, Under such situation in addition to data expert
knowledge (subjective judgment) of the geologists who are
familiar with the geology of the tunnel region should be
incorporated.
5.3.1 Independent parameters
5.3.1.1 fTransition intensity coefficients

To assess the value of c a geologist (or group of

geologists) is basically ask

"What is the average exte

X in this region at the
A concrete example is
"If there are several le

+unnel axis, what would

.
!

ed such a question

nt of state i of parameter

tunnel grade 2" ..... (Q1)

ngths of granite along the

b ] n

be the average length
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CXi is the taken to be the reciprocal of the estimated
average length.

5.3.1.2 Transition probabilities

- a geologist 1is

To timate P P P
es Xil' %z xin'

basically asked such a question (to assist the geologist, a

profile of the tunnel region such as that of Fig 5.3 should

be shown alsoc) :
"If state i of X occurs at a certain place along
the tunnel axis, what is the probability that
the next state is j 2" ceses (Q2)
(The place where state i occurs can be at any location along

the tunnel axis; therefore the answer should be independent

of location.)
An example is

"If there is a length of low RQD rock along the
tunnel axis, what is the probability that the
rock next to it is of high RQD 2"
Another example where the term "probability" is avoided is
"If there is length of low RQD rock along the
tunnel axis, how many times out of a hundred
would it happen that the rock next to it is of
high RQD ?"
If the direct assessment of a probability value is
difficult, an indirect mode of encoding is for the geologist

to choose between two bets (Fig. 5.4.) The geoclogist 1is



125

Yown observations about x within this region
""‘\ _—next stote =j 7

M ul? il

~ ’
-

. direction of advance given state of x=1

Figure 5.3 Subjective assessment of Pxij
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win win

lose loze

Bet 1 Bet 2

Figure 5.4 Indirect probability encoding.
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told that the first bet has a probability of winning equal
to the answer to (Q2) (i.e. PXiJ') The second bet has a
probability of winning equal to P which is varied until the
geologist shows indifference in choosing between the two
bets. Fig 5.4 1is shown to the geologist and a series of
questions are asked for different values of P :

"If the probability of winning the second bet 1is

P, which bet would you prefer 2"

If the geologist prefers bet 1, it means that PXEJ > P

and if he prefers bet 2, P » Px"' If he is indifferent
ty

between the two bets, P is taken to be eqgual to wa . It is
better to start the sereis of questions with alternately
high and low values of P. An example of the encoding
process where seven questions are asked to reach the
required probability is :

P .95 .05 .80

Choice of bet 2 (definitely) 1 {definitely) 2

P .20 70 .40
Choice of bet 1 (definitely) 2 1
P 60

Choice of bet (indifferent)

Thus pXiJ = .6 in the above example. To help the geologist
to "visualise" the probability P, a probability wheel (see
Spetzler and Holstein, 1974) may be used. An important

precaution when asking (Q2) is to make sure that there are
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no known observations of the states of X near ( e.g. within
a distance of l/CXE) the place where state i is agsumed to
occur (see Fig 5.3.) If there are such observations, the
estimate of P _ . would be affected and may not represent

XiJ
the general situation in the tunnel region.

For a parameter X with n states, when a row of

transition probabilities (PXEI' PX]Z' o u e PXin) is beiling
assessed, (n-2) questions of type (Q2) are required. For
example, to assess (PXZI' PX22' .o E&gg) (5 - 2 = 3)
uestions have to be ked to get P , P , P . The
questions na s J x21' x23' k24

remaining 2 probabilities are given by :

P22 =0

Pras =1 7 Pyor T P23z 7 Pyas
When these (n-2) questions are being asked, the geologist
may have difficulty in answering some of them. After all
the gquestions +to assess the n rows of transition
probabilities are ésked, let m be the number of questions

that cannot be answered by the geoclogist (i.e. there are m

"missing” probabilities.) To obtain these m missing

probabilities, the valuz2s of Vi (the limiting probability
i

of state i, which is also the relative percentage of

occurence of state i in the region; see section 3.3.3) are
assessed, n additional questions for the values of VX} are
asked (i =1, 2 , 3, «.e, n) :

"What is the probability of having state i of parameter

X at any given point along the tunnel axis 2" ... (Q3)
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Oor alternatively,

"What 1is the relative percentage of the occurence of

state i of parameter X along the tunnel axis ? "

verss  (Q4)

After in (i=1,2,....,n) is estimated, the sum (vXI + szf*

.o + vxn) should be checked. If the sum is not equal to

1, each of the estimate VX_ can be determined by dividing
I

by the sum so that the new sum will be equal to 1.

When the values of vx, have been determined, equations
t

(3.12) are used to infer the values of PX" :
id
band + . & 8 + P = O
VXE( CXI) * szﬂcxz.szl) vxn(cX71 Xn;)
v (¢ P + v - + .o + v (c p ) =0
X1 Xl x:.z) xz( xz) XN A7 XNz
V C P + V C P + * e . + V —C = O

Since there are (n-1) independent equations in (3.12), when
m < n-l, all the m missing probabilities can be calculated.
When m > n-1, (m-n+l) additional questions are still needed,

Each of these additional gquestions can be formulated to

derive the ratio of P to P

Xiu Xiv at least one of which |is
! 1

a missing probability. Questions of the following type can

be asked :

"If state i of X occurs at a certain place along the
tunnel axis and the state next to it is either u or

v, what is the probability that it is u 2" ... (Q5)
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Suppose the answer is q,, then

Pxiw T Quv
Px‘lv ]. - quv e s v 0. (5!5)

When (m-n+l) guestions of the form (Q5) are answered,
the (m-n+l) corresponding results (5.5) are used together

with (3.12) to obtain the m missing probabilities.

Equations (3.12) and (5.5) are linear in Px., and so the
Pd

solutions should be easy to obtain.

5.3.2 Interdependent parameters

If significant (whether something is ‘"significant" or
not is to be determined by the geologist subjectively)
parameter interdependences are suspected, the parameters are
arranged in decreasing average extents : X1, X2, ... XN
and questionings are carried out for each parameter in the
same order. Starting from X1 (the "independent parameter"),

questions (Ql), (Q2) and if appropriate (Q3) to (QS5) are

asked to assess the values of P, .. and c¢_ ..
X1 Xt
After PXI'J and CX\° are established the dependence of
i I
X2 on X1 1is tested. To test the dependence of c on X1

X2
x2n (= total number of states of X2} of the following type
of questions are asked (i =1, 2, ... x2n) :
"If the places where state i of X2 exists are in

different states of X1, would there be significant

differences in the average extents of state i of



X2 2" verss  (Q6)

To test the dependence of szij on X, (x2n -2 x2n) (=

total number of independent transition probabilities)
questions of the type are asked :
"If the places where state i of X2 exists are in
different state of X1, would there be significant

differences in the probability that the state next

to state i is j 2" N (X!
If the answer to any one of the questions (Q&) and (Q7) 1is
"yes", then X2 1is probabilistically dependent on Xl.
Different sets of P . and c¢ . are seastablished for
K21 X2

regions in different states of X1 by using the methods
fquestions (Ql) to {Q5)] of section 5.3.1. The amount of
effort needed is 1less than proportional to the number of
set .. . i : i i
s of sz,J and cXZ, required after the first set is
established the other sets should be easier to assess due to

the repetition of procedures. If the answers to all the

questions (Q6) and (Q7) are negative, then X2 is indepedent

can be established independently.

of X1 and szij and cx2i

After the +transition probabilities and transition
intensity coeficients of X1 and X2 are established, the
dependences of X3 on X1 and X3 on X2 are tested similarly as
the dependence of X2 on X1. 1If X3 is only dependent on one
of them, different sets of PKSIJ and c, 5. are established
for regions in different states of the correlated parameter.



If X3 is dependent on both parameters, different sets of

P *3__ and S 3 are established for regions in different
(Y] [}

combinations of states of X1 and X2. An example is that RQD
may depend on the combination of Rock Type and Faulting :
average extent of high RQD rocks is much greater in a region
with quartzite- no faulting than one with granite- faulting.
But if X3 is not dependent on X2 or X1, it is treated as an

independent parameter.

After the transition probabilities and transition
intensity coefficients are established for X1, X2 and X3, X4
is considered. The dependences of X4 on X1, X2 and X3 are
tested similarly and different sets of Px4i5 and Cy4: are
established if there are dependences. Similar procedures
are applied to X5, ... XN until all required transition

probabilities and transition intensity coefficients are

encoded.

Summary
In this chapter the procedures for assessing the basic
inputs (transition probabilities and transition intensity
coefficients) required for the geological prediction model
are presented. Both a frequency- based method (when there

is sufficient data) and a subjective judgment method can be

used. For the case of independent parameters, each
parameter 1is treated individually. For the case of

interdependent parameters, a hierarchy of dependences



(section 4,4) is assumed and the parameters are treated

successively, starting with the one with the largest average

axtent,.



CHAPTER VI

UPDATING OF THE GEOLOGICAL PREDICTION MODEL

6.1 Introduction

As tunnel construction proceeds the states and extents
of " different geological parameters in the newly excavated
part of the tunnel are recorded. This information can be

expressed as a "transition chain" of parameters X1, X2, ....

XN (in decreasing order of average extents) as shown in Fig.
6.1, This information must be relevant to the problem of
geological prediction in the unexcavated part of the tunnel
since it comes from an excavated part of the same tunnel.
Therefore it is desirable to update (refine) the geclogical
prediction model (i.e. to update the transition
probabilities and transition intensity coefficients used in

the model) based on this information so that it may be in

better correspondence with the actual geology of the

unexcavated part of the tunnel.

Before tunnel excavation starts, the transition
probabilities and transition intensity coefficients are
estimated by the methods presented in Chapter V. The
geological prediction model can then be used to form
probabilistic predictions about the geoclogical parameters
ahead of the tunnel face., After a certain length of the
tunnel is excavated, records of the geological parameters in

the newly excavated part can be used to update the estimates
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‘lMJ
newly sacavoted
part

Recorded transition chain

Xi 2 ! 3
Xz 2 3 2

X3} 4 4| 3 i 2 3

XN

Figure 6.] A recorded transition chain taken
from a newly excavated part of
the tunnel
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of the transition probabilities and intensity coefficients.
This updating is intended tc modify the geological
prediction model so that it may give better predictions 1in
the unexcavated part of the tunnel. This updating process
can be repeated as another length of the tunnel is excavated
and new records taken. A typical updating process is
presented in section 6.2 where the frequency- based method
(section 5.2) is used. When the subjective judgment method
(section 5.3) is used the procedures for updating are
presented in section 6.3. The updating processes presented
in sections 6.2 and 6.3 are equally applicable to

independent or interdependent parameters.

6.2 Frequency-based method
6.2.1 Updating of a transition intensity coefficient

When the frequency- based method is used to establish a

a L3 [ L3 [} - . 13 ’\
transition intensity coefficient, its best estimate c¢

XKit®
calculated from a sample of extents extracted from an

zXisting set of transition chains (section 5.2.) Updating is

done by adding the newly recorded extents of state i to the

existing sample and re- calculating the best estimate.

If the transition intensity coefficient ¢ being in

AKiuw
use deviates considerably from the newly recorded extents of
state i, updating of the coefficient should not be done
simply by adding the new information to the existing one but

by treating it separately. If such a significant deviation



137

is suspected, a conventional Chi-square test (see Cornell,
1970; Appendix A) should be used to test the exponential
extent distribution {see section 3.2.3.)

-C

£ (h) = e XKid h

HXK i “xKiu
based on the new records. Since the degrees of freedom of
the Chi-square statistic 1s equal to (NC - 1) (NC is the
total number of categories), NC is required to be at least
2. Therefore at least 10 (= 2x5) extents are required since
each category should have an expected frequency of 5 or

above, If the Chi-square test result 1is positive, the

transition intensity coefficient can be updated as mentioned

above, If the test result is negative, CXK'w is rejected
!
and the best estimate of c XK is calculated based on the
l .
new records only. This 1is intended to ensure that the

transition intensity coefficient used is up-to-date because
the new records should usually correspond better with the

geology of the remaining part of the tunnel.

6.2.2 updating of transition probabilities
It was mentioned 1in section 5.2.1 that a row of
cue can be
Pxn' Px'.z' Px:n)
(the number of times that a

transition probabilities {

estimated by recording F

Ril
transition is made from state i to state 1), inl, v
F‘xin from an existing set of tansition chains of parameter
X. The best estimate can be updated by adding the

transition chain of X in the newly excavated part of the
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tunnel to the existing set : Fx,_ is increased by the
]

number of times that a trangition is made from state i to

state j in the new transiton chain.

If the row of transition probabilities in use

P . ‘o P, . ) deviates considerably from the
I " Aiz Linuw

newly recorded transition fregquency distribution, updating

(P

of the row should not be done by simply adding the new

information to the existing one but by treating it

separately. If such a significant deviation is suspected, a

Chi-square test can be carried out. Let NFK__ be the
13

number of times that X makes a transition from state i to

state j in the new transition chain and

NB = NF + NF «es + NF

. . .
X Xil Xi2 AN

(NB is the number of times that state 1 appears as the

Xi
first state 