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ABSTRACT

Uncertainty in predicting geological conditions in
tunneling often leads to design for the worst anticipated
conditions and thus conservative design-construction
approaches. By adapting design to the conditions

encountered during construction potential savings are
possible, however, only if changes from one design to

another do not cause costs that exceed the savings.
Optimization of design-construction has thus to consider

the variability of geologic conditions.
In this thesis a probabilistic geological prediction

and updating model based on the concept of Markov processes
is developed. Probabilistic distributions of the geological
parameters and "ground classes" ahead of the tunnel face are
developed. These distributions are modified by observations

made at points along the tunnel axis ahead of the tunnel
face. Before tunnel construction the basic elements
(transition probabilities and transition intensity
coefficients) of the prediction model can be estimated using

frequency data and/or subjective expert knowledge. As
tunnel construction proceeds records of the geological
parameters along the excavated tunnel are made and the
estimates of the basic elements can be updated. A case

study was made in which the state probabilities of the
geological parameters were calculated. Since the parameters
considered were probabilistically independent, ground class
probabilities were readily calculated.

With the probabilistic description of geology,
optimization of design-construction procedures prior to

construction and optimal adaptation during construction
becomes possible.
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List of Symbols

The geological prediction model considers several

geological parameters each of which can take several states.

Each parameter state has an extent and probability of

existence at a certain position along the tunnel. Due to

these complications a system of symbols employing subscripts

and superscripts has to be used.

Random variables are denoted by capital letters while

their particular realizations are usually denoted by the

corresponding small letters. Matrices are capitalized and

underlined. Vectors are either underlined or written with a

top bar. Most symbols are self-explanatory when the context

is considered.

Symbol Definition

A x
c .,..

D

E

ES

F (h)

F (h)

f -k (h )

transition intensity matrix of X

transition intensity coefficient of the
state i of X

random variable denoting Degree of
Jointing

random variable denoting Degree of
Weathering

excavation and support process

cumulative probability density function
of HX.

updated cumulative probability density
function of HX.

updated probability density function of HX-
based on a deterministic observation k (=i)



10

d
f Hi k (h)

f3j5 (h)

fK
ffXi(h)

f I (h)
HXi

n
f . (h)

f (h)
cij

GC

Hm

HXi

h

Km

Ktmf

kt

Lm

1

NC

n

ptm

di
ijl

d
Xij

updated probability density function of HXi
based on a deterministic observation k (ti)

probability density function of HXi

updated probability density function of HXi
based on a combination of several
deterministic observations

updated probability density function of HXi
based on a combination of non-deterministic
observations

updated probability density function of HX.
based on a non-deterministic observation

updated probability density function of HX1

jth vector inside GCi

ground class

competing hypothesis m

random variable representing the extent

of the state i of X; also used as a
particular realization

particular realization of HXj

the mth combination of states at several

points

state at 1b in Km

state at point lt

likelihood of Hm

length, co-ordinate of a point

number of categories

total number of states of X

probability of having state m at It

updated transition probability based on
a deterministic observation and with
the condition that HXj = hs

updated transition probability of X from
states i to j based on a deterministic
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observation

Ko
P .. updated transition probability based on

a combination of deterministic observations
and with the condition that HX i = h

S

P K updated transition probability of X from
Xij states i to j based on a combination of

deterministic observations

P Nupdated transition probability based on
a combination of non-deterministic

observations and with the condition
that HX = h

ne

P,.. updated transition probability based on
a non-deterministic observation
and with the condition that HX. = h

1 S

P .updated transition probability of X from2Xij states i to j based on a combination of
non-deterministic observations

P nupdated transition probability of X from
states i to j based on a non-deterministic
observation

P1  transition probability of X from states i
to j

P probability that HM is true

P updated probability that HM is true

R random variable Rock Type

RQD Rock Quality Designation

r particular realization of R

sx limiting state probability vector of X

SX(u) row vector of state probabilities at a
distance u from present point

TBM tunnel boring machine

Vx(u) interval transition probability matrix
dX

v (u) updated interval transition probability

based on a deterministic observation

v . (u) updated interval transition probability
xij
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based on several deterministic
observations

V ij(u) updated interval transition probability
based on a non-deterministic observation

ns
v- ij(u) updated interval transition probabilityAIJbased on several non-deterministic

observations

v Xij(u) interval transition probability

vXj limiting state probability

W random variable denoting Availability
of Water

x a geological parameter as a random variable

xi a geological parameter as a random variable

x particular realization of X

xin total number of states of XI

Y a geological parameter as a random variable
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CHAPTER I

INTRODUCTION

Tunneling involves a high degree of uncertainty arising

from the unknown geological conditions underground and a

lack of precise understanding of the ground-structure

interactions. This uncertainty often translates into a high

cost of tunneling. Since underground construction such as

tunneling and mining is expected to increase to even higher

volumes (estimated $40 billion in the United States alone)

in the near future, efficient tunneling methodologies must

be developed. As a first step to efficiently solve problems

of cost estimation and optimization, a geological prediction

and updating model in tunneling is developed.

In conventional tunneling methods, there is usually

only one (or a very few) excavation and support design

options for the entire tunnel. This design has to be

determined before tunnel construction and hence a

conservative design has to be adopted based on the worst

expected geological conditions in the tunnel. This

conservatism evidently leads to unecessarily high costs of

tunneling. A new approach has been developed which is

generally known as the observational or adaptable method.

In the observational method different excavation and support

processes are used for different sections of the tunnel,

based on technical and economic considerations. The aim of
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this approach is to minimize the expected cost of tunnel

construction.

Since decisions on choosing among a number of

excavation and support processes for different sections of

the tunnel have to be made, cost optimization in the

observational method can be much more complicated. The role

of geological prediction is especially important in this

method where uncertainties must be considered. With

probabilistic prediction methods, construction planning

before and during tunneling can be carried out

systematically and optimal strategies can be found.

At the present time geological prediction is usually in

the form of a "best estimate" which represents the

conditions most likely to exist around the proposed tunnel.

This prediction is based on the results of exploration,

established geological information and inferences made by

geologists. The main disadvantage is that uncertainty is

not considered explicitly. Since "unanticipated" geologies

occur from time to time, this approach is not quite

sufficient for cost estimation and construction planning.

An improvement is made in the Tunnel Cost Model

(Moavenzadeh et al, 1978) which considers the effect of

geological uncertainty on cost estimation. In this model

the tunnel profile is divided into segments inside each of

which only one "geologic unit" is assumed to exist (a
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geologic unit is a set of geological conditions which

dictates certain excavation and support processes.) This

assumption of having only one geologic unit inside each

segment is obviously easily violated. If a pre-determined

tunnel segment is not extremely short, there is no reason

why the geological conditions should be the same within that

segment. In addition, there is no systematic procedure

through which geological predictions can be updated as

tunnel construction proceeds. Therefore although the Tunnel

Cost Model can be a satisfactory tool for cost estimation

before tunnel excavation, it cannot be used for construction

planning in search for optimal (cost-minimizing) strategies.

In this thesis a more powerful probabilistic geological

prediction and updating model using the Markov process is

proposed. In Chapter II, technical and economic

considerations required for cost optimization are examined.

The concept of "ground classes" (a set of geological

conditions which dictates certain excavation and support

processes) for individual sections is presented. Chapter

III introduces the Markov process concept adopted by the

geological prediction model. In Chapter IV the geological

prediction model is developed. The reasons and supporting

evidence for choosing the Markov model are 'presented.

Applications of the prediction model and the problem of

parameter' interdependences are discussed. Chapter V

considers estimations of transition intensity coefficients
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and transition probabilities (the basic elements of a Markov

process) to be used in applying the prediction model in

practice. Both frequency-based and subjective probability

derivations are discussed. Chapter VI shows how the

coefficients and probabilities used in the prediction model

can be updated when excavation proceeds and more geological

information is gathered. To exemplify some actual

applications of the concepts developed in this thesis, a

case study on the construction of a water tunnel (7662 feet

long) is made in Chapter VII. Chapter VIII concludes the

thesis.
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CHAPTER II

THE PERFORMANCE MODEL AND COST OPTIMIZATION

2.1 Introduction

Tunnel construction and planning are greatly affected

by the ground conditions along the tunnel axis. Since

geological conditions often cannot be determined before

excavation, it seems promising to apply methods of decision

analysis under uncertainty so that the expected total

construction cost is minimized. Before describing formal

procedures for cost optimization the general tunnel

construction process and the observational tunneling method

are described.

2.1.1 General tunnel construction process

Two of the main components of tunnel construction are

excavation and support placement. Excavation is the removal

of rock and/or soil by hand, by drilling and blasting, by

machinery or by combinations of methods. It is done in

cycles (rounds) that can have a length between less than one

meter to about four meters depending on standup time and on

equipment characteristics. After one or more rounds the

excavation process is stopped to allow for the application

of initial supports to the newly excavated part of the

tunnel. After the initial support is placed excavation is

resumed and the cycle is repeated. At some distance from
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the face the tunnel (wher excavation is taking place)

the final support is applied. In cases where the geological

conditions are of high quality, no initial and somtimes no

final supports are required.

2.1.2 Observational tunneling method

In conventional tunnel methods, the excavation and

support processes (full face or partial face excavation,

types of initial support, methods of installation) are to a

large extent predetermined before the construction of the

tunnel starts (or at least before the "production phase of

construction.) Only minor changes of these processes are

possible during construction. Consequently the choice of

excavation and support processes are often based on the

worst expected geological conditions because no or limited

adaptation is possible and hence over-conservatism is often

inevitable. In contrast the observational tunneling method

allows for adaptation of design during tunneling. Basically

the design is optimized in situ by adapting it to the

observed geological conditions. The observational tunneling

method is composed of the following steps :

1. Exploration --- available information on the particular

geology of the tunnel area is collected and additional

geotechnical exploration is carried out to describe the

engineering properties of the tunnel ground. (This step is
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common to both "conventional" and observational methods.)

2. Preliminary design --- alternate excavation procedures

and support designs for different geological conditions

classified in terms of ground classes (see section 2.2) are

developed. These alternate designs can be modified when

more experience is gained during tunneling. New designs can

be added when unexpected geological conditions occur.

3. Tunnel construction --- appropriate excavation and

support processes are selected for each round based on

observations and monitoring (see below)- in the preceding

tunnel sections. Thus, technically and economically optimal

excavation and support procedures are chosen.

4. Observation and monitoring --- geological conditions of

newly excavated parts of the tunnel are observed and

recorded. observation of geological conditions forms the

basis for ground classification and the above-mentioned

selection of excavation and support procedures. Monitoring

of deformations helps to maintain safety and to get a better

understanding of the ground-structure behaviour. Monitoring

will thus indicate if the support performs as anticipated or

if the design has to be changed.

5. Adaptation to particular geological conditions --- the

appropriate excavation and support method for each round is

chosen. Also design is modified based on results of

monitoring. New designs are added if necessary.

6. Steps 3 to 5 are performed simultaneously and

repetitively during tunneling until construction is
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finished.

The main reason for using the observational method

instead of the conventional one is that over-conservatism

can be minimized and hence the tunnel construction costs can

be lowered. In addition, the flexibility of the

observational approach makes it easier to cope with

unexpectedly adverse situations.

2.2 The performance mode!

A technical understanding of the interaction of the

tunnel ground with different excavation and support

processes is essential in the choice of them. The

performance model is introduced to describe how a tunnel

section with given geological conditions will perform as a

certain excavation and support process is applied.

The performance model expresses the performance of a

section of the tunnel as a function of the geological

conditions and of the excavation and support processes

applied to that section i.e.

S=f (Tii s .... (2.1)

where li is the vector of performance parameters such as :

(1) Ground behaviour during excavation (i.e. overbreaks.)

(2) Convergence of tunnel at a fixed distance after initial

support is applied.

(3) Convergence rate at a fixed time after initial support

4
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is applied.

(4) Afterbreaks.

(5) Support performance (e.g. amount of displacement.)

(6) Water inflow during excavation and application of

initial support.

(7) Water inflow after application of initial support.

(8) Time required for construction (including time spent

in excavation and applying initial support.)

4g includes all the relevant geological parameters which

affect the choice of excavation and support processes and

the performance of the tunnel after construction. g may

include the following geological parameters :

(1) Rock type.

(2) Faulting.

(3) Degree of jointing (or RQD.)

(4) Availability of ground water at tunnel grade.

(5) Overburden.

(6) Soil type (e.g. soils with different degrees of

cohesiveness, mixed face - boulders and soil.)

Parameters (1) to (5) are more important in hard rock

tunneling particularly at great depths while parameters (4)

to (6) are more important in soft ground tunneling at

shallow depths.

W is the vector of excavation parameters such as :

(1) Excavation method (e.g. Tunnel Boring Machine,
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shield, drill and blast, or cut and cover.)

(2) Round length.

(3) Amount of over-excavation.

is contains the support parameters such as

(1) Initial support (e.g. steel ribs and lagging, rock

bolts with a certain spacing, shotcrete with a

certain thickness (e.g. 3 in, 5 in), liner plates

with a certain thickness and bolt spacing, or

segmental lining.)

(2) Final support (e.g. shotcrete with a certain

thickness, cast-in-place concrete with a certain

thickness, or segmental lining.)

(3) Face support (e.g. no face support, breasting, or

shotcrete.)

(4) Invert support.

(5) Initial support distance delay (i.e. distance between

tunnel face and section where initial support is

applied.)

(6) Initial support time delay (i.e. time between finishing

of excavation and application of initial support.)

(7) Final support time delay.

When examining the above parameters, it can be seen

that some of them are qualitative while the others can be

expressed quantitatively. It is often convenient to

discretize some of the quantitative parameters (if their

states are not already expressed in discrete terms.) For
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example, convergence of the tunnel can be expressed by

values such as 2 inches, 4 inches, 6 inches, 8 inches or

greater, but not 1.54 inches. Thus, for example, "c (the

symbol for convergence) =3" can mean that the convergence is

6 inches. Thus, basically quantitative parameters can also

be expressed qualitaively (qualitative parameters are always

discrete.) For example, c=1 can mean that the convergence is

small while c=5 can mean that the convergence is

intolerable. In the case of geological parameters, only

discrete states will be used in the geological prediction

model (see Chapter 4) because geological parameters are

either qualitative (e.g. rock type, faulting, cohesiveness

of soil and even sometimes the degree of jointing) or

discrete values are sufficiently accurate for technical

considerations.

2.3 Cost optimization

As discussed in section 2.1, one wants to optimize the

construction of a tunnel section economically and

technically. Thus, for given geological conditions, a

combination of excavation and support processes should be

selected which results in the smallest cost while the

performance of the tunnel, as derived from relation (2.1),

will be satisfactory. Satisractory performance essentially

means that the tunnel is usable and that sufficient safety

against collapse is maintained. The optimal excavation and
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support processes can be chosen independently for each

tunnel section (round) as will be discussed in section

2.3.1. Ideally, and as described in section 2.3.2, cost

optimization should involve the entire tunnel where the

choice of excavation and support methods for a section

(round) is also affected by the conditions in the other

sections.

2.3.1 Optimization of individual sections (rounds) -

"ground classes"

If cost optimization is carried out for every

geological condition g (there is a finite number of possible

geological conditions since all geological parameters are

discrete), it will be found that different sets of

geological conditions require different optimal combinations

of excavation and support processes. It is often convenient

to denote these sets of geological conditions by ground

classes (GC) such that if a particular geological condition

gl belongs to a certain GC, the excavation-support process

(ES) corresponding to this GC is optimal for gl.

Consequently, the optimal excavation-support process

corresponding to the ground class GCi is denoted by ESi.
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The phrase "ground class" is in fact borrowed from the

terminolgy of the New Austrian Tunneling Method (NATM) (see

Steiner, 1979) where a certain ground class would dictate a

certain excavation- support method and a "section" is a

round of excavation. In the NATM there are usually about 6

or 7 ground classes.

2.3.2 Optimization involving the entire tunnel -

"cost of change"

So far only the cost optimization for individual

sections was discussed. In fact using ESi for GCi is the

optimal choice only if a single section is considered. if

the construction of the entire tunnel is considered,

complications arise because a certain ES requires man-power,

machinery, and set-up time before it can be applied. When a

currently used ES has to be replaced by another ES for a new

section, the change will involve additional costs needed to

replace or modify equipment and procedures.

Example (see Figure 2.1)

GC 3 2 1

Section 21 22 23

Figure 2.1 Effect of cost of change.
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Given : - 3 ground classes and Cl (unit cost of ESt) < C2

< C3;

- ES3 can also be applied to GCl and GC2 with

technically satisfactory performance.

- ES2 can also be applied to GC with technically

satisfactory performance.

Determine : the optimal choice of ES in sections 21, 22,

and 23.

It is probably not justified to use ES2 for section 22

because the cost of change from ES3 to ES2 may well exceed

the saving in constructing section 22 (which is short.)

Therefore the optimal strategy for this part of the tunnel

is to continue using ES3 through section 22 and then change

to ES1 for section 23.

Thus for a given ground class profile, the optimal

strategy for choosing the ES for each section has to be

obtained from considering the construction cost of each

section and the costs of change. In this way the total

construction cost of the tunnel is minimized as a result of

overall planning.

2.3.3 Uncertainties considered

As was mentioned before, the high costs of tunneling

spring in part from uncertainties in geology and

construction which essentially include :
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(a) Model uncertainty --- the interaction of the ground

wi*h different excavation and support processes is usually

not known accurately i.e. there is uncertainty in the

performance relation (2.1.) Probably a performance relation

derived from experiment and theory is applied. The relation

can be updated when construction proceeds and more

observations are made (see Rollin, 1979.)

(b) Geological uncertainty --- the "ground class profile"

is usually not known deterministically before the tunnel is

excavated. Hence the optimal strategy as described in

section 2.3.2 cannot be obtained before excavation.

(c) Construction uncertainty --- the time and cost

required for applying a certain ES vary due to factors such

as machinery breakdowns, strikes and resource market

fluctuations.

Due to the above three main types of uncertainties, the

minimum construction cost of the tunnel cannot be estimated

deterministically. But if appropriate probabilistic models

are used to take these uncertainties into account, an

"optimal strategy" can be found which minimizes the expected

cost of construction. The main purpose of this research is

to find an appropriate probabilistic model for geological

uncertainty which can be incorporated into the expected cost

optimization to find the optimal strategy.
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CHAPTER III

THE MARKOV PROCESS

3.1 Introduction

After examining the effect of ground conditions on

tunnel construction decisions (Chapter II), the basic

concepts underlying the geological prediction model (which

will be introduced in Chapter 4) are presented in this

chapter. Since geological prediction involves not only

ground parameters but also their respective locations, the

concept of stochastic processes has to be used. A

stochastic process involves random variables which are

functions of a "time" parameter. For example, the number of

people N in a queue can be regarded as a random variable

which depends on time. Thus at a given time t, the number

of people is a random function N(t) which has a certain

probability distribution PN (n,t).

An example is shown in Fig. 3.1 where P (n,t) is the
N

PMF (probability mass function) of N(t). P (n,t ) and
N 1

P (n,t2 ) are shown as PMF's of N at times t 1 and t2

respectively. Thus for example at t=t\, P[N=2J = 0.25 while

at t=t2 , PEN=2J = 0.5.

The Markov process (Howard, 1971; Veneziano, 1980;

Cox and Miller, 1965) is one of the best known stochastic

processes and is sophisticated enough to deal with complex

systems, like the geologic environment. The characteristic
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Figure 3.1 Example of a stochastic process

ti t.z time t
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of the Markov process is that of a single-step memory :

past history apart from the most recent event is neglected

in forming predictions about the future. This is a very

restrictive condition but the most recent step should

usually be the most important step for forming predictions

about the future. In fact a significant advantage for

assuming a single-step memory instead of a multiple-step

memory is that probability calculations are considerably

simpler and full probability distributions can often be

found.

For a probability distribution P (x,t) to be governed

by a Markov process, the condition holds that

P X(x t x(t. ,X(t. ), ... )
X i+l 1 -

= P (x,t.j x(t. )) ..... (3.1)

where x(t. ), x(t. ), ... are the outcomes of the random
1 i-i

variables X(t.), X(t ), ... respectively and t+ > t >
I i-l i+1 1

t >... Thus the history of the past events except the
i-I

most recent one has no effect on the probability

distribution of the random variable at a later time.

In the previous example about the number of people in a

queue, if P (n,t) obeys the Markov process, then the
X

prediction on N(t4) (i.e. P (n,t*)) depends only on the
N

number of people known at a time most recent to t" and not

on the number at any other time before.
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In this thesis "time" is equivalent to the position

along the tunnel axis where position is identified by the

distance 1 from a certain fixed point (e.g. the portal of

the tunnel.) The situation is shown in Fig. 3.2 where the

direction of the advance of construction is the positive

direction of 1.

0

nn1

Portal tunnel face

Figure 3.2 Definition of "time" in the Markov process.

3.2 Basic elements of the Markov process

Central to the Markov process are the concepts of

state, state transition, and extent. These three basic

elements are introduced in the following sub- sections.

3.2.1 State

The states of a random variable are the possible values

that it can take. For example, for the ground parameter

"Rock Type", the parameter states r can be defined as

follows :
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r Deffinition

1 Schist

2 Metaquartzite

3 Diorite

4 Quartzite

such that "r=3" means that the state of rock type is

Diorite.

3.2.2 State transition

A ground parameter X at a certain position 1 can be

regarded as a random variable X(l). As 1 increases from 0,

X(l) changes its value (see Fig. 3.3.) Each of these

changes is called a state transition. If at a certain

position x(l)=i, the probability that the next state is j is

P., the transition probability from state i to state j.
Xij

For example, if in Fig. 3.2 x(l0)=1, then the probability

that the next state is 2 is P *X12. Since the "next state" is

always assumed to be different from the present state,

P .. =0.
Xii

state transitions take place

X1 2 3 1 2 3

Figure 3.3 State transitions.
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3.2.3 Extent

After a parameter X(l) has entered into a certain state

i at 10, the interval for which X will remain in state i is

called the extent HX. of state i at 1 . HX. can be thought
0

of as the "horizontal thickness" of state i and is depicted

in Fig. 3.4 (k i t j.)

HX

S=k k 11

Figure 3.4 Extent.

For the continuous space Markov process [in which space

(i.e. position) is measured with a continuous scale]

considered in this thesis, the transition intensity

coefficient c Xi of state i of parameter X can be defined

such that cN dl is the probability that a state transition

is made (i.e. the extent terminates) within the

infinitesimal interval dl, given that state i exists at the

beginning of the interval (Fig. 3.5.) Thus the probability

that a transition occurs within the interval from 1=11 to

1=1 +dl is cX .dl.
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1 1 + dl
I 1

i

Figure 3.5 Probability of making a transition

Neglecting the small probability that there is more

than one transition within dl, the PDF of HX. can be derived
1

by first considering the CDF (cumulative density funtion) of

HX.

F (h) = PCHX < h] ..... (3.2)
J&Ci i

If h is divided into m equal segments of infinitesimal

length dl each, then

P[HX. >h] = P[no transition occurs within h]
1

= P[no transition occurs within

each of the m segments]

m
= lim (1 - c dl)

Xi
m -+oo

= lim (1 - c h/rm)
M --+ 00

-C h
= e .

From (3.2), P[HX.>h] = 1 - F (h)

-cy.; h
Hence F . (h) = 1 - e0 ... (3.3)

By differentiating both sides of (3.3), the PDF of

extent HX I is given by

f (h) = eXi (3.4)
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which is the familiar exponential distribution with mean

1/c X and standard deviation 1/c .. In other words, the
Xi Xi

extent of a state is exponentially distributed under the

single-step memory assumption of the Markov process.

3.2.4 Intermediate summary

The elements (state, state transition and extent) of

the continuous space Markov process have been introduced.

The assumption of a single-step memory leads to transition

probabilities Pg.. and exponential distributions of state

extents (3.4).

3.3 State prediction at a future point

Based on the Markov process concept the probability of

a parameter X being in a certain state at a future point can

be calculated. This probability is of great interest since

the state prediction of X at a point ahead of the tunnel

face is often desired. The situation is depicted in Fig.

3.6 in which the probability of X being in state j at an

interval u from the tunnel face 10 is wanted, given

x(l )=i. This )robability cannot be found easily since
0

within the interval u any number of transitions (including

no transitions) can take place. It is therefore expedient

to introduce matrix notations which express calculations in

a compact form.



10 state = i state =

Figure 3.6 State prediction.

As will be shown later one needs for predicting states

at "future points" the transition intensity matrix A of
~X

parameter X such that

A = a
-X xijJi

where axj = c (i=j)

c .P... ( j
Xi (i"j)

-cX

C P
X2 X21

N

Q P c p ... P
I 2 X2 XI Xl3 Xl Xln

-c c P ... c P
X2 X2 X23 X2 X2n

n PXnl . . .
-c

.... a (3.5)

A contains c . and Pt.. and hence defines the Markov
-x xi Ij

process completely. Ax is especially useful in making

state probability predictions which are discussed in the

following sub-sections.

Hence

A
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3.3.1 Interval transition probability (see Veneziano, 1980)

For the situation shown in Fig. 3.6, given that the

parameter X is in state i at the tunnel face, the

probability that X is in state j at a distance u behind the

tunnel face is required. This problem of state prediction

can be solved by introducing the interval transition

probability matrix

V7 (u)= V . . (u)

where

v .. (u) = P[X will be in state j after an interval

u given the present state is ii

Generally, V (u) satisfies the forward Kolmogorov

differential equation,

dV (u) = V(u)A
-K -x:

du

..... 0 (3.6)

To prove (3.6), let du be a small interval.

v (u+du)
Xij

V (u) v (du) + v. (u) v (du)
Xij Ajj kej Zik

= x (u) (1-Cx du) + Tj

Thus v (u+du) - vX (u)

= -v (u) cx. du +

vXik (u) a . du

vXik (u) a,,juU
XikU

Dividing both sides by du and taking the limit as du
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approaches zero,

d v,,. .(u) = -v, (u) c,. + Z v (u) ak..... (3.7)
AJ r2. A Al kej Xik

du

Equation (3.7) is identical to (3.6) which is in matrix

form.

The solution of (3.6) can be written as

V (u) = exp [u A J
--x -X2

= I + u A + 1/2 u A + ...

+ 1/mi u A + ..... (3.8)

In practical cas-es this series may converge very

quickly and one can use only a few terms to get satisfactory

accuracy. If convergence is not quick .or high accuracy is

needed, one can use the spectral resolution of A (Cox and
-~x

Miller, 1965, pp. 183 - 184) such that

A = B diag (11, 12, ... ln)_C..

where 11, 12, ... in are eigenvalues of A and 11 = 0. The

matrices B and C are formed from the left and right

eigenvalues of AX with the condition

B CT = I

Hence V (u) = exp [A uJ

= B diag (e,11 U ... e in)CT

Another way to find a closed-form expression for V (u)

is by using exponential transforms (see Howard, 1971,

p.710.) Howard also showed that v.,,. .(u) is equal to the sum

of a constant (the limiting state probability; see section

3.3.3) and (n-1) terms such that
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11 u 1nu
v..(u) = v . + kl e + *.. + kn e ..... (3.9)

where v., = limiting state probability of state j,:c i
kl, k2, ... kn = constants,

and 12,13,...ln = eigenvalues with negative real parts.

3.3.2 State probabilities

According to the results of section 3.3.1, if a

parameter X is in state i at 1 , the probability that X will

be in state j at (1 +u) is v,. . (u) . When the state of X at
0 l. .

1 is not known deterministically but only a PMF P (x) at

10 is given, the probability of finding state j at an

interval u later can still be found. Let s (u) be the
Xj

probability of having state j at (10+u) :

s (u) = P[X is in state j after an interval u]
n

= K P (i) PEX is in state j after an interval
X

u given present state is il
n

=I P (i) v,. .(u)

= s(0) v (u) ..... (3.10a)
Xi tUii

since s. (0) = P (i) by definition of s (u) above.
Xi X Xj

To express equation (3.10a) in a more compact form, let

S (u) be the row vector of state probabilities such that
X
S (u) = (s (u) s (u) ... s (u)).

~IXl X2 Xn
Then (3.10a) can be expressed as

S (u) = S (0) V (u)
~XK~ ~

= S (0) exp[A u) ..... (3.10b)
~x~-
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3.3.3 Limiting state probabilities

As the interval u increases, the effect of the present

state on the probabilities of future states at an interval u

later becomes smaller and smaller. When u approaches

infinity, the probability of finding a certain state j at an

interval u later becomes a limiting constant and is

independent of the present state i. This limiting constant

is called a limiting state probability v . and is given by
Xj

v = lim V (u)
Xj U--40 Xij

Furthermore, let S = (v v ... v ) be the
X Xl X2 Xn

limiting state probability vector. When the transition

intensity matrix A is given, v can be found by first
~X Xj

differentiating (3.10b) with respect to u

d S (u) = S (0) d exp[A uJ
~~x -x ~
du du

= S (0) exp[A u] A

=jx(u) A ..... (3.11)

As u approaches infinity, S (u) approaches S and

&dcX
(3.11) becomes--.--S = _A . Since --S X = 0 (S is

du au
constant),

S A =0
~X-X

i.e.
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v (-c )+v (c P )+... v (c P )0
X1 X1 X2 X2 X21 Xn Xn Xnl

v (c P ) + v (-c ) +...vm(c:P ) = 0
X1 XF X12 X2 A2 In Xn Xn2

v (c P ) + v (c P )+...v (-c )=0
X1 :1 Xln X2 X2 X2n Xn Xn

.. (3.12)

Equations (3.12) are linearly dependent since when all

the equations are added together, the left-hand-side

vanishes (the coefficients of v. vanish) and is identically

equal to -ne right-hand-side. One more equation is thus

needed which is

v +v + ... + v = 1, ..... (3.13)
Xl X2 X

since the parameter can occupy one and only one state at a

time.

Thus solving (n-1) equations from (3.12) simultaneously

with (3.13) will give the values of v . On the other hand,
Xi

if V (u) is already found in a closed form (section 3.3.1),

then v can easily be found by taking the limit as u
-7i

approaches infinity.

The physical significance of v is that it is the
Xi

relative percentage of the occurence of state j. If in a

certain region state j (e.g. Granite) of a parameter X

(e.g. Rock Type) occurs 70% of the time, v = 0.7. For a
Xj

tunnel of length L in such a region, the expected total
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length of Granite is v L = 0.7 L.

3.4 Summary

Based on the elementary concepts of the Markov process

introduced in section 3.2, probabilistic state predictions

of a parameter X at a certain interval u after the present

point can be calculated. As the interval u increases, the

state probabilities are less dependent on the present

situation. In particular, the interval transition

probability v (u) approaches a constant v . (the limiting
xij Xj

state probability) as u approaches infinity. In addition,

since the transition intensity coefficients and the

transition probabilities mentioned so far are regarded as

constants (independent of "time", or 1), the Markov process

is said to be "homogeneous".
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CHAPTER IV

THE GEOLOGICAL PREDICTION MODEL

4.1 Introduction

As was shown in Chapter II, geological conditions are

an essential factor in selecting excavation and support

methods. Since usually little or none of the geological

conditions ahead of the tunnel face are known, it is

desirable to predict them in a manner reflecting

uncertainty. Methods of decision analysis under uncertainty

can then be used to minimize the expected cost of tunneling.

How the method of decision analysis can solve the problem of

choosing excavation and support processes (ES) can best be

shown by a simplified example :

Problem : choosing an ES for a short tunnel of length

L ft. at 100 ft. below ground level.

General geology of tunnel region : 50 to 200 feet of

clayey soil in contact with a metamorphic rock.

Geological uncertainty : since the tunnel is short,

it is assumed that the whole tunnel is either in

clayey soil or metamorphic rock.

Ground class classification : according to an

established performance relation (section 2.2),

several ES's are found technically satisfactory for

tunneling in the metamorphic rock. The cheapest

(optimal) one among them is [drilling and blasting,

5 inch shotcrete and steel sets]. The optimal ES
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for tunneling in the clayey soil is [tunnel boring

machine, 3 inch shotcrete]. Therefore the ground

class classification is

GCl = clayey soil

ESl = [tunnel boring machine, 3 inch shotcrete]

GC2 = metamorphic rock

ES2 = [drilling and blasting, 5 inch shotcrete

and steel sets]

Other information : for ESi, set-up cost = Sl, unit

cost = Cl (dollars per unit length); for ES2,

set-up cost = S2, unit cost = C2; cost of change

from ESI to ES2 = C12; cost of change from ES2 to

ES1 = C21; Sl > S2; Cl < C2.

After an ES is chosen, excavation starts and after a

short length the actual geological conditions (either rock

or soil) can be determined. If ES2 was chosen and if the

tunnel is found to be in rock, then ES2 will be used for the

tunnel and the total cost is (S2 + C2*L). If after choosing

ES2 the tunnel is actually in soil, it is cheaper to change

to ES1 and the total cost is (S2 + C21 + Cl*L). If ES1 was

chosen and if the tunnel is found to be in soil, then ES1

will be used for the entire tunnel and total cost = (Sl +

Cl*L). If after choosing ESI the tunnel is actually in

rock, ES2 has to used (ES1 is not technically satisfactory

for GC2) and the total cost is (Sl + C12 + C2*L). These

considerations are summarised in the decision tree shown in



Fig. 4.1.

This problem of selecting an optimal ES cannot be

solved rationally without considering the geological

uncertainty involved. To quantify the geological

uncertainty, a (probabilistic) geological prediction model

can be used. Suppose according to the results of the

geological prediction model the probability that the tunnel

is in rock is p. Then a decision analysis under uncertainty

can be carried out by calculating the expected cost

associated with choosing each ES.

Expected cost of choosing ES1

El= P[tunnel is in soil]*(total cost when tunnel is in soil)

+P[tunnel is in rock]*(total cost when tunnel is in rock)

= p*(Sl + Cl*L) + (1 - p)*(Sl + C12 + C2*L)

Expected cost of choosing ES2

E2= P[tunnel is in soil]*(total cost when tunnel is in soil)

+P[tunnel is in rock]*(total cost when tunnel is in rock)

p*(S2 + C21 + Cl*L) + (1 - p)*(S2 + C2*L)

The expected cost of choosing a certain ES can be

regarded as the average cost of choosing that ES in a large

number of similar tunnel projects. Thus the ES with'a lower

expected cost should be chosen.

In actual tunnel projects complications arise because

there are other important geological parameters (e.g.

Faulting, RQD, Availability of Water) in addition to Rock



Total cost

soil

p

ESI

I-p
rock

soil

ES2

I-p
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SI + Cl - L

SI + C12 + C2 L
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S2 + C21 + Cl - L

S2 + C2 - L

Figure 4.1 Decision tree for choice of ES

Choice Outcome



Type. Hence more ground classes are used (e.g. in the New

Austrian Tunneling Method typically there are 6 or 7 ground

classes.) Another complication is that there are usually

many sections within the tunnel having different ground

classes (the previous example is about a case with one

section only.) In the example above the geological

prediction is just the value of p but generally many more

predictions are required. For example for planning purposes

(e.g. resource and equipment mobilisation, cost estimation)

very often the following questions need to be answered :

Given that the face of the tunnel is in a certain state

(e.g. Granite) of a certain state of a parameter X (Rock

Type),

(1) How long will the present state persist ?

(2) What is the next state ?

(3) What is the state at a certain distance ahead of the

tunnel face ?

The geological prediction model developed in this

thesis will be used to answer these three common questions

probabilistically. By modeling the random variable X with a

Markov process, the answers to these questions are given by

(1) extent distributions (section 4.2.2), (2) transition

probabilities (section 4.2.3), and (3) interval transition

probabilities (section 4.2.1) respectively. [Among these

three probability distributions, (3) will be discussed first

because the updatings of (1) and (2) based on point
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Another very important use of the geological prediction

model is that the extent distributions and the transition

probabilities of a parameter X can be used to simulate

profiles of the states of X in the unexcavated part of the

tunnel (section 4.5.1.) When all the parameter profiles are

simulated they ,an be combined to form a ground class

profile (section 4.5.2.) After a sufficient number of ground

class profiles are simulated, a certain construction

strategy can be carried out for each profile. Examples of

construction strategies are (assuming that there are 7

ground classes) :

(1) Conventional method --- use ES7 for the whole tunnel..

(2) Start with ESS; change to ES7 when GC6 or GC7 is

encountered and then keep using ES7 for the rest of the

tunnel.

(3) Change immediately to the corresponding ES whenever a

new GC is encount/.red

(These three construction strategies serve as simple

examples only.)

When or3 of the above strategies is carried out for a

simulated 1. ofile, a total cost for tunneling can be

calculated. After the total costs are calculated for all

the simulated profiles, the mean cost (and the standard

deviation) of using that strategy can be calculated. If all

the three strategies are tried in term, the best (optimal)



strategy can be chosen based on minimum total cost and/or

standard deviation of total cost. Thus expected cost

optimization can be achieved through this straightforward

method.

In the following parts of this introductory section

(4.1) the theoretical development of the geological

prediction model will be discussed. The reasons for

choosing the Markov process (Chapter III) for modeling all

geological parameters are presented, together with the

advantages and disadvantages. Section 4.2 presents the

geological prediction model and its applications under

actual conditions. A discussion in section 4.3 shows how

all the geological parameter predictions can be combined to

form predictions on the ground classes. The problem of

parameter interdependence and a proposed solution will be

presented in section 4.4. Monte Carlo simulation of the

tunnel profile will be discussed in section 4.5. In section

4.6 the chapter summary will be iven.

4.1.1 RequIrements on the prediction model

As E. E. Wahlstrom suggested (Robinson, 1972), in

addition to the particular exploration of the site in

question, a knowledge of the regional geology, the geologic

history of the area, and thorough appreciation and

understanding of the way in which rocks respond to changing

geological environments, may be equally important.
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Therefore the first requirement on the prediction model is

that both the general and particular geological knowledge

about the tunnel site should be utilized to yield the

predictions. The general information about the tunnel site

will remain essentially unchanged as tunnel construction

proceeds while the particular information increases when

more records are obtained during construction. It is

therefore disirable that the predictions about the geologies

of the unexcavated parts of the tunnel can be updated based

on new observations. Furthermore, since subjective judgment

is often necessary in geological predictions, the prediction

and updating processes should be capable of incorporating

subjective assessments; subjective biases, however, should

be minimized.

The prediction model should include all geological

parameters affecting tunnel performance considerably (e.g.

"Color of Rock" by itself should not be included), such as

those given in section 2.2. The prediction model should

therefore have the flexibility of including unexpected but

important parameters encountered during tunneling. Most

importantly, the model should be capable of simulating

possible tunnel geology profiles to facilitate overall

construction planning. The profiles thus generated should

not contradict the general expectations about the profile,

which means : (1) each generated profile should not

contradict observations on the parameters known before
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construction; (2) most of the generated profiles should not

deviate considerably from the general geology of the tunnel

region.

All these requirements for the geological prediction

model can be summarised as follows

(a) Tunnel profiles generated by the prediction model should

be compatible with general expectations of the actual

profile.

(b) The knowledge on both the general and particular geology

of the tunnel region should be incorporated.

(c) Predictions can be updated as excavation proceeds and

more information is gathered.

(d) The prediction and updating processes should be capable

of including subjective judgment when necessary.

(e) The prediction model should include all relevant

parameters and the entire ranges of their possible

states. However, when unexpected important parameters

are encountered, the model should be capable of

including them also.

4.1.2 Reasons for adopting the Markov process

The Markov process model provides good solutions for

the five requirements stated in section 4.1.1. Specifically

the Markov model satisfies these requirements in the

following manner :

(a) Tunnel profiles generated by the prediction model
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should be compatible with general expectations of the

actual profile.

This requirement implies that the underlying concept of

the prediction model should correspond to or at least be

compatible with the actual situation. Whether geologic

processes generally take place according to the Markov

process is still an open question. However, observed

thickness distributions of lithologic units show that they

are either lognormally or exponentially distributed

(identical to geometrical distribution when a discrete space

approach is used.) Exponential (or geometric) distributions

on the other hand are characteristic of the Markov process.

Krumbein and Dacey proposed a simple genetic process model

of sedimentation which leads to a geometric distribution of

lithologic unit thicknesses. The derived geometric

distribution is in fact the "discrete-time" analog of the

exponential extent distribution of section 3.2.3.

The form of extent distribution was examined using the

recorded extents of sections with various degrees of

jointing in one of the Seabrook water tunnels. Degree of

jointing was expressed as RQD (with states low, medium, and

high) and the lengths (extents) of different sections in

each state were recorded. The recorded extent distributions

of medium and high RQD sections were fitted with exponential

distributions and then tested by Chi-square tests (see

Appendix A.) The results of the two tests confirm the
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possibility of an exponential extent distribution. It

should be noted that the appropriateness of using transition

probabilities. cannot be tested likewise. For a parameter

with n states, there are (n - 2n) independent transition

probabilities. These (n - 2n) probabilities can always be

chosen so that they fit any data set of actual transitions

perfectly since the data set also has (n - 2n) independent

values only (see section 5.2.)

Since at present geologic processes usually are not

fully understood and since there are indications that some

geologic processes (concerning lithologic unit thicknesses

and RQD unit thicknesses) do show exponential extent

distributions, the Markov model seems satisfactory. The

prediction model is thus compatible with several of the more

important aspects of actual geology.

(b) The knowledge on both the general and particular

geology of the tunnel region should be incorporated.

Assuming that a parameter X in the tunnel region

actually obeys the Markov process in the direction of the

tunnel axis, the transition probabilities P and

transition intensity coeficients c can be assessed from

recorded frequency data or expert knowledge of geologists

about X (as will be shown in sections 5.2 and 5.3.) Thus the

knowledge of the regional geology is incorporated.



Particular geological knowledge of the tunnel area

consists of known facts and exploration results about areas

in the vicinity of the tunnel axis. Usually explorations

include geologic mapping, geophysical investigations,

trenching and core drilling. This kind of information can

be regarded as "observations" of the parameter at different

positions along the tunnel axis. If such an observation can

determine the state of a parameter, then a deterministic

statement (e.g. "the rock type at 1=1000 ft. is Diorite")

can be made at the point of observation. If the observation

is non-deterministic, subjective judgment is needed (see (d)

below) and only probabilistic statements about the parameter

at the place of observation can be made. Examples of how

these observations can be incorporated in the prediction

model will be shown in section 4.2.

Thus general geological knowledge is incorporated when

the values of P and c are assessed. Particular
Aij Xi

geological knowledge in the form of records from the

excavated part of the tunnel is also used to update

predictions as shown in (c) below.

(c) Predictions can be updated as excavation proceeds and

more information is gathered.

Suppose a parameter X is in state i at the tunnel face.

The probability of X being in state j at an interval u ahead

of the tunnel face is given by the interval transition

probability v ..(a)(section 3.3.1.) As excavation proceeds the
0i
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above probability changes (is updated) because u decreases

and i may change. Thus predictions are continuously

updated.

Another higher level of updating is tLhat of the

geological prediction model itself (Chapter 6) :

1) If the transition probabilities P and transition

intensity coefficients c,,.. are estimated from a set of

existing data, new data derived from the xcavated part of

the tunnel can be pool3d with the existing data and new

estimates can be calculated.

2) If Pr. and c,. are originally established by subjective

judgment, they can be updated using the concept zf

"competing hypotheses". If different geologists or

different opinions of a geologist are consulted, several

estimates (c , c , 0.. c ) of a transition intensity
1Xi 2Xi yXi

coefficient can be established. Each of these y values

represents a "competing hypothesis" H (m = 1, 2, ... y)
m

which has a probability of being true P (see Fig. 4.2.) At

first each P is assigned a value l/y (i.e. a vague prior

is used.) Then before tunnel excavation they are updated

based on available records using Bayesian updating. The

weighted mean

c =Pc +P c +*... + P c
Xi 1 LXi 2 2Xi y y:i

is used in the geological prediction model. As construction

starts and new records on extents of state i are taken, the

likelihood of each competing hypothesis is calculated. Then
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H ( c equals c ;
1 1Xi

H 2 : c xi equals a 2Xi'

H : cxi .equals c ..
:cX yXi

PHm is true] = p , m=I,
mni

V

The weighted mean

c =Pc +Pc + P C
Li 1 LXi 2 22i y yXi

is used in the geological prediction model.

When each P is updated, c,,.is updated.

Fig. 4.2 Concept of competing hypothesis.
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P (and thus cXi) are again updated using the Bayesian

technique (section 6.3.) The updating of transition

probabilities which are established by the subjective

judgment method is similar. When a "row" of transition

probabilities P , P , ... P is estimated, different
Xil Xi2Xin

opinions can be used to yield different rows of

probabilites. Each of these rows represents a competing

hypothesis whose probability of being true can be updated

based on new records of transitions (section 6.3.)

Predictions can therefore be updated based on new

information from the excavated part of the tunnel.

(d) The prediction and updating processes should be

capable of including subjective judgment when

necessary.

If the amount of existing data is not sufficient to

form best estimates of the transition probabilities P X and
Xi3

transition intensity coefficients c. of a parameter X,

subjective judgment can be used instead (see section 5.3.)

Another important use of subjective judgment is in the

formation of non-deterministic observations at places ahead

of the tunnel face. At a certain point the state of a

parameter X is known with uncertainty due to imperfect

(non-deterministic) explorations and geological inferences.

A PMF of X can be established subjectively at that point.

This PMF is regarded as the posterior (final) probability

distribution of X at that point (while the pr-ior is the
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original prediction of the geological prediction model.)

Using Bayesian updating (or conditional probabilities) this

PMF can be incorporated into the probability analyses as

shown in section 4.2.

Hence subjective judgment can be used to establish the

transition probabilities and the transition intensity

coefficients. It can also be used to form non-

deterministic observations ahead of the tunnel face.

(e) The prediction model should include all relevant

parameters and the entire ranges of their possible

states. However, when unexpected important parameters

are encountered, the model should be capable of

including them also.

When a new and important parameter X is encountered in

the course of construction, the corresponding transition

probabilities and transition intensity coefficients can be

established in the same way as the other parameters. Thus

unexpected important parameters can also be included.

It was shown above that the geological prediction model

using the Markov process can satisfactorily fulfil the five

requirements listed in section 4.1.1. However, there are

several important assumptions associated with the Markov

process adopted in the prediction model. These assumptions

together with their respective advantages and disadvantages

are discussed in section 4.1.3 below.
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4.1.3 Assumptions --- their advantages and disadvantages

4.1.3.1 Single-step memory

In order to adopt the Markov process concept, a

single-step memory has to be assumed. This assumption

implies that probabilistic predictions depend only on the

most recent step, which is usually the most important step

in the past history. In the case of a tunnel, it means that

geological predictions of a parameter depend only on the

state of the parameter at the tunnel face and not on those

states at points preceding the tunnel face. The advantage

is that calculations become simpler and manageable with this

assumption.

The disadvantage is that in some cases past history

(apart from the most recent step) which may also be

important in forming predictions is not used. As a simple

but extreme case the cyclic structure shown in Fig. 4.3 can

be considered. Assuming a single-step memory, the best

value that can be assessed for P is 0.5, which actually
X23

corresponds to the cyclic process because if the present

state is 2, 50 out of a 100 times it will happen that the

next state is 3. But if one more step of past history (i.e.

a double-step memory) is used, the prediction model

obviously becomes superior to the previous one because by

'remembering" the present and the preceding steps, the next

state can be determined. For example, if states 1 and 2 are

encountered in succession, the probability that the next
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Ebample of a cyclic structure.

1 2431 4f 32f142J 3 4[ 3 2

Fi gure 4.3



66

state is 3 is 1.0. This defect of the single- step memory

can be lessened using subjective judgment (e.g. if state 1

and then state 2 are encountered, an "observation" is added

subjectively which states that the next state is observed to

be 3.)

To summarise, the assumption of a single-step memory

greatly simplifies calculations but some "predicting power"

may be sacrificed in cases where past history apart from the

most recent step is also important in forming predictions.

4.1.3.2 Regional homogeneity

The Markov process used in the geological prediction

model is assumed to be homogeneous i.e. P and c are
Xij Xi

constants independent of position 1. There are two cases in

which this simplifying assumption has to be modified. The

first case is that of a tunnel crossing terrains of very

different geologies. P. and c of a parameter X may be

significantly different in some of these terrains. Each of

these terrains should be treated as an "homogeneous region"

inside which X is governed by an homogeneous Markov process.

For example, if X represents Rock Type and the tunnel goes

through a sedimentary rock terrain and then an igneous rock

terrain (see Fig. 4.4), different values of P ' and

c .. (i.e. different transition intensity matrices) have to
A.l

be used in these two terrains.
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Region A Region 3

(sedimentary rocks) (igneous rooks)

el face

Figure 4.4 Tunnel crossing terrains of different geologies.

The second case is that, if P and c at a certain
Xij Xi

position depend on the state of another parameter Y at that

position, then the Markov process for X cannot be

homogeneous throughout the entire tunnel (unless Y is in the

same state throughout the entire tunnel, which is unlikely.)

Therefore in regions where different states of Y exist,

different transition intensity matrices for X have to be

used. An example is the case where X represents "Degree of

Jointing" and Y "Rock Type". In a certain tunnel region the

degree of jointing may vary strongly with rock types. Thus

different transition intensity matrices for X have to be

used in regions with different rock types. Each of these

regions is an "homogeneous region" for X. This case of

parameter interdependence can be neglected if it is weak

(e.g. the different transition intensity matrices for X in

regions where different states of Y exist are approximately

equal.) The advantage is that only one transition intensity

matrix needs to be established for each parameter and
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calculations to predict the ground classes at a certain

point are greatly simplified and manageable (section 4.3.)

If parameter interdependence is significant and cannot be

neglected, the problem and its solution are discussed in

section 4.4.

4.1.3.3 Intercommunication of states

In the prediction model it is also assumed for

simplicity that there is intercommunication between every

two states i and j. This means that if x(l0)=i, then there

is a non-zero probability that x(l + u) = j. This means

that there are no "transient states" which have essentially

no probability of occuring after a great distance from the

present position. This assumption seems to be reasonable

within the context of this thesis there is no reason why

a certain state cannot occur at a great distance from the

present position. For example, if the degree of jointing at

the tunnel face is high, there is no reason why it cannot be

low at a great distance ahead.

4.2 The model and its applications

After the development of the geological prediction

model in section 4.1, the model and some of its applications

are presented in this section. Basically the Markov proces's

(with the assumptions- given in section 4.1.3) is used to

model all relevant geological parameters which exist along
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the tunnel axis. The "time" parameter in the Markov process

is equivalent to the distance measured along the tunnel axis

from a fixed point (e.g. the portal; see Fig. 4.5.)

Once the transition probabilities P and the
Xi j

transition intensity coeffients c Xi of a parameter X are

established, predictions on the states (in the form of the

interval transition probabilities v (cand the transition
XiJ

probabilities P .. ) and state extents (extent distributions)
Xi j

can be calculated.

In addition, if appropriate simplifying assumptions

are made, simple empirical prediction rules can be

established. An example is a "proximity rule" (see

Lindner, 1975) which gives the probability of

finding a state at a point given the same state is

found at a certain distance from that point. In

Appendix B the "proximity rule" is derived using

simplifying assumptions and approximations.

In cases where there are point "observations" on

parameter X ahead of the tunnel face, v (u), P and the
Xij Xij

extent distributions will be modified (updated.) These point

observations are generally the results of geologic mapping,

geophysical explorations, trenching, core drilling and

subjective judgment. [These point observations are

different from the data (in the form of transition chains)

from which P and c are established before tunneling.]
Xij Xi

An example of such observations is shown in Fig. 4.5 :



TO

Portal
t t=2500

Stunnel advance tunnel face -"7 bare hole

Figure 4.5 Observation using bore drilling
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A borehole was drilled to explore the ground conditions

at a distance of 2500 ft. along the tunnel axis (i.e. at 1

= 2500) from the portal. At the intersection of the bore

hole and the tunnel axis it was found that the rock type was

Granite and that the rock was moist.

Hence a deterministic observation on Rock Type is made

at 1 = 2500. On the other hand, the exploration result on

the availability of water is imperfect and subjective

judgment is needed. Observing the geologic environment

around 1 = 2500 and other information including records from

the excavated part of the tunnel, the following PMF is

subjectively assigned to the Availability of Water W at 1 =

2500 :

P[low availability of water] = P[w(2500)=1] = 0.2

P[medium availability of water] = P[w(2500)=2] = 0.6

P[high availability of water] = P[w(2500)=3] = 0.2

The above deterministic observation on Rock Type can

now be used to "update" (or improve) the predictions on its

states and state extents. Also the non-deterministic

observation on Availability of Water can be used to update

the predictions on its states and state extents. The

details of updating based on different kinds and

combinations of observations are presented in sections 4.2.1

to 4.2.3 below.
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4.2.1 State prediction at a point

4.2.1.1 No observations

This is the base case. At the face 1 (Fig. 4.6) of
0

the tunnel, the state of a parameter X is i. The

probability that at position 1 (> 10) the state is j is

given by the interval transition probability (section 3.3.1)

PEx(l)=jix(l0)=i] = v (1-1 0

0

Figure 4.6 State prediction at position 1.

4.2.1.2 One deterministic observation

There is a deterministic observation at I1 (x(1)=k,

see Fig. 4.7.) The probability that at 1 (>10 ) the state is

j is given by the updated interval transition probability

v (1-1 ) = P[X(l)=ijx(l )=i, x(l1 )=k]
Xij 0 0 1

(The superscript "d" stands for "deterministic".)

For 1< 1 < <1

v (1-1 )Xij 0

= P[x(l)=ilx(10 )=i] P[x(l 1 )=kjx(10)=i, x(l)=j]

P[x( I)=kjx(10)=i] ..... (4.1)

Since

P[x(l)=jx(l )=ij] = v (1-1 ),
0 Xij 0
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P[x(l1)=kjx(10')=i, x(l)=j] = P[x(1 )=k x(l)=j]

= v (Xjk {1-1) and

PEx(11)=kjx(10 )=i3 = vXik ( 1 r1 o '

(4.1) becomes
d

Xij 0 Xij 0 Xjk l

Xik 1 0

For 1 > il,

d
v (1-1 )= P[x(1)=jjx(0 )=i,x(1 )=k]

= P[X(1)=j x(11 )=k]

=v (1-1)Xkj 1

Thus

d
v (1-1 ) = v (.1-1 )v (1 -) ( <1 )Xij 0 Xij 0 Xjk 1 0

v{ Xik (1110) *.... (4.2)

v kj(1-1 1) (,>,ly

1 1 state k observed
0 1

-'----- 1

Figure 4.7 Case with om deterministic observation.

4.2.1.3 One non-deterministic observation

In the case that the observation at 1 is

non-deterministic (see Fig. 4.8) but is expressed in the

probabilistic form (n is the total number of states)

PEx(11 )=m] = p -( 1, 2, ... n), ..... (4.3)
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n
v (1-1 ) is updated to v (1-1 ) where
Xij 0 Xij 0

(the superscript "n" stands for "non-deterministic")

n n
v . (1-1 ) = 2 P[x(l1 )=k] P[x(l)=jx(10 )=i,x(l )=k]
Xij 0 k=l 1 1

n d
= p v i (1-1 )

k=i1lk Xij 0

10

..... (4.4)

PMF given

KU
Figure 4.8 Case with a non-deterministic observation.

4.2.1.4 Several deterministic observations

When there are several determinisic observations at 1
1

1 , ... 1 (Fig. 4.9) such that
2 s

1 1- 1 . . . 1
0 1 2 s

states known

Figure 4.9 Several deterministic observations.

x(l ) = k (t=1, 2, ... s), ..... (4.5)

v .(1-1 ) is updated to v . .(1-I ) ("ds" stands for
Xij 0 xi 0

deterministic-several.) Due to the assumption of a

---p
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single-step memory, 4V (1-1 ) is dependent on the known

states immediately preceding and following the position 1.

Thus for 10 1 <

ds
vcl (1-1 ) = Plx(l)=j x(l )=i, x(1 )=k 1
Xij 0 0 1 1

which is the same probability given by (4.1) with k=k o

Again because of single-step memory,

for 1 t-11 < i (t = 2, 3, ... s),

v P(1-1- = Px(l)kx(lt)kt x(lt)=kt]

- PEx(l)=Ix(lt_ )=kt..] P[X(lt)=kt t-x(l )=kt_ ,x(l)=j]

P[x(1 t)=k tiX( t1 )=k t ]

=)aXt-i j t-1) El t )=kt x(l)=j]

v Xkt-lkt It 1 t-1)

= V Xkt-lj ( t-1 ) v Xjkt (1-1

t-(l Xjk-t)

VXkt-lkt (t t-1

For 1 >, s '

v. (1-1s) = P[X(l)=isx(l)=ksI

= v (-,VXksj(-1S)

Thus to sum up (k is equal to i, the state at the tunnel

face),

ds ( -
ij (1) = VXkt- j (11t- ) XVCjkt (1 -') (1t-1i<lt)

v Xkt-lkt U t-lt-1)(t,.,)

Xksj ls S

..... (4.6)

4.2.1.5 Several non-deterministic observations

There are s non-deterministic observations at 11, 12'
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1 (see Fig. 4.10) which are given by the PMF's
S

P~x(l )=m] = ptm (m=1,...n)

(t=1,...s) ..... (4.7)

1 1 1.1..s0 0 give

PMF's given

Figure 4.10 Several non-deterministic observations.

ns
v (1-1 ) is updated to v (1-1 ) which depends on the
Xij 0 Xij 0
non-deterministic observations immediately preceding and

following position 1 ("ns" stands for "non- deterministic-

several") :

For 1-1 11 < 1t (t=1,2...s),

V (1-10) = Px(l)=itobservations at 1 and 1 )
0 1 0t-1at

n
= ptM-1)=mt-1 ,observation at 1t]

M=1I

(let p .=1 andp =0forr=i)
Qi Or

=? Pti f p P~x(l)=jlx(1t 1 )=m,x(l )=k]
m=1 -m k=l tk t

where

P[x(l)=j x(1 )=m,x(1 )=k]

= PEx(1)=j x(1t 1 )=m] PCx(lt )=kjx(1 t)=mx(l)=j

PEX(lt)=klx(1t 1 )=mJ

= v (1-1 ) v.(-)
XMj t1 jk t

,..mk t 1t-1

For 1 > 1 ,

v. (1-10 ) = Pox(1)=jobservation at 1.)

1



Ps PEx(1)=jjx(1 )=kJ

sk Vmj is

To sum

nF.

n
=l =1I

rnI

--

U-p,

1-10 )

nt-lm S tk Xmj t-1 Xjk t
k=1

v (1.-i
Xmk t t-1

(i t- 1 < it; t = 1,1 ... 0S)

psk v I(1-1) (I )y I.)
s

*0 & (4.8)

4.2.2 Extent distribution

4.2.2.1 No observations

This is the base case. At a certain point 1 a
e

parameter X enters into state i (see Fig. 4.11.) The CDF of

the extent HX at 1 is given by (section 3.2)
I. e

FI(h) = 1 - e0  ..X.I h ** (4.9)

The PDF is

f (h) = c.e -c * h .(4.10)

1

state I entered

4-
Mx.1II

jn

Figure 4.11 Transition to state i encountered.

77

k=

k=1
k=1

I

- I--A

I

I
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If excavation continues up to 1 = 1 > 1 (see Fig.
0 e

4.12), and state i still persists, the updated CDF is

I

F .(h) = P[HX.<h( IHX.> 1 - ]
1~ 1 0 e

For h > 1 - 1
0

F (h) =PCHX.4 h and HX.> 1-1]
HXi 1 i 0 e

P[HX .>- 1 -1 ]
i 0 e

= F *(h) - F (1 -l )Hi FLXi 0 e

1 - F Hi(1 -1e

= 1 - e-Ci h -- cxi(1-e)

1 -[1 - ecx cl)]
-c~i-10~ ele

=i-eX Eh1le)]

Therefore F (h)

= O (hl -1 )

t - X h e(h>l -e). (4.11)

and f (h)
:9i

=- (h4l -1)
0 e

c e- X-h-(h>lo&Le) ..... (4.12)

1 1
e 0

HX.

Figure 4.12 State i persists as excavation proceeds.

Thus the exponential shapes of the CDF and PDF are

maintained with a shift of magnitude (1 -1 ) (see Fig.
0 e

4.13.) the PDF vanishes for h < 1 -1 because the extent
0 e



79

f H(h)

o h

(a) PDF of HX as parameter enters state i at 1e.

f (h)

0 (1 -1 )C e

(b) Updated PDF of HXas excav.tion proceeds from 1e to 10

and no transition occurs.

Figure 4.13 Comparison of prior and updated PDP's of Tg.
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must be greater than that value (Fig. 4.12.)

4.2.2.2 One deterministic observation

If there is a determinisic observation as shown in Fig.

4.14 and k # i, f .(h) is updated to

state k observed
1 11
e 0

i~

Figure 4.14 Case with one deterministic observation.

f (h) = f (h) P[x(1 )=kIHX.=h]
Bi i#k ECi 1 1

P[x(l11 )=kjx(10 )=iJ

where P[x(1 )=kiHXi=h)

P[x(l1 )=k state i exits at (1 e + h)].

After state i exits, X can enter any other state b and

can then be in state k at 1

n

PEx(1 )=klHX.=h) = P3 P v (1 -1 -h)
1 1 Xib Xbk 3. eb=l

Therefore for 1Ie4 h <11-1 ,

f (h) = f, (h) I P (l-h)
FXitk i= Xib tk e

v Xie:(11-1 )..... (4.13)

For h < 1 e-1 or h > 1,-1,

f 7.4 -k(h) = 0 ..... (4.14)
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If k=i, there is a possibility that state i will

persist past the point 1. The updated PDF is found using

Bayesian updating :

f (h) = Cf (h) [likelihood of observation 1
Hai=k HXi

HX. = h] ..... (4.15)

[likelihood of observation(HX.= h]

= P[x(1 )=ij state i exits at (1e +h)]

= f PXib V)(l11le-h) (10-1 e<h< l-1e)

1 (h>11 -l )

where PXib is the transition probability of parameter X from

state i to state b.

Therefore, from (4.15),
d

f (h)= 0 (h<l -l)
HXi-k 0 e

n
C f (h) > p v (1 -1I-h)

HXi b=l ,-1X6<1le
0e 1 e

eC f .(h) (h>l1 -l)
HXi( 1 e ..... (4.16)

C is a normalising constant such that

d
f; ="-k(h) dh =1

which implies

e n

C = [ f (h)L P XbV bi(11 -1e -h) dh
01 e

b=l

G e+ Sff (h) dh ]
) i

where f . (h) dh

11-1
= F. (oa) - Fjjj(1 -le)
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=1 -X[1i- e (1l e) -CXi (11-e)

1 -1e ,len

Therefore C = E fHXi (h) f2PXib x1(ly -h) dh

0h b=1 +eCXi(li-le)

. (4.17)

If v .i.(u) is already found in closed form using exponential
Xij

transforms or spectral resolution (see section 3.3.1), then

(4.17) can be calculated in a closed form.

As an illustration, the shapes of f (h), fd (h)
a HXi HXiAk

and f k (h) are plotted in Fig. 4.15 for comparison.
I HXick

f . (h) is a shifted exponential distribution given by

(4.12). It has zero probability density for h <

101 ebecause the tunnel face is at lo and the extent of

state i must be greater than (1 -1 ). f (h) is the
0 e HXitk

updated extent distribution given that the observation at

1 is k (0i.) It has zero probability density for h >

1 -1 because HXi cannot persist up to point 11 at which the

state is k (ti.) f (h) is the updated extent
HXi=k

distribution given that the observation at 1 is k (=i.)

There is a non-zero probability that HX. > 1 -1 because
I le

HX i can persist past point 11. There is a jump at h =

1 -1e due to the observation at 11. As HX 1 approaches

(1 -1 ) from the left (i.e. from lower values), there is a

decreasing probability that HX. ends before 1. The

probability that HX ends at any point near to 1 given

that X is in state i again at 1 is small : X has to make

at least one further transition between that point and 11 to
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f 1 (h)f, 4 ik(h)

fM(h)

f hh

(1- i)1

(a) lx(h),

(1- 1)

fitk(h)

f d k(h)
aHXi=k

F

h

(13 - 1e) (4 - 1 )

(b)HXi=k

Figure 4.15 Shapes of different updated PDF's of extent.

0

0
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go back to state i. This fact can easily be seen by taking

the limit as h approaches (1-1 ) from the left in (4.16)

d 9n

lim fHxi=k (h) = C Uf (h)V P v (0)
hb1(Xb-le)b=

n
=C f (h) P v (0) + P v ,,..(0)

HXi Xib Xbi Xii All

b=1
b*i

=C f (h) (0 + 0) =0
li9Xi

Therefore the probability density approaches zero as h

approaches (11-1e) from the left. For h >, (11-1 e), state i

at 1 is "connected" with state i at 1 * There is a

non-zero probability that this happens and so the

probability density jumps from zero to some finite value at

1. The extent distribution after (1 -1 ) again takes an

exponential shape, as can readily be seen in (4.15).

4.2.2.3 One non-deterministic observation

When the observation at 1 is non-deterministic as

n
shown in Fig. 16, the PDF of extent is updated to f (h)

HXi

which is given by

f .(h) = P[x(l )=1] (updated PDFIx(11 )=l)
HXi 1

+ *so

+ PCX(11 )=n] (updated PDF| x(1 )=n)

= l pnlk (updated PDFjx(l1 )=k)
k=1

n

= Plk(updated PDFIx(1 )=k#i) + p 1 (updated PDF x(11 )=i)

k=1

k~i
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PMF given a

P(x(11)] ".a = lm

(m = 1, 2, -... n)

where n = total number of states of X.

Figure 4.16 Case with one non-determInistic observation.



Using the two updated PDF's derived in (4.13) and (4.15),

n n d d
f (h) = P f (h) + p f (h)

k=1
k*i ..... (4.18)

4.2.2.4 Several deterministic observations

There is a combination (K) of s deterministic

observations (see Fig. 4.17) such that

x(l ) = k (t=1,2,...s.)X t kt

It should be -noted that if x(l ) = k # i, then the extent

cannot persist past point I, and observations at points

after I have no effect on the PDF of HX .. The updated PDF

when a combination K of observations is given is denoted by

K
f (h).
M3.

If state i is not observed at all of the points 1l, 121

... 1 , let 1 be the first point where state i is not
s t

observed i.e. x(lt)=kt#i and k = kt-2 = ... =k1 =i. The

updated PDF is given by

K
f H (h) C f. (h) [likelihood of K given HXi = h]{9 1(1 -l < h < 1 -1 )

0 e t e

0 (h < 10- 1 or h > 1 t 1 e)

..... (4.19)

where [likelihood of K given HX = h]

= PCx(l1 )=k1 ,... x(l )=k lHX. =h]
1 S S i



11 12 * * *
S

i

The state at it (t - 1, 2, .. s) is known :

xF(is ith dt

Figure 4.1'7 Case with s deterministic observations.

Co



i X V (I -1 -h) v (l3-lA )...v(-)sk-I kS

XI le h <1 -Oe)

P v (1 -1 -h) v (1'+ -1t

Xi b X bkZ 2t e X k 3~ ~

(*-ee<IvxksIk (s- 1 -
&L$h <Itl "e)

Since vxktkt+(1t+1 v.. (k-I
'Kks-i ks s s'- I Of is a

common factor in each of the above expressions, let

CK = C vXktkt+i (l ' t+I ' t)0 ... Ak5-1k,s 1-t )

Then from (4.19)
fKf K.(h)

0

C f (h )

c f H Ai (h)

C f .(h)
K HXi

and replacing k,, kz, *.. k- by i,

(h < 10-1 )

P)UMb Vxbi (1 1 e-h) V)jj (1 2 -11 )
b * 

1e $ h <0 1L te)-
(1 -le h < 11 -le)

71

I
bci

ph 2)P ib AA i(12 l6-h) Vle (13-12)
( -1 *So Xig (it - t-,

( l-e h < 12-le )

1 p v (lt -e-h)
(jib -1<h< 1 -e)t-l i "o1 + le

(h > lt-Le) ..... (4.20)

where C = normalising constant



f (h)Hixi

+

1 t-i - t e

f A(h)Hxi
P v (1 -le -h) dh]
Xik $Wkt t e

.9..00. (4.21)

If state i is observed at all the points 1,, 1 21

1S (i.e. k,=k2 = .*. =ks= i), then

f rc(h)= C f [ (h) Clikelihood of K given HX*= h]
H )i K h' (h > l - l1

0 (h < 1 0 -1e
..... 14.22)

where [likelihood of K given HX. =h]

1

Xhi (1 -l -h)

P .V . (1 -1 -h)
sib Xbi 2 e

v (12 -1,)...Vxi;(s1-_g
Xii (1 -l h < l-le)

a o

(1 -1 s h < 1 -le-
1 e .z a

P v (1 -1 -h)
Xb Xbi S

1

(e1 e-1 <h -e

(h >, s-le)

Then from (4.22),

89

n

z'
+

1 (1 "-l1 -h)
Kib ~ ~ it Xb ( l)dh

=mp

a

0
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K
f *(h)

HAi

= r 0

C f . (h)
K HXi

C f (h)

K HXi

C f . (h)
K HxI'

(h < l 1le

iim-l< h < 1,-le)

71

fl

b=|

where C = normalising

1 -. 'Se (h)
10H b=

+

Py bi (1.z-le-h) .- - -vx i (1-Q .
1 -e <h < 1.2-le )

PXib V b-(1.s-le-h)
(1 -1 < h < 1 -1 )-i~ Vxb (i &eh

(h >, 1-le)
(h .....e (4.23)

constant

p V . (1, -l-h)
Xi$ XDIv1 )e

S..V (1 -1 ) dh
x ; s s-1

00*@

1-le
f . (h) dh])

HA I

The shapes of the updated PDF's are shown in Fig.

4.18. In (4.20) state i is observed at 1, 1 2..

1t-I while in (4.23) state i is observed at all points 1i ,

.* 1 In both PDF's the probability density drops to

zero when h approaches each point of observation (where the

state is i) from the left. The probability that HX. ends

near to a point where the state is observed to i is small

because if it does so X has to make at least one further

transition to go back to state i at the point of

observation. The main difference between (4.20) and (4.23)

.n.... (4. 24)
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Figure 4.18 Updated extent distribution given several determinisitc observations.
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is that (4.23) has a "tail" which extends to infinity while

(4.20) has zero probability density. for h > It because

k t #1.
kt

4.2.2.5 Several non-deterministic observations

When there are several non-deterministic observations

as shown in Fig. 4.19, the extent distribution is updated

N
to f (h) which can be found by considering all

HAi

combinations of observations on X at 1, 12 ' .. . There

s
are n x n x ... n = (n) different combinations altogether.

Let K (m = 1, 2, ... (n) ) represent a combination such

that

x(11 ) = K x(1 2 ) = K ... , x(l 9 = K . According to

the PMF's given by the observations,

P[K occurs] = p

= P[x(1 )=KmI x(12 )=KM,..., x(l 8 )=K 2

1Kmj 2KmZ S KMS

Then

N
f (h) = 7 P[K occurs] (updated PDF given K, occurs)

S~ K M
- p f .(h) ..... (4.25)f KM HXu

M=1

If K =n I Kaz . K =s i, then (4.23) is used for

Km
f .(h). Otherwise (4.20) is used.

4.2.3 Prediction of next state - transition probability



1 12.s

The observation at 1 (t = 1, 2, ... s) is
non-deterministic anI is given by the PMF

P Ex(1 )= M pPECt) in] =

(m = 1, 2, .. n)

where n = total number of states of X.

Figure 4.19 Case with a non-deterministic observations.

'C
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4.2.3.1 No observations

This is the base case. Given that the state of a

parameter X at the tunnel face is i, the probability that

the next state is j is P . . (see section 3.2.2) which is a

basic component of the Markov process.

4.2.3.2 One deterministic observation

If there is a deterministic observation ahead of the

tunnel face as shown in Fig. 4.20, the transition

C(
probability P is updated to P .. where

S 10 1 state k observed

1,

Figure 4.20 Case with one deterministic observation.

P .. = P[next state (after i) is jjx(11 )=k)x;J

= C P ..[likelihood of x(l ()Jnext state is j] .....

(4.26)

The next state (after i) is the state just following state

i1.

In the case that kei,

[likelihood of x(1, ) next state is j]

= P[extent of state i at l terminates at some point

between 10 and 1, and the next state is j

and x(l d) = k next state is j]
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= l e f ' (h) v (1 -1 -h) dh3 eHxi Xik a --

Therefore from (4.26)

d h(le1 )
P = C P 1  f (h) vk(101 -h) dh .*.. (4.27)

X x HXi Xak e (427

where C = normalising constant

= X P j 10 . l f HA (h) v . ( 1 0-I ef-h) dh]
oAx* (4k I e

3=1 * . ... (4.28)

In the case that k = i,

[likelihood of x(l, ) next state is j]

= P[extent of state i at 1e > l,-1el

+ P[extent of state i at le terminates at some point

between 1 and 11 and the next state is j

and x( I) = ij next state is j]

Sl 1Ile
1,- le
1-1 I

/

00

5 f .(h) dh+

= eCx(+
J0

Therefore from (4.26),

a
Pc

= c E..e ^CMt la) +

1 0e

f (h) V (1 -le -h) dh

f (h) v (1 -l -h) dh
HXi

/
f (h) v .. (11 -e h) dh

.... (4.29)

where C = normalising constant

0 { ' - . ,e ei . (h)v .J. (1 -l -h)dhit
JzgxHXfi (4I 9e

x 1 -- e .. .. (4 .30 )



4.2.3.3 One non-deterministic' observation

When there is a non-deterministic observation as shown

in Fig. 4.21, P . is updated to Pr. . where
XiaX, I J

P = P[x(11 )=k] Plnext state is j x(1,)=k]

kn I

>1 I . ... (4.31)
I k XJ

k=I

4.2.3.4 Several deterministic observations

When there is a combination (K) of 's deterministic

observations (see Fig. 4.22), the updated transition

K
probability is denoted by P K.. If state i is not observed

X ij

at all of the points 1,, 12' *o is, let lt be the first

point where state i is not observed i.e. x(lt) = kt *

and k = k = ... = k = i. The updated transition

probability is

K_
P .. = C P .[likelihood of K given next state is j]

Xii X*I

where Clikelihood of K given next state is j)

= P[x(11 ) = k,, x(l) = k2, ... x(lt) = kjnext state is j]

= P(extent HX. terminates between 10 and 1 and K occurs)

or (HX. terminates between 1 1 and 1 2 and K occurs) or .0.

or (HX. terminates between 1 and 1 and K occurs)

given next state is j]
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i I
PMF given :

P [x(1)]

(m 1,

where n

= M P1m

2, -*.. n)

= total number of states of X.

Figure 4.2.1 Case with one non-deterministic observation.
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The state at i. (t - 1, 2, .. s) is known :

x(it) =kt

Figure 4.22 Case with a deterministio observations.



= 51le f (h) v (1j -1 -h) dh v. (1 -I
0 H X ~i ( e X ii 2

Xktk t +I t+ 1 )i @ X0 ks- s -Ik

+

it-I

Since v
Xkt k

factor,

f (h) v Xkt (1t - -h) dh vX(k t-I)

H000 vt t (kkt 1 -+l )
v X ks-iks ( i 5i

(1 -l ) ... v (1 - i,) is a common
lt+ t+i t X ks-ik S S 1-'

lt C= C v (1 -1 ) ..le CK tktkt+I t+1 -

V (1 -1 ).
Jk's-iks s S-1

Then from (4.32),

P l,-<

=CP .. [ if
K XA .f( (h) V (1 -1 -ih) dh v (1 -1

Xj I e (ij 2 I

V (1 -it,Xikt t t-

+ S..

+ f (hv) v (1 -l -h) dh] .....j(4.33)
HXi X kt t e

where CK = normalising constant

= P [ f Hx(h) v) (11-le-h) dh

v = -11x1900 v xik t (t t-I

+ 0S0@

+ si
it-I

f (h) vX. (l-l -h) dh)

..... 0 (4.34)

If state i is observed at all points 11, .1z0 is, then

[likelihood of K given next state is j]



= P(extent HX. terminates after 1, )

or (extent terminates between 1 and 1 and K occurs)

or

or (HX. terminates between I,, and 1S and K occurs)

given next state is j)

=

ls-e

+

l e

+ ... +

Then from

f (h) dh

f (h)l e cleh) dh

X 2S x; s s-I

f (h) v .. (1 -l ) dhx
f H/i XJi is-I

(4.32) and using C in place of C

K

xij

= C P.[ eX
K xi3

+ 1 fH (lX )
1 0-. HX

(11 -ey-h) dh v (fl- 1 )

. V (1 -
xii 's s-i

+ 000

is-
f (h) v (1 -1 ) dhl ..... (4.35)

where C = normalising constant

P e- 0C 1-

1 - e
+ le

o* 1

,
f *(h) v (1 -1 -h) dhl

Hxixji I e
v (1 -1)

*ii Z I

.. V (1 -i
Xii s -

+ 0@S

+ s:1

-\1
f .(h) V (1-1 ) dhJ]

HAi.. . ( . 6

a(4.36)



4.2.3.5 Several non-deterministic observations

When there are several non-deterministic observations

as shown in Fig. 4.23, the transition probability is

N
updated to P N.. which can be found by considering all

combinations of observations at 1, , 1 ' ..1. *1There are

S
n x n x .. n = (n) different combinations altogether.

Let K ( rr=l, 2, ... n ) be a combination such that

x (1 =K?.,I " ( 2 )=K , ...1x(1, )=K .s

According to the PMF's given by the observations,

P[K,, occurs] = P

- P[x(l,)=Kn, x(l 2 )=K,2 ... , x(16 )=K ]

=-p p ..Ipi x ZP Kn2 S KinS

Then

N 7
P - PEKh occurs] (updated PMF given Km occurs)

SKiP . .. . . (4.37)

Kin

If K,=Km...=KMs=i, then (4.35) is used for P<.

Otherwise (4.33) is used.

4.3 Ground class formation

So far some important calculations conce: Ang a single

geological parameter have been discussed. Subsequently, all

the parameters predicted have to be combined to yield ground

class predictions. Let ~g~(1) be the vector of geological

parameters at point 1 :



i im 1 1 1

The observation at 1 (t = 1, 2, .. s) is
non-deterministic anA is given by the PMF

P[Xc(lt) = M] = Pt,

(m = 1, 2, ... n)

where n = total number of states of X.

Figure 4.23 Case with s non-deterministic observations.

0
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g(l) = (r(l) f(l) d(l) w(l) . .)

where r(l), f(l), d(l), w(l) ... are the states of Rock

Type, Faulting, Degree of Jointing, Availability of Water

. .. at 1 respectively. Thus given 7(1) the ground class at

1 can be determined. The probability that the ground class

at a point is GCi is P[g(l) belongs to GCih. Suppose

according to the ground class classification a certain

ground class GCi contains the geological vectors 4l , ,

g. such that

g.. = (r.. f.. d.. w.

(j = 1, 2, *.. #.)

For example GCI contains 2 vectors

= (r,1 f,1 d1 I w,,

= (i 1 1 1)

g =(r 2 f12 d 2 w,2 )

= (2 1 1 1)

where r = I means Diorite;

r = 2 means Quartzite;

f = 1 means no faulting;

d = 1 means low degree of jointing;

w = 1 means low availability of water.

The probability of having GC1 at 1 is then

P[g(l) belongs to GC1)

- P[g(l) = or 9(1) =mA

= PC;g(l) = I J + plg(l) = T1U
= P[r(l)=1 and f(l)=1 and d(l)=1 and w(l)=1]

+ P[r(l)=2 and f(l)=1 and d(l)=l and w(l)=1)
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If the above parameters are independent,

P[(l) belongs to GCI]

= P[r(l)=l]*P[f(l)=l]*P[d(l)=I]*P[w(l)=l)

+ P[r(l)=2]*P[f(l)=l]*P[d(l)=l]*P[w(l)=l

.. ... (4.38)

Thus ground class probability calculations can be reduced to

that of single parameters in the case with independent

parameters. For interdependent parameters the problem is

much more complicated and is discussed in section 4.4 below.

4.4 Parameter interdependences

When the list of geological parameters (see section

2.2) is examined, it can be seen that there may be

probabilistic interdependences (correlation) among most of

them. For example, in the tunnel region faulting may occur

more frequently in one rock type than in another. Thus the

probability prediction of one parameter can also depend on

the status of the other parameters. This implies that the

transition intensity matrix of a parameter may depend on the

states of other parameters.

When this problem of parameter interdependences has to

be incorporated considerable complications arise. one

approximate solution to this problem is to assume a

hierarchy of dependences in which the parameters are

arranged in order of decreasing average extents. The
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average extent of a parameter is defined to be the overall

average of the average extents of its states i.e. average

extent of X = (1/cY1 + 1/c X + ... + 1/c,,)/n. Suppose the

hierarchy-sequence is Xl, X2, X3, ... XN where the average

extent of XI is greater than that of XJ for I < J. Then the

assumption of hierarchy of dependences states that XI is

probabilistically independent of XJ while XJ may depend on

XI for I < J. Thus Xl is an "independent" random variable

while X2 may depend on Xl and X3 may depend on Xl and/or X2

and so on. Us-ally it should be sufficient to assume a

certain parameter XJ to be dependent on at most two other

parameters higher on the list of hierarchy. Examples of

possible parameter interdependences are :

(1) High availability of water exists in a region of high

degree of jointing more frequentoy i.e. ground water is

more "available" to the tunnel in highly jointed rock

than usual.

(2) Degree of jointing in a certain rock may usually be

higher than that in another.

It should be noted that the assumption of hierarchy of

dependences is intrinsically contradictory because if XJ is

dependent on XI then XI should also depend on XJ. An

example is : given that gas is found more frequently in

Schist than in other rocks, then, if gas is found in a

certain place, the rock at that place is more probable to be

Schist than usual. However, the hierarchy assumption can be
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shown to be a reasonable approximation by considering two

parameters with different average extents as shown in Fig.

4.24. In a region where xl = 1, X2 is governed by a Markov

process with a certain transition intensity matrix

A while in another region where xl = 2, X2 is governed
-X2,1

by another Markov process with A X22 However, the

dependence of A on X2 is much less significant since a

state of X1 can easily outlast several states of X2 and the

dependence is weakened.

In assuming a hierarchy of dependences, the probability

calculations (states, extents) for X1 are the same as before

(where there were no dependences) but those for X2 still

depend on the states of Xl. For the situation in Fig.

4.24, probability calculations concerning X2 are grouped

into 3 regions separated by 11, 121 1 and 1 as shown. For

region 1, A Xis used up to point 12 . Then another Markov

process for X2 starts at 12 and AX2 is used, while in

region 3 A is employed. Thus regions 1, 2, and 3 are

three different "homogeneous regions" for X2 (recall that

A is constant in a homogeneous region of X.) With the

hierarchy assumption, ground class profiles can be simulated

using Monte Carlo simulation methods introduced in section

4.5 below.

4.5 Monte Carlo simulation of tunnel profile

Another very useful result of the prediction model is
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the straight- forward Monte Carlo simulation of the tunnel

profile. The concept of the Monte Carlo method is sinple :

a large number of experiments on a random variable X are

carried out according a given probability distribution of X.

The outcomes of the experiments should follow approximately

the same distribution as the given probability distribution.

For example, if X is the numner on the top face of an

unbiased dice after it is thrown, the PMF of X follows a

uniform distribution :

P (x) = 1/6 = constant

(x = 1, 2, ... 6)

If the dice is thrown 1000 times and the outcome of each

throw (experiment) is recorded, the outcomes should also

follow approximately a uniform distribution i.e. the number

of times each number (1, 2, ...6) comes up is about 167. In

actual simulations no physical experiment is necessary but

1000 random numbers are generated instead. Six categories

Ci (i = 1, 2, ... 6) are set up such that the probability

of a random number generated being in Ci is P (i) (= 1/6 in

this case.) After each random number is generated it is

inspected to determine to which category it belongs. If it

belongs to Ci then the outcome of the experiment is i. Thus

generating 1000 random numbers is the same as actually

throwing the dice the same number of times. By examining

the distribution of the outcomes of the 1000 experiments

some statistics (e.g. mean, standard deviation) of X can be

derived.
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If X is continuous (e.g. a state extent), it has to be

discretized and its PDF is converted to the corresponding

PMF before simulations can be made. Monte Carlo methods are

used to simulate parameter and ground class profiles in

sections 4.5.1 and 4.5.2 respectively.

4.5.1 Parameter profile simulation

If a parameter X enters state i at 1e as shown in Fig.

4.25(a), the unknown part of the X-profile can be simulated

by first simulating the extent at . Then the next state

(after i) j is simulated and then its extent also. The next

state after j can then be simulated and the process is

repeated up to the end of the tunnel (see Fig. 4.25.)

The PDF used to simulate HX. is given by (4.12),

(4.13), (4.16), (4.18), (4.20), (4.23), or (4.25), depending

on the kinds of observations ahead of the tunnel face. The

PMF used to simulate the next state after state i is given

by P .:

P[next state = j) = P

When there are observations ahead of the tunnel face, the

PMF's of the next state used are not the same as (4.27),

(4.29), (4.31), (4.33), (4.35) or (4.37) because now there

is one more condition : the extent of state i given by

simulation is known. The required PMF's with different

kinds of observations are derived in Appendix C which can be

used to simulate the next state j.
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Figure 4.25 Steps in simulation of parameter profile:
extent of present state, next state, and
the extent of next state
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4.5.2 Ground class profile simulation

If parameter interdependences are weak and can be

neglected, all the parameter profiles are simulated

independently and then combined to form a GC-profile (see

Fig. 4.26.) If the parameters are correlated, the hierarchy

of dependences is assumed and the parameter profiles are

simulated one by one, starting with the independent

parameter at the top of the list of hierarchy and moving

down. After the first independent parameter (Xl) profile is

simulated, the homogeneous regions for X2 are determined and

a X2-profile can be simulated in each homogeneous region.

After Xl and X2-profiles are simulated X3-profile can be

simulated and so on until all the parameter profiles are

simulated. Then they can be combined to form a GC profile

(Fig. 4.26.)

4.6 Summary

The development of the geological prediction model is

presented in section 4.1. The Makov process concept is

found to be a satisfactory solution to the general

requirements of a geological prediction model which are :

(a) Tunnel profiles generated by the prediction model should

be compatible with general expectations of the actual

profile.

(b) The knowledge on both the general and particular geology

of the tunnel region should be incorporated.
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(c) Predictions can be updated as excavation proceeds and

more information is gathered.

(d) The prediction and updating processes should be capable

of including subjective judgment when necessary.

(e) The prediction model should include all relevant

parameters and the entire ranges of their possible

states. However, when unexpected important parameters

are encountered, the model should be capable of

including them also.

The Markov model is then adopted and its assumptions are

presented in section 4.1.3, together with the advantages and

disadvantages,

The prediction model and its applications are presented

in .section 4.2. the "time" parameter in the Markov process

is equivalent to the distance measured along the tunnel axis

from a fixed point such as the portal (Fig. 4.5.) State

predictions at a certain point ahead of the tunnel face are

given by interval transition probabilities. After the

tunnel enters into a certain state, the length in which the

tunnel will remain in the same state is predicted

probabilistically by extent distributions. The probability

of running into a certain state following the state at the

tunnel face is given by the transition probabilities. All

these three probability distributions (interval transition

probability, extent distribution and transition probability)

are modified (updated) when there are "observations" of the
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parameter ahead of the tunnel face. These observations can

be "deterministic" (the state is determined at the point of

observation) or "non- determinstic" (only the PMF of the

parameter at the point of observation is known.) The updated

expressions for these probability distributions based on

these observations are also formulated.

In section 4.3 probability calculations involving

ground classes are presented. Since a ground class is a set

of geological vectors (a combination of parameter states

which dictates the geological condition) , its PMF can be

calculated from the PMF's of the parameters.

The problem of parameter interdependences is discussed

in section 4.4. A "hierarchy of dependences" is assumed in

which the parameters are arranged in order of decreasing

average extent. The transition intensity coefficients and

transition probabilities of a parameter in the list may

depend on the states of the parameters higher in the list.

The simulation of parameter profiles is presented in

section 4.5.1. The extent of the state at the tunnel face

is first simulated using expressions for extent

dii-tributions given in section 4.2.2. Then the next state

(after the state at the tunnel face) is simulated using the

expressions for transition probabilities given in Appendix

C. The simulation processes are repeated until the entire

parameter profile is simulated. If the parameters are
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independent, simulated ground class profiles (section 4.5.2)

can be directly obtained from individually simulated

parameter profiles. If the parameters are interdependent,

the profile of the first parameter on the hierarchy list is

simulated first, then the second parameter profile is

simulated and so on. When all the parameter profiles have

been simulated, the ground class profile can be obtained.

On the whole, simulation methods can be a solution to many

complicated cases, especially when there are parameter

interdependences.
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Chapter V

INPUT REQUIRED FOR THE GEOLOGICAL PREDICTION MODEL

5.1 Introduction

Before the geological prediction model (developed in

Chapter IV) is used to make probabilistic predictions, the

input required for the model have to be derived. The

necessary inputs to the model for a parameter X are the

transition probabilities P .. and the transition intensity

coefficients cX. Generally there are two ways of assesing

the values of c . and P the frequency- based method

and the subjective judgment method. These two methods are

discussed respectively in sections 5.2 and 5.3 below.

5.2 Frequency-based method

If there are sufficient relevant data, c . and P ..

can be estimated directly. The data are relevant if they

are recorded in regions in which the same Markov process as

that around the tunnel axis governs. Therefore the recorded

data should be from a region of similar geology as that of

the tunnel. The best data should be from the tunnel region

and measured in the direction of the tunnel advance at

tunnel grade depth. The amount of data is regarded as

sufficient if the statistical significance of a given set of

probability values can be tested. Thus to set up the best

estimates of P ,P t ,... p ,the required number of



lIT

transitions recorded is usu-'ly about 10(n - 1) (n is the

total number of states of X; see section 6.2.2.) To

calculate the best estimate of c ,, at least about 10

extents of state i have to be recorded (see section 6.2.1.)

There are two main sources of data : maps'and existing

tunnel profiles from regions with similar geology as the

tunnel region. When maps are used, a line parallel to the

tunnel axis is drawn (see Fig. 5.1.) The states of the

parameters encountered by the line are recorded and

converted into a "transition chain" of the parameters. If

the parameters considered are X1, X2, ... XN in order of

decreasing extents, the form of a transition chain is shown

in Fig. 5.2. If more data (transition chains) are desired,

other parallel lines can be drawn, but they have to be at a

distance far enough from each other so that essentially the

same data are not recorded twice. When there are existing

tunnel profiles from regions with similar geology as the

tunnel region, it should be noted that only those tunnels

with a directon approximately equal to that of the proposed

tunnel should be used. Each tunnel profile is regarded as a

transition chain.

After all the relevant data are collected in the form

A A

of transition chains c X and P .. (the best estimates of

c and P.. respectively) of a parameter X can readily be

calculated. When the parameters are probabilistically

independent, each parameter is treated individually (section
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Figure 5.1 To obtain data from a map.
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5.2.1.) When there are parameter interdependences, a

hierarchy of dependences is assumed and parameters Xl, X2,

... XN are treated successively (section 5.2.2.)

5.2.1 Independent parameters

To calculate c , the extents of state i of parameter X

from the transition chains are considered. From this sample

of extents the average extent can be calculated. Since the

extent of state i is exponentially distributed (section

3.2.3) c. can be taken as the reciprocal of the average

extent. Another method is to take the reciprocal of the

sample standard deviation as c i It should be better to

use both methods by taking the average of the calculated

values of c ..

A

P .. can be calculated by considering the transitions

made by parameter X in a given set of transition chains.

Let F .. be the number of times that a transition is made

from state i to state j in the set of transition chains

(Fig.5.2.) The number of times that state i appears as the

first state of a "transition pair" (i.e. two consecutive

states in a transition chain) is B where

B .=F + F . +... + F ..... (5.1)

Therefore the best estimate of P is

A

P =F A/BM ..... (5.2)

For i=l, (5.2) can be used to form the best estimates

-of a "row" of transition probabilities P (=0), P .2'
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P xn.The remaining (n-1) rows of transition probabilities

are similarly estimated. The least amount of data required

to evaluate the best estimates of a row of transition

probabilities is usually about 10(n-1) recorded transitions

because the same number of recorded transitions is required

to test the statistical significance of a row of transition

probabilities (see section 6.2.2.) This means that B .i has

to be at least about 10(n-1) so that PX., Px2i * ' A I n

can be estimated by the frequency-based method. If B .iis
Xi

less than 10(n-1), the row of transition probabilities

should be estimated by the subjective judgment method

(section 5.3.)

An interesting point to make is that for a given set of

transition chains the recorded frequencies F .. are not
Xi';

independent. Let G be the number of times that i appears

as the second state of a transition pair. Then

-If state i is never situated at the beginning or end

of a transition chain, then B is equal to G

which means that

F +F +... +F =F +F +... +F
Xi! XiI $4i1 Xii x2j n

-If state i appears B. times at the beginning and E

times at the end of the chains, then

B = G +B. -E
Xi I

i.e.

F + ...
xiI

+F = F +... +F .+B. -E.
Xii AUi XTH I
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In either of the two cases above there is a linear

dependence among (i.e. a linear equation involving ) FA ,

F , ...0 F , F . ,. F , * F.e Therefore for n states

there will be n such linear dependences and the number of

independent transition frequencies inside a transition chain

= number of non-zero F ..'s - n

= (n2 - n) - n = n - 2n

Since there are also n linear dependences among

transition probabilities in the form

P + P1 + ... + P = 1, ..... (5.4)

the number of independent transition probabilities

= number of non-zero P . 's - n

2 2
= (n - n) - n = n - 2n.

Therefore the best estimates of P . (5.2) fit the data set

perfectly. This result invalidates any significance tests

using a single set of data (transition chains) to test the

appropriateness of the transition probability concept with

the assumption of a single-step memory.

5.2.2. Independent parameters

When there are probabilistic interdependences among the

parameters, a hierarchy of dependences is assumed (section

4.4.) The parameters are arranged in order of decreasing

average ektents : X1, X2, .... XN. Since Xl is regarded

A A
as an independent parameter, c xi and P Al are evaluated

as shown in section 5.2.1. For the other parameters if XI
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A A

is dependent on XJ, PX.. and cr. will have different

values in regions with different states of XJ. For example,

Degree of Jointing (XI) may depend on Rock Type (XJ). Thus

for regions with different rock types, different transition

probabilities and transiton intensity coefficients have to

be evaluated for Degree of Jointing. Each of these regions
A /

is a homogeneous region for XI and PA.. and c . have to

be evaluated from the transition chains in the region.

5.3 Subjective judgment method

In actual situations the amount of data available may

not be sufficient for the frequency- based method to be

used. Under such situation in addition to data expert

knowledge (subjective judgment) of the geologists who are

familiar with the geology of the tunnel region should be

incorporated.

5.3.1 Independent parameters

5.3.1.1 Transition intensity coefficients

To assess the value of c M , a geologist (or group of

geologists) is basically asked such a question

"What is the average extent of state i of parameter

X in this region at the tunnel grade ?" ..... (Q1)

A concrete example is

"If there are several lengths of granite along the

tunnel axis, what would be the average length ? "
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c Xis the taken to be the reciprocal of the estimated

average length.

5.3.1.2 Transition probabilities

To estimate P , P ,6... P , a geologist is

basically asked such a question (to assist the geologist, a

profile of the tunnel region such as that of Fig 5.3 should

be shown also) :

"If state i of X occurs at a certain place along

the tunnel axis, what is the probability that

the next state is j ?" ..... (Q2)

(The place where state i occurs can be at any location along

the tunnel axis; therefore the answer should be independent

of location.)

An example is

"If there is a length of low RQD rock along the

tunnel axis, what is the probability that the

rock next to it is of high RQD ?"

Another example where the term "probability" is avoided is

"If there is length of low RQD rock along the

tunnel axis, how many times out of a hundred

would it happen that the rock next to it is of

high RQD 7"

If the direct assessment of a probability value is

difficult, an indirect mode of encoding is for the geologist

to choose between two bets (Fig. 5.4. ) The geologist is
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norknown observations about x within this region

tunnel -.- next state =j?
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Figure 5.3 Subjective assessment of Pxij
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told that the first bet has a probability of winning equal

to the answer to (Q2) (i.e. P *..) The second bet has a
XiJ

probability of winning equal to P which is varied until the

geologist shows indifference in choosing between the two

bets. Fig 5.4 is shown to the geologist and a series of

questions are asked for different values of P :

"If the probability of winning the second bet is

P, which bet would you prefer ?"

If the geologist prefers bet 1, it means that P Xi3 > P

and if he prefers bet 2, P > P * If he is indifferent

between the two bets, P is taken to be equal to P ... It is

better to start the sereis of questions with alternately

high and low values of P. An example of the encoding

process where seven questions are asked to reach the

required probability is :

P .95 .05 .80

Choice of bet 2 (definitely) 1 (definitely) 2

P .20 .70 .40

Choice of bet 1 (definitely) 2

P .60

Choice of bet (indifferent)

Thus P = .6 in the above example. To help the geologist

to "visualise" the probability P, a probability wheel (see

Spetzler and Holstein, 1974) may be used. An important

precaution when asking (Q2) is to make sure that there are
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no known observations of the states of X near ( e.g. within

a distance of 1/c ) the place where state i is assumed to

occur (see Fig 5.3.) If there are such observations, the

estimate of P . would be affected and may not represent

the general situation in the tunnel region.

For a parameter X with n states, when a row of

transition probabilities (PX , Pi 2 ls, ... P )is being

assessed, (n-2) questions of type (Q2) are required. For

example, to assess (P , PX22' P2) (5 - 2 = 3)
Y,:1I )22"X 2S) (

questions have to be asked to get PX21' X2' PX2 . The

remaining 2 probabilities are given by :

X22

p = 1- p -p - p
X2S X21 A23 A2j

When these (n-2) questions are being asked, the geologist

may have difficulty in answering some of them. After all

the questions to assess the n rows of transition

probabilities are asked, 1yt m be the number of questions

that cannot be answered by the geologist (i.e. there are m

"missing" probabilities.) To obtain these m missing

probabilities, the valuas of v X (the limiting probability

of state i, which is also the relative percentage of

occurence of state i in the region; see section 3.3.3) are

assessed. n additional questions for the values of v are

asked (i = 1, 2 , 3, ... , n) :

"What is the probability of having state i of parameter

X at any given point along the tunnel axis ?" ... (Q3)
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or alternatively,

"What is the relative percentage of the occurence of

state i of parameter X along the tunnel axis ? "

..... (Q4)

After v (i=1,2,....,n) is estimated, the sum (v + v +

.ee . + v ) should be checked. If the sum is not equal to

1, each of the estimate v . can be determined by dividing
Xi

by the sum so that the new sum will be equal to 1.

When the values of v . have been determined, equations

(3.12) are used to infer the values of P .. :

v (-cX ) + v (c P ) +f...+ v (c P ) =0
xi xl x2 X2i x21 xn xn xn7I

v (c P )+v (-c )+... +v (c P )=O
XI Al x22 X2 Xl sxxn xnz

000

v (c P ) + v (c P ) + ... + v (-c ) =0
AI XI Xll X2 X2 X2n1 xA)(3.12)

Since there are (n-1) independent equations in (3.12), when

m 4 n-1, all the m missing probabilities can be calculated.

When m > n-1, (m-n+l) additional questions are still needed.

Each of these additional questions can be formulated to

derive the ratio of P to P , at least one of which is
XiA x

a missing probability. Questions of the following type can

be asked :

"If state i of X occurs at a certain place along the

tunnel axis and the state next to it is either u or

v, what is the probability that it is u ?" ... (Q5)
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Suppose the answer is q , then

P1 1 - q V *..... (5.5)

When (m-n+l) questions of the form (Q5) are answered,

the (m-n+1) corresponding results (5.5) are used together

with (3.12) to obtain the m missing probabilities.

Equations (3.12) and (5.5) are linear in P .. and so the

solutions should be easy to obtain.

5.3.2 Interdependent parameters

If significant (whether something is "significant" or

not is to be determined by the geologist subjectively)

parameter interdependences are suspected, the parameters are

arranged in decreasing average extents : Xl, X2, ... XN

and questionings are carried out for each parameter in the

same order. Starting from X1 (the "independent parameter"),

questions (01), (Q2) and if appropriate (Q3) to (Q5) are

asked to assess the values of P and c ..

After P .. and c . are established the dependence of
Xlii Xii

X2 on Xl is tested. To test the dependence of c . on Xl

x2n (= total number of states of X2) of the following type

of questions are asked (i = 1, 2, ... x2n)

"If the places where state i of-X2 exists are in

different states of Xl, would there be significant

differences in the average extents of state i of



.0 . . . (Q6)

To test the dependence of P . . on X1, (x2n - 2 x2n) (

total number of independent transition probabilities)

questions of the type are asked :

"If the places where state i of X2 exists are in

different state of XI, would there be significant

differences in the probability that the state next

to state i is j ?" *.... (Q7)

if the answer to any one of the questions (Q6) and (Q7) is

"yes", then X2 is probabilistically dependent on Xl.

Different sets of P 2 .. and c . are established for

regions in different states of X1 by using the methods

[questions (Ql) to (Q5)] of section 5.3.1. The amount of

effort needed is less than proportional to the number of

sets of P * and c, 2 . required : after the first set is

established the other sets should be easier to assess due to

the repetition of procedures. If the answers to all the

questions (Q6) and (W7) are negative, then X2 is indepedent

of X1 and pX2ij and cX2i can be established independently.

After the transition probabilities and transition

intensity coeficients of Xl and X2 are established, the

dependences of X3 on Xl and X3 on X2 are tested similarly as

the dependence of X2 on Xl. If X3 is only dependent on one

of them, different sets of P .. and c X3 are established

for regions in different states of the correlated parameter.

X2 ?"e



If X3 is dependent on both parameters, different sets of

P and c are established for regions in different
XsiJ ~

combinations of states of Xl and X2. An example is that RQD

may depend on the combination of Rock Type and Faulting :

average extent of high RQD rocks is much greater in a region

with quartzite- no faulting than one with granite- faulting.

But if X3 is not dependent on X2 or Xl, it is treated as an

independent parameter.

After the transition probabilities and transition

intensity coefficients are established for X1, X2 and X3, X4

is considered. The dependences of X4 on Xl, X2 and X3 are

tested similarly and different sets of P .. and cX. are
X4iiX4

established if there are dependences. Similar procedures

are applied to X5, ... XN until all required transition

probabilities and transition intensity coefficients are

encoded.

Summary

In this chapter the procedures for assessing the basic

inputs (transition probabilities and transition intensity

coefficients) required for the geological prediction model

are presented. Both a frequency- based method (when there

is sufficient data) and a subjective judgment method can be

used. For the case of independent parameters, each

parameter is treated individually. For the case of

interdependent parameters, a hierarchy of dependences



(section 4.4) is assumed and the parameters are treated

successively, starting with the one with the largest average

extent.



CHAPTER VI

UPDATING OF THE GEOLOGICAL PREDICTION MODEL

6.1 Introduction

As tunnel construction proceeds the states and extents

of -different geological parameters in the newly excavated

part of the tunnel are recorded. This information can be

expressed as a "transition chain" of parameters X1, X2, ....

XN (in decreasing order of average extents) as shown in Fig.

6.1. This information must be relevant to the problem of

geological prediction in the unexcavated part of the tunnel

since it comes from an excavated part of the same tunnel.

Therefore it is desirable to update (refine) the geological

prediction model (i.e. to update the transition

probabilities and transition intensity coefficients used in

the model) based on this information so that it may be in

better correspondence with the actual geology of the

unexcavated part of the tunnel.

Before tunnel excavation starts, the transition

probabilities and transition intensity coefficients are

estimated by the methods presented in Chapter V. The

geological prediction model can then be used to form

probabilistic predictions about the geological parameters

ahead of the tunnel face. After a certain length of the

tunnel is excavated, records of the geological parameters in

the newly excavated part can be used to update the estimates
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of the transition probabilities and intensity coefficients.

This updating is intended to modify the geological

prediction model so that it may give better predictions in

the unexcavated part of the tunnel. This updating process

can be repeated as another length of the tunnel is excavated

and new records taken. A typical updating process is

presented in section 6.2 where the frequency- based method

(section 5.2) is used. When the subjective judgment method

(section 5.3) is used the procedures for updating are

presented in section 6.3. The updating processes presented

in sections 6.2 and 6.3 are equally applicable to

independent or interdependent parameters.

6.2 Frequency-based method

6.2.1 Updating of a transition intensity coefficient

When the frequency- based method is used to establish a

transition intensity coefficient, its best estimate c is

calculated from a sample of extents extracted from an

existing set of transition chains (section 5.2.) Updating is

done by adding the newly recorded extents of state i to the

existing sample and re- calculating the best estimate.

If the transition intensity coefficient cXKiu being in

use deviates considerably from the newly recorded extents of

state i, updating of the coefficient should not be done

simply by adding the new information to the existing one but

by treating it separately. If such a significant deviation
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is suspected, a conventional Chi-square test (see Cornell,

1970; Appendix A) should be used to test the exponential

extent distribution (see section 3.2.3.)

f (h) = c e CXKia'h
HXKI l.

based on the new records. Since the degrees of freedom of

the Chi-square statistic is equal to (NC - 1) (NC is the

total number of categories), NC is required to be at least

2. Therefore at least 10 (= 2x5) extents are required since

each category should have an expected frequency of 5 or

above. If the Chi-square test result is positive, the

transition intensity coefficient can be updated as mentioned

above. If the test result is negative, cA. is rejected

and the best estimate of c XKi is calculated based on the

new records only. This is intended to ensure that the

transition intensity coefficient used is up-to-date because

the new records should usually correspond better with the

geology of the remaining part of the tunnel.

6.2.2 updating of transition probabilities

It was mentioned in section 5.2.1 that a row of

transition probabilities (P , P ,*... P) can be

estimated by recording Ft. (the number of times that a

transition is made from state i to state 1), F X 2.'*go

F from an existing set of tansition chains of parameter

X. The best estimate can be updated by adding the

transition chain of X in the newly excavated part of the
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tunnel to the existing set : F .. is increased by the

number of times that a transition is made from state i to

state j in the new transiton chain.

If the row of transition probabilities in use

(P P ... P. ) deviates considerably from the
xjlt )4IZLL. XinL(

newly recorded transition frequency distribution, updating

of the row should not be done by simply adding the new

information to the existing one but by treating it

separately. If such a significant deviation is suspected, a

Chi-square test can be carried out. Let NF.l. be the

number of times that X makes a transition from state i to

state j in the new transition chain and

NB .i=NF. +NF +... + NFxn
xi xi xii i

(NB )I is the number of times that state i appears as the

first state of a transition pair in the new transition

chain.)

The expected frequency of transitions from state i to state

j is

E =P NB

and the Chi-square statistic is

C = (E .. - NF *-)

. E .E= xi

The number of categories is NC (= n-1) and so the

degrees of freedom is (n-2). To ensure that the result of

the Chi-square test is reliable, each E .j should not be

less than 5 (see Lumsden, 1971.) Therefore the minimum
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number of recorded transitions (with i as the first state)

is five times the number of categories'(= 5(n-1).) 10(n-1)

transitions may be required in actual situation.

If the result of the Chi-square test is positive,

P .. can be updated as mentioned above. If the result is

negative, P is rejected and the best estimates of the

transition probabilities based on the new records (NF .. )

only are used instead. This ensures that the best estimates

used are up-to-date.

6.3 Subjective judgment method

When the amount of existing data is not sufficient for

the frequency- based method to be used, a transition

intensity coefficient (or a row' of transition probabilities)

has to be assessed by the subjective judgment method.

[Recall that about 10 recorded extents are sufficient to

establish a transition intensity coefficient and at least

5(n-1) recorded transitions are sufficient to establish a

row of transition probabilities; see section 6.2.) In this

case the updating is not as easy because the new records are

frtquency data while the coeficient or the row of

probabilities have been established subjectively. If the

new records together with the existing (frequency data)

records are sufficient, the transition intensity coefficient

(or the row of transition probabilities) can be

re-established by the frequency- based method. Further
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updating can then be done as shown in section 6. 2. If the

two sets of records (of frequency data) together are still

not suffrcient, the updating can be carried out subjectively

or by using the Bayesian updating technique.

In subjective updating, the transition intensity

coefficient (or the row of transition probabilities) is

re-assessed by the same geologist who assisted in

establishing it. Since the geologist, with the help of the

new records, should have become more familiar with the

geology of the tunnel region, the probabilistic assessments

he makes should become more reliable and in this way the

geological prediction model is updated. However, care must

be taken to guard against possible subjective biases towards

the new records. The new records are recent events which

are more "available" and hence may be given more weight than

optimal (see Spetzler and Holstein, 1974.) Another way to

update the model is the concept of "competing hypotheses"

which enables the geological prediction model to be updated

by the Bayesian technique. The concept of "competing

hypotheses" is introduced in section 6.3.1 below.

6.3.1 "Competing hypotheses"

In section 5.3 the subjective judgment method is used

to establish a transition intensity coefficient (or a row of

transition probabilities.) Such a coefficient (or row) is in

fact the outcome of a "hypothesis" because it depends on the
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particular opinions of the geologist (or group of

geologists) questioned. If different opinions of a

geologist (or group of geologists) are enlisted, different

hypotheses (the competing hypotheses) are established. In

the concept of "competing hypotheses" it is assumed that one

and only one of these hypotheses is "true" (i.e. exactly

corresponding to the geologic processes of the tunnel

region) and the probability of hypothesis Hm being true is

denoted by P. The coefficient (or row) used is then a

weighted mean of the estimates based on the competing

hypotheses

c = PIc . + P 2-2xi+ 0'' Y YX, ..... (6.1)

and

(P I P ... P ) I Y

= P (P P

+ I2 2XiK X2 ' xiKn

+ 04

+ P (PpzxiI *Zi2 ' pZXi) ..... (6.2)

where y is the number of competing hypotheses for c Xi and z

the number of hypotheses for the row (PXiP 2...

P 7 ). (n is the number of states of X.)

Among the competing hypotheses for cXi, at least the

upper bound, the lower bound and the best estimate should be

included. Thus y is at least three. For a row of

transition probabilities, the number of hypotheses should be

at least n, one of which being the best estimate. The
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reason can be made clear by considering an example where

n=4. In this example the number of independent transition

probabilities in the row is (n-2) = 2. Let these 2

probabilities be PX 2 and P K13. These 2 values can be

represented by a graph as shown in Fig. 6.2(a). Suppose

the true values are at C*(P ,P*X13 ) and the best estimate

is at C which is hopefully "near" to C * The other

estimates C2, .1.. Cz are at positions surrounding the best

estimate. If z is less than n(4), it can be seen that the

chance of including C- in the convex region formed by the

estimates is small (Fig 6.2(a).) If C is not enclosed by

the convex region, the row of transition probabilities given

by (6.2) can never be updated to the true row because this

row always falls inside the convex region formed by C ,1C2,

... C zdue to the nature of the weighting factors PM :

P +IP2 + ... +PZ =1 ..... (6.3)

P 0O

On the other hand, if z is at least 4, the chance of

enclosing C * is much greater and updating may yield a row

of transition probabilities near to C. (Fig 6.2(b).)

The updating procedures for a transition intensity

coefficient is presented in section 6.3.2. Updating of a

row of transition probabilities is similar and is presented

in section 6.3.3.
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6.3.2 Updating of a transition intensity coefficient

Before construction of the tunnel starts, y competing

hypotheses for c are set up based on different opinions
Xi

of the geologists. The coefficient corresponding to

hypothesis H 7 is c . The probability Pm of H . being

true can be assessed subjectively or a vague prior (i.e.

P = 1/y) is assumed and then is updated by existing data

before tunnel construction. To update P,,,, to P' based on

a sample of recorded extents the Bayesian technique is used

P' ,P, [likelihood of H1n]

-K Pm L m ''... (6.4)

where K is the proportionality constant. Since hypothesis

H., states that the extent HX is exponentially distributed

with coefficient cA.,, its likelihood is

L = fH.(h ) f (h ) ... f (h ) ..... (6.5)
m m~ i mHlki 2. mHXi e

where hI, h2 , ... he are the e extents in the sample.

Since one and only one of the hypotheses is true,

P + P + ... +p' =1
S z y/

and so from (6.4),

K P L +,K P L +...KP L =1.

Hence

K = 1/(P L + ... + P L ) ..... (6.6)

and from (6.4) again,

P' = P L/ (P L + P L + .o. + P L
Yn mm I 1 2 2 y

(6.7)

As Pm is updated to P',, c x is also updated according to



(6.1).

The time before actual tunnel construction is started

is called the "initial stage". The "first stage" starts

with tunnel construction and ends at a point when the tunnel

records up to that point are used to further update P,.

Thus generally the recorded extents in the n t stage are

used for the nth updating and the new value of c X is used

in the (n+l) stage. The prior in the n th updating is

the values of P. used in the nth stage and the posterior

P' is calculated according to (6.7).

6.3.3 Updating of transition probabilities

The updating of a row of transition probabilities is

similar to that of a transition intensity coefficient. z

competing hypotheses are set up before tunnel construction

which results in z rows of transition probabilities. The

probability P. of Hm being true can be assessed

subjectively or a vague prior is assumed and then is updated

by existing data before tunnel construction.

Generally updating in each stage is carried out using

the Bayesian technique :

P' . P [likelihood of H 3

= K PM Lm ... (6.8)

Suppose in the same stage the number of transitions X makes

from state i to state j is SF,..,. Then the likelihood of



H is

LM= PThe recorded transitions take placeIHmJ
sE SF

= aP)n.. (PxMi ) 6.*. (6.9)

(P. is not included in the right-hand-side because it is

always zero by definition.)

Then P is calculated as shown in section 6.3.2 and is given7n

by

1P P, L/(P1 L+P2 L2 + *.. P L ) ..... (6.10)

The row of transition probability is thus updated according

to (6.2).

6.4 Summary

In this chapter the updating of the transition

intensity coefficients and transition probabilities to be

used in the geological prediction model is discussed. When

the frequency- based method is applied to estimate a

transition intensity coefficient (or a row of transition

probabilities) the estimate is calculated from an existing

set of frequency records (section 5.2.) As tunnel excavation

proceeds the new records are added to the existing set of

records and the estimates are re-calculated (updated.)

When the subjective judgment method is used several

estimates of a transition intensity coefficient (or a row of

transition probabilities) are established based on different

opinions (competing hypotheses.) Each hypothesis has a

probability Pn of being true and the estimate to be used in



the model is the weighted mean of the estimates with P, as

the weighting factor. As tunnel construction proceeds the

new records made are used to calculate the likelihoods of

Hn. P* is then updated by the Bayesian technique and in

this way the estimate to be used in the model is updated.



CHAPTER VII

A CASE STUDY

7.1 Introduction

The discharge water tunnel of the Seabrook power

station, NH, is used for an example application of the

proposed geological prediction and updating model. The

actual discharge tunnel is over 15,000 feet (2.8 miles, see

Fig. 7.1) long. Only the western portion (7662 feet long)

from borehole ADT-1 (1=0) to ADT-42 (1=7662) is used for the

example (Fig 7.1.)

7.1.1 General geology

The bedrock types in the region include metamorphic

rocks of the Kittery formation, igneous rocks of the

Newburyport pluton and intrusive diabase dikes. Due to the

complicated processes of formation, the spatial

relationships between the rock types are sometimes very

irregular (see Rand, 1974 for a detailed description of

regional geology and history.)

7.1.2 Geological parameters

According to Moavenzadeh et al (1976), the most

important geological parameters affecting the tunnel are

Rock Type, RQD, Joint Orientation, Major Defects, Water

Inflow, Hardness, Exploratory Drill Penetration Rate,
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Compressive Strength, and Foliation. Since this example

serves as a simplified demonstration, only four most

important parameters are chosen:

(a) Rock Type (R)

Rock Type is a useful categorizing parameter because it

allows one to draw certain conclusions on other parameters

such as Joint Orientation and Foliation, The rock types

considered include Schist, Metaquartzite, Diorite and

Quartzite. Diabase dikes are neglected because they are

thin and their effect on tunneling performance may be small.

The states of Rock Type (as a random variable R) are defined

in Table 7.1 (a).

(b) RQD (D)

ROD (Rock Quality Designation) is commonly used as a

quantitative measure of the degree of jointing which

directly affects tunneling performance. The states of this

parameter are defined in Table 7.1 (b).

(c) Degree of Weathering (E)

Severe weathering is found in some zones in the tunnel

region. It is detrimental to tunneling performance in a

similar way as other major defects such as faults and clay

seams. The states of this parameter are defined in Table

Tunneling performance refers to the performance of the
excavated opening and of the supported tunnel; see section
2.2.
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(a) Rock Type (R)

_r

1
2
3
4

(b) RQD (D)

d

1
2
3

Definition

Schist
Metaquartzite
Diorite
Quartzite

Definition

High 75-100%
Medium 25-75%
Low 0-25%

(c) Degree of Weathering (E)

e Definition

1 Not Severe
2 Severe

(d) Availability of Water (W)

d Definition

1 Low
2 Medium
3 High

Table 7.1 Definition of parameter states.
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7.1 (c).

(d) Availability of Water (W)

This parameter is called "Availability of Water"

instead of "Water Inflow" because the flow of water into the

tunnel depends not only on geological conditions but also on

the excavation and support methods. Therefore Water Inflow

is a performance parameter (see section 2.2) but not a

geological parameter. On the other hand, the availability

of water is a geological property and indicates the

potential water inflow into the tunnel. The states of this

parameter are defined in Table 7.1 (d).

7.1.3 Ground classes

Now that the states of the four geological parameters

have been defined (section 7.1.2), it can be seen that there

are a total of 72 (= 4x3x2x3) vectors of geological

parameters. For example (2 3 2 3) is a geological vector

which means Metaquartzite, low RQD, severe weathering and

high availability of water.

The next step is to establish the "ground classes"

(sets of geological vectors) needed for the cost

optimization of individual sections as described in section

2.3.1. (Cost Optimization involving the entire tunnel was

out of the scope of this case study.) The performance model

(a technical relationship describing the ground- structure
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behavior for certain geological conditions) used is based on

the expert knowledge and experience of a geotechnical

engineer (i.e Prof. Einstein.) Five ground classes (GC) are

established and the corresponding excavation and support

processes (ES) are listed in Table 7.2. The geological

vectors corresponding to each GC are shown in Table 7.3.

Table 7.3 is in fact a simplified ground class

classification table because only some of the 72 geological

vectors are included. The corresponding ground classes of

the remaining geological vectors can be assigned by a

conservative approach. For example, a geological vector

(not listed in Table 7.3) is taken to be in GC3 if the

geological conditions as indicated by this vector are

"better" than those of the vectors listed in GC3 but are

"worse" than those listed in GC2. Using this approach the

GC of the remaining geological vectors are defined and the

full GC classification table is shown in Table 7.4.

7.2 Derivation of input to the model

After having defined the states of the four geological

parameters, the basic input (transition intensity

coefficients and transition probabilities) to the geological

prediction model can be derived. Since no frequency records

on state transitions and extents are available, the

subjective judgment method (section 5.3) is used. According

to the expert (Prof. Einstein) consulted, parameter



Excavation

TBM, cycle length = 5'

TBM, cycle length = 4'

TBM, cycle length = 5'

TBM, cycle length = 3' ,
extensive pumping

Multiple drift with
drilling and blasting,
pumping

None (except

None (except

Bolts 5 x 5',

Bolts 3 x 3',

spot bolting)

spot bolting)

3" shotcrete

6" shotcrete

Bolts 3 x 3', 8" shotcrete,
light steelsets with
3' spacing

* The cycle length is reduced due to the hardness of
Quartzite.

Table 7.2 Excavation and support processes corresponding
to the ground classes.
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GC Support

1

2

3

4

5
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GC r d e w

1 1,2,3 1 1 1,2

2 4 1 1 1,2

3 1,2,3,4 2 1 2

4 1,2,3,4 3 1 3

5 1,2,3,4 3 2 1,2,3

Table 7.3 "Simplified" GC classification table.
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GC r d e w

1 1,2,3 1 1 1,2

2 4 1 1 1,2

3 1, 2,3,4 2 1 2

1,2,3,4 2 1 1

4 1,2,3,4 3 1 3

1,2,3,4 2 1 3

1,2,3,4 1 1 3

1,2,3,4 3 1 2

1,2,3,4 3 1 1

5 1,2,3,4 3 2 1,2,3

l,2,3,4 2 2 1,2,3

1,2,3,4 1 2 1,2,3

Table 7.4 GC classification table.
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interdependences are not significant and so the four

parameter are assumed to be independent. Since the

geologies of the Western portion of the discharge tunnel are

believed to be similar (homogeneous) throughout, that

portion is regarded as an homogeneous region for each of the

four parameters. This implies that the values of the

transition intensity coefficients and transition

probabilities remain the same throughout that portion of the

tunnel. The details of the derivations of the transition

intensity coefficients and transition probabilities are

presented in sections 7.2.1 and 7.2.2 respectively.

Although there are no frequency data on transitions and

extents, there are many point observations in the form of

boreholes along the tunnel axis. After the drilled cores

from these boreholes were inspected, subjective judgment was

used to arrive at PMF's of the parameter states at the

points of observation. For example, at borehole ADT-1 (1=0)

the following PMF was designated for Rock Type:

P[r=1 = .00

P[r=2] = .00

P[r=3] = 1.00

P[r=4) = .00

This PMF in fact denotes a deterministic observation i.e.

the rock type at 1=0 is observed to be Diorite. Throughout

the length of the western portion considered, there are 13

boreholes altogether. Therefore for each parameter there
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are 13 observations which are shown in Tables 7.5 to 7.8.

7.2.1 Transition intensity coefficients

The transition intensity coefficient of each parameter

state is estimated according to the questioning procedures

described in section 5.3.1.1. In order that the updating

(section 6.3.2) of the estimate of c can be done, several

(usually 3) "hypotheses" are set up for each coefficient.

The detailed procedures can be made clear by considering how

estimates for c were derived :

(1) The geologist was asked the following question:

"The tunnel goes through several lengths of Schist.

What could be the average length? Give a best

estimate. Also give the upper and lower bounds on

the average length."

To answer this question the geologist produced and used an

estimated profile of rock types along the tunnel (Fig.

7.2.) By taking in this profile the average of the lengths

of Schist existing at the tunnel axis the best estimate was

determined. Then the upper and lower bounds were determined

by considering how much could the average length deviate

from the best estimate. (This procedure of using an

estimated profile is not mandatory and the geologist could

derive directly the estimates through subjective judgment.)

(2) The three estimates were :



State ProbabilitiesBore-

hole

1

33

2

34

35A

36

37

37B

38

39

43

41

42

3 4

Table 7.5 13 observations on R.
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1 21 (feet)

0

341

717

1239

1945

2788

3566

4010

4659

5256

5785

6604

7662

.0

.0

.0

.0

.0

.0

.8

1.0

.0

.0

1.0

.0

.0

.0

.0

.2

.5

.0

.0

.0

.0

.0

.0

.0

.0

.0

1.0

1.0

.8

.0

.2

.0

.0

.0

.0

.0

.0

.9

.0

.0

.0

.0

.5

.8

1.0

.2

.0

1.0

1.0

.0

.1

1.0
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Bore- State Probabilities

hole 1 (feet) 1 2 3

1 0 .5 .5 .0

33 341 1.0 .0 .0

2 717 1.0 .0 .0

34 1239 .5 .5 .0

35A 1945 .2 .8 .0

36 2788 .2 .0 .8

37 3566 .5 .5 .0

37B 4010 .0 .2 .8

38 4659 .0 .0 1.0

39 5256 1.0 .0 .0

43 5785 .8 .2 .0

41 6604 .8 .2 .0

42 7662 1.0 .0 .0

Table 7.6 13 observations on D.
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Bore-

hole

1

33

2

34

35A

36

37

37B

38

39

43

41

42

1 (feet)

0

341

717

1239

1945

2788

3566

4010

4659

5256

5785

6604

7662

Table 7.7 13 observations on E.

State Probatilities

1 2

1.0 .0

1.0 .0

1.0 .0

1.0 .0

.6 .4

.2 .8

.5 .5

.2 .8-

.2 .8

.8 .2

.6 .4

.8 .2

1.0 .0
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Bore- State Probabilities

hole 1 (feet) 1 2 3

1 0 1.0 .0 .0

33 341 1.0 .0 .0

2 717 1.0 .0 .0

34 1239 .5 .0 .5

35A 1945 .4 .0 .6

36 2788 .8 .0 .2

37 3566 .5 .0 .5

37B 4010 .2 .0 .8

38 4659 .6 .2 .2

39 5256 .2 .8 .0

43 5785 1.0 .0 .0

41 6604 .6 .4 .0

42 7662 1.0 .0 .0

Table 7.8 13 observations on W.
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H Hi : best estimate = 750'

H 2  upper bound = 1000'

H : lower bound = 550'

Therefore

c ,, = 1/750 = .00133

c2R1 = 1/1000 = .00100

c3R1 = 1/550 = .00182

Similar questioning procedures were carried out for

Metaquartzite, Diorite and Quartzite. The other parameters

were consider I and the results are summarised in Table 7.9.

7.2.2 Transition probabilities

The transition probabilities of each parameter were

estimated according to the questioning procedures given in

section 5.3.1.2. In order that the updating (section 6.3.3)

of each estimated row of transition probabilities could be

done, several "hypotheses" were set up for each row. The

detailed procedures can be made clear by considering how

estimates for P . (j=l, 2, 3, 4) were derived:

(1) The geologist was asked the following question:

"If the tunnel runs into Schist at some point, how

many times out of a hundred will it run into (i)

Metaquartzite, (ii) Diorite, (iii) Quartzite next?

At first give the best estimates of the three

frequencies. Then assume different view points and

theories to give additional sets of estimates."



165

m 1

c

2 3

.00100 .00182.00133

.00800

.00286

.00250

.00222

.00333

.00154

.000444

.00167

.000833

.00500

.00167

.01000

.00333

.00333

.00333

.00667

.00286

.000465

.00118

.000870

.00100

.00200

Table 7.9 Transition intensity coefficients of all the

parameters based on different competing

hypotheses.

.00667

.00167

.00167

.00143

.00182

.00125

.000435

.00200

.000769

.00400

.00143

R2

R3

R4

DI

D2

D3

El

E2

Wi

W2

W3
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(2) The geologist came up with three sets (in fact it

would be better to have four sets; see section

6.3.3) of estimates based on three hypotheses (one

based on an estimated profile and the other two on

different opinions.) The estimates were divided by

100 to give the following probabilities:

m 1 2 3

P R/I2 .05 .00 .00

PmR 13 .20 .50 .00

PMRIA-.75 .50 1.00

Similar questioning procedures were carried out for the

other three states of Rock Type. Then the other parameters

were considered similarly and the results are summarised in

Tables 7.10 and 7.11. (There was no need to assess the

transition probabilities of E which had only two states.)

7.3 Parameter probability profiles

Cost optimization involving the entire unexcavated

tunnel requires the PMF's of each of the four parameters at

equally spaced points along the unexcavated tunnel. These

PMF's of each parameter constitute the "probability profile"

of that parameter. The PMF's can be calculated using the

expression for the interval transition probabilities given

in section 4.2.1.5. The most general expression is given by

(4.8) where several non- deterministic observations ahead of

the tunnel face provide information on the parameter.
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m 1 2 3

P .05 .00 .00
m R I 2

13 .20 .50 .00

14 .75 .50 1.00

21 .05 .00 .00

23 .60 .50 .40

24 .35 .50 .60

31 .05 .00 .00

32 .20 .10 .30

34 .75 .90 .70

41 .20 .20 .30

42 .10 .30 .10

43 .70 .50 .60

Table 7.10 Transition probabilities of R based on

different hypotheses.
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m 1

p 1.00

13 .00

21 .75

23 .25

31 .50

32 .50

p *50

13 .50

21 1.00

23 .00

31 1.00

32 .00

2

.85

.15

.90

.10

.00

1.00

.75

.25

.80

.20

.80

.20

3

*

1.00

.00

.40

.60

* In fact it would be better to have three (= number
of states) hypotheses.

See section 6.3.3.

Table 7.11 Transition probabilities of D and W

based on different hypotheses.
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(These observations are in form of specified PMF's of the

parameter at specific points of observations along the

unexcavated tunnel, e.g. the result of geological

exploration such as boring.)

The actual calculations of the parameter probability

profiles are done by a Fortran computer program STATEP (for

State Prediction) according to (4.8). (See Appendix D for

user's manual and examples.) Spectral resolutions of the

transition intensity matrices (section 3.3.1) are used to

calculate the interval transition probabilities. In this

context the eigenvalues and eigenvectors of the matrices

have to be calculated, which is accomplished with the

subroutine EIGRF of the International Mathematical and

Statistical Library. (This subroutine is automatically

called in STATEP.)

In the following parts of this section it will be shown

how the parameter probability profiles are established and

how they are updated once additional information from the

excavated part of the tunnel becomes available. This is

done by dividing the tunnel into two sections. In the first

section from 1=0 to 1=4010 only the information that is

available prior to tunnel construction is used. The

associated probability calculations are the "first stage

calculations" of the parameter probability profiles. For

the second section of the tunnel (1=4010 to 1=7662), the

parameter probability profiles are updated with the
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information obtained from the first excavated part of the

tunnel. (The associated calculations are the "second stage

calculations".)

7.3.1 First stage calculations

The transition intensity coefficients and transition

probabilities to be used in the first stage are based on the

competing hypotheses and frequency data (if any) available

before tunnel construction. (In this case study there was

no such data available.) A vague prior is assumed for each

of the competing hypotheses H.

A transition intensity coefficient to be used in the

first stage is calculated according to (6.1). For example

(Pn = 1'/3 due to vague prior; cgM 1  is from Table 7.9),

cR =PI c IRI +P2 c2RI + P c3R

= .333(.00133) + .333(.001) + .333(.00182)

= .00138

A row of transition probabilities to be used in the

first stage is calculated according to (6.2). For example

(PM = 1/2 due to vague prior; Pm<Dij is from Table 7.11),

(PD21 P22 PD23 I 1D21 IcD22 ID23

+ P 2(p -21P2D2P2 P)22,2, 2D22 2D3XC

= .5 (.75 .00 .25)

+ .5 (.90 .00 .10)

= (.83 .00 .17)
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The transition intensity coefficients and the

transition probabilities to be used in the first stage are

summarised in Tables 7.12 to 7.15. The transition intensity

matrix (section 3.3) for each parameter is assembled and

input to STATEP, together with the observations ahead of the

tunnel face given in Tables 7.5 to 7.8. The actual input

(transition intensity matrices and observations) are shown

in Fig. D.3 of Appendix D. STATEP then calculated the

parameter probability profile for each parameter using

equation (4.8) and the output is listed in Fig. D.4.

In the output shown in Fig. D. 4, X1, X2, X3, and X4

denote Rock Type, RQD, Degree of Weathering and Availability

of Water respectively. Thus, for the example, the

probability of having state 1 (Schist) of Xl (R) at 1=5100

is 0.036 while the probability of having state 4 (Quartzite)

is .784.

With these parameter probability profiles it is

possible to perform probability calculations involving a

geological vector

i||~l = (r(l) d(l' e(l) w(l))

as described in see sion 4.3. For example,

P[4(6000) = (1 1 1 1)

= P[r(6000)=1, d(6000)=1, e(6000)=1, w(6000)=1]

= P[r(6000)=1) P[d(6000)=1) P[e(6000)=1J P[w(6000)=l]

= (.617) (.661) (.680) (.899)

(from the parameter probability profiles in Fig. D.4)
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3-

1

2

3

4

i 1 1

.00

.02

.02

.23

2 3

.02

.00

.20

.17

.23

.50

.00

.60

4

.75

.48

.78

.00

CR.

.00138

.00822

.00262

.00250

Table 7.12 Transition probabilities (first 4 columns)

and transition intensity coefficients for R
used in the first stage.

1 .00

2

3

.83

.50

2 3

.93

.00

.50

.07

.17

.00

C
9

.00233

.00394

.00188

Table 7.13 Transition probabilities and transition
intensity coefficients for D in the first
stage.



1 2 cE5

.00 1.00 .000448

1.00 .00 .00162

Table 7.14

j 1

Transition probabilities and transition
intensity coefficients for E in the first
stage.

2 3 C

_____________________ I.

1

2

3

.00

.90

.90

.55

.00

.10

.45

.10

.00

.000824

.00633

.00170

Table 7.15 Transition probabilities and transition
intensity coefficients for W in the first
stage.
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j

1

2
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= .249

GC (ground class, a set of geological vectors requiring

the same optimal excavation and support processes)

probabilities can also be calculated as described in section

4.3. For example,

p[GC exists at 1 = 6000]

= P[g(6000)=(4 1 1 1) or g(6000)=(4 1 1 2)]

(see GC classification in Table 7.4)

= P[r(6000)=4J Ptd(6000)=l] P[e(6000)=1] P[w(6000)=1]

+ P[r(E-'0)=4] P[d(6000)=1] P[e(6000)=1] P[w(6000)=2]

= (.236) (.661) (.680) (.899) (From Fig. D.4)

+ (.236) (.661) (.680) (.055)

= .101

7.3.2 Second stage

The second stage starts at the time when the tunnel

face reaches the position of borehole ADT-37B (1=4010). The

transition intensity coefficients and transition

probabilities to be used in the second stage are based on

the competing hypotheses HM and their corresponding

probabilities of being true P,. With the new frequency data

(in the form of transition chains) recorded during the first

stage (from 1=0 to 1=4010), P can be updated and hence the

coefficients and probabilities are also updated. (Recall

that P serve as weighting factors.)
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The recorded transition chain of each parameter is

generally expressed by a table instead of a figure

(profile.) For example, the transition chain of Rock Type is

given in Fig. 7.3. The corresponding information is listed

in Table 7.16 where "h" denotes extent. The extent of state

3 at 1=0 is not known because it is not known where that

state started. Extent of state 1 at 1=3485 is also not

known because it extended up to the tunnel face (1=4010) at

the end of the first stage. Tables 7.17 to 7.19 give the

transition chains for RQD, Degree of Weathering, and

Availability of Water respectively.

Every transition intensity coefficient is now updated

according to the procedures described in section 6.3.2. The

updating of c can serve as an example (m is the number

designation of hypothesis H.):

m 1 2 3

c .R3 .00286 .00167 .00333

P .333 .333 .333

L 5.85E-12 1.85E-12 7.04E-12

P .397 .126 .477

LM is calculated according to (6.5)

L = f7n (hI f H 3 (h2 ) f mgg(h3 ) f (h ),m mHR3 i >HR z wh3 3 ilR3 +

since there are four recorded extents of state 3 in the

first stage (Table 7.16.) For example,

L = fHR3 (170) f (177) f (222) HR3( 2 9 0 )
11HR3 IHR3I R3H3

= (.00286 e -. 00286 (170) ) .. (. .00286 e-.002 86 (290 )
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1 (feet)

N,\\ 3 O \o

0

1),od
4 ' - \VP$ lkat?

3 4324jjj~. 3 4 1

Definitions of states :

1 = Schist

2 = Metaquartzite

3 = Diorite

4 = Quartzite

Figure 7.3 Recorded transition chain of
Rock Type in the first stage.
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1 (ft.)

0

768

990

1160

1297

1509

1686

2082

2304

2833

3123

3485

4010

r

3

4

3

2

4

3

4

3

4

3

4

I

h (ft.)

222

170

137

212

177

396

222

529

290

362

Table 7.16 Recorded transition chain of
Rock Type in the first stage.
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1 (ft.)

0

922

1092

1203

1331

1468

2440

2509

2867

3140

3614

3707

3857

4010

d

1

2

1

2

1

2

1

2

3

2

1

2

3

h (ft.)

170

111

128

137

972

169

258

273

474

93

150

Table 7.17 Recorded transition chain of RQD
in the first stage.
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1 (ft.)

0

1055

1413

2754

3021

3911

e h (ft.)

1

2

1

2

I

2

358

1341

267

890

4010

Table 7.18 Recorded transition chain of Degree
of Weathering in the first stage.

1 (ft.)

0

1297

2048

3515

w h (ft.)

1

3

1

3

751

1467

4010

Table 7.19 Recorded transition chain of Availability

of Water in the first stage.
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= 5. 85E-12

After P is updated to P' using (6.7), the coefficient

to be used in the second stage is

c =PI' c +P' C +2 C
R3 I IRS 2 2R3 3 3R3

= .397(.00286) + .126(.00167) + .477(.00333)

= .00293

(whereas previously cR3 =.00263 was used in the first

stage.)

Every row of transition probabilities is now updated

according to the procedures stated in section 6.3.3. The

updating of the second row of transition probabilities of

RQD can be taken as an example

m 1 2

P D21 .75 .90

P9D23 .25 .10

P .50 .50

Lm .0198 .00656

P' .751 .249

L was calculated according to (6.9)

L =(P ) (P )
7 02J rMP23

since four transitions are make from state 2 to state 1

(i.e. SFD2  = 4) and two transitions are made from state 2

to state 3 (i.e. SFD22 = 2.)
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After P is updated to P' using (6.10), the row to be

used in the second stage is

(P P P )P21 P22 P23

= P' (P P P ) + p' (P P P
I1P21 1 1D22 1023 2 2P21 2D2 2P23

= .751(.75 .00 .25) + .249(.90 .00 .10)

= (.787 .000 .213)

The transition intensity coefficients and the

transition probabilities to be used in the second stage are

summarised in Tables 7.20 to 7.23. The transition intensity

matrix (section 3.3) for each parameter can then be

assembled and input into STATEP. Recall that, in addition

to the transition intensity matrices, observations ahead of

the tunnel face also need to be input into STATEP. However,

since the tunnel face is now at borehole ADT-37B (1=4010),

the observations at the boreholes preceding ADT-37B are not

used, because only the remaining observations can affect the

geological predictions. Thus only the observations at

boreholes ADT-37B through ADT-42 are input into STATEP. The

actual input and output are shown in Figs. D.5 and D.6

respectively.

For example, from Fig. D.6 the probability of having

state 1 (Schist) of Xl (R) at 1=5100 is .032 instead of .036

as it was at the start of the first stage. The 'difference

in the probabilities is solely due to the updating of the

transition intensity coefficients and transition

probabilities since the observations immediately preceding
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21

.00

3

.02

.012 .00

4

.23

.483

.016 .203 .00

.239 .125 .636

C

.75

.505

.00138

.00819

.781 .00293

.00 .00221

Table 7.20 Transition probabilities and transition
intensity coefficients for R used
in the second stage,

1 2

.00

.787

.167

3

.954

.00

.833

.046

C.

.00294

.213 .00282

.00 .00200

Table 7.21 Transition probabilities and transition
intensity coefficients for D in the second
stage.

j
i

_____________________ L

1

2

3

4

j
i

1

2

3
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i
j 1 2 C.-

-

______4

1

2

.00

1.00

1.00

.00

.000448

.00169

Table 7.22 Transition probabilities and transition
intensity coefficients for E in the second
stage.

i
j

1

2

3

1 2

.00

.90

.911

3

.470

.00

.089

.530

.10

.00

c,.

.000824

.00633

.00169

Table 7.23 Transition probabilities and transition
intensity coefficients for W in the second
stage.

i
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and following the point 1=5100 are assumed to be unchanged

from the first stage. (Recall that only these two

observations can affect the state probabilities at 1=5100

because of the single -step assumption; see section

4.2.1.4.)

With the updated parameter probability profiles (Fig.

D.6), the probability calculations involving ageological

vector 4(1) can be performed as described in section 4.3.

For example,

P[g(6000) = (1 1 1 1)

= P[r(6000)=l, d(6000)=1, e(6000)=1, w(6000)=1]

= P[r(6000)=lJ P[d(6000)=lJ P[e(6000)=1] P[w(6000)=1]

= (.621) (.576) (.683) (.897)

= .219 (was .249 at start of first stage)

GC probability calculations can also be performed as

described in section 4.3. For example,

P[GC exits at 1=6000]

= P[g(6000)=(4 1 1 1) org(6000)=(4 1 1 2)]

(see GC classification in Table 7.4)

= P[r(6000)=4J P[d(6000)=1] P[e(6000)=1] P[w(6000)=1J

+ P[r(6000)=4J P[d(6000)=1] P[e(6000)=1] P[w(6000)=2]

= (.241) (.576) (.683) (.897)

+ (.241) (.576) (.683) (.054) (from Fig. D.6)

= .090 (was .101 at start of first stage)

(Updating was applied to the second section of the tunnel
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using information from the first section. It should be

remembered that updating as shown above should be used

whenever subjectively obtained competing hypotheses are to

be combined with frequency type data. Thus, if in the first

section of the tunnel frequency data had been available in

addition to the subjectively assessed hypotheses, such an

updating would have been performed there also.)

7.4 Summary

A case study for the construction planning of a water

tunnel has been presented. The general geology of the

tunnel region is examined and four geological parameters

(Rock Type, RQD, Degree of Weathering, Availability of

Water) are considered. The ground class classification

table is set up using a performance model based on past

engineering experience and kaowledge. The entire tunnel is

considered to be "homogeneous" (having similar geology) and

the geological parameters are taken to be independent of

each other. The transition intensity coefficients and

transition probabilities for these parameters are derived

using the subjective judgment method described in section

5.3.1. Example calculations on parameter probability

profiles are made.
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In order to show how the transition intensity

coefficients and transition probabilities (which are

established using subjective judgment can be updated as

described in Chapter 6, competing hypotheses are set up

before tunnel construction. The probability PM of

hypothesis H being true is then updated by newly recorded

data from the tunnel. The estimates of the transition

intensity coefficients and transition probabilities are then

also updated.
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CHAPTER VIII

CONCLUSION

A geological prediction and updating model in tunneling

has been developed in this thesis . The concept of Markov

processes is used to model the states of geological

parameters along a tunnel axis. Through the Markov process

concept the existence and extent of the parameter states

along the tunnel axis can be predicted probabilistically.

The existence of parameter states at a certain point

along the unexcavated tunnel is predicted probabilistically

by interval transition probabilities while the state

immediatedly following the state at the tunnel face is

predicted by transition probabilities. The extent of a

certain state is described probabilistically by exponential

extent distributions. These three probability distributions

can be modified (updated) by "observations" of the parameter

states ahead of the tunnel face. (e.g. If the tunnel face

at station 0+50 is in Schist while Diorite is found in a

boring at station 1+00, it is clear that the Schist cannot

extend up to or past station 1+00. The extent distribution

of the the Schist is updated so that the probability density

of its extending past station 1+00 is zero.)
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Another higher level of updating is that of the

transition intensity coefficients and transition

probabilities of the geological parameters. These

coefficients and probabilities are the basic elements of the

Markov process and can be estimated before tunnel

construction either based on frequency data (if the amount

of data is sufficient) or subjective judgment (if the amount

of data is not sufficient.) In either case, the coefficients

and probabilities can be updated as tunnel construction

proceeds and frequency data are recorded from the newly

excavated parts of the tunnel.

To show that the proposed model is a practically useful

tool for geological prediction and construction planning in

tunneling, the concept of ground classes and its application

in cost optimization are introduced in Chapter II. A case

study (Chapter VII) is presented to demonstrate the actual

application of the proposed model.

Thus a practically useful geological prediction and

updating model has been developed. Cost optimization and

estimation of tunnel construction can be performed

systematically using the probability distributions of the

geological parameters considered in the model.
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APPENDIX A

CHI-SQUARE TESTS ON TWO RQD EXTENT DISTRIBUTIONS

A.1 Procedure

An estimated RQD-profile of the discharge tunnel of

Seabrook Station (Fig. 5, Report on TCM utilization

program, Seabrook Station, Fall 1976) was examined. The RQD

values along the lower boundary (invert) of the tunnel were

considered and the geological pa-ameter Degree of Jointing

(RQD) was defined by:

d RQD (%)

1 0 - 25

2 25 -75

3 75 - 100

For the states 2 and 3, the extents were recorded and

summarised in the frequency tables and histograms of Fig.

A.1 and A.2 respectively. An exponential extent

distribution was fitted to each frequency record. Then a

number (= NC) of categories were established, keeping the

expected frequency inside each category at 5 (except that

the last category might have less or more than 5.) The

number of degrees of freedom is NC-1-1 = NC-2. The

Chi-square statistic is

C = C (F. -E.)

E.
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Ebtent (ft.)

0-50
50-100

100-150

150-200

200-250

frequency

5
7
5
4
0

Ebpt ent (f t..)

250-300

300-350

350-400

400-450

450

total

f requency

4
1

0

1

1

28

average extent = 167 ft.

std. deviation = 142 ft.

A

cD2 = (1/167 + 1/142)/ 2
= .00652 ft-

frequency

5-

41.

3

2

l- n.~n
50 100 150 200 250 300 350 400 450

extent (ft.)

Figure M. Jlxtent frequency counts and histogram

of medium RQD (d = 2).

0 -AL A A, ,

6k
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bct ent (ft.) frequency Extent (ft.) frequency

5 400-450 1
50-100 3 600-650 1
100-150 4 800-850 1
150-200 2 950-1000 1
200-250 1 1100-1150 1
300-350 1 1750-1800 1
350-400 1 1950-2000 1

total = 24

averae extent = 420 ft.

std. deviation = 549 ft.
A

frequency cD3 = (1/420 + 1/549)/ 2

S.00210 ft.?i

6.

2 L
u 50 100 150 200 250 300 350 400 450

extent (ft.)

Figure A.2 Extent frequency counts and histogram

of high ROD (d = 3).

5

4

3

n C*^ V

I I I In
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where F. = recorded frequency within category i and E. =

expected frequency within category i.

A.2 Results

For d=2 (medium RQD), the Chi-square level calculated

is 0.18, meaning that if the extent distribution is really

exponentially distributed, then there is 0.18 probability

that the Chi-square value is greater than that calculated.

For d=3, the Chi-square level is 0.16.

Hence both tests were passed with satisfaction because

usually the Chi-square level required is about 0.05 only;

The results confirm the assumption that the extent

distribution of RQD states are exponential.
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APPENDIX B

THE PROXIMITY RULE

B.1 Introduction

The proximity rule is a rule relating the states of a

random variable at two locations separated by a certain

distance. In the case of a tunnel the situation is shown in

Fig. B.1. The random variable is a geological parameter X

which has n possible states.

tunnel 1 1+u

HX.
state unknown

state known to be i

Figure B.1 Illustration of the proximity rule.

Given that x(l)=i, the proximity rule states that

PCx(1+u)=iIx(l)=i] = p + (l-p) e-t ..... (B.1)

where p is the prior probability of finding state i at any

point along the tunnel axis and a is a 2ertain constant.

Furthermore, if x(l) is not known deterministically and

P~x(l)=i) is given as q, the proximity rule states that

P~x(l+u)=ijq) = p + (q-p) e~ * ..... (B.2)

B.2 Derivation of rule using Markov process concept

By assuming that x(l) obeys a homogeneous Markov

process with n states and transition intensity coefficients



194

(section 3.2.3) c., it can be shown that (B.1) is

approximately true:

P[x(l+u)=i x(l)=i)

= P[HX. > u jx(l)=i] + P[HX. <u and x(l+u)=i x(1)=i]

where HX. is the extent of state i at 1 in the positive

direction of 1. Since

P[HX >,uIx(l)=i] = 1 - FHXi (u)

where F (h) is the CDF of HX. (section 3.2.3) and

PCHX.<u and x(l+u)=ijx(l)=i]

= P[HX;<ulx(l)=i] P[x(l+u)=ilx(l)=i and HX.<u]

2 F (u) p, we have

PCx(l+u)=i x(l)=i] 1 - F .(u) + F . (u) pHMM HxI

=I1 - (1 - e-C~4 -) + (1 - k ) p

= p + (1 - p) ejCxi C

which shows that (B.1) is approximately true if the constant

a is taken to be cs.

(B.2) can also be shown to be approximately true if all

the states are also assumed to have the same transition

intensity coefficient c :

P~x(l+u)=i Iqi

= q P[x(l+u)=ilx(l)=i] + (1-q) P~x(l+u)=ilx(l)#i]

=~ I p+(l-p)e-' *J+ (1-q) P Cx(l+u)=i jx(1)fi]

..... (B.3)

Since P[x(l+u)=ijx(l)*i)

= P[x(l)=mlx(l)ti) P~x(1+Iu)=ilx(l)=m and x(l)ti]
#0

= IIPx(l)=mlx(l)ti) P~x(l+u)=ilx(l)=m1
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and P[x(l+u)=ilx(l)=mfi]

= PCHX<u] p = F (u) p

= (1 - e Ct() p, we have

P[x(l+u)=i x(l)i]

' IIP[x(l)=mlx(l)ti] (1 - e-c'A) p

mti

= (1 - &~ ") p P[x(1)=mx(l)ti]

= ( - ~C-M) ;

Therefore from (B.3),

P[x(i+u)=i )qJ

q {p + (l-p)e-a 3+ (1-q) (1-e~CC) p

q(l-p)e~a_ + p p e~ + q p e

p + (q - p) e

where c is taken to be equal to a.

B.3 Practical considerations

To put the proximity rule into practical use, Lindner

(1975) suggested an "exploration function" through which a

can be determined by subjective judgment. However, when the

concept of the Markov process is applied, with the

assumptions stated above a is seen to be the transition

intensity coefficient c (section 3.2.3) of state i. Thus

the value of a is the reciprocal of the average extent of

state i and can be found much easier.
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APPENDIX C

UPDATED TRANSITION PROBABILITY FOR SIMULATIONS

C.1 One deterministic observation

If HX = h. and there is a deterministic observation

ahead of the point (1 + h ) as shown in Fig. C.1, the

transition probability is updated to

PS = C P.;. [likelihood of x(11 )

next state is j and HX.= hS]

..... (C.1)

where

[likelihood of x(lI )j next state is j and HX.=h 

= v (1 -1 -h)
Xjk I e

Therefore from (C.1),

P . = C P v (l -1I-h) ..... (C.2)
Xi3KXiJ Xk I e S

where C = normalizing constant
n1 -I

P v (1 -hJ ..... (C.3)
) id X3k ies

( n is the total number of states of X.)

1 0 1 +h i state k observed
e 0 e s I

h
S

Figure 0.1 Case with one deterministic observation.
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C.2 One non-deterministic observation

When there is a non-deterministic observation as shown

in Fig. C.2, PX.. is updated to

P . = p P d ... (C.4)
MIJ Ik XiJ

k=1

C.3 Several deterministic observations
.4

There are s deterministic observations ahead of the

point (1e+hs ) (see Fig. C.3.) Due to the property of a

single-step memory, observations at 1,, 1, ... 1I have no

effect on P . Therefore P is updated to P as in

the case with one deterministic observation (section C.i)
Kc. v l ' I

P = P .J vk le-hS' ) P v (1 -1e-h)

..... (C.5)

where k = k = observation at 1

C.4 Several non-deterministic observations

There are s non-deterministic observations ahead of the

point (le +h 5 ) (Fig. C.4.) Due to the property of a

single-step memory, only the observation at I affects

P .i .which is then updated to
Mc +KC

P = p P ..... (C.6)

k=1



1 , 1 1

:1

PMF given :

P[x(11 ) = M rPM

(m =1, 2, ... n)

where n = total number of states of X.

Figure C.2 Case with one non-deterministic observation.



1 10 11 12 0 0

i I..
The state at 1 (t - 1, 2, ... s) is known :

x(it) kt

Figure C.3 Case with a deterministic observations.

1

H

I I I



1 i~is 'I *0. 5

(II

The observation at 1 (t = 1, 2, *.. S) is
non-deterministic anI is given by the PMF

P x(lt) = m] = Ptm

(m = 1, 2, ... n)

where n = total number of states of X.

Case with a non-deterministic observations.

0

Figure Cq



201

APPENDIX D

STATEP - USER'S MANUAL AND EXAMPLES

D.1 Introduction

STATEP (State Prediction) is a Fortran computer program

which calculates the probability profiles of independent

parameters according to the geological prediction model

presented in Chapter IV. The co-ordinate system uses the

station concept : a position along the tunnel axis is

identified by its distance 1 from a fixed point such as the

portal of the tunnel (Fig. D.1.) The positive direction of

1 is in the direction of advance of tunnel construction.

.1 tunnel

tunnel advance

Figure D.1 Co-ordinate system.

In order to calculate the interval transition

probabilities of a parameter XI, STATEP forms the spectral

resolution of the transition intensity matr.Ax of XI (section

3.3.1.) In calculating the eigenvalues and eigenvectors for

the spectral resolution, the subroutine EIGRF of the

International Mathematical and Statistical Library is used.

D. 2 Input
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The same length unit (e.g. feet) must be used

throughout. STATEP takes input from a file (with free

format) and writes the output into another file. If other

forms of input and output are used some input and output

statements must be modified. The format of the input file

is described below:

Line 1 AL, BL, SL, BP

AL is the beginning point (usually the tunnel face) of

the section of the tunnel considered while BL is the end

point. SL is the interval between the points at which the

state probabilities of each parameter are required (see Fig.

D.2). BP is the point at which the parameter probability

profile begins i.e. state probabilities are calculated at

BP, BP+SL, BP+2SL ... BP must precede the second observation

at OL(I,2),' which is the co-ordinate of the second

observation on XI. The parameter probability profile is

limited to the to the range (AL,BL) and the total number of

points at which state probabilities are calculated is at

most 100.

Line 2 N

N is the total number of geological parameters

considered. It cannot exceed 5.

Line 3 NS(l)

NS(l) is the number of states of parameter Xl.



= 0 AL BP

SL
& 0 0

SL

_ _ I ll aI______kh I___I-___--_ _I

OL(I,1) OL(I,2)
Points at which state probabilities

of XI are calculated

Figure D.2 Positions of different points in tunnel section.

BL

N)a
us
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Lines 4 through (3 + NS(1))

These NS(1) lines represent the transition intensity

matrix of Xl. Each line contains a row of the transition

intensity matrix (see example input in Fig. D.3.)

Line (4 + NS(1)) NOCI)

NO(I) is the total number of observations on Xl. It

must be at least 1 and less than 20.

Lines (5 + NS(i)) through (4 + NS(1) + NO(i))

These NO(1) lines give the non-deterministic

observations (which can include deterministic observations)

on Xl. The first observation must be at AL, which is

usually the tunnel face. The first number on each line is

the position of the corresponding observation and increases

with the line number. The remaining NS(1) numbers on each

line are the state probabilities of XI representing the

non-deterministic observation. (see lines 9 to 21 in the

example input in Fig. D.3 in section D.4.1.)

Lines (5 + NS(l) + NO(1)) through

(2 + 2N + NS(L) + NO(1) + ... + NS(N) + NO(N))

The first (2 + NS(2) + NO(2)) of these lines contain

NS(2), the transition intensity matrix of X2, NO(2) and the

observations on X2 respectively. The similar information

relating to X3 , ... , XN are input similarly in the

remaining lines.
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D.3 Dictionary

STATEP is written in Fortran IV. This dictionary

contains the definitions of important variables, functions

and subroutines listed in the order of their appearance in

the executable part of the program. Input variables defined

in section D.2 are not defined again here.

Variable

A(I,J,K)

OL(IJ)

OP (I,J,K)

AX

AXT

IJOB

EIGRF

ORDER

WR

ZR

WL

AX.

ZL

Definition

The element of the transition intensity matrix

of XI at the Jth row and Kth coloumn.

The position of the Jth observation of XI.

The probability of having state K at the Jth

observation of XI.

Transition intensity matrix of parameter being

considered.

Transpose of AX. It is used to find the left

eigenvectors of AX.

See SUBROUTINE EIGRF.

See SUBROUTINE EIGRF.

See SUBROUTINE ORDER.

Complex vector containing the eigenvalues of

AX.

Complex vector containing the right

eigenvectors of AX.

Complex vector containing the eigenvalues of

Complex vector containing the left eigenvectors
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of AX.

TEMP (i) Temporary variable used to form the

transpose of ZL.

(ii) The dot product of the Jth row of ZL and

the Jth column of ZR.

RL Point at which state probabilities are

calculated.

IS Status of RL : IS = number of observations

preceding RL.

NP Total number of points in parameter probability

profile.

NPT Total number of points in parameter probability

profile according to input specifications.

IP Number designation of point corresponding to

RL.

NRO Number of remaining observations following RL.

RLTMI Position of the observation immediately

preceding RL.

RLT Position of the observation immediately

following RL.

SP(IIP,J) Probability of having state J of XI at point

IP.

TP1,TP2,TP3 Terms in the expression given by equation

(4.8a).
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See FUNCTION P below.

Point following which there are no more

observations.

SUBROUTINE EIGRF (A,N,IA,IJOB,WZIZ,WK,IER)

This subroutine is contained in the International

Mathematical and Statistical Library. Its purpose is to

calculate the eigenvalues and eigenvectors of matrix A.

Variable

A

N

IA

IJOB

W

z

Iz

WK

IER

Definition

A square matrix.

The input order of A.

Row dimension of A as specified in the

DIMENSION

statement of the calling program.

IJOB = 2 means : compute eigenvalues,

eigenvectors and performance index.

Complex eigenvalues of A returned.

Complex right eigenvectors of A returned.

Row dimension of Z as specified in the

DIMENSION statement of the calling

program.

Work area. Length of WK must be at least 35.

Error parameter.

P

IPNOA
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SUBROUTINE ORDER (W,Z,NS)

The purpose of this subroutine is to re-arrange the

eigenvalues in W and the eigenvectors in Z in an ascending

order of magnitude of the eigenvalues.

Variable

w

z

NS

Definition

Complex vector of eigenvalues.

Complex array of eigenvectors.

Number of states of parameter being considered.

FUNCTION P (I,J,U,NS,WRZRZL)

The purpose of this function is to calculate the

interval transition probability from state I to state J

using the spectral resolution of the transition intensity

matrix. The underlying theory is given in section 3.3.1.

Variable

D

NS

WR

U

CP

ZR

I,J

Definition

Complex exponential of the product of an

eigenvalue and U.

Number of states of the parameter.

Complex vector of eigenvalues.

Distance between the points with states I and

J.

Complex interval transition probability.

Complex right eigenvectors.

State? of the parameter considered.
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ZL Complex left eigenvectors.

D.4 Example cases

In Chapter VII a case study was presented on the

probabilistic prediction of the geological parameters along

a water tunnel. The calculations of parameter probability

profiles in the first and second stages (section 7.3) are

presented in sections D.4.1 and D.4.2 below.

D.4.1 First stage

A parameter probability profile was calculated for each

parameter at the beginning of the first stage i.e. when the

tunnel face was at 1=0. The first point at which state

probabilities were calculated was at 1=300 (length were

always measured in feet.) The following points at which

state probabilities were calculated were at 600, 900, ....

7500 (i.e. SL=300.) Thus there were a total of 25 points

in each parameter probability profile at which state

probabilities were calculated. The input is listed in Fig.

D.3 (the input data are based on Tables 7.5 to 7.8 and

Tables 7.12 to 7.15) and the output in Fig. D.4. In the

output shown in Fig. D.4, Xl, X2, X3 and X4 denote Rock

Type, RQD, Degree of Weathering and Availability of Water

respectively.



210

0. 7662. 300. 300.

Explamtions (see Dictionary,
section D.3)

AL BL SL BP

N

NS(1)4

-. 138E-2

.164E-3

.524E-4

.575E-3

13

0. 0

341. 0

717. 0

1239. 0

1945. 0

2788. 0

3566.

4010. 1

4659. 0

5256. 0

5785. 1

6604. 0

7662. 0

.276E-4

-.822E-2

.524E-3

.425E-3

.B

0.

0.

.2

.5

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

1.

.8

0.

.2

0.

0.

0.

0.

0.

0.

.9

0.

.317E-3 .104E-2 Transition intensity matrix of R

.411E-2 .395E-2 used in the first stage

-. 262E-2 .204E-2

.150E-2 -. 25E-2

NO(1)

0. OL(1,1) OP(1,1,1) ()P(1,1,2) OP(1,1,3) OP(1,1,4)

0. a

0. .

.5

.8

1.

.2

0.

1.

1.

0.

.1

1 - OL(1,13) oP(1,13,1) oP(1,13,2) oP(Q1,13, 3) oP(1,13,4)

3

-.233E-2 .217E-2 .163E-3

Figure D.3 Input to STAXTEP (first stage).
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-. 394E-2 .670E-3

.940E-3 -. 188E-2

.327E-2

*940E-3

13

0. .

341. 1

717. 1

1239. .

1945.

2788.

3566..

4010. 0

4659. 0

5256. 1

5785..

6604..

7662. 1

2

0.

0.

0.

0.

0.

.8

0.

.8

1.

0.

0.

0.

0.

.44 8E-3

.162E-2

13

0. 1

341. 1

717. 1

.448E-3

-. 162E-2

0.

* 0.

0.

(continued).

.5

0.

0.

.5

.8

0.

.5

.2

0.

0.

.2

.2

0.

o5

I.

o5

.2

.2

o5

8

8

.0

.

.

.

Figure D.3
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1239. 1

1945. .

2788.

3566.

4010.

4659.

5256.

5785. .

6604. .

7662. 1

3

-. 824E-3

.570E-2

.153E-2

13

0. 1

341. 1

717. 1

1239. .

1945. .

2788. ,

3566. .

4010. .

. 0.

6 .

2 .

5 .

2 4

2 .

B .;

6 .'

B .;

. 0

4

8

5

8

8

2

4

2

.453E-3 .371E-3

-. 633E-2 .633E-3

.170E-3 -. 170E-2

. 0.

. 0.

. 0.

5 0.

4 0.

8 0.

5 0.

2 0.

0.

0.

0.

.5

.6

.2

.5

.8

Figure D. 3 (continued) .
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4659. .6 .2 .2

5256. .2 .8 0.

5785. 1. 0. 0.

6604. .6 .4 0.

7662. 1. 0. 0.

Figure D.3 (continued).
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PROBABILITY PROFILE OF Xl

IP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

RL

0.3000E+03

0.6000E+03'

0.9000E+03

0.1200E+04

0.1500E+04

0.1800E+04

0.21 OOE+04

0.2400E+04

0.2700E+04

0.3000E+04

0.3300E+04

0.3600E+04

0.3900E+04

0.4200E+04

0 .4500E+04

0.4800E+04

0.5100E+04

0.5400E+04

0.5700E+04

0.6000E+04

0.6300E+04

0.6600E+04

Figure D.4 Output (parameter p
in the first stage.

1

0.001

0.003

0.010

0.004

0.041

0.031

0.042

0.066

0.027

0.225

0.501

0.810

0.931

0.660

0.229

0.035

0.036

0.280

0.825

0.617

0.247

0.002

robability profiles)

states probabilitiea

2 3 4

0.013 0.949 0.037

0.099 0.791 0.108

0.120 0.564 0.305

0.379 0.113 0.503

0.097 0.304 0.557

0.039 0.282 0.648

0.037 0.274 0.647

0.047 0.291 0.596

0.026 0.118 0.829

0.029 0.131 0.615

0.021 0.101 0.378

0.002 0.005 0.183

0.002 0.006 0.061

0.012 0.082 0.246

0.024 0.118 0.630

0.032 0.136 0.797

0.033 0.148 0.784

0.019 0.066 0.636

0.005 0.016 0.153

0.016 0.132 0.236

0.038 0.376 0.339

0.002 0.888 0.107
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23 0.6900E+04 0.036 0.051 0.532 0.380

24 0.7200E+04 0.059 0.051 0.386 0.503

25 0.7500E+04 0.040 0.038 0.206 0.716

PROBABILITY PROFILE OF X2

IP RL 1 2 3

1 0.3000E+03 0.910 0.084 0.006

2 0.6000E+03 0.869 0.123 0.009

3 0.9000E+03 0.734 0.247 0.019

4 0.1200E+04 0.533 0.460 0.008

5 0.1500E+04 0.542 0.410 0.049

6 0.1800E+04 0.423 0.542 0.036

7 0.2100E+04 0.358 0.511 0.131

8 0.2400E+04 0.339 0.310 0.351

9 0.2700E+04 0.216 0.118 0.666

10 0.3000E+04 0.323 0.193 0.484

11 0.3300E+04 0.472 0.330 0.198

12 0.3600E+04 0.473 0.479 0.049

13 0.3900E+04 0.149 0.298 0.552

14 0.4200E+04 0.076 0.137 0.787

15 0.4500E+04 0.045 0.077 0.878

16 0.4800E+04 0.198 0.143 0.660

17 0.5100E+04 0.629 0.197 0.174

18 0.5400E+04 0.798 0.188 0.014

Figure D.4 (continued).
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19 0.5700E+04 0.747 0.241 0.012

20 0.6000E+04 0.661 0.302 0.037

21 0.6300E+04 0.642 0.312 0.046

22 0.6600E+04 0.796 0.203 0.001

23 0.6900E+04 0.630 0.317 0.053

24 0.7200E+04 0.620 0.314 0.066

25 0.7500E+04 0.755 0.209 0.035

PROBABILITY PROFILE OF X3

IP RL 1 2

1 0.3000E+03 0.993 0.007

2 0.6000E+03 0.983 0.017

3 0.9000E+03 0.969 0.031

4 0.1200E+04 0.990 0.010

5 0.1500E+04 0.854 0.146

6 0.1800E+04 0.693 0.307

7 0.2100E+04 0.584 0.416

8 0.2400E+04 0.494 0.506

9 0.2700E+04 0.291 0.709

10 0.3000E+04 0.370 0.630

11 0.3300E+04 0.487 0.513

12 0.3600E+04 0.489 0.511

13 0.3900E+04 0.311 0.689

14 0.4200E+04 0.274 0.726

Figure D.4 (continued'.
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15 0.4500E+04 0.266 0.734

16 0.4800E+04 0.395 0.605

17 0.5100E+04 0.686 0.314

18 0.5400E+04 0.761 0.239

19 0.5700E+04 0.646 0.354

20 0.6000E+04 0.680 0.320

21 0.6300E+04 0.751 0.249

22 0.6600E+04 0.799 0.201

23 0.6900E+04 0.824 0.176

24 0.7200E+04 0.865 0.135

25 0.7500E+04 0.938 0.062

PROBABILITY PROFILE OF X4

IP RL 1 2 3

1 0.3000E+03 0.981 0.013 0.006

2 0.6000E+03 0.957 0.029 0.015

3 0.9000E+03 0.806 0.042 0.152

4 0.1200E+04 0.536 0.013 0.452

5 0.1500E+04 0.502 0.036 0.462

6 0.1800E+04 0.449 0.027 0.524

7 0.2100E+04 0)498 0.030 0.472

8 0.2400E+04 0.641 0.047 0.313

9 0.2700E+04 0.754 0.026 0.220

10 0.3000E+04 0.714 0.043 0.244

Figure 1D.4 (continued).
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11 0.3300E+04 0.612 0.043 O.344

12 0.3600E+04 0.482 0.009 0.509

13 0.3900E+04 0.296 0.019 0.685

14 0.4200E+04 0.410 0.035 0.554

15 0.4500E+04 0.603 0.096 0.301

16 0.4800E+04 0.682 0.15114 0.164

17 0.5100E+04 0.592 0.335 0.072

18 0.5400E+04 0.636 0.330 0.034

19 0.5700E+04 0.934 0.046 0.020

20 0.6000E+04 0.899 0.055 0.046

21 0.6300E+04 0.836 0.106 0.058

22 0.6600E+04 0.608 0.391 0.001

23 0.6900E+64 0.818 0.110 0.073

24 0.7200E+04 0.850 0.067 0.083

25 0.7500E+04 0.912 0.044 0.044

Figure D.4 (continued).
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D.4.2 Second stage

A parameter probability profile was calculated for each

parameter at the beginning of the second stage i.e. when

the tunnel face was at 1=4010. The first point at which

state probabilities were calculated was at 1=4050 and the

following points were separated by intervals of 150 ft.

Thus there were a total of 25 points in a parameter

probability profile. The input data for the transition

intensity matrices of the parameters are based on the

updated data in Tables 7.20 to 7.23.

Since the tunnel face has advanced up to 1=4010 now,

the observations which can affect geological predictions are

the last 6 observations shown in Tables 7.5 to 7.8. Thus

only these last 6 observations are input to STATEP. The

input and output to STATEP in the second stage are shown in

Figs. D.5 and D.6 respectively.



220

4010. 7662.

4

4

-. 138E-2

.983E-4

.469E-4

.530E-3

6

4010. 1.

4659. 0.

5256. 0.

5785. 1.

6604. 0.

7662. 0.

.276E-4

-. 819E-2

.595E-3

.272E-3

0

0.

0.

0.

0.

0.

150. 4050.

.1

0.

0.

0.

0.

.9

0.

Ebplanations (see Dictionary,
section D.3)

AL BL SL BP

N

NS(1)

.317E-3 .104E-2 Transition intensity matrix of R

.396E-2 .414E-2 used in the second stage

*.293E-2 .229E-2

141 E-2 -. 221E-2

NO(1)

0. OL(1,1) OP(1,1,1) OP(1,1,2) OP(1,1,3) OP(1,1,4)

1. .

1. .

0.

.1

10 OL(1,6) OP(1,6,1) OP(1,6,2) oP(1,6,3) OP(1,6,4)

3

- .294E-2

.222E-2

.334E-3

.280E-2

-. 282E-2

.167E-2

.135E-3

.601E-3

- .2 OE-2

6

4010.

4659.

5256.

5785.

0.

0.

1.

.8

.2

0.

0.

.2

.8

1.

0s

0.

Figure D5 Input to STATEP (second stage).



6604.

7662.

.8

1.

.2

0.

0.

0.

2

- .448E-3

.169E-2

6

4010. .

4659. .

5256. .

5785. .

6604. .

7662. 1

3

448E-3

-. 169E-2

.8

.8

.2

*4

.2

0.

-. 824E-3

. 570E-2

.1514E-2

6

4010. .

4659. .

5256..

5785. 1

6604. .

7662. 1

.387E-3

-. 633E-2

.150E-3

2

6

2

.S

0.

.2

.8

0.

.4

0.

.437E-3

.633E-3

-. 169E-2

.8

.2

0.

0.

0.

0.

Figure D.5 (continued).&
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PROBABILITY PROFILE OF XI

IP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

RL

0.4050E+04

0.420UE+04

0.4350E+04

0.4500E+04

0.4650E+04

0.4800E+04

0.4950E+04

0.5100E+04

0.5250E+04

0.5400E+04

0.5550E+04

0.5700E+04

0.5850E+04

0.6000E+04

0.6150E+04

0.6300E+04

0.6450E+04

0.6600E+04

0.6750E+04

0.6900E+04

0.7050E+04

0.7200E+04

states probabilities

1

0.919

0.651

0.424

0.218

0.013

0.032

0.042

0.032

0.002

0.271

0.538

0.821

0.872

0.621

0.418

0.252

0.115

0,003

0.016

0.034

0.049

0.056

2 3

0.002 0.018

0.010 0.082

0.018 0.122

0.020 0.114

0.002 0.011

0.023 0.127

0.030 0.171

0.026 0.136

0.002 0.008

0.013 0.062

0.010 0.050

0.003 0.014

0.003 0.035

0.013 0.124

0.024 0.226

0.032 0.355

0.033 0.548

0.002 0.887

0.043 0.638

0.050 0.496

0.049 0.411

0.046 0.349

Figure D.6 Output (parameter probability profiles)
in the second stage.
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23 0.7350E+04 0.053 0.042 0.283 0.623

24 0.7500E+04 0.037 0.032 0.185 0.746

25 0.7650E+04 0.004 0.004 0.018 0.975

PROBABILITY PROFILE OF X2

IP RL 1 2 3

1 0.4050E+04 0.016 0.196 0.788

2 0.4200E+04 0.048 0.182 0.770

3 0.4350E+04 0.049 0.158 0.793

4 0.4500E+04 0.029 0.108 0.863

5 0.46 Z+04 0.001 0.008 0.990

6 0.4800E+04 0.115 0.263 0.622

7 0.4950E+04 0.290 0.378 0.332

8 0.5100E+04 0.541 0.331 0.128

9 0.5250E+04 0.976 0.021 0.003

10 0.5400E+04 0.753 0.235 0.012

11 0.5550E+04 0.670 0.313 0.017

12 0.5700E+04 0.713 0.278 0.010

13 0.5850E+04 0.703 0.285 0.011

14 0.6000E+04 0.576 0.390 0.033

15 0.6150E+04 0.531 0.425 0.044

16 0,6300E+04 0.542 0.417 0.041

17 0.6450E+04 0.616 0.359 0.026

18 0.6600E+04 0.793 0.206 0.001

Figure D.6 (continued).
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19 0.6750E+04 0.613 0.359 0.028

20 0.6900E+04 0.525 0.426 0.049

21 0.7050E+04 0.494 0.446 0.060

22 0.7200E+04 0.503 0.439 0.059

23 0.7350E+04 0.557 0.397 0.046

24 0.7500E+04 0.686 0.289 0.025

25 0.7650E+04 0.967 0.032 0.002

PROBABILITY PROFILE OF X3

IP RL 1 2

1 0.4050E+04 0.222 0.778

2 0.4200E+04 0.279 0.721

3 0.4350E+04 0.294 0.706

4 0.4500E+04 0.270 0.730

5 0.4650E+04 0.205 0.795

6 0.4800E+04 0.398 0.602

7 0.4950E+04 0.561 0.439

8 0.5100E+04 0.689 0.311

9 0.5250E+04 0.796 0.204

10 0.5400E+04 0.762 0.238

11 0.5550E+04 0.712 0.288

12 0.5700E+04 0.647 0.353

13 0.5850E+04 0.629 0.371

14 0.6000E+04 0.683 0.317

Figure D.6 (continued).
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15 0.6150E+04 0.723 0.277

16 0.6300E+04 0.754 0.246

17 0.6450E+04 0.778 0.222

18 0.6600E+04 0.799 0.201

19 0.6750E+04 0.8)2 0.188

20 0.6900E+04 0.826 0.174

21 0.7050E+04 0.843 0.157

22 0.7200E+04 0.866 0.134

23 0.7350E+04 0.897 0.103

24 0.7500E+04 0.938 0.062

25 0.7650E+04 0.995 0.005

PROBABILITY PROFILE OF X4

IP RL 1 2 3

1 0.4050E+04 0.250 0.008 0.741

2 0.4200E+04 0.411 0.032 0.557

3 0.4350E+04 0.530 0.053 0.417

4 0.4500E+04 0.603 0.092 0.304

5 0.4650E+04 0.604 0.190 0.206

6 0.4800E+04 0.678 0.154 0.168

7 0.4950E+04 0.686 0.186 0.129

8 0.5100E+04 0.586 0.336 0.078

9 0.5250E+04 0.225 0.772 0.004

10 0.5400E+04 0.636 0.328 0.036

Figure D.6 (continued).
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11 0.5550E+04 0.825 0.134 0.041

12 0.5700E+04 0.935 0.043 0.022

13 0.5850E+04 0.958 0.021 0.021

14 0.6000E+04 0.897 0.048 0.054

15 0.6150E+04 0.863 0.067 0.070

16 0.6300E+04 0.833 0.099 0.067

17 0.6450E+04 0.774 0.179 0.046

18 0.6600E+04 0.607 0.391 0.002

19 0.6750E+04 0.762 0.186 0.051

20 0.6900404 0.815 0.103 0.081

21 0.7050E+04 0.833 0.072 0.095

22 0.7200E+04 0.846 0.059 0.094

23 0.7350E+04 0.869 0.051 0.080

24 0.7500E+04 0 911 0.038 0.051

25 0.7650E+04 0.991 0.004 0.005

Figure D.6 (continued).
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D.5 Listing of STATEP
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C ** THIS PROGRAM EXECUTES THE STATE PREDICTION
C PART OF THE GEOLOGICAL PREDICTION MODEL FOR
C INDEPENDENT PARAMETERS.

DIMENSION NS(5),A(5,5,5),0L(5,20),QP(5,20,5),
+ NO(5),NOUT(5),
+ SP(5,100,5),WK(50),AX(5,5),AXT(5,5)
COMPLEX WR(5),ZR(5,5),WL(5),

+ ZL(5,5),TEMP
OPEN(1,MODE:"IN",FORM="FORMATTED",FILE="FILE1")
OPEN(2,MODE="OUT",FORM="FORMATTED",FILE="FILE2")
DO 5 J=1,5

5 NOUT(J)=J
C *** INPUT INTERVAL AND SEGMENT LENGTH (TOTAL NO.
C OF SEGMENTS IN INTERVAL MUST BE AT MOST 100.)

READ(1,2)ALBL,SLBP
READ(1,2)N

2 FORMAT(V)
C *** INPUT TIM'S.

DO 20 I=1,N
READ(1,2)NS(I)
DO 30 J=1,NS(I)

30 READ(1,2)(A(I,J,K),K=1,NS(I))
C *** INPUT OBSERVATIONS FOR XI.

READ(1,2)NO(I)
DO 40 J=1,NO(I)

40 READ(1,2)OL(IJ),(OP(I,J,K),K=1,NS(I))
20 CONTINUE

C *** ONE PARAMETER IS CONSIDERED AT A TIME.
DO 50 I=1,N
DO 60 J=1,NS(I)
DO 60 K=1,NS(I)
AX(JK)=A(I,J,K)

60 AXT(KJ)=AX(JK)
C *** FORM EIGENVALUES AND RIGHT EIGENVECTORS OF AX.

IJOB=2
CALL EIGRF(AXNS(I),5,IJOBWRZR,5,WK,IER)
IF(IER.GT.128)WRITE(2,70)I

70 FORMAT(//" ***** EIGENVALVES OF TIM OF X",I1,
+ " CANNOT- BE FOUND."//)
IF(WK(1).GT.10.)WRITE(2,80)I

80 FORMAT(//" ***** WARNING : INACCURACY IN",
+ " ITPM OF PARAMETER X",I1//)

C ** ORDER EIGENVALUES IN INCREASING ORDER OF
C MAGNITUDE SO THAT FIRST EIGENVALUE IS ZERO
C AND ZR AND ZL MATCH.

CALL ORDER(WRZRNS(I))
C ** FORM EIGENVALUES AND LEFT EIGENVECTORS OF AX.

CALL EIGRF(AXTNS(I),5,IJOBWLZL,5,WKIER)
IF(IER.GT.128)WRITE(2,70)I
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IF(WK(1).GT.100.)WRITE(2,80)I
CALL ORDER(WLZLNS(I))
DO 90 J=1,NS(I)
JM1=J-1
DO 90 K=1,JM1
TEMP=ZL(J,K)
ZL(J,K)=ZL(K,J)

90 ZL(K,J)=TEMP
C *** MAKE ZL X ZR = I

DO 100 J=1,NS(I)
TEMP=(0r ,O.)
DO 110 K=1,NS(I)

110 TEMP=TEMP+ZL(JK)*ZR(K,J)
DO 120 K=1,NS(I)

120 ZL(J,K)=ZL(JK)/TEMP
100 CONTINUE

C *** CALCULATE PROBABILITY PROFILE OF XI.
RL=BP-SL
IS=1
NP=100
NPT=(BL-BP)/SL+1
IF(NPT.LT.NP)NP=NPT
DO 130 IP=1,NP
RL=RL+SL
NRO=NO(I)-IS
IF(NRO.EQ.O)GO TO 140

C * INCREMENT IS APPROPRIATELY.
DO 150 J:1,NRO
RLTM1=OL(I,IS)
RLT=OL(I,IS+1)
IF(RL-RLT) 160, 170, 180

180 IS=IS+1
150 CONTINUE

C * NORMAL EXIT MEANS NO MORE
C OBSERVATIONS AHEAD OF RL.

GO TO 140
C *" CALCULATE SP AT RL USING (4.8A).

160 DO 190 J=1,NS(I)
SP(I,IP,J)=0.
DO 200 M=1,NS(I)
DO 200 K=1,NS(I)
PMK=OP(IISM)*OP(IIS+1,K)
IF(PMK.EQ. 0.) GO TO 200
TP1=P(M,J,RL-RLTMINS(I),WRZRZL)
TP2=P(J,K,RLT-RLNS(I),WR,ZRZL)
TP3=P(M,K,RLT-RLTMI1NS(I) ,WRZRZL)
SP(I,IP,J)=SP(I,IP,J)+PMK*TP1*TP2/TP3

200 CONTINUE
190 CONTINUE
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GO TO 130
C *** RL COINCIDES WITH OL(I,IS+1)

170 DO 210 J=1,NS(I)
210 SP(I,IPJ)=OP(IIS+1,J)

IS=IS+1
130 CONTINUE

C * OUTPUT PROBABILITY PROFILE OF Xl
C AND- CONSIDER NEXT PARAMETER.

GO TO 252
C * NO OBSERVATIONS AHEAD OF RL.
C (4.8B) IS USED FROM NOW ON.

140 IPNOA=IP
DO 220 IP=IPNOA,NP

C *** CALCULATE SP AT RL USING (4.8B).
DO 230 J=1,NS(I)
SP(IIP,J)=O.
DO 240 K=1,NS(I)
PSK=OP(INO(I),K)
IF(PSK.EQ. 0.) GO TO 240
SP(IIPJ)=SP(I,IPJ) + PSK*
1 P(KJ,RL-OL(INO(I)),NS(I),WR,ZR,ZL)

240 CONTINUE
230 CONTINUE

RL=RL+SL
220 CONTINUE

C *** OUPUT PROBABILITY PROFILE OF XI.
252 WRITE(2,250)I,(NOUT(K),K=1,NS(I))
250 FORMAT(//" PROBABILITY PROFILE OF X",I1//

+ T6,"IP",T12,"RL",T24,I1,4(5XI5))
RL=BP-SL
DO 260 IP=1,NP
RL=RL+SL
WRITE(2,270)IPRL,(SP(I,IPJ),J=1,NS(I))

270 FORMAT(/T4,I3,T8,E12.4,T24,F5.3,4(5X,F5.3))
260 CONTINUE
50 CONTINUE

END
SUBROUTINE ORDER(W,Z,NS)
COMPLEX W(5),Z(5,5),TEMP
DIMENSION 3)
DO 10 I=1,,

10 V(I)=CABS(W(I))
NS1=NS-1
DO 20 I=1,NS1
J=NS-I
DO 30 K=1,J
KP1=K+1
IF(V(K).LE.V(KP1))GO TO 30
T=V(K)
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V(K)=V(KP1)
V(KP1)=T
TEMP=W(K)
W(K =W(KP1)
W(KP1 )=TEMP
DO 40 L=1,NS
TEMP=Z(L,K)
Z(L, K) =Z(L, KP 1)

40 Z(LKP1)=TEMP
30 CONTINUE
20 CONTINUE

RETURN
END
FUNCTION P(I,J,UNSWRZRZL)

C * THIS FUNCTION CALCULATES A ITP BY
C SPECTRAL RESOLUTION OF TIM.

COMPLEX WR(5),ZR(5,5),ZL(5,5),D(5),CP
D(1)=(1.,O0.)
DO 10 K=2,NS

10 D(K)=CEXP(WR(K)*U)
CP=(0.,0.)
DO 20 K=1,NS

20 CP=CP+D(K)*ZR(IK)*ZL(K,J)
P=CABS(CP)
RETURN
END
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