Leveraging Information Sharing for Satellite Navigation
and Coordination

by
Sydney Dolan

B.S., Purdue University (2018)
S.M., Massachusetts Institute of Technology (2021)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2025

(©) 2025 Sydney Dolan. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Sydney Dolan
Department of Aeronautics and Astronautics
September 27, 2024

Certified by: Hamsa Balakrishnan
William E. Leonhard (1940) Professor of Aeronautics and Astronautics
Thesis Supervisor

Richard Linares

Rockwell International Career Development Professor of Aeronautics and
Astronautics

Committee Member

Behget Acikmese
Professor of Aerospace Engineering, University of Washington
Committee Member

Accepted by: Jonathan P. How
Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Committee


https://creativecommons.org/licenses/by-nc-nd/4.0/




Leveraging Information Sharing for Satellite Navigation and
Coordination

by
Sydney Dolan

Submitted to the Department of Aeronautics and Astronautics
on September 27, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS

ABSTRACT

As the number of objects in orbit grows, so does the risk of collisions. The sheer volume
of collision warning messages far exceeds the capacity of human analysts, placing a signifi-
cant burden on satellite operators and underscoring the need for autonomous, decentralized
traffic management. Unlike centralized conjunction analysis, decentralized space traffic man-
agement distributes coordination across multiple independent nodes, allowing satellites to
collaborate directly. This approach could enhance the resilience, speed, and international
cooperation of space operations, helping to manage the space environment.

For decentralized space traffic management to be viable, satellites must possess an accu-
rate understanding of both the locations and intentions of other satellites. While satellites
have precise knowledge of their own state, this accuracy diminishes when predicting the state
of others. This gap is due to the limitations of onboard measurement systems and knowledge
of each satellite’s structure, configuration, and maneuverability. Such differences motivate
the exploration of information sharing between operators to improve coordination. Shar-
ing information could benefit both individual operators and the broader space community
by enabling more accurate trajectory predictions, facilitating formal maneuver negotiations,
and enhancing overall orbital safety and efficiency.

The main contribution of this thesis is to develop methods for autonomous satellite
decision-making. By advancing the state of satellite autonomy, we can enhance high-level
decision-making processes, enabling more adaptive and intelligent satellite coordination.
This thesis begins by developing a multi-agent reinforcement learning environment to sim-
ulate satellite interactions in complex, high-dimensional settings. Then, we relax the as-
sumption on synchronous communications and explore an alternate learning framework that
relies on asynchronous communication between satellites. Our final contribution lies in a
game-theoretic model of operator behavior in non-cooperative settings. Space is a competi-
tive environment, and willingness to collaborate is mixed. As a result, we use game theory
to obtain strategies to determine maneuvering and timing.

Thesis supervisor: Hamsa Balakrishnan
Title: William E. Leonhard (1940) Professor of Aeronautics and Astronautics






Contents

Title page 1
Abstract 3
List of Figures 9
List of Tables 11
1 Introduction 13
1.1 Benefits of Decentralization . . . . . .. .. ... .. ... L. 14

1.2 Why Use Reinforcement Learning? . . . . . . . . . ... ... .. .. .... 15

1.3 Contributions of This Thesis . . . . . . . . . ... . ... ... ... ..., 16

2 Literature Review 19
2.1 Reinforcement Learning for Space Applications. . . . . . . .. .. ... ... 19
2.2 Multi-Agent Reinforcement Learning . . . . . . .. .. ... ... ... ... 20
2.3 Attention and Graph-Based Methods for Multi-Agent Communication . . . . 21
2.4  Event-Triggered Communication . . . . . . . . .. . ... ... ... ... 21
2.5 Asynchronous Actor Critic . . . . . . . . . ... 22
2.6 Game Theoretic Methods for Space Domain . . . . . . ... ... ... ... 22

3 Multi-Agent Reinforcement Learning Approach to Information Sharing 25
3.1 Introduction . . . . . . . .. 25

3.2 Multi-Agent Reinforcement Learning Overview . . . . . . . . ... ... ... 26
3.3 Graph Overview . . . . . . . . . 27
3.4 Transfer Learning . . . . . . . . . . ... 29
3.5 Environment . . . . . ... L 30
3.6 Experiments . . . . . . ... 32
3.7 Results . . . . . . 33
3.7.1 Transfer learning . . . . . . ... oo L 33

3.7.2 Scalability . . . . ... 36

3.7.3 Sensitivity to perturbations . . . . . . ... ... L 36

3.7.4  Performance in Other Task Environments . . . . .. ... ... ... 37

3.7.5 Value of sharing goals . . . . . .. ... ... 0oL 39

3.7.6  Heterogeneous Agents . . . . . . . . . . ... ... ... 41

3.8 Chapter summary and contributions . . . . .. .. .. ... ... 44



4 Asynchronous and Communication-Limited Multi-Agent Reinforcement

Learning 45
4.1 Introduction . . . . . . . . . . 45
4.2 Methodology . . . . . . .. 46
4.2.1 Asynchronous Formulation . . . . . . . ... ... ... ... ... .. 46
4.2.2  Graph Overview . . . . . . . . . .. 47
4.2.3 Graph Transformer . . . . . . . . ... oL 48
4.2.4 Reward Structure . . . . . . . . ... 48
4.2.5 Training . . . . . .. Lo 49

4.3 Experimental Results . . . . . . . . . . ... 49
4.3.1 Experimental Setting . . . . . . ... ..o 49
4.3.2 Evaluation Metrics . . . . . . . . ... 51
4.3.3 Training Details . . . . . . . . . ..o 52

4.4 Motivating Experiment . . . . . .. ..o 52
4.5 Comparison of AsyncCoMARL with Other Methods . . . . . . . ... .. .. 52
4.5.1 Ablation Studies . . . . . .. ... 56

4.6 Chapter summary and contributions . . . . .. .. .. .. ... ... .. 58
5 Game Theoretic Models of Non-Cooperative Satellite Interaction 61
5.1 Introduction . . . . . . . . .. 61
5.2 Game Theory Overview . . . . . . . . . . .. 62
5.3 Game Framework . . . . . . . .. ... 63
5.4 Motivating Experiment . . . . . . . .. ..o 65
5.5 Repeated Game Methodology . . . . . .. .. ... ... ... ... ..., 66
5.5.1 Kalman Filter . . . . . . . . .. .. ... .. 67
5.5.2 Measurement Update . . . . . . .. . .. ... oL 71
5.5.3 Generating Payoff Matrix . . . . . .. .. ... ... ... ... .. 72
5.5.4 Optimization and Solution . . . . . . . . .. ... ... ... ..... 74

5.6 Validation . . . . . . . .. 74
5.7 Results . . . . . . 75
5.8 Chapter summary and contributions . . . . . .. .. ... ... .. ..... 76
6 Conclusion 77
6.1 Summary of Contributions . . . . . . . . . ... ... ... 7
6.2 Implications for Space Traffic Management . . . . . . . . .. .. .. ... .. 78
6.3 Future Work . . . . . . . .. 79
6.3.1 Short-Term Extensions . . . . . . . . . .. ... ... ... ...... 79
6.3.2 Broader Long-Term Extensions . . . . ... .. ... ... ... .. 80

A SpaceMARL Implementation and Supplemental Experiments 81
A.1 Baseline Implementation Sources . . . . . .. . .. .. ... ... ... .. 81
A.2 Performance with Agents Involving Heterogeneous Noise . . . . . . .. . .. 82



B AsyncCoMARL Implementation and Supplemental Experiments 85
B.1 Baseline Implementation Sources . . . . .. .. .. ... ... ..
B.2 Key DependencCies. . . . . . . . . . .
B.3 Hyperparameters . . . . . . . . . ...






List of Figures

11

3.1
3.2
3.3

3.4
3.5

4.1

4.2

5.1

The main contribution of this thesis is to develop methods for autonomous
satellite decision-making. By advancing the state of satellite autonomy, we
can then address a need for higher levels in the autonomy stack for spacecraft. 17

Graph Neural Network Architecture. . . . . . . . .. .. ... ... ..... 29
Visualization of the three control tasks. . . . . .. ... .. ... .. .... 32
SpaceMARL performance against comparable algorithms in the Space Envi-
FONMENL. . . . . . . e e e e e 35
The agents in the goal sharing case share their intended nal location . . .. 39
Two entity-graph formulations when additional classoise_sat is added .. 42

Overview of AsyncCoMARL: (a) Environment. Agents within our environ-
ment take actions and observations asynchronously. To encourage collabo-
ration, when agents take actions at the same timg they receive a shared
reward. The sequence of actions and observations for agens referred by
timescale (). The arrows indicate data transmissions, which represent the
most recent graph observatiorx!)yy: b) Asynchronous Temporal Graph Rep-
resentation. Each active agent within our environment is translated to become
a node on the graph, and they can communicate with other agents located
nearby within distance . Our graph representation is dynamic, meaning that
graph edges connect and disconnect depending on agent proximity. c) Agent
i's observation is combined with its node observations from the GNMX"gq

and fed into the actor network. The critic takes the full graph representation

Xagg @nd evaluates agent's action. . . . . ... ... .. ... ........ 47
Attention weights for agent 0 in then = 5 agent Cooperative Navigation

task. We compare the changes in graph transformer attention at three discrete
periods during the episode at the beginning, middle, andend. . . . .. . .. 56

The impact of the fuel costG, terminal costH, and satellite risk threshold on
resultant action selection. A blue triangle indicates waiting, while an orange
circle indicates moving. The red line indicates the probability of collision

for the wait-wait scenario. This factor has the largest impact on a satellite's
action selection. . . . . . . . L 65



5.2

5.3

5.4

5.5
Al

The impact of the ratio of long to short-term cost{=g) on the emergence of a
mixed-Nash equilibrium strategy where both satellites move with probability
p, as shownonthey-axis. . . . ... ... . ... ...
Overview of our Repeatech Step Game. Kalman Filter . We rely on a
Kalman Filter for state estimation and covariance propagation over the course
of the n repeated gamesSolve for Payo . Using the covariance estimates,
probability of collision, and updated state estimation, we produce the payo
available to each satellite during that round. Pruning . Once the payo is
calculated for the total number ofn rounds, we perform pruning to identify
the best solution of theset. . . . ... ... ... ... ... .........
Magnitude of perturbing accelerations of Earth satellites as a function of their
altitude. Figure from [1]. . . . . . . . . . . .
Geometry of Earth Observations of Spacecraft Motion. Figure taken from [2]

Experiment involving two satellites with di erent amounts of noise in their
observation . . . . . . ..

10

66

69

71



List of Tables

3.1

3.2

3.3
3.4

3.5

3.6

3.7

4.1
4.2

4.3

4.4

4.5

5.1
5.2
5.3

5.4
5.5

The type of information that is passed between satellites, and the assumptions

on the amount of communication that occurs for each baseline. . . . . . . .. 34
Performance metrics obtained by training SpaceMARL on a space environ-
ment with n satellites and testing it on one withm satellites: (a) Total reward
obtained in an episode per agent, Rewardn. (b) Fraction of episode taken on
average by agents to reach their goal, (lower is better). (c) Average number

of collisions per agent in an episode, #csm (lower is better). (d) Success

rate, S%: percentage of episodes in which all agents can get to their goals

(higheris better). . . . . . . . . . 36
Sensitivity of SpaceMARL with transfer learning to di erent perturbations. . 37
Performance of Global RMAPPO, Local RMAPPO and SpaceMARL on the
rendezvouscluster formation, and trailing formation tasks. . ... ... .. 38
Percentage improvements through goal information-sharing, results are aver-
aged over 100 evaluation episodes. . . . . . . . . . . . ..o 40
Comparison of SpaceMARL's performance with di erent noise parameters
across 100 evaluation scenarios. . . . . . . . . ..o 42
Di erence in performance for alternate satellite-entity graph formulation. . . 43

Comparison of SpaceMARL against the asynchronous variant, AsyncCoMARL. 52
Comparison of AsynCoMARL with other baseline methods for scenarios with

3, 5, 7, and 10 agents in the Cooperative Navigation environment. . . . . . 52
Comparison of AsynCoMARL with other baseline methods for scenarios with

4 rovers and 4 towers in the Rover-Tower environment. . . . . . .. .. ... 55
Comparison of our model against a simpli ed variant that has no graph trans-
former communication protocol forn=10 agents. . . . . . ... .. .. ... 56
Comparison of the impact of several reward formulations on the resultant
performance in the asynchronous setting far=3 agents. . . . ... .. .. 58
Payo matrix for the game of chicken. . . .. ... ... ... ........ 62
Payo matrix for the satellite collision avoidance problem. . .. ... .. .. 65
The ratio of long to short-term cost {=g) and its subsequent probability of a
move-move strategy for both satellites. . . . .. .. ... ... ... ..... 66
Characteristic properties of the satellites in our simulation . . . .. .. ... 72
Characteristic properties of the satellites in our simulation . . . .. .. ... 74

11



5.6

5.7

5.8

Al
A.2
A3

B.1
B.2
B.3

Position Di erences between thdlrue Position from the Prize for Al Inno-

vation Challenge, and theEKF Position estimate . ... ... .. ... .. 74
Error between theTrue Position from the Prize for Al Innovation Challenge,

and the EKF Position estimate . .. ... ... ... ............ 75
Recommended Strategies for DierenN-stepgames. . . . .. .. ... ... 75
Hyperparameters used in SpaceMARL . . . . .. ... .. ... ....... 82
Common Hyperparameters used in MADDPG, MATD3, QMIX, VDN . . . . 82
Performance of two satellite noise experiment across 100 evaluation episodes

In navigationtask. . . . . . . . . ... 83
Common Hyperparameters used in asyncMAPPO, GCS, and ACM . . . .. 86
Common Hyperparametersused in GCS . . . . .. ... ... ........ 86
Common Hyperparameters used in CACOM . . . . ... ... ... ..... 87

12



Chapter 1

Introduction

Space presents many unique challenges that underscore the need for advanced robotics and
arti cial intelligence. The inherent dangers of space, like radiation, extreme temperatures,
and microgravity, make it a hostile environment for human exploration, thus reinforcing the
need for robotic systems. As the number of satellites and associated sensing capabilities
continues to grow, the resultant amount of data generated far exceeds what human analysts
can process. Advancement in satellite autonomy holds the power to address these issues;
developing more capable satellites that can independently make decisions on their own can
lead to advanced capabilities like con ict negotiation and data curation.

One of the pressing needs for satellite autonomy is in space tra ¢ management. Until
recently, the annual increase of objects in orbit remained around 300 per year, but factors
like increased launch cadence and the emergence of large mega-constellations have led to a
marked increase in the overall growth of the space population. The highest spatial density
of objects is in the Low Earth Orbit (LEO) environment, a region of space around Earth
between altitudes of 160 km and 2,000 km. This increased density has reached a point
where satellite interactions are now frequent. Most simulations and forecasts indicate that
the density of objects in LEO will continue to rise because the rate of new launches, on-
orbit explosions, and collisions exceeds the LEO environment's natural ability to clean itself
through orbital decay [3]. The increasing accumulation of operational payloads and uncon-
trollable debris presents a rising collision threat to active satellites, potentially disrupting
essential services like communication, weather forecasting, navigation, scienti c observation,
and human space ight missions.

The consequences of even a single collision are signi cant. In 2009, the rst hypervelocity
collision occurred between Iridium 33 and Cosmos 2251, resulting in more than 1800 pieces
of trackable debris. This debris creation represented roughly 10% of the tracked satellite
population at the time, and resulted in an estimated 200,000 untrackable pieces of debris sized
10 centimeters or smaller[4]. While the Iridium-Cosmos collision was the rst hypervelocity
collision event, more collision events have occurred, like Cosmos 2535 in January 2020,
Yunhail-02 collision in March 2021, and Cosmos 1408 in November 2021 [5, 6, 7]. Though
not classi ed as formal collision events, miscommunications between active operators are
common and have led to numerous near-misses [8, 9].

Due to overall concern about collision risk, there have been renewed e orts to establish
regulations and measures for space tra ¢ management. These e orts aim to improve space

13



situational awareness and support collision avoidance and coordination among satellite op-
erators. Organizations such as the United States Space Forcé'1Space Defense Squadron
(19 SDS), the European Space Agency and other international space agencies work towards
cataloging and monitoring objects in space. They maintain extensive databases that contain
information on known objects in orbit, including their orbital parameters and character-
istics. These databases help track and predict the movement of objects in space. In the
case of the 19 SDS, they perform a satellite conjunction analysis, which assesses collision
risk during a close encounter between a satellite and another object in orbit. This service
is done for all commercial, civil, military, and academic operators. In the event that the
conjunction assessment passes a certain threshold for collision risk, the 19 SDS issues a
conjunction data message to the a ected operators. Conjunction data messages (CDMs)
are standardized data messages that describe spacecraft conjunction information, including
miss distance, probability of collision, time of closest approach, and closest approach relative
position and velocity [10]. Due to the vast number of potential interactions within the space
population, the resultant overwhelming volume of conjunction data messages exceeds the ca-
pacity of human analysts to process and respond e ectively. In 2023, the 19 SDS generated
approximately 600,000 conjunction data messages per day, a 200% increase from 2020 [11].
If we assume that a small fraction of these are high probability events that could lead to
an eventual collision, the scale of messages being delivered places a high burden on satellite
operators seeking to mitigate them.

The burdening of manual collision avoidance services motivates the development of au-
tonomous decentralized space trac management. In contrast to traditional centralized
conjunction analysis performed by the 19 SDS, decentralized tra ¢ management refers to a
system where the management and coordination of satellite movements are distributed across
multiple independent nodes and entities. In such a system, satellites and satellite operators
communicate and collaborate directly with one another to ensure safe navigation and avoid
conicts. Decentralized space tra c management services could enhance the resilience and
responsiveness of space operations, enabling faster decision-making, reducing single points of
failure, and fostering greater collaboration among international stakeholders in a congested
space environment.

1.1 Bene ts of Decentralization

Decentralized approaches to space tra ¢ management have bene ts beyond formal maneuver
negotiation in the event of a potential collision. Each satellite has the most knowledge about
its overall state. This knowledge includes information about the satellite’s exact position,
velocity, and attitude. The satellite also has information about its physical sizing, such as
its hard body radius, which is used to inform realistic ballistic coe cients and probability of
collision estimates. The satellite also possesses accurate data on its onboard fuel levels and
thruster maneuvering capabilities. It also has the most reliable information on its intentions,
including scheduled maneuvers, planned ephemerides, and current ephemerides. This un-
derstanding gives individual operators a far more accurate understanding of their satellites
than what can be obtained from centralized space tra c management operations like 19
SDS or commercial space situational awareness services. If this individual information were

14



accessible to others in orbit, satellite operators could accurately propagate future satellite
trajectories to con rm or deny collision warnings. Additionally, improved space situational
awareness could help satellite operators assess any future secondary collisions that could
occur as a result of their initial collision avoidance maneuvers.

However, operators are con icted about what information to share, how often to share,
and with whom, if at all. There is concern from legacy operators that providing too much
insight into satellite's abilities and exact movements will cause satellite operators to lose their
competitive edge, as competitors will be able to model their current capabilities accurately
[12]. On the other hand, there is also concern that certain operators may not have quality
ephemerides to share and thus will not o er anything of value when compared against more
capable satellites [13]. Huge constellation operators such as SpaceX, Iridium, SES, and
OneWeb [14, 15, 16, 17] all supported maneuverability information sharing for conjunction
mitigation. In contrast, operators that do not maintain constellations, both new space and
legacy operators, opposed information sharing due to concerns that speci ¢ information on
satellite maneuverability is proprietary [18, 13]. From the perspective of military payloads,
information sharing has the potential to jeopardize national security and place military space
assets at risk.

There is a need for research on decentralized space tra c management to explore ways
to incentivize the value and adoption of these types of systems. While it is intuitively
expected that decentralized coordination among sets of operators could lead to improvements
in collision avoidance, there have yet to be developmental frameworks in this area. Space
tra c management modeling frameworks are di cult to develop due to the complexity of
both the environmental dynamics and the diverse nature of the actors involved. In this
thesis, we apply multi-agent reinforcement learning to this problem, allowing us to model
multiple interacting agents making decisions in a shared environment.

1.2 Why Use Reinforcement Learning?

Against this backdrop, it is clear that there is a need to develop methodologies capable
of addressing decentralized coordination between satellite operators in LEO. Approaches
to modeling multiple spacecraft have ranged from optimal control to mixed-integer linear
programming. However, these approaches quickly become computationally infeasible due to
the number of constraints associated with each individual spacecraft. While it is possible
for satellites to have a planned set of maneuvers encoded in advance to avoid this scaling
problem, satellites will also need the ability to adapt as new collision avoidance scenarios
arise. Moreover, such hard-coded maneuvers may become insu cient in an evolving space
environment.

Reinforcement learning (RL) is a learning framework centered on the sequential interac-
tion between a decision-making entity, known as the agent, and its environment. The agent
observes the current state of the environment and selects an action accordingly. As a result
of the action, the environment transitions to a new state, continuing the sequence. The
agent's objective is to learn the optimal action for each state, which is captured in its policy.
The agent learns by receiving rewards after each action, which assesses the quality of the
action in that state. Over time, the agent re nes its policy using this feedback.

15



Multi-agent reinforcement Learning (MARL) is an extension of reinforcement learning
(RL) where multiple agents interact with a shared environment, each with their own goals
and strategies. In MARL, these agents learn simultaneously, often in a dynamic and com-
plex setting where one agent's actions can impact others' outcomes. MARL is particularly
well-suited for problems like collaborative robotics, autonomous vehicle eets, distributed
resource management, and strategic games, where the interactions and dependencies among
multiple agents are central to the problem's dynamics. Its strengths are best demonstrated
in problems with the following characteristics:

1. Supervision is costly or not possible . In scenarios where human supervision
is expensive or infeasible, MARL provides a means to learn policies by embedding
system-level objectives into reward functions and utilizing exploration during training.
This approach is especially relevant for NP-hard combinatorial optimization problems,
where MARL can generate approximate solutions.

2. Dynamic Settings with Changing Conditions . MARL adapts to dynamic set-
tings by continuously learning from real-time feedback, exploring new strategies, and
updating policies based on interactions with a changing environment and other agents
through the training process. This learned exibility is useful in dynamic settings
where conditions frequently change.

3. Multi-agent Interaction . MARL is e ective for modeling scenarios where agents
adapt their behaviors based on the environment and the actions of other agents. By
distributing the learning and decision-making processes, MARL handles complex prob-
lems that would be impractical for a single-agent approach.

These characteristics are present in autonomous, decentralized space tra ¢ management.

1.3 Contributions of This Thesis

The dissertation begins by detailing the related literature that our work is situated within or
builds on (Chapter 2). This is followed by a series of chapters that detail our work exploring
decentralized space tra ¢ management and understanding how decentralized space trac
management strategies work in cooperative and uncooperative settings.

A Decentralized MARL Approach Towards Information Sharing : This chapter
presents our decentralized multi-agent reinforcement learning model for space applications.
First, we discuss the simulation environment that we created for proximity operations be-
tween satellites to train the MARL algorithm. We discuss the design of our new multi-agent
reinforcement learning algorithm in this setting, which we've named SpaceMARL. Then,
we present an initial analysis of the impact of decentralized coordination with local com-
munication between satellites and compare the performance against centralized algorithms
with perfect information sharing. Our empirical results show that our algorithm achieves
near-optimal performance when compared to centralized methods despite having access to
signi cantly less information. We also demonstrate how transfer learning can be used to
accelerate training in this setting by initially training for a short period on a ground-based

16



model and using the resultant weights on the space environment. We show the generalizabil-
ity of our algorithm, both towards di erent tasks and to perturbations in the environment,

and comment on the consistent goal-reaching behaviors across these varied environments and
navigation tasks. We use our graph formulation to determine the signi cance of sharing the
intended goal location and nd that goal sharing leads to improvements in path planning.
These results provide initial insight into the underlying foundations behind learning-based
controllers for collision avoidance in space.

Asynchronous and Communication Limited MARL . In this chapter, we relax the
assumption that all communications and actions between agents must happen synchronously.
We present AsyncCoMARL, a multi-agent reinforcement learning framework for coordination
in asynchronous environments where actions and communications between agents happen
at varying intervals. We nd that graph transformers serve as e ective encoders in this
setting when compared to other graph-based attention mechanisms. We show the strength
of independent actor-critic formulations in this setting and demonstrate that our algorithm
possesses greater scalability than other asynchronous techniques.

Game Theoretic Models of Non-Cooperative Operator Interaction . This chap-
ter studies collision avoidance strategies in hon-cooperative settings. We formalized a single-
step payo matrix based on operator risk tolerance and maneuver cost and estimated the
probability of collision. We evaluate the impact of the weighting on the risk tolerance and
maneuver cost variables and nd the emergence of a mixed Nash equilibrium strategy where
both operators maneuver when there is a signi cantly higher cost to maneuver to operator
risk ratio. We extend our work to the multi-step collision avoidance case, where satellite
operators must decide when is best to maneuver during a set mfrepeated games. We

nd that in our formulation for the repeated game setting, the optimal time to maneuver is
earlier rather than closer to the time of the collision.

Figure 1.1: The main contribution of this thesis is to develop methods for autonomous
satellite decision-making. By advancing the state of satellite autonomy, we can then address
a need for higher levels in the autonomy stack for spacecraft.

Figure 1.1 contextualizes the contributions of this thesis in the overall spacecraft auton-

17



omy stack. The contributions of this thesis integrate into the spacecraft autonomy stack
by enhancing high-level decision-making processes, enabling more adaptive and intelligent
satellite coordination.

Finally, to conclude the thesis, in Chapter 6, we give an overview and conclusions about
the work in this dissertation. We discuss the implications of this work for spacecraft auton-
omy as a whole and for space tra c management. Then, we present direct short-term and
broader long-term possibilities for future work.

18



Chapter 2

Literature Review

First, we review reinforcement learning techniques for space applications. Then, we delve
into the larger eld of multi-agent reinforcement learning, highlighting relevant works on
decentralized multi-agent coordination with limited communication. In the nal section, we
review advancements in game theory.

2.1 Reinforcement Learning for Space Applications

Reinforcement learning (RL) is seen as a promising technique for space applications due
to its ability to learn control policies without an explicit mathematical model of the whole
environment [19]. The algorithm learns how to adapt to a wide array of operations, system
uncertainties, and o -nominal conditions. This generalizability is highly desirable for space
missions that will feature complex and even previously unseen operational environments.
While the training phase can be computationally expensive, the trained policies require
limited memory and computational resources to run. As a result, RL has been successfully
demonstrated in simulation for numerous space applications including spacecraft landing
[20, 21, 22], trajectory design [23, 24, 25, 26], attitude control [27, 28, 29], docking [30, 31, 32],
constellation orbital control [33, 34], autonomous inspection [35], and on-board decision
making for spacecraft operations scheduling [36, 37, 38]. For a complete survey of existing
reinforcement learning in spacecraft control applications, we refer the reader to [39].

Several works rely on relative motion equations to model the dynamic motion of satellites
[31, 36, 40]. Federici et al. used RL to design a controlled guidance algorithm for a spacecraft
in a terminal rendezvous maneuver through the Clohessy-Wiltshire equations. With the as-
sumption that the satellite is within the approach corridor and the target is always in the
visibility cone, the chaser reference trajectory must lead it from the initial condition to the
prescribed nal one. A velocity perturbation is added at each step within the dynamics to
address perturbations and stochastic e ects. The RL algorithm develops a policy containing
locations and directions for satellite burn maneuvers to enable successful rendezvous [31].
Huang et al. use graph theory and deep reinforcement learning to solve the spacecraft opera-
tions scheduling problem. Graph theory is used to model clusters of satellites as nodes, with
edges representing links between tasks for scheduling. This approach allows for a simpli ed
scheduling problem, where multiple satellite observations can be combined into one clustered

19



observation if there are edge connections between two vertices. Then, deep reinforcement
learning is used to determine the schedule [36]. Gaudet et al. rely on meta-RL to adapt to
novel partially observable environments. Meta-RL refers to the process of learning to learn
by selecting the best hyperparameters for a previously unseen environment. They test the
e ectiveness of this meta-learning by demonstrating the performance of the RL algorithm on
several experiments, including a Mars landing with an engine failure, a Mars landing with

a state estimation bias, and an asteroid landing with unknown dynamics [40]. This work
demonstrates the value of re ned tuning mechanisms for RL, which can indeed adapt to
environments with unknown or highly variable dynamics.

To our knowledge, there are no other works that use multi-agent reinforcement learning
for spacecraft. Rather than determining a single guidance trajectory or sensor tasking sched-
ule for one ground station, our work considers multiple satellites and their interactions with
one another. When multiple satellites act in a shared environment such as space, their inter-
ests and intentions may be misaligned. For example, in a competition setting, satellites may
belong to competing communications operators, which will discourage them from making
their movements known to nearby actors. In contrast, in a cooperative environment, such as
a servicing agent rendezvousing with its target, the two agents may work together to ensure
the servicer can reach its goal. Through multi-agent reinforcement learning (MARL), we
can obtain a richer understanding of the social complexities of di erent operations in space.

Prior research has found that a direct implementation of a single-agent RL to several
agents cannot converge to optimal solutions because the environment dynamically changes
each step due to the agent's movements [41]. Multi-agent reinforcement learning di ers
because the agents aim to jointly optimize a reward together, and the movement between
agents is strategic. However, MARL has yet to be applied in many applications due to issues
with scalability. The addition of more agents means that the solution space exponentially
increases [41]. This makes training MARL agents more di cult and creates issues with
convergence.

2.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) approaches allow the investigation of a range
of interactions (e.g., competitive or cooperative) between satellite operators. To the best
of our knowledge, there has yet to be a MARL-based control solution implemented in the
space domain, but MARL algorithms have been successfully applied to problems in adja-
cent domains like air tra c control. Ghosh et al. design an ensemble learning framework
with an integrated dual-learning structure. Locally, a kernel-based RL encoding is used to
approximate an agent's local information. Globally, a deep MARL model is used to cap-
ture large-scale interactions. This joint kernel-MARL model was evaluated on an air tra c
simulator and successfully directed 1668 aircraft over a 24-hour period while achieving more
reward than baseline approaches [42]. Brittain et al. adapt the proximal policy optimization
algorithm [43] to incorporate an attention network, which is used to identify priority infor-
mation in the aircraft's state environment [44]. While not in air tra ¢ control, Zhang et al.
designed a MARL algorithm that used graph neural networks to augment communication
and control Lyapunov barrier functions to guarantee safety [45]. Similar to our methodol-

20



ogy, this work also applied an entity-graph structure, with nodes representing agents and
obstacles and edges representing communication channels. This method was demonstrated
successfully in simulation on ground-based robots and on drone hardware.

2.3 Attention and Graph-Based Methods for Multi-Agent
Communication

Through communication, agents can obtain a better understanding of their own environ-
ment and of other agents, thus improving their ability to coordinate their behaviors. For
comprehensive surveys on research on the impact of communication in multi-agent collabo-
ration, we refer the reader to [46, 47]. Seminal works such as CommNet [48] use a shared
neural network to process local observations for each agent. Each agent makes decisions
based on its observations and a mean vector of messages from other agents. Although agents
can operate independently with copies of the shared network, instantaneous communication
with all agents is necessary. Subsequent works [49, 50] aimed to investigate methodologies
that improve coordination by using a small subset of agents. For example, ATOC [50] uses
a probabilistic gate mechanism to communicate with nearby agents in an observable eld
and a bi-LSTM to concatenate messages together. Incorporating attention mechanisms to
encode communications between agents led to further advancements in multi-agent collabo-
ration. TarMAC [51] uses an attention mechanism to generate encodings of the content of
messages so that nearby agents can learn the message's signi cance via neural network im-
plicitly. While attention-based mechanisms can help agents improve their abilities to utilize
individual pieces of communication, attention-based approaches neglect larger inter-agent
relationships. Graph-based methods like DGN [52], DICG [53], and EMP [54] formulate in-
teractions between di erent agents as a graph. These methods rely on dynamic and temporal
graph structures to learn relational representations from nearby nodes. However, a similar
communication problem to CommNet arises with these methodologies, as they often require
fully connected graphs during the learning process. For example, in EMP, all agents must
know the position of all other entities in the graph at the beginning of an episode. This as-
sumption is a key limitation, as it presumes that all agents have unrestricted communication

to coordinate synchronously.

2.4 Event-Triggered Communication

Event-triggered control (ETC) is a control strategy in which the system updates its control
actions only when certain events or conditions are triggered, rather than continuously or at
regular time intervals as in traditional time-triggered control systems [55]. By reducing the
number of control updates, ETC can signi cantly decrease the workload on controllers, a
bene cial attribute for systems with limited resources. ETC [56], VBC [57], and MBC [58]
have proposed event-triggered control methodologies to reduce the communication frequency
and address communication constraints. These works focus on optimizing when transmission
can occur rather than optimizing how to achieve better performance with lower communica-
tion budgets. Menda et al. frame the asynchronous decision-making problem where agents

21



choose actions when prompted by an event or some set of events occurring in the environment
[59]. By relying on a continuous state-space representation and an event-driven simulator,
the agents step from event to event, and lower-level time-step simulations are eliminated.
This improves the algorithm's scalability but leaves the agents unable to capture low-level
agent-agent interactions within an event duration.

2.5 Asynchronous Actor Critic

An alternative approach to asynchronous environments formulates the problem as a Macro-
Action Decentralized Partially Observable Markov Decision Process (MacDec-POMDP),
where agents can start and end macro actions at di erent time steps [60]. Xiao et al. pro-
pose IAICC, a multi-agent policy gradient methodology that allows agents to asynchronously
learn high-level policies over pre-de ned macro actions [61]. Hong et al. alter the IAICC
framework to encode agent time history independently to avoid duplicate macro-observations
from non-macro actionable agents in the centralized critic [62]. These works focus on learning
algorithms for asynchronousnacro actions that occur across multiple time steps. Compar-
atively, our work focuses on the micro level, looking for planning opportunities while agents
achieve the same macro-level task.

2.6 Game Theoretic Methods for Space Domain

Game theory provides the theoretical underpinnings for understanding and analyzing multi-
agent systems, while MARL o ers practical algorithms for learning in these systems when
explicit modeling of the environment and agents is infeasible. Game theory is well-suited for
non-cooperative settings, as it provides strategic frameworks for analyzing and predicting the
behavior of independent agents with con icting interests. As a result, given the contested
environment of space we use game theory to account for the mixed intentions of the operators
within the domain.

Game theory has been applied successfully in the space domain across various appli-
cations, including mega-constellation design [63], collision avoidance [64, 65], and debris
removal [66]. Qureshi et al. introduce a multi-agent game that simulates the dynamics
of both LEO constellations and the economic interactions between constellation operators
[63]. By combining gami cation with modeling, they propose a framework where multiple
players develop and manage their own LEO constellations. They validate this model using
Monte Carlo policy evaluation. This game targets competitive scenarios where each agent
must manage its economic assets based on its LEO constellation's speci c characteristics,
limiting the framework's applicability to broader space tra c management contexts. Klima
et al. apply evolutionary game theory to examine the space debris removal challenge, focus-
ing on whether agencies (e.g., NASA, ESA) should invest in the costly yet widely bene cial
process of debris removal or rely on others to act rst [66]. This dilemma creates a clas-
sic ‘tragedy of the commons'": if all agencies delay action, no debris is cleared, resulting in
severe consequences for everyone. The study employs empirical game theory and simula-
tions to evaluate various strategies in two- and three-player scenarios. Their analysis shows

22



that the cost-bene t ratio of debris removal signi cantly shapes the game's dynamics, with
strategic equilibrium either promoting or deterring cooperation among agencies, depending
on this ratio. This game assesses the space environment on a global scale and does not
o0 er strategic insights into the actions of individual satellites, and thus cannot be applied

to our problem. Palafox et al. focus on the problem of collision between a set of satellites
operating in proximity to one another [64]. They propose a dynamic game-theoretic method
for multi-robot collision avoidance that relies on a set of rotating hyperplane constraints to
separate robots and obstacles. The proposed method learns these hyperplane parameters
from expert trajectories collected by observing human operators. Then, the parameters are
optimized to match the equilibrium trajectory to the expert's behavior. Palafox et al. val-
idate their method through tests and show that the learned parameters generalize well to
scenarios involving more robots and previously unseen initial conditions [64]. Although this
methodology is designed for collision avoidance, it speci cally targets proximity operations
rather than satellite collision avoidance, which generally involves distances on the scale of
kilometers rather than meters. Additionally, this approach simpli es the collision avoid-
ance problem by assuming perfectly known operator positions, whereas satellite collision
avoidance must account for uncertainties in each satellite's exact location.

Satellite collision avoidance presents a complex game-theoretic problem due to the need
for multiple independent entities to make interdependent decisions under conditions of un-
certainty. In low Earth orbit, where many satellites share overlapping paths, operators must
decide how to adjust orbits to avoid potential collisions while balancing fuel consumption,
collision uncertainty, and the unpredictable maneuvers of other satellites. Each operator
acts as a "player” in this game, where actions to minimize collision risk may inadvertently
a ect others, introducing a strategic layer to the decision-making process. This interde-
pendence creates a hon-cooperative setting where each operator has incomplete information
about the exact position and intentions of others, further complicated by communication
and information-sharing constraints. Game theory provides frameworks, such as Nash equi-
librium and cooperative games, to model and analyze these interactions, helping operators
predict the likely actions of others and strategize accordingly. By modeling satellite colli-
sion avoidance in this way, game theory allows for more robust, anticipatory strategies that
can improve overall space tra ¢ safety. The core challenge of satellite collision avoidance is
similar to several well-known, high-stakes negotiation problems in game theory, such as the
Cuban Missile Crisis [67, 68], climate change [69], deadlock in autonomous highway driving
[70], and public goods dilemmas [71]. Our distinctive contribution to this eld is the inte-
gration of game-theoretic frameworks with a high- delity satellite simulation that captures
satellite characteristics and operator trade-o0 s.

23



24



Chapter 3

Multi-Agent Reinforcement Learning
Approach to Information Sharing

3.1 Introduction

In a crowded space environment, satellites need to rely on communication from others nearby
to perform e ective collision-free operations. In this setting, satellites have limited informa-
tion about the states and intentions of their neighbors. Approaches to modeling the multiple
spacecraft have ranged from reachability to mixed integer linear programming [72, 73]. How-
ever, these approaches all scale poorly due to a coupling between the number of spacecraft
and the resultant number of collision avoidance constraints. While it is possible for satel-
lites to have a planned set of maneuvers encoded in advance to avoid this scaling problem,
satellites will also need the ability to adapt as new collision avoidance scenarios arise. More-
over, in a dynamic and evolving space environment, such hard-coded maneuvers may become
insu cient.

Multi-agent reinforcement learning (MARL) o ers a possible alternative, as its framework
seeks to learn behaviors between satellites that result in collision-free navigation. Instead of
formulating the problem with n agents andO(n?) constraints, MARL provides a generalizable
approach, as it learns a set of desirable behaviors from both its exploration of the environment
and the resultant interactions with other satellites. One of the main limitations of multi-agent
reinforcement learning is that it requires exhaustive training to produce a desirable policy, a
problem further ampli ed by satellite-to-satellite interactions. To address this, we investigate
using transfer learning to adapt a general MARL model, previously trained on ground agents,
to a space environment. We extend our recent work in a multi-agent reinforcement learning
setting (InforMARL [74]), and propose a new space environment-based formulation, which
we refer to as SpaceMARL. We demonstrate that transfer learning from the ground to the
space environment is remarkably e ective: it achieves better sample complexity and slightly
higher rewards than when directly training a model in the space environment. This result
is despite the two environments being quite di erent in terms of the underlying dynamics
that govern them. We then consider a variant of the space environment that accounts for
perturbations in gravitational disturbances and nd that transfer learning is still e ective.

After demonstrating the performance of our model against comparable algorithms, we

25



then use our framework to study the role that information-sharing plays in satellite operator
decision-making. Our work is motivated by the premise that satellites have limited obser-
vations of their neighbors but possess the best knowledge of their own location. Through
our framework, which utilizes graph theory to model communication, we seek to understand
both what to share and withwhomto share. To do this, we rely on graph neural networks
as a proxy for communication between agents. The graph neural network learns the optimal
message passing prioritization to aid the satellites in achieving the best policy [75]. By eval-
uating the message prioritization and contents of the inputs to the graph neural network, we
can study what information is most useful for satellite coordination. Speci cally, we use our
model to assess the impact of information sharing by evaluating changes in collision rates
and path planning.

Our contributions include the following:

A

We develop a space environment simulator for multi-agent reinforcement learning.

We extend our prior work on multi-agent reinforcement learning [74] and introduce
SpaceMARL, an approach that leverages graph neural networks to enhance communi-
cation for space applications.

We rely on transfer learning to speed up the training process for SpaceMARL model
and demonstrate its e ectiveness against other common MARL algorithms.

We demonstrate the performance of our multi-agent reinforcement learning-based ap-
proach on several formation and rendezvous tasks.

We use our method to quantify the impact of di erent pieces of information by evalu-
ating changes in performance under di erent graph structures.

In this chapter, we will explore the development of our space-focused methodology for
multi-agent reinforcement learning. This chapter is based on work that was presented in
[76]. First, we provide a brief introduction to reinforcement learning. Then, we discuss our
graph abstraction that the MARL model uses to simulate communication and characterize
relationships. We then discuss our dynamics models, and provide the status of current
results.

3.2 Multi-Agent Reinforcement Learning Overview

The goal of multi-agent reinforcement learning is for each agent to learn how to complete a
task through repeated interactions with the environment and other agents. Multi-agent
reinforcement learning can be described by a partially observable Markov decision pro-
cess (DEC-POMDP) [77, 78, 79] with shared rewards. A DEC-POMDP is de ned by
MN;S;0;A;R;P; i. N is the number of agentss 2 S = RN P is the state space of the
environment, D is the dimension of the state, ana) = O(s(V) 2 R is the local observation

of agenti, whered D is the observation dimensional? 2 A is the action space for agent

i and the joint action for all N agents is given byA = (a®;::;a™). Specically, in our
environment, al) is a one-hot vector whose size is equal to the number of possible actions.

26



In our environment, this correlates with a vector of actiong) = (+ x; x;+y; v;0). While

this work does not consider more advanced fuel usage techniques, the action structure itself
is generalizable, and our framework could accommodate other methods. For example, with
an appropriate simulation environment, a one-hot encoding could be used to represent the
usage of a method, such as Gonzalo et al.'s analytical collision avoidance maneuver formu-
lation [80]. R(S;A) is the joint reward function. We adopt a similar reward function as
used in the multi-agentlgarticle environment (MAPE) [81] where the joint reward function

is de ned asR(S;A) = iN=1 Revvfi), which encourages cooperation among all agents. Here

ReV\/f') is each agent's reward at time step and depends on the scenario? (sJs;A) is the
transition probability from s to s° given joint action A. 2 [0; 1) is the discount factor.

For our algorithm, the traditional DEC-POMDP setup is augmented by the existence of
the graph network, transforming the tuple that describes the problem tohN; S; O; A;R; P; ;

Gi. g = G(s;i) represents the graph network formed by the entities of the environment
with respect to agenti. Features of the graph structure are used in our actor-critic learning
architecture [82].

In actor-critic architectures, the actor aims to optimize a policy, and the critic eval-

uates the action produced by the actor through the value function. The actor's policy
' a®jo); g is parameterized by , and relies on a local observationt) and the graph

neural network g to optimizing the discounted joint accumulated reward:

J()= Easl[ , 'R(S;A)]. The critic will inform the actor how e ective the action se-

lection was using a value function for the environmen® (h; G, a), whereh is the history

maintained by a recurrent neural network.

During training, the critic has access to the observations from every agent. However,
during execution, there is no centralized critic available, and each satellite is operating using
the learned weights, , from the actor network. Thus, our work is able to take advantage
of centralized training to improve its learned performance and a decentralized execution
structure to ensure that the algorithm can work in decentralized settings [83].

3.3 Graph Overview

We rely on a graph neural network (GNN) to synthesize the communication between agents.
Graph neural networks are an optimizable transformation on all attributes in the graph
(nodes, edges) that preserves graph symmetries [84]. The output of a graph neural network
is an encoding that represents the relationality between nodes, this encoding is used as an
input to both the actor and the critic in our actor-critic learning process.

Graph neural networks require that the problem be translated into a graph structure be-
fore the algorithm can learn. Every object in the environment (also referred to as an “entity’)
is assumed to be either a satellite, an obstacle, or a goal/landmark. In our formulation, every
entity in the environment is a node on the graph. Each nodg on the graphg® has node
featuresx; = [pl; V) ; p?®; entity_type(j) ] wherep;V ; p?*" are therelative position, ve-
locity, and position of the goal of the entity at nodg with respect to satellitei, respectively.

If nodej corresponds to a (static/dynamic) obstacle or a goal, we spi®®  pl. To process
the entity_type categorical variable, we use an embedding layer [85].

27



There exists an edge 2 E between a satellite and an entity if they are within a sensing
radius of each other. We note that while some satellites contain laser cross-links that
enable continuous communication, the vast majority of satellite communications include
time delays and transmission losses. In this work, we aim to study the value of information,
rather than the mechanism by which it is sent. As the speci ¢ sensor class is highly variable
and dependent on speci ¢ ground architectures, we have left the incorporation of additional
time delays as future work. Edges can be bidirectional or unidirectional. A unidirectional
edge is equivalent to the satellite sensing a nearby entity's state, while a bidirectional edge
is equivalent to a communication channel between satellites. Each edgehas an associated
edge feature given by the Euclidean distance between the entitieand j. This edge feature
is calculated by taking the di erence between entityi and entity j. An example graph
representation is shown in the left-most pane of Figure 3.1.

Using these node and edge de nitions, we then de ne a satellite-entity graph with respect
to satellite i at each time-stept, asg’ 2 G : (V; E), where each node 2 V is an entity in the
environment. The variableentity type(j) 2 f satellite ;obstacle ;goal g determines the
type of entity at node j. This structure is similar to the satellite-entity graph de ned in [54],
but without the assumption that all satellites have access to the positions of all entities at the
beginning of each episode. Note that our formulation also supports cases where disconnected
sub-graphs are formed due to the positioning of the entities in the environment.

Figure 3.1 shows the complete message-passing process used to learn the relative sig-
ni cance of di erent communications to nodei. The process rst begins with each nodé
gathering nodex! and edgee; information from other connected nodes. The information
from these connected nodes are aggregated together to produggres. Then, each node
passes this information through a Uni ed Message Passing Model (UniMP) [86] to learn
their importance. A UniMPlj,s a variant of a graph transformer [87] where each layer update
is de ned asx?= Wy x; + i; W2 X;, wherex; are the node features in the graphiN(i)

j2N()
is the set of nodes which are connected to nodeWy are learnable weight matrices and the
attention coe cients. j; are computed via multi-head dot product attention:
|
(Ws x)" (Wﬁ Xj + Ws g)
C

ij = softmax (3.1)
where g; are edge features for the edge connecting nodesind j, and c is the output
dimension for that specic layer. The attention mechanism within the Uni ed Message
Passing Layer allows the nodes to selectively prioritize messages coming from their neighbors
according to their importance.

As shown in Figure 3.1, we employ multiple Uni ed Message Passing Layers. With the
addition of successive message-passing layers, each node embedding changes to re ect the in-
formation they have processed. As nodes repeat the gathering process with their connected
nodes in the subsequent message-passing layer, they are implicitly receiving information
from second-hop neighbors. In our architecture, we experimented with di erent numbers of
message-passing layers but found that two layers were su cient to propagate information
between nodes that are higher-order neighbors with each other. While we rely on succes-
sive message-passing layers in the graph neural network, we only require that each node

28



Figure 3.1: Graph Neural Network Architecture.

communicates once with its connected nodes for each step,

The graph neural network produces xed size vectcxé'gg, as shown by panel 2 in Figure
3.1. ngg, is used as an input to the actor network, which relies on the embedding to
determine the action for that speci c time step. Becausexgg)g is a xed length embedding,
this architecture allows SpaceMARL to dynamically adapt to a changing number of entities
in the environment while remaining invariant to the permutation of the observed entities.
Therefore, when the actor network is evaluated on more entities, it can still rely on the same
training weights that it obtained when trained on fewer agents.

In training, the critic receives all the embeddings throughout the graph so that it has a
global view of the environment. A global mean pooling operatoX g = Ni : xgg)g, is applied
to aggregate the updated node features in the graph. This aggregateldlnode vaugg is
used as an input to the critic, which uses this information, in combination with the state-
action pairs, to evaluate the action selection from the actor. Due to the pooling operator,
training is transferable to a variable number of satellites, as the graph representation is xed
to size X 499 [88, 89].

We note that the actor and critic networks can be either a multi-layer perceptron (MLP)
or a recurrent neural network (RNN) [90], using either LSTMs [91] or GRUs [92]. Our
proposed information aggregation method can be used in conjunction with any standard
MARL algorithm (eg, MADDPG [83], MATD3 [93], MAPPO [94], QMIX [95], VDN [96],
etc.).

3.4 Transfer Learning

For several of our experiments, we rely on transfer learning to accelerate training. The main
principle behind transfer learning is that experience gained in learning from performing one
task can help improve performance in a related but di erent task [88]. In other applications,
it has been shown to improve the results of existing algorithms and speed up the learning
[97]. Transfer learning works by taking the relevant parts of a pre-trained RL framework
and using them as an initialization for an entirely new environment. In this work, we train
a model on the ground environment and save the resultant trained weights from the actor-
critic network: the parameter from the policy gradient of the actor-network, and the value
function, Q , from the critic network. Then, we use these parameters as an initialization

29



for training in the relative motion space model.

3.5 Environment

In this work, we consider two di erent environments: (1) A ground environment in which
the agents' dynamics are governed by a double integrator physics model [98], and (2) a
space environment in which the relative motion between two agents (satellites) follows the
Clohessy-Wiltshire equations [99]. We also consider a modi ed space environment that
accounts for perturbations in the dynamics caused by the oblateness of the Earth.

Ground environment: Double-integrator model

For the ground environment in our transfer learning experiments, we rely on a double-
integrator physics model to simulate the motion of agents on the ground [98]. Our envi-
ronment is a modi cation of the one used in [81]. It corresponds to a 2D space in which
satellites move based on the following dynamics:

fy
+ — 2 = .
Tt m T (32)
+ fy _ u (3.3)
VTt m W '

In the above equation,u, and uy are accelerations selected by the MARL algorithm in
the x andy directions. f, and f, represent thex andy components of collision force on
the agent. is used as a binary indicator to determine if the agent has collided with another
agent. m is the mass of each entity, and is a damping coe cient. In our simulations of the
ground environment, each agent starts from a random, stationary position. The environment
size is a hyperparameter, de ning the area available for an agent to move in.

Space environment: Clohessy-Wiltshire equations

In the space environment, the agents simulated are satellites. For two objects in orbit, we
consider theirrelative motion to be governed by Clohessy-Wiltshire Equations [99]:

X 3n?x  2ny = uy (3.4)
y+2nx = Uy (3.5)
Z+n’z=uy, (3.6)

The above equations consider a localized coordinate system centered around one of the
satellites, referred to as thearget. The target satellite is assumed to have a circular orbit with

an orbital rate of ! ,,. The coordinates are de ned such thak is measured radially outward
from the target, y is along the orbit track of the target body, andz is along the angular
momentum. uy, uy, and u, represent the acceleration in the x-,y-, and z- directions. For the
perturbed model, the dynamic equations are modi ed to include gravitational disturbances

30



(or perturbations) due to Earth's oblateness:

x (56 2’ 2! oy = Uy (3.7)
y+2ncx = uy (3.8)
r (2 3An%z=u, (3.9)

In the above, c is a parameter that re ects the change in orbital rate experienced by the
satellite due to these perturbations. The value of is given by:

2
c= P T¥s: wheres= 3‘:32r|§e(1 +3cos(2)): (3.10)

In Equation 3.10,J, is a coe cient representing the gravitational e ect of a body's oblate-
ness, Re represents the Earth's radius,r represents the radius of the path of the target
satellite, and the inclination, i, is the angle of the orbit relative to Earth's equator. An angle
of i =0 represents an equatorial orbit, whereas= 90 represents a polar orbit. We note
that substituting c=1 (i.e., =54 ) in Equations 3.7-3.9 results in the Clohessy-Wiltshire
equations (3.4-3.6).

A full derivation of the perturbed equations can be found in [100]. While there exist
additional environmental perturbations, such as solar radiative pressure or three-body e ects,
their impacts are magnitudes smaller [101]. Consequently, these other perturbations only
a ect satellite dynamics over time periods that are much longer than the episode lengths
considered in this paper, which are of the order of a few hours.

This work focuses on in-plane maneuvers, which means all satellites and debris involved
are assumed to lie on the samey orbital plane. Similar to the ground environment, the
maneuvers are determined by the control actionu¢ or uy) recommended by the actor-critic
algorithm.

In both the original Clohessy-Wiltshire equations and the perturbed modek-dynamics
is decoupled from those in the- and y-directions. While not a topic of investigation in this
paper, in principle, the same techniques could be applied to the cross-track dimension by
training a separate model focused only on controlling the z-dynamics.

Comparison of ground and space environments

We explore the potential of transfer learning for this application because the space environ-
ment has complicated dynamics that are much more challenging for the algorithm to learn.
From Equations 3.4 and 3.5, we see that thg and y variables in the Clohessy-Wiltshire
equations are coupled. By contrast, the ground equations are independent of one another.
Additionally, the dynamics in the space environment are more sensitive to actions selected
by the agents [102].

In both cases, we adopt a simplistic reward function similar to the one used in multi-
agent particle environment [81]. We assume that at time, each agenti gets a reward:
Rew’ = Revvf,iilt;t + Rewd) . + Rew!) . where Revvfjiiit;t is the negative of the Euclidean

_coII it goal;t’
distance to the goalRew!,. = 5if it collides with any other entity and zero otherwise, and
Rew!)

coll;it —
wat = 19 if the agent has reached the goal and zero otherwise. The joint reward function

31



Figure 3.2: Visualization of the three control tasks.

is de ned as the sum of the individual agent rewards, which encourages cooperation among
all agents. It is worth noting that the reward function can be further re ned, especially in
terms of how collisions are penalized. Future research will include imposing larger penalties
for collisions, as well as the use of control barrier functions for providing safety guarantees
[103].

It is important to note that the size of the environment considered (4 sq km) along with
the number of objects in it (between 6-13) result in unrealistically dense scenarios. The
purpose of these experiments is to evaluate the e ciency of the methods and the general
trends in performance, and not to determine values (e.g., of the collision rates) that are
representative of real-world operations.

3.6 Experiments

In all these environments,N agents move around in a 2D space following the dynamics
models outlined in Section 3.5 and 3.5. For the transfer learning model, the agents are
rst trained on a ground model, as mentioned in section 3.5. Subsequent training occurs
in the space environment, but the actor-critic network is initialized using the weights that
came from the ground environment training. For all other models, the agents are trained
and evaluated using the space model mentioned in Section 3.5. The ground model used for
transfer learning is trained for 200,000 steps. All other algorithms are trained for 2,000,000
steps. The learning parameters used for each algorithm can be found in Appendix A. Actions
taken during training and evaluation are discrete and represent an instantaneous burn in the
x- and y- directions in the CHW frame with thrust magnitude 1 N.

The sensing radius of the satellites is set to be 0.5 km. Satellites and obstacles are
modeled as Lambertian spheres with a 1-meter radius. We determine that a collision occurs
when there is an Euclidean di erence between satellites smaller than 0.1 km. Satellites
are initialized into an environment that is2 2 km wide. The altitude of the circular
orbit of the leader satellite is assumed to be 400 km, and the constants 6378 km and=
3:986 1Pkm3=<’ are used. Then, the radius of the circular orbit iR, = 6778km, the orbit
rate isn =1:1291 10 3rad/s.

There are several underlying assumptions common in all of our results. First, we are
assuming that all satellites will be able to communicate with the others once per each step.

32



We assume that the communication between agents is synchronous and lossless, and can be
accomplished within one stepdt. Similarly, we are assuming that the control action can
be completed within one stepdt. Second, we are ignoring any fuel constraints associated
with the thruster. Third, we are assuming that each satellite has perfect observations of its
current location.

Task descriptions : We evaluate our proposed model on three di erent control tasks by
modifying the MAPE [81].

1. Rendezvous : Each agent tries to reach its preassigned goal while avoiding collisions
with other entities in the environment. The episode length of this task is 25, with a
time step of 30 seconds, representing a simulation duration of 12.5 minutes

2. Cluster Formation : There is a single landmark, and the agents try to position
themselves in arN -sided regular polygon with the landmark at its center. The episode
length of this task is 30, with a time step of 30 seconds, representing a simulation
duration of 15 minutes

3. Trailing Formation : There are two landmarks, and the agents try to position them-
selves equally spread out in a line between the two. The episode length of this task is
30, with a time step of 30 seconds, representing a simulation duration of 15 minutes

Figure 3.2 provides a visual of the three environments. We rst focus on tHeendezvous
task environment in sections 3.7.1 and 3.7.3, and 3.7.5. The performance on the other tasks
is shown in Section 3.7.4. We note that the episode length is the same for both training and
evaluation. Longer time periods can be modeled in our framework by either increasing the
time step within an episodedt, or increasing the overall episode length.

3.7 Results

3.7.1 Transfer learning

Our rst experiment serves to demonstrate the e ectiveness of transfer learning from a
ground environment to a space environment when compared to other similar MARL al-
gorithms. We compare against the best performing of several popular MARL algorithms:
RMAPPO, VDN [96], RMADDPG [104], QMIX [95], and MATD3 [93].

RMAPPO - We adapt [94] to include a recurrent neural network (RNN) to mine useful
information hidden in the historical observations, as done in [90, 105]. After extensive testing,
we found that the addition of the RNN leads to stronger overall performance in the ground
and space environments.

VDN - We add a recurrent neural network to the original implementation of Value
Decomposition Networks[96].

RMADDPG - We use the RNN adaptation of MADDPG as introduced in [104]. Similar
to RMAPPO, the addition of the recurrent neural network enables the model to learn time
dependencies across observations and communication.

When determining which of the three baselines would represent a representative compar-
ison, we tested their performance when using both local information, as with SpaceMARL,

33



or global information. When an algorithm is using local information, each satellite's ob-
§ervation is only its own state and goalo,((',)C = [p®;v®; pé'gal]. By comparison, in a glo_bal
information structure, a satellite also has access to the position of all other agents in the
environment, of1, = [p; v; pl) s piher 1. wherep,, comprises the relative positions of all

other entities in the environment.

Algorithm Name Information Required Communication

Mode Between Satellites
Global RMAPPO Global Complete
Local RMAPPO Local None
VDN Global Complete
RMADDPG Global Complete
DGN Local Neighborhood
SpaceMARL Local Neighborhood

Table 3.1: The type of information that is passed between satellites, and the assumptions
on the amount of communication that occurs for each baseline.

The speci ¢ information modes of each baseline algorithm, and the amount of message
passing assumed between agents are shown in Table 3.1. The "Required Communications
Between Satellites' column indicates how many other satellites the satellite will communi-
cate with at each time step. A designation of "Complete’ means that each satellite must
communicate with every other satellite at each step. A designation of 'None' means that
the satellite does not communicate with any other satellite during the whole episode. A
designation of "Neighborhood' means that the satellite is communicating with some subset
of satellites within its sensing range.

Figure 3.3 shows the training performance of SpaceMARL and the aforementioned base-
lines. The transfer learning model was initialized using weights trained on a ground envi-
ronment and then trained in the space environment. Consequently, in Figure 3.3, we o0 set
the plot of SpaceMARL with transfer learning by 200,000 steps (the number of steps used to
train the ground-based model). We trained each algorithm. The shaded area envelops one
standard deviation of the runs.

Three of the baseline methods (RMAPPO [94], VDN [96] and RMADDPG [104]) achieved
their best performance when using global information. We also explored the performance
of QMIX [95] and MATD3[93], which are excluded from the gure as their performance
was poor, and required signi cantly longer training times to reach rewards comparable to
VDN and RMADDPG even when using global information. While the assumption of global
information sharing can help determine a performance bound, it is not realistic in practice.
By contrast, SpaceMARL (both with and without transfer learning) uses only local informa-
tion, and requires satellites to only communicate when they are within sensing proximity of
one another. Over the training period, SpaceMARL with transfer learning reaches a similar
reward to the global RMAPPO [94], despite needing less information. This nding indi-
cates that the quality of the information, rather than its quantity, is an important driver of
performance. We also compare SpaceMARL's performance against a variant of RMAPPO
that uses local information. In this local RMAPPO structure, each satellite only has access

34



Figure 3.3: SpaceMARL performance against comparable algorithms in the Space Environ-
ment.

to its own observations. Therefore, the performance of local RMAPPO sets a minimum
performance bound for the RMAPPO algorithm, illustrating a case where satellites are not
cooperating with one another. Since SpaceMARL outperforms local RMAPPO, our ap-
proach can strike a balance between the communication requirement of global RMAPPO,
and the independence of local RMAPPO. This further validates that our methodology is

able to synthesize locally available information meaningfully and perform better than if the

satellites had operated independently.

Furthermore, we see in Figure 3.3 that SpaceMARL with transfer learning outperforms
the SpaceMARL model that was trained from scratch on the satellite environment. When
learning from scratch, SpaceMARL needs to learn both the dynamical model and the reward
optimization by learning how to get to the assigned goal. Through transfer learning, the
model is able to focus on learning the dynamics, because the reward optimization process is
already learned to some extent in the prior ground model. Another bene t of the transfer
learning model is that it is not vulnerable to seed initializations. Through training, we
observe that certain seeds have better initializations, which help the algorithm to learn faster
and, therefore, better. By using the weights from a ground model, the transfer learning model
is not dependent on these random seed weight initializations. Because of this, the standard
deviation of the transfer learning is signi cantly smaller than classical SpaceMARL. These
results indicate that ground-based models can be used to accelerate training for space tra c
applications.

Based on the above results, the bene ts of using SpaceMARL with transfer learning for
such space applications are mainly two-fold: (1) The simplicity of the ground dynamics and

35



the availability of more established ground simulation environments make transfer learning
from ground to space an attractive approach, and (2) SpaceMARL with transfer learning
appears to be less susceptible to the performance of the random seeds used in training.

3.7.2 Scalability

. Test | m=3|m=5|m=10
Train

Reward/m 61.57 60.21 57.78
n=3 T 0.44 0.44 0.43
(#col m || 036 | 0.77 1.41

S% 98 94 96
Reward/m 60.52 60.52 57.07
n=5 T 0.44 0.44 0.44
(# col)) m 0.78 1.28 1.41

S% 98 98 91

Table 3.2: Performance metrics obtained by training SpaceMARL on a space environment
with n satellites and testing it on one withm satellites: (a) Total reward obtained in an
episode per agent, Rewardm. (b) Fraction of episode taken on average by agents to reach
their goal, T (lower is better). (c) Average number of collisions per agent in an episode,
#col =m (lower is better). (d) Success rateS%: percentage of episodes in which all agents
can get to their goals (higher is better).

The rst experiment, shown in Table 3.2, demonstrates the scalability of our algorithm
when trained onn agents and tested onm agents. The number of obstacles is held constant
to be 3 throughout both all training and evaluation. When evaluating the connectivity
throughout the experiments, we found that each agent maintained a connection with at
least one entity in the environment more than90% of the time, meaning that the vast
majority of the experiment involves information-sharing between entities. We nd that in
all scenarios considered, our approach can control the satellites to reach their goals within
approximately 44% of the episode length. As expected, the number of collisions per agent
increases when there are more satellites (i.e., the environment has become more dense). As
mentioned in Section 3.5, these values can be improved further by modifying the reward
function or by using control barrier functions.

A key nding is that the reward per agent remains approximately the same even when
the model is trained withn < m. Our approach also has a high success rate for unseen
scenarios, as evidenced by its success rate.

3.7.3 Sensitivity to perturbations

Table 3.3 demonstrates the performance of SpaceMARL with transfer learning in the per-
turbed satellite environment for 3 agents and 3 obstacles on thendezvoustask. The
transfer learning model was initialized using weights trained on a ground environment and
then trained in the perturbed space environment model for each specic inclination. To
produce the results in the table, we ran 100 evaluation scenarios.

36



We rely on several metrics to analyze the performance of our algorithm across 100 test
episodes:

1. Average Reward: The total rewards obtained by the agents during an episode. A
higher value corresponds to better performance.

2. Success Rates: Percentage of test episodes in which all agents are able to get to their
goals, denotedS%. A higher value corresponds to better performance.

3. V per agent: The average V in (m/s) each agent uses per episode, averaged
across 100 episodes. We note that the action space allows for the satellites to take null
actions. These null actions are not included in the V, only movements in the X
and vy directions. A lower value corresponds to better fuel e ciency.

We nd that even in perturbed environments, the algorithm learns e ectively, as demon-
strated by the high success rates and average reward values. The total amount o¥
per agent remains roughly the same in each episode, indicating that the evaluation scenarios
themselves had little variation across inclinations. We also tested the transfer learning model
on perturbed satellite environments with di erent inclinations than what it was trained on
and found that it performed similarly.

Inclination () 0° 28° 45° 54° 63° 72° 81° 90°
Average reward 170.10 166.33 167.07 169.73 168.14 171.78 174.29 169.76
Reward Standard deviation 6.32 6.18 6:.09 3.07 8.85 5.45 3.02 6.10
Success Rates 97 99 100 98 98 98 97 97
V per agent 0.19 0.19 0.19 0.22 0.18 0.18 0.19 0.18

Table 3.3: Sensitivity of SpaceMARL with transfer learning to di erent perturbations.

3.7.4 Performance in Other Task Environments

We then tested the e ectiveness of our algorithm in more tasks that require more intricate
coordination. In the Rendezvoustask environment, coordination amongst agents was re-
quired only for collision avoidance (both with other agents and obstacles) since the goal
positions for all the agents were predetermined. For th€luster Formation and Trailing
Formation tasks, the agents not only need to coordinate for collision avoidance but also
need to develop consensus on their goals. Table 3.4 shows the success rate, the fraction of
episodes taken to complete the task, V, the number of collisions, and distance traveled per
agent in the Cluster Formation and Trailing Formation tasks across 100 episodes. Global
and local RMAPPO are used as a point of comparison, as RMAPPO does not use the GNN
structure, and can better illustrate the performance of our algorithm.

In addition to the metrics used in Table 3.3, we also rely on several additional metrics to
characterize the performance of our algorithm across 100 test episodes:

1. Collisions: The total number of collisions (both agent-agent and agent-obstacle) that
agents had in an episode. The lower the metric the better the performance of our
algorithm.

37



2. Distance traveled per Agent: The overall distance an agent travels to get to its
goal, in meters. A lower value corresponds to more e cient path planning.

We note that all results presented in Table 3.4 are from evaluation, meaning that the
algorithms no longer receive critic feedback and are relying on xed weights to determine
performance. As shown by Table 3.4, SpaceMARL is still able to achieve a success rate of
relatively high success rate across all scenarios in the di erent environments while taking a
similar fraction of the episode to complete as global RMAPPO. For theluster and trailing
tasks, the performance of SpaceMARL could be further improved through additional reward
tuning parameters that emphasize the importance of distance between agents.

. Algorithm
Task Agents Obstacles Metric Global Cocal Space
RMAPPO RMAPPO MARL
T 0.40 0.83 0.44
Rendezvous 3 3 S% 100 39 08
V per Agent 0.22 0.15 0.19
Collisions 0.46 4.60 0.38
Dist Traveled per Agent 1297.33 854.70 1275.66
. T 0.39 0.78 0.50
Cluster Formation 4 1 S% 98 50 74
V per Agent 0.16 0.27 0.16
Collisions 0.07 0.35 0.28
Dist Traveled per Agent 1231.33 645.35 1426.66
. . T 0.41 0.75 0.54
Trailing Formation 3 2 S% 100 47 83
V per Agent 0.20 0.13 0.15
Collisions 0.33 3.89 0.36
Dist Traveled per Agent 1333.33 1346.66 1469.0

Table 3.4: Performance of Global RMAPPO, Local RMAPPO and SpaceMARL on the
rendezvouscluster formation, and trailing formation tasks.

The V per agent and distance traveled per agent metrics reveal more about the di er-
ences in performance between Global RMAPPO and SpaceMARL in tietister and trailing
tasks. SpaceMARL travels a further distance over the course of an episode but uses a similar
amount of V, indicating that the timing of the algorithm's action selection led the agents
to move further over the course of the episode. SpaceMARL did not compensate for this
increased distance with additional actions that led the satellites to reach their goal, leading
to lower success rates in both tasks.

Regardless of task, local RMAPPO performs worse than SpaceMARL. In the local
RMAPPO structure, each satellite only has access to its own observations and can be con-
sidered a minimum performance bound where satellites learn to navigate without communi-
cation from other satellites.

While still not as e ective as SpaceMARL, local RMAPPO achieves lower collision rates
in the cluster task over therendzevousand trailing tasks. This reduction in collision rate
indicates that the path planning involved with this task involves few satellite-to-satellite

38



interactions. In the rendzevousand trailing tasks, local RMAPPO performs signi cantly
worse, resulting in a signi cantly higher number of collisions than with global RMAPPO and
SpaceMARL. These ndings indicate that in these tasks, there is some value in satellite-to-
satellite communications to reduce collision.

When comparing SpaceMARL's performance on the three tasks, it performs the best on
the rendezvous task. The current reward function prioritizes goal-reaching, rather than more
nuanced movements like approximate positioning.

3.7.5 Value of sharing goals

Figure 3.4: The agents in the goal sharing case share their intended nal location

We use our model to evaluate the value of satellites sharing goal information (i.e., sharing
their orbits, and any associated changes) with each other. To do this, we consider the
SpaceMARL model that was trained from scratch in the space environment. We alter the
previous experimental set-up to focus on = 2 satellites. We initialize the satellites such
that they both have the same distance to travel to their respective goals. Furthermore,
their respective initial positions and goals are set so that their most direct path from the
start to the goal intersects with the other satellites midway through their path, as shown in
Figure 3.4. We selected the episode length and the minimum distance between a satellite's
starting position and its goal to ensure that both satellites had su cient time to make it to
their respective goals, but not so much time that wait-and-see behaviors could emerge in the
absence of information-sharing.

To focus on the information learned directly from sharing, we compare two cases: the
rst in which the satellites are sharing their goal information with each other (thesharing
case), and the second in which they are not (thieidden case). Goal-sharing can be thought
of as a proxy for the future movements of the satellite, as it will seek to move towards the
goal over the course of an episode.

We evaluate four metrics to demonstrate the di erence in performance as a result of
sharing:

1. Collision Dierence: For each scenario, denoted, we compare the di erence in the
number of collisions in the hidden casé; to that of the shared cases;. A positive
value indicates that there are more collisions in the hidden case.

39



2. Distance Remaining We devised this metric to assess how close the satellites were
to the goal at the end of the episode, in each of 100 random scenarios. We use the
following equation to determine the distance remaining ratio.

. .. hi; nal Si; nal
Distance Remaining= Shortest Path (3.11)

hi e @nd s; na represent the sum of the distances of the two satellites to their re-

spective goals at the end of the episode for the hidden and sharing cases in scemario
respectively. We normalize this value using the shortest possible paths that the satel-
lites could have taken to the goal. A positive value indicates that at the end of the

episode, the satellites are farther away from the goal in the hidden case than in the
goal-sharing case.

3. Distance Traveled This metric is used to assess the distance traveled by the satellites
in the hidden case compared to the sharing cass.sum and h;.sym represent the sum of
the total distances traveled by each satellite during scenario We rely on the following
equation to scale the di erence of distance traveled di erence by the shared case. Here,
a positive value indicates that the hidden cases had to travel further than the shared
cases.

Distance Traveled= Pisun__ Sisum (3.12)
Si; sum

4. 'V Dierence : This metric was used to assess the di erence in fuel usage between the
hidden and sharing cases. In our reinforcement learning model, each satellite has the
option to exert a control action from a discrete sef0; +x; Xx;+y; y]. The magnitude
of this control action is xed. To calculate the di erences in V value, we compared
the number of non-zero control actions taken by the hidden and shared satellites for
each scenario across 100 scenarios. A positive value indicates that the hidden case had
more control actions, and thus more V than the shared case.

Metric
Number of collisions D|stancet0rzr2a|n|ng Distance traveled V
Average Improvement 13.0% 26.8% 79.0% -16.5%
Standard Deviation 81.0% 182.0% 132.0% 161.8%

Table 3.5: Percentage improvements through goal information-sharing, results are averaged
over 100 evaluation episodes.

Table 3.5 shows our results. Through goal-sharing, we were able to achieve 13% lower
collision rates on average, along with 26.8% and 79% improvements in the remaining distance
to goal and distance traveled, respectively. These bene ts were achieved at the expense of
only a 16.5% increase in the V. While the overall number of collisions in our model can be
addressed through the inclusion of additional collision avoidance features like learned control
barrier functions or arti cial potential functions, the improvements in path planning through
sharing are particularly signi cant. While performing these experiments, we also evaluated

40



the reward rates but found that sharing had negligible e ect. We hypothesize that this is
because the hidden case is able to reach the goal and thus receive the goal-reaching reward
in the majority of cases. In our reinforcement learning framework, the goal-reaching reward

is signi cantly higher than the penalties that occurred while currently not at the goal. As

a result, when the hidden satellites successfully reach their goal, they are able to achieve a
reward evaluation similar to the one they would have in the sharing case.

We note that this result possesses high variability, as demonstrated by the standard
deviation across all four metrics. Upon further examination of the 100 scenarios, we at-
tribute this variance to the environment's sensitivity to action selection, and the algorithm's
threshold for goal reaching. When examining the cases that had highelV usage, we found
that SpaceMARL tends to over-compensate with additional non-zero actions when it has
missed the goal. This results in increasedV usage, and exacerbates the distance between
the satellite and its goal. As a small set of cases have this emergent behavior, this further
strati es the standard deviation. Another explanation for the high variance of these results
is the threshold for goal reaching itself. There exists a subset of solutions that nearly reach
the goal, but are not close enough. In this subset, SpaceMARL tends to overcorrect to get
near the goal again, resulting in a worse solution than the one that nearly reached the goal.
This behavioral subset results in higher V usage and distance remaining to the goal, thus
creating a wider spread of possible results. The behavioral pattern of over-correcting via
more non-zero actions can be attributed to our action space being discretized rather than
continuous. Due to this, the algorithm is unable to select the magnitude of acceleration it
should apply, and instead must repetitively use sat, and u, parameters. Future work will
explore using a continuous action space, and more sophisticated control methodologies.

3.7.6 Heterogeneous Agents

Next, we use our model to evaluate the impact of the individual actors themselves (i.e.,
who is sharing). We perform an experiment to assess the impact of actors with di erent
levels of knowledge on the resultant satellite coordination. As mentioned in section 3.3, we
rely on a satellite entity graph encoding, where entities are separated into three categories
entity _type(j) 2 f satellite ;obstacle ;goalg. We alter the experimental set-up to fo-
cus onN = 3 satellites performing arendezvoustask, where each of the satellites must
reach a goal location. We initialize theN = 3 satellites such that 1 of the 3 satellites has
reduced observation abilities, and thus the observation of its state contains a Gaussian noise
parameterg = o + R as shown in Figure 3.5.

Table 3.6 shows the results of the sensitivity study of di erent 5« Vvalues, across 100
evaluation scenarios. For each noise value, we trained a model in the space environment
with the corresponding noise level added to the agent's observation abilities. Then, we
evaluate the performance of these trained models across several metrics. First, we calculate
the average reward across all 100 scenarios, as well as the standard deviation of the reward
parameters. Next, we calculate the sucesss rate, which is the number of times all three
agents successfully went to their goal out of a 100 cases. Finally, we evaluate the number of
control actions used throughout an episode on average for each agent. This metric is used
to determine how much satellite's need to maneuver to get to get to their goal.

We note that across all parameters, SpaceMARL's performance possesses high variabil-

41



Noise ( ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Reward 3350 43.34 3140 3154 2031 37.82 2118 2452 3243 25.965

Reward Std 7510 6514 7816 6363 6767 7778 6540 7672 7112 8029
Success Rates 62 80 41 48 35 67 27 43 53 34
V per agent 19 20 20 19 19 20 21 21 22 22

Table 3.6: Comparison of SpaceMARL's performance with di erent noise parameters across
100 evaluation scenarios.

ity across evaluation scenarios, as demonstrated by the reward standard deviation. When
looking at trends for individual parameters, it is hard to determine if there is a clear
relationship between the noise and the resultant success rates and reward amounts. The
experiments with  parameters in range [0.1, 0.5], achieve higher success rates on average
(avg 53.2) than those than those in the larger sigma range [0.6, 1.0] (avg success 44.8). Sim-
ilarly, the reward for the smaller values is also larger (avg 32.01 vs avg 28.38). Moreover,
the general trend for the number of actions taken shows that as increase, so does the
number of control actions taken over the course of the episode.

With the impact of explored, we evaluate the algorithms ability to interpolate with dif-
ferent classes of satellite (i.e. one base satellite class, and one injected with the noise parame-
ter ). As mentioned in section 3.3, we rely on a satellite entity graph encoding, where entities
are separated into three categoriesntity type(j) 2 f satellite ;obstacle ;goalg. We
alter the experimental set-up to focus orN = 3 satellites performing arendezvoustask,
where each of the satellites must reach a goal location. We initialize tié = 3 satellites
such that 1 of the 3 satellites has reduced observation abilities, and thus the observation of
its state contains a Gaussian noise parametey = o + R as shown in Figure 3.5.

Figure 3.5: Two entity-graph formulations when additional classoise_sat is added

We model two graph entity embedding formulations. In the rst formulation, every
object in the environment is classi ed asentity_type(j) 2 f satellite ;obstacle ;goalg.
As shown in the left pane of Figure 3.5, in this formulation, the noisy satellite has entity
type satellite . These classi cations are transformed into a one-hot encoding, where, for
example, a satellite class would be represented as [1,0,0]. This one-hot encoding is used as an
input in the graph transformer in the x! variable (see Fig. 1). In this formulation, we wanted
to test if SpaceMARL would learn to weigh individual nodes di erently to compensate for
two classes of satellites.

42



We compared SpaceMARL's performance in this rst formulation against a second for-
mulation where we now add another entity type encodingnoiseSat (as shown on the
right-hand side of Figure 3.5). In the second formulation, we increase the number of cat-
egorizations so that every object in the environment is classi ed asntity type(]) 2
fnoise_satellite ;satellite ;obstacle ;goalg. As shown in the right pane of Figure 3.5,
in this formulation, the noisy satellite has entity type noise_satellite . These classi ca-
tions are transformed into a one-hot encoding, where, for example, a noisy satellite class
would be represented as [1,0,0,0]. In this formulation, we wanted to see if the existence of
an additional classi cation type would help SpaceMARL learn to coordinate heterogeneous
agents rather than just the graph weighting of the rst formulation.

We rely on several additional metrics to assess the impact of heterogeneous agents with
di erent quality of observations. First, we evaluate the average proportion of time over
an episode that each satellite class is connected with each other (Average Connectivity of
Base-Noise Satellites and Average Connectivity of Base-Base Satellites). Next, we evaluate
how much each satellite class traveled over the course of the episode, in meters (Average
Base Satellite Distance Traveled and Average Noise Satellite Distance Traveled). Then, we
analyze the success rate of each class of satellite in getting to their individual goal (Base
Satellite Success Rate, and Noise Satellite Success Rate). Finally, we evaluate the reward
achieved in each case to assess SpaceMARL's overall strength in coordinating heterogeneous
agents.

Graph Type Class
Dierent Dierent Dierent Same Same Same
Entity Entity Entity  Entity Entity  Entity
Types Types Types Types Types Type

=1 =0:5 =0:1 =1 =0:5 =0:1
Average Base Satellite 1.49 1.29 122 123 127  1.30
Distance Traveled
Average Noise Satellite 2.32 1.08 209 228 228 211
Distance Traveled
Base Satellite Success Rate 98.71 98.86 100 98.71 97.61 99.5

Noise Satellite Success Rate 14.89 11.36 14.63 17.94 10.1 15.55
Average Reward per Episode  113.28 112.59 107.01 105.84 108 97.2

Table 3.7: Dierence in performance for alternate satellite-entity graph formulation.

Consistent with our previous experiments, we nd that the average reward per episode is
greater when the noise level is lower (as was seen in theendezvoudask). When evaluating
the di erence in performance between the two entity type formulations, we observe very
modest improvements in the rewards, suggesting that additionahtity type de nitions in
the graph formulation can provide a marginal improvement in learning.

When evaluating the performance of the satellites on a class-speci c level, the base satel-
lites had a near-perfect success rate at thendezvoustask, whereas thenoise satellites
struggled to reach their goal with a success rate of roughly 15%. Furthermore, the overall
path-planning abilities of the noise satellite class were limited due to their noisy obser-

43



vations; the averagenoise satellite class traveled nearly twice as far as the average base
satellite class.

3.8 Chapter summary and contributions

This chapter discussed the development of a combined graph neural network multi-agent
reinforcement learning algorithm for the control of a set of satellites in a close environment.

The initial part of this chapter focused on presenting our multi-agent reinforcement learn-
ing framework, SpaceMARL, highlighting the development of the space environment and the
transfer learning model employed in this work. Then, we demonstrated the e ectiveness of
transfer learning by comparing SpaceMARL's performance in the space environment against
several other popular MARL frameworks.

The next experiment evaluated the scalability of SpaceMARL, and we demonstrated
that the algorithm is able to train on n agents and successfully evaluate on n agents.
We then considered a more sophisticated variant of the environment that includes J2 per-
turbations and tested SpaceMARL's performance. Section 3.7.4 presented the performance
of SpaceMARL across three tasksrendezvous trailing formation, and cluster formation.

We compared SpaceMARL's performance against a global sharing model of RMAPPO to
characterize the best-case performance where the satellites have perfect communication and
sensing abilities.

With SpaceMARL's performance in the space environment established, we then per-
formed several studies that used its graph structure to characterize the impact of di erent
pieces of information and the impact of di erent actor characteristics.

The speci ¢ contributions of this chapter are the following.

Contribution 3.1 Development of a multi-agent reinforcement learning framework
for space applications, named SpaceMARL

Contribution 3.2 Evaluation of the e ectiveness of transfer learning from ground
to space-based applications

Contribution 3.3 Ablation studies of the impact of di erent graph formulations on
learned satellite coordination in space-based environment

44



Chapter 4

Asynchronous and
Communication-Limited Multi-Agent
Reinforcement Learning

4.1 Introduction

We consider the problem where a set of satellites are making a set of decisions asynchronously,
and communication between them is limited. In extreme environments such as those un-
derwater or in space, the frequency of communication between agents is often constrained
[106, 107]. For example, a satellite may not be able to reliably receive and react to messages
from other satellites synchronously due to limited onboard power and communication de-
lays. In these scenarios, agents aim to establish a communication protocol that allows them
to operate independently while still receiving su cient information to e ectively coordinate
with nearby agents. We focus on an alternate framework to SpaceMARL that accounts for
time di erences between the actions and observations of di erent satellites.

The classical MARL formulation follows a synchronous framework, where all agents take
actions simultaneously, with actions executed immediately at each time step. Similarly,
communications between agents are assumed to occur instantaneously, frequently, and syn-
chronously, often with agents broadcasting their state to every other agent in the environ-
ment. As a result, traditional MARL algorithms are poorly suited to asynchronous settings
where agents operate on independent time scales and cannot frequently communicate with
one another. While prior work has explored how to coordinate agents using less commu-
nication, di erences in message encoding approach can signi cantly impact performance.
Furthermore, little attention has been given to achieving such coordination asynchronously.
Unfortunately, existing asynchronous approaches often increase communication to compen-
sate for the lack of synchronized coordination among agents. Our work builds on prior
work in multi-agent communication by introducing an asynchronous MARL framework that
enables agents to minimize communication while completing navigation tasks.

In this chapter, we discuss the development of AsyncCoMARL, a graph transformer-based
communication protocol for MARL that relies on dynamic graphs to capture asynchronous
and infrequent communications between agents.

45



AsyncCoMARL is an asynchronous MARL approach that leverages graph transformers to
learn communication protocols from dynamic graphs. In this setting, agents seek to learn the
communication protocol that best utilizes asynchronous and infrequent communications from
nearby agents. Each agent's graph transformer utilizes a dynamic weighted directed graph
to learn a communication protocol with other active agents in its vicinity. The underlying
MARL algorithm uses this learned graph transformer encoding in both the actor and the
critic to optimize action selection, leading to e ective cooperation with less communication
between agents. We conduct experiments in two environments, Cooperative Navigation and
Rover-Tower, chosen to replicate the communication-constrained settings of space missions
and planetary rover exploration. We nd that strategies learned by AsyncCoMARL use
less communication and outperform other MARL methods. The main contributions of this
chapter are:

1. We propose AsyncCoMARL, a graph transformer-based communication protocol for
MARL that relies on dynamic graphs to capture asynchronous and infrequent commu-
nications between agents.

2. We empirically evaluate AsyncCoMARL on two MARL benchmarks (Cooperative Nav-
igation [76] and Rover-Tower[108]) and show that our method can achieve superior
performance while using less communication.

In this chapter, we will rst introduce our methodology in Section 4.2. We present our
results in 4.3.2, and discuss key highlights and summarize the key contributions of this work
in Section 4.6.

4.2 Methodology

4.2.1 Asynchronous Formulation

In traditional multi-agent reinforcement learning, agents always take action steps synchronously
without considering the communication constraints associated with their action selection.
For instance, when exploring unknown environments, a single rover may navigate to an area
where they are unable to communicate with others, or the duration of transmitting a single
message may take several time steps. To model these communication-action costs, we de ne
a new time scale to account for the speci c actions each agent has taken at di erent time
steps. As shown in Figure 4.1,{') represents the time of the rst action that agenti has
taken. In Figure 4.1 panel (b), all three agents take their rst action at the same, resulting

in the same time reference point for;. However, the next timet that each agent takes their
next action is di erent (agent 1 2(1) = t;, agent 2 2(2) = ts agent 3 2(3) = tg). Rather than
incorporating all time steps into the replay bu er, we only include those steps where the
agents are taking an action. As a result, the replay bu er of each agent's trajectory is based
on their sequence of actions instead of To improve the generalizability of our algorithm

to di erent periods of time between actions ; and ,, during training, we randomly generate

the period between di erent actions. We refer to this randomized parameter as, and it
determines when an agent will take a subsequent action.

46



Figure 4.1: Overview of AsyncCoMARL: (a) Environment. Agents within our environment
take actions and observations asynchronously. To encourage collaboration, when agents take
actions at the same timet, they receive a shared reward. The sequence of actions and ob-
servations for agenti is referred by timescale (). The arrows indicate data transmissions,
which represent the most recent graph observatiom('a)gg: b) Asynchronous Temporal Graph
Representation. Each active agent within our environment is translated to become a node
on the graph, and they can communicate with other agents located nearby within distance

. Our graph representation is dynamic, meaning that graph edges connect and disconnect
depending on agent proximity. ¢) Agenti's observation is combined with its node observa-
tions from the GNN, X(;Iggg and fed into the actor network. The critic takes the full graph
representationX 544 and evaluates agent's action.

4.2.2 Graph Overview

Graph transformers are a specialized type of transformer model designed to handle graph-
structured data. In addition to the traditional transformer's ability to capture long-range
dependencies, graph transformers enable the model to understand both local node interac-
tions via graph edges and global context via self-attention.

As an input into our graph transformer, we form an agent-entity graph [54], where every
object in the environment is assumed to be either an agent, an obstacle, or a goal. All
objects within the environment are transformed to be nodes on the graph, with node features
xj =[P ;v p%% ; entity_type(l) ]wherep ;V ;7 are therelative position, velocity, and
position of the goal of the object at nodg with respect to agenti, respectively. If node
j corresponds to a (static/dynamic) obstacle or a goal, we sgf°®  p . To process the
entity_type categorical variable, we use an embedding layer.

Our graph formulation is dynamic, meaning that edges are formed depending on an
entity's proximity to other objects in the graph and their corresponding communication
interval, as shown by(b) in Figure 4.1. We de ne an edge to exise 2 E between an agent
and another agent if they are within a "‘communication radius' of each other and if they
are taking an action at the same time step. Edges are formed between agents and obstacles
or landmarks when they are merely within the agent's communication radius. As landmarks
and obstacles do not have decision-making abilities, their presence can be sensed at every
time step the agent is in proximity. When an edge is formeds; , it has an associated edge

47



feature given by the Euclidean distance between the entities involvedand j .

For a complete representation of our graph structure, we create an adjacency matrix to
represent the connectivity between di erent nodes on a graph. An adjacency matri is
a square matrix used to describe the connections between nodes on a graph, where each
elementA;; represents the presence or absence of an edge between naohel nodej. Our
graph is directed and weighted, so the value in the adjacency matrix fé; is proportionate
to the weight of the edge between nodesand . To account for the fact that our agents can
take actions at di erent time steps, we rst introduce the variabled; to represent the current
status of the agent, whereal; = 1 if the agent is active andd, = O if the agent is inactive. We
create an additional matrix to re ect the activity status of all nodes in the graphD 2 RN N
whereD[i;j ] = di d;, whered; and d; re ect whether nodei and nodej are active. This
is used to ensure that interactions can only occur if both nodes are active. The masked
adjacency matrix A™asked js given by the element-wise producA D . The resulting masked
adjacency matrix dynamically updates as agents become inactive, allowing the algorithm to
focus on interactions between remaining agents. Similarly, a death mask enforces that no
interactions or learning updates are computed for agents whose tasks are already completed.

4.2.3 Graph Transformer

We rely on a graph transformer to encode messages and characterize relationships between
di erent entities in the environment. Our transformer takes the node featureg, and edge
featuresec as input. The graph transformer is based on a Uni ed Message Passing Model
(UniMP) [86] that relies on multi-head dot product attention to selectively prioritize incom-

ing messages from their neighbors based on their relevance. We rely on two layers of this
model, with each layer update de ned as

X
xP= W; X+ i W2 X; (4.1)
J2N(i)

wherex are the node features in the graphi\(i) is the set of nodes which are connected to
nodei, Wy are learnable weight matrices and the attention coe cients. ;; is computed via
multi-head dot product attention

4.2.4 Reward Structure

At every time step, each agent gets a distance-based reward to an assigned g®al; (s ; a(')).
When an individual agent,i, reaches their assigned goal (indicated by), it receives a goal-
reaching rewardR goal(S ; a(')). is 1 if the agent reached the assigned goal and was previously
not at the assigned goal; otherwise, 0. We also penalize agents colliding with other agents or
obstacles in the environment using a collision penaltyC. is a 0/1 variable that indicates

if an agent collided with another agent or an obstacle. The reward for agenfat time step

t then becomes

R(l)(s(l)’ a(l)) = Rdist (S(I), a(')) + Rgoal(s(l)’ a(l)) C (42)

48



Rewards are shared between all agents active at stepThe purpose of sharing rewards
between active agents is to encourage synchronous collaboration when possible.

ct

Ruoa (5;A )= RO(D;ab) (4.3)

4.2.5 Training

For our algorithm, the traditional DEC-POMDP setup is augmented by the existence of the
graph network, transforming the tuple that describes the problem tohN; S; O; A;R; P; ; Gi.
g = G(s;i) represents the graph network formed by the entities of the environment with
respect to agenti. Features of the graph structure are used in the policy gradient learning
architecture.

Our learning architecture relies on a centralized critic, which uses the state-action pairs
and information from the graph formulation. As shown in Figure 4.1, the critic receives the

™ .
full graph embeddings via a global mean pooling operatoKggg = Ni x(;'égg) so that it has

i=1
a global view of the graph representation. The critic updates parameter to approximate
the state-value function for policy

n #

Vo880 Xagg) = Ea R jso=s (4.4)
=0

We then create an individual actor for each agent. Each agentrelies on poIicSi?(a(i)jo(i); g(i)),
parameterized by ; to determine its actiona) from its local observationo() and its local
graph network g. The resultant policy gradient is:

r 3()=E [r log @20";g") v 1(sV;a; X agq (4.5)

Algorithm 1 shows the complete training setup for AsyncCoMARL. As mentioned in
Section 4.2.1, each agernit has its own interval , which determines when it will take a
subsequent action. The interval is reset for each environment scenario to avoid over tting.
During a training episode, an agent's status is marked as active if there have beersteps
since its last action. If an agent reaches its goal before the end of the episode, its status
is changed to 0, thus masking its presence in the masked adjacency ma#i%2sk¢d passed
into the centralized critic function.

4.3 Experimental Results

4.3.1 Experimental Setting

We conduct experiments in two environments, Cooperative Navigation and Rover-Tower,
speci cally chosen to emulate real-world scenarios with communication constraints. These

49



Algorithm 1 AsyncCoMARL Training setup

Initialize a decentralized policy network for each agent ~ .
Initialize a centralized critic network V™~
for episode=1: M do
Reset the environment
Reset buer D = {}
for stept=0: T; do
if 9i 2f1;::;ng agent) status = active then
al)  get action
Update ggvironment state witha®

Rl 5 RO
Collect o®; a®; gi;rMj into buer D at @
else
for i 2f1;:;;ng do
a(i) = ,

Update enyironment state with ai®
1, if agenti is nished

mask(i) 0; otherwise
end for
end if
end for
Follow standard MARL update process

end for

two environments replicate communications encountered in space missions and planetary
rover exploration.

The Cooperative Navigation environment was chosen because it simulates the space en-
vironment, a setting where communications are constrained and sporadic but where e cient
coordination is important. We use the Cooperative Navigation environment to evaluate the
amount of communication used in each approach. In particular, we aim to study how fre-
guently our approach requires communications between agents compared to other baselines.

The Rover-Tower environment was chosen as it simulates a real-world planetary explo-
ration scenario involving a rover and a more capable observing tower. We use the Rover-
Tower environment to assess each method's ability to adapt to more complex communication
scenarios. In particular, we aim to study how generalizable each method is to di erent com-
munication scenarios involving agents with di erent observation and communication abilities.

Both the Cooperative Navigation and Rover-Tower environments are implemented in the
multi-agent particle environment (MPE) framework introduced by [109]. MPE involves a set
of agents that have a discrete action space where it can apply a control unit acceleration in the
x andy directions. We evaluate our proposed model in the following two environments:
Cooperative Navigation: [76] propose a modi ed MPE environment that uses the satel-
lite dynamics following the Chlohessy-Wiltshire model [99], where a set pfsatellites are
moving within a 2D plane. Each satellite is tasked with rendezvousing to an assigned goal

50



location by the end of the episode. The Chlohessy-Wiltshire equations are a set of second-
order di erential equations whosex and y components are coupled, thereby increasing the
di culty of the simulation dynamics. We use this modi ed environment to test our exper-
iment due to its relevancy to the problems we are interested in (e.g., environments with
limited communications) and because the agents involved will continue along their relative
trajectories even when not communicating with one another.

Rover-Tower: [108] develop the Rover-Tower task environment where randomly paired
agents communicate information and coordinate. The environment consists of 4 "rovers"
and 4 "towers", with each episode pairing rovers and towers randomly. The performance of
the pair is penalized on the basis of the distance of the rover to its goal. The task is designed
to simulate scienti ¢ navigation on another planet where there is limited infrastructure and
low visibility. Rovers cannot observe their surroundings and must rely on communication
from the towers, which can locate rovers and their destination and can send one of 5 discrete
communications to their paired rover. In this scenario, communication is highly restricted.
Extended descriptions of both environments are included in the appendix.

4.3.2 Evaluation Metrics

We rely on several evaluation metrics to characterize the performance of our algorithm
against other baselines. We selected these metrics to assess the agent's ability to successfully
navigate to their goals without collisions.

A

Communication frequency  (fc.omm): Average ratio of the number of messages passed
between agents over the maximum number of communication opportunities in the
episode.f .,omm Of 1 indicates each agent messaged every other agent at every time step
in the episode (lower value indicates the model is more message e cient).

Success Rate (S%): Percentage of episodes in which afl agents are able to get to
their goals (higher is better).

Fraction of Episode Completed (T): The fraction of an episode that agents take
on average to get to the goal. If the agents do not reach the goal, then the fraction is
set to 1. For each episode, tha episode fractions are averaged together; this number
is then normalized across all evaluation episodes (lower is better).

Average Collisions (# col): the total number of collisions that agents had in an
episode, normalized by the number of agents and then normalized by the number of
evaluation episodes (lower is better).

While the standard reported metric for MPE environments is the global reward, we have
not included it in our example results. Since we introduced a new reward formulation for
our model, we found reward comparisons challenging to both interpret and compare, given
the di erent reward functions that the baselines were designed with. Similar to [110], we use
the success rate metric to indicate the overall success of the total number of agents.

51



4.3.3 Training Details

In the simulation, every policy is trained with 2M steps over 5 random seeds. All results
are averaged over 100 testing episodes. Associated hyperparameters for each baseline are
included in the appendix. All models are generated by running on a cluster of computer
nodes on a Linux operating system. We use Intel Xeon Gold 6248 processors with 384GB of
RAM.

4.4 Motivating Experiment

First, we compare the performance of classical SpaceMARL in the asynchronous setting
against our newer algorithmic variant AsyncCoMARL. We see in Table 4.1 that Space-
MARL fails to learn a policy due to the sparse inputs from in the asynchronous steps in
our asynchronous environment. The inconsistency in each agent's action taking causes a
signi cant performance di erence, and causes the policies learned to be biased to not take
any action at all. This results in lower overall collision rates due to the lack of agent move-
ment. As AsyncCoMARL was designed with asynchronous time communications in mind,
AsyncCoMARL is able to compensate for the sparse action space and attain a high success
rate by comparison. This experiment motivates us to nd a way in which sparse information
can be leveraged to accommodate stringent communication budgets.

Metrics AsyncCoMARL SpaceMARL
Communication Frequency {comm) 0.24 0.78
Success Rate§%) 92 0
Episode Completion (T) 0.22 1.0
Average Collisions (#col) 0.76 0.0

Table 4.1: Comparison of SpaceMARL against the asynchronous variant, AsyncCoMARL.

4.5 Comparison of AsyncCoMARL with Other Methods

Algorithm N =3 N =5 N =7 N =10

feomm#| T# [#col #|S%" || feoom#| T# |#col #]S%" | feomm #| T# |#col #]SW" | feomm #| T# |#col #|S%"
GCS [111] 1.0 0.36 0.34 100 1.0 0.42 1.7 98 1.0 0.39 2.86 100 1.0 0.78 .38 1
asyncMAPPO [112] 0.21 0.1Q 0.86 10 0.2Q 0.82 6.05 1P0 0.19 D.23 12.3 |[100 D.15 0.14 P25.68 100
Actor-Attention-Critic [108] 0.21 0.42 0.30 100 0.16 0.47 1.20 10 0.11 0449 252 100 0408 0.52 4.2 100
TransfQmix [110] 0.13 0.83 0.02 42 0.16 0.96 0.12 30 0.17 (.96 0.28 (B3 0.18 0.96 0.12 19
CACOM [113] 0.26 0.99 0.17 0 0.12 0.97 0.35 Q 0.1p 097 0.87 0 0/10 0.98 1.46 0
DGN [52 0.20 0.96 0.12 0 0.13 0.99 0.0 q 0.0p 0/99 0.07 0 0/06 0.98 Q.42 0
AsyncCoMARL 0.10 024 p.45 97 p.08 023 0.85 )8 08 0.5 216 86 .05 034 638 86

Table 4.2: Comparison of AsynCoMARL with other baseline methods for scenarios with 3,
5, 7, and 10 agents in the Cooperative Navigation environment.

In this section, we demonstrate that AsynCoMARL can e ectively learn policies for
navigation even in settings with less frequent and asynchronous communications.

52



We compare our methodology against several alternative MARL frameworks that seek
to provide limited communication.

A

GCS [111]: The authors factorize the joint team policy into a graph generator and
graph-based coordinated policy to enable coordinated behavior among agents.

Actor-Attention-Critic [108]: Actor-Attention-Critic uses a centralized critic with
an attention mechanism that dynamically selects which agents to attend to at any time
point during training.

" asyncMAPPO [112]: The authors extend multi-agent proximal policy optimization
[94] to the asynchronous setting and apply an invariant CNN-based policy to address
intra-agent communication.

" TransfQMix [110]: TransfQMix relies on graph transformers to learn encodings over
the state of observable entities, and then a multi-layer perceptron to project the g-
values of the actions sampled by the individual agents over the g-value of the joint
sampled action.

"~ CACOM [113]: The authors employ a two-stage communication scheme where agents
rst exchange coarse representations and then use attention mechanisms and learned
step size quantization techniques to provide personalized messages for the receivers.

DGN [52]: DGN relies on graph convolutional networks to model the relational rep-
resentation and implicitly models the action coordination.

Performance on Cooperative Navigation Environment

Table 4.2 compares the performance of AsynCoMARL against the other baselines. Although
having a small number of collisions is better, the policies of some of the baseline algorithms
do not signi cantly move the agents from their initial positions after training and, hence,
do not get to the goal. This leads to them having a lower number of collisions. Hence, this
metric should be judged by the success rate in context. Similarly, the episode completion
rate and communication frequency should be considered within the context of the overall
success and collision rates.

When evaluating AsynCoMARL's performance in the context of these other baselines,
our method is able to achieve high success rates and relatively low collision rates, despifé 26
fewer messages being passed between agents. The temporal graph formulation of our model,
which inherently allows communications to be masked to reduce communication overhead
during training, leads to a method capable of handling trade-o s between communication
frequency, success, and collision avoidance.

When comparing AsynCoMARL against other baselines, there are immediate takeaways
from the n = 3 agent case. GCS relies on an acyclic uni-directional graph representation
that requires the most recent action selection at the step prior, resulting in high success
rates at the cost of a signi cantly higher communication frequency. Both asyncMAPPO
and Actor-Attention-Critic demonstrate comparable performance in success and collision
rates forn = 3 agents. Similar to the design of AsynCoMARL, Actor-Attention-Critic is

53



designed to dynamically select which agents to focus on. This redudes,m and leads to
improved success and collision rates. However, this attention mechanism overlooks relation-
ships between agents captured by the graph representation used in AsynCoMARL, leading
Actor-Attention-Critic to have a higher communication frequency and episode completion
rates.

The performance of TransfQmix is comparatively less e ective. TransfQmix exhibits the
lowest collision rates of the algorithms evaluated but at the cost of a low success rate. As
stated previously, low collision rates should be considered in the context of the success rate
and episode completion rate, as it is possible for agents to learn a policy in which they do
not move at all.

Both DGN and CACOM fail to learn meaningful synthesis of agent communication and
have poor success rates as a result. DGN relies on a graph convolutional network, where
all neighboring agents contribute equally to the aggregation of node features. The poor
performance of DGN in this setting suggests that equal weighting of nearby agents leaves
agents unable to capture nuances in the graph structure that are captured through our agent-
entity graph embeddings. As noted in CACOM, the learned gate-pruning contains relatively
high variance in the Cooperative Navigation environment and is subjected to instability.
We believe the complexity of the dynamics in our setting, coupled with the asynchronous
formulation, resulted in learning instability in the gating function and, subsequently, poor
performance.

When considering larger numbers of agenta = 5; 7; 10), we see similar trends. CACOM
and DGN continue to struggle to meaningfully encode information from nearby neighbors
at scale. While asyncMAPPO maintains its strong performance (as evidenced by its success
rate), it also possesses a signi cantly higher number of collisions than AsynCoMARL. The
performance of Actor-Attention-Critic and AsynCoMARL are similar. However, the Actor-
Attention critic approach requires more frequent communication between agents and results
in more collisions in then =5 andn =7 cases. As the number of agents increasesie 10,
we note that the performance of GCS su ers. Upon further inspection, we found that GCS
could match the performance it had on then = 3;5;7 cases with additional training time
(e.g., 2 million steps vs. 5 million steps). This decrease in performance in GCS suggests that
the fully connected graph feature of this model serves to increase computational training
time and hinders the ease of scaling the model.

We note that with the increased number of agents, the communication frequency of
all algorithms generally decreases. This can be attributed to the increase in world size,
resulting in a less dense environment and fewer communications relative to the number of
total communications that would be possible fon = 10 agents. As a result, for then = 10
case, the communication frequencies are relatively low.

Performance on Rover-Tower Environment

Table 4.3 shows AsynCoMARL against the best-performing baselines from the prior experi-
ment. As a reminder, the reward function associated with this environment does not include
any collision penalty, so we do not include theé# col metric. In this environment, rovers
must rely on encoded messages from their corresponding tower to determine their action
selection, whereas towers have more advanced observation abilities. To account for these

54



Metrics
Algorithm feorm #| T# [ S%"
Actor-Attention-Critic [108] 0.21 0.84 | 56%
AsyncMAPPO [112] 0.24 098 0%
TransfQmix [110] 0.40 098 0%
AsyncCoMARL  (our method) 0.14 | 0.55 | 50%

Table 4.3: Comparison of AsynCoMARL with other baseline methods for scenarios with 4
rovers and 4 towers in the Rover-Tower environment.

two classes, Actor-Attention-Critic creates a separate network for the rover class and the
tower class, whereas AsyncCoMarl does not. Despite the fact that AsynCoMARL is using
a singular network to represent both the rovers and the towers, it still achieves a compa-
rable success rate to the Actor-Attention-Critic. Additionally, AsynCoMARL relies on less
communication and produces faster episode completion rates than other baselines, suggest-
ing that AsynCoMARL is a more e cient, generalizable communication protocol for this
environment.

Visualizing the Graph Transformer Weights

To better understand the underlying mechanisms of our graph transformer communication
protocol, we visualize the graph transformer attention weights at three di erent times in an
episode for a single agent in the Cooperative Navigation environment. In Figure 4.2, the
leftmost panel corresponds to the weights at time = 0. In this panel, agentO is unconnected

to any other agents, and thus, the attention weighting for all other nodes is perfectly equal.
The center panel corresponds with = 6 for agent 0, and at this point in the episode, agent

0 is now able to communicate with agen8 due to their proximity. As a result, the attention
weighting of the messages from agent 3 at this time is higher than the other agents, as shown
by the attention weighting panel. The nal rightmost panel corresponds with = 18 for
agent 0. At this point in the episode, the agent is now within the communication range
of agents 1 and 4, as shown by the connecting edges in the agent locations panel. Similar
to what we observed in the second panel, the corresponding attention weights to these two
agents are also higher. Interestingly, we also nd that the attention weight for agent 2 is
also fairly large, despite not being connected via graph. Upon further inspection, we found
that this is attributed to the communication frequencies of agents 0 and 2; both of these two
agents communicated more frequently throughout the episode than agent 0 did with agents
3 and 4. We nd that the graph transformer communication protocol learns to attend to
both agents in proximity to the active agent (e.g., panel 2) but also to those agents from
whom it gets more frequent communication (e.g., panel 3). Therefore, the model implicitly
learns the trade-o between agent proximity and frequency of communication from speci c
agents.

55



Figure 4.2: Attention weights for agent O in then = 5 agent Cooperative Navigation task.
We compare the changes in graph transformer attention at three discrete periods during the
episode at the beginning, middle, and end.

45.1 Ablation Studies

Impact of Graph Transformer

To verify the e ectiveness of our graph transformer communication protocol, we conduct
an ablation study on the Cooperative Navigation environment. We train and evaluate two
models onn = 10 agents: (1) AsyncCoMARL, our graph transformer-based communica-
tion protocol for multi-agent reinforcement learning, and (2) MARL, our stripped-down
asynchronous multi-agent reinforcement learning formulation that only communicates when
agents are active at the same time step. We compare the di erences between the two models
in Table 4.4. We aimed to determine whether there was a relationship between an agent's

Max Number Percent Improvements
of Active Agents # col | S%

2 92.4% 83.1%
3 74.7% 64.2%
5 39.7% 69.4%

Table 4.4: Comparison of our model against a simpli ed variant that has no graph trans-
former communication protocol forn = 10 agents.

active status and performance. Speci cally, we were interested in determining whether the
performance of our algorithm could be attributed to large numbers of agents all active at the
same time. To that end, we performed a modi ed experiment where we xed the maximum

number of agents that could be active at the same time. Then, we compared the di erence

56



in performance with and without our graph transformer protocol.

We note that across all numbers of active agents evaluated, the graph transformer com-
munication protocol led to improvements in goal-reaching and lowered collision rates. The
largest improvements from the graph transformer communication protocol occur at smaller
numbers of active agents (e.g., 2). These results suggest that in dynamic graphs, smaller
graph structures lead to reduced noise and a stronger abstraction of the essential structure
of the environment.

Reward Formulation

In developing AsyncCoMARL, we experimented with several di erent reward structures to
balance trade-o s between individual goal-reaching and collaborative path planning. We
compare the following reward formulations.

" Repeated Reward : This is the reward structure used in the SpaceMARL algorithm
[74]. For a single agent, the reward is calculated by Equation 4.2. In this formulation,

the goal-reaching rewardRéj'gal;t =5, is given to each agent for every step it is at the
goal. This means that even when an agent has successfully reached its goal and no
longer needs to take any further control actions, it is still receiving a reward. This
individual agent reward is combined with the reward received by all other agents to
calculate the total reward for that step,Rﬂ){al. We combine the individual rewards of
each agent into a sum to encourage collaborative behavior. With this reward structure,
the largest possible reward is when afl agents reach their goal. Using repeated rewards

at the goal is intended to provide a stable signal, reinforcing the learning process.

Piecewise Reward : In the piecewise structure, each agerntreceives aRé'Z,al-t value
goal

of +5 at the rst time step that it reaches gets within distance of the goal, p;
For every time step after, the goal-reaching value is changed in Equation 4.2 to be a
smaller value. ( s ol

R® 5 tg=is” P

4 = 4.
goal;t +0'5 t>t g ( 6)

In our analysis, we found that a larger magnitude of goal-reaching reward could obscure
penalties for goal-reaching and collision avoidance for the other agents. By adopting
the goal-reaching reward to be smaller after the rst instance, the objective of the
piecewise reward function is to encourage goal-reaching behavior without obscuring
the collision and goal-reaching penalties of the other agents. We relied on the same
summation function across all agents to encourage collaboration.

Single Goal-Reaching Reward : In the single goal-reaching reward structure, each
agent receives zRgga,;t value of +5 at the rst time step that it reaches the goal. For
every time step after, it receives no reward. We use boolean variabléo designate that
the goal-reaching reward has already been allocated to agentWe investigated this
structure to determine if there were any residual bene ts to learning if the agents re-
ceived no rewards after they reached their goals. As in the continuous reward structure,

we relied on the same summation function across all agents to encourage collaboration.

57



Reward Metrics
Structure T |[#col | S%
Repeated 0.33 4.7 16%
Piecewise 0.23 1.6| 45%
Single 0.31| 1.21| 419
Single + Active (.24 0.45 97%

Table 4.5: Comparison of the impact of several reward formulations on the resultant perfor-
mance in the asynchronous setting fon = 3 agents.

" Single Goal-Reaching Reward + Active Agent Sharing . We adapt the sin-
gle goal-reaching reward structure to also consider a more complex sharing function
amongst agents. In this reward structure, agents only receive collaborative rewards if
they communicate with one another during that timestef. The purpose of this reward
structure was to investigate if there was any impact on learned behaviors when agents
received information more recently (and when they could operate synchronously for
that given step).

Table 4.5 compares the performance of the dierent reward structures. Across the four
reward structures, we have found that thesingle goal-reaching reward + active agent sharing
case produced the best results in terms of success rate and average collision number.

This result indicates that at an individual level, learning improves in an asynchronous
setting when the goal-reaching reward is only received once (as demonstrated by the lower
collision rates for the two single-goal-reaching reward columns). By removing the repeated
additive goal-reaching reward, the other agents are able to better re ne their behaviors and
recognize collisions.

When comparing the single-goal reaching reward and the active-agent sharing case, we
have empirically found that the extent of shared collaboration plays an important role in
the success rate of the agents. When the agents had a shared reward, this created a lagged
reward function, where the reward structure was determined by the last reward produced
by one of the agents. By comparison, when active agents share their reward, this creates a
reward function that is informed by the rewards produced by the actions taken at that step.

4.6 Chapter summary and contributions

This chapter discussed the development of a graph-transformer communication protocol for
asynchronous multi-agent reinforcement learning, which is designed to address the problem
of coordination in environments where agents cannot communicate regularly. Each agent's
graph transformer utilizes a dynamic, weighted, directed graph to learn a communication
protocol with other active agents in its vicinity. First, we showed that our method required
less communication between agents and still produced similar success and collision rates as
other multi-agent reinforcement learning approaches. Then, we evaluated AsyncCoMARL's
performance in the more challenging Rover-Tower environment and found that our framework
produces comparable results to other methods that require a separate network for the two

58



agent classes. We further examined the workings of our graph transformer mechanism over
the course of an episode and found that it e ectively balances the trade-o s between the
proximity of other agents and their active status.

Through ablation studies, we demonstrated the e ectiveness of our graph transformer-
based communication protocol, as well as the importance of reward structures in asyn-
chronous settings. The speci ¢ contributions of this chapter are the following.

Contribution 4.1 Development of an asynchronous multi-agent learning frame-
work, AsyncCoMARL, designed to address minimal communi-
cation for a set of independent, locally communicating agents

Contribution 4.2 Empirical comparisons of dierent attention mechanisms and
their relevancy for the asynchronous coordination problem in
multi-agent reinforcement learning

59



60



Chapter 5

Game Theoretic Models of
Non-Cooperative Satellite Interaction

5.1 Introduction

Cooperative and competitive proximity operations for satellites are deeply interconnected,
as both involve strategic planning and maneuvering within shared orbital spaces. Cooper-
ative operations, such as docking or formation ying, emphasize collaboration and require
precise coordination, which can inform strategies for avoiding con ict in competitive scenar-
ios. Conversely, insights from competitive operations, like collision avoidance in adversarial
environments, can enhance autonomous decision-making and risk assessment in cooperative
missions, ensuring safety and e ciency. This chapter examines non-cooperative interactions
between satellites. We apply game theory, which uses mathematical models to analyze strate-
gic interactions between rational decision-makers and predict outcomes in competitive and
cooperative scenarios. In the context of satellite collision avoidance, we apply game-theoretic
approaches to evaluate decisions about when and whether to maneuver to avoid potential
collisions, factoring in the di ering risk thresholds of satellites.

Our contributions include the following:

~ A new one-shot game framework to model decision-making for non-cooperative satellite
collision avoidance

" The analysis of the relationship between di erent satellite characteristics and conjunc-
tion parameters to study the emergence of strategic behaviors in satellite collision
avoidance.

" The design of a repeated game framework that integrates orbital estimation techniques
to propagate the covariance over the decision period.

In this chapter, we will discuss the development of a game theoretic model to study
competitive satellite interactions. This chapter is based on work that was presented in
[114]. First, we provide a brief introduction to game theory and our one-shot game in
Sections 5.2 and 5.3, and provide a motivating experiment to build intuition in Section
5.4. Then, we discuss the mechanics behind our model in Section 5.5, introducing the state

61



estimation functions, satellite risk thresholds, and optimization method. We validate our
state estimation and covariance propagation in Section 5.6. In Section 5.7, we show the
results of our approach and summarize the takeaways of this chapter in Section 5.8.

5.2 Game Theory Overview

Game theory studies the interactions among rational, strategic agents. These agents are
capable of reasoning about their own and others' actions to make decisions that maximize
their utility or reward [115].

Many games may be written in matrix, or normal form, wheren players each have a set
of actions to choose from. In a two-player matrix game, the rows represent the actions of the
rst player, the columns represent the actions of the second player, and the entries indicate
the utility for each player based on the combination of actions, known as the payo matrix
[116].

The game of chicken is a well-known model of con ict between two players. Imagine two
drivers heading toward each other in a head-on collision. If both continue straight, they will
crash, and the only way to avoid a collision is for at least one to swerve. However, if one
driver swerves while the other goes straight, the one who swerves is considered chicken and
loses, while the driver who goes straight wins. We assume identical drive reaction times and
abilities of cars. The decisions are taken simultaneously and cannot be revoked [117].

Table 5.1 gives the payo matrix for the game of chicken.

Agent 2
Swerve| Straight
Swerve | (0;0) ( L,1)
Straight | (1; 1) | ( 10 10)

Agent 1

Table 5.1: Payo matrix for the game of chicken.

Consider the best responses for agent 1 in the game of chicken, which are the actions
that minimize agent 1's cost for each action of agent 2. If agent 2 goes straight, agent 1
should swerve, since swerving results in a cost of 1, which is less than the cost of 10 for not
swerving. However, if agent 2 swerves, agent 1 should continue straight, as going straight
results in a cost of -1, which is less than the 0 cost of swerving. This produces an established
phenomenon in game theory known as Nash equilibrium, where each player is making the
best possible move given the circumstances. In other words, each player's strategy is the
best response to the strategies of the other players, and no one has an incentive to deviate
from their chosen strategy [115].

As swerving is the best response to the other agent going straight, and vice versa, there
are two Nash equilibria: one in which agent 1 swerves and agent 2 goes straight, and one
in which agent 1 goes straight and agent 2 swerves. These are both pure strategy Nash
equilibria. A pure strategy Nash equilibrium is a situation in a game where each player
selects a single strategy (eg. swerve or straight), and no player can improve their payo by
unilaterally changing their chosen strategy.

62



In addition to the two pure strategy Nash equilibrium in the game of chicken, there exists
a third class of Nash equilibria known as mixed strategy Nash equilibria Mixed strategy Nash
equilibria exist because, in some games, players can achieve optimal strategies by randomiz-
ing their choices rather than selecting one strategy 100% of the time. In the mixed strategy
case, each player selects their strategy according to a specic probability distribution that
makes the other players' strategies optimal [118]. Many real-world scenarios involve uncer-
tainty and incomplete information, where players cannot predict their opponents' choices
with certainty. Mixed strategies allow for probabilistic decision-making, making the model
more realistic and applicable to diverse situations. Furthermore, in many practical situa-
tions, observed behaviors don't align with pure strategies. Mixed strategies can help explain
behaviors like variability in pricing strategies, player movement in sports, or military tactics.

Let us assume that each agent chooses to swerve with probabiljy By symmetry,
this strategy is identical for both players. To nd the probability, p, that yields a Nash
equilibrium, we can analyze the best responses. Speci cally, we can nd tlpethat causes
each agent to be indi erent to swerving or going straight, meaning both actions yield the
same Ccosts.

The expected cost of swerving in response to the other agent swerving with probabilty
isOp+1(1 p)=1 p,while the expected cost of going straightis 1p+10(1 p) =10 11p.
Setting these equal to nd thep that leads to indi erence and thus a Nash equilibrium yields
1 p=10 1lp, sop=9=10 = 0:9. Thus, a strategy for both players of swerving with
probability 0.9 and going straight with probability 0.1 is a mixed strategy Nash equilibrium.

The Nash equilibrium, whether pure or mixed, explains how individuals or entities make
decisions by considering others' actions, leading to stable outcomes where no one bene ts
from changing their strategy alone. These stable states are valuable for ensuring predictabil-
ity, improving decision-making, and optimizing resource use in areas like economics, politics,
and engineering.

5.3 Game Framework

We adapt the game of chicken to the satellite collision avoidance problem. In this variant
of the game, we aim to account for the fact that the decision to maneuver depends on the
satellite's risk threshold and their expected estimate of the future cost of moving.

We propose a 2 player game involving two satellites, also referred to as agents. We
formulate the game so that each player has the following traits, where= f 1; 2g:

" Action a! 2 f wait; maneuverg at timestep t, with a' = fa!;alg. a = 1 indicates a
maneuver, anda, = 0 is for waiting. When satellites maneuver, they apply a thrust in
the direction that increases the distance between satellites.

~ Type ! represents the satellite's risk threshold. This type of variable is independent
of, and known to, the other satellite.

" Probability of collision from satellite’'s perspective:p(j§[T]j ). This represents the
satellite's current estimate of the probability of collision.

63



" Payo uf:A' S' ;7! R. This represents the payo at each round of the game,
dependent on the action taken, the state outcome, and the type of agent.

© Strategy ;: ! S'7! Al. A recommended action is based on the risk threshold of

the satellite and the relative distance between the two satellites.

Then, we use the following notation to describe the conjunction between the two satellites.

A

Time of closest approach (TCA), occurs at nal timestepr .
Distance at closest approach (DCA), denoted[T] 2 R.

State spaceS. In our problem, the state represents the relative distance between the
two satellites at the time of closest approach, s 2 R3. Final state issy 2 S.

p(8[T]) Probability of collision for the time T. We apply the Foster and Estes formu-
lation to calculate the probability of collision [119]. A more detailed discussion of this
calculation is included in Section 5.5.3.

Using this information, we can de ne the payo to each satellite in the payo matrix. The
key idea behind our game framework is that a satellite’'s payo depends on the probability of
collision. We formulate the game such that if the probability of collision is above the satellite
risk threshold, then the satellite should receive a highly negative outcome. If it is beneath
the satellite risk threshold, then the satellite is neutral. We model this in the terminal cost
function h;, whereH is a very large number:

( o
fpgery )= 0 LRSIl 51)

We then model the cost of maneuvers for each satellitg(a[t];t)8t = fto;:::; T 1g.

If the satellite doesn't maneuver,a[t] = 0, and the cost to a satellite is 0. Otherwise, if
a[t] = 1, the satellite incurs a slight negative cost proportional to the maneuver used to
get a constant change irg[t]. This negative cost increases with time to re ect the fact that
reduced planning time for satellite maneuvers impedes the satellite's ability to plan more
fuel-optimal maneuvers, resulting in more rudimentary solutions. In our model, as TCA gets
closer, more thrust is required to get a corresponding change$ft]. We model this increase
in cost by an exponential function:

g(aftht)= Gie®alt] (5.2)

64






	Title page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Benefits of Decentralization
	1.2 Why Use Reinforcement Learning?
	1.3 Contributions of This Thesis

	2 Literature Review
	2.1 Reinforcement Learning for Space Applications
	2.2 Multi-Agent Reinforcement Learning
	2.3 Attention and Graph-Based Methods for Multi-Agent Communication
	2.4 Event-Triggered Communication
	2.5 Asynchronous Actor Critic
	2.6 Game Theoretic Methods for Space Domain

	3 Multi-Agent Reinforcement Learning Approach to Information Sharing
	3.1 Introduction
	3.2 Multi-Agent Reinforcement Learning Overview
	3.3 Graph Overview 
	3.4 Transfer Learning
	3.5 Environment
	3.6 Experiments
	3.7 Results
	3.7.1 Transfer learning
	3.7.2 Scalability
	3.7.3 Sensitivity to perturbations
	3.7.4 Performance in Other Task Environments
	3.7.5 Value of sharing goals
	3.7.6 Heterogeneous Agents

	3.8 Chapter summary and contributions

	4 Asynchronous and Communication-Limited Multi-Agent Reinforcement Learning
	4.1 Introduction
	4.2 Methodology
	4.2.1 Asynchronous Formulation
	4.2.2 Graph Overview
	4.2.3 Graph Transformer
	4.2.4 Reward Structure
	4.2.5 Training

	4.3 Experimental Results
	4.3.1 Experimental Setting
	4.3.2 Evaluation Metrics
	4.3.3 Training Details

	4.4 Motivating Experiment
	4.5 Comparison of AsyncCoMARL with Other Methods
	4.5.1 Ablation Studies

	4.6 Chapter summary and contributions

	5 Game Theoretic Models of Non-Cooperative Satellite Interaction
	5.1 Introduction
	5.2 Game Theory Overview
	5.3 Game Framework
	5.4 Motivating Experiment
	5.5 Repeated Game Methodology
	5.5.1 Kalman Filter
	5.5.2 Measurement Update
	5.5.3 Generating Payoff Matrix
	5.5.4 Optimization and Solution

	5.6 Validation
	5.7 Results
	5.8 Chapter summary and contributions

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Implications for Space Traffic Management
	6.3 Future Work
	6.3.1 Short-Term Extensions
	6.3.2 Broader Long-Term Extensions


	A SpaceMARL Implementation and Supplemental Experiments
	A.1 Baseline Implementation Sources
	A.2 Performance with Agents Involving Heterogeneous Noise

	B AsyncCoMARL Implementation and Supplemental Experiments
	B.1 Baseline Implementation Sources
	B.2 Key Dependencies
	B.3 Hyperparameters


