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ABSTRACT

This thesis considers the optimal dynamic routing problem in a queuing system of
three machines and two finite storage buffers. Machines are assumed to be failure prone
and the material level in the buffers is assumed to be continuous. The objective is to
optimize the long-run average performance of the system.

Cost-to-go functions of dynamic programming are defined and a set of partial
differential equations for the cost-to-go functions is derived under any fixed dynamic
routing strategy. Necessary and sufficient conditions for optimality involving the cost—
to-go functions are also derived. Two iterative algorithms for optimizing the performance
~ of the system ar proposed.

The case where the average production rate of the system is to be maximized is
considered in more detail and the particular case where the lead machine is perfectly
reliable is completely solved, theoretically and numerically.
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CHAPTER 1: INTRODUCTION

From an abstract point of view, manufacturing networks' with storage spaces are
just queuing networks. The main body of queuing theory has been concerned with the
properties of queuing systems that are operated in a certain, fixed fashion. (Kleinrock,
>1'975) Recently however, some interest has arisen in comparing different ways t’;o design
(Schick and Gershwin, 1978) or operate (i.e. control) a queuing system. (Foschini, 1977,
Foschini and Salz, 1978; Hahne, 1980; Ephremides, Varaiya and Warland, 1980; Olsder

and Suri, 1980)

The main problem in controlling a queuing system appeavrs when we are given a
network of queues in which there is potential for a decision as to how material will be
routed in the network. This thesis aims toward the development of a methodology for
solving the routing problem for continuous queuing systems, i.e. .systems in which thg

queue levels are continuous variables.

1.1. Problem Description

The subject of this thesis is the dynamic routing of material in flexible, unreliable
networks with queues. Each node of the network is meant to represent a processor of
some sort. The material flowing _into the node is being processed at the node and then it
is routed to a downstream nede. We consider flexible networks, that is networks in which
there is potential for a decision ‘regarding the routing of material that has been processed
by a node, or networks in which there are one or more processors that can operate on

different kinds of material with no switchover time. These networks are also unreliable

-
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in the sense that each of the processors (nodes) fails and is repaired in a random manner,
but according to a known probabilistic law. Finally, we assume that each processor is
preceeded by a finite storage space (buffer, queue) in which the material flowing into the

node may be stored for an indefinite amount of time before it is processed.
Some examples of such networks are the following:

a) Manufacturing networks in which each node represents an unrelizble machine. The
simplest manufacturing network is a production line, in which some materia! is processed
serially by a sequence of machines to produce a final good. Cleraly, there is no routing
choice in a production line. However, in some more complex manufacturing networks,
two machines (or two sequences of machines) can perform the same tasks. In this case,

the routing problem appears naturally. (Hahne, 1980)

b) Communication networks in which each node represents a computer. The material
flowing into the network consists of messages sent from one computer to another. Given
an origin-destination pair, there are ﬁsual]y many alternative paths between which we
can choose.

¢) Hydraulic systems (Buzacott, 1971) or continuous chemical processes. Here fluids
or chemicals flow through series of unreliable stages separated by' holding tanks.

Although the methodology in this thesis is a general one, we use models and examples
corresponding to manufacturing networks and occasionally comment on the modifications
required to handle communication networks. Consequently, from now on, the nodes of
the network are referred to as machines.

Given a flexible network one needs a rule for making a decision whenever there is

a choice present. Any such rule will be called a routing strategy or a control law. The
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problem which we aim to solve is to determine a routing strategy that will optimize the
performance of the system with respect to some prespecified performance criterion. The
optimal routing strategy clearly depends on the set of admissible routing strategies that

has been chosen.

Traditionally, researchers have been interested in problems involving a relatively
simple set of admissible strategies, namely the so-cailed static and quasi-static strategies.
In a static strategy, the routing decision is the same at all times regardless of which
machines are down and regardless of the buffer levels. In a quasi-static strategy the routing
decision may depend on the availability of the machines but not on any information

concerning the buffer levels. (Cantor and Gerla, 1974)

Such restricted classes of strategies are attractive because the set of admissible
strategies is a subset of a vector space of reasonably small finite dimension. Traditional
vector space optimization techniques can be used to find an optimal static or quasi-static
strategy. For example, the routing problem in a reliable communication network hé;
been formulated as a nonlinear minimum cost multicommodity network flow preblem.
(Bertsekas, i979) However, a truly optimal strategy belongs, in general, to the class of
dynamic strategies. T he;e are strategies in which all information available is used when-
ever a decision is to be made. The optimal dynami<‘: strategy has better performance than
the optimal quasi-static strategy. On the other hand dynamic strategies have certain
drawbacks: the set of strategies is a subset of a vector space of huge finite dimension,
when the buffer levels are discrete variables, or oi‘ an infinite dimensional vector space (a
function space) when the buffer levels are continuous variables. This leads to considerable

computational complexity. Dynamic strategies are also harder to implement because they
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presuppose a fast flow of significant amounts of information throughout the network, as
well as the existence of some information processor. This is not a problem for manufac-
turing networks, although it may lead too increased costs in other situations. Despite
‘these difficulties a theoretical investigation of dynamic strategies is of interest because it
may suggest simple but éood suboptimal heuristic rules for operating a network.

We study networks in which the material flow and the buffer levels are continuous
variables. Such models can be considered as either true representations of a real network
(like a chemical plant involving continuous flows of chemical materials) or, mere impor-
tantly, as an approximation of a network of machines processing discrete but very small
components. Indeed, as the component size becomes very small compared with the buffer
capacities and as the processing téme of a single component becomes very small compared
with the time constants of the network (mean time to failure or repair of a machine,
mean time to fill an empty buffer, etc.) we expect a continuous model to be a good
approximation to the actual discrete system. (Gershwin and Schick, 1980)

An issue that must be considered is the choice of an appropriate continuous model.
This model will not be unique but will depend on the sources of randomness inherent in
the system.

There are, in general, four sources of randomness in a qgeuing network:

a) Random machine failures and repairs.

b) Random arrivals of comp;onents to be processed.

¢) Random processing times of components.

d) Randomized routing strategies (i.e. routing strategies in which decisions are taken

by flipping a biased coin).

12



If (a) is the only source of randomness, then the system behaves deterministically
during any time interval in which no repair or failure occurs and it is relatively easy to

specify an appropriate model.

If any of the sources of randomness (b), (c) or (d) is present, the system may behave
in the limit like a diffusion process and the modelling problem is non-trivial. (Foschini,

1977; Foschini and Salz, 1978)

The failure and repair processes of the machines are assumed to be memoryless. Tlhis
is a quite reasonable assumption which can often be physically jusiified and is adopted
in many studies involving unreliable machines. (Koenigsberg, 1959; Sarma and Alam,
1975) Under this assumption, the system can be described by a simple Markov process.
Stochastic control problems are almost always considered in a Markovian setting and this
is why the above assumption is important. :

It is known that any stochastic process becomes a Markov process if the state space
is appropriately augmented. This usuélly results in untractable infinite dimensional state
spaces. The memorylessness assumption keeps the state space finite—dimensional and
with a small dimension. In many cases, with the augmentation of just a few states, we
can come quite close to realistic distributions of repair and failure times. However, models“

with augmentied state spaces are not considered in this thesis, because the machinery for

the simple memoryless case should be developed first.

We study in detail one of the simplest possible routing problem, corresponding to
the network in Figure 1.1. Here My, M) and M, are the nodes (machines, processors) of

the network and B, and B, are finite buffers (storage spaces, queues).

Although one should be concerned with more general network topologies, this simpie

13
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Figure 1.1: A Queuing System With a Single Decision
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configuration is of interest because the methodology developed to handle this network
is directly applicable to arbitrary network topologies. Morecver, the structure of the
problem is simple enough so that we can get an intuitive feel for the resﬁlts obtained. We
also believe that the solutien to this problem can be, possibly with some modifications,

the building block for a decentralized strategy in a large scale network.

Finally, we should point out that we consider the infinite time horizon optimization
probiem. We are interested in the long-run average value of the performance criterion to
be imposed; because of this, we restrict to stationary routing strategies, namely strategies
that depend only on the state of the system (i.e. the machine repair states and the buffer

levels) and not on the current time.

1.2. Description of Related Research.

In the field of data communication networks, researchers have dealt mainly with the
problems of static and quasi-static routing and the stability properties of such algorithms.,
(Cantor and Gerla, 1974; Gafni, 1979; Bertsekas, 1979; Gallager,1977) The problem is

usually formulated as a deterministic nonlinear minimum cost network flow problem to.

which varicus optimization techniques are applied.

A different approach was taken by Segall (1976} and Moss (1977) which led to a

dynamic formulation of the problem but, unlike this thesis, a deterministic one.

In the field of manufacturing networks much werk has been done in the analysis of
the statistical behavior of such networks, in terms of steady-state probability distribu-.

tions. Unreliable networks involving no decision (Schick and Gershwin, 1978; Gershwin
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and Schick, 1979) as well as flexible networks have been considered. For example, the
performance of alternative quasi-static strategies is analyzed by Gershwin and Ammar

(1879).

The stochastic dynamic routing problem has also been studied by various research-
ers: in a discrete context (Ephremides, Varaiya and Warland, 1980; Hahne, 1980), in 2
continuous context (Santana and Platzman, 1979; Olsder and Suri, 1980; Deuermeyer and
Pierskalla, 1978); and in a diffusion approximation context (Foschini, 1977; Foschini and
Salz, 1978). Some of the researchers guess or derive heuristicall'y an optimal solution and
then proceed to prove that the proposed solution satisfies the conditions for optimality.
While this approach works in simple problems with much symmetry, it does not give any

insight as to how an optimal solution could be obtained in a general setting.

Two algorithmic approaches are given by Hahne (1980) who uses a successive ap-
proximation algorithm to solve a discrete Markovian decision problem and by Sant;atn'a.
and Platzman (1979) who successively approximates cost-to-go functions by piecewise

linear functions on the state space.

-

The only available optimality conditions for the routing problem follow from the
Dynamic Programming Principle (Bellman and Dreyfus, 1962) and make use of cost:ic-
go functions. The theoretical foqndation of the dynamic programming methodelogy for.
continuous state, continuous time processes has been recently developed. See for example
the work of Boel and Varaiya (1977), Kushner (1965, 1967), Rishel (1975a, 1975b, 1977),
Sworder (1969) for problems where total cost is minimized and of Wonham (1970), Stone

(1973) and Kushner (1978) for problems where average cost is minimized.
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1.3. Summary

In Chapter 2 we build a model for the simple queuing network of i’igure 1.1 under
a very general dynamic routing policy, in the case that machine failures and repairs are
the only sources of randomness in the system. We model the systemn as a Markov process
whose state consists of the buffer levels and a list of the repair conditions of the machines.
We describe the evolution of the state variables as follows: Between any two failures or
repairs of the machines the buffer levels change deterministically in a way delermined by
the routing strategy being used. A failed machine gets repaired at a predetermined repair
rate; a working machine may fail at a rate proportional to the degree of its utilization.

We also consider the various performance criteria that can be imposed. Apart from
the fact that we consider infinite time horizon, average performance, we allow the per-
formance criterion to be as general as possible. However, we consider in more detail the
case where weighted average production rate is maximized.

In Chapter 3 we assume that a certain routing strategy has been selected and we
consider the behavior of the system under that assumption. We show that under any
reasonable routing strategy, there exists a special state of the system which is visited
an infinite number of times. This establishes certain ergodicity properties of the system
and shows that long-run average quantities are well-defined. We discuss various methods
for computing the value of the performance criterion corresponding to a fixed control
law and we concentrate on the dynamic programming methodology and the concept of
value (cost-to-go) functions. We derive a set of partial differential equations which, when
solved, yields the value of the performance criterion.

In Chapter 4 we tur our attention to the optimizationn problem. We derive condi-
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tions for optimality in terms of the value functions and then proceed to their interpretation.
We show that they imply the following characterization of optimal routing strategies: The
state space mayl be divided into three regions; in the first region, all méterial is routed to
the first buffer; in the second region, all material is routed to the second buffer. A dividing
line separates these two regions; if the state of the system ever reaches that line, it stays
on it until a machine faii'ure or repair occurs. (This can only be done by appropriately
splitting the flow through the upstream machine). The third region is an indifference
region and may appear in some special problems. The value of the performance criverion

is not affected by the control law in that region.

Next, we formulate an iterative algorithm which, under some conditions, converges
- to an optimal control law. The algorithm finds at each stage the point. at which conditions

for optimality are not satisfied and makes an appropriate correction.

We have pointed out that the behavior of the system is deterministic until a machine
failure or repair occurs. An optimal control law should certainly behave optimall_';; during
the time interval in which the system is deterministic. It follows that an optimal control
law should simultaneously solve a certain deterministic optimal control problem. We
formulate an iterative aigorithm that converges to an optimal stochastic control law and

uses as basis this deterministic problem. (Chapter 5)

In Chapter 6 we consider again the maximization of average production rate and we
derive the following apecial results (under some inequality assumptions on the capacities
of the machines): If the lead machine is perfectly reliable, or if the lead machine fails and
is repaired very frequently, then any two routing strategies which coincide when both

buffers are empty (but may be different everywhere else) have the same performance. We

18



then show how the dimension of the state space may be reduced and solve the optimal
routing problem completely. Numerical resuits are also obtained for a few representative

Cases.

1.4. Contributions.

1. We demonstrate that under very general conditions there exists a special state of
the state space of the system considered that is visited an infinite number of times and
the inter—arrival times have bounded expecation. We then sh;>w that long-run average
quantities are always well-defined and independent from the initial state.

2. We define rigorously cost-to-go functions and derive a set of partial differential
equations satisfied by them. We show the uniqueness of solution of that set of equations.

3. We derive necessary and sufficient condilions for optimality for the routing problem
in terms of the cost-to-go functions. We also derive a theorem that compares the perfor-
mance of two different control laws.

4. We define, within the context of the routing problem, a deterministic control
problem associated with the stechastic control problem and show the connection of the
two.

5. We propose twe iterative algorithms that solve the stochastic control problem.

6. We solve coempletely (including numerical results) the routing problem if the lead
machine is perfectly reliable (or fails and gets repaired very frequently) under a few ad-
ditional assumptions. We prove that the behavior of control laws when not both buffers

are empty does not matter.

19



CHAPTER 2: A CONTINUOUS MODEL OF THE NETWORK

The behavior of a system in which machine failures and repairs are the only sources of
randomness is ;]ualitativcly different from the general model when other sources of ran-
domness arc present, because, in this particular case, the evolution of the state variables
is deterministic between any two consecutive fz;ilures or repairg.

in section 2.1 we develop a model for such systems and interpret the key variables.

In section 2.2 we complete the model by introducing a set of physical constraints
(implied by conservaticn of flow and the finiteness of the queues) and a set of mathe-
matical constraints which are necessary in order to~ obtain a mathematically weil-defined
stochastic process.

In section 2.3 we comment on various possible performance criteria and formulate
a set of mathematical assumptions that a performance criterion should satisfy. We als<‘>

i

introduce some additional constraints on the ways that the system may be operated which

[

are quite reasonable when the performance criterion is average production rate.

2.1.1. Machine Behavior and Buffer Levels

Consider again the simple configuration introduced in Chapter 1 (Fig. 1.1). Machines
My, M and M; can each ' ¢ in one of two states: up or dewn. We define an indicator

variable a; corresponding to machine M; as follows:

a= 0 ff mach?neMi fs down (2.1.1)
1 if machine M; is up

.20



We let B, and B; be buffers (queues) with a finite storage capacity. Let z; be the level of

buffer B; and let N; be the maximum allowed level in the same buffer. Then,
OSziSNi (212)

As we have said in the introduction, we consider only continuous models; so, z; is a
continuous variable.

We define the state of the system as
s = ((z1, 2), (a0, a1, @) = (2, a) (2.1.3)
The corresponding state space is:

S =[0,N;] X [0, N5] X {0, 1} (2.1.4)
: S

At any time, the state s contains all information relevant to the future evelution of the

system. This is an informal way to say that the temporal evolution of s should be a
Markov process. |

Since we are building a continuous model, we can view the material being processed

by the machines as a continuous flow. Let A* be the maximum possible flow rate through

machine Mp, and u;* be the maximum flow rate through machine M;, for ¢ = 1,2. Let

N2), wi{t), pa(t) br the actual flow rates through machines My, M), My, respectively, at

time . Finally let A (t), N2(*) be the actual flow rates from machine My to buffers By and

B,, respectively, at time t. Since machine My has no inner storage, conservation of flow’

21



implies:

A(E) = M (t) + Mof) (2.L.5)°

Our assumptions on the sources of randomness of the system imply that all flows
through the network can be set exactly to a desired level provided that no physical
constraints are violated. An additional implication is that once the flow rates have been
decided by the controller, the state of the system can be predicted with absolute certainty
until the next time a working machine fails or a damaged machine is repaired.

Clearly, the assumption that input to the lead machine is always available (and
in particulzir it is not random) is indispensable here. In contrast with discrete systems,
(Hahne, 1980), it makes no difference whzther the routing decision is made after the
material leaves, or before it enters machine M. This is because, in a continuous moﬂel,
it takes an infinitesimal amount of time for the material to go through Mp. -

We have defined é routing strategy as ‘““a way to operate the system”. In the present
case, a way to operate the system is completely determined if, for any state in the state-
space, we specify N\, Aj, Mg, #1 and yy. So, instead of viewing these variables as time

functions, it is more useful to view them as functions on the state space. We define a

routing strategy u as a set of functions on the state space.

u = (Mg, é), Ai(z, @), No(z, @), ui(z, @), ua(z, a)) (2.1.6)

Of course, this cannot be an arbitrary set of functions. There are constraints arising from

both physical and mathematical considerations. These are treated in the next section.

22



We have said sofar enough to describe the law of evolution of the variables z;, z;.

Namely, conservation of flow implies, for small At:
zift + At) = zi(t) + [Milz(t), alt)) — pilz(t), o)At i = 1,2 (2.1.7)

which is abbreviated as

da:i = (}\i —_ “i) dt (218)

We note that this would be a deterministic law, were it not for the random changes in
a(t). We must now describe the probabilistic law of evolution of the variables ag, a1, az.

If machine M; (i = 0,1,2) is down, we assume that the time until it is repaired is
an exponential random variable with mean 1/r;, where r; is the repair rate of machine
M;.

There are two alternatives, however, concerning the failures of the machines. We
could assume that the time to failure is an exponentially distributed random variable
with rate p;. This would be a good model if failures were due to external causes (like
power failures) and would imply that a machine may fail even at a time when it is not
being operated.

However, in manufacturing networks, failures are caused by the utilization of the
machines. It seems reasonable to scale the failure rate of a machine proportionately to
the degree that it is being utilized (Gershwin and Schick, 1980). We define po*, pi*, ;* as
the failure rates of machines My, M;, M, respectively, when these machines are operated

in full capacity. Then, we let the actual failure rate be equal to:

po(z(t), a(t)) = ro* Z\E%{_!_(t_))_ : (2.1.9)
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pi{z(t), a(t)) = m*% i=1,2 (2.1.10)

Failure rates can be viewed as functions on the state space or as functions of time,
i.e. as stochastic processes. Let R;(t) be an integer valued, right continuous process which
increases by one each time that machine M; is repaired. Let Fi(t) be an integer valued,
right-continuous process which increases by one each time that machine M; fails. R,(t)
aﬁd F;(t) are not Poisson processes because the instantanecus jumping rate depends on
the current state of the system which is itself a stochastic process depending on the past
of Fi(t) and R,(t}. They belong to the class of processes sometimes called ‘“randomly
modulated jump processes” (Segall and Kailath, 1975).

Despite the apparent complication, R;, F; are still well-defined stochastic processes.
' One way of rigorously defining Fi(t) is to require that Fi(t) is a right-continuous jump

process with unit jumps such that

. : t
Fit)— /o pi(z(1), a(7)) dT (2.1.11)

is a martingale with respect to a family of o-fields B, such that z{t) and g(t) are B,

measurable for all £. In simpler words,

¢ to
E[n-(t) ~ [ merasitatr) et r e, tol] = Fito)— | nio)ds (2112
Then (Segall and Kailath, 1975), the process F;(t) is uniquely defined and has all desired
propreties.
A second way of rigoreusly defining F;(t) is the following: Consider a standard Poisson

vrocess F;*(t) with rate p;*(t). Suppose that its first jump occurs at time £*. Then we let
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“the process Fi(t) have its first jump at-a time &, such that f[: ui(7)/u:* dT = ¥, and so
on. In other words, Fi(t) can be obtained by a time transformation of a standard Poisson
.p‘rocess.
The processes R;(t) may also be rigorously defined in a slightly different way.
The second definition leads to a very simple representation of the probability space
on which the stochastic proces is defined. Let Qr,, Qg, be the sample épaces of standard
Poisson processes with rates p,* and r; respectively. Let Pr,x, Pp, be the corresponding

probability measures. We define the probability space of our Markev process by:
1= Qg X Qr, X Qp, X Qpr, X g, X Qg, (2.1.13)

and we endow () with the product measure. If a routing strategy (control law) and an
initial state has been fixed, then, for any w € 2, the time evolution of the system is
completely determined.

If Ni(t) is a right-continuous jump process, we define dN;(t) by
dN(t) = N(t) -- T]_i"r?_ N(r)= N(t) — N(t—) (2.1.14)
Then, we can describe the evolution of the variables aft) by:
da; = (1 — a;)dR; — a;dF; (2.1.15)

Equations (2.1.8), (2.1.15) and the definition of the processes R; and F; provide 2 complete

probabilistic description of a unique Markov process.
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2.1.2. Interpretation of the Routing Variables.

If our model is considered as a continuous representation of a discrete system we have
to solve the following problem: given a non-randomized routing strategy for a discrete
system with deterministic processing times of components find piecewise continuous func-
tions N\i(z, @), No(z, a), ui(z, @), ua(z, @) such that the behavior of the continuous systen;
is close to that of the discrete system. Conversely, given the above set of functions, find
a strategy for the discrete system that corresponds to these functions.

Given any initial state of the discrete system, and a fixed routing strategy, the time
evolution of the state is deterministic until the first machine failure or repair and may
be described by a path in the state space. This path can be approximated by a piecewise
continuously differentiable path on a continuous state space. Then by evaluating the
slope of the continuous path at each point we may obtain Aj, A9, u;, py for those z that
belong on the path. This procedure has to be repeated for all initial states. Then, these
functions can be smoothly extrapolated and be defined on the entire state space. (Fig.
2.1)

Conversely, given \;, No, w1, u2, we cbtain a family of continuous paths on the
continuous state space. We may discretize these paths (Fig. 2.1) and obtain a path for
each possible initial state on the discrete state space. This will determine the routing
strategy for the actual discrete system.

It should be clear from the above discussion that the model
dz; = (\; — pi)dt (2.1.16)

cannet represent a discrete system in which a randomized strategy is used, because a
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Figure 2.1: Relation between the Discrete and the Continuous Model
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randomized strategy does not give rise to deterministic paths but to a random walk.
This has no serious consequences, because a discrete Markovian decision theory problem
always has an optimal solution which is not randomized. This is so, Because any such
decision problem is equivalent to a linear programming p.roblem (Shapiro, 1979) and non-
randomized strategies correspond to corners of the feasible set. Therefore, non-randomized

strategies are at least as good as randomized ones.

2.2. Mathematical and Physical Constraints

In this section we complete the development of the model. We impose a set of con-
straints needed to ensure that a Markov process with the properties described in the last

section exists. We start with the physical constraints which are relatively simple:

e

Nz, @) = \i(z, @) + N2, q) _(2.‘2.1)

if z; = 0 then pi(z,a) < \;(z,@) 1=1,2 (2.2.2)
if z; = Nj then I"'i(i, a)>Nfz,a) i=1,2 (223)
if g = 0 then \(z,2) =0 (2.2.4)

if @; = 0 then u;(z,a) =0 (2.2.5)
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These constraints imply that buffer levels cannot be negative or exceed the buffer
capacity and that there is no flow through machines which are down. -

Now we turn t6 the mathematical constraints. We define a family of o-algebras
(By, t € [0,00)) where B, is the smallest o-algebra with respect to which the random
vector (z(t), a(t)) is measurable. We must determine what additional conditions have to
be satisfied if (z(t), a(t)) is a well-defined Markov process.

We require that N, \;, Ny, u), 4o are Borel measurable functions on the state space.
This is needed to ensure that N(t), Mi(t), Na(t), pu(t), pat) are Bi-measurable random
variables. We note that starting from an arbitrary point in time and until a change in @

occurs (i.e. until a repair or a failure occurs) z(i) evolves deterministically. So, we must

require that the deterministic differential equation

dz; = (\i(z, @) — pi(z, a))dt (2.2.6)

has a unique piecewise continuous differentiable solution for any fixed a. This will certainly

be the case if \; and y; satisfy a Lipschitz condition: there exists some d such that

iz, @) — Ni(z*, a)|<d|(z, @) — (z*, 2| (2.2.7)
I”’i'(gl Q) - “i(-&*—) Q)IS"(L Q) - (ﬁ; Q)" . (228)
where || || is the Euclidean norm. However, this condition is unnecessarily strong. In

fact, in Chapter 4, we focus on a subclass of routing strategies for which the \;’s are

discontinuous.
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If a solution to equation (2.2.6) exists, it will be continuous in time. Since y; is a
Borel measurable function of a continuous function of time, the integral f,tf ui(t) dt exists

for any ¢, t, such that no failure or repair occurs in [t), t5]. This implies that

f " prtalelha®)) / ’ pidt (2.2.9)
i i 15}

7

exists. Therefore, the integral appearing in the definition of the process Fi(1), in equatioh
(2.1.9) is a meaningful quantity. The same argument is valid for the integral appearing
in the definition of Fy(t).

If these requirements are met, then it is easy to see that we can piece together parts
of the process and obtain a process unambiguously defined for all times.

In order to summarize this discussion we recapitulate our assumptions:

a) A; and y; are Borei measurable functions on the state space.

b) The deterministic differential equation (2.2.6) has a unique piecewise continuously
differentiable solution, for any fixed q, and any initial z.

Then, the Markov process described by equations (2.1.8) and (2.1.15) is well-defined."

In this section we have made a distinction between physical and mathematical con-
straints. Physical constraints are those that follow from the structure of the system.
Mathematical constraints are introduced for different reasons. If they are violated, the
functions \; and u; would be so ill-behaved that they can have no interpretation in
terms of a physical system. Moreover, these constraints are indispensable in the proof of
any conceivable theorem and they are routinely assumed by researchers in the field of

stochastic control.(Boel and Varaiya, 1977; Rishel, 1975)
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2.3. Performance Criteria

We are interested in maximizing the long-run (infinite horizon) aaverage performance
of the system. We let k(z, a) denote a function on the state space equal to the instan-
taneous benefit from the operation of the system when the current state is (z,a). The

function to be maximized will then be:

T .
-;,- /0 k(z, a) dt] (2.3.1)

There are many different possible choices of k(z, @) corresponding to different objectives
and to different notions of good performance. In the present study we focus on maxi-
" mization of average production rate. We also impose different weights on the outputs of

the two downstream machines. This mt;ans thét‘,

k(z, @) = cuyu(z, @) + copa(z, a) (2.3.2) ,

where ¢; and ¢y are constants reflecting the relative values of the outputs of machines M;
and M. x
In a communication network context one is usually interested in minimizing the

average time that a message has to wait in a queue. In that case an appropriate perfor-

mance functional would be

k(z, @) = —(z1 -+ ) (2.3.3)

Even in a manufacturing network, economic reasons might require that buffer levels be

kept as low as possible. Then one can use a combination of the performance functionals
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introduced above, like

k(z, @) = ciu(z, @) + coua(z, @) — f(z1, 72) (2.3.4)

where f is a positive function monotonically increasing in each variable. One could then
relax the requiement that buffers have finite storage capacities but make sure that buffer
levels do not become arbitrarily large by penalizing heavily large buffer levels. This can
be done, for example, by letting f(z;, z,) = z2 + z2. However, this does not in general,
make the problem easier to solve. Unbounded state spaces give rise to mathematical and
computational difficulties, except for a few rare cases where a simple closed form solution
exists.

In the sequel we derive some theoretical results valid for a general performance
criterion k(z, a) and then proceed to obtain some more specific results for the special case

where average production rate is maximized.

2.3.1. Assumptions on the Performance Criterion.

We assume that:
k(z, @) is a measurable function of the state space.

k(z, a) is bounded uniformly for all admissible control laws.
Jim_ Elk(z(t), a(t)] = k(z(0), a(0)) (2.3.5)

for all admissible control laws.
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The last condition can be satisfied by requiring that k(z(t), a(t)) has (almost surely)
right-continuous sample functions. Equation (2.3.5) then follows from the boundedness

of k(z, @) and the dominated convergence theorem. (Appendix I)

2.3.2. Special Assumptions on Routing Strategies when Production Rate is Maximized.

If we seek to maximize average product;ion rate, there are some reasonablg require-
ments that may be imposed on the way that the system will be operated. These require-
ments are most often imposed in practice and some heuristic reasoning indicates that, un-
der certain conditions, the production rate of the system is not worsened. Moreover, these
assumptions reduce the size of the problem and make it easier to solve. The philosophy
underlying these requirements is the following: If at any time we can increase the flow
through some machine without decreasing the flow through another machine, we will do

so. This statement can be translated mathematicaily to the following set of constraints:

If o; = 1 and 7,540 then pi(z, @) =w* i=1,2 (2.3.6)

Ifa; = 1and z; = O then p;(z, ) = min(\(z, a), ui*) (2.3.7)
(Downstream machines are used as much as possible.)

If ap = 1, ;%N and 2o%N, then  \(z,a) = \* (2.3.8)
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The above two constraints will be referred to as constraint (CT1). We should note
that they are reasonable constraints not only for manufacturing networks maximizing
production rate but for many other real world networks. It seems thaf (CT1) would be
inappropriate only in the cases where heavy instantaneous utilization of the machines or
large buffer levels are penalized by the cost functional k(z, a).

We shouid point o|.1t that the assumptions introduced in this section are of a different
. nature than those introduced in earlier sections. Formally, they are just restrictions on the
set of admissible control laws. Essentially, however, they are guesses about the optimal
way that the system should be opera’ed.

Constraints (CT1) are always assumed in the next chapters, unless the contrary is
. explicitly stated. We now introduce four additional assumptions that will be referred to

as (CT2) and will only be assumed in Chapter 6.

If ap = 1and (zy, 29)7#(Ny, N2) then  A(z, @) = A* (2.3.9).

If ag = 1 and (;rl, 13) = (N}, Np) then  A(z, @) = min(M*, ayp* + axuo*) (2.3.10)
Ifag =1, z; =0, z, > Othen \(z,a)>min(A*, aju,*) (2.3.11)

Ifag=1, z; >0, 2o = 0then Ny(z,2)>>min(\*, azus*) (2.3.12)
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If buffer B; is empty and buffer B, is not, machine M, may work at full capacity,
irrespectively of \y. So, we require that we feed machine M at least as much as it needs
(a1p1*) unless this is not possible, i.e. if aju* > \*.

Constraints (CT2) are not always appropriate. For example, if the output of machine
M; has almost no value compared with the output of machine M, we wouldn’t have
any reason to feed machine Mj, unless B, is almost full. However, if the output of each
machine has the same value (¢; = cy) then, we conjecture that (CT2) does not deteriorate

the achievable performance of the system.
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CHAPTER 3: A POLICY EVALUATION METHODCLOGY

As discussed in garlier sggtions, for any choice of an admissible routing strategy
‘we obtain a well-defined Markov process. Throughout this chapter we assume that an
arbitrary routing strategy has been fixed.

In section 3.1 we establish that the Markov process corresponding to a fixed control
law is semi-stationary. This is essentially a property c'losely related (but weaker than)
ergodicity which will enable us to show, in section 3.2, that the performance functional is
well-defined and independent of the initial state of the system: In section 3.3 we discuss
the p§ssible methodologies for evaluating the performance functional. Having decided
that dynamic programming is the most appropriate methodology we de;ﬁne (in section
3.4) cost-to-go functions and derive some of th;air properties. In section 3.5 we deri;r;,
in a very general setting, a set of partial differential equations that have to be solved in
order to obtain the value of the performance functional and the cost-to-go functions.
We prove the uniqueness of the solution of these equations and comment on possif)le

numerical methods of solution.

3.1. A Regeneration Property of the System.

Recall that the performance functional was defined by:
1 T
g =71Ln;° TE[ /0 k(s('r))d'r] (3.1.1)

The dynamic routing problem would be meaningless if g were not well-defined. It is also
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desirable to have g independent of the initial state because otherwice we would have to
partition the state space into a class of noncommunicating subsets.

~'l‘he existence of g, and its indep.endence from the initial state, can be established
by showing the existence of a unique steady-state probability distribution, independent
of the initial state. Because of the: special structure of the system we are dealing with, we
foll-ow a t;imr;ier approach. We show éome properties of the sample paths of the Markov
process from which the existence of g will follow.

We show that there exists (at least) one point of the state space which is visited an
infinite number of times by aimost all sample functions and such that the Markov process
starts afresh each time this point is visited.

It is not difficult to find one such point. Consider the point sy = ((0,0), (0, 1, 1))
where the upstream machine is down, the downstream machines are up and both buffers
_empty. For any initial state there is some probability that the machine conﬁguration
eventually becomes (0, 1, 1) and that this configuration does not change until both buffers
are empty. This is the main line of argument in Theorem 3.1 below.

Let s be any point of the state space S. Let T,(s) be the n-th time that the point s
is reached. (If s is the initial state, then we let 7'(s) = 0. If the point s is not reached n

times during [9, co) we let Tp(s) = 00). - C

Theorem 3.1: There exists a state s € S and a constant M such that for every initial
state and any admissible control law staisfying CT1:

a) Tu(so) is a Markov time (see Appendix I).

b ElTu)] < oo (3.2 2)
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¢)  E[Tu(s) — Tn-i(2)] <M

d) lim T,(s) almost surely

Proof: We need the following lemma:

Lemma 3.1: Let

s0 = ({0,0), (0,1, 1))

T = 3max ﬁ},ﬁf
: Ky Ko

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(Here, T'/3 is the time needed to empty full buffers). If p > 0, then there exists an e > 0

- such that for any initial state and any control law satisfying CT1,

Pr(s(T) = s, 3t € [0, T)s(t)#20) > €

Proof: See Appendix II.

(3.1.7)

We now define a sequence of random variables {R,} which may take as values only

integer multiples of T:

(3.1.8)

Ry = min{kT: k € Z+ kT > Ru_1, s(kT) = 80, s(t) s for some ¢ € [(k — 1)T, kT]}

38

(3.1.9)



As defined by equation (3.1.9), R, is the n-th time such that: a) It is a multiple of T.

b) The state of the system is s. c) The state of the system was not identically sy during

the time interval [R,,_,, R,].

From the definition of R,, we have
Ry = Tu(%)

Therefore, in order to prove (3.1.2) it is sufficient to show E[R,] < oo.

Lemma 3.1 implies that

PrRp—Rpy=T)>¢ —

PrR,—R, 1 >T)<(l—¢
Suppose that we have established that
Pr(R,—R,_ >kT) <(i—¢)f

Clearly,

Pr(Rp— Rn_y >(k + 1)T) = u

Pr(Ry— Rp_y > (k+ 1)T | Ry — Ry > kT) Pr(R,, —
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(3.1.11)

(3.1.12)

(3.1.13)

R, > kT)

(3.1.14)



The first factor in the right hand side of 'equation (3.1.14) is less than (1 —¢), by Lemma

3.1; the second factor is less than (1 — ¢)* by the hypothesis (3.1.13). Therefore,
Pr{Ry— Ry > (b 1T) < (1 — )+ (3.L.15)

This is an inductive argument which proves hat equation (3.1.13) holds for all k. Moreover,

equation (3.1.14) implies that

Pr(R,—Rp_1 = (k+ 1T) < (1 —¢€)* (3.1.16)
and
ER,—R, < i Tk(l — )1 (3.1.17)
k=1

The above series converges; consequently, there exists some M such that
ER,—R,||<M (3.1.18)

Since ¢ is independent of the control law, M can be chosen to be independent of the control
law.
Clearly,

»

E[R,] = E[Ro] - E[R1 — Ro] + -+ + E[Rn — Rn—|] (3.L19)

which implies that

E[Ry) < o0 (3.1.20)
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and by virtue of (3.1.10)

E[Tofs0)] < oo (3.1.21)

which proves (3.1.2).

The definitions of T,, and R,, imply that
E[Tn —T, —I]SE[Rn - Rn——l] (3'1'22)

Equations (3.1.18) and (3.1.22) establish (3.1.3).
The fact that T,(s) is a Markov time is well-known. (Meyer,1966)
Finally, if lim,_.o T,(s0) were finite, the process a(t) would have an infinite number

of jumps during a finite interval. Since the processes R; and F; (as defined in section

i [
i

. 2.1) have bounded jumping rates, this is an event of zero probability and this prove

1

statement d). @

Lemma 3.1 has been proved for the simple three machine network considered in this |
thesis. However, the same argument can be extended to the case of a general network
under the following condition: “If all machines receiving input from outside are down and
all downstream machines are up, then the system is operated in such a way that all buffers
become empty, with finite probability, before a change in the machine configuration
occurs”.

Fortunately, these conditions are very reasonable and they should be certainly be
satisfied an any real system. For the simple system considered-in this thesis _they are

implied by CT1.
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Note that the entire discussion has been based on the finiteness of buffers. If buffers
are allowed to be infinite some s-tability conditions would be required to guarantee that
buffer levels will not grow unbounded as t—oo0.

An additional comment is in orde:r here. The. proof of Lemma 3.1 is baéed on the
assumption that the lead machin;e has positive failure rate. Theorem 3.1 is however true
even if the lead machine is perfectly reliable except that tke recurrent point sy should be
chosen differently.

From now on we will write 7, instead of Tnl%0).

We have shown that there exists a certain state which is positive recurrent. We now
present a theorem of the same form that says that under any control law, every open ball
is positive recurrent. We define the open ball of radius € about a point (z*, a*) as the set

of all points (z, a*) such that ||z* — z|| <e.

Theorem 3.2: For every ¢ > 0, there exists a § > 0 and a deterministic time T > 0 such

that for any s* € S and for any admissible control law satisfying CT3 below

R RV

Pr(s(T) e B(s*)) > § (3.1.23)
o
CT3: (i) There exists a deterministic time T* such that if both downstream machines are
down, the upstream machine is up, and no failure or repair occurs until time T¥, then
both buffers are full at time T*.
(ii) If the upstream machine is down, a downstream machine M; is up and z;5£9, then
pilz, @) = p®*.

Note that condition CT3 is implied by CT1 and equation (2.3.9).
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. This theorem can be proved in a way which is very similar to the proof of Lemma
3.1 and Theorem 3.1. We need again to identify, for every initial state, a set of paths

that has probability greater than'§ and which leads to the ball B,(s*) at time T.

From an abstract point of view the Theorem 3.2 means that the Borel measure on the
state space is absolutely continuous with respect to the invariant measure of the process

(if it exists), uniformly for all admissible control laws.

3.2. Existence of the Performance Functional and Independence from the Initial

State.

Theorem 3.1 essentially establishes the f?.ct that theinfinite time horizon can be Brok‘e‘n
down into a sequence of almost surely ﬁni:e intervals [Ty, T,,_ 1] such that the Markov
process starts afresh at each time T,. In fact the strong Markov property {Appendix
I) implies that the sequence of random variables {s(Tn+t)},n=1,2---isa St;itioili-

ary sequence of random variables for any fixed ¢ > 0. Such processes are called semi-

stationary.

Semi-stationarity can be exploited to establish ergodicity properties of the system
and the existence of long-run average quantities (Stidharp, 1977; Serfozo and Stidham,
1978). We take such an approach in the following fashion: whenever we want to take a
limit as time goes to infinity, we take this limit along the sequence of Markov times T,

and then exploit the fact that the state of the system at time T, is known to be .

This approach enables us to prove that the performance functional g is well-defined

and is independent of the initial state.
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Recali that we assumed that the cost function &(z, @) is a Borel measurable, bounded
function on the state space. We let M be such that |k(s)|<M, Ve € S.

This measurability assumption, together with the right continuity 6!’ the process s(t)
imply that for any random variables U, V such that V > U almost surely, the integral
fu k(s(t))dt, mterpreted as an integral of sample functions is well-defined.

Consider the sequence of Markov processes sy(t) = 8(T,, + t),t € [0, Tni-1 — Tl
By the strong Markov property, all processes in the sequence have an identical behavior
frojn a probabilistic point of view. We therefore expect that any quantity related to
the average behavior of the initial process may be deduced by considering only one of
the processes in this sequence, s,(t) for example. The following thecrem shows that the

_average performance of the system may be evaluated by averaging only the process s(t).

One might suspect that one of the following two equations would be true:

T2 To—Th
g=E[ﬂkmma]=EP; Mmma] 621)

Ty —T T2 - Tl

(which is the average performance of one piece of the process), or

B[ fF2ko)ae] B Kt
I=TEm—T] ~ EMN—T]

(3.2.2)

Theorem 3.3 says that equation (3.2.2) is true (and therefore (3.2.1) is false).

Theorem 3.3: For any initial state and any control law such that the conclusions of

Theorem 3.1 hold,

Ta t [fT "+ k(s(1))d 1']
nan;oE[Tnf k(s(7) )d'r] = llm E[ /(; k(s(r))d‘r] = E[Tor: — T =g n=12,-.
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(Note that the second equality implies that g is independent of the initial state).

Proof: We define a random variable 7(t) by
T(t) = sup{T:Tn<t} (3.2.4)
Here, T(t) is the last time before time ¢ state sy was reached.

Lemma 3.2: There exists N : E[t — T(t)]< N, for all initial states, for all control laws.

Proof: See Appendix II.

Lemma 3.3: lim;_,o, T'(t) = oo, almost surely.

Proof: Follows trivially from the fact that lim,_,o T, = oo, almost surely.

Proof of the theorem: Let " ’ ' ‘ ' Sl

Wn = Tn hnd Tn-—.l ' (3.2.‘5)

Tn . :

U, = / k(s(r))dr (3.2.6)
Tﬂ—l

Semi-stationarity implies that the random vectors (W,,, U,),n = 2,3,... are independ-

ent,identically distributed. Then, an ergodic theorem, (Loeve, 1967, Vol. 2) implies that

im =5 =

almost surely (m =2,3,...) (3.2.7)

Tn ‘
SRl _ o Skl _
ShoWe  noeo To—Ty

(3.2.7)
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1 (™ ‘ 1 1y [ 1 ("
JL";[%; : ’”(S)dTJJr,}L";[(m—ﬁ):{ kfs)df]—,,l“;T L7, Mo

(3.2.8)
We claim that the second and third summands converge almost surely to zero.
Indeed:
LY [k e uBm =Ty, (3.29)
Tn - Tl Tn 0 - Tn(Tn - Tl)Tn - Tn - Tl B
Now, T} < oo (almost surely) and lim,,_,o T, = (almost surely). Therefore, MT, /(T,,—
7)) convergés to zero almost surely. Also,
Ty
1 MTy
Tn — Tl '/(; k( )dT <'T,—_—T1—*0 a.s. (3.2.10)
Therefore,
. " AL
JLH:O T / k(s)dr = AR a.s. (3211)

The sequence of random variables (1/T’,) fo k(s)d is uniformly bounded by M. Therefore,

by the dominated convergence theorem (Appendix I):

Tn
Jim. E[ 714,. / k(s)d'r} g[[g,:]] (3.2.12)

1

We now need to show the first equality in the statement of the theorem.

(s~ i) ]

SIE[G — 7,-zﬁ)'.r(t)M” —ml E[t TI<MN 0

(3.2.13)



Also,

1
= k(s)d
£ Jre (s) 'r]

Using (3.2.13) and (3.2.14)

M MN

Tn

Y . 1 [T -y
tl_l_.r{.loE Z./o k(s)dr| = tl_l’rch m/{) k(s)dr| = JL“;DE 7 Js k{s)dr (3.2.15)

This theorem establishes that the expected average cost (or benefit) is 2 well—deﬁi*ed
quantity and is equal to (EU,)/(EW,). In the next section we develop a method of

i calcillatihg this average cost without having to obtain expressions for EU,, and EW,,.

3.3. Discussion of Possible Methodologies.

Theorem 3.3 of the last sectioﬁ Iindicates that given a control law and the correspond-
ing Markov process we can evaluate the performance of the system by obtaining an
expression for EU,, and EW,,. Another possible method is to establish the existence of
the steaéy-state probability measure of the process %(s), evaluate it and then calculate

the performance of the system by usiné the formula
1"
lim E- / k(s)dr = / k(s)dP(s) (3.3.1)
T—o tJo !

" the last integral being a Lebesgue integral over the state space. Both of these approaches

work in principle. In fact, the second method has been often used to calculate quantities
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such as the average throughput of the system or the average waiting time in a queue

(Gershwin and Schick,1979).

'The‘ drawback of both methods is that they are not very useful when one is interested
in the optimization problem. Suppose that the performance of a system under a specific
control law has been evaluated using the st;ady—st;te distribution. Then, there is no
wa.y to check whether this specific control law has optimal perforrﬁance or not. (The
only exception is when the steady—state distribution can be obtained parametrically, the

parameter being the routing strategy, but this is rarely the case).

In fact, the only available optimality conditions for stochastic optimal control problems
are those given by Bellman’s Optiﬁality Principle of dynamic programming (Bellman and
Dreyfus, 1962). In order to use these optimality conditions we need an approach which
is based on cost-to—go functions. Such an approach is always followed in the case of
finite—state, discrete time, Markovian decision problems. The evaluation of the cost-to-go
functions, for a discrete probiem, involves i;he solution of a system of algebraic equations
(Howard, 1960). Many simple optimization algorithms based on cost-to—go functions
exist. (For example, the Howard algorithm, the successive approximation algorithm, ete.
(Bertsekas,1976)). In the continuous case, the evaluation of cost-to-go functions involves
the solution of a syStem of partial differential equations which (except for a driving term)
is dual to the system of partial Vdiﬂ'erential equations that has to be solved in order to
evaluate the steady-state distribution. Therefore, the dynamic programming approach
does not have any increased computational requirements over the other approach. The
only deficiency is that cost-to—go functions contain information relevant to the specific

cost functional considered, whereas steady-state probability distributions contain all in-



formation relevant to the system.

3.4. Definition of Value (Cost-te-go) Functions.

We are still assuming that a routing strategy and a corresponding Markov process
have been fixed. We have established that the average reward g is well-defined (Theorem
3.3). Asis always done in infinite time horizon, average reward stochastic control problems”

we assume that

t .
E[ /0 k(s(7))dr | 5(0) = s*j ~ V(%) + gt (3.4.1)

i

for some function V of the state space. This is meant to be valid in some sense to be
defined below as t—o0. The ﬁ;eaning of the function V is clear. If s; and s, are two points
of the state space, V(s;) — V/(s,) is the expected increase in the reward f; k(s)d7 (not in
the average re-ward!) if the initial conditions are moved from s; to s;. This difference is
equal to the maximum amount we Qould be willing to pay in order to have the initial
conditions moved fr;')m s to 5. We now proceed with a rigorous definition and treatment

of the function V(s) which will be called “cost-to-go” or “value” function.

Definition: We define V:S — R by
T
V(s) = E[ ./[o (k(s(t)) — g)dt | s(0) = s (3.4.2)

where T is again the first time that state s is reached.

¢

Preposition 3.1: V is uniformly bounded (for all control laws) and measurable.
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Proof: By assumption, |k(s)|<M,Vs; by Theorem 3.1 we have E[T}J<N for some N;

from the definition of g (equation 3.1.1), |g|<<M. Therefore,

[V(s)| =

Uumm—mum-%

<2MN (3.4.3)

Since M and N are independent of which control law is used, V is uniformly bounded

for all control laws. '
i

The; fact that V is measurable follows directly from the rigorous definition of condi-

tional expectations (Wong, 1971). &

Proposition 3.2:

Tn Tn
V(s) = E'{ O g)dt | 5(0) = 8] = lhm E[ | G(e) — g)dt | 5(0) =

[E (3.4.4)
where T, is as defined in section 3.1.
Proof: According to Theorem 3.3
Efz; ™ kls(t))dt]
E[Tom —T.] n=12... - (3.45)
Therefore,
Tn41 Trn+1 EI:IT nH k S(t)) dt]
E/ kt—dt=E/ k(s(t))dt| — E|Typ4a — Tn =0
A ua»g)] [ﬂ ()t — BT = To) =gz
(3.4.6)
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We should note that Proposition 3.2 fails if we attempt to phrase it in a stronger

way. The statements

Tn

V(s)=E lim /(; (k—g)dt|s(0)=0 (3.4.7)
t

V(s)=F ILH;OL (k—g)dr|s{0) == (3.4.8)

are false because the above limits of random variables do not exist.
Our definition of V implies that V(s) = 0. This is not essential. Any other function

different from V by a constant would be equally suitable for the purposes of this study.

3.5. An Operator Equaticn for the Value Functions.

" There are two reasons why value functions are of interest. First, they can be evalué.t'ejci
by solving a system of partial differential equations which yields at the same time thel
value of the performance criterion g. Second, there are very simple optimality conditions
which are formulated in terms of value functions. In this section we explore the first issue
and we defer optimality considerations to Chapter 4. ’

To every Markov process thgre corresponds an operator L, on the set of functions of
the state space, which characterizes the Markov process completely. For a deterministic
process, L is equal to the time derivative operator. For a random process, L_ is still very

much like a time derivative except that the uncertainty in the future is taken care by

taking expectations. (See Appendix I)
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As this operator summarizes the structure of the process, it appsars in the differential
equations that are satisfied by any of the interesting properties of the process (e.g. exit
times, exii distributions etc.) (Dynkin, 1965). This is also true for the value functions as

the following thecrem indicates.

Theorem 3.4: Let s(t) be a Markov process for which the conclusions of Theorems 3.1 and
3.3 hold and let £ be the weak infinitesimal operator of the process. Let V be a function

as defined by equation (3.4.2). Then V is in the domain of £ and satisfies

LV(s) = —k(s)+g VsE€S (3.5.1)

Proof: Fix the initial state s{0) of the process. Let T(t) be the first time after ¢ that the

recurrent state sy of Theorem 3.1 is reached. Then, by (3.4.2),

BT Y

T(t)
V(s(t)) = E[ ]{ (k(s{T)) — g)d| s(t)] (3.5.2)

T(t)
E[V(s(t)) | 5(0)] = E{E[ /t‘ (k(s(r)) — g)dr | S(t)] I 8(0)] (3.5.3)

Using the properties of repeated conditional expectations (Wong, 1971) we obtain
T(t) :
E[V(st)|s(@) =& j{ (k(s(r)) — g) @7 | 5(0) (3.5.4)
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We also have, by Proposition 3.2

T(t) .
V(s(0)) == E[ /; (k(s(7)) — g)d7| s(0)] (3.5.5)
By using (3.5.4) and (3.5.5) we obtain

t
EIV(s(t) | 5(0)] — V(s(0) _ | fitstr) — )ar 0]

: ; (3.5.6)
The assurf"nptions of section (2.3.1) imply that
Jim, Elk(s(7)) — g]5(0)] = K(s(0)) — g (3.5.7)
| By the Fubini Theorem (Appendix I)
o BV s = Vo) _ | Jo (Blks(r)[s(0)] — g)dr (358)

t— 0+ t t— 0+ t

Equations (3.5.7),(3.5.8) and the fundamental theorem of integral calculus imply

o V() 150 — Vis(0)
t

t— 0+

= Ks(0)) — ¢ (35.9)

Since s(0) was arbitrarily chosen, the limit in (3.5.9) exists as a pointwise limit for all
s € S and converges to the bounded and measurable funstion k(s) — g of the state space.

This fact together with the assumptions on k(s) show that V belongs to the domain of the
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weak infinitesimal operator L of the process {Appendix I) and satisfies equation (3.5.1).

3.6. Identification of the Infinitesimal Operator.

The operator equation in the last section is not very useful unless there is a way to
identify and obtain explicitly the operator £. Fortunately this is possible for the processes

we are considering.

"It is well known that for processes described in terms of stochastic differential equa-
tions, as is our case, the infinitesimal operator can be written down alinost by inspection
and is always a differential operator for those points of the state space at which the
function to be operated satib;ﬁes several differentiability requirements. The usual proce- -
dures for obtaining £ use either the Ito or the Kunita~Watanabe (Meyer,1967) chang'e
of variables formula. However, bot}; of these formulas have been rigorouslsr proved for
twice continuously differentiable functions on the state space. In our case the expression
for the weak infinitesimal operator of the process may be derived using a rigorous version

of the approach followed in Section 3.7, but this is not done in this thesis. ¢

We should point out that the interest in functions which are not continuously
differentiable is not academic. There is no guarantee that the value fﬁnctions arising fr:0m
a discontinuous centrol law such as “send all flow to the buffer with the smallest level”
are differentiable on the set {s € S: ap = 1,z; = z2}. The results of the next chapter

indicate that we will be primarily interested in such discontinuous contrel laws.

We take the following approach for identifying the weak operator of the process. We
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first state what the operator is when it is applied on twice continuously differentiable
functions and then give rule as to how derivatives should be interpreted when we have a
function with discontinuous derivatives. This approach leads, with some care, to corréct
results. A general and rigorous justification, however, falls outside the scope of this thesis.
It will be supported, however, by an infermal argument presented in the next section.
Let L be the weak infinitesimal operator of the process s(t) obeying the stochastic
differential equations (2.1.8) and (2.1.15) and let f be a continuouély differentiable function
on the state space which is in the domain of £. Then, assuming that the instantaneous
failure rates p;(z(t), a(t)) are right continuous in ¢ (which is our case because of the con-

straints CT1), we have (Meyer, 1967)

: df 6f 2 2
L = (=g + (e — )z + Yt —ai )i — o+ 3 (las, £ — £ (38.1)
v

=0 =0

where, b ' ' Cos

1
($(a), ¥(@))i = Y éla)b(a) (3.6.2)
a;i=0 e
For exampie,

(e (1,1, 1) =(h — ) (2, (0,1, 1) + (o — s 2L 02, (1,1, D) +
(f(gr (0; 1) 1)) - f(z-r (17 17 1)))7’0 + (f(ir (1) 0: 1)) - f(i, (17 1) 1)))?1 .
(3.6.3)
We conjecture that if f is not continuously differentiable, £ will be the same as in

(3.6.2), except that all derivatives will be interpreted as “forward derivatives along the

direction of the motion”. Let us make this statement more precise.
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We know that between machine transitions the system follows a deterministic path.
Suppose that at time ¢ = 0, z is equal to (z,(0), 22(0)) and until the first machine tran-
siition the state evolution is given by the deterministic functions (z(t), $2(t)) that satisfy
equation (2.1.8).

If f is a continuously differentiable function, then, by the chain rule

o

t%j(z.(t),f(t))—tf(x.(o),wz(o)) ~t-m (364

If f belongs to the domain of £ but is not differentiable at some point, then we will
interpret the right-hand side of (3.6.4) (which alsc appears in (3.6.1)) as meaning the

1

expression in the left hand side of (3.6.4). In that case, equation 3.6.1 becomes:

Lf = tim 10520t — f((0), 2(0))

{0+ t

+ . T

2 . ) (3.6.5)
Y (L =ai )i — Npi+ 3 ai i — P
i=0 i—0

where (z,(t), z5(£)) is the deterministic path followed by the system if no machine transition

occurs in the time-interval [0, ¢].

3.7. Informal Derivation of the Differential Equations for the Value Functions.

In this section we derive again the differential equations for the value functions given:
by equations 3.5.1 and 3.6.1 using an informal argument. This derivation is useful in
understanding what these differential equations mean as well as the way that one-sided

derivatives arise.
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For notational simplicity, let Vaga,ap(2) = V(z,a). Consider some point (71, ) €
[0, Ay] X [0, Na]. We derive the differential equation for Vi11(z). The equations for different
values of a can be derived in an almost identical way.

By the definition of V:

Ty
Vlll(zl; 12) + ng = E[/O k(s(T))dT | 8(0) = ((xl) 32); (l’ 1; 1))] =

T

| Hla(r)dr |5(0) = (=1, 22), (1, 1, 1))] s

A
E[ /0 k(s(r)) d7 | 8(0) = ((z1,22), (1, 1, 1))]+E

(when A is small)

Ak((z1, 22), (L, L, 1)) + (1 — A — p1A — pAWVini(z + (M — ), 22 + (N2 — )A) +
PoAVor1(z1, 2) + P1AVio1 (21, 72) + P2AViio(z1, 22) -+ o(Th — A) + o(AaY
(3.7.1)

where O(A2) is such that lima_.o(1/ A)O(A?) = 0. Then we substract gT) from both

sides, divide by A and obtain:

Vin(zy, 22) — Vin(z + (M — m)A, 22 + (A2 — i2)A) -
‘A

poVor(zi, 22)+1Vior (21, 22)+2Vino(z1, 22)—(po+pi +p2)Viri (21, 22) k{21, 22), (L, 1, 1))—9

Now, let A— 90 to get:

aV; v
—(M—-m)-@if—"— A —uz)ja—;;—l = poVou +p1 Vi1 +pVio—(po+p+p)Vin+k—g

(3.7.2)



 We repeat again that 8V}, /0z; and 8V};,/0z; need not exist. However,

lim Visi(2, 2) — Vin(s + (M — u1)A, 22 + (N2 — u2)A)
A— 0+ A

(3.7.3)

exists and this is how —(N; — p()(&V111/821) — (N2 — 12)(8V111 /87,) should be interpreted.

We note that this limit is just a one sided derivative along the direction of motion of the

;
system, exactly as we said in Se:tion 3.6.

3.8. Uniqueness of Solution of the Equation for the Value Function.

We have shown that the value function V as defined in section 3.2 satisfies the

operator equation

LV =—k+g (3.8.1)

Suppose that a function U is also in the domain of the weak operator L and satisfies
LU=—~k+g (3.8.2)
Then, by Dynkin’s theorem (Appendix I},
T
EU(6(T1)) — U() = E[ [ ) — dlariat0) = of = —vie (3.83)

where T is the first passage time frorm state 5. Therefore, 8(T}) = g is a fixed unique

state and we conclude that

U(s) = V(s)+¢ (3.8.4)
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for some constant ¢ This shows that the solution of equation 3.8.1 is unique within the

domain of the weak infinitesimal operator.

3.9. Comments on the Solution of the Differential Equations.

We rote that for any admissible control law, which is not quasi-static? equation 3.6.1
is a set of coupled linear partial differential equations with non-constant coefficients. (In
particular, A;, Ay vary with z), z,.) Because coefficients are not constant, separation of
variables cannot be used as in classical problems involving PDE’s. Even if we consider a
control law which ie characterized by a set of dividing lines (See Chapter 4) this diﬂicul;;"
- persists. We may write V as a superposition of eigenfunctions, for each side of the line, but
the two sets of eigenfunctions obtained at each side are not the same. These considerations

* render an analytical solution by this technique unlikely.

One has to resort to numerical techniques. Any such technique will involve a dis-
cretizaton of the state space and of the equations and we end up with a system of linear
algebraic equations to be solved. The simplest discretization would be to substitute the

state space with a mesh of points and discretize all derivatives in a standard way.

The structure of the systern of algebraic equations so obtained is similar to the
structure of the system of equations that would have to be solved if we were dealing with
a finite state space Markovian decision problem (Hahne, 1980). However, the numerical
results of Hahne indicate that the variation of value functions is very slow at some regions
of the state space {for example far away from the origin). We may then discretize the

continuous equations using a less dense mesh of points in those regions. This approach
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may lead to significant computational savings over the discrete formulation. However,

the computational complexity of the problem will still be of the same order of magnitude.
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CHAPTER 4: THE OPTIMIZATION PROBLEM.

In Chapter 3 we had assumed that a control law had been fixed; then, the performance
functional and the value furictions associated with the specific control law were examined.
In this Chapter, we drop this assumption and we compare different control laws with the

ultimate aim of characterizing and finding an optimal admissible control law.

The set of admissible controi laws does not have enough of a topological or analyti-
cal structure to ascertain whether an optimal control law exists with respect to a given
performance functional. Nevertheless, we derive necessary and sufficient conditions of
optimality. From a conceptual point of view, these gonditions are just particular ways of
interpreting the Optimality Principle of Dynamic Programming and they are, invariably,

phrased in terms of value functions. (Sections 4.1, 42)

These optimality conditions lead to intuitively appealing conclusions. They m;ply
the following property of an optimal'control law: the state space is divided into three
regions. In the first one, all material is routed towards buffer By; in the second region,
all material is routed towards buffer By. In the third region either the routing decision
has no effect on performance or there is no freedom in making the decision. Sections 4.4
to 4.7 deal with the complete interpretation of the optimality conditions, with various
technical problems that arise and a description of some particulariy interesting sets qf

admissible control laws.

Sections 4.8 and 4.9 contain an iterative algorithm for obtaining an optimal con-
trol law, together wiih a proof that it converges. I'inally, Section 4.10 contains a brief

discussion of the mathematical difficulties encountered in this chapter.
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4.0. Assumptions and Notation for Reward Fuctions.

In Chapter 3 we focused on a single control law and therefore k(s) was only considered
as a function of the state and (indirectly) as a function of time.

In general, k depends both on the state and the control. The dependence on the
control may be viewed in two ways:

(i) Let every admissible control iaw belong to some abstract space U of control laws
and let a reward function k%(s) correspond to each u € U.

(i) Let the reward function k(s) depend explicitly on the state and on the value of

the control currently applied. Then we mav write

k=k(z, a, M, Mo, p1, 2}

" For example, under production rate maximization

Kz, a, N\, Ny, w1, p2) = py + 2

The first approach will be more convenient to use in most proofs but not always.
For the rest of this thesis we assume that k(z, @, N\i, N, p1, p2) is a continuous
function of each of its arguments.

4.1. Infermal Derivation of Optimality Conditiens.

Let k“(s) be the reward function when control law u is applied. In this section we

examine what the optimality conditions would be in the interior and in a region in which
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k¥(s), the failure probabilities, and the repair probabilities are the same for all control
laws. This is done only with the purpose of illustrating in a simplified manner the meaning
of the optimality conditions to be derived in the next secttions. One may construct a

problem for which k%(s) depends on u everywhere. Let, for example,

ku(z, a) = N\f(z,a) \y(z, a).

(4.1.1)

Even in the case where the production rate is maximized, there may be regions in which

kY(s) is not independent of u. For example,
WM< mt = kY((0,0), (1,1, 1) = e\ + oY (4.1.2)

for some A}, A} depending on u. However, our assumption is valid in the interior of the

state space when production rate’is maximized and constraints CT1 hold. This is becéﬁéé

4 . Coe

k¥(z, @) = e + eopy = creyu® + caaan* (4.13)

in the interior.

Our informal derivation uses Bellman’s Optimality Principle of Dyﬁamic Programming
(Beliman and Dreyfus, 1962). Suppose that a control law associated with a routing func-
tion A(z,q) is an optimal control law and that the corresponding value functions and
average performance are V,(z). (Here, V,(z) is a different notation for V(z,a).) We only
consider the case where a ='(l, 1,1) and (=, 2;) is in the interior of the state space and

constraints CT1 hold. Optimality conditions for other choices of a can be derived in a

similar way.
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As T becomes very large, the expected reward during [0, T] is roughly Vy,,(z), z5)+gT.
This reward is equal to the sum of the immediate reward to be obtained during a very
small time interval [0, A] and the expected reward during {A, T]. Under several continuity
assumptions we have:

Vini(z, 22) + 97 =(1 — pA — p1A — paA) Ving(zi -+ (M — )4, o+ (M — p2)A) +-

pAVou(z, z) + prAVio(zi, 22) + p2AVie + (T — A) + k(z, 2)A
(4.1.4)

Since the control law considered is optimal, we have:

Vin(z, ) + 9T = I)fla)\x[(l — poA — piA — pA)Wii(zi + (M — w)A, 7o + (N2 — m)A) +

PAYor + p1AVior + p2AVie + o(T — A) + klz, ¢)A]

(4.1.5)
We now assume that V|;; is differentiable and write
i% WV
Vin(a + (M — )&, 2+ (o —m)A) = Vin(on, 22) + (M — ) 5 0 + (e — ) 5 =
(4.1.6)

Equations (4.1.5) and (4.1.6) yield

!

P+ — Bt

Sz

Vin(zy, zo) 49T = max [(1 — A —pA— PzA)(Vm + (N1 — 1)
1,02

poAVor + p1AVier + p2AVie + ¢(T — A) +- kA (4.1.7)

We discard O(Az) terms and separate terms that do net depend on \; and A, to obtain,

Vi1
6:::1

0] — ot o+ p)aVin +

0 = max [)\1

A2
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PoAVon + piAVior + pAVie — 6A + kA (4.18)

The Dynamic Pregramming conditions for Optimality then reduce to the requirement -

that the expression

OV
=

}\25"111 Vi SVin Vi

is maximized at very point. Because of CT1, we have A\; + A2 = A\* and we come down

to the maximization of

)\ (5V111 AT
N or, ~ on

subject to 0<C\;<<A*. The solution is then

A ;?\* i Vi Wi

om = om (4.1.10)
o i Mu % o
Iy fo. )

Therefore, an optimal routing strategy always tries to direct the system towards
higher values of the value functions and this is done by evaluating and comparing their
partial derivatives. However, the situation may become considerably more complex at
points where the partial derivatives are equal or undefined.

At all points where the partial derivatives are not equal, the optimal policy consists of
routing all material to one of the two buffers, instead of splitting the flow. This property
is valid whenever the reward function is independent or a linear function of the control

law that is being used. This is the case for most physically meaningful routing problems,
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in the interior of the state space, and it is used in Sections 4.4 and 4.5 in order to reduce

the set of control laws that are likely to be optimal.

4.2. Optimality and Comparison Theorems.

We note that the right-hand side of equation (4.1.7) is very closely related to the
infinitesimal operator of the process. We therefore expect that optimality conditions can
be expressed in terms of that operator. In fact, this is the case. The result obtained is
very similar to the Hamiltonian minimization of deterministic o;;timal control except that
now the quantity minimized is £V 4 k.

Let Uy be a set of admissible control laws for which the conclusions of the theorems
of Chapter 3 are true. Let s%(t) be the Markov process on the state space S resulting
from the a:p;;lication of a control law u € Up. Let k%, LY, VY .g" be the corresponding

! i Py
reward function, weak infinitesimal operator, value function and expected average reward,

respectively.

Theorem 4.1: (Sufficiency)

If for any control law w € Uy, V* belongs to the domain of £ and if for all s € S
max [(L*VY 4 k¥)(s)] = (L¥V* 4 k¥)(s) (4.2.1)
welp .

then centrol law u is optimal.
Proof:

max [(£2VY 4 k°)s)] = (L*V" +k*)is), V€S =
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(VY + k) (8)<(LVE + k¥)(s), Vw € Up, Vs €S (4.2.2)
From Theorem 3.4, section 3.5 we have:
(£4V¥)(s) = —k“(s) + ¢* (4.2.3)
Combining (4.2.2) and (423) we'obt:;.lin:
—k(s) + g“>(LEVY(s), Vs € S, Vw E Up (4.2.4)
Inequality (4.2.4) holds in particular for the sample functions of the process s'w(t), 50

—k¥(s¥(t)) + g“=>(L*VY)(s), Yw € Ty, Vi=>0 (425) o

Let TP, T¥ be two consecutive regeneration times of the process s*(t) as defined in section
3.1. We integrate both sides of inequality (4.2.5) over the random interval [T}, T5,*] and

take expectations:r

[ pTe

. s
E[ (ks )+ 0Y) dtJ zE[ [ (vau)(sw(t))dt]
Ty

Ty

By Dynkin’s theorem (Appendix I):

Ty 'i
E[ [ wevasme | = BT = V)
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By definition, s*(T¥) = s*(T}’). Therefore,

Ty TY
E[ / k"'(s"'(t))dt]gE[ /T g“dt] =E[TY —T¥)g* =

Ty ¥

E[ I ko) dt]
[ -
E[Ty —T¢]

(4.2.6)

The quantity on the right-hand side of {4.2.6) is equal to g by Theorem 3.3, section 3.2.

Therefore, g“>g", Yvwe Up.

" Theorems similar to the above have appeared iu the literature for various classes of
stocﬁasti; processes and they have been proved using a wide range of approaches. Of
those that are similar to Theorem 4.1, Kushner (1967) and Rishel (1970) seem to be tt'xe
first that have formulated a stochastic maximum principle by making use of infinitesimal
operators. Wohnam (1979), Stone (1973) and Kushner (1978) have addressed the infinite
time horizon, average cost problem. Stone considers pure jump processes, while the other
two authors consider Ito processes. N

Our proof of Theorem 4.1, as well as of the next theorems (4.2, 4.3, 4.4) is :quite
different than the proofs appearing in the literature because it exploits i: a specific way i';he;
existence of the regeneration times (T, 75, .. .) and does not use the invariant, steady-
state probability measure of the process. The major exception is the work of Kushner
(1978) which has striking similarities with our work, except that it deals with Ito processes.

By exploiting the special structure of the problems we are considering, one can prove

under suitable assumptions a necessity theorem of the following form: If a control law u
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is optimal, then
(L¥VU 4 kY)(s) = (L¥VE +EY)(s), Vs€ S, Vwely (4.2.7)

We derive, however, a different necessity theorem which will be more helpful in the
development of an iterative algorithm. Before that, we prove a theorem which compares
the performance of two different control laws. The only similar result in the literature we
are aware of is in Kushner .(1978). 5 o

Consider two control laws u, w € Up and suppose that V* belongs to the domain of

LY, Let

Q.= {5 € 5: (LPVH + k¥ — LUV — k*)(s) = €} (4.2.8)

Let 7%, TY be twe consecutive regeneration times of the process s¥(t), as defined in
Section 3.1. Let

P.={te[Ty,Ty:s"t) € |J @5} (4.2.9)

6<<e
Clearly, P, is a random set, because it depends on the specific sample function s*(£) that

is being observed.

Lemma 4.1: Vw € ), P, is a measurable set.

Proof: Given some w, € 2, Ty and T are completely determined. Let £, ¢ be defined by
t = T{w), ty = T3 (wo) (4.2.10)

The Markov process s*(t) is right-continuous. Therefore it has the following property
(Meyer, 1966, p.70, theorem T47): The mapping s*(w, 7):Q2 X [0,t] = S is a measurable

function, V.
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Therefore, for every measurable subset A bf S, the set
(5)7HA) = {(w,t) € @ X [t1, ta]: 8" (w, £) € A} (4.2.11)

is a measurable subset of 1 X [0,%]. The set Ubgt @, is a measurable subset of S because
L¥VY k¥ LUV¥ kY are all measurable functions on S.

Therefore, if A = Us<. Qs (s)~1(A) is measurable. Then,(Loeve, 1977, Vol. 1,
p.61) the following “section” of the above set is also measurable:

P* = {(w,t) €Q X [ti, o) w = ws, s*(w,t) € (| J @)} (4.2.12)
6<le

Thir;: shows that P, is also measurable, because P. = {w,} X Pe*.

Let I() be the Borel measure on (—oo, 4-c0). Then [(P.) can be interpreted as the
time spent in |J s<e Qs and is a random variable itself because it depends on which sample
function is being observed. We define a set function ¢ cn the family of left-open, righf—

closed intervals by

8((a, b)) = E[(Py) — UPy)] | (4.2.13)

Then ¢((a,b]) can be interpreted as the expected time spent by the process in the set

Ua<65b Qs

The set function ¢ is o-additive. Therefore, (Halmos, 1974) it can be extended
uniquely to a measure ¢ on (—oo, +-00).

We now motivate the next theorem. The quantity
(L¥VY 4 k¥ — L*V* — Ek¥)(s) (4.2.14)
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can be interpreted as the benefit to be obtained if we use control law w when the state of
the system is s and then use control law u afterwards. By averaging this expression over
the entire space we obtain the difference in performance g* — g* of the‘two control laws.
Kushner (1978) shows that (4.2.14) has to -be weighted by the invariant measure of the

process resulting from control law u. We use instead the measure ¢ previously defined.

Theorem 4.2:(comparison Theorem)

if for some u € U,, w € U,, V¥ is in thé domain of L™ then

gy _Jeddld 15
Y= e .2.15
gv=g"+ BTy — T7] ( )
. Proof: Let _ !
h(s) = (L¥V* + k¥ — L4V — k¥)(s) (4.2.16)

[Ty
El / —k¥(s¥(t)) + g% + h(s“(t)) dt] =

Ty

Ty
E[ /T =R ) A (VY R (") + (VR — LV — E)(s(E) dt] =

1

(4.2.18)
Ik
El ] @evysee)dt| = (4.2.19)
rs
(by Dynkin’s theorem, Appendix I}
EVH(so(T) — V()] = 0 (4220)
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because s*(T'y) = s*(T}).

Therefore,

Ty
E[ [ eteey dt} = g'BITY — T{] +E

Ty
/ R(s(t) dt] = (4.2.21)

Ty

B[ 7 hetsve) e

T =T (4.2.22)

gw —_ g‘lt +

For every w € (), the set function ¢ defined by ¥((a, b]) = I(P;) — (P,) is o-additive and
can be extended to a unique measure on (—oo, +00). Moreover, since all set functions

considered are bounded, we have (by dominated convergence)

[N

E[$(A)] = ¢{(A) (4.2.23)

for any Borel measurable A C (—o0,4-oc). Then, the Fubini theorem (Appendix I)

/ edp = E[ / edt,b] (4.2.24)

To complete the proof, we only need to show that

implies

Ty
/ h(s“(t})dt = [edgb, Yw € 02 (4.2.25)
Ty J

But this is just a special case of the theorem on induced measures in Appendix I. §
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The above theorem has two sorts of implications. On one hand it implies the necessity
theorem \presented below. On the other hand it provides us with a measure of the perfor-
mance improvement when control law w is substituted for control law u. It is practically
" impossible to obtain the measure ¢ and apply Theorem 4.2 in an exact way. However,

in many cases it is possible to get some useful inequality bounds. For example if the set

{s € 5:h(s) € |a, b]} (4.2.26)

contains an open ball of radius » and the assumptions of Theorem 3.2 hold, we may
conclude that ¢([a, b])>f(r) where [ is a real function, independent of the specific control
lav;' that is being used. This can be done as follows.

Theorem 3.2 shows that for any contrel law and any open ball of radius r, there is
probability greater than some p, that this ball is reached between two consecutive rege'néré'n-
tion times of the process. The speed of motion of the state variables (dz;/dt, dzz/dt) is
bounded. Let B be such that |dz;/dt|<B, for all control laws and all states. Then, !;'lle
expected time that the process spends in a ball of radius 2r is greater than p,r/B.

The following necessary conditions for optimality is a rewording of the comparison

14

theorem:

Theorem 4.3: (Necessity) f u € U C U,, w € U C U,, V* is in the domain of L%, u is
optimal ameng all w € U,

[y

(L2VY 4 k) 6) > (LUVE + k¥)s), Vs€E S (4.2.27)

(L2VE 4 k¥)(s) > (LUVE + k¥)(s) +6, VsEQ,6>0 (4.2.28)

73



for some @ C S, then the set {t € [T}, T¥], s"(t) € @} has measure zero, aimost surely.
Moreover, if the assmptions of Theorem 3.2 are satisfied, the set Q contains no open set.

Proof: By Theorem 4.2,

gv=g"+ _Jeddle) \ (4.2.29)

Equation (4.2.27) implies that d¢(c) = 0 whenever e¢ << 0. Therefore,
/ ed(e)>0 (4.2.30)
Since u is optimal, g*’<g“ and this implies that
fedq&(;s) =0 | o (4.2.31)
" This implies that 66([5, oo)) = 0. Recall that
$([6, o0)) = E[1p([8, o0))] (4.2.32)
Since 9([6, 00)) is a non-negative random variable with zero expectation we have
(|6, 00)) =0, almost surely (4.2.33)

But

¥([6, 0))2i({t € [TY, T7), s*(t) € @}) (4.2.34)

where ! is again the Borel measure.
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The last assertion of the Theorem follows immediately from Theorem 3.2. {See also

the comments preceding this theorem.) §

4.3. Description of Various Classes of Admissible Strategies.

Recall that the operator equation £V = —k + g was derived in Chapter 3 with
practically no restriction on admissible control laws except for the requirement that the
resulting sample paths should be piecewise continuously differentiable. This was because,
no matter how irregular a control law is, the corresponding value function is guaranteed
to belong to the domain of the weak infinitesimal operator. However, in order to compare
two control ]av-vs-u and w we need to consider exi)réssions of the form L“V™ where V¥
is the value function corresponding to control law w and £* is the infinitesimal operator
corresponding to control law u. There is no guarantee, in general, that V¥ will be in
the domain of L*. In this section we introduce several assumptions and we define several

classes of admissible control laws, in a way that enables us to study the optimization

problem. These assumptions are of two different kinds:
1) Stability assumptions.

2) Smoothness assumptions.

1
Stability assumptions correspond to an intuitively appealing class of control laws

and can be justified on physical grounds.
Smoothness assumptions, on the other hand are justified on mathematical grounds:

the set of smooth functions or the set of smooth control laws, is, more often than not,

dense in any arbitrary set of functions or of control laws. So, even if the optimal control
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law does not obey these assumptions, there exist smooth contirol laws whose performance
is as close as desired to the optimal. Also, any law that is physically implemented is likely
to be a a smooth one.

Recall that all control laws considered in this thesis have been assumed to satisfy
CTl1 '(section 2.3). Therefore any class of admissii;le control laws may be viewed as a set

of functions-{\(z, @), \2(z, a)) on the state space.

Definition 4.1: Let U, be the set of functions (\;(z, @), M.(z, @) on the state space which are
Borel measurable, satisfy CT1, and are such that the resulting deterministic differential

equations

~dz; = (Ni(z, @) — pilz, a)) di : (4.3.1)

[

(for any fixed a and any initial state) a unique solution z(t) which is piecewise continuously

differentiable.

Definition 4.2: Let Us be the subset of U, such that the solution z(t) of the deterministic
state equations is continuous in the initial state, for any ¢ and for any a. We will say. thgt
a control law is stable if it belongs in Us.

Stability here means that if we change the initial state by a little bit, the future
evolution of the system is not changed significantly. Figure 4.1 illustrates a control law
which belongs in U, but not in Us. Namely, for a = (1, 0, 0):

2122, 217#N: N\i{z,a) =N b(z,a} =0 (43.2)

2 <z, m#AN: Mz,a)=0 M(z,a) =2\ (4.3.3)
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Figure 4.1: An Unstable Control Law
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Let the initial state be (z;, ;) = (0, 0). Then, (z;(t), z,(t)) = (A*t, 0). Then, let the initial
state be (z)*, z,*) = (0, ¢). Then, (z;*(t), 22*(t)) = (0, ¢ + N*t). As e— 0, (z,%(0), 22*(0))
converges to (z(0), zy(0)) but (z,*(¢), z,*{t)) does not converge to (:cl(t); z9(t)), for t > 0.
Therefore, this is not a stable control iaw.

Such a control law might be optimal if the perfermance criterion rewarded the states
on the boundary heavily. However, such a performance critzrion makes little physical
sense, especially for manufacturing systems. We expect that only stable control laws need

to be considered for optimality in a physical system.

Definition 4.3: Let Uy be the set of control laws such that the state space can be partitioned

to a finite-collection of sets of two types:

a) Sets of type I in which the vaiue function is continuously differentiable and its

~ derivatives are bounded.

b) Sets of type II in which 1% possesses one-sided directional derivatives, along all
directions. Moreover, we require that sets of type II are either single lines or piccewise

continuously differentiable lines.

Definition 4.4: Let U, be the set of control laws such that the value function is continuous.
Remark: U, C Uy

Definitions 4.3 and 4.4 are only indirect characterizations of the classes U, and Uy.
We would like to have an alternative characterization, in terms of \(z, @). We make the

following conjectures that link the various classes of admissible control laws:
Conjecture 4.1: Let u € U, Let '}\}‘(Q, a} and A\j(z,a) be the corresponding functions
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that determine u and let k¥(z, a) be the corresponding reward function. If (1) u € Us,

(2) \¥(z, @), N¥(z, a) and k*(z,a) are continuous except on a set A on which they have
one-sided limits along any direction, (3] the set A consists of isolated points or piecewise
continuously differentiable lines, then A\ (z,a) € Uy.

Conjecture ‘4.1 is very similar to a theorem proved in (Rishel, 1975) in a slightly

different setting.

Conjecture 4.2: Us C U, (The value functions associated with stable control laws are
continuous.)
The next conjecture concerns the possible deterioration of attainable performance if

we restrict the admissible controls to the class Uy .-

Conjecture 4.3:

oF

sup g* = sup g* (4.3.4)
uEUo . wEUV
sup g*= sup g (4.3.5)
ucUs wGUVnUs

However, the main reason that class Uy is of interest is the following propqsition: ‘
Proposition 4.1: If u € Uy and w € Uy then V* is in the domain of L*.
Proof: In Chapter 3 we showed that the infinitesimal operator involves one-sided deriva-
tives only. Moreover, the definition of Uy implies (indirectly) that these derivatives are

bounded; so £¥V" exists. §

The statements of Theorems 4.1, 4.2 and 4.3 show that Uy is the natural setting in

which the optimization problem should be solved.
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4.4. Definition of Various Classes of Control Laws Relevant to Preduction Maximization.

The introduction of the classes U,, Us, Uy, U, of admissible control laws was very
much motivated by a desire to determine the mathematical framework within which the
optimization problerﬁ can be-addressed.

Gn the other hand there are certain classes of control laws that are especially relevant
to the routing problem when production rate is inaximized, or, more generally, when the
reward function k(z, @) is independent of the control in the interior and constraints CT1

have been imposed.

Definition 4.5: We will say that a control law u € U, belongs to Uy if the following
conditions are met: For every a such that ag = 1, the interior of the state space can be

.
i

partitioned in four regions R;, Ry, R3, R4 such that:
M(z,2) =N inR;’
Mz, @) =0 inR,
In R3 the evolution of the state variables z (and therefore A\ (z, a)) is uniquely deter-
mined by R; and R».

The performance of the system is unchanged if \(z, a) is modified only on R4

Figure 4.2 provides an example of a control law in Uy in which the fourth region is
empty and which illustrates how it is possible that the shape of the first and the second
regions may determine the control law on a third region. We assume that Figure 4.2
shows a control law when a = (1, 1,1). We also assume that u* > \¥, { = 1,2 so that

state trajectories move towards the origin. We have
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Figure 4.2: A Control Law in Ur
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Ry ={z:7 > z1}

Ry = {z: 2, > z3}

Consider the behavior of the system during a time interval in which no machine fails.
Whenever the state of the system is in region R or R,, the control law is such that the
state moves towards the line z; = ;. Once the set {z: z; = =z} is reached a trajectory
cannot leave this set. This is because the control law exerts an infinitely fast stabilizing
action. We then have,

M—p*=N—mp* =

M—p* =M =N —p* =

1
A= '27(#1*—#0*) :

on the set {z: z; = z,}. Therefore, R3 = {z: z; = 1z}, because \; on Rj3 is uniquely
determined by the shape of R; and Rs. Such will always be the case when regions R; and
R; are separated by a line and the control law in these regions forces trajectories to m‘ove
towards the dividing line. Co

Région R3 could not have nonempty interior and still satisfy the conditions appearing
in the definition of Ur. Forgetting about mathematical technicaliiies, we may assume

that R3 will only consist of lines.
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Recali that the definition of Uy referred exclusively to the interior. Additional infor-
mation (other than the nature of the regions R;) is needed to determine completely any

control law u € Up.

Definition 4.6: We let U, be the silbset of U [} Us such that the interior of the state
space may be partitioned in two parts R; and R, (see Definition 4.5) and, for each value
of a with ag = 1, a single piecewise continuously differentiable line R; separates R, and
R,.

The control law in Figure 4.2 is an example of a member of U.

The sets Ur and Uy are rather restricted classes of control laws. Flowever, we argue
in the next section that Ur contains all cgndidates for optimality. In fact the empirical
evidence (Hahne, 1980) indicates that optimal control laws belong to U. Unfortunately,
from a ma’thematical!y rigorous point of view, the optimality conditions do not suggest

i

directly that we may restrict our attenticn to Up.

4.5. Interpretation of Optimality Conditions.

Theorems 4.1 and 4.3 are only a formal way to state and generalize the conclusions
of the informal argument of section 4.1. Recall that the main conclusion was that for a

control law to be optimal we should have:

ave _ gy
ar; > o5 = N=0 (4.5.1)
ave /vy

— = 5.2
o, < o5, = A=0 (4.5.2)
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for those (z,a) for which the above derivatives are well-defined, k“(z, a) is independent

of the control law and the failure rates are also independent of the control law.

Theorem 4.2 implies that the value of the performance criterion is insensitive to what

the control law is on the set

.4

R4:{I.6'71 -—(%'2

This establishes the existence of .regions Rj, Ry, R as they appeared in the definition of
class Up in section 4.4.

We now demonstrate that if a stable control law u belongs in Uy {definition 4.3,
section 4.3) and satisfies the optimality conditions then it belongs in Ug. ‘

Suppose that u € Uy. Then, for all points (z, ) belonging in a set of type I, the partial
derivatives of the value functions exist. Depending on the sign of 8V [8zy — OV [8zy, su(;i;

- peints belong in Ry, Ry, or Ry

We also need to examine the points where V is not differentiable. These points belong
{by definiticn) to sets of type IL. Fix a such that ap = 1 and suppose that (z,a) €A C S
and A is a line of type II. Then V possesses one-sided directional derivatives along any
direc.tion al z. Consider the set of “feasible” directions, that is the set of directions along
which the system is allowed to move. For example, if a = (1, 0, 6),feasible directions are
ti-ose along which both z; and 2, are non-decreasing. Then we amy have one of the three

cases in Figure 4.4. (Arrows B and C indicate the range of feasible directions.)

The direction in which the system will move is determined by \;. The optimal
direction is the direction in which (8V/0z; — 8V /8z3)\; is maximized. On each side of

the line, 8V /8z; — Y 6z, is uniquely defined. Let
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Figure 4.3: The Set of Feasible Directions of Motion
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IL = —I — 672 on the left half
vV IV .
—_ T t
Ir * - on the righ half_ ,

In cases (a) and (b), in 'Figure 4.4, the optimal value of A is

M= 0 ifl, <0
A fL>0

and either z € R; or z € Ry.

In case (c) we distinguish several possibiiities:
(i) I.=>0, Ig>0. Then, \; = \*, z €R;.
- (i) I.<0, Ir<0. Then, \; =0, z €Ry. . e ’ .
(iii) I.>0, Ir<0. Then, we have \; = 0 to the right of the line and Ay = 0 to the left
of the line. So, the system can only stay on the line. (Hence, z € R3.).
(iv) I, < 0, Iy > 0. This is impossible because we would have Ay = 0 to the right, \; =0

to the left and the system would violate our stability assumption.

4.6. Interpretation of Optimalily Conditions under Production Rate Maximization.

We saw in the previous sections that if k(z, @) is control independent then a control
law is optimal if and only if it always tries to move the state of the system towards regions
where value functions have higher values. However, when k(z, a) is control dependent, a

tradeoff appears between immediate and future rewards and, usually, one has to do more
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than just calculate the partials 9V /8z,, V /Oz;. Moreover, under different control laws
the failure rates of some machines may be different and this effect has to be taken into
account directly.

In this section we derive the optimality conditions for some illustrative examples. In
Appendix IV we give a complete list of the optimality conditions for the particular case
N = * -+ po*.

Fix again a = tl, 1,1) and
k(z, @) = ciui(z, @) + canr(z, @) - (4.6.1)

Theorems 4.1 and 4.3 imply that

aV, WV,
H =cp + copp + (N — 1) &:1 + (A2 — p2 652_111

A
po* (Vo — V) + pr* 2L (Vior — Vi) + p2* E2 (Viro — Vi)
A C ] ()

(4.6.2)

has to be maximized at every point. We now interpret this condition at the various points

of the state space.

A. z > 0) 3 > 01 xl#NI: W#N2)'
From constraints CT1, A = A*, u; = ¥, pp = pp*. Therefore, we only need to maximize

A\1IV111/821 + Ne8V1y) /Oz;. This is the case that was examined in section 4.5.

B. I = 0, T2 > 0
Asslime \* > p;*. From constraints CT1, A = N*, uy = min{u;*, A}, uz = up* When

M<ui*, H (equation (4.6.2)) becomes

M . A
Cl7\l+C2I~‘2*+(}\*—'}\l”-ll«2*)‘5—;‘1‘“?‘7)0*(‘,01l —Viu)+p* ;‘l—l*(Vlm—Vnu)-l-pz*(Vuo—Vm)

(4.6.3)
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When A\ >u,*, H becomes

Vi
Oz

am® + cop® + (N — i * P10z + (N — N — io¥)
¥ (Vior — Vin) + p2*(Vito — Vanr)

+ po*(Vorr — Vi) +

(4.6.4)

We note that H, as a function of A\ is piecewise linear. We therefore need to evaluate

H(\)) only at the extreme values of A\; (A\; = 0, A\; = \*) and at the value of \; where

H(\;) changes slope (A} = p;*). *Ve then have:

+c

Vi

H(u*) = (N — e * — po¥) o, + pi*(Vior — Viu) +e* +C

V111

5;‘51

H(\*) = (\* — u*) + p*(Vior — Vi) +eym* + C

where

C = po*(Vour — Vin1) + p2*(Viro — Vi) + coma*

The optimal control law is

N = argmax{H(O), H(”’l*): H()‘*)}

A similar condition may be easily obtained when \* < u;*.
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Coy=5=0

Assume A\* < ¥, i = 1,2. Constraints CT1 imply, pi = N, A= M*. Then,

A A —A
H(\) = Pu*(Vou-—Vm)+Pl*“—ll;(er—V1u)+P2*£—;;‘L)(V110—~Vu1)+cl?\1+62(7\*—?\1)
(4.6.9)
We see that H(\;) is linear, so the optimal value of \, is either A} = 0, or \; == ¥

depending on which one one of the following two expressions is larger:
ot
Eg("uo —Vin)+e (4.6.10)

or

P Vot — Vi 4.6.11
. l-“—*( 101 — Vi) +a (4.6.11)

_ Similar optimality conditions may be obtained when the assumption \* < p;* is not

true.

4.7. Differential Equations when a Control Law is Characterized by Dividing Lines.

In this section we present the partial differential equations for the value functions as
they are simplified in the case of a control law belonging in UL. In this case the control
law is characterized, in the interior, by a single dividing line for each value of a such
that ag = 1 and is stable (in the sense of the definition in Section 4.3.). In order to avoid
considering many different possibilities we assume that:

(i) For any fixed g, the slope of the dividing line is such that this line is én admissible

path for the state trajectories.
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(ii) We let k(z, @) = cui(z, @) + cama(z, @).
Interior Equations
a = (1, 1,1), Upper Half:

Vi
Oz,

Mu _

* __ \¥
(ur* — N¥) o5,

+ uo*

— (po* + pr* + p2*)Vin1 + * Ve + 21 Vo + p2*Vio +

cr* + cop* — g
(47.1)

a = (1,1, 1), Lower Half:

*avl 11
6::1

3Vm -

— (po* + pi* + 2*)Vin + po*Vor: + p1*Vior + 22*Vio +
au* +co* — g

+ (* — V)5 =

"(4.7.2)
a = (1, 1,0), Upper Half:

¢9V1m

(r* h*) —(po*+p1*+ 1) Viro+po*Voro+p1*Vico+ Vi +eun* —g  (47.3)

= (1, 1,0), Lower Half:

#Vio _ 3 4Wio _

—(po* + p1* + r2)Vi10 + *Voro + p1*Vieo + Vi +a* — 9
Oz . Omy

(4.7.4)
a = (1,0, 1), Upper Half:

5V101 Vo __

. —(po* 411+ p2*)Vio1 + po*Voor + 1 Vin + p2*Vieo + copa® — ¢

{4.1.5)

_l_ C LS
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a = (1,0, 1), Lower Half:

8V,
(* =AY = (pg* 1 - 22*)WVior + 20 Voor + 71 Vin + P2 Vico+come* —g  (4.7.6)
Ozy _

a = (1,0,0), Upper Half:

V; :
—)\*—a’l:—lm = —(po* + 1 4+ 2)Vivo + Po*Vooo + n1Vire + 2Vier — ¢ (47.7)

a = (1,0,0), Lower Half:

V100

—M 8z —(po* + 71 + 2)Vi00 + po*Vooo + 11 V1o + 2Vio1 —- ¢ (4.7.8)
a=(0,1,1) ’ ‘

OVour | Vo el s . . , )
m*——+m*—— = —(ro+p1*+p2*)Vo114-roVi11 +p1* Voor +p2* Voro+-ciu *4-copo* —g

Iz Oz
(4.7.9)
1.

a=(0,1,0)

IV _
“l*—&:‘%g = —(ro + p* + r2)Voio + roViro + 21*Vooo + nVour + a* — g (4.7.10)
a=(0,0,1)

M
o a;: t = —(ro+ 4 p2*Vou + roVior + riVau + P Voo et —g  (47.10)
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a=(9,0,0):

0 = —(ro 4+ r1 4 72)Vaoo + roVioo 4+ r1Voro + r2Voor — g (4.7.12)

Equations on the Dividing Lines
On the dividing lines \; and A, are uniquely determined by the slope of the dividing
line. More precisely, if at some point the slope of the the dividing line is {, \; and A, are

uniquely determined by:

M=N+N

.and
k2—m* _[ L%}
AN —m*

We may therefore assume that \; and A, are known.

=(L1,1):
av Ly (e WV * * * * *
(ur* }\1) + (u2 —7\2)'@=—(P0 +pi* + p* )WV + po*Vou + p1*Vier 4
P2*Viwo + mi*ar + wo*er — g
(4.7.13)
a=(1,1,0)

(a* 1) - = —{po* +p* + r2)Viio + po*Voro + 21*Vico + roVins +

pi¥er —g
(4.7.14)
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Mo 1%
—N o:l)l + (uo* )‘2)_6;;] = — (po* + 11 + P2*)Vio1 + m0*Voor + Vi1 + P2*Vieo +
copp* — g
(4.7.15)
a==(1,0,0)
v oV
M 6::1:(:0 A2 a;:m = —(po* + 11 + r2)Vio0 + p0* Vooo + 11Viro + r2Vier — g (4.7.186)

Boundary Conditions

The equations for the value functions may be sl;ghtly different on some points of the
boundary because constraints on \; and x; may become effective. Then, one has to go
back to the general form of the equations for the value functions as they have been derived
in Chapter 3. Essentially, the equations valid at thos;z points are the same as the interior
equations, except that failure rates may have to be adjusted according to the degree of
utilization of the machines. Namely, if one (or more) of the machines is utilized below its
maximum capacity p;* has to be replaced by p;, the adjusted failure rate (equation 2.1.9).
In Appendix IV we give a complete list of the boundary conditions when N\* == p;* 4 pp*.

Despite the fact that this is a large number of equations, we should emphasize again

that they are all special cases of the operator equation

LUV k¥ = g (4.7.18)

4.8. Conjectures on Optimal Control Laws.
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In the work of Hahne (1980) on the discrete version of our problem, optimal contrel
laws were observed to foilow certain patterns. We conjecture that optimal control laws
for the continuous problem will also follow the same pattern. The main reason, however,
for making these conjectures is that they are perfectly reasonable from an intuitive point
of view:

Let

k(z, @) = ci(z, @) + copa(z, @) (4.8.1)

Let u be an optimal control law and V the corresponding value function. We then

conjecture that the following will be true:
Cl: Control iaw u satisfies conditions CT1.
C2: If ¢; = ¢y, then control law u satisfies conditions CT2.

C3: Control law u belongs to Uy

C4: All four dividing lines (corresponding to the four values of @ with ap = 1) have

positive slopes. Equivalently, C
av, WV, v, A WV, Al A0 489
a‘;;(xl, z9) > 6;-(%52) = a—zl-(zl,zz +4)> a“z:(zl;% + 4), > (48.2)

and

We <o AN ‘Wg( A A > 0 (483)
53—1(31,@2) \6_49;(::"52) = 53—1(214- ,3) < 5 7+ A, ), 8.
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.C5: The line corresponding to @ = (1, 1,0) is to the left of the lines corresponding to

a=(1,1,1) and a = (1,0, 0). Equivalently,

M Vi

V10 Mo
0131 ($|,$2)> 6@2 (1’1,@2) = 6.1:1 zy, 2}> azz (zl; ) (484)
Vo WV 100 V10 Vo
- (21, 22) > (zn,wz) = o @ (z1,12) > é,2( z:, 2p) (4.8.5)

C6: The line corresponding to @ == (1,0, 1) is to the right of the lines corresponding to

a=(1,1,1) and a = (1,0, 6). Equivalently,

gV, 8V, 8V,
111( z1,79) < lu(xl, n) = 6:;:?1( 1 82) < 101 (1‘1,.’5 ) (4.8.5)
<9V1u V1 Vo1 (o 101

e1%
( 1, T2 )> 8z, (3’1,352) = Oz, \Z1, T 2)> Oz, (zl’ zz) (48‘7)

P

4.9. An Iterative Optimizing Algorithm.

It should have become clear by now that no analytical metthod is likely to yield an
optimal control law in a straightforward manner. The optimality conditions that we have
derived concern the maximization over a space of admissible controll laws, which is a
space without much of an analytical structure. Therefore, we have to use some iterative

algorithm.
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The main idea behind many algorithms used in optimization problems is the following:
Consider a set of optimality conditions. Consider, then, some control law; find at which
points the optimality conditions are violated and, at those points, modify the control law
so that they are violated less. We propose an algorithm following these lines and relying
on the optimality conditions of section 4.2. This algorithm is the stochastic version of an

algorithm proposed by Kelley (1962).

Algorithm:

Start with an arbitrary admissible control law uy. Given a control law u,, and the
resulting Markov process sp(t):

a) Evaluate the operator of the process L™

b) Solve the equation

LPYR = —fUn + gn

for the unknowns V" and g".
¢) Define a new control law u, 41, as the control law which satisfies, at ail points of'

the state space

(LPHIY™ 4 knr)(s) = max(LV™ 4 k) (4.9.1)

the maximum taken over all (£, k) corresponding to an admissible control law (such that
Vy is in the domain of £).

The last step of the algorithm (step c) is not so hard as it may seem. When k(z, a) is
control independent in the interior, step (c) reduces (in the interior) to the evaluation and
comparison of 8V /(9.’5; and 8V /8z,. Some more care is needed at boundary points where

optimality conditions assume slightly different forms (section 4.6) but the computation
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needed is still trivial. However, the overall computational requirements of the algorithm
are significant because each iteration involves the solution of the P.D.E.’s for the value
functions in step (b).

A problem with this algorithm arises if the control law 4" 1/ is not well-defined, i.e. if
it does not give rise to piecewise continuously differentiable paths. We do not think that
such a situation will ever arise in a practical implementation of the algorithm. However,
if we attempt to prove the convergence of the algorithm, this issue has to be taken into

account. We circumvent this difficulty by just assuming it will not occur.

4.10. Convergence of the Algorithm.

The algorithm of the last section can be seen as a continuous time analog of thg
Howard algorithm for discrete problems. (Howard, 1960) Unlike the discrete case, a proof
of the convergence of the algorithm encounters many mathematical difficulties. Even if

we initialize the algorithm with a “smooth” control law, there is no guarantee that the

algorithm will generate at subsequent stages equally “smooth” control laws.

We prove the convergence of the aigorithm conditionally on the assumption that
there is a class of smooth initial control laws such that all contrel laws generated at some
stage of the algorithm belong to that class. This result will become useful provided that

one is able to:
(i) identify such a class of control laws (in particular, show that such a class exists)

(i) show that this class is, in some sense, dense in the set of control laws. Then, no

performance is lost by restricting our attention to that class.
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We view a single stage of the algorithm as an operator F:Up — Up. fu € Up, then
%F(u) is the control law generated after one step of the algorithm, provided that u was

the control law that initialized the algorithm.

Theorem 4.4: Suppose that there exists a set of admissible control laws U C Up such
that:

(1) sup g* = sup g (4.10.1)
uclU uclp

PRI

(43) F(u) exists and belongs in U vueU

(341) V" is in the domain of LY, Vu,we U.

Let
u¥ = ¥(u) (4.10.2)
and '
hi(s) = (L¥'V¥ + k% — LUV —E*)(8) (4.10.3)
and suppose that ‘
(2v) suph(s) = H* < o0, Yu€eU (4.10.4)

sEeS

(v) There exists a continuous function #:R — RT such that f(d)#0, if d5%0 and
. H"
E[({t € [Ty, To):h*(s* () > - 1] > F(H") (4.10.5)

for all u € U. (I(.) is the Borel measure)

Then, if yg €U

A

lim ¢7 (%) = sup g* (4.10.8)

n—oe uc UO
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Before proceeding to the proof of the theorem we discuss assumptions (i) to (iv).

Assumption (i) merely states that the best achievable performance is not deteriorated
if we restrict our attention to U, some restricted set of smooth admissible control laws.

Assumption (ii) states that if the algorithm is initialized in U, then it produces
meaningful control laws which also belong in U. We need this assumption in order to be
able to exploit the nice properties of U at all stages of the algorithm.

We need assumption (iii) in order to consider expressions involving L*V*. The dis-
cussion of section 4.3 implies that if we take U C Uy, then this agsumption is automatically
satisfied.

Assumption (iv) essentially says that the partial derivatives of V* are bounded.
Again, if we take U C Uy, this condition is automatically satisfied.

Assumption (v) is the most esential, and together with assumption (ii), the most
restrictive one. Recall the discussion in section 4.2 that precedes Theorem 4.2. The value
of the function h%(s) at some point s € S, is equal to the instantaneous improvement to
control law wu, if control law u* is used at that point. The expression in the left-hand
side of (4.10.5) measures for how much time the inst.antaneous improvement is significant.
Assumption (v) means that the time during which a significant improvement is incurred
is bounded below uniformly for all control laws which have the same value of H*. If the
assumptions of Theorem 3.2 hold, assumption (v)-is satisfied if V* has uniformly bounded

second-order partial derivatives, for all u € U but this condition is not necessary.

Proof: By assumption (ii) ¥*(u,) € U, Vn. By Theorem 4.2

_ ) n
70 _ 7w 5, H T JH7") (4.10.7)
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The sequence g7 (%) is increasing and bounded, therefore convergent. So,

lim HT"(%) f({HT" () =0 = (4.16.8)
n—oo R
lim H¥"(%) =0 (4.10.9)
n—oo

From the definition of the algorithm,

sup sup [va""("°> 4k — LI ()Y T (uo) kf”‘(%)](s) = {¥"(%) (4.10.10)
8ES welU

Therefore,

sup [LWW"(%) + k¥ — £F" ()T () kg"(“f’)](s)SH?"(“") Vw e U (4.10:11)
8€S

Using the notation of Theorem 4.2, we have:

H((HT"), 00)) = 0 (4.10.12)

Then, Theorem 4.2 implies
HF(w)
w F(u,) _ .10.
9“<g + [Ty —T7] VvweU (4.10.13)

Now, let n—oco. Using (4.10.9) and (4.10.13) we obtain,

¢¥< lim ¢%"(%) (4.10.15)
71—
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Then, by assumption (i),

we Uo N-=+00

sup g¥ = lim g% (%) (4.10.16)

4.11 Mathematical Difficulties and the Modelling Issue.

In the previous sections various mathematical difficulties are encountered which are
related to the smoothness of the value functions. Special assumptions were introduced,
wherever needed, to circumvent these difficulties.

On the other hand it is well-known that the optimality theorems and the convergence
" of the algorithm have béen proved in a discrete time framework. (The algorithm of section
4.9 is just a continuous version of the Howard algorithm.) Since our continuous model is
" prirarily meant to represent a discrete system, all techniques valid for discrete processes
should be appliccable (with minor adjustments) to the continuous model.

This discrepancy between the discrete and the continuous formulafion has the follow-
ing explanantion. All difficulties that have appeared have no analogs in discrete systems.
So, as long as.the control laws considered are good representations of discrete contrql
laws these difficulties will not arise. Very singular and highly discontinuous behaviors of
value functions can only be associated with nonphysical systems. Therefpre we should
not have to worry about these problems.

However, the set of physically meaningful control laws cannot be easily characterized
nor is it a closed or complete set. Therefore, a mathematical treatment has to take

explicitly into account pathological cases.

101 e P' ’0&/



CHAPTER 5: RELATIONSHIP BETWEEN THE ROUTING PROBLEM

AND DETERMINISTIC OPTIMAL CONTROL

The optimality conditions of the previous chapter were in some sense local. That is,
they checked whether a control law is optimal at some point by considering the value
function in the vicinity of that point. They were based on the following formulation of the
Dynamic Programming Principle: “For a control law to be optimal, it has to be optimal
during a very small time increment, assuming it \;vill be oi;;timal later on.” S

In this chapter we use the following form of the Dynamic. Programming Principle:
“For a control law to be optimal, it has to be optimal until the first machine failure
or repair, assuming it will be optimal later on.” Because the motion of the system is
deterministic until the first machine repair or failure we may conclude that an optimal
control law is also the solution of a certain deterministic optimal control problem. We,
present an iterative algorithm that solves the stochastic control preblem by soiving the
deterministic problem at every iteration.

The fact that a certain deterministic optimal control problem is associated with the

~

stochastic control problem considered in this thesis has been observed in (Rishel, 1975).

5.1. The Associated Deterministic Problem.

We present the deterministic optimal control problem associated with our routing
problem. There is one such deterministic problem for each value of a for which ap = 1.
For the sake of simplicity we only present the problem corresponding to the choice @ =

(1,1,1).
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Let T be the first time at which a machine failure occurs. We may break-down the
expected future reward in two parts:

a) Expected reward until time T.

b) Expected reward after time 7.

Suppose that a control law has been- fixed. The process is then detreministic until

time T. Therefore,

AT '
/0 Ks(r))dr = A(T) + 1. N RY

where f is a deterministic function of 7.
The reward after time T and until some time ¢, which is assumed to be very large, is
approximately equal to V(s(T)) + g(t — T'). The dynamic programming principle implies

that

ELA(T) + V(o(T)) — o7 (5.1

has te be maximized.
We now identify the quantities appearing in the expression to be maximized. We

need first the probability distribution of the random variable T'. Let

Then, Q(s(t))A is the probability of a machine failure during the time interval [t,t + 4]

and

Pr(T>71) = exp(— ./o Q(s(t)) dt) - (5.1.4)
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where T is the time of the first machine faiiure. Moreover,

Pria(T)=(0,1,1)|T =t) = % }‘(:ff)) ' (5.1.5)
Pr(a(T) = (1,0,1)|T = t) = QE;-:—)“—"(S(%» (5.1.6)
Pr(a(T) = (1,1,0)|T = t) = Q’;E;'—)’ﬁzf—l—z(;@ (5.1.7)

Finally, the probabiiity density function of T is
Qrhes(— [ Qutnar (5.18)
* Combining equations (5.1.5) to (5.1.8) E[V(s(T))] can be written as .

/0 ~ exp(; /; t Q(s(7)) d-r)

[0 X500 + 52w ) + LD vt

1

Then, recalling equation (5.1.2), we must maximize

J =BT+ VM) —oT) = || ) —aldt+ | @)exs(— | @lstu)du) +

/ exp(- | Q(s(r»dr) i)
. 5.1.9
[ 0 )+ D50 + 2
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subject to:

8(t) = (zi(2), za(t)) _ (5.1.10)

0<ASAY, <<y i=1,2 (5.1.11)
N=AN, A0 i=1,2 (5.1.12)

. . o . . :
iz = (N — p)dt, 0<z<N, i=1,2 (5.1.13)

Cootya

If u is an optimal admissible control law and V is the corresponding value fﬁnctién;
the discussion in the beginning of this section shows thaf u maximizes J for ev'ér).f iﬁit‘igi
state. Conversely, if u maximizeé J and also solves the deterministic control problems
corresponding to other choices of @ then u is optimal.

Recall that an optimal control problem has to be solved for every initial state. Let
J*(s) be the optimal value of J as a function of the initial state. If V is the value func-

tion corresponding to an optimal control law then it is not hard to show that J*(s) =

Vi11(8) + constant.

5.2. An Iterative Algorithm.

We now present an optimizing algorithm that is based on the discussion of the

previous section:
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a) Given (at the n-th stage) a control law u™, evaluate the corresponding value

function, to be denoted by V™.

b) Using V™ as an argument in the expression (5.1.9) for J, maximize J for all initial
states and obtain a new control law u"t!. This is to be done for all four choices of a in

which g9 = 1.

The control law u,; so obtained has an appealling interpretation. If we were
restricted to use control law u, after the first machine failure or repair, but were free to
use any control law until that time, then 4™+! would be an optimal choice of a control
law during this initial (random) interval. In this respect this algorithm is very similar
to the successive approximation algorithm for discrete problems (Bertsekas, 1976) except

that here the ”time step” is a random interval.

We note that this algorithm has more computational requirements than the algorithm
of Section 4.8. Not only do the value functions have to be computed at each iteratiion,
but a nontrivial infinite time horizon deterministic optimal control problem has to be

solved as well.

Fortunately, the second part can be considerably simplified. For example, the struc-
ture of our system, together with constraints CTI1, implies that if no failure or repair
occurs until some finite time ¢, then the system will reach a known state and stay there.
In this way, the infinite time horizon problem can be very easily transformed to a finite
time horizon preblem. If in addition this terminal state is known beforehand, than the
problem is equivalent to finding a minimum cost path from a an initial t:) a terminal

state. This latter problem can be solved quite efficiently by discretizing the state space

to a mesh of points and applying any of the standard algorithms for solving minimum

107



cost (shortest path) proble;ns.

We have not completed the proof of the convergence of this algorithfn because we
feel that the main issue of interest is whether the algorithm is a‘menable. to computational
implementation or its computational complexity is prohibitive. The proof encounters a
lot of technical points but the geﬁeral steps are the same as in the proof of the algorithm
of Section 4.8 {although the assumptions needed are much less restrictive than those in-
troduced in section 4.10). Namely, we have to show that in each stage o: the algorithm the
average performance of the systern is impreved by an amount proportional to the distance

from the optimal performance. This guarantees an exponential rate of convergence.

5.3. The Maximum Principle Applied to the Deterministic Problem.

In this section we attempt to rederive the characterization of optimal control laws

derived in Chapter 4 using Pontryagin’s Maximum Principle Athans and Falb,1966

By observing the expression (5.1.9) for J, we note that we have to minimize

/(; ~ L{s, u, V(s))dt E5.3.1)

where L is a function: of the state s, of the controls u == (N(s), u1(8), ua(s)), and of the
value function V(s). Under constraints CT1, there is no freedom in choosing \,x; and pp

and therefore L does not depend explicitly on the control. We form the Hamiltonian:

H = L(s, V(s)) — kT ds/dt : (5.3.2)
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where h is the costate vector and T denotes transposition. We note that ds/dt = {{(\ —

), (A2 — ), so:

KT ds/dt = hy(A\y — p1) + ha(de — p2) (5.3.3)

Since L is independent of the control, maximization of the Hamiltonian implies that
hi\; + hgh, is maximized in the interior, because there we have p; = au;* =fixed.
Therefore, wherever the costates by and hy are weli-defined and unequal either (A, Ng) =
(A*,0) or (Aj, A2) = {0, N*) which is exactly the result of Chapter 4.

Unfortunately, however, the full power of the maximum pﬁnciple cannot be used in
this problem. This is because on the dividing lines 8V /Or; need not be continuous {and
as a result AL;/8z; need not be continuous) and so, a major assumption of the maximum
principle breaks down. Nevertheless, we have verified cur previous result that in the
regions where 9V;/9z; exist, ar. optimal control law is a bang-bang control. Moreover, the

costate varibles h; may be identified with 8V; [Oz;, at all points
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CHAPTER 6: PERFECTLY RELIABLE LEAD MACHINE.

In this chapter we consider the problem of maximizing the average production rate

k(z, a) = cip1 + cotp (6.0.1)

when the lead machine is perfectly reliable. The main result of this section is the following:
Suppose that \* << j* + po*, N¥ > p* and A* > p,* and that constraints CT2 have
been imposed. Then, any two control laws which are the sar;le when both buffers are
empty and downstream machines are up, have the same performance. So, the optimization
probiem is reduced to finding the optimal policy jpst at the origin of the state space,
which is very easy. N

This result is of interest for two reasons: - S

a) It indicates that as the lead machine becomes more and more reliable, icss care
needs to be taken about finding a good dynamic control law. In the limit aimost alt
reasonable dynamic control laws are equivalent.

b) it displays some of the merits of a continuous formulation. The result is obtained
by means of a rather simple proof which would be much harder, if not impossible, in'

a discrete framework. In fact, this result may only be approximately true in the case

studied by Hahne (1980).

6.1. Simplification of the Model
Throughout this chapter we assume
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a) The lead machine never fails.

b) Constraints CT1 and CT2.

c¢) N* < p* + po* Otherwise, both buffers would be always full and the control problem
would be trivial.

d) N*>>u,*, \*>puo*. This assumption says that the lead machine is faster than each of
the downstream machines. Although this is usually the case in real world systems, it does
not always have to be so. However, this assumption is indispeﬁsable for the validity of
our result.

Consider the stochastic process

(21 + 22)(t), 2t)) = (y(t), alt)) (6.1.1)
We have ‘ &
dz,- = (7\,’ —_— [L,') dt (6.1.2)
so that
dy = (N —p1 — pa)dt ' (6.1.3)

It follows from assumptions (c) and (d) that \, p;, and p, are uniquely determined by a

at all points other than (y, a) = (0, (1, 1)). Namely,

pi{z, a) = ap* (6.1.4)

Mz, @) =N if z4(N;, Na) (6.1.5)
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Nz, a) = min{\¥, aju,* + agus*} ifz = (N, Ny) (6.1.5)

There is only freedom in choosing u), yp at the point (z,a) = ((0,0), (l, 1)) which is the
same as the point (y, g) == (0, (1, 1)). So, w1, p2 and N can be viewed as functions of (y, a)
instead of functions of (z, a@). Moreover, the transition rates of the processes a;(t), as(t)
depend only on u;, us, X, therefore, these rates are also functions (y, a). The conclusion is
that the statistical behavior of the process (y, 2)(¢) is completely determrined by the value
of u; at the point (y,a) = (0, (1, 1)) (which is the same as the value of \; at that point).
So, the reduction of the state variables from (z, @) to (y, a) leads to no loss of information
concerning the stochastic process (y, a)(t). This is another way of saying that (y, a)(t) is’
' itself a Markov process. Since y; and py are also functions of (y, @) we deduce that the
statistics of the performance functional are also completely determined by the vaiue of

A\ at the point (y, @) = (0, (1, 1}). Therefore, any two control laws such that

[T I |

AP((0,0), (1, 1)) = A((0,0), (1, 1) (6.1.6)

have the same expected performance. So, the optimization problem is reduced to that of,

an optimal choice of \;((0, 0), (1, 1)). L e

We note that this demonstration is independent of the specific choice of the perfor-

mance function in equation 6.0.6. Any performance function k(z,a) which depends on g
only through z; + z5 would lead to the same conclusion.

The optimality conditions of section 4.5 imply that the optimal choice of A\;((0, 0), (‘l, 1))

will be either Ay = p* or \; = N* — uo*. Then, in order to find the optimal control

law we only need to solve the differential equations for the value functions for these two
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Figure 6.1: Reliable Lead Machine: Equivalent Network
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control laws, obtain the values of the performance functional for each of them and simply
compare them.

in the next section we exploit the fact that the performance functional depends only
on the statistics of the one-dimensional Markov process (y, a)(t) and reduce the PDE’s
to ordinary differential equations. This reduction of the dimension of the state space
has the following interpretation: under the assumptions inade in the beginning of the
chapter the network studied is equivalent to the network in Figure 6.1 which has only
one shared buffer. We emphasize that this result depends crl_Jcially on the assumption

that constraints CT2 have been imposed.

6.2. Solution of the Optimization Problem.

One of the conclusions of the last section is that that the value functions can also
be viewed as functionsof (y, @) instead of functions of (z,a). The infinitesimal operator
corresponding to the process (y,a)(t) is an ordinary (not partial) differential operator. So,
the solution of the equation

LV=—k+g (8.2.1)

is very easy. We can solve this equation for each of the two candidate optimal contro}
laws and then compare the values of g obtained.

We now write down the equation 6.2.1 explicitly:

av,
(1® 4 po* — )\*)Tyl_] = —(p1 + p2)Vi1 + p1Vo1 + pVie + e ®* +cop* —g  (6.2.2)

dvV;
(e* — A*)-d—;g = —{p1 + r)Vio + o1 Voo + 2V + cun* — g (6.2.3)
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dVo,

(p* — )\*)—E = —(r + m)Vo1 + nVi1 + pVoo + can* — g

iV '
—?\*732 = —(r1 +r2)Voo +nVio+nVio—g
Boundary Conditione:
At y=0:

A1(0) A{0) ( A A2 )
Vor +m—~V — — 1V chi(0) Fcgh(0) —g=10
Pi ¥ Yo + p2 peRdCE b -’-sz,,l 11+ an(0) +czN2(0) — g

At Yy ='N1 + Ng:

p1Voo + Vit — (o + Vo +ap* —g =10

Voo +nVii — (o2 + n)Vio +cae* —g =10

nVio+ nVor— (4 n)Voo—9g=20

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)

(6.2.9)

These equations determine V up to an arbitrary constant. We can set a reference

point (V;1(0) = 0 for example) and proceed to the solution.

6.3. Numerical Resulta.
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The differential equations in section 6.2 were solved numerically for a few particular
cases. The results are reported in Appendix III. The conclusion that can be drawn (if any)
is that the difference in performance of the two alternative control laws We are considering
is versf small (of the order of two to five percent) even when the availabilities r;/(r; 4 p;)
of the machines are very different and even when the output of one machine is weighted

twice as much as the output of the other machine in the cost functional.

6.4. Extension to Lead Machines that Change State Very Fast.

Suppose that the lead machine, instead of being reliable, does fail but its failure and
repair rates are very large. When the expected time between two state transitions is much
smaller than all the other time constants characterizing the system (average times to
repair or failure of a downstreamn machine, average tiem to fill an empty buffer etc.) then
the lead machine may be modelled as a perfectly reliable lead machine with maximum
allowed flow rate equal to N*ry/(rg + py) where rg is the repair rate and py is the failure
rate of the lead ma.chine.

In that case the results of the previous section are appliccable provided that the
assumptions stated in section 6.1 are satisfied. Suppose that CT2 has been imposed and

that

(]
0 + po

ut < N < * - puo® =12 (6.4.1)

Then, the average production rate of the system depends again only on the control law

that is being applied when both buffers are empty.
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CHAPTER 7: CONCLUSIONS, SUGGESTIONS FOR FURTHER RESEARCH.

In the first three chapters we examined the behavior of a continuous, unreliable
queuing system in which a control law has been fixed. We have modelled such a system and
developed a methodology for evaluating the average value of the performance criterion.
We showed that this requires the solution of a system of linear partial differential equations
with non-constant coefficients.

The next chapters dealt with the optimization issue. 1t became apparent that
mathematical intricacies, not encountered in discrete problen;s, arise in the continuous
framework. It is our belief that a thorough understanding of the mathematical issues
involved is necessary before any practical solution of the problem or the design of an
optimizing algorithm is attempted. One possible direction of further research is therefore
to complete the investigation of the mathematical properties of the value functions. One
should try to understand the effect of various restrictions on the set of admissible control
laws on the properties of the value functions.

On the applied side there are both qualitative and numerical issues that have to
be investigated. Qualitative issues concern the additional characterization of optimal
control laws. The work of Hahne (1980) has shown that optimal control laws follow certain
patterns. (See also section 4.8) One should attempt to prove as many as possible such
results.

The main numerical issue that has to be considered concerns the develoment of
efficient computational procedures that solve the partial differential equations for the
value functions, so that any proposed algorithm can be implemented and tested.

“ A final direction of future research is the extension of the methodology and the results
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of this thesis to other probiems. We suggest some possible directions:

1) Extend the methodology to larger networks. The number of differential equations
to be solved increases exponentially with the sumber of machines in the system, so it is
not likely that one would ever try to solve these equations for large networks. However,
it would be quite interesting to examine the generalization of the optimality conditions
to larger networks. These conditions may suggest that the decisions at different points

of the network may be decoupled.

2) Since an exact complete solution is unrealistic for a large network, one should
examine the performance of various forms of decentralized strategies. It is our belief
that any realistic decentralized strategy should be based on a decentralized model in the
following sense: Let one decision maker correspond to each point of the system where a
decision may be taken. Each such decision maker has an accurate model of the neighboring
buffers and machines but a very aggregated amount of information. This decision maker
will then try to optimize his behavior subject to his own model. That is, he will behave

as if he believed that his model is accurate.

3) Consider the effect of more general distribution of the time to repair and the time
to failure. Gamma distributions (that result to finite dimensional Markovian relizations)
should be considered at first. Again the primary interest is for the optimality conditions
that can be relatively easily obtained, rather than expecting any simple computational
procedures. Such an investigation may also answer the question whether the results

obtained under the memorylessness assumption are very sensitive to that assumption.

4) The mode! considered in this thesis took into account only one of the possible

sources of randomness in a queuing network: the machine failures and repairs. We should
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investigate the possibility of a continuous approximation to a discrete system with ran-
dom com;;onent arrivals, random component processing times and randomized routing
strategies. Some preliminary results indicate that as the component size, the interarrival
times and the processing times of a single component become arbitrarily small, we will
recover, in the limit, the same model that was studied in this thesis. In that case, the
.continuous approximat'ion is associated with a loss of the "fine structure” of the process

which may or may not be desirable. If not, ad-hoc diffusion models may also be considered.
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APPENbIX I: MATHEMATICAL BACKGROUND
We present here some méthématical definitions and results that are repeatedly used.
Measure Theory:
Definition: A pair (€2, A) is called a measurable space if A is a o-algebra of subsets of 2.

Definition: A function f from a measurable space ({2, A) to another measurable space

(S,B) is called A-measurable if f~!(B) € A, VB € B.

Dominated Convergence Theorem: Let 1 be a finite measure on a measurable space (2, A)
_and {f.} a sequence of real-valued measurable functions on {2 converging to a measurable
function f. Suppose that there exists a measurable function g such that |f,|]<|g|, Vn and
. fgdu<oo.Then,.. - o ‘ ‘
lim ffndu = ffdu (A.1.1)
n—oo
Fubini Theorem: Let 4 and v be finite measures on the measurable spaces (X, .4) and
(Y,B), respectively, and let p be the product measure. Let f:X X Y +~ (—o0,+400) be

absolutely integrable (i.e. [y, |f|dp < co). Then,
/ fdp=//fdud,u=//fdudu (A.1.2)
JXXY XJY YJX

Induced measures: Let (X, A) and (Y, B) be measurable spaces and let f be a measurable

function from X into Y. Let u be a finite measure on (X, A). Then, f induces a finite
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measure v on (Y, B) such that
vB)=u(f"!(B)), VBESB (A.L3)
Moreover, if g is a real-Yalued megsgrable function on (Y, B), we have‘
/gdu: /gofd,u | (A.1.4)

where (go f)(z) = g{f(z))-

Good references on measure theory are Halmos (1974) and Rudin (1974).

Markov Processes and Associated Operators.

Let (s(t),t € [0, co)) be a Markov process defined on a probability 'space (£, A, ?).
(© is the sample space, A is the o-algebra of events and @ a probability measure). We
assume that the Markov process takes values in some metrizable topological space S. Wé
let the o-algebra % of measurable sets of S be the smallest o-algebra that contains all
open subsets of S. Let A; C A be the smallest o-algebra such that the random variable
s(t) is A-measurable V7<{t. A random variable T is called a stopping time or a Markov

time with respect to {A;} if
(w: TW)<t} € 4, V>0 (A.L5)

This means that if we observe (s(r), 7<t) we can always determine whether T'(w)<lt or

not.
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To ever& Markov process s(t), with values in a state space S, there corresponds an
operator mapping a subset of the Banach space of real, bounded, measurable functions on
the space into itself. This operator, together with its domain, characterizes the Markov
.process completely. (Hille-Yosida theorem.) There are a few different versions of “this
.operator which differ because they do not have the same domain of definition. Each one
is an extension of another.

Let f(s) be a real-valued, bounded, measurable function on the state space. The

strong infinitesimal operator A of the process is defined by:

(A.1.6)

AN)e) = lim ZHENIAO) = o] — £(s)

—0+ ¢

The domain of deﬁniti;m of the operator consists of all functions f, whose limit on the
above expression exists uniformly with respect to s, € S.

_ The weak infinitesimal operator £ is also defined by A.1.6 but on a wider domain.
The latter consists of all functions f(s) for which: a) the ratio on the right-hand side of
A.1.6 is bounded for all s € S and all  in some neighborhood of zero; b)the limit of this
ratio exists for each s € S and determines a function h such that E[h(s())|s(0) = &

converges to h(s,) for any s, € S as ¢t decreases to 0.
A Markov process is calied a strong Markov process if

E[f(s(t:))g(s(t:)) | s{t2)] = Elf(s(t1)) | s{t2)] Elg(s(ts)) | s(2)] (4.L7)

for any three stopping times t;, tp, t3 such that t;<t,<lt; almost surely and any real-
valued measurable functions f and g. All processes considered in this thesis are strong

Markov processes.
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The stochastic equivalent of the fundamental theorem of integral calculus is the
following theorem:
Dynkin’s Theorem: (Dynkin, 1965, p.133) Let L be the weak inﬁnitesifnal operator of a
right-continuous strong Markov process s(t) on a topological space and let 7 be a stopping

time. If Lf=g¢g and ET < oo then

Eif(e(r)] - S(s(0) = E[ [ sty s(ﬂ)] (4.18)

We should point out the existence of an extension of the weak operator called
“characteristic operator”. This operator has many of the useful properties of the weak
_operator but both its domain and its range contain unbounded functions. This operator
is more appliccable for stochastic control problems with unbounded state spaces.

: , Lo
The most complete exposition of the modern theory of Markov processes is given by

Dynkin (1965).
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APPENDIX II

Lemnma 3.1: Let

s =1{(0,0),(0,1,1)) (A.21)
T = 3 max (Nl &)  (A22)
Yy Ko

There exists an ¢ > 0 such that for any initial state and any control law satisfying CTl,
Pr(s(T) = s, 3t €0, T)s(t)#s0) > ¢ (A.2.3)

Proof: We will only sketch a probf of the lemma by presenting, for each initial state, a

chain of events that leads to state s, at time 7. This chain of events will have probabilit
. : | [

bounded away from zero, uniformly for all.initial states and all control laws. -

If the initial state has a(0) = (1, 1, 1), the lead machine will be operate(i lat a posil:,i;l;z
rate. Therefore, there is a probability larger than some positive number ¢, that‘ it will
fail and it will not be repaired until time 7'/2. Tilen, there is probability larger than
(1 —exp(—p1T))(1 — exp(—p,T)) that none of the downstream machines will fail during
[0, T]. Because of the.way that T was selected, both buffers will be empty at time T,
if the above described sequence of events occurs. So, there exists a positive number ¢y

such that

Pr(((z,2)(T) = %]5(0) = (=, (1, 1, 1)) > e1s (A4.2.4)

For alt other choices of a(0) we only state the corresponding sequences of events and omit

the details.
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If (0) = (0, 1, 1) consider the case where M, is repaired before time T'/3 then fails
again during [T'/3,27/3] and is not repaired again until time T'.

If a(0) = (1,0, 1)ora(1,0,0)or g(;)) = (L, 1, 0), consider the case in which downstream
machines a.re repaired until time 7°/3 and do not fail until time T. Then let machine M,
_fail during the interval [T'/3,2T/3] without get.ting- >repaired until time T.

If o(0) = (0,0,0) or (0,1,0) or (0,0, 1) consider the case where failed downstream
machines are repaired until time 7"/3 and do not fail until time ‘T, and machine M, is not
repaired until time T. |

For each possible initial a(0), there exists consequently a positive number ¢4y such

that

)

Pr(((z, @)(T) = %2(0)) > €q(o) (A.2.5)

. ' . . |8
If we let € = ming(){€a(0)}, We get the desired result.

o4

, ¢ . Lo

Lemma 3.2: Let U(t) be the last time before ¢ that state s, was reached. Then,
ANEt—U({t)) <N (4.2.6)

Proof: Tilis proof is just a backward version of the proof of Theorem 3.1, so we only give
a summary.

Let T and ¢ be defined as in Lemma 3.1. Lemma 3.1 shows that for any control law
and any initial state there is a finite probability that the state of the system at time kT,

(k € Z*, T as defined in Lemma 3.1) is equal to s,. In particular, this is true for time
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k,T where

k, = max{k: kT < t} (A.2.7)

Therefore,
Pr((z, o)k T)7#s) <1—e (A.2.8)

Similarly,
Pr((z, @)(koT) 550, (2, @)((ko — VT)) < (1 —¢)? (4.2.9)

This process may be continued and a geometric progression is obtained. Let W(t) be
the last time before t that the state of the system was s,. By summing the terms of the
geometric progression mentioned above, we have:

\
1

Elt — W) < M (A.2.10)

for some finite Ml. Moreover, since ¢ can be selected independent of the initial state,of ¢
and of the control law, M; is also indepgndent pf these. i |

Because of the way that U(t) and W(t) were defined, U(t) < W(t) and the state of
the system is identically equal to s, during the time interval [U(t), W(t)]. The time that
the state of the system stays equal to s, is less or equal to the time to repair of one of
downstream machines which has a finite expected value. Therefere, there exists some
M,, finite, such that |

E[W(t) — U(t)] < My (A.2.11)

The proof is completed by letting N = M, + M.
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APPENDIX III: NUMERICAL RESULTS

As mentioned ip Chapter 6, the set of partial differential equations for the value
functions becomes a system of ordinary differential equations when the lead machine
is perfectly reliable, constraints CT2 have been imposed and p*< N <pu* + p*. A
FORTRAN program was written that solved this system of equations by using the method
of undetermined coefficients. We rresent here the numerical results of a few representative
sample runs.

For any given set of numerical values of the parameters of the system there are only
two control laws that need to be considered as candidates for optimality (Recall Chapter
6). More/’ precisely, the question is whether we will have A\; = p;* or A} = N* — pp*
when the state of the system is (0, 0), (1, 1)). Let g; and g, be the respective values of
the performance criterion under each of the above two control laws. Table A.1 below
presents and compﬁres the values of g; and g for several values of the parameters of the
system. In these examples we have let ¢; = r; == r, = 1.0 and we have varied the other
parameters. We also let N stand for Nj + N,, the sum of the capacities of the two buffers.

The main conclusion that can be drawn from the results in Table A.1 is that the
difference in performance between the two control laws considered is negligible except if
strong unbalances are introduced, like doubling the worth of the output of one of the

machines or increasing the reliability of one of the machines.
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P

 w* m
5 3 4
5 3 4
5 3 4
5 3 4
5 3 4
1 3 4
1 3 4
2 3 4
2 3 4
5 3 4
5 3 4
5 1 5
5 1 5
5 1 5

Numerical Results: Reliable Lead Machine

h*

68

43

5.5

5.5

5.5

Ci

C2

10

10

10

Table A.1

4.47

4.10

3.96

6.32

*5.97

4.98

482

2.08

4.11

4.54

4.02

3.93

7.24

4.56

133

4.47

4.08

3.94

6.75

5.50

4.99

4.82

2.08

4.16

454

401

3.93

7.26

4.53



APPENDIX 1V: COMPLETE SET OF PARTIAL DIFFERENTIAL EQUATIONS

AND OPTIMALITY CONDITIONS: \* = p;* 4 pup*

We have presented, in Chapter 4, the partial differential equations for the value
functions and the optimality conditions for a few illustrative cases. In this Appendix we
present the complete set of equations and optimality conditions for the special case where
¥ = u;* 4 up*. This task becomes a little complicated because, not knowing exactly

how an optimal control law looks like, we have to consider several different possibilities.

A a=(1,1,1)
Upper Half:
* * Vinn *6‘,111 — * * x * * 2
(* —\¥) o, + o, = — (p* + p* + 22*)Viu + o*Vour + pi*Vior + 22*Vio +
e c* + cn* — g
(A.4.1)
Dt e
5—2}“2‘9——;’;‘ (4.4.2)
Lower Half:
IV, a4V,
1*—é£—l + (u* — }\*)gizﬂ = — (po* + p* + 2*)Viur + po*Voir -+ 21*Vior + 22*Vio +
am® + cun* — g L
‘ | (A.43)
%‘-s%% (A.4.4)
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Dividing Line:
0 = —(po* + p* + p2*)Vir1 -+ 20*Vour + 21*Vior + p2*Vio + ey * +oomp* — g (A.4.5)

No optimality conditions are needed on the dividing line. This is because if optiniality
conditions are satisfied on the upper and lower half then they are automatically satisfied

on the dividing line.

Boundary Equations:

Suppose that the shape of the dividing line is as in Figure A.l. Then:
1) On segments AF and FE, equations (A.4.1) and (A.4.2) hold.
2) On segments BC and CD, equations (A.4.3) and (A.4.4) hold.
3} For any point on segment AB there are three possibilities:
3a) \y = u* and )\é = up* In that case equation (A.4.5) holds. Y

3b) 7\1.:= 0 and N\, = wy* In that case:

\

SVin _ _ m* * *\V/, o *|/ 3 VIO Vs * ‘*
I - ——(Fpa +p1*+ %) lll+'x‘§‘Po o11+p21*Vior +p2 Vot * +copa®* g

(A46)

 3¢) \; == A* and \; = 0 In that case: ; .
1%
—Ilfz*-—a—;:—l = —(p* + p*)Viu1 + p*Vour + p*Vior +aum* — g (A.4.7)

Which one of the above cases will be the optimal is determined by the optimality condi-

tions. We do not write them explicitly, but they are the following: Gather all terms of
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Figure A.1: Possible Dividing Lines
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each one of the equations A.4.5, A.4.6, A.4.7 at the right-hand side. An optimal contro}

law corresponds to the largest of the three right-hand sides considered.

4) At point A we have exactly the same three alternatives as in (3) above, except
that the corresponding equations are slightly modified.
4a) \; = w1* and A, = wy* In tha" case equation (A.4.5) holds.

4b) N\ = 0 and A\, = uy* In that case:
0_._(9_2_* * 4 pt)Y, By 4+ poViro + copn® (A48
= )\*Po p2* )V + A*Po o11 + P2¥iio + cle” — ¢ 4.8)

4c) N\; = M* and Ay = 0 In that case equation A.4.7 holds.
The optimality conditions at point A can be found in the same way as described in

(3) above. -
g
5) At any point on the segment DE we have two aliernatives:

5a) \; = u;* and N\p = p»* In that case equation (A.4.5) holds. .

5b) \; = i * and Ny = 0 In that case

* * ‘ ,
0= “(%Po* + o1* Wi + ,-;\-I;Pa*Vou + p1Vior + cua® + cap* —g '(A.4.9)

6) At point D we have exactly the same two alternatives as in (5) above and no

change in the equations is needed.

If the dividing line BD had a different shape than that in Figure A.1, only minimal

changes would be required to the above discussion. For example, if the dividing liné
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intercepted the z; = 0 axis instead of the z, = 0 axis, everything would remain true
except that the subscripts 1 and 2 would have to be interchanged in parts (3), (4) and

(5) above.

B a=(1,0,0) Upper Half:

v
—)\*az’ R = —(po* + 1 + r2)Vioo + po*Vooo + 1iViro + r2Vior — g (4.410)

1

Lower Half:

8V;
'—7\*5—”2@ = —(p,* 4 r1 + n)Vioo + Po*Vooo + n1Vire + 2Vier — ¢ {A.4.11)

Dividing Line: ",

As shown in Section 4.7, \;* and \o* may be 2ssumed to be known on the dividing line

because they are uniquely determined by the slope of the dividing line.
i

Vieo A Vieo

A
125 282,

= —(po* + 11 + 72)V100 + Po*Vooo + 11 Vio + 2Vior — g (A.4.12),

Boundary Equations:

Assume that the dividing line has the shape shown in Figure 4.1.
1) On the segments AB, AF and FE, equation A.4.11 holds
2) On the segments BC and CD, equation A.4.12 holds.
3) At any point on the segment DE we have two choices:

3a) Ay = N* In that case equation A.4.12 still holds.
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3b) Ny = 0 (This will certaifxly be the case at point E.) Then,

0 = —(r1 + 72)Vieo + 11110 + r2Vior — ¢ (A.4.13)

Optimality conditions determine whether (3a) or (3b) will be the case. We can again
determine the optimality conditions by sending all terms of equations A.4.12 and A.4.13

to the right-hand side and compare them.

C:a=(L1,0)

Upper Half:

Ve __

oz, —(po*+p1* +7)Vio+po*Voro+p1 *Vico+raVin+am*—g  (A.4.14)

(u*—N\%)

Optimality Condition: Equation (A.4.2) except that the subscripts are changed to 110.

Lower Half:
IV, oV,
w* &:o —A* 6:):0 = —(po* + p1* + r2)Viro + m*Voro + p1*Vioo + n2Vin +am®* —g

(A.4.15)

Optimality Condition: Equation (A.4.4) except that the subscripts are changed to 110.

Dividing Line:

v, aV,
(1* — M) a,:o — N2 — __(py* + p* + 2)Vis0 + po*Voro + Pi*Vieo + 2Vin +

on
wi*e —g
(A.4.16)

Bt;undary Equations:
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These may be different depending on whether the dividing line intercepts the-z; = 0 or
the z3 = 0 axis and whether it intercepts the z; = N axis or the z, = Nj axis. (Compare
figures A.la and A.1b)
A. 1: Assume that the div-iding line intercepts the zp = 0 axis, as in Figure A.la.

1) On the segments AF and AB, equation (A.4.14) holds.

2) On the segment BC, equation (A.4.15) holds.
A. 2: Assume that the dividing line intercepts the z; = 0 axis; as in Figure A.1b.

1) On the segment FE, equation (A.4.14) holds.

2) On the segment AB, equation (A.4.15) holds.

3) On the segment AF we have two choices:

3a) \; = w* and Ag = po* In that case equation (A.4.16) holds, provided that we
use the above values for A; and Ng.

3b)\; =0and N, = po* In that case we have:

w* p*
0= —(Fpo* + r2)Vi1o + 'X;'Povmo +rnVin—g (A.4.17)

B. 1 Assum;s that the dividing line intercepts the z; = N axis, as in Figure A.la.
1) On t;he segment FE, equation (A.4.14) holds.
2) On the segment CD, equation (A.4.15) holds.
3) On the segment DE, we have two choices:

3a) \; = wi* and Ay = 0 In that case

* .
= —(%‘,— o + p1* 4 r2)Vie + I%-PoVow +p*Vioo +rVin tam* —g  (4-418)
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3b) A\ = i * and Ay = puo* In that case, equation (A.4.16) holds, provided that we

use the above values for \; and \s.

B. 2: Assume that the dividing line intercepts the z, = N, axis, as in Figure A.1b.
1) On the segment ED, equation (A.4.14) holds.
2) On the segment BC, equation (A.4.15) holds.
3) On the segment CD, Ny = 0 but we have the following choices for A;:
3a) A\; = 0 In that case

IV,
ﬂl*'é;_:q = —(p1* + r2)Viio + P1*Voio + r2Vioo + cu* — g (A.4.19)

3b) Ay = wu;* In that case
0= —(Fm n* 4+ r2)Vio + T P Voio + p1*Voio + n2Vieo + ci* — g (A.4.20)

3c) A\; = A* In that case equation (A.4.16) holds, provided that we use the above

values for A; and \s.

In the cases where we had to consider more than one possibility, we can again find
the optimality conditions as follows: gather all terms of the equation corresponding to
each possibility at the right hand side. The right-hand-side corresponding to an optimal

control law should be the largest one.

The casea = (1,0,1)is comp‘l‘etely symmetrical to the case @ = (1, 1, 0), so we do not
deal with separately. When a, = 0, there is no decision to be made and the corresponding

equations may be written in a similar but easier way.
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