
DISTRIBUTED ROUTING

by

ART O'LEARY

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1981

Massachusetts Institute of Technology

Signature of AuthorI -w =

Department of Electr'al Engineering and
Computer ScieniT, January 13, 1981

Certified by
Robert G. Gallager
Thesis Supervisor

Accepted by
Arthur C. Smith, Chairman

Department Committee on Graduate Students

2

DISTRIBUTED ROUTING

by

ART O' LEARY

Submitted to the Department of Electrical Engineering
and Computer Science

on January 13, 1981 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

ABSTRACT

In distributed routing each node receives some information
about the network from its adjacent nodes and uses the infor-
mation to determine the manner in which it forwards its
traffic. This thesis gives three examples of distributed
routing in a data communication network. A routing algorithm
is then given where a generalized distributed routing pro-
cedure proposes a flow change and a central node determines
the optimal scale of the. proposed change. Small flows on
long and unwanted paiths are set to zero regardless of the
scaling. The thesis shows that the iterative use of this
algorithm converges to the optimal network cost, e.g. it
minimizes the mean delay.

Thesis Supervisor: Robert G. Gallager

Title: Professor of Electrical Engineering
and Computer Science

3

Table of Contents

Page

Chapter I. Introduction 4

1.1 The Routing Problem 6
1.2 A Distributed Routing Algorithm 9

Chapter II. Second Order Routing 16

2.1 Notation 16
2.2 An Algorithm Using Second Derivatives 19
2.3 An Algorithm Not Using Second

Derivatives 27

Chapter III. Partially Distributed Routing 42

3.1 A Generalized Algorithm with Scaling 43
3.2 Convergence 50

Appendix A. Dual of the Routing Problem 74

A.1 Linear Programming Application 74
A.2 Error Bound 78

Appendix B. Routing Samples 79

References 85

4

Chapter I.

Introduction

Many computer centers share their resources through some

communication linking. For economic reasons most pairs of

computer centers are not directly linked so a message or file

often travels over several links to get to its destination.

For operational reliability most source-destination pairs

are connected with two or more distinct message paths.

The choice of which path a message is to follow is a

routing decision. This decision might be to use the path

with the smallest number of links, provided it is not con-

gested. If the delays resulting from queuing at the computer

centers and transmission across the links are significant, then

the routing decision might be to use the path with the

shortest delay.

These routing decisions require some knowledge of the

network. In centralized routing one computer center (with

perhaps several backup centers) takes the responsibility of

monitoring the network. This center receives the status of

the links and the size of the traffic flow from each source

to each destination. It sends out to the other centers their

routing instructions.

In distributed routing, each center determines the best

route based on the status of the adjacent links and on its

neighbors' estimates of their distances (number of links, the

delay, or whatever) from the destination. More details are

5

given later.

Our basic routing criteria is that the routing should

minimize a network cost function. The specific form of this

function is given in the next section. The mean delay is a

common example of the network cost.

Iterating a routing algorithm should lead to the optimal

routing whenever the traffic from each source to each destina-

tion is constant. Gallager [77] gave the first distributed

routing algorithm that satisfies this criteria. Bertsekas

[78] and Gafni [79] generalized Gallager's algorithm and gave

different proofs of convergence.

In contrast to centralized routing these distributed

algorithms are often guaranteed to converge only if the routing

changes are small at each iteration. Presumably, the conver-

gence is also slower than that of centralized algorithms. In

chapter three we describe a distributed routing algorithm in

which the routing changes are comparable to those of a cen-

tralized routing algorithm.

In order to maintain a good routing when the source-

destination traffic slowly changes, the routing algorithm is

periodically iterated. An algorithm with a good convergence

rate should need fewer iterations to give a good routing.

If the traffic changes more rapidly, then the algorithm is

iterated more often. In the extreme case, the traffic changes

so rapidly that the algorithm cannot cope with it.

Empirical tests with a specific network are required to

determine how often a routing algorithm should be iterated.

11 2r

6

Rudin [80] suggests that these tests should take into account

the control used to limit the traffic into the network. Under

this flow control a good routing algorithm allows more traffic

to enter the network.

The rest of this chapter details our routing problem and

gives a simple distributed routing algorithm. The second

chapter gives two distributed routing algorithms that make the

quadratic approximation of the change in the network cost non-

positive. This means that the flow change generated is likely

to make the cost function decrease. The third chapter gives

a class of routing algorithzs in which the network control

center is called upon to determine the size of the flow change.

The third chapter also shows that this class converges. Appen-

dix B illustrates some sample behavior of the algorithms

mentioned in the thesis.

1.1 The Routing Problem

Let N be the set of nodes (switching centers). A duplex

communication channel between nodes i and j is interpreted as

a pair of directed links (i,j) an& (j,i). Let L be the set of

directed links.

We will call the traffic destined for node k commodity

k and we will let C denote the set of commodities.

The instantaneous description of the network consists of

the number of bits of each commondity travelling on each link

and the number of bits of each commodity waiting at each node

for transmission over a link. This instantaneous description

9

7

is of little use for routing as during the time it takes a

node to describe to its neighbors the state of its queues, the

queue lengths usually change significantly.

A less volatile description of the network is the average

rate over a given time interval at which each commodity travels

over each link and the average rate at which each queue length

changes. If the time interval is large enough then, because

the queue lengths are finite, the latter rates will be small

compared to the former. For example, in ten seconds 500,000

bits might be sent over a link while the queue length at the

head of the link changes by 5000 bits. The average rate of

change of 500 bits per second in the queue is small compared

to average transmission rate of 50,000 bits per second on the

link. Consequently, we will treat the rates at which the queue

lengths change as zero.

k
Let F.. be the average rate at which commodity k travels

'3

over link (i,j). F.k. is non-negative. Let f.. be the aggre-
iJ 13

k
gate flow on link (i,j), i.e., f. =SkF . Let c. .be the

capacity of link (i,j). Let R be the average rate at which

k
commodity k originates at node i. Rk is non-negative for

i4k. The consumption of commodity k at node k implies

R :=-E Rk keC (1.1.1)k i/k i

The conservation of each commodity at each node and our

treatment of the queue lengths as zero gives

Z.Fk -EZ Fk. + R ieN, keC (1.1.2)
ji 13 Zi1

8

The network cost will be taken to be the mean transmission

cost

- E (f .. 1 1 3r i 13 13 13

where

r :=~ ki/k i

t. (f .) might be 1, representing the unit use of link (i,j)

in which case the network cost is the mean hop length. Alter-

-l
nately, t. . (f . .) might be (c. . - f . .) which is a standard

13 1-3 J1J 13

approximate formula for the mean delay on link (i,j) in a store

and forward network [Cantor and Gerla 74]. We will write the network

cost as

J(f) . .J. .(f. .) (1.1.5)

The link cost J. .(f..) is a function of the flow on that link.

Our routing problem formulation is

minimize E. .J. .(f..)

k
subject to f. . = kF

ij k ij

k k k
m im n ni=Ri

f..< c..
13 - 13

F.. > 0
13

(i,j)eL, keC (11(1.1.6)

9

The set of feasible flows is defined to be the set of varia-

bles f,F that satisfies the constraints of (1.1.6). This

thesis assumes that on the set of feasible flows the network

cost is twice continuously differentiable with positive partial

derivatives and non-negative second partial derivatives.

Almost all of the results about the routing alogrithms in

chapters two and three hold only when the input flow R is

constant. Rather than preface many remarks with the clause,

"Assuming R is constant...," we here assume that R is constant

in the rest of the thesis.

As stated in appendix A, the optimal flow of (1.1.6) is

the one in which the flow travels along the path of the least

incremental cost. If the derivative of J. . (f..) is taken to

be the distance of the link (i,j) then the optimal flow is a

shortest distance flow. We denote this link distance as

DJ. . (f..)
g. . 1J:=(ij)eL (1.1.7)

13 39f..

By our assumptions about the network cost function we have

g. . > 0 (i,j)eL (1.1.8)

1.2 A Distributed Routing Algorithm

We introduce the basic details of distributed routing with

the following routing algorithm. Recall that commodity k is

the flow destined for node k. As we often describe what is

happening one commodity at a time, we will just as often find

it convenient to omit the superscript k. If (i,j)er or

(j,i)es then we say that j is a neighbor of i.

In the following algorithm every node has a favored

neighbor for each commodity. Initially, we let this be the

neighbor on any path with the fewest links to the destination.

For each commodity, V. is the distance from i to the destina-

tion via the favored neighbors. Each node i selects as its

new favored neighbor the neighbor m that minimizes gi.+V .

(gi is given in (1.1.7)). (We will later show that the new

favored neighbors determine a tree directed into the destination.)

The proposed flow F' is the one that travels to the destination

via the new favored neighbors. The new flow generated is that

convex combination of the present flow and the proposed flow

that minimizes the network cost.

The following describes one iteration of the algorithm.

We assume that the initial flow is feasible.

I. The following steps are done for each commodity.

A. The destination sends the signal "Vdest = 0" to

its neighbors.

B. Each node i waits until it receives Vn from its

favored neighbor n. Then node i sends the follow-

ing to its neighbors.

V. = g.n + Vni in n

C. Each node i waits until it receives V. from every
2

neighbor j. Then it waits until it receives F!.
JI

11

from every neighbor j for which V. > V.. Node i
J1

automatically assumes F!. = 0 for those neighbors
J3

j for which V. < V. Node i then determines its
J - i

new favored neighbor m by

m = arg-min {g..+V.}
J

The proposed flow is F! = E F. + R. and

F!. = 0 if j/m. F!. is sent to node j if
13 1J

V. > V..
1 J

II. Each node i sends the set {f!.(=E F!k)} to every node.
3j k ij

III. Every node determines the y, 0 < y < 1, that minimizes

J((l-y)f+yf') while satisfying (1-y)f+yf' < c. For

each commodity and link (i,j) the new flow is

(1-y) F.. + yF! ..

In that last step a central node could receive f', determine y,

and send this information out to all nodes. This would reduce

the communication overhead, but would also introduce a delay

before every node learns the value of y.

We now briefly check that the above algorithm generates a

feasible flow. For each commodity and each node i we have

for the n and m of step B and C,

V. =g. + VV " in n

> g + Vm

(1.2.1)>mV

12

where the last inequality comes from (1.1.8). Thus, the new

favored neighbors determine a tree rooted into the destination.

The proposed flow travels on this tree and satisfies all of the

constraints of (1.1.6) except, possibly, f' < c. Then, since

f is feasible, any flow satisfying (1-y)f + yf' < c with

0 < y < 1 is feasible. This shows that the algorithm is

feasible.

When the link costs depend on the flow and the network

is moderately to heavily loaded, the optimal flow usually has

branches, i.e., multiple paths. In this situation a routing

algorithm should not only indicate which path the flow is to

be shifted to but also how much of the flow is to be shifted.

The routing algorithms of chapter two do this job.

We end this chapter with an example. We start with the

network of figure 1.2.1 and use only one commodity, that des-

tined for node d. The link capacities are c.. = 5. The input

flows are Rl = 3, R2 = 2, (and Rd = -5). The sum of the input

flows is r = 5. The link cost functions are

f..

J (f) = 1 1] (1.2.2)
ij ij 5 " 5-f. .

For the initial flow we have Fld = 3, F2d = 2. With the

following

9J. .(If. .)
'i1 =i 1 ,1(1.2.3)

af..2 'iJ (5-f..)

we have for the initial flow, gid = 1/4, 92d = 1/9 12

921 = 1/25. Applying step IB of the algorithm we have V 1= /4,

13

V2 = 1/9. Node d remains the favored node of 2. Node 2

becomes the favored node of 1 because 1/4 >.1/25 + 1/9. The

proposed flow is F 3, F = 5. In step II, the optimal12 2d

y will be found to be .3232. The new flow turns out to be the

optimal flow with cost .4178. The initial flow had .4333 for

its network cost. If each node had minimized its delay from

the destination then the scaling y above would have been .4398

and the resulting network cost is .4198.

3 2.
2

d

Figure 1.2.1

14

Note l.N.l. Schwartz and Stern [80] summarizes the routing

schemes used in present day networks. None except ARPANET

uses distributed routing. Many do have distributed communi-

cation for notification of congestion. In response to conges-

tion, these networks change the routing to some predetermined

path. None of the networks optimizes the network delay. The

network that comes closest to this is the ARPANET [McQuillan

et alia, 80]. It takes the present delays in the network,

finds the paths with the smallest delay (not incremental delay)

and uses these paths ignoring the fact that the new routing

would change the link delays.

Note l.N.2. For centralized routing there are many techniques

to find the optimal routing. Among them are Cantor and Gerla

[74], Frank and Chou [71], the flow deviation method [Fratta,

Gerla, and Kleinrock 73] and Schwartz and Cheung [76]. The

routing algorithm given in section 1.2 is a distributed

approximation of the flow deviation method. In the exact flow

deviation method the proposed flow F' is sent down the path

with the shortest distance wrt g.

Note l.N.3. Agnew [76] indicates that the difference between

using the paths with the shortest delay and using the paths

with the shortest incremental delay is largest at medium

loadings. Rudin [80] indicates that the effect of using

frequent routing determinations is most beneficial at medium

loadings. The reason is that at low loadings the flow usually

15

follow the path with the fewest links. At high loadings, the

hightst cost links form a cut set and the routing either avoids

the cut set or balances the flow through the cut set so that

the cost of the links are about the same.

Note l.N.4. Our routing criteria is that the routing should

become optimal if the source-destination traffic remains con-

stant. Since this traffic changes one might try to improve on

the routing in between routing determinations. Rudin [76]

reports some benefit in using something close to the actual

delay to the neighbor plus the reported delay from the neigh-

bor to the destination in determining the shortest path. One

might also predict the interim delay as a function of the flow

sent to the destination by means the second derivative methods

of chapter two in this thesis.

16

Chapter II.

Second Order Routing

The routing algorithms of this chapter generate a flow

change F that reduces the quadratic approximation of the

cost change. The convergence of these algorithms is covered in

the next chapter.

2.1 Notation

We will be using the vector version of formulation (1.1.6)

given in the first chapter along with some new quantities.

Let N be the number of nodes, L be the number of links, and

C be the number of commodities. From section 1.1 we have

k k
C=N. The commodity flow F is Lxl and the input flow R is

Nxl. For the most part we work with one commodity so it will

be convenient to let F and R be the flow of a fixed commodity.

The destination of this commodity will be called node dest.

Let the following NxL node-link incidence matrices be

defined.

+{1 if n=i

n,ij 0 if n#i

1 if n=j
E = neN, (i,j)eL (2.1.1)n,ij 0 if n/j

E . . := E+ . . - E - .
n,ij n, n

The conservation equation (1.1.2) is then EF = E F+R.

Let the node flow T be defined by

17

T := E+F = E F + R (2.1.2)

T is Nxl. A routing variable $ is defined to be any

non-negative LxN matrix that satisfies

f l if n=i/dest

jij,n { 0if n/i, i=dest, or n=dest (i, JeL, neN

(2.1.3)

Let the routing fraction be any (usually unique) routing

variable such that if TQ#0 then .. . = F. ./T.
13,11J 1

If $.. is taken to be the row of $ that corresponds to

link (i,j), then from the definition of a routing variabler$P.

is non-zero only at O.. .. We have F.. = ..T = .. . T..
J]1 J 1J 1J,1 1

It will be convenient to take 4.. to be the element $.
1J lJ,i*

Then F. . = p. .T. . We will take O. to be the column of $ that
1J J1 1

corresponds to node i. The non-zero elements of).T i are the

flows that leave node i.

F = 4T (2.1.4)

Let F be a change in F. Let F' = F + F be the new flow

after making the change. Let T' and $' correspond to F'.

Let T = T' - T and $ = 4' - $. From (2.1.2) and (2.1.4) we

have the basic equations involving these quantities. As

discussed near the end of section 1.1, R is assumed to be

constant.

T' = E+F' = E~F' + R (2.1.5)

T = E F = E F (2.1.6)

F' = $'T' (2.1.7)

18

F 'T'- OT (2.1.8)

= tT + tT + $T (2.1.9)

The last equation comes from the expansion of $' and T'

in the previous equation.

The definition of i implies that a change in any routing

variable such as $ satisfies

jiji + 4 ik > 0 (i,k)eL (2.1.10)

If $j > 0 we say that j is a downstream neighbor of i.

A node k is downstream of i if it is a downstream neighbor of

i or if it is downstream of a downstream neighbor of i. p is

said to be loopfree if no node is downstream of itself.

Let Q(f) be the quadratic appoximation of the cost differ-

ence J(f-+f) - J(f).

1 ~Q(f) Z .g..f + - E..h..f.. (2.1.11)
jJ iJiJ i J 1J iJ

where

9cJ.. (f. .)
' f . (2.1.12)af..

31]

29 J. . (f. .)

h. 2 ~ ' (2.1.13)
9f. .

By our assumption about the network cost, stated in

(1.1.6), g..> 0 and h. .> 0.

Letting g and h be lxL vectors and the square of a vector

be the vector of squares, (2.1.11) may be rewritten as

19

Q(f)i+ hf2 (2.1.14)

Because Q(f) is quadratic it is symmetric about its

minimum. Since Q(O) = 0, if f minimizes Q(f) then Q(2f)=O.

We are not able .to minimize Q(f) directly with a distributed

routing algorithm. When we upper bounded Q(f) by other qua-

dratics and minimized those bounds the only solid thing we

could say about the result was that Q(f) < 0. In that case,

we rather have Q(2f) < 0. The two distributed routing

algorithms of this chapter generate a flow change f such that

Q(2f) < 0.

We have

-2
Q(2f) = 2gf + 2E. .h..f..

3J 'iJ 13

~k~k 2
-

2 gEF + 2E. .h.. (E F..)k 13 13 k ij

k ~k 2
< 2gEF + 2 EijhijCk(Fi)

-
2Zk(gF + Ch(F) (2.1.15)

The routing algorithms of this chapter make Q(2f) non-posi-

2
tive by making gF + ChF non-positive for every commodity.

2.2 An Algorithm Using Second Derivatives

As we shall show subsequently, the following algorithm

~2
has the property that gF + ChF is non-positive. For the

first iteration of this algorithm we assume that $ is loopfree.

For each iteration the following steps are done for each

commodity.

20

IA. The destination sends the signal "GHdest O'Hdest"o

Sdest=0" to its neighbors.

IB. When each node i receives G. and H and S. from
J J J

every j such that $.. > 0, node i passes the follow-

ing values to its neighbors

G. = Z.(g..+G.)$..
1 J 13 3 13

H. = Z.(h. .$. .+H.)$.
1 J 1i ij J :ij

S. =max{G., max S.}
j:$. .>0

13

IC. When each node i receives the G, H, and S values from

every neighbor and the size of the new incoming flow

F' from every neighbor k such that Sk> Si or

$ki > 0 then node i determines the new node flow

T=EkFIi and the $ which minimizes the follbwing

12.(g. .+Gj.).. +1- CLE.(h. .+H.). .T! (2.2.1)
J IJJIJ 2 Jij+ J iJ

such that Ej$kj=0 and $..+k.. > 0 and $..=0 if
13J J J- 13

S. < S. and f. .=0. The new flow is F!.=(. .+$. .)T!1 13 13 13 13 1

This is passed down to each node j.

The node distance G. is the average distance over which the

input flow R. travels to reach the destination. Note 2.N.2

shows that G is the marginal change in J with respect to R.

when $ is fixed. The watershed distance S. is the largest

node distance at node i or downstream of node i. Its only

role is to prevent a deadlock from occurring in the algorithm.

21

$ is assumed to be loopfree so there is no deadlock in

step IB. To make sure that there is no deadlock in IB in

the next iteration we must make sure that $' = 4 + $ is

loopfree.

If either (i) $. > 0 or (ii) (i,j)ebrF and S. > S. then
1J)

we say that j is a downhill neighbor of i or that i is an

uphill neighbor of j. In step IC node i receives the size

F'i from every uphill neighbor and constrains oi.=0, i.e.

q. .+. ,. = 0, if j is not a downhill neighbor. We say that k
1] J]

is downhill of i if it is a downhill neighbor of i or is

downhill of a downhill neighbor of i. No deadlock occurs in IC

if no node is downhill of itself. Also 6! is non-zero only if

j is a downhill neighbor of i so if no node is downhill of

itself then $' is loopfree. Thus, to show that the algorithm

is feasible we only have to show that no node is downhill of

itself.

By the definition of downhill and the definition of S

(in IB) , if j is a downhill neighbor of i then S. < S. with equal-
J - U.

ity only if j is a downstream neighbor of i. Thus, if j is

downhill of i then Si. <,S. with equality only if j is down-
J - 1

stream of i. Thus, a node is downhill of itself only if it

is downstream of itself. But 0 is loopfree so no node is

downhill of itself. This proves that the algorithm is

feasible.

In step IC, node i needs to know T! before it can deter-

mine $. Rather than have node i take the time necessary to

measure T! we have every uphill neighbor k send the size Fk

22

to node i. Calculating the new flow is also useful if

several iterations of the algorithm per measurement interval

is desired.

We mention here the effect T! has on the optimal .

If T! is large then the squared term in (2.2.1) is penalized

so the optimal $f is small. If T! is small then the optimal
1

will be large.

Remark 2.2.1. Algorithm I makes gF +ChF non-positive.

Proof. Algorithm I minimizes (2.2.1) which is given in step

IC. Thus, any change from the optimal e to, say, p where p

satisfies the constraints of IC, is a non-descent change in

(2.2.1).

.[g..+G.+CL(h.+) .. T!]($..- .) > 0 (2.2.2)
Si 3 i j+ 1 i 1 1

The expression in the brackets is the gradient of (2.2.1).

At i = 0, the above inequality reduces to

-2
E.(g. .+G.). . + CLEZ(h..+H.)4. .T! < 0 (2.2.3)]J-IJ J 1J I 1] IJ

Multiplying by T! and summing over i gives

(g+GE)$T' + CL(h+HE)(;T')2 < 0 (2.2.4)

We now develop some expressions for G and H. From IB,

G = Zg. *$ + r.G.4$. (2.2.5)

In vector form, this is

G = go + GE 0 (2.2.6)

Subtracting the last term, gives

23

(2.2.7)G(I-Eg) = g$

Let the following be defined.

oN := (I-E~$) 1 (2.2.8)

Note 2.N.1 shows that the inverse exists and that its terms

are non-negative and less than one. 8N is NxN. ek,i can be

interpreted as the fraction of Ri that appears at node k.

Multiplying (2.2.7) by eN gives

G = g$PO (2.2.9)

That is ,

Gn = g # ii,n (2.2.10)

Similarly, for H

H = . .h. .2
n 13 ij 1i,n (2.2.11)

With (2.2.9), the first term of (2.2.4) is

(g+GE)qT' = (g+ge014E)$T'

= g(I+$1NE) $T' (2.2.12)

We now show that this is gF. From (2.1.9)

F = tT + tT + cT

= $T' + $T (2.2.13)

Putting this in T = E~F gives

. . . OMWW

24

T = E $T' + E~$T

Subtracting the last term from both sides and then multiplying

by 6N gives

(2.2.14)T = eNE $T'

Putting this in (2.2.13) gives

F = tT' + l$6NEOT'

= (I+$eNE)qT'

Using this in (2.2.12) gives

(g+GE)T' = gF

(2.2.15)

(2.2.16)

(2.2.17)

Thus, (2.2.4) becomes

1- %w 2
gF + CL(h+HE) ($T') < 0 (2.2.18)

~2
We now show that ChF is less than the second term above.

Using (2.2.15),

2T~ 6ET 2
ChF = Ch[$T'+$6NE OT]

2
= CE. .h..[4...T!+E (p.*. $ T')

ij ij ij i mn ij i,n inn m
(2.2.19)

Since T' =0, there are no more than L term in the brackets.
dest

Upper bounding the square of sums with L times the sum of

squares gives

25

~2U 2 2 2 ~ 2
ChF < CLE. .h..[($. .T!) + $..6 (4 T')

j13 13 1 mn ij i,n mn im

2 22 2
= CLE..h..($..T!) + CLX..h..E 6. (T')

ij ij i1 i 13 i 3mnnij i,n mn m

SC 2 2 2 2
=CLh($T') + CLE Z..h..$..ei(4 T')mn 3 3i n mn m

(2.2.20)

From the fact 0 < 6. < 1 we have e. >. Using this
- i,n - i,nZ-Pi,n U

and the fact that h.. is non-negative in (2.2.11) gives
1J

H > E..h...262
n - 1j i) ij 6 i,n

(2.2.21)

Using this in (2.2.20) gives

~2~ 2 2
ChF < CLh($T') + CLE H (4 T')

- nf n n im

= CLh($T')2 + CLHE($)T') 2

= CL(h+HE~)($T) (2.2.22)

Using this in (2.2.18) then gives the remark.

The next remark says that there exists a flow cost

below which alogrithm I makes the network cost decrease

monotonely.

Remark 2.2.2. Suppose that the second derivative of each

J.. is positive and that the initial flow f0 is such that,

for every link (i,j),

26

32

max 2 J(f) < J(fO}
f 9f- -

2 J.(f..j)0

2min {-Uiifi J(f) < J(fO) (2.2.23)

Then algorithm I makes the network cost decrease monotonely.

Proof. Let f be any flow such that J(f) < J(f0) and, for f,

suppose that algorithm I generates f. Suppose to the contrary

that J(f+f) > J(f). Because of the strict inequality

J(f+f) > J(f), we have f$0. With remark 2.2.1 and equations

(2.1.15) and (2.1.14), algorithm I is seen to give

~-~2
gf + hf < 0 (2.2.24)

By the first assumption of the remark we have h.. > 0 for

all links (i,j). Since we also have ftO, gf is negative.

~2
gf < -hf < 0

This means f is in a descent direction. Since J is continuous,

there exists an a, 0 < a < 1, such that J(f+af) = J(f). A

Taylor series expansion of J(f+af) gives

~ 2 321

J(f+ctf) = J(f) + gf+ a.(+2) 2](2.2.25)

where is between f.. and f..+af... We have J(f+E) < J(f0

Then (2.2.23) allows us to say

27

2 2

2 < 2 2

= 2h.. (2.2.26)
l2

Using this inequality in (2.2.25) leads to

2 -~2
0 = J(f+af) - J(f) < agf + 2hf (2.2.27)

2
< a(gf+hf

< 0 (2.2.28)

This is 0 < 0, a contradiction. Therefore, the network cost

decreases monotonely.

2.3 An Algorithm Not Using Second Derivatives

Let P be a number greater than max h . The following

algorithm is less precise than the previous one as it uses P

instead of the whole vector h. It does have two advantages.

H is not passed through the network. Also, the optimizing

$ is independent of Ti, avoiding the need to pass the size

of the flow change through the network. Node i simply cal-

culates = + and proportions out with $' the traffic

that comes into the node.

In the first iteration of the algorithm we assume 4 is

28

loopfree.

IIA. The destination sends the signal "G=dest 0, 'Sdest"0i

to its neighbors.

IIB. When each node i receives G. and S. from every j such
JJ

that $.. > 0, then node i passes the following values

to its neighbors

G. = Z .(g. .+G.)$. .
1 J iJ J 1J

S. = max{G., max S.}
j:$. .>0

1]

IIC. When each node i receives the G and S values from

every neighbor it determines the which minimizes

the following

E (g..+G.)$.. + - PCLNZ $..T. (2.3.1)JiJ j iJ 4 i

such that E.$. .=0, $. .+$. . >0, and $. .=0 if

S.< S. and .. =0.

The new flow is F!. = (O..+m..)T! where T! = E F'. The demon-
13 iJ 31 T Ek k

stration that this algorithm is feasible is the same as for

the previous algorithm except that we do not have to worry

about a deadlock in step IIC.

Remark 2.3.1. Algorithm II makes gF + PCIFI non-positive.
2 k ~2

Note that a non-positive gF+PCIFI makes gF+ChF non-positive.

Proof. Using the same argument as for (2.2.3), the optimal Pi

satisfies

29

1~2
z.(g..+G.)t.. + -PCLNX...T. < 0 (2.3.2)

j ij j j 2 Ji1 1i

Multiplying by T! and then summing over i gives.

(g+GE) T' + jPCLNZI I'T Tj < 0 (2.3.3)

By (2.2.17) the first term is gF.

gF + -1 PCLNi $I2T.T! < 0 (2.3.4)
2 i 1 -

For any variable x, let x+ = max{x,0} and x = max{0,-x}.

We have x = x -x

We have T.> T. - T and T! = T. + T. > T. - T.. Using
1-1 1 3I 1 1- 1 i

both of these inequalities in (2.3.4) gives

gF + PCLN$(T-T) 2 < 0 (2.3.5)
2

- 2 1 - 2
We now show that F| < ~LNI(T-T) I and this in the above

will prove the remark. From (2.1.9),

F = tT + $T + 4T

Expanding T into T -T gives

F = OfT - c OT + $T + 4T -T

= T-T) + 'T+ -+ T(2. 3.6)

From this we get,

F < ;(T-T) + $T (2.3.7)

With T < E F,

F < (T-T) + E F

30

Subtracting the last term from both sides,

(I-E)F < (T-T (2.3.8)

Let the following be defined.

eL := (I-$E) 1 (2.3.9)

Note 2.N.1 shows that the matrix inverse exists and that its

terms are non-negative and no greater than one. 9L is LxL.

8 is the fraction of $ that appears on link (i,j).

Multiplying (2.3.8) by 8L gives

F < L (T-T) (2.3.10)

Elementwise, this is

F..c< E 6.. (T -T)1- inn ij,nrtn m m (2. 3.11)

Squaring both sides and summing over ij gives

-2~- ~- 2F (< E.(E 0 (T -T))
- i mn ij,mn mn m m (2.3.12)

Using Minkowski's inequality, Z(E xk1 2)2 j((j) 1/2) 2
nr k jk)g kjjk

in the form Ej(Zk xj k) 2 < (Ekzx 2 k) 1 /2)2 gives

- 2 2
IF I < (E (E..(2j(T -Tiji))/)2mn 13ijmn mn m m (2.3.13)

Since 0 < 0ij,,mn < 1 we have

E ..2 < Z. .0.J1Jijmn - 1ijJImn

With equation (2.Nl.12) found in note 2.N.1 the above becomes

2E 2 < N (2.3.14)1] ij mn -

31

Using this in (2.3.13) gives

F 12 < N(E q (T -T))2
mn mn n M

With En$A = n , the above becomes

- 2 N ~)2

W F h Ns d l I(T-TF)

We do the same development for F. From (2.3.6),

F + (T-T) + $'T

(2.3.15)

(2.3.16)

(2.3.17)

With T <E F

F + < (T-T~) + 'EF

Subtracting the last term from both sides,

(I-c$'E)F+ c+ (T-T

(2.3.18)

(2.3.19)

Now we define the following

(2. 3.20)

It has properties similar to 8L. The next few steps parallel

(2.3.9) to (2.3.15). This gives

+ 2 2
IF I < N(Z $+ (T -T))

+ 1 -%
UsingE n =1 n mnl'

IF + 12 < N_~(T -T 2
2 mn mnl m m

(2.3.21)

(2.3.22)

2 %~ + 2 ~- 2
Using this and (2.3.16) in IF! = IF I + Fl gives

el := (I-$' E~)~1

32

~- 2 N ~~ 2
F < - E - 2(TM-T) (2.3.23)2 mn mn mfM

< NL Z(t(T-T)) 2

<NL$(T-T)1 2 (2.3.24)

This in (2.3.5) gives the remark.

33

Note 2.N.l. The routing fraction $ is loopfree if there does

not exist a loop (n1,n2 ,...,nm nm+l n) on which $nn. > 0

for i = 1,2,... ,m. This note shows that if the routing fraction

is loopfree then for a given R there is a unique F and T.

From EF=R and E=E -E~ and then from F=$T and T=E+F comes

R = E+F - EF

= T - E~$T

= (I-Et) T (2.Nl.l)

If I-E$ is invertible then T will be unique. We show

the invertibility. We have E4$ = $

(E~$) 2 = ik4i kj (2.Nl.2)

Inspection of this leads to the following interpretation.

(E4$)n . is the fraction of R that appears at node j after

travelling on exactly n links. Since $ is loopfree, (E t)N=0.

We have

(I-E~$) (I+E 4+ (E .2 + (E-$) N-l I - (E-$) N I

Since the product on the left hand side equals the identity

matrix, we get

(I-EI $) = +E + (E)2 + ... + (E$)Nl (2.Nl.3)

This shows that (I-E t) exists and has non-negative terms.

(2.Nl.1) becomes

T = (I-E ,)~1 (.N.4(2. Nl. 4)

34

- -1
(I-E $. is the fraction of R. that appears in T.. Since

,J 1J

there is no looping, the terms of (I-E $)~ are no greater

than one. We have (I-E)jdest equal 0 if j/dest and 1 if

j=dest. Using (2.N1.4) in F=4T gives

F=$(I-E) R (2 .Nl. 5)

We now wish to show that I-$E is invertible

2 -N
(I-$E) (I+pE~+(fE) +Q... +(pE~)

=1I- ($E)N+1

- NE
=I - 4(E 4N E

= I

Therefore I-$E is invertible and

(I-$E) - =I+ + (OE 2 + + (OE)N (2.Nl.6)

2 N-1
= I + $(I+E $+(E$) +. +(Ec))E

= I + $(I-E~$) E (2.Nl.7)

We have the elementary equation

$q(I-Eq$) =(IE)

Inverting the factors in the parentheses gives

(I-$E~) q$ = $ (I-Eq$) (2.N1.8)

Using this in (2.Nl.6) gives another expression for F.

35

(2. Nl. 9)F = (I-4E) 4R

(I-$E) 1 is the fraction of t R that appears in F...
I i ,mn mn m 1]

Therefore, it is non-negative and no greater than one. From

(2.Nl.7) we have

(2.Nl. 10)- -1 - -
(I-$E) . = I. . + p. . (I-Eq)I

ijmn 1J,mn1 ifn

The last term makes sense as all of the flow on (m,n) reaches

node n. (I-E$) is the fraction of that flow that reaches

node i. is the fraction of this flow that goes on link

(i,j). We now develop an inequality using the following pro-

perty of (from (2.1.3))

(2.Nl.ll)1 if i#dest

J 1J

0 if i=dest

.. (I-E). = 1 + 2..$ (I-
1] imn i1 1 -i,n

= 1+ ~
ifdest

<1 + t
- i/dest

i,n

1

=N (2.Nl. 12)

Note 2.N.2. The node distance G has some interesting proper-

ties. This is the node distance that was used in [Gallager 77,

Bertsekas 78, and Gafni 791. From (2.2.9) we have

36

G = g$(I-E $)~ (2.N2.1)

Comparing this with (2.Nl.5) shows that the fraction of g

in Gn is the same as the fraction of Rn in F The most

important property of G is. GR=gF

GR = gc (I-E40) R = gF (2.N2.2)

From remark A.2.1 in appendix A we have the following error

bound

J(f) - Jmin < gf - EkDkFk (2.N2.3)

where Dk is the shortest distance vector with respect to

commodity k and distance g. Since gf = EkgFk we may use

(2.N2.2) to get

k k k k
J(f) -min < EkG R - EkD R

min -k kk

= Ek (Gk-Dk)Rk 2 .N2. 4)

Let us restrict the routing problem to one commodity and use

(2.Nl.5) to make J(F) a function of and R, i.e.

J*(,R) = J($(I-E4O)4 1 R) (2.N2.5)

We will differentiate this equation to see how a small change

in and R changes Jt We will need the differential of

(I-E$)~41. Let Y = (I-E O)4 . Then, (I-E~)Y =I. Differen-

tiating this gives (I-E~$)dY- E dOY = 0. Rearranging this

then gives

37

d(I-Ef) = dY

= (I-E ,) *E d$Y

= (I-E) dc(I-E

Using the chain rule in (2.N2. 5) gives

dJ* = g[d(I-E$) R + (I-E $) E d(I- -R

+ $(I-E$)41dRI

Using (2.Nl.4) and (2.N2.1),

dJ* = gd$T + GE dOT + GdR

We have the constraints,

(2.N2.6)

(2.N2.7)

2.d4.. = 0
J 1J

d$..+ 4 .. j> '

R + dR. > 0 for i3destdRdest = idest dR.1 1 1- ds3-4 d
(2.N2. 9)

Since Gdes=0 , (2.N2.6) says that if dR- and dRdest are

the only changes in $ and R then J* (and J) changes by approx-

imately G. dR. where the approximation is better if the change
1 1

is small.

We end this note with two inequalities. The first is

G. < N max g (2.N2.10)
mn

This follows from (2.N2.1),

(ij)eL

38

G j jkjkji

< Z~(x g '4JI-Ef

= (max g) $((I-EI-El

mnn

< N max g (2.N2.ll)
mn

The other inequality is

N(G-D)R > (G-D)T (2.N2 .12)

To get this inequality we start with (2.2.6) which is

repeated here

G = (g+GE)$ (2.N2.13)

We have

D c (g+DE~) $(2.N2.14)

Taking the difference, and then successively multiplying

by E $ gives

G-D > (G-D) E

> _(G-D) (E
)- 2

> (G-D) (Eq)3

> (G-D) (E $)N-1

39

Summing the column of the above chain of inequality and

adding G-D = G-D gives

N(G-D) > (G-D) (I+E ~$+(E ~$) 2 + ... + (E ~$ N-1

= (G-D) (I-Eq)' (2.N2.15)

--1Since Gs=0=Ddst and (I-E $)i 1 s=0 for ifdest, we candest des i,dest

multiply (2.N2.15) by R and preserve the inequality.

N (G-D) R >_ (G-D) (I-E~$) ~R

= (G-D)T (2.N2.16)

This proves (2.N2.12)

Note 2.N.3. Another possibility for H in algorithm I is the

following

H 1/2H = 0
dest

H1/2 (2 1/2+EH 1/2 j(.31H.' 2
- (Z.h. . 2)/ 2 + 2 .H.+.%. (2.N3.L)

1/2The square of H. is used in step IC. This note will
J2

prove that this choice of H makes gF + ChE non-positive. If

the proof of remark 2.2.1 is reviewed it will be seen that it

will be enough to show that (2.2.21) still holds. This condi-

tion is

Hn>- Zh $22 (2.N3.2)n - j ij ii i,n

40

As in the transformation of G from (2.2.5) to (2.2.10), we

have for (2.N3.1)

H1/2 = E Z.(E.h.)1/2. (2.N3.3)
n i j iJ j in

Squaring both sides and then reducing the square of the sum

to the sum of square gives (2.N3.2).

It is not clear whether this H is better or worse than

the H of algorithm I. The one given there was chosen for its

simpler computations.

Note 2.N.4. Figure 2.N.4. gives a non-optimal flow for which

one iteration of either algorithm of this chapter could fail

to make the cost function decrease. However, there is an

improvement in $.

1 1,3

0,1

0,1
2 3

1,4

d

Figure 2.N.4..

Associated with each link (i, j) in the figure is $,'gi.

There is an input flow only at node 1. It is destined for

node d.

In applying one iteration of either algorithm I or II to

41

the figure we have G2=4, G3=1, and at node 1, g1 2+G 2 = 5

and g1 3 +g 3 = 4. Thus, there is no change in the flow at node

1 or elsewhere. Thus, the cost function does not change even

though flow in the figure is not optimal. The optimal flow is

on the path (1,2.3,d).

At node 2, =23+G3 2 and g2d+Gd= 4 so by either algorithm

I or II we have $ 2 3=1. So, we do have an improvement in $ and

in the next iteration the flow will change and the cost function

decrease.

42
Chapter III.

Partially Distributed Routing

This chapter gives a class of loopfree routing algorithms

and shows that each algorithm in this class converges to the

optimal flow. Our objective is to provide extensive freedom

in choosing the parameters, so that heuristics may be taken

advantage of without jeopardizing the convergence to the Optimum

cost.

The central form of these algorithms is to use a distri-

buted procedure, such as either of the algorithms of chapter

two, to determine for each commodity a proposed flow change F

A central node then receives the aggregate flow changes

f and determines the scale y that minimizes J(f+yf) over

0 < Y < 1. For each commodity, the new flow is F+yF.

Figure 3.1 illustrates a potential problem with this cen-

tral form. In the figure there is just one commodity, that

destined for node d. The flows F. are given next to the links.

and 6 are positive. The link costs are

F.

J..(F..) =- 1- -
ij 1) 5-F

3 23
6 2

2 3 4

3+Fi2-E 2+6

Figure'3.1

43

The two subnetworks determined by nodes 1,2,d and 3,4,d,

respectively, are each the safte as that of figure 1.2.1. The

situation depicted by nodes 1,2,d might have come about when

the input flows were R2=3 and R1 =2. Refering to the text

associated with figure 1.2.1 we see that the optimal flows are

a = .3232, = 0, Fld = 3-.3232, F12 = .3232, and F2d = 2.3232.

As the routing algorithms (such as those of chapter two) require

the flow to be loopfree, node 1 must wait until t=0 before it

can send any flow to node 2. As t is on a long path node 2

will set the flow changes F2 1 = -E and F2d g. In the next

iteration will be zero if Y = 1.

We are interested in routing algorithms that make large

flow changes so as to have rapid convergence if convergence

exists. These algorithms would over-correct the situation at

node 3. Thus if 6 < .3232 then F34 > .3232 - 6 and if

6 > .3232 then F34 < .3232 - 6. (We assume that in the presence

of the flow change at node 2 the optimal value of 6 will never

be found.) If the overcorrection is large enough then y will

not be one. y will be between 0 and 1. In the next iteration

6 will be closer to .3232 and will be smaller but not zero..If

the overcorrection of 6 persists in every iteration then will

approach zero as the number of iterations gets large but never

become zero. The algorithm would then converge to a non-optimal

flow.

The obvious remedy is to make sure overcorrections do not

occur but we do not wish to sacrifice rapid convergence. What

we will do is have a distributed procedure generate, for each

44

commodity, two flow changes, F and F, where F is the normal

sized flow change and F is a small flow change in a good

enough direction such that J(f+f) < J(f). The flow change F

will be carried out regardless of the scaling. A central node

receives the aggregate flow changes f and f and determines the

scale y that minimizes J(f+f+y(f-f)) over 0 < y < 1. For each

commodity the new flow will be F+F+y (F-F). This is the form of

the class of routing algorithms given in the next section.

In the example, the algorithm waits until E is small

enough (this is made specific in the next section) and then

sets F2 1 = -F. In the next iteration F will be zero and this

will allow node 1 to send flow to node 2.

3.1 A Generalized Algorithm with Scalin

0Let f be the initial loopfree flow and F be the set

0 k kk k
{flJ(f) < J(f),f=Z kFk,EFk=R,Fk > 0, keC}. We assume that on

F the network cost J = Z. .J. . (f..) is twice continuously dif-
JIJ IJ Ia

ferentiable with

iJ (f..j) a J.(f..i)

'f 'j > 0 and > 0 (i,j)eL (3.1.1)

ij. f..

Let M, B, A, and A be constants satisfying

2

M> max max j ~(3.1.2)
fEF (i,j)r=L 3D.

M > 0 (3.1.3)

B = 2MCLN (3.1.4)

A > X > 0 (3.1.5)

(Recall that C is the number of commodities, L the number of

45

links, and N the number of nodes.)

The following outline gives the steps of one iteration.

For the first iteration we assume that 4 is loopfree.

I. Upstream Stage. For each commodity the following steps are done.

A. The destination node sends its neighbors the signal

"Wdest

B. Each node i waits until it receives the node distance

W. from every j such that $.. > 0. Then
J 1J

1. W. =g .. W. j: $. > 0 (g.j was given in (1.1.7).)

2. wi is chosen arbitrarily from the interval

1J

3. Node i is 'in loop danger' if, for some j,$.. > 0

and either (a) W. > W. or (b) j is in loopdanger.
J i

4. Node i sends W. and its loopdanger status to its

neighbors.

II. Downstream Stage. For each commodity the following steps are done.

A. The set of downhill neighbors z. is the set {j} such

that either (a) $.. > 0 or (b) W.. < W. and j is not in
3J J - 2.

loopdanger. If j is a downhill neighbor of i then i

is an uphill neighbor of j.

B. Each node i waits until it receives the flow changes

Fki and Fki from all of its uphill neighbors. Then

1. T. EkF.ki T = Z F .
2. k k ki

2. {V..} is aribtrarily selected such that (a) A > V.
,J - ii

and (b)

2Y. .ij0?2.> 2E4.
D ~2 ~2 i

46

holds for all $ satisfying E.. . = 0.
J 1]

3. {$..} is chosen to minimize either
1J

1 ~2
(a) E.W. ... + - Z.V..$..T. or

j ij ij 2 i ij I 1

(a') E.W..$.. + - E.V..4..(T.+T.)
iJ 1 2 JJ+2 J i i

such that

(b) Z... = 0 $.. +4$.. > 0
J1IJ 1J 1J]-

(c) $.. = 0 if jfZ.
1 1

4. {. .} is arbitrarily chosen such that
1J

(a) Z.W. .$,.. < W.
J UJ 1J -1

(b) ip.j = 0 if $. + $. . = 0
1J J 1J

5. F.. = (4'. .+. .)(T.-T.) + $. .T. - F. . (recall that
1J 1] 1J Jl 1 1J 1 1

T. = max{0,-T. } and T. = max {T.,0})

6. n = arg-min {W. . |jZ.}

7. Any F.. satisfying the following is a 'leak'.
1J

-- W
(a) 0 < F.. < B 1 (W. i-W.)

(b) $.. + $..= 0

8. -4.. if F.. is a leak
1J 1J

. .z=r- if j~nijE k/n (ik

0 otherwise

47

9. F.. = (k. .+q. .) (T.-T.) + i. .TS _F
1J LJ 1J 1 1 1] :i l

10. Node i sends F.. and F.. to each downhill neighbor.

III. Central Stage.

A. When each node i knows the flow changes F.. and F

for all neighbors j and commodities, it computes the

aggregate quantities if. .+f . and if. -fi , and sends

them to the central node.

B. When the central node receives all of these quantities

it determines y to minimize

Z..J..(f..+T..+y(f..-f..))'a ij ij 'I ij ij

such that 0 < y < 1. This is sent to every node.

C. The new flow is F* = F + F + y(F-F). The new routing

fraction is

F*./T* if T* > 0

= . :/+$. if Ti = 0
ij 3I

Each iteration of the algorithm generates a set of possible

feasible flows F* each depending on the choice of the node

distance W, the weight V, and the routing p of the node flow

increment. Let A (F) be this set after one iteration. A(F)

implicitly depends on $, A, X, and B.

The second algorithm of chapter two may be used to

1
generate $. In this case A > PCLN > . The first algorithm
f c 2

of chapter two may also be used if there exists a positive X

48

such that

C~~2 ~2
CL E.(h..+H)#.. > XE $.. (3.1.6)

For these algorithms W. is equal to the maximum value in the

interval

min Wik' j ij i1
k:$ik>O

and $ equals $ + p . Algorithm I would minimize IIB3a' while

algorithm II minimizes IIB3a.

For this W (= G) and p, condition IIB4a is automatically

satisfied. To see this note that if IIB3a is minimized then

12EW-Wj + 1 V-2iT < 0

If IIB3a' is minimized then

1 -2
SWtvj E+ - Z <v joij T +T9<0

In either case, Z .w. .. < 0. So

Z i ijij Ei Wi l -+ijIJ IJ -J I12 1

E i Wijjij

= W (3.1.7)

The watershed distance method used in the previous chapter just

prevents loops from developing, which in turn prevents dead-

locks from occurring in the algorithm. The loopdanger method

of algorithm A is another way of doing this. We will show this

shortly. The loopdanger method is slightly harder to analyze,.

49

gives a more restricted set of downhill neighbors, but also

uses boolean numbers "loopdanger status" rather than real

numbers S in the communication between nodes. (For that

matter the communication of watershed distance could be changed

to "S is the same as G " or "Si is different from G. and is ..

This requires using more than just boolean numbers only when

S.4G.)
2- 1

We now show that Z is loopfree. This will avoid a dead-

lock in the downstream stage and also make p* loopfree. A

loopfree p* avoids a deadlock in the upstream stage of the

next iteration.

We fix our terminology. Node j is a downstream neighbor

of i if j > 0. Node j is downstream of i if it is a

downstream neighbor of i or if it is downstream of

a downstream neighbor of i. Node j is a downhill neighbor

of i if jeZ . Node j is downhill of i if it is a downhill

neighbor of i or if it is downhill of a downhill neighbor of i.

Upstream and uphill are the reverse of the downstream and down-

hill relations.

We assume that $ is loopfree. That is, no node is down-

stream of itself. When a node is in loopdanger its uphill

neighbors are just its upstream neighbors. A node in loop-

danger is uphill of itself only if it is upstream of itself.

But 0pis loopfree. So, no node in loopdanger is uphill of

itself. If j is a downstream neighbor of a node i that is not in

loopdanger then Wj< W . If j is a downhill but not down-

stream neighbor of i then W. < g.. + W. = W. . < W.. Therefore,
J 1J J J J- 1

50

if j is a downhill neighbor of i then W. < W. with equality
J - 1

only if j is a downstream neighbor of i. A node not in

loopdanger is downhill of itself only if it is downstream of

itself. But $ is loopfree. So, no node not in loopdanger is

downhill of itself. Thus, altogether, Z is loopfree.

3.2 Convergence

In a long series of remarks we will show that algorithm

A converges to the optimal flow. Some of these remarks assume

A > B > 4X (3.2.1)

even thouqh the remarks could be established with different

numerical constants if this were not assumed. From IIB2 one

sees that there is no loss in generality in increasing A to be

greater than B and dec.reasing A to be less than B/4.

The first four remarks develop an inequality between gf

and Ifl. This inequality will also show that the directional

derivative gf is non-positive.

Remark 3.2.1 gF < W4(T-T

Proof. gF =Z .g. F . Using IBi in this expression gives,

gF = E. . (W. .-W.)F. .iiJ ': J ij

= 2.Ei'.W.F.. - E.W.T.

= WF - WT (3.2.2)

Using tT = F in IIB5 gives

51

F = 4(T-T) + $T - T(3.2.3)

Using this in (3.2.2) gives

gF = W$(T-T) + W*T - W4T - WT

Using T = T+ - T-and then rearranging the terms gives

gF = W4(T-T) + (W4-W)T + (W-W))T (3.2.4)

From IB2 we have W < W . From IIB4a, W* < W. Using both of

these in (3.2.4) gives the remark.

-2
Remark 3.2.2. W4(T-T) <_ -Xjp(T-T)I

Proof. By using the same argument that led to (2.2.3), if node

i minimizes IIB3a then

~2
E W..$.. + cEcT < 0 (3.2.5)

Alternately, if node i minimizes IIB3a' then

-2~
E.W..$.. + .V..l..(T.+T) < 0 (3.2.6)

-2 -2
From IIB2b, Z .V. .$. .j> XE $. .. We also have T. > T.-T.

and T. + T. > T. - T.. So, from the above two cases, (3.2.5)
1 1 - 1 1

and (3.2.6), we see that

2~E.W. .). . + X>i. . (T.-T.) < 0 (3.2.7)
J 1J 1J J 2IJ 1 1 -

Multiplying this by T. -T. and then summing over i gives the
1]l

remark.

2 1NL + -) 2
Remark 3.2.3 iFI < - NL $ (T-T)I|

-f

. M. opm.m.-m q---- . . , . I . . m . I

52

Proof. Equation (3.2.3) is the same as equation (2.3.6) with

$ in place of $'. If this substitution is maintained in the

equations subsequent to (2.3.6) we get the remark from (2.3.24).

i~i2 CNL
Remark 3.2.4. f gf

Proof. Combining the previous three remarks,

2 NL ~FL< gF (3.2.8)

Since IfJ2 < CEKF K2 and ZKFK = gf, the remark follows.

Comment. This remark implies that the directional derivative

gf is non-positive.

The following four remarks follow a similar development

for f.

Remark 3.2.5. gF < W4(T-.T

Proof. Using $T = F in IIB9 gives

F =t-(T-T) +T +T (3.2.9)

The proof of the remark is the same as for remark 3.2.1 except

with F in place of F and (3.2.9) in place 5f (3.2.3).

Remark 3.2.6. WW(T-T) < - B |I(T-T~) 2

Proof. Let the following be defined.

K. min W.. (3.2.10)
i . 13E- Z i

From IIB8,

.w.. =
31313J J JJ

We have

= K i-w - + --iw io

= K iwj4)jj -i i~i

= z.(K.-w..)q.3 1 13 cKJ (3.2.12)

If F is a leak then, from IIBi, . = K. In this case,

T= . .T. = F... Then with IIB7a, if F.. is a leak
13 l 1 13 13

- - -1
$. .T. < B (w. .-K.)

13 1 - 13
(3.2.13)

If F.. is not a leak then, from IIB8, c..j = 0 and (3.2.13)
13 13

still holds. Using (3.2.13) in (3.2.12),

E.w.. . < - BE (4..) T.
J3JI 13 1

- - 2 - --BE ($..) 2(T.-T.)3 13 (3.2.14)

Multiplying this by T - T and summing over i gives the

remark.

Remark 3.2.7 F 2 < 2NLIcp (T-T) 2

Proof. Equation (3.2.9) is the same as equation (2.3.6) except

with bar quantities in place of tilde quantities and with $ in

place of $'. If this substitution is maintained in the equa-

tions subsequent to (2.3.6) we get the following from (2.3.23).

53

(3.2.11)

54

I2 N _(T-T)) 2

- mnImn m

= N(2 2 T (T -T ~ 2
2 mn mn m m

-- -- 2
< 2NLE mn(mn(T n- T))- mn m

= 2NL1(T-T)1 2

This is the remark.

Remark 3.2.8. M1f,2 < - gf

Proof. Combining the previous three remarks,

2 < - 2NLB 1 g (3.2.15)

With (3.14), which is B = 2MCLN, we get

MCF 2 < -g (3.2.16)

Since TI 2 < CEk Fk:2 and Ek-Fk = gf, the remark follows.

Comment. This remark implies that the directional derivative

gf is non-positive.

The next two remarks develop an inequality between the

cost change and the directional derivatives.

If f + f +y(f-f)pe7F then with (3.1.2),

J(f+r+y (f-T)) J(f) 1<2g (+Y(f-_))+IMI +y(f-y)12

(3. 2.17)
The following remark sidesteps the F condition.

Remark 3.2.9. For any Y,Y,f that makes RHS(3.2.17) non-posi-

tive the inequality (3.2.17) holds.

55

Proof. Let f = f + y (f-f). If the remark holds then

J(f+f) - J(f) < 0. Suppose to the contrary that J(f+f) -

J(f) > 0 and that f makes RHS(3.2.17) non-positive, i.e.

1^ ^A2
gf + Mift < 0. Because of the former supposition, f#0.

A 1 M ^1 2
Then gf < - 2Mf I < 0. Because gf < 0 and J is continuous

there exists anca, 0 < a < 1, such that J (f+af) = J(f). Then

f+afeF and

^ 1 2^ 2
J(f+af) - J(f) < agf + - Ma f

2

< agf + ct2 M f!

A1 A
1 2

)

= a(gf+ f Miti)

< 0

That is, J(f+af) - J(f) < 0. This contradicts our selection

of a. Therefore, the assumption must be false.

Let the following be defined.

AJ min J(f+Y+Y(f-F)) - J(f) (3.2.18)
0<y<1

A J := min RHS(3.2.17)
0<y<l

Smin {gf+yg(f-f) + 4M1f+y(f-f)1 2} (3.2.19)
0<y<_1

Algorithm A generates AJ. The above remark implies that if

A J < 0 then AJ < A J.

Remark 3.2.10 .AJ < AB~ Cgf+gf)

56

Proof. Using la+b < 2|a l2+ 21b1,

f+y(f- f) = |(1-y)f+yf1

<2(1-y) 2 2 2+ 2yf2

Multiplying this by M and then using remarks 3.2. 4 and 3.2.8,

M|f+Y (f-f) 2 < - 2(-Y) 2gf - MCNLA Y2gf

Using B= 2MCNL (from (3.1.4)),

Mif+y(f-)i2 < 2(1-Y) gi - B(2X) y gf (3.2.20)

From (3.2.19),

A1J < g + -Ygt-ygF + 1 M|f+Y(f-"f)12

Using (3.2.20),

A 1J < gf + Ygf - yg? - (1-Y)22gY - B(4X)1Y2 gf

Expanding (1-Y) 2 and simplifying,

A 1J<g + ygf - y 2gf - B(4X) 1Y 2 f

From (3.2.1), B(4X) > 1. Thus,

AJ < Ygf + Ygf - B(4X)-1y 2gf - B(4X)~1y2 ~gf

B 2 -
= (Y - y 2) (gf+gf) (3.2.21)

The RHS above is minimized over y at y = 2/B. This y is

positive and less than one. Using it in the above gives

57

A J < XB~(gf+gf) (3.2.22)

Since the directional derivatives, gf and gf, are non-positive,

A1 J is non-positive. Thus, AJ < A1 J and the remark follows.

The next remark says that the flow change is bounded by

the cost change.

Remark 3.2.11. Mif+y(f-fE)1 2 <--(B/X)2AJ
2

Proof. Using (l-y)2< 1 < B(4X) and Y < 1 in (3.2.20),

M t + y(f--f) 2< - B(2X) 1 (gf+gf) (3.2.23)

Using the previous remark in the above gives the current remark.

We repeat the definition of K. (from (3.2.10)) and make

two more definitions.

K. min W.. (3.2.24)
je Z.

U. max {w. . t$. .+T. . > 0) (3.2.25)

1Ez

U :=max {w. .$.+b.. > 0} (3.2.26)

1E

At the end of the iteration we have

U! if r-=1 or T*=0

max . .$.>o }i=t(3.2.27)

1 1 1j EZi U if Y <1 and T1y0

Since $ + $ > 0 implies $.. +$ > 0, we have U! < U..ij ij il i I1- i

In the following four remarks it will be shown that U-K I is

bounded by the cost change.

58

Remark 3.2.12. |U'-K 1 < 2A 2H(T+T)12

Proof. We consider first the case of node i minimizing IIB3a

which is

+2T1 2.S. j... + - 4..
j ja i1j 2 j ij J3 J

(3.2.28)

As in (2.2.2), any change from the optimal c to, say, $b is

a non-descent change in (3.2.37). Thus,

.[W.. + 1... .T.]OP. -$..) > 0J 13 13 i 1J 3J - (3.2.29)

The bracketed quantity is the gradient of (3.2.28). Let k

be the arg-min of (3.2.24) and u be the arg-max of (3.2.26).

Let e = . + 4. . By the definition of u, e is positive.
iu b iu n

Let$ be the following

($. - e

$..j = - $.

ik + e

if j=u

if u/jfk

if j=k

(3.2.29) becomes

[U! + viu$ T.](-e) + [Ki+Vi. T.Ji1 e > 0
1 iu iu i i ik ik -

Dividing by e and using IIB2a,

- U! +A $. IT. + K. + At' IT. > 0
1 iu i iki-

Rearranging and squaring,

(U!-K)2 2 . +)2T2
1 1 iu + ik Ti

(3.2.30)

59

2 ~2 ~2 2

<2 22+ikI

< 2A 2T 2 (3.2.31)

For the case of node i minimizing IIB3a' the corresponding

argument yields

2 < 2A2 2 . 2

In either case,

(Ui-Ki 2 < 2A2 2 maxT,r(T+Ti) 2}

= 2 1'2 ,2 , '+) 2

2 2 + 2
= 2A $ (T +T)

(3.2.32)

(3.2.33)

Summing over i gives the remark.

2 2 +%-2Remark 3.2.13. IU-KI < 2A2 V(T+T+)

Proof. Let m be the arg-max of (3.2.25). We have $i. +4im > 0.

Case 1, U < U. In this case Km + $ = 0. Since

F. is not a leak it does not satisfy condition IIB7a. Thus,
im

im 1

~2 2 ~2 2
Eij i > im T

2T2
im i

= 2
im

> .B (U.K)

(3.2.34)

(3.2.35)

60

Since B2 < A2 < 2A .

2 ~2 2 22A E T > (U.-K.) (3.2.36)

Case 2, U! = U.. From (3.2.33), the above inequality1 21

is again satisfied.

Summing (3.2.36) over i then gives the remark.

Remark 3.2.14. I(T+T+ 2 < NLflT-T)

Proof. We first derive an expression for T~. We have-

T < E F . With (2.3.7),

T < E (T-T) + E $T. (3.2.37)

Substracting the last term from both sides and then multiplying

by 6N (defined in (2.2.8)),

T < NE $ (T-T)

Elementwise, this is

T i<rmnnai,n mnm(Tr-Tm)

< E (T -T)
- mn mn i(m

$~ mn I(-T)

(3.2.38)

(3.2.39)

We- next derive a similar expression for T+. Here we start

with T < E F and (2.3.17) with $ in place of 4'.

T < E 4 (T-T) + E4VT

We define the following,

(3.2.40)

61

:=I)(3.2.41)

This has properties similar to 0 including 0 <e' < 1.
Ndn 0 ,n -

Subtracting the last term of (3.2.40) from both sides and

multiplying e gives

T+< 8"Ej +(T-T) (3.2.42)N

Elementwise, this is

Tt< E' + (T -T
i - mn i,n mn m m

< E $+ (T-T)
- mn mn m m

$1 I(Tm-T)(3.2.43)2 in mn in m

We now prove the remark. We have the identity,

H'~ .1(Ti+Tt) =t4.Ij(Ti-T.) + JijT+i

Both T and T. cannot be positive. Using this fact and (3.2.39)1 1

and (3.2.43) in the last term,

I$.. I (T.+T.) < IH..I(T.-T.) + -(T-T)
j 1 1 - j 1 ijmnImn mm

Since $ =0 when m=dest, there are no more than L terms in the

RHS. Squaring both sides and using Cauchy's inequality gives

+ 2 2 1l-2 ~- - 2
((T+T)) < LG.(T-T) + 2L jj (T-T)

Summing this over (i,j),

$(T+T)2 < LI;(T-T)12 + 4 LE..<. (T-T) 2 (3.2.44)-2 13 13

62

~2
is no greater than 2 and is zero when i=dest. Thus,

J IJJ

- K <. j r (N-i). The remark follows.

2 2 2-2

Remark 3.2.15. For every commodity, JU-KJ2 < -2BNLA A AJ.

Proof. Combining remarks 3.2.13, 3.2.14, 3.2..2, and 3.2.1.,

lU-K 2 < -2NLA 2X_gF (3.2.45)

This holds for every commodity k so gF are all non-positive.

k~
Thus, gF > EkgF = gf. The above continues.

JU-K <-2NLA 2 X 1 gf

2 -l1
< -2NLA A (gf+gf) (3.2.46)

Remark 3.2.10 then gives the remark.

Let {f(0), f(l),...} be a sequence of flows generated by

A, i.e., f(m+l)eA (f(m)). Let AJ(m) = J(f(m+l)) - J(f(m)).

Remark 3.2.16. AJ(m) approaches zero as m becomes large.

Proof. The set F is closed and bounded. On this set there

is a minimum cost

J min min J(f) (3.2.47)
fEF

With remark 3.2.15, {J(0), J(l), ... }) is a monotone decreasing

sequence bounded by Jmin. Therefore, the sequence converges

to some number and the remark follows.

Let fc be a cluster point in the sequence {f(m)}. It

exists because F is closed and bounded. Let {f(m.)} be a

63

subsequence of {f(m)} that converges to fc. Since remarks

3.2.16 and 3.2.11 say that f(m+1) - f(m)l goes to zero, the

sequence {f(mi+l)} also converges to fc. Likewise for

{f (M +2)}, . .,{f(m +N-1)}.

Let gcbe the gradient of J(f). Let Dc be the shortest

distance wrt g c to a particular destination. In the next five

remarks we will show that there exists an m' such that m. > M'

and D > gk + Dc imply F (M+N-l) = 0. Let Sc be the nodeanD >gc + Dkimply

neighborhood of Dc, i.e.

c c c c (..8
(i,j)e S if and only if D = g . + D. (3.2.48)

1 iJ J

Let s be the smallest miss from the shortest distance, i.e.

s = min {g7. + Dc - D7 (i,j)giSc} (3.2.49)

Let g mm be defined by

3J. . (f:.)
g . mmn min (3.2.50)
m fE (i,j)e;L Jf]

Because of (3.1.1) and the fact that F is closed and bounded,

gm > 0. Let e be any number satisfying

min{s,gmin} > e > 0 (3.2.51)

Let m' be such that for m. > iM' and for n = m ,m +1,.0.,m +N-1

the following holds.

g(n) - gc < (3.2. 52a)

U (n) - K(n)j< - (3.2.52b)
-- T

64

(3.2.52b) is valid because of remarks 3.2.15 and 3.2.16. By

expanding g as a function of f we have

g(m)-gc < Mf(m)-fcI (3.2.53)

(3.2.52a) is then valid because, for each Z, {f(m.+)} converges to fc

In the following we work with a flow F such that (3.2.52a

&b) holds. We say that a node i in F is tight if (l) j > 0

implies (i,j)eSc and (2) Dc < D. implies j is tight. The
J 1

destination node is trivially tight.

Remark 3.2.17. If the present iteration satisfies (3.2.52a)

and if (i,j)eSc and j is tight then

W.. < D' +e
ij- i 4

Proof. SUppose the if clauses hold.

W.. = g.. + W.
J] J J

<Kg +EkPjjk (3.2.54)

Let m = arg-max{WIjkjk > 01. Since node j is tight,

(j,m)eS . Therefore, D < D. and m is tight. (3.2.54)

continues

W..gi.ij+ W.
1- im

< gi + g. +

<Kg.. +g. + g + ... (3.2.55)
-13jmrn

where (i,j) , (j ,m) , (m,n) , ... eSc

65

c c c cW..<g..-g..+g. + g. -g. +g +...13 - iJ j 1 jm m

< + g7c+<g I.-. + g'..+ Ig - g |- -i 13 1 1 m m
c

+g. +jm ''

< g-g gC + g?. + g-gC + g +
< (gj jm

< (N-l)lg-g Ci + D.

E c
- 4 (3.2.56)

The last inequality used (3.2.52a).

Remark 3.2.18. If the present iteration satisfies (3.2.52a)

and if (ij)jSc then

>Dc +3eh'.. > DC +3--
13 - 4

Proof.

W..=g.. + W.
1] 13 3

>g..+K.
13l 3

Let W. = K .
I j > m

hi.. > g. .
13 - 13

Then

+W.
Jm

> g.. +g.-13 jm m

> g..+g. +g +...

c +c c
> g.. - g.. + g. gcg + g + ...

- 3l 1 1 m jm jm

g. - . + g..- I .-gj? I +
c +C

- g. -g? +gjm jm gjm

a aC c c +> jg-gj +g. - g-g + g13 g.j

(3.2.57)

(3.2.58)

66

(3.2.59)wj > -(N-l)g-gc + D + s

D?+s appears here because (i,j)V Sc so the expression1

g .+g. + ... is not along a shortest path in D. Using13 jm 1

(3.2.51) and (3.2.52a) leads to the remark.

Remark 3.2.19. If the present iteration satisfies (3.2.52a)

then the tight nodes are not in loopdanger.

Proof. We proceed by induction. The destination node is tri-

vially tight and not in loopdanger. Suppose that i is tight and that

D < D implies j is not in loo.pdanger. With an expansion of

K similar to (3.2.58) except with (i,j),(j,m),,...eSc we have

W. > K.
1 - 3.

> D? -e1 (3.2.60)

Since i is tight, $9 > 0 implies that j is tight. With remark

3.2.17,

W. < w. .
j -m3mjm

< Dc + e (3.2.61)
3 4

Then,

W - W. > D - D -6
i 3 - 3 j -2

= c

>6E
-2

(3.2.62)> 0

67

(3.2.62) used (3.2.51). IB3 then says that node i is not in

loopdanger.

Remark 3.2.20. If the present iteration satisfies (3.2.52a)

then the tight nodes remain tight in the next iteration.

Proof. We proceed by induction. The destination node

trivially remains tight in the next iteration. Suppose that

node i is tight and that each node j with D c < D? remains tight

in the next iteration. With remark 3.2.17 we have

i - Em i ir

< Dc + (3.2.63)
-3i 4

If a node j with $i.. = 0 enters Z . then from IIAb,

W. . < W.. Using (3.2.63), W. . < Dc + e/4. Remark 3.2.18 then
1J - 1 1J - 1

implies (i,j)eSc. Therefore, jeZi implies (i, j)GESI. If$*>1 1J

then jeZ and (ij)eS and Dc < D.. From our supposition ji 1 i

remains tight in the next iteration. Therefore, node i

remains tight.

Remark 3.2.21. If the present iteration satisfies (3.2.52a&b)

and not all nodes are tight then a node will become tight in

the next iteration.

Proof. Let i = arg-min {D Ii is not tight}. Note that
J

with this selection if (i,M)ESc then m is tight. We first

show that Zi contains some m for which (i,m)eSC. If $im > 0

c
for such an m then meZ .. Thus, suppose that (i,m)gS for

al]. m such that t. -0. Then remark 3. 2.18 and step IB2 say
.2in

68

W. > D? + l- (3.2.64)
1 - 4

If m is such that (i,m)eSc then m is tight and remark 3.2.17

says

(3.2.65)W. <ID? + -
im - 1 4

Thus, W. < W.. Since remark 3.2.19 says that node m is not
im -1

in loopdanger, m enters Z1 .

The first part of this proof has shown that Z has a node

m such that (i,m)eSc . Thus, remark 3.2.17 says

(3.2.66)K. < D? + 1
1 - 1 4

With (3.2.52b),

U. = iU.-K.I + K

< IU-KI + D? + 64

c E< Do + I
- 1

A review of IIIC and (3.2.25) shows that

max {W. .4$ > 01
jax L i

<DC + -- i 2

(3.2.67)

(3.2.68)

Remark 3.2.18 then implies that if $*. > 0 then (ij)euc. The

previous remark says that tight nodes remain tight in the next

iteration. Thus, node i will be tight in the next iteration.

Remark 3.2.21. In each flow in {f(mi+N-l)}, m.> m' , all nodes

69

are tight.

Proof. With the previous remark at least one node (the destin-

ation) is tight in f(mn), two nodes in f(mi+l),..., all nodes

in f(m.-N-l).

The next two remarks prove the convergence of {J(m)} to

J .
min.

Remark 3.2.22. For any cluster point fc of {f(m)} and for any

e satisfying (3.2.51) there is a subsequence {f(m.)} such that

every commodity in each f(m.) satisfies
J

gF - DR < Nre

k
where r = ZkZ ikRi.

Proof. We use {m.} = {m.+Nm > m'}. D has an expansion in

D = g + gjk +

C
= g - gi + gi + gjk - jk + gjk +...

> - g-g + g.. - Ig-gI + -'

> D'? - (N-i) g-gcj

> D c -E (3.2.69)
- 1

Since i is tight by the previous remark, we have

E.W. . < 3D + -

< D + (3.2.70)

70

The last inequality used (3.2.69). We rewrite the above as

wti - Dii< i E

Multiplying this by T ,

W#.T. - D.T. c eT. c er
. iT- 1 -

Summing over i,

(3.2.71)WtT - DT < Nre-

We have

W4T- DT = WF - DT

= E. . (g. .+w.)F.. - DT
1]J IJ J)g

= gF +E.W.(T.-R.) - DT
J+ J J J

> gF + D(T-R) - DT

= gF - DR (3.2.72)

This with (3. 2 .71) gives the remark.

Remark 3.2.23. The cluster points of {f(m)} are optimal flows.

Proof. Since e is arbitrarily small in the previous remark,we

have for each cluster point f c and every commodity

gCFC - DcR = 0 (3.2.73)

Remark A.1.5 in appendix A then says that fC is optimal.

71

1 1Note 3.N.l. This note shows that if X > -B = MCLN then-4 2

the algorithm can'safely use F+F for the new flow F* bypassing

F and the calculation of Y. Let this simplified algorithm be

A ' (f) and let (f (m)}' be the sequence of flows generated by

A', i.e. f(m-l)eA' (f(m)).

Remark 3.Nl.l. If XN> MCLN then the cluster points of

{f(m)}' are optimal flows.

Proof. Remarks 3.2.1-4 still hold. Remark 3.2.4 simplifies

into

M f < - gf (3.Nl .1)

Remark 3.2.9 still holds. Let

A'J = J(f+f) - J(f)

f1 ~f2
(3.Nl.2)

(3.Nl.3)

Algorithm. A' generates A'J. Using y=l, remark 3.2.9 says

that if A'J is non-positive then A'J c<A'J. In place of
1 _ 1 ~

remark 3.2.10 we will show that A'J < y gf. (3.N1.1) says that

gf is non-positive. Using (3.Nl.l) in (3.N1.3) gives

=1
1 J gf. Thus, A'J is non-positive. Thus,

A'J < gf-2 (3.Nl. 4)

In place of remark 3.2.11 we combine (3.Nl.l) and (3.Nl.4) to

get

2 < -2A'J (3.Nl. 5)

At the end of the iteration we will have

72

(3.Nl. 6)max{W.. $*. > }= U
. il il1

Ii

So U' instead of U is the quantity of interest in the middle

part of the proof. Remarks 3.2.12 and 3.2.14 still hold and

they combine with remarks 3.2.2 and 3.2.1 and (3.Nl.4) to get

IU'-KJ 2< -4NLA 2 x- 1 A 'J (3.Nl. 7)

in place of remark 3.2.15. Remarks 3.2.16-23 still hold with

A'J in place of AJ, {f (m)}' in place of {f (m)} and U' in

place of U. This proves the remark.

Note 3.N.2. This note describes Gallager's [77] algorithm.

It can be used to generate $ in the routing outline of this

chapter. In this algorithm the node distance is W. =EW.$.

Let S be a positive scalar. For each node i the following

steps are done.

(3.N2.l)n = arg-min{W. .1J]

= - min{1ij~ Wi =* i

-EkL n ik if j=n

F.. = ($..+q..)(T.+T.) - F..
iJ 13 1a 1 i1

if j/4n,jeZ.i

je .

To match the routing outline to this algorithm we would have

= $ and

ro if j=n

VT.. (3.N2. 4)
if j/n

(3.N2.2)

(3.N2.3)

73

We require A > 3. With the following we will show that

< < A/N satisfies IIB2b.

2 - 2+ 2
E i.j = ($..) + .

-2~- 2+ 2
< i $.) + (i $..)

lJJ 1j
~- 2 + ~- ij 2

= NE (2.) +(3(N2.5)

2 ~- 2 2 2
= . j)E2. X2(3.N2.6)

IjN 1J - j iLJ

74

Appendix A

Dual of the Routing Problem

The first section of this appendix derives several condi-

tions under which the flow is optimal. The second section

gives a bound on the error J(f) - Jmin. All of the results

given here can be found in the literature. They are included

here for the sake of completeness.

A.l. Linear Programming Application

In section 3.1 the cost function is defined on the set

F = {fjJ(f) < J(f0), f = EkFk, EFk = Rk, Fk > 0, keC}. By

(3.1.1) J is convex and has positive partial derivatives on

F. In this section it will be convenient to assume that

Jmin < J(f%. (If this is not so then every flow in F is

automatically optimal.) We recast the routing problem as

minimize J(f')

Such that J(f') < J(f) (A.l.1)

EF'k = Rk

F'k > 0

keC

Let g be the gradient at f. Its elements are positive.

g = ~)(A.1.2)

Remark A.l.2. If f is optimal in (A.1.1) then each commodity

F is optimal in the following problem. If every commodity F

75

is optimal in the following problem then f is optimal in

(A. l.l) .

minimize gF'

such that EF' = R .(A.l.3)

F' 0

Proof. Suppose that f is optimal in (A.l.l). For any F'

satisfying the constraints of (A.l.3) there exists an e' > 0

such that the flow f + e(F'-F) satisfies the constraints of

(A.1.1) for all e, 0<e<e '. Because f is optimal in (A.l.1),

9J(f+e (F'-F))
E a 0 (A.l.4)

e = 0

That is, g(F'-F) a 0. This says that for any F', gF. < gF'.

Thus, F is optimal in (A.l.3).

Now suppose that every commodity F is optimal in (A.l.3).

Let f' be any object that satisfies the constraints of

(A.l.l). F' satisfies the constraints of (A.l.3) and since

F is optimal there, gFt gF'. Since J is convex,

J(F') J(f) + g (f'-f)

= J(f) + E kg(F"1k-Fk)

J(f) (A.l.5)

Therefore, f is optimal in (A.l.1).

The dual problem of (A.l.3) is

76

maximize H'R

such that H'E < g (A.l.6)

Since R-. = idestR. we have Hf'R = EZHR. = iY
aest i/dstI 1 11 xdest

(H -dHst)Ri. With the translation Hi = IU - HAest the dual

problem becomes

maximize HR

such that H. - H. i g. . (i,j)eL (A.l.7)
1 J 1J

dest 0

Let D be the shortest distance wrt g, i.e.

Ddest = 0, D = mi n{g.. + D }(A.l.8)

Remark A.l.2. For any R, the shortest distance D is optimal

in the dual problem.

Proof. By an induction, we will show that D > H. Since R

is non-negative for i / dest this will give DR > DH and prove

the remark. We have Ddest = T1dest. Now suppose that

D. I. for allj such that D. < D.. Let m = arg-min {g..+D.}.

Then

D. =g.. + Dm

D~gi. +DH
11(A1.m

13 m

H. (A.l.9)

This completes the induction.

77

Linear programming (e.g., Luenberger 73] says: (I) If one of

the problems, (A.l.3) or (A.l.6), has an optimal.solution

then both problems have an optimal solution with the same

optimal cost. (II) If problems (A.l.3) and (A.l.6) have a

solution with the same optimal cost than that solution is

optimal. This and the preceding remark gives

Remark A.l.3. F is optimal in (A.l.3) if and only if gF = DR.

From R = EF comes gF = DR = DEF or (g-DE)F = 0. Since

g - DE > 0,this gives

Remark A.l.4. F is optimal in (A.l.3) if and only if

D. < g.. + D. implies F.. = 0
3. 1J J 1J

Using the above two remarks with remark A.l.1 gives

Remark A.l.5. The following are equivalent

(i) f is optimal in (A.1.1)

(ii) For every flow if' and every commodity, gF < gF'

(iii) For every commodity, gF = DR

(iv) For every commodity, D. < g. + D. implies F.. = 0.

The following remark gives a property of D.

Remark A.l.6. For any F' satisfying the constraints of (A.l.3),

gF' > DR.

Proof. From the constraints of (A.l.6) we have DE g. Since

F' is non-negative DEF' _ gF'. Since EF' = R, the remark

follows.

78

A.2 Error Bound

k k
Remark A.2.1. J(f) - J.m<ngf - zkDkR

Proof. Let f* be the optimal flow. Since J is convex,

J .= J(f*) J(f) + g(f*-f)min

- J(f) + EkgF*k - gf

= J(f) + EkDkRk - gf (A.2.1)

The last inequality used remark A.l.6. In practice this

bound is loose. We might have a flow whose cost agrees with

the optimal cost to four significant digits but the error

bound will confirm only the first two digits.

79

Appendix B

Routing Samples

In this appendix, four algorithms are tried on three dif-

ferent networks. In all of the algorithms the proposed flow

change was scaled down to minimize the network cost as in

step III of the algorithm given in section 3.1. The four

algorithms were numbered in the order of their computational

complexity. Algorithm 1 is the algorithm given in section

1.2. Algorithm 2 is Gallager's algorithm given in note 3.N.2

We used 6 = 1. Algorithm 3 is the algorithm of section 2.3

with the coefficient of the quadratic term in (2.3.1) reduced

to 1/2. Algorithm 4 is the algorithm of section 2.2 with

the coefficient of the quadratic term in (2.2.1) also reduced

to 1/2.

The following is the link cost function that was used.

It is a standard mean delay formula which was redefined for

if > .9 9 9 cU so as to facilitate the loading of congested

networks. It is twice continuously differentiable.

1. __f._.

r c. .- if if fi. < .999c .
13 1]

i J.f..j) rf -= -i

1_ 3000+3xl6 .13 13 + 10[9 ijic
c. . C..r 13

if f.. > .999C..
13 1]

(B.1)

F I'm""

80

The first network is given in Figure B.l. Uniform link

kcapacities were used. c = 5. The input rate R. were gen-

erated by uniform random numbers in the interval [0,1] and

then held constant. The network was loaded by putting the

destination into an empty queue. The front end of the queue

was then continually serviced by checking whether all of its

neighbors had been enqueued yet. If neighbor m had not been

enqueued then it was enqueued and $ set to one.

In this network the flow branches into at most two parts.

Consequently, algorithms 2 and 3 are basically the same. At

S = 2 they would have performed exactly the same. Table B.1

showed what happened.

Figure B.l. Four nodes. Eight links.

Algorithm
Iteration 1 2 3 4

1 .3709 .3691 .3757 .3686
2 .3697 .3674 .3702 .3674
3 .3681 .3673 .3683 .3673
4 .3677 .3676
5 .3675 .3674
6 .3675 .3673
7 .3674
8 .3673

Table B.l Mean Delay. N = 4, L = 8.
Initial mean delay = .3969

m Ilm I I EMS- !EmHr mmmm MMIATmommem

81

To see what would happen at higher loads the input rate was

multiplied by 2.5. Table B.2 gives the result. We stopped

algorithm 1 in the tenth iteration. In network routing it

is the first few iterations of an algorithm that most inter-

ests us.

1
2
3
4
5
6
7
8
9

10

1
.8829
.8629
.8300
.8174
.8120
.8089
.8070
.8021
.8012
.8009

2
.8829
.8523
.8209
.8124
.8047
.8018
.8002
.8000
.7999

3
.8829
.8341
.8091
.8032
.8006
.8001
.8000
.7999

4
1.3556

.9393
.8123
.8001
.7999

Table B.2. Mean Delay. High Loading. N = 4, L = 8.
Initial mean delay = 3.8 x 105

The next network that was tried is given in the following

figure. The link capacities were 10. The input rate was

determined in the same way as for the first network.

Figure B.2. Eight nodes. 24 links.

-7

82

With this network we examined another variable. From equation

(3.2.4) it is seen that sending the positive node flow

changes down the shortest path steepens the descent direction.

It also tends to concentrate the positive flow changes onto

a few paths, thus, increasing the directional second derivative.

We call this diversion of the positive node flow changes down

the shortest path splitting. Let $ represent the routing down

the shortest path and let $ be the routing change generated

by the algorithm. Without splitting we have F = (+$) (T+T) - F.

With splitting, F = ($+4) (.T-T~) + $'+ - F.

This node flow splitting has no effect on algorithm 1.

If the other algorithms used the splitting then we called

them 2S or 3S or 4S. We did not examine this variable in the

first network as those nodes two hops away from destination had

no change in their node flow.

Tables B.3 and B.4 show the results. In Table B.4 the

input rates were multiplied by 2.5.

Algorithm
Iteration 1 2 2S 3 3S 4 4S

1 .2316 .2375 .2353 .2441 .2423 .2316 .2306
2 .2301 .2323 .2312 .2382 .2365 .2296 .2295
3 .2296 .2305 .2301 .2350 .2336 .2294 .2294
4 .2294 .2298 .2297 .2330 .2320
5 .2296 .2295 .2318 .2310
6 .2295 .2294 .2310 .2305
7 .2294 .2305 .2301
8 .2301 .2299
9 .2299 .2297

10 .2297 .2296

Table B. 3. Mean Delay. N = 8, L = 24.
Initial mean delay = .2663

Iteration
1
2
3
4
5
6
7
8
9

10

Algorithm
1

.4760

.4389

.4359

.4346
.4335
.4331
.4326
.4323
.4321
.4319

Table B.4. Mean Delay. N = 8, L = 24.
Initial mean delay = 2.5 x 106

For the final network we took the following abstraction

of an ARPANET topology [Kleinrock 76, p. 308]. We set the

link capacities to 10 and since the topology was non-symmetric

kwe let the input rate R = .2. Table B.5 gives the result.
1

14 nodes. 42 links

83

2
.4591
.4301
.4268
.4263
.4260
.4259
.4258
.4258
.4257

2S
.4568
.4309
.4271
.4263
.4260.
.4259
.4258
.4258
.4259

3
.5526
.4588
.4367
.4297
.4274
.4265.
.4261
.4259
.4258
.4258

3S
.4883
.4431
.4299
.4271
.4263
.4260
.4259
.4258
.4257

4
.6180
.4566
.4306
.4270
.4262
.4260
.4258
.4258
.4257

4S
.5374
.4444
.4292
.4260
.4258
.4258
.4257

Figure B. 3.a

84

1 2 2S 3 3S 4 4!

1 .9546 .9524 .952Q .9508 .9515 .9500 .9509
2 .9417 .9382 .9384 .9375 .9378 .9362 .9364
3 .9400 .9125 .9159 .9161 .9156 .9270 .9248
4 .9345 .9108 .9125 .9136 .9130 .9224 .9197
5 .9312 .9104 .9113 .9127 .9116 .9135 .9119
6 .9261 .9102 .9108 .9120 .9110 .9122 .9112
7 .9233 .9101 .9106 .9116 .9105 .9105 .9107
8 .9218 .9100 .9104 .9112 .9102 .9103 .9105
9 .9206 .9099 .9102 .9109 .9099 .9102 .9103

10 .9191 .9099 .9101 .9107 .9098 .9101 .9102

Table B.5. Mean Delay. N = 14, L = 42.
Initial mean delay = 1.2045

In the third network there were no 3-way flow branching and

about 17 2-way flow branchings.

The strongest suggestion that these tables make is that

algorithm 1 should not be used. In tables B.4 and B.5 what

algorithm 1 reached in ten iterations most of the other algor-

ithms reached in three iterations. Splitting the node flow is

of less significance than the difference between algorithms 2

and 3 which itself is not big.

85

References

1. C. Agnew, "On Quadratic Adaptive Routing Algorithms,"
Communications of the ACM, Vol. 19, No. 1, pp. 18-22, 1976.

2. D.P. Bertsekas, "Algorithms for Optimal Routing of Flow in

Networks," Coordinated Science Laboratory Working Paper,

University of Illinois at Champaign-Urbana, June 1978.

3. D.G. Cantor and M. Gerla, "Optimal Routing in a Packet
Switched Computer Network," IEEE Trans. Computers,, Vol.

C-23, pp. 1062-1069, Oct. 1974.

4. H. Frank and W. Chou, "Routing in Computer Networks,,"
Networks, Vol. 1, pp. 99-122, 1971.

5. L. Fratta, M. Gerla, L. Kleinrock,, "The Flow Deviation
Method: An Approach to Store-and-Forward Communication

Network Design," Networks, Vol. 3, pp. 97-133, 1973.

6. R. Gallager, "A Minimal Delay Routing Algorithm Using

Distributed Computation," IEEE Trans. Communications, Vol.

COM-25, No. 1, pp. 73-85, Jan. 1977.

7. E. M. Gafni, Convergence of a Routing Algorithm, LIDS-
R-907, M.I.T., May 1979.

8. L. Kleinrock, Queueing Systems, Vol. II, Wiley-Interscience,
1976.

9. D.G. Luenberger, Introduction to Linear and Non-Linear

Programming, Addison-Wesley, 1973.

10. J.M. McQuillan, I. Richer, and E.C. Rosen, "The New
Routing Algorithm for ARPANET," IEEE Trans. Commun., Vol.

Com-28, pp. 711-719, May 1980.

11. H. Rudin, "On Routing and Delta Routing," IEEE Trans. Commun.,
Vol. Com-24, pp. 43-59, Jan. 76.

12. H. Rudin and H. Mueller, "Dynamic Routing and Flow Con-
trol," IEEE Trans. Commun. , Vol. Com-28, pp. 1030-1039,
July 1980.

13. M. Schwartz and C.K. Cheung, "The Gradient Projection
Algorithm for Multiple Routing in Message-Switched Networks,"

IEEE Trans. Commun., Vol. Com-24, pp. 449-456, April 1976.

14. M. Schwartz and T.E. Stern, "Routing Techniques Used in

Computer Communication Networks," IEEE Trans. Commun.,
Vol. Com-28, pp. 539-552, April 1980.

