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REVIEW

Menin: from molecular insights to clinical impact
Margaret R. Brown a,b and Yadira M. Soto-Feliciano a,b

aDepartment is Biology, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA; bDepartment of Biology, Massachusetts 
Institute of Technology, Cambridge, MA, USA

ABSTRACT
Menin, the protein product of the MEN1 gene, is essential for development and has been implicated in 
multiple different cancer types. These include leukemias and several different solid tumors, including 
neuroendocrine tumors. Menin interacts with many different protein partners and genomic loci in 
a context-dependent manner, implicating it in numerous cellular processes. The role of Menin varies 
across tumor types as well, acting as a tumor suppressor in some tissues and an oncogenic co-factor in 
others. Given the role of Menin in cancer, and particularly its oncogenic role in acute myeloid leukemia, 
the development of Menin inhibitors has been an expanding field over the past 10–15 years. Many 
inhibitors have been in clinical trials and one has recently received approval from the Food and Drug 
Administration (FDA). In this review, we explore the role of Menin in multiple cancer types, the 
development of Menin inhibitors and their clinical applications and what the focus of the field should 
be in the next 5–10 years to expand the use and efficacy of these drugs.

PLAIN LANGUAGE SUMMARY
The protein Menin is vital for normal human development and growth. However, changes in Menin, or in 
proteins that bind to Menin, can lead to tumor formation in various tissues. This is common in blood cancer 
(acute myeloid leukemia or AML) and solid tumors (neuroendocrine tumors or NETs), such as those found in 
the pituitary and parathyroid glands, and pancreas cells. In some cases of AML, an important Menin-binding 
partner, called MLL1, is altered and promotes cancer growth. In NETs, Menin itself is altered, and its normal 
function is impaired. Because of the role of the Menin-MLL1 interaction in AML, scientists have developed 
inhibitors to block it. This review discusses Menin’s involvement in different cancer types, the generation 
and development of Menin inhibitors, and the clinical use of these medications.
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1. Introduction

Menin is a unique chromatin adaptor protein that is encoded 
by the MEN1 gene. Menin has multiple isoforms, but the two 
most prevalent encode for proteins of 610 and 615 amino 
acids. The only annotated regions of Menin are two nuclear 
localization signals (NLSs) that flank an intrinsically disordered 
region (IDR) of the protein (Figure 1) [1]. Menin lacks homol-
ogy to any other known eukaryotic protein, making it hard to 
infer function from its sequence or structure.

However, Menin is known to interact with many proteins 
involved in different cellular functions including gene regulation 
and DNA repair, and is known to play an important role in develop-
ment and disease, as its loss leads to embryonic lethality [2–17]. 
Menin was initially found to act as a transcriptional repressor 
through its interactions with the transcription factor JunD and the 
histone deacetylase (HDAC) mSin3A [5,18]. However, soon after, it 
was found to also be involved in transcriptional activation by recruit-
ing and stabilizing the MLL1 and MLL2 histone methyltransferase 
(HMT) complexes to transcriptional start sites (TSS) [3,4]. The geno-
mic localization of the Menin-MLL complex at TSSs of the HOX gene 
locus implicated Menin in organismal development, helping to 
explain its embryonic lethality and role in disease.

The main focus of Menin’s role in disease has been in the 
field of cancer biology. In this context, Menin has paradoxical 
roles, acting both as an oncogenic co-factor and a tumor 
suppressor depending on the cellular context [17,19,20]. 
Germline inactivating mutations in MEN1 lead to the genetic 
disorder Multiple Endocrine Neoplasia Type 1 (MEN1 syn-
drome), in which somatic mutations of the remaining allele 
lead to the formation of tumors derived from neuroendocrine 
tissues [21–25]. Menin has also been found to be an oncogenic 
co-factor in acute myeloid leukemia (AML), as it is the chro-
matin adaptor subunit of the MLL1/2 histone methyltransfer-
ase complex and the MLL1-fusion proteins [7,17]. More 
recently, Menin has been found to also play a role in 
a variety of solid tumors including breast, prostate and lung 
cancers [26–31].

Several studies have contributed to the development of 
Menin-MLL small molecule inhibitors, which are being 
explored and clinically tested as potential treatments for 
AML and other Menin-related cancers [32–39]. Multiple inde-
pendent groups have developed various classes of Menin 
inhibitors. For the most part, these have been developed to 
treat MLL1-rearranged (MLL1-r) AML. However, it has been 
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found that they are also efficacious for other malignancies 
including AML driven by other mutations (non MLL1-r), acute 
lymphoblastic leukemia (ALL), and a variety of solid tumors. 
Several inhibitors are currently in clinical trials as both single 
agents and in combination therapies, with the first approval 
from the Food and Drug Administration (FDA) having just 
occurred in November 2024 [40].

In this review, we will discuss the development, characteriza-
tion, and use of Menin inhibitors to treat cancer. We will begin by 
discussing the cellular roles of Menin and how those contribute to 
its context-specific role in various cancer types. The discussion will 
continue with the history of Menin inhibitors development, how 
these are being used in the clinic and emerging evidence of 
resistance mutations. We will also share our perspectives on future 
avenues in the role of Menin, MEN1 mutations and Menin inhibi-
tors in solid tumors and non-cancer diseases/disorders.

2. History of Menin

The gene MEN1, which encodes for the protein Menin, was 
originally cloned and identified as the causal gene of the 

human MEN1 syndrome in 1997 [41]. MEN1 is located on chro-
mosome 11q13, contains 10 coding exons and is ubiquitously 
expressed across tissues (Figure 1). Menin contains two NLSs and 
is predominantly found in the nucleus of cells [1]. Menin is 
a highly conserved protein from sea anemone (Nematostella 
vectensis) through humans (Homo sapiens). However, it contains 
no regions of homology to any other eukaryotic proteins and no 
annotated functional domains, aside from two NLSs in the 
C-terminal half of the protein (Figure 1) [1,41]. These structural 
features (or lack thereof) indicate that Menin plays a unique and 
essential cellular role, yet it has been a challenge to study given 
that there are no biochemical clues from the amino acid 
sequence or 3D protein structures.

Soon after the identification and cloning of MEN1, Men1 
null mouse models were developed, leading to the discovery 
that loss of Men1 is lethal between embryonic stages 
11.5–13.5 [9,10]. These embryos were found to have abnormal 
nervous system development and heart hypotrophy [9]. Mice 
harboring heterozygous deletions of Men1 have 
a developmental trajectory that mimics that of human MEN1 
syndrome. These mice develop pancreatic islet lesions and 
parathyroid adenomas at nine months, and then larger tumors 
of the pancreatic islets, parathyroid, thyroid, adrenal cortex 
and pituitary gland at 16 months [10]. The tumors that form 
in these mice have undergone loss of heterozygosity at the 
Men1 locus. To study the role of Menin in various tissues while 
circumventing the lethality of a full Men1 deletion, many 
groups have developed mouse models of conditional, tissue- 
specific Men1 deletion. These generally use a homozygous 
whole-body floxed Men1 allele crossed to Cre recombinase 
that is expressed under a tissue-specific promoter. Examples 
of tissues that have been targeted by this method include 
lung, gastrointestinal tract, breast and prostate [30,42–45].

The first functional studies of Menin revolved around 
transcriptional regulation. Multiple studies found that 
Menin can both activate and repress gene transcription 

Article highlights

● Menin was discovered and cloned in the context of MEN1, a familial 
cancer predisposition syndrome.

● Menin interacts with numerous proteins, implicating it in diverse 
cellular activities including transcriptional regulation, cell cycle, DNA 
damage response, and signal transduction.

● Menin has paradoxical roles in cancer, acting as either an oncogenic 
cofactor or a tumor suppressor depending on the tissue.

● Several small molecule Menin-MLL1 inhibitors have been developed 
in the past 10–15 years and are currently in clinical trials.

● The first FDA approval of a Menin-MLL1 small molecule inhibitor 
occurred in 2024.

● Future research should investigate resistance mechanisms and the 
efficacy of Menin-MLL1 inhibitors in other tumor types.
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Figure 1. Menin as a scaffold for chromatin-associated factors. (a) Schematic of the MEN1 gene, the binding locations of known Menin interactors and Menin 
sequence conservation in vertebrates. (b) The Menin protein has differential effects on gene expression depending on the complexes it is bound to. NLS – Nuclear 
localization signal; IDR – Intrinsically disordered region.
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through its interactions with various protein partners. It was 
found that Menin is a transcriptional co-activator through 
interactions with SMAD3, the MLL1 and MLL2 histone 
methyltransferases, and Serine 5-phosphorylated RNA 
Polymerase II (S5P-Pol II) [4,15]. During development, these 
interactions are important for activating genes in the HOX 
locus where Menin binds, and loss of Menin in mouse 
embryos have shown a lower expression of Hoxc6 and 
Hoxc8 [4]. Simultaneously, it was found that Menin can 
repress transcription through interactions with JunD and 
NF-kB [5,14]. The interaction surface of Menin with JunD is 
the same surface that MLL1/2 binds to, making these two 
interactions mutually exclusive. Finally, it was shown that 
Menin can bind double-stranded DNA in a sequence- 
independent manner through the positively charged resi-
dues that compose the NLSs at the C-terminus of the protein 
[46]. However, whether Menin is able to directly bind DNA on 
its own is a debated topic in the field.

Continued research in the role of Menin using various 
cellular systems has uncovered a wide variety of interacting 
partners and cellular processes that Menin helps control. 
These studies have centered Menin as a hub for many differ-
ent molecular and cellular processes.

3. Menin as a hub for molecular and cellular 
processes

Just as Menin plays a variety of roles in disease, it is also 
known to interact with many different proteins and genomic 
loci in the cell, further implicating Menin in a wide range of 
cellular functions. These processes include: transcriptional acti-
vation, transcriptional repression, cell cycle/migration, DNA 
damage response, signal transduction and differentiation.

3.1. Transcriptional activation

Menin interacts with MLL1/2, acting as the chromatin adaptor 
subunit of this HMT complex and linking it with the transcrip-
tional co-activator, LEDGF (Figure 2) [3,4,7]. This HMT complex 
trimethylates histone 3 on lysine 4 (H3K4) at the TSS of important 
developmental genes such as HOX locus genes and is a mark 
associated with active transcription [4,47]. Importantly, Menin 
retains binding to the MLL1 fusion proteins that drive a subset 
of AML, acting as an oncogenic co-factor in this setting [17]. 
Menin has also been found to interact with S5P-Pol II, the state 
of Pol II associated with transcription initiation [4]. This interac-
tion further implicates Menin in transcriptional activation. While 
the interaction between Menin and MLL HMTs is probably the 
most well-understood role for Menin in activating gene expres-
sion, it can also contribute to transcriptional activation in H3K4 
trimethylation (H3K4me3)-independent manners, including 
interacting with the nuclear receptor estrogen receptor alpha 
(ERα), and the oncogene MYC [8,26].

3.2. Transcriptional repression

Given the context-dependent nature of Menin, it is unsurprising 
that it also contributes to transcriptional repression. One of the 

first identified interacting partners of Menin was the activating 
protein-1 (AP-1) transcription factor, JunD, and it was found 
that this interaction repressed JunD-mediated transcription 
(Figure 2) [5]. It was later found that JunD and MLL interact 
with the same binding pocket on Menin and these interactions 
are mutually exclusive (Figure 1) [6]. One proposed mechanism 
by which this transcriptional repression occurs is through the 
interaction of Menin and an mSin3A HDAC complex [18]. The 
deacetylation of histones leads to a more compact chromatin 
state and subsequently, less transcription. Further corroborat-
ing this HDAC-dependent mechanism, Menin was later found 
to interact with CHES1, a component of an mSin3A-HDAC 
complex, in the context of DNA damage-induced S-phase arrest 
[48]. Menin also represses NF-kB mediated transcription 
through interactions with the p65 protein [14]. This mechanism 
was found to rely on Menin interacting with a different deace-
tylase, SIRT1. The acetylation of lysine 310 (K310) on p65 is an 
important post-translational modification (PTM) for NF-k 

B mediated transcriptional activation, and Menin recruits 
SIRT1 to p65, leading to the deacetylation of K310 and subse-
quent transcriptional repression [49]. Menin is also known to 
recruit the methyltransferases SUV39H1 and PRMT5 to chroma-
tin, where they place repressive methyl marks on lysine 9 of 
histone H3 (H3K9) and arginine 3 of histone H4 (H4R3), respec-
tively [50,51]. The trimethylation of H3K9 is also enhanced by 
the interaction between Menin and Daxx, a transcriptional co- 
repressor and histone chaperone [52]. Finally, Soto-Feliciano 
et al. found that in the context of MLL1-r AML, Menin recruits 
the wild type (WT) form of MLL1 to tumor suppressor genes, 
repressing their expression in a mechanism that has yet to be 
characterized [53].

3.3. Cell cycle/migration

The subcellular localization of Menin is mainly nuclear, which 
is unsurprising given its role as a chromatin adaptor protein. 
However, during S and G2 phases of the cell cycle, Menin has 
been found to associate with intermediate filament proteins 
vimentin and GFAP in the cytosol [54]. It is unclear whether 
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Figure 2. Menin’s many interactions implicate it in multiple different cellular 
processes.
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there is a functional role for Menin in this interaction or if it is 
simply a sequestration mechanism during cell division. 
Consistent with its role as a tumor suppressor, Menin interacts 
with activator of S-phase kinase (ASK) and represses ASK- 
induced cell proliferation (Figure 2) [16]. Menin also binds to 
IQ motif containing GTPase activating protein 1 (IQGAP1), 
increasing its interaction with epithelial cadherin (E-cadherin) 
and β-catenin [55]. This same study found that cells overex-
pressing Menin had more E-cadherin and β-catenin localized 
to cell-cell contact sites and were inhibited in their ability to 
migrate [55]. Together, these results implicate Menin in help-
ing to control cell proliferation and migration in its role as 
a tumor suppressor gene. Along with directly interacting with 
cell cycle-related proteins, Menin also regulates the expression 
of important cell cycle-related factors. Menin binds to the loci 
of CDKN1B, CDKN2C and GAS1 and recruits histone methyl-
transferases to either activate or repress their transcription. At 
the CDKN1B and CDKN2C loci, Menin nucleates the MLL1 HMT 
complex to deposit H3K4me3, a mark associated with tran-
scriptional activation [56]. The CDKN1B and CDKN2C protein 
products are cyclin-dependent kinase (CDK) inhibitors so the 
expression of these leads to the regulation of cell growth 
[57,58]. The loss of Menin expression/activity in this context 
leads to the decrease in expression of CDKN1B and CDKN2C, 
subsequently resulting in increased CDK activity and acceler-
ated S-phase entry/cell growth [56,59]. The role of Menin in 
the context of GAS1 has a similar output of decreased cell 
proliferation, but it occurs through the repression of the GAS1 
gene by scaffolding the HMT PRMT5 to place repressive 
dimethyl marks on H4R3 (H4R3me2) at the promoter [51]. 
The protein product of GAS1 is an important cofactor for 
Hedgehog signaling, a pathway that impacts proliferation of 
pancreatic endocrine cells and is important for their develop-
ment and function [60]. Therefore, repression of this gene by 
Menin leads to inhibition of cell proliferation.

3.4. DNA damage response

To ensure proper DNA repair, the cellular DNA damage 
response machinery requires accessibility to the damaged 
sites. Changes to the chromatin landscape are therefore 
important aspects of this process. Unsurprisingly, Menin is 
implicated in the DNA damage response in multiple different 
ways. It was found that the loss of Menin in mouse embryonic 
fibroblasts (MEFs) leads to increased DNA damage sensitivity 
[11]. Menin interacts with DNA repair protein FANCD2 as well 
as chromatin, and both of these interactions were found to 
increase in response to gamma-irradiation (Figure 2) [11]. 
Menin has also been found to bind with replication protein 
A subunit 2 (RPA2), a protein important for DNA repair, as well 
as replication and recombination (Figure 2) [12]. The interact-
ing surfaces on these two proteins have also been recently 
computationally predicted [61]. However, the interaction 
between Menin and RPA2 had no impact on the ability of 
RPA2 to bind DNA, so the functional implications of this 
interaction remain unknown [12]. Menin has also been found 
to be important for the checkpoint pathway that arrests cells 
in S-phase in response to DNA damage [48]. Menin contri-
butes to this arrest by interacting with the forkhead 

transcription factor CHES1, a component of the mSin3A 
HDAC complex that leads to transcriptional repression [48]. 
This is a similar mechanism that has been suggested for the 
role of Menin in the transcriptional repression of JunD targets 
[18], indicating that a common mechanism of Menin- 
dependent transcriptional repression exists in multiple 
contexts.

3.5. Signal transduction

Many signal transduction pathways start with an extracellular 
signal that leads to a change in gene regulation via activated 
or repressed transcription. As a chromatin adaptor protein 
with important roles in both activating and repressing tran-
scription, Menin plays an important role in multiple signal 
transduction pathways. The TGFβ pathway is one that culmi-
nates in the proteins SMAD3 and SMAD4 binding to DNA and, 
in some contexts, activating transcription of growth inhibitory 
programs, leading to the suppression of cell growth [62,63]. 
Menin is known to bind SMAD3 and loss of Menin has been 
found to antagonize the SMAD3-DNA interaction and block 
the downstream growth inhibition of the TGF-βpathway 
(Figure 2) [15]. These results indicate a tumor suppressive 
role for Menin as an adaptor protein of the SMAD3/4 proteins 
that is an important component of TGF-β induced cell growth 
inhibition. Other members of the SMAD family (SMAD1 and 
SMAD5) are involved in the BMP-2 pathway which controls the 
expression of osteoblast lineage genes RUNX2 and osteocalcin 
(OCN) [64]. Menin is also known to bind SMAD1/5 and this 
interaction is important for the differentiation of mesenchymal 
stem cells into the osteoblast lineage, as the inactivation of 
Menin inhibits the commitment of cells to the osteoblast line-
age (Figure 2) [65]. Hedgehog signaling is a pathway that has 
been found to be important for the development and function 
of pancreatic endocrine cells and Menin has been found to 
play a role in this [51,60]. Specifically, Menin acts as 
a chromatin adaptor for the protein arginine methyltransfer-
ase PRMT5 at the GAS1 promoter, where it places repressive 
H4R3me2 marks [51]. The GAS1 gene is important for the 
binding of the Sonic hedgehog ligand to its receptor, so 
repression of this gene leads to the subsequent repression of 
Hedgehog signaling, culminating in the inhibition of pancrea-
tic islet cell proliferation. Menin has also been found to be 
involved in the NF-kB pathway by binding to the transcription 
factor p65 and repressing its transcriptional activation 
(Figure 2) [14]. While Menin can act as both a transcriptional 
co-activator or co-repressor, the outcome is mainly to help 
control cell growth.

3.6. Differentiation

The role that Menin plays in gene regulation extends to genes 
that are important for development and differentiation in 
a variety of tissues. Menin plays a role in the development of 
pancreatic endocrine cells, but not pancreatic exocrine cells. It 
was found that Men1 knockout in mice leads to irregular 
pancreatic endocrine development including a decrease in 
glucagon-positive cells as well as neurogenin 3 cells and 
altered pancreatic structure [66]. Since that study, it has 
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been found that part of Menin’s role in pancreatic endocrine 
development comes from it binding to the promoter of MAFA, 
the master transcription factor for β-cell differentiation 
(Figure 2) [67]. It was also found that Menin knockdown 
leads to a decrease in β-cell differentiation markers including 
MAFA [67]. Menin is also known to play a major role in hema-
topoiesis. Multiple groups have demonstrated that the recruit-
ment, by Menin, of the MLL1 HMT complex to HOX loci, 
including HOXA9 and MEIS1, and subsequent transcriptional 
activation, is important for hematopoietic development 
[3,7,68,69] (Figure 2). Furthermore, loss of Menin expression 
leads to a decrease in HOX locus expression and defects in 
hematopoietic progenitor cells [68]. It has also been suggested 
that Menin is particularly important for hematopoietic 
response to stress and recovery [69]. Menin has also been 
found to repress the expression of GBX2, a transcription factor 
that contributes to the development of multiple different 
cellular lineages, via SUV39H1 interaction and H3K9 methyla-
tion [50]. Through its interactions with SMAD1/5 (described 
previously), Menin also plays an important role in osteoblast 
development [65]. Through the various roles that Menin plays 
in differentiation and development, it is unsurprising that any 
disruptions to Menin or its activities could significantly impact 
many cellular processes and identities and result in various 
disease states.

It is clear that Menin can play many different roles in the 
cell, yet not all of these are occurring at the same time. The 
context-specific nature of Menin is a very important aspect of 
its biology and this extends to the role that Menin plays in 
various diseases, particularly cancers.

4. Paradoxical roles in cancer

Menin is known to be important for the formation and main-
tenance of multiple forms of cancer. However, its specific role is 
tissue-dependent. In neuroendocrine tissues, Menin acts as 
a tumor suppressor and is highly mutated in tumors of these 
tissue types (Figure 3). These mutations include both germline 
and somatic mutations that are mostly missense or truncations. 
However, no genotype-phenotype associations have been deter-
mined for any identified MEN1 mutations. In other cases, such as 
acute leukemia, Menin acts as an oncogenic co-factor of fusion 
proteins (e.g., MLL1-AF9) and is rarely mutated (Figure 3) [7].

4.1. MEN1 syndrome

Multiple Endocrine Neoplasia Type 1 (MEN1) syndrome is 
a familial cancer predisposition syndrome that is inherited in 
an autosomal dominant manner, with 100% penetrance [70]. It 
was first described in 1954 as an association of tumors of 
endocrine origin [71]. Due to its familial occurrence, it was 
presumed to have a genetic cause. MEN1 syndrome is known 
to affect the endocrine tissues including the parathyroid, pitui-
tary gland, and islet cells of the pancreas.

The MEN1 gene, which encodes for the protein Menin, was 
mapped and identified as the gene responsible for the MEN1 
syndrome in 1988 and cloned in 1997 [41,72]. Loss of MEN1 
function results in multiple tumors of the parathyroid, pituitary 
gland and pancreatic islet cells (Figure 3). The loss of MEN1 

function follows Knudson’s ‘two-hit hypothesis,’ where an 
affected individual inherits a germline mutated allele of the 
MEN1 gene, and through loss of heterozygosity (LOH), 
the second allele also becomes nonfunctional. While all 
MEN1 tumors are known to display LOH on chromosome 11, 
where the MEN1 gene is located, the pattern of LOH can be 
different between lesions in a patient [22]. It was also found 
that MEN1 patients have intratumoral heterogeneity in terms 
of chromosomal deletions, indicating that MEN1 tumors har-
bor genomic and chromosomal instability.

The parathyroid is the most commonly affected tissue in 
MEN1 syndrome, leading to hyperparathyroidism [73,74]. 
Tumors of the endocrine pancreas are the second most com-
mon, leading to gastrinomas and insulinomas (40% and 10% 
of MEN1 patients, respectively) [73,74]. Other manifestations 
such as glucagonomas and somatostatinomas also occur, but 
infrequently. About 20–30% of endocrine pancreatic tumors 
are nonfunctioning, or do not secrete any hormones [73,75]. 
Pituitary tumors also occur in many MEN1 patients. The major-
ity of these tumors are prolactinomas or growth hormone 
secreting tumors, or tumors that secrete both of these hor-
mones. Adrenocorticotropin secreting tumors can also be 
found. These pituitary gland tumors can also cause symptoms 
due to mass effects on the brain including visual field anoma-
lies and cranial nerve palsies [73]. Tumors in other tissues can 
also form due to MEN1 syndrome including adrenal tumors, 
foregut carcinoid tumors, thyroid and thymic tumors 
[73,74,76–78].

Current treatment options for MEN1 patients are depen-
dent on the tumors that they present with and have been 
thoroughly reviewed [79,80]. Surgery is recommended for 
patients that present with hyperparathyroidism, as well as 
some patients with endocrine pancreas and parathyroid 
tumors. However, this treatment option is not a cure-all as 
conditions can continue to persist or recur, and other side 
effects have been reported as well. Somatostatin analogs 
(SSAs) can be used to treat pancreatic neuroendocrine tumors 
(NETs) as well as some parathyroid and pituitary tumors. 
However, these are only feasible if somatostatin receptors 
(SSTRs) are expressed in the tumor cells being targeted. 

Oncogenic
co-factor

Tumor
suppressor
neuro-
endocrine:

leukemia
BRCA
HCC

PDAC

LUAD

pituitary
parathyroid

lung
panNET

Figure 3. Menin has paradoxical roles in different cancer subsets. BRCA – Breast 
invasive carcinoma; HCC – Hepatocellular carcinoma; PDAC – Pancreatic ductal 
adenocarcinoma; LUAD – Lung adenocarcinoma.
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Similarly, peptide receptor radionuclide therapy (PRRT) can be 
used for some pancreatic and pituitary NETs, but these also 
require the expression of SSTR on tumor cells for efficacy. 
There are also some treatment options that are specific for 
certain tumor types as well as for symptomatic treatment. For 
example, proton pump inhibitors can be efficacious against 
gastrinomas, while drugs that inhibit insulin secretion can be 
used for insulinomas and dopamine agonists can be used to 
help control hormone secretion from parathyroid tumors.

Despite this variety of treatment options, people with 
MEN1 syndrome are still dying younger than the general 
population. Even though many options are available for treat-
ing hormone excess, patients are still dying due to this cause. 
The majority of MEN1 deaths are due to malignant pancreatic 
endocrine tumors (PETs) and thymic carcinoid tumors [25]. 
Poor prognostic factors for MEN1 patients include high hor-
mone levels, large PETs and the presence of metastases [25].

4.2. Sporadic NETs

Somatic MEN1 mutations also occur in sporadic NETs that form 
independently of a MEN1 syndrome diagnosis, further reinfor-
cing its role as a tumor suppressor in this context. Multiple 
groups have reported on the role of Menin and somatic MEN1 
mutations in a variety of NETs including pancreatic endocrine 
tumors [81–83], gastroenteropancreatic NETs [84], and lung 
NETs [43]. These studies revealed that many different types 
of mutations can lead to loss of function of the Menin protein 
and subsequent tumorigenic phenotypes. These include mis-
sense mutations [19,81,83,84], insertion/deletions (indels) that 
cause truncations [81,82,84] and splice site mutations [81]. 
These mutations cause a variety of functional changes on 
the Menin protein product including loss of interaction with 
canonical binding partners [19,82,83], altered subcellular loca-
lization [81], and reduced protein stability [84]. Multiple stu-
dies have found that both mutant and wild type Menin are 
post-translationally degraded in the context of NETs and that 
stabilizing Menin in these contexts could have a therapeutic 
benefit [84,85].

4.3. Acute myeloid leukemia

The role that Menin plays in AML is as an oncogenic cofactor 
(Figure 3). Menin is known to interact with the MLL1 HMT and 
maintains this interaction with MLL1 fusion proteins, which are 
known to be oncogenic drivers of AML [86]. MLL1 fusion 
proteins drive AML through mediating the expression of HOX 
genes, especially HOXA7 and HOXA9, as well as MEIS1 [87–89]. 
The interaction between Menin and MLL1 fusion proteins is 
essential for leukemogenesis and AML maintenance, as Menin 
is the chromatin adaptor of the MLL1 HMT complex, helping it 
localize to the HOX gene locus [3,17]. Experiments showing 
that dominant negative inhibitors of the Menin-MLL1 interac-
tion or knockout of Menin decreases HOX and MEIS1 gene 
expression as well as AML proliferation both in vitro and 
in vivo, were the first indicators that targeting this complex 
could have therapeutic benefits [68,90]. NUP98 fusion proteins 
and NPM1 mutations also drive AML and result in aberrant 
HOX gene expression [91,92]. It has been found that both of 

these classes of AML are also dependent on the Menin-MLL1 
HMT and that Menin inhibitors can also be used in these cases 
to lead to lower HOX gene expression and upregulate markers 
of differentiation [93–95]. These studies increase the patient 
population that can potentially benefit from the use of Menin 
inhibitors, and clinical trials for Menin inhibitors are now 
including these patients as well.

4.4. Other solid malignancies

While a majority of the studies on the role of Menin in cancer 
have been performed in NET or leukemia systems, it has also 
been implicated in many other solid cancers. Again, Menin is 
able to act as both a cancer promoter or suppressor in solid 
tumors, depending on the tissue type (Figure 3).

Menin has been found to act in a pro-oncogenic fashion 
in breast cancer [26,27], hepatocellular carcinoma (HCC) 
[96,97], gastrointestinal stromal tumors (GIST) [98], endome-
trial cancer [99], castration-resistant prostate cancer [28,29], 
ovarian cancer [100], PIK3CA-mutant colorectal cancer [101], 
and Ewing sarcoma [102,103]. On the other hand, Menin has 
been found to act as a tumor suppressor in pancreatic ductal 
adenocarcinoma [104,105] and lung adenocarcinoma [30,31]. 
In many of these cases the mechanism of Menin’s role is tied 
to it transcriptionally regulating various genes that play 
important roles in the specific cancer contexts. While phar-
macological inhibitors of Menin have been mainly developed 
to target the role of Menin in AML, solid tumors in which 
Menin plays a role are also starting to reap the benefits of 
these inhibitors.

4.5. Tissue specificity

The different roles that Menin plays in NETs compared to 
AML paints a picture of tissue specificity. Menin is a tumor 
suppressor in neuroendocrine tissues yet an oncogenic co- 
factor in the hematopoietic system and has been found to 
not be an important factor in some other tissues such as 
the liver [106]. The paradox of Menin in cancer suggests 
a subsequent paradox for the treatment of these tumors. 
The literature summarized above suggests that Menin 
degradation would be the most efficacious in leukemia, 
yet in solid tumors, such as NETs, the stabilization of 
Menin would have a better outcome for patients.

As we turn our attention toward pharmacological inhibitors 
of Menin, it is important to keep in mind the multiple mechan-
isms that Menin is able to sample to contribute to transcrip-
tional control. This continues to stress the importance of the 
context-specificity of this protein, something that needs to be 
considered when determining how to target Menin in differ-
ent disease contexts.

5. Drugs/targets

Since Menin was identified as an oncogenic co-factor in some 
subsets of AML, disrupting this interaction has been a main 
draw as a potential therapeutic option for these patients. 
Many inhibitors have now been developed, combination 
therapies tried, and clinical trials started. Some inhibitors 
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have even shown promise for solid tumors and Menin-related 
disorders.

5.1. Structure

Many different studies have helped to structurally map impor-
tant interaction surfaces on Menin. The first studies to map the 
Menin-MLL1 interaction did so by mapping the interacting 
surface on MLL1, determining which residues are important 
for its interaction with Menin [3,17,90]. It was initially found 
that the N-terminal portion of MLL1 (first ~1,400 amino acids) 
is important for binding Menin [3]. This was then further 
refined to the first 331 amino acids of MLL1 with the first 
35–45 being the most important for high-affinity binding to 
Menin [17,90]. The first crystal structure of Menin was pub-
lished in 2011 and demonstrated a clear binding pocket for 
MLL1, as Menin mutational sites known to disrupt the inter-
action were mapped to that pocket [107]. In 2012, the crystal 
structure of human Menin in complex with MLL1, as well as 
with JunD, was published [6]. This paper confirmed that the 
central pocket of Menin was indeed the MLL1 binding site and 
that this was also the site of binding to JunD, indicating that 
the two are mutually exclusive interactors with Menin. Most 
recently, the cryo-electron microscopy (cryo-EM) structure of 
Menin bound to a nucleosome has been published (3.2 Å) 
[108]. From the earliest papers mapping the interactions of 
Menin, especially those between Menin and MLL1, it has been 
suggested that this could be a potential therapeutic target. As 
the resolution of this interaction became more clear, that 
suggestion became more realistic, leading to the first devel-
opment of Menin inhibitors.

5.2. Leukemia

5.2.1. Identification of Menin/MLL1 interaction as 
a druggable target
One of the first studies showing that the interaction of Menin 
and MLL1 is important came from purifying the MLL1 complex 
and the identification of other proteins in this complex. In this 
same study, they knocked down MLL1 and found that the 
expression of HOXA9 was downregulated. They also found 
that Menin knockdown had the same effect on HOXA9 expres-
sion, yet loss of the rest of the identified components in the 
MLL1 complex did not have this same effect [3]. This finding 
was confirmed by another study which further showed via 
chromatin immunoprecipitation that Menin and MLL1 directly 
bind to the Hoxa9 locus in murine myeloid cells [68]. These 
authors went on to speculate that blocking the function of 
Menin could be a therapeutic option for leukemia patients 
since HOX genes are important for hematopoiesis and leuke-
mic transformation. Finally, one of the first experiments that 
directly targeted the Menin-MLL1 interaction showed that 
using dominant negative mutants of MLL1 downregulates 
Meis1 expression and leads to reduced cell proliferation in 
MLL1-AF9 transformed cells [90]. These authors also started 
to map the interaction surface between MLL1 and Menin and 
found that amino acids 5–44 on MLL1 are required for its 
interaction with Menin and for the oncogenic transformation 
by the MLL1-AF9 fusion protein.

Further structural insights helped to lay the foundation for 
the development of small molecule inhibitors of the Menin- 
MLL1 interaction. Grembecka, et al. used nuclear magnetic 
resonance (NMR) spectroscopy to map this interaction inter-
face and found that MLL1 has two binding motifs for Menin 
[109]. These two motifs are composed of amino acids 4–15 
and 23–40 of MLL1. They also found that a peptide corre-
sponding to the sequence of binding motif 1 can dissociate 
the Menin-MLL1 complex. These interaction mapping experi-
ments were critical for the development of the different inhi-
bitors of this complex that will be discussed below.

5.2.2. Types of acute leukemia that can be targeted with 
Menin inhibitors
5.2.2.1. MLL1-rearrangements (MLL1-r) AML. This is the 
original subtype of leukemia that Menin inhibitors were 
designed to target [17,33]. In particular, many of the Menin 
inhibitors that are described in section 5.3 were developed to 
target the interaction of Menin and MLL1 fusion proteins for 
MLL1-r AML. Furthermore, many of the studies that initially 
determined the effects and mechanism of Menin inhibitors 
(discussed in section 5.4) were performed in MLL1-r AML 
cells. However, it has also been found that Menin inhibitors 
have efficacy in other subsets of Acute Leukemia.

5.2.2.2. NPM1-mutant AML. Similarly to MLL1-r AML, NPM1- 
mutant (NPM1c) AML is known to be associated with HOX and 
MEIS1 gene upregulation [110]. This oncogenic transcriptional 
phenotype was found to be reliant on the Menin-MLL1 inter-
action and treatment of NPM1c AML with Menin inhibitors, 
both in vitro and in vivo, were found to reduce leukemia 
proliferation and deplete Menin from HOX and MEIS1 loci 
[95,111]. While most NPM1c is ectopically localized to the 
cytoplasm, it has recently been found that the NPM1c that 
remains in the nucleus can cooperate with the Menin-MLL1 
complex to regulate this oncogenic gene expression profile 
and that it is also evicted from chromatin upon treatment with 
Menin-MLL1 inhibitors [112]. NPM1c AML patients are mainly 
adults, and have been included in many of the clinical trials of 
Menin-MLL1 inhibitors (Table 2).

5.2.2.3. NUP98-fusion AML. MLL1 is also known to be 
a molecular dependency in NUP98-fusion leukemias, where it 
colocalizes at HOX gene promoters with NUP98 fusion proteins 
[93]. It was later found that Menin inhibitors (VTP-50469) are 
effective against NUP98-fusion driven leukemia cell lines and 
preclinical models of NUP98-fusion leukemia, including 
patient-derived xenograft (PDX) models [94].

5.2.2.4. UBTF tandem duplication AML. Studies of AML dri-
ven by UBTF tandem duplications (UBTF-TDs) found that these 
protein products occupy regions of chromatin that are co- 
occupied by MLL1 and Menin. It was further found that treat-
ment of UBTF-TD leukemia cells are sensitive to Menin inhibi-
tor (SNDX-5613) both in vitro and in vivo [113].

The commonality between each of these subsets of AML 
are their dependence on the expression of HOXA and MEIS1 
genes, which are activated by the Menin-MLL1 complex. In 
each of these AML types, treatment with various Menin 
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inhibitors leads to the downregulation of these leukemia- 
promoting genes and the upregulation of myeloid differentia-
tion genes. This finding demonstrates a reliance on the Menin- 
MLL1 axis even in AML subtypes that are not driven by MLL1- 
rearrangements. This is a promising finding, as it expands the 
patient population that could benefit from these inhibitors. It 
has also been found that in MLL1-r and NPM1-mutant AML, the 
WT copy of MLL1 is localized to tumor suppressor genes, yet 
the transcription of these genes is repressed [53]. This 
mechanism is not fully understood and more research into 
this mechanism is needed in the context of all mentioned AML 
subtypes.

5.2.2.5. Acute lymphoid leukemia (ALL). MLL1- 
rearrangements also occur in ALL (e.g., MLL1-AF4), and 
Menin inhibitors have been found to be efficacious in models 
of this disease as well [114]. Many of the inhibitors that will be 
further discussed below have shown promise in cell-based and 
PDX models of ALL including MI-derived compounds, VTP- 
50469, DS-1594, BAY-155 and JNJ-75276617 [33,35,37,115– 
119]. Many of the clinical trials for these drugs also include 
ALL patients (NCT-04065399, NCT05761171, NCT04752163, 
NCT-04988555, NCT-05153330 and NCT-06052813).

5.3. Types of Menin-MLL1 inhibitors

Since the identification of the Menin-MLL1 complex as 
a druggable target, many different iterations of Menin-MLL1 
inhibitors have been developed. These can generally be clas-
sified into four categories: MI, VTP/SNDX, covalent and 
others (Table 1) [33–39,117–124]. The commercial drug 
based off the MI class of drugs is known as Ziftomenib and 
the commercial version of the VTP/SNDX class is Revumenib.

Grembecka, et al. developed the first small molecule to 
inhibit the Menin-MLL1 interaction using a small molecule 
screen [33]. Multiple modifications to the most potent mole-
cule identified from the screen led to the development of MI- 
2 and MI-3 which bind to Menin with a Kd of 158 nM and 201  
nM and inhibit with an IC50 of 446 nM and 648 nM, respec-
tively [33]). The structure of Menin bound to MI-2 was also 
solved by the same group, demonstrating that this inhibitor 
binds to the same site on Menin that MLL1 binds [125] 
(Figure 4). This structure then led to the development of MI- 
2-2 and the probe inhibitor MIV-6, which bind to Menin with 
a Kd of 22 and 85 nM and inhibit Menin-MLL1 with an IC50 of 
46 and 56 nM, respectively [115,125]. These studies led to the 
development of a class of MI-derived Menin-MLL1 inhibitors 
by the Grembecka/Cierpicki Lab. MI-2 and MI-2-2 did not have 
very good activity in cells so MI-503 was developed for in vivo 
use [117]. MI-503 binds to Menin with a Kd of 9.3 nM and 
inhibits with an IC50 of 14.7 nM. This compound was found 
to selectively kill MLL1-r driven leukemia cells and reduced 
MLL1-AF4 driven leukemia burden in mice [117]. Further 
improvement came with the development of MI-538, with 
a Kd of 6.5 nM and an IC50 of 21 nM, as well as improved 
cellular activity and enhanced selectively for MLL1-r driven 
leukemia [34]. These compounds were improved again, with 
the development of MI-1481 (Kd: 9 nM; IC50: 3.6 nM) [123]. 
However, this compound has lower oral bioavailability 

compared to previously developed compounds. MI-3454 
(IC50: 0.51 nM) was then developed to improve the translatable 
properties of Menin inhibitors and was found to be efficacious 
in mouse models of leukemia, including PDX models [116]. 
Ziftomenib, also known as KO-539, is an MI-based Menin 
inhibitor developed by Kura Oncology that is currently in 
clinical trials (Table 1). Phase 1a/1b of this First-in-Human 
study for patients with relapsed or refractory AML is now 
complete. Phase 1 showed promising results. Although some 
patients suffered from differentiation syndrome, ~25% of 
patients with MLL1-rearrangements or NPM1 mutations 
showed complete remission [32]. Phase 2 of this trial is now 
underway.

VTP-50469 is another small molecule Menin-MLL1 inhibi-
tor that was developed using structure-based design focused 
on the MLL1 binding pocket of Menin (Figure 4) [35]. This 
compound has an IC50 in the range of 13-37 nM for MLL1-r cell 
lines and leads to differentiation and apoptosis. It was also 
found to reduce leukemic burden in PDX mouse models of 
MLL1-r AML, as well as in a mouse model of NPM1-mutant 
AML [35,111]. Revumenib, also known as SNDX-5613, is a VTP 
analog that is also in clinical trials (Table 2). Phase 1 of the First 
in Human trial for patients with relapsed or refractory AML 
showed that 30% of patients treated with Revumenib 
achieved complete remission with a low frequency of treat-
ment-related adverse events [36]. Phase 2 for patients harbor-
ing MLL1-rearrangements is also now completed for the trial 
and demonstrated that while there were some adverse events, 
there was also a 63% response rate, with a large proportion of 
patients with no detectable residual disease [120]. Revumenib 
achieved FDA approval for treatment of MLL1-r acute leukemia 
in November 2024 [40].

BMF-219 is the first covalent inhibitor of Menin (Table 1). 
This inhibitor entered clinical trials for adult patients with AML, 
ALL with MLL1-rearrangements or NPM1 mutations, Diffuse 
large B-cell lymphoma (DLBCL), Multiple myeloma (MM) and 
Chronic/small lymphocytic lymphoma (CLL/SLL) in 2022 
(Table 2). In an update on the acute leukemia arm (AML/ 
ALL), it was shared that there were no treatment-related toxi-
cities or deaths and that, while the cohort was small, 2/5 
patients achieved complete remission [121].

Other small molecule Menin inhibitors include BAY-155, 
DS-1594a, DSP-5336 and JNJ-75276617 (Table 1). Brzezinka 
et al. developed the probe inhibitor BAY-155 building off of 
the structure of MI-503. BAY-155 has a Kd of 75 nM and an IC50 

of 8 nM, successfully inhibits proliferation of MLL1-r AML cell 
lines and reduces tumor volume and weight in AML-derived 
mouse xenograft models [119]. DS-1594a was developed 
through a high-throughput screen and derivatizing from scaf-
folds found in the screen (Figure 4) [37]. This group found that 
DS-1594a selectively inhibited the growth of MLL1-r and 
NPM1-mutant human leukemia cell lines with a GI50 of <30  
nM, and did not inhibit the growth of leukemia cells without 
either of these alterations. DS-1594a also exhibits antitumor 
efficacy in preclinical PDX models of MLL1-r or NPM1-mutant 
leukemia. Enzomenib, also known as DSP-5336, is another 
small molecule inhibitor currently in clinical trials (Table 1). 
DSP-5336 was developed by Eguchi et al., binds to Menin with 
a Kd of 6.0 nM and inhibits the Menin-MLL1 interaction in 

8 M. R. BROWN AND Y. M. SOTO-FELICIANO



human leukemia cells with an IC50 ranging from 10–30 nM, 
depending on the cell line [38]. This drug was found to 
specifically inhibit cell lines with MLL1-rearrangements or 
NPM1 mutations and have antitumor effects in mouse xeno-
graft models, reducing the expression of MEIS1 and HOXA9 
[38]. A clinical trial was started in 2022 to look at this drug in 
relapsed/refractory AML or ALL (Table 2). In an update 
reported in 2024, it was shared that there had been no treat-
ment-related deaths and that there was a response rate of 
50–60% and complete remission rate of ~ 20% in patients with 
MLL1-r and NPM1-mutant AML [126]. Bleximenib, also known 
as JNJ-75276617, is the Menin-MLL1 inhibitor developed by 
Janssen R&D that is also currently in clinical trials (Table 2 / 
Figure 4). This drug was also found to have antiproliferative 
activity that is specific for MLL1-r or NPM1-mutant AML cell 
lines and reduce leukemic burden in AML preclinical models 
[39]. The trials for this drug are currently ongoing.

5.4. Effects/Mechanism of inhibitors

Since the introduction of Menin inhibitors there have been many 
studies looking into the downstream effects of Menin inhibition 
on transcription to further elucidate the mechanism by which 
these small molecules act. It was found that MLL1-fusion proteins 
(MLL1-FP) target different genes than WT MLL1/2 and that dele-
tion of Menin or treatment with MI-2/MI-2-2 preferentially affects 
gene expression of MLL1-FP targets over MLL1/2 targets in MLL1- 
AF9 cells [127]. This study concluded that MLL1-FP may rely more 
on Menin for chromatin targeting than WT MLL1/2. Around the 
same time, it was also found that treatment of AML cells with MI- 
503 or MI-463 leads to ubiquitination of Menin and reduced 
protein stability that could be rescued by treatment with an E1 
ligase inhibitor [128]. In this same study, the use of a proteasome 
inhibitor also rescued the levels of H3K4me3 and expression of 

HOXA9, indicating that the loss of Menin stability is an important 
mechanism of Menin inhibitors. It was further found that the 
transcriptional effects of MLL1-AF9 loss from chromatin happen 
quite quickly. Within 15 minutes of dTAG treatment on MLL1-AF9- 
FKBP12 cell lines, they found a loss of transcriptional elongation at 
MLL1-FP target loci, including MEIS1 and HOXA9, and a loss of 
histone PTMs associated with active transcription [129]. While the 
loss of expression of MEIS1 and HOXA9 has been appreciated as 
part of the response to Menin inhibition, it has also been found 
that treatment of AML cells with the Menin inhibitors MI-503 and 
VTP-50469 leads to an increase in expression of tumor suppressor 
genes and senescence-associated genes [53]. In this study, the 
authors identify a molecular switch that occurs upon Menin inhi-
bitor treatment in which Menin-MLL1 gets evicted from chromatin 
and UTX-MLL3/4 binds at those same genomic sites. Many of 
these sites are tumor suppressor genes or senescence-associated 
genes and this switch leads to a transcriptional change from 
repression of these genes to activation [53]. This study expanded 
our understanding of the mechanism of Menin inhibitors beyond 
the silencing of AML-associated genes. Other studies have also 
found that changes to expression of other gene targets are impor-
tant for the efficacy of Menin inhibitors. On one hand, it was found 
that upon Menin inhibition, MLL1/2 gets redistributed to bivalent 
genes, causing Menin-dependent MLL1 gene activation to 
decrease but Menin-independent MLL1 gene activation to be 
maintained at the bivalent sites [130]. On the other hand, a class 
of non-canonical Menin targets that include MYC, LRP5 and 
RUNX3, and are bivalently occupied by Menin and the repressive 
histone mark H2A lysine 119 ubiquitination (K119Ub), which is 
regulated by PRC1.1, were also found [131]. This study found that 
this class of genes gets down regulated upon Menin inhibition. 
Finally, Menin inhibitors are also in clinical trials for forms of AML 
that are not MLL1-FP driven (NPM1-mutant and NUP98-FP driven). 
In the context of NPM1-mutant AML, it was found that mutant 

Table 1. Menin inhibitors. GIST – Gastrointestinal stromal tumor; NSCLC – Non-small cell lung cancer.

Molecule Disease type Inhibitor class Trials Reference

MI-2 Leukemia MI-derived N/A [33]
MI-3 Leukemia MI-derived N/A [33]
MI-2-2 Leukemia MI-derived N/A [116]
MIV-6 Leukemia MI-derived (Probe) N/A [126]
MI-503 Leukemia MI-derived N/A [118]
MI-463 Leukemia MI-derived N/A [118]
MI-538 Leukemia MI-derived N/A [34]
MI-1481 Leukemia MI-derived N/A [124]
MI-3454 Leukemia MI-derived N/A [117]
KO-539 (Ziftomenib) Leukemia; GIST MI-derived NCT-04067336; NCT-06655246; 

NCT-05735184; NCT-06001788
[133]

VTP-50469 Leukemia VTP/SNDX N/A [35]
SNDX-5613 (Revumenib) Leukemia VTP/SNDX NCT-04065399; NCT-06229912; 

NCT-05731947; NCT-06222580; 
NCT-06284486; NCT-05886049; 
NCT-05326516; NCT-05761171; 
NCT-06652438; NCT-05360160

[36]

BAY-155 Leukemia Other (Probe) N/A [120]
DS-1594 Leukemia Other NCT-04752163 [37]
DSP-5336 (Enzomenib) Leukemia Other NCT-04988555 [38]
JNJ-75276617 (Bleximenib) Leukemia Other NCT-04811560; NCT-05453903 [39]
BN104 Leukemia Other NCT-06052813
BMF-219 Leukemia; NSCLC; 

Pancreatic Cancer; 
Colorectal Cancer; 

Diabetes Mellitus (Type 
1 and 2)

Covalent NCT-05153330; NCT-05631574; 
NCT-05731544; NCT-06152042

[122]
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NPM binds to chromatin and cooperates with the MLL1 complex 
at similar target genes as MLL1-FP [112]. They also found that 
mutant NPM requires MLL1 to bind to those targets and that 
treatment with VTP-50469 evicts NPM from chromatin as well as 
Menin and MLL1. Therefore, Menin inhibition acts in a similar 
manner in these other subsets of AML as it does in MLL1-FP driven 
AML.

5.5. Combination treatment

Menin inhibitors have recently also started to be tested in com-
bination with other therapies. There are currently multiple new 
and ongoing trials that combine Menin inhibitors with various 
chemotherapy regimens (Table 2). This includes multiple trials 
combining Revumenib (SNDX) with chemotherapy 
(NCT05326516, NCT05761171), as well as more specific trials to 
combine Revumenib with decitabine/cedazuridine 
(NCT05360160) and daunorubicin/cytarabine (NCT05886049). 
There has also been a trial with the Menin inhibitor DS-1594 in 
combination with the mini-HCVD regimen or azacitidine 

(NCT04752163). Finally, Ziftomenib (KO-539) is in clinical trials 
with the FLAG-IDA regimen (NCT06001788) and will soon be 
recruiting for a trial in pediatric patients that combines 
Ziftomenib with chemotherapy (NCT06376162). Kinase inhibitors 
have also been a target for combination therapy with Menin 
inhibitors. Studies have shown that CDK6 and FLT3 are also 
important for AML and that targeting these in combination 
with menin inhibitors in MLL1-r, NUP98-rearranged or NPM1- 
mutant AML, leads to a synergistic effect [122,132]. These results 
have led to new clinical trials combining Revumenib with gilter-
itinib, a FLT3 inhibitor, in MLL1-r or NPM1-mutant AML 
(NCT06222580). The combination of the Menin inhibitor 
Ziftomenib and kinase inhibitor Imatinib are also being tried in 
a new trial for GIST (NCT06655246). Bcl-2 is another critical factor 
for AML survival. Multiple studies have found that treatment with 
Menin inhibitors leads to lower Bcl-2 expression. These studies 
also found that combination treatment of various Menin inhibi-
tors with the Bcl-2 inhibitor Venetoclax led to synergistic lethality 
[131–134]. Combination therapy of Venetoclax with Revumenib 
is now in a clinical trial (NCT06284486). There are also now many 

Table 2. Menin inhibitor clinical trials. Clinical trial information was obtained from Clinicaltrial.Gov. R/R – Relapsed/Refractory; AML – Acute myeloid leukemia; CRC – 
Colorectal cancer; ALL – Acute lymphoblastic leukemia; DLBCL – Diffuse large B-cell lymphoma; MM – Multiple myeloma; CLL – Chronic lymphocytic leukemia; SLL – 
Small lymphocytic lymphoma; NSCLC – Non-small cell lung cancer; GIST – Gastrointestinal stromal tumor; MPAL – Mixed-phenotype acute leukemia; MRD – Minimal 
residual disease.

Trial Molecule Tumor type Trial stage Single agent/Combination

NCT-04067336 Ziftomenib R/R AML Recruiting Single agent
NCT-04065399 Revumenib R/R Leukemias Recruiting Single agent
NCT-06229912 Revumenib Leukemia with upregulation of HOX genes Recruiting Single agent
NCT-05731947 Revumenib CRC and other solid tumors Active, not 

recruiting
Single agent

NCT-06575296 Revumenib AML Post-Allogeneic Stem Cell Transplant Recruiting Single agent
NCT-05153330 BMF-219 AML, ALL (with KMT2A/MLL1r, NPM1 mutations), DLBCL, MM, 

and CLL/SLL
Recruiting Single agent

NCT-05631574 BMF-219 KRAS-driven NSCLC, Pancreatic Cancer and Colorectal Cancer Recruiting Single agent
NCT-05731544 BMF-219 Type 2 Diabetes Mellitus Active, not 

recruiting
Single agent

NCT-06152042 BMF-219 Type 1 Diabetes Mellitus Active, not 
recruiting

Single agent

NCT-04988555 DSP-5336 R/R AML or ALL Recruiting Single agent
NCT-04811560 Bleximenib Acute Leukemia Recruiting Single agent
NCT-06052813 BN104 ALL/AML Not yet 

recruiting
Single agent

NCT-06655246 Ziftomenib GIST Recruiting Imatinib
NCT-05735184 Ziftomenib AML Recruiting Venetoclax + Azacitidine; Venetoclax; 

7 + 3
NCT-06001788 Ziftomenib R/R AML Recruiting FLAG-IDA; low-dose cytarabine; 

gilteritinib
NCT-06448013 Ziftomenib R/R AML or MPAL Not yet 

recruiting
Venetoclax + Gemtuzumab

NCT-06376162 Ziftomenib Pediatric R/R AML Not yet 
recruiting

FLA

NCT-06397027 Ziftomenib Pediatric R/R AML Not yet 
recruiting

Venetoclax + Azacitidine

NCT-06222580 Revumenib R/R AML with FLT3 mutation and either NPM1 mutation or 
MLLr

Recruiting Gilteritinib

NCT-06284486 Revumenib MRD-positive AML Recruiting Venetoclax
NCT-05886049 Revumenib AML with NPM1 or MLL mutation Recruiting Daunorubicin + Cytarabine
NCT-05326516 Revumenib R/R AML with MLL rearrangement or amplification, NUP98 

rearrangement or NPM1 mutation
Completed Chemotherapy

NCT-05761171 Revumenib Pediatric R/R MLL rearranged leukemia Recruiting Chemotherapy
NCT-06652438 Revumenib NPM1 mutant or MLL rearranged AML Not yet 

recruiting
Azacitidine + Venetoclax

NCT-05360160 Revumenib AML/MPAL Recruiting Decitibine/Cedazuridine + Venetoclax
NCT-06313437 Revumenib NPM1 and FLT3 mutant AML Recruiting 7 + 3 + Midostaurin
NCT-04752163 DS-1594 R/R AML or ALL Completed Azacitidine; Venetoclax; mini-HCVD
NCT-05453903 Bleximenib AML with MLL or NPM1 alterations Recruiting Venetoclax; Azacitidine; Cytaribine; 

Daunorubicin/Idarubicin
NCT-05521087 Bleximenib R/R acute leukemia with MLL1, NPM1 or NUP98 alterations Withdrawn Chemotherapy
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ongoing and new clinical trials combining Menin inhibition, 
Venetoclax, and other treatments. There is a new trial that is 
not yet recruiting to test the combination of Ziftomenib, 
Venetoclax and Gemtuzumab, an antibody-drug conjugate tar-
geting CD33, in pediatric AML (NCT06448013). Finally, 
Venetoclax and Menin inhibitors are also being tested in combi-
nation with the chemotherapy Azacitidine. These include clinical 
trials with Revumenib (NCT06652438), Ziftomenib 
(NCT05735184 and NCT06397027) and JNJ-75276617 
(NCT05453903) [118].

Aside from Venetoclax, other targeted therapies have been 
shown to have synergistic effects with Menin inhibitors. 

IKAROS was identified as an essential transcription factor in 
MLL1-r AML and its degradation using Mezigdomide was 
found to be synergistic with the Menin inhibitor VTP-50469 
[135,136]. It was also found that combining the Menin inhibi-
tor MI-503 with the KDM4C inhibitor SD70 had a synergistic 
killing effect in MLL1-r AML [137]. Co-treatment of MLL1-r or 
NPM1-mutant AML with Ziftomenib and ATRA also had 
a synergistic effect to both slow growth and enhance prolif-
eration into myeloid cells [134]. Another study further 
expanded the list of potential AML co-dependencies with 
Menin inhibitor treatment, identifying BRD4, EP300, MOZ and 
KDM1A via CRISPR screen and confirming synergy with inhibi-
tors targeting each of these factors and Menin inhibitor [138]. 
Finally, knockout of IGF2BP3 was found to sensitize MLL1-r 
AML cells to MI-503, indicating that this is a potential thera-
peutic combination for patients [139]. While none of these 
combination treatments are yet in clinical trials, they demon-
strate potential future directions to expand the therapeutic 
options for AML patients.

5.6. Emerging resistance

As with most small molecule inhibitors, cells developing resis-
tance to Menin inhibitors is a concern. Studies of Menin 
inhibitor resistance have led to discoveries of two types of 
resistance: MEN1 mutations and non-MEN1 mutations.

A subset of patients in phase 1 trials for the Menin inhibitor 
Revumenib were found to have developed resistance after an 
initial response. One study analyzed the mutations found in 
those patients, which they also found in xenograft models and 
from a base editor screen of AML treated with Revumenib, and 
determined that they occur at the interface of Menin and the 
inhibitor. These mutations prevent the drug from binding to 
Menin but do not disrupt the Menin-MLL1 interaction, pre-
venting the eviction of the Menin-MLL1 complex from chro-
matin [140]. Some of these MEN1 patient mutations were 
further characterized, including T349M, M327I, G331R and 
G331D. In this study, the crystal structure of these mutated 
Menin proteins bound to MLL1 peptides was solved and 
found that the mutations reside near the MLL1 binding site 
but not in the actual binding site so that they generate steric 
hindrance with Menin inhibitors but do not affect the interac-
tion of Menin with MLL1 [141].

After discovering that the UTX/MLL3/4 complex contributes 
to the efficacy of Menin inhibition, one study found that a PDX 
model of AML that harbored an MLL3 mutation was resistant 
to VTP-50469 in vivo, demonstrating that Menin inhibitor 
resistance can be acquired through mutations of downstream 
pathways of Menin inhibitors [53]. Another study also found 
that clonal evolution of AML can contribute to Menin inhibitor 
resistance. Using PDX models treated with VTP-50469 or 
SNDX-5613, they found populations of resistant cells that still 
have on-target efficacy from the drug at the transcriptional 
level yet are still able to grow out [142]. Some examples of 
clonal mutations that they discovered were mutations in RAS, 
KMT2D, and TP53. They found that AML is less sensitive to 
Menin inhibition if it is later in the treatment course and is 
being used after multiple lines of previous therapy. This work 

JNJ-75276617

KO-539
VTP/SNDX
DS-1594a

b

a

c

d

Figure 4. Interaction of small molecule Menin inhibitors with the Menin protein. 
(a) Depiction of the regions of Menin (blue) that Menin inhibitors interact with. 
Depicted here are only the inhibitors for which binding sites are published. 
(b) Model of KO-539 (green) binding in the MLL1 binding pocket of Menin (teal). 
(c) Model of VTP/SNDX (blue) binding in the MLL1 binding pocket of Menin 
(teal). (d) Model of DS-1594a (pink) binding in the MLL1 binding pocket of 
Menin (teal).
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is very consistent with previously published work that Menin 
inhibitor resistance can be acquired independently of Menin 
mutations [53]. The authors speculate that as AML goes 
through more rounds of treatment, it will acquire more muta-
tions and eventually become independent of the initial driver 
mutation. This will then allow the disease to persist even in 
the presence of on-target, efficacious Menin inhibition. As 
described above, repression of non-canonical Menin targets 
are important for the efficacy of Menin inhibitors. One study 
found that this repression is dependent on PRC1.1 and that 
resistance can occur via loss of PRC1.1 subunits [131].

5.6.1. Strategies to mitigate resistance
Some of the studies that demonstrated resistance due to non- 
MEN1 mutations also pursued combination treatment options 
that could overcome these resistance mechanisms. One study 
found that co-treatment with the CDK4/6 inhibitor Palbociclib 
and VTP-50469 can help overcome resistance due to MLL3 
mutation [53]. Another also found that treatment with 
Venetoclax, the Bcl-2 inhibitor, can overcome Menin inhibitor 
resistance via PRC1.1 mutation [131]. This combination is 
already being tested in clinical trials. Finally, some of the 
reported MEN1 mutations that lead to resistance can be 
addressed by other forms of Menin inhibitors. For example, 
two mutations that are known to confer resistance to 
Revumenib, M327I and T349M, are unable to confer resistance 
to JNJ-75276617 as it has a slightly different mode of binding 
to Menin [118].

5.7. Other clinical indications

5.7.1. Solid tumors
Menin inhibition has also been studied in the context of solid 
tumors. In some models, Menin inhibitors have little activity or 
effects on proliferation and/or tumor formation [119,143]. 
However, many studies have shown promising results for 
treating some solid tumor types with Menin inhibitors. By 
using drug and CRISPR-based screens, Menin inhibitors have 
been found to be efficacious for GIST, endometrial tumors and 
gliomas [98,99,144]. However, in a subsequent study, MI-2 
inhibition of H3K27M-driven glioma was found to be indepen-
dent of targeting Menin [145]. The efficacy of Menin inhibitors 
in GIST and endometrial tumors has been validated both 
in vitro and in vivo using mouse modeling [98,99] and the 
Menin inhibitor Ziftomenib is now in a new clinical trial in 
combination with the kinase inhibitor Imatinib for treatment 
of GIST (NCT06655246) (Table 2). Menin inhibitors have also 
been found to be effective in tumors that have either 
enhanced Menin expression or MLL1 HMT activity in certain 
genes. These include HCC, castration-resistant prostate cancer, 
breast, ovarian and colorectal cancer [27–29,97,100,101]. Many 
of these studies found that the use of Menin inhibitors 
enhances or synergizes with other treatment options as well. 
In HCC, it was found that MI-503 treatment has antitumor 
activity in mouse xenograft models and that it enhances the 
current standard of care for HCC, the kinase inhibitor Sorafenib 
[97]. In breast cancer MI-136 and MI-503 were found to syner-
gize with the DOT1L inhibitors EPZ004777/EPZ5676 to inhibit 
cell proliferation and a similar result was found in ovarian 

cancer where MI-136 and MI-503 had additive effects with 
the DOT1L inhibitor EPZ5676 [27,100]. In colorectal cancer, it 
was found that the Menin inhibitor VTP50469 was effective in 
combination with the PI3K inhibitor Alpelisib [101]. The use of 
Menin inhibitors to treat colorectal cancer is now in two 
clinical trials, one using Revumenib (NCT-05731947) and one 
using BMF-219, a covalent Menin inhibitor, in KRAS-driven 
non-small cell lung cancer, pancreatic cancer and colorectal 
cancer (NCT-05631574) (Table 2). Finally, one study found that 
MI-503 treatment of cells expressing mutant Menin was able 
to stabilize the protein products of mutant Menin and rescue 
its nuclear expression [84]. This is a unique application for use 
of Menin inhibitors and suggests the potential of using these 
small molecules to treat patients with MEN1 loss-of-function 
(LOF) mutations in NETs.

5.7.2. Metabolic disorders
Menin inhibitors have also been found to be effective for non- 
cancer diseases. It was found that expression of Menin and 
MLL1 increases upon kidney injury and contributes to renal 
fibrosis [146]. They found that treatment with MI-503 attenu-
ates renal fibrosis in vivo. Further, they found that MI-503 
treatment reduces expression of Snail, Twist and TGFβ-1, indi-
cating that Menin inhibition can reduce renal fibrosis through 
inhibiting the epithelial to mesenchymal transition (EMT) and 
fibroblast activation [146]. Finally, given the important role of 
Menin in neuroendocrine tissues, it is unsurprising that it is 
a relevant factor in β-cell proliferation and diabetes. It was 
found that BMF-219 treatment in rat models of type 2 diabetes 
led to a 50% decrease in blood glucose levels and reduced 
serum insulin levels [147]. This irreversible, covalent inhibitor 
of Menin is currently in trials for treatment of both type 1 and 
type 2 diabetes (NCT06152042/NCT05731544) (Table 2).

6. Future perspectives

The development of small molecule Menin inhibitors has been 
a major advancement for the treatment of Menin-related can-
cers, particularly AML. Over 15 iterations of Menin inhibitors 
have been introduced, including both reversible small mole-
cules and covalent inhibitors [33,35,37–39,115– 
117,119,121,123,125]. These small molecules have led to 
almost 30 clinical trials and the first FDA approval (Table 2) 
[40]. While Menin inhibitors have led to large improvements in 
treatment options for AML, there are still areas that need more 
exploration in the next 5–10 years to expand the impact of 
these inhibitors beyond leukemia and cancer.

As Menin inhibitors have progressed through clinical trials, 
resistance has emerged [140,141]. Mutations in MEN1 that 
occlude binding of the small molecule to Menin have been 
found [140,141], as well as mutations in downstream pathways 
[53,131,142]. Further work needs to be done to predict, under-
stand, and intercept resistance-associated mutations. 
Additionally, a better understanding of secondary treatment 
strategies for patients who become resistant to Menin inhibitors 
is required. This includes novel Menin inhibitors that evade 
resistance mechanisms, as well as treatment with combination 
therapies. There are already a number of clinical trials, both 
ongoing and recruiting, that are studying Menin inhibitors in 
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combination with other anti-cancer agents (Table 2). The results 
of these studies will address whether these treatment options 
evade or delay the emergence of Menin inhibitor resistance.

Furthermore, it will be important to follow up with patients 
who sustain durable responses to Menin inhibitors. Since LOF 
mutations in Menin have been shown to drive the formation 
of NETs, both in MEN1 syndrome and in sporadic tumors, 
patients with chronic inhibition of Menin could be at risk of 
forming sporadic NETs [22,41,72,81,82,84]. Tracking this rela-
tionship will be a critical aspect of understanding long-term 
patient responses to Menin inhibitors.

The MEN1 gene was discovered in the context of MEN1 
syndrome, yet the development of Menin inhibitors have dis-
proportionately led to a better understanding of the role of 
Menin in AML and to more treatment options for that disease. 
Menin is known to have both tumor suppressive and promot-
ing functions in various tumor types and more research is 
needed to understand if Menin inhibitors could be efficacious 
in any of these diseases [26–31].

Further, studying how MEN1 mutations alter Menin’s prop-
erties will be important for understanding the role of the 
mutant protein in various tumor types. LOF MEN1 mutations 
are prevalent in NETs and one study has shown that treatment 
with Menin inhibitors can stabilize mutant Menin proteins 
[124]. Other Menin mutations are also prevalent in solid 
tumors. These include missense mutations and stable frame-
shift mutations [148]. Determining how these altered Menin 
proteins impact disease and whether Menin inhibitors are 
efficacious in these settings could lead to large therapeutic 
advancements for additional tumor types.

Finally, initial studies have indicated that Menin inhibitors 
can help in the context of non-cancer diseases including renal 
fibrosis and diabetes, and a covalent Menin inhibitor is in 
clinical trials for both type 1 and 2 diabetes (Table 2) [147]. 
In the United States, the rates of metabolic syndrome and 
obesity have been increasing consistently over the past few 
decades [149]. A better understanding of the role of Menin in 
endocrine and metabolic disorders will help expand the num-
ber of pathologies that Menin inhibitors can treat.

The development of Menin inhibitors over the last 10–15  
years has contributed to great therapeutic advancements for 
AML. A focus on the role of Menin in solid tumors and endo-
crine disorders in the next 5–10 years will lead to similar 
advancements for these disease settings.
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