
THREE-DIMENSIONAL VARIATIONAL GEOMETRY

IN

COMPUTER-AIDED DESIGN

by

VINCENT C. LIN

B.S., June 1979, University of California, Berkeley

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(MAY 1981)

Signature of Author_ _ _ ___ _ _
Departmfent of MechanicaQ~hgineering
May,1981

Certified by
Thesg ,Supervisor

Accepted by
Chairman, Deartnent Cornitee

ArChIVs

JUL 3 Gi

THREE-DIMENSIONAL VARIATIONAL GEOMETRY

IN

COMPUTER-AIDED DESIGN

by

VINCENT C. LIN

Submitted tc the Department of Mechanical Engineering on
May, 1981 in partial fulfillment of the requirements for the
degree Master of Science.

ABSTRACT

The focus of this investigation is a method for
modification of geometry in computer-aided design systems.
Called variational geometry, it uses a single representation
to describe the complete family of geometries which share a
given topology. A three-dimensional shape model is defined
with respect to a set of characteristic points. The
positions of these characteristic points are fixed by a set
of nonlinear algebraic &auations which describe constraints
imposed by engineering dimensions. Explicit constraints fix
distances, angles, radii, and diameters. Implicit
constraints fix parallel and perpendicular planes, and
prevent rigid body translation and rotation. Area and
volumetric properties may also be used as constraints.

Modification of three-dimensional geometry is
accomplished with minimal user input. The dimension to be
changed is selected and its new value entered. A modified
Newton-Raphson method is used to solve the set of constraint
equations for the new geometry with no additional user
input.

A procedure for minimizing computational requirements
is presented. The procedure uses known relationships
between dimensional constraints and their associated
characteristic points to identify the minimunm set of
constraint equations and characteristic points which must be
solved to effect a given dimensional change. For n
characteristic points, solution time is shown to be of order
0(n).

Thesis Supervisor: David C. Gossard
Title: Associate Professor

i

ACKNOWLEDGEMENTS

Many thanks to Professor David Gossard for his guidance and
advice.

To Dr. Phillip Meyfarth, Mr. Robert Congdon, and Mr.
Kunwoo Lee of the MIT CAD LAB for their help and support;
to Robert Light of Deere and Company and Mark Stiles of
MIT's Joint Computer Facility for their contributions; to
Patty, Ray, Jo, and my parents for providing moral support;
and to A.C. for inspiration.

This project was sponsored by ComputerVision.

TABLE OF CONTENTS

Page

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS ii

LIST OF FIGURES v

TABLE OF SYMBOLS ix

1.0 INTRODUCTION

1.1 OBJECTIVE

1 fl nnr Rsmnn rr.r vr 4

2.0 DATA REPRESENTATION

2.1 TOPOLOGY AND GEOMETRY 8

2.2 CONSTRAINTS 14

3.0 THREE-DIMENSIONAL CONSTRAINTS

3.1 GENERAL 17

3.2 IMPLICIT CONSTRAINTS 21

3.3 EXPLICIT CONSTRAINTS 32

3.4 CONSTRAINING CURVED SURFACES 43

4.0 ASSIGNMENT OF CONSTRAINTS 49

5.0 NUMERICAL METHODS 53

6.0 COMPUTATIONAL EFFICIENCY

6.1 GENERAL 55

6.2 MODIFIED NEWTON-RAPHSON METHOD 60

6.3 SPARSE ELIMINATION 61

6.4 SEGMENTATION 66

6.4.1 JACCBIAN MATRIX 67

6.4.2 GRAPH THEORETIC MODEL 69

iii

6.4.3 PROPAGATION METHOD

6.4.4 TIME AND STORAGE REQUIREMENTS

7.0 IMPLEMENTATION

7.1 SOFTWARE

7.2 HARDWARE

8.0 RESULTS

9.0 CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDIX A - OBJECT WITH PLANAR SURFACES

APPENDIX B - OBJECT WITH CYLINDRICAL SURFACES

APPENDIX C - NEWTON-RAPHSON METHOD

APPENDIX D - DOOLITTLE'S METHOD

APPENDIX E - SPARSE MATRIX METHODS

APPENDIX F - CONSTRAINT SUBROUTINES

I

iv

71

87

93

99

101

103

105

108

120

132

135

137

147

LIST OF FIGURES

Page
1) Linear dimension between two points. 5

2) Two-dimensional constraint of the linear 6
distance between two points.

3) General data base structure. 11

4) Structure of face, edge, and vertex 12
data files.

5) Topological relationships between faces, 14
edges, and vertices.

6) Structure of constraint and dimenison 15
data files.

7) Drawing of a 3-D part. 18

8) Three points on a body. 22

9) Vertical plane. 24

Ai) Horizontal plane. 25

11) Perpendicular planes. 26

12) Line parallel to a plane. 27

13) Equal x distance between point pairs. 28

14) Equal y distance between point pairs. 29

15) Equal z distance between point pairs. 30

16) Equal linear distance between point pairs. 31

17) X distance between two points. 32

18) Y distance between two points. 33

19) Z distance between two points. 33

20) Linear distance between zio points. 34

21) Distance from a point to a plane. 35

22) Distance from a point to a line. 37

23) Angle between two lines. 39

24) Angle between a line and a plane. 40

V

25) Angle between planes.

26) Two intersecting planes. 42

27) Edge view of two intersecting planes. 42

28) Top view of two intersecting planes. 43

29) Cylindrical round: defined by 6 points. 44

30) Cylindrical fillet: defined by 6 points. 44

31) Cylindrical solid: defined by 2 points 44
and 1 radius.

32) Spherical solid: defined by 1 point and 45
1 radius.

33) Partial sphere: defined by 2 points and 45
2 radii.

34) Right conical solid: defined by 2 points 45
1 radius.

35) Right conical section: defined by 2 points 46
and 2 radii.

36) Radius constraint. 47

37) Tangency constraint. 48

38) Geometric interpretation of the Newton-Raphson 57
method and the modified Newton-Raphson method.

39) Plot of the time required to compute each 58
iteration after the first vs the number of
equations.

40) Plot of CPU time for a set of 58 equations 59
in 58 unknowns vs the number of iterations
performed.

41) Comparison of Doolittle's method and block 64
triangularization/decomposition.

42) Plot of storage requirements vs the order 66
of the Jacobian matrix for n storage and
sparse storage.

43) Bipartite graph model of a matrix. 71

44) Bipartite graph representation. 74

vi

41

45) Complete matching. 74

46) Bipartite graph representation. 75

47) Two complete matchings. 76

48) Case 1: Zero slope tangent plane. 81

49) Case 2: Zero slope tangent plane. 81

50) Four points coplanar. 82

51) Linear distance between two points. 83

52) Plot of CPU time required for step one of 86
the propagation method.

53) Plot of CPU time required for step two of 87
the propagation method vs the size of the
subset of equations and coordinates.

54) Consecutive dimensioning scheme. 88

55) Datum dimensioning scheme. 89

56) Plot of the relative reduction in the 92
system of equations which need to be
solved by using the propagation method.

57) Program structure. 93

A-1) Object with planar surfaces. 109

A-2) Object in rotation. 110

A-3) Selecting dimension to be changed. 111

A-4) Entering new value. 112

A-5) Entering number of steps. 113

A-6) Alteration of geometry. 114

A-7) Selecting dimension to be changed. 115

A-8) Entering new value. 116

A-9) Entering number of steps. 117

A-10) Alteration of geometry. 118

A-il) Views of new geometry. 119

B-1) Object with cylindrical surfaces. 121

vii

B-2) Object in rotation. 122

B-3) Selecting dimension to be changed. 123

B-4) Entering new value. 124

B-5) Entering number of steps. 125

B-6) Alteration of geometry. 126

B-7) Selecting dimension to be changed. 127

B-8) Entering new value. 128

B-9) Entering number of steps. 129

2-10) Alteration of geometry. 130

B-l) Views of new geometry. 131

E-1) Structure of HARWELL sparse matrix package. 140

viii

TABLE OF SYMBOLS

SET NOTATION

{ } : elements of a set

o :is an element of

(:is not an element of

empty set

U : union of two sets

n : intersection of two sets

A and

V or

I :such that

o :-subset of

c :proper subset of

ANALYTICAL GEOMETRY

(x,y,z) coordinates of a point

P=(x,y,z) Point P with coordinates (x,y,z)

PlP2 line segment from Pl=(xl,yl,zl) to
2=(x2,y2, z2)

PIP21 length of segment P1P2

P22 vector extending from Pl=(xl,yl,zl) to
P2=(x2,y2,z2)

P1P21 magnitude of vector PlP2

u vector u

[ul,u2,u3] scalar components of a vector u
[ul,u2,u3] = uli + u29 + u-3h

lul magnitude of vector u
luI =2+ U32

w unit vector w

u.v scalar(dot) product of vectors u and v
u.v = ulvl + u2v2 + u3v3

ix

'aXv :vector(cross) product of vectors u and v
uXv = u2v3-u3v2, u~vl-ulv3 , ulv2 -u2vlJ

u.(vXw) scalar triple product

ul u2 u3j
u.(vXw)= vi v2 v3

wl w2 w3

Sul v2 v3 + u2 v3 vi + u3 vi v21
w2 w3 w3 wl wl w21

x

a = = C
D

1.0 INTRODUCTION

1.1 OBJECTIVES

One of the most important features of computer-aided

design systems is the ability to represent geometry by a

shape model. Because of the iterative nature of design,

geometry is modified often. A friendly user interface to

allow simple modification and manipulation of geometry is

essential to the effectiveness of CAD systems and is the

central focus of this investigation.

Current geometric modelling systems use a rigid

geometry definition structure in which creation of geometric

entities (e.g. points, lines, surfaces) require exact

specification of their positions in three-dimensional space.

This is accomplished either by specifying the placements of

the entities through input of x, y, and z coordinates or

through a set of translations and rotations of surfaces or

three-dimensional primitive solids.

The objective of this thesis investigation is to study

methods by which three-dimensional geometries can be

manipulated and modified with minimal user interaction. Cf

- 1-

particular interest is the method called variational

geometry, in which a single representation is used to

describe the complete family of geometries which share a

given topology. A discussion of variational geometry

applied to two-dimensional objects is given by Light [20].

The current investigation focuses on three-dimensional

geometries and methods for increasing computational

efficiency of the method.

The implementation of variational geometry is based

upon a topologically and geometrically complete data

structure. Faces, edges and vertices are defined with

respect to a set of characteristic (defining) points.

Three-dimensional constraints are then applied to these

characteristic points. Geometry modification is reduced to

two steps; selecting the dimension(s) to be changed and

entering the new dimensional value(s).

For any dimension change, a matrix method is used to

reconcile the set of constraint eauations and coordinate

points. To increase the speed and efficiency of this

method, the relationships between the constraining equa-

tions and coordinate points are used to segment the total

number of equations and coordinate points into a smaller and

more managable subset.

These concepts have been implemented in a prototype

system, the DIMENSION system. Currently, the class of

shapes which can be modelled include those with planar,

cylindrical, spherical, and conical surfaces. The system

currently interfaces with four data files containing

topology, geometry, constraints, and dimensions. Different

parts can be modelled by the creation of new data files.

Input methods which define geometry with low accuracy

can be used since the use of variational geometry allows for

easy modification of geometry. Once the set of data files

has been created, modification of the dimension and related

data files is accomplished through a simple interactive

procedure.

1.2 RELATED WORK

The concept of constraining the coordinate points of a

part in computer-aided design can be seen in the early work

of Ivan Sutherland [29J. Sutherland used various

relationships between the coordinates of a part to constrain

its geometry. For example, to make a line between two

points vertical, a constraint satisfaction routine attempted

to reduce the difference in the x coordinates of the two

points to zero by manipulating the constrained coordinates.

Sutherland defined a number of constraints for the

two-dimensional case. Sutherland did not use geometric

constraints for definition of the complete geometry nor was

it used for the purpose of modification of geometry after

the part had been created.

Robin Hillyard and Ian Braid [16J,[173,[18] developed a

more general approach which used constraint equations to

relate positions of vertex points of a geometry to the

dimensions shown or implied in an engineering drawing.

When the variations in the dimensions are small, the

set of equations can be linearized. For example, the

equation describing the linear dimension between two points,

-4-

P and Pj (Figure 1), is given by

(di - dj) . 1

U = (1.1)

where u is the variation in the dimension 1, di and dj are

the variations in position of vertices Pi and Pj, 1 is the

separation vector between vertices Pi and P-j, and Ili is the

dimensional value.

dj

P di

Figure 1, Linear dimension between two points.

The complete set of constraint equations may be

expressed in matrix form, Rd = u where R is the rigidity

matrix, d the vertex displacement vector, and u the vector

of variations in dimensions (bounded by the tolerances).

For a given set of dimensional variations, the vertex

displacements can be determined by a relaxation technique.

-5-

The use of constraint equations to define geometry was

furthur developed by Robert Light [20]. Light developed a

prototype two-dimensional system to modify the geometry of

two-dimensional parts. Constraints were defined between

points for two-dimensional shape models. As an example, the

linear distance between two points in two-dimensions,

Pl=(xl,yl) and Pl=(x2,y2) is given by

(x2 - xl)2 - (y2 - yl) 2 - D2 = 0. (1.2)

'DP,

D

PI

Figure 2, Two-dimensional constraint of the
linear distance between two points.

Given the dimensional values, the positions of the

points were determined by the Newton-Raphson method to solve

the set of simultaneous non-linear constraint equations.

The form of the set of equations is J dx = r, where J is the

Jacobian matrix, dx the displacement vector, and r the

residual vector.

-6-

Overdimensioning, underdimensioning, and redundant

dimensioning were detected using a modified Doolittle's

method. Methods for increasing computational efficiency for

the set of two-dimensional constraints were also developed.

The objectives of this investigation are to identify

and derive constraint equations for three-dimensional

geometries and to develop methods to increase the efficiency

of the numerical computations.

-7-

2.0 DATA REPRESENTATION

2.1 GEOMETRY AND TOPOLOGY

In three dimensions, a body is bounded by a set of

faces. Faces may be planar or curved. Faces intersect in

edges, which may be straight or curved. Edges intersect at

vertices.

For the shape of a part to be completely defined, its

geometry as well as its topology must be completely

specified. Geometry refers to the physical locations of the

faces, edges and vertices in three-dimensional space.

Topology refers to the way the faces, edges, and vertices of

a body are connected. Each face is bounded by a ring of

edges and vertices. Each edge is bounded by two vertices

and two faces.

From a data base of complete geometrical and

topological information, different views can be generated

for drawing purposes, volumetric properties can be computed,

and part consistency and well-formedness can be

automatically checked.

- 8-

Current geometric modelling system data bases fall into

two categories. In the first, complete geometrical

information is stored. Topological information is not

completely specified. Completeness and part consistency can

only be checked visually. This first class of geometric

modellers has been called the "wire-frame modellers"

The second category of geometric modellers store

complete topological and geometrical information. This can

be done in different ways. The method of storage depends on

the type of application of the system, the algorithms used

in the system, and the tradeoff between storage requirements

and time required for searches and calculations.

In the second category of geometric modellers, enough

information is stored in the data base so that part

consistency can be checked. Conditions of closure, surface

orientation, and non-self intersection must be met in order

for a shape to be consistent and well-formed. The data base

of this type of geometric modelling system has given rise to

the term "solid modellers".

-9-

In the DIMENSION system, both complete geometrical

information as well as complete topological information are

stored. This provides the capability to check the

well-formedness of a part.

A complete description of the creation of the

geometrical and topological data base for the DIMENSION

system is presented by Congdon [3]. Only the general

structure of how the data is organized and what is stored

will be presented here. Currently, only planar,

cylindrical, spherical, and conical surfaces can be

represented.

The general structure of the geometrical and

topological data base for a body is shown in Figure 3, where

the rectangles denote data files. In the body data file are

stored the number of faces; edges, and vertices which make

up the body, as well as pointers to the faces, edges and

vertices.

- 10 -

BODY

FACES EDGES VERTICES

Figure 3, General data base structure.

Geometry of a component is described as a set of face,

edge, and vertex files. The structure of the face, edge and

vertex files are shown in Figure 4.

-11 -

FACE

face type

surface pointer

pcsitive/negative

hole/face

directed edge list

directed vertex list

EDGE

VERTEX

X coordinate

Y coordinate

Z coordinate

connecting vertex list

-- SURFACE

surface type

attribute 1

attribute 2

-- CURVE

curve type

attribute 1

attribute 2

Figure 4, Structure of face, edge, and
vertex data files.

- 12 -

edge type

curve pointer

start vertex

end vertex

left face

right face

The vertex file contains the x, y, and z coordinates of

each vertex. Space is allocated for storage of the list of

adjacent vertices of each vertex.

The edge file contains the edge type, a pointer tc the

curve file if the edge is not a straight line, pointers to

the edge's start and end vertices and its adjacent left and

right faces.

The curve file contains the curve type and its

attribute list. Currently, only circular arcs are treated.

For a circular arc, its center, radius and normal vector are

stored.

The face file contains the face type, a pointer to the

surface file, whether it is a positive or a negative face,

whether it is a hole or a face (the face number of the face

the hole belongs to if hole), the list of directed edges

surrounding the face and the list of directed vertices of

the face.

- 13 -

The surface file contains the surface type and its

attribute list. Currently, only planes, cylindrical,

conical, and spherical surfaces are treated. For each

surface, space is allocated for storage of coefficients of

its implicit equation.

The topological relationships between the faces, edges

and vertices are illustrated in Figure 5. Faces point to

edges and vertices. Edges point to faces and vertices, and

vertices point to vertices.

FACE

EDGE B. VERTEX

Figure 5, Topological relationships between
faces, edges, and vertices.

2.2 CONSTRAINTS

The DIMENSION system provides for constraints between

the set of characteristic or defining points and

parameters of the surfaces. This information is maintained

- 14 -

in two data files. The structure of the constraint and

dimension data files are shown in Figure 6.

CONSTRAINT DIMENS ION

constraint type dimension type

dimension pointer constraint pointer

list of constrained dimension value
vertices

view displayed

defining entities

label position in
screen coordinates

Figure 6, Structure of constraint
and dimension data files.

The constraint file contains, for each constraint, the

type of constraint and the defining points of the surfaces

which are constrained. If the constraint is a dimensional

constraint, it contains a pointer to the dimension file.

The dimension file is used for display of dimensions on

drawings as well as to allow the user to interactively

modify dimensional values. The dimension file contains the

type of dimension, a pointer to the constraint file, the

value of the dimension, the view in which the dimension is

to be displayed, the defining points of that dimension in

the view which it is to be displayed for purposes of

- 15 -

displaying the dimension lines, and the screen coordinat?s

of the dimension label position.

- 16 -

3.0 THREE-DIMENSIONAL CONSTRAINTS

3.1 GENERAL

An object represented by N points has n=3N degrees of

freedom in three-dimensional space. To fix the position of

all the points and, therefore, the geometry of an object, 3N

independent items of information, derived from the

constraints are needed. A constraint can provide one or

more items of information. Each of the items of information

can be written as a nonlinear equation in terms of the point

coordinates.

A full set of independent constraints will give rise to

3N non-linear equations 1 This set of equations must be

solved simultaneously to determine the coordinate points of

the object.

Constraints can be divided into two groups, implicit

and explicit. Implicit constraints are usually not

represented in engineering drawings but are understood or

implied by the draftsman and the reader of the drawing. For

example, in the object in Figure 7, parallel planes and

perpendicular planes are usually not explicitly labeled.

- 17 -

AC

TD

Figure 7, Drawing of a 3-D part.

It is common drafting practice to draw the planes parallel

or perpendicular and not give dimensions to specify

parallelism and perpendicularity. Exceptions occur when

draft angles, parallelism tolerances, and perpendicularity

tolerances are explicitly specified.

- 18 -

Explicit constraints specify a dimensional value.

Explicit constraints result from distance, angular, radial

or diametrical dimensions. In the example shown in Figure

7, dimensions A,B,C,D, and E specify distances between

parallel planes. These dimensions result in both explicit

and implicit constraints.

The constraint equations for a set of common

constraints was derived. The list of three dimensional

constraints is shown in Table 1.

LIST OF THREE DIMENSIONAL CONSTRAINTS

1. Rigid body translation.

2. Rigid body rotation.

3. Four points coplanar.

4. M points coplanar

5. Vertical plane.

6. Horizontal plane.

7. Perpendicular planes.

8. Parallel planes.

9. Line parallel to plane.

10. Parallel lines.

11. Equal x distance between two points.

12. Equal y distance between two points.

12. Equal z distance between two points.

- 19 -

14. Equal linear distance between two points.

15. X distance between two points.

16. Y distance between two points.

17. Z distance between two points.

18. Linear distance between two points.

19. Distance from a point to a plane.

20. Distance from a point to a line.

21. Distance between parallel lines.

22. Distance from a line to a plane.

23. Distance between two planes.

24. Angle between two lines.

25. Angle between a line and a plane.

26. Angle between two planes.

Table 1, List of three-dimensional constraints.

In a future CAD system incorporating this approach, the

designer could interactively apply the constraints to the

topological representation of a three-dimensional object.

Alternately, a semi-automatic constraining scheme could be

used in which the implicit constraints are automatically

generated by the computer and explicit constraints manually

assigned by the designer.

- 20 -

Although twenty-six constraints between entities in

three-dimensions have been derived, the set of constraints

which are used for most common engineering parts is somewhat

smaller. Many of the mathematical relationships

representing the constraints can be derived from analytical

geometry.

3.2 IMPLICIT CONSTRAINTS

1) RIGID BODY TRANSLATION: A body is constrained in

rigid body translation if one vertex on the bod~y,

Pr=(xr,yr,zr), is fixed. Equation (3.1) fixes x

translation. Equation (3.2) fixes y translation. Equation

(3.3) fixes z translation.

xr = 0 (3.1)

yr = 0 (3..2)

zr = 0 (3.3)

- 21 -

2) RIGID BODY ROTATION: A body is constrained in

rotation by fixing lines on the body from rotation about the

three axes. If three points on a body, Pl=(xl,ylzl),

P2=(x2,y2,z2), and P3=(x3,y3,z3) are defined as shown in

Figure 8 and P1 is fixed in rigid body translation, equation

(3.4) fixes a line from rotating about the z axis. Equation

(3.5) fixes that same line from rotating about the y axis.

Equation (3.6) fixes a line which has no component in the x

direction from rotating about the x axis.

y2 - yl = 0 (3.4)

z2 - zl = 0 (3.5)

z3 - zl = 0 (3.6)

z

P23 y

P3

Fp
2

X

Figure 8, Three points on a body.

- 22 -

3) FOUR POINTS COPLANAR: Three non-colinear points

Pl=(xl,yl,zl), P2=(x2,y2,z2), and P3=(x3,y3,z3), define a

plane. Let P=(x,y,z) be an additional point in that plane.

The vectors PlP, P1P2, I~23 are coplanar so PiP is

perpendicular to the vector product of PlP2 and PlP3.

PP. (P1P2 x 22P3) = 0

equation (3.7) may be expanded,

x -xl y -yl z-9zlj

x2-xl y2-yl z2-zl

x3-xl y -yl z3-zl

(3.7)

=0

thus, the four points are coplanar when,

Ax + By + Cz + D = 0 (3.8)

where

A = y2z3 - y2zl

B = -x2z3 + x2zl

C = x2y3 - x2yl

D = -xlA - ylB -

- ylz3 - y3z2 + y3zl + ylz2

+ xlz3 + x3z2 - x3zl - xlz2

- xly3 - x3y2 + x3yl + xly2

zlC

4) M POINTS COPLANAR: To constrain a M-pointed

polygon to be coplanar, M-3 constraints of four points

coplanar may be used. The polygon can be subdivided into

M-3 quadrilaterals and each constrained to be coplanar.

- 23 -

(3.9)

(3.10)

(3.11)

(3.12)

I7

5) VERTICAL PLANE: A plane, Ax + By + Cz + D = 0,

is constrained to be vertical if the z component of its

normal vector, EA,B,CJ, is zero. If Pl=(xl,yl,zl),

P2=(x2,y2,z2), and P3=(x3,y3,z3) are three points on the

plane, then from Equation (3.11),

C = x2y3 - x2yl - xly3 - x3y2 + x3yl + xly2 = 0 (3.13)

Y

A-, [AtBF C]

Figure 9, Vertical plane.

6) HORIZONTAL PLANE: The coordinate axis is defined

in such a way that the x-y plane defines the horizontal

direction. A plane, Ax.+ By + Cz + D = 0, is constrained to

be horizontal if the x and y components of its normal

vector, [A ,B ,C], are zero. If P1=(xl,yl,zl),

P2r=:(x2,y2,z2), and P3=(x3,y3,zJ) are three points on the

plane, then from Equations (3.9) and (3.10),

- 24 -

A = y2z3 - y2zl - ylz3 - y3z2 + y3zl + ylz2 = 0 (3.14)

B = -x2z3 + x2zl + xlz3 + x3z2 - x3zl - xlz2 = 0 (3.15)

[A,sC]

Figure 10, Horizontal plane.

7) PERPENDICULAR PLANES: Pl=(xl,yl,zl), P2=(x2,y2,z2),

and P3=(x3,y3,z3) are three points on one plane.

P4=(x4,y4,z4), P5=(x5,y5,z5), and P6=(x6,y6,z6) are three

points on another plane. In order for the two planes,

defined by Alx + Bly + Clz + D1 = 0 and A2x + B2y + C2z + D2

= 0, to be perpendicular, their normal vectors, [Al,Bl,Cl]

and [A2,B2,C21, must be perpendicular and their scalar

product zero.

AlA2 + BlB2 -- ClC2 = 9 (3.16)

where

Al = y2z3 - y2zl - ylz3 - y3z2 + y3zl + ylz2

- 25 -

Bi = -x2z3 +

Cl = x2y3 -

A2 = y5z6 -

B2 = -x5zG +

C2 = x5y6 -

x2zl + xlz3 + x3z2 - x3zl - xlz2

x2yl - xly3 - x3y2 + x3yl + xly2

y5z4 - y4z6 - y6z5 + y6z4 + y4z5

x5z4 + x4z6 + x6z5 - x6z4 - x4z5

x5y4 - x4y6 - x6y5 + x6y4 # x4y5

z

itK 'C

Figure 11, Perpendicular planes.

8) LINE PARALLEL TO A PLANE: P3=(x3,y3, z3),

P4=(x4:y4,z4), and P5=(x5,y5,z5) are three points on a

plane. A line is constrained to be parallel to the plane,

Ax + By + Cz + D = 0, if the vector on the line,

[x2-xl,y2-yl,z2-zl] is perpendicular to the plane normal

vector [A,B,C]. Two vectors are perpendicular if their

scalar product is zero.

- 26 -

[A1, Bl, Cl]

1 (A2, B2, C2]

A(x2-xl) + B(y2-yl) + C(z2-zl) = 0

where

A = y4z5 - y4z3 - y3z5 - y5z4 + y5z3 + y3z4

B = -x4z5 + x4z3 + x3z5 + x5z4 - x5z3 - x3z4

C = x4y5 - x4y3 - x3y5 - x5y4 + x5y3 + x3y4

x2-xl, y2-yl, z2-zl]

(A,B,C)

Figure 12, Line parallel to a plane.

9) PARALLEL PLANES: Since this constraint carries

two items of information, two equations of a line parallel

to a plane are required. The two lines must be intersecting

lines of one of the planes. Another interpretation could be

to use one constraint of the angle between the two normal

vectors of the planes to be zero and one constraint of the

normal vectors being coplanar.

- 27 -

(3.17)

10) PARALLEL LINES: This constraint carries two

items of information. First, the four points defining the

two lines must be coplanar. Second, the angle between the

two lines is constrained to be zero.

11) EQUAL X DISTANCE BETWEEN POINT PAIRS: The x

distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and the x

distance between P3=(x3,y3,z3) and P4=(x4,y4,z4) are

constrained to be equal.

< x4-x3) 2 -

P 1

D2 P4

(3.18)

z

Figure 13, Equal x distance between point pairs.

This form of the equation was used instead of (x4-x3) -

2
(x2-x1) = 0 to keep the values of the resulting partial

derivatives in the Jacobian matrix approximately equal in

- 28 -

(2-x 2 l

magnitude with the values of

constraints to minimize roundoff

methods.

the partials from other

errors in the numerical

12) EQUAL Y DISTANCE BETWEEN POINT PAIRS: The y

distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and the y

distance between P3=(x3,y3,z3) and P4=(x4,y4,z4) are

constrained to be equal.

(y4-y3)2 - (y2-yl)2 = 0

p 2
P1 P

Dl

p3 D 2

(319)

z.

<I

Figure 14, Equal y distance between point pairs.

- 29 -

C

13) EQUAL Z DISTANCE BETWEEN POINT PAIRS: The z

distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and the z

distance between P3=(x3,y3, z3) and P4=(x4,y4,z4) are

constrained to be equal.

4(z4-z3)2 - (z2-zl)2 = 0 (3.20)

P 3

Dl
D2y

P2

Figure 15, Equal z distance between point pairs.

14) EQUAL LINEAR DISTANCE BETWEEN POINT PAIRS: The

linear distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and

the linear distance between P3=(x3,y3,z3) and P4=(x4,y4,z4)

are constrained to be equal.

4 (x4-x342(y4-y3?+(z4-z3?-(x2-xl?+(y2-yl)%(z2-zl)= 0 (3.21)

- 30 -

P, Dl

PI

D2
P

ea 4

Figure 16, Equal linear distance between point pairs.

- 31 -

3.3 EXPLICIT CONSTRAINTS

The following three constraints are useful

dimensioning a part in the three orthographic views.

for

15) X DISTANCE BETWEEN TWO POINTS: This constraint

fixes one point, Pl=(xl,yl,zl) to be a certain distance, Dx,

away from a second point, P2=(x2,y2,z2) in the x direction.

(x2 - xl - Dx = S

p

Dx

(3.o22)

z

<

Figure 17, X distance between two points.

16) Y DISTANCE BETWEEN TWO POINTS: This constraint

fixes one point, Pl=(xl,yl,zI) to be a certain distance, Dy,

away from a second point, 22=(x2,y2,z2) in the y direction.

- 32 -

4(y2 - yl)2 - Dy = 0

2~2
P Dy

(3.23)

z

<I

4
Figure 18, Y distance between two points.

I

17) Z DISTANCE BETWEEN TWO POINTS: This constraint

fixes one point, Pl=(xl,yl,zI) to be a certain distance, Dz,

away from a second point, P2=(x2,y2,z2) in the z direction.

I
(z2 - z1) 2 - Dz = 0

I
i

Pt

Dz

p2

Figure 19, Z distance between two points.

c

- 33 -

I

9

4

I

(3.24)

I

t

z

18) LINEAR DISTANCE BETWEEN TWO POINTS: This

constraint fixes one point, Pl=(xl,yl,zl) to be a certain

linear distance, D, away from a second point, P2=(x2,y2,z2).

4(x2-xl)2 + (y2-yl)2 + (x2-xl)2 - D = 0 (3.25)

P 2

212

D

P

Figure 20, Linear distance between two points.

19) DISTANCE FROM A POINT TO A PLANE: This

constraint fixes the distance from the plane Ax + By + Cz +

D = 0 to the point, Pl=(xl,yl,zl) which is not on the plane.

Since Pl is not on the plane, Axl + Byl + Ozl + D t 0. Let

P2=(x2,y2,z2) be the projection of P1 on the given plane.

Then Ax2 + By2 + Cz2 + D = 0. Let u be the plane normal

vector.

- 34 -

P (xl,yl, zI)

u

p xY, z)

Figure 21, Distance from a point to a plane.

CASE 1: If 21 and u lie on the same side of the plane,

the angle between u and P22l is 00 and

u.P2PI
= cos

uI 122Pl

A(xl-x2) + B(yl-y2) + C(zl-z2)

4A2 + B2 + C2 IV2pl

since D = - Ax2 - By2 - Cz2,

Axl + Byl + Czl + D

+ 1B2 + C2 2211

Axl + Byl + Czl + D
P2Pl+2+A 2 + B2 - C2 (3.26)

CASE 2: If Pl and u lie on opposite sides of the plane,
the angle Setween u and P2P1 is 1800and

u . P2P1
= cos 1800

lul P2Pl

- 35 -

A(xl-x2) + B(yl-y2) + C(zl-z2)
-- 1

A2 + B2 + C2 IP2P11

replacing D by - Ax2 - By2 - Cz2,

Ax) + By. + CzI + D

A2 + B2 + C2 |P2Pl
=--1

Axl + Byl + Czl + D
- IP2Pll =

\A2 + B2 + C2
(3.27)

So to constrain the distance, R, from the point P1 to the
plane Ax + By + Cz # D = 0,

Ax + By. + CzI + D

A2+ B2 + C2
-R =0

where the sign before the radical is opposite to that of D.

20) DISTANCE FROM A POINT TO A LINE: This

constraint fixes the perpendicular distancce from a point,

Pl=(xlyl,zl), to a line, 22P3.

Let v be the vector from P2 to P

v = (xl-x2)i + (yl-y2)^ + (zl-z2)k

- 36 -

(3.28)

2

Let 0 be the unit vector from P2 to P3

(x3-x2) (y3-y2) (z3-z2)
= 1 ++

iP2P3I 1P2P31 iP2P3i

PP

Figure 22, Distance from a point to a line.

The magnitude of the vector product of 0 and v is equal
to the magnitude of U times the magnitude of v times the
sine of the angle between them.

I1 x vi = i| I|vi sine

Since 0 is a unit vector, 101 = 1

10 x vi = Ivi sine

Since lvi sinG is the required perpendicular distance
from point Pl to the line, we have,

0 x vi = DIST

10 x vI =

u2 u3 u3 ull ul u2

v2 v31 v3 v1 vl v21

= (u2v3-u3v2)i + (u3vl-ulv3)j + (ulv2-u2vl) R

- 37 -

DIST= IQ" x vI=1(u2v3-u3v2)2 + (u2vl-ulv2)2+ (ulv2-u2vl)2 (3 .29)

where

vl = xl - x2,

x3 - x2
ul = ,- I

IP2P3

v2 = yl - y2,

y3 - y2
u2 =

IP2P3

v3 = zl - z2

z3 - z2
u3 =

IP2P3I

1P2P31 = (x3-x2)2 + (y3-y2) 2 + (zS-z2)2

21) DISTANCE BETWEEN PARALLEL LINES: This

constraint constrains two lines to be parallel and the

distance from a point to a.line.

22) DISTANCE FRCM A LINE TO A PLANE: This

constraint constrains the line to be parallel to the plane

and the distance from one point of the line to the plane.

- 38 -

23) DISTANCE BETWEEN TWO PLANES: This constraint

constrains the two planes to be parallel and the distance

from a point to a plane contributing a total of three items

of information.

24) ANGLE BETWEEN TWO LINES: The cosine of the

angle between two lines can be found by summing the products

of the respective direction cosines of the two -vectors on

the lines, [xl-x2,yl-y2,zl-z21 and [x3-x2,y3-y2,z3-z2].

(xl-x2)(x3-x2) + (yl-y2)(y3-y2) + (zl-z2)(z3-z2)
-cosO=0

(xl-x2)2 +(yl-y2)2 +(zl-z2)2 (x3-x2)2 +(y-!-y2)2 +(z3-z2)2

(3.30)

P

e

P P.
2

Figure 23, Angle between two lines.

- 39 -

25) ANGLE BETWEEN A LINE AND A PLANE: The angle

between a line and the plane Ax + By + Cz + D = 0 is the

complement of the angle between the vector on the line,

[x2-xJ,y2-yl,z2-zlJ, and the normal vector of the plane,

[A,B,C].

A(x2-xl) + B(y2-yl) + C(z2-zl)

(x2-xl)2+(y2-yl)2+(z2-zl)2 A2+B2+C2

[A,B, C

Ix2-xl,y2-yl,z2-zil

90-E

Figure 24, Angle between a line and a plane.

26) ANGLE BETWEEN PLANES: This constraint

constrains two planes, Alx + Bly + Clz + D1 = 0 and A2x +

B2y + C2z + D2 = 0, to have a certain angular separation,

O . The angle between two planes can be found by taking

the angle between the normal vectors of the two planes,

[Al,Bl,Cl] and [A2,B2,C2J. Since the cosine of the angle,

- 40 -

6 , between two vectors is equal to the sum of the products

of the corresponding direction cosines of the two vectors,

AlA2 + BlB2 + ClC2
A cos(180 - 6) = 0 (3.22)

[Al, B1, Cl]

180- @

[A2,B2,C2]

Figure 25, Angle between planes.

Note that the normal vectors are defined to point outward

from the planes of the object.

This constraint should not be confused with the concept

of the angular position of one plane with respect to

another. This concept is useful for the process of creating

a dimensioning scheme. Two items of information must be

given tc fix the angular position of one plane with respect

to another. This concept can be best illustrated by an

example. Figure 26 shows two intersecting planes. Plane 2

can be thought of as a base plane. Figure 27 is a view

- 41 -

which gives the edge view of plane 1. Clearly, the angle,

T , must be fixed.

plane 1

plane 2

Figure 26, Two intersecting planes.

plane 1

I f 7plane 2

Figure 27, Edge view of two intersecting planes.

The fixing of this angle corresponds to the constraint

of the angle between two planes presented previously.

Figure 28 shows a top view of the two intersecting planes.

It can be seen that plane 1 can rotate with respect to plane

2 tracing out the angle, a , and still keep the angle, ,

- 42 -

fixed. Therefore, to fix the angular position of one plane

with respect to another, both a and 6 must be fixed.

/plane 2

plane 1

Figure 28, Top view of two intersecting planes.

3.4 CONSTRAINING CURVED SURFACES

Presently, the types of curved surfaces represented are

limited to cylindrical, spherical, and conical surfaces.

The technique used to constrain these surfaces is to

constrain the defining points and parameters of each

surface. From these parameters and defining points, the

implicit or parametric equations of each surface can be

easily derived for mass property and surface intersection

calculations. The defining points and parameters for some

- 43 -

typical surfaces are shown in Figures 29 - 35.

23

R
P

24

Figure 29, Cylindrical round: defined by 6 points.

P
3

P I.

22

P6
4*

P5

Figure 30, Cylindrical fillet: defined by 6 points.

R

P2I

Figure 31, Cylindrical solid: defined by 2 points
and 1 radius.

- 44 -

P 'R

Figure 32, Spherical solid: defined by 1 point
and 1 radius.

2
R2

R

Figure 33, Partial sphere: defined by 2 points
and 2 radii.

2

PeAR

Figure 34, Right conical solid: defined by 2 points
and 1 radius.

- 45 -

."22

Figure 35, Right conical section: defined by 2 points
and two radi .

The list of constraints for curved surfaces are given

in Table 2. In deriving the mathematical relationships for

the curved surface constraints, no new types of

relationships need to be added to the existing set of

three-dimensional constraints. A radius constraint can be

specified in two ways. The first is a constraint of the

linear distance between two points (Figure 36), the center

and a second point on the defining surface. The second

method of specifying a radius constraint is to make the

radius a variable and set its value equal to some constant.

A diameter constraint is just a special form of the

radius constraint and can be handled similarly.

- 46 -

LIST OF CONSTRAINTS FOR CURVED SURFACES

1. Radius.

2. Diameter.

3. Tangency.

Table 2, Constraints for curved surfaces.

A tangency constraint between a cylindrical round and a

plane can be described by a constraint of perpendicular

planes (Figure 37).

P 2

R

Figure 36, Radius constraint.

- 47 -

90 0

Figure 37, Tangency constraint.

- 48 -

ASSIGNMENT OF CONSTRAINTS

Currently, the constraints are assigned by reading from

the constraint data file. The constraint data file contains

n constraint equations each with an identifying code and the

entities constrained. This constraint file is to be created

by the designer of the part.

In order for the DIMENSION system to become useful as a

design tool, more efficient methods must to be developed for

the assignment of constraints. Three different approaches

are possible.

The first is an interactive approach where the designer

of the part manually assigns constraints to the part. To

assign a constraint, the designer would simply select a

constraint from a menu and picks the points to be

constrained with a data tablet and digitizing pen. The part

should be capable of being rotated about the three axes and

hidden lines removed. Different views could be generated to

assist in constraint assignment.

- 49 -

4.0

There are a number of problems accompanying this

approach to assign constraints. The process would be tedius

and time consuming for parts which require a large number of

constraints. The process is also error prone. The user

could easily choose a redundant dimensioning scheme.

An alternate approach is an automatic constraining

scheme. A set of rules and heuristics for constraint

assignment could be established. Given the topology of a

part, the computer could then automatically generate all the

constraints.

A face finding algorithm can be used to constrain

points to be coplanar. One such algorithm is given by

Congdon [3]. Examples of other possible rules are:

constrain the first point entered in rigid body translation,

constrain all lines and planes that are within a specified

tolerance of being parallel to the x-y plane to be

horizontal, constrain two planes which are within a certain

tolerance of 90 degrees to be perpendicular.

One technicue for automatically generating the explicit

constraints of a polyhedra is to group the faces of the part

into sets of parallel planes. Within each parallel plane

- 50 -

set, a datum plane is chosen. All other planes in a set can

be constrained by linear distance constraints to be a

certain distance from the specified datum plane. Sets of

parallel planes can be constrained to have a specific

angular separation.

The problem with a fully automatic dimensioning scheme

is that the dimensioning scheme should reflect the function

of a part. For any given part, one dimensioning scheme may

be chosen for one application and another for a different

application. A fully automatic dimensioning scheme cannot

distinguish between the different possibilities.

Some combination of the two approaches should be taken.

Those constraints which will tend to be invariant for

different dimensioning schemes of a part should be

automatically generated by the computer. Those constraints

which reflect the function of d part should be assigned by

the designer.

Examples of constraints which tend to be invariant with

different constraining schemes are: four points coplanar,

rigid body translation, rigid body rotation, parallel

planes, perpendicular planes, diameter and radius. Examples

- 51 -

of constraints which reflect the function of a part are:

distance between planes, points and lines.

- 52 -

5.0 NUMERICAL METHODS

The defining points of a three-dimensional object give

rise to 3N constraint equations which must be solved

simultaneously for the 3N variables which are the x,y, and z

coordinates of the points. The method used in the DIMENSION

system is the Newton-Raphson method (see Appendix C). For

each step of the Newton-Raphson method, a linear system of

equations of the form Ax = b must be solved. The matrix, A,

contains the partial derivatives of the constraint equations

with respect to each coordinate (also called the Jacobian).

The vector, x, contains the displacements or changes in

coordinates. The vector b, contains the values (also called

the residuals) of the constraint equations.

In using the Newton-Raphson method, problems of

roundoff and ill-conditioning must be controlled.

Ill-conditioning is a measure of numeric instability in the

presence of roundoff. This effect is purely numerical since

in principle, a solution to A x = b can always be found by

inverting A. If the determinant of A is near zero, then the

solution will be highly sensitive to the numerical noise

generated by roundoff.

- 53 -

The inverse matrix is never explicitly computed. One

method by which a linear system of equations may be solved

is a variant of Gaussian elimination called Doolittle's

method with partial pivoting (see Appendix D). The use of

partial pivoting tends to control the error due to roundoff.

In Doolittle's method, there exists a possibility of one of

the diagonal elements having a zero value causing a zero

divide. If the last diagonal element of the matrix, A,

vanishes, the determinant of the matrix is zero. This means

that the matrix is singular and can neither be inverted nor

can the linear equations be solved uniquely. If an earlier

diagonal element vanishes, it does not necessarily mean that

A is singular. It means only that a leading submatrix of A

has a zero determinant. Also, dividing by a small pivot

element can give rise to large errors in the computed

results. Therefore, the largest element in a column is

chosen as the pivot element. The corresponding row pointers

are interchanged.

Other methods of minimizing roundoff in the numerical

methods are to accumulate the vector inner products in

double precision in Doolittle's method and by proper scaling

of the Jacobian.

- 54 -

The constraint equations are written in such a way that

unnecessary powers of terms are eliminated. The partials of

the constraint equations, then, should not produce elements

which are an order of magnitude larger or smaller than other

elements in the Jacobian. For example, the constraint

equation for the distance between two points can be written

in two ways:

(x2-xl)2+ (y2-yl)2+ (z2-zl) 2 - D2= 0 (5.1)

(x2-xl) 2 + (y2-yl) 2 + (z2-zl) 2 - D = 0 (5.2)

The second representation is chosen to be consistent

with the representation of other constraint equations.

6.0 COMPUTATIONAL EFFICIENCY

6.1 GENERAL

In three dimensions, the number, type, and complexity

of the constraint equations increase. The matrices also

become significantly larger. Three methods were used to

increase The computational efficiency of the numerical

methods. The first uses the modified Newton-Raphson method

instead of the standard Newton-Raphson method. The second

uses sparse matrix methods to solve the set of linear

- 55 -

equations in each iteration of the modified Newton-Raphson

method instead of Doolittle's method. The third involves

segmentation of the Jacobian matrix. Without segmentation

of the Jacobian, n ecuations in n coordinates must be solved

given any dimension change. It is the purpose of the

segmentation method to reduce the number of equations and

coordinates to a smaller subset.

6.2 MODIFIED NEWTON-RAPHSON METHOD

The modified Newton-Raphson method eliminates the need

to invert the Jacobian at each iteration. This benefit

carries with it the cost of slower convergence than the

Newton-Raphson method.

For the Newton-Raphson method:

Xn+l = Xn - J 1 (Xn) f(Xn) (6.1)

For the modified Newton-Raphson method:

Xn+1 = Xn - Jh (Xo) f(Xn) (6.2)

where J, the Jacobian matrix and its inverse, J~ is computed

once at Xo.

- 56 -

The geometric interpretation of the modified

Newton-Raphson method in two dimensions is that instead of

computing the tangent to the curve at each iteration, the

same slope derived in the first tangent is used. Figure 38

illustrates this.

x 3 x2 I 0 43x2x1 0

Figure 38, Geometric interpretation of the Newton-Raphson
method and the modified Newton-Raphson method.

Two factors determine the computational time which

would be saved by using the modified Newton-Raphson method

instead of the Newton-Raphson method: the time saved in

computing each iteration, and the number of iterations

necessary for convergence. The first factor was evaluated

by comparing the time saved in computing each iteration

after the first since the first iteration is the same in

both methods.

- 57 -

Figure 39 shows a plot of the time required to compute

each iteration after the first for different numbers of

equations. Figure 40 shows a plot of the time required for

a set of 58 equations in 58 unknowns as a function of the

number of iterations performed. From Figure 39, it can be

seen that as the number of equations increases, modified

Newton-Raphson becomes more efficient. From Figure 40, it

can be seen that as the number of iterations increase,

modified Newton-Raphson also becomes more efficient.

300 -

Tr wton-Raphson
250 -

? 2001

150

U 100

mcdified Neton-Paphson

00
0 10 20 30 40 50 60 70 80

number of ecuations

Figure 39, Plot of the CPU time required to compute
each iteration after the first vs the
number of equations.

- 58 -

5-

Newton-Raphson
4-

2-

U

mcdified Newton-Raphson

07
1 5 10 15 20 25 30 35 40

number of iterations

Figure 40, Plot of CPU time for a set of 58 equations
in 58 unknowns vs the number of iterations
performed (extrapolated from a single
iteration).

It is more difficult to directly compare the number of

iterations necessary for convergence for the two methods.

The factors which affect the rate of convergence are the

starting value, the particular set of equations used, and

roundoff errors. On the different sets of equations tested,

the worse case encountered was that twice the number of

iterations were required for convergence using the modified

Newton-Raphson method. By looking at Figures 39 and 40,

- 59 -

even if the worse case conditions were encountered, using

the modified Newton-Raphson method would still be more

efficient than the standard Newton-Raphson method.

A quantitative estimate of the savings in (single user

VAX 11/780) CPU time can be obtained from Figures 39 and 40.

Assuming that the slopes of the plotted curves are linear,

Equation (6.3) gives the CPU time in milliseconds as a

function of the number of equations and the number of

iterations performed by the Newton-Raphson method. Equation

(6.4) gives the CPU time in milliseconds as a function of

the number of equations and the number of iterations

performed by the modified Newton-Raphson method. For the

worse case examined, Imnr was no more than 2Inr. The

convergence criterion in both cases was that the

displacements of all the coordinate points of the part be

sufficiently small, i.e. Idxil < 6 i = 1,2,...,n, a =

.005.

tnr = 4.98 E Inr (6.3)

where

tnr = CPU time in ms using the Newton-Raphson method

E = number of equations

Inr = number of iterations required using the
Newton-Raphson method

tmnr = 4.98 E + [.34 E(Imnr - 1)] (6.4)

- 60 -

where

tmnr = CPU time in ms using the modified Newton-Raphson
method

E = number of equations

Imnr = number of iterations required using the modified
Newton-Raphson method

Table 3 shows the percentage savings in CPU time in

using the modified Newton-Raphson method instead of the

Newton-Raphson method for two sample dimension alterations.

E Inr Imnr tnr(ms) tmnr(ms) % savings

28 2 4 557.8 168.0 69.9

43 4 5 1070.7 272.6 74.5

Table 3, Percent savings in CPU time in using the
modified Newton-Raphson method for two
sample dimension alterations.

6.3 SPARSE ELIMINATION

In the systems of constraint equations used in

variational geometry the Jacobian matrix often has a low

percentage of non-zero elements. The sparseness of a matrix

can be described by a number of factors, the most common

being the sparsity factor, Sk, where Sk = number of

non-zeros / n2 . For small Sk, it is advantageous to use

sparse matrix methods to solve the system of linear

equations, Ax = b (see Appendix E).

- 61 -

The main idea underlying sparse matrix methods is to

permute the original matrix into lower block triangular form

by a set of row and column permutations:

All

A21 A22 0

P'AQ' = A31 A32 A33 (6.5)

. . . . Aii

Akl . . . Akk

where P' and Q' are identity matrices upon which suitable

row and column interchanges have been performed.

We can then perform Gaussian elimination on the

subsystems, Aii, i=1,2,...,k where 0 < k < n:

PiAiiQi = LiUi i=1,2,...,k (6.6)

where Li is unit lower triangular and Ui is upper

triangular. By combining with permutations P' and Q' we

have:

LlUl

A21 L2U2 0

PAQ = A31 A32 L3U3 (6.7)

. . . . LiUi

Akl Ak2 . . . LkUk

- 62 -

The growth of non-zeros are restricted to the diagonal

blocks. The maximum order of the system to be considered at

any one time is reduced to the order of the largest

submatrix, Aii. By partitioning x and b in a manner similar

to A, the overall system can be solved by block forward

substitution using both the diagonal and subdiagonal blocks:

Allxl = bl

A22x2 = b2 - A21xl (6.8)

i-1
Aiixi = bi - Z Aiqxq i=1,2,...,k

q=1

In the current implementation of the DIMENSION system,

HARWELL's subroutine package is used [6]. The time required

to solve the linear system, Ax = b using Doolittle's method

is of 0(n3). The time required to solve the same system

using the block triangularization method described above is

of 0(m2 /n), where m is the number of non-zeros in the matrix

A. In the system of equations used in variational geometry,

m = O(n). Therefore, total time required for the sparse

matrix methods is of 0(n). Figure 41 compares the time

required to solve the set of equations Ax = b with

Doolittle's method versus block triangularization and

decomposition in the sparse matrix routines.

- 63 -

500-

400 -

300

z 2004

100

0-

Dolittle's
method

4 /r'
0 10 20 30 40 50

order of matrix

sparse
matrix
methods

70 80

Figure 41, Comparison of Doolittle's method and
block triangularization/decomposition

The storage requirement for the sparse elimination

method is of O(n) as compared to the O(n 2) storage

requirement of the standard Doolittle's method.

Instead of storing the full n x n Jacobian matrix, only

non-zero elements are stored. In the current imlementation,

three linear arrays replace the n x n array required to

store the Jacobian. A real array stores non-zero values of

the Jacobian. Two integer*2 arrays store the row and column

indices of the corresponding non-zero elements.

- 64 -

im

Alternate storage methods could furthur reduce the

storage requirements. One such method stores the non-zero

elements by row(column) order form. in this scheme, a real

array stores the values of the non-zeros. An integer*2

array stores the starting address of the first non-zero in

each row(column). An integer*2 array stores the column(row)

indices cf the non-zero elements. The current storage

method is chosen for ease of interface to the RARWELL sparse

subroutine package.

The upper bound on the number of non-zeros in the

Jacobian matrix is 18n. This is because each constraint

equation currently constrains a maximum of six points for a

total of 18 coordinates. Although 18n is the maximum bound

on m, m is rarely, if ever, this large. A more reasonable

estimate of m is m = 5n. Figure 42 compares conventional n2

storage requirement with the current sparse storage

requirement for m = l8n and for m = 5n.

- 65 -

2
n

-a----- A i I II

100 200 300 400 500 600
order of matrix

m = ln

inm = Sn

700 800

Figure 42, Plot of storage requirements vs the
order of the Jacobian matrix for n2

storage and sparse storage.

6.4 SEGMENTATION

The size of the Jacobian matrix used in the solution of

the numerical methods increases as more points are used to

define an object. In three dimensions, the matrix contains

9N 2 elements for N defining points of an object. A closer

inspection of the constraint equations and coordinate points

show that for a given dimension change, usually not all the

- 66 -

500k-

400k 4
U]

% 200k-

U)

100k-

04l
0

coordinates will change and not all the constraint equations

will be affected. Given a dimension change, there exists a

subset of the total coordinate points which will change and

a subset of the total constraint equations which are

required to solve for the changed coordinate points. Almost

always, these subsets are less than the total set. The

magnitude of this subset depends directly on the

constraining scheme chosen.

In order to make the DIMENSION system more time

efficient, a method of segmenting the total set of

constraint equations and coordinate points was developed.

The method is called the propagation method.

6.4.1 JACOBIAN MATRIX

The Jacobian matrix, A, is a matrix of partial

derivatives of functions fi, i=1,2,...,n, with respect to

variables xj, j=1,2,...,n where fi are the constraint

equations and xi are the coordinates of the defining points

of an object. An element of the Jacobian, aij, represents

the partial derivative of constraint equation i with respect

to coordinate j evaluated at the current coordinate points.

- 67 -

Geometrically, a constraint equation describes a surface in

n-dimensional space, and the partial derivative of a

constraint with respect to a coordinate can be considered

the slope of the tangent hyperplane to the constraint

surface in the direction of that coordinate.

There are two situations in which the Jacobian may have

a zero element, aij = 0. First, coordinate j does not

appear in constraint equation i. Second, coordinate j does

appear in equation i, but a small change in coordinate j has

no effect on equation i.

The interpretation for aij # 0 is that a change in

coordinate j will affect constraint equation i.

Geometrically, this can be regarded as a non-zero slope of

the tangent hyperplane to the constraint, fi, in the

direction of coordinate xj.

The zero-non zero structure of the Jacobian matrix was

utilized in the process of segmentation. The Jacobian was

converted into a binary matrix, that is, a matrix with only

zeros and ones. Associated with A = [aij] is B = [bij]

where bij = 0 if aij = 0 and bij = 1 if aij$ 0.

- 68 -

6.4.2 GRAPH THEORETIC MODEL

To solve the problem of segmentation, a graph theoretic

model was used. Before proceeding with a discussion of the

solution to the segmentation problem, some definitions will

be given.

A graph, G(V,E) is a structure which consists of a set

of vertices V = (vl,v2,...,vn} and a set of edges E =

(el,e2,...,en}. Note that the terms vertex and edge as used

in this discussion are not to be confused with the terms

vertex and edge used previously to define the topology of a

part.

Each edge connects a pair of vertices u and v. Edge e

is then said to be incident on vertices u and v. A graph is

directed if the vertex pairs (u,v) associated with each

edge, e, is an ordered pair. Edge e is then said to be

directed from vertex u to vertex v. A graph is undirected

if the end vertices of all edges are unordered and the edges

have no direction. Edges are said to be parallel if they

have the same pair of end vertices. An edge is a self-loop

if it begins and ends on the same vertex. A simple graph is

one in which there are no parallel edges or self-loops.

- 69 -

On paper, vertices are normally represented as dots or

circles and edges as lines. Directed edges are represented

as arrowed lines. In a computer, a graph, G(V,E) with n

vertices can be represented by an n x n matrix A = [aijj,

where aij = 1 if there exists an edge connecting vertex i to

vertex j in G. Otherwise aij = 0. This matrix is called

the adjacency matrix. The adjacency matrix requires O(n2)

storage. Often times, the adjacency matrix is sparse. In

these cases, a sparse storage method can be used.

A graph, G(V,E) is bipartite if the set of vertices, V

can be partitioned into two sets, R and S such that each

edge of G joins a vertex in R with a vertex in S, where V =

R U S, R r) S = 0. A matching,. M of G =(R,S,W) occurs if

every vertex is incident to at most one edge of M. Each

edge, fri,sj} E E, ri C R, sj C S, has one end vertex in R

and one in S. A maximum matching of a bipartite graph is a

maximum number of edges, no two of which meet at a common

vertex. A matching, M is called complete if 1MI = RI,

where IMl represents the members of set M and IRI represents

the members of set R.

- 70 -

Let B be a binary matrix of order n with entries bij.

Let E be the set of edges. Let R be the set of constraint

equations. Let S be the set of coordinates. Associated

with matrix, B = [bij] is a bipartite graph, G, with 2n

vertices, fri} E R and [sjl C S, ij = 1,2,...,n, in which

ri and sj are joined by edge (ri,sj) C E if and only if bij

= 1 (see Figure 43).

F0109] O 1 1

A 2 4 0 B= 1 1 0 G=

S0 71 0

Figure 43, Bipartite graph model of a matrix.

6.4.3 PROPAGATION METHOD

The purpose and goal of the propagation method is to

find a subset o2 the total number of variables and a subset

of the total number of constraint equations which need to be

solved for given any dimension change. The propagation

method does this by exploiting the relationships between the

constraint equations and the coordinates of the points of

the part. This process can be divided into two parts. The

- 71 -

first part involves finding a matching between each

constraint equation and a coordinate such that each equation

has a matched coordinate and each coordinate appears as a

matched coordinate for one equation only. The second part

is a chain type propagation method whereby if an equation is

changed, its corresponding matched coordinate will change.

This change in a coordinate will affect other equations

which in turn will change other coordinates. The process

propagates in this way until the subset of equations and

coordinates which need to be solved is found.

In order for a constraining scheme to be permissible,

i.e. no redundant equations, each variable must be

constrained by at least one equation. Likewise, each

constraint equation must constrain at least one variable.

Therefore, in order for a permissible constraining scheme to

exist, there must be at least one matching set in which each

equation is matched with a unique variable. This is a

necessary and sufficient condition for a valid constraining

scheme. Given this matching set, if any constraint equation

(dimension) is altered, we know that its corresponding

matched variable will change.

- 72 -

If we model the set of constraint equations and the set

of coordinates as the two sets of vertices in a bipartite

graph, the first step of the propagation method, then, is a

process by whicb a complete matching in a bipartite graph is

found.

Although given different names and used in different

fields, the concept of finding a complete matching in a

bipartite graph has been well documented in literature.

Hall [14] gives an algorithm for finding a set of

distinct representatives in the field of combinatorics.

Steward [28] uses a chaining algorithm to obtain an output

set in the analysis of systems of linear equations.

Hopcroft and Karp [19] gives an algorithm for finding

maximum matchings in bipartite graphs. Sussman, et al

[43,[27] uses a one step deduction method of constraint

propagation in the analysis of electrical networks in

artificial intelligence. Gustavson [12] uses a depth first

search method together with heuristic techniques to find a

maximum assignment. Duff [5],[6J,[7] finds a maximun

traversal by using a depth first search method to put only

non-zeros on the diagonal of a square matrix.

- 73 -

The concept of a complete matching may be illustrated

by an example. Given the three equations in three unknowns:

fl = 2xl = 4 (6.5)

f2 = xl + x2 = 5 (6.6)

f3 = 3xl + 5x2 - x3 = 17 (6.7)

Figure 44 shows its bipartite graph representation and

figure 45 shows the complete matching for the bipartite

graph.

R S

Figure 44, Bipartite graph representation.

PR S

F e C l-----

Figure 45, Complete matching.

- 74 -

The variable that is matched with Equation (6.5) is

that variable for which Equation (6.5) is to be solved. The

variable in this case is xl. The variable which is matched

with Equation (6.6) is x2 since this is the variable for

which Equation (6.6) is solved. In the same way, variable

x3 is matched with Equation (6.7). In this case, the

complete matching is unique. In many cases, there may be

more than one complete matching because of the simultaneous

nature of the set of equations. A non-unique complete

matching occurs when an equation cannot be used to solve for

a variable uniquely. An example will illustrate. Given the

three equations in three unknowns:

fl = xl + 2x2 =8 (6.8)

f2 = x2 - x3 = 2 (6.9)

fJ3= 3xl + x3 = 10 (6.10)

Figure 46 shows its bipartite graph representation. Figure

47 shows its two possible complete matchings.

R S

Figure 46, Bipartite graph representation.

- 75 -

R S R S

Figure 47, Two complete matchings.

If there does not exist at least one such complete

matching, the set of constraint equations are redundant and

the Jacobian matrix is singular. The propagation method,

therefore, can detect a redundant dimensioning scheme. An

example of a set of equations which does not have a complete

matching is shown below:

fl = xl + x2 = 5 (6.11)

f2 = xl = 2 (6.12)

f3 = x2 = 3 (6.13)

The algorithm which is used in the current

implementation is a depth first search type method. A depth

first search is a method of exploring all the vertices and

edges of a graph with systematic backtracking. Depth first

search explores an undirected graph G(V,E) by following the

first edge of v C V, (v,w) which is incident on v. If

- 76 -

vertex w has been visited previously, the search returns to

v and the second edge is chosen. If vertex w has not been

visited, the process is applied recursively to vertex w. If

all the edges incident on vertex v have been explored in the

above manner, backtrack along the edge (u,v) that led to

vertex v and explore the edges incident on u. The search

terminates when backtracking is attempted from the vertex at

which the depth first search began.

The algorithm for finding a complete matching is as

follows:

Do i = l,n

1. For each constraint equation i, look for
an edge which is incident on an unmatched
coordinate j.

2. If found, match equation i with coordinate
j. GO TO6.

3. If none found, do depth first search from
the current equation through the set of
matched equations accessible from the
current equation to find an unmatched
coordinate.

4. If search succeeds, new matching is found
and the matching set is extended by one.
GO TO 6.

5. If search fails, then i equations were
visited and only i-1 independent coordinates
were found. Matrix is singular. STOP.

6. CONTINUE

- 77 -

To prevent the algorithm from going into an infinite

loop, each equation is marked in the backtracking step of

the depth first search so that the equation will not be

visited again. An example will illustrate the algorithm.

sl s2 s3 s4 s5 R S

rl 1 0 1 0

r2 0 1 0 1 0

B = r3 1 1 G- 0 0 G=

r4 0 1 0 0

r5 1 1 0 0 0

1. Match rl with sl.

2. Match r2 with s2.

3. No edges of r3 incident on an unmatched
coordinate, sj.

Do depth first search from r3.

Match r3 with sl.

Backtrack to rl.

Match rl with s3.

4. Match r4 with s4.

5. No edges of r5 incident on an unmatched
coordinate, sj,

Do depth first search search from r5.

Match r5 with sl.

Backtrack to r3.

No edges of r3 incident on an unmatched
coordinate, sj.

- 78 -

Match r3 with s2.

Backtrack to r2.

No edges of r2 incident on an unmatched
coordinate, sj.

Match r2 with s4.

Backtrack to r4.

No edges of r4 incident on an unmatched
coordinate, sj.

Match r4 with s3.

Backtrack to rL.

Match rl with s5.

6. Done. Complete matching: [rl,s5}
[r2,s4}
(r3,s2}
[r4,s31
[r3,sl}

The second step of the propagation method involves

using the complete matching found by the depth first search

method and the binary matrix B = [bij] to obtain a subset of

the total equations and coordinates which need to be solved

for in the modified Newton-Raphson method.

Given a change in a dimension, a constraint equation,

fi, will change. Looking in the complete matching set, the

corresponding coordinate xj, which we know will change can

be found. By looking in column xj of the Jacobian matrix,

all non-zero values, aij, signifies that a change in

- 79 -

coordinate xj will cause a change in equation i. The method

propagates in this way until no more new equations are

found. The set of coordinates xj, and equations, fi, found

by this method is the set of coordinates and equations which

need to be solved for by the modified Newton-Raphson method.

Since each equation has a corresponding matched coordinate

the number of coordinates will always be equal to the number

of equations. The algorithm is as follows:

I. For all changed equations, fi, find
matched coordinate, xj.

2. For all coordinates, xj, find all
equations, fi, i=1,2,...,n in which
bij = 1

3. If no new equations found, STOP.
Otherwise GO TO 1.

There are two cases where the use of the zero-non zero

structure of the Jacobian can cause the propagation method

to find less than the required number of constraint equation

and coordinates given any dimension change. In these cases,

the elements in the Jacobian appear as zeros when in fact

then should be non-zero. Figure 48 and figure 49

illustrate the first case.

- 80 -

X.

Figure 48, Case 1: Zero slope tangent plane.

x

P

f.

Figure 49, Case 2: Zero slope tangent plane.

In both figures, the slope of the tangent plane to the

surface, fi, is zero. In figure 48, a large movement of the

point P in the direction of xj will not move P off the

surface, fi. In figure 49, a large movement of P in the

direction of xj will move P off the surface fi.

- 91 --

The first case occurs when the Jacobian element dfi/dxj

= 0. A change in xj will not affect equation fi. The

second case occurs when the Jacobian element dfi/dxj = 0. A

change in xj will cause equation fi to be no longer

satisfied. Figure 50 and figure 51 illustrate how the two

cases can occur in the constraint equations used in

variational goemetry.

Figure 50 shows four points on a horizontal plane which

have been constrained to be coplanar. f is, therefore, a

constraint of four points, Pl=(xl,yl,zl), P2=(x2,y2,z2),

P3=(x3,y3,z3), and P4=(x4,y4,z4) being coplanar. df/dx3 =

0. A change in x3 will not affect the constraint f, since

all four points will still be on the same plane.

P4

z

p 3

P
2

Figure 50, Four points coplanar.

- 82 -

22

L

Y

Figure 51, Linear distance between two points.

Figure 51 shows a constraint, f, of the linear distance

between two points, Pl=(xl,yl,zl) and P2=(x2,y2,z2) which

are aligned along the z direction. df/dx2 = 0. Given a

change in x2, the constraint equation f will no longer be

satisfied since L is no longer the same if z2 is kept

constant.

This situation is found to occur only in this

pathological case and a check can be made when forming the

Jacobian elements .

The second area where the zero-non zero structure of

the Jacobian can cause propagation method to find less than

the total number of required constraints and coordinates is

that the structure is derived only at the current geometry.

Given another geometry, the zero-non zero structure of the

Jacobian can conceivably be altered. For these cases, the

Jacobian matrix will need to be recomputed and step one of

the propagation method reexecuted.

- 84 -

6.4.4 TIME AND STORAGE REQUIREMENTS

The efficiency of the propagation method depends on (1)

the time required to find a complete matching in the first

step of the method (2) the time required to find the subset

of constraint equation and coordinates which need to be

solved in the second step of the propagation method (3) the

amount of reduction in the number of equations and

coordinates which need to be solved.

The execution time of step one in the propagation

method is of O(mn) where m is the number of non-zeros in the

Jacobian matrix (0<m<n 2). Given our three-dimensional

constraints, m < 18n. This must be true because the

structure of each constraint equation is such that an

individual constraint equation constrains at most six

vertices. Since each vertex can have a x, y, and a z

component, there can be a maximum of 18 non-zeros in any one

rcw of the Jacobian matrix.

The process of finding a matching between an equation

and a variable is of O(m). In a majority of cases, the time

involved is considerably less becuse it is very rare that

all the edges need to be searched to find a matching.

- 85 -

Since there are a total of n equations and n

coordinates, the total execution time of step one is of

O(mn). Therefore, the execution time of step one is of O(n2).

Step one of the propagation method is executed only

once for each dimensioning scheme. Because only integer

comparisons are involved, there are no computations and

therefore no opportunity for numerical or roundoff errors.

Figure 52 shows a plot of the time required to execute step

one for different orders of the Jacobian matrix. As can be

seen, the execution of the algorithm in the cases tested is

much faster than the predicted worse case O(n2) time.

100

80

u 60

'10-

0 20 40 60 80 .100 120 140 160

order cf matrix

Figure 52, Plot of CPU time required for
step one of the propagation
method vs order of the matrix.

- 86 -

The execution time of the second step in the

propagation method is of O(n). This step must be executed

every time a new dimension is altered. The time required to

execute this step depends on the number of the equations and

coordinates which are found. Figure 53 shows a plot of the

time required to execute step two versus the size of the

subset of equations and coordinates found by this method.

100-

80-

U)

20-

Q

0~

0 10 20 30 40 50 60 70 P0

size of subset

Figure 53, Plot of CPU time required for
step two of the propagation
method vs the size of the subset
of equations and coordinates.

- 87 -

A general relationship for the amount of reduction of

the set of equations and coordinates which need to be solved

is more difficult to obtain. The amount of reduction

depends on the particular combination of dimensions which

are changed and the constraining scheme as a whole.

A constraining scheme can exist such that a change in a

dimension causes a chain-like effect where a large number of

coordinate points change. Figure 54 illustrates a

dimensioning scheme which exhibits this chain-like effect.

A-3--B+5 C- D E -

2 3 6 9Y

10 1U

12 X .

Figure 54, Consecutive dimensioning scheme.

A change in dimension A will cause points 3, 4, 5, 6,

7, 8, 9, 10, 11 and 12 to change in the x direction. The

same part may be dimensioned in another way. Figure 55

illustrates an alternate dimensioning scheme where the

chain-like effect is avoided. A change in dimension A will

- 88 -

only change points 3 and 4 in the x direction.

D
*-.C-- ---

L- 5

+ A
23- 8 9

Y

6 10 11

1 - 12 X

Figure 55, Datum dimensioning scheme.

A good dimensioning scheme reflects the function of a

part and minimizes cumulative tolerances in critical areas.

Cumulative tolerances are an undesireable condition and

result when either the location of a surface or an overall

dimension is affected by more than one tolerance dimension.

The type of dimensioning scheme illustrated in Figure 54 is

a consecutive dimensioning scheme in which each dimension is

made relative to the one preceeding it. This is an example

of a poorly dimensioned part because of the existence of

cumulative tolerances. To avoid the inconsistency of

cumulative tolerances, it is preferrable to locate surfaces

from a datum plane. The dimensioning scheme shown in Figure

55 is an example of a datum dimensioning scheme. Although

this type of dimensioning scheme is encountered in various

- 89 -

applications, some combination of datum dimensioning and

consecutive dimensioning is usually used.

Thus, the size of the subsets of equations and

coordinates found by the propagation method depends on the

type of the dimensioning scheme used. In a dimensioning

scheme which exhibits many consecutive dimensions, the size

of the subsets would tend to be larger than in a

dimensioning scheme in which a fixed datum is used. In a

datum type dimensioning scheme, the implicit rigid body

constraints should be chosen in such a way as to define the

datum.

A numerical measure of the size of the subsets of

equations and coordinates which will be found by the

propagation method can be found by performing block

triangularization on the entire set of equations before

execution of the propagation method. The existence of small

diagonal blocks represent a decoupled dimenisoning scheme

similar to a datum type dimensioning scheme whereas large

diagonal blocks indicate the possible existence of

consecutive type dimensioning and cumulative tolerances.

The size of the diagonal blocks can therefore be used as a

measure of the quality of a dimensioning scheme and of the

amount of reduction likely to be encountered by executing

- 90 -

the propagation method.

The presence of large diagonal blocks implies that for

those sets of equations and coordinates which comprise the

block, no equation may be solved independently of the other

equations in the block. Unknown information must be passed

to all the equations of the block before the equations can

be solved. In the propagation method, if one equation in

such a diagonal block is altered, all the equations of that

block must be used in obtaining the solution.

To give a general idea of the amount of reduction

obtained from the propagation method, various

three-dimensional parts have been tested. Figure 56 plots

the reduction found for various dimension changes. The

subsets found are represented as percentages of the total

number of equations.

- 91 -

100%-

E 80%-

o 60%_
44'
0

40%-

U
mo 20%

0%

A B C D E F G H i J K L M N 0
changed dimensions

Figure 56, Plot of the relative reduction
in the system of equations which
need to be solved by using the
propagation method.

Storage requirements for the propagation method is of

0(n). Given any dimension change, to execute step two of

the propagation method, the complete matching set must be

stored in row access order in an integer*2 array of length

n. Two integer*2 arrays of length m are used to store the

row and column indices of the non-zeros in the Jacobian.

Two integer*2 arrays of length n are used to store the

subset of equations and coordinates which need to be solved

given a dimension change. Total storage requirements for

the propagation method is therefore 4m + 6n bytes.

- 92 -

7.0 IMPLEMENTATION

7.1 SOFTWARE

A system of software written entirely in FORTRAN has

been developed which demonstrates the concepts of

three-dimensional variational geometry. The general program

structure is shown in Figure 57.

DIMT

ENPUT SGETMCDIFY

JACRES MC21A RCTATE EWDPROP NEWPAF
P EFSP
VIEWS

LICIT LICIIJACRES MA28A MA2SC

BUWF PLICI, LICI

Figure 57, Program structure.

- 93 -

DIM3

This is the main program which calls the various

subroutines which make up the variational geometry methods:

data input, segmentation of the Jacobian, display of the

part, and the numerical methods.

INPUT

The current implementation assumes the input of

geometry, topology, and constraints has already been done.

This subroutine reads from the DIMENSION system data base.

The geometry, topology, constraints, and drawing parameters

are read in from various disk files.

SEGMENT

This subroutine is a data handling routine which calls

subroutines to activate the propagation method of

segmentation.

JACRES

This subroutine computes the Jacobian matrix and

residuals from the set of three-dimensional constraint

routines.

- 94 -

MC21A

This subroutine finds a complete matchinQ between

constraint equations and coordinates for purposes of

segmentation.

DISPLAY

This subroutine is a data handling routine which calls

subroutines to display, rotate, and dimension the part.

PERSP

This subroutine calls various drawing routines to

generate a perspective view of the three-dimensional part

given its geometry and topology.

ROTATE

This subroutine rotates a perspective view of the

three-dimensional part.

VIEWS

This subroutine generates the three orthogonal views of

the three-dimensional part.

- 95 -

DIMEN

This subroutine calls various routines to draw the

dimension lines, arrows and dimension label in the three

orthogonal views.

BUF

This subroutine is a data transfer routine which

transfers data from the main computer to the graphics

display for drawing purposes. It also receives data input

from the graphics display to execute the various user

commands.

V1L'J.LJ. .1

This subroutine accepts as input the dimension(s) to be

changed, the new value(s) of the dimension(s). and the step

number and calls the numerical methods routines to alter the

part geometry.

FWDPROP

This subroutine takes as input the matching set

produced in MC21A and the position of the non-zeros of the

Jacobian in row order and produces a subset of coordinates

and constraints which need to be solved for given any

dimension change.

- 96 -

NEWRAF

This routine accepts as input the subset of coordinates

and constraints from subroutine FWDPROP. It then calls

JACRES to compute the Jacobian and the residuals for only

the subset of constraints and coordinates from the set of

three-dimensional constraint routines. Routine MA28A/MA28C

is then called to solve for the points vector at each

iteration of the modified Newton-Raphson method.

Currently, input of topology and assignment of

constraints are accomplished by reading from data files and

not through an interactive procedure.

On entry to the program, various data files, which

contain the geometry, topology, constraints, and dimensions

for a specific part are read in. Because the geometry

satisfies all the constraint equations, no numerical

operations are required at this stage. If the topology were

to be entered using an approximate interactive input method,

then the Newton-Pephson method would need to be performed at

this stage to reconcile the geometry with the constraints.

- 97 -

The program then proceeds to find a complete matching

set for the constraints and coordinates by a depth first

search process. At this stage, if the constraining scheme

is redundant, a redundant constraint will be flagged and the

program will exit.

Given a permissible dimensioning scheme, the program

then displays the part in a perspective view. At this

stage, the user may rotate the part about its x-y centroid

or display the three orthographic views of the part showing

its various dimensions. A perspective view is also provided

to aid in visualization.

The user may now select any of the displayed dimensions

by use of a digitizing pen on a data tablet with feedback

via a screen cursor. A numeric keypad then replaces the

perspective view and the user is prompt for the new

dimensional value. Up to ten dimensions may be altered at

any one time. After entering the new value(s) of the

dimension(s) to be changed, the user is prompt for the step

number. The step number serves two purposes, to increment

the geometry in a number of steps for display purposes and

to increase the stability of the Newton-Raphson iterations.

- 98 -

Upon entering the step number, the program performs the

second step of the propagation method to determine the

subset of constraints and coordinates which need to be

solved. These constraints and coordinates are then used in

the Newton-Raphson method. The part is incremented

dynamically' in a full perspective view from its initial to

final geometry. The process may then be repeated as the

user is prompt for either a rotation of the changed geometry

or a display of the three orthographic views.

7.2 HARDWARE

The main program for the DIMENSION system as well as

the data base resides on a Digital Equipment VAX 11/780

virtual memory computer located in Massachusetts Institute

of Technology's Joint 'Computer Facility. The drawing

routines for the DIMENSION system resides on a PDP 11/34

minicomputer with an internal program memory capacity of 64K

bytes.

Communication between the main program and drawing

routines is via DECNET, a data network produced by Digital

Equipment Corporation. For actual display of the geometry

of the part, the PDP 11/34 drives a MEGATEK 7000 vector

refresh display.

- 99 -

User interface to the geometry of the part as well as

alteration of dimensions is by using a digitizing pen on a

Summagraphics BITPAD data tablet. A software screen cursor

provides the necessary feedback.

All numerical computations are performed on the VAX

11/780. Display of vector and character data as well as

cursor addressing and user prompting are performed on the

PDP 11/34.

- 100 -

8.0 RESULTS

A suitable data structure for three-dimensional

variational geometry has been developed. The data structure

contains complete geometric and topological information of a

part. In addition, a constraint and dimension structure was

identified to allow interface to methods of interactive

constraining, dimension alteration, and display.

Three-dimensional constraint equations have been

derived for objects bounded by planar, cylindrical,

spherical, and conical surfaces. Application of the

constraints to three-dirmensional objects allows for ease of

manipulation and modification of three-dimensional

geometries. The result is a reduction in user interaction

and the creation of a friendlier interface to CAD systems.

The efficiency of the numerical methods were

investigated. Various methods to increase the efficiencies

of computation and storage have been developed and

implemented. To increase computational efficiency, modified

Newton-Raphson method as well as sparse elimination were

implemented. To further increase computational efficiency,

a method to segment the total number of equations and

- 101 -

coordinates into a smaller subset for purposes of the

numerical computations was developed. To increase the

efficiency of storage, sparse matrix storage methods were

used.

Finally, to demonstrate the utility of the variational

geometry methods, a system of software has been written and

implemented which makes up part of the DIMENSION system.

This system of software allows a part to be entered through

geometry and topology data files. The part is constrained

by the constraint and dimension data files. Interactive

methods are then used to allow the user to display and view

the part in various views. To alter the geometry, the user

simply selects the dimension(s) to be changed and enters the

new dimensional value(s).

- 102 -

9.0 CONCLUSIONS AND RECOMMENDATIONS

A system, embodying the concept of variational

geometry, has been developed. Three-dimensional shape

models consisting of planes, cylinders, spheres, and cones

are built up with the use of three-dimensional constraints.

Modification of part geometry involves a simple two-step

process, selecting the dimension(s) to be changed and

entering the new value(s).

One of the current benefits of the system is simplicity

of the user interface. By using variational geometry to

create and modify a part, the process of aesign is made

easier. Since design is inherently iterative, the

techniques of variational geometry greatly facilitates the

design process.

The concepts of variational geometry can be expanded to

include constraining of clearances between two or more

mating parts. By specification of specific constraints in

the design of assemblies, part mismatch and interference can

be avoided.

- 103 -

Because the current methods of variational geometry

operate on a specific class of surfaces, future

investigations include extension of these concepts to

general quadric surfaces and free form surfaces.

Since the geometry of a part can be modified easily, it

is possible that a part can be made to intersect itself.

Therefore, methods of detecting self-intersection of a

part must be implemented.

Current methods of constraxning of The part topology is

through the use of data files. To make the DIMENSION system

uLy itratiLvC, methods of interactively SpCifying

constraints will need to be developed.

- 104 -

REFERENCES

1. Baer,A. Eastman,C. and Henrion,M. "Geometric Modelling,
A Survey", Computer-Aided Design, Vol 11, No. 5, Sept
1979, pp 253-272.

2. Beltrami, E.J., An Algorithmic Approach to Non-linear
Analysis and Optimization, Academic Press, New York,
1970.

3. Congdon, R.M., Three-Dimensional Shape Input Through
Sketch Recognition, M.S. Thesis, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, 1981.

4. DeKleer,J. and Sussman,G.J., Propagation of Constraints
Applied to Circuit Synthesis, MIT Artificial Intelli-
gence Laboratory Memo. No. 485, Cambridge, Massachu-
setts, 1978.

5. Duff, I.S., "A survey of Sparse Matrix Research", Proc.
IEEE, Vol 65, No. 4, April 1977, pp 500-535.

6. Duff, I.S., MA28 - A Set of Fortran Subroutines for
Sparse Unsymrnetric Linear Equations, Harwell Report
No. R 8730, Oxfordshire, England, Nov. 1980.

7. Duff, I.S. and Reid, J.K., "Some Design Features of a
Sparse Matrix Code", ACM Trans. on Math. Software,
Vol 5, No. 1, March 1979, pp 18-35.

8. Dulmage, A.L. and Mendelsoln, N.S., "On the Inversion of
Sparse Matrices", Math. Comp, 16, 1962, pp 494-496.

9. Dulmage, A.L. and Mendelsoln, N.S., "Two Algorithms for
Bipartite Graphs", J. Soc. Indus. Math., Vol 11,
No. 1, Mar 1963, pp 183-194

10. Even, S., Graph Algorithms, Computer Science Press,
Maryland, 1979.

11. Fox, L. Introduction to Numerical Linear Algebra, Oxford
University Press, London and New York, 1965.

12. Gustavson, F.G., "Finding the Block Lower Triangular
Form of a Sparse Matrix", in Sparse Matrix Computa-
tions, New York, Academic Press, 1976.

13. Gustavson, F.G., "Some Basic Techniques for Solving
Sparse Systems", in Sparse Matrices and Their Appli-
cations (D.J.Rose and R.A.Willougby, Eds.) pp 41-52,

- 105 -

Plenum Press, New York, 1972.

14. Hall, M., "An Algorithm for Distinct Representatives",
Amer. Math. Monthly, 1956, pp 716-717.

15. Harary, F., "Sparse Matrices and Graph Theory", in
Large Sparse Sets of Linear Equations (J.K. Reid
Ed) pp 139-150, Academic Press, New York, 1971.

16. Hillyard, R.C., Dimensions and Tolerances in Shape
Design., Technical Report No. 8, University of
Cambridge Computer Laboratory, Cambridge, England,
1978.

17. Hillyard, R.C. and Braid, I.C., "Analysis of Dimen-
sions and Tolerances in Computer-Aided Mechanical
Design", Computer-Aided Design, Vol 10, pp 161-166,
June 1978.

18. Hillyard, R.C., and Braid, I.C., "Characterizing Non-
ideal Shapes in Terms of Dimensions and Toler-
ances", Computer Graphics, ACM-Siggraph, Vol 12,
No.3, pp 234-238, Aug 1978.

19. Hopcroft, J.E. and Karp, R.M., "An nV2Algorithm for Max-
imum Matchings in Bipartite Graphs", SIAM J. Comput-

rg, o %r11 2 , 1 ., A p 22IC-21, rde 1Q71
J.441:1 I V %S4. & j LA%6-j dSZ t '& -F A. . J_ Id - _ . / 1 --

20. Light, R.A., Symbolic Dimensioning in Computer-Aided
Design, M.S. Thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1980.

21. Lin, V.C., Two Segmentation Methods, Technical Docu-
ment No. 21, MIT Computer-Aided Design Laboratory,
Cambridge, Massachusetts, 1980.

22. Morrill, W.K., Selby, S.M., and Johnson, S.G., Modern
Analytic Geometry, Intext Educational Publishers,
Scranton, Penn., 1972.

23. Ogbuobiri, E.C., "Dynamic Storage and Data Retrieval
in Sparsity Programming", IEEE Transactions on
Poower Apparatus and Systems, Vol PAS-89, No. 1,
pp 150-155, Jan 1970.

24. Ortega, J.M. and Reinboldt, W.C., Iterative Solutions
of Non-linear Equations in Several Variables,
Academic Press, New York, 1970.

25. Reid, J.K., "Solution of LInear Systems of Equations:
Direct Methods (General)", in Lecture Notes in

- 106 -

Mathematics: Sparse Matrix Techniques, Copenhagen
1976 (Barker, V.A. Ed), pp 102-127.

26. Reingold, E.M., Nievergelt, J. and Deo, J., Combinator-
ial Algorithms: Theory and Practice, Prentice Hall,
New Jersey, 1977.

27. Steele, G.L. and Sussman, G.J., Constraints, MIT Artifi-
cial Intelligence Laboratory Memo No. 502, Cambridge,
Massachusetts, 1978.

28. Steward, D.V., "On an Approach to Techniques for the
Analysis of the Structure of Large Systems of
Equations", SIAM Review, Vol 4, No. 4, pp 321-342,
Oct 1962.

29. Sutherland, I.E., Sketchpad: A Man-machine Graphical
Communication System, MIT Lincoln Laboratory Tech-
nical Report No. 296, Lexington, Massachusetts,
1963.

30. Tewarson, R.P., Sparse Matrices, Academic Press, New
York,17.

31. Vandergraft, J.S., Introduction to Numerical Calcula-
tions, Academic Press, New York, 1978.

I

- 107 -

APPENDIX A - OBJECT WITH PLANAR SURFACES

Figure A-1 shows a full perspective view of a

three-dimensional object made up of only planar surfaces.

Figure A-2 shows the part in rotation. In Figure A-3,

orthographic views of the part are generated. To change the

height of the flange, the appropriate dimension, 15.00 in

this case is selected with the digitizing pen. Figure A-4

shows the process of entering the new dimensional value

using a numerical keypad which is displayed in place of the

perspective ViwC . Figure A-S shows tie entering of the step

number. Figure A-6 shows the object incrementing towards

it negem ty Figures A-7 to A-I)I shows the process of

moving the web of the flange 2.00 units to the left.

- 108 -

WEEE D
ROTATE VIEWS STOP PROP

Figure A-1, Object with planar surfaces.

- 109 -

ROTATE VIEWS STOP PROP

Figure A-2, Object in rotation.

- 110 -

000

f. H H K"

T.~m

12. 00

/

7./

Figure A-3, Selecting dimension to be changed.

- 111 -

F// r%

zoom

FZ nmLaj S70P v

K." H.K"

T . as

ILis 8.0

12. 0N-

7F

12k

B 5

ENTER NEW VALLE: 4. 75

LZJR

71.0

I- 7.0-1

Figure A-4, Entering new value.

- 112 -

f

i. K40

T T0

12.e

2 3

4 5

7

0 . EN

ENTER STEPS: 4

4

I-rn

-4--

Figure A-5, Entering number of steps.

- 113 -

ta go

ROTATE VIEWS STOP PROP

Figure A-6, Alteration of geometry.

- 114 -

4 1

T

L.we

ian

L~J ~ LW I

I

T.0

14.75

Figure A-7, Selecting dimension to be changed.

- 115 -

K" HK~
TF
[LHHH

Ia

i

KT-HK

/

9.U0

12

I. 2 3

4 5 5

7 B

ENTER NEW VALLE: 7. 5

I -

1475

Figure A-8, Entering new value.

- 116 -

L.IIe

I

j~ K- H K"

L
HKH

L.I

ii O-
.-e

1.

7 8

0 .

I Of

Li
ENi

Figure A-9, Entering number of steps.

- 117 -

ENTER STEP5 3

14.75

ROTATE VIEWS STOP PROP

Figure A-10, Alteration of geometry.

- 118 -

.aa 7. 3&

~1~~~

12. 09

II II STYOPI vmI
LIPJDOW

S14.75

/ .0 --m

Figure A-li, Views of new geometry.

- 119 -

I

APPENDIX B - OBJECT WITH CYLINDRICAL SURFACES

Figure B-1 shows a full perspective view of a

three-dimensional object made up of planar and cylindrical

surfaces. Again, Figure B-2 shows the part in rotation and

Figure B-3 shows its three orthographic projections. Figure

B-4 to B-7 shows the process of changing the length of the

solid portion of the guide bracket. Figures B-8 to B-11

show the process of changing the diameter of the cylindrical

surface. In a similar manner, any displayed dimension can

be used to modify the geometry of the guide bracket shown.

- 120 -

ROTATE VIEWS STOP PROP

Figure B-1, Object with cylindrical surfaces.

- 121 -

r

ROTATE VZEWS STOP PROP

Figure B-2, Object in rotation.

- 122 -

2.L70

its.G=

GOA 9 2.69

S-Gl
T

S. 0

Figure B-3, Selecting dimension to be changed.

- 123 -

i

a

EP

L.90 2. QAg

2. 70

A m
LLL59

a 2.al

a.. SWs

.. 2 a

4 5 6

7 8 5

ENTER NEW VALUE:5. 00

+

0
I

Figure B-4, Entering new value.

- 124 -

LU L. 2SIMA

2701

ljL ilia

L- S

9I E.SP

jAIR

. 2 a

4 5

7 9 3

ENTER STEPS: 4

0

Ficure B-5, Entering number of steps.

- 125 -

i

ROTATE VIEWS STOP PROP

Figure B-6, Alteration of geometry.

- 126 -

LU t.P0ZA1

TT ~1. GA

L 0

L&5.59

1. us 9.e

a... Lwsics

C

Figure B-7, Selecting dimension to be changed.

- 127 -

UP FOWN Cap i FVM

L 89
a. atL599

a.. US2.00

I.. scC

2 3

4 N 5

7 5 3

ENTER NEW VNL.LJEL . - . 1

0

Figure B-8, Entering new value.

- 128 -

2.70

y. -1--.

LS. 56

1 23

4 5 6

7 5

E r EN

ENTER STEPSc 3

. *~ 2.11

F r ,E i n ef2.1t

Figure B-9, Entering number of steps .

- 129 -

ROTATE VIEWS STOP PROP

Figure B-10, Alteration of geometry.

- 130 -

2. 70

L 04

aso1

L5. 50

1. 9 2.8

Figure B-11, Views of new geometry.

- 131 -

zaci zomWH OPEi Ei

APPENDIX C - NEWTON-RAPHSON METHOD

The Newton-Raphson method is a generalization of

Newton's method for finding the roots of a function, f(x) =

0. To solve this problem, the function is approximated at

some point, xo, by its tangent. The value of x, where the

tangent crosses the x-axis is solved for. This process is

repeated from the new point, xl, until the algorithm

converges. Newton's method defines a sequence of points

according to the recurrence relation

f(xn)
xn+1 = xn - (C.1)

f'(,xn)

The convergence depends on the initial estimate of the

solution, xo, with faster convergence resulting as xo

approaches the actual solution.

The Newton-Raphson algorithm expands Newton's method to

n functions. Given n constraining equations in n unknowns:

fl(xj) = fl(xl,x2,...,xn) = 0

f2(xj) = f2(xl,x2,...,xn) = 0

................. (C.2)

fN(xj) = fN(xl,x2,...,xn) = 0

- 132 -

we want to find the solution vector x = [xl,x2, ... ,xnj,

where [xl,x2,...,xnj are the points defining the geometry of

the part.

In the neighborhood of an initial estimate, xj(P) , we

can approximate the above set of equations by the linear

terms of a Taylor series

fi(xj)=0=fi= -Axl + K)x2 + ... +--xn(C.3)
(xl x2) Vxn)

16fi
where i = 1,2,...,n and fi and represents the

functions and their partial derivatives evaluated at point

xj . Axj = xj(P+_) - xj(P) are the displacements of the

points. From Axj, the next estimate, xj(P+l) can be

calculated. The Taylor series expansions can be written in

matrix form:

[J] [x] = -[fJ (C.4)

where the Jacobian matrix [J2 given by

7fl fl . . . fl
-Tl 6x2 x

[bfi f2 of2 ... 3f2

[J] = [xl 2 n (c.5)

5fn 6fn . . . 6fn
5x1 5x2 dxn

- 133 -

is evaluated at xj(P) f = [flf2,...,fn] are termed the

residuals and are evaluated at xj(P

If we begin with an initial estimate xj('), ficxj(1)) # 0

because xj_ is not an exact solution. By solving [J] [x] =

-[Efl, we get a set of displacements, xj, which will lead to

a better estimate of the solution: xj(2) = xj(+ xj provided

[J] is non-singular. The process is repeated with the new

estimate, Xj , xj) ,... and so forth until either the

residuals or displacements are sufficiently small in which

case, the geometry is consistent with the constraint

equations.

- 134 -

APPENDIX D - DOOLITTLE'S METHOD

Doolittle's method solves a system of linear equation,

Ax = b. In the DIMENSION system, Doolittle's method

decomposes the Jacobian matrix, J into an upper triangular

matrix, U, and a lower triangular matrix, L, and solving by

backsubstitution the systems Ly = -f and Udx = y for y and

dx respectively.

Denoting the components of J, L, and U by Aij, Lij, and

Uij respectively, where 1 < i, j < n, Lij = 0 for i < j, Lii

= 1 for 1 <i < n, and Uij = 0 for i > j, Doolittle's

algorithm can be defined in scalar form as follows. To

obtain factors L and U of J for any given m,m =1,2,. n:

M-1
Lim = (Aim - J:Liq Uqm) / Umm (D.1)

q-=1

for i = m+1,...,n

M-I
Umj = Am - 7 Lmg Uaj (D.2)

q=1

for j = m,m+l,...,n

In backsubstitution:

i-I
Yi = -fi - Liq Yq (D.3)

q:I

- 135 -

for i = 1,2,...,n

n
dXi = (Yi - YUiq Xq) / Uii (D.4)

q=i

for i = nn-,...,l

- 136 -

APPENDIX E - SPARSE MATRIX METHODS

E.1 GENERAL THEORY

Matrices having a small percentage of non-zeros are

called sparse. One indicator of the sparsity of a matrix is

S = number of non-zeros / n2 where n is the order of the

matrix. For the matrices used in the numerical methods of

variational geometry, S is often < .05. It is therefore

advantageous from a storage and computational point of view

Lo LHL11LPCLL L JC.L. M ia r aLtrLX Lt. J."4LA-- 0

In the Newton-Raphson method,

A x = b (E.1)

where A is a non-singular real n X n sparse matrix, x a 1 X

n vector of variables, and b a vector of constraints.

One method by which this can be accomplished is to

change the original matrix into lower block triangular form

by a set of row permutations, P, and column permutations, Q,

such that

- 137 -

(PAQ) _Qx = Pb (E.2)

A permutation matrix is a square matrix obtained by

interchanging rows or columns of the unit matrix.

All

A22

PAQ = (E.3)

Aij .

Aii

Aii are the diagonal blocks which cannot be further reduced

by row and column permutations. The off diagonal blocks,

Aij (j<i), are rectangular.

To find P and Q, the first step is to find a row

permutation, Pl, so that the entries of the diagonal of A

are all non-zero, A = Pl A. Then, a symmetric permutation

is found to reduce A to lower block triangular form, QTPlAQ,

where QTpl = p.

The large system of equations is now replaced by

several smaller systems. The smaller submatrices can now be

inverted using a variation of Gaussian elimination. Since

the diagonal blocks are much smaller than the whole matrix,

inversion proceeds faster and the growth of non-zeros are

- 138 -

limited to the diagonal blocks only.

Performing a LU decomposition within each diagonal

block, Aii,

PiAiiQi = LiUi i =1,2,.k

P'AQ' =

LlUl

L2U2

LiUi

Aij

LkUk

(E.4)

where Li is unit lower triangular is upper

triangular.

The solution of the system can be found by block

forward substitution.

Allxl = bl

A22x2 = b2 - A21xl

(E.5)

Aiixi = bi - Aiq xq
q:=

- 139 -

and Ui

E.2 HARWELL ROUTINES

HARWELL has produced a subroutine package which solves

a set of sparse linear equations. The subroutine package

can be used in the matrix inversion step of the

Newton-Raphson method. Single as well as double precision

can be obtained. The set of subroutines used are

illustrated in Figure E-1.

[A] matrix r LU decomposition
row & co n C'MC9 - MAblock structure

indices -'P'AQ'

MC20A MC23A MA30A MC22MC24A

MC20B MC2 A

MC21B

decomposed [A] MA28C solution vector
matrix frcm
MA28A

right-band side
vector

MA3GC

Figure E-1, RARWELL program structure.

- 140 -

0:-

MA 28

This routine is a data management routine which calls

other routines to do block triangularization and LU

decomposition. This routine takes as input the matrix, A,

and the row and column indices of matrix A. The row and

column indices can be arranged in any order.

MC20A AND MC20B
3

I

I
U

These subroutines reorders the matrix, A to row order

form.

MC23A

This subroutine is a data handling routine which calls

other routines to perform lower block triangularization.

MC21A AND MC21B

These routines finds a row permutation, P1, which puts

non-zeros on the diagonal.

MC13D

This subroutine finds a symmetric permutation, P and Q

to permute the matrix outputted from MC21A to block lower

triangular form. The routine then reorganizes and reorders

-- 141 -

the matrix according to the row and column permutations, P

and Q.

MA28C

This subroutine is for the purpose of interfacing with

MA30C. It takes as input the decomposed A matrix from MA28A

and the right hand side vector. It outputs the solution

vector, x.

MA30C

This subroutine solves Ax = b or Ax = b, given the

decomposition from MA30A by:

1. performing forward elimination corresponding to rows of

Ll (the first diagonal block).

2. performing backsubstitution using appropriate elements

of Ul.

3. repeat steps 1. and 2. for subsequent blocks.

- 142 -

E.3 STORAGE AND TIME REQUIREMENTS

For a matrix of order n, with m non-zeros in the

original matrix and r non-zeros in the decomposed matrix,

HARWELL estimates the time and storage requirements for

routines MA28A and MA28C (on an iBM 370/168).

STORAGE (bytes)

TIME (microsec)

MA2BA

42n + 32m

25/4 r2 /n

MA28C

26n + 30m

4r

An estimate for the value of r is 5/2 m.

The number of Fortran statements require 37K bytes of

storage for the compiled code. This package of routines is

therefore too large to be run on a minicomputer without

using overlays.

- 143 -

E.4 IMPLEMENTATION OF ROUTINES

Interface to the HARWELL routines consists of a call to

subroutine MA28A and a call to MA28C. These two subroutines

call all the other routines referenced.

For MA28A, the calling statement is as follows:

CALL MA28A (NNZ,A,LICNIRN,LIRNICN,U,IKEEP,IW,W,IFLAG)

ENTRY

N
Fint*4 var]

NZ
[int*4 var]

set = n, the order
of the matrix

set = m, the number
of non-zeros in A

A(LICN)
[real*4 array]

LICN
[int*4 var]

IRN(LIRN)
[int*2 array]

LIRN
[int*4 var]

ICN(LICN)
[int*2 array]

U

non-zeros of A

set = 3m, length
of A and ICN

row indices of
non-zeros of A

set = 1.5m,
length of IRN

column indices of
non-zeros in A

set = 0.10, controls

non-zeros of
factors of A

same

changed

same

column indices of
factors of A

same

- 144 -

EXIT

same

same

[real*4 var]

IKEEP(5N)
[int*2 array]

IW (5N)
[int*4 array]

W(N)
[real*4 array]

IFLAG
[real*4 array]

choice of pivots

internal process

workspace

workspace

internal process

workspace

W(l)-largest element
encountered during LU

error flag 0 if successful

On exit from MA28A, IFLAG should be checked against the

error codes. The calling statement to MA28C is as follows:

CALL MA28C(N,ALICN,ICNIKEEP,RHS,W,MTYPE)

ENTRY

N
[int*4 var]

A(LICN)
[real*4 array]

LICN
[int*4 var]

ICN(LICN)
[int*2 array]

IKEEP(5N)
[int*2 array]

same as MA28A output

same as MA28A output

same as MA28A output

same as MA28A output

same as MA28A output

- 145 -

EXIT

same

same

same

same

same

RHS (N)
[real*4 array]

W(N)
rreal*4 array]

right hand side

workspace

solution vector

workspace

MYTYPE
[int*4 var]

set=1 if solve Ax=b
set=0 if solve A x=b

To scale the A matrix, lines of code are added and a

call to subroutine MC19A is made before calling MA28A.

- 146 -

same

APPENDIX F - CONSTFAINT SUBROUTINES

SUBROUTINE RBTX (LCODEKONS,NROW)
C ---

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE

C CONSTRAINT OF FIGID BODY TRANSLATION IN THE X DIRECTION.

S C------------------
C

INCLUDE 'RES1: [P3453 .VLIN. COMMON]CONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.CCMMONJNUMERIC.CMN'
INCLUDE 'RESI:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3) - 2

Xl = XVECT(I)
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

RESID(NROW) = -Xl

IF (LCODE .EQ. 1) RETURN
C--
C PARTIALS.
C---

100 11 = 0
* DO 10 JJ 1,NEQS

AMAT = 0.

IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.

IF (ABS(AMAT) .GT. .02) THEN
NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW

ICN(NTELE) = II
END IF

10 CONTINUE
C

RETURN
END

- 147 -

SUBROUTINE RBTY (LCODE,KONS,NROW)
C--
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY TRANSLATION IN THE Y DIRECTION.
C--
C

INCLUDE 'RESi:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RESi:[P3453.VLIN.CCMMONJNUMERIC.CMN'
INCLUDE 'RESi:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3) - 3
Yl = XVECT(I)
IF (LCODE .EQ. 0) GO TO 100

C---
C RESIDUALS.
C---

RESID(NROW) = -Yl
IF (LCODE .EQ. 1) RETURN

C--------------------
C PARTIALS.
C---
100 11 = 0

DO 10 JJ=1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1

IF (JJ .EQ. I) AMAT = 1.
C

IF (ABS(AMAT) .GT. .02) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 148 -

SUBROUTINE RBTZ (LCODEKONSNROW)
C--

* C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY TRANSLATION IN THE Z DIRECTION.
C--
C

INCLUDE 'RES1:KP3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RESX:[P3453.VLIN.COMMONJNUMERIC.CMN'

* INCLUDE 'RESi: [P3453.VLIN.COMMON]SEGMENT.CMN'
C

I = 3 * CONSTR(KONS,3)
ZI = XVECT(I)

IF (LCODE .EQ. 0) GO TO 100
C---
C RESIDUALS.
C--

RESID(NROW) = -Zl

IF (LCODE .EQ. 1) RETURN
C--
C PARTIALS.

* C--
100 11 = 0

DO 10 JJ=1,NEOS
AMAT = 0.

IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE=NTELE+1
AVAL(NTELE) = AMAT

IRN(NTELE) = NROW

ICN(NTELE) = II
END IF

10 CONTINUE
C

RETURN
END

- 149 -

SUBROUTINE RBRX (LCODE,KONS,NROW)
C--

* C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY ROTATION IN THE X DIRECTION.
C --------------------------- -C

INCLUDE 'RESi:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3)

Zl = XVECT(I)
IF (LCODE .EQ. 0) GO TO 100

C---------------------------------
C RESIDUALS.
C-----------------------------------

RESID(NROW) = -ZJ
IF (LCODE .EQ. 1) RETURN

C--
C PARTIALS.
C--------------------------------
100 11 = 0

DO 10 JJ=1,NEOS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN

END

- 150 -

SUBROUTINE RBRY (LCODE,KONS,NROW)
C--

* C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONTSTRAINT OF RIGID BODY ROTATION IN THE Y DIRECTION.
C--
C

INCLUDE 'RES1:KP3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1: [P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3)
Zl = XVECT(I)
IF (LCODE .EQ. 0) GO TO 100

C---
* C RESIDUALS.

C---
RESID(NROW) = -Zl
IF (LCODE .EQ. 1) RETURN

C--
C PARTIALS.
C--
100 11 = 0

DO 10 JJ=1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW

* ICN(NTELE) = II
END IF

10 CONTINUE
C

RETURN
END

- 151 -

SUBROUTINE RBRZ (LCODE,KONS,NROW)
C--
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY ROTATION IN THE Z DIRECTION.
C--
C

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1: [P3453.VLIN.COMMON]NUMERIC.CMN'
INCLUDE 'RES5:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3) - 1
Yl = XVECT(I)
IF (LCODE .EQ. 0) GO TO 100

C---
C RESIDUALS.
C--

RESID(NROW) = -Yl
IF (LCODE .EQ. 1) RETURN

C--
C PARTIALS.
C--
100 11 = 0

DO 10 JJ=1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 152 -

SUBROUTINE ANG2P (LCODEKONSNROW)
C-- -- ----------------------------------- - - - - - - - - - - - - - - -

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF ANGLE BETWEEN INTERSECTING PLANES.
C--
C

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE ' RE51: P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES: [P3453.VLIN.COMMONJSEGMENT.CMN'
DATA PI /3.1415927/

C
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
M = 3 * CONSTR(KONS,7) - 2
N = 3 * CONSTR(KONS,8) - 2
Xl = XVECT(1)
Yl = XVE CT (I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2= ViTom(J.)

Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
Z 3 = XVECT (K+2)
X4 = XVECT(L)
Y4 = XVECT(L+l)
Z4 = XVECT(L+2)
X5 = XVECT(M)
Y5r= XVECT(M+1)
Z5 = XVECT(M+2)
X6 = XVECT(N)

vrr 'f -n(M..L -L 4.l-I
10 = XET(+

Z6 = XVECT(N+2)
C

Al = Y2*Z3 - Y2*Zl - Yl*Z3 Y3*Z2 + Y3*Zl + Yl*Z2
Bl = -X2*Z3 + X2*Zl + X1*Z3 + X3*Z2 - X3*Zl - X1*Z2
Cl = X2*Y3 - X2*Yl - Xl*Y3 - X3*Y2 + X3*Yl + X1*Y2
A2 = Y5*Z6 - Y5*Z4 - Y4*Z6 - Y6*Z5 -+ Y6*Z4 + Y4*Z5
B2 = -X5*Z6 + X5*Z4 + X4*Z6 + X6*Z5 - X6*Z4 - X4*Z5
C2 = XS*Y6 - X5*Y4 - X4*Y6 - X6*Y5 + X6*Y4 + X4*Y5
SQT1 = SQRT(Al*Al + Bl*Bl + Cl*Cl)
SQT2 = SQRT(A2*A2 + B2*B2 + C2*C2)
THETA = DIM(CONSTR(KONS,2),3)
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

RESID(NROW) = -l*(Al*A2 + Bl*B2 + Cl*C2 - SQTI*SQT2*COS(PI-THETA))
IF (LCODE .EQ. 1) RETURN

- 153 -

C---
C ONLY CALCULATE PARTIALS FOR SENSITIVE CONSTRAINTS.
C--
100 D = COS(PI - THETA)*SQT2*.5/SQT1

E = COS(PI - THETA)*SQT1*.5/SQT2
II = 0

DO 10 JJ=J,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = AMAT + B2*(Z3-Z2) +

1 C2*(Y2-Y3) - D * (2*B1*(Z3-Z2) + 2*Cl*(Y2-Y3))
IF (JJ .EQ. I+1) AMAT = AMAT + A2*(Z2-Z3) +

1 C2*(X3-X2) -D * (2*Al*(Z2-Z3) + 2*C1*(X3-X2))
IF (JJ .EQ. 1+2) AMAT = AMAT + A2*(Y3-Y2) +

1 B2*(X2-X3) -D * (2*Al*(Y3-Y2) + 2*B1*(X2-X3))
IF (JJ .EQ. J) AMAT=AMAT + B2*(Z1-Z3) +

1 C2*(Y3-Yl) - D * (2*Bl*(Zl-Z3) + 2*Cl*(Y3-Yl))
IF (JJ .EQ. J+1) AMAT=AMAT + A2*(Z3-Zl) +

1 C2*(X1-X3) -D * (2*Al*(Z3-Z1) + 2*C1*(X1-X3))
IF (JJ .EQ. J+2) AMAT=AMAT + A2*(Yl-Y3) +

1 B2*(X3-X1) -D * (2*Al*(Yl-Y3) + 2*B1*(X3-X1))
IF (JJ .EQ. K) AMAT=AMAT + B2*(Z2-Zl) +

1 C2*(Yl-Y2) - D * (2*Bl*(Z2-Zl) + 2*Cl*(Yl-Y2))
IF (JJ .EQ. K+1) AMAT=AMAT + A2*(Zl-Z2) +

1 C2*(X2-X1) -D * (2*Al*(Zl-Z2) + 2*C1*(X2-X1))
IF (JJ .EQ. K+2) AMAT=AMAT + A2*(Y2-Yl) +

1 B2*(X1-X2) -D * (2*Al*(Y2-Yl) +2*B1t(X1-X2))
IF (JJ .EQ. L) AMAT=AMAT + B1*(Z6-Z5) +

1 C1*(Y5-Y6) - E * (2*B2*(z6-Z5) + 2*C2*(Y5-Y6))
IF (JJ .EQ. L+1) AMAT=AMAT + Al*(Z5-Z6) +

1 Cl*(X6-X5) -E * (2*A2*(Z5-Z6) + 2*C2*(X6-X5))
IF (JJ .EQ. L+2) AMAT=AMAT + Al*(Y6-Y5) +

I Bl*(X5-X6) -E * (2*A2*(Y6-Y5) + 2*B2*(X5-X6))
IF (JJ .EQ. M) AMAT=AMAT + Bl*(Z4-Z6) +

1 C1*(Y6-Y4) - E * (2*B2*(Z4-z6) + 2*C2*(Y6-Y4))
IF (JJ .EQ. M+1) AMAT=AMAT + Al*(Z6-Z4) +

1 Cl*(X4-X6) -E * (2*A2*(Z6-Z4) + 2*C2*(X4-X6))
IF (JJ .EQ. M+2) AMAT=AMAT + Al*(Y4-Y6) +

1 B1*(X6-X4) -E * (2*A2*(Y4-Y6) + 2*B2*(X6-X4))
IF (JJ .EQ. N) AMAT=AMAT + B1*(Z5-Z4) +

1 Cl*(Y4-Y5) - E * (2*B2*(Z5-Z4) + 2*C2*(Y4-Y5))
IF (JJ .EQ. N+1) AMAT=AMAT + Al*(Z4-Z5) +

1 Cl*(X5-X4) -E * (2*A2*(Z4-Z5) + 2*C2*(X5-X4))
IF (JJ .EQ. N+2) AMAT=AMAT + Al*(Y5-Y4) +

1 B1*(X4-X5) -E * (2*A2*(Y5-Y4) + 2*B2*(X4-X5))
C

IF (ABS(AMAT) .GT. .02) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW

- 154 -

ICN(NTELE) = II
END IF

10 CONTINUE
C

RETURN
END

- 155 -

SUBROUTINE COPLAN (LCODE, KONS, NROW)
C---
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES
C FOR THE CONSTRAINT OF FOUR POINTS COPLANAR.
C---
C

INCLUDE 'RES1: [P3453.VLIN.COMMON]CONSTRAIN .CMN'
INCLUDE 'RES1:EP3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RESi:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)
Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
Z3 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
Z4 = XVECT(L+2)

C
Al = Y2*Z3 - Y2*Zl - Yl*Z3 - Y3*Z2 + Y3*Zl + Yl*Z2
Bl = -X2*Z3 + X2*Zl + X1*Z3 + X3*Z2 - X3*Zl - X1*Z2
Cl = X2*Y3 - X2*Y1 Xl*Y3 - X3*Y2 + X3*Yl + Xl*Y2
IF (LCODE .EQ. 0) GO TO- 100

C---
C RESIDUALS.
C---

D = -Xl*Al - Y1*Bl - Zl*Cl
RESID(NROW) = -1* (Al*X4 + Bl*Y4 + Cl*Z4 + D)
IF (LCODE .EQ. 1) RETURN

C---
C ONLY CALCULATE PARTIALS FOR SENSITIVE VARIABLES.
C---
100 II = 0

DO 10 JJ=1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = Y4*Z3 - Y4*Z2 - Y3*Z4 + Y2*Z4

1 - Al - Yl*Z3 + Yl*Z2 + Y3*Z1 - Y2*ZJ
IF (JJ .EQ. I+1) AMAT = -X4*Z3 + X4*Z2 - X2*Z4 + X3*Z4

1 + X1*Z3 - Xl*Z2 - B1 + Zl*X2 - Zl*X3
IF (JJ .EQ. 1+2) AMAT = -Y2*X4 + Y3*X4 + X2*Y4 - X3*Y4

1 + X1*Y2 - Xl*Y3 - Yl*X2 + Yl*X3 - Cl

- 156 -

IF (JJ .EQ. J) AMAT = -Z3*Y4 + Zl*Y4 + Y3*Z4 Yl*Z4
1 + Yl*Z3 - Zl*Y3

IF (JJ .EQ. J+i) AMAT = Z3*X4 - Zl*X4 - X3*Z4 + X1*Z4
3. - X1*Z3 + Z1*X3

IF (JJ .EQ. J+2) AMAT = -Y3*X4 + Yl*X4 + X3*Y4 -X1*Y4
1 + X1*Y3 - Y1*X3

IF (JJ .EQ. K) AMAT = Z2*Y4 - Zl*Y4 - Y2*Z4 + Yl*Z4
1 - Yl*Z2 + Zl*Y2

IF (JJ .EQ. K+1) AMAT = -Z2*X4 + Zl*X4 + X2*Z4 - X1*Z4
1 + X1*Z2 - Zl*X2

IF (JJ .EQ. K+2) AMAT = Y2*X4 Yl*X4 - X2*Y4 + X1*Y4
1 - X1*Y2 + Y1*X2

IF (JJ .EQ. L) AMAT = Al
IF (JJ .EQ. L+1) AMAT = Bl
IF (JJ .EQ. L+2) AMAT = Cl

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 157 -

SUBROUTINE PARALP (LCODE, KONS, NROW)
C--
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C CONSTRAINT OF A LINE PARALLEL TO A PLANE.
C--
C

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1: [P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
M = 3 * CONSTR(KONS,7) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)
Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
Z3 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
Z4 = XVECT(L+2)
X5 = XVECT(M)
Y5 = XVECT(M+1)
Z5 = XVECT(M+2)

C
Al = Y2*Z3 - Y2*Zl - Yl*Z3 - Y3*Z2 + Y3*Zl + Yl*Z2
Bi = -X2*Z3 + X2*Zl + X1*Z3 + X3*Z2 - X3*Zl - Xl*Z2
Cl = X2*Y3 - X2*Yl - Xl*Y3 - X3*Y2 + X3*Yl + Xl*Y2
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

RESID(NROW) = -1 * ((X5-X4)*Al + (y5-Y4)*Bl + (Z5-Z4)*C1)
IF (LCODE .EQ. 1) RETURN

C--

C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C--
100 11 = 0

DO 10 JJ=1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1

IF (JJ .EQ. I) AMAT = (Y5-Y4)*(Z3-Z2) + (Z5-Z4)*(Y2-Y3)
IF (JJ .EQ. I+1) AMAT = (X5-X4)*(Z2-Z3) + (Z5-Z4)*(X3-X2)
IF (JJ .EQ. 1+2) AMAT = (X5-X4)*(Y3-Y2) + (Y5-Y4)*(X2-X3)

- 158 -

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

(JJ
(JJ
(JJ
(JJ
(JJ
(JJ
(JJ
(JJ
(JJ
(JJ
JJ
(JJ

+

+

+

+

+

+

(Z5-Z4)*(Y3-Yl)
(Z5-Z4)*(Xl-X3)
(Y5-Y4)* (X3-Xl)
(Z5-Z4) * (Yl-Y2)
(Z5-Z4) * (X2-X1)
(Y5-Y4) * (X1-X2)

IF (ABS(AMAT) .GT. .02) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
CONTINUE

RETURN
END

- 159 -

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

.EQ.

J) AMAT =
J+1) AMAT =
J+2) AMAT =
K) AMAT =
K+1) AMAT =
K+2) AMAT =
L) AMAT =
L+1) AMAT =
L+2) AMAT =
M) AMAT =
M+i) AMAT =
M+2) AMAT =

(Y5-Y4) * (Z1-Z3)
(X5-X4) * (Z3-Z1)
(X5-X4)*(Yl-Y3)
(Y5-Y4)*(Z2-Z1)
(X5-X4)*(Zl-Z2)
(X5-X4) * (Y2-Yl)
-Al
-B1
-Cl
Al
Bl
Cl

C

10
C

SUBROUTINE PERPP (LCODE,KONS,NROW)
C--
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF PERPENDICULAR PLANES.
C--
C

INCLUDE 'RESi: [P3453.VLIN.COMMONCONSTRAIN.CMN'
INCLUDE 'RESi:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RESi: [P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3 * COUSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
M = 3 * CONSTR(KONS,7) - 2
N = 3 * CONSTR(KONS,8) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+I)
Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
Z3 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
Z4 = XVECT(L+2)
X5 = XVECT(M)
Y5 = XVECT(M+l)
Z5 = XVECT(M+2)
X6 = XVECT(N)
Y6 = XVECT (N+l)
Z6 = XVECT(N+2)

C
Al = Y2*Z3 - Y2*Zl - Yl*Z3 Y3*Z2 + Y3*Zl + Yl*Z2
BI = -X2*Z3 + X2*Zl + X1*Z3 + X3*Z2 - X3*Zl - X1*Z2
Cl = X2*Y3 - X2*Yl - Xl*Y3 - X3*Y2 + X3*Y + X1*Y2
A2 = Y5*Z6 - Y5*Z4 - Y4*Z6 - Y6*Z5 + Y6*Z4 + Y4*z5
B2 = -X5*Z6 + X5*Z4 + X4*Z6 + X6*Z5 - X6*Z4 - X4*Z5
C2 = X5*Y6 - X5*Y4 - X4*Y6 - X6*Y5 + X6*Y4 + X4*Y5
IF (LCODE .EQ. 0) GO TO 100

C---
C RESIDUALS.
C---

RESID(NROW) = -1*(Al*A2 + B1*B2 + Cl*C2)
IF (LCODE .EQ. 1) RETURN

C---
C ONLY CALCULATE PARTIALS FOR SENSITIVE CONSTRAINTS.
C--
100 !11= 0

- 160 -

DO 10 JJ=l , NEQS
AMAT = 0 .
IF (NVAR(JJ) .EQ. 0) GO TO 10
II
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

= II + 1
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.
(JJ .EQ.

IF (ABS(AMAT) .GT. .02) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
CONTINUE

RETURN
END

C---
C NOTE: SINCE SAME VARIABLE CAN APPEAR MORE THAN ONCE IN THE SAME

C EQUATION, MUST ADD JACOBIAN ELEMENTS TOGETHER.
C EG. I = 2 M = 2 JJ = 2

4 C MUST ADD A(NROWII) OBTAINED FROM I TO A(NROWII) OBTAINED
C FROM M TO GET NEW TOTAL A(IROW,II). MUST DO SAME FOR I+1,

C 1+2, M+1, M+2.

C---

- 161 -

I) AMAT=AMAT+B2*(Z3-Z2) + C2*(Y2-Y3)
I+1) AMAT=AMAT+A2*(Z2-Z3) + C2*(X3-X2)
1+2) AMAT=AMAT+A2*(Y3-Y2) + B2*(X2-X3)
J) AMAT=AMAT+B2*(Zl-Z3) + C2*(Y3-Yl)
J+j) AmA.=AMArT+A2*(Z3-Zl) + C2*(X1-X3)
J+2) AMAT=AMAT+A2*(Yl-Y3) + B2*(X3-X1)
K) AMAT=AMAT+B2*(Z2-Zl) + C2*(Yl-Y2)
K+i) AMAT=AMAT+A2*(Zl-Z2) + C2*(X2-X1)
K+2) AMAT=AMAT+A2*(Y2-Yl) + B2*(X1-X2)
L) AMAT=AMAT+B1*(Z6-Z5) + Cl*(Y5-Y6)
L+1) AMAT=AMAT+Al*(Z5-Z6) + Cl*(X6-X5)
L+2) AMAT=AMAT+Al*(Y6-Y5) + Bl*(X5-X6)
M) AMAT=AMAT+Bl*(Z4-Z6) + C1*(Y6-Y4)
M+1) AMAT=AMAT+Al*(Z6-Z4) + Cl*(X4-X6)
M+2) AMAT=AMAT+Al*(Y4-Y6) + B1*(X6-X4)
N) AMAT=AMAT+Bl*(Z5-Z4) + C1*(Y4-Y5)
N+1) AMAT=AMAT+Al*(Z4-Z5)+ C1*(X5-X4)
N+2) AMAT=AMAT+Al*(Y5-Y4)+ Bl*(X4-X5)

C

10
C

SUBROUTINE EQLDIS (LCODEKONS,NROW)
C---
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF TWO LINEAR DISTANCES BEING EQUAL.
C--
C

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]NUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)
Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
Z3 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
Z4 = XVECT(L+2)
E = SQRT((X2-Xl)*(X2-X1) + (Y2-Yl)*(Y2-Yl) + (Z2-Zl)*(Z2-Zl))
F = SQRT((X4-X3)*(X4-X3) + (Y4-Y3)*(Y4-Y3) + (Z4-Z3)*(Z4-Z3))
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

RESID(NROW) = F - E
IF (LCODE .EQ. 1) RETURN

C---------------&---
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C--
100 G=1/E

H=1/F
II = 0
DO 10 JJ =1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = AMAT - G*(X2-Xl)
IF (JJ .EQ. I+1) AMAT = AMAT - G*(Y2-Yl)
IF (JJ .EQ. 1+2) AMAT = AMAT - G*(Z2-Zl)
IF (*JJ .EQ. J) AMAT = AMAT + G*(X2-X1)
IF (JJ .EQ. J+1) AMAT = AMAT + G*(Y2-Yl)
IF (JJ .EQ. J+2) AMAT = AMAT + G*(Z2-Zl)

6 IF (JJ .EQ. K) AMAT = AMAT + H*(X4-X3)
IF (JJ .EQ. K+) AMAT = AMAT + H*(Y4-Y3)

- 162 -

IF-(JJ .EQ. K+2) AMAT = AMAT + H*(Z4-Z3)
IF (JJ .EQ. L) AMAT = AMAT - H*(X4-X3)

IF (JJ .EQ. L+1) AMAT = AMAT - H*(Y4-Y3)
IF (JJ .EQ. L+2) AMAT = AMAT - H*(Z4-Z3)

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE=NTELE+1
AVAL (NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C--
C NOTE: SINCE SAME VARIABLE CAN APPEAR MORE THAN ONCE IN IN THE

C SAME EQUATION, MUST ADD JACOBIAN ELEMENTS TOGETHER.
C--
n

RETURN
END

- 163 -

SUBROUTINE EQXDIS (LCODE, KONS, NROW)
C--
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE TWO EQUAL X DISTANCES.
C--
C

INCLUDE 'RES1: [P3453 .VLIN.COMMONJCONSTPRAIT.CMN'
INCLUDE 'RES1: [P3453 .VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1: [P3453:=VLIN,-COMMONJSEGMENT.CMN'
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
Xl = XVECT(I)
X2 = XVECT(J)
X3 = XVECT(K)
X4 = XVECT(L)
E = SQRT((X2-Xl)*(X2-Xl))
F = SQRT((X4-X3)*(X4-X3))
IF (LCODE .EQ. 0) GO TO 100

C---
C RESIDUALS.
C---

RESID(NROW) = F - E
IF (LCODE .EQ. 1) RETURN

C---
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C---
100 G=1 /E

H=1 IF
II = 0
DO 10 JJ=1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = AMAT - G*(X2-X1)
IF (JJ .EQ. J) AMAT = AMAT + G*(X2-X1)
IF (JJ .EQ. K) AMAT = AMAT + H*(X4-X3)
IF (JJ .EQ. L) AMAT = AMAT - H*(X4-X3)

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C---
C NOTE: SINCE SAME VARIAELE CAN APPEAR MORE THAN ONCE IN THE
C SAME EQUATION, MUST ADD JACOBIAN ELEMENTS TOGETHER.
C---

- 164 -

C
RETURN
END

- 165 -

SUBROUTINE DIS2PT (LCODEKONSNROW)

t C----------------------------------_-------------------__-----_-__-___
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE DISTANCE BETWEEN TWO POINTS IN 3 DIMENSIONS.
C--
C

INCLUDE 'RESX:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RESi: [P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)
Z2 = XVECT(J+2)
D = SQRT((X2-Xl)*(X2-X1) + (Y2-Yl)*(Y2-Yl) + (Z2-Zl)*(Z2-Zl))
IF (LCODE .EQ. 0) GO TO 100

C---

C RESIDUALS.
C---

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1 * (D - DIST)
IF (LCODE .EQ. 1) RETURN

C--
C ONLY COMPUTE PARTIALS FOR SENEITIVE VARIABLES.
C---
100 E 1 /D

II = 0
DO 10 JJ=1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1

IF (JJ .EQ. I) AMAT = -E*(X2-X1)
IF (JJ .EQ. I+1) AMAT = -E*(Y2-Yl)
IF (JJ .EQ. 1+2) AMAT = -E*(Z2-Z1)
IF (JJ .EQ. J) AMAT = E*(X2-X1)
IF (JJ .EQ. J+1) AMAT = E*(Y2-Yl)
IF (JJ .EQ. J+2) AMAT = E*(Z2-Z1)

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
E'ND

- 166 -

SUBROUTINE DISPTP (LCODE,KONS,NROW)
C---
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRATNT OF THE DISTANCE BETWEEN A POINT AND A PLANE9
C---
C

INCLUDE 'RESl:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1: [P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RESl:[P3453.VLIN.COMMONJSEGMENT.CMN
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2

L = 3 * CONSTR(KONS,6) - 2
Xl = XVECT(I)
Yl = XVECT(I+1)
Zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)
Z2 = XVECT(J+2)
X3 = XVECT(K)
Y3 = XVECT(K+l)
Z3 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+l)
Z4 = XVECT(L+2)

Al = Y2*Z3 - Y2*Zl - Yl*Z3 - Y3*Z2 + Y3*Zl + Yl*Z2
Bl = -X2*Z3 + X2*Zl + Xl*Z3 + X3*Z2 - X3*Zl - Xl*Z2
Cl = X2*Y3 - X2*Y - XI*Y3 - X3*Y2 +X3*Yl +Xl*Y2
D = -Xl*Al - Yl*B1 - Zl*Cl

SQT = SQRT(Al*Al + Bl*Bl + Cl*Cl)
SIGN = 1.
E = Al*X4 + Bl*Y4 + Cl*Z4 + D
IF (E .GE. 0.) SIGN = -1.
DIST = DIM(CONSTR(KONS,2),3)
IF (LCODE .EQ. 0) GO TO 100

C---

C RESIDUALS.
C--

RESID(NROW) = -l * (E + SIGN*DIST*SQT)
IF (LCODE .EQ. 1) RETURN

C---
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C---
100 F = SIGN*DIST*.5/SQT

II = 0
DO 10 JJ = 1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = Y4*(Z3-Z2) + Z4*(Y2-23) - Al

- 167 -

I

1 - Yl*(Z3-Z2) - Zl*(Y2-Y3) + F*(2*Bl*(Z3-Z2)
2 + 2*C1*(Y2-Y3))

IF (JJ .EQ. I+l) AMAT = X4*(Z2-Z3) + Z4*(X3-X2) -
1 X1*(Z2-Z3) - Bl - Zl*(X3-X2) + F*(2*Al*(Z2-Z3)
2 + 2*Cl*(X3-X2))

IF (JJ .EQ. 142) AMAT = X4*(Y3-Y2) + Y4*(x2-X3) -
1 X1*(Y3-Y2) - Yl*(X2-X3) - Cl + F*(2*Al*(Y3-Y2)
2 + 2*Bl*(X2-X3))

IF (JJ .EQ. J) AMAT = Y4*(Zl-Z3) + z4*(Y3-Yl) -
1 Yl*(Zl-Z3) - Zl*(Y3-Yl) + F*(2*B1*(Zl-Z3)
2 + 2*Cl*(Y3-Yl))

IF (JJ .EQ. J+1) AMAT = X4*(Z3-Zl) + Z4*(X1-X3)
1 - X1*(Z3-Zl) - Zl*(Xl-X3) + F*(2*Al*(Z3-Zl)
2 + 2*Cl*(Xl-X3))

IF (JJ .EQ. J+2) AMAT = X4*(Yl-Y3) + Y4*(X3-X1)
1 - X1*(Yl-Y3) - Yl*(X3-Xl) + F*(2*AL*(Y.l-Y3)
2 + 2*Bl*(X3-X1))

IF (JJ .EQ. K) AMAT = Y4*(Z2-Zl) + Z4*(Yl-Y2) -
1 Yl*(Z2-Zi) - z1*(Y1-Y2) + F*(2*Bl*(Z2-Zl)
2 + 2*Cl*(Yl-Y2))

IF (JJ .EQ. K+1) AMAT = X4*(Zl-Z2) + Z4*(X2-X1) -
1 X1*(Zl-Z2) - Z1*(X2-X1) + F*(2*Al*(Zl-Z2)
2 + 2*C1*(X2-Xl))

IF (JJ .EQ. K+2) AMAT = X4*(Y2-Yl) + Y4*(X1-X2) -
1 X1*(Y2-Yl) - Yl*(Xl-X2) + F*(2*Al*(Y2-Yl)
2 + 2*Bl*(X1-X2))

IF (JJ .EQ. L) AMAT = Al
IF (JJ .EQ. L+1) AMAT = Bl
IF (JJ .EQ. L+2) AMAT = C 1

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = LTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 168 -

SUBROUTINE HDIST (LCODE,KONS,NROW)
C--

* C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR

C THE CONSTRAINT OF THE HORIZONTAL DISTANCE BETWEEN TWO POINTS.

C--
INCLUDE 'RES1:1[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNTJMERIC.CMN'
INCLUDE 'RESI:[Pa 3453.VLIN.COMMONJSEGMENT.CMN'

* C
I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2

Xl = XVECT(I)
Yl = XVECT(I+1)
X2 = XVECT(J)

* Y2 = XVECT(J+1)
D = SQRT((X2-Xl)*(X2-Xl) + (Y2-Yl)*(Y2-Yl))
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -l*(D - DIST)
IF (LCODE .EQ. 1) RETURN

C--
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C---
100 E=1// D

II = 0
DO 10 JJ = 1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1

IF (JJ .EQ. I) AMAT = -E*(X2-X1)
IF (JJ .EQ. I+1) AMAT = -E*(Y2-Yl)
IF (JJ .EQ. J) AMAT = E*(X2-Xl)
IF (JJ .EQ. J+1) AMAT = E*(Y2-Yl)

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
c

RETURN
END

- 169 -

SUBROUTINE VDIST (LCODEV ,KONS, NROW)
C--

t C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE VERTICAL DISTANCE BETWEEN TWO POINTS.
C--
C

INCLUDE 'RES1:EP3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:FP3453.VLIN.COMMONNUMERIC.CMN'
INCLUDE 'RESI:[P3453.VLIN.COMMONJSEGMENT.CMN'
I = 3*CONSTR(KONS,3) - 2
J = 3*CONSTR(KONS,4) - 2

C
Zl = XVECT(I+2)
Z2 = XVECT(J+2)
IF (LCODE .EQ. 0) GO TO 100

C---
C RESIDUALS.
C---

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1 * (Z2 - Zl - DIST)

IF (LCODE .EQ. 1) RETURN
C---
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C---
100 11 = 0

DO 10 JJ= 1,NEQS
AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. 1+2) AMAT = -1.
IF (JJ .EQ. J+2) AMAT = e.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 170 -

SUBROUTINE XDIST(LCODEKONSNROW)
C---
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE X DISTANCE BETWEEN TWO POINTS.
C--

INCLUDE 'RESI: [P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1: [P3453.VLIN.COMMON JNUMERIC.CMN'
INCLUDE 'RESi: [P3453.VLIN.COMMONJSEGMENT.CMN'

C
I = 3*CONSTR(KONS,3)-2
J = 3*CONSTR(KONS,4)-2
Xl = XVECT(I)
X2 = XVECT(J)
IF (LCODE .EQ. 0) GO TO 100

C--
C RESIDUALS.
C--

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1*(X2-X1-DIST)
IF (LCODE .EQ. 1) RETURN

C--
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C--
100 II = 0

DO 10 JJ = 1,NEQS

AMAT = 0.
IF (NVAR(JJ) .EQ. 0) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = -1.
IF (JJ .EQ. J) AMAT = 1.

c
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE+1
AVAL(NTELE) = AMAT

IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 171 -

SUBROUTINE YDIST (LCODE, KONS, NROW)
C---

4 C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE Y DISTANCE BETWEEN TWO POINTS.
C--

INCLUDE 'RES1: EP3453.VL IN .COMMONJCONSTRAIN.CMN'
INCLUDE 'RESi:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RESi:[P3453.VLIN.COMMONJSEGMENT.CMN'

4 C
I = 3*CONSTR(KONS,3)-2
J = 3*CONSTR(KONS,4)-2
Yl = XVECT(I+1)
Y2 = XVECT(J+1)
IF (LCODE .EQ. 0) GO TO 100

4-C--
C RESIDUALS.
C--

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1*(Y2-Yl-DIST)
IF (LCODE .EQ. 1) RETURN

4 C--
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C--
100 11 = 0

DO 10 JJ = 1,NEQS
AMAT = 0.

IF (NVAR(JJ) .EQ. 0) GO TO 10
II=II +1
IF (JJ .EQ. I+1) AMAT = -1.
IF (JJ .EQ. J+i) AMAT = 1.

C
IF (ABS(AMAT) .GT. .02) THEN

NTELE = NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
10 CONTINUE
C

RETURN
END

- 172 -

