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ABSTRACT

The focus of this investigation is a method for
modification of geometry in computer-aided design systems.
Called variational geometry, it uses a single representation
to describe the complete family of gecmetries which share a
given topology. A three-dimensional shape model is defined
with respect to a set of characteristic pecints. The
rositicns of these characteristic points are fixed by a set
of nonlinear algebraic éequations which describe constraints
imposed by engineering dimensions. Explicit constraints fix

distances, angles, radii, and diameters. Implicit
constraints £fix parallel and perpendicular planes, and
prevent rigid body translation and rotation. Area and

volumetric properties may also be used as constraints.

Modification of three-dimensional geometry is
accemplished with minimal vser input. The dimension to be
changed is selected and its new value entered. A modified

Newton-Rezphson method is used to solve the set of constraint

equaticns for the new geometry with no additional user
input.

A procedure for minimizing computational reguirements
is presentad. The procedure uses known relationships
between dimensional constraints and their assoclated
characteristic points to identify the minimunm set of
censtraint equations and characteristic points which must be
solved to effect a given dimensioral change. For n
characteristic points, solution time is shown to be of order
0{nj.

Thesis Supervisor: David C. Gessard
Title: Associate Professor
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1.9 INTRODUCTION

1.1 CBJECTIVES

One cf the most important features of computer-z2ided
design systemeg is the ability to represent gecmetry by a
shape model. Because cof the iterative nature of design,
gecmetry 1is medified often. A friendly user interface to
allow simple modificeztion and manipulation c¢f gecmetry is
essential tc the effectiveness of CAD systems and is the

central focus of this investigation.

Current gecmetric modelling systems use 2 rigid
gecmetry definition structure in which cresaticn of geometric

entities (e.g. points, lines, surfaces) reqguire exact
specification of their positions ip three-dimensional space.
This is acccmplished either by specifying the placements of
the entities through input of x, y, and z coordinates or
through a set of translations and rotations of surfaces or

three-dimensicnal primitive solids.

The objective of this thesis investigation is te study
metheds by  which three-dimensicnal gecmetries can be

manipulated and modified with minimal user interaction. cf



particular interest is the method called variational
gecmetry, in which a single representation is wused to
describe the complete family of gecmetries which share a
given topology. A discussion of variational geometry
applied to two-dimensional cbjects is given by Light [28].
The current investigation focuses o¢n three-dimensional
geometries and methods for increasing computatiornal

efficiency of the method.

The implementation of variational geometry is based
apon & topclogicelly and geometrically complete data
structure. PFaces, edges and vertices are defined with
respect to a set of characteristic {defining) points.
Three-dimensional constraints are then applied to these
characteristic rpoints. Gecmetry modification is reduced to
two steps; selecting the dimension(s) to be changed and

entering the new dimensional value(s).

For any dimension change, a matrix method 1is wused to
reconcile the set of constraint equations and coordirnate
points. To increase the speed and efficiency of this
method, the relationships between the ccnstreining equa-
tions and coerdinate points are used to segment the total
number of equaticns and coordinate points into a smaller and

mcre managable subset.



These concepts have been implemented 1in a prototype
system, the DIMENSION system. Currently, the «class of
shapes which can be modelled include those with planar,
cylindrical, spherical, and conical surfaces. The system
currently interfaces with four data files containing
topology, gecmetry, constraints, and dimensions. Different

parts can be modelled by the creation of new data files.

Input methods which define geometry with low accuracy
can be used since the use of variational geometry allows for
easy medificaticn of geometry. Once the set of data files
has Dbeen created, medification of the dimensioﬁ and related
data files is accomplished through a simple interactive

procedure.

(9%



1.2 RELATED WCRK

The concept of constraining the coordinazte points of a
part in cecmputer-zided design can be seen in the early work
of 1Ivan Sutherland [29]. Sutherland used various
relationships between the coordinates of a part to constrain
its geometry. For example, to make a line between two
points vertical, a constraint satisfaction routine attempted
to reduce the difference in the x coordinates of +he two
points to zero by manipulating the constrained coordinates.
Sutherland defined a number of constraints for the
two-dimensional case. Sutherland did not use geometric
constraints for definition of the complete geometry nor was

it used for the purpose of modification of geometry after

the part had been created.

Robin Hillyard and Ian Braid [16],[17],[18] developed 2
more general approach which used constraint eguations to
relate positions of vertex points of a geometry to the

dimensions shown or implied in an engineering drawing.

When the variations in the dimensions are small, the
set of equations can be linearized. For example, the

equation describing the linear dimension between two points,



Pi and Pj (Figure 1), is given by

(di - dj) - 1
- (1.1)
11

where u is the variation in the dimension 1, di and 4&j are
the variations in position of vertices Pi and Pj, 1 is the
separation vector between vertices Pi and Pj, and |1l is the

dimensional value.

Figure 1, Linear dimension between two points.

The complete =set of constraint eguations may be
expressed in matrix form, R4 = u where R is the rigidity
matrix, 4 the vertex displacement vecteor, and u the vector
of wvariations in dimensions (bcunded by the tolerances).
For @ given set of dimensicnal variations, the vertex

displacements ca2n be determined by a relaxation technique.



The use of constraint equations to definéﬂgeometry was
furthur developed by Robert Light [2€]. Light developed a
prototype two-dimensional system to modify the geometry of
two-dimensional parts. Constraints were defined between
points for two-dimensional shape models. As an example, the
linear distance between w0 points in two-dimensions,
Pl=(x1l,yl} and Pl=(x2,y2) is given by

(x2 - x1)%- (y2 - y1)%2- p? = 4. (1.2)

A,

\</D |
:

Figure 2, Two-dimensional constraint of the
linear distance between two pointe.

Given the dimensicnal values, the positions of the
points were determined by the Newton-Raphson method to solve
the set of simultaneous necn-lirear constraint equatiens.
The form of the set of eguations is J dx = r, where J is the
Jacobian matrix, 25 the displacement wvector, anéd r the

residual vector.



Overdimensioning, underdimensicning, and redundant
dimensioning were detected using & modified Doolittle's
method. Methods for increasing computational efficiency for

the set of two-cdimensional constraints were alsc develcped.

The objectives of this investigation are to identify
and derive constraint equations fcr three-dimensional

geometries and to develop methods to increase the efficiency

of the numerical compu:ations.



2.2 DATA REPRESENTATION

2.1 GECMETRY AND TOPCLOGY

In three dimensions, a body is bounded by a set of
faces. Faces may be planar or curved. Faces intersect in
edges, which may be straight or curved. Edges intersect at

vertices.

For the shape of a part to be completely defined, its

geometry as well as 1its topology must be ccmpletely
specified. Geometry refers to the physical locations of the
faces, edges and vertices in three-dimensional =space.
Topology refers to the way the faces, edges, and vertices of
a body are connected. Each face is bounded by a ring of
edges and vertices. Each edge is bcunded by two vertices

and twec faces.

From a d&ata base of complete geometrical and
topological information, different views can be generated
for drawing purpcses, volumetric properties can be ccmputed,
and part consistency and well-formedness can be

automatically checked.

- R -



Current geometric modelling system data bases fall into
two categories. In the first, ccmplete gecmetrical
information is stored. Topolegical information is lnot
completely specified. <Completeness and part consistency can
only be checked visually. This first class of geometric

modellers has been called the "wire-frame modellers”

The second category of geometric modellers store
complete topolegical and geometrical information. This can
be deone in different ways. The method of storage depends on
the type of application of the system, the algorithms used
in the system, and the tradeoff between storage requirements

and time required for searches and calculaticns.

In the second category of geometric modellers, encugh
information 1is stored in the data base so that part
consistency can be checked. Conditions of closure, surface
orientation, and neon-self intersection must be met in order
for a shape to be consistent and well-formed. The dataz base
of this type of geometric modelling system has given rise to

the term "solid modellers".



In the DIMENSICN system, both complete geometrical
informaticn as well as complete topological information are
stcred. This provides *“he capability to check the

well-formedness of a part.

A complete description of the creation of the
geometrical and topological data base for the DIMENSION
system is presented by Congdon [3]. Cnly the general

structure of how the data is organized and what is stcred

will be presented here. Currently, only planar,
cylindrical, sgherical, and conical surfaces can be
represented.

The general structure of the geometrical and
topological data bas2 for a body is shown in Figure 3, where

the rectangles denote data files. In the body data file are
stored the number of faces,; edges, and vertices which make
up the body, as well as pointers to the faces, edges and

vertices,

- 14 -



FACES EDGES I VERTICES
|

Figure 3, General data base structure.

Gecmetry of a component is described as a set of face,
edge, and vertex files. The structure of the face, edge and

vertex files are shown in Figure 4.



FACE

face type

pecsitive/negative

hole/face

!directed edge list

directed vertex list

surface peointer ——

SURFACE

surface type

attribute 1

attribute 2

|

ECGE

edge type

curve pcinter = CURVE

start vertex

erd vertex

left face

right face

VERTEX

X ccordinate

Y coordinate

Z coordinate

cennecting vertex list )

curve type

attribute 1

[E—

attribute 2

|
I

Figure 4, Structure of face, edge, and

vertex data files.

~ 12 -




The vertex file contains the x, y, and z coordinates of
each vertex. Space is allocated for stcorage of the list of

adjecent vertices of each vertex.

The edge file contains the edge type, a pointer tc the
curve file if the edge is not a straight line, pointers to
the edge's start and end vertices and its adjacent left and

right faces.

The curve file contains the curve type and its
attribute list. Currently, only circular arcs are treated.
For a circular arc, its center, radius and normal vector are

stored.

The face file contains the face type, a pointer to the
surface file, whether it is a positive or a negative face,
whether it is a hole or a face (the face number of the face
the hole belongs to if hole), the list of directed edges
surrounding the face and the list of directed vertices of

the face.



The surface file contains the surface type and its
attribute list. Currently, only planes, cylindrical,
conical, and spherical surfaces are treated. For each
surface, space 1is allocated for storage of coefficients of

its implicit equation.

The topological relationships between the faces, edges
and vertices are illustrated in Figure 5. Faces point to

edges and vertices. Edges point to faces and vertices, and

vertices point to vertices.

FACE

/ N\ A

v
EDGE |~-————2m| VERTEX F/

Figure 5, Topological relationships between
faces, edges, and vertices.

2.2 CONSTRAINTS

The DIMENSION system provides for constraints between
the set of characteristic or defining points and

parzmeters of the surfaces. This information is maintained

- 14 -



in two data files. The structure of the constraint and

dimension data files are shown in Figure &.

CONSTRAINT DIMENSION

censtraint type : dimension type

dimension pointer censtraint pointer

list cf constrained dimengion value

vertices

. view displayed

defining entities
label pecsitien in

sQreen coordinatesi

Figure 6, Structure of censtraint
and dimension data files.

The constraint file contains, for each constraint, the
type of constraint and the defining points of the surfaces
which are censtrained. 1If the constraint is a dimensional
constraint, 1t contains a pointer to the dimension file.
The dimension £file is used for display of dimensions on
drawings as well as to allow the user to interactively
mcdify dimensional values. The dimension file contains the
type of dimension, a pointer to the constraint file, the
value of the dimension, the view in which the dimension 1is
to be displayed, the defining points of that dimension in

the view which it is to be displayed for purposes of



displaying the dimension lines, and the screen coordinat:s

of the dimension label position.

- 16 =



3.0 THREE-DIMENSIONAL CCNSTRAINTS

3.1 GENERAL

An object represented by N points has n=3N degrees of
freedom in three-dimensional space. To fix the position of
all the points and, therefore, the gecmetry of an object, 2N
independent items of information, derived from the
constraints are needed. A constraint can provide one or
more items of information. Each of the items of information
can be written as a nonlinear equation in terms of the point

coordinates.

A full set of independent constraints will give rise to
3N non-linear -eguations. This set of equations must be
sclved simultaneously tc determine the coordinate points of

the object.

Constraints can be divided into two greoups, implicit
and explicit. Implicit  constraints are usually not
represented in engineering drawings but are understocd or
implied by the draftsman and the reader of the drawing. For
example, in the object in Figure 7, perallel planes =zand

perpendicular planes are usually not explicitly labeled.



Figure 7, Drawing of a 3-D part.

It is commeon drafting practice to draw the planes parallel
or perpendicular and not give dimensions to specify
parallelism and perpendicularity. Exceptions occur when
draft angles, parallelism tolerances, and perpendicularity

tolerances are explicitly specified.

- 18 -



Explicit constraints specify a dimensional value.
Expiicit ceonstraints result from distance, angular, radial
or diametrical dimensions. In the example shown in Figure
7, dimensions A,B,C,D, and E specify distances between
parallel planes. These dimensions result in both explicit

and implicit constraints.

The constraint equations for a set of common
censtraints was derived. The 1list of three dimensional

constraints is shown in Table 1.

LIST OF THREE DIMENSICNAL CONSTRAINTS

l. Rigid bedy translation.
2. Rigid bedy rotatien.

3. Four peoints coplanar.
4, M points coplanar

5. Vertical plapne.

6. Horizontal plane.

7. Perpendicular planes.
8. Parallel planes.

9. Line parallel to plane.

19. Parallel lines.
11. Equal x distance between two points.
12. Equal y distance between two points.

13. Equal z distance between two points.



14, Equal linear distance between two points.

15. X distance between two points.
16. Y distance between two points.
17. Z distance between two points.
18. Linear distance between twoc points.
19. Distance from a point to a plane.
28. Distance from a point to a line.
2l. Distance between parallel lines.
22. Distance from a line to a plane.
23. Distance between two planes.

24, Angle between two lines.

25, Angle between a line and a plane.
26, Angle between two planes.

Table 1, List of three-dimensional constraints.

In a future CAD system incorporating this approach, the
designer could interactively apply the constraints to the
tepological representation of a three-dimensional object.
Alternately, a semi-automatic constraining scheme could be
used in which the implicit censtraints are autematically
generated by the computer and explicit constraints manuvally

assigned by the designer.

- 20 -



Although twenty-six constraints between entities in
three-dimensions have been derived, the set of constraints
which are used for most common enaineering parts is somewhat
smaller. Many of the mathematical relaticnships
representing the ceonstraints can be derived from analytical

geometry.

3.2 IMPLICIT CONSTRAINTS

1) RIGID BODY TRANSLATION: A body is ccnstrained in
rigid body  translation if one vertex on the bedy,
Pr=(xr,yr,zr), is fixed. Equation (3.1) fixes X
translation. Equation (3.2) fixes y translation. Equation

(3.3) fixes z translation.

xr = 9 (3.1)
yr = 0 (3.2)
zr = @ (3.3)

- 21 ~-



2)  RIGID BCDY ROTATION: A body is constrained in
rotation by fixing lines on the bedy from rotation about the
three axes. If three points on a body, Pl=(xl,yl,zl),
P2=(x2,y2,2z2), and P3=(x3,y3,z3) are defined as shown in
Figure 8 and Pl is fixed in rigid body translation, equation
(3.4) fixes a line from rotating zbout the z axis. Equation
(3.5) fixes that same line from rotating about the y axis.
Equation (3.6) fixes a line which has no component in the x

direction from rotating abocut the x axis.

Y2 -yl =490 (3.4)
z2 - z1 =0 (3.5)
z3 - z1 =40 (3.6)
Z A
P3 Y
Py
Py
X

Figure 8, Three points on a body.



3) FOUR POINTS COPLANAR: Three non-colinear points
Pl=(xl,yl,zl), P2=(x2,y2,z2), and P3=(x3,y3,z3), define a

plane. Let P=(x,y,z) be an additional point in that plane.

The vectors PlP, PlpP2, FIP3 are coplanar so PlP is

perpendicular to the vector product of PlPZ and PlP3.

PIP . (PL1P2 x P2P3) = @ (3.7)

equaticn (3.7) may be expanded,

x -xl y -yl z -zl

x2-x1 y2-yl z2-zl =0

x3-x1 yl-yl z3~-zl

thus, the four points are coplanar when,

Ax + By +Cz +D =290 (3.8)
where
A = y2z3 - y2zl - ylz3 - y3z2 + y3zl + ylz2 (3.9)
B = =x22z3 + x2z1 + x12z3 + x3z2 = x3zl - xlz2 (3.19)
C = x2y3 - x2yl - xly3 - x3y2 + x3yl + xly2 (3.11)

D = -x1A - ylB - zIC (3.12)

4) M POINTS CCPLANAR: To constrain a M=-pointed
polygen to be coplanar, M-3 cconstraints of four points
coplanar may be used. The polygon can be subdivided into

M-3 quadrilaterals and each constrained tc be coplenar.

- 23 -



S5)  VERTICAL PLANE: A plane, Ax + By + Cz +D = @,
is constrained to be vertical if the z component of its
normal vector, [A,B,C], 1is zero. If Pl=(xl,yl,z1),
p2=(x2,y2,z2}), and P3=(x3,y3,23} are three points on the

plane, then from Equation (3.11}),

C = x2y3 - x2yl - xly3 =~ x3y2 + x3yl + xly2 =0 (3.13)

[2,8,C]

|
>~
P

Figure 9, Vertical plane.

6) HORIZONTAL PLANE: The coordinate axis is defined
in such =z way that the x-y plane defines the horizontal
directicn. A plane, Ax + By + Cz + D = @, is constrained to
be horizontal if the x and y components of its normal
vector, (a ,B ,C 1, are Zero. If Pl=(x1l,yl,zl},
p2=(x2,y2,22), and P3=(x3,y3,23) are three points on the

plane, then froem Equations (3.9) and (3.18),

- 24 -
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=
_—
[¥8)
(]
o

A = y2z3 - y2zl - ylz2 - y3z2 + y3zl + ylz2

B = -x2z3 + x2z1 + x1z3 + x3z2 - x3zl - xlz2 g (2.15)

[2,5,C]

(L]

Figure 19, Horizontal plane.

7} PERPENDICCLAR PLANES: Pl=(xl,yl.zl), P2=(x2,y2,z2),
and P3=(x3,y3,23) are three points on one plane.
P4=(x4,y4,z4), P5=(x5,y5,z5), and P6=(x6,y6,z6) are three
points on another plane. In order for the two planes,
defined by Alx + Bly + Clz + Dl = @ and A2x + B2y + C2z + D2
= @, to be perpendicular, their normal vectors, [Al,Bl,Cl]
and [A2,B2,C2], must be perpendicular and their scalar

product zerc.

ALA2 + B1R2 + ClC2 = 4§ (3.16)
where

Al = y2z3 - y2zl - ylz3 - y3z2 + y3zl + ylz2
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Bl

-x2z3 + x2z]1 + x1z3 + x3z2 - x3zl xlz?2

Cl = x2y3 - x2yl - xly3 - x3y2 + x3yl + xly2
A2 = vy5z6 - y5zd4 - ydz6 - y6z5 + y6z4 + ydzS
B2 = -x5z6 + x5z4 + x4z6 + x62z5 - x6z4 - x425
C2 = x5y6 - x5y4 - xdy6 - x6y5 + x6y4 + x4y5

/ | [A1,B1,C1] .
~ #

[a2,B2,c2] k
Y

Figure 11, Perpendicular planes.

8) LINE PARALLEL TO A  PLANE: P3=(x3,y3,23),
P4=(x4.y4,24), and P5={x5,y5,25) are three points on a
plane. A line is ccnstrained to be parallel to the pleane,
Ax + By + Cz + D = 8, if the vector on the line,
[x2-x1,y2-yl,z2-21] is perpendicular to the plane normal
vector [A,B,C]. Two vectors are perpendicular if their

scalar preoduct is zero,
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A(x2-x1) + B(y2-yl) + C{z2-zl) =0 (3.17)

where
A = vy4z5 - y4z3 - y3z5 - y5z4 + y5z3 + y3z4
B = -x4z5 + x4z3 + x3z5 + x5z4 - x5z2 - x3zd
C = xd4y5 - x4y2 - x3y5 ~ x5y4 + x5y3 + x3y4
x2~x1,y2-yl,z2-z1]
z
[A,B,C]
Y

Figure 12, Line parallel to a plane.

9) PARALLEL PLANES: Since this constraint carries

two items of information, two equations of a line parallel
to a plane are required. The two lines must be intersecting
lines of one of the planes. Ancther interpretation cculd be
+o use one constraint of the angle between the two normal
vectors of the planes to be zero and one constraint of the

normzal vectcrs being coplanar.



19 PARALLEL LINES: This constraint carries two
items of information. First, the four points defining the
two lines must bDe coplanar. Second, the angle Dbetween the

two lines is constrained to be zero.

11) EQUAL X DISTANCE BETWEEN POINT PAIRS: The x
distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and the x
distance between P3=(x3,y3,z3} and P4d=(x4,y4,z4) are

constrained to be equal.

V(x4-x3)F - (x2-x1)* = @ (3.18)
Plt z
P, ,QDl\S/—‘Pz
"61:;;\\“‘\\,P Y
=>4

Figure 13, Equal x distance between point pairs.

This form of the equaticn was used instead of (x4—x3)2-

(x2—xl)2 = @ to keep the values of the resulting partial

derivatives in the Jacobian matrix approximately egual in
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magnitude with the values of the partials from other
constraints to minimize roundoff errors 1in the numerical

methods.

12) EQUAL Y DISTANCE BETWEEN POINT PAIRS: The vy
distance Dbetween Pl=(xl,yl,zl) and P2=(x2,y2,2z2) and the y
distance between P3=(x3,y3,23) and P4=(x4,y4,z4) are

censtrained to be equal.

\/(y4-y3)2 - (y2-yl)2 =2 (3.19)

Figure 14, Equal y distance between point pairs.



13} EQUAL Z DISTANCE RETWEEN POINT PAIRS: The =z
distance between Pl=(xl,yl,zl) and P2=(x2,y2,z2) and the z
distance between P3=(x3,y3,z3) and P4=(x4,v4,z24) are

constrained to be equal.

V(z4-23)%2 -  (z2-z1)% =0 (3.20)
P
1
Py
2z
T ,
D1
P l
4

Figure 15, Equal z distance between point pairs.

14) EQUAL LINEAR DISTANCE BETWEEN POINT PAIRS: The
lirear distance betweer Pl={xl,yl,zl) and P2=(x2,vy2,22) and
the linear distance betwesn P3=(x3,y3,23) and P4=(x4,y4,24)

are constrained to be equal.

V(xd-x3 B (ydny3 B (24-23 P (x2-11 P (y2-y1 )% (z2-z1 %= @ (3.21)

- 39 -



Py o
P r,/”EEi:;h z
1o
P1
Y
S
\‘5/P4

Figure 16, Equal linear distance between point pairs.
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3.3 EXPLICIT CONSTRAINTS

The following three constraints are useful fer

dimensioning a part in the three orthographic views.

15) X DISTANCE BETWEEN TWO POINTS: This constraint
fixes one point, Pl=(xl,yl,zl) to be a certain distance, Dx,

away from a second point, P2=(x2,y2,z2) in the x direction.

(x2 - x1)2 - Dx = 0 (3.22)

Figure 17, X distance between twec points.

16} Y DISTANCE BRETWEEN TWO PCINTS: This constraint
fixes one point, Pl=(xl,yl,zl) to be a certain distance, Dy,

away from a second point, P2={x2,vy2,z2) in the y direction.
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(y2 - y1)* - Dy = @ (3.23)

by z

~ 2
Py

v ]

Figure 18, Y distance between two points.

17) Z DISTANCE BETWEEN TWO POINTS: This constraint

fixes one point, Pl=(xl,vyl,z!) to be a certain distance, Dz,

away from a second point, P2=(x2,y2,22) in the z direction.

\[(22-21)2 - Dz = @ (3.24)

? f .
92\

Figure 1%, Z distance between two points.
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18} LINMEAR DISTANCE BETWEEN TWO POINTS: This
censtraint fixes one point, Pl=(xl,yl,zl) to be a certain

linear distance, D, away from 2 second point, P2=(x2,y2,z2).

Vix2-x1)2 + (y2-y1)? + (x2-x1)2 - D = @ (3.25)

//ék\ P z
e Y

Pl

Figure 20, Linear distance between two points.

19) DISTANCE FROM A POINT TO A PLANE: This
constraint fixes the distance from the plane Ax + By + Cz +
D =@ to the point, Pi=(xl,yl,zl) which is not on the plane.
Since Pl is not on the plane, Axl + Byl + Czl + D # 8. Let
P2=(x2,y2,22) be the projection of Pl cn the given plane.

Then Ax2 + By2 + Cz2 + D

. Let u be the plane normal

vector.



Pl(xl,yl,zl)

!

u

Figure 21, Distance from a point to a plane.

CASE 1: If Pl and u lie on the =same side of the plane,

the angle between u and PZPl is 2° and

A(xl-x2) + B(yl-y2) + C(zl-z2)

Va2 + B2 + 2 |PoPi|
since D = - Ax2 - By2 - Cz2,

2xl + Byl + Czl + D

va2 + B2 + c2 |P2p1]

Axl + Byl + Czl + D
tP2Pl| = (3.26)
ya2 + B2 + (2

CASE 2: If Pl and u lie ¢n opposite sides of the plane,
the angle between u and P2P1 is 180° and

o . P2P1
= cos 182°

lul  [P2P1|
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A(xl-x2) + B(yl-y2) + C(zl-22}

Va2 + 82 + c2  [P2PI|
replacing D by - Ax2 - By2 - Cz2,

Axl + Byl + Czl + D

Va2 + B2 + c? |P2PI|

Axl + Byl + Czl + D
- |P2P1] = (3.27)
VvaZ + 2 + ¢?

S0 to constrain the distance, R, from the point Pl to the
plane Ax + By + Cz + D = 0,

Axl + Byl + Czl + D

- R =20 (3.28)

+ya? + 82 + 2

where the sign before the radical is opposite to that of D.

20) DISTANCE FROM A POINT TO A LINE: This
constraint fixes the perpendicular distancce from a point,

Pl=(xl,yl,2zl), to a line, P2P3.
Let v be the vector from P2 to Pl

v = (x1-x2)1 + (yl-y2)3 + (zl-22)K
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Let 4 be the unit vector from P2 to P3

(x3-x2) (y2-y2) (z3-2z2)
= ———f 4+ 5+ ——F
|p2p2 | lp2P3| [p2pP3|
P
vy P3
\
AN
4
P

Figure 22, Distance from & point to a line.

The magnitude of the vector product of 4 and
to the magnitude of & times the magnitude of
sine of the angle between them.

is egual
times the

1<l

G x vl = ldllyvl siné
Since G is a unit vector, [l = 1
[d x v = |v| sin¥4

Since |vl sinéd is the required perpendicular distance
froem point Pl to the line, we have,

14 x vl = DpIST
u2 u3l u3 ull ul u2i
& x vl = i+ Ij + &
v2 VB\ v3 vl vl v2l

= (u2v3=u3v2)i + (u3vl-ulv3}j + {(ulv2-u2vl) K



DIST=|1 x X[=#(u2v3—u3v2)2+(u2vl-ulv2)2+(ulv2-u2vl)2(3.29)

where
vl = x1 - x2, v =yl - vy2, v3 =zl - z2
x3 - x2 y3 - y2 z3 - 22
ul = —mm—m——o, U2 = ———, ul = ———
|P2P3 | |p2p2| |P2P3 |
p2p3| = Y(x3-x2)% + (y3-y2)? + (23-22)2
21} DISTANCE BETWEEN PARALLEL LINES: This

censtraint constrains two lines to be parallel and the

distance from a point to 2. line.

22} DISTANCE FRCM A LINE ™ A PLANE: This
constraint constrains the line to be parallel to the plane

and the distance from cne point of the line to the plane.
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23) DISTANCE BETWEEN TWO PLANES: This constraint
constrains the two planes to be parallel and the distance
from a peint tc a plane contributing a total of three items

of information.

24) ANGLE BETWEEN TWO LINES: The cosine of the
angle between two lines cen be found by summing the products
of the respective direction cosines of the two -vectors on

the lines, [x1-x2,yl-y2,z1-z2] and [x3-x2,y3-y2,23-z2].

(x1-x2)(x3-x2) + (yl-y2)(y3-y2) + (z1-22)(z3~-22)

~Ccosh=f
{( x1-%x2)2 +(yl-y2)2 +(z1-22 )2 {(xa-xz 12 4(y3-y2)2+(23-22)2

(3.39)

P \’ o P

L

Figure 23, Angle between two lines.
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25) ANGLE BETWEEN A LINE AND A PLANE: The 2angle
between a 1line and the plane Ax + By + Cz + D = 0 is the
complement of the angle between the vector on the line,
[x2-x1,y2-yl,z2-21], and the normal vector of the plane,

fa,B,C].

A(x2-x1) + B(y2-yl) + C(z2-zl)

- cos(9@0-08) =B (3.31)

J(xZ—xl)2+(y2-yl)2+(z2-zl)2#A2+Bz+C2

[A,B,CE

x2-xl,y2-yl,z2—zl]

%0-6,

Figure 24, Angle between & line and a plane.

26) ANGLE BETWEEN PLANES: This constraint
constrains twc planes, Alx + Bly + Clz + Dl = @ and A2x +
B2y + C2z + D2 = @, to have a certain angular <separation,

g . The angle between two planes can be found by taking
the angle between the normal vectors of the +twe planes,

[Al,BLl,Cl] and [A2,B82,C2]. Since the cosine of the angle,

-~ 4F -



§ , between two vectors is equal to the sum of the products

of the corresponding direction cosines of the two vectors,

AIAZ2 + B1lB2 + ClC2

- cos(188 -8) =20 (3.22)

{A12+312+c12{A22+522+c22

[21,B1,C1]

[A2,B2,c2]

Figure 25, Angle between planes.

Note that the normal vectors are defined to point cutward

from the planes of the object.

This constraint should not be confused with the concept
of the angular position of one plane with respect to
ancther. This concept is useful for the process of creating
2 dimensioning scheme. Two 1items of information must be
given tc fix the angular position of one plane with respect
to another. This concept can be best illustrated by an
example. Figure 26 shows two intersecting planes. Plane 2

can Dbe thought of as a base plane. Figure 27 is a view
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which gives the edge view of plane 1. C(Clearly, the angle,

§ , must be fixed.

Figure 26, Two intersecting planes.

pléere 1

[ plane 2

Figure 27, Edge view of two intersecting planes.

The fixing of this angle corresponds to the constraint
¢f the angle Dbetween two planes presented previcusly.
Figure 28 shows a top view of the two intersecting planes.

It can be seen that plane 1 can rotate with respect tc plane

2 tracing out the angle, « , ané still keep the angle, 4§

!



fixed. Therefore, to fix the angular position of one plene

with respect to another, both « and # must be fixed.

Figure 28, Top view of two intersecting planes.

3.4 CONSTRAINING CURVED SURFACES

Presently, the types of curved surfaces represented are
limited to <cylindrical, spherical, and cecnical surfaces.
The technique wused to constrain these surfaces is to
constrain the defining points and parameters of each
surface. From these parameters and defining points, the
implicit or parametric equations of each surface can be
easily derived for mass property and surface intersection

calculaticns. The defining points and parameters for some



typical surfaces are shown in Figures 29 - 35.

i

-

PGR-\— -
P4- /

Figure 3@, Cylindrical fillet: defired by 6é points.

—

Figure 31, Cylindrical solid: defined by 2 points
and 1 radius.
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Figure 32, Sphericezl solid: defined by 1 point
and 1 radius.

Figure 33, Partial sphere: defined by 2 points
and 2 radii.

P

2
A\
.
&x

Figure 34, Right conical solid: defined by 2 points
and 1 radius.
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Figure 35, Right conical section: defined by 2 pcints
and two radii.

The list of constraints for curved surfaces are given
in Table 2. 1In deriving the mathematical relationships for
the curved surface constraints, no new types of
relationships need to be added to the existing set of
three-dimensional constraints. A radius constraint can be
specified 1in two ways. The first is a constraint of the
linear distance between two points (Figure 36), the center
and a second point on the defining surface. The second
method of specifying & radius constraint is to make the

radius a variable and set its value equal to some constant.

A diameter constraint is just a special form of the

radius constraint and can be handled cimilarly.



LIST OF CONSTRAINTS FOR CURVED SURFACES

1. Radius.
2. Diameter.
3. Tangency.

Table 2, Constraints feor curved surfaces.

A tangency constraint between a cylindrical round znd a2
plane can be described by a constraint of perpendicular

planes (Figure 37).

Figure 36, Radius constraint.



Figure 37, Tangency constraint.
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4.4 ASSIGNMENT OF CONSTRAINTS

Currently, the constraints are assigned by reading from
the constraint data file. The constraint data file centains
n constraint equations each with an identifying code and the
entities constrained. This constraint file is to be created

by the designer of the part.

In order for the DIMENSION system to become useful as a
design tool, more efficient methods must to be developed for

the assignment of constraints. Three dJdifferent approaches

are possible.

The first is an interactive approach where the designer
of the part manually assigns constraints to the part. To
assign a constraint, the designer would simply select a
constraint from a menu and picks the points to be
constrained with a data tablet and digitizing pen. The part
should be capable of being rotated about the three axes and
hidden lines removed. Different views c¢culd be generated to

assist in constraint assignment.
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There are a pumber of problems accompanving this
approach to assign constraints. The process would be tedius
and time consuming for parts which require a large number of
constraints. The process 1is also error prone. The user

could easily choose a redundant dimensioning scheme.

An alternate approach is an automatic constraining
scheme. A set of rules and heuristics for constraint
assignment could be established. Civen the topology of a
part, the computer could then automatically generate all the

constraints.

A face finding algorithm can be used tgo constrain
points to be coplanar. One such algorithm is given by
Congdon [3]. Examples of other possible rules  are:
constrain the first point entered in rigid body translation,
constrain all lines and planes that are within a specified
tolerance of being parallel to the =x-y plane to be
horizontal, constrain two planes which are within a certain

tolerance of 99 degrees to be perpendicular.

One technique for avtomatically generating the explicit
constraints of a polyhedra is to group the faces of the part

inte sets of parallel planes. Within each parallel plane



set, a datum plane is chosen. All other planes in a set can
be constrained by linear distance constraints to be a
certain distance from the specified datum plane. Sets of
parallel planes can be cconstrained to have a specific

angular separation.

The problem with a fully autcmatic dimensioning scheme
is that the dimensioning scheme should reflect the function
of a part. For any given part, one dimensioning scheme may
be chosen for one application and another for a different
application. A fully automatic dimensioning scheme cannct

distinguish between the different possibilities.

Some ccembination of the two approaches should be taken.
Those constraints which will tend to be invariant for
different dimensioning schemes of a nart should Dbe
autematically generated by the computer. Those constraints
which reflect the function of a part should be assigned by

the designer.

Examples of constraints which tend to be invariant with
different constraining schemes are: four points coplanar,
rigié¢ body translation, rigid body rotation, parallel

planes, perpendicular planes, diameter and radius. Examples



of constraints which reflect the function of a part are:

distance between planes, points and lines.
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5.0 NUMERICAL METHODS

The defining poilnts cf a three-dimensional object give
rise to 3N constraint equations which must be solved
simultaneously for the 3N variables which are the x,v, and z
coordinates of the points. The method used in the DIMENSION
system is the Newtcn~Raphson method (see Appendix C). For
each step of the Newton-Raphson method, a linear system of
equations of the form Ax = b must be solved. The matrix, 3,

contains the partial derivatives of the constraint squations
with respect to each coordirate {(also called the Jacobian).
The vector, x, contains the displacements or changes in

coordinates. The vector b, contains the values (also called

the residuals) cof the constraint eguations.

In using the Newton-Raphson method, problems  of
roundoff and ill=-conditioning must be controlled.
Ill~conditioning 1s a measure of numeric instability in the
presence of roundoff. This effect is purely numerical since
in principle, a solution to A x = D can always be found by
inverting A. If the determinant of A is near zerc, then the
soluticn will be highly sensitive to the numerical noise

generated by roundoff.
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The inverse matrix is never explicitly computed. One
method by which a linear system of equations may be solved
is a variant of Gaussian elimination called Doolittle's
method with partial pivoting (see Appendix D). The use of
partial pivoting tends to control the error due to roundoff.
In Doolittle's method, there exists a possibility of one of
the diagonal elements having a zero value causing a zero
divide. If the last diagonal element of the matrix, A,
vanishes, the determinant of the matrix is zero. This means
that the matrix is singular and can neither be inverted nor
can the linear equations be solved uniquely. If an earlier
diagonal element vanishes. it does not necessarily mean that
A is singular. It means only that a leading submatrix of A
has a zerc determinant. Also, dividing by a small pivot
element can give rise to large errors in the computed
results. Therefore, the largest element 1in a column is
chosen as the pivot element. The corresponding row pointers

are interchanged.

Cther methods of minimizing roundoff in the numerical
methods are tc accumulate the vector inner products in
double precision in Doolittle’s method and by proper scaling

of the Jaccbian.



The constraint equations are written in such a way that
unnecessary powers of terms are eliminated. The partials of
the constraint equations, then, should not produce elements
which are an order of magnitude larger or smaller than other
elements in the Jacobian. For example, the constraint
equation for the distance between two points can be written

in two ways:

(x2-x1)%+ (y2-y1)2+ (z2-z1)%2- D2

]
=

{5.1)

V(x2-x1)2+ (y2-y1)2+ (22-z1)2- D

i}
=

(5.2)

The second representation is chosen to be consistent

with the representation of other constraint equations.

6.0 COMPUTATIONAL EFFICIENCY

6.1 GENERAL

In three dimensions, the number, type, and complexity
cf the constraint equations increase. The matrices also
become significantly larger. Three methods were used to
increase :he computational efficiency cf the numerical
methods. The first uses the modified Newton-Raphson method
instead of the standard Newtcn-Raphson method. The second

uses sparse matrix methcds to solve the set of linear
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equations in each iteration of the modified Newton-Raphson
method instead cf Doolittle's method. The third involves
segmentation of the Jaccbian matrix. Without segmentation
of the Jacobian, n equations in n coordinates must be solved
given any dimension change. It is the purpocse of the
segmentation method to reduce the numbe;s of equations and

coocrdinates to a smaller subset.

6.2 MODIFIED NEWTON-RAPHSON METHOD

The mecdified Newton-Raphson method eliminates the need
to invert the Jacobian at each iteration. This benefit
carries with it the cost of slower convergence than the

Newtcn-Raphson method.

For the Newton-Raphson method:
Xn+l = Xn -~ 37V (xn) £(Xn) (6.1)

For the mcdified Newton-Raphson method:
X+l = Xn ~ 371 (X0) £(Xn) (6.2)

where J, the Jaccbian matrix and its inverse, JVis computed

once at Xo.
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The geometric interpretation of the modified
Nevwton-Raphson method in two dimensicns is that instead of
computing the tangent to the curve at each iteration, the
same <cslope derived in the first tangent is used. Figure 38

illustrates this.

Xy X S Xg¥y3 %o Xy X

Figure 38, Gecmetric interpretation of the Newton-Raphson
method and the modified Newton-Raphson method.

Two factors determine the computational time which
would be saved by using the modified Newton-Raphson method
instead of the Newton-Raphson method: the time saved in
computing each iteration, and the number of iterations
necessary for convergence. The first factor was evaluated
by ccmparing the time saved 1in computing each iteration

after the first since the first iteration is the =same in

beoth methods.



Figure 39 shows a plot of the time required to compute
each iteration after the first for different numbers of
equations. Figure 40 shows a plot of the time regquired for
a2 set of 0358 equations in 58 unknowns as a2 function cf the
number of iterations performed. From Figure 39, it can be
seen that as the number of equations increases, modified
Newton-Raphson becomes more efficient. From Figure 44, it
can be seen that as the number of iterations increase,

mocdified Newton-Raphson also beccmes more efficient.

30
vewton-Raphson
250 - P

200 -

150+

CPU time (ms)

120 -

58 -
modified Newton-Raphson
DR

e = ——

g RS 1 i I T T =
0 19 29 e 44 50 4} L% 8@
nurber of equations

Figure 32, Plot of the CFU time required to compute
each iteration after the first vs the
number of ecuations.



5-—4
Newton-Rarhson
4-
&3S
)
£
7 ]
2
5
o
1 4 mcdified Newton-Raphson
g T T T T

T T ! m
1 5 19 15 20 25 3@ 35 4
nurber of iterations

Figure 40, Plot of CPU time for a set of 58 equations
in 58 unknowns vs the number of iterations
performed (extrapolated from a single
iteration).

t is more difficult to directly compare the number of
iterations necessary for convergence for the two methede.
The factors which affect the rate of convergence are the
starting wvalue, the particular set of equations used, and
roundoff errors. On the different sets of equations tested,
the worse case encountered was that twice the number of
iteraticns were required for convergence using the mecdified

Newton-Raphson method. By lcooking at Figures 39 and 44,
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even if the worse case conditions were encountered, using
the mecdified Newton-Raphson method would still be more

efficient than the standard Newton-Raphson method.

A quantitative estimate of the savings in (single user
VAX 11/786) CPU time can be obtained from Figures 29 and 40.
Assuming that the slcpes of the plotted curves are linear,
Equation (6.3) gives the CPU time in milliseconds as a
function of the number of equations and the number of
iteraticns performed by the Newton-Raphson method. Equation
(6.4) gives the CPU time in milliseconds as a function of
the number of egquations and the number of iterations
performed by the modified Newtcon-Raphson method. For the
worse case examined, Imnr was no more than 2Inr. The
convergence criterion in both cases was that the

displacements of all the coordinate points of the part be

sufficiently small, i.e. |dxil <& i = 1,2,...,n, § =
.085.
tnr = 4.98 E Inr (6.3}
where
tnr = CPU time in ms using the Newton-Raphson method
E = number cf equations
Inr = number of iterations required using the

Newton-Raphson method

tmnr = 4.98 E + [.34 E{(Imnr - 1)] (6.4)
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where

tmnr = CPU time in ms using the modified Newton-Raphson
method
E = number of equations
Imnr = number of iteraticns required using the modified

Newton—-Raphson method

Table 3 shows the percentage savings in CPU time in
using the mcdified Newton-Raphson method instead of the

Newton-Raphson method for two sample dimension alterations.

E Inr Imnr tnr(ms) tmnr(ms ) % savings
28 2 4 557.8 168.9 62.9
43 4 5 187¢.7 272.6 74.5

Table 2, Percent savings in CPU time in using the
modified Newtcn-Raphson method for two
sample dimension alterations.

6.3 SPARSE ELIMINATION

In the systems of constraint equations used in
variational geometry the Jaccbian matrix often has a low
percentage of non=-zero elements. The sparseness of a matrix
can be described by a number of factors, the most common
being the sparsity factor, Sk, where Sk = number of
non-zeros / n? . For small Sk, it is advantageous to use
sparse matrix methods to sclve the system cof linear

equations, Ax = b (see Appendix E).
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The main idea underlying sparse matrix methods is to
permute the originazl matrix into lcwer block triangular form

by & set of row and column permutations:

[—All
A2l A22 o)
P'AQ' = A3l A32 A33 (6.5)
e Aii
Akl Ce Akk

where P' and Q' are identity matrices wupon which suitable

row and column interchanges have been performed.

We «can then perform Gaussian elimination on the
subsystems, Aii, i=1,2,...,k where @ < k < n:
PiAiiQi = LiUi i=1,2,...,k (6.6)

where Li is wunit lower trianqular ané Ui is upper

triangular. By combining with permutations P' and Q' we
have:
F-LlUl -
A21 L2U2 g
PAQ = A3l A32 L3U3 (6.7)
. . . . LiUi
L?kl ak2 . . . LkUk
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The growth of non-zeros are restricted to the diagonal
blocks. The maximum order of the system to be conéidered at
any one time is reduced to the order o¢f the largest
submatrix, Aii. By partitioning x and b in 2 manner similar
to A, the overall system can be solved by block forward

substitution using both the diagenal and subdiagonal blocks:

Allxl = bl

A22x2 = b2 - A2lxl (6.8)
i-|

Aiixi = bi - 3 Aigxq i=1,2,...,k

Q=]

In the current implementation of the DIMENSION system,
HARWELL's subroutine package is used [6]. The time required
to solve the linear system, Ax = b using Dcolittle's method
is of o(nd). The time required to solve the same system
using the block triangularization method described above 1is
of 0(m2/n), where m is the number of non-zeros in the matrix

A. In the system of equations used in variational geometry,

m = 0(n). Therefore, total time required for the sparse
matrix methods is of O(n). Figure 41 compares the time
required to solve the set of equations Ax = Db with

Doolittle's method versus Dblock triangularization and

decomposition in the sparse matrix routines.
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Figure 41, Comparison of Doolittle's method and
block triangularization/decomposition

The storage requirement for the sparse elimination
method is of 0(n) as compared to the 0(n?) storage

requirement of the standard Doolittle's method.

Instead of storing the full n x n Jacobian matrix, only
non-zero elements are stored. In the current imlementaticn,
three linear arrays replace the n x 1n array required to
store the Jacobian. A real array stores non-zero values of
the Jacobian. Two integer*2 arrays store the row and column

indices of the corresponding non=-zerc elements.



Alternate storage methods could furthur reduce the
storage requirements. One such method stores the non-zerc
elements by row(column) order form. In this scheme, a real
array stores the values of the non-zeros. An integer*2
array stores the starting address of the first non-zero 1in
each row(column). An integer*2 array stores the column(row)
indices cf the non~zerc elements. The current storage
method is chosen for ease ¢f interface to the HARWELL sparse

subroutine package.

The upper bound on the number of non-zeros in the
Jacobian matrix is 18n. This is because each constraint
equation currently constrains a maximum of six points feor a
total of 18 coordinates. Although 18n is the maximum tound
onm, m is rarely, if ever, this large. A more reasonable
estimate of m is m = 5n. Figure 42 compares conventicnal n?
storage reguirement with the current sparse storage

requirement for m = 18n and for m = 5n.
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Figure 42, Plot of storage requirements vs the
order of the Jacobian matrix for n?
storage and sparse storage.

6.4 SEGMENTATION

The size of the Jacobian matrix used in the solution of
the numerical methods increases as mcre points are used to
define an object. 1In three dimensions, the matrix contains
952 elements for N defining peints of an object. A closer

inspection cof the constraint equations and coordinate points

show that for 2 given dimension change, usually not all the
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coordinates will change and not all the constraint equations
will be affected. Given a dimension change, there exists a
subset of the total coordinate points which will change and
a subset of the total constraint equations which are
required to solve for the changed coordinate points. Almost
always, these subsets are less than the total set. The
magnitude of this subset depends directly ©n the

constraining scheme chosen.

In order to make the DIMENSION system more time
efficient, a method of segmenting the total set of
constraint egquations and coordinate points was developed.

The method is called the propagaticon method.

6.4.1 JACCBIAN MATRIX

The Jacobian matrix, A, is a matrix of partial
derivatives of functions £fi, 1i=1,2,...,n, with respect to
variables xj, ij=1,2,...,n where fi are the constraint
equations and xi are the coordinates of the defining points
of an object. An element of the Jacobian, aij, represents
the partial derivative of constraint equaticn i with respect

to ceccrdinate i evaluated at the current coordinate points.
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Geometrically, a constraint equation describes a surface in
n-dimensional space, and the partial derivative of a
constraint with respect to a coordinate can be considered

the slcpe o©f the tangent hyperplane to the constraint

surface in the direction of that coordinate.

There are two situations in which the Jaccbian may have
a zero element, aij = g. First, coordinate j does not
appear in constraint equation i. Second, coordinate j does
appear in equation i, but a small change in coordinate j has

no effect on equation i.

The interpretation for aij # @ is that a change in
cocrdinate 3 will affect constraint equation i.
Geometrically, this can be regarded as a non-zero slope of
the tangent hyperplane toc the constraint, fi, in the

direction of coordinate xj.

The zero-non zero structure of the Jacobian matrix was
utilized in the process of segmentation. The Jacobian was
converted into a binary matrix, that is, a matrix with only
zeros and ones. Associated with A = [aij] is B = [bij]

where bij = @ if aij = ¢ and bij = 1 if aiij# 8.

- 68 -



6.4.2 GRAPH THECRETIC MODEL

To solve the problem of segmentation, a graph theoretic
model was used. Before proceeding with a discussion of the
solution to the segmentation problem, some definitions will

be given.

A graph, G(V,E) is a structure which consists of a set
of vertices V = (vl,v2,...,vn} and a set of edges E =
{el,e2,...,en}. ©Note that the terms vertex and edge as used
in this discussion are not to be confused with the terms
vertex and edge used previously to define the topology of a

part.

Each edge connects a pair of vertices u and v. Edge e
is then said to be incident on vertices u and v. A graph is
directed if the vertex pairs (u,v) associated with each
edge, e, 1is an ordered pair. Edge e is then said to be
directed from vertex u to vertex v. A graph 1is undirected
if the end vertices of all edges are uvnordered and the edges
have no direction. Edges are said to be parallel if they
have the same pair of end vertices. An edge is a self-locp
if it bpegins and ends on the same vertex. A simple graph is

one in which there are no parallel edges or self-locps.
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On paper, vertices are ncrmally represented as dots or
circles and edges as lines. Directed edges are represented
as arrowed lines. In a computer, a graph, G{(V,E} with n
vertices can be represented by an n x n matrix A = [aii],
where aij = 1 if there exists an edge connecting vertex i to
vertex j in G. Otherwise aij = #. This metrix is called
the adjacency matrix. The adjacency metrix requires 0(n?)
storage. Often times, the adjacency matrix is sparse. In

these cases, a sparse storage method can be used.

A graph, G(V,E) is bipartite if the set of vertices, V
can be partitioned into two sets, R and S such that each

edge of G jcins a vertex in R with a vertex in S, where V

R U 8 R MN S=0. A matching, M cf G =(R,S,E) occurs if
every vertex 1is incident to at most one edge of M. Each
edge, f{ri,sj)} € E, ri € R, s3 € S, has one end vertex in R
and one in £. A maximum matching of a bipartite graph is a
maximum number of edges, no two of which meet at a common
vertex. A matching, M is called complete if [M| = |[R],

where |M| represents the members of set M and |R| represents

the members of set R,



Let B be a binary matrix of order n with entries bij.

Let E Dbe the set of edges. Let R be the set of constraint

equations. Let S be the set of coordinates. Associated
with metrix, B = T[bij] is a bipartite graph, G, with 2n
vertices, {ri} € R and (sj} € s, i, = 1,2,...,n, in which

ri and sj are joined by edge {ri,sj} € E if and only if bij

= 1 (see Figure 43).

_ - _ - R s
g 18 9 g 1 1

A= |2 4 @ B=[1 1 0 G =
1 ¢ 7 1 @ 1

Figure 43, Bipartite graph model of a matrix.

6.4.3 PROPAGATION METHOD

The purpcse and goal of the propagation method is to
find a subset ol the total number of variables and a subset
of the total number of constraint equations which need to be
solved for given any dimension change. The propagation
method does this by exploiting the relationships between the
constraint equations and the coordinates of the roints of

the part. This process can be divided into two parts. The
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first part involves finding a matching between each
constraint equation and a coordinate such that each egquation
has a matched coordinate and each coordinate appears as a
matched coordinate for one equation only. The second part
is a chain type propagation method whereby if an equation is
changed, its corresponding matched coordinate will change.
This change in & <coordinate will affect other eguatious
which in turn will change other cocrdinates. The process
propagates in this way until the subset of equations and

coordinates which need to be solved is found.

In order for a constraining scheme to be permissible,
i.e. no redundant egquations, each variable must be
constrained by at least one equation. Likewise, each
constraint equation must ccnstrain at least one variable.
Therefore, in order for a permissible constraining scheme to
exist, there must be at least one matching set in which each
equation i1s matched with a unique variable. This 1is a
necessary and sufficient condition for a valid constraining
scheme. Given this matching set, if any constraint equation
(dimension) is altered, we know that its corresponding

matched variable will change.



If we mcdel the set of constraint equations and the set
of coordinates as the two sets of vertices in a bipartite
graph, the first step of the propagation method, then, is a
process by which a complete matching in a bipartite graph is

found.

Although given different names and used 1in different
fields, the concept of finding & complete matching in a

bipartite graph has been well documented in literature.

Hall [14] gives an algorithm for £finding a set of
distinct representatives in the field of combinatorics.
Steward [28] uses a chaining algorithm to obtain an output
set in the analyeis of systems of linear -equations.
Hopcroft and Karp [19] gives an algorithm for finding
maximum matchings in bipartite g¢raphs. Sussman, et al
[4],[27] uses a one step deduction method of constraint
propagaticn in the analysis of electrical networks in
artificial intelligence. Gustavson [12] uses a depth first
search method together with heuristic techniques to find a
maximum assignment. puff [5],[61,[7] finds a maximun
traversal by wusing a depth first search method to put cnly

non-zeros on the diagonal of a square matrix.

- 73 -



The concept of a complete matching may be illustrated

by an example. Given the three equations in three unknowns:

fl = 2x1 = 4 (6.5)
f2 = x1 + x2 = 5 (6.6)
£3 = 3xl + 5x2 - x3 = 17 (6.7)

Figure 44 shows 1its bipartite graph representation and

figure 45 shows the complete matching for the bipartite

graph.

Figure 44, Bipartite graph representation.

Figure 45, Complete matching.
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The variable that is matched with Equation (6.5) is
that variable for which Equation (6.5) is to be solved. The
variable in this case is xl1. The variable which is matched
with . Equation (6.6) is x2 since this is the variable for
which Equation (6.6) is solved. 1In the same way, variable
x3 1is matched with Equation (6.7). In this case, the
complete matching is unique. In many cases, there may be
more than one complete matching because of the simultaneous
nature of the set o©of eguations. A non-unique complete
matching occurs when an equation cannot be used to solve for
a variable uniquely. An example will illustrate. Given the

three equations in three unknowns:

fl = xIL + 2x2 = 8 (6.8)
f2 = X2 - x3 = 2 (6.2)
£2 = 3x1 + x3 =19 (6.19)

Figure 46 shows its bipartite graph representaticn. Figure

47 shows its two possible complete matchings.

=]
w

LN

Figure 46, Bipartite graph representation.
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Figure 47, Two complete matchings.

If there does not exist at least one such complete
matching, the set of constraint equations are redundant and
the Jacobian matrix is singqular. The propagation method,
therefore, can detect a redundant dimensioning scheme. An
example of a set of equations which does rnot have a complete

matching is shown below:

fl =  x1 + x2 = 5 (6.11)
f2 = x1 = 2 (6.12)
£3 = x2 = 3 (6.13)

The algorithm  which is used in the current
implementation is a depth first search type method. A depth
first search is a method of exploring all the vertices and
edges of a graph with systematic backtrazcking. Depth first
search explores an undirected graph G(V,E) by following the

first edge of v €V, (v,w) which 1is incident on v. If
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vertex w has been visited previously, the search returns to
v and the second edge is chosen. If vertex w has not been
visited, the process is applied recursively to vertex w. If
all the edges incident on vertex v have been explored in the
above manner, backtrack along the edge (u,v) that led to
vertex v and explore the edges incident on u. The search
terminates when backtracking is attempted from the vertex at

which the depth first search began.

The algorithm for finding a complete matching 1is as
follows:
Do 1 = 1,n

l. For each constraint equation i, lcok for
an edge which is incident on an unmatched
coordinate J.

2. If found, match eguation i with cocordinate
j. GO TO 6.

3. If none found, do depth first search from
the current eguation through the set of
matched equations accessible from the
current equation to find an unmatched
coordinate.

4. 1If search succeeds, new matching is found
and the matching set is extended by cne.
GO TC 6.

5. 1If search fails, then 1 equations were
visited and only i-1 independent coordinates
were found. Matrix is singular. STOP.

6. CONTINUE
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To prevent the algorithm from going into an infinite
loop, each equation is marked in the backtracking step of
the depth first search so that the equation will not be

i}

visited again. An example will illustrate the algorithm.

sl s2 s3 s4 s5 R S
rl {1 @ 1 a 1
r2 | @ 1 2 1 g

B=1r3]1 1 g~ @ 2 G =
r4 | B 1 1 1 %]

r511 1 g ) a

1. Match rl with sl.

2. Match r2 with s2.

w

No edges of r3 incident on an unmatched
coordinate, si.

Do depth first search from r3.
Match r3 with sl.
Backtrack to ril.
Match rl with s3.
4. Match r4 with s4.

5. No edges of r5 incident on an unmztched
coordinate, sj.

Do depth first search gearch from rS,.
Match r5 with sl.
Backtrack to r3.

No edges of r3 incident on an unmatched
coordinate, sij.
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Match r3 with s2.
Backtrack to r2.

No edges of r2 incident on an unmatched
coordinate, sj.

Match r2 with s4.
Backtrack to r4.

No edges of r4 incident on an unmatched
coordinate, sj.

Match r4 with s23.
Backtrack to rl.
Match rl with s5.

6. Done. Complete matching: {rl,s5}

{r2,s4}

fri,s2}

fr4,s3}
{r3,sl}

The second step of the propagation method involves
using the complete matching found by the depth first search
method and the binary matrix B = [bij] to obtain a subset of
the total equations and coordinates which need to be solved

for in the meodified Newton-Raphson method.

Given a change in a dimension, a constraint equatiocn,
fi, will change. Looking in the complete matching set, the
corresponding coordinate xj, which we know will change can
be found. By looking in column x3i of the Jacobian matrix,

all non-zero wvalues, aij, signifies that a change 1in

~J
O
|



coordinate xj will cause a change in equation i. The method
propagates in this way until no more new equations are
found. The set of cecordinates xj, and equations, fi, found
by this method is the set of coordinates and eguations which
need to be sclved for by the modified Newton-Raphson method.
Since each equation has a corresponding matched coordinate
the number of cocrdinates will always be egqual to the number
of egquations. The algorithm is as follows:

1. Por all changed equations, f£i, find
matched coordinate, xj.

2. For all coordinates, x3j, find ell
equations, fi, i=1,2,...,n in which
bij =1

3. If no new equations found, STCP.
Otherwise GO TO 1.

There are two cases where the use of the zero-non zero
structure of the Jacobian can cause the propagation method
to find less than the required number of constraint equation
and coordinates given any dimension change. In these cases,
the elements in the Jaccbian appear as zeros when in fact
then should be non-zero. Figure 48 and figure 49

illustrate the first case.



Figure 48, Case 1: Zero slope tangent plane.

Figure 49, Case 2: Zero slope tangent plane.

In beth figures, the slcpe of the tangent plane to the
surface, fi, 1s zero. 1In figure 48, a large movement of the
point P in the direction of xj will not move P off the
surface, fi. In figure 49, a2 large movement of P in the

direction of xj will move P off the surface fi.
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The first case occcurs when the Jacobian element dfi/dxj
= d. A change in xj will not affect equation fi. The
second case occurs when the Jacobian element dfi/dxj = 9. A
change 1in x3j will cause eqguation fi to be no longer
satisfied. Figure 56 and figure 51 illustrate how the two

cases can occur in the constraint equations used 1in

variational goemetry.

Figure 50 shows four points on a horizontal plane which
have been constrained to be coplanar. f is, therefore, a
constraint of four points, Pl=(xl,yl,zl), P2=(x2,y2,z2),
P3=(x3,y3,z3), and P4=(x4,y4,z4) being coplanar. df/dx3 =
. A change in x3 will not affect the constraint £, since

all four points will still be on the same plane.

Figure 58, Four points coplanar.
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Figure 51, Linear distance between two points.

Figure 51 shows a constraint, £, of the linear distance
between two points, Pl=(xl,yl,zl)} and P2=(x2,y2,22) which
are aligned aleng the z direction. d4f/dx2 = 4. Given a
change 1in x2, the constraint equation f will no longer be
satisfied since L is no longer the same 1if z2 1is kept

constant.

This situation is found to occur only in this
pathological case and a check can be made when forming the

Jacobilian elements.

The second area where the zero-non zero structure of
the Jacobian can cause propagation method to find less than
the total number of required constraints and coordinates 1is

that the structure is derived only at the current geometry.

)
(00
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Given another gecmetry, the zero-non zerc structure of the
Jacobian can conceivably be altered. For these cases, the
Jaccbian matrix will need to be recomputed and step one of

the propagation method reexecuted.



6.4.4 TIME AND STCRAGE REQUIREMENTS

The efficiency of the propagaticn method depends on (1)
the time required to find a complete matching in the first
step of the methed (2) the time required to find the subset
cf cecnstraint equation and cocrdinates which need to be
solved in the second step of the propagation method (3) the

amount of reduction in the number of equations and

coordinates which need to be sclved.

The execution time of step one in the propaéation
method is of O{mn) where m is the number of non-zeros in the
Jacebian matrix (Biminz ). Given our three-dimensional
constraints, m < 18n. This must be true because the
structure of each constraint eguation 1is such <that an
individual constraint equation constrains at most six
vertices. Since each vertex can have a x, y, and a z
compeorent, there can be a maximum of 18 non-zeros in any one

rcw of the Jacobian matrix.

The process of finding a matching betweern an equation
and a variable is of O(m). In a majority of cases, the time
involved is considerably less becuse it is very rare that

all the edges need tc be searched to find a matching.
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Since there are a total of n equations and n
coordinates, the total execution time of step one is of

O(mn). Therefore, the execution time of step one is of o(n2).

Step cne of the propagation method 1is executed only
once for each dimensicning scheme. Because only integer
comparisons are involved, there are no computations and
therefore no opportunity for numerical or roundoff errors.
Figure 52 shows a plot of the time required to execute step
one for different orders of the Jacobian matrix. As can be
seen, the execution <f the algorithm in the cases tested is

much faster than the predicted worse case o(n?) time.
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Figure 52, Plot of CPU time reguired for
' step one of the propagation
method vs order of the matrix.
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The execution time of the second step in the
propagation method 1is of O(n). This step must be executed
every time a new dimension is altered. The time required to
execute this step depends on the number of the equations and
coordinates which are found. Figure 53 shows a plot of the
time required to execute step two versus the size of the

subset of equations and ccordinates found by this method.
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Figure 53, Plot of CPU time required for
step two of the propagation
method vs the size of the subset
of equations and coordinates.
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A general relationship for the amount of reducticn of
the set of equations and cocrdinates which need to be solved
is more difficult to obtain. The amount of reduction
depends on the particular combinztion of dimensions which

are changed and the censtraining scheme as a whole.

A censtraining scheme can exist such that a change in a
dimension causes a chain-like effect where a large number of
cocrdinate points change. Figure 54 illustrates a

dimensioning scheme which exhibits this chain-like effect.

IFA-#‘- Be C-ske Dal(- E-»]
5 |
i 4 j i

7
lﬂL——fi]ll

1 12 X

Figure 54, Consecutive dimensioning scheme.

A change in dimension A will cause points 3, 4, 5, 6,
7, 8, S, 19, 1l and 12 to change in the x direction. The
same part may be dimensioned in another way. Figure 55
illustrates an alternate dimensioning scheme where the

chain~like effect is avcided. A change in dimension A will
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only change points 3 and 4 in the x direction.

3 | Y

6 7 1g 11 /r

1 Iy9 L sx

Figure 55, Datum dimensioning scheme.

A good dimensioning scheme reflects the function ¢f a
part and minimizes cumulative tolerances in critical areas.
Cumulative tolerances are an undesiresble condition and
result when either the location of a surface or an overall
dimension is affected by mcre than one tolerance dimension.
The type of dimensicning scheme illustrated in Figure 54 is
a consecutive dimensioning scheme in which each dimension is
made relative to the one preceeding it. This is an example
of a poerly dimensioned part because o¢of the existence of
cumulative tolerances. To avoid the incensistency of
cumulative tolerances, it is preferrable to locate surfaces
from a datum plane. The dimensioning scheme shown in Figure
35 is an example of a detum dimensioning scheme. Although

this type of dimensioning scheme is encountered in various



applications, some combination of datum dimensioning and

consecutive dimensioning is usually used.

Thus, the size of the subsets of equations and
coordinates found by the propagation method depends on the
type of the dimensioning scheme used. In a dimensioning
scheme which exhibits many consecutive dimensions, the size
of the subsets would tend to be larger than in a
dimensioning scheme in which a fixed datum is used. In a
datum type dimensioning scheme, the implicit rigid body
constraints should be chosen in such a way as to define the

datum.

A numerical measure of the =size of the subsets of
equations and coordinates which will be found by the
propagation method can be found by performing bilock
triangularization on the entire set of equaticons before
execution of the propagation method. The existence of small
diagonal blocks represent a deccupled dimenisoning scheme
similar to & datum type dimensioning scheme whereas large
diagonal blocks indicate the possible existence of
consecutive type dimensioning and cumulative tolerances.
The size o¢f the diagonal blocks can therefore be used as a
measure of the guality of a dimensioning scheme and cf the

amount of reduction 1likely to be encountered by executing



the propagation method.

The presence of large diagonal blocks implies that for
those sets of equations and coordinates which comprise the
block, no equation may be solved independently of the other
equaticns in the block. Unknown information must be passed
to all the equations of the block before the eguaticons can
be solved. In the propagation methed, if one eguation in
such a diagonal block is altered, all the eguations of that

block must be used in obtaining the solution.

To give a general idea of the amcunt of reduction
obtained from the propagation method, various
three-dimensicnal parts have been tested. Figure 56 plots
the reducticon found for various dimensicen changes. The
subsets found are represented as percentages c¢f the total

number of equations.
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Figure 56, Plot of the relative reduction
in the system of equations which
need to be solved by using the
propagation method.

Storage requirements for the propagation method 1is of
o(n). Given any dimension change, to execute step two of
the propagation methed, the complete matching set must be
stored in row access order in an integer*2 array of length
n. Two integer*2 arravs ¢f length m are used to store the
row and column indices of the non-zeros in the Jaccbian.
Two integer*2 arrays of length n are used to store the
subset of equations and coordinates which need to be solved
given a dimension change. Totzl storage requirements for

the propagation method is therefore 4m + 6n bytes.
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7.8 IMPLEMENTATION

7.1 SCFTWARE

A system of scoftware written entirely in FORTRAN has
been developed which demcnstrates the concepts of
three-dimensional variational gecmetry. The general pregram

structure is shown in Figure 57.

CISPLAY

RCTATE
FEESE
VIEWE
CIMEN

Figure 57, Program structure.



DIM3Z

This is the main program which c¢alls the various

subroutines which make up the variational gecmetry methods:

data input, segmentation of the Jacobian, display of the

part, and the numerical methods.

INPUT

The current implementation assumes the input of
geometry, topology, and constraints has already been done.
This subroutine reads from the DIMENSICN system data Dbase.
The geometry, topology, constraints, and drawing parameters

are read in from various disk files.

SEGMENT

This subroutine is a datz handling routine which calls
subroutines to activate the propagation method cof

segmentation.

JACRES

This subroutine computes the Jacoblan matrix and
residuals from the set of three-dimensional constraint

routines.
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MC21A

This subroutine finds a complete matching between
constraint equations and coordinates for purposes of

segmentation.

DISPLAY

This subroutine is a data handling routine which «calls

subroutines to display, rotate, and dimensicn the part.

PERSP

This subroutine calls varicus drawing routines to
generate a perspective view of the three-dimensional part

given its gecmetry and topolegy.

ROTATE

This subroutine rotates a perspective view of the

three-dimensional part.

VIEWS

This subroutine generates the three orthogonal views of

the three-¢éimensional part.
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DIMEN

This subroutine calls various routines to draw the

dimension lines, arrows and dimension label in the three

orthogonal views.

BUF

This subroutine 1is a data transfer routine which
transfers data from the main computer to the graphics
display for drawing purposes. It also receives data input

from the graphics display to execute the various user

commands.

This subroutine accepts as input the dimension(s) to be
changed, the new value(s) of the dimension(s). and the step
number and calls the numerical methods routines to alter the

part geometry.

FWCPROP

This subroutine takes as input the matching set
produced in MC21A and the position of the non-zeros of the
Jacobian in row order and produces a subset of ccordinates
and constraints which need to be solved for given any

dimensicn change.
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NEWRAF

This routine accepts as input the subset of coordinates
and constraints from subrovtine FWDPROP. It then calls
JACRES to compute the Jacobian and the residuals for only
the subset of constraints and coordinates from the set of
three-dimensional constraint routines. Routine MAZBA/MA28C
is then «called to solve for the points vector at each

iteraticn of the modified Newton-Raphson methed.

Currently, input of topology and assignment of
constraints are accomplisied by reading from data files and

not through an interactive procedure.

Cn entry to the program, various data files, which
contain the geometry, topology, constraints, anéd dimensions
for a specific part are read in. Because the geometry
satisfies all the constraint eguations, nc¢ numerical
operations are required at this stage. If the topology were
to be entered using an approximate interactive input method,
then the Newton-Raphson methoé would need to be performed at

this stage to reccncile the gecmetry with the constraints.



The program then proceeds to find 2 complete matching
set for the constraints and coordinates by a depth first
search process. At this stage, if the constrainirng scheme
is redundent, a redundant constraint will be flagged and the

program will exit.

Given a permissible dimensioning scheme, the program
then displays the part 1in a perspective view. At this
stage, the user may rotate the part about its x-y centroid
or display the three corthographic views of the part showing
its various dimensions. A perspective view is also provided

to aid in visvalization.

The user may now select any of the displayed dimensions
by use of a digitizing pen on a data tablet with feedback
via a screen cursor. A numeric keypad then replaces the
perspective view and the wuser 1is prompt for the new
dimensional value. Up to ten dimensions may be altered at
any one time. After entering the new value(s) of the
dimension{s) tc be changed, the user is prompt for the step
number. The step number serves twe purposes, to increment
the geometry in a number of steps for display purposes and

to increase the stability of the Newton-Raphson iterations.
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Upon entering the step number, the program performs the
second step of the propagaticn method to determine the
subset of constraints and coordinates which need to be
solved. These constraints and ccordinates are then used in
the Newton-Raphson method. The part is incremented
dynamically in a full perspective view from its initizl to
finral geometry. The process may then be repeated as the
user 1s prompt for either a rotation of the changed geometry

or a display of the three orthographic views.

7.2 HARCWARE

The main program for the DIMENSICN system as well as
the data base resides on a Digital Equipment VAX 11/78¢
virtual memcry computer located in Massachusetts Institute
of Technology's Jecint ‘Computer Facility. The drawing
routines for the DIMENSION system resides on a PDP 11/34
minicomputer with an internal program memcry capacity of 64K

bytes.

Communication between the main program and drawing
routines is via DECNET, a data network producesd by Digital
Equipment Corporation. For actual display of the geometry
of the part, the PDP 11/34 drives a MEGATEK 7880 vector

refresh display.
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User interface to the geometry of the part as well as
alteration of dimensions is by using z digitizing pen on a
Summagraphics BITPAD data tablet. A software screen cursor

provides the necessary feedback.

All numerical computations are performed on the VAX
11/780. Display o¢f vector and character data as well as

cursor addressing and user prompting are performed on the

PDP 11/34.
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8.0 RESULTS

A suitable data structure for three-dimensionezl

variational geometry has been developed. The data structure
conta}ns complete geometric and topological information of a
part. In addition, a constraint and dimension structure was
identified to allow interface to methods of interactive-

constraining, dimension alteration, and display.

Three-dimensional constraint equations have been
derived for objects bounded by planar, cylindrical,
spherical, and conical surfaces. dpplication of the
constraints to three-dimensiconal objects allows for ease of
manipulation and modificaticn of three-dimensional
geometries. The result is a reduction in user interaction

and the creation of a2 friendlier interface to CAD systems.

The efficiency of the numerical methods were
investigated. Various methods to increase the efficiencies
cf computation and storage have been developed and
implemented. To increase computational efficiency, modified
Newton~-Raphson method as well as sparse elimination were
implemented. To further increase computational efficiency,

a methed to segment the total number c¢f equations and



coordinates intc a smaller subset for purposes of the
numerical ccmputations was developed. To increase the
efficiency of storage, sparse matrix storage methods were

used.

Finally, to demonstrate the utility of the wvariational
geometry methods, a system of software has been written and
implemented which makes up part of the DIMENSICN system.
This system of software allows a part to be entered through
geometry and topology data files. The part is constrained
by the constraint and dimension data files. Interactive
methods are then used to allow the user to display and view
the part in various views. To alter the gecmetry, the user
simply selects the dimension(s) to be changed and enters the

new dimensional value(s).
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9.0 CONCLUSIONS AND RECOMMENDATIONS

A system, embodying the concept of  wvariational
gecmetry, has been developed. Three-dimensicnal shape
models consisting of planes, cylinders, spheres, and cones
are built up with the use of three-dimensional constrazints.
Modificaticn of part geometry involves a simple two-step
process, selecting the dimension(s) to be changed and

entering the new value(s).

One of the current benefits of the system is simplicity
of the user interface. By using variational gecmetry to
create and modify a part, the process of aesign is made
easier. Eince  design is inherently iterative, the
techniques of variaticnal geometry greatly facilitates the

design process.

The concepts of variational geometry can be expanded to
include constraining of clearances between two or more
mating parts. By specification of specific constraints in

the design of assemblies, part mismatch and interference can

be avoided.

- 163 -



Because the current methods of variational geometry
operate on a specific class of surfaces, future
investigations include extension of these concepts to

general guadric surfaces and free form surfaces.

Since the geometry of a part can be modified easily, it
is possible that a part can be made to intersect itself.
Therefore, methods of detecting self-intersection of a

part must be implemented.

IR - P S [ S " s . o
Current metnods of constraining of the part topoiogy 1s

thrcugh the use of data files. To make the DIMENSION system

A vk e o mde o e ——1.1-1 - . - -
lliceraltLive, NeECNOUs oL 1

fully ying

L]}

Prp =1
peclir

constraints will need to be developed.
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APPENDIX A - OBJECT WITH PLANAR SURFACES

Figure A-1 shows a full perspective view of a
three-dimensional object made up of only planar surfaces.
Figure A-2 shows the part in rotation. In Figure A-3,
crthographic views of the part are generated. To change the
height of the flange, the appropriate dimension, 15.80 in
this case 1is selected with the digitizing pen. Figure A-4
shows the prccess ¢f entering the new dimensional value

using a numerical keypad which is displayed in place of the

—— ey o

™2 Y
L

igure A-5 shows the entering of the step
number. Figure A-& shows the object incrementing towards
igures A=7

]
B4
e

to A~11 shows the process of

moving the web of the flange 2.80 units to the left.
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Figure A-1l, Obsect with planar surfaces.
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ROTATE VIEWS STOP PROP

Figure A-2, Object in roctation.
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Figure A-3, Selecting dimension to be changed.
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Figure A-4, Entering new value.
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Figure A-5, Entering number of steps.
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Figure A-6, Alteration of geometry.
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Figure A-14, Alteration of geometry.
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Figure A-11, Views of new gecmetry.
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APPENDIX B - OBJECT WITH CYLINDRICAL SURFACES

Figure B-l1 shows a full perspective view of a
three-dimensional object made up of planar and cylindrical
sur faces. Again, Figure B-2 shows the part in rotation and
Figure B-3 shows its three orthographic projecpions. Figure
B-4 to B-7 shows the process of changing the length of the
solid portion of the guide bracket. Figures B-8 to B-1ll
show the process of changing the diameter of the cylindrical

sur face. In a similar manner, any displayed dimension can

be used to modify the geometry of the guide bracket shown.
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Figure B-l, Object with cylindrical surfaces.
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Figure B-2, Object in rotation.
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Figure B-6, Alteration of geometry.

- 126 -



2 j—ﬂ"
i . S
5
jl, 11T )
il
w-— . Pl
r Le-50 700M | znnnl sror]
e | looww i |
1M 2.09

|

==

Figure B-7, Selecting dimension to be changed.
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Figure B-18, Alteration of geometry.
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APPENDIX C - NEWTON-RAPHSON METHOD

The Newton-Raphson method 1is a generalization of
Newton's method for finding the roots of a function, f{x) =
@. To solve this problem, the function is approximated at
some peint, =xo, by its tangent. The value of x, where the
tangent crosses the x-axis is solved for. This process 1is
repeated frem the new point, x1, until the algorithm
converges. Newton's method defines a sequence of points
according to the recurrence relation

f(xn)

xn+l = ¥xn - ———— (C.1)
£'(xn)

The convergence depends on the initial estimate of the
sclution, xo, with faster convergence resulting as xo

approaches the actual solution.

The Newton-Raphson algorithm expands Newton's method to

n functions. Given n constraining equations in n unknowns:

f1{xj) = fl{xl,x2,...,xn) =@
£2(x3j) = f2(x1,x2,...,xn) = ¢

et ee e (C.2)
fN{xj) = £N(xl,x2,...,xn) =@
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we want to find the solution vector x = [xl,%x2,...,%0],

where [x1,x2,...,xn] are the points defining the geometry of

the part.

In the neighborhood of an initial estimate, x3jP , we
can approximete the above set of equations by the linear

terms of a Taylor series

ofi afi ofi
fi(xj)=0=fi= Axl + Ax2 + ... +( Axn  (C.3)
- dx1l dx2 dxn

where i1 = 1,2,...,n and fi and (%%) represents the
functions and their partial derivatives evaluated at point
X3 . 4x3 =.§ﬂp+U.. Ej(m are the displacements of the
points. From Axj, the next estimate, EjQH4) can be

calculated. The Taylcr series expansions can be written in

matrix form:

[J) [x) = -[£] (C.4)
where the Jacobian matrix [J] given by

31 3£l 31

axl x2 3xn

aei] | a2 ae2 32

[J] = | 3xj1=] ox1 x2 3xn (C.5)

[

oxl ox2 Jxn

- e
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is evaluated at Ejml f = [£fl,£2,...,fn] are termed the

residuals and are evaluated at ijml

If we begin with an initial estimate iju), fi(Ej(D) # ¢
because ija)is not an exact solution. By solving [J] [x] =
-[£f], we get a set of displacements, xj, which will lead to
a better estimate of the soluticn: EjQ)= 5j0)+ x3j provided
{J] is non-singular. The process is repeated with the new
estimate, Ej(z)' Ej(3)"" ard so forth until either the
residuals or displacements are sufficiently smell in which
case, the geometry is consistent with <the constraint

eguations.
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APPENDIX D - DOOLITTLE'S METHOD

Doolittle's method solves a system of linear equation,
Ax = Db. In the DIMENSION system, Doolittle's method
decomposes the Jaccbian matrix, J into an upper triangular
matrix, U, and a lower triangular matrix, L, and solving by

backsubstitution the systems Ly = -f and Udx = y for y and

dx respectively.

Denoting the components of J, L, and U by Aij, Lij, and

Uij respectively, where 1 < i, j < n, Lij = 8 for i < j, Lii

=1 for 1 <i <n, and Uij = & for i > j, Doolittle's

algorithm can be defined in scalar form as follows. To

obtain factors L and U of J for any given m,m = 1,2,...,n:
m-|

Lim = (Aim - Z:Liq Ugm} / Umm (D.1)
Q=]

for 1 = m+l,...,n
Umi = Amj - 3 Lmg Ugj (D.2)
for j = m,m+l,...,n

In backsubstitution:

i~
Yi = -fi - } Liq ¥q (D.3)
qz|
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for i =1,2,...,n
I
d&Xi = (Yi - ) Uiq Xq) / Uii (D.4)
Q=14

fcr i = n,n-1,...,1
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APPENDIX E - SPARSE MATRIX METHODS

E.l GENERAL THEORY

Matrices having a small percentage of non-zeros are
called sparse. One indicator of the sparsity of a matrix is
S = number of non-zeros / n? where n is the order of the
matrix. For the matrices used in the numerical methods of
variational geometry, S is often < .85, It 1is therefore

advantageous from a storage and computaticnal point of view

b el A
Ll LML ST

In the Newton-Raphson methed,

where A is a non-singular real n X n sparse matrix, x a 1 X

n vector of variables, and E a vector of constraints.

One method@ by which this c¢an be accomplished 1is to
change the criginal matrix into lower block triangular form

by a set of row permutetions, P, and column permutations, Q,

such that
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(paQ) . ofx = Pb (E.2)

A permutation matrix 1is a square matrix obtained by

interchanging rows or columns of the unit matrix.

-

All B

A22

PAQ = . (E.3)

Aii

Aiil are the diagcnal blocks which cannot be further reduced
by row and column permutations. The off diagonal blocks,

Aii (j<i), are rectangular.

To find P and Q, the first step is to find a row
permutation, Pl, so that the entries of the dizgconal of A
are all non-zero, & = P1 A. Then, a symmetric permutation
is found to reduce A to lower block triangular form, QTPlAQ,

where QIP1 = P,

The large system of -equations 1is now replaced by
several smaller systems. The smaller submatrices can now be
inverted using a variation of Gaussian elimination. Since
the diagonal blocks are much smaller than the whole matrix,

inversion proceeds faster and the growth of non-zeros are
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limited to the diagonal blocks only.

Performing a LU decomposition within each diagonal

block, Aii,

PiAiiQi = LiUi i=1,2,...,k
’— ———
L1Ul
L2U2
P'AQ' = LiUi (E.4)
Aij
LkUk

where Li is wunit lower triangular and Uil is upper

triangular,

The solution of the system c¢an be found by block

forward substitution.

Allxl = bl
A22x2 = D2 - A2lxl
(E.5)
-]
Aiixi = bi - § Aig xq i=1,2,....k

L
g
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E.2 HARWELL ROUTINES

HARWELL has produced a subroutine package which solves
a set of sparse linear equations. The subroutine package
can be used in the matrix inversion step o©of the
Newton-Raphson method. Single as well as double precision
can be obtained. The set of subroutines used are

illustrated in Figure E-1.

[A] matrix - =~ LU decomposition
row £ cclumn-———riMCl,A}r— 1 block structure
indices - P'aQ"

MC24A

decompcsed [A] ——’— | solution vector
matrix frcm
MAZSA

right-hband side
vectcr ‘

Figure E-1, HARWELL program structure.
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MA?28

This routine is a data management routine which cails
other routines to do bleock triangularization and LU
decomposition. This routine takes as input the matrix, A,
and the row and column indices of matrix A. The row and

column indices can be arranged in any order.

MC20A AND MC28B

These subroutines reorders the matrix, & toc row order

form.

MC23A

This subroutire is a data handling routine which calls

other routines to perform lower block triangularization.

MC21A AND MC21B

These rcutines finds a row permutation, Pl, which puts

non-zeros on the diagonal.

MC13D

This subroutine finds a symmetric permutaticn, P and ¢Q
to permute the matrix outputted from MC2lA to block lower

triangular form. The routine then recrganizes and reorders

- 141 -



the matrix according to the row and ceclumn permutations, P

and Q.

MAZ8C

This subroutine is for the purpose of interfacing with
MAZ@C., It takes as input the decomposed A matrix from MA28A
and the right hand side vector. It outputs the solution

vector; X.

MA3€C

This subroutine solves Ax = bor A x = Db, given the

decompcsition from MAZOA by:

1. performing forward elimination corresponding to rows of
Ll (the first diagonal block).

2. performing backsubstitution using appropriate elements

of Ul.

3. repeat steps 1. and 2. for subsequent blocks.
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E.3 STORAGE AND TIME REQUIREMENTS

For a matrix of order n, with m non-zeros in the
original matrix and r non-zeros in the decomposed matrix,
HARWELL estimates the time and storage requirements for

routines MA28A and MA28C (on an 1BM 37@/168).

MA28A MA2BC

STORAGE (bytes) 42n + 32m 26n + 38m

TIME (microsec) 25/4 r2/n 4r

An estimate for the value of r is 5/2 m.

The number of Fortran statements require 37K bytes of
storage for the compiled code. This package of routines is
therefore too large to be run on & minicomputer without

using overlays.

- 143 -



E.4 IMPLEMENTATION OF ROUTINES

Interface to the HARWELL routines consists of a call to
subroutine MA28A and a call to MA28C. These two subroutines

call all the other routines referenced.

For MA28A, the calling statement is as follows:

CALL MAZ28A (N,NZ,A,LICN,IRN,LIRN, ICN,U,IKEEP,IW,W, IFLAG)

ENTRY EXIT
N set = n, the order same
[int*4 wvar] of the matrix
NZ set = m, the number same
[int*4 var] of non-zeros in A
A(LICN} non-zeros of A non~-zeros of
[real*4 array] factors of A
LICN set = 3m, length same
[int*4 wvar] of A ané ICN
IRN(LIRN) row indices of changed

{int*2 array] non-zeros of A

LIRN set = 1.5m, same

[int*4 var)] length of IRN

ICN{LICN) column indices of column indices of
fint*2 array] non~zeros in A factors of A

U set = (.10, controls same
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[real*4 var] choice of pivots

IKEEP (5N} internal process

(int*2 arrayl

IW(5N) workspace

(int*4 array]

W(N} workspace

[real*4 array)

IFLAG error flag

(real*qd array]

internal process

workspace

W(l)-largest element
encountered during LU

@ if successful

On exit from MA28A, IFLAG should be checked against the

error codes. The calling statement to MA28BC is as follows:

CALL MA28C(N,A,LICN, ICN, IKEEP, RHES,W,MTYPE)

ENTRY

N same as MAZ8A
(int*4 var]

A{LICN) same as MAZ8A
[real*4 array]

LICN same as MAZ28A
[int*4d var]

ICN(LICN) same as MA28A
(int*2 array)

IKEEP(5N) same as MA28A

[int*2 arravy]
Y

output

output

output

output

output

- 145 -

EXIT

same

same

same

Same

same



RHS (N) right hand side solution vector
[real*4 array]

W(N) workspace workspace
[real*4 array]

MYTYPE set=l if solve Ax=b same
[int*4 var] set=0 if solve A x=D

To scale the A matrix, lines of code are added and

call to subroutine MC19A is made before calling MAZ28A.
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APPENDIX F - CONSTFAINT SUBROUTINES

SUBROUTINE RBTX (LCODE,KONS, NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF FIGID BODY TRANSLATION IN THE X DIRECTION.

C __________________________________________________________________________
c

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'

INCLUDE 'RES1:[P3453.VLIN.CCMMON]NUMERIC.CMN'

INCLUDE 'RES1:[P3453.VLIN.COMMCN]SEGMENT.CMN'
c

I = 3 * CONSTR(KONS,3) - 2

X1 = XVECT(I)

IF (LCODE .EQ. @) GO TO 120
C ________________________________________________________________________
C RESIDUALS.
(o o i e o e et e e e e e e e

RESID(NRCW) = -X1
IF (LCODE .EQ. 1) RETURN

c _________________________________________________________________________
198 II =0
DO 18 JJ = 1,NEQS
AMAT = d.
IF (NVAR(JJ) .EQ. @) GO TO 18
II =II +1
IF (JJ .EQ. I) AMAT = 1.
o
IF (ABS{(AMAT) .GT. .02) THEN
NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN{NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
C
RETURN

END
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SUBROUTINE RBTY (LCODE, KONS,NRCW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY TRANSLATICN IN THE Y DIRECTION.

C
INCLUDE 'RES1:[P3453.VLIN.COMMON]CONSTRAIN.CMN®
INCLUDE 'RES1:[P3453.VLIN.CCMMON]INUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'
C
I =3 * CONSTR(KONS,3) - 1
Yl = XVECT(I)
IF (LCODE .EQ. @) GO TO 100
e et e e e e et e e e e e e e e e e e e e e e e e o e e
C RESIDUALS.
o o o e e o e e e e e e e e
RESID(NROW) = =Y1
IF (LCODE .EQ. 1) RETURN
C ______________________________________________________________________
C PARTIALS.
Coomrin e o s o v o e o e i e e e R e e e L = S e e e e e e e
100 11 = 2
DO 18 JJ=1,MEQS
AMAT = 4.
IF (NVAR{(JJ) .EQ. @) GO TO 10
IT = IT + 1
IF (JJ .EQ. I) AMAT = 1.
C
IF (ABS(AMAT) .GT. .@2) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
10 CONTINUE
C
RETURN
END
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SUBROUTINE RBTZ (LCODE,XONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY TRANSLATION IN THE Z DIRECTION.

o
INCLUDE 'RES1:[P3453.VLIN,COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.CCMMON]SEGMENT .CMN'
C
I = 3 * CONSTR(KONS, 3)
Z1l = XVECT(I}
IF (LCODE .EQ. @) GO TO 1£9
(g pape——— TR PP T B E 8 DSt L i ittt bt b
C RESIDUALS.
e e e e e e e e e e
RESID (NROW) = =71
IF (LCODE .EQ. 1) RETURN ’
(o i o o 8 e e o e
C PARTIALS.
e e e o e e e 2 e e e e e e
100 II =8
DO 18 JJ=1,NEQS
AMAT = 4.
IF (NVAR(JJ) .EQ. &) GO TC 18
II =II + 1
IF (JJ .EQ. I) AMAT = 1.
C
IF (ABS(AMAT) .GT. .82) THEN
NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
C
RETURN
END



SUBROUTINE RBRX (LCODE,KONS,NROW)
o e e e e e e e e e e e e e e e e e ———————
C THIS SUBRCUTINE COMPUTES THE RESIDUALS AND PARTTAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY ROTATION IN THE X DIRECTION.
C
c

INCLUDE 'RES1:[P3453.VLIN.CCMMONJCONSTRAIN.CMN'
INCLUDE ‘RES1:{P3453.VLIN.COMMON]INUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT.CMN'

c
I = 3 * CONSTR(KONS, 3)
71 = XVECT(I)
IF (LCODE .EQ. @) GO TO 100
c _______________________________________________________________________
C RESIDUALS.
C _______________________________________________________________________
RESID{NROW) = -Z1
IF (LCODE .EQ. 1) RETURN
C ______________________________________________________________________
C PARTIALS.
C ______________________________________________________________________
160 II = @
DO 18 JJ=1,NEGQS
AMAT = @.
IF (NVAR{JJ) .EQ. &) GO TQ 190
II = II + 1
IF (JJ0 .EQ. I) AMAT = 1.
o
IF (ABS(AMAT) .GT. .02) THEN
NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
o
RETURN
END



SUBROUTINE RBRY (LCODE,KONS, NROW)
(e mmm—— e — e —————————————————— e e
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FCR THE
C CUISTRAINT OF RIGID BODY ROTATION IN THE Y DIRECTION.

C
INCLUDE 'RES1:[P3453.VLIN.COMMON JCONSTRAIN.CMN'
INCLUDE 'RES1:{P3453.VLIN.COMMON INUMERIC.CMN"
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT .CMN'
C
I = 3 * CONSTR(KONS, 3)
71 = XVECT(I}
IF (LCODE .EQ. @) GO TC 10¢
c _______________________________________________________________________
C RESIDUALS.
C _______________________________________________________________________
RESID{NROW) = -Z1l
IF (LCODE .EQ. 1) RETURN
C ______________________________________________________________________
C PARTIALS.
o e e e e e e e et e e e e e o e e e e e A e e e e s = o e e e i = L =
1906 ITI =0
DO 1@ JJ=1,NEQS
AMAT = @.
IF (NVAR(JJ) .EQ. @) GO TO 10
II = II + 1
IF (JJ .EQ. I) AMAT = 1.
C
IF (ABS({AMAT) .GT. .@2) THEN
NTELE=NTELE+l1
AVAL(NTELE) = AMAT
IRN(NTELE) = NRCW
ICN(NTELE)} = II
, END IF
19 CONTINUE
C
RETURN

END
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SUBROUTINE RBRZ (LCODE, KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR THE
C CONSTRAINT OF RIGID BODY ROTATION IN THE 2 DIRECTION.

c
INCLUDE 'RES1:{P3453.VLIN.COMMON ]JCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON JNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON ]JSEGMENT.CMN'
C
I = 3 * CONSTR(KCNS,3) -1
Yl = XVECT(I) ,
IF (LCODE .EQ. @) GO TO 1840 .
e e e e e e e
C RESIDUALS.
o e e e e e e e e e e e e e o e e o e et e e e e e e o e e e o
RESID{(NROW) = -Y1
IF (LCODE .EQ. 1) RETURN
e e m— — E —— e e e e e
C PARTIALS.
e e e e e e e e e e e e e et e e s e e e e e e e v e e
109 I1I = @
DO 18 JJ=1,NEQS
AMAT = @.
IF (NVAR(JJ) .EQ. @) GO 70 10
II =11 + 1
IF (55 .EQ. I) AMAT = 1.
C
IF (ABS (AMAT) .GT. .82) THEN
NTELE=NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
C
RETURN

END
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SUBROUTINE ANG2P {LCODE,KONS,NRCW)

THIS SUBRCUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
THE CONSTRAINT OF ANGLE BETWEEN INTERSECTING PLANES.

INCLUDE 'RES1:[P3453.VLIN.COMMON]JCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'
DATA PI /3.1415927/

I = 3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
M =3 * CONSTR(KONS,7) - 2
N = 3 * CONSTR(KONS,8) - 2
X1 = XVECT(1)
Y1 = XVECT(I+1)
71 = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT{JI+1)
72 = XVECT(J+2)
X3 = XVECT(X)
Y3 = XVECT(K+1}
73 = XVECT (K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)}
724 = XVECT(L+2)
X5 = XVECT (M}
Y5-= XVECT (M+1)
725 = XVECT(M+2)
X6 = XVECT(N)
Y6 = XVECT(N+1)
26 = XVECT(N+2)
Al = Y2*Z3 - Y2*7Z] - Y1%*23 - Y3*Z2 + Y3*7Z1 + Y1*22
Bl = =X2*%*Z3 + X2%Z]1 + X1*Z3 + X3*Z2 - X3*Z1 - X1*z2
Cl = X2*Y3 - X2*Y] - X1*Y3 - X3*Y2 + X3*Y1 + X1*Y2
A2 = Y5%*Z6 - YS*Z4 - Y4*76 - Y6*Z5 + Y6*Z4 + Y4*ZS
B2 = -X5*76 + X5%Z4 + X4*Z6 + X6%*7Z5 - X6*Z4 - X4*75
C2 = X5*Y6 - X5*Y4 - X4*Y6 - X6*Y5 + X6*Y4 + X4*YS5
SQT1 = SCRT(AL*Al + Bl*Bl + Cl*Cl)
SQT2 = SQRT({A2*AZ + B2*B2 + C2*(C2)
THETA = DIM(CONSTR(KONS,2),3)
IF (LCODE .EQ. &) GO TO 19¢
RESIDUALS.
RESID(NROW) = =1*{Al1*A2 + B1*B2 + C1*C2 - SQTL*SQT2*COS{(PI-THETAZ))

IF (LCODE .EQ. 1) RETURN



100 D = COS(PI - THETA)*SQT2*.5/SQT1

E = COS(PI - THETA)*SQT1*.5/SQT2

II1 = 0

DO 18 JJ=1,NEQS
AMAT = @.
IF (NVAR(JJ) .EQ. @) GO TO 1@
II =I1I +1
IF (JJ .EQ. I) AMAT = AMAT + B2*(23-22) +

1 C2*(Y2-~¥Y3) - D * (2*Bl%(Z3-Z2) + 2*C1*(Y2-Y3))
IF (JJ .EQ. I+l) AMAT = AMAT + A2*(Z2-Z3) +

1 C2*(X3-X2) -D * (2*A1*(Z2-23) + 2*C1l*(X3-X2})
IF (JJ .EQ. I+2) AMAT = AMAT + A2*(Y3-Y2) +

1 B2*(X2-X3) -D * (2*Al*(y3-Y2) + 2*B1*(X2-X3))
IF (JJ .EQ. J) AMAT=AMAT + B2*(Z1-Z3) +

1 C2*(Y3-Y1l) « D * (2*Bl*(Z1-Z3) + 2*Cl*(¥3-Y1l))
IF (JJ .EQ. J+1) AMAT=AMAT + RA2*(Z3-Z21) +

1 C2*(X1-X3) -D * (2*Al1*(73-Z1) + 2*Cl*(X1-X3))
IF (JJ .EQ. J+2) AMAT=AMAT + A2*(Y1l-Y3) +

1 B2*(X3-X1) -D * (2*Al1*(Y1-Y3) + 2*Bl1*(X3-X1))
IF (JJ .EQ. K} AMAT=AMAT + B2*(Z2=-Z1) +

1 C2*(Y1~Y2) - D * (2*%Bl*(z2-Z1) + 2*Cl*(Y1-Y2))
IF (JJ .EQ. K+1) AMAT=AMAT + A2*(Zz1-Z2) +

1 C2*(X2-X1) =D * (2*Al*(Z1-22) + 2*Cl*(X2-X1))
IF (JJ .EQ. K+2) AMAT=AMAT + A2*(Y2-Y1l) +

1 B2*(X1-X2) ~D * (2*Al*(Y2-Y1l) +2*RB1=(X1-X2))
IF (JJ .EQ. L) AMAT=AMAT + B1*(26-2Z5) +

1 Cl*(Y5-Y6) - E * (2*B2*(26-25) + 2*C2*(Y5-Y6))
IF (JJ .EQ. L+1) AMAT=AMAT + A1*({25-26) +

1 Cl*(X6-X5) -E * (2*A2*({25-26) + 2*C2*(X6-X5))
IF (JJ .EQ. L+2) AMAT=AMAT + Al*(Y6-Y53) +

1 B1l*(X5-X6) -E * (2*A2*(Y6-YS5) + 2*BR2*(X5-X6))
IF (JJ .EQ. M) AMAT=AMAT + B1*(Z4-26) +

1 Cl*(Y6-Y4) - E * (2*B2*(74-26) + 2*C2*(Y6-Y4))
IF (JJ .EQ. M+1) AMAT=AMAT + Al%*(Z6-24) +

1 Cl*(X4-X6) -E * (2*A2*(26-24) + 2*C2*(X4-X6})
IF (JJ .EQ. M+2) AMAT=AMAT + Al*(Y4-Y6) +

1 Bl*{X6-X4) ~E * (2*A2*(Y4-Y6) + 2*B2*(X6-X4)})
IF (JJ .EQ. N) AMAT=AMAT + B1*(Z5-%Z4) +

1 Cl*(Y4-Y5) - E * (2*B2*(75~-7Z4) + 2*C2*(Y4-Y5))
IF (JJ .EQ. N+1) AMAT=AMAT + Al1*(24-25) +

1 Cl*(X5~X4) -E * (2*A2%(Z24~25) + 2*C2*(X5-X4))
IF (JJ .EQ. N+2) AMAT=AMAT + Al*(YS5-Y4) +

1 B1*(X4-X5) =E * (2*A2*%(Y5-Y4) + 2*B2*(X4-X5))

IF (ABS(AMAT) .GT. .#2) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW

- 154 -



ICN(NTELE) = II
END IF
CONTINUE

RETURN
END
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SUBROUTINE CCFLAN (LCODE, KONS, NROW)
e e e e e e e e e e e e e e e e o e e e
C THIS SUBRCUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES
C FOR THE CONSTRAINT COF FOUR POINTS COPLANAR.
C
-

INCLUDE 'RES1:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONINUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT.CMN'

C
I =3 * CONSTR({KONS,3) - 2
J = 3 * CONSTR({KONS,4) - 2
K = 3 * CONSTR(KONS,5} - 2
L = 3 * CONSTR(KONS,6) - 2
X1 = XVECT(I)
Y1l = XVECT({I+1)
7zl = XVECT{I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)}
72 = XVECT(J+2)
X3 = XVECT(K)
¥3 = XVECT(K+1)
723 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
74 = XVECT(L+2)
C
Al = Y2*Z3 - Y2*Z1 - Y1%*73 - Y3*22 + Y3*Z1 + Y1*72
Bl = =X2%Z3 + X2*Z]1 + X1*Z3 + X3*Z2 - X3*Z1 - X1*7Z2
Cl = X2%Y3 = X2%Y1 - X1*Y3 = X3*Y2 + X3*Yl + X1*Y2
IF (LCODE .EQ. £) GO TO 100
Comem i o o it o o o e R = Y o 9 N Y N N e e e e o = e
C RESIDUALS
Clommm o o e m i i o v o o v o e e
D = =X1*Al - Y1*Bl - Z1*Cl
RESID(NROW) = -1* {(Al*X4 + Bl*Y4 + Cl*Z4 + D)
IF (LCODE .EQ. 1) RETURN
gy g g gy g g Ly gy g gy gy A0y g g
C ONLY CALCULATE PARTIALS FCR SENSITIVE VARIABLES
(g gy g g L T Ty Sy Sy S S,
120 11 =@
DO 1@ JJ=1,NEQS
AMAT = 4,
IF (NVAR(JJ) .EQ. 8) GO TO 18
II = II + 1
IF (JJ .EQ. I) AMAT = Y4*Z3 - Y4%*Z2 - Y3*74 + Y2*74
1 - Bl - Y1*73 + Y1*Z2 + VY3I*Z]l - Y2*7]
IF (3J .EQ. I+1) AMAT = =-X4*Z3 + X4*Z2 -~ ¥X2%Z4 + X3*24
1 + X1%Z3 - X1*Z2 - Bl + Z1*X2 ~ Z1*X3
IF (JJ .EQ. I+2) AMAT = -¥2*X4 + Y3*X4 + X2*Y4 - X3*Y4
1 + X1*Y2 - X1*Y3 - Y1*X2 + Y1*X3 - Cl
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IF (JJ .EQ. J) BMAT = =Z3%*Y4 + Z1*Y4d + Y3*724 - Y1*Z4
1 + Y1*Z3 - Z1*Y3
IF (JJ .EQ. J+1) AMAT = Z3*X4 - Z1*X4 - X3%Z4 + X1*Z4
1 - X1*Z23 + Z1*X3
IF (JJ .EQ. J+2) AMAT = -Y3*X4 + Y1*X4 + X3*Y4 -X1*Y4
1 + X1*Y3 - Y1*X3
IF (JJ .EQ. K) AMAT = Z2*Y4 - Z1*Y4d -~ Y2*Z74 + Y1*Z4
1 - Y1%*Z2 + Z1*Y2
IF (JJ .EQ. K+1) AMAT = -Z2*X4 + Z1*X4 + X2%*Z74 - X1*Z4
1 + X1*72 - Z1*X2
IF (JJ .EQ. K+2) AMAT = V2*X4 - Y1*X4 - X2*Y4 + X1*Y4
1 - X1*Y2 + Y1*X2
IF (JJ .EQ. L) AMAT = a1l
IF (J3 .EQ. L+1) AMAT = Bl
IF (J3 .EQ. L+2) AMAT = Cl
IF (ABS(AMAT) .GT. .92) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
CONTINUE
RETURN
END
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SUBROUTINE PARALP (LCODE, KONS,NRCW)
THIS SUBROUTINE CCMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
CONSTRAINT CF A LINE PARALLEL TO A PLANE.

INCLUDE 'RES1:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON JNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.CCMMON]SEGMENT.CMN'

I = 3 * CONSTR(KONS,3) - 2

J = 3 * CONSTR(KONS,4) - 2

K =3 * CONSTR{KONS,5) - 2

L =3 * CONSTR{KONS,6) - 2

M =3 * CONSTR(KONS,7) - 2

X1l = XVECT(I)

Y1l = XVECT(I+l)

Z1 = XVECT(I+2)

X2 = XVECT(J)

Y2 = XVECT(J+1)

72 = XVECT(J+2)

X3 = XVECT(K)

Y3 = XVECT(K+1)

73 = XVECT(K+2)

X4 = XVECT(L}

Y4 = XVECT(L+1)

74 = XVECT(L+2)

X5 = XVECT(M)

Y5 = XVECT(M+1)

725 = XVECT(M+2)

Al = Y2*%Z3 - Y2*Z1 - Y1*Z3 - Y3*Z2 + Y3*Zl + Y1*Z72
Bl = -X2%*23 + X2*Z7]1 + X1%*Z3 + X3*72 - X3*7] - X1*72
Cl = X2*Y3 - X2*Y]l - X1*Y3 - X3*Y2 + X3*Y]l + X1*Y2

IF {(LCODE .EQ. @) GO TO 100

RESID{NROW) = =1 * ((X5-X4)*Al + (YS5-Y4)*Bl + (25-Z4}*Cl)
IF (LCODE .EQ. 1) RETURN

L L S AP —— S S S W S S A s e kA S S b s T R M M S M S G D G A G S D e A b

190 II =0
DO 18 JJ=1,NEQS
AMAT = 4.
IF (NVAR{JJ) .EQ. 2) GO T0Q 12
II = II + 1
IF (JJ .EQ. I) AMAT = (Y5-Y4)*(z3-22
IF (JJ .EQ. I+l) AMAT
IF (JJ .EQ. I+2) AMAT

) + (25-24)*(Y2-Y3)
(X5-X4)* (22 723} + (Z5=24)%(X2-X2)
(X5-X4)*(¥3-Y2) + (¥Y5-Y4)*({X2-X3)
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Y5-Y4)*(z21-23) {25-24)*(Y3-Y1)
{z25-24)*(X1-X3)
(Y5-Y4)*(X3-X1)
(Z5-Z24)*(Y1-Y2)
(25-24)*{X2-X1)
(Y5-Y4)*(X1-X2)

IF (JJ .EQ. J) AMAT = (
IF (JJ .EQ. J+1) AMAT (X5-X4}*{(z3-21)
IF (JJ .EQ. J+2) AMAT (X5-X4)*{Y1l-Y3)
1IF (JJ .EQ. K) AMAT = (Y5-Y4)*(22~Z1)
IF (JJ .EQ. K+1) AMAT (X5-X4)*{(Z21-22)
IF (JJ .EQ. K+2) AMAT (X5-X4)*(Y2-Y1)
IF (JJ .EQ. L) AMAT = -Al
IF (JJ .EQ. L+1) AMAT = -Bl
IF (JJ .EQ. L+2) AMAT = =Cl
IF (JJ .EQ. M) AMAT = Al
IF (JJ .EQ. M+l) AMAT Bl
IF (JJ .EQ. M+2) AMAT Ccl

+ 4+ + + + +

i

IF (ABS(AMAT) .GT. .02} THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II

END IF
CONTINUE

RETURN
END



SUBROUTINE PERPP (LCODE,KONS,NROW)
THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
THE CONSTRAINT OF PERPENDICULAR PLANES.

INCLUDE ‘RES1:[P3453.VLIN.COMMON]JCONSTRAIN.CMN'
INCLUDE '‘RES1:[P3453.VLIN.COMMON INUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT.CMN'

I =3 * CONSTR(KONS,3) - 2

J =3 * CONSTR(KONS,4) - 2

K = 3 * CONSTR{KONS,5) - 2

L =3 * CONSTR(KONS,6) - 2

M =3 * CONSTR(KONS,7) - 2

N = 3 * CONSTR(KONS,8)} - 2

Xl = XVECT(I)

Y1l = XVECT(I+l)

Z1 = XVECT(I+2)

X2 = XVECT(J)

Y2 = XVECT({J+1)

72 = XVECT(J+2)

X3 = XVECT(K)

Y3 = XVECT(K+1l)

23 = XVECT(K+2)

X4 = XVECT(L)

Y4 = XVECT(L+l)

74 = XVECT(L+2)

X5 = XVECT(M)

YS = XVECT(M+1)

Z5 = XVECT({M+2)

X6 = XVECT(N)

Y& = XVECT(N+1)

Z6 = XVECT(N+2)

Bl = Y2*%73 - VY2%Z1 -~ Y1*Z3 - Y3*%Z2 + Y3*2] + Y1+*72
Bl = -X2*Z73 + X2*Z1 + X1*Z3 + X3%Z2 - X3*%71 - X1*72
Cl = X2*Y3 = X2*%Y1l - X1*Y3 - X3*Y2 + X3*Y]l + X1*V2
A2 = Y5*76 - Y5*7Z4 ~ Y4*7Z6 - Y6*Z5 + Y6*Z4 + Y4%75
B2 = -X5%Z6 + X5*Z4 + X4*Z6 + X6*25 - X6%24 - X4*Z5
C2 = X5*Y6 = X5%Y4 - X4*Y6 - X6*YS5 + X6*Y4d + X4*Y5
IF (LCODE .EQ. 8) GO TO 100

RESID(NROW) = =1*(A1*A2 + B1l*B2 + Cl*C2)
IF (LCCDE .EQ. 1) RETURN
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DO 1@ JJ=1,NEQS

AMAT = @.
IF (NVAR(JJ)} .EQ. @) GO TO 18
II =1II +1

IF (JJ .EQ. I) AMAT=AMAT+B2*(Z3-Z2) + C2*(Y2-Y3)
IF (JJ .EQ. I+l) AMAT=AMAT+A2*(Z2-23) + C2*(X3-X2)
IF (JJ .EQ. I+2) AMAT=AMAT+A2*{¥3-Y2) + B2*(X2-X3}
IF (JJ .EQ. J) AMAT=AMAT+B2*(Z1-Z3) + C2*(Y3-Y1l)
IF (JJ .EQ. J+1) AMAT=AMAT+A2*(23-Z1) + C2*(X1-X3)
IF (JJ .EQ. J+2) AMAT=AMAT+A2*(Y1-Y3) + B2*(X3-X1)
IF (JJ .EQ. K) AMAT=AMAT+B2*(Z22-Z1)} + C2*(Y1l-Y2)
IF (JJ .EQ. K+1) AMAT=AMAT+A2*%(Z21-22) + C2*(X2-X1)
IF (JJ .EQ. K+2) AMAT=AMAT+A2*(Y2-Y1l) + B2*{X1-X2)
IF (JJ .EQ. L) AMAT=RMAT+B1*(Z6-Z5) + Cl*(Y5-Y6)
IF (JJ .EQ. L+1) AMAT=AMAT+Al*(Z5-26)} + Cl*(X6=-XS)
IF (JJ .EQ. L+2) AMAT=AMAT+Al*{Y6-Y5) + Bl1*{X5-X6)
IF (JJ .EQ. M) AMAT=AMAT+Bl*(Z4-7Z6) + Cl*(Y6-Y4)
IF (JJ .EQ. M+l) AMAT=AMAT+Al*{Z26-24) + Cl*(X4-X6)
IF (JJ .EQ. M+2) AMAT=AMAT+Al*(Y4-Y6) + Bl*(X6-X4)
IF (JJ .EQ. N) AMAT=AMAT+Bl*(Z5-Z4) + Cl*(Y4-Y5)
IF (JJ .EQ. N+1) AMAT=AMAT+Al*(Z4-Z5)+ C1*(X5-X4)
IF (JJ .EQ. N+42) AMAT=AMAT+Al*(Y5-Y4)+ B1l*(X4-X5)

IF (ABS(AMAT) .GT. .02) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT

IRN(NTELE} = NROW
ICN(NTELE) = II
END IF
10 CONTINUE
C
RETURN

END

o

C NOTE: SINCE SAME VARIABLE CAN APPEAR MORE THAN ONCE IN THE SAME

c EQUATICN, MUST ADD JACOBIAN ELEMENTS TOGETHER.

¢ EG. I =2 M= 2 JJ = 2

C MUST ADD A(NROW,II) OBTAINED FRCM I TO A(NROW,II) OBTAINED
C FROM M TO GET NEW TOTAL A(IRCW,II). MUST DO SAME FOR I+l,
C I+2, M+1, M+2.

c
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SUBROUTINE EQLDIS (LCODE, KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF TWO LINEAR DISTANCES BEING EQUAL.

C ____________________________________________________________________________
C
INCLUDE 'RES1:[P3453.VLIN.COMMONICONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONJSEGMENT.CMN'
I =3 * CONSTR(KONS,3) ~ 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(KONS,5) - 2
L =3 * CONSTR(KONS,6) - 2
X1 = XVECT(I)
Yl = XVECT(I+l)
7zl = XVECT(I+2)
X2 = XVECT(J)
Y2 = XVECT(J+1)}
72 = XVECT{J+2)
X3 = XVECT(K)
Y3 = XVECT(K+1)
73 = XVECT(K+2)
X4 = XVECT(L)
Y4 = XVECT(L+1)
24 = XVECT(L+2)
E = SORT((X2-X1)*(X2-X1) + (Y2-Y1)*{y2-Yl) + (22-21)}*(Z22-21))
F = SQRT((X4-X3)*(X4~X3) + (Y4-Y3)*(Y4-¥3) + (Z4=-23)*(Zz4-23))
IF (LCODE .EQ. @) GO TO 120
C ___________________________________________________________________________
C RESTDUALS.
C ___________________________________________________________________________
RESID(NROW) = F - E
IF (LCODE .EQ. 1) RETURN
C ______________ e . L —— . e = e T S R D SR SR s R D S S S S A G e e e S S el S W L G TR W P R R AR WD R mm e
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C ___________________________________________________________________________
190 5=1/E
H=1/F
I = @
DO 1@ JJ =1,NEQS
AMAT = .
IF (NVAR(JJ) .EQ. 8) GO TO 1¢
II = II + 1
IF (JJ .EQ. I) AMAT = AMAT =~ G*(X2-X1)
IF (JJ .EQ. I+l) AMAT = AMAT - G*(Y2-Y1)
IF (JJ .EQ. I+2) AMAT = AMAT - G*(Z22-21)
IF (JJ .EQ. J) AMAT = AMAT + G*(X2-X1)
IF (JJ .EQ. J+1) AMAT = AMAT + G*(Y2-Y1l)
IF (JJ .EQ. J+2) AMAT = AMAT + G*(Z2~-21)
IF (JJ .EQ. K) AMAT = AMAT + H*{X4-X3)
IF (JJ .EQ. K+1) AMAT = AMAT + H*{Y4-Y3)
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IF (JJ .EQ. K+2) AMAT = AMAT + B*(Z4-Z3)
IF (JJ .EQ. L) AMAT = AMAT - H*(X4-X3)

IF (JJ .EQ. L+l1) AMAT = AMAT - H*{Y4-Y3)
IF (JJ .EQ. L+2) AMAT = AMAT - H*(24-Z3)

IF (ARS(AMAT) .GT. .82) THEN
NTELE=NTELE+l
AVAL(NTELE) = AMAT

IRN(NTELE) = NROW
ICN{NTELE) = II
END IF
19 CONTINUE

NOTE: SINCE SAME VARIABLE CAN APPEAR MORE THAN ONCE IN IN THE
SAME EQUATICN, MUST ADD JACCBIAN ELEMENTS TCGETHER.

RETURN
END
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SUBROUTINE EQXDIS (LCODE, KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE TWO EQUAL X DISTANCES.

o e e e e e e e e e e e e ey o S e e o o B o e e e e e e T . P e o e e
o
INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONINUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMONISEGMENT.CMN'
I =3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
K = 3 * CONSTR(XCONS,5) - 2
L = 3 * CONSTR(KONS,6) - 2
X1 = XVECT(I)
X2 = XVECT(J)
X3 = XVECT(K)
X4 = XVECT(L)
E = SQRT((X2=X1)*({X2-X1))
P = SQRT({X4-X3)*(X4-X3))
IF (LCCODE .EQ. @) GO TO 109
(e e e e e e e E e EE E e e e e o e B e e e e e e
C RESIDUALS.
o e e rm o e e e e e e e e o o o o e e A e A AR 8 e A e R = o = o e = = . n o e
RESID(NROW) = F - E
IF¥ (LCODE .EQ. 1) RETURN
(e e o e e e e e e e e e e e e e e e e o o
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
(e o o e e e o e e e o e e e L e == A8 ) = P s i i o = = . P
12@ G=1/E
H=1/F
I1I =@
DO 1@ JJ=1,NEQS
AMAT = 0.
IF {NVAR(JJ) .EQ. #) GO TO 10
II = I1 + 1
IF (JJ .EQ. I) AMAT = AMAT - G*(X2-X1l)
IF (JJ .EQ. J) AMAT = AMAT + G*(X2-X1)
IF (JJ .EQ. K) AMAT = AMAT + H*(X4-X3}
IF (JJ .EQ. L) AMAT = AMAT - E*(X4-X3)
C
IF (ABS(AMAT) .GT. .@2) THEN
NTELE = NTELE + 1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
10 CCONTINUE
(it e e e e e e e e e e e e e e e e e e e e L = = o = = o —
C NOTE: SINCE SAME VARIAPLE CAN APPEAR MORE THAN ONCE IN THE
C SAME EQUATION, MUST ADD JACOBIAN ELEMENTS TCGETHER.
C e e e e e e e o e e e e e e e o e e o " e = o = .
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RETURN
END
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SUBROUTINE DISZ2PT (LCODE, KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE DISTANCE BETWEEN TWO POINTS IN 3 DIMENSIONS.

INCLUDE 'RES1:[P3453.VLIN,COMMON JCONSTRAIN.CMN'

INCLUDE 'RES1:[P3453.VLIN.COMMON INUMERIC.CMN'

INCLUDE 'RES1:[P3453,VLIN.COMMON]SEGMENT.CMN'

I =3 * CONSTR(KONS,3) - 2

J = 3 * CONSTR(KONS,4) - 2

X1 = XVECT(I)

Yl = XVECT(I+l)

71 = XVECT(I+2)

X2 = XVECT(J)

Y2 = XVECT(J+]1)

72 = XVECT(J+2)

D = SQRT((X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1l) + (Z22-Z21)%(Z2-Z1))
IF (LCODE .EQ. @) GO TC 18g

DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = ~1 * (D - DIST)
IF (LCODE .EQ. 1) RETURN

11 =0

DO 18 JJ=1,NEQS
AMAT = 0.
IF (NVAR{(JJ) .EQ. 8) GO TO 1@
II1 =11 4+ 1
IF (JJ .EQ. I) AMAT = -E*(X2-X1)
IF (JJ .EQ. I+l) AMAT = -E*{Y2-Y1)
IF (JJ .EQ. I+2) AMAT = -E*(Z22-Z1)
IF (JJ .EQ. J) AMAT = E*(X2-X1)
IF (JJ .EQ. J+1) AMAT

IF (JJ .EQ. J+2) AMAT

E*{(Y2-Y1)
E*(Z22-21)

IF (ABS(AMAT) .GT. .92) THEN
NTELE = NTELE+l
AVAL(NTELE) = AMAT
IRN (NTELE ) NROW
ICN(NTELE) II
END IF
19 CONTINUE

RETURN

END

- 166 -



SUBRQUTINE DISPTP (LCODE, KONS, NROW)

THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOCR
THE CONSTRAINT OF THE DISTANCE RETWEEN A POINT AND A PLANE,

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON JNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT.CMN®

I =3 * CONSTR(KONS,3) - 2

J = 3 * CONSTR(KONS,4) - 2

K =3 * CONSTR(KONS,5) - 2

L = 3 * CONSTR(KONS,6) - 2

X1 = XVECT{I)

Y1l = XVECT(I+l)

Z1 = XVECT(I+2)

X2 = XVECT{J)}

Y2 = XVECT(J+1)

Z2 = XVECT(J+2)

X3 = XVECT(K)

Y3 = XVECT(K+l)

73 = XVECT(K+2)

X4 = XVECT(L)

Y4 = XVECT{L+1)

724 = XVECT(L+2)

Al = Y2*%Z3 - Y2%*71 - Y1*Z3 - Y3*Z2 4+ V3*Z1 + Y1*Z2
Bl = =X2*%73 + X2*21 + X1%23 + ¥X3*%Z2 - X3*Z1 - X1*72
Cl = X2*Y3 - X2*Y1 = X1*Y3 - X3*Y2 +X3*Y1l +X1*Y2

D = -X1*Al - Y1*Bl - Z1*Cl

SOT = SQRT(Al*Al + B1*Bl + Cl*Cl)
SIGN = 1.

E = Al*X4 + Bl*Y4 + Cl*Z4 + D

IF (E .GE. §.) SIGN = -1.

DIST = DIM({CONSTR(KONS,2),3)

IF (LCODE .EQ. &) GO TO 100

A . e b S i i s G e P e B A S P A M ek M e S S A S i M A CEM MSe M M e e A . wmd S ek Hek R STL GPR S AN M e S S s M A g g P

RESID(NROW) = =1 * (E + SIGN*DIST*SQT)
IF (LCODE .EQ. 1) RETURN

F
II

SIGN*DIST*.5/SQT

5]

DO 16 JJ = 1,NEQS
AMAT = 2.
IF (NVAR(JJ) .EQ. &) GO TO 1O

11 =
IF (JJ .EQ. I) AMAT = Y4*(23-22) + Z24*(Y2-¥Y3) ~ Al

II + 1
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1 - Y1%(23-22) - Z1*(Y2-Y3) + F*{2*Bl*(z3=-22)
2 + 2*Cl*(Y2-Y3))
IF (JJ .EQ. I+1) AMAT = X4*(22-23) + 24*(X3-X2) -
1 X1*(22-23) - Bl - Z1*(X3~-X2)} + F*(2*al*(z22-23)
2 + 2%CLl*(X3-X2))
IF (JJ .EQ. I+2) AMAT = X4*(Y¥Y3-Y2) + Y4*(X2-X3) -
1 X1%(Y3-Y2) - Y1*(X2-X3) = Cl + F*(2*al*(Y3-Y2)
2 + 2*¥Bl*(X2-X3))
IF (JJ .EQ. J) AMAT = Y4*(Z1-Z3) + z4*(Y3-Yl) =
1 Y1*(Z1-23) - Z1*(Y3-Yl) + F*(2*B1*(Z1-Z3)
2 + 2*Cl*(Y3-Y1))
IF (JJ .EQ. J+1) AMAT = X4*(Z73-Z1) + 24*(X1-X3)
1 - X1%(23-21) ~ Z1*(X1-X3) + F*(2*A1*(Z3-Z1)
2 + 2*C1*(X1=X3))
IF (JJ .EQ. J+2) AMAT = X4*(Y1l-Y3) + Y4*(X3-X1)
1 - X1*(Y1~-Y3) - Y1*(X3-X1) + F*(2*Al*(Y1-Y3)
2 + 2%B1*(X3-X1))
IF (JJ .EQ. K) AMAT = Y4*(22-21) + Z4*(Y1-Y2) -
1 Y1*(722-Z1) - Z1*(Yl=Y2) + F*(2*B1*(72-21)
2 + 2*C1*(Y1-Y2))
IF (JJ .EQ. K+1) AMAT = X4*(z1-Z2) + Z4*(X2-X1) -
1 X1*(21-22) - Z1*(X2-X1) + P*(2*pl1*(z21-22)
2 + 2%C1l*(X2-X1))
IF (JJ .EQ. K+2) AMAT = X4*(Y2-Y1l) + Y4*(X1-X2) -
1 X1*(Y2-Y1l) = Y1*(X1-X2) + F*(2*Al*(v2-Y1)
2 + 2*Bl*(X1-X2))
IF (JJ .EQ. L) AMAT = Al
IF (JS .EQ. L+1) AMAT = Bl
IF (JJ .EQ. L+2) AMAT = Cl
IF (ABS({AMAT) .GT. .02} THEN
NTELE = NTELE+l
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN{(NTELE) = II
END IF
CONTINUE
RETURN
END
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SUBROUTINE HDIST (LCCDE,KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE HORIZONTAL DISTANCE BETWEEN TWO POINTS.

INCLUDE 'RES1:[P3453.VLIN.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.CCMMONJINUMERIC.CMN'
INCLUDE 'RES1:[P:453.VLIN.COMMON]SEGMENT.CMN'

o
I =3 * CONSTR(KONS,3) - 2
J = 3 * CONSTR(KONS,4) - 2
X1 = XVECT(I)
Yl = XVECT(I+l)
X2 = XVECT(J)
Y2 = XVECT(J+1)
D = SQRT{(X2-X1)*{X2=X1) + (Y2-Y1)*(Y2-Y1l))
IF (LCODE .EQ. @) GO TO 199
e e e e e 2 e e e e e e e e e i
C RESIDUALS.
e o e e e == —————————mmmm — e ————————
DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = ~1*(D - DIST)
IF (LCODE .EQ. 1) RETURN
C ___________________________________________________________________________
C CNLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
c ____________________________________________________________________________
1089 E=1/0D
II = &
DO 18 JJ = 1,NEQS
AMAT = 4@,
IF (NVAR(JJ) .EQ. @) GO TO 12
11 = II +1
IF (JJ .EQ. I) AMAT = -E*(X2-X1)
IF (JJ .EQ. I+l) AMAT = -E*(Y2-Y1)
IF (JJ .EQ. J) AMAT = E*({X2-X1l)
IF (JJ .EQ. J+1) AMAT = E*(Y2-Y1)
C
IF {ABS(AMAT) .GT. .82) THEN
NTELE = NTELE+l
AVAL{NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
o
RETURN

END
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SUBROUTINE VDIST (LCODE, KONS, NROW)
C __________________________________________________________________________
C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE VERTICAL DISTANCE BETWEEN TWO POINTS.
C
C

INCLUDE 'RES1:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RESI1:[P3453.VLIN.COMMONJNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]JSEGMENT.CMN'

I = 3*CONSTR(KONS,3) - 2

J = 3*CONSTR{KONS,4) - 2

C
Z1 = XVECT(I+2)
Z2 = XVECT({J+2)
IF (LCODE .EQ. 8) GO TC 100
C _________________________________________________________________________
C RESIDUALS.
C _________________________________________________________________________
DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1 * (22 - Z1 - DIST)
IF (LCODE .EQ. 1) RETURN
C _________________________________________________________________________
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
Qoo e o i e o o o e e e e e e e e e e e e e = .
199 II =8
Do 1@ JJ= 1,NEQS
AMAT = @.
IF (NVAR{JJ) .EQ. @) CO TO 1@
IT = IT + 1
IF (3J .EQ. I+2) AMAT = -1.
IF (JJ .EQ. J+2) AMAT = 1,
C
IF (ABS (AMAT) .GT. .02) THEN
NTELE = NTELE+l
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
¢
RETURN
END
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SUBROUTINE XDIST(LCODE, KONS,NROW)

C THIS SUBROUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE X DISTANCE BETWEEN TWO POINTS.

INCLUDE 'RES1:[P3453.VLIN.COMMON]CONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON JNUMERIC.CMN'
INCLUDE 'RES1:[P3453.VLIN.COMMON]SEGMENT.CMN'

C
I = 3*CONSTR(KONS,3)-2
J = 3I*CONSTR(KONS,4)~2
X1 = XVECT(I)
X2 = XVECT(J)
IF (LCODE .EQ. @) GO TO 1p8
e e i tm o o e o e e e e e e e e e e e e T e e
C RESIDUALS
o e o e e T o e T i T e
DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1*{(X2-X1-DIST)
IF {LCCDE .EQ. 1) RETURN
Cmm e e e e e m e e e e e e e e e i e e e e e e
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
e e e e e e i e e e e e e
1980 II =@
DO 18 JJ = 1,NEQS
AMAT = @.
IF (NVAR(JJ) .EQ. @) GO TO 1@
II =1II +1
IF (JJ .EQ. I) AMAT = -1,
IF (JJ .EQ. J) AMAT = 1.
C
IF (ARS(AMAT) .GT. .d2) THEN
NTELE = NTELE+1
AVAL(NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
19 CONTINUE
C
RETURN

END



SUBROUTINE YDIST (LCODE, KONS, NROW)

C THIS SUBRCUTINE COMPUTES THE RESIDUALS AND PARTIAL DERIVATIVES FOR
C THE CONSTRAINT OF THE Y DISTANCE BETWEEN TWO POINTS.

INCLUDE 'RES1:[P3453.VLIX.COMMONJCONSTRAIN.CMN'
INCLUDE 'RES1:[P3453.VLIN,COMMON JNUMERIC.CMN'
INCLUDE 'RES1:([P3453.VLIN.COMMON]SEGMENT.CMN'

C
I = 3*CONSTR(KONS, 3)-2
J = 3*CONSTR(KONS,4)-2
Y1l = XVECT(I+1)
Y2 = XVECT(J+1)
IF (LCODE .EQ. @) GO TO 120
C ____________________________________________________________________
¢ RESIDUALS.
C ____________________________________________________________________
DIST = DIM(CONSTR(KONS,2),3)
RESID(NROW) = -1*(Y2-Y1-DIST)
IF (LCODE .EQ. 1) RETURN
C ____________________________________________________________________
C ONLY COMPUTE PARTIALS FOR SENSITIVE VARIABLES.
C ____________________________________________________________________
159 I1II =0
2O 16 JJ = 1,NEQS
AMAT = @.
IF (NVAR(JJ) .EQ. @) GO TO 1
II = 1II + 1
IF (JJ .EQ. I+l) AMAT = -1,
IF {(JJ .EQ. J+1l) AMAT = 1.
C
IF (ABS(AMAT) .GT. .82) THEN
NTELE = NTELE+l
AVAL{NTELE) = AMAT
IRN(NTELE) = NROW
ICN(NTELE) = II
END IF
10 CONTINUE
C
RETURN

END
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