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ABSTRACT

An analytic characterization of the process of executing a well-defined
decision-making task by a human decision maker is presented. A basic two-
stage model of this process is introduced in which external situations are
first assessed and then responses are selected. An information theoretic
framework is used in which total internal activity is described in terms
of internal coordination and internal decision-making, as well as through-
put and blockage. A constraint on the rate of total activity, i.e., on
the rate of internal processing, is suggested as a model of bounded ration-
ality. The correspondence between restriction on internal decision-
making and bounded rationality is explored.

The model is extended to include basic interactions in an organiza-
tional context: direct and indirect control. The former is modeled as
a restriction on internal decision-making by external commands and the
latter is incorporated through an auxiliary situation assessment input
received from the organization.

Thesis Supervisor: Alexander H. Levis
Title: Senior Research Scientist
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND AND POINT OF VIEW

This thesis is concerned with the analytic characterization of the
process of performing a well-defined decision-making task by a human de-
cision maker. The research presented has been motivated by the desire to
design and evaluate alternative military organizational structures, par-
ticularly structures which support decision-making in a tactical environ-
ment [ 1]; there presently exists no unified analytic methodology for such
an assessment. Central to the tactical decision-making process is the
role of the human decision maker, the commander, and characteristic to the
tactical environment is the problem of coordination among commanders who
must make compatible decisions about overlapping areas of responsibility

using varying amounts of information.

Under the assumption that the commanders in a tactical military en-
vironment make their decisions based on organization-wide objectives, the
problem outlined above is of the class of problems in decentralized control
known as team-decision theoretic problems. Characteristic of these problems

are the five following elements [ 2]:

a) a set of random variables which represent the "states of nature"

b) an information structure determined by the set of observations
on nature for each decision maker of the team

c) a set of decision responses for each decision maker

d) strategies (decision rules, control laws) for each decision
maker which map possible observations into decision responses

e) cost criterion for the organization (team)

In order to specify eventually the appropriate form of an organization for
a particular task, it is necessary to evaluate how particular information
structures (b) affect the strategies of decision makers (d). Correspond-
ingly, in this thesis the information structure and the decision-

making task of each organization member are specified and well-defined,

1




and consideration will be focused on the performance of that task by the

decision maker.

In previous considerations of team-theoretic decision problems [ 2],
[ 3], [ 4], it has been tacitly assumed that the decision maker is per-
fectly rational, that is, each decision maker possesses a given set of
alternatives, has knowledge (in a probabilistic sense) of the conse-
quences of choosing a particular alternative, and has a cost ordering on
the consequences [ 5]. The result is that optimal decision strategies

are obtained.

An alternative hypothesis, however, is that due to limitations in in-
formation processing ability or problem-solving ability, the decision
maker is unable to construct and consider all alternatives in a given
decision situation, nor can he assign perfectly a value to the conse-
quences of choosing a particular alternative that he does consider [6].
To the extent that this is the case, the rationality of the decision maker
cannot be perfect no matter how "intendedly rational" he is [ 7], i.e.,
he exhibits bounded rationality. March and Simon suggest that the boun-
dedly rational decision maker seeks to find an alternative which meets
minimally satisfactory criteria [ 8], that is, which satisfices. Because
of the bounded rationality of the decision maker, they claim that "most
human decision-making, whether individual or organizational, is concerned
with the discovery and selection of satisfactory alternatives." It is
believed that the notion of bounded rationality is appropriate in modeling
the organization member considered in the present context, i.e., the
commander in a tactical decision-making situation. The goal of this
thesis, therefore, has been to represent analytically and explicitly the
decision maker's boundedness and to show how it may affect the determina-

tion of strategies as solutions to the team-theoretic decision problem.

Representations of bounded rationality have been made previously

[o9], [10], [11]. Characteristic of these representations is that they

are based on input-output models of the decision maker. The work presented

in this thesis is most closely related to that of Drenick [12]. In the

Drenick model, input symbols (observations) arrive and are processed into




output symbols (decision responses). Each particular association of input
symbol to output symbol requires a fixed amount of processing time, and
the bounded rationality of the decision maker is represented by a maximum
mean processing time. The problem is to determine the input-output stra-
tegy which maximizes a payoff function, subject to the mean processing
time limitation. The optimal association of inputs to outputs is deter-
ministic (pure strategy) in the unconstrained case; because of the con-
straint imposed, however, the strategies are in general non-deterministic

(mixed).

1.2 METHOD OF APPROACH AND REVIEW OF RESULTS

The fundamental departure in this thesis from previous models of

bounded rationality is to seek a characterization of the internal processing

which is accomplished to determine output from input. Such a characteri-

zation of the decision-making process is achieved by synthesis of quali-

tative notions of decision-making with the analytic framework of informa-
tion theory. The working model is expressed as a function of internal

choices made, i.e., an internal decision strategy determines the input-

output mapping, and the characterization is such that

1) an analytic representation of the total activity required to
accomplish the internal processing is given as a function of
the internal decision strategy,

2) the bounded rationality of a decision maker is readily repre-
sented as a constraint on the rate of total activity, and

3) the notions of indirect and direct control through interactions
with other organization members are readily apparent in the model.

The third item is especially significant because it indicates that the model
developed is adaptable to consideration of team-theoretic decision prob-
lems (static or dynamic) where each decision maker is boundedly rational
according to (1) and (2). Indeed, because of the characteristic of the
model as a process, an additional richness in the consideration of inter-
actions among team members is possible since various types of inputs can

enter at different points in the process.

The model of the decision-making process developed in this thesis is




shown to give pure internal decision strategies as solutions in the nor-
mative context for the case of an unconstrained decision maker, which
corresponds to the pure decision rules obtained as solutions in the usual
team-theoretic problem (the precise correspondence is with person-by-person
optimal solutions). However, for the case of the boundedly rational de-
cision maker, the model gives mixed strategies as solutions. Similarly,

in the descriptive (satisficing) context, it is shown that it is possible

that solutions may be only mixed strategies.

Finally, it is interesting to note an aspect of the model which arises
due to the information theoretic framework: the greater the uncertainty
in the input to the decision maker, the greater is the total activity re-
quired in the decision-making process. This property is in close corres-
pondence in spirit to recent work by Galbraith in the context of (quali-
tative) organization design [13]. He observes that "the greater the task
uncertainty, the greater the amount of information that must be processed
among decision makers during task execution in order to achieve a given
level of performance."” This applies to the individual tasks of decision
makers as well. Though the correspondence is a loose one, it is satis-
fying in that the model developed in this thesis is in harmony with de-

velopments in related disciplines.
1.3 THE THESIS IN OUTLINE

The thesis is organized as follows. Chapter 2 discusses the quali-
tative basis for the decision-making model developed, while Chapter 3
reviews the aspects of information theory which are used as the analytic
framework. In Chapter 4, the basic model of the decision-making process
is developed and analyzed. Chapter 5 presents an example which illustrates
many of the properties of the model. In Chapter 6 the basic model is
extended to include two types of interaction with the rest of the organi-
zation: processed information inputs and command inputs. Suggestions

for future work and the thesis conclusion are presented in Chapter 7.




CHAPTER 2
QUALITAT IVE MODEL

In this chapter, the gualitative basis is discussed for the decision-

making process model developed in subsequent chapters.

2.1 PREVIOUS QUALITATIVE PROCESS MODELS

March and Simon [ 8] have hypothesized that the decision-making
process of the satisficing decision maker is a two-stage process of "dis-
covery and selection.” The first stage is that of determining the situa-
tion of the environment, while the second addresses the question of what
action to take in a particular situation. Selection in the first stage
takes the form of choosing the degree and type of the "discovery" which
the decision maker wishes to make regarding his environment, while dis-
covery in the second stage pertains to generating possible courses of
action for consideration. Clearly, the stages are coupled in that the
type of alternatives sought depend on the situation perceived. Together
they constitute the construction of the decision situation, which, according
to the notion of satisficing in decision-making, all but completes the
decision process, since if the process has been accomplished adequately,
a satisfactory alternative is generated. Recent work by Wise [14] has
substantiated this viewpoint. He writes that a common experience has
been that "once a decision task is 'well structured,' it is painfully
obvious to all involved what the appropriate course of action should be,"
as the "bulk of thoughtful and difficult work has resided in the actual
structuring of the decision situation." Wise calls this phenomenon an

"emergence" of the decision.

Wohl [ 1] has suggested a similar two-stage model of the decision
process through an extension of the classical stimulus-response model of
psychology. When a stimulus is received, the initial reaction of the
decision maker is to hypothesize about its origin. This is followed by
the generation and evaluation of options, among which one response is

selected. Wohl applies this Stimulus - Hypothesis - Option - Response (SHOR)




model in a military context to the tactical decision process with favorable

results.
2.2 BASIC PROCESS MODEL

Based on the above discussion, the following two-stage model is
assumed, and is illustrated in Figure 2.1. The decision maker receives
an input x from his environment and uses it in the situation assessment

(SA) stage of processing to "hypothesize about its origin." This results

oM

—T1+ SA —= RS -

Figure 2.1. Qualitative Model

in the selection of a particular value of z. Possible alternatives of
action are then evaluated in the second stage of processing, the re-
sponse selection (RS) stage. The outcome of this process is the choice
of action or decision response y. Many classes of decisions can be rep-
resented by the process of Figure 2.1. Consideration in this thesis will
be restricted to decision-making tasks which are well-defined and which

are performed in the steady-state, that is, the decision maker is assigned

a particular task which he performs again and again for successively ar-
riving inputs. For example, consider the task of monitoring a radar. A
target appears on the radar screen and corresponds to an input stimulus.
Initial processing is necessary to determine the type and/or status
(friend or foe) of the aircraft which the target represents. Once this

is decided, an appropriate response must be selected, perhaps to notify

a superior (if foe) or to do nothing (if friend). This process of mapping
input stimuli into output responses occurs repeatedly as the task is
performed. The model developed in this thesis characterizes analytically

the internal processing present in the performance of such a task using the




framework of information theory. Accordingly, the relevant aspects of

that theory are reviewed in the next chapter.



CHAPTER 3
ANALYTIC FRAMEWORK

The mathematics of information theory form the analytic framework
for the model of the decision-making process developed in this thesis.
Accordingly, in this chapter the two fundamental definitions in informa-
tion theory are reviewed, as are their extension to multiple dimensions.
In addition, the so-called Partition Law of Information [15] is pre-
sented and discussed; it is the information theoretic expression upon
which much of the thesis work is based. Throughout this thesis, con-

sideration will be restricted to the discrete case.

3.1 DEFINITIONS

Entropy, Conditional Entropy

The definitions of entropy and conditional entropy are due to Shan-
non [16]. The entropy of a random variable x which takes values according

to the probability distribution p(x) is given by

H(x)

]

- 5 p(x=xl) log p(x=xi) (3.1)
i

p(x) log p(x) (3.2)

Il
|
w o~

Note that "x" has been used to denote both a random variable and the
values that it takes. This ambiguity will be maintained where possible
in order to simplify notation. The logarithm base will be taken as 2,
giving H(x) the units of bits. The following definition will also be

made:

0 log 0 = 0 (3.3)

H(x) is interpreted as the uncertainty in which value the random variable x

will take [17]. If x takes a particular value with probability one, then




H(x)is equal to zero, i.e., x is deterministic and has no associated
uncertainty. On the other hand, if x is equally likely to take each

of its possible values, then H(X) attains a maximum. Finally, note that
H(x) can be viewed as the expected value of the random variable log p(x).
It is appropriate, therefore, to regard uncertainty as an average quan-

tity, an interpretation which will be of use in the sequel.

The definition of conditional entropy is similar to that of marginal
entropy. If two variables x and y have the conditional probability dis-
tribution p(y|x), then the entropy of y conditioned on knowledge of the

value of x is given by

Hx(y) = = 5 p(x) z p(y|x) log ply|x) (3.4)
X Y

Note that the above represents a double averaging, in that for a given x
the log of the distribution p(ylx) is averaged, and then the resulting
quantities are averaged over all xXx. The interpretation of Hx(y) is that
of conditional uncertainty, that is, the uncertainty remaining in y when
X 1s known. Two extreme cases are of particular interest. If y is
independent of x, i.e., p(ylx)==p(y), then the conditional uncertainty

in y given x reduces to the marginal uncertainty in y:

H (v) = -}p(x))p(y[%)logp(y|x) = -Jp(x)]p(y)log p(y) = H(y)

X v X vy (3.5)
Alternatively, knowing x resolves none of the uncertainty in y. At the
other extreme, if y is a deterministic function of x, that is, for each
X=X,

1

1 for some y = Yj

p(ylxi) = (3.6)
0 otherwise

then Hx(y) =0, since

p(yj|xi) log p(yjlxi) =0 VY i,j (3.7)




and no uncertainty remains in y when x is known.

Joint Entropy

The definitions of entropy and conditional entropy for single var-
iables extend readily to multiple variables ([16]. The joint entropy, or
joint uncertainty, of two variables x and Y can be computed from the joint

probability distribution p(x,y), and is given by

H(x,y) = - Z p(x,v) log p(x,y) (3.8)
(x,y)

Joint uncertainty can also be computed using an information theoretic

identity (see Appendix A):

H(x,y) = H(x) +Hx(y) (3.9)

From Eq. (3.9) and Eqg. (3.5), it is apparent that if x and y are indepen-
dent, their joint uncertainty is given by the sum of their respective mar-
ginal uncertainties. Similarly, if y is a deterministic function of x,
then the joint uncertainty of x and y reduces to the uncertainty present
in x. In general, the joint uncertainty of a set of random variables

is computable from the corresponding joint probability distribution; how-
ever, it is often possible to take advantage of dependencies which may

exist among variables to simplify the evaluation.

Mutual Information

The definition of the so~called mutual information, or transmission,
of variables x and y follows directly from the marginal and conditional

entropy definitions, and is given by

T(x:y) H(x) +H(y) -H(x,v) (3.10)

T(x:y) H(y) —HX(Y) = H(x) —Hy(x) (3.11)

Mutual information measures the relatedness of variables. If x and y are

10




independent (not related), their mutual information is zero. If y is a
deterministic function of x, then their relatedness is given by H(y);
similarly, if x is a deterministic function of y, the mutual information
T(x:y) is equal to H(x). Indeed, the two latter cases can be shown to be

extremes, which gives

T(x:y) € [0, min{H(x), H(x)}] (3.12)

It should be noted that the phrase "mutual information" has been chosen
deliberately, as opposed to using only "information." The latter is used
to describe several quantities which appear in the information theory 1lit-
erature, but the viewpoint in this development will be that "information”
is only appropriate in describing the relationship of one variable to an-
other; hence, the phrase mutual information will be used as a reminder of
this interpretation [17], [18]. T(x:y) can then be considered as the
information in y about X, or vice versa, since from Eg. (3.11) it is evi-

dent that mutual information is a symmetric quantity.

N-dimensional Mutual Information

McGill [19] has extended the concept of mutual information to n var-
iables. Given n random variables xi, their respective marginal proba-
bility distributions p(xi), and the n-dimensional joint probability dis-
tribution p(xl,...,xn), the n~dimensional mutual information of these

variables is defined as

cee X ) {(3.13)
n

n
ix ) = ) H(x)) - H(x %),

reflects the unrelatedness of the variables. At the other extreme, suppose

knowledge of x. is sufficient to determine completely x2,...,xn. Then

1

H(x .,xn) = H(x1)+HX (x ,...,xn) = H(xl) (3.14)

1 1 2

and the n-dimensional mutual information becomes (by substitution)

11



n
T(X, :X_ t...:X ) = ) H(x,) (3.15)

which gives a (relative) maximum.

In general, the greater the interrelatedness of variables, the
greater is their mutual information. Furthermore, while n-dimensional
mutual information is a measure of the interrelatedness of n variables
considered as a group, it is certainly possible to view this global inter-
action as multiple interactions within and among subsets of the n var-
iables. This approach is especially advantageous when the n variables
can be partitioned into groups which are mutually independent. For ex-

ample, suppose n=4. The global mutual information in this case is given

by

PX_,X ) (3.16)

H(xi)-H(xl,x 3%,

2

4
%
x
X
X
!
SELS

i=1

Considering {xl,x )X ,x4} to be {x ,xz} U{x3,x4}, it is possible to evalu-

273 1
ate the 4-dimensional mutual information as the sum of interactions within
{xl,xz} and {x3,x4} plus the interaction between the %two subsets [20], [21],

that is, (see Appendix A)

T(X,:1X.:X,:X,) = T(xl:xz)-+T(x3:x4)-+T(xl,x2:x

11Xy XKy ,x4). (3.17)

3

If {xl,xz} is independent of {x3,x4}, then the last term on the right hand
side above is zero and the 4-dimensional mutual information reduces to the
sum of two binary mutual information gquantities. This decomposition pro-

perty will be used extensively in the sequel.

To facilitate the manipulation of information theoretic expressions
involving sets of variables, it is convenient to use an aggregate repre-
sentation [15], [21]. 1In the above example, if the various sets are de-

noted as

12




s = {xl,xz}

S = {x3,x4}

S = S:LUS2 = {xllxzfx3lx4}l

then the mutual information of Sl and 82 is given by

T(st:s%) = ms?) +u(s?) - n(s) (3.18)

Eq. (3.18) expresses a more fundamental relationship given by

1 .2
T(S™:S )-T(xl,xz,x3,x4)-H(xl,xz)-+H(x3,x4)-H(xl,xz,x3,x4)

(3.19)
In general, it is possible to consider mutual information between/among
arbitrary combinations of variables and sets of variables, and to evaluate
an arbitrary mutual information expression provided the relevant proba-

bility distributions are known.

Finally, conditional mutual information is a useful quantity. The
mutual information among n variables xi conditioned on knowledge of another

variable y is given by
H (x,) -H (x_,...,x ) (3.20)
y 1 vy 1 n

and is evaluated using the appropriate (conditional) probability distri-
butions. As an interesting example of how conditioning can influence the
mutual information of a set of variables, recall the earlier example where
knowledge of xl was sufficient to determine completely x2,...,x . The

n
n-dimensional mutual information in this case was given by Eq. (3.15):

13




and was said to be at a (relative) maximum. Now condition this mutual

information on the variable X - This gives
n
T (X,:X,:...:x ) = ) H_ (x,) (3.21)
n 2 i

Knowledge of x, determines the remaining X however, and the right hand

1
side of Eg. (3.21) is equal to zero. In words, there is no interrelated-

ness of the n variables X, except that due to x Such conditional mutual

1
information quantities will appear frequently as the decision-making pro-

cess model is developed.
3.2 PARTITION LAWS

The application of n-dimensional information theory to systems has
been made by Conant [15], and the so-called Partition Law of Information
forms the basis for much of the work described in this thesis. Its deri-
vation appears in Appendix B; the resultant equality is presented and dis-

cussed below.

Partition Law of Information

Suppose a system S is given and is described by n variables, of which
one variable is the output y and the balance are the n-1 "internal variables"
wl,w2,...,wn_l. Let W=={wl,w2,...,wn_l} and denote the input to the system
by x. For an arbitrary interconnection of the variables of the system

(Figure 3.1), the Partition Law of Information (PLI) states that for wn55y,

n
izl H(wg) = T(xey) +T(x:0) +H (0,y) +T(w swyseoaw10y) o (3.22)

n
where Z H(wi) is the sum of the marginal uncertainties of the n variables

of thei=lsystem. As is evident from the derivation in Appendix B, the

PLI is essentially a tautological information theoretic expression. It

is useful only to the extent that meaning can be attached to the individual
quantities in the partition. Accordingly, the interpretation of each

quantity is given in the following paragraphs.
14




Figure 3.1. A Six-Variable System (n=6)

Throughput, Blockage, Rejection

The first term on the right hand side of Eg. (3.22) is by definition
the mutual information between input and output. Mathematically, it is
exactly the same quantity which appears in the communications context as
a measure of a channel's capacity. In the present context it has a simi-
lar interpretation, though it differs somewhat in that it is not neces-
sarily a quantity to be maximized as is often the case in communications.
Rather, it is one of several quantities which characterize a system,
namely, that which measures the amount by which the input and output are
related. Such a relationship will be designated the throughput and will
be denoted by Gt'

If throughput is a measure of the extent to which an input to a
system is reflected at the output, one might expect the extent to which
the input is not reflected at the output to be a complementary quantity
of interest. 1Indeed, such is the interpretation given to the second term
on the right hand side of Eq. (3.22). Ty(x:w) is the relatedness of the
input x to the set of internal variables W, conditioned on knowledge of
the output y, and expresses the blockage, denoted Gb' of the input by the
system. This can be more readily seen by using the definition of mutual

information to write

T (x:W) H (x) -H (x) (3.23)
Y Y

y W

T (x:W) H (x) -H (x) +H(x) - H(x) (3.24)
Y Y YW

’

15




T (x:W) [H(x) - H (x)1 - [H(x) -H_(x)] (3.25)
% vy, W y

7

Ty(x:W) T(x:y,W) =T (x:v) (3.26)

The second term on the right hand side of Eg. (3.26) is recognized as the
throughput, while the first is the relationship between input and entire
system. Their difference measures that part of the input which remained

within the system, i.e., was blocked.

Throughput and blockage represent two possible dispositions of the
input to a particular system. A third possibility is that the input may
not be recognized by the system, that is, may not even cross the boundary
into the system. Such a phenomenon is termed rejection, denoted Gr' and

can be expressed as

G_=H (x) - (3.27)

Rejection is the uncertainty which remains about the system's input when
there is complete knowledge of system variables. Note that it is a passive
form of blockage from the system's point of view, in that the equivalent
of blockage is accomplished without adding to the total activity of the
system, i.e., Gr dces not enter into the PLI. Gr does appear in an auxi-
liary equation to the PLI which expresses the fact that there are three

possible paths for an input:

= + .
H(x) Gt Gb+Gr (3.28)

The combination of blockage and rejection represents the uncertainty about
the input when the output is known. This can be shown by substitution of

the definition of throughput into Eg. (3.28) and rearrangement of terms:

T(x:y) = H(x) _[G%.+Gr] (3.29)
H(x) -H (x) = H(x) - [G, +G ] (3.30)
vy b r
H (x) = G,_+G (3.31)
% b r
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Hy(x) is known in the communications context as equivocation [16]. The
useful distinction between active equivocation [blockage] and passive

equivocation [rejection] will be retained in the sequel, however.

Noise, Coordination, Total Activity

The third term on the right hand side of Eg. (3.22) is by definition
the uncertainty in the system when the input is known, and reflects the
extent to which the system is not a deterministic function of its input.
In previous applications of the PLI [15], such uncertainty has been in-
terpreted to be undesirable noise, denoted by Gn' In the present context
the same notation will be used, although a fundamentally different inter-

pretation will be made.

The n-dimensional mutual information appears as the last term in the
PLI. As discussed previously, it measures the total interaction of the n
system variables. Considering the system to be a processor of input into
output, the interpretation of the mutual information of the system is that

of the coordination required among the system variables to accomplish

this processing. 1In general, however, the system need not be "dedicated"
to processing input into output, and the coordination, denoted Gc' will

reflect all system variable interactions. Note that it may be possible

to use the decomposition property discussed earlier to partition the
total system into "subsystems" and thereby evaluate the total coordination

as a sum of coordinations within and among subsystems.

Having described the four quantities which partition the system, it
should be noted that the partition has not been one of the variables per se,
that is, a particular variable is not associated to any of the partitions.
Rather, the partitions refer to a division of the activity of the system as
a whole, and indeed, such is the interpretation given to the left hand
side summation of the PLI. The total activity of a system, then, denoted
G, can be described as the sum of the throughput, blockage, noise, and

coordination present in that system:

= + + + (3.32)
G Gt Gb Gn Gc
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In addition, the auxiliary equation (3.28) relates throughput, blockage,

and rejection.
3.3 EXAMPLE

To illustrate the application of the PLI, consider the comparison tree
shown in Figure 3.2. The input variable x is mapped into the output vari-
able y, where y can take the values 1, 3, 5, 7. The two-stage comparison
process represents the rounding of x into the nearest value of y. Asso-
ciated with each comparison is a binary variable, wi, which takes its value
according to the outcome of the comparison. The tree can be represented

as shown in Figure 3.3, where le:n

2
< 2
2
Wy |x 22 X 26 | W,
< - < >

Figure 3.2. Comparison Tree

The PLI for the system of Figure 3.3 is given by (w5 Zy)

H(wi) = T(x:y)-+Ty(x:w JW W W )-&Hx(w

1727 W3y Wy Wi W, s Y)

12 3

I} ~100

)

+ T(wl:wz:w3zw4:y
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Figure 3.3. System Representation of Comparison Tree

Since the system is a deterministic function of its input, no noise is
present (Gn==0). In addition, the throughput can be simplified using the

definition of mutual information:

@
]

T(x:y)

Q
[}

H(y) -Hx(y) = H(y)

Let x take the values 1, 3, 5, 7, all with equal probability. H(x), the
uncertainty in the input, is therefore equal to 2 bits. Furthermore, in
this case the variables Wor w3, W, each have an uncertainty of one bit.

This follows from the fact that comparisons made at each node are equally
likely to fall on either side of the threshold. Evaluating the total ac-

tivity of the system gives
5
G= ) H(w,) = 2+1+1+1+2 = 7 bits

Throughput is easily obtained:

Gt = H(y) = 2 bits

Blockage can be evaluated using the auxiliary equation. Because w, = x,

there is no rejection by the system; that is,
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H
r W,W’w’wlw

1"°2"°3"7°4""5
This gives
Gb=H(x)-Gt
Gb=2—2=0

Finally, the coordination is evaluated:

5
Gc = 5 H(wi) —H(wl,wz,w3,w4,w5)
i=1
5
Gc = z H(wi) -}-I(wl) —Hw (w2,w3,w4,w5)
i=1 1

The last term in the above equation is zero since the system is determin-

istic, and the second term is combined with the first to give

5
G = H(w,) = 1+1+1+2 =5 bits
i=2

In summary,

\
9}
i

+G +G
Gt b n+Gc
{7 =2+0+0+5 bits
H(x) = 2 bits

G_ = 0 bits
r

For purposes of comparison, two other cases are considered:
1,5 each with prob. 3/s;

Case II: x =
3,7 each with prob. Y%
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Case III: x = {0.5, 1.5, 6.5, 7.5} with uniform probability.
The resulting PLI quantities are given in Table 3.1 together with those

from Case I.

Table 3.1 PLI QUANTITIES FOR EXAMPLE CASES; UNITS ARE BITS

CASE X~-ALPHABET H(x) Gr Gt Gb Gn Gc G
I 1, 3, 5, 7 2.0 0 2.0 0] 0 5.0 7.0
II‘ 1, 3, 5, 7 1.8 0 1.8 0 0] 4.4 6.2
III 0.5, 1.5, 6.5, 7.5 2.0 0 1.0 1.0 0 3.0 4.0

From the above example, it is clear first of all that the PLI quan-
tities can be evaluated for a particular system if its structure and the
nature of its input is known. Secondly, it should be emphasized that the
activity within a system depends not only on the structure of the system
(internal variables) but also on the alphabet and uncertainty of the input,
as is evident from Table 3.1. This fact will have interesting implications

in the context of the model of the decision-making process.

Finally, suppose that successive inputs arrive for processing every T
seconds. The system is then required to accomplish on the average seven
bits (Case I) of activity every T seconds in order to keep up with the clock.
Successive processing of inputs introduces a dynamic element into the PLI,
and the corresponding PLI rates which result will be of particular interest

in the sequel.

3.4 SUMMARY

Basic results from information theory have been reviewed. 1In particu-
lar, the Partition Law of Information was introduced and discussed. It is
a2 general information theoretic expression, and characterizes a system

according to the equation
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Total
Activity

Throughput + Blockage + Noise +Coordination

In succeeding chapters, the PLI will be used to obtain analytic
expressions which describe a specific model of the decision-making pro-
cess. This synthesis of the mathematics of information theory with
qualitative models of decision-making begins in the next chapter with

the consideration of a basic two-stage model of the decision maker.
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CHAPTER 4
THE TWO-STAGE MODEL

In this chapter, a simple two-stage model is introduced to represent
the internal decision process by men or machines in performing well-defined
tasks in the steady state. The Partition Law of Information is used to
obtain an analytical description of internal information processing and
decision making. The model is then used to investigate choices of decision
strategies both in the normative and in the descriptive (satisficing) con-
texts. The effect on the choices of the decision maker's bounded ration-

ality is analyzed.

4.1 STRUCTURE OF TWO-STAGE MODEL

As discussed in Chapter 2, the decision-making process can be regarded
as occurring in two stages, where the first is that of situation assess-
ment and the second is that of output selection based on the assessed
situation. This decision-making model is a general one; in order to ob-
tain expressions which describe analytically internal information proces-
sing and decision-making, it is necessary to add more structure to the
conceptual model. In particular, it will be assumed that the decision
maker is an expert at his decision-making task. As such, each stage of
the process can be considered as containing two sets of well-defined pro-
cedures, or algorithms. An algorithm belonging to the first set maps input
stimuli into assessed situations and an algorithm in the second set takes
assessed situations and maps them into output decision responses. The
algorithms differ in quality and in the amount of resources required; no
correlation between these two properties is assumed. It is assumed that
the algorithms do not change as the process takes place, i.e., no learning
is possible and the process is therefore assumed to be in steady state.
Given this structure, the decision-making process becomes one of selecting

an algorithm in each of the two stages.

To be more precise, assume that the state of the decision maker's en-

vironment is given by x', an r-dimensional vector which takes values from
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a finite alphabet. The decision maker receives as input X, however, which
is a noisy measurement of x'. The vector X is also r-dimensional and

takes known values from a finite alphabet according to p(x). Furthermore,
let y denote the outcome of the decision-making process, or the output.
Assume that there are a fixed number of outcomes. The task of the decision
maker, then, is to determine an output (y) appropriate to the state of the

environment (x') based on a noisy measurement of that state (X).

The decision maker accomplishes his task by first assessing the
situation using one of the U algorithms he possesses for that purpose.
Each algorithm maps measurements X into assessed situations z, where z
is an s-dimensional vector taking M values, with s<r. In the extreme
case, the situation assessment would involve an estimation of the entire
state x'; however, it is more likely that in order to choose an appropriate
output or decision response it is necessary to consider only some "suffi-
cient statistic" determined from the measurement Xx. Thus, z represents
a possible aggregation of input data. The input-output mappings of the
algorithms used to determine z from x are denoted by fi(g), where

i=1,2,...,0.

Once the situation z has been determined, another choice among al-
gorithms is made in order to map z into an appropriate response y. The
decision maker possesses V such response selection algorithms for this pur-
pose, and their respective input-output mappings are denoted by hj(g),

where j=1,2,...,V.
The complete decision-making process, then, is given by the equation

y = hy (£ () (4.1)

For a given x, the output response is determined by the realization of
variables u and v, with each one taking values from the sets i=1,2,...,0

and j=1,2,...,V, respectively. These variables are internal choices in

the decision-making process; indeed, according to the model defined above,
they represent the "real" decisions made in accomplishing the overall task.

The process defined above can be represented as shown in Figure 4.1, where
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g is the noise source in the measurement of x', and x =x' +g. The internal
choices have been represented as switches which take positions according

to the realizations of u and v. The research work described in this chapter

f(x) h,(2)

| q , 11X , 2

e I —E () |t
fiy(x)  hy(2)
SA RS

Figure 4.1. Basic Decision-Making Process Model

is based on the application of the Partition Law of Information to the

class of systems shown in Figure 4.1.

While time does not appear explicitly in the development, it is im-
plicit as defined below. The inputs to the decision maker are considered
to be symbols generated by a source according to p(x) . A memoryless
source is assumed, i.e., each symbol is generated independently. The

characterization of such a source by

H(x) = - ] p(x) log p(x)
X

is defined to be the entropy of the source per symbol generated [16]. 1If,

in addition, the source is such that an input symbol is generated every T

seconds on the average, the entropy rate of the source is given by

H(x)

T

L4

which is measured in bits per second, if 2 is the base of the logarithms

in the definition of the entropy.

25




Furthermore, because it has been assumed that no learning takes place
during the performance of a sequence of tasks, the successive values taken
by the variables of the model are uncorrelated, i.e., the model is memory-
less. Hence, all information theoretic expressions that are written in
the development will be on a per symbol basis (per symbol of the input);
rates are determined by dividing the information theoretic expressions by

the mean symbol interarrival time.

A key assumption in the following sections is that the algorithms are
deterministic, that is, the mappings fi(§) and hj(E) are deterministic.
This assumption is made for conceptual clarity; the general form of the
equations remains the same for the non-~deterministic case, and the impli-

cations of the latter are considered in Chapter 7.
4.2 FIRST STAGE: SITUATION ASSESSMENT

In applying the PLI to the two-stage model, it is convenient to con-
sider the system shown in Figure 4.1 as being composed of two structurally
identical subsystems. Because of the decomposition property of n-dimen-
sional mutual information, it is possible to study each subsystem indi-
vidually and then connect them into a single system. Accordingly, in this
section consideration will be given only to the situation assessment sub-

system, defined as shown in Figure 4.2.

f,(x)

1z

! -q- u

X X ,(x) £ o
fulx)
SA ,

Figure 4.2. Situation Assessment Stage
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4.2.1 Algorithm Variables

As discussed earlier, the mappings fi(§) represent the decision
maker's situation assessment algorithms. To effect a mapping from x to
z each algorithm consists, in general, of a series of steps, such as inter-
mediate computations or comparisons. These steps determine the variables
of the algorithm, which are its fundamental gquantities. In other words,
each algorithm can be considered as a system unto itself, with input x
and output z, and internal variables whose interconnection determines
the steps taken in mapping the input into the output. Suppose algorithm i

contains ai variables. Denote the set of variables of algorithm i by

(4.2)

Furthermore, assume that the algorithms have no variables in common, i.e.,

win wl = g i#9; ¥i,je{r,2,...,u} (4.3)

Finally, assume that no part of the input X is reflected at the decision

maker's input boundary, i.e., that the rejection of each algorithm is zero.

In summary, the model of the situation assessment stage consists of

. I
a system of variables, denoted S, where

st = [u, wh, w?, ..., w, 2} (4.4)

The interconnection of these variables is determined by the algorithmic
. . s i . .
interconnections within sets W, as well as the interconnection among al-

gorithms determined by the variable u.

4.2.2 Derivation of Analytic Expressions

To the system of variables given in Eq. (4.4) is applied the Partition
Law of Information. Each term in the partition will be considered indi-

vidually, beginning with the so-called noise.
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Noise

By definition, the noise present in SI is given by
I
G =H (u, W, W, ..., W, z) (4.5)
n X
Eq. (4.5) can be written as (see Appendix A)
I
Gn = Hx(u)-+H u(W , W, .., W, 2) (4.6)

Because the algorithms are deterministic, the uncertainty in the system
variables is zero when the input and choice of algorithm are known. Hence,

Eq. (4.6) reduces to

Gt = H (u) (4.7)
noox
orx
6. = -] e [ pulx log plulx) (4.8)
u

1

Eg. (4.7) represents the uncertainty in the choice of algorithm when the
input is known. Previously [15], this uncertainty has been regarded as
undesirable noise, but in the present context it has a great deal of im-
portance because it corresponds to an internal decision. The distribution

. .. . I
p(§) is external to the decision maker and assumed fixed and known. Gn’

the amount of internal decision-making, is therefore determined by p(ulg),

the internal decision strategy. Such a strategy represents the inclination

of the decision maker to select a particular algorithm. For successively
arriving inputs, the strategy reflects the relative frequency of a par-

ticular algorithm's use.

. . I . .
While the expression for Gn includes a dependence on the input x, the

system is such that u is independent of x, i.e., p(u|§)559(u). This is
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because the value of an arriving input is not known to the decision maker;
rather, it is known only that an input is present. Indeed, it is the
function of the situation assessment stage to identify the input and use
it to determine the appropriate value of z. Conditioning the first stage
internal decision strategy on the value of X implies that preliminary pro-
cessing must take place in order to identify X and to associate it with
the appropriate strategy p(u|§). Such processing does not exist in the
model under consideration and hence the internal decision strategy must be
independent of x. The inclusion of a pre-assessment stage to accomplish
preliminary processing or pre-processing constitutes a direct extension of

the model presented in Section 4.3.

With the internal decision strategy given by p(u), the amount of de-

cision-making present in the situation assessment stage becomes, simply,
I
Gn = H(u) (4.9)

If a particular algorithm is used exclusively, i.e., p(u=1i) =1 for some i,
then H(u) =0, which indicates that no real decision is being made. On the
other hand, when p(u) is uniform, i.e., each algorithm is equally likely
to be chosen, then H(u) is at a maximum. Since the remainder of the system
is fixed, the relationship between the first stage processing and the de-
cision strategy p(u) employed is one of key importance in characterization

of the model.
Throughput

The throughput of the system SI is given by definition as

Gy = T(x:2) (4.10)
I

Gl = H(z) - H_(2) (4.11)
t - X -

Recall that the fundamental quantity in H(z) is p(z); similarly, p(§|§)

and p(x) are needed to evaluate Hx(E)' By Baves' rule, p(g,g) can be

written as
29



p(z|x) = ) plz|xuwplulx) (4.12)
u

Since the algorithm selection strategy is independent of the input,

Eg. (4.12) reduces to

p(z|x) =] p(z|xu)p(u) (4.13)
u

Furthermore, because the mappings fi(§) are known, p(glgu) can be obtained
by determining whether a given input X yields output z when algorithm fi
is used (for all inputs, all possible outputs and all algorithms), i.e.,
evaluating

£, (x) Vi, x. (4.14)

Similarly, p(z) can be obtained according to

p(z) =)} p(glgu)p(u)p(gc) (4.15)
}_{ u

Since p(x) is known, specification of p(u), the internal decision strategy,

. I L I
determines the throughput of S°. 1In addition, the dependence of Gt on p(u)
has been made explicit, as shown by Egs. (4.13), (4.14), and (4.15).

Blockage

The blockage within SI is obtained by application of the equation

auxiliary to the PLI, repeated here for convenience:
I I
H(x) = GL +G- +GL (4.16)
- t b r

Each algorithm has been assumed to have zerc rejection; hence, because
I . . . , I .
of the structure of S, there is no rejection present in S~ . H(x) is
I .
known through p(x) and Gt can be computed as a function of p(u) as shown

above. This gives
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I I
G, = H(x) -G_ (4.17)

which is computable as a function of p(u). Note that because there is no

rejection Gb represents the equivocation of the system, as discussed in

Chapter 3.

Coordination

In evaluating the coordination present in SI, the approach taken will
be to view the situation assessment algorithms as subsystems and to ob-
tain the decomposition of the global mutual information which is expressed
in terms of the coordination within and among those subsystems. The

. . I, .
coordination of S~ is given by

GI = T(wl:wl:...:wl :w2:...:wU tu:z) (4.18)
c 12 o M1 o “UE
1 U
[0
u .
Gt = TV HY) +H(W +H(z) ~HWY, W2, ..., W, u, z) (4.19)
¢ i=14=1 - B

Consider the joint uncertainty term. It can be written as (see Appendix A,

Egq. (A.1))

1 2
H(W , W, ..., W, u, 2) = H(u) +H (W) +Hu'W1(W ) + ...

9]
+ H W)+
u,Wl,---,WU'l( ) Hu,Wll---rWU(E)
(4.20)
The last term in Eq. (4.20) is zero, since no uncertainty remains in z

when all other system variables are known.

Consider the term Hu’Wl(WZ). It is the uncertainty in the variables
of the second algorithm conditioned on knowledge of u and knowledge of the
first algorithm's variables. In general, the variables of a particular
algorithm i can be regarded as active or inactive, depending on the reali-
zation of u. If u=1i, then the set of variables W1 is active. If u#i,

. i . .
then the variables W are not active, and the best inference that can be
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made from algorithm i's perspective is only that another algorithm was
chosen. This follows from the assumption that algorithm variable sets

are disjoint, and from the fact that the only variable linking the algorithms
is u (z is not pertinent to the present discussion). Therefore, it

follows that

H (w2) = Hu(W ) (4.21)

u,wl

since knowledge of the variables Wl can only resolve the uncertainty as
to the active/inactive status of the variables W2, and this uncertainty
is also resolved by knowledge of u. The same argument is applied to other

terms in Eg. (4.20) to obtain

3 s 3
Hu,Wl,Wz(W ) Hu(W )

H L@

U
W
w,wl,...,wU- Hu( )

. . . . I .
Substitution into the expression for Gc yields

Q.
I 8] 1 N U 5
Go= I 1 HW) +H(z) - ] H (W) (4.22)
i=1 =1 3 i=1
Add and subtract
v % .
) H_(w))
i=1 j=1 J
to obtain
s ;Ui i 9 i
G.= ) ¥ HMWD -H_ (wy)+ ) ) H (wi) - ) H (W) +H(z)
¢ i=1 j=1 ] 4 i=1 j=1 9 j=1 ¢ -
(4.23)
;U % . ul% . N
G, = Yool T+ ]| ] H (W) -H (W) | +H(z2) (4.24)
i=1 4=1 R T 1 S R
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Consider the first term in Eq. (4.24), and in particular let i=j=1. The

. . 1. .
mutual information between u and w, 1s given by

T(u:wl) = H(u) -H ;(u) (4.25)
1 wy

In order to simplify Eg. (4.25), it is necessary to make more precise the

meaning of active and inactive algorithm variables.

As indicated earlier, wi is active when u=1. Under this condition
wi takes values according to values of the input X and also according to
the nature of the algorithm. If u#1l, then wi is inactive. It will be
assumed that wi takes a fixed value when inactive which is not one of the
values taken when active. Thus, the probability distribution for wi has
two distinct modes, which can be represented in a general manner as shown

in Figure 4.3, where[] denotes the value of wi when inactive.

p(w',)= i f tf' ™ with prob. p(u=1)

Wi
O with prob. p(u#1)

. . . ; . 1
Figure 4.3. Form of Probability Distribution for Variable w,

The definitions of uncertainty and conditional uncertainty can be

used to write Eg. (4.25) as

T(u:wi) = —Zp(u) log p(u)-*le(wi)Zp(ulwi) log p(u]wi) (4.26)
u w u
1
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T(u:wi) = —Zp(u) log p(u) + Z p(wi)Zp(u|wi) log p(u]wi)
u

u 1,

Wli‘ﬂ

+ ptw; =0) o (ulw] =0) log p(ulwl =0) (4.27)
u

From Figure 4.3, p(wi=q’])=p(u7€l). Also, for wi #0 it is true that

] 1 u=1
plulw #1) = (4.28)
0 otherwise

1 L . .
In the case where wl:=D, it is known with certainty that u#1l. The rela-
tive likelihood of using the other algorithms remains the same from the
perspective of algorithm 1, however. This gives the conditional distribu-

tion

0 u=1
p(ulwi=D) = (4.29)
(tb u#l
p(u

where p(u#l) has been used to normalize the distribution. Substituting

into Eg. (4.27) gives

wly = 1., p(u) _plu)
T(u.wl) Ep(u) log p(u) + § p(wl) 0-+p(u#l)u;lp(u#l) og 5 (01
wy 7l (4.30)
T(u:wi) = -Zp(u) log p(u) + Z p(u) log p(u) - z p(u) log p(u#l)
u u#l u#l (4.31)
T(u:wi) = - p(u=1l) log p(u=l) - p(u#l) log p(u#l) (4.32)

Eg. (4.32) is the uncertainty in a binary random variable which takes
values with probability p(u=l) and 1-p(u=l). It is a common function en-

countered in the communications context and has been designatedo#’+) [18]:

FH(p) = -p log p - (1-p) log (1l-p) (4.33)

34




This gives T(u:wi) = Hp(u=1)).

The above analysis applies to all variables in algorithm one.

In fact, it is true in general, i.e.,

T(u:w;') = J(p(u=i)) i=1,...,U0 (4.34)

If specific values of the variable i are denoted by letter i, the first

term of Eq. (4.24) can be written as

a

U i i U
] ) T(uw,) = ] o, H(p, ) (4.35)
i=1 j=1 = '
where pi==p(u=i), i=1,...,U. Egq. (4.24) then becomes
1 u [0 i i
G.= ) asfp)+ ) | ) H (W) -E W) +H(z) (4.36)
c ] i 1 . . u Jj u -
i=1 i=1 |j=1

Consider the second term in Eq. (4.36) and let i=1. From the defi-

nition of conditional uncértainty, the resulting expression can be written

as

% %
] o ) -E wh = ] [—me)z p(wi|uw log p(wl.lu)]
=1 ] j=1tu J L
W,
]
—r;Zp(u)Z p(Wl|u) log p(WlIu)} (4.37)
u 1

W
Recall that for u# 1, the values of the variables w; are fixed and hence

have no uncertainty. Factoring the remaining p(u=l) as a pre-multiplier

reduces Eg. (4.37) to
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C].l al
) Hu(w]j') —Hu(Wl) = p(u=l){ ) [—Zl p(w;."u=l)log p(w;"u=l).J
=1 j=1 wj
-I:—le(wllu=1)1og p(Wl|u=l)]} (4.38)
W

When u=1, the variables w? are active and are processing the input x.
From the definition of n-dimensional mutual information and its inter-
pretation as coordination, the term of Eg. (4.38) in braces is the coordi-
nation bf algorithm 1 when considered as a system with input x and output
z. Indeed, when algorithm 1 is active, it will always be the case that it
processes X into z; hence the left-hand side of Eg. (4.38) reduces to the
coordination of the first algorithm, denoted gi, weighted by the relative

frequency of its use:

%
z H (Wl) -H (Wl) = p(u=l)gl (4.39)
j=1 u j u c )

The particular form of Eg. (4.39) depends critically on the fact that the
decision u is indepéndent of the input x. If an association between inputs
and algorithms were possible, i.e., p(u]g)?;ﬂu), then algorithm 1 would
process only a subset of the inputs X. Since the coordination of algorithm
1, gi, is determined in part by the characteristics of its input (see the

example of Chapter 3), the more general form of Eg. (4.39) is

%

z Hu(W§)-Hu(Wl) = p(u=l)gi(p(§|u=l)) {4.39a)
j=1

where the possible dependence of the inputs to the algorithm on the internal
decision u has been shown. For the case at hand p(§|u=l) Zp(x) and Eq.
(4.39) results when gi is evaluated using p(x). A similar argument applies

for the remaining algorithms, and the second term of Eg. (4.36) becomes

U i , . U .
Y1V v (w-HWYH| = ) p.g (4.40)
i=1lg=1 % =




Finally, substitution of Eg. (4.40) into Eq. (4.36) yields

i
pigc-kaiétﬁpi)-+H(g) (4.41)

@
—
i
Il o~

i=1

4.2.3 Interpretation of the Coordination Expression

The resulting expression for the total coordination in SI reflects the
presence of a switching operation in the system. Since this switching oc-
curs among subsystems which are disjoint and active on non-overlapping
intervals of time, part of the total coordination becomes that of the
coordination within each of the subsystems, weighted according to the
relative fregquency of each algorithm's use (internal decision strategy) .
Furthermore, since Gz measures the global coordination among all variables
of SI, and since z is the only variable within SI which is related to all

. C I .
other variables, it is to be expected that GC contains the term H(z).

The second term of Eg. (4.41) is interpreted to be the coordination
required to switch among algorithms; it can also be regarded as the effort
Or resource use required to initialize the variables of an algorithm prior
to its use. Examination of the mathematical expression for this coordina-
tion shows that it is functionally dependent on the relative frequency
of a particular algorithm's use, and furthermore, that variables of the
same algorithm make an equal contribution to the total required. The latter
is not unreasonable, and the former is necessary because the coordination
equation represents steady-state phenomena, i.e., the coordination required
to initialize algorithms is very much related to the number of times on
the average such initializations must take place. Reference to Figure 4.4
shows that the nature of this relationship is such that if a particular
algorithm is always used (p=1 in Figure 4.4), the initialization coordina-
tion is zero as no initializations are taking place in the steady state.
Similarly, if an algorithm is never used, it is never initialized (J#(0) =0).
In addition, the symmetry of #(p) about p=0.5 is significant because
it reflects the fact that frequent use of an algorithm may regquire on the
average the same number of initializations as infrequent use. This phe-
nomenon arises because an often used algorithm is likely to be used for

successive inputs, in which case no re-initialization would take place.
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#(p)= - plog, p ~(1-p)log,(1-p)
Figure 4.4. Coordination Per Variable Required for Initialization

4.2.4 Summary of Situation Assessment Model

The following equations have been developed which describe the situa-

tion assessment stage of the decision making process.
® Amount of Internal Decision-Making:

G_ = H(u) (4.42)

® Throughput:

G, = H(z) ~H_(2) (4.43)

® Rlockage:

I I
G, = H(X) -G, (4.44)

® Coordination:

U .
1
G = Z P9, +0, (D) +H(z) (4.45)
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The above equations are valid under the assumptions that the sets of al-
gorithm variables are disjoint, that the algorithms themselves are deter-
ministic, that no rejection occurs, and that p(u) is independent of p(x).
In addition, if p(g), fi(E)’ gi, and ai are known (i=1,...,U), then the

above equations are functions only of p(u), the internal decision strategy.

In the next section, the complete two-stage process will be considered

and expressions analogous to Egs. (4.42) - (4.45) will be developed.
4.3 SITUATION ASSESSMENI AND RESPONSE SELECTION

In this section, the Partition Law of Information will be applied to
the model that combines situation assessment and response selection. The
development will take advantage of the similar structure of the two stages
and will result in expressions which characterize the overall decision-

making process as a function of two internal decision strategies.

4.3.1 System Definition

Recall the structure of the two-stage model defined in Section 4.1 and
shown in Figure 4.1. In Section 4.2, additional structure was placed on
the situation assessment algorithms by considering them to be composed of
variables whose interconnections represented the steps taken in the algorithm.
A similar structure will be assumed for the response selection algorithms,
that is, associated with each algorithm is assumed to be a set of var-
iables. The interconnections of these variables determine the input-output
mapping of the algorithm. Suppose there are aé variables, j =l,2f...,V
associated with the mapping hj(g). Denote these variables by wg+j,

i.=l,2,...,a3 and denote the set of variables of algorithm j by

l ’ 2 14 .7 u'.

Wt - {wU+3 wo wU+J} (4.46)
3

U+7
As with the situation assessment algorithms, assume that the sets W ]

are mutually disjoint. The second stage of the decision-making process

. 1T
is then represented by the set of variables S, where

39

M B BT MY - TR = TN EYE A s & ettt Am et = a o



1 +5
s = fv, W, L, W, L W ) (4.47)

Finally, it will be assumed that each of the response selection algorithms

has zero rejection.

It follows from the basic model structure that S, the set of wvariables

. . I IT .
of the complete model, is the union of the sets S and S, that is,

I _II 1 U U+1 U+ U4V
s=stustt = fu, W, ., W,z v, W, e, W, W, )

4.3.2 Analytic Expressions for Two Stage Model

The analytic expressions for system S are obtained following the pro-
I . . . .
cedure used for system S~ . Indeed, much of the discussilon 1in the consid-
eration of SI is directly applicable and will be used to advantage where

possible.

Amount of Internal Decision-Making

For system S, G_ is, by definition,

1 i U U+1 U+ U+v
G, = H (W, Wy weuy Wy ey W, 2, v, W ey W, L, W, ),

T (4.49)

which can be written as (see Appendix A)

1 U U+l u+v
Gn = HX(u)+HX u(V)-I-Hx V(W ) ey W, 2, W y eeer W , Y)

- B - (4.50)

The last term in Eg. (4.46) is zero since the system is deterministic
once x, u, and v are known. Furthermore, since the internal decision
strategy for the situation assessment stage has been assumed to be inde-

pendent of the input x, Eg. (4.46) can be written as
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Gn = H(u) +H (v) (4.51)

Consider the second term in Eg. (4.47). It is the uncertainty in the
internal decision v when the previous decision u and the input x are known.

By definition, H (v) is
X, u

H u(v)= - p(u,x) ) p(v|u§) log p(v|ux) (4.52)

2! u,x v

The distribution p(x) is external to the decision maker and the situation
assessment strategy p(u) is independent of the input x; hence p(u,x) =
p(u)p(x) . The remaining distribution, p(v|u§), represents the internal
decision strategy used to choose a response selection algorithm. Note that
it depends in general on the choice of situation assessment algorithm and

on the value of the input x.

In contrast with the first stage decision strategies, a dependence of
the second stage strategy on previous processing is essential; the appro-
priate conditioning is on the input to the second stage, the value of the
assessed situation z, which is determined by u and x. Hence, it will be
assumed that p(v|u§)55p(v|§) in Eq. (4.52), and the amount of decision-

making then reduces to

G = H(u) +H_(v) (4.53)
n z

Throughput

The throughput of the system is given by

G, = T(x:y) = H(y) -H_(y) (4.54)

To evaluate Eg. (4.54) the distributions p(y)., p(y[E) and p(x) are reguired.

The application of Bayes' rule to p(y) and p(y|§) yields

ply) =

16X o1

Y Y T ply|vz)p(v|ux) p(z|ux) p(u) p(x) (4.55)
u E v
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p(y|§) = Z Z P(ylguv)p(v|u§)p(u) (4.56)
u v

The distributions p(y[vg), P(E|u§)r and p(y|§uv) are known through the
mappings fi(g) and hj(E)' The distribution p(x) is assumed known. There-
fore, specification of the internal decision strategies p(u) and p(v|u§)E

p(vlg) determines p(y) and p(y]g), and hence determines Gt'
Blockage

Because the system has no rejection, and in view of the computability
of Gt as an explicit function of the internal decision strategies, it is

also possible to evaluate Gb as a function of these strategies:

G, = H(§)"Gt (4.57)

Coordination

To evaluate the coordination of the entire system S, the decomposi-
tion property of n-dimensional mutual information will be employed. Recall
that S is composed of two disjoint subsystems SI and SII, and that, in
general, the total coordination of a system of subsystems is equal to the
sum of coordinations within each subsystem plus the coordination present

among subsystems. The coordination of S is then given by
I
¢ =a +alep(stistyy, (4.58)
c c c

I IT . . . . I IT :
where Gc and Gc are the coordinations within S and S™~, respectively.

Gi has been evaluated in Section 4.2:
v
G = ) B9, +0,Hp,) +H(z) (4.41)

The response selection stage is identical in structure to the situation

L I .
assessment stage. Hence, a development similar to that for G gives
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J+5
G~ = ) p.g +J(p(§lv=j)) +0L]f.7£’(pj) +H(y) (4.59)

where pjégﬂvej), j=1,2,...,V. Note that because the response selection
strategy is dependent on the value of Zr the characteristics of the input
to each algorithm are determined in part by the strategy employed. This
in turn influences the internal coordination of each algorithm, as rep-
resented by the functional dependence of gg+j on p(§|v=j) shown in Eq.
(4.59). The input distribution to the jED algorithm can be evaluated,

using Bayes rule, as

p(v=3|2)p(2)

p(z|v=j) = (4.60)
1P (v=3|z)p(2)
Z

The final term in Eq. (4.59) is that of the coordination between the

first and second stages of the model. By definition, it is given by

r(st:s™h) = msth -u (™ (4.61)
S

Because the algorithms are deterministic and have no rejection, condi-

. . I I. . .
tioning the uncertainty in S I on knowledge of S™ is equivalent to condi-
tioning on only the variables x and u, since together x and u determine

. . I
every variable in S~ . Hence

r(st:stt) = m(sth -H, x(sII) (4.62)

Because of the symmetry of mutual information, Eq. (4.62) can also be

expressed as

T(st:sth = H(20 = H_17(u,%) (4.63)

Recall that the response selection algorithms have no rejection. Thus z

is known within SII. This fact, together with the dependence of v on u and
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%X, leads to a simplification of the second term of Egq. (4.63):

HSII(u,§) = HZ'V(u,§) (4.64)

. . . II
The variables z and Vv incorporate all of the knowledge in S about the
. . I I
variables u and x. In order to obtain a useful form of T(S :S I), several

information theoretic identities (see Appendix A) are applied in succession:

r(sT:st) = H(u,x) -H_ _(u,x) (4.65)
- -Z-,V =

= H(E'v)-Hu,E(E'V) (4.606)

= H(E)-+Hz(v)-Hu,x(g)-Hu’X'E(v) (4.67)

Hux(z) =0 since z is a deterministic function of u and x. In addition,

p(\-7|u>_§) Ep(vlg) implies that

H_(v) = H (v) (4.68)

and Eq. (4.67) reduces to

T(ST:ST) = H(z) (4.69)

Substitution of Egs. (4.41), (4.59), and (4.69) into Eg. (4.58) gives

(7]
Il
I ~>1a

. v

i U+7 .
pigc+oti3i’(pi) +H(z) + ) P59, j(p(g|V=J))+ocj’..?a?(pj) +H(y) +H(z)
i=1 j=1 (4.70)
In words, the total coordination is egqual to the sum of the internal co-

ordination of each stage plus the coordination present between the two

stages.

4.3.3 Summary and Discussion

The analytic expressionswhich describe the basic two stage model are

given below.
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® Amount of Internal Decision-Making:

Gn = H(u)-+Hz(V) (4.71)

® Throughput:

G, = T(x:y) (4.72)

® Blockage:

G =H(§)—G

b (4.73)

t

® Coordination:

@
1]
[ N

P,9. +a, (D) +H(z)

i=1
Vo gy

+ ) pjgc‘ (plz|v=3)) POUIH(p.) TH(Y) +H(Z) (4.74)
j=1 , ’

® Total Activity:

G=G_ +G,_+G_+G (4.75)
n C

t b

Egs. (4.71) - (4.75) have been derived under the assumptions that the sets
of algorithm variables are mutually disjoint, that the algorithms them-
selves are deterministic, and that each algorithm has no rejection. 1In
addition, the situation assessment strategy has been assumed independent
of the input, i.e., no preprocessing is assumed. The general dependen-
cies of the response selection strategy have been retained, however. Fin-

. i U+j . . .
ally, if p(x), fi(§), hj(E)' 9. 9. v ai,and uj are known (i=1,...,U;
j=1,...,V), then Egs. (4.70) - (4.75) are functions only of the internal

decision strategies p(u) and p(v|§).
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4.4 BOUNDED RATIONALITY AND PERFORMANCE EVALUAT ION

To complete the analytic characterization of the decision-making pro-
cess model, it is necessary to consider constraints which reflect observed
limitations, namely, the bounded rationality of decision makers. It is also
appropriate to introduce a mechanism for the evaluation of the decision

maker's performance.

4.4.1 Bounded Rationality

As discussed in Chapter 1, the notion of bounded rationality refers
to the limited ability of the human being to process information. Con-
siderable evidence has been collected in support of this hypothesis [221],

[23, Chapter 6].

Since the present model is a characterization of the internal process-
ing present in the determination of output from input, the gqualitative no-
tion of a limitation on processing ability translates readily into an ana-
lytic restriction on the total activity. The appropriate constraint is on
the rate of total activity, however, because of the steady-state property of
the expression for G in the present context. Denote this constraint by F,
where F is expressed in bits per second. A constraint on the rate of total

activity therefore requires

< F, (4.76)

Al

where T is the mean input symbol interarrival time. In other words, the
boundedly rational decision maker is restricted from use of internal de-

cision strategies which exceed his effective processing capacity, F.

Previous analytic representations of bounded rationality have been
based on an input-output description of decision-making [9 1, [10], [12].
In that context, the appropriate analytic representation is of the form of
an input-output capacity. While the present model includes an input-output
quantity (Gt), the correspondence of the constraint of previous characteri-
zations is with the rate of total activity constraint, F. In the present

framework, if the model developed were only a throughput characterization of
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the process, i.e., Gn==Gb==GC==O, then the total activity rate constraint,
F, would also be a rate of throughput constraint or input-output capacity
and would correspond to previous representations. Additional constraints
are possible [15] in the context of the present model; however, the justifi-

cation of their use through empirical evidence is not possible at this time.

4.4.2 Performance Evaluation

While the PLI measures the total activity present in the decision ma-
king process, it offers little insight into the quality of performance ob-
tained for a particular amount of total activity or resource expenditure
[17], [23]. This can be illustrated by consideration of the two mappings
shown in Figure 4.5. Each is a deterministic mapping of variable x into the
variable y, where x takes values x

X x., and y takes values yl, y2, Ysy-

1’ 727 73
The mutual information T (x:y) 1is given in each case by
I I
T (x:y) = H(x)-—Hy(x) (4.77)

M (x:y) = H(x) -H§I<x) (4.78)

Because each mapping is one-to-one, the last term in Egs. (4.77) and (4.78)

is zero, and

r(x:y) = T (x:y), (4.79)

i.e., the mutual information between x and y is numerically the same for
both cases. The qualitative nature of the two mappings is very different,

however.

In terms of the present model, it may well be that two different de-

cision strategies reguire the same amount of activity (resources), but yield

Xy o=———bey, Xy A ¥

Xz ._..yz Xz yz

Xy S—————noy. X3 Ya
I I

Figure 4.5. Two Deterministic Mappings
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very different decision responses to the same input. In order to evaluate
the quality of decision-making, then, it is necessary to compare the actual
decision response with the one that should have been made. A mechanism for
accomplishing this evaluation is shown in Figure 4.6. The desired decision
response is represented by y' and is determined according to the function
L(x'). Comparison of y' and y is made by the function d(y,y'), which assigns
a value of cost e to each possible value of the difference between y' and V.
The expected value of the cost can be determined for given strategies by

averaging over the possible inputs, and thus a value of performance can be

assigned to each pair of strategies p(u) and p(v|z). For example, if
0 y=y'
e = d(y,y') = (4.80)
vy {l vy#Yy'

the expected value of the cost is given by

E{d(y,y')}=0'p(y=y')+1-p(y#y') (4.81)

which represents the probability of error in decision-making. The informa-
tion obtained from performance evaluation can be used by the organization
designer in defining and allocating tasks to the decision maker and in
changing the number and contents of the situation assessment and response
selection algorithms. This is achieved through training and learning; these
processes, however, are outside the scope of this model, which describes a

decision-making mechanism in the steady-state.

f, (x)
SADi=a\
’.‘\bl‘. f5(x) 2 4 -
fu(i)
SA
L 4
—l' L(x) ,' " {dly.y')

Figure 4.6. Model of Decision-Making Process With Performance
Evaluation Mechanism

48




4.5 PROPERTIES OF MODEL

The two-stage model developed in this chapter can be used to consider
several interesting questions. Two problems in particular will be stated
in this section, one each in the normative and descriptive contexts: a)
determination of optimal performance strategies and b) determination of
those strategies which exceed a performance minimum. The investigation
of the solutions to these problems will illustrate the properties of the

model.

4.5.1 The Two-Stage Model

The two-stage model of the decision-making process is taken to be

that shown in Figure 4.6, where the following are assumed to be specified:

® 3slgorithms f.(x) and h.(z) with internal variables
o, and &' and internallcoordinations gt and gU+J,
réspecti%ely, which are known as a function o% the (4.82)
characteristics of their respective inputs,
i=1,2,...,0, §3=1,2,...,V)

® analytic characterization of the decision-making pro-
cess as derived and described in Sections 4.2-4.3 (4.83)
and represented by Egs. (4.71) - (4.75)

® function L(x') that maps x' into y' (4.84)
® distribution p(x') from which a sample is drawn every (4.85)
T seconds ’
® distribution p(g) from which a sample is drawn every (4.86)

T seconds, simultanecusly with x'

Given the conditions (4.82) - (4.86), the additional specification of the
cost function d(y,y') completely characterizes the decision-making process
model as a function of the internal decision strategies p(u), p(v]g). In
particular, the expected cost can be evaluated as a function of decision

strategy. Let
J(p(u), p(v|z)) = E{d(y,y"} (4.87)

The general problem of interest is then to investigate how the cost J
varies according to strategy selection, where the set of possible strate-
gies may or may not be restricted by capacity limitations, as discussed

in Section 4.4.
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4.5.2 Problem Statement
Two problems in particular will be considered in order to investigate

The cost function is chosen to be that given

the properties of the model.
by Eg. (4.80), which yields
elay,y")} = ply#vy") (4.88)
Eq. (4.87) then becomes
(4.89)

J(p(u), p(v]z)) =p(y#y")

Finally, it will be assumed that the bounded rationality of the decision

maker is represented by a total activity rate constraint, F, and
(4.90)

=19
IN
o]

For the given conditions (4.82) - (4.86), G is determined as
(4.89) can then be

is regquired.
a function of the internal decision strategies; Eq.
written equivalently as

(4.91)

< FT

G(p(u), p(v|z))

With these additional specifications, a problem of interest in the

normative context is
Problem I

Given conditions (4.82) - (4.86), (4.89), (4.91), determine p(u) and
p(v!g) such that

a) J(p(ua), p(vlg)) = p(y#y') 1is minimized

is minimized subject to

ox
Jp(u), plvlz)) =
< FT.

b) z
G(p(u), p(v|z))
Problem I(a) is a minimization of the probability of error, while

Problem I(b) is a determination of the minimum error strategies which do
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not exceed the decision maker's total activity capacity, i.e., do not over-
load him. Note that the solution to I(b) is in general a function of T,

and that the solution of I(a) corresponds to the case where T ><.

As discussed in Chapter 2, a descriptive model of the decision maker
leads to the characterization of his decision-making. as satisficing rather
than as optimizing. In analytic terms, satisficing can be taken to mean
that a threshold cost has not been exceeded; for the model at hand, let J

be that threshold. This gives the following problem of interest:
Problem II

Given conditions (4.82) - (4.86), (4.89), and (4.91), detexmine p(u)
and p(vlg) such that

a) J(p(w, p(v|z)) <3
or

b) J(p(u), p(vlg” <J subject to G(p(u), p(vlg))SFT.
The solutions to Problems II(a) and (b) represent strategies which
satisfice. As with Problem I(b), the solutions to Problem II(b) are in

general a function of T.

The existence and characterization of solutions to Problems I and II

are considered in the following sections.

4.5.3 Characterization of Solutions

Pure and Mixed Strategies

Before characterizing the solution to Problems I and II, it is neces-
sary to consider the two classes of strategies, pure and mixed [24], which
might arise as solutions. For convenience, the situation assessment de-
cision strategy p(u) and the response selection decision strategy p(v’E)

will be referred to together as the decision strategy.

In general, the specification of a response selection strategy requires

the specification of M distributions on v, where M is the number of values
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that z takes. If a response selection strategy is chosen such that there
is an algorithm associated deterministically to each value of z, that is,

for m=1,2,...,M,

pw=j@=gﬁ =1 for some j, (4.92)

then a deterministic or pure response selection strategy has been employed.
There exist V*M such strategies. Correspondingly, there are U pure situa-
tion assessment strategies, which give a total of (U*V*M) possible pure

strategies. Denote by DK the Ktb pure decision strategy, where KX=1,2,...,

(UeveM) .

All other possible strategies are said to be stochastic, or mixed
strategies, and are represented by non-trivial distrikbutions p(u), p(v|§).
Every possible mixed strategy is obtained by a convex combination of pure
strategies, that is, associated with each distribution (p(u), p(v|§)) is

a set of weights PK such that

UgeVeM A
(p(w, p(vlz)) = ] Do = Dip,) (4.93)
K=1
where
U’%*M
p, =1 p,20 Y K (4.94)
K=1 K K

Problem I(a)

Characterization of the solutions to I(a) requires knowledge of the
dependence of the probability of error on the decision strategy. This de-

pendence can be seen by using Bayes' rule:

ply#y') = | ply#y'|vza)p(v|z)p(zlwp(w
Z

The distributions p(y#y']vgu) and p(§|u) can be evaluated from known
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quantities in the model, and are fixed. Corresponding to each pure stra-
tegy DK is a value of the probability of error, which can be obtained by
substitution of DK into Eq. (4.95). Denote these values by JK. Since
each possible mixed strategy is obtained by appropriate combination of
pure strategies, the error associated with an arbitrary strategy is also

obtained in the same fashion, i.e.,

v
I, ptvlz)) = | Jp (4.96)
=1

where particular values of Py determine a particular strategy (p(u), p(v|§).
Minimization of Eq. (4.96) subject to (4.94) gives as solution a pure
Strategy corresponding to the minimum JK. However, if the values of JK are
not distinct, it is possible that the minimizing pure strategy is not
unique. 1Indeed, if there are two pure minimum error strategies, then any

linear combination of these strategies is also a solution.

Problem I(b)

In order to describe the solution to I(b), it is necessary to deter-
mine the relationship between the performance J (error probability) and
the total activity, G. This will be accomplished in two steps: a) the
convexity of G in the decision strategy will be shown, and b) the decision
strategy will be used parametrically to construct a plot of possible (J,G)

pairs.

a) Convexity of G

To show the convexity of G in the decision strategy, it is necessary

to show that
a b a b
G((l—5)D(pK) +6D(pK)) > (1—6)G(D(pK)) +cSG(D(pK)), 0<8<1 (4.97)

where D(p;) and D(pi) represent two arbitrary decision strategies, a and b.

Recall that the total activity can be evaluated as
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G =) H(w) (4.98)
w

where ZH(w) represents the sum of the marginal uncertainties of all system
W

variables. Because the sum of convex functions is convex [25], in order

to show the convexity of G in the decision strategy it is sufficient to

show the convexity of the marginal uncertainty of each system variable.

Consider an arbitrary variable of the system w. The distribution p(w)

can be written as

pw) = )  plw|vzwp(v|z)p(z|uwp ) (4.99)
V’E’u

where the gquantities p(wlvgu) are fixed and known by specification of the
model. Corresponding to each pure strategy is a distribution p(w|DK) which
results by substitution of DK into Eq. (4.99). The possible distribu-
tions on w which can arise by variations in decision strategy are there-

fore elements of the set given by

UeveM
Qw = {p(w)lp(w) = ; P(WIDK)pK}' where (4.100)
k=1
U'\i'M
p. =1, p =20 ¥ K
k=1 K K

Qw represents a convex space of probability distributions. From informa-
tion theory the following result holds concerning convex probability dis-

tribution spaces [17]:

If p(x) is an element of the convex space determined by

p(x) (l-G)pl(x) +592(x) , 0<8<1, then

H(x) = (1-6)H1(x) +6H2(x)

where H(X), Hl(x), Hz(x) are the marginal uncertainties obtained using p(x),
pl(x), and pz(x), respectively.
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Let pa(w), pb(w) be distributions on w which result when strategies

a and b are used, respectively; that is,

UeVeM a

p (w) = ] p(w|DK)pK (4.101)
K=1
UsVeM N

p (w) = Kzl p(wIDK)pK (4.102)

Because Qw is a convex space,

p(w) = (1-6)pa(w) +6pb(w) 0<d8<1 (4.103)
is an element of that space. Hence
a b
H(w) 2 (1-8)H (w) +G6H (w) 0<d<1 (4.104)
for any variable w of the system, and
Y Hw) 2 (1-6)] H%(w) +6) H (w) 0<8<1 (4.105)
w w w

Eq. (4.105) is eguivalent to Eg. (4.97), however, and the desired result

has been shown.

b) Construction of (J,G) Plot

To obtain a characterization of the possible (J,G) pairs, it is con-
venient to first restrict consideration to the case of strategies which
are a binary variation between pure strategies. Extension of the resulting

description to the case of arbitrary strategies then follows directly.

Consider the decision strategies D(S) obtained when
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1-§ K=1
Py = 8 K=2 , 0s8<1 (4.106)
0 otherwise
where
A
D(§) = (l-(S)Dl+CSD2 (4.107)

Denote the total activities corresponding to Dl and D2 by Gl and G2,
respectively. From Egqs. (4.96) and (4.97) it is true that

G(D(8)) = (1—6)Gl+cSG2 (4.108)
and J(D(§)) = (1—6)Jl+6J2 (4.109)

Egs. (4.108) and (4.109) are parametric in § and can be used to describe
the relationship of G and J, which is represented in Figure 4.7. The
) is arbitrary, i.e.,

2
it is not true in general that the lowest total activity also realizes

relative orientation of the points (Jl,Gl) and (J2,G

the worst performance.

Ga
G,

G,

Figure 4.7. Representation of G vs. J for
Binary Variation of Pure Strategies

Application of the above construction to all possible binary varia-
tions between pure strategies yields a locus of (J,G) pairs, as represented

in Figure 4.8 for the case of three pure strategies. Since all possible
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® Pure Strategy

1
T, Jz Jdp J

Figure 4.8. Representation of Locus of (J,G) Pairs for
Binary Variation Among Three Pure Strategies

mixed strategies can be obtained by successive binary combinations of mixed
strategies, the region of all (J,G) pairs is also readily obtained and

is typified by the representation in Figure 4.9. Characteristic of such

e Pure Strategy

Figure 4.9. Representation of Possible (J,G) Pairs

a region is that the strategy corresponding to the minimum value of G for
a particular J is either a pure strategy or a binary variation between

pure strategies. Let the possible (J,G) pairs be denoted by R, i.e.,

R={1,0 |6=6((p)), I=3(Dp )} (4.110)

Recall that in Problem I(b), the minimum error strategy is sought such
that the decision maker's total activity capacity is not exceeded. The
points (J,G) which correspond to strategies which do not exceed this con-
straint are given by the intersection of R and the set of points determined

b
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{w,0) | c<Fr} (4.111)

Depending on the value of T, two types of intersection are possible, as
shown in Figure 4.10. For T==Tl, the minimum error is achieved by the
(pure) strategy corresponding to the point (JC,GC), which is also the
solution obtained to Problem I(a). However, as T decreases, it may no
longer be possible to use the optimal strategy, as illustrated in Figure
4.10 for T==T2. In that case, the minimum error strategy is in general

a mixed strategy, and for the present model is a binary variation between

pure strategies.

G @ Pure Strategy

[\ | .

FTZ

|

Je g —

Figure 4.10. Characterization of Solutions to Problem I (b)

Problem II(a)

From the discussion of solutioms to Problem I(a), the solutions to

Problem II(a) can be characterized as the set of feasible solutions Py to

_ UM

>
) TxPr

=1
. (4.112)
UsveM
= >
L pe=1, pe20 ¥X
k=1 )

The solution set determines a partition of the region R as shown in Figure

4.11, which illustrates that while an infinite number of strategies will
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® Pure Strategy

] —

Figure 4.11. Region of Satisficing (J,G) Pairs

satisfice, the difference in total activity required for each can be sig-

nificant. Note that for 5'<m%n JK, no solution exists.

Problem II(b)

The solution to Problem II(b) is obtained readily as the set of stra-
tegies, represented by values of PK' which give (J,G) pairs in the region
defined by

Rn {(7,6) |csFr}n {@,0 |7<7} (4.113)

Several types of intersection are possible, as illustrated in Figure 4.12.
For T sufficiently large, the set of satisficing strategies includes the
minimum error strategy (T==T3 in Figure 4.12). As T decreases, however,
the solution set may contain only mixed strategies (T==T4), that is, satis-
ficing performance can be achieved only by using strategies which involve
non-zero amounts of internal decision-making, i.e., Gn#(L A third type of
intersection occurs when T is decreased sufficiently so that the solution

set is empty (T:=T5).

As T decreases, there exists in general some value of T'=TO below which

the solution set is empty. A decreasing value of T corresponds to an
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G ® Pure Strategy
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F'r5

V Fr 6
>

<

Figure 4.12. Representation of Possible Solutions tc Problem II(b)

increasing rate of input arrivals, and T-<TO correspondé to the case where
inputs are arriving at a rate too fast for adequate processing. Such a
condition represents an overload of the decision maker. It is possible
that the decision task can still be accomplished, however, by using a
strategy which realizes a higher than acceptable cost, but in general
there exist values of T for which no amount of performance compromise will
avoid overload (T =T_. in Figure 4.12) and the decision-making task cannot

6
be accomplished in that event.

The above analysis has shown that the minimum probability of error is
realized by a pure strategy; however, because of capacity constraints, the
minimum error probability achievable by the decision maker may be realized
by a mixed strategy. In the descriptive context, the set of strategies
which achieves a performance minimum has been characterized, and for the

case of a constrained decision maker, it was shown that such a set might

contain only mixed strategies.

4.5.4 Other Properties of Model

Two other characteristics of the model are of particular interest:
algorithm switching may be due entirely to external influences, and al-
gorithm reinitialization activity may be a significant fraction of the
total activity G. Both are illustrated by the following example.
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Suppose that the response selection stage contains two algorithms,
hl(°) and h2('). Furthermore, assume that the situation assessment stage
consists of a single algorithm and that it maps the inputs x into two

possible values of z according to

p(z) = 0sys<1 (4.114)

Let the pure strategy Dl be employed, where

1]
—

p(v=1] z=z,)
Dl = (4.115)
p(v=2| z=z,)

It
'—l

i.e., z, is always used in hl(') and z, is always used in h2('). The model
of the process is illustrated in Figure 4.13 and because of the strategy

employed,

G =0 (4.116)

(b

Figure 4.13. Deterministic Switching

However, it is also true that

p(v) = (4.117)
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which illustrates that pure strategies do not necessarily imply fixed al-
gorithm usage. The switching among second stage algorithms in this case
is due entirely to variations in the value of z, which derive ultimately
from variations in the input X; hence it is a switching which is driven

totally from outside the decision maker.

A second interesting phenomenon present in the model can be illus-
trated by consideration of the total activity which describes the process
shown in Figure 4.13. In particular, consider the coordination within the

response selection stage:

2 .
6t = 7 p.a"" (plz|v=i)) +araflp.) +H(yY) (4.118)
;8 3 = 377

The input distributions to hl(-) and h2(-) are given by

1 z=z

p(z|v=1) = (4.119)
0 z=z,
0 z=z,

p(z|v=2) = (4.120)
1 z=z,

i.e., they are deterministic from the point of view of the algorithms. The
. . . 2 3
internal coordinations gc and gc are therefore zero and Eq. (4.118) reduces

to
G~ = ai.ﬂ(l-fy) +oaé.yf(y) +H(y) (4.121)

and the activity within the second stage is due almost entirely to the
reinitialization of algorithms, which activity may be a significant part
of the total if the numbers of algorithm variables, ai and aé, are large.
This phenomenon reflects and reinforces the notion that regardless of the
simplicity of a particular task or procedure, there is still required a

certain amount of effort to switch attention or become oriented [23].
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4.6 CHAPTER SUMMARY

In this chapter, a structure has been presented for modeling internal
decision-making in the execution of a well-defined task. It consists of
two stages. In the first, a measurement of the state of the decision

maker's environment is taken as input and from it an assessment of the

situation is made. In the second stage, a decision response is selected

which is appropriate to the assessed situation. To accomplish the pro-
cessing required in each stage, the decision maker, who is well-trained
in the performance of his task, is modeled as possessing a set of well-
defined procedures or algorithms, among which a choice is made for each

input.

The Partition Law of Information has been applied to this model, with
the result that analytic expressions which characterize the total activity
of this process have been developed which are explicit functions of the
internal choices. These expressions divide the total activity into that
of throughput, blockage, coordination, and the amount of internal decision-
making. In order that an evaluation of the decision maker's performance
with respect to the assigned task might be made, a performance measure and
a procedure for evaluating it are introduced. Finally, the limited ability
of the human decision maker to process information is modeled as

a constraint on the overall activity rate.

The general expressions developed were specialized in Section 4.5 to
the case where the performance measure is the probability of error in
decision-making, and where a possible total activity capacity constraint
exists. Interpretation of the relative frequency of choice as the
decision strategy was made, and two classes of decision strategies were
distinguished: pure and mixed, corresponding to the cases of zero and
non-zero amounts of internal decision-making, respectively. It was shown
that the total activity of the process is a convex function of the de-
cision strategy. 1In the normative context, it was shown that the minimum
error probability is realized by a pure strategy; a capacity limitation
may dictate that the minimizing strategy be mixed, however. Similarly,
in the descriptive context, a characterization of those strategies which

realized a minimum acceptable level of performance (satisficing) was
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obtained, and it was seen that the additional consideration of a capacity
constraint may restrict the set of satisficing strategies such that only
mixed strategies are included. It was observed by example that pure stra-
tegies do not necessarily fix the choice of algorithm, rather, a switching
can occur due to variations in input. Finally, it was shown that the ac-
tivity required for reinitialization of algorithms can be a significant

fraction of the total.

Subsequent theoretical development in this thesis (Chapter 6) will
extend the model to include possible interactions which might occur in
an organization. In the next chapter, an example is presented that illus-

trates many of the features of the analysis presented so far.
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CHAPTER 5
ILLUSTRATION OF MODEL

5.1 INTRODUCTION

An example which illustrates several of the properties of the two-
stage model is presented. In particular, construction of a representative
(J,G) region is made and the pure and mixed strategies as solutions to
Problems I and II of Chapter 4 are illustrated. A clear indication is
given that total activity, as described by the present model, rather than
throughput alone, is a more appropriate quantity by which to describe
bounded rationality. In addition, the significant influence on the total

of the activity required to switch among options is illustrated.

The example presented is not intended as an application of the model
to an actual decision-making task. Actual application requires additional
considerations in task definition which are beyond the scope of this thesis.
The intent is to demonstrate how simple input-output task description can
be viewed as a process, and how internal choices made in that process can

influence the performance and total activity required.

5.2 INPUT-OUTPUT TASK DEFINITION

To define the task of the decision maker, it is necessary to define
(see Figure 4.6) the characteristics of the input x', to specify the pos-
sible output decision responses y', and finally to define the desired
mapping between input and output L(x'). Once this characterization is
complete, a particular process of mapping input to output by the decision
maker can be specified and the performance of the task by that process
can be evaluated. In this section, the input characteristics to the de-
cision maker are defined and the desired mapping L(x') of inputs to

outputs is also specified.
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5.2.1 General Description

The environment of the decision maker is such that coplanar line
segments are generated independently every T seconds. These segments
are completely characterized by their endpoints, which are taken as the
state of the decision maker's environment x'. Three possible decision
responses are assumed and the desired association of each possible line
segment to the possible decision responses is made based on the orienta-
tion and normalized length of the line segment, both of which can be de-
termined from its endpoints. For simplicity, it is assumed thatball
lines which contain the generated segments pass through a common point,

which determines the origin of a coordinate system.

5.2.2 Analytic Description

Input From Environment

The line segments are defined by their endpoints (Ai,ui), (Ké,ué)

which are generated according to

1l
=]
o+

=

1]
=]
t

M
(5.1)
Xé =m t u!

I
]
o+

where t, and t_ are fixed parameters (t,>t_, >0) and ml, m,. are indepen-

1 2 2 1 2
dent, positive random variables which take a finite number of wvalues with
uniform probability. All possible line segments therefore occur with egual
probability. The input vector x' is a random vector defined to be
]

1
1
>\v

2

[
>

(5.2)

Hy

It is assumed that no ml,m combination gives a slope greater than 1.

2
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Desired Input-Output Mapping

Three possible decision responses are assumed: v'€{a,b,c}. The
particular response desired for each line segment is based on the orien-
tation of the line segment and its normalized length (Vv), which are de-
termined as shown in Figure 5.1. The analytic description of the mapping
L(x') is given below, where the gquantities cl, Cys and d1 are fixed para-
meters chosen to give a decision response mapping such as that shown in

Figure 5.2. (The upper boundary at 45° is by assumption: no m.,m

1M, pair

gives slope greater thanvl.)

Figure 5.1. Determination of Orientation (6) and Normalized Length (V)

> -
a AV cl(l dle)
L(x') : y' =14Db v < c2(l—dle) (5.3)
c otherwise

Actual Input to Decision Maker

Recall that the decision maker does not receive 5' directly, however,
because of the corruption by noise represented by the variable g. The

actual input is X, which is bbtained by
}_{:}_{'4-(_1 (5.4)

where g is a 4-dimensional zero-mean, random vector with 4 independent

elements. 1In analytic terms, the task of the decision maker is to select

a response y'e{aqb,c}, based on the noisy measurement X, which matches
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sy

Figure 5.2. Desired Decision Mapping L(x")
the desired response y' associated with the actual state 5" Values
chosen for the alphabets of the random variables m m2, and g, as well
as the values of the appropriate parameters, are given in Appendix C.

5.3 PROCESS DEFINITION

5.3.1 General Algorithm Characteristics

The decision-making process which maps inputs X into decision re-
'sponses y is assumed to consist of a single situation assessment algorithm
and three response selection algorithms, among which a choice is made
according to the variable v as shown in Figure 5.3. For the example at
hand, the appropriate variables which characterize the situation, i.e.,
contain all the information necessary to determine the decision response,
are the variables O and V. Correspondingly, the situation assessment al-

gorithm maps inputs x into estimates of 6 and v, which are then forwarded
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hy(z)
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\— h3(§)
SA RS

Figure 5.3. Example Decision-Making Process

to the response selection stage, that is,

= f(x) (5.5)

The estimates V and 6 are obtained by the situation assessment algorithm

using standard sum of squares and least squares techniques, respectively.

The three response selection algorithms are constructed to be of
varying quality in terms of performance. It also happens that in this
_case better performance requires greater total activity (G), although
this need not be true in general. The best algorithm, h3(‘),uses the
actual decision mapping regions defined by (5.3), except that the esti-
mates Y and O are used instead of § and V. The worst algorithm of the

three in performance, h,(*), determines a decision response according

1
to the estimate 8 only:

a B8 > g
h. (*) : v = , (5.5)
C otherwise

that is, the decision response is determined by the comparison of § with
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a fixed threshold P. The remaining algorithm, hz('), corresponds to a
table loockup and is accomplished as a two-dimensional search. The possible
values of (v,0) are partitioned and values of y assigned as shown in Fig-

ure 5.4, where the quantities ci and dj are fixed thresholds.

A S SR

Figure 5.4. Algorithm h2(-): Look-up Table

The relative characteristics of the respective response selection al-
gorithms for the parameters chosen are shown in Figure 5.5 together with
the possible (V,0) pairs which were generated as inputs. Numerical values

of the parameters used are given in Appendix C.

5.3.2 Variable Definition

In this section, the variables of algorithm h3(') are defined.
Variable definition for the other algorithms proceeds similarly to that

for h3(-); the algorithm variables for f(°), hl(-) and h_(*) are presented

2
in Appendix C.
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Figure 5.5. Relative Performance Characteristics of
Response Selection Algorithms

Algorithm h3(') receives values of 6 and V as contained in the vec-
tor z and deterxmines the decision response according to (5.3). The pro-
cessing accomplished by algorithm h_(*) is determined according to the
internal variables of the set WU+3==W4 (U=1 in this example) and the in-
terconnection of these variables. The internal variables are defined
according to the binary operations present: addition, multiplication, and
comparison. They are given in Figure 5.6; note that ai==l3. Several
features of the variable definition are of particular interest. Since
the characteristics of the input to each response selection algorithm may
vary according to the particular strategy used, the input to algorithm
h3(°) is denoted by the superscript 3 (variables @3 and 03). Secondly,
the constants cl, Cyr dl and 1 are considered as variables of the algorithm
since any reinitialization of the algorithm must also switch their status
from inactive to active. Finally, the algorithm includes a two-level
comparison tree, which defines additional variables (see the example of

Chapter 3).
71




W, o= ) w, = ¢ w, = 1 Wi = c2(1-d1'6 )
4 3 4 4 A3 4 3
w, = we = C, wg = l-dl 6 Wi =Y
4 4 a3 4 A
wy = dl we = dl B Wy = cl(l-d 87)
A3 2 4 4
vo < W w4
P
3 =D
Y 532 4 4
Y10 Y12
< >
3 3
v =c y = a

Figure 5.6. Internal Variables of Algorithm h3(°)

5.3.3 Computability

In order to evaluate the various quantities in the PLI, it is necessary
to determine the probability distributions for each algorithm variable.
Given the internal variable definition for a particular algorithm and the
implied interconnection of variables which is determined by that defi-
nition, this is indeed possible if the input characteristics to the al-
gorithm are known. To illustrate this, consider the internal variables
4 4

) . . . . 4
of algorithm h3(') as defined in Figure 5.6. The variables w3, Wy w5,

and wo are constant; hence their distributions are known. Because of this
fact, the variables wg, wg, wg, and wio have the same distribution as @3,
with appropriate re-labeling of values according to respective variable
alphabets. Finally, the distributions on wil and wi are known if those
on @3 and 63 are known, and the same is txrue for p(y ). Therefore, all
internal variable probability distributions can be computed once the input
distribution p(§3,33) is specified. The input to the response selection
algorithms is determined by the output of the situation assessment stage

and the strategy p(vlg). The latter is specified, and the former is

72

E———— T -



determined from internal variable definition of the situation assessment
algorithm and the characteristics of its input p(x). These quantities are
all well-defined and hence the model is well-defined in that the proba-

bility distribution on each internal variable is computable.
5.4 DEMONSTRATION OF PROPERTIES

5.4.1 Admissible Strategies and Performance Measure

To demonstrate the properties of the model developed in Chapter 4,
it is sufficient to consider only three pure strategies and their possible
combinations. Accordingly, the admissible set of strategies is chosen as
p(v]E)'Ep(v), which includes the three pure strategies in which a single

algorithm is used exclusively.

In addition, the cost function is chosen to be that of (4.80), i.e.,

the expected cost is the probability of erxrror in decision-making.

5.4.2 Pure Strategies

Denote the pure strategies by DK’ where K=1,2,3 and let DK cor-
respond to h_(*), that is, D_ is the pure strategy corresponding to ex-

. h . . ,
clusive use of the K— response selection algorithm. The analytic ex-

pressions which characterize the model for use of D3 are given by (units

are bits)
® Amount of Internal Decision-Making
Gn = H(v)
Gn(D3) =0
® Throughput

Gt = T(x:y)
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H(}_{) -Gt

8.9 - 1.4 = 7.5

o
o
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® Coordination

3
! 1+ . ,
G, = g_+H(z) + E P9, (P(2]v=1)) +ald(p) +H(y) +H(2)

j=1
1 4
G (D,) = g_+H(z) +g_(p(z|v=3)) + 13+ (1) +H(y) +H(=z)
c 3 c - c - -
G_(Dy) = 91.6+4.5+14.1 + 0 + 1.4 + 4.5
G (D) = 114.1
c 3

The use of strategies Dl and D2 yields similar evaluations of the

respective quantities:

Gn(Dl) =0

Gt(Dl) =0.3-0=20.3

8.9-0.3

Gb(Dl) 8.6

1 2
G, (D)) = g_+H(z) +g_(p(z|v=1)) +5:#(1) +H(y) +H(z)

91.6 +4.5+1.6 + 0] + 0.3 + 4.5

102.5
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G_(D)) = gL +H(z) +9.(p(z|v=2)) +19:F(1) +H(y) +H(2)
= 91.6+4.5+8.1 + 0 + 1.2 + 4.5
= 109.9

In the expressions above, it is interesting to note that variations in Gc
are due primarily to the differences in the internal coordinations of the
response selection algorithms. 1Indeed, in each case the contribution of
the first stage is the same (100.6), and the remaining contribution is
due almost entirely to g2+j. As indicated in this example, the internal
coordinations of the algorithm tend to dominate the contributions made by
the H(z) and H(y) terms. The results given above are summarized in

Table 5.1 together with the performance achieved.

Table 5.1 CHARACTERIZATION OF MODEL USING PURE STRATEGIES

STRATEGY Gn Gt Gb Gc G J
Dl 0 0.3 8.6 102.5 111.4 0.38
D2 0 1.2 7.7 109.9 118.8 0.25
D, 0 1.4 7.5 114.1 125.0 0.23

Two features of the model are evident in the table. The first is that
the coordination activity dominates the total, and the second is that the

throughput activity is an insignificant fraction of the total. The
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interpretétion of this phenomenon is based on the following observation.
Many decisions made are of the yes-no type, which corresponds to a (maxi-
mum) throughput of 1 bit. This characterization does not necessarily
reflect the fact that considerable effort may have been expended in reaching
the final decision (yes or no), however, and indicates that Gt is perhaps

an incomplete characterization [15], [23]. The presence of the coordina-
tion term seems to account for the actual effort which takes place inter-
nally; in this example, even though only three final outcomes were possible,
a great deal of computation was required to select a particular outcome

as reflected in Gc.

5.4.3 Mixed Strategies

The use of mixed strategies which are binary variations of pure stra-
tegies yields the (J,G) pairs plotted in Figure 5.7. Denote by D(S) the

and D, i.e.,

mixed strategy which is a binary variation between Dl 5

D(8) = (1-5)D1+6D2 0<d<1 (5.6)

It can be shown (see Appendix C) that the amount of additional total

wor
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Figure 5.7. (J,G) Pairs for Mixed Strategies Which are Binary
Variations of Pure Strategies
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activity required for the mixed strategy D(8) beyond that expected by a

simple weighted average of G. and G2 is due almost entirely to the acti-

1
vity required for re-initialization of algorithms, i.e.,

G(S8) - [(l—(S)Gl+5G2] = (13 +19'32(S) (5.7)

For binary variations between Dl and D2, § = 0.5 represents nearly a 25%
increase in total activity in this example. This follows from the analysis
in Chapter 4 and demonstrates that switching among algorithms can account

for a significant fraction of the total activity.

The entire (J,G) region can be determined by all possible binary
variations between pure and mixed strategies and in the present case re-

sults in the region shown in Figure 5.8.

150 -

140 -
-
§ 130 -
o
< 120 =

110 - D,

L1 | | | | -

020 025 030 035 040 J
COST

Figure 5.8. Region of Possible (J,G) Pairs

Recall Problems I and II of Chapter 4. Let 3, the threshold of satis-
ficing performance, and F, the rate of total activity constraint, be 0.26
and 125 (bits per second), respectively. The total activity constraint
for several values of T is shown in Figure 5.9. The minimum possible error

probability is given by the (pure) strategy D. (Problem IL(a)), and for

1
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Figure 5.9. (J3,G) Region With Bounded Rationality Constraints

T2>1 the boundedly rational decision maker can realize this level of per-
formance. For T <1, however, the solution to Problem I(b) becomes in
general a mixed’strategy. It is interesting to note that as T decreases

to less than 0.95, the best realizable performance changes significantly.
This represents a general characteristic of the model, i.e., as the decision
maker becomes more tightly constrained, the alterations in performance

are not necessarily "smooth." Indeed, as seen in this example, perfor-
mance may alter drastically for a slight decrease in mean input inter-

arrival time, which corresponds to one type of human overload response [23].

For J =0.26, solutions to Problem II(a) exist. If T2>0.95 solutions
exist to Problem II(b), also. If T <0.95, however, the decision maker
becomes overloaded, i.e., there are no satisficing strategies, although
the task can still be accomplished for 0.89< T <0.95 at much-reduced per-

formance levels. For T<0.89, the task cannot be accomplished.

5.5 SUMMARY

In this chapter an example was presented which verified many of the

properties of the model shown in Chapter 4. The significance of the
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coordination activity Gc' as a part of the total was indicated, especially
in comparison to the throughput. In addition, the activity regquired to
switch among algorithms was seen to be significant. Finally, the stra-
tegies which realized minimum error and satisficing performances were

considered for representative values of J and F.
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CHAPTER 6
INTERACTION WITH ORGANIZATION

The two-stage model presented in Chapter 4 represents a first step
toward an analytic description of a decision maker as he performs his
task. In order to evaluate eventually alternative military command struc-
tures, however, it is necessary to extend the basic model to account for
various types of interaction among decision makers. Two such interactions
will be considered in this chapter: inputs which represent a supplement
to the decision maker's situation assessment, and inputs which represent
a command issued to the decision maker. A model which incorporates both
is suggested, and expressions which describe the model are developed and
analyzed. It is shown that the expressions are ready extensions of those
for the basic model and that the characterization of the strategies as
solutions to problems in the normative and descriptive context do not
change in their gualitative aspects. Finally, the implications of the

interactions as control exercised by the organization are considered.

6.1 INFORMATION STRUCTURES

The possible types of interaction between an organization and one of
its members are determined in part by the information structure of the
organization. Such a structure can be determined by partitioning the over-

all input to the organization, as shown in Figure 6.1 [26]. The vector X'

.9 y
! Y,
X q DM
Xy y
H, D] DM ———>

Figure 6.1. Organization Information Structure
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represents the organization's input; it is partitioned according to H1 and

H2 into the vectors gi and x which are the inputs to the decision maker

é,
(DM) and to the rest of the organization (RO), respectively. Considera-
tion of DM-RO interactions in this chapter will be restricted to the class
of those which are additional inputs to the decision maker from the rest
of the organization, as shown in Figure 6.1. In addition, it is assumed
that a noisy measurement of 5' is received by the DM, as discussed in

1
Chapter 4.

There are three classes of information partitions which can arise for
the model shown in Figure 6.1l. One class consists of all partitions such
that the vector §i is completely contained in §é which represents the
case where all of the information received by the decision maker is also
received by the rest of the organization. It is not a particularly in-
teresting case since the decision maker does not receive any unique inputs,

and the separation of the DM and RO is hence not very meaningful.

A second class of partitions contains those in which §i and gé are
disjoint, that is, the decision maker receives an input which is entirely
different from that of the rest of the organization. The possible DM-RO
interactions are therefore such that no additional information about §i
can be passed to the DM. Investigation of such interactions is most
meaningful when the decision maker's performance is considered only in

terms of the organization's overall performance, as shown in Figure 6.2.

r— - - —==7

X y
: ——H2 2 = RO RO :»
X' | q ‘om |
s '*
X
| ——Hi ! + - DM y l
X |
R
1Y e
» L(X )= d(y,y')

Figure 6.2. Performance Evaluation of DM With Respect to Organization
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The third class of information structure arises when §i and §é are

overlapping, that is, have common elements of X', but are such that §i

is not contained in §é. This type of structure is similar to that of
disjoint inputs, but differs in that the input to the DM from RO can be
related to the DM's own input. It is therefore possible to consider the
effect of DM-RO interactions on the decision maker's performance of his
own task, as shown in Figure 6.3. This consideration is consistent with
the objective of this thesis, i.e., that of describing the decision maker
as he performs his task. Accordingly, it will be assumed that the parti-
tions H. and H_, have been determined such that §é and §i have common ele-

1 2
ments, but §i is not contained in §é. .The decision maker's task is to
determine a decision response y appropriate to an input x, and the interest
is to characterize the decision maker when additional inputs are available
from the rest of the organization. Two such inputs are considered, as de-

scribed in the next section.

- 777"

X. y

: — H, 2 - RO RO : >

X : q om |

I

| X,

| ——H‘ ! + > DM y I

X I

- — 0 | e 14

yl

L(x}) =1 d(y,y') =

Figure 6.3. Performance Evaluation of DM With
Respect to Task Performance

6.2 SITUATION INPUTS AND COMMAND INPUTS FROM THE ORGANIZATION

6.2.1 Model Definiticn

Because of the information structure assumed, it is possible that the

rest of the organization can perform a partial assessment of the decision
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maker's situation. As a supplementary input, such an assessment could

be used instead of or in addition to the decision maker's own assessment.

A second type of interaction which could arise is that of an external
command, which is of particular interest for military organizations. 1In
terms of the model, an external command is an input which restricts the
decision maker's possible options. The two types of inputs described above
are incorporated into the basic model of the decision making process as

shown in Figure 6.4. The decision maker's own situation assessment, 2z,

IN_
<-

(Fe)

1
I~

|-
f(x) -X Bz,V)| —{h )

u fo(x) az.2F h (@ -

\-‘ fu(x) hy(2)

SA , RS

(L] " ~{atyy")]

Figure 6.4. Decision-Making Process With Situation and Command Inputs

is combined with the supplementary situation input z' to obtain a final
assessment é. The variables z and é are assumed to be of the same dim-
ension and to take values from the same alphabet. The variable z' is such
that its elements combine with some subset of the elements of z. The
combination of z' and z is accomplished by algorithm A, which is deter-
ministic, has no rejection, and is composed of a set WA of aA intercon-

nected variables, where

A A
W= {wy,..w ] (6.1)
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To complete the definition of z' from the point of view of the decision
maker, it is assumed that when an input z' is not received it takes a fixed
(inactive) value. Correspondingly, the variables of algorithm A do not
become active when E' is not received, except for the output variable %,

which in that case is identically equal to z.

The mechanism by which the command input v' restricts the decision
maker's options is as follows. Recall that in the two-stage model, an in-
ternal decision strategy p(vlg) was specified and used. In the present
model, such a strategy is also specified, except that the appropriate con-
ditioning is on é; since the alphabets of z and é are the same, the spe-
cification is equivalent. However, the distribution p(vlé) does not de-
termine the algorithm choice; rather, the decision maker's choice v is
modified according to the input command v' to determine a final choice 5,
where v' is a scalar and takes a finite number of wvalues. This modifica-

tion is assumed to be deterministic and is represented by
b : v=b(v,v') v=1,2,...,V (6.2)

The overall process of mapping the assessed situation é and the command
input v' into the final choice v is represented by algorithm B in Figure
6.4, and the result of this process is a deterministic modification of the

strategy p(vlg) into the effective strategy p(§|§v'), as given by

p(v]zv') =} p(v|vwp(v|z) (6.3)
v

where the quantities p(alvv‘) are 0 or 1. Note that algorithm B is non-
deterministic; this property is due only to the dependence on p(v]é),

however.

The specification of b(v,v') represents the specification of a pro-
tocol according to which the command is used, i.e., the values of v de-
termined by b(v,v') reflect the degree of option restriction effected by
the command. For example, if a particular command, say v'==vi, is com-

pletely restrictive, then
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v = b(v,v!) = j Vv (6.4)

for some j=1,2,...,V. On the other hand, it is possible that several
response selection algorithms can be consistent with the command; the de-
cision maker's internal strategy is then partially implemented. For ex-

ample, suppose the command v'=v! combines with v=1,2,3 to give

2
1 v=1

\_r—b(v,vé) ={2 v=2 (6.5)
2 v=3

In this case it is seen that only if the decision maker chooses algorithm
h3(') is his choice modified by the command input. This restriction of
options is not complete, i.e., the decision maker's own choice is still

implemented to some degree.

It is assumed that algorithm B has no rejection and contains aB in-

ternal variables given by

(6.6)

As with the situation input, if a command input is not received, the de-
cision maker assumes v' to be fixed at its inactive value. The variables
in algorithm B do not become active in that event, except for the variable
v which becomes identically egual to the decision maker's algorithm

choice v.

6.2.2 Analytic Expressions

The application of the PLI to the extended model is straightforward
and is similar to the development in Chapter 4. The resulting expressions
are summarized below while their derivation is presented in Appendix D.

A key feature of the derivation is the definition of four subsystems within

the model:
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S =W (6.8)

s® = W (6.9)
II - U+l U+v

S ={v, W s eees W ’ y} (6.10)

In addition, it is shown in the derivation that the analytic expressions
which describe the model are functions only of the internal decision stra-
tegies p(u) and p(v|§) if the algorithms are specified and if the dis-
tribudonsp(gi), p(a) p(§'|§i) and p(v'|§'§i) are specified. The first
two distributions represent the input x to the decision maker. The latter
two distributions appear because of the information structure assumed for
the organization. Because RO receives a subset of the elements of X' sent
to DM, the inputs z' and v' from RO are in general related to x;. The
distributions p(§'|§i) and p(v'lg'El') represent the fundamental expres-

sion of this relationship.
® Amount of Internal Decision-Making

G = H(u) +H_(v) (6.11)
n z

® Throughput

Gt = T(g, E', v' :y) (6.12)

® Blockage
G = H(x, z', v'] -G (6.13)
® Coordination

I A B II I A B II
G =G +G +G +G T +T(S :5:5 :8 ) (6.14)
C C C C Cc
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U

I i
Go = 1 P9 +af(p,) +H(z) (6.15)
i=1
A A
GC = gc(P(E)) (6.16)
B B -
G, = 9.(p(2)) (6.17)
II v U+j -
G = 1 p.9. M(p(2]¥=3)) +old(p,) +H(y) (6.18)
j=l Jjc - J J
T(sT:5™:5%:8™T) = H(z) +H(Z) 4HT, ) +T (x':z') +T_(xaz sv)
2 z 2V TR z 172
(6.19)

® Total Activity

= +G_+G, + .
G Gn Gt b Gc (6.20)

Of particular interest are the expressions for Gn and Gc' Despite
the fact that the response selection strategy is modified by a command
input, the amount of internal decision-making depends fundament;lly on
p(u) and p(v|§), rather than on p(;|év'). The decision maker specifies a
strategy p(v’é), which represents his internal decision. This internal
decision may or may not be implemented, depending on the command input
received, however, because the input v' alters the strategy p(vlé) into

what becomes the effective decision-making strategy p(G‘év').
The internal coordination is seen to be the sum of the subsystem
coordinations plus the inter-subsystem coordination given by Eq. (6.19).

It is useful to write Eq. (6.15%) as (see Appendix A)

I I A A I A I
T(sTis™:s% 6™ = r(stis?) +rsT,sPis?) +r (st R sBisTT) (g, 21

where

T(sT:5%) = H(z) +T_(xl:z") (6.22)
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I A B
:S )

T(S",S = H(z) +T_(x1,2':v") (6.23)

o(st,s?, 885 = Hz, V) (6.24)

The inter-subsystem coordination effected by the first term of Eq. (6.22)
is analogous to that present in the two-stage model. The second term of
Eq. (6.22) arises because of the relationship of z' to §i through p(§'|§i).
Because of this relationship, it is possible to effect a greater coordi-
nation between SI and SA than that given by H(E)' i.e., more information
! can be forwarded to SA than contained in z. For example,

1
it is possible that the RO can resolve more finely a portion of the DM's

about the input x

input §i and a partial situation assessment which is more refined in some
aspects than the DM's own assessment can therefore be made. In such an
instance, an additional amount of the input is passed forward to SA and the
coordination between subsystems increases. This additional activity

within the DM does not increase the total in general; rather, it can re-
duce significantly the activity required for subsequent processing, as will

be illustrated later.

A similar interpretation holds for Eq. (6.23). The form of the second
term reflects the fact that the command input can be determined by the RO
from the situation input. Finally, since subsystem SII receives two in-
puts, v and é from other subsystems, the corresponding subsystem coordina-
tion is given by Eg. (6.24) as the joint uncertainty H(%,;), which is ana-

logous to the inter-subsystem coordination of the basic model.

6.2.3 Reduction to Basic Model

If the situation and command inputs are not present, the present model
reduces in a consistent fashion to that of the basic model. Such a re-
duction proceeds as follows. The variables é and v' are fixed at their
respective inactive values. As such, there is no uncertainty associated

with either, and

(6.25)

INI
11
IN

v =V (6.26)
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p(v|zv') = p(v]z) (6.27)

A B
Furthermore, because subsystems S and S become throughput-only subsystems
(all variables inactive except g and ;, respectively) their internal coor-

dinations are zero:

1
o

gt (p(z)) (6.28)

1
(@]

B -
9. (P(2)) (6.29)
Finally, because z' and v' are fixed, the last two terms in Eq. (6.18) are

zero, and the throughput and blockage expressions are also reduced. The

analytic description of the model then becomes

G = H(u) +H (v) (6.30)
n z
Gy = T(x:y) (6.31)
G, = H(x) -G, (6.32)
U .
G = ] p.g-+0.5(p,) +H(z)
o} i=1 1°C 1 1 -

v .
) pjgg+3(p(z|v=j»-+a53%%pj)-FH(y)-+H(§)-+H(§)-+H(Z,V)
=t (6.33)

Egs. (6.30) - (6.33) are identical to those obtained for the basic model,
with the exception of the additional coordinations H(é) and H(;,%). Re-
call that the interaction of subsystems produces coordination activity,
and the existence of the subsystems SA and SB produces the additional co-
ordination represented by H(g) and H(E,G) regardless of whether or not the

functions performed by those subsystems are trivial.
6.3 PROPERTIES OF MODEL

In this section, the characterization of solutions to problems similar

to I and II of Chapter 4 is made for the present model. In the next
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section, the notions of indirect and direct control are demonstrated in
the model using the special cases of situation input only and command in-

put only.

6.3.1 Problem Statement

The statement of problems in the normative and descriptive contexts
for the present model, with and without the constraint of bounded ration-

ality, is made analogously to Problems I and II of Chapter 4.

Organizationally Interactive Model

The following are assumed to be specified, and characterize the model

shown in Figure 6.4:

® algorithms fi(§), hj(é), A(z,z"), B(g,v'), with o o

. . . . . 1 T3
internal variables and internal coordinations gc, gg+],
A

function of the characteristics of their respective inputs
(i=1,2,...,U, 3=1,2,...,V)

® analytic characterization of the decision-making process

B . . .
gc, gc, where the internal coordinations are known as a (6.34)

as described by Egs. (6.11) - (6.20) (6-35)
® function L(gi) that maps §i into y' (6.36)
® distributions p(E'|§i), p(v'!g'gi) as determined from (6.37)
the rest of the organization :
® distribution p(q) (6.38)
® samples drawn simultaneously from distributions in (6. 40)
(6.37) - (6.38) every T seconds on the average. :
In addition, let the cost function be the probability of error, i.e.,
Jp(w, p(v|z)) = ply#y'), (6.41)
and assume a total activity rate constraint, F, so that
G(p(uw), p(v|z)) < FT (6.42)
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is required.

The statement of Problems I and II in the Present context differs

only in the conditions of the model.
Problem I'

Given conditions (6.34) - (6.40), determine p(u) and p(vlé) such that
a) J(p(u), P(V|%D is minimized,
or

b) J(p(u), p(vlg)) is minimized subject to G(p(u), p(v|§)):£FT.
Problem II'

Given conditions (6.34) - (6.40), determine p(u) and p(v|%) such that
a) J(p(w, plv|z)) <73,

or
b) J(p(u), p(v|z)) <J subject to G(p(u), p(v|z)) €FT, where J is

the threshold of satisficing performance.

6.3.2 cCharacterization of Solutions

It is readily shown that the total activity present in the model is
a convex function of the decision strategy (p(u), p(vlé)), and that the
probability of error for an arbitrary strategy is obtained as a convex com-~
bination of the error probabilities corresponding to pure strategies.
Hence the analysis which led to the characterization of solutions to Prob-~
lems I and II is also valid for Problems I' and II'. 1In particular, the
minimum error strateqy is pure if all error probabilities corresponding
to pure strategies are distinct. Under the condition of bounded ration-
ality, the solution to both Problems I' and II' may contain only mixed
strategies. The condition of overload arises as T decreases. An interest-
ing additional feature is apparent in the solutions to Problems I' and II':
depending on the characteristics of Algorithm B, many internal decision
strategies may be mapped into a single effective strategy, i.e., the

mapping
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_ Bz
p(v|z) ——> p(v]zv") (6.43)

is in general a many-to-one mapping.

The characterizations of the solutions, when they exist, to Problems

I'a, I'b, II'a, and II'b, are summarized below.

Problem Strategies
I'a pure, mixed if more than one pure strategy exists
I'b pure and mixed, may be mixed only
IT'a pure and mixed
II'b pure and mixed, may be mixed only

6.4 CONTROL

An especially interesting aspect of the interaction among organization
members is the exertion of control, whether indirect or direct [(27]. 1In
the following paragraphs, it is seen from the consideration of the special
cases of situation input only and command input only that both are re-

flected in the model.

6.4.1 Indirect Control

Consider the case where the model is specialized to include only the
situation input. BAnalytic characterization is then given by the following

expressions, where superscript SI denotes situation input only and v=v,

Gn = H(u) +H§(v) (6.44)
GiI = T(x,z':y) (6.45)
ST . N

Gb = H(x,z") Gt (6.46)
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i A, -
. p,9 +0;H#(p,) +H(z) +G_(p(2))

n
-
o~

i

v ;
+ Y p.gt T p(z|v=i)) +ara(p.) +H(y)
5203 < 3

+ H(z) +H(z) +H(z,v) +T_(x):2") (6.47)

As indicated earlier, one of the benefits of the situation input for
the decision maker is that an improved and refined assessment of the situa-
tion is made, which contributes to better performance, all other things
being equal, i.e., it does not produce sufficiently higher activity that
a change in strategy is necessary to remain within rationality bounds.

The ability of RO to alter performance by generation of z' represents an
indirect control on the decision maker. It is indirect because it does

not alter directly the decision strategy employed, but rather alters the
performance by influencing the value of the assessed situation. Such an
influence need not be positive. If it is possible for RO to select z'
based on §i such that performance is improved, it is also equally possible
to construct a EI’Ei relationship which causes lower performance. In

each case, once the strategy p(v|§) has been selected, the DM is subject

to a control by z'.

While the control that is possible by z' over performance is easily
seen, it is also true, though perhaps less clear, that the situation input
can cause a significant change in either direction of the total activity
present. Consider the following example, which is based on the example
presented in Section 4.5. The model given was that shown in Figure 6.5,
where z was assumed to take values El and 52 with probability 1-y and Y,
respectively. Let Y be 0.5. The coordination activity present in this

model is then given by
GLT = gl +H(z) + (A +a)H(0.5) +H(Y) (6.48)

(Recall that the internal coordinations of algorithms hl(-) and hz(') are
zero because their respective inputs are deterministic.) Now consider the

same model, but with a situation assessment subsystem, as shown in Figure
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Figure 6.5. Deterministic Switching

1" % with equal probability and that

a correspondence éiEEEi' i=1,2, is assumed. Suppose the relationship be-

6.6. Note that z still takes values z
tween §i and é' is such that é' is chosen so that

A(z,2z") = z, (6.49)

is always the case. Such is an extreme case, but possible within the
framework of the model, and gives the result that algorithm hl(él) is al-
ways used. It is easy to show (see Appendix D, Section 5) that the

difference in coordination activity between models is given by

ST 2 A ST, ,. _ oy 2,
G —Gc = [gc(p(g))+’l‘z (xl-g)] [(otl+oc2)3?(o.5)+H (v)] (6.50)

IN

N

(L]

f,(x) =l Alz,2)]

N1

SA

Figure 6.6. Deterministic Switching With Situation Assessment
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where the superscript 2 denotes the basic two-stage model. The first
bracketed term in Eg. (6.50) represents the extra coordination introduced
into the model by the addition of the subsystem SA. If the number of
variables in the response selection algorithms is large (ai and aé), the
coordination required in switching algorithms in the model of Figure 6.5
may exceed the amount introduced by SA. In that case, Eqg. (6.50) gives

a negative result and the activity in the model of Figure 6.6 is less
than that of the model of Figure 6.5 even though an additional stage of
processing is present. This illustrates the significant effect that the

situation input can have on the total activity of the model.

6.4.2 Direct Control

The possibility of direct control is present in the model through the
command input v'. Consider the case where organization interactions are
restricted to command inputs only. The expressions which characterize

this model are obtained by appropriate reduction of Egs. (6.11) - (6.20):

CI
G, = H(W +H; (V) (6.51)
6.l = T(x,v' i) (6.52)
CI _ Ty
G~ = H(x,v') -G, (6.53)
CIL J i B

= 1 -
G, = izl P95 + 0, o#(p,) +H(z) +g_(p(2))

v .
+ 7 p.g0 (p(z|v=9)) +alaPlp.) +H(y)
5y e - 373

+ H(z) +H(z) +H(z,V) +T_(x]:v") (6.54)

where CI denotes command input only.

The extreme case of direct control occurs when the values of v' se-
lected as commands are such that the algorithm chosen is a deterministic

function of v'. Note that this implies that a protocol function b(v,v')
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is possessed by the decision maker which accomplishes the proper mapping.

The amount of internal decision-making in this case then becomes

G~ = H(u) (6.55)

Since the value of v is completely determined externally, an externally
controlled switching is present, and considerable influence on the ac-
tivity in the response selection stage is exerted. It is equally apparent
that the performance will also be affected by v', and hence controlled

directly, either beneficially or adversely.

Another interesting case of direct control occurs when the values of
v' are such that a less than total restriction on the selection v occurs.
Such a case might represent the input of commands by a commander of simi-
lar rank as the decision maker. Hence the command input would serve more
to coordinate the two decision makers, i.e., eliminate incompatible

choices, rather than restrict tightly the possible options.

6.4.3 Situation and Command Inputs

For the case where the decision maker receives both types of inputs,
it is evident that both indirect and direct control can exist. The inter-
action of the two is a non-trivial occurrence in general because the
characteristics of é, which are derived in part from z', determine in part
the internal coordination of the hj(') algorithms, as well as influence the
effective strategy determination through B(E,v'). The relative influence
of each type of control is dependent on which stages dominate the overall
performance and/or activity of the decision maker. For example, if the
situation assessment stage accounts for a large fraction of the total ac-
tivity and also dominates the overall performance, then it is possible
that a partial assessment determined externally would reduce the total
activity without compromising performance greatly. In such an instance the
constrained decision maker's performance would be more robust against de-
creases in T. By the same token, variation in v' would have little impact

on the total process if the first stage were dominant.
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6.5 CHAPTER SUMMARY

In this chapter, two interactions of the decision maker with the rest
of the organization were considered: situation inputs and command inputs.
Analytic expressions were derived for a model which included both inter-
actions. Such expressions were seen to follow easily from the basic model,
which demonstrates the potential usefulness of the approach in evaluation
of alternative organization structures for design purposes. The concepts
of indirect and direct control, which correspond to control exercised
through situation inputs and control exercised by input commands, were

introduced and their effects interpreted in terms of the model.
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CHAPTER 7
FUTURE WORK AND CONCLUSIONS

Two extensions to the basic model are discussed in this chapter:
non-zero rejection and non-deterministic algorithms. Each is seen to
have implications for eventual organization structure considerations. In
addition, two other issues which are of a fundamentally different naturé
are mentioned: task definition and modeling the acquisition of experience
in the performance of a task. The chapter ends with the conclusions of

the thesis.

7.1 FUTURE WORK

7.1.1 Non-Zero Rejection and Pre-Processing

The work presented in this thesis has assumed the condition of zero
rejection, that is, all aspects of the input are recognized by the de-
cision maker. Non-zero rejection corresponds to insensitivity by the
decision maker to some aspects of his input. In one form this insen-
sitivity can be an inadequate resolution of the input. For example, two
elements of the input alphabet may be recognized as a single element by
the decision maker. Rejection is a passive phenomenon in the present con-
text, i.e., it does not require activity within the system. A model which
incorporates algorithms with various degrees of rejection represents a
useful concept, since it corresponds to the case where the total activity
in the decision-making process can be reduced by choosing to be insen-
sitive to some aspects of the input. The degree to which this can be
accomplished without compromising performance requires the development
of analytic expressions which incorporate rejection. This development is

suggested for future work.
Rejection by the decision maker may occur in an inconsistent manner
because of algorithm switching. An alternative is to incorporate a pre-

processor into the model which modifies the input so that it can be processed
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by the decision maker without rejection [12]. Such a function incor-
porates elements of encoding of the input for efficient processing, and
also the elimination of aspects that are not relevant to decision-making.

As such it is worthy of additional consideration in the context of the

model developed in this thesis.

A different form of rejection occurs when an input is completely pre-
vented from reaching the decision maker. An interesting manifestation of
this is the case where a pre-processor examines the inputs to the decision
maker and eliminates those which would needlessly occupy him. Such would
be the case for those inputs which clearly require no action, i.e., the
decision response is to do nothing. Another case where needless activity
might be eliminated occurs. when the decision-making task is basically one
of monitoring, and where decisions need be made only on irregularities in
the received inputs. Rather than processing each arriving input, those
which correspond to the "normal" environment can be filtered by the pre-
processor, and only the exceptional inputs forwarded to the decision maker
for determination of decision response. Selective elimination of inputs
causes an effective increase in the interarrival time, from T to T', say.
This has implications for the boundedly rational decision maker since a
greater actual rate of arrivals (T) can be processed without overload by

use of the same strategy, i.e., it is possible that

G
—_— < <_
2, <F <2 (7.1)

To be sure, one must investigate whether the pre-processor can adequately
handle its own task, but the possible combination of the two represents
a key structural consideration in organization design and should be in-

vestigated in the context of this model.

7.1.2 Non-Deterministic Algorithms

Deterministic algorithms have been assumed throughout this thesis.
Non-deterministic procedures are an interesting notion, however, and their
incorporation into the model would be a useful extension, although the

conceptual clarity obtained by assuming deterministic algorithms would
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not be retained. For example, the quantity Gn would no longer only
represent the amount of internal decision-making, but would also reflect

the uncertainty present in the algorithms. The general form of the ex-
pressions derived would remain the same, however, since the fundamental
difference would be a change in the form of the distributions which

describe algorithm mappings rather than how the distributions are used, i.e.,
while the distribution p(§|xu) would appear the same in the development,

it would be no longer 0 or 1.

7.1.3 Alternate Processing and Non-Deterministic Algorithms

A particularly interesting case involving non-deterministic algorithms
arises when each algorithm incorporates switching among "sub-algorithms."
Such a structure is shown in Figure 7.1 for the first stage of the basic

two-stage model.

' f,(x)
71{ f'(.i) £

- f,r'(:_d ,

X u . z
£, 0
£ (x) o
o L gy
p
\—' fUU(X)

Figure 7.1. Algorithms Which Switch Among Sub-Algorithms
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If all of the sub-algorithms fi(f), j=1,...,I', are deterministic,
then the only uncertainty within algorithm fl(§) is the uncertainty in the
choice of sub-algorithm, i.e., the realization of the variable Yl. If
the same is true for all of the sub-algorithms fgfg),j.=1,2,...,U;
j= 1,2,...,Fi, then the overall model becomes one of alternate processing
(121, [26] by an echelon of decision makers, where the determination of
which decision maker processes a particular input is made by another de-
cision maker according to the choice u. Such a structure preserves‘the
property that the uncertainty that arises within the system is due only
to the amount of internal decision-making. It also indicates how some
organization structures, in particular hierarchical ones, might be rep-

resented using the model developed in this thesis.

7.1.4 Task Definition in Terms of Variables

In order to evaluate alternative organization structures using the
model developed in this thesis, it is necessary to describe a "well-
defined task" analytically. 1In terms of the model, a definition of the
algorithms which can be used to perform the task is required. In par-
ticular, knowledge of the input-output characteristics of an algorithm,
the number of variables it contains, and its internal coordination as a
function of the characteristics of its input are needed in order to de-
scribe the decision-making process. The need for such a generalized char-
acterization raises interesting and non-trivial issues in terms of var-
iable definition and interconnection, especially in view of the complexi-
ties encountered in the consideration of the simple task used in the ex-

ample in Chapter 5.

7.1.5 Learning

Recall that in this thesis a condition of no-learning has been
assumed, i.e., the decision maker is not able to adapt either his choices
or his algorithms according to knowledge about his performance of the
task. Such an ability requires a mechanism for incorporating performance
feedback into the model, i.e., generalizing the model to include dynamic

effects. The phenomenon of adaptation to the task represents the acquisition
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of experience, and its presence in the model would give a more complete

description of the commander as he performs his task.

7.2 CONCLUSION

In this thesis, qualitative notions of decision-making have been
synthesized with concepts from n-dimensional information theory into a
working model which represents the decision-making process of a well-
trained commander in the performance of a well-defined decision-making
task. In particular, a basic model has been developed in the form of a
two-stage process in which the situation is first assessed and then a re-
sponse is selected based on the assessed situation. The model reflects
explicitly internal choices made in the decision-making process. The
stochastic version of the Partition Law of Information (PLI) has been
used to characterize analytically the model as a function of the choices

made, i.e., the decision strategy. Particular strategies used determine

the amount of internal decision-making Gn,which represents a key re-

interpretation of that quantity in the PLI.

Analytic representation of the bounded rationality of a decision
maker is made in the form of a total activity rate constraint. It has
been shown that the decision strategies which realize the optimal per-
formance (normative) or satisficing performance (descriptive), subject
to the boundedness of the decision maker, may be only mixed strategies,
i.e., the decision maker alternates among options. It was also shown,
according to the model, that alternating among options requires additional
activity in the form of re-initialization of variables particular to
each option. This activity and the coordination activity required to
execute each option once it is chosen determine a significant part of
the total activity in the decision-making process. As such they represent
a key consideration in the characterization of the decision maker who

is bounded.
The extension of the basic model to include possible interactions

in an organizational context was considered. In particular, two types

of interaction, situation inputs and command inputs, have been incorporated
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into the model. The notion of indirect control was shown to correspond
to the former, while direct control was evident in the latter. It was
seen that in terms of the model such control can be exercised to affect
both the performance and total activity of the decision maker either
beneficially or adversely. The qualitative aspects of the decision stra-
tegies which realized optimal and satisficing performance remained un-

changed, however, in both the constrained and unconstrained cases.
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APPENDIX A
IDENTITIES FROM INFORMATION THEORY

H(x,y) = H(x)-FHx(y) (A.1)
Proof:

-z p(x) log p(x)-*z p(x) Z p(y]x) log p(ylx)
X X Y

H(X)-FHX(Y)

-z Z p(x,y) log p(x)-—Z'Z p(x,y) log p(y|x)
X VY Xy

-} 1 P(x,y) log p(x) p(y|x)
Xy

—Z Z p(x,y) log p(x,y)
Xy

H(x,y)

H(x,y,z) = H(x) +Hx(y) +Hx y(z) (A.2)

14

Proof: Similar to A above

i
A
9
X

T(X,:X_ :X_:X )

1 Xy TXyIXy +T(x3:x4) +T(xl,x i X ,x4) (A.3)

23

Proof:

T(xl:x2:x3:x4) z H(xi)-H(xl,x

i=1

2:X3,x4)

Z H(x,) -H(xp,x,) -H__ (x )

yX,) +H(x,,x
i 1772 4 3

3 4

- H(x3,x4)

[H(xl) +H(x2)-H(xl,x2)]-+[H(x3)-+H(x4)-H(x3,x )]

4

+ [H(X3,X4) = Hxllx2(x3lx4)]
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= T(x :x2) +T (x

1 :x4) +T(Xl,x X

3 2 ¥yr%y)

T(x ) = T(x :x2)+Tx (x

X)) (A.4)
2 3

13%¥27%3 1 1

Proof:

T(xlzxz,x3) = H(xl)-Hx2,x3(x )

H(x,) - H (x.) +H_ (x ) -H_ (x.)
1 x2,x3 1 x2 1 x2 1

[H(xl) - H, (xl)] +[H (%)) -H

X.,X (xl)]
2 2 2’73

T(xl:x2)+Tx (x

X))
5 3

1
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APPENDIX B
DERIVATION OF THE PARTITION LAW OF INFORMATION

Given: System S with n variables, including output y and n-1 internal

variables wj
Input x to system

Denote: W = {wl,...,w

a5
.
]

T(x:y)-+Ty(x:W)-+T(w1:w .. .iW

n
Then: .
en E 2 n-1 Y

Proof: By definition,
T (x:8) = H(S)-—HX(S)

Application of Eq. (A.4) gives

T(x:S) = T(x:W,y) = T(x:y)-+Ty(x:W)

Egs. (B.2) and (B.3) together yield

H(S)'-HX(S) = T(x:y)-+Ty(x:W)

By definition, the n-dimensional mutual information is

H(*) - H(S)

-
B
)

2
’—I
&
I
I~
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Substitution of Eq. (B.5) into (B.4) yields

n

izl H(*) -T(wl:wzz...:w _l:y) = Hx(S) = T(x:y) +Ty(x:W) (B.6)

and rearrangement of terms yields the final form of the result (B.1):

H(*) = T(x:y) +Ty(x:W) +T(wl:w :...:wn_l:y) +Hx(w,y)

o~

i=1
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APPENDIX C
VARIABLE DEFINITION FOR CHAPTER 5 EXAMPLE

C.1l SUMMARY

This appendix completes the definition of the internal variables of
the algorithms used in the example of Chapter 5. It also gives the values
of the input alphabets and the parameters used in generating the results
presented in Chapter 5.

C.2 INPUT ALPHABETS

C.2.1 Input From Environment

ml = 3,4,6 with uniform probability
m2 =1,2 with uniform probability
£, = 1. t, = 3.

Note that all m_,m

1™ pairs give slope less than 1.

C.2.2 Noise Corruption

>

where the q; are independent, identically and uniformly distributed vari-

ables taking values

qi=-1/21 0, 1/2-
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C.2.3 Parameters of L(x') and Algorithm h_(-)

Refer to Eg. (5.3).

C.3 SITUATION ASSESSMENT ALGORITHM

C.3.1 General Description

The situation assessment algorithm receives as input x, where

T

kl 9, A;
u2 q u

x=x' g = | el 8, (C.1)
SIS A

and determines estimates of 6 and v. 0 is determined in a two-part opera-
tion. First, a least squares slope fi is determined using the formula

appropriate for a line known to pass through the origin:

Alu + A M,

A

= (C.2)

+ A

=N
INEINYIN

Second, a series of comparisons of M with appropriate thresholds results
in a value of 8 which is within 2.5° of the value of tan-lﬁ. The value
of V is determined in a similar manner. The algorithm first computes the

variable (\’3)2 according to

L O P m )’
(V)= = (C.3)

2
+
(t t2)

. . A2 . ~ . . o
A series of comparisons of (V) results in a value of V which is within
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/2 .
¥0.175 of the value of Vv as defined above. In order to accomplish

the transformation represented by the square root operation,

the compari-

son thresholds are determined in a gquadratic fashion according to the

desired resolution of V.

C.3.2 Variable Definition

For convenience, the superscript 1 is omitted in the definition of

variables below.

1 1 5 11 9 5 6
W, = Xz we = AZ.AZ Wi = w7-+w
w3 T Hy vo T HtA R
11 w9
We T Hy Wg = HytAy
Comparison thresholds used to determine 6:
5 = O w3 1 =
wll+i tan(5°-+1) i=1,2,...,9
Comparison thresholds used to determine G:
= (0 35°i)2 i=1,2 19
Woori = . i=1,2,...,
a0 T MM Y4 T HpTH,
2 2
Wap T (A FAY) Wz = G HHY)
= v = ()7 -8
Yae T Yaa"Vg5 T Vg7 = W

The comparison trees used to determine

~

S

from # and U from (G)2

2
(t1 +t2)

are given

in Figures C.1l and C.2, respectively; they define 28 additional variables in

the algorithm, which gives

ul==76.
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characteristics of the input x are known, all variables in the algorithm

defined above have known distributions and the quantities in the PLI, par-
, . . 1 .

ticularly the coordination gc, can be computed. For the alphabets and dis-

tributions used,

gi = 91.6 bits (C.4)

C.4 RESPONSE SELECTION ALGORITHM hlgll

C.4.1 General Description

The response selection algorithm hl(') determines the decision re-
sponse based on a single comparison of @l with a fixed threshold. The
algorithm receives both @l and 01, however, since it has been assumed to

have no rejection. The particular value of the threshold used is
B = 35°

C.4.2 Variable Definition

The superscript 2 is omitted for convenience.

. . . 1 .
The comparison tree for determination of y , the output of algorithm hl(°),

is given in Figure C.3.

al

, . ) 1
Figure C.3. Determination of y~ From O
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The total number of internal variables, ai, is equal to five. Because
the admissible set of internal decision strategies is not dependent on z,
and because only a single situation assessment algorithm is present,
gz(p(glv=l)) Egi, i.e., the internal coordination of hl(') does not vary

in this example. It is given by

gi = 1.6 bits (C.5)

C.5 RESPONSE SELECT ION ALGORITHM hZLLL

C.5.1 General Description

A

. . . 2 ~2
Response selection algorithm h2(°) receives 68 and vV~ and executes
a two-dimensional search through a "look-up table" to determine the de-
. 2 . ,
cision response y . The particular thresholds of comparison used to

generate the results presented are given as

Q
]
>
(@]

Q
]
o
w

Q
]

14 d, = 21 d

30

C.5.2 Variable Definition

For convenience, the superscript 3 is omitted.

The comparison tree wused to search through the look-up table is given in
Figure C.4. Nine additional internal variables are defined in order to
effect the comparisons, and ué==l9. Because the internal decision strategy
is restricted to the class of independent distributions p(v), the internal
coordination of algorithm hz(') does not vary and is given in this example
by
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g~ = 8.1 bits (C.86)

C.5 RESPONSE SELECTION ALGORITHM h,(*)

The general description and internal variable definition of al-
gorithm h3(°) are contained in Chapter 5; two facts are worthy of note
here. First, the total number of variables in the algorithm, aé, is 13.

Second, the internal coordination is computed as

gi - 14.1 bits (c.7)

C.6 BINARY VARIATIONS BETWEEN Dl AND D2

The strategies which are binary variations of Dl and D2 are given by

D(S) = (1—6)Dl+602 0<8<1 (C.8)

In this section, it is shown that

G(D(§)) - [(1—5)G1+6G2] = (oci

+aé)3¥’(6) = 32+34(9S), (C.9)
where G(D(8)) is the total activity present when strategy D(S§) is used.
From the analytic characterization of the model (Egs. (4.71) - (4.75)), it

is true that

G, & G(D,) = G, (D.) +G, (D )-+gl-+H(z)-+gZ-+HDl(y) (C.10)
1 1 t 1 b 1" o] - c o
G. 2 G(p.) =G (D.) +G, (D) + 1+H(z)+’3+HD2() (C.11)
2 2 g Pt TPy} Te THAZ) T, Y :
G(D(S)) = G (D(S)) +G. (D(S)) +G, (D(S)) + l+H(z) + (1-6)'2+6 3
~ n t b 9o = : S 709,
+ (oci+aé)3?(6) +HD(6)(y) (C.12)

where the superscript Di(D(G)) denotes the use of strategy Di(D(G)).
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The sum of throughput and blockage is a constant in the model because of
the auxiliary equation to the PLI, regardless of the strategy used. Egs.
(C.10) - (C.12) combine in a straightforward fashion to give

G(D(S8)) - [(1—6)Gl+cSG2] = Gn(D(G)) + (cxi +0Lé):/t’(6)

D D
(12O ) - (=08 L) +om 2 1)

(C.13)
. . . D(9) . .
Consider the term in braces in Eg. (C.13). H (y) is evaluated using
the distribution pD(G)(Y)' where
= - 8 .
Pp () (y) (1 6)le(y) + pDz(Y) (C.14)

and pD (y) is the distribution on y when the pure strategy Di is used.
Eqg. (C%l4) determines a convex distribution space and it is easy to show

that

D

D
0 < {1 () - (a-om Ty +8m L)1} < #S) (c.15)
Furthermore,
Gn(D(G)) = H(S) (C.16)

Substitution of Egs. (C.15) and (C.16) into (C.13) yields

(a! +aé +1D)H(S) < G(D(S)) - [(1—6)Gl +6G2] < (oei +0Lé +2)YH(8)

1
(C.17)
Because ai-+aé==32, the following approximation is reasonable:
G(D(S)) - [(1—6)G1-+6G2] = 32-#(9) (C.18)

Eg. (C.18) is Eq. (5.7).
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APPENDIX D
APPLICATION OF PLI TO MODEL WITH ORGANIZATION INTERACT IONS

D.1 SUMMARY

In this appendix, the analytic expressions which characterize the

model shown in Figure 6.4 are derived. The derivation proceeds by de-

fining four subsystems in the model:

SI = {u, Wl, ees WU, E} (D.1)
s® = Wt (D.2)
sB = WP (D.3)
SIT _ s, WOl U v} (D.4)

The resulting expressions are given by
® Amount of Internal Decision-Making
Gn = H(u)-+H§(V) (D.5)
® Throughput
Gt = T(x,2',v":y) (D.6)

® Blockage

G, = H(x,z',v') -G (D.7)
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® (Coordination

@
I}
I o~

i
p.g_+a,Hp,) +H(z)

i=1

+ gh(p(2)) +9o(p(2))

v X
+ 7 p.g" 7 (p(z|7=9)) +olap.) +H(y)
j=1 j ¢ - J J

+ H(z) +H(z) +H(V,z) +T (x':2') +T_(x',z"':v") (D.8)
- - E_l_ E_l_

Egs. (D.5) - (D.8) are valid if the algorithms fi(§), hj(é), and A(z,z'")
are deterministic, known, and have no rejection, and if the algorithm
B(é,v') is known, has no rejection, and is deterministic except for a
dependence on the internal decision strategy p(vlg). In addition, if
p(gi), p(Q), p(gflgi),_and p(v'|§'§i) are known along with the internal
coordinations qz, gz+j, gi, and gi as functions of their respective input
characteristics and the numbers of internal variables ai' aé are known,

then Egs. (D.5) - (D.8) describe the model as a function of the internal

decision strategy (p(u), p(v|é)).
D.2 AMOUNT OF INTERNAL DECISION-MAKING

By definition,

1 U A B - U+l u+v
Gn = HX’Z,,V,(u, Wy wol, W, 2z, W, W, v, W , eee, W , ¥
(D.9)
which can be written as (see Appendix A)
G =H (u) +H (Wl W z)
n X,2,v' x,z',v',u ' o i
A B -
+ H W W v
§,g',v',u,wl,...,wU,§( ! ;)
U+1 U+v
+ —(w .
HEIE'IV|quwll-"IWUIEIWAIWBIv( roy w ! Y) (D 10)



"The second and last terms of Eg. (D.10) are zero because the conditioning
variables determine the variables in question. As is discussed in Chapter
4, the situation assessment strategy is an independent quantity. Eg. (D.10)

can then be written as

A

Gn = H(u) +H (W)

EIE'IV'IuIWlI"'IWUIE

B -
+H Wz A (7 V) (D.11)

1
EIE.'V'IUIW re ey

where the identity (A.l) has been used to expand the third term in Eqg.
(D.10). The second term in Eq. (D.1ll) is zero since z' and z determine
all the variables in WA, including %. Recall that because of the defi-
nition of the operation of subsystem SB, the variable v is an element of

B
W . Let

w o= {v, w} (D.12)
~B . B C .
where W represents all other variables of W except v. The conditioning

of the last term of Eg. (D.1ll) is equivalent to conditioning only on z and

v', and Gn can then be written as
(v, W, v) (D.13)
or

&, 9 (D.14)
v

@
1]

H(u) +H_,_(v) +H
v 'z v

'z

The last term in Eq. (D.1l4) is zero since specification of v' and v de-
R . A L. . . .
termines all variables of W except v. In addition, the distribution on

v has been assumed to depend only on é, i.e.,

p(vlzv') = p(v]z) (D.15)

and the amount of internal decision-making is given in final form as
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Gn = H(u)-+HE(v) (D.16)

Eq. (D.16) is computable as a function of p(u) and p(v|é), if p(é) is
known; the latter distribution is determined as a function of p(u) from
p(§i), p(g), p(g'!gi), and the algorithm mappings fi(g), A(z,z"),
i=1,2,...,0.

D.3 THROUGHPUT
By definition, the throughput of the system is given by

Gt =T(x,2',v':y) (D.17)

Determination of the distributions p(y), p(y|§g'v') and p(xz'v') is

necessary in order to compute G The distribution p(y) is evaluated

i
using Bayes' rule:

py) = _ ] p(y|vw'zz zuxie) p(v|v'2z ' zux]g)
v,v',z,2',2,u,% .9

* plzlv'z'zuxig)p(z|v'z'uxi)p(v' [z ux ) p(z' |uxig)
* plulxi@px;lop(@ (D.18)

Because the algorithms fi(g), hj(é), and A(E’E') are deterministic, the

following correspondence can be made:

p(ylav‘gg?u§ig)5 p(ylaé)'@> hj(é) (D.19)
p(z|v'z'zuxiq) = p(zlz'z) © Alz.z") (D.20)
p(z|v'z'uxiq) = plzluxie) < £, () (D.21)

In addition, v is dependent only on v' and é through the B(%,v') algorithm,

i.e.,
p(§|v'§§'5u§ig) = p(;lgv'), (D.22)
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and p(Glév') can be determined from p(vlg) and b(v,v') as

p(vlzv') = ] p(v|]ww")p(v|z) (D.23)
v

As discussed in Chapter 4,
plulx;q) = p(w (D.24)

p(x;l@) = plx)) (D.25)

Finally, because of the information structure of the organization
p(v'lg'u§ig) = p(v']g'Ei) (D.26)

p(z'|uxj®) = plz'|x;) (D.27)

For known distributions p(§i), p(q), p(5'|§i), and p(v'lg'xi) and known
algorithm mappings fi(§), hj(é), A(g,g'), and b(v,v'), i=1,2,...,U,
j=1,2,...,V the distribution p(y) is a function of the internal decision

strategy (p(u), p(VIg))-

A similar result obtains for p(y|§§'v'), and the distribution p(xz'v')

is given by

plxz'v') = ] p(v'|z'zxje)p(z' [xx!19)p(x|xj@)p(x)p(a)  (D.28)
xl

-1

where §==§i-+g. As shown by the above development, then, the throughput
of the model is computable as a function of the internal decision strategy

(p(w), plv]z)).
D.3 BLOCKAGE

The auxiliary equation to the PLI can be used to determine Gb:

= ] 1 -—
Gb H(x,z',v") Gt (D.29)
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D.4 COORDINATION

The total coordination can be determined by use of the decomposition

property of n-dimensional mutual information (see Appendix A, Eg. (A.4)):

II
c

A B _II

G =GI+GA+GB+G +T(sI:s :S§7:S77), (D.30)
C (o} o] C

where the superscripts refer to the respective subsystems defined in Egs.
(D.1) - (D.4) .

From the development in Chapter 4, the following can be written im-

mediately:

U
I i
G, = _2 P9+, (p,) +H(z) (D.31)
i=1
A_ A
(G = 9. (p(2) (D.32)
B B -
G, = 9,(p(2)) (D.33)
I 4 U+j =~
G.U = ] p.9. Y(p(z]|v=9)) +a'alp.) +H(y) (D.34)
c =1 j-c - J J

A -
where pj==p(v=j) and the internal coordinations of the various algorithms
have been expressed as functions of those inputs which are determined

(at least in part) by strategy choice.

The last term in Eq. (D.30) represents the coordination among sub-

systems and can be written equivalently as (see Appendix A, Eg. (A.4)):

11 A B _IT

T(s:5%:8%:5h) = v (sTis?) 41 (sT,sPisB) v (s 5P B.s ) (D.35)

The first term in Eg. (D.35) is, by definition,

T(sTis®) = m(s?) - p(s™ (D. 36)
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which is equivalent to (see Appendix A)

r(st.s?

i
e}
N
N

]
o

IN
IN

(D.37)

r(st:s?) = H(z) +H (z') -H
- zZ - u

(z) ~H (z") (D.38)
= u =

‘% 2.3
The third term in Eg. (D.38) is zero since u and X determine z. Eq. (D.38)

then reduces to

T(sT:s™) = H(z) +T_(u,x:2") (D.39)

Consider the last term in Eq. (D.39). By Eg. (A.4) it can be written as

Tz(u,gzg') =T (u:z') +T (x:z") (D.40)

The variable E' is independent of the first stage algorithm choice be-
cause of the information structure of the organization; hence, the first
term of Eg. (D.40) is zero. Furthermore, in the present model the rela-
tionship of x to E' is only that which is due to gi since §==§i-+g and

g is an independent quantity. Eg. (D.40) therefore reduces to

T (u,x:z') =T _(x

:z') (D.41)
z z

1

Substitution of Eg. (D.4l1l) into Eg. (D.39) gives the desired form of the

result:

T(sT:s™) = H(z) +T_(xl:2") (D.42)

Consider the second term in Eq. (D.35). By definition, it can be

written as

r(st,s%:8%) = ms®) -ngp a(sD) (D. 43)
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B . .
Because of the structure of S°, Eq. (D.43) is equivalent to

I B - -
T (S ,SA:S ) H(E,v,v')-HSI SA(ErVrV') (D.44)

H(z,v,v') ~E__ . _(z,v,v') (D.45)

where an equivalent conditioning has been used in the second term of

Eq. (D.45). Successive application of Eq. (A.l) to Eg. (D.45) yields

v(st,s®:8®) = H(Z) +H_(v') +H.
- Z z,Vv

- H -(v') -H

. ' Vo= g (V) (D.46)
u,x,z2 ,2 u,%,2"°,2,Vv

Because v depends only on é, the third and last terms are equal in magni-
tude. In addition, the fourth term is zero. Eg. (D.46) is therefore

equivalent to

r(st,s?:sB) = H(z) +To(x,u,2' :v'), (D.47)

which can be reduced to its final form by consideration of the possible

dependencies present as a result of the information structure:
I A B -
T(S ,S :S) = H(z) +T§(§i,§':v') (D.48)

Finally, the last term in Eq. (D.35) is given by definition as

I A _B _II I II
T(S",S,s8 :577) = H(S )_HSI,SA,SB(S ) (D.49)
which can be written equivalently as
A - - - -
r(st,s%,s%:s™h) = uE,2) -H, (7,2 (D.50)
= H(v,z) (D.51)
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Substitution of Egs. (D.42), (D.48) and (D.51) into Eq. (D.35) yields

st:s%:s%is™h) = H(z) vH(E) +HE,E 4T (x]:z") +T_(x1,2' V)

- - (D.52)

T (

and the total coordination result follows.
D.5 COMPUTATION OF COORDINATION FOR EXAMPLE IN SECTION 6.4

For the model shown in Figure 6.6., the coordination is evaluated as

2 .
G I = 9i+H(E) +gi(p(g)) + z P-g2+3 (P(E|V=j)) +a3”(pj) +HSI(Y)

j=1

+ H(z) +H(z) +H(z,v) +T,(x1:2") (D.53)

where SI denotes the situation input only model. The value of the input z'

is such that é is always él' Hence, no response selection algorithm switch-
. . . . . - . U+l
1ng occurs, and since the input to algorithm hl(') is deterministic, gc

is zero. The output takes a single value and therefore also has zero un-
certainty, as does the variable é. Substitution of these facts into

Eg. (D.53) yields

SI 1 A o
Go = 9, tH(2) +g (p(2)) +H(z) +T_(x):2") (D.54)

The coordination of the basic two-stage model for this example is given by

2 _ 1 iy 2
Gc = gc-+H(§)'+(@1+Q2L%?(0.5)-+H (y) +H(z) (D.55)

The difference between GiI and 82 is therefore given by

ST 2 A v Co 2
Gc -Gc = [gc(p(z)) +Tz(>_<l-§ )] [(Ctl+OL2)J¥’(0-5) +H (y)] (D.56)

This is Eq. (6.50).
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