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Abstract

Much of the medical knowledge in the first generation A/ in Medicine programs is
phenomenological; that is, it describes the associations among phenon.ena without knowledge
of the underlying causal mechanisms. Although these AIM programs provide a good first
approximation to the way clinicians reason, they fail to reproduce clinicians' reasoning based on
a deeper understanding of the phenomena. More specifically, they do not deal with the
knowledge of disease at differant levels of detail, nor do they utilize causal relations to organize
and explain the clinical facts and disease hypotheses. They also cannot deal with illnesses
resulting from multiple diseases, especially when one disease alters the presentation of the
others. Finally, they are unable to capture the notions of adequacy and parsimony that play such
a large role in diagnosis. To explore these issues and rectify these deficiencies, we have
undertaken the task of providing expert consultaticn for electrolyte and acid-base disturbances.

This thesis reports the implc.aentation of ABEL, the diagnostic component of the
consultation program. In it, we explore the problems of modeling the causal understanding of a
patient's illness. We develop techniques for dealing with illness resulting from muitiple
interacting diseases. We describe a multi-level representation of causal knowledge, and explore
issues of the aggregation ot available case specific knowledge into concise summaries of the
patient's illness. We discuss structural criteria for evaluating parsimony, coherence and
adequacy of diagnostic explanations. We also explore some of the issues involved in information
gathering and propose expectation-driven diagnostic planning as a means of improving it.
Finally, we discuss the issues of explanation and justification ot the progiam's understanding
and argue that these facilities are crucial for acceptabhility of a consultation program.

Thesis supervisor: Peter Szolovits

Associate Professor of Electrical Engineering and Computer Science
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1. Introduction

In a 1970 article reviewing the role of emerging computer technology in

medicine, Dr. William B. Schwartz notes

“If conventional remedies will not meet the demands imposed by
scciety’s broad commitment to extensions of health care, it is clear that
new, even heretical, straiegies must be devised. One such strategy will
almost certainly involve exploitation of the computer as an "“intellectual,”
“deductive’ instrument — a consultant that is built into the very structure
of the medical-care system and that augments or replaces many
traditional activities ot the physician. Already, several interesting steps
have been taken in an attempt to extend the computer's role into this
realm ... Indeed, it seems probable that in the not too distant future the
physician and the computer will engage in frequent dialogue, the
computer continuously taking note of history, physical findings, laboratory
data, and the like, alerting the physician to the most probable diagnuses
and suggesting the appropriate, safest course of action. One may hope
that the computer, well equipped to store large volumes of information
and ingeniously programmed to assist in decision inaking, will help free
the physician to concentrate on the tasks that are uniquely human such as
the application of bedside skills, the management of the emotional aspects
of diseases, and the exercise of good judgment in the nonquantifiable
areas of clinical care.”

— Medicine and the Computer [Schwartz70, page 3]

The decade following these predictions saw a rapid growth in the field of

Artificial Intelligence in Medicine (AIM) culminating in many promising programs, among
which are Internist-l [Pople77], the Present lliness Program (PIP) [Pauker76),
CASNET/Glaucoma [Weiss74], MYCIN [Shortliffe76] and Digitalis Therapy Advisor
[Pauker76]. These programs represent the first efforts in the use of Al techniques in
medical decision making, and can be characterized as the '‘first generation AIM
programs’. They have clearly demonstrated the feasibility and usefulness of Al
techniques. Most of these programs have, in some trial, been judged to match expert

physicians in their competence — this is indeed an outstanding achicvement.
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It is natural to question then: “What are the limits of their evpertise? Why aren't
we implementing these programs in many more areas of medicine and distributing them
for clinical use?’ To answer these questions we must take a deener look at the
programs and therr performance. For example, although they are (on average)
outstanding on their core set of anticipated applications, their performance can also be
non-uniform; it tends to degrade rather ungracefully just outside their domain of
expertise. Furthermore, these programs may be misled on difficult cases involving
complex interactions or multiple disorders, even if these cases fall well within their
domain of expertise. This leads to the inevitable conclusion that although the models of
representation and deduction used in these programs are capable of providing moderate

coverage over the area of application, they are nonetheless inadequate.

These observations have led to a re-evaluation of the techniques used in the
first generation of AIM programs. The following insights have been gained by this
evaluation. Firstly, the notion of causality is inadequately exploited in the first generation
AIM programs {Smith79, Patil79, Pople81]. They do not utilize the structure provided by
causal relations to organize the patient facts and disease hypotheses. They fail to
capture the human notion that explanation should rest on a chain of cause-efiect
deduction. Secondly, they cannot deal with the effects of more than one disease present
in a patient simultaneously, especially when one of the diseases alters the presentation
of the others. Thirdly, they do not deal with the knowledge of a disease phenomenon at
different levels of detail that a physician clearly has. Finally, the numeric belief measures
as used by the first generation AIM programs do not provide adequate criteria for
diagnostic reasoning. They are unable to capture notions such as adequacy and

parsimony of a diagnostic possibility.

Much of the medical knowledge contained in the first gencration AIM programs
can be characterized as being phenomenological; that is, it describes the associations
among phenomena without the mechanisms underlying the observed asseciations.

Such phenomenological descriptions provide a good first approximation to the way
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physicians reason, but they fail to capture the physicians' reasoning in recognizing and
dealing with the inherent discrepancies in their knowledge and with deduction tased on
deeper understanding of the phenomena. Contrasting the behavior of the first

generation AiM programs and human experts, Szolovits notes:

“Consider what happens when two “rules of thumb" (as we may
identify a bit of phenomenological knowledge in medicine) conlflict. Every
AIM program written so far evaluates that conlflict by reducing it to a
numerical judgment of likelihood (or certainty, belief, etc.) in the
hypotheses it holds: Mycin computes a revised certainty factor, CASNET
computes new weights, Internist computes new scores, and the digitalis
program often computes a weighted sum of its observations to evaluate
their joint effect. Thus, conflict, just as agreement, is reduced to a
manipulation of strength of belief. Yet, by contrast, we believe that human
experts make a much more powerful use of occasions where they detect
conflict. They are not satisfied by a simple revision of their degree of belief
in the hypotheses which they have previously held; they seek a deeper,
more detailed understanding ol the causes of the conllict they have
detected. For it is just at such times of conflicting information that
interesting new facets of the problem are visible. Conllicts provide the
occasion for contemplating a needed re-interpretation of previously-
accepted data, the addition of possible new disorders to the set of
hypotheses under consideration, and the reformulation of hypotheses
thus far loosely held into a more satisfying, cohesive whole. Much of
human experts’ ability to do these things depends on their knowledge of
the domain in greater depth than what is typically needed to interpret
simple cases not involving conflict."

—Artificial Intelligence and Medicine [Szolovits81a, pages 16-17]

To move beyond the sometimes fragile nature of today's programs, we believe that futiire
AIM programs must coniain medical knowledge similar in depth of detail to that used by
expert physicians. They must have anatomical, physiological and pathophysiological

knowledge sufficiently inclusive in both breadth and detail to allow the expression of any

knowledge or hypothesis that usefully arises in medical reasoning.

One of the important areas of medical diagnosis not adequately addressed by
the first generation of AIM programs is the evaluation of the effect of more than one
disease present in the patient simultaneously, especially when one of the discases alters

the preaentation of the others. For example, let us consider a pahent with diarrhea and



Introduction : 11

vomiting leading to severe hypckalemia. Let us also suppose that vie know about the
diarrhea, but we are not aware of the vomiting. The observed hypokalemia is too severe
to be properly accounted for by the diarrhea alone and therefore diarrhea cannot be
considered as complete explanation for the observed hypokalemia. Given this fact, the
diarrhea is either not responsible for hypokalemia or is only partly responsible. If the
diarrhea is not responsible, then further reasoning is relatively easy: the problem
simplifies to finding the actual cause. However, if diarrhea is partly responsible, a
correct partitioning of the total observed hypokalemia between its two suspected causes
is required, with a judgment of how well the two separate causes combined in the
estimated proportions account for the patient’s condition.! Notice how inadequate the
simple assignment of a probability linking diarrhea and hypokalemia (as is commonly

done in existing programs) is to capture the problem being described here.

The complexity and depth of medical knowledge is well recognized
[Szolovits78]. Our understanding of medical expert reasoning suggests that an expert
physician may have an understanding of a difficult case in terms of several levels of
detail. At the shallowest level that understanding may be in terms of commonly
occurring associations of syndromes and diseases, whereas at the deepest it may
include a biochemical and pathophysiological interaction of abnormal findings. While it
may be easier for a program to reason succinctly with medical knowledge artificially
represented at a uniform level of detail,? a range of representations are needed to reason

at a sophisticated level of competence [Patil81]. Unfortunately, very little attention has

1. All the previous programs allow the entire hypokalemia to be accounted for by diarrhea. In
particular, Internist-1 after allowing the hypokalemia to be accounted for by diarrhea will not allow
hypokalemia to lend any support to the hypothesis of vomiting. PIP, on the other hand, will allow
the entire hypokalemia to lend support to the hypothesis of vomiting as well as allowing it to be
explained by diarrhea.

2. This does not pose serious difficulty in medical domains where the pathophysiology of
diseases is not well developed, because in such a domain a physician refies primarily on his
phenomenological knowledge. However, in a domain such as electrolyte and acid-base
disturbances we are constantly faced with this problem because, on the one hand, the
pathophysiology of the disturbances 1s well developed, and on the other, the pathophysiotogy of
many of the diseases leading to these distuthinces is relatively poorly understood.
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Leen paid to developing method:; for coping with it. We take this ac the central issue of

this thesis.

Finally, we believe that the numerical (probabilistic or pseudo-probabilistic)
belief measures as used by the first generation AIM programs for confirming diagnoses
and guiding the diagnostic search do not provide adequate criteria for diaanostic
reasoning. We believe that the evaluation methods for confirming a disease hypothesis
should be different from the methods used for choosing the most promising disease
hypothesis for diagnostic pursuit. A single criterion is almost certain to be inadequate
for both these tasks. Furthermore, we believe that the probabilistic model by itself is
inherently inadequate. For example, it fails to take into account the causal nature of the
disease mechanisms, it fails to capture the notions of parsimony, coherence and
adequacy of diagnostic explanation. In a study of problem solving activity of clinicians,

Kassirer and Gorry note that

“In parallel with the processes by which the physicians built a
case toward a final diagnosis, they assessed each diagnosis for coherence
and adequacy. .. (A diagnosis was considered coherent if all the
symptoms and diseases contained in it were causally related to each
other. A diagnosis was considered adequate when it accounted for all all
known facts.) ... The physicians strove to attain parsimonious explanations
for the findings and to accept a single explanation rather than make two or
more diagnoses unless they were forced to do so."”

— Clinical Problem Solving [Kassirer78, pages 249-250]

It is one of the central themes of this thesis that these problems cannot be avoided by

relying solely on the numerical scoring mechanism; the programs must be provided with

structural criteria to evaluate the disease hypotheses.

It is our belief that modeling the program’s understanding of the patient's illness
is crucial to capturing the expertise of clinicians. In this thesis, we will explore some of
the issues involved in representing diagnosis.  We will develop techniques for

reconciling physiological rcasoning with phenomenological reasoning and explore
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issues of aggregating all the availahi2 knowledge into concise summaries of the patient's
illness. We will discuss structural criteria for evaluating parsimony, coherence and
adequacy of diagnostic explanations. We will also explore some of the issues involved in
information gathering and propose expectation-driven diagnostic planning as a means of
improving it. Finally, we will discuss the issues relating to explanation and justification of

the program’s understanding.

To study these issues, we have chosen the task of providing expert consultation
in cases of electrolyte and acid-base disturbances. The research presented in this
thesis, the development of a program called ABEL (Acid-Base and ELectrolyte program),
is a part of this overali effort. We describe a novel mechanism for representing ABEL's
understanding of a patient’s illness. This understanding is represented using a
collection of data-structures called the patient-specific models(PSMs). Each PSM
contains a hypothesis structure containing all known data about the patient, all currently
held possible interpretations of these data, the causal interconnections among the
known data and tenable hypotheses, and some indication of alternative interpretations
and their relevant evaluations. We decscribe the representation of medical knowledge
and the processing strategies needed to enable ABEL to construct a PSM from the initial
data presented to the program. The same represeniations and procecures are also used
in revising the PSM during the process of diagnosis. Each PSM can be viewed as a

partial explanation of the patient's illness.

Diagnostic problems are formulated by identifying the weaknesses and conflicts
in the PSMs and by computing a diagnostic closure (DC) for each PSM. A DC associated
with a PSM represents a collection of alternative completions of the partial explanation
provided by the PSM. It brings together all the dependencies and expectations
necessary for diagnostic inquiry, for evaluating real and apparent discrepancies in the
incoming information, and for explaining the diagnostic alternatives under consideration.
A pian for diagnostic inquiry is generated by decomposing a top level diagnostic problem

into simple problems which can be directly solved by a quesiion to the user.  Finally,



Introduction . 14

when an inquiry is completed, the new information gathered is assimi'aied into the PSMs

and the diagnostic process is repeated.

1.1 Scope of Project

This thesis has three main objectives. The first is to develnop a representation of
causal medical knowledge. The second is to develop a case-specific ‘‘understanding”
of illness. This understanding should be capable of describing subtle interactions
between diseased and normal physiological mechanisms, and therapeutic interventions.
The third is to develop a set of reasoning procedures to combine the aggregate
phenomenological knowledge of disease associations with the detailed
pathophysiological knowledge of disease processes. The first of these, the
phenomenological knowledge, is necessary for efficient diagnostic exploration, the
second, the pathophysiological knowledge, is necessary for proper understanding of a
difficult case. The research reported in this thesis is conducted in the larger context of
an Expert Consultant for Electrolyte and Acid-Base Disturbances [Patil79]. This section

briefly reviews the organization of the overall system.

The objective of an expert medical consultant is to advise in the proper

management of a patient. Proper management consists of collecting the relevant
information about the patient, identifying the disease process(es) responsible for the
patient’s illness, and prescribing a proper course of action to correct the patient's
conditicn. One of the complexities of this task is due to the fact that these subtasks do
not have well defined boundaries. The patient may be presented to a clinician at
different stages of a disease’'s evolution and treatment. During the course of
management new information about the past history may become necessary as the
diagnostic hypotheses evolve. The current diagnosis may depend on information that is
presently unavailable. The disease itself may evolve through time, providing additional
clues to its identity, or the response to certain therapeutic interventions may provide
valuable diagnostic information. Finally, the patient's condition may require therapeutic

intervention cven betare the diagnostic issues can be reasonably resolved. Thoerefore,
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the next course of action must be chosen from a large range of alternatives. These
alternatives may be broadly classified as gathering information (much of which may turn
out to be irrelevant in the evolving clinical context), ordering tests (possibly involving
expensive time delays and/or clinical costs), waiting for further development,
prescribing therapy or some combination of the above. At every stage of consultation,
the program must be able to choose between the alternative sets of actions with the
patient’s best interest in view. This can be achieved only by developing a program
capable of forming a diagnosis, suggesting a therapy and making decisions. With this
perspective we have embarked on the design of the Electrolyte and Acid-Base
Consultant system. We have tried to separate and modularize different components of a
physician's knowledge and expertise so as to be able to evaluate our understanding
about each component and their interactions. This modularization should also allow us
to further experiment with any component of the system without having to reimplement

the entire program. A top level schematic for the overall system is shown in figure 1.

The Electrolyte and Acid-Base Consultant system consists of four major
components: (1) the Global Decision Making component, (2) the Diagnosis component,
(3) the Therapy component and (4) the Patient Specific Model. The patient specific
model describes the physician's understanding of the state of the patient at any point
during diagnosis and management; it is intended to be the central data structure which
other components of the system may reason with. The global cecision making
component is the top level program which has the responsibility of calling the other
programs with specific tasks. In general, the global decision program will call the
diagnostic program with a task such as taking the initial history and elaborating some
specific diagnosis. The diagnostic component then performs the specified task and
reports the results to the main program. It also modifies the patient specific model to
reflect the revised state of the patient. Similarly, if the global decision making program
calls the therapy sclection program, it attempts to formulate a set of alternate therapies
for the patient along with a check list of itcins that must be tested before any specific

therapy can be recommended. It also identibies informadion that will help discriminate
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Fig. 1. A schematic for the overall system
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between alternate therapy recommendations. Note that at every slep the global decision
maker can evaluate each of the possible sets of actions and choose the most desirable
one. The decision making component will allow the program to make explicit the
decision making that goes on in a physician's reasoning: is further diagnosis necessary,
what treatment should be selected, should he wait before prescribing further treatment,
can he choose some therapeutic action that would also provide diagnostic information

making further diagnosis at this point unnecessary?

This thesis deals primarily with the development of the patient specific model
which describes the program's understanding about the patient's illness. We have
focused here because we believe that the level of expertise achievable by the program is

inherently dependent upon the expressive capabtlitics of the patient specific model. The
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program can reason about subt!e interactions between diseases in a nven patient only if
it can describe these interactions in the context of the patient. In addition a preliminary
implementation of the diagnostic component to demonstrate the use of this

patient-specific modzal is also discussed.

1.2 Choice of Domain

Careful selection of a domain is crucial for developing an application program.
The domain chosen must be small enough to allow one to build a knowledge-base in a
reasonable amount of time, and yet large enough to allow for realistic testing of the new
ideas being implemented. Furthermore, the domain should be well defined and should
lead to useful application, so that the program can be field-tested under realistic
conditions. We have chosen the domain of electrolyte and acid-base disturbances as

the test-bed for our theories of medical diagnosis.

The domain of electrolyte and acid-base disturbances is a well defined and
relatively narrow area of medicine. It is an ideal domain for testing our theories about
interactions between causal (physiological) reasoning and phenomenological
(syndromic) reasoning, as on one hand the basic pathophysiology of the acid-base
disturbances is well developed, and on the other, the pathophysiology of the diseases
leading to these disturbances is relatively poorly understood. Thus constantly forcing us
to develop reasoning mechanisms that can deal simultaneously with well understood
causal knowledge and poorly understood phenomenological knowledge. In addition, the
feed-back nature of the electrolyte and acid-base homeostatic mechanism provides us,
in a microcosm, with a variety of issues relating to ‘'dynamic’ systems that must be

addressed in the management of a patient's illness.

Electrolyte and acid-base disturbances are a common complication of a large
number of serious illnesses and medical interventions. In spite of their prevalence, this
remains an area that most practicing physicians tind somewhat difticult to deal with.

This makes the ficld of acid-base disturbances an altractive domain for introducing
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expert computer consultant programs. One of the earliest programs for medical

consultation [Bleich72] was in fact introduced in this very area.

Our orimary concern, however is not with electrolyte and acid-base
disturbances per se. Our basic purpose is to use this domain as a vehicle for evaluation
of the existing techniques and development of new techniques for diagnosis and
management of a patient’s illness. In particular, in this thesis we will develop techniques
for providing a coherent account of a patient's illness which incorporates the
pathophysiological understanding of acid-base disturbances with the aggregate

phenomenological understanding of the diseases causing these disturbances.
1.3 Brief review ot Electrolyte and Acid-Base Disorders

In this section we briefly describe the electrolyte and acid-base disturbances.
This section is not intended as a full review of the subject matter, but is presented here to
provide the readers with a framework for understanding the medical examples used in
this document. Each example used in the document is accompanied by an explanation

of the relevant medical knowledge.

Fluid and electrolyte disturbances usually occur as complications of an
underlying illness, therefore these disorders must be viewed not as isolated entities but
in the context of the specific clinical settings in which they appear. As general
background to the following discussion, it should be remembered that approximately 50
to 60 per cent of the body (by weight) consists of water distributed between the
intracellular (within cells) and extracellular (outside cells) compartments. Water moves
freely across cell boundaries, maintaining osmotic equilibrium between the different
compartments. By contrast, owing to differences in their permeablity and active ionic
pumns, the electrolytes are distributed in an asymmetric pattern, most of the ions in
extracellular fluid consisting of sodium, chloride and ticarbonate and those in
intracellular fluid of potassium and organic anions. Requlation of the external

environment of cells, that is, the electrolyle concentration and acidity (pH) of the body



Brief réview of Electrolyte and Acid-6ase Disorders 19

fluids, is of primary importance. P turbations in the regulation of th.s environment is the

subject of electrolyte and acid-buse disturbances.

The pH of the body fluids is regulated by three mechanisms: (1) the body
buffers, (2) pulmonary regulation of the concentration oi 002 in the body, and (3) renal
excretion cf acids and alkali. They act in a complementary fashion, first to minimize
transient changes and then to correct any disturbances in acid-base balance by
appropriate retention or excretion of hydrogen ions. To understand the mechanism of
acid-base disturbances, it is instructive to consider the way in which the body deals with

the normal daily acid load in maintaining a steady-state of acid-base equilibrium.

As food is oxidized to provide metabolic energy, both carbon dioxide (carbonic
acid) and acids such as sulfuric and phosphoric acids are added to the extracellular
fluid. They are immediately buffered to minimize the change in pH and transferred to the
lungs and kidneys for excretion. Carbon dioxide is excreted almost entirely by the lungs
while the other acids are excreted solely by the kidney. Bicarbonate is regenerated by
the kidney as it excretes the excess acid, replenishing the bicarbonate stores that
previously were depleted by the buffering of the dietary acid. From all these
considerations it is evident that derangements in either the pulmonary or renal function,
or the imposition of stresses that overwhelm normal regulatory mechanisms (such as
vomiting, diarrhea, burns, etc.) can be expected to produce disturbances of acid-base

equilibrium.

The equilibrium equation of the major buifer system in the extracellular fluid, the

carbonic acid — bicarbonate buffer system, is shown in figure 2. This equation allows
ready visualization of the directional changes that can be anticipated in both metabolic
and respiratory disturbances of the acid-base equilibrium. For example, a primary
reduction in bicarbonate concentration (metabolic acidosis) will cause the reaction to
shift to the right, thus increasing hydrogen ion concentralion, wherecas a primary
elevation in bicarbonate concentration (immctabolic alkalosis) will cause the reaction to

shift 1o the left, thus decreasing hydirogen ion concentration. Simitarly, o primaey ris.e in
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Fig. 2. Carbonic acid - bicarbonate buffer equation
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p002 increases the hydrogen ion concentration (respiratory acidosis), and a fall has the
reverse effect (respiratory alkalosis). However, the presentation of these disturbances is
somewhat more complicated owing to the fact that the body reacts to these changes and
attempts to compensate (in part) for the effect of these changes. Furthermore, different
compensating mechanisms respond at different rates. A disturbance which has been
properly compensated is called compensated, otherwise it is called uncompensated.
The actual changes in the bicarbonate — carbonic acid concentrations in these
disturbances is shown in figure 3. The nomogram of acid-base disturbances
[Schwartz65, Cohen66] shown in figure 3 summarizes the normal physiologic response
to the changes in HCOB and pC02 for each of the acid-base disturbances described
above. For example, the nomogram shows that for a patient with adequately

compensated metabolic acidosis and with serum  concentration of HCO- of 15 meq/L



Brief review of Electrolyte and Acid-B¢ se Disorders 21

i-ig. 3. Nomogram of acid-bas.e disturbances
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the pCO, will be approximately 30 mmHg. The use of this nomogram for initial

cvaluation of a patient’s acid-base state will be discussed later.

The most frequently encountered clinical acid-base disorders occur as single
disorders (also called simple disorders). The single disorders are: metabolic acidosis,

metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. There are, however,
many clinical situations in which combinations of two or three disorders occur
simultaneously, giving rise to mixed disorders. The recognition of mixed disorders is
predicated upon a clear understanding of ithe pathophysiologic effects of simple
disorders. To diagnose mixed disorders, one must know how ¢ach of the four simple

disorders named above alter pH, pCOs and HCO4 and the extent of renal or 1espiratory
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compensation that ought tc occu- ior any given degree of primary disorder. However,
since each of the disturbar.ces can be caused by a variety of physiological states or
diseases, tne final differentiation between possibie acid-base disorders must be made

primarily on the basis of clinical infurmation.

An important test in the diagnosis of electrolyte and acid-kase disturbances is
the laboratory analysis of a patient's blood sample. Also called the seruim electrolytes,
this test measures the concentrations of sodium (Na), potassium (K), chloride (Cl), and
bicarbonate (HCOg3). Very often a test for concentration of creatinine is also made. This
test does not, however, measure the concentrations of anions such as phosphate,
sulfate, proteins, and organic acids which are normally present in the blood in small

amounts. The combined concentrations of these unmeasured anions is called the anion

gap. The anion gap can be approximated by subtracting from the combined sodium and
potassium concentrations the combined concentration of chloride and bicarbonate, an

amount normally approximately 12 meq/L.

Determination of the anion gap is vital to the diagnosis and differentiation of
metabolic acidosis. The anion gap differertiates metabolic acidosis into two categories:
one with an increased anion gap and other with a normal anion gap. Metabolic acidosis
with an increased anion gap is generally caused by increased production or impaired
excretion of H* and unmeasured anions by the body. For example, diabetic
ketoacidosis, in which the acidosis results from increased production of ketones. On the
other hand normal anion gap acidosis is generally caused by ioss of HCO3. For

example, diarrhea, in which HCOS rich gastrointestinal fluids are lost.
1.4 Desiderata

In this section we discuss some of the characteristics required of the program if
it is to be useful and effective as an expert consultant. They also serve as guiding
principles for designing and evaluating the program. They are included here to

communicate our aspirations. The goals described below have not been fully realized by
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the research reported here, nor can they all be fully realized by the c irrent state of AIM

technology. These characteristics are:

1.4.1 Making a Correct Diagnosis

The primary responsibility of the diagnostic program is to make a correct
diagnosis. Without fulfilling this criterion, the program offers little possibility of being

clinically useful. Although the issues involved in the evaluation of the efficacy of
diagnosis by a program (cr by a clinician) are difficult and controversial, it is clear that
the diagnosis arrived at by the program must be a reasonable and thorough diagnosis in
the light of the available information. Furthermore, a distinction must be made between
a working diagnosis and the correct diagnosis. In practice, a correct diagnosis is often
impossibie owing to the high cost (medical and economic) of the information necessary
to achieve it. A criterion for deciding when a working diagnosis has been achieved (for
the purpose of management of a patient) should weigh the costs of gathering further
information in terms of morbidity, time and money vs. the benefits of better diagnosis in
terms of an improved management plan and a more reliable prognosis. For example, in
situations in which the management plan for each of the diagnostic possibilities is the
same, attempts to distinguish between diagnostic alternatives does not have any
immediate utility. Hence, the working diagnosis should be considered sufficient. It
should, however, re-evaluate the diagnosis as new information becomes available from

the evolution of the disease or from the patient's response to therapy.

1.4.2 Continued Management of the Patient

Typically, a patient is examined by a physician more than once. The interaction
between the patient and the physician can be divided into the initial interaction and the
follow-ups. The follow-up sessions are used by physicians irn evalualing the
management plans and in refining the werking diagnosis. In the majority of cases,
follow-up sessions are essential for the proper practice of medicine. Furthermore, the

ability to review the diagnostic decision during follow-up allows a program to revise its
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erroneous or incomplete conclusions.
1.4.3 Diagnostic Style

The diagnostic style used by a program is almost as important as reaching the
conect diagnosis. Although good style is hard to characterize and even harder to
embody in a program, certain aspects of diagnostic style are recognizable. For example,
if the program pursues some low priority diagnostic problem in the face of more
important issues, if it ignores a problem of life-threatening character, or if the stream of
questions seem pointless (i.e., if the program continues to ask questions when it should

have been prescribing treatment), it is likely to be rejected by the user physician.

We wish to design a program which will exhibit focused, coherent and
purposeful behavior in problem solving and will know when to call a halt to its question
and make an interim diagnostic judgment. In a later section we will discuss how some of

these requirements can be met using notions such as hypothetical reasoning and

planning.
1.4.4 Mode of Interaction

A distinction is often made between two forms of data acquisition in diagnosis:

active and passive [Gorry68]. A passive mode is cne in which the program is provided
with all the information at one point and must make a diagnosis based on this
information. An active mode is one in which the program must ask a question in order to
obtain each new piece of information. The active process suffers from the shortcoming
that the physician may be aware of some facts potentially useful in the diagnosis, but
may not be able to communicate them to the program because each new piece of
information must be requested by the program. The passive approach avoids this
problem but places the responsibility of identifying relevant information on the physician.
This is an unacceptable demand on a physician who is not an expert in the medical

domain of the program.
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Therefore, we propose a ~umpromise position involving mi:‘ed initiative. In this
mode, as in the active mode, the primary responsibility of gathering information still rests
with the program. However, at each point in the consultation the user physician is
allowed to provide a suggestion. The program must analyze this suggestion,® even if it

chooses to ignore the suggestion as being irrelevant.
1.4.5 Handling Discrepant Information

In virtually any diagnostic workup a large amount of discrepant information must
be dealt with. Some of the discrepancies arise because patients are not always accurate
observers of their symptoms and because laboratory tests and medical records are often
in error. In other cases a seeming discrepancy may arise because of incomplete
information, i.e. there may be a valid (but so far unknown) explanation for the apparent
disagreement. Correct evaluation of each type of discrepancy is critical, if the program
is to perform effectively. It is necessary for a diagnostic program to be able to identify
the discrepant information as it is presented in order to be able to evaluate a discrepancy
and choose strategies for dealing with it before incorporating it in the patient model. We
have cbserved that the expectations of the physician play an important role in identifying
possibie discrepancies in the incoming information. They allows the physician to locally
evaluate these discrepancies (with respect to the available evidence, physiological
possibilities and the current hypothesis) and act upon them before assimilating the new
information into his patient descriptions. A similar mechanism in the program is
desirable. Summarizing, the importance of good handling of discrepant information can
not be overstated, especially when the system is expected to be used in a normal clinical

setting as well as in experimental situations.

3. The program may not, as was the case with some previous programs, put these suggestions
“on hold" without reasoning about them until it is ready to ask about them. f the progriun does
not think that the suggeston is relevant, it muost make that decision explicitly.
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1.4.6 Explanation

To be acceptable in an application domain such as medicine, an AIM program
must go beyond providing competent advice; it must be able to explein and justify its
conclusions to the user physician — much as the human consultants do today — in a
language that the physician is familiar with. After all, it is the physician who provides the
medical care and is primarily responsible for the welfare of the patient. It is therefore
natural (even desirable) for a physician to balk at accepting advice from a ‘‘black-box"
program. This reluctance perhaps accounts for much of the reported antipathy of
physicians even to the programs that on statistical analysis have been shown to be as

good as the expert physicians [Yu79, Kulikowski81, Long80]

We believe that a program's acceptability depends crucially upon its ability to
adequately explain its reasoning and justify its conclusions. It depends on the physician
being able to challenge some part of the program’s conclusions and having the program
explore alternatives suggested by the physician. Consuitation is a ‘‘two way street'’; it
can be effective only if the consultant (who is an expert in the subject matter) and the
physician (who is familiar with the patient) cooperate. If any program is to be successful

as an expert consultant it must allow for such an exchange.

The foregoing discussion may suggest that AIM programs be perfect, a
requirement that can never be met in a real world of imperfect knowledge, where even
the best of the expert physicians difter with one another. The thrust of our argument
here is more limited. We are not demanding perfection from AIM programs, only that
they be acceptable. Note that a program which is not as good as the best expert may
nevertheless be fruitfully applied if it is acceptable and if its use improves the
performance of the average clinician (who is not likely to be as good as the best expert in

any given area of expertise).



Explanation 27

In this thesis we are not extending the methodology of explanation generation.
Our main thrust is in applying the available methodology to a rauch more complex
domain than has been hitherto tried. However, since it has been demonstrated that
generation of quality explanation can not be achieved by retrofitting a program with
explanation capabilities, the program must be designed with the explanation abilities in
focus [Swartout80]. Our main interest is in designing explicit representation and
reasoning mechanisms in the program which will provide us with the ability to justify the

program’s diagnoses as well as its reasoning in achieving those diagnoses.
1.5 Survey of AIM programs

Teaching of diagnostic medicine is often organized arourd diseases, with an
emphasis on associations between the diseases and signs and symptoms typically
associated with them. After all, the diagnostic task is to identify the disease hypothesis
which represents the true state of the world by using all available data. Based on this
observation we can conceive of a simple representation ot diagnostic knowledge which
draws associations between disease hypotheses and data. Given thi~ “primitive’
organization, we may already envision a diagnostic algorithin consisting of the following

steps:

Diagnostic Reasoning:
(1) Whenever a new finding is reported, add it to the set of reported findings.
(2) Determine all the diseases linked to the new finding and add these diseases to
the set of active hypotheses (which is initially empty).
(3) Score the active hypotheses by counting the number of expected findings
observed for each disease hypothesis,
(4) rank-order the active hypotheses based on their scores and report the ranking.

Information Gathering:
(5) Select the highest-ranking disease, at least one of whose associated findings
has not yet been either affirmed or denied, and ask about that finding.
(6) If step-5 fails to select a question, ask if the user is willing to voluiteer a
finding.
(v) If no findings are offered, report the rank ordered diagnoses and their
supportive findings and stop. Othaiwise, repeat steps 1 through 6.
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The above algorithm, in spite of its simplicity, already cabstures the essential
structure of a number of diagncstic programs. The association between diseases and
findings forms its static knowledge about the domain. The set of observed findings and

the rank-ordered set of active disease hypotheses are its patient specific model and its
understanding of the patient’s iliness. The process of rank-ordering disease hypotheses

is its diagnostic evaluation, and the selection of an appropriate finding for inquiry is its

information gathering strategy.

The algorithm described above suffers from many inadequacies due to its
oversimplification. Far rnore serious, however, are the problems fundamental to the
model of the algorithm itself. For example, the above algorithm views diagnosis as the
task of identifying that disease hypothesis which provides maximal coverage over the set
of findings. Although this view of diagnosis suggests a relatively straightforward and
intuitively appealing implementation, we believe this to be inadequate. Disease
processes are causal; we believe that diagnosis involves providing an adequate
explanation of the observed findings by reconstructing the possible sequence of causal

events leading to the observed findings.

The program’s information gathering strategy is limited to selecting one
question at a time. At the end of this question, the program re-evaluates its diagnostic
understanding, reformulates a new diagnostic problem (which may or may not be related
to the previous problem) and selects the next question to ask. |If after asking one
question the diagnostic hypothesis being pursued is not confirmed, it must compete with
all other active hypotheses for the attention of the diagnostic problem solver. In other
words, the attention span of the program in solving any given problem is exactly one
question. This results in diagnostic inefficiencies and incoherent question sequences.
This problem is well recognized, and programs such as Internist-l and PIP have
attempted to group diagnostic gquestions into meaningful packages, abating the problem
somewhat. The work presented in this thesis is based on our belief that a substantial

reformulation of the basic algorithm is needed before the problem can be adequately
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addressed [Szolovits81b).

In the remaining part of this section we will briefly review the four major AIM
projects dealing with diagnosis, namely Internist-l, the Present lllness Program,
CASNET/Glaucoma and Mycin. A detailed description of these programs can be found
in [Szolovits81]. A good review of computer-based decision aids in medicine, using both
Al and conventional computer methodologies is to be found in [Shortliffe79].
[Szolovits78] offers suggestions on the issues of choice of methodology and validation
for acceptance for AIM programs. [Schwartz70] contains a discussion of acceptability

issues from the viewpoint of physicians.
1.5.1 Internist-1 and Present lliness Program

The Internist-l program [Pople75a, Pople77] is based on a large data base and a
relatively simple evaluation and problem-selection strategy. The Internist-1 data base is
constructed by linking diseases and their manifestations with two subjectively assessed
scores; an evocation strength which describes how strongly the manifestation should
suggest a disease, and a frequency which describes how commonly the particular
manifestation is observed in a patient with a given disease. Both of these are supplied by
objective assessment by physicians. All the diseases are arranged into a hierarchy
organized around organ-systemms. Each non-terminal in this hierarchy is linked to
manifestations that are common to all its inferiors. During each cycle of the algorithm, all
diseases with at least one reported manifestation are evoked* and scored. Next, these
disease hypotheses are partitioned into competing and complementary sets. This
partitioning scheme represents an important contribution of the Internist-l program. It is

based on two concepts: the shelf — a list of important manifestations that are not

4. If a disease (A) and one of its inferiors (B) are evoked simultaneously, then (1) if there are no
known findings that can differentiate between B and any of its sibling hypotheses, B is considered
to be subsumed by A and deleted from the active set. Otherwise, (2) A is replaced by the set of its
immediate infenor discaces that e evoked by the manifeciation.
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explained either by this diagnosis or any diagnoses previously confirmed, and the
dominance relation — a hypothesis A is said to dominate hypothesis B if the shelf of A is
a proper subset of the shelf of B. The competing set is then said to contain hypotheses
that either dominate or are dominated by the highest-ranking hypothesis. All other
hypotheses are considered complementary and are ignored. The competing set is
further reduced by considering only those hypotheses whose scores are within a fixed
range of the highest-scoring hypothesis. Based on the number and relative scores of the
hypotheses under consideration a diagnostic strategy (differentiate, confirm or rule-out)
is selected and the next question computed. Finally, this question is asked and the

diagnostic cycle is repeated.

The Present lliness Program (PIP) [Pauker76) is a frame based [Minsky75]
program for taking the present iliness in the domain of renal diseases. The PIP data base
is implemented using disease frames, each containing the relation of the given disease
to its expected findings and to other diseases, and a scoring criterion for evaluating the
disease hypothesis. Some of the findings associated with a disease are specially
designated as triggers. The complementary relation between diseases is described
using causal, complicational and associational links; the competing relation is expressed
using differential links. Each disease frame also contains two types of scoring functions;
the logical decision criteria and the numerical likelihood estimator where the first is used
for categorical evaluation and the second for probabilistic evaluation of the likelihood of
the disease hypothesis under consideration [Szolovits78]. The diagnostic algorithm of
PIP is similar to the basic algorithm discussed before. We should note that PIP does not
use the disease-hierarchy or multiple diagnostic strategies used by the Internist-I|
program. On the other hand, PIP uses a substantially richer representation mechanism
for describing findings and diseases as compared to Internist-l. For example, PIP allows
one to describe the finding of edema observed in a given patient to be *'severe', “worse
in evening" and ‘“pedal” (around legs). Finally, it uses calegorical as well as

probabilistic criteria tor confirming diseases.
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Internist-1 and PIP represont medical knowledge as well as patient specific facts
in phenomenological terms. 7The lack of physiological knowledge results in their
weakness in dealing with patient ilinesses with multiple interacting etiologies. The lack
of physiological knowledge also results in activation of all phenomenologically possible
hypotheses, including those that, based on the case-specific knowledge, are
physiologically improbable. Thus, increasing the efforts needed in scoring and ruling
out these hypotheses explicitly. Furthermore, the diagnostic algorithms in Internist-1 and
PIP alternate between obtaining a fact and evaluating the hypothesis list, resulting in a

lack of focused diagnostic inquiry as discussed before.

The patient-specific model in Internist-l and PIP consists of a collection of
patient facts and the list of active hypotheses; it does not relate different findings and
hypotheses into causal explanations. As a result these programs have only a
fragmentary understanding about the patient’s condition and they often change their

description of the patient’s illness radically without substantial indications to that effect.
1.5.2 CASNET/Glaucoma

The Glaucoma program deals with the diagnosis and treatment of eye diseases.
it is implemented using the CASNET [Weiss74] theory of representation of causal
knowledge. The medical knowledge in Glaucoma is represented as a network of
physiological states. These states are linked together by subjectively assessed transition
probabilities, and by support values indicating how strongly certain test results support
the presence of a particular condition (state). The transitional probabilities are used
primarily as a means of selecting the most appropriate next state to investigate and the
support values are used to evaluate the score (fuzzy likelihood [Gaines76, Zadeh65]) of
a state, which is used to confirm or deny a state. Finally, the patterns of confirmed and
denied states in the network are interpreted using a number of programs which compare
the progress of the diseases in the given patient with the diseases known to the

individual program.
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The use of physiological knowledge gives the glaucoma program a better
understanding of the mechanisms of disease evolution and interaction than the other
programs discussed above. However, its use of causal know~ledge is restricted to the
local propagation of likelihood weights to determine the most appropriate next state for
investigation. The program cannot use hypothesized diagnoses to guide its diagnostic
inquiry: it separates the process of information gathering from that of diagnosis. The
information gathering is directed solely towards confirming (or ruling out) states in the
causal net.5 Moreover, the program works in a domain where the disease physiology is
uniformly well understood and each state can be confirmed directly using some test.
Therefore, the techniques developed in this program are not easily extendable to

programs working in other domains of medical expertise.
1.5.3 Mycin

Mycin is a rule-based program [Shortliffe76, Davis77] for diagnosis and
treatment of infectious diseases — in particular, bacterial infections in the blood (and
recently extended to other infectious diseases). It represents medical knowledge in
terms of production rules [Davis77] and uses a collection of associative triples to
represent the patient specific knowledge [Shortliffe75, Shortliffe76]. A novel
mathematical model of confirmation [Shortliffe76] selects a set of organisms suspected
of causing the illness. Diagnosis is carried out using a simple goal-directed control
structure with backward chaining. The highest-level goal of Mycin is to determine if the
patient is suffering from a significant infection which should be treated, and if he is, to
select the appropriate therapy. It retrieves all the rules applicable to this goal and
applies them sequentially as follows. It attempts to ascertain whether the "conclusion" of
arule is valid by evaluating each of its premises. If this information is already available in

the data base, the program retrieves it. If not, determination of this premise becomes the

5. During this phase the program does not attempt to identify diseases responsible for the
presence of these states. The diagnosis is attempted separately after the information gathering
phase is completed.



Mycin 33

new goal, and the program recurs. If after trying all the relevant rules, the answer still
has not been discovered, the program asks the user for the relevant clinical information
which will permit it to establish the validity of the premise clause. Thus, the rules
"unwind" to produce a succession of goals, and it is this attempt to achieve each goal

that drives the consultation.

The rules in Mycin are used to represent the domain knowledge as well as to
encode the flow of control of the program. This takes away some of the advantages of
modularity of knowledge because one must take into account the possible interactions
between rules during problem solving. The goal structure of Mycin allows efficient
problem solving and can be used for explaining the problem solving behavior of the
program, but the program cannot explain the medical significance of its behavior as this

information is compiled out while writing the rules.

The rule-based Mycin methodology is applicable in fields where the domain
specific knowledge can be described using judgmental rules. It appears to require a
field which has attained a certain level of formalization with a generally recognized set of
primitives and a minimal understanding of basic processes and which does not have a
high level of interaction between conceptual primitives [Davis77]. Finally, the rule-based
methodology developed by Mycin and its derivative programs can be used effectively in
encoding knowledge needed in handling specific well defined situations such as special
heuristics for differentiation between two similar diseases which are difficult to

differentiate using glcbal differentiation heuristics.

The programs described above can be classified as the “first generation AIM
programs'. These programs have contributed immensely by demonstrating the
feasibility of using computers (and Al techniques) in medical diagnosis. Some of the

significant developments in this regard are summarized here.
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The active hypothesis se. introduced in PIP and the hierarchic organization of
diseases introduced in Internist-: provide useful techniques for organizing programs for
efficiency. A heuristic to partitior the hypothesis set into competing and complementary
sets was introduced in Internist-l. In spite of its shortcomings, the partitioning heuristic
is intuitively appealing and empirically effective [Pople75a]. An improved technique for
identifying complementary and competing hypotheses, especially for illnesses caused by

multiple diseases, is one of the topics of interest in this thesis.

Recognizing that pathognomonic and important evocative findings help to focus
the diagnostician’s attention sharply. mechanisms to flag such findings and their use in
focusing the programs attention were developed in Internist-1 and PIP. Heuristics to help
confirm or eliminate hypotheses categorically (without resorting to revised probabilities
and thresholds) and explicit differential diagnosis links to indicate well-known points of

diagnostic confusion were also added in PIP.

Causality as a major mechanism for tying together independent hypothesized
disorders was identified as a fundamental mechanism in the CASNET/Glaucoma
program, Internist-l and PIP. The Glaucoma program went a step beyond the others in
the use of causality by defining disease as a progression of causally connected states.
However, in all three programs, the use of causality is limited to propagating
probability-like estimates of likelihood which remain the primary criterion for their clinical

decisions.

The need for explanation and justification capabilities in an AIM programs was
first recognized by and implemented in MYCIN. In this chapter we have argued that
these capabilities are essential for the success of any consulting program. In this thesis

we take this capability to be an essential component of the design of ABEL program.
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1.6 OQutline of the Thesis

This thesis contains seven chapters and two appendices. Chapter 2 previews
the capabilities of the program with the help of two simple examples. Chapter 3
describes the representation of ABEL's medical knowledge. The medical knowledge
consists of a hierarchic representation ¢of anatomical, physiological, etiological and
temporal knowledge. This forms the groundwork for an efficient representation of
diseases and their pathophysiology in the domain of electrolyte and acid-base
disturbances. The diseases are defined in terms of their loci along these four
dimensions, providing a natural hierarchic organization to the disease definitions. This
framework of basic medical knowledge provides us with a vocabulary for expressing

phenomenological and pathophysiological knowledge.

An expert nhysician may have an understanding of a difficult case in terms of
several levels of detail. As noted earlier, at the shallowest level that understanding may
be in terms of commonly occurring associations of syndromes and diseases, whereas at
the deepest it may include the biochemical and pathopbhysiological interaction of
abncrmal findings. Chapter 3 describes a muiti-level description of pathophysiology,
where each level of description can be viewed as a semantic net of relations between
diseases and findings. Each node in the net represents a normal or abnormal state and
each link represents a relation (causal, associational, etc.) between these states. Each
node is associated with a set of attributes describing the temporal characteristics,
severity or value, and other relevant attributes. Each link describes a causal relation
between a cause node and an effect node by specifying a multivariate relation between
attributes of the cause and the effect. Additional information to support mapping

knowledge at one level to an adjacent level is also described.

In Chapter 4, we propose the use of a coherent hypothesis as the logical unit of
hypothesis representation.  This captures our notion, expressed above, that the
reasoner's hypothesis structure must account for the total state of mind of the reasoner

including its cunent uncertaintics.  In the program, cach cohcrent hypothesis s
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represented using a patient spacific model (PSM). Each PSM represents a causal
explanation of all the observed findings and their interrelationships at various levels of
detail. Note that within each PSM all the diseases, findings, etc., are mutually

complementary, while the alternate PSM's are mutually exclusive and competing.

The PSM is created by instantiating portions of ABEL's general medical
knowledge and filling in its details from the specific case being considered. The
instantiation of the PSiM is very strongly guided by initially given data, because the PSM
includes only those disorders and connections that are needed to explain the current
case. Instantiation is accomplished by five major operators. /nitial formulation creates

an initial patient description from the presenting complaints and laboratory results.
Aggregation and elaboration make connections between the levels of detail in the PSM

by filling in the structure above and below a selected part of the network, respectively. In
a domain such as ABEL's, multiple disorders in a single patient and the presence of
homeostatic mechanisms require the program to reason about the joint effects of several

mechanisms which collectively influence a single quantity or state. Component de-
composition and summation relate disorders at the same level of detail by mutually

constraining a total phenomenon and its components; the net change in any quantity

must be consistent with the sum of individual changes in its parts. The final operator,

projection, forges the causal links within a single level of detail in the search for causal
explanations. The operators all interact because the complete PSM must be self-
consistent both within each level and across all its levels. Therefore, each operation
typically requires the invocation of others to complete or verify the creation of related
parts of the PSM. Furthermore, PSM’s are organized in a context tree allowing different
PSM's to share structures common to them. The root of the PSM-tree also contains all
the observed findings and diseases which have been concluded to be true so that they

may be shared by all PSM's.
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Locality is a desirable property for the reasoning and description schemes. It
imposes modularity in the o:ganization of knowledge, making acquisition and
representation of knowledge tractable. Furthermore, it makes possible efficient
reasoning schemes whose resource requirements do not grow with increasirq size of
the data-base.b To exploit the locality constraint in reasoning with causal networks, a
program should be able to reason based only on the information locally available from
the neighborhood of the mechanism under consideration. Although it is always possible
to choose a level of abstraction at which the interaction between a given pair of states
can be described locally, for a given level of detail it is not possible to impose the locality
constraint on every interaction. The multiple-level causal model and the
abstraction/elaboration process presented in this thesis allow us to overcome this
problem. For example, if at some level of detail two distant states interact, we can
aggregate the description of intervening causal network to a level where the two states
are adjacent to one another. The interaction between the two can now be computed

locally.

Chapter 5 discusses the diagnostic problem solving activity. The diagnostic
problems are formulated by identifying the weaknesses and conflicts in the PSM's. The
task of the diagnostic problem solver is to resolve these conflicts and weaknesses by
gathering new information. We note that the meuical knowledge in the program consists
of prototypes of the disease entities. However, this prototypical knowledge can be
substantially constrained because the hypothesized disease entities must be consistent
with the known facts and explanations. We introduce the notion of a diagnostic closure
which extracts and tailors that part of medical knowledge that is directly relevant to the
diagnostic task at hand. The diagnostic closure brings together all the dependencies

and expectations necessary for planning a diagnostic inquiry, for evaluating real and

6. Locality has been exploited in a large number of diverse problems, such as common-sense
reasoning [Minsky73, Kuipers77, deKleer79] and natural language processing [Marcus?9,
Church80, Martin81]. For example, the constraint of “context freeness” in natural language is a
specific inslance of locality constraint.
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apparent discrepancies in the incoming information, and providez a framework for
explaining the alternatives under consideration and for justifying the selection of
questions. Although we envision using recent advances in the planning paradigm
[Fikes72, Sacerdoti75, Stefik81], the current implementation of the program generates a
simple tree-structured plan for information gathering by decomposing the problem by
successive applications of confirm, rule-out, differentiate, and group-and-differentiate
strategies. Finally, when a sufficient amount of new information is available the program
assimilates this information into the PSMs and the diagnostic process is repeated. The
process terminates when an adequate explanation for the patient's iliness is found or

when all the information necessary for such an explanation is exhausted.

in chapter 6 we revisit the example described in chapter 2 in greater detail.
Chapter 7 summarizes the experience gained and lessons learned in this enterprise and
indicates pointers to future research. Finally, appendix 1 briefly summarizes the XLMS
system (a knowledge representation system built on top of LISP) used by ABEL.
Appendix 2 summarizes the techniques for translating the internal data structures of the
program into Fnglish developed recently by Swartout [Swartout80] and discusses
algorithms for organizing the concepts encoded in causal networks into a linear
sequence of sentence level objects that can then be translated using the above-

mentioned methodology.
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2. Examples

This chapter presents the inner workings of ABEL with the help of annotated
examples. In this chapter the reader is not expected to understand how the program
accomplishes its task, but rather just what it does. The succeeding chapters will
examine the structure of the program and the method by which each step is
accomplished. We will consider two examples: (1) a patient suffering from moderately
severe salmonellosis, and (2) a patient suffering from moderately severe salmonellosis
and vomiting. The selection of the medical examples is motivated by our desire to make
the medical contents of the examples as simple as possible. In chapter 6 we will revisit

these examples and discuss how the program accomplishes each of its tasks.
2.1 Exawnple 1: Salmonellosis

For the first example let us consider a 40 year old 70 Kg male patient who has
been suffering from moderately severe salmonellosis and, as a result, has developed
moderately severe metatolic acidosis and hypokalemia. To illustrate the program let us
provide it initially with only the laboratory analysis of the patient’'s blood sample (serum

analysis) without any clinical information.

Serum Analysis:

Time: 0 time of the session
Sex: male
Na: 142 meq/1 normal
K: 3 meq/l moderately low
Cl: 113 meq/1 normal
HC03: 15 meq/1 . moderately low
pCO02: 30 mmHg moderately low

Based on these data, the program generates all possible acid-base
disturbances that can account for the laboratory data. It then prunes and rank-orders
these disturbances based on their complexity, likelihood and severity of each

component. The rank-ordered list of likely disturbances is:
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---- Patient Acid-3ase Profile ----

1. metabolic-acidosis [severity: 0.4] very likely
2. chronic-respiratory-alkalosis [severity: 0.68])
+ acute-respiratory-acidosis [severity: 0.32] unlikely

The computation of the acid-base profile is based on the Nomogram of
Acid-Base Disturbances described in chapter 1. Figure 4 shows the relevant region of
this nomogram with the loci of the two hypothesized disturbances. The estimation of the
severity of a disturbance is based on the length of the segment along the locus of that
disturbance. Thus, we note that the severity of the single acid-base disturbance
(metabolic acidosis) is only about 0.4 while an equivalent acid-base disturbance
composed of chronic respiratory alkalosis and acute respiratory acidosis has severities

of 0.68 and 0.32 respectively.’

Next, the program creates a PSM for cach possible acid-base disturbance and
interprets the laboratory data in the context defined by each acid-base disturbance. For
example, with the assumption of fully compensated metabolic acidosis, the entire
change in the PCO, may be considered chronic, therefore, the chronic component of
the PCO,, will be 30 meq/I, while with the assumption of chronic respiratory alkalosis and
acute respiratory acidosis, the chronic component of PCO, is due only to the chronic
component of this disturbance, therefore reading from the nomogram we find that the

chronic value of PCO, in this case will be approximately 16 meq/I.

The program then aggregates its patient-specific physiologic knowledge to
formulate an interpretation of the laboratory data at the clinical level. The computer
generated explanation of its interpretation of these data under the two major hypotheses

is described in figures 5 and 6.

7. The numbers corresponding to the acid-base disturbances computed above are the programs
internal assessment of the severity of illness, they are not measurable.
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Fig. 4. Graphic depiction of the two Acid-Base hypotheses
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A quick look at the two clinical level explanations shows that the structure
involving hypokalemia and acidemia is common to the two hypotheses. They differ in
their accounting for acidemia. Note that the clinical level abstraction of the two
hypotheses is fairly simple in structure and does not contain any feedback cycles. The
cycles present at the intermediate level describing the interaction between the acidemia,
hypobicarbonatemia and hypocapnia have been abstracted away. A closer look at
these feedback cycles shows the principal difference between the two hypotheses. In
the first case, the change in the acid-base state is a consequence of loss of HCO3 from
the body which causes hypobicarbonatemia, whereas in the second it enters as primary
disturbance in ventilation which alters the PCOQ. Finally, we note that the first
hypothesis has two unaccounted findings while the second hypothesis contains three

unaccounted findings.
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Fig. 5. Comparision of hypothceses 1 & 2 at clinical level

Hypothesis 1: Metabolic Acidosis

This is a 40 year old 70.0 kg male patient. His clectrolytes are:

Na: 142.0 HCO3: 15.0 Anion Gap: 13.0
K: 3.0 pCO2: 30.0
C1: 113.0 pH: 7.32

The patient has moderate metabolic acidosis and mild hypokalemia. The metabolic acidosis
causes mild acidemia. 'The acidemia partly compensates the suspected moderate hypokalemia leading to

the obscrved hypokalemia. ‘The metabolic acidosis remains to be accounted for. 'The hypokalemia has
only been partially accounted for.
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Hypothesis 2: Chronic Resp. Alkalosis & Acute Resp. Acidosis

This is a 40 ycar old 70.0 kg male patient. His clectrolytes are: ...

‘The patient has maoderate chronic respiratory alkalosis, moderate acute respiratory acidosis and
mild hypokalemia. ‘The acute respiratory acidosis and chronic respiratory alkalosis cause mild acidemia.
‘The acidemia partly compensates the suspected moderate hypokalemia leading to the observed

hypokalemia. ‘The chronic respiratory alkalosis and acutce respiratory acidosis remain to be accounted for.
‘The hypokalemia has only been partially accounted for.
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Fig. 6. Comparision of hypotheses 1 & 2 at intermediate level
Hypothesis 1: Metabolic Acidosis

This is a 40 year old 70.0 kg male patient. His clectrolytes are: ...

The patient has moderatc  metabolic  acidosis, mild hypokalemia and modecrate
hypobicarbonatemia. The metabolic acidosis along with  moderate  hypocapnia  causes
hypobicarbonatemia. The hypobicarbonatemia along with hypocapnia causes mild acidemia. The
acidemia partly compensates the suspected moderate hypokalemia leading to the observed hypokalcmia.
‘The metabolic acidosis remains to be accounted for. ‘The hypokalemia has only been partially accounted
for.
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Hypothesis 2: Chronic Resp. Alkalosis & Acute Resp. Acidosis

This is a 40 year old 70.0 kg male paticnt. His clectrolytes are: ...

‘The patient has moderate acute respiratory acidosis, moderate chronic respiratory alkalosis, mild
hypokalemia and moderate hypobicarbonatemia. The chronic respiratory alkalosis and acute respiratory
acidosis along with mild acidemia cause moderate hypocapnia, which causes hypobicarbonatemia, ‘The
hypobicarbonatemia and hypocapnia cause acidemia. The acidemia partly compensates the suspected
maoderate hypokalemia leading to the observed hypokalemia. 'Fhe acute respiratory acidosis and chronic
respiratory alkalosis remain to be accounted for. ‘The hypokalemia has only been partially accounted for,
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In the context of this initial analysis of the patient’s condition, the program starts
the diagnostic exploration. An annotated (in italics) transcript of the program's

diagnostic behavior is shown next.

The program computes the diagnostic closures for the two hypotheses and
decides to pursue the first hypothesis.

Differentiating between the causes of the leading complete hypothesis.

1 SALMONELLOSIS
2 URETEROSIGMOIDOSTOMY
3 VILLOUS-ADENOMA

B e e e

4 DISTAL-RTA

5 PROXIMAL-RTA

6 ACUTE-RENAL -FAILURE

7 CHRONIC-RENAL-FAILURE
continue? ==

The list above contains all possible diseases that can explain some part of the
tirst hypothesis. The list is divided into groups of diseases by the number of
unaccounted findings that each disease can explain succinctly. Within each group the
diseases are ordered by a secondary scoring criterion based on the quality of their
match with the hypothesis and their potential to be ultimately confirmed.

Differentiating between SALMONELLOSIS URETEROSIGMOIDOSTOMY VILLOUS-ADENOMA

As a first step towards differentiation, the program asks if the user is already
aware of any of the possible alternatives.

Does the patient have any of the following?
1 SALMONELLOSIS
2 URETEROSIGMOIDOSTOMY
3 VILLOUS-ADENOMA

Please enter numbers between 1 and 3
Present: ==> E(xplain)

The user indicates that he would like an explanation. The program prompts by
indicating in a menu the possible choices lor explanation.
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DESCRIBE-HYPOTHESIS
DESCRIBE-DIAGMOSTIC-REASONING
DESCRIBE-FILDING
DESCRIBE-CAUSE

DONE

D WN =

==) 2
The stack of diagnostic goals:

3 DIFF-CAUSES
2 CONFIRM-CH
1 DIAGNOSE

I am diagnosing the possible acid base disturbances. I am
confirming the leading hypothesis. I am differentiating between
its leading causes.

DESCRIBE-HYPOTHESIS
DESCRIBE-DIAGNOSTIC-REASONING
DESCRIBE-FINDING
DESCRIBE-CAUSE

DONE

e WwWwN -

==> 4
Please enter a cause for viewing: ==> salmonellosis

Salmonellosis may account for moderate metabolic acidosis and
moderate hypokalemia as follows.

Moderate salmonellosis may cause metabolic acidosis.

Moderate salmonellosis may cause hypokalemia

DESCRIBE-HYPOTHESIS
DESCRIBE-DIAGNOSTIC-REASONING
DESCRIBE-FINDING
DCSCRIBE-CAUSE

DONE

OV W N =

==) 5§

Does the patient have any of the following?
1 SALMONELLOSIS
2 URETEROSIGMOIDOSTOMY
3 VILLOUS-ADENOMA

Present: ==> none Absent: ==> none Unknown: 1 2 3

Differentiating between
SALMONELLOSIS URETEROSIGMOIDOSTOMY VILLOUS-ADENOMA

Salmonellosis, ureterosigmoidostomy and villous-adenoma all cause a
reduction in extracollular lluid, resulling in dehydration. However, the program nolices
that some of the discases in the second set (e.q., renal lailure) may have the exact
opposite ellect of causing edema. Therelore, while exploting the state ol extracellular
Ihd the program includes edema in the question.
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Does the patient have one of the following?
1 DEHYDRATION
2 EDEMA

Present: ==> none Absent: ==> none Unknown: 1 2

The program is expecting dehydration. Therefore, when we fail to confirm or
deny the dehydration the program pursues the finding further.

I would like to ask about the effects of SALMONELLOSIS.

Is the value of SERUM-CREATININE known? ==> E(xplain)

High serum creatinine may be caused by moderate salmonellosis
as follows:

Moderately high serum creatinine may be caused by moderate
dehydration, which may be caused by salmonellosis.

The user indicates that he would like a justification for this question. The
program generates the explanation by tracing back the causal path from serum
creatinine in the DC associated with the goal of the question.

The program’s diagnostic reasoning at this point can be described as follows:
The top level goal of the program is to do diagnosis. In order to do the diagnosis the
program evaluates the two alternate hypotheses and selects the first hypothesis
(metabolic-acidosis) for confirmation. To confirm this hypothesis it selects the set of
leading causes for the lirst hypothesis, namely, salmonellosis, ureterosigmoidostomy
and villous-adenoma. It then attempts to differentiate between these causes. It
determines the findings predicted by each of these three causes, crders them according
to their discriminatory power, and asks about them, the most discrir.unating finding first.

Is the value of SERUM-CREATININE known? ==> yes

Please enter the attributes of SERUM-CREATININE

What is the VALUE of SERUM-CREATININE ? ==> 3

What is the START-TIME of SERUM-CREATININE ? ==> 0

Is the value of MEAN-ARTERIAL-BLOOD-PRESSURE known? ==> yes

Please enter the attributes of MEAN-ARTERIAL-BLOOD-PRESSURE
What is the VALUE of MEAN-ARTERIAL-BLOOD-PRESSURE ? ==> 75
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The program has now completed one full cycle of its planned diagnostic inquiry.
It now incorporates this informa.ion into both hypotheses and staits the next cycle of
diagnostic planning.

Starting next cycle of diagnosis
Differentiating between the causes of the leading complete hypothesis.

1 SALMONELLOSIS

2 VILLOUS-ADENOMA
3 URETEROSIGMOIDOSTOMY

4 ADRENAL-INSUFFICIENCY
b DIABETES-INSIPIDUS

6 ACUTE-RENAL-FAILURE

7 CHRONIC-RENAL-FAILURE

8 DISTAL-RTA
9 PROXIMAL-RTA
continue? ==

The program has already gathered sullicient information to confirm
salmonellosis. It is unable to do so because we have not implemented the criteria for
conlfirming a disease yet. However, we note that the information gathered has provided
Substantial categorical separation between the gastrointestinal and the renal causes of
the metabolic-acidosis with hypokalemia.

Pursuing SALMONELLOSIS: no findings available

Differentiating between VILLOUS-ADENOMA URETEROSIGMOIDOSTOMY :
no finding available

Differentiating between ADRENAL-IMSUFFICIENCY DIABETES-INSIPIDUS
ACUTE-RENAL-FAILURE CHRONIC-RENAL-FAILURE

As there are more than twu items in the differentiation set, the program groups
these items into renal and extra-renal sets. It then pursues the renal set first.

Does the patient have any of the following?
1 CHRONIC-RENAL-FAILURE
2 ACUTE-RENAL-FAILURE

Present: ==> none Absent: ==> 1 2
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Does the patient have c¢ny of the following?
1 ADRENAL-INSU! FICIENCY
2 DIABETES-INSIPIDUS

Present: ==> none Absent: ==> 1 Unknown: 2
Differentiating between DISTAL-RTA PROXIMAL-RTA

Does the patient have any of the following?
1 PROXIMAL-RTA
2 DISTAL-RTA

Present: ==> none Absent: ==> none Unknown: 1 2

The program has now completed the second cycle of its planned diagnostic
inquiry. No new linding was uncovered during this cycle of diagnosis and therefore, the
program does not need to revise the two hypotheses. However, during the planning of
the next cycle of diagnostic inquiry it discovers that all the questions relevant to the
etiology of metabolic-acidosis and hypokalemia have already been exhausted.
Therefore, in order to proceed it requests that some possible etiology be assumed.

Starting next cycle of diagnosis
No new finding added in the previous cycle.

A11 possible etiologies that could explain the patient's
illness are unknown. In order to proceed we must at least
hypothetically assume one of them. Possible etiologies that could
explain the patient's illness listed in decreasing order are:

1 SALMONEI.LOSIS

2 VILLOUS-ADENOMA
3 URETEROSIGMOINOSTOMY

5 DISTAL-RTA
6 PROXIMAL-RTA

Would you like to assume SALMONELLOSIS ? ==) yes

Assuming MODERATE ACUTE SALMONELLOSIS.

The program adds salmonellosis to the patiecnt models and re-evaluales two
hypotheses before resuming the diagnosis again. However, it immediately recognizes
that it has lound the miss, g piece in the puzzle! Basced on the assumplion that the
patient has salmonellosis, the program selects the lirst PSM (metabolic acidosis) as the
explanation of the palicnt's acid-base disorder.  The program’s explanations of the
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successful and the alternate PSMs are shown next. Note, hcowever, that these
explanations are provided with the assumption that the patient has salmonellosis, an
assumption that needs to be verified.

Diagnosis completed. The successful diagnosis is:

This is a 40 year old 70.0 kg male patient with moJderate
salmonellosis. His electrolytes are:

Na: 142.0 HCO3: 15.0 Anion Gap: 13.0
K: 3.0 pCo2: 30.0
C1: 113.0 pH: 7.32 Creatinine: 3.0

The salmonellosis causes moderate metabolic acidosis and
moderate dehydration. The dehydration causes moderate
hypotension and moderate high creatinine disturbance. The
metabolic acidosis causes mild acidemia. The salmonellosis and
acidemia cause mild hypokalemia. A1l findings have been
accounted for,

As can be seen from the above explanation, the program has concluded that
salmonellosis provides an adequate explanation for the patient's illness and that the first
hypothesis is substantially superior to the alternate hypothesis. The alternate hypothesis
with all the available information added is shown below.

This is a 40 year old 70.0 kg male patient with salmonellosis.
His electrolytes are:

Na: 142.0 HCO3: 15.0 Anion Gap: 13.0
K: 3.0 pCO02: 30.0
Cl: 113.0 pH: 7.32 Creatinine: 3.0

The salmonellosis causes moderate metabolic acidosis and
moderate dehydration. The dehydration causes moderate
hypotension and moderate high creatinine disturbance.
Moderate acute respiratory acidosis, moderate chronic
respiratory alkalosis and metabolic acidosis partly
compensdate the suspected mild alkalemia leading to the
observed mild acidemia. The salmonellosis and acidemia cause
mild hypokalemia. The chronic respiratory alkalosis and
acute respiratory acidosis remain Lo be accounted for. The
alkalemia has only been partially accounted for.

Notice the dillerence in the two explanations. The flirst explanation contains
only one acid-base disturbance, while the second explanation contains a total of three
acid-base disturbances. Furthermouie, all the findings in the first hypothesis have been
accountid lor while the second hypothesis has three acid-base disturbances still to be
accounted lor.
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2.2 Example 2: Vomiting and Salmonellosis

The next example illustrates the program’s capabilities in dealing with multiple
etiologies, namely salmonellosis and vomiting, which offset the effects of each other on
the acid-base balance. We will focus on the program’s understanding and its ability to

reformulate this understanding when new information is provided.

Let us consider a patient who is suffering from moderately severe vomiting for
the past two days who then develops salmonellosis. Note that the electrolyte and
acid-base disturbances in vomiting result from the excessive loss of upper
gastrointestinal fluid, while in salmonellosis they result from the loss of lower
gastrointestinal fluid. The upper Gl fluid is acidic while the lower Gl fluid is alkaline,
therefore the two tend to have offsetting effects on the acid-base balance. However,
vomiting and salmonellosis both cause hypokalemia and dehydration, therefore they
compound these effects of each other. For this example, let us consider a patient in
which the presentation of vomiting and salmonellosis are such that each exactly cancels
the acid-base effect of the other, leaving the patient with no acid-base disturbance. We
will illustrate the program’s handling of this case by describing the program's
understanding of the case at three points during the diagnostic process: (1) just after the
electrolyte values are entered in the program, (2) after the finding of vomiting has been

presented, and (3) at the end of the diagnostic process.

The program’s evaluation of the serum electrolytes and the English explanation

of its initial hypothesis are:
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Serum Analysis:

Time: 0
Sex: male
Na: 141 meq/1 normal
K: 2 meq/ ) low
Cl: 108 meg/ normal
HCO3: 25 meq/1 normal
pCO2: 39 mmHg normal

---- Patient Acid-Base Profile ----
1. normal-acid-base-state

This is a 40 year old 70.0 kg male patient with moderate
hypokalemia. His electrolytes are: .....

The serum analysis reveals only one abnormal finding, hypokalemia. The
program starts the diagnostic process by attempting to differentiate between the
possible causes of hypokalemia which include vomiting and salmonellosis along with
other eticlogies such as laxative abuse, diuretic use, hyperaldosteronism etc. The
summary of the program's hypothesis after the finding of moderately severe vomiting has

been presented is:

This is a 40 year old 70.0 kg male patient with moderate
vomiting. His electrolytes are:

Na: 143.0 HCO3: 25.0 Anion Gap: 12.0
K: 2.0 pCo2: 39.0
Cl: 108.0 pH: 7.42

The vomiting causes moderate metabolic alkalosis. Moderate
hypokalemia is partly caused by vomiting leaving some
additional factor causing hypokalemia still unaccounted for. The
hypokalemia and moderate acidemia have only been partially
accounted for.

Notice that the vomiting partially accounts for the observed hypokalemia.
However, in order to account for the hypokalemia the program must assume that there
has been substantial upper Gl fluid loss sufficient to also cause metabolic alkalosis. As
this metabolic alkalosis is not consistent with the normal acid-base state the program

must decompose the normai acid-base state into oftsetting alkalemia and acidemia. The
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alkalemia which is accounted for by metabolic alkalosis, and acidea which remains
unaccounted for. The remaining unaccounted components now present a picture
similar to that of the previous case (example 1) and the diagnosis proceeds similarly.
The diagnosis is completed when the program is told about salmonellosis (the remaining

disturbance). A summary of the programs’ final diagnosis is described next.

This is a 40 year old 70.0 kg male patient with moderate
vomiting and moderate salmonellosis. His electrolytes are:

Na: 143.0 HCO3: 256.0 Anion Gap: 12.0
K: 2.0 pC02: 39.0
C1: 108.0 pH: 7.42 Creatinine: 3.0

The vomiting causes moderate metabolic alkalosis. The
salmonellosis and vomiting cause moderate dehydration, which
causes moderate hypotension. The dehydration also causes
moderate high creatinine disturbance. The salmonellosis causes
moderate metabolic acidosis. The metabolic acidosis and
metabolic alkalosis cause normal ph. The salmonellosis, normal
ph and vomiting cause moderate acute hypokalemia. All1 findings
have been accounted for.

The primary focus of this thesis is in developing a methodology for knowledge
representation and manipulation that allows our program to exhibit the understanding of
patient iliness demonstrated above. In the next three chapters we will study in detail this
methodology and its implementation before revisiting the same examples again in

greater detail.
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3. Representation of Medical Knowledge

lliness can be described as a change in the normal state or function in a patient.
To describe an iliness, we need a formalism to represent the states, the state changes,
the normal and the abnormal functions and their interactions in terms of the primitives
known to the system. This knowledge is organized in the program with the help of (1) an
anatomy component, which includes a part-of hierarchy for organ systems, contained-in
and position relations for major anatomical features, and a connected-to relation which
provides material flow information. (2) A physiology component, where our
concentration has been only on the fluid and electrolytes, describes the fluid
compartments of the body, the spaces of distribution of various solutes, and the relative
distribution of losses and gains in the various compartments under different conditions.
(3) A pathophysiology component, which contains some primitive knowledge about
disease etiologies, a taxonomy of disease processes, and causal relations which

describe how the changes in a given state influence other states.

It is also important to recognize commonly occurring constellations of abnormal
states as special composite situations. Conceptualization of these composite situations
in a diagnostic system is important because it provides us with the ability to reason at a
high level of abstraction, and to organize a large number of seemingly unrelated facts
into a coherent whole. We have argued that it is crucial for any diagnostic system to
have the abilily to reason simultaneously at a high level of abstraction consisting of
phenomenological knowledge as well as at a physiological level. We accomplish this
with the help of a multi-level model for representation of diseases and causal
phenomena. This is motivaled by the observations made by Lynch while studying the
conceptual maps of metropolitan regions. He notes
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“Rather than a single comprehensive image for the entire
environment, there seemed to be sets of images, which more or less
overlapped and interrelated. They were typically arranged in a series of
levels, roughly by the scale of area involved, so that the observer moved as
necessary from an image at street level to levels of a neighborhood, a city,
or a metropolitan region."’

— The image of the city [Lynch60, pages 85-86].

The structure of the cognitive map described above is a product of the necessity
to cope with large-scale maps; maps that are too large to be perceived at once, too large
to be stored in the short-term memory by their users at a single instance of time, and too
complex to be computationally tractable in solving problems (such as finding an efficient
path between two points on the map). An important observation in formulating cognitive
maps is that they are organized around landmarks. The conceptualization can be
achieved by expanding the denotation of a landmark to subsume the local topology
surrounding the designated location. If this conceptualization is carried out carefully, so
that the areas subsumed by these landmarks overlap and cover the entire detailed map,
it is possible to maintain sufficient coherence (mapping) to be able to move between

different levels of description.

Based on these observations and similar observations of a physician's use of
medical knowledge, we have developed a hierarchical multi-level representation scheme
to describe medical knowledge. The lowest level of this description consists of
pathophysiological knowledge about diseases, which is successively aggregated
(summarized) into higher level concepts and relations, gradually shifting the content of
the description from physiological to syndromic knowledge. The aggregate syndromic
knowledge provides us with a concise global perspective and helps in the efficient
exploration of the diagnostic alternatives. The physiological knowledge, on the other
hand, provides us the capabilities of handling complex clinical situations arising in
patients with multiple disturbances, evaluating the physiological validity of the diagnostic
possibilities being explored, and organizing a number of fragmented and seeimingly

unrelated facts into a coherent causal description.
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3.1 Anatomical Knowledge

The anatomical knowledge of the system includes (1) a part-of hierarchy for
organ systems, (2) connected-to relations, which provide the material flow information,
and (3) contained-in and position relations which provide gross anatomical relations

between anatomical entities.
3.1.1 Anatomical Taxonomy

The part-of hierarchy defines the various anatomical parts of the body by
defining each organ system in relation to the body, and each sub-organ in relation to the
organ-system containing it. The part-of hierarchy provides us with the taxonomic
hierarchy for anatomical parts. A small section of the part-of hierarchy® and its graphical

representation is shown in figure 7.
3.1.2 Material Flow Pathways

Material flow (e.g. the flow of glomerular filtrate) is represented by the
connected-to relation. For example, the path of the filtrate in the kidney can be

described as shown in figure 8. As can be seen from the figure, the material flow relation
is specified at various levels of detail. The rationale for this multiple level description is

provided later on in this section.

The anatomical knowledge that follows in the remainder of this section has been
included to provide a fuller description of ABEL’s knowledge base. However, this

knowledge is currently not used by the program in its diagnostic reasoning.

8. The data are expressed in XILMS [Hawkinsont0], which is bricfly described in appendix 1.
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rig. 7. The part-of hierarchy

[body
[urinary-system
[kidney = (anat-entity*s "kidney")tu
[cortex = (anat-entity*s "cortex")tu]
[medulla = (anat-entity*s "medulla")tu)
= (anat-entity*s "nephron")tu
(anat-entity*s "tubule")tu

[nephron =
[tubule =
[proximal-tubule
= (anat-entity*s "proximal-tubule")tu]

(anat-entity*s "urinary-system")tu

[loop-of-henle
= (anat-entity*s "loop-of-henle")tu]
[distal-tubule
= (anat-entity*s "distal-tubule")tu]]
[glomerulus = (anat-entity*s "glomerulus")tu]]
[collecting-duct
(anat-entity*s "collecting-duct")tu]]
(anat-entity*s "ureter")tu]

[ureter
[bladder = (anat-entity*s "bladder")tu
[urethra = (anat-entity*s "urethra")tu]]]
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Fig. 8. Material flow relations
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3.1.3 Anatomical Spaces

Various anatomical parts of the body are distributed in diffcrent spaces. These
spaces are generally isolated from one another by membrar.e barriers which prevent the
free flow of various electrolytes, froteins etc. Thus, the composition of the fluid
surrounding organs in a given compartment can be different from that in other
compartments. These general characteristics of the compartment can be useful in
diagnosis and management of various diseases. Exainples of such a compartment are
the cranial-cavity and the peritoneal-cavity. Although the anatomical part-of relation and

spatial containment relation are very similar, a distinction between the two must be

made. For example, the cortex and the nephron are two ditferent parts of the kidney and




Fig. 9. The containment relation

[body-space
[((contains*b body-space)*e cranial-cavity)]
[((contains*b body-space)*e abdominal-cavity)]
[((contains*b body-space)*e oropharynx-cavity)]
[((contains*b body-space)*e thoracic-cavity)]

[abdominal-cavity
[((contains*b abdominal-cavity)*e stomach-space)]
[((contains*b abdominal-cavity)*e spleen-space)]
[((contains*b abdominal-cavity)*e liver-space)]
[((contains*b abdominal-cavity)*e kidney-space)]

]

[kidney-space
[((contains*b kidney-space)*e cortex-space)]
[((contains*b kidney-space)*e medulla-space)]]

[cortex-space
[((contains*b cortex-space)*e glomerular-space)]]

[medulla-space
[((contains*b medulla-space)*e tubular-space)]]

body space

abdominal cavity
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the nephron has two parts, the glomerulus and the tubule; however, the glomerulus is
contained in the anatomical space of the cortex while the tubule is contained in the
anatomical space of the medulla. A graphical representation of this can be seen in

figure 9.

3.1.4 Miscellaneous Gross Anatomical Relations

A few additional anatomical relations are useful in common sense reasoning in
medicine. An example of such a relation is the relative positioning of various anatomical
spaces in supine position (lying face up in bed), erect position (standing up or
ambulatory), etc. The use of this information can be illustrated by the following example.
Let us consider a patient with nephrotic syndrome. A common symptom in nephrotic
syndrome is periorbital edema (accumulation of fluid under the skin around the eye). In
ambulatory patients, the periorbital edema can be observed only in the morning (after
the patient has been lying down for some period of time); this accumulation of fluid can
gravitationally move into other spaces once the patient has been up and around for
some hours in the day. Thus the symptom is observable only in the morning and tends to
disappear later in the day. Exactly an opposite effect can be observed in the case of
pedal edema (accumulation of fluid in the feet) which tends to appear towards the
evening and disappear in the mornings. This information can be used to explain away
the absence of pedal edema in an edematous patient who is comatose. This information

is encoded in the program with the use of positional relations as shown in figure 10.

We would like to iniote that the use of the anatomical knowledge in the current
implementation of ABEL is limited to the use of anatomic taxonomy. However, we
believe that the knowledge described here will be usetul for further develcpment of the

diagnostic component as well as the therapy and prognosis components of the project.
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Fig. 10. Gross anatomical relations
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3.2 Etiological Knowledge

Disease categories are primarily organized around the organ systems; e.g.,
renal diseases, pulmonary diseases, liver ¢“seases. In the previous section we have
provided the basic framework of anatomical knowledge needed to provide such a
categorization. The diseases of a given organ system tend to produce many symptoms
associated with the loss of function of that system. For example, regardless of the cause

of renal failure, all the diseases causing renai failure share common symptoms.

Another important criterion for organizing diseases is the underlying
mechanism causing the clinical disorder, i.e., the etiology of the disease. Similar to the
anatomical categorization, the diseases with common etiology share symptoms common
to the disease mechanism. For example, most infectious diseases cause fever. The

taxonomy of etiologies in the program is shown in figure 11.
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Fig. 11. Etiological hierarchy

[etiology = (medical-entity*s "etiology")
[infectious = (etiology*s "infectious")]
[immunologic = (etiology*s "immunologic")]
[degenerative = (etiology*s "degenerative")]
[toxic = (etiology*s "toxic")
[biologic-toxins = (toxic*s "biologic-toxins")]
[chemical-toxins = (toxic*s "chemical-toxins")]]
[metabolic = (etiology*s "metabolic")
[genetic = (metabolic*s ")]
[congenital = (metabolic*s ")]
[endocrine = (metabolic*s ")]]

]
etiology
infectious toxic immunologic degenerative metabolic ... ..
biologic chemical genetic congenital endocrine ... ..

3.3 Physiological Knowledge

Knowledge about the normal functioning of the body and its adaptive response
to abnormalities in body function plays an important role in the understanding and
recognition of diseases. The need for this understanding is even more acutely felt in
complex clinical settings involving the simultaneous presence of multiple abnormalities.

Emphasizing this nced, Dr. Jordan Cohen notes:
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“The recognitior of how common mixed disturbances are in
complex clinical settings has served to emphasize the value ¢ f recognizing
the limits of the physiologic response to simple disturbances, because
frequently by reterence to these limits one can recognize when a complex
disturbance involving more than one simple abnormality is present.”

— New Concepts of Acid-Base Balance [Cohen77, page 1).

In the physiological component of the program we have concentrated on the knowledge
necessary in dealing with fluid, electrolyte and acid-base disorders. The physiological
knowledge about fluids and electrolytes in the program deals with fluid compartments of
the body and the distribution of body fluids in various fluid compartments, the
composition of fluid in each compartment, the space of distribution of solutes, exchange
of fluid and electrolytes between these compartments, and the homeostatic machanism

for regulating the quantity and composition of the body fluids.
For example, let us iook at the definition of the Serum-Potassium concentration:

[body = ((anatomical-entity*s "body")*u patient)
[body-fluid = ((fluid*s "body-fluid")*u body)
[ecf = ((fluid*s "extracellular")*u body-fluid)
[ecf-k = (K*u ecf)
[serum-k = (concentration*u ecf-k)
[low-serum-k = (serum-k*f low)
[defaulttu #v 13.0]
[rangetu #c !'(betweer 2.0 3.56)]
#s (standard-error*c 11.0,11.0)]
[high-serum-k = (serum-m*f high)

[normal-serum-k = (serum-k*f normal)

- 111111

The above expression defines serum-K (serum potassium) to be the concentration of
potassium ion (K) in the extracellular fluid compartment (ecf), which is cne of the
components of the body fluid (body-fluid). The serum-K is further categorized as being
either low (i.e., [(serum-k*f low)]), normal or high. Each of these categories is also
associated with its default value, range and the acceptable amount of variance
associated with its value (standard-error, in this case +1.0). The next example shows
the encoding of the normal composition of the lower-Gl-fluid. The lower-Gl-fluid

contains, in addition to water, Na, K, Cl and I|CO.J. The quantities of these clectrolytes
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and their variations are further sy ecified in terms of the total quantity of the fluid. For
example, the quantity of K is specified to be equal to 40.0 + 10.0 meq/L of water in the

lower-Gl-fluid.

[Tower-gi-fluid
[water:u #c (quantity*u lower-gi-fluid)]
[K:u #c (times*c water:u,!40.0)
#s (standard-error*t
(times*c water:u,!10.0),(times*c water:u,!10.0))]
[Na:u #c (times*c water:u,!110.0)
#s (standard-error*t
(times*c water:u,!10.0),(times*c water:u,!110.0))]
[Cl:u #c (times*c water:u,!80.0)
#s (standard-error*t
(times*c water:u,!20.0),(times*c water:u,!10.0))]
[HCO3:u #c (times*c water:u,!40.0)
#s (standard-error*t
(times*c water:u,!10.0),(times*c water:u,!20.0))]]

In the previous three sections we have described the anatomical, physiological
and etiological knowledge which, along with the temporal characterization, forms a basis

for the taxonomic organization of diseases discussed in the next section.
3.4 Disease Knowledge

In studying the organization of medical knowledge about diseases Pople notes

“There are two conceptual frameworks that are used to organize
medical knowledge, .... One of these employs the concept of causality or
pathophysiology to establish a network of interrelated pathological states
that might arise in the course of a disease. The other type of structure is
the taxonomy of diseases, also called a "nosology", which is used to
classily disease entilies on the basis of anatomical locus, etiological
agent, or other unifying principle."’

— Structuring Medical Diagnosis [Pople81]

This section deals with the use of anatomical, physiological, etiological and temporal
knowledge in defining a taxonomic disease hierarchy. With this taxonomic hicrarchy in
place, we will have completed the study ot the basic medical concepts needad in ABEL

for the description of disease pathophysiology.
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A disease is defined in terms of its anatomical involvement, its temporal
characteristic, its etiologic characterization and its pathophysiology. As each of the
anatomic, etiologic, and physiologic knowledge is hierarchically organized, the locus of
a disease along each of these dimensions can be selected at an appropriate level. A
hierarchic organization for the disease definitions can then be derived from these loci.?

For example, acute renal failure caused by nephrotoxic drugs could be specified as

[renal-disease = (disease*anat renal-system)
[renal-failure = (renal-disease*object (urine-volume*f low))
[acute-renal-failure = (renal-failure*tempch acute)
[drug-induced-acute-renal-failure
= (acute-renal-failure*etiology chemical-toxins)]]]]

The example above defines renal-disease to be a disease of the renal-system
(anatomical locus). Renal-failure is then defined as a renal disease characterized by low
urine output (physiological locus). Acute-renal-failure is defined to be renal-failure with
an acute temporal characteristic, and finally, the drug-induced-acute-renal-failure is
defined to be acute-renal-failure of chemically-toxic etiology. Note that each step of the
ahove definition defines a disease which is further specialized by one of its primary
characterizations. This provides a more specific placing of the diseases in the
taxonomic hierarchy. In the next example we show how the disease definitions can be

taxonomically organized along a single locus:

[GI-disturbance = (disturbance*anat gastrointestinal-system)
[Tower-GI-disturbance = (GI-disturbance*anat lowsr-gi-tract)]
[disturbance-of-colon = (lower-GI-Disturbance*anat colon)]]]

[renal-disease = (disease*anat renal-system)
[nephritis = (renal-disease*anat nephron)
[glomerular-nephritis = (nephritis*anat glomerulus)]]]

9. Each hierarchy, such as the anatomic taxonomy, providas us with a tree stiuctured partial
order. The tree structure for the disease definitions is then derived fromi these partial orders
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As can be seen from the above two examples, the basic medical knowledge
about anatomy, etiology etc., provides us with a framework for desciibing and organizing
the disease hierarchy. We believe in the need for such a knowledge structure in the
organization of any medical consulting program capable of expert level performance.
However, we must note that this development is tentative and the details of the
knowledge representation described above are likely to evolve considerably as its use in

the diagnostic and therapeutic algorithms is better understood.'©

In the next section we will study the representation mechanisms for describing

the causal (pathophysiological) knowledge relating different diseases.
3.5 Causal Link

A causal link specifies the cause-effect relaticn between the cause (the
antecedent) and the effect (the consequent) states. In the previous generation of
programs (i.e., PIP, INTERNIST and GLAUCOMA), causal relations were described by
links specifying the type of causality (e.g., may-be-caused-by, complicetion-of, etc.), and
a number or a set of numbers representing in some form the likelihood (conditional
probability), importance, etc., of observing the effect given the cause or vice versa. We
believe that this simple representation of the relation between states is inadequate. The
form of presentation of an effect and the likelihood of observing it depend upon various
aspects of the presentation of the cause instance such as severity and duration, as well
as on other factors in the context in which the causal phenomenon is manifested (such
as the patient’s age, sex and weight, and the current hypothesis about the patient's
illness). To illustrate this, let us consider a (simplified) causal relation between diarrhea
and dehydration. A rule-based description of this causal relation can be specified as

follows:

10. In the current implementation of ABEL, this knowledqge is used only tor grouping ditferent
findings and diseases in diagnostic problem solving. However, the knowledge representation
described in this chapter is capable of supporting a subustantially wider viriety of uses.
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IF diarrhea is severe,
and its duration is greater than two days,
THEN
IF the patient has not received fluid replacement therapy
THEN the patient is likely to have moderately severe dehydration
ELSE the patient may have mild dehydration

From the above simple example, it is apparent that the conditional probability of
observing dehydration and its severity and duration depend on the severity and duration
of diarrhea and the fluid replacement therapy. Even this simplified example clearly
demonstrates the need for information on how a cause relates to an effect, as well as
other contextual information influencing the causal relation. To capture this information,
the description of a causal link has associated with it a multivariate relation between
attributes of the cause and the effect, the context, and the assumptions which constrain
the causal relation. A schematic description of a causal link and its representation in the

data-base are shown in figure 12.

An example of the causal relation between total extracellular stores of

potassium (ecf-K) and its serum concentration (serum-K) is described below.

Fig. 12. Schematic description of a causal link

Causal-Link

Effect-Instance < Cause-Instance

Attribute:1 G
Attribute:2 <D
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[((caused-by*b ecf-k)*e serum-k)

[context:1 #v total-ecf-water]

[source:u
[valuetu #c (times*c (value*c (value*u destination:u)),

(value*c context:1))]

[start-timetu #c (value*c (start-time*u destination:u))]]

[destination:u
[valuetu #c (quotient*c (value*c (value*u source:u)),

(value*c context:1))]

[start-timetu #c (value*c (start-time*u source:u))]]]

The causal relation between ecf-k stores and serum-k is specified by a causal link with
cause (source) ecf-K and effect (destination) serum-k. The mapping relation describing
this link is divided into two parts. The first part is associated with the source of the link
and describes procedures for computing the attributes of the source (cause) given the
attributes of the destination (effect), and the second part is associated with the
destination given the attributes of the source. For example, the total quantity of
potassium in the extracellular compartment (value of the source) is characterized as
being the product of the quantity of the extracellular water (value of the context,

total-ecf-water) and the concentration of the potassium ion in it (destination, serum-k).
3.6 Multi-Level Causal Description

Medical knowledge about different diseases and their pathophysiology is
understood to varying degrees of detail. Our understanding of medical expert reasoning
also suggests that an expert physician may have an understanding of a difficult case in
terms of several levels of detail. For example, “serum creatinine concentration of 1.2 mg

per cent" is at a distinctly different level than “high serum creatinine”,'* and ‘“lower
gastrointestinal loss’ than “salmonellosis”. For our program to reason at a

sophisticated level of competence, it will need to share such a range of representations.
In order to be eftective the program must be able to describe the problem briefly yet still

be able to take low level detail into consideration. We have attacked this problem by

11. A serum creatinine of 1.2 mg per cent can be interpreted in more than one way. For example
we can assume this to be normal for a muscular male patient.  But, for a average built female
patient this could be an ey indication of lous of as much as 173 of the renal function.
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representing the program's medical and case-specific knowledge at five distinct levels of
detail,’? ranging from a pathophysiological level to a phenomenological level of

knowledge.

The patient description developed here provides us with the ability to describe
the patient’s illness at various levels of detail. Each level of the description can be
viewed as a semantic net describing a network of relations between diseases and
findings. Each node represents a normal or abnormal state of a physiological parameter
and each link represents some relation (causal, associational, etc.) between different
states. A state in the system is represented as a node in the causal network. Associated
with each node is a set of attributes descrihing its temporal characteristics, severity or
value, and other relevant attributes. A node is called primitive if it does not contain
internal structure and is called composite if it can be defined in terms of a causal

network of states at the next more detailed level of description. One of the nodes at that

Fig. 13. Schematic description of the node structure
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12. The number five does not have any medical or cognitive significance; it was chosen for
purely engineering reasons.
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more detailed level is designated s the focus node and the causal yetwork is called the
elaboration structure of the cornposite node. Figure 13 shows a schematic of the
elaboration structure for a composite node labeled X. Nodes A through F and links
between them form X's elaboration structure. Node X and F are connected together by a
focus link making F the focus of the elaboration structure. The focus node identifies the
essential part of the causal structure of the node above it. The collection of focal nodes
acts to align the causal networks represented by different levels of the PSM. We note
that very often a composite node and its focal description at the next level share the
same name.'® Nodes that do not play a role as the focal definition of any node at a
higher level are called non-aggregable nodes. They represent a detailed aspect of the
causal model which is subsumed under other nodes with different foci at less detailed

levels of description.

To illustrate the description of a state at various levels of aggregation, let us
consider the electrolyte and acid-base disturbances that occur with salmonellosis, which
causes excessive loss of lower gastrointestinal fluid (lower Gl fluid loss). In comparison
with plasma, the lower Gl fluid is rich in bicarbonate (HCO3) and potassium (K) and is
deficient in sodium (Na) and chloride (Cl). The composition of lower gastrointestinal

fluid and plasma are shown in figure 14. The loss of lower GlI fluid leads to the loss of

Fig. 14. Comparision of lower Gi fluid and of plasma

Lower Gl fluid Plasma
Na 100 - 110 138 - 145 mEq/L
K 30 - 40 4.5 mEq/L
cl 60 - 90 100 - 110 mEq/L
HCO3 30 - 60 24-28 mEq/L

13. This is typical in English, where the level of detail of plice names, for example, is often
obtained from context and not encoded in the name used.
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Fig. 15. The loss of electrolytes in lower Gi fluid
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corresponding quantities of its constituents as shown in figure 15. Therefore, an
excessive loss of lower Gi fluid without adequeate replacement of fluid and electrolytes
leads to a net reduction in the total quantity of fluid in the extracellular compartment
(called hypovolemia). Because the concentration of K and HCO3 in the lower Gl fluid is
greater than in the plasma, there is also a corresponding reduction in the serum
concentration of K (called hypokalemia) and HCOG3 (called hypobicarbonatemia) in the
extracellular fluid. Finally, because the concentration of Cl and Na in the lower Gl fluid is
lower than that in the plasma, there is corresponding increase in the concen.ration of Cl
(called hyperchloremii) and Na (called hypernatremia) in the extracellular fluid. A
graphic representation of this information at the next higher level of aggregation is
shown in figure 16. Figure 17 shows the aggregation of this information along with some
additional causes and consequences of lower Gl loss at the next more aggregate level of
detail. Hypobicarbonatemia is interpreted as metabolic acidosis at the next higher level

of detail. Note that the hypernatremia and hyperchloremia have not been encoded at

Fig. 16. Consequences of lower Gi loss described at next higher level
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rig. 17. Lower Giloss expressed at an intermediate level
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this level.' The hyperchloremia was not encoded because it is not clinically significant.
The hypernatremia, however, is not encoded because it is not a common finding in the
presentation of lower Gl loss. The lower Gl loss at this level is a non-aggregable state
and therefore does not have a focal aggregation at the next level above. Figure 18
shows the description of the aggregate effects of salmonellosis (one of the causes of

lower Gl loss).

Links can be categorized into two types, as nodes are: the primitive links and
the composite links. To illustrate the concept of elaborating causal links to form a causal
chain, let us consider the causal relation between salmonellosis and dehydration shown
in figure 19. The causal mechanism of dehydration caused by salmonellosis can be
elaborated as follows: salmonellosis causes lower Gl loss, which In turn causes
dehydration. Expressed at the next level of greater detail, the lower Gl loss leads to

water loss which results in reduction in the extracel ular volume. The state of reduced

Fig. 18. Salmonellosis and its consequences expressed at the clinical level
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14. The causal knowledge described here is encoded by hand, and represents the program's
genaral medical knowladge. A similar multi-level description built by the program to descube a
specific patient illness will be discussed in chapter 4,
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Fig. 19. Layered description of link: salmonellosis causes deydration
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extracellular volume is called dehydration.

Because the causal relations specified by links are not guaranteed to be true
under all circumstances (they represent strong associations, not logical truth), the
validity of deductions degrades with every additional intermediate link. That is, a causal
pathway containing a large number of links is less likely to be valid than one using only a
few links. Therefore, in order to explore a large diagnostic space, we must reduce the
lengths of commonly occurring chains of causal relaiions. One way of achieving this is
through the multi-level description proposed in this chapter. The multi-level description
scheme allows us to aggregate the diagnostic space to a level where each link
represents an aggregate causal phenomenon covering large distances and thus

minimizing the possibility of error in the deduction.
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However, the multi-leve! description proposed above can no. solve this problem
completely. For example, there are situations where all the intermed.ate nodes in a given
causal chain cannot be suppressed due to limited number of levels of description.
Stated differently, because of the fixed number of levels in the multi-level description, the
programs ability to aggregate causal description is limited. To overcome this problem
we introduce the notion of a compiled link which represents a causal pathway.'® The
compiled links provide us with the ability to selectively explore commonly occurring
causal paths more deeply than others without degrading the quality of deduction. This
also provides us with the additionul ability to activate'® nodes which are not immediate
neighbors of the node under consideration. For example, severe salmonellosis causes
dehydration sufficient to cause hypotension (lowering of blood pressure). This fact can

be represented in the data base by the compiled causal link as shown in the figure 20.

An important function of diagnostic reasoning is to relate causally the diseases
and symptoms observed in a patient. These causa!l relations play a central role in
identifying clusters that can L. meaningfully aggregated in developing coherent
diagnoses. The presence or absence of a causal relation between a pair of states can
change their diagnostic and prognostic interpretations. Therefore, the system should
and does have the capability of hypothesizing the presence or absence of a causal
relation. This is the primary reason why links are considered objects in their own right

rather than simply an ordered pair of states.

Fig. 20. Compiled link

[((caused-by*b salmonellosis)*e hypotension)
#path [((caused-by*b salmonellosis)*e dehydration)],
[((caused-by*b dehydration)*e hypotension)]]

15. During the exploration of a diagnaostic space, traveising a compiled link is equivalent to
traversing the predefined path acsociated with the compiled link in a single step
16. This is similar to “triggening” a disease in PIP.
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In this section we hiave described the representation of the anatomic,
physiologic and etiologic medical knowledge around which the disease taxonomy and
pathophysiology is organized. We have also discussed a multi-level hierarchic
description of causal knowledge. In the next section we will study the operations that
use this knowledge in describing the individual patient's illness by patient-specific
instantiation of relevant medical knowiedge and by combining the effects of multiple

disease phenomena.
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4. Structure Building Operations

This chapter deals with the operations for building causal models (called PSMs;
the Patient Specific Models) that can explain a patient's illness. A PSM is created by
instantiating portions of ABEL's general medical knowledge. The creation of a PSM
requires establishing and maintaining a correspondence between the medical
knowledae and the observations, so that the information from each source can be added
together. Much of the meaning of an observation depends on the context provided by
the PSM; conversely, the PSM is created by assimilating many observations. Asthe PSM
is multi-level, this assimilation requires the ability to summarize a detailed description
into aggregate global summaries and the ability to disaggregate a summary into detailed
description. This can be achieved based on the observation that the cognitive maps can
be organized around local landmarks (focal nodes described in the previous chapter).
The local topology surrounding a landmark can be described relative to the landmark
and the landmarks then related to each other to construct the next level summary. Itis
possible to maintain sufficient mapping between adjacent levels for efficient use of this
map for problem solving, if the summarization is carried out gradually using small steps,
and in strict adherence to the principle of locality. Finally, note that detailed descriptions
are likely to be much more accurate than global ones; detailed physiological descriptions
tend to be much more accurate than global syndromic descriptions. Furthermore, local
inconsistencies are easy to detect and correct, and are usually attributed to particular
observations. Global inconsistencies, however, are much more difficult to pin down and
are usually due to systematic errors in the interpretation of local observations and
unwarranted extensions of local observations. Therefore, in building the PSM we
interpret observations at the most detailed level possible and resolve inconsistencies

arising at an aggregate level by using more detailed levels.
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4.1 Structure of a PSM

A PSM is a multi-level causal model, each level of which attempts to give an
account of the program's understanding of the patient's case. Each PSM contains all
the diseases and findings that have been observed or concluded in a given patient along

with hypothesized diseases, findings, and their interrelationships, which together form a
cohe:ent explanation. Within each PSM, the known and hypothesiz :d diseases, findings

and their interrelationships are mutually complementary, while the alternate PSMs
provide alternate explanations which are mutually exclusive and are competing to
explain a patient’s illness. Note that considering a PSM as a hypothesis for a patient's
iliness avoids the problem faced by the previous programs which considered each

possible individual disease as a complete hypothesis, as discussed in chapter 1.

The PSMs are implemented using a Patient Specific Data structure (called PSD).
The PSDs are organized in a tree. The PSD in the root position of the tree contains
observed findings and the structure common to all the PSMs. Differing interpretations of
the observed findings are described by creating inferior PSDs each containing
incremental changes (additions as well as deletions) to their superior PSD. Each PSD in
the tree inherits from its superiors all the structure present in them except that which is
explicitly deleted.'” The structure visible from each leaf node of the PSD tree
corresponds to an individual PSM. The list of PSMs at any given instant of diagnosis is

called causal hypothesis list (CH-list).

Each PSD is implemented as a record structure containing a record for each
level of description, a list of deleted elements and a pointer to the superior PSD
containing it. The record structure of a PSD is:

(<level-0> <level- 1> Clevel-2> Llevel-3> level-4> Ldeleted-elements>,{superior)

The description of each level is implemented as a record structure consisting of a set of

17. The use of PSD tree is similar to the use of a “context tree” in CONNIVER [Sussmian72).
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nodes, a set of links describing the relations between the nodes at the given level, and
two sets of focal links connecting the description at the current levei to the description at
the adjacent lower and upper levels. The record structure of a level is:

(<nodes>, <links>, <focal-links up>, <focal-links down>)

The tree structure of the PSDs allows different PSMs to share structure common
between them, providing efficiency in storage as well as in comparison of the structures
of different PSMs. All the new information received is always added to the root PSD, the
PSD common to every PSM. However, if this new information can be explained in more
than one way in the context of a given PSM, the leaf PSD corresponding to the PSM is

expanded to represent each of thcse explanations separately.

The PSMs are created and augmented using structure building operations
described in this section. These operations are initial formulation to create the initial set
of PSMs from the presenting complaints and lab results, aggregation to summarize the
description at a given level of detail to the next more aggregate level, elaboration to
disaggregate the description at a given level to the next more detailed level, projection to

hypothesize associated findings and diseases s:'ygested by states in the PSM, and
constituent summation and decomposition to evaluate the combined effects of multiple

etiologies and to evaluate the unaccounted components of partially accounted findings.
4.2 Initial Formulation

One of the most startling observations uncovered from the study of clinical
problem solving is the physician's response to the presenting complaints [Pauker76,
Elstein77, Kassirer78].
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“The most striking aspect of the history-taking process revealed
by the protocols is the <harp focus of the clinicians' prcblem-solving
behavior. The subjects generated one or more working hypotheses early
in the history-taking process when relatively few facts were known about
the patient. At a time when the clinician was aware only of the age, sex,
and presenting complaints of the patient, he often immediately introduced
a hypothesis, ....

The process of hypothesis activation dominated the early part of
the diagnostic session as the physicians searched for some explanation of
the findings and for a context in which to proceed. Later in the session the
emphasis was on hypothesis evaluation rather than hypothesis
activation.” '

— Clinical Problem Solving [Kassirer78, pages 249 - 250]

It is useful for a program to separate, like clinicians, the initial formulation of the
Jdiagnostic problem from subsequent revisions in the diagnostic alternatives. The patient
specific information available at the initial phases of diagnosis is generally limited to a
few nonspecific complaints. It does not provide sufficient context for a data-driven
problem solver designed to perform optimally during later stages of diagnosis. Thus,
failure to recognize the differences between the initial and the subsequent stages of
diagnosis may result in an unfocused diagnostic inquiry with many irrelevant questions
until sufficient information can be gathered for establishing a context for an orderly
inquiry. The program presented here makes such a distinction. However, substantial
improvement in the initial formulation of the diagnostic problem will be required before

this distinction can be effectively exploited.

When provided with the initial findings and a set of serum electrolyte values,
ABEL constructs a small set of PSMs, using the following steps. First, it analyses the
electrolytes and formulates the possible single or multiple acid-base disturbances that
are consistent with the electrolyte values provided. It then selects from them a small set
which is consistent with the initial findings. Next, it generates a pathophysiological
explanaticn of the electrolytes bascd on each of the proposed acid-base disturbances.
This is achieved by elaborating known clinical information to the pathophysiological

level, where its relationships to the laboratory dala is delermined by projecing the
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unique causes and definite consequences of every node. The program then summarizes
these pathophysiological descriptions to the clinical level by repeated application of the
aggregation operations. This process results in the initial description of the patient
being built at every level of detail. These descriptions form the program's initial
hypotheses, and are later modified as new information becomes available. Note that
each of the mechanisms, aggregation, elaboration and projection are used in the initial

formulation of the PSM.

4.3 Some Definitions

This section introduces the naming conventions and definitions for describing

types of nodes and their internal structures in a PSM.

Prime Antecedent: A node is a prime antecedent if it does not
have any link coming into it, i.e., it does not have any cause.

Ultimete Etiology: a prime antecedent is called ultimate etiology if
it repr 2sents a diagnosis, i.e., a disease which does not need to be
explained in the domain of application.

Unaccounted Node: a prime-antecedent which is not an ultimate
etiology. It is called unaccounted because it needs to be
accounted for in terms of ultimate etiologies for the diagnosis to
be complete.

Fully Accounted Node: A node is said to be fully accounted if all
its causes are present.

Partially Accounted Node: A node is said to be partially accounted
if only some of its causes are present.

Accounted Componcnt: the accounted component is a node
which describes the sum total of the effect of all the known
causes of a partially accounted node.

Unaccounted component: the unaccounted component is a node
which describes that part of a partially accounted node that still
remains to be accounted for. I other words it represents the
ditference betwoecn  the  parlially  accounted  node  and  its
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Fig. 21. Node types
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accounted component.

Predecessor path: a predecessor path of a node is defined to be
any causal path (with one or more links) leading into the node.

Some of these structures are also illustrated in figure 21. Figure 21(a) shows a

fully unaccounted node X. Figure 21(b) shows three possible structures for fully

accounted nodes. The first structure shows a fully accounted node X and its cause A.

The second and third structures show a fully accounted node X with two causal

predecessors A and B which together account for X, In the thitd structure X is a primitive
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node and therefore the comporents of X (i.e., Xy and X,) accounte for by each of its
causes are explicitly instantimwed. However, in the second st:ucture X is a fully
accounted for composite node, therefore, A and B are directly connected to X
suppressing the component structure present at the greater levels of detail. Figure 21(c)
shows two possible structures for partially accounted node X. X is decomposed into an
accounted component Xa- and an unaccounted component Xu. Xu is an unaccounted
node with structure similar to case (a) and X4 is a fully accounted node and has structure

similar to case (b).
4.4 Aggregation

The aggregation process is used to summarize the description of the patient's
illness at a given level to the next more aggregate level. This summarization of the

causal network is achieved by identifying nodes (called focal nodes) which can serve as
landmarks, summarizing each focal node and its surrounding causal relationships at the

ne:xt more aggregate level (called focal aggregation), and by summarizing the chain of
causal relations between nodes by a single causal relation between the initial cause and

the final effect nodes (called causal aggregation).
4.4.1 Focal Aggregation

In aggregating a causal network we must first identify the nodes that form the
focal points around which tnhe cau:.al phenomenon can be summarized. Consider a
partially-constructed PSM in which some nodes at a detailed level have been
instantiated. A node is a focal node if the following three conditions are satisfied. (1) In
the medical knowledge-base this node is the focus of the elaboration structure of at least
one node at the next more aggregate level. (2) In the PSM at least one such higher level
node already exists, or can be instantiated. (3) The aggregation is not inconsistent with
the existing structure of the PSM. If the aggregate node does not exist, then both it and
the focal link are instantiated. If the aggregate node exists, the focal link connecting the

two is instantiated and the profiles of the: focus and the agareqgate nodes ave updaled
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using any additional information that can be inferred by this connection. Finally, if more
than one possible candidate for aggregation is consistent with \he causal structure
above, the focal aggregation process is deferred until additional information can be

obtained to resolve this ambiguity.

4.4.2 Causal Aggregation

Once we have determined the focal aggregations for nodes at a given level of
detail we need to determine the causal relations among these aggregate nodes. This is
achieved using causal aggregation. The process of causal aggregation takes a node
and its causes and aggregates the relation between them according to one of three
rules. First, if the node has no causal predecessors or if none of the causal paths
leading into the node (predecessor paths) have an aggregable node, then the focal
aggregation of the node does not have any causal predecessors. The focal aggregation
node then is either an ultimate etiology or is an unaccounted node and no new edges

need to be added to the aggregation. Figure 22 shows two examples of causal

Fig. 22. Causal aggregation: fully unaccounted node
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Fig. 23. Causal aggregation: fuvliy accounted node
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Fig. 24. Causal aggregation: partially accounted node
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aggregation of fully unaccounted nodes. The first example shows causal aggregation of
low-serum-K-1. Focally aggregating we instantiate hypokalemia-1. Next, we follow the
predecessor path of low-serum-K-1 in search of an aggregabie node. As low-total-
ecf-K-1 and K-loss-1 are not aggregable nodes, this search fails, and ro additional
structure is created. However, as the predecessor path terminates in an unaccounted
node, the focal aggregation of low-serum-K-1, hypokalemia-1, is marked unaccounted.
The second example shows high-serum-Cl-1. As high-serum-Cl-1 does not have any
predecessor, its focal aggregation, hyperchloremia-1, does not have any causal
predecessor. Furthermore, as high-serum-ClI-1 is unaccounted, hyperchloremia-1is a’ o

unaccounted.

Second, if every predecessor path has a node with a focal aggregation then the
focal aggregation of the node is fully accounted for. The causal agagiegation is achieved

by creating a causal link hetween the focal aggregation of the node and the tirst focal



aggregation in each path. Figur2 23 shows two examples of causa' aggregation of fully
accounted nodes. In the first example the low-serum-K-1 has one predecessor path and
that predecessor path contains an aggregable node, lower-Gi-loss-1. Therefore, low-
serum-K-1 is a fully accounted node, and its causal aggregation is achieved by focally
aggregating lower-Gi-loss-1 and causally connecting hypokalemia-1 to it. In the second
example, low-se'm-K-1 has two predecessor paths, each containing an aggregable
node. The causal aggregation i1s achieved oy focally aggregating each of these two

aggregable nodes and then causally connecting hypokalemia-1 to them as shown.

Finally, if only some of the predecessor paths have nodes with focal
aggregaticns then the focal aggregation of this node is partially accounted for. The

causal aggregaticn is achieved by decomposing the node into two components: (1) the
accounted compor.ent, due to paths which have some focal aggregation, and (2) the

unaccounted component, c'ue to paths that Jdo not. Tlie focal aggregation of the node is
then decomposed based on the decomposition at the present level and the two cases
are treated as described above. Any new information that can be derived from the
addition of causal links in the PSi is used to update the profiles of nodes involved in
aggregation. Figure 24 shows an exampl. of causal aggregation of a partially accounted
node. In this example one of the two predecessor paths of low-serum-K-1 contains an
aggregable node, lower-Gi-loss-1, we focaily aggregate this node. The other
predecessor path terminates in K-loss-3, an unaccounted node. Next, we compute the
cemponent of low-s. rum-K-1 that can be accounted for by lower-Gi-loss-1 and the
compcnent that remains unaccounted for because of tha unaccounted K-loss-3. Then
we compute the mapping of these two components at the next level of aggregation and
instantiate hypokalemia-2 (the component accounted for by lower-Giloss-1) and
hypokalemia-3 (due to unaccounted K-loss-3). We then causally connect hypokalemia-2

to lower-Gi-loss-1 and mark the hypokalemia-3 as being unaccounted for.



tiaboiation 8o

4.5 Elaboration

Elaboration is the dual of the aggregation operation described above. It is used
to disaggregate the description of a causal network at a given level to the next more
detailed level. In other words, given a summary description of a causal phenomenon, it
provides a more detailed description consistent with the summary. This is achieved by
instantiating the focal description of each composite node (called focal elaboration) and
by instantiating the causal pathway between these detailed nodes corresponding to each
causal lin at the aggregate level (called causal elaboration). If the causal pathway
being instantiated interacts with other causal paths in the PSM, the combined effects of
the multiple causality are computed using component summation. The combined effects
of this summation can then be aggregated upwards to reflect the better understanding of
the causal phenomenon at the higher levels of aggregation. This is one mechanism
where two aggregate phenomena may become linked, through the interaction of their

detailed descriptions.

In summary, the focal aggregation and elaboration create mappings between
nodes across different levels, and causal aggregation and elaborations create mappings

between causal links across different levels.
4.5.1 Focal Elaboration

To elaborate a causal network we identify the nodes in the network that have
been used as surnmary ucscriptions, establish their references at the next more detailed
level, and establish additional nodes and links at the detailed level to describe the
phenomenon described in the aggregate network. The operation of focal elaboration

daals with the first two of the three steps mentioned above.

A node can be focally elaborated if it i1s a composite node, and if a node
corresponding to its focus already exists or can be instantiatcd in the PSM. If the focus

node does not exist, then both it and the focal link are instantiated.  If the new node is
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inconsistent with the detailed level, the detailed level is modified to re-establish overall
consistency. If the focus node exists and is consistent, then the focul link connecting the
two is created and the profiles of the node and its focus are updated using any additional
information that can be inferred by this symbiosis. Finally, if more than one possible
candidate for focal elaboration is consistent with the causal structure above, the focal
elaboration process is deferred until additional information to resolve this ambiguity can

be obtained.

4.5.2 Causal Elaboration

Causal elaboration is used to determine the causal relations between nodes at a
detailed level based on the causal relations between the nodes at the next more
aggregate level. Causal elaboration is centered around the composite causal link and
the chain of causal links that describe each composite causal link. To elaborate a
composite link, the program matches the causal path associated with the link, against
existing paths in the PSM. If some part of this pathway is not present, the program
recurs on each missing link in the pathway (starting from the focus node of the cause)
until the link being elaborated is a primitive. When the link being elaborated is primitive it

is instantiated under one of the following conditions.

(1) If the effect node is not present in the PSM, the effect node
and the link are instantiated.

(2) If the effect node is present, and the constraints on the link are
satisfied and it is not causally inconsistent, then the link is
instantiated connecting the cause and the effect node.

(3) If the effect node is present but is partially or fully accounted
by some other cause, the effects of this additional cause are
combined with the existing structure using the component
summation and decomposition operation and this combined
effect is propagated turther as needed.
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The program also updates the profiles of the nodes in the causal pathway using
any additional information that can be inferred by addition of the pathway. Finally, the
aggregation operation is used to revise the description of the next more aggregate level

to reflect the addition of the causal pathway.

This process is illustrated with the help of the simple example shown in figure
25. Let us consider a patient with hypokalemia and salmonellosis. For the example, let
us also assume that by some reasoning process we have established a causal link

between salmonellosis and hypokalemia. The elaboration operation can then be used to

Fig. 25. An example of the elaboration process
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establish this relation at more deiiied levels. The pre-existing structure in the PSM is
shown in solid lines, the link Leing causally elaborated (between hypokalemia and
salmonellosis) is showr in solid bold and the links added by the process of elaboration
are shown in bold broken lines. The elaboration process attempts to match the causal
path corresponding to the link between salmonellosis and hypokalemia at the next leve!
of detail, namely, salmonellosis —causes—> lower-Gl-loss —causes—> hypokalemia. The
link between salmonellosis and lower-Gl-loss already exists. However, the link between
lower-Gl-loss and hypokalemia does not and must be created and elaborated further.
Similarly, at the next level, the link between lower-Gli-loss and K-loss does not exist. As
this link is primitive the recursion terminates with creation of this link. Fu:thermore, as
the attributes of K-loss and Lower-Gl-loss are compatible and the two are causally
consistent, this link can be established by simply adding its instantiation to the PSM.
Having established this link the program aggregates this causal path to propagate the

effects of the elaboration back to the higher levels of aggregation.

4.6 Projection

The projection operation is used to hypothesize and explain the associated
findings and diseases suggested by the states in a PSM. The ~rojection operaiion is very
similar to elaboration. It differs from elaboration in that the causal relation being
projected is hypothetical and therefore is not present in the PSM. Furthermore, the
projection operation fails if the causal description of the hypothesized link is inconsistent
with the description 'n the PSM at any level of detail. As a result, the application of the
projection opevation cannot result in the decomposition of a fully accounted node,
creating an additional unaccounted component and therefore degrading the quality of

explanation.

As stated above the projection operation is not an essential component of the
structure building operations. However, it plays an important role in the diagnostic
problem solver in exploting diagnoslic possibilities, cvalualing their validily and in

generating expeclations about the consequences of hypothesized diagnoses.,
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4.7 Component Summation and Decomposition

One of the important mechanisms in deveioping an understandirq of the
patient's illness is the evaluation of the effects of more than one disease present in the
patient simultaneously, especially when one of the diseases alters the presentation of the
others. To deal with such a situation competently, the program must have the ability to
identify the effect of each cause individually, and the ability to combine these effects
together. In this section we present the component summation and decomposition
operations. Component summation combines attributes of the components to generate
the attributes of the joint node; component decomposition identifies the unaccounted
component by noting differences between the joint node and its existing components.
These operations enrich the PSM by instantiating and unifying component nodes when
the case demands them. This occurs whenever multiple causes contribute jointly to a
single effect. An important case of this arises whenever feedback is modeled, because
in any feedback loop there is at least one node acted on both by an outside factor and by
the feedback loop itself. Finaliy, the decomposition of an effect with multiple causes into
its causal components will also provide us with valuable information for evaluating the

prognosis and formulating therapeutic interventions.

As the PSM is built, component summation and decomposition operations can
cause a node in the program’s general knowledge to be instantiated as a inode and its
several componerts in the PSM. If a node is primitive and there are mult'ple causes, the
contribution of each cause is instantiated separately. Then ’‘he profile of the
combination is computed using component summation. The combined effect is then

instantiated and connected to its constituents by constituent links.

Because components are defined only for primiiive nodes, the instantiation of
comnosite nodes which involve component summation must be in terms of the
summation of components i the node's elaboration structure. If the node is composite
therr we elaborate the constituent nodes around their focal nodes until we reach the

primitive nodes associated with them Then we combine these primitive nodes and
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irig. 26. An example of component summation/decomposition
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aggregate their efiects back. For example, if we kncw that a p«tient nas
hypobicarbonatemia and hypocapnia causing acidemia (figure 26), we can evaluate their
combined effect as follows: (1) compute the component of acidemia caused by
hypobicarbonatemia and hypocapnia in_ividually, (2)focally elaborate these two
components until each component can be dascribed in terms of change in serum-pH (a
primitive node), (3)sum the two components using compeonent summation, and

(4) aggregate the joint effect to derive the actual severity of acidemia.

As mentioned above, the mechanism of component summation allows us to
represent feedback explicitly by representing the primary component of the change (the
forward path) and the secondary feedback component (the response ot the homeostatic
mechanism in defense of the parameter being changed) as components to be summed
to yield the whole. Figure 27 shows the primary change in serum pH caused by low
serum bicarbonate and the response of the respiratory system to the change in serum
pH. Read the example as follows: the lowering of the concentration of serum
bicarbonate causes a reduction in serum pH, which causes hyperventilation and thus

reduces the pCO,, which in turn causes an increase in the sceramephl (negidive
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Fig. 27. Feedback loop repres=:nted using component summation
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feedback). This increase is less than the initial reduction, causing a net reduction in

serum pH.

These operations deal not only with the magnitude of some disorder but also
with other attributes such as duration. They are implemented by associating with each
primitive node a multivariate relation that constrains the attributes of the node and its
components. This mapping function 1s used by component summation in computing the
attributes of the joint node from the attributes of the component nodes and by
component decomposition in computing the attributes cf the unaccounted component
from the attributes of the joint node and its existing components. An example of the

constraints is shown in the next example.



Component Summation and Decom pcsition 93

[(concentration*u electrolyte)
[union:u
[valuetu #c (combine-electrolyte-value*c
(value*c (value*u component:1)),
(value*c (value*u component:2)),
(default*c component:1))]
[start-timetu
#c (min*c (value*c (start-time*u component:1)),
(viaue*c (start-time*u component:2)))]
[durationtu
#c (max*c (value*c (duration*u component:1)),
(value*c (duration*u component:c)))]
[belieftu
#c (min*c (value*c (belief” u component:1)),
(value*c (belieif*u component:2)))]
[component:1
[valuetu #c (component-electrolyte-value*c
(value*c (value*u union:u)),
(value*c (value*u component:2)),
(default*c union:u))]
[start-timetu #c (value*c (start-time*u union:u))]
[durationtu #c (value*c (duration*u union:u))]
[beliefru #c (value*c (belief*u union:u))] 1]

The above example describes the multivariate relation between the components
and their summation for the concentration of electrolytes. This relation is divided into
two parts; the first part (associated with slot ‘‘union:u’) describes procedures for
combining the attributes of the two components (‘‘component:1’ and ‘‘component:2").
Ir particular, it states that the value of the joint-state (union) is determined from the
values of the two components and the default value of the electrolyte concentration
using a lisp function “combine-electrolyte-value”. It turther states that the belief in the
joint-state is equal to the lesser of the beliefs in the components.'® Similarly, the
“start-time” of the joint-node is the earlier of the two start times and the duration of the
inint-state is the longer of the two durations. A similar set of procedures for computing
the difference (component:1) between the joint-state and a given component state

(component:2) is described in the second part of the example shown above. This

18. This is consistent with our view that “the belief in an explanation is equal to the belief of its
weakest link”,  This belict computation s simitar to that used in Glaucoma/CASHET program
[Weiss78] and in fuzzy set theoy [Zadeh65, Gaines76).
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mapping relation can be used for computing the component summation/decomposition
of electrolyte concentrations in any one of the different fluids in the body such as

extra-cellular fluid, intracellular fluid, and urine.

The component operations are activated when a node is added to the PSM
where another node in the same class is already present. These operatiuiis incorporate
the new node into the structure of the PSM and delete any structure in the PSM that is no
longer valid due the the addition of the new node. These operations can be divided
broacily into three cases based on the properties of the node already present and the
new node being added: (1) both the new and pre-existing nodes are both unsupported
by observation; (2) the new node being added is supported by observation and the
pre-existing node is not; and (3) the new node is not supported by observation and the
pre-existing node is. A node is said 10 be supported by observation if the node is either
an observed node or is a causal predecessor of an observed node which is fully

acco:nted for. The details of the three cases:

Case 1: Neither the new nor the pre-existing node is supported by
observation. In this case the joint eftect of the two nodes is
computed and the two nodes are connected to the joint effect
using component links. If the pre-existing node already has
component structure, the new node is diractly connected to the
pre-existing joint effect and the attributes of the joint effect are
revised to be consistent with this addition. Any of the successors
of the two nodes which are consistent with the joint effect are
rerouted through the joint effect and those which are not
consistent are deleted and the effects of these deletions are
propagated.

Case 2: The new node being added is supported by observation
and the pre-existing node is not. In this case the joint effect of the
resulting structure (upon application of the component operation)
must be same as the new node. If the pre-existing node and the
new node are consistent with one another then the pre-existing
node is replaced with the new node and the operation is
complete. If they are not, ihe difference between the observed
and the unobserved is computed, and a node corresponding to
the difference (called unaccounted-component) is instantinted.
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Next the pre-existing (accounted-component) node and the
unaccounted compcaent to the new (joint-effect) node are
connected using component links. Any of the successors of the
pre-existing node that are consistent with the joint-effect are
rerouted through it and those that are not consistent are deleted
and the effects of these deletions are propagated.

Case 3: The pre-existing node is supported by observation while
the new node being added is not. As in the case 2, the observed
node is the designated joint effect. This case is somewhat more
complex, because the pre-existing node is observed and may
have constituents of any possible form, i.e., may be fully
accounted for, partly accounted for, or fully unaccourted for. In
each case the new node is added to the pre-existing structure as
a constituent as shown in the figure 28.

Figure 28 shows subcases of case 3 where the pre-existing node (bold square)
is supported by okservaticn while the new node (crossed square) being added is not.
The left side of the figure shows the situation before the component summation and the
right side shows possible situations after the component summaticn. Figure 28(a) shows
the operation for a fully unaccounted pre-existing node. Figure 28(b) shows the
operation for a fully accounted pre-existing node with one cause. The first structure on
the right shows the situation when the effects of existing cause and the \he new node are
still consistent with the pre-existing node. In this situation the components oi each of the
two causes are instantiatcd and connected as shown in the figure. The second structure
shows the situation when the sum of the new node and the eftect of the existing cause is
not consistent with the pre-existing node. In this situation the pre-existing node is
decomposed into an accounted and an unaccounted component. The accounted
component is dealt with similar to the first structure and the unaccounted component is
marked as being unaccounted. Figure 28(c) shows the operation for a fully accounted
pre-existing node with multiple causes. This case is handled similar to that in figure
28(b). Figure 28(d) and (e) show the operation for partially accounted pre-existing node.
If the new node matches the uiraccounted component of the pre-existing structure, the

resulting structure is fully acceunted for, if it does not the accounted and unaccounted
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Fig. 28. Component summation/decomposition: Case 3
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Fig. 28. (continued)
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components of the pre-existing ncde are recomputed and the new r ode is connected to

the accounted components.

In this section we have developed a knowledge representation formalism and
operations for dealing with effects with multiple causes and feedback loops common in
the physiological regulation of the body’s vital functions. The mechanism developed
here is intended for symbolic description for reasoning with and explaining the
abnormalities in physiological regulatio. in a patient, not for predicting th_e behavior of

physiological parameters over time using dynamic simulation techniques.
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5. Diagnostic Prcbleni Formulation and Information

Gathering

The patient specific model (PSM) developed in chapter 4 was designed to
provide the program with the capability of expressing its understanding about the
patient's iliness. However, due to the lack of complete knowledge a%uut the patient and
due to uncertainties in the medical knowledge, this understanding may be imprecise and
incomplete. Our task is to identify these weaknresses and gather information that will
help reduce or eliminate them. Viewed differently, these weaknesses identify a set of
problems, all of which need to be solved in the process of diagnosis. The availability of a
set of problems to work on simultaneously provides the problem solver with an
opportunity to be efficient by abstracting common aspects of problems and by selecting
an efficient order in which the problems are to be solved. This chapter examines several
issues: (1) the process of identifying these weaknesses and formulating a diagnostic
problem based on them, (2) the representation of this diagnostic problem and its
decomposition into simpler problems, and (3) the evaluation of newly acquired

information for apparent and real discrepancies.

The general medical knowledge in the program contains dissase prototypes.
However, given the facts about a patient along with a possible explanation, this
prototypical information can be substantially constrained. For example, knowing that the
patient has moderately severe metabolic acidosis, we can constrain the diseases
hypothesized to account for the metabolic acidosis to be consistent with it, e.g., if
salmonellosis is a hypothesized cause of this metabolic acidosis, it must be moderately
severe and must have a duration of greater than two days. Secondly, only a small
portion of the medical knowledge is relevant to any given diagnostic situation. For
example, knowing that the patient's anion gap is normal, all the causes of metabolic

acidosis that are not consistent with normal anionn gap can be ruled out as being
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irrelevant to the diagnosis.'® We therefore introduce the notion of a diagnostic closure
(called DC) which contains the medical knowledge local to the diagnostic situation,
extracted from the medical data-base and made specific to the PSM. The DC is
constructed by hypothetically projecting forward the states of a PSM to identify the
consequences predicted by the states of the PSM and by projecting backwards the
unaccounted for states of the PSM to identify diseases that can account for these states.
Note that within each PSM all the findings and diseases complement each other in
forming a single coherent explanation, while different PSMs provides alternate
explanations which are mutually exclusive. Further, each DC contains alternatives within
the context of the PSM associated with it. Thus, the diagnostic alternatives themselves
are divided into groups, each group being consistent with a partially complete
explanation of the patient's iliness, and the different groups represent alternatives

consistent with markedly different possible explanations.

We have argued that the ability to identify discrepancies in incoming information
plays a crucial role in the diagnostic process. For example, in studying the problem

solving behavior of clinicians, Kassirer and Gorry note:

“The physician appeared to use ... his concept of a disease
(hypothesis), a state, or a complication as a model with which to evaluate
new data from the patient. Such a model provides a basis for expectation;
it identifies the relevant clinical features that should prove fruitful for
further investigation.”

— Clinical Problem Solving [Kassirer78, page 250]

The ability to evaluate the implications of the incoming information is an
important part of clinical practice, where the accuracy or the completeness of

information cannot be taken for granted. We may be presented with a questionable

19. A similar distinction is also made in PIP and Internist, where any disciase which is not
currently active can be considered to be inelevant to the cunent dingnostic activity.
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finding which, if accepted, may re.uire reformulation of the currently held diagnosis with
far-reaching implications. Howcver, it may be unwise to act on any such information
unless it can be substantially corroborated, and its validity as a diagnostic sign checked
out. For example, upon unexpectedly finding *‘substantial weight increase’ in a natient
it is wise to check if the two weights were taken on the same scale before jumping to the
conclusion that the patient is ‘‘retaining water”. Inability to do so poses a serious
problem for programs such as PIP. The problem arises because accepting such a
finding may strongly favor hypotheses which erroneously predict the finding and against
those hypotheses which correctly do not predict it, possibly causing the correct
hypotheses to be dropped from further consideration. Thus, the program may not be
able to come back and ask a simple question that could save it from taking a ‘‘garden

path”.

The diagnostic closure discussed above provides the program with an ability to
evaluate the consistency of a finding before it decides to accept it. For example, as new
information is gathered, if the profile of the new information is consistent with that
present in a DC, we know that this information is consistent with the PSM and lends
positive support to the diagnosis under consideration. By the same token, if some
information is not consistent with a DC under consideration, we know that this
information can not be assimilated into the PSM without some modification. Finally, if
the incoming information is not consistent with any of the DCs then we know that our
entire line of reasoning is under question, and if the information is true, a major
re-analysis of the program's understanding will have to be undertaken. Because such a
situation can be identified, the program has an opportunity to suspend the global
diagnostic processing and revert to local processing to validate the finding or to justify

ignoring it.

The problem solvers in PIP and INTERNIST-! alternate between gathering a fact
(based on their hypothesis lists) and re-evaluating the hypothesis lists (bascd on the new

fact). Each fact is treated as an independent inquiry; the program docs not group facts
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in a clinically meaningful and focused pursuit of diagnosis. This cauzes the information
acquisition to become erratic and wvulnerable to incompiew¢ specification of
information.?® Furthermore, the lack of commitment in pursuing any given information
gathering strategy (e.g., discriminate, confirm) to completion diminishes their
effectiveness. This problem can be solved by allowing the diagnostic problem solver to
plan a group of questions focused around a single diagnostic task. The diagnostic
closure already provides the dependencies necessary for such diagnostic planning.
Diagnostic planning generally begins with the global task of discriminating between the
alternate explanations provided by the set of PSMs. This task is successively
decomposed into smaller tasks using diagnostic strategies of confirm, differentiate,
ru'e-out, group-and-differentiate and explore. This results in a set of questions which, if

answered, would help the program in solving the problem at hand.

It is common among physicians to “think out loud’ while discussing a medical
case with their colleague. For example, in analyzing protocols of medical diagnosis,

Sussman notes:

“Thus, we have heard doctors react to new facts with such
phrases as: "l expected that.”, "(It is) consistent with my assumptions.”, "l
did not expect that...", "This new lactis making me very unhappy with my
diagnosis.". Among the most important reactions are ones of the form:
"this does not really fit in. Perhaps he has...."."

— Some Aspects of Medical Diagnosis [Sussman73]

This thinking out loud plays an important role in communication between
physicians. We require the program to have not only a similar ability evaluate the

incoming information in comparison with its expectation, but also the ability to think out

loud, which is essential in allowing the user physician to get a feel for the program's

reasoning and understanding. The diagnostic closure allows the program to explain the

20. On the other hand, de novo generation ot the hypothesis list prevents the program from
taking “garden paths'.
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spectrum of diagnostic alternatives consistent with a PSM, and the planned goal
oriented diagnostic questioning allows the program to justify the motivation of the
diagnostic reasoner in asking the questions, its expectations about the information being

sought, and how this information relates to the hypotheses under consideration.
5.1 Global Diagnostic Cycle
The diagnostic algorithm for the ABEL system is:

(1) Presenting Complaints: The serum analysis and the initial
complaints are analyzed. A small set of initial PSMs is created
and added to the list of causal hypotheses (the CH-list).

(2) Rank Ordering Hypotheses: All PSMs in the CH-list are
scored for the quality of explanation they provide for the patient's
illness. The leading one or two of these PSMs are selected as
possible explanations.

(3) Computing Diagnostic Closure: Diagnostic closures for
the selected PSMs are computed and disease hypotheses in each
DC are scored.

(4) Termination: if the diagnostic closures for all PSMs are null
or if some PSM provides a complete and coherent account for the
patient’s illness then the current phase of diagnosis is complete.

(5) Diagnostic Information Gathering: Based on the number of
DCs (i.e., the PSMs selected in step 2), a top level confirm or
differentiate goal is formulated. Using diagnostic strategies, this
goal is successively decomposed into simpler subproblems until
individual questions are formulated.

(6) Re-structuring the PSM: If step 6 results in any new finding
being known, then that finding is incorporated into the each of the
PSMs by extending the structure of the PSMs to take the observed
finding into account. Finally, this process is repeated starting at
step 2.
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In the remaining sections i this chapter we will study the inividual steps of this

algorithm.
5.2 Diagnostic Closure of a Hypothesis

A diagnostic closure (DC) describes that part of the medical knowledge that is
directly relevant to the diagnostic exploration of a PSM. It contains, in addition to the
PSM, causal pathways from the unaccounted findings in the PSM to some of the possible
diseases (ultimate etiologies) that can account for them, and causal pathways from some
of the states in the PSM and the hypothesized diseases to (predicted) observable
findings. Stated differently, a DC contains alternative extensions needed to adequately
complete the explanation provided by the PSM. The DC associated with a PSM is initially
created by hypothetically projecting the states of the PSM. During the process of
diagnostic planning, new DCs may be created by copying parts of an existing DC,?' and
by further projecting the diseases or findings under consideration. Furthermore, when
some new information is received during the execution of a diagnostic plan, the
alternatives which are not consistent with the finding may be pruned irom a DC. Figure
29 shows an example of a DC for a PSM with unaccounted metabolic acidosis and
partially accounted hypokalemia. Note that metabolic acidosis and hypokalemia both
can be accounted for by a single disease hypothesis: salmonellosis. However, if we
assume that the unaccounted component of hypokalemia is caused by vomiting, we
must find some other cause for the metabolic acidosis, e.g., acute renal failure or

diabetes insipidus.

The diagnostic closure of a PSM provides us with the attributes of the
hypothesized diseases and findings that are consistent with the PSM. It describes tlie
program’s diagnostic expectations against which the incoming information can be

evaluated. Furthermore, by tracing the causal pathway from the hypothesized finding to

21. For example, in order to differentiate between alternative hypotheses contained in a DC the
program may create a set of disjunctive DCs, one for each alternative.
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Fig. 29. An example of diagnostic closure
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the states in the PSM, we can determine how this finding relates to the PSM, and what
intermediate assumptions are needed to assimilate this finding into the PSM. On the
other hand, if the new finding is not consistent with any of the DCs under consideration
then we know that this information is inconsistent with the program's current
understanding. To accommodate a contradiction with the currently held hypothesis
requires some major revision in the structure of the PSM. This process is
computationally expensive and, if possible, should be avoided. As described above,
ABEL has the ability to identify situations requiring a major revision, and to ask further
questions to validate or invalidate the contradictory finding. However, when a
contradictory finding is validated, ABEL abandons its current line of diagnostic inquiry
and revises its PSMs. Clinical studics have shown that a physician when faced with a

similar situation also altemipts 1o avoid revising his diagnostic hypotheses He allempts
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10 disprove the offending piece of information or reconcile it by finding a sufficient
excuse for ignoring it. On occasions, even after the validity of the contradictory finding
is established, a physician may choose to ignore the finding until the current line of
diagnostic questioning is completed. ABEL however, abandons its current line of
diagnostic inquiry and revises its PSMs if a contradictory finding is validated. It does not

have the ability to postpone consideration of any contradictory finding.
5.3 Scoring the PSM

The score of a PSM measures the degiee of incompleteness of the PSM as an
explanation of the patient’s illness. It is computed by summing the severities of partially
and fully unaccounted states in the PSM. The scoring algorithm could be further
improved by taking into consideration the need of a finding to be accounted for by an
acceptable diagnosis. Furthermore, the program currently does not take into account
the degree of explainability of a PSM. For example, a PSM may have a large number of
unaccounted findings that can be accounted for by a single etiology, while another PSM
may have only a few unaccounted findings but may require the invocation of multiple
etiologies to account for them. Clearly, diagnoses with multiple etiologies are less
desirable and much less frequent than diagnosis with a single etiology. The degree of
explainability of a PSM is an important measure and should eventually be taken into
account while scoring a PSM.2? Although the current method for computation of the
score is primitive and should be extended using the additional factors discussed above,

it appears to provide an acceptable level of discrimination between PSMs,

22. It can be done if we compute the smallest number of etiologies that cover all unaccounted
findings (ucing the DC) in each PSM before scoring them. This measure, however, has not heen
implemented as it is computationally prohibitive in the carrent implementation of the program,
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5.4 Scoring a Disease Hypothesis

Diseases are hypothesized to explain findings left unaccounted for by the PSM:
a new disease is hypothesized only when it is capable of explaining some of the
unaccounted findings. In this section we will consider a mechanism for scoring these

hypotheses.

When a disease is hypothesized it may predict some consequences which may
not fit well with the PSM, giving rise to new unexplained states. These additional
unexplained ccnsequences reduce the desirability of the hypothesis being considered.
Furthermore, the hypothesized disease may predict some consequences wiich are as
yet unobserved. These unobserved findings identify the additional information that can
be used to confirm the disease hypothesis. For example, figure 30(a) shows a PSM with
metabolic alkalosis and normokalemia, and vomiting hypothesized to account for the
metabolic alkalosis. Figure 30(b) shows the findings predicted by the hypothesized
vomiting. Figure 30(c) shows the consequences of adding the hypothesized vomiting to
the PSM. The vomiting hypothesized in figure 30(a) explains an utnaccounted for node,
metabolic alkalosis, gives rise to a new unexplained node, hyperkalemia, and predicts an

as yet unobserved finding, dehydration.

The usefulness of a disease hypothesis depends (ultimately) on its potential of
being confirmed. This usefuiness can be estimated using the explained, unexplained
and unobserved findings associated with the hypothesis. Note, however, that the
disease scores are computed for the purpose of ordering the diagnostic search, i.e., they
provide a heuristic for performing a best-first search. The score of a disease hypothesis
does not reflect the belief in the likelihood of the given disease being the correct
diagnosis, but an estimate of its heuristic search utility. That is, given the available
information, pursuing that disease hypothesis will lead ctficiently to the final diagnosis.
Although the two measures are similar and have often been confused with one another,
they can be substantially different as more and more sophisticated search and error

recovery techniques are used. In most of the previous prograuns this distinction wag not
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Fig. 30. An example of explained, unexplained and unaccount~d findings
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made; thus even if a particular disease was a useful hypothesis, it could not be
considered if most of its findings were as yet unknown. Further, it prevented these

programs from accepting a working hypothesis which, even while having a low
probability of being right, could lead efficiently to the right “ball-park", which when

reached would allow them to resort to more specific criteria to explore the restricted

space.

ln'b ABEL the disease hypotheses are ordered in two steps. First, they are
grouped according to the number of unaccounted findings that can be accounted for by

each hypothesis. Second, among those hypotheses that can account for the same
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number of findings, the diseases are rank-ordered by a score computed from the three
factors discussed above. They are: (1) match, the number of causes and findings in the
PSM that are consistent with the disease hypotheses;?® (2) mismatch, the number of
causes and findings in the PSM that are inconsistent with the disease hypotheses; and
finally (3) unknown, the number of unobserved findings predicted by the hypothesis
which are not inconsistent with the PSM. A disease hypothesis is eliminated fromn
immediate consideration (for one cycle of diagnostic inquiry) if the difference of match
and mismatch is below an arbitrary threshold. The match combined with the unknown
corresponds to the maximum possible score attainable by a given disease hypothesis. If
this score goes below a threshold, the hypothesis can not be confirmed even if all the

remaining unknown findings are resolved in favor of the hypothesis.

The above criterion for scoring the disease hypotheses is purely structural. It
does not take probabilities of occurrences of different diseases into account.
Incorporation of probabilities as a secondary scoring criterion should substantially
improve the quality of the scoring mechanism. However, we believe that the criterion for
evaluation of the heuristic value of the disease hypothesis as well as belief in a diagnosis
should be primarily structural. Probabilistic scoring can be used effectively in
differentiating between structurally similar hypotheses. However, primary reliance on
probabilistic scoring without structural considerations (such as adequacy, coherence,
match and mismatch), as has been the case with the first generation programs, is

inadequate. Some of these inadequacies have been discussed in chapter 1.

23. Note that a finding that is fully accounted for in the PSM can still be consislent with the new
hypothesis if the addition of the hypothesis does not cause the finding 1o be over-compensated,
resulting in an unaccounted component.
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5.5 Information Gathering Strategy

The process of diagnosis can be viewed as the process of discriminating

between diagnostic alternatives. A strategy commonly used to achieve this called the
differentiation strategy. Using the results of protocol analysis, researchers [Pople75a,

Miller75, Elstein78, Kassirer79] have identified a larger class of diagnostic strategies
which in addition to differentiate include confirm, rule-out, explore, refine etc. Although
these additional strategies can be considered to be special cases of the differentiation
strategy, in special situations they can provide substantial improvement in processing

over differentiation.

The selection of an appropriate strategy is based primarily upon the syntactic
structure of the diagnostic problem.?* One measure commonly used is the number of
alternate hypotheses under consiceration and their relative strength. The confirmation
strategy is used when only one hypothesis is under consideration, or when one
hypothesis is much more likely than all others. The rule-out strategy is the inverse of the
confirm strategy; it is used to eliminate some hypothesis which is substantially less likely
than all the others. Its major utility is in allowing final confirmation of some hypothesis,
such as essential hypertension, by eliminating all other less likely alternatives or cutting a
large group down to where difterentiate strategy can be used. The differentiation
strategy is used to discriminate between two (or three) hypotheses with similar belief

factors. The above strategies are all used in the Internist-1 program.

The remaining strategies, such as group-and-differentiate and refine,
reformulate the diagnostic problem. The group-and-differentiate strategy is used when
we have a large number of alternate hypotheses with similar belicf factors. Here we need

to discard a large number of hypotheses rapidly in order to focus our attention on a small

24. In certain situations though, the general syntactic mechanism may be overruled by more
important considerations.  For example, it one of the alteinatives has lite-threatening
consequences, we may first want to get a definitive ruling on it rather than ditferentiating among
all the possibilities.
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number of alternatives. This can be achieved by partitioning the altei natives into a small
number of groups according to some common characterization (¢.g., common organ
system involvement, etiology, temporal characteristic or pathophysiology) and then
applying a differentiation strategy to rule in or rule out one of the groups, thus narrowing
the hypothesis set substantially. The refinement strategy is used to refine a hypothesis
about a general class of diseases into more specific hypotheses. Refinement resultsin a
disjunctive set of hypotheses. Hence, refinement and, as we have seen group-and-
differentiate are commonly followed by differentiation. Finally, the explore strateqy is
used when the patient description does not provide any well-defined diagnostic problem
to solve. In such a situation we explore the findings systematically (e.g. review of

systems) to uncover sufficient evidence to formulate a specific diagnostic problem.?5

The use of these strategies in the first generation programs has been limited to
a single application to identify the most useful finding. In this document we advocate
viewing these strategies as decomposition operators that reformulate the diagnostic
problem into a group of simpler problems. With this formulation we can repeatedly apply
the diagnostic strategies tc the top level diagnostic problem, successively decomposing

it, until we reach subproblems that can be solved directly by asking single questions.

Fig. 31. Initial diagnostic closure for salmonellosis and acute renal failure
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~
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25. An example of this is the review of systems, a detailed explaration of every part of the body in
search of abnormatlities.
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Consider the following simple example. Assume that we have a patient with
moderately severe metabolic acidosis and are considering two possible causes of this
metabolic acidosis, namely salmonellosis and acute renal failure.?® The diagnostic
closure consistent with this situation is shown in figure 31. We pursue this diagnostic

closure by setting up a diagnostic problem as shown below.

Goal 1: differentiate Salmonellosis acute-renal-failure

salmonellosis

belief: likely

severity: moderate

duration: greater-than 2 days
acute-renal-failure

belief: possible

severity: moderate

duration: greater-than 1 week

To differentiate between salmonellosis and acute renal failure the program sets up a
diagnostic closure for each of the possibilities (shown in figure 32). The first DC is
constructed with the assumption that salmonellosis is the true cause of the observed

metabolic acidosis, and the second with the assumption that acute renal failure is the

Fig. 32. Diagnostic closure separated for each possibility
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26. We are using an unrealistically simple example for the purpose of illustration. For this
example we have assumed that the patient has received fair quantity of IV fluid. Furthermore, we
assuie that the electiolyte concentrittions in urine are not available; the differcnticadion is trivial if
the urine clectrolytes are available.
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Fig. 33. Diagnostic closures for each possibility projected tcrward
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true cause. The program then explores the consequences of its assumption in each
case by projecting the disease hypotheses forward (shown in figure 33) and compares
the two projections. From the projections it observes that salmonellosis and the acute
renal failure predict different states of hydration for the patient. Based on this

observation it formulates the next diagnostic problem shown below.
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Goal 2: differentiate dehydration edema

dehydration
caused-by: salmonellosis
belief: likely
severity: moderate

edema
caused-by: acute-renal-failure
belief: possible
severity: moderate

Let us assume that the state of hydration cannot be directly ascertained by inquiry and
the prcgram decides to decompose this goal into two subgoals, one each for confirming

dehydration and edema.

Goal 3: confirm dehydration
dehydration
caused-by: salmonellosis
belief: likely
severity: moderate

Goal 4: confirm edema
edema
caused-by: acute-renal-failure
belief: possible
severity: moderate

As dehydration is the more likely of the two (resulting from our initial assumption that
salmonellosis is more likely than acute renal failure), the program chooses to pursue

dehydration first. Since we have assumed that the state of hydration is unknown, the

Fig. 34. The goal tree

(differentiate diarrhea acute-renal-failure)

(differentiate dehydration edema)

(confirm dehydration) (confirm edema)

(confirm serum-creatinine) (confirm mean-arterial-blood- pressure)
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program must attempt to conf.rm it by gathering information like increased serum
creatinine, hypcutension, and poor tissue turgor. However, while formulating the goal for
confirming serum creatinine, the program notices (using the second DC, figure 33) that
the increased serum creatinine is also predicted by acute renal failure. The program
incorporates this information in its goal structure. The subgoals formulated by the

program in this situation are shown next.

Goal 5: confirm serum-creatinine

serum-creatinine

caused-by: dehydration

belief: likely

value: between 2 and 4
serum-creatinine

caused-by: acute-renal-failure

belief: possible

value: between 3 and 7

Goal 6: confirm mean-arterial-blood-pressure
mean-arterial-blood-pressure
caused-by: dehydration
belief: likely
value: low
mean-arterial-blood-pressure
caused-by: acute-renal-failure
belief: possible
value: high

The goal structure of the program when inquiring about the serum creatinine is shown in
figure 34 (the bold lines indicate the flow of control). The goal structure encodes the
program'’s rationale for asking the question: it explicitly encodes the program'’s reason
for asking the question and the context in which the question is being asked. Therefore,
if the user chooses to ask for an explanation at this point it is possible for the program to
provide the following types of explanations. (The explanation provided here is a
paraphrasing, in better English, of the program’s actual explanation, which is produced

by a very simple English generator [Swartout80].)

Explain: | am expecting the patient to have mild elevation in serum
creatinine. Increase in serum creatinine may be caused by
dehydration, which may be caused by salmonellosis.  The
salmonellosis may account for the observed metabolic acidosis.
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It is also the leading cause of metabolic acidosis under
consideration. Increase in serum creatinine may also be caused
by acute renal failure, which may cause metabolic acidosis.

Justify: | am exploring the cause of metabolic acidosis. | am
differentiating between the two leading causes of metabolic
acidosis, namely salmonellosis and acute renal failure. | am
differentiating between dehydration and edema. The dehydration
may be caused by salmonellosis and the edema by acute renal
failure. | am pursuing dehydration. | am pursuing serum
creatinine. Increase in serum creatinine may be caused by
dehydration. Increase in serum creatinine may be caused by
acute renal failure.

Viewing the individual diagnostic strategies as problem decomposition
operators allows the program to set up the diagnostic goal structure described above.
This goal structure not only allows the progrcm to explain and justify its diagnostic
behavior, but also provides a framework for evaluating the user response locally in the
context of the expectations. It allows the program to react locally when a discrepancy is
detected or when further exploration of the finding is needed, gracefully integrating the
program’s global disease-centered processing with the local symptom-centered

processing.?’

Each top level diagnostic inquiry, described above, is followed by incorporation
of all the information gathered into the existing PSMs (using the structure building
operators described in chapter 4), and the formulation of a new diagnostic problem.
This process is repeated until an adequate diagnosis of the patient’s iliness is achieved

or until all the information relevant to the diagnosis is exhausted.

27. We have just begun to exploit all the capabilities atforded by this mechanism. Although the
’ current program does not make sophisticated use of these capabilitics, we believe that extending
the program to do so is possible given the current understanding of the process.
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Summarizing, in this chapter we have introduced the notinn of a diagnostic
closure, which contains the hypothesized diseases, findings and causal relations
relevant to the diagnostic task at hand. A diagnostic closure is created by projecting
appropriate states in the PSM or hypothesized diseases forward to identify their
predicted consequences and backwards to identify their possible causes. Once we have
this knowledge for each diagnostic possibility, we have the dependencies necessary to

do diagnostic pianning.

Diagnostic problems are generated by identifying the places were two or more
hypotheses differ from one another in the interpretation of the findings. The set of
problems identified is used in formulating a top level diagnostic goal for one cycle of
diagnostic problem solving. The problem solver then generates a tree structured plan by
successively decomposing this goal using strategies such as differentiate, confirm,
group-and-differentiate, and rule-out. The diagnostic plan, in conjunction with the
diagnostic closure, provides the contixt in which a question is asked, the program'’s
reason for asking the question and its expectations about the possible responses to the
question. This knowledge is used to guide the diagnostic inquiry as well as to provide

explanation for the program’s bef:avior.

Each cycle of diagnostic problem solving is viewed as an integral operation.
During this cycle, the problem solver focuses on one top level diagnostic problem and
attempts to solve it. This provides a focus for the interaction between the user physician

and the program.

Finally, the information gathering process of each diagnostic cycle is followed
by the revision of the structure of each PSM, making it consistent with the newly
available information. Thus, at the end of each cycle of diagnostic inquiry, the PSMs are
internally consistent, allowing the program to relinquish control to the superior
management program (not implemented, see chapter 1) which could review the progress
of diagnosis and possible therapies to decide between further diagnosis and immediate

therapeutic intervention.
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6. Examples Revisited

In this chapter we will consider in detail the two examples described in chapter
2. We will examine how the program accomplishes the tasks involved in these examples.
Recall that the first example discusses a 40 year old 70 Kg male patient who has been
suffering from moderately severe salmonellosis, and as a result, has developed
moderately severe metabolic acidosis and hypokalemia. Recall also that the laboratory

analysis of the patient’s blood sample is:

Fig. 35. Serum electrolytes and the bar diagram

Agap
Time: 0 w o
Sex: male “?5?3
Na: 140 meq/1 140
K: 3 meq/1 ci
Cl: 115 meg/1 115
HCO3: 15 meq/] K
PCO2: 30 mmHg 3

The program creates a top level PSD (the root node of the PSD tree) and
instantiates the electrolytes in it. This PSD also corresponds to a PSM as it is the only
PSD in the PSD tree. Next, the program generates possible acid-base disturbances that
can account for the laboratory data. The acid-base analysis is based on the regression
equations for the 95 per cent confidence intervals for acid-base disturbances
[Schwartz65, Cohen66]. The nomogram of acid-base disturbances, the patient's acid-
base state and the possible acid-base disturbances are shown in figure 36. The list of
these disturbances is rank-ordered and pruned. The rank-ordering is performed in two
stages: first, by the complexity of the disturbance, and second, among the disturbances
with same complexity by their severities. For example, the complexity of the second
acid-base disturbance is 2 (the number of components in the disturbance) and its

severity is 0.75 = (0.682 + 0.322)05. The rank-ordered list is pruned to remove all the



Examples Revisited 119

Fig. 36. Graphical description of acid-base disturbances
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disturbances with more than two components from consideratior during the initial

formulation.?® The rank-ordered list of the likely disturbances is:

---- Patient Acid-Base Profile ----

1. metabolic-acidosis [sev: 0.4] very likely
2. chronic-respiratory-alkalosis [sev: 0.68]
+ acute-resjpiratory-acidosis [sev: 0.32] unlikely

' The two possible acid-base disturbances provide competing explanations of the
serum electrolyte values. The program creates two inferior PSDs under the root PSD. It
instantiates, at the clinical level, the nodes corresponding to metabolic-acidosis in the
first, and chronic respiratory alkalosis and acute respiratory acidosis in the second
(shown in figures 37 and 38). Next, it focally elaborates these nodes to the physiological
level (the level at which the instances of electrolyte data are present). For example, in
the first PSM the program focally elaborates the metabolic acidosis through the
intermediate levels until it reaches the pathophysiological level and identifies the amount
of HCO3 loss corresponding to the severity of the metabolic acidosis. Based on this
information and the laboratory data, ABEL instantiates the feedback loop corresponding
to the acid-base homeostatic mechanism. Next, it projects backward each node whose
cause can be uniquely determined and projects forward the definite consequences of
each node in the PSM.22 We now have the pathophysiological level explanation of the
» electrolyte abnormalities for each of the two likely acid-base disturbances (shown in

figures 37 and 38).

28. Triple disturbances, although possible, are rare and should be considered only when
sufficient evidence demands consideration of triple disturbance, generally after one of the
components has been confirmed and the acid-base profile after compensating for the known
disturbance still requires at least two further disturbances for proper accounting. Quadruple
disturbances are almost never considered in clinical practice.

29. Note here that since we are at the pathophysiological level, each link being projected is
' primitive. Thus, projecting back a node at this level is equivalent to instantiating the cause and
the link connecting the cause and the cliect node.
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i'ig. 37. Hypothesis 1
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Fig. 38. Hypothesis 2
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Fig. 39. aggregation of low-serum-K-1
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After the pathophysiological description is completed, it is aggregated, one level
at a time, to the clinical level of detail. To illustrate this process let us consider the
aggregation of the low-serum-K-1 node in PSM 1. Focally aggregating this node, we
instantiate hypokalemia-1 as shown in figure 39. Next, we observe that one of the
predecessor paths of low-serum-K-1 has an aggregable node on it, namely low-pH-1.3°
We focally aggregate this node to instantiate one of the causes of hypokalemia-1
(acidemia-1) at the next higher level. Note that the other predecessor path from
low-serum-K-1 does not have an aggregable node, therefore the component of low-
serum-K-1 caused by this path must remain unaccounted for at the next higher level.
Next, we compute the component of low-serum-K-1 that can be accounted for by low-
pH-1 and the component that remains unaccounted because of the unaccounted ECF-K-
loss-2. Then we compute the mapping of these two components at the next level of

aggregation and instantiate normokalemia-1 (the component accounted for by low-pH-1)

30. A node is aggregable if in the medical knowledge-base it is the focus of the elaboration
structure of some node at the next higher level which can be instantiated within the PSM.
Otherwise, the node is not agyregable.
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and hypokalemia-2 (due to unaccounted ECF-K-loss-2). We then causally connect the
normokalemia-1 to acidemia-1 and mark the hypokalemia 2 as unaccounted. The

structure added by the operations described above is shown in bold in figure 39.

Next, let us consider the causal aggregation of low-pH-1 shown in figure 40. As
each of the paths leading back from low-pH-1 has an aggregable node (low-pCO2-1 and
low-HCO3-1),3! the focal aggregation of low-pH-1 (acidemia-1) is a fully accounted node.
The causal aggregation is achieved by focally aggregating the low-pCO2-1 and low-
HCO3-1 into hypocapnia-1 and hypobicarbonatemia-1 respectively, and by causally

connecting hypocapnia-1 and hypobicarbonatemia-1 to acidemia-1. This process is

Fig. 40. Aggregation of low-pH-1

hypokalemia-2

const-of
hypokalemia-1
acidemia-1 hypobicarbonatemia- 1

! const-of
: causes .
| normokalemia-1 I i
| } ]
] ] ]
[} [} ]
i | ]
[} [} ]
! | ]
: 1 hypocapnia-1 : :
] ] ] ]
[} : ] 1
:!ocus y focus :locus : focus
| ] | 1
: , ECF ECF ! [
o< causes < Cpuses K'losz‘ K"%ss'z ) '
| | : const-of K.shift : :
ow- ow -shift-
serum- total- ! constol out-of- ! 1
K-1 K1 : cells-1 : :
t  ECF-K-gain-1 ! '
: causes : .
1 __ causes . constot causes"‘ causes
| increased- low- decieased- low:
I ause tespitation- pH-1 pH-2 HCO3-1

ate-1
low-pCO2-1 -

causes increased-pH-1
causes

const of

31. The search terminates when the program finds the fust aggregabile node on each path.
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Fig. 41. PSM for hypothesis 1
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Fig. 42. PSM for hypothesis 2
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repeated for each aggregable ncde at the current (pathophysiological) level and then the
whole process is repeated at the next level until we reach the clinical level of
aggregation. The resulting structures for the two acid-base hypotheses (encoded by the

two PSMs) are shown in figures 41 and 42.

As discussed in chapter 2, a comparison of the clinical level explanations shows
that the two PSMs share the structure involving hypokalemia and acidemia. They differ
in their accounting for acidemia. Note that the acid-base feedback cycles present at the
pathophysiological and intermediate levels have been abstracted away by the
aggregation process and the two clinical level descriptions are fairly simple. A
comparison of the intermediate level descriptions shows that they differ principally in the
way the acid-base feedback cycle is perturbed. In the first case, the change in acid-base
state is a consequence of addition of H* to the body which causes hypobicarbonatemia,
whereas in the second it enters as primary disturbance in ventilation which alters the
CO, tension. The pathophysiological level differences between the two cases can be
identified similarly by comparing the two pathophysiological level descriptions. Finally,
note that the first PSM has two unaccounted findings while the second PSM has three

unaccounted findings.

Fig. 43. Diagnostic closure 1
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Fig. 44. Diagnostic closure 2
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. In the context of this initial analysis the program starts its diagnostic
exploration. It computes the diagnostic closures for the two hypotheses (DC-1 and DC-2
shown in figures 43 and 44), and formulates the top level goal of pursuing DC-1. One

complete cycle of diagnostic inquiry is shown in figure 45.

As a first step towards exploring DC-1, the program groups the disease

hypotheses according to the number of unexplained findings each disease hypothesis

» can explain. For example, the salmonellosis hypothesized to account for moderately
severe metabolic acidosis can also account for the hypokalemia. Therefore, the
hypothesized salmonellosis can account for all the unaccounted findings in PSM-1.
However, if the patient had very severe metabolic acidosis and mild hypokalemia, the

salmonellosis hypothesized to account for metabolic acidosis would not have been
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irig. 45. One complete cycle of diagnostic inquiry

Differentiating between the causes of (a)
' the leading complete hypothesis.

1 SALMONELLOSIS

2 URETEROSIGMOIDOSTOMY

3 VILLOUS-ADENOMA

4 DISTAL-RTA

5 PROXIMAL-RTA

6 ACUTE-RENAL-FAILURE

7 CHRONIC-RENAL-FAILURE
continue? ==>y

’ Does the patient have any of the following? (b)
1 SALMONELLOSIS
2 URETEROSIGMOIDOSTOMY
3 VILLOUS-ADENOMA
Present: ==> none Absent: ==> no.ae Unknown: 1 2 3

I would 1ike to ask about the effects of SALMONELLOSIS.

Does the patient have one of the following? (c)
1 DEHYDRATION
2 EDEMA
)
Present: ==> none Absent: ==> none Unknown: 1 2
Is the value of SERUM-CREATININE known? ==> yes (d)

Please enter the attributes of SERUM-CREATININE
i What is the VALUE of SERUM-CREATININE ? ==> 3
What is the START-TIME of SERUM-CREATININE ? ==> 0

Is the value of MEAN-ARTERIAL-BLOOD-PRESSURE known? ==> yes (e)

Please enter the attributes of MEAN-ARTERIAL-BLOOD-PRESSURE
> What is the value of MEAN-ARTERIAL-BLOOD-PRESSURE ? ==> 76
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consistent with hypokalemia. In such a case we would have had to hypothesize two
separate instances of salmoncliosis, each accounting for only one of the two
unaccounted findings. Subsequently, each of the two instances of saimonellosis would
have been grouped with disease hypotheses accounting for only one unaccounted

finding.

Next, the diseases in the same group are rank-ordered based on their scores
computed from the three factors, mat.n, mismatch and unknown (described in section
5.4). Those hypotheses which have higher mismatch than match are not considered.
For example, consider the scoring of the vomiting hypothesized to account for
unaccounted hypokalemia. The vomiting so hypothesized matches the hypokalemia.
However, the hypothesized vomiting predicts metabolic-alkalosis which is inconsistent
with the observed metabolic acidosis. Furthermore, if vomiting were really observed in
the patient, the additional amount of HCOg4 loss necessary to cause the observed state
would require a very severe cause of metabolic acidosis to be present. Therefore,
» vomiting has a substantially higher mismatch factor as compared to the match and it is

rejected. The program deletes the hypotheses that have been rejected and rank-orders

the remaining as shown in figure 45(a).

Fig. 46. Diagnostic closure 3
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Fig. 47. Diagnostic closure 4
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Fig. 48. Diagnostic closure §
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Based on the categorization of the disease hypotheses, ABEL decomposes the
diagnostic problem into two groups by constructing two separate diagnostic closures
(DC-3 and DC-4). DC-3 (shown in figure 46) contains disease hypotheses 1 to 3, and
DC-4 contains disease hypotheses 4 to 7. It projects forward the disease hypolheses in

each of the two diagnostic closures to identify their unobserved findings. Next, it sets
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up a goal to differentiate betweer the three hypotheses in DC-3. As the first step towards
this differentiation, the program asks if the user is already aware oi any of the possible

alternatives as shown in figure 45(b).

When none of the three hypotheses can be directly confirmed, the program
pursues the task of differentiating between the three further. It sets up an individual
diagnostic closure for each of the three alternatives (DC-5, DC-6, and DC-7) and selects
the next item (dehydration) for inquiry.3? Note that salmonellosis, ureterosigmoidostomy
and villous-adenoma all cause dehydration. dowever, the program also notices that
some of the diseases in DC-4 (e.g., chronic-renal-failure) may have the exact opposite
effect of causing edema. Therefore, while exploring dehydration (state of extracellular
fluid volume) the program includes edema in the question (shown in figure 45(c)). The
program is expecting dehydration. Therefore, when it fails to confirm or deny the

dehydration it pursues the finding further (figure 45 (d) and (e)).

Fig. 49. After all findings have been exhausted

A11 possible etiologies that could explain the patient's
illness are unknown., In order to proceed we must at least
hypothetically assume one of them. Possible etiologies that could
explain the patient's illness listed in decreasing order are:

1 SALMONELLOSIS

- o = - = - e G e = W We e e e Gm e e e e -

2 VILLOUS-ADENOMA
3 URETEROSIGMOIDOSTOMY

B e e I e

5 DISTAL-RTA
6 PROXIMAL-RTA

Would you like to assume SALMONELLOSIS ? ==> yes

Assuming MODERATE ACUTE SALMONELLOSIS.

32. These three hypotheses could be ditferentiated very easily on the basis of history and clinical
evidence. For the simplicity of the example, we assume that this infoumation is not available to the
program.
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The program has now cinpleted one full cycle of its diagnostic inquiry. It
incorporates the information gained during this cycle in both the PSMs. Note that the
program has already gathered sufticient information to confirm salmonellosis. It is
unable to do so because we have nbt implemented the criteria for confirming a disease
yet.3 Therefore, the program starts the new cycle of diagnostic planning in which it
attempts to rule out all other possible causes of the acid-base disturbance. Finally, when
it has exhausted all the findings relevant to the diagnosis of this case, it concludes that
salmonellosis is the leading candidate and asks if the user would like to assume

salmonellosis (shown in figure 49).

The program adds salmonellosis to the patient models and re-evaluates the two
hypotheses. The process of assimilating salmonellosis into the PSMs is described next.
Let us first consider the operation of causally connecting salmonellosis with metabolic-
acidosis in PSM-1. As the observed salmonellosis is consistent with the metabolic
acidosis, a causal link from salmonellosis to metabolic acidosis is established at the
clinical level. The elaboration operator is used to establish this relation at the more
detailed levels (the resulting structure is shown in figure 560). The elaboration process
begins with the focal elaboration of salmonellosis to the intermediate level. The focus

nodes of the source and the destination of the link being elaborated (salmonellosis

—causes—) metabolic-acidosis) are now present at the next level. Next, ABEL attempts
to match the causal path associated with the link at the next level of detail, namely
salmonellosis —causes—)> lower-Gi-loss —causes—) metabolic-acidosis. As this path
does not exist at the intermediate level, ABEL must establish this path and then proceed
to elaborate each link in it. Let us first consider the link salmonellosis-1 —causes—)»

lower-Gi-loss-1. As salmonellosis is a primitive node at this level (it does not have a focal

33. A simple criterion for confirming a disease similar to that in PIP or MYCIN can easily be
added to the program. However, we have chosen not to do so because of two reasons: first,
because the choice of threshold for confirming a disease is arbitrary and theietore, very difficult
to explain, and second, in the electrolyte and acid-base progiam we envision this to be the task of
the global decision-making module.
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Fig. 50. Hypothesis 1 with salmonellosis
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ig. 51. Hypothesis 2 with salmonellosis
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node at the next lower level), th.e link between salmonellosis ani lower-Gi-loss is a
primitive link and cannot be e:aborated any further. The next link, lower-Gi-loss-1
' —causes—) metabolic-acidosis-1 however, can be elaborated further. This is done by
first focally elaborating lower-Gi-loss-1 at the intermediate level to the
pathophysiological level, and second by connecting, at the pathophysiological level,
) lower-Gi-loss-1 to HCO3-loss-1. As the remaining links in the causal path at this level are
already present, this completes the process of elaboration. Next, the newly created
structure is causally aggregateu to propagate the consequences of the lower level
additions back up to the clinical level. The results of assimilating salmonellosis into the

two PSMs are shown in figures 50 and 51.

A comparison of PSM-1 and PSM-2 shows that PSM-1 contains only one

) acid-base disturbance, while PSM-2 contains three acid-base disturbances. All the
findings in PSM-1 have been accounted for, while PSM-2 has three nodes that still need

to be accounted for. Therefore, based on the assumption that the patient is suffering

) from moderately severe salmonellosis, ABEL concludes that PSM-1 provides an
adequate explanation of the patient's iliness. The computer generated English

descriptions of the clinical levels of the two PSMs are shown in figure 52.

The second example deals with a patient suffering from moderately severe
vomiting and salmonellosis. Recall that the electrolyte and acid-base disturbance in
vomiting results from an excessive loss of upper gastrointestinal fluid, whereas in
) salmonellosis it results from an excessive loss of lower gastrointestinal fluid. The upper
Gl fluid is acidic while the lower Gi fluid is alkaline, therefore the two tend to have
offsetting effects on the acid-base balance. However, vomiting and salmoneliosis both
cause hypokalemia and volume depletion, therefore they compcund the effects of each

other.

In this example, we will consider the presentations of vomiting and
) salmonellosis such that they exactly offset the acid-base effects of each other, leaving

the patient with no net change in phl. We will demonstrate the program's capabilities in
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Fig. 52. English description of the two hypotheses
The Successful Explanation

This is a 40 year old 70.0 kg male patient with moderate
salmonellosis. His electrolytes are:

Na: 140.0 HCO3: 15.0 Anion Gap: 13.0
K: 3.0 pCO2: 30.0
C1: 115.0 pH: 7.32 Creatinine: 3.0

The salmonellosis causes moderate metabolic acidosis and
moderate dehvacavion., The dehydration causes moderate
hypotension and modeirately high creatinine disturbance. The
metabolic acidosis causes mild acidemia. The salmonellosis and
acidemia cause mild hypokalemia. A1l findings have been
accounted for.

The Alternate Explanation

This is a 40 year old 70.0 kg male patient with salmonellosis.
His electrolytes are:

Na: 140.0 HCO3: 15.0 Anion Gap: 13.0
K: 3.0 pC02: 30.0
Cl: 115.0 pH: 7.32

The salmonellosis causes moderate metabolic acidosis and moderate

dehydration, The dehydration causes moderate hypotension

and moderately high creatinine disturbance. Moderate acute
respiratory acidosis, moderate chronic respiratory alkalosis and
metabolic acidosis partly compensate the suspected mild

alkalemia leading to the observed mild acidemia. The salmonellosis

and acidemia cause mild hypokalemia. The chronic respiratory
alkalosis and acute respiratory acidosis remain to be accounted
for. The alkalemia has only been partially accounted for.

137

dealing with multiple etiologies and in reformulating its patient description when new

information is provided. We will illustrate this hy describing the program's

understanding of the case at three points during the diagnoslic process: (1) just after the

initial presentation of electrolytes, (2) after the program has identified the first of the two

diseases, namely vomiting, and (3) at the end of the diagnostic process.
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The program'’s initial eveluation of the patient’s electrolytes is as follows:

---- Patient Acid-Base Profile ----
1. normal-acid-base-state

This is a 40 year old 70 Kg male patient with moderate
hypokalemia. His electrolytes are:

Na: 141.0 HCO3: 25.0 Anion Gap: 12.0
K: 2.0 PCO2: 39.0
Cl: 108.0 pH: 7.42

The hypokalemia remains to be accounted for.

The initial PSM (PSM-1) created by the program is shown in figure 53. Note that
the clinical level of the PSM contains only one abnormal finding, hypokalemia. Figure 54
shows the revised PSM after vomiting has been introduced. A detailed descriptic:i of this

process of revision is considered next.

Based on the information in the diagnostic closure the program concludes that
the vomiting present cannot account fully for the hypokalemia. However, as the vomiting
can partiaily account for the hypokalemia (leaving a smaller amount unaccounted for),
the program decides to project forward, to identify the quantity of hypokalemia
accounted for by it. The projection process begins with the focal elaboration of
vomiting-1 from the clinical level to the intermediate level. Next, the program matches

the causal path associated with the link, i.e., vomiting —causes—) upper-Gl-loss
—causes—> hypokalemia. As this path is not inconsistent with the PSM, the program

recurs on each link in the path. The first link, vomiting —causes—) upper-Gl-loss, is a
primitive link. Therefcre, the program instantiates the upper-Gl-loss (upper-Gl-loss-1)

and the link connecting it upwards to vomiting-1. The second link, upper-Gl-loss

—causes—) hypokalemia, is a compound link. The path associated with this link at the
next level is upper-Gl-loss -—causes—) ECF-K-loss —causes—) low-total-ecf-K
—causes—> low-serum-K. Matching this path with the description in the PSM, the
program finds that all but one link, upper-Gl-loss —causes--> ECF-K-loss, is already
present. Since this link is primitive, the program revises the component stiucture of

ECF-K-loss-1 and instantiates the link between ECF-K-loss-4 and upper-Gl-loss-1. Nole
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Fig. 53. Initial PSM

Clinical Level
hypokalemia-2

hypokalemia-1

[}
]
[ normal-
! 9 acid-base-
1 normokalemia-1 ' state-1
\ |
| 1
) . !
1 Intermeidate Level :
. ]
'
: hypokalemia-2 )
]
\ |
]
hypokalemia-1 1 normal-
\ 1 acid-base-
) ) State-1
: : normobicarbonatemia- 1
" normokalemia-1 \ 1
| ! !
[} ] ]
1 1 :
' ' normocapnia-1 ! X
1 ) ! X
: ! ! .
i ! i !
I ' ' !
1 Pathophysiological Level ! :
. . ECF ECF ! :
] causes K-108s-1 K-loss-2 1 h
| | v ool kesnif !
ow- OwW- no-K- .
serum-  lotal- Lo outof- : !
-1 K-1 ) causes cells-1 ' X normal
:no- -change-1 1 ¢ total-
, causes\, ! : HCO3
f . causes | _ constol . _ causes o _ causes
! normal- nErmal- nor?zml- nmg\:z;l-
\ ::?glganon- pH-1 pH- -1 causes
normal-pCO2- 1! const-of no-net-HCO3
normal-pH-3 change-1
causes
no-net-
causes causes HCOS-cha@e-

normai-renal-HCQOQ3-threshold-1

causes -
no-net-titration-of-body-bulfer-1 no-net-HC63-change-3




Examples Revisited ' 140

Fig. 54. Revised PSM after vomiting is entered

Clinical Level
hypokalemia-3

hypokalemia-1 acidemia-1

const-of

causes
- normal-acid-base-state-1

hypokalemia-2

|
[}
I
[}
[} 1
[} [}
| 1 causes metabolic-alkalosis- 1 vomiting-1
|
: v alkalemia-1 ' causes
. L [
| Intermediate Level \ | |
\ | i |
] ] | |
: hypokalemia-3 : : :
| | | |
! : hypobicarbonatemia-1 : :
" normal- \ |
' acid-base- const-of . )
! state-1 , |
normobicarbonatemia- 1
causes ‘ causes | aﬁ;ﬁ)er. . :
ses -loss-
e A auses ' vonliting-1

|
|
]
|
]
]
) 1 > AUSES
! inormocapnia- 1 ! hyper metabolic-
! 1 ! bicarobo ! alkalosis-1
1 | natemia-1 !
t ] [}
| | T [
I . . | |
. Pathophysiological Level | |
! | ECF 1 RS 5 ECF ECF '
) -loss- -loss- ! |

Causbs ) K-loss-3 K-loss-4 |

]

]
causes

no-K-shift-
out-of -
cells-1

const-of

no-K-change-1
causes
causes

-
normal-

LR STy, S DR P [P rou DU I

const-of . causes causes

<
normal- normal- normal-

respuation- pH-1 pH-2 HCO3-1 e i
rate-1 auses
normal-pC0O2-1 const-ot no-net-HCO3 : .
narmal-pH-3 change- 1 L

:HCOE- loss-1
const-of |

lCOS~gain-:2

causes

no-net-HCO3

causes causos change-2

normal-renal-HCO3-thieshold-1 nst of
causes const-of < (a11565

no-net-titration- of-body-buffer- 1 no-net-HCO3J c'hange-a HCOJ gain-1 um;z_ar»Gl-Ioss-l




Examples Revisited 141

ihat as soon as this link is instantiated the path at the pathophysiological level is
complete. The program aggregates back the effects of the projection process to reflect

the additions at the lower levels at the upper levels.

An important side-effect occurs when the program is reasoning (at the
pathophysiological level) about the quantity of ECF-K-loss associated with the upper-Gl-
loss. As the ECF-K-loss is dependent on the quantity of upper gastrointestinal fluid loss,
this loss must be accompanied by the loss of corresponding amounts of the other
electrolytes present in the upper-Gl-fluid, notably the loss of H*.3* This fact is
incorporated into the PSM, causing the program to revise its acid-base hypothesis. This
hypothesis now contains two components: an alkalemia (metabolic-alkalosis) caused by
vomiting, and an acidemia (unaccounted) which cancels the effecis of alkalemia leaving
the patient in a normal acid-base state as shown in figure 54. Thus, the PSM after
vomiting contains two unaccounted nodes: the unaccounted component of hypokalemia
(less severe than before vomiting was introduced), and acidemia which must be present

to offset the metabolic-alkalosis caused by vomiting.

Note that the two unaccounted components of the PSM are the same as those
present in PSM-1 of the first example. We have been successful in separating the effects
of vomiting from the remaining disturbance (salmonellosis). As might be expected, from
here on the diagnosis of this case is similar to that of the first example. The final
diagnosis after salmonellosis has been added to the PSM is shown in figure 55. Figure
56 shows the program’s English explanation of the final diagnosis at two different levels

of detail.

34. The loss of H* from the extrucellular fluid can be viewed as gain in HCO:;, because as the

H* is removed from the carbonic acid — bicarbonate buffer an equivalent amount of HCOq is
released into the fluid.
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Fig. 55. Final PSM arter salmonellosis is introduced
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Fig. 56. English text of the final explanation

Clinical Level

This is a 40 year old 70.0 kg male patient with moderate
vomiting and moderate salmonellosis. His electrolytes are:

Na: 141.0 HCO3: 25.0 Anion Gap: 12.0
K: 2.0 pC02: 39.0
C1: 108.0 pH: 7.42 Creatinine: 3.0

The vomiting causes moderate metabolic alkalosis. The salmonellosis
and vomiting cause moderate dehydration, which causes hypotension.
The dehydration also causes moderately high creatinine disturbance.
The salmonellosis causes moderate metabolic acidosis. The metabolic
acidosis and metabolic alkalosis cause normal ph. The salmonellosis,
and vomiting cause moderate acute hypokalemia. A1)l findings have
been accounted for.

Intermediate Level

This is a 40 year old 70.0 kg male patient. His electrolytes
are:

The patient has moderate vomiting and moderate salmonellosis.
The vomiting causes moderate upper gi loss, which causes moderate
metabolic alkalosis. The salmonellosis causes moderate lower gi loss.
The lower gi loss and upper gi loss cause moderate dehydration,
which causes hypotension. The dehydration also causes moderate
high creatinine disturbance. The lower gi loss causes moderate
metabolic acidosis. The metabolic acidosis and metabolic alkalosis
cause normobicarbonatemia. The normobicarbonatemia and normocapnia
cause normal ph. The lower gi loss and upper gi loss cause modera.e
hypokalemia. A1l findings have been accounted for.
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7. Conclusion
7.1 Summary

Each new scientific endeavor is built on previous endeavors, consolidating their
successes and learning from their shortcomings. This is no exception; we have drawn
heavily from first generation AIM programs. This thesis has benefited from the studies of
clinical skills of physicians, by introspection and by observing each other, development
of models of diagnostic processes and their implementation using computers by
Schwartz, Pauker, Gorry, Kassirer, Szolovits and others. Implementation of the Present
lliness Program and analysis of its performance was an important first step for the
research presented here. Experience with PIP and the other first generation AIM
programs exposed the need for substantially more detailed and categorical reasoning in
diagnostic programs and provided an ideal environment in which to explore the issues

addressed in this thesis.

The research presented in this thesis was alsc influenced by the discussions of
difficult diagnostic cases at the informal Electrolyte and Acid-Base rounds at the Tufts
New England Medical Center Hospital. The most striking aspect of these discussions
was the frequent use, by the clinicians, of the pathophysiological knowledge in
evaluation and justification of diagnostic hypotheses, and the ease with which they were
able to combine knowledge of global diagnostic associations such as ‘‘disease X is a
common complication in a patient with a history of Y" with intricate physiological
deductions such as "Na* and K* exchange in the distal tubule is coupled with the
excretion of H*, therefore increased distal delivery of Na* enhances...” These
observations strengthened our conviction that in order to begin to approach the level of
'competence of an expert a computer program n.ust possess a similar ability. It must be
able to reason simultaneously with phenomenological knowledge about disease
associations and with the best available pathophysiological knowledge about disease

mechanisms. Much of our effort has been focused on building represedatational and
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procedural mechanisms to provia= such a capability. The emphasis has been on the
development of multi-level causal descriptions of a patient's iliness and on the
development of techniques for composing/decomposing effects with multiple causes
(described in chapters 3 and 4). We believe this approach provides our program with a

level of understanding of disease not present in the first generation of AIM programs.

The study of clinical problem solving activity by Elstein [Elstein78], Kassirer
[Kassirer78] and others suggests that a physician's diagnostic reasoning is strongly
guided by structural notions such as ‘‘coherence” and ‘‘adequacy'’. Each diagnostic
alternative entertained by a physician is a mosaic of connected hypotheses, together
accounting for the observable aspects of the patient’s iliness. This thesis describes the
use of a coherent hypothesis as the logical unit of hypothesis representation
(represented as a PSM). A PSM is a collection of causally connected disease
hypotheses and findings, providing a (perhaps partial) explanation of the patient’'s

iliness. A set of alternative diagnoses consistent with a PSM is represented using a

diagnostic closure. A diagnostic closure unites all the dependencies and expectations
necessary for diagnostic inquiry, for selecting appropriate questions, and for evaluating

the information received in response to the questions.

Expert clinicians employ a variety of diagnostic strategies for an efficient
exploration of the diagnostic space. Some of the first generation programs, notably
INTERNIST-I, use similar strategies to guide their diagnostic exploration. However, their
lack of commitment in pursuing a given strategy to completion results in unfocused and
inefficient use of these strategies. This problem can be alleviated by allowing the
diagnostic problem solver to plan a sequence of questions focused around a diagnostic
task before embarking on an inquiry. In ihis thesis we have described a simple
diagnostic planner which formulates a tree structured plan. The planning begins with
the global task of discriminating among the set of alternative PSMs (and their associated
diagnostic closures). This task is reduced to a set of questions by recursive application

of diagnoslic strategies: conlirm, differentiate, rule-out, group-and-differontiate and
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explore. The diagnostic planning provides the program with a focused and efficient
diagnostic behavior. In addition it serves as a framework for justifying the motivation for

asking a particular question.

We have argued that for a competent medical system to be accepted, it must be
able to explain its conclusions to its user. This thesis has applied some recent
explanation technology [Swartout80]% developed in a simpler domain to the much more
complex domain of electrolyte and acid-base diagnosis. ABEL is capable of justifying its
motivation for asking a particular question and explaining its understanding of the

patient’s iliness at multiple levels of detail.
7.2 Limitations of ABEL and Future Directions

The research presented in this thesis has many limitations. Some are due to
limitations of time and resources. More seriously, the inherent size and complexity of the
domain has forced us to limit the scope of this research to just a few issues and to adopt

engineering compromises.

The representation of the relation between states in ABEL is inadequate; all
interactions are described using a single type of link, namely a causal link. This is
unnatural when the relationship between disease states is statistical with no known
cauusal explanation. Furthermore, we need to group states which jointly have significant
diagnostic and prognostic implications even if the states are not causally or statistically
related. Weaker relations, such as ‘‘associational links"" and ‘‘grouping links" are

needed to capture these two cases [Pauker76, Patil79].

35. The explanation technique developed by Swartout explores the use of automatic
programming for encoding a performance program's domain knowledge and principles which are

then used to explain the behavior of the performance prograim. ABEL, however, maintains an
explicit account of iis knowledge. Therelore, the use of automatic programming is not necessary
to explain ABEL's reasoning or understanding.
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Causal interactions are themselves complex and multi-faceted. For example, an
effect may be triggered by a cause, or the presence of an effect may require continuous
presence of the cause. We consider an elaborate taxonomy of causal relations (e.g.,

[Rieger77]) to be a necessary component in the future development of ABEL.

One primary objective of this thesis has been to explore structural criteria such
as coherence and adequacy in the construction and evaluation of causal hypotheses.
We have intentionally avoided probabilistic measures in order to test the full potential of
this newly developed structural criteria. However, the structural and probabilistic
measures complement each other; both are essential in a diagnostic system. We intend
to develop probabilistic measures for evaluating coherent hypotheses based on
techniques described in [Duda76] and [Pednault81].

The diagnostic problem solver in ABEL has a simple tree structured plan for
controlling its diagnostic information gathering. Although it already provides the
rudimentary abilities discussed above, it fails to capture the interactions between
different branches of the tree. Additional inadequacies arise for the following two
reasons. First, as discussed in chapter 3, the use of available knowledge of anatomy,
etiology and disease taxonomy is limited. Second, the program does not ascertain the
overall state of the patient's health, e.g., the vital signs, stability etc.3® This assessment is
an important component of the physician's evaluation and has considerable influence on
his formulation of diagnostic goals and strategies. We believe that a similar assessment
of the overall state of a patient's health should be modeled in the PSM explicitly, and
used in guiding the diagnostic exploration. In coming years we envision implementing
diagnostic reasoners with increésing sophistication based on the models of causal
reasoning developed in this thesis and on recent advances in planning paradigms (e.g.,

[Sacerdoti75, Stefik81]).

36. We have often noted clinicians describing a patient in terms such as “this is an otherwise
healthy patient with chronic urinary tract infection™ or “this is a very sick patient with acute bowel
influnmation"'.
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A serious criticism of the work presented here could be the small size of the
domain and the availability of a well defined methods for the initial formulation of the
diagnostic problem. This leads to the questions; do the techniques presented here scale
up? What are the problems if they are applied to medical diagonsis in a larger domain
similar to that of PIP or INTERNIST-1?

The exact methods used by ABEL in the initial formulation of diagnostic
problems are domain dependent. We believe that use of similar techniquves to limit the
size of initial problem formulation is common among clinicians [Elstin78, Kassirer78].
We believe that it is important to distinguish between the processing strategies used in
the initial formulation and those used during later stages of the diagnostic process.
Substantial further research is needed in identifying strategies for initial processing in

larger contexts.

We believe, however, that the multi-level causal representation of medical and
pauent-specific knowledge, and the description-building processes are independent of
the size of the data-base. The major difficulty in using these methods lies in the enormity
of the knowledge-base that will be required to adequately cover problems of the size
tackled by PIP or the INTERNIST-I.

In summary, this thesis has developed a new representational scheme, capable
of capturing some of the subtlety and richness of knowledge employed by expert
physicians, and we have presented a new form of diagnostic problem solver which
avoids some of the problems present in the previous programs. We believe that the
research presented in this thesis is a small step in the right direction. Designing expert
medical programs is a difficult and challenging task; much work clearly remains before

successful and acceptable expert medical systems are a reality.
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The road tn wisdom? — Well, it's plain
and simple to express:
Err
and err
and err again
but less
and less
and less.
Piet Hein,Grooks
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Appendix | - System Building Tool: XLMS

The ABEL system uses XLMS to represent and manage its knowledge base.
The XLMS (e Xperimental Llinguistic Memory System) was developed primarily by Lowell
Hawkinson, William Martin, Peter Szolovits and the members of the Knowledge Based
Systems and the Clinical Decision Making groups at MIT [Hawkinson80]. Although the
representation of the ABEL system has been substantially influenced by the design
philosophy and the details of the implementation of XLMS system, it is not necessary to
have a complete understanding of the intricacies of XLMS to understand this docum.ent.
This section is intended to elucidate only as much of XLMS as is required to comprehend
this document. Furthermore, wherever possible, the XLMS notation is supplemented by
its graphical representation to reduce the dependence of this document on the notation
of the XLMS.

Perhaps the best way to think of XLMS is that it is an extension of LISP that
allows one to use unique and canonical expressions and allows one to /abel these
expressions uniquely. In LISP, atoms are used to name variables and furctions. In
XLMS, variables and procedures can be named by unique expressions (called

concepts). Similar to LISP atoms, these concepts can have properties called
attachments. They differ from the LISP in the sense that these concepts are structured

objects and can have superior and inferior structures. In addition, these concepts have

internal structure that can be taken apart and examined, while lisp atoms are indivisible.
1.1 XLMS Concepts

In XLMS, every concept is composed of three parts: ilk, tie and cue, and is
written as:
[(<ilk>*<tie> <cue>)]
or, to take an actual example from the ABEL data base:

[(concentration*u ecf-na)]
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The ilk of a concept is itself a concept. It describes the concept this concept is derived
from. Thus the example concept described above, is a kind of *‘concentration”. The cue
of a concept is either a concept or a lisp symbol. It specializes the general concept
described by the ilk, or in other words, indicates what it is that makes this concept
different from others with the same ilk. The example represents the ‘‘concentration of
ecf-na’: a particular kind of concentration. The tie of a concept indicates the
relationship between the ilk and the cue. In this case, the tie is "‘u" for unique-role. The
role ties are used to indicate slots (attributes or properties) of a concept (furthermore, a
unique-role indicates that there is only one role of the kind described by the concept).
Thus this concept represents the ‘‘concentration’ slot in the concept of “‘ecf-na*’. There
are several other ties that are used in the system, some of them primitive to the XLMS
system and some ‘‘user defined” for use in the ABEL system. These are listed in Table 1
together with examples of their use. Finally, any concept in the data-base can be
(optionally) labeled using the notation
[<label> = <concept>]
or, to name the concept defined above

[serum-na = (concentration*u ecf-na)]

Table l.
Tie Name Example Use English Form Purpose
*f  function [(ball*f red)] (the) red ball functional
restriction
*r  role-in [(color*r ball)] (the) color of slot filling
(the) ball
*u  unique-role [(weight*u ball)] (the) weight of slot filling
(the ball)
M individual [(ball*i 1)) ball instance
*s  species [(bird*s robin)] robin mutually exclusive

decomposition
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Fig. 57. The XLMS hierarchy
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As was indicated above, concepts in XLMS are organized into an AKO hierarchy
(see figure 57). The root concept is [summum-genus] and all concepts are defined as

specialization of this concept.

In LISP, a symbol may have a property-list, which can be used to to attach

properties (lists and other atomic symbols) to a symbol. Similarly, in XLMS, we have

attachment which can be used to associate concepts relating to a concept with that
concept. The notation for attachment is:

[<concept> #<attachment-relation>
Cattached-concept> .... <attached-concept>]

or, for example:
[(sex*u patient) #Value male]

The attachment-relation specifies how the concept and the attached concept (called the
attachment) are related. The example above states that the slot *'sex of the patient’ has

the ““value” of “male”. An alternate way would have been to create a specific concept to
describe the same relation. For example, the relation described above could be
alternately specified as

[((sex*u patient)*f male)]
which states that the “'sex of the patient' is functionally restricted to being “male”. The

built in functions ot XL.MS tend to make it easicr to work with the concept hicrarchy than
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with attachments. Typically, primiary characterizations of a concept are placed in the
kind hierarchy while secondary ones are indicated by attachments [Martin79]. The
commonly used attachments in the ABEL system are: #v (value), #f (function) #c
(characterization), #m (meta-characterization) and #s (standard-error). Some

additional attachment relations such as # meta-link are also used.

Program fragments in the ABEL system are described using sequences of XLMS
concepts. Sequences are described in XLMS notation by a list of concepts separated by
commas:

[<concept>,<concept>, .... <concept>]

The reader may have noticed that the XLMS notation is delimited by square
brackets. These brackets identify the concept as a piece of XLMS notation and delimit
the scope of its attachments (if any). Any expression delimited by square brackets is
called a complex. The first concepi to appear after a left bracket is called the head of
complex. If an xIms-complex is contained within some piece of XLMS notation, the
XLMS reader makes any attachments or builds any structure indicated by the complex,

and then replaces the complex by the head of the complex.

Finally, the colon anaphora provide a convenient shorthand for specifying the
slots (roles) of a concept. If a concept appears in XLMS notation with a colon (or several
colons) immediately following it, then the XLMS reader replaces that concept with a new
concept whose ilk is the concept with that notation and whose tie is *r. If the colons are
immediately followed by a number (e.g., 1), then the XLMS reader replaces this concept
with the first instance of the new concept. If colons are immediately followed by a *‘u”,
the XLMS reader replaces this concept with a new concept whose ilk is the concept with
the concept with that notation, whose tie is *u and whose cue is the head of the conplex
n levels in from the top level complex, where n is the number of colons in the notation.

For example:
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[table ==> [table

[top:u #c ...]] [(top*u table) #c ...]]
[table ==> [table

[leg: #c ...]] [(1eg*r table) #c ...]]
[table ==) [table

[leg:1 #c ...]] [((1eg*r table)*i 1) #c ...]]

A similar anaphora mechanism, but counting from the inside, is provided with the use of

uparrow (“'1").

1.2 The XLMS Interpreter

A simple XLMS interpreter LINT (Little INTerpreter) was implemented by the
author to execute the mapping relations associated with links and component
summation/decomposition relations associated with primitive links. The evaluation of
functions and handling of arguments in the interpreter is similar to LISP. For example, a
function ‘“‘(compute-ph serum-hco3 serum-pco2)” in LISP is equivalent to
“[(compute-ph*c serum-hco3,serum-pco2)]" in LINT. They differ in the way the
variables are evaluated. In LINT a variable (indicated by a role tie) is evaluated by first
binding the concept containing the role (slot associated with the variable) to its
instantiation in the initiating pattern (i.e., a specific link or constituent summation) or the
selected PSM, and then accessing the value associated with the slot in the instance, or
by inheriting the appropriate default value associated with the slot. For example,
evaluation of the above LINT function in context of PSM-1 of example 1 in chapter 6
would result in binding ‘'serum-hco3” to ‘'serum-hco3-1" with the value of 15.0 and

similarly *‘serum-pco2" to “‘sert'm-pco2-1'" with the value of 30.0.

Finally, we note that the program fragments in xIms are expressed as concepts,
they are naturally organized into XLMS hierarchy of concepts allowing the program to
inherit the function definition for specific tasks from more gencral definittons. For

example, the function to compute the concentration of serum-Na from the tolal quantity
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of Na in the extracellular compar:ment can be computed using the more general function
for computing the concentration of a serum electrolyte from its total store in the

extracellular compartment.
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Appendix Il - Explanation

The English explanation generator in the ABEL system is implemented using the
methodology developed by Swartout [Swartout80] as a part of an interactive system
which explains and justifies portions of an expert system for prescription of Digitalis. In
this chapter we will review the methodology for generating English from causal paths
and XLMS concepts developed by Swartout and discuss techniques for organizing the

flow of explanation in translating descriptions contained in a PSM.
I1.1 Phrase Generator

The phrase generator generates English phrases from XLMS concepts. An

example of an XLMS concept and the phrase generated for it is:
[(severity*u diarrhea)] == (the) severity of diarrhea

In XLMS, the tie of a concept indicates the relationship between the ilk and the cue of the
concept. Thus, *r indicates that the ilk is a role in the cue, and *f indicates that the cue
is a modifier of the ilk. Because the tie indicates the relationship between the ilk and
cue, it also determines the primary English form of a concept. Therefore, the phrase
generator is organized around the types of the tie. Examples of primary English phrases

associated with concepts with different ties is shown in table 1 in appendix .

The phrase generator contains a set of translation riiles; one rule for each type
of tie. However, for a labeled concept, the phrase generator prefers the label of the
concept over its translation except when the use of the label is explicitly forbidden. This
can be done by meta-characterizing the labeled-concept or any of its superiors with

[do-not-use-label].

The translation of a causal link into English is initiated when a concept with the
tie *e is encountered. However, this translation is also dependent upon whether the link

is being traversed forward from source to destination or vice versa. For example,
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[((caused-by*h diarrhris)*e metabolic-acidosis)]
would be translated while being traversed forward as
diarrhea causes metabolic acidosis
and, while being traversed backwards as

metabolic acidosis is caused by diarrhea

These low level primitives for translating individual XLMS expressions are used

by the higher level of explanation generator which traverses the causal net.

I1.2 Higher level explanations

With the ability to translate a state and a link we next focus on describing causal
relations occurring in a causal net. First, let us focus on describing simple chains of
causal links, such as:

[((caused-by*b A)*e B)], [((caused-by*b B)*e C)], [((caused-by*b C)*e
D)]
which is trarslated into

A causes B, which causes C. C causes D,

Note that this is somewhat of a compromise. It prevents the monotony oi haviig three
sentences with identical structures; “A causes B. B causes C. C causes D.". However,
the number of components in any given sentence are restricted to two, therefore, in
situations where use of three causal relations in a single sentence is desired, the

explanation generated by this method comes out rough.

Let us consider another situation

[((caused-by*b A)*e B)]
[((caused-by*b C)*e B)]

If this situation occurs in the general medical knowledge, then it implies that A and C are
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two possible causes of B.3” This is translated as
A may cause B. C may also cause B.

However, if this situation occurs in the PSM, then A and C combine to cause B. This can
be stated as

A and C jointly cause B.
However, if the we are discussing the relation between A and B then this is stated with
the help of an adjunct clause, e.g.,

A along with C causes B.
Conversely, when we have

[(caused-by*b A)*e B)]
[(caused-by*b A)*e C)]

Itis translated as

A causes B and C.
A high level English generator is based on this translation facility. Its primary goal is to
organize the medical knowledge or the patient specific knowledge into a sequence of

objects which are then translated using the translation facility.
11.3 Organizing causal Explanaticn

The operation of the higher level explanation generator can be described in
three steps: (1) describing a node (state), (2) describing a relation between two nodes,

and (3) descriking a causal network.

The description for a node is generated in the following way. The translation of
the concept associated with the' node generates a noun phrase (NP). Each attribute
(slot) of this node can be then be described as an adjective which modifies the noun

phrase associated with the node. For example;

37. In the medical knowledge base a causal link is interpreted as indicating a possible causal
relation,
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[{diarrhea*i 1)
[severity:u #v 0.7 #c severe]
[duration:u #v 60.0 #c chronic]]

==)> severe chronic diarrhea
In addition the explanation generator distinguishes between the first time a concept is
described from all subsequent references to the concept. At the first time every attribute
of the concept that has been specified in the instance is described whereas on
subsequent references only those attributes are mentioned which are necessary to
distinguish this instance from other references to other instances of the same concept.
For example, if during the discussion we had also made reference to ‘'severe acute
diarrhea’ then in a later reference to the [(diarrhea*i 1)] the program will distinguish this

from the others by specifying ‘‘chronic diarrhea'.

A description of the relation between given two nodes in a causal network is
generated as follows. (1) Identify all loop free paths from the first node to the second
This generates a partial order graph (acyclic graph). (2) Impose a linear order on the
nartial order graph of step 1. (3) Translate this linear order of concepts using the
translator described above. However, we must note that there may be a causal path
between the two nodes in each direction — that is, the two nodes might be part of a
feedback cycle. This is handled by repeating step 1 with each of the two nodes as the
starting nodes. If both of the partial order graphs are null, we know that the two nodes
are unrelated, if one of them is null and the other non-null, then the relation between
them is one directional, and if both of them are non-nuil, then we know that there is a
feedback relation between the two nodes. Luckily, the above algorithm has already
decomposed the feedback relation between the forward and the feedback components.
Thus we can divide the expianation of the relation into two parts: from first node to
second and from second to first. An example of the relation between acidemia and

hypocapnia for hypothesis 1 of example 1 in chapter 6 is shown in figure 58.
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Fig. 58. Feedback relation betweeen acidemia and hypocapn.a
The forward path: The acidemia causes hypocapnia.

The feedback path: The hypocapnia along with metabolic-acidosis
causes hypobicarbonatemia. Hypocapnia and hypobicarbonatemia jointly
cause acidemia.

The English description for a given causal network is organized in three parts:
(1) a one line introduction describing the primary causes and the important electrolyie
and acid-base states in the causal network being explained, (2) a detailed description of
the causal network being explained, (3) a one or two line summary of the causal network
which focuses on the nodes in the causal network that cannot be adequately explained
by the network. As the first step in organizing the explanation the program divides the
nodes in the given causal network into one of the following groups: (1) ultimate
etiologies, (2) acid-base nodes (3) fully unaccounted nodes (4) partially unaccounted

nodes, and (5) other nodes.

The one line introduction to the causal network is generaied by describing the
age, sex and weight of the patient and all the ultimate etiologies and the acid-base nodes

that have not been accounted for by any of the ultimate etiologies.

The generation of the detailed description of the causal network closely follows
the procedure used for describing the relation between two states. The program takes
each of tne ultimate etiologies and fully unaccounted nodes and identifies all loop free
paths from these nodes to all other nodes reachable from them. As discussed before,
these paths impose a partial order on the causal network. The program then imposes a
linear order on the partial order graph generated in the previous step. Finally it

translates this linear order sequence of nodes and links into English as discussed before.
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Finally, the program summarizes the description of the cauzal network by listing
all the fully and partially unaccounted nodes. That is, it summarizes the inadequacies in

the causal explanation and points out the nodes that need further diagnostic exploration.

In this appendix we have briefly discussed the techniques uszd by ABEL in
organizing explanations of ABEL's medical and patient specific knowledge and have
reviewed the English translaticn methodology developed by Swartout [Swartout80]. The
primitive explanation capabilities of ALEL, in spite of their inadequacies, have already
proved to be valuable to the developers of the program. Substantial further
developments in improving the quality of the English generated, identifying the level at
which the explanation should be provided, and in tailoring the explanations to users’
needs using modeling of user’s understanding of the program and the domain of medical

expertise are needed.



