
AN ANALYTIC NODAL METHOD 

FOR SOLVING THE TWO-GROUP, MULTIDIMENSIONAL, 

STATIC AND TRANSIENT NEUTRON DIFFUSION EQUATIONS 

by 

Kord S. Smith .,,,.... 

B. S. , Kansas State University ( 1976) 

SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE 

DEGREES OF 

NUCLEAR ENGINEER 

AND 

MASTER OF SCIENCE 

AT THE 

· @ MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

MARCH 1979 

. Signature redacted 
Signature of Author. • . • . . . ,, , .v .-~ • Y\J < •. .......- -. • -..... • • • • • 

Department of Nuclear Engineering, March /Cf, 19 79 

Signature redacted 
Certified by • • • • ...,,,.. • , • r • . • • -·v..,./. . . . Th~sis ·sui,e.rv.is~r. 

Accepted by " • 
Signature redacted 

JUL 3 0 1979 

LIBRARIES 



AN ANALYTIC NODAL METHOD

FOR SOLVING THE TWO-GROUP, MULTIDIMENSIONAL,

STATIC AND TRANSIENT NEUTRON DIFFUSION EQUATIONS

by

Kord S. Smith

Submitted to the Department of Nuclear Engineering on March 9, 1979,

in partial fulfillment of the requirements for the Degrees of Nuclear

Engineer and Master of Science.

ABSTRACT

The objective of this research is to develop computationally effi-
cient numerical methods for solving the two-group, multidimensional,
static and transient neutron diffusion equations. In particular, refine-
ments of the Analytic Nodal Method (which employs analytic solutions
of the one-dimensional diffusion equations to determine spatial coupling)
are investigated.

In the static case, the only approximation of the Analytic Nodal
ehd-isthat-thespatial-shape-of-thetransverse-JnkageS-Canhe~fit-

quadratic polynomials. Numerical techniques for solving the nodal dif-
fusion equations are investigated and optimized for LWR analysis with
assembly-sized spatial mesh. The nodal method is extended to the
time-dependent case by use of the Theta time-integration method.

Analysis of many two- and three-dimensional, static and transient
LWR problems demonstrates that very accurate solutions can be
obtained with assembly-sized spatial meshes (15-20 cm). The computa-
tional efficiency of the Analytic Nodal Method is also shown to be at
least two orders of magnitude greater than that of conventional finite
difference methods.
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Chapter 1

INTRODUCTION

1. 1 OVERVIEW

An extensive knowledge of the spatial power distribution is required

for the design and analysis of current-generation light water reactors.

Efforts to answer safety questions which arise in conjunction with actual

and hypothetical accident scenarios often require the knowledge of multi-

dimensional transient power distributions. Accordingly, the nuclear

reactor vendors and the nuclear utilities are under increasing pressure

to develop techniques with which they can verify the safety of their reac-

tors.

Several approaches to establishing that reactors are safely

designed come to mind. It is possible to build experimental facilities

for each reactor design and to perform a multitude of static and transi-

ent experiments designed to answer the pertinent safety questions.

However, this option is frightfully expensive, of dubious value, and

practically impossible. Another alternative is to adopt ever more

stringent operating limits and ultraconservative design techniques.

This course of action leads to a poor utilization of resources, to a de-

gradation of plant efficiencies, and ultimately to prohibitively expensive

nuclear electrical energy.
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A more promising means of answering the safety questions appears

to be the development of more sophisticated theoretical methods, which

are capable of producing the required safety-related information. There

are also economic incentives for pursuing this last course of action: It

is possible that by increasing the accuracy of theoretical predictions and

confidence in them, unnecessarily conservative design and operating

margins may be relaxed.

Over the past two decades, finite difference methods have emerged

as the standard computational technique used for calculation of the power

distributions in nuclear reactors. Only in very recent years, since the

development of the high speed digital computer, have finite difference

techniques been capable of performing "relatively economic" three-

dimensional calculations for light water reactors. To this date, three-

dimensional transient calculations remain prohibitively expensive and a

practical impossibility for use in "day-to-day" design and analysis of

thermal reactors.

As a result, a large number of computational schemes have been

proposed as alternatives to the computationally inefficient finite differ-

ence techniques (1). In particular, certain nodal methods have reached

high levels of sophistication and have been demonstrated to be orders

of magnitude more computationally efficient than finite difference

schemes (2). Some of these methods, however, are subject to company

confidentiality. Therefore, the need to develop new methods for multi-

dimensional transient reactor analysis still exists. The primary objec-

tive of the author is to develop an efficient, economical, and accurate
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method for the analysis of three-dimensional transient behavior of light

water reactors.

1.2 SYNOPSIS OF THE PROBLEM

In most situations encountered in the analysis of light water reac-

tors, it is sufficient to model the neutronic behavior of the reactor by

a low order approximation to the formally exact neutron transport equa-

tion. The most widely used of these approximations is multigroup

neutron diffusion theory. For this model, the set of time- and space-

dependent coupled partial differential equations for which approximate

solutions are sought can be written as

V-D (rt)V09 (r,t) - E tg(r_, t)0 (r,t) +

G

%(gg(rt)+(1-)xfg(rt))ckg,(rt)
g'=1

D

+ ZX gXdCd(rt) vag(rt) ; g=1,2,...G

d=1 a

(1-1a)

G

#dDfg(r_,t) 4 (r,t) - Xdd(r) =,t)
g1 ZFE Cl C (~) tdrJt
g=1

d = 1,2,..., D (1-1b)

where

G total number of neutron energy groups

D total number of delayed neutron precursor families
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Og = scalar neutron flux in group g (cm 2 sec)
g

-3
Cd 2 density of delayed neutron precursors in family d (cm )

D 2 diffusion coefficient for group g (cm)

-1
E 2 macroscopic total cross section for group g (cm )
tg

E ,t9 macroscopic transfer cross section from group g' to
gg -1
group g (cm )

x prompt fission neutron spectrum to group g

V =mean number of neutrons emitted per fission

ly eigenvalue which makes all of the time derivatives

identically zero

Ffg92macroscopic fission cross section for group g (cm)

X 2 delayed neutron spectrum for family d in group g

Xd 2 decay constant for delayed neutron precursor family
d -1

d (sec )

d fractional yield of decayed neutron precursors in

family d per fission

= total fractional yield of delayed neutron precursors

D

per fission, ( = 21 d
d=1

v = neutron velocity for group g (cm sec )

and the fission neutron spectrum is assumed to be that of the predomi-

nant fissioning isotope. If the distribution of material properties in

space and time, the initial neutron flux distribution in space and energy,

and the appropriate boundary conditions are specified, a unique solution

to Eqs. 1-1 exists. The two most commonly used boundary conditions
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applied to the outer surface of the reactor are, stated physically, that

the neutron flux or the incoming neutron current for every energy group

be identically zero. At any internal surfaces, continuity of neutron

flux and the normal component of the neutron current are imposed for

every energy group.

The solution to Eqs. 1-1 is usually obtained by first assuming that

the reactor is in a "critical" configuration. That is, all of the proper-

ties of the reactor are independent of time and hence all of the time

derivatives in Eqs. 1-1 are identically zero. The static solution to

Eqs. 1-1 is obtained by varying the parameter y (a critical eigenvalue)

such that a nontrivial solution to the static multigroup equations exists.

The static multigroup equations can be written as

_V -D (r)V( (r)r g + ,(r)+XIV (r), (r) = 0;g--g9- ~tg(39 g r)+ 9gg gy fg'-i
g'=1

g =1,2,...,G' (1-2)

In principle, the spatial power distribution in a reactor can be deter-

mined by applying Eq. 1-2 and explicitly representing all of the geo-

metrical detail which is present. The geometrical complexity of large

current-generation light water reactors is so great that direct represen-

tation of full geometrical heterogeneity is precluded for reasons of prac-

ticality. The approach that is generally taken to alleviate this difficulty

is to treat large spatial regions as homogenized. The actual spatial

detail within each of the homogenized regions is treated in an auxiliary

calculation, to obtain "equivalent homogenized diffusion theory
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parameters" which are spatially constant within each region. The tech-

niques used to perform this homogenization need not be limited to dif-

fusion theory, and many such schemes have been devised over the years

(3). This homogenization is commonly performed for regions which

contain one or several fuel assemblies in a radial plane (typically a

rectangular region with sides of approximately 20 cm) and have an axial

length of similar extent. The full core reactor calculation is thus re-

duced to that of determining the spatial power distribution within a

reactor containing several thousand homogenized regions. The author

will not address the many problems associated with homogenization

techniques, but rather, will approach the task of determining the spatial

power distribution within a reactor which has been partitioned into

"homogenized" regions. The equivalent homogenized diffusion theory

parameters for each region are assumed to be known.

1. 3 REVIEW OF -SOLUTION METHODS

Many methods for solving the static multigroup diffusion equations

are presently available to the nuclear reactor community. Complete

descriptions of each of these methods are much too lengthy to be included

in this review. Only the comparative advantages and disadvantages of

several of the most widely used methods are summarized in this section.

In finite difference schemes, low order difference approximations

are used to represent the leakage term of Eq. 1-2, V- D (r) V4 (r).

These finite difference methods possess several advantages over most

other schemes. For example, these methods are conceptually simple
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and the resulting algebraic equations are such that only adjacent nodes

are coupled by the spatial leakage terms. One very important property

of finite difference techniques is that they can be shown to converge to

the exact solution of the multigroup diffusion equations in the limit of

infinitely fine mesh spacing (4). Also, as a consequence of the wide-

spread use of finite difference methods, the associated numerical

methods have also reached high levels of sophistication. The only real

disadvantage of finite difference schemes is that very fine spatial meshes

are required to achieve acceptable accuracy (5). This problem is parti-

cularly pronounced in regions near a water reflector in light water reac-

tors, since the thermal neutron flux there is highly peaked. The need

for fine mesh spacing translates into large numbers of unknowns, and

hence, into excessive computational effort for multidimensional prob-

lems. Nevertheless, finite difference techniques are reliable means of

generating solutions to the multigroup diffusion equations with which to

compare the results of other methods, and despite their drawbacks for

use with full core reactor calculations, they will probably continue to be

the industry standard for quite some time to come.

In the past few years, many researchers have applied finite element

techniques to solving the multigroup diffusion equations (6). In finite

element methods, the spatial shapes of the multigroup fluxes are repre-

sented as polynomials over large homogeneous regions. Variational

principles are generally used to determine the equations which specify

the coefficients of the polynomials. It is possible to achieve a substan-

tial reduction in the number of spatial unknowns, for a given degree of
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accuracy, over finite difference methods (7). The finite element

schemes also converge to the exact solution of the multigroup diffusion

equations in the limit of infinitely fine mesh spacing. The major disad-

vantage is that the coupling of the finite element equations is much more

extensive than with the finite difference equations. Hence, it is gener-

ally found that the reduction in the number of unknowns is offset by an

increase in computational effort required to solve the resulting equa-

tions (8). Since any reduction in computational effort over the finite

difference techniques is at best marginal, finite element methods will

probably not replace finite difference methods as an industry standard.

If it is imperative that the full spatial heterogeneity within a reactor

be modeled, spatial flux synthesis schemes offer the largest reduction

in the number of spatial unknowns. In synthesis schemes, precomputed

expansion functions are obtained over large regions of the reactor, per-

haps by two-dimensional (x-y) finite difference calculations with full

geometrical detail. These expansion functions are combined by coef-

ficients which are determined by solving spatial equations of a lower

dimensionality, such as one-dimensional (z-dependent) equations. The

equations for the unknown "mixing coefficients" are derived by applying

a variational principle and demanding that the approximate solution obey

the multigroup diffusion equations in a weighted integral sense. A major

reduction in the number of unknowns is routinely obtained by many syn-

thesis schemes, and the resulting equations are not difficult to solve (9).

The unfortunate drawback of synthesis methods is that there is no sys-

tematic procedure for choosing the expansion functions or the weighting
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functions. Furthermore, rigorous error bounds on the synthesized

solutions do not exist. This lack of error bounds has limited the wide-

spread use of spatial flux synthesis. There are, however, many re-

searchers who have used spatial flux synthesis with varying degrees of

success (10).

Another class of techniques used to solve the multigroup diffusion

equations are nodal methods. The quantities of interest in most nodal

methods are the group-dependent neutron fluxes averaged over large

spatial regions (nodes) and the neutron currents averaged over the faces

of the nodes. No approximations to the formally exact neutron transport

equation need to be made in the derivation of the nodal balance equations.

The difficulty with the nodal methods is that relationships between the

node-averaged fluxes and the face-averaged currents must be obtained.

Many different schemes for determining these relationships have been

proposed (11). Once the relationships between node-averaged fluxes

and face-averaged currents are specified, equations with a structure

similar to finite difference equations can be constructed. Thus, nodal

methods possess much of the simple structure of finite difference

methods, while offering a substantial reduction in the number of un-

knowns by utilizing node-averaged fluxes. Hence, if consistent, sys-

tematic schemes for determining the flux-current spatial coupling can

be developed, nodal methods appear to offer considerable promise as

accurate, efficient techniques for solving the multidimensional neutron

diffusion equations.
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1. 4 MOTIVATION OF NODAL METHODS

Many researchers have recognized the potential accuracy and com-

putational efficiency of consistently formulated nodal methods. Hence,

many different schemes have been proposed to determine the flux-current

coupling. Early nodal methods used crude approximations for the coup-

ling terms and, consequently, had limited accuracy (12). Some attempts

were made to circumvent the limited accuracy by imposition of ad hoc

modifications ("refinements"'). These modifications increased accuracy,

but they relied on trial and error adjustment of artificially introduced

parameters to match higher order calculations. These methods were

applicable only to a limited range of reactor conditions, and thus, were

not widely accepted as viable design tools.

In recent years, however, systematic, consistent methods to deter-

mine the flux-current coupling terms have been devloped by several

researchers. Methods which use polynomial expansions of the fluxes

and currents have produced extremely accurate solutions to the multi-

group diffusion equations (13-15). An "Analytic Nodal Method" which

employs analytic solutions of the one-dimensional, two-group diffusion

equations to determine the spatial coupling has also been notably suc-

cessful and has undergone several stages of refinement (16-18).

1. 5 OBJECTIVES AND SUMMARY

The objective of this paper is to extend the Analytic Nodal Method

to three dimensions and to develop computationally efficient numerical

methods for solving the time-dependent, multidimensional, 2-group
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neutron diffusion equations. In Chapter 2, derivations of the static

nodal diffusion equations and the Analytic Nodal Method are presented.

Next, numerical techniques for solving the static nodal diffusion equa-

tions are discussed (Chapter 3), and results of several static benchmark

problems are included (Chapter 4). The techniques employed to solve

the time-dependent neutron diffusion equations are detailed in Chapter 5

and the solutions to a large number of two- and three-dimensional tran-

sient problems are presented (Chapter 6). Finally, a summary of the

investigation, conclusions about the Analytic Nodal Method, and recom-

mendations for future research are given in Chapter 7.
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Chapter 2

DERIVATION OF THE ANALYTIC NODAL METHOD FOR SOLVING
THE STATIC MULTIGROUP DIFFUSION EQUATIONS

2. 1 INTRODUCTION

In a recent thesis, Cook demonstrated that many transients en-

countered in light water reactor (LWR) safety analysis can be success-

fully analyzed using assembly-sized thermal-hydraulic regions. (19).

Cook also found that the LWR transient analysis code MEKIN (which

uses a finite difference neutronic model) applied as much as 95 percent

of its computational effort in certain problems to solving the neutronics

equations (from which the average powers in the thermal-hydraulic

regions were determined), and as little as 5 percent of the computa-

tional effort was expended in solving the thermal-hydraulic equations.

Therefore, a neutronic model which had averaged fluxes in the thermal-

hydraulic regions as the only unknowns could be very efficient, and still

provide the necessary information to model successfully most LWR

transients.

Several years ago, Antonopoulos developed a method for solving the

one- and two-dimensional diffusion equations which used exact difference

equations (20). Although Antonopoulos solved these exact difference

equations by approximation, Shober later introduced an exact method

for solving the difference equations (16). This method, which was exact
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in one dimension for any mesh spacing (provided the cross sections

were spatially constant within each region) and had region-averaged

fluxes as the only unknowns, would seem to be ideally suited for use

in coupled neutronic thermal-hydraulic problems in which assembly-

sized thermal-hydraulic regions could be used.

In this chapter, the Analytic Nodal Method for solving the static

multigroup diffusion equations will be derived, making use of Anton-

opoulos' exact difference equations. In more than one dimension,

exact solutions will be shown to exist only for very simple problems,

and thus, an approximation will be required for more complicated

(realistic) problems. Several approximations have been developed by

other researchers and will be presented in this chapter for complete-

ness. Throughout the derivation of the Analytic Nodal Method, it will

be assumed that equivalent homogenized diffusion theory parameters,

which are spatially constant over large regions, can be used. There-

fore, only regions which have constant material properties will be con-

sidered, and all derivations will be done in three-dimensional Cartesian

geometry. It will be demonstrated that nodal diffusion equations can be

derived, which have node-averaged fluxes as the primary unknowns and

nearest neighbor spatial coupling in node-averaged fluxes.

2.2 DERIVATION OF THREE-DIMENSIONAL MULTIGROUP
NODAL DIFFUSION EQUATIONS

The global reactor problem is treated in three-dimensional Carte-

sian geometry, where x, y, and z represent the three coordinate direc-

tions. A very general notation for the coordinate directions proves
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quite useful; hence, u, v and w are used as generalized coordinate sub-

scripts. The spatial domain is subdivided into a regular array of nucle-

ary homogeneous right rectangular parallelepipeds (nodes) with grid

indices defined by u2 , vm, and wn where

i=1,2,...1 ; u,v,w = x

,M,n= j = 1,2,.. J ; u,v,w = y

k=11,2,... K ; u,v,w = z

As an example of the future use of this generalized coordinate notation,

the net currents on the faces of node (i,j,k) as a function of the two

transverse directions are expressed as

Juij, k(vw)] = -[Di, j, k] a<I(u, I,.w) I; u = x,y, z

v u

This single equation actually expresses three equations:

1) The x-directed net current on the x xi face, as a

function of y and z (u = x, v = y, w a z)

2) The y-directed net current on the y y. face, as a
3

function of x and z (u = y, V= x,w z)

3) The z-directed net current on the z=zk face, as a

function of x and y (u = z, v = x, w = y)

The node (i, j, k) is defined by

XE[zx,xi+1I

Y E[ y , yj+1I

Z I [zk' zk+1 '
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The node widths are then defined as

h = u +i I ; U = X,,z ,

and the node volume is

V. .a hihihk
i,,k X y z

For convenience, the static multigroup diffusion equation, Eq. 1-2, is

cast in conventional matrix form:

-V - [D(r)] V(0(r)] + [ET(r)] [#O(r)] ! [XI[vE(ri)T[ j(r)] (2-1)

where

[r_)] is a column vector of length G containing neutron fluxes

[D(r)] is a diagonal G X G matrix containing the diffusion

coefficients

[ET(r)] is a GX G'matrix containing the macroscopic total-

minus-scattering cross section

[x] is a column vector of length G containing the fission

neutron spectrum

[VE f(r)] is a column vector of length G containing nu, the

mean number of neutrons emitted per fission,

times the macroscopic fission cross section

y is a critical eigenvalue of the global static reactor

problem,

The first step in the derivation of the nodal diffusion equations is

to integrate Eq. 2-1 over the volume of an arbitrary node (ij,k) to

obtain:
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hi hk([jy z xi+1, jk ljk ])
ijk

+ hihk (IJfx y ZI, jk+1' 1, j,IkA

h hk
x z yi, j1,k Ij, k

+vi k j[ET ] [~i. .
''3 k i, j, k ,,k

y i,j,k fiIjf kI i,jk

where

i, j,1k h hn [Dik fm+ldvf n+ dw[(uVW)];
vhw m n

X;E
x E [X ,Xi+1

y E [Y , Y j+11

z E [zk' k+l

U =Xyz

v*u

a =TO, f

[ I . =k V 11+1 dx fj+1 dy jzk+1 dz [q(x,y, z)]
i,kj, k x1  y z k

Equation 2-2 is a rigorous statement of neutron balance for any node

(I, jk). The utility of Eq. 2-2 is limited by the fact that without addi-

tional relationships between the face-averaged currents, [J X
i,j,k

[J ], [J ] and the node-averaged fluxes [is jk]'

the spatial flux distribution cannot be determined.
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2. 3 DERIVATION OF SPATIAL COUPLING EQUATIONS

One method of obtaining a differential equation from which the

spatial coupling of Eq. 2-2 can be determined is to treat the directions

one at a time and spatially integrate Eq. 2-1 over the two directions

transverse to the direction of interest, to obtain for direction u and

node (,m,n),

hmn vD+2 vm1 w n+1 2
-hm hw [D e, mjn]y u(u)]-[D mnJ m+ndvjf 1dw

Iu .,Qm,n '' vm wn Ov

X [O(u, v, w)] -[D 12 f M+1dv J wn+1dw8-2 [0(u,v,w)]
vm Wn Ow

+ hmhn[E 1 rn]k (u)]

[ T,, n T 
3

= lhmhn[xI[vEf ]T[u (u)]; ux,y,z (2-3)
'Yv W .e,m,n vUm~n vu

w*uev

where

[0(1)f 1 vm+1 dv fwn+1 dw [0(u,v,w)].
uA,m,n hmhw vm wn

Equation 2-3, when multiplied by du, is simply a statement of neutron

balance within a slab contained in node (2 ,m,n) which has the height and

depth of the node, but which is of thickness du (in the u direction) about

the point u. Hence, the two integrals represent the net rate at which

neutrons leak out of the four surfaces of the slab which are transverse
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to direction u. The following notation for the net leakages is convenient:

n vwn 2
hnw[L v (u)]-Djp 1 ,m,n ] j m+1 dv f +1 dw 20(u~vw);

w mmn vm w n

(2-4)
U = ,yoZ

V =XyZ

W = x,yZ;

v #u

w *u #v.

Equation 2-4 possesses the property that when integrated over [uAui+ll

and divided by h1 it yieldsU

4f'+1 du [L
u A.0,m,n

(l .J m n [J
.9+1,m,n V9. , n'

(2-5)
u = x,y,z

v x,y, z ; V 0 u ,

which is the nodal face-averaged, v-directed, net leakage. By defining

a sum of the two net leakages transverse to direction u, per unit u,

divided by hmhn asv w

[S (u)]--[L()]+
ul,m,n hm vilmnv

1 L (u)]
hn ww

u =x,y,z

v*u

w u0v,

Equation 2-3 can be cast in the form
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-[DA mnl [ (u)]F+,([ET I -4[X][vsf 1
' ' 8u 1m,n A,m,n AMn

X [4 n (u)] = - [Sue,m,n(u)]); u= x,y,z. (2-7)

To obtain relationships between the node-averaged fluxes and the face-

averaged net leakages, one need only solve Eq. 2-7 for [ n(u)J

and integrate this "one-dimensional" flux over the node. Unfortunately,

the u-dependence of the transverse leakage source term on the right-

hand side of Eq. 2-7 must be known or approximated if the solution of

the equation is to be found. This circumstance makes necessary the

first, and only, approximation of the Analytic Noda Method.

2. 3. 1 The "Buckling" Approximation

The possibilities for the approximation of the transverse leakage

shape in Eq. 2-7 appear to be unlimited. It does, however, seem

reasonable to expect that the more complicated the assumed shape, the

more difficult it will be to solve for the one-dimensional flux.

For this reason, Shober (16) initially assumed that the transverse

leakages and the one-dimensional fluxes had the same shape. That is,

the transverse leakages were assumed to obey the equation

. [B u e,m~n uf n(u)] = [Su n(u)] ; u= x,y,z. (2-8)

The values of the diagonal matrix [Bu ] were assumed to be inde-

pendent of u within node (1,m,n) and were found by integrating Eq. 2-8

over [u..,u1 +11 and dividing by h to obtain
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(B I[f ]-e ]=[LI+-1-L I
Bu Amn h A,m,n hnw ,M,n

[; u=w,y,z. (2-9)

This "buckling" approximation would be exact if the fluxes were spati-

ally separable -within node (i, j, k). The utility of this approximation was

that it reduced Eq. 2-7 to an equation with [Ou (u)]being the only un-
u ,mn

known. Hence, Eq. 2-7 could be easily solved for OUf ,m,n(u)], which

in turn could be integrated to obtain the desired relationships between

[-uimn'' I-1,m,n1 , ReTm,n'' and [T+1 ,M,n'*

However, Shober found that use of the buckling approximation led to

large errors in highly nonseparable problems.

2. 3. 2 "Flat" Approximation

As an alternative to the buckling approximation, Shober (16) then

approximated the transverse leakage shape as spatially flat across each

node, that is,

[S m (u)]=[Fu I; u=x,y,z. (2-10)

Shober demonstrated the superiority of the "flat" approximation over the

buckling approximation for several highly nonseparable problems. He

has also implemented a "two-step" transverse leakage approximation in

which the leakages were assumed to consist of two piecewise constant

segments within each node (17). Results from Shober's work indicated
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that, as expected, the two-step approximation was substantially more

accurate than the flat leakage approximation.

Despite Shober's encouraging results with the two-step Analytic

Nodal Method, other researchers had found that more accurate results

could be obtained by expanding the transverse leakages in higher order

polynomials (13-15). This led Greenman, by suggestion of Finneman

(21), to incorporate a quadratic approximation for the shape of the

transverse leakages into the Analytic Nodal Method (18).

2. 3. 3 Quadratic Approximation

The quadratic polynomials suggested by Finneman were chosen in

such a way as to uniquely determine the shape of the transverse leakage

in a node by utilizing the average transverse leakages in three adjacent

nodes. This approximation leads to a functional form of the net leakage

transverse to direction u given by

[Su (u)J Wu ]P (u) + [U PI(u)
m,n A-1,m,n A uA,m,n A

+ [u JP +1(u) u=x,y,z, (2-11)
uA+lmn u1, 

.9

where each of the p's is a quadratic polynomial in u. The constraints

imposed on the expansion functions, stated physically, were that the

integral of the transverse leakage approximation over each of the three

adjacent nodes preserve the average transverse leakage of that node.

In mathematical terms, these conditions imply the following constraints:
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1 fLu, f+A'+1 du p +e(u) = 6A'A"l; u = x,y,z (2-12)

u+' '=0-1,O,1

.Q" =-l,0,1 ,

where 6 , is the Kronecker delta defined by

6 1 ef =.e l (2-13)
0 ; 2'#1"

The expansion functions of Eq. 2-12 are uniquely determined by the

mesh spacing in direction u. It is important to note that the expansion

for node (.Qm,n) is used only for that node, despite the fact that the

expansion also preserves the average transverse leakages in nodes

(A-1,m,n) and (1+1,m,n). This form of the transverse leakage is par-

ticularly useful since it involves only average transverse leakages which

are already unknowns in the nodal balance equation, Eq. 2-2. However,

although this transverse leakage expansion is unique, there is no a priori

reason to believe that it is the "best" quadratic approximation to the

transverse leakage within node (A,m,n), for which it is used. This

point will be discussed in detail in Chapter 4 after specific examples

have been introduced. A complete derivation of the transverse leakage

expansion functions for nonuniform mesh spacing is given in Appendix 1.

2.4 METHOD FOR SOLVING THE SPATIAL COUPLING EQUATIONS
WITH QUADRATIC TRANSVERSE LEAKAGE

In principle, solving the spatial coupling equation to obtain relation-

ships between node-averaged fluxes and face-averaged net leakages is

quite simple. In the Analytic Nodal Method, the spatial coupling equation,
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[D 8 2[(o (u)] + (I,ml,n' T 2u
Ou .,m,n

X [US (u)I = - [SU ,m.n

[E T

(U)] ; U = X,y, z ,

is solved analytically. The transverse leakage expansion of Eq. 2-11

can be expressed in an alternate, but entirely equivalent form, as

(U)I+v.[-g 2+,m

AA+1, m.n-1,mn

[ , m ,n I

]pA+l; u"=x,y
n .

, z .

(2-14)

The expansion functions can be expressed as

2
2-I - - _('U _-_u

(u)=au + bu-(Ut) + - u-UQ
2 2 2 h ~-2 hU

2

Pu+1(u)=au + bu\2/ + cu 2)h ; u x,y, z
u u

Hence, Eq. 2-14 can be rewritten as

+ ( [fuS+lm,n

x-( m,

+ (['u
Ul+1, M, n

U-1,m,n

2,m, n

(2-15)

us-1lm n u2,rn) 2

u ])a ++
2,m,n 2 hu

", m,n u2uu

u+ u) -)

1 -5 ])cu +([SUmn u u+l,m,n

); u=x,y,z. (2-16)
2

2-12
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Substitution of the approximate form of the transverse leakage given by

Eq. 2-16 allows Eq. 2-7 to be expressed in P1 form as

j[Qui (t)] + [Ntm n [ m (t ) = [St (tA)I;
I U9 0m-, nn *.9 s m .n .9U,m,n

u = X,y,Z

where

u ,mnA(t.9)]= ColAum n(te)], JUY(te) I

(2. 17)

[D Mnl

[0]j

[0]

LIST A, m, n

[S' ~(t ) = col 101,2(-[$]-[2monllA m9n Am,n he

[S IUAM,n(u

tAU-U ,

and the transverse leakage has been split into three pieces, a "flat,"

a "linear," and a "quadratic" defined by

1Sf1  ]sR ]+([ -[)a'
A I,M,n u,M,n U -1,m,n F A9, n UA

] F[Su ])a ),
m,n A,m,n A

IS n ul-I, m,nI -

am .A

I

A+1,m,n. A ,m,n'

)b A
bu

U)b
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[Sq } = (([ ~I - [s I) c~
u Pmun-1,mn U, m, n U.

+](u+-,su n])ct ); u=x,y,z. (2-18)
lsue~~m~ IM,n A

The procedure for solving Eq. 2-17 for the relationships between face-

averaged net leakages and node-averaged fluxes is now conceptually

straightforward. For each node, and each direction u, the following

seven steps are taken:

1) Three particular solutions to Eq. 2-17, on the interval 0<t <huI

are determined for the flat, linear, and quadratic transverse

leakage source terms, subject to the boundary condition

[Qp(t 1=0)] = 0 .

2) The homogeneous solution to Eq. 2-17, on the interval 0O<t <h us

is obtained subject to the boundary condition

[ozh(t1 =0)] = [.Nup]

3) The particular and homogeneous solutions to Eq. 2-17 from

Steps 1 and 2 are combined to obtain an analytic expression

for [(t2)] on the interval 0 < t <h.

4) The analytic solution of Step 3 is integrated over the interval

[0,h] and a relationship between node-averaged*fluxes and

face-averaged net currents is obtained in terms of[WU).

5) Steps 1-4 are repeated for the interval 0< <hu 'but

subject to the boundary conditions
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[cp(t _ =hu1 )] = 0

[h(t 1_1u)] = [O(u )

to obtain another equation relating node-averaged fluxes and

face-averaged net currents in terms of [O(u )].

6) Since both solutions in Steps 4 and 5 are expressed in terms

of [U(u)], the two equations are used to eliminate

[um n(uA)], as this surface flux is not an unknown in the

nodal balance equation, Eq. 2-2. Thus, it is possible to find

a relationship between node-averaged fluxes, face-averaged

net leakages, and [J a ,M,n(u 1Y)] .

7) Steps 1-6 can be repeated to derive a relationship between

node-averaged fluxes, face-averaged net leakages, and

[Ju+m (u1+1)] Taking the difference of these last two
I9+1,m,,n

relationships finally allows one to obtain an equation relating

node-averaged fluxes and face-averaged net leakages.

The actual application of the aforementioned procedure is quite long

and tedious; it is presented in Appendix 2.

The final equations relating node-averaged fluxes and face-averaged

net leakages can be expressed in the form
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[Lu , M,nl

1f-2 ,m, n

]uw[

] = [F ][j ]+ [F ]IU1Mn9-1, mo u n

+[F .+1 1 [T,, I+ [GA -2uiMn, 1-1,m,n umPr

+[G .1 s + [G
u ul J nU-1, M, n Ul

[G.+1 1 ] + [G1+2
u.1,mun+1,m,n 1,m,x

I

u1+2,m,n

U = x,y, (2-19)

Equation 2-19 reveals that the u-directed net leakage is coupled to node-

averaged fluxes in three adjacent nodes in the u-direction, as well as to

the transverse leakages in five adjacent nodes. The global reactor prob-

lem is much easier to visualize if Eq. 2-2 and Eq. 2-19 are cast in

super-matrix form with the following definitions:

[4'] =a column vector of length G*I*J*K (s N) containing the

node-averaged fluxes (ordered first by group, then x-

direction, then y-direction, and finally z-directiop).

FU] a column vector of length N containing the u-direction

net leakage

[Ful e a block tridiagonal matrix of order N X N containing

the elements of [FtR I
1 ,m,n

[GU] = a block pentadiagonal matrix of order N X N containing

the elements of [G I
1,m, n

*, a block diagonal matrix of order N X N containing

the elements of V.i.k[ET
i,3,k Tpj,k

2'-16
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[M = a block diagonal matrix of order N X N containing the

elements of V ,&j k[x][V Ef

The resulting super-matrix equation can be written as

[F ] - [I]

[F 1 jGY]
h' 1

x

[Fr] [G
z h i

7

[M]

[0]

[0]

[0]

hihk[I] hihi [I]x z x y

A-[G ] hU[G]

y z

-[I] hk[Gy]
z

[G zI -[I]
h

[0]

[0]

[0]

[01

[o 1

[0]

[o]

[01

[01

[0]

[0]

[0]

The global reactor equation as expressed in Eq. 2-20 is of the form

of a classical eigenvalue problem,

[AfIm'[B] [X] = 'y[X],

except for the fact that the elements of [Al depend on the eigenvalue 7.

Equations 2-2 and.2-19 form the basis of the Analytic Nodal Method

with a quadratic transverse leakage approximation. These equations,

along with the appropriate boundary conditions applied to the reactor
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[Lyz

[U]
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surface (Appendix 2), fully specify the global system of static nodal

diffusion equations.

2. 5 SUMMARY

In this chapter, and its related appendices, a complete set of nodal

diffusion equations have been derived from multigroup diffusion theory.

The only approximation that was found to be necessary (in addition to

the original assumption of homogenized nodes) was that the spatial shape

of the transverse leakage within a node could be fit to a specific quad-

ratic polynomial. The resulting equations were written in terms of

node-averaged fluxes and face-averaged net leakages. Nearest neigh-

bor spatial coupling was obtained in node-averaged fluxes, but not in

face-averaged net leakages.

In Chapter 3, the numerical methods used to solve the nodal dif-

fusion equations will be discussed. In addition, the numerical proper-

ties of the equations will be examined and the consistency of the Analytic

Nodal Method will be demonstrated. Applications of this nodal method

to several two- and three-dimensional benchmark problema are pre-

sented in Chapter 4.
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Chapter 3

NUMERICAL CONSIDERATIONS

3.1 INTRODUCTION

In Chapter 2, the spatially-discretized static nodal diffusion equa-

tions were derived for the solution of the multigroup diffusion equations.

A method of determining the spatial coupling coefficients, subject only

to the assumption that the transverse leakages could be fit by a quad-

ratic polynomial, was derived for the two-group case in Appendix 2.

In this chapter, the numerical techniques used to solve the two-group

analytic nodal diffusion equations are' presented. The consistency of

the Analytic Nodal Method is also demonstrated for the case of infinitely

fine mesh spacing. Results of optimizing several of the schemes used

to accelerate the convergence rate of the iterative process are also

presented. The solutions to many static reactor configurations are

contained in Chapter 4.

3.2 NUMERICAL PROPERTIES OF THE ANALYTIC NODAL
DIFFUSION EQUATIONS

The equation for which a solution is sought in the Analytic Nodal

Method is given in Chapter 2, by Eq. 2-20. This super-matrix equa-

tion is a set of linear equations in the four vector unknowns, [7], [Lx],

[L], and[z In its present form, Eq. 2-20 has very little spatial
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coupling in the node-averaged flux terms and most of the coupling in

the face-averaged net leakage terms. It is known from physical prin-

ciples that the net leakages will be small compared to the average

fluxes in a large number of reactor configurations. Therefore, Eq.

2-20 has the undesirable characteristic that the spatial coupling is

dominated by the net leakage equations. This situation is altered by

substituting the last three blocks of equations into the first block of

equations to obtain

[H(v] = [r][@ ,

where

[H] =

[F ]

[F ]

[Ft ]

- [ II]

[Gz]
x

x

1
h3 [G ]1hi

y

- [ I ]

[G z
hi

y

A1 [G1 ]
h

z

-[GI]

F]E ([ET]+hhF ] + h h [F] + h h [F )

[M] 10]

[0] [0]

f0] [0]

0] [0

[0] [o]~

[o] [0]

[o] [o]

[01] [0]
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[] = col{[I], [Lxi, [LJy1, [L} .

Since each of the matrices [Ful is block (2 X 2) tridiagonal, Eq. 3-1

has substantially more spatial coupling in node-averaged flux terms

than does Eq. 2-20. Equation 3-1 is clearly an eigenvalue problem

in which the elements of the matrix [H] depend on the eigenvalue.

Any iterative scheme that is used to solve Eq. 3-1 will require

that the matrices [H] and [P] have certain properties in order to guar-

antee successful convergence. Therefore, it is very useful to examine

the properties of the matrices in Eq. 3-1.

The matrix [P] is quite simple. The only non-zero submatrix of

the matrix [P] is [MI, and the matrix [M] is block diagonal with non-

negative components (all fission cross sections are nonnegative). Unfor-

tunately, the matrix [H] is not nearly as simple. In the general'case,

the only property of the matrix [H] that can be guaranteed is that all of

its components are real.

There is, however, at least one case in which the properties of the

matrix [H] can be specified. This special case is in the limit of infi-

nitely fine mesh spacing. As the mesh spacings, hI, go to zero, the

basic spatial coupling matrices, as defined in Appendix 3, become

1/D 0 ~h

Autm,n 12 _0I 1/D 2

B u1 
0

uIsm - i 0 .-
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With these spatial coupling matrices, the flux coupling coefficients, as

defined in Eq. A2-14, in the limit of infinitely fine mesh spacing become

- [Ft'] = [tmn

F2  1=n
U[tmnn]

0

,m,n

+ +
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Thus, all of the matrices, [FuI, in Eq. 3-1 are block tridiagonal and

diagonally dominant with components that are all of order 1/h. By ex-

amining the leakage coupling matrices of Eq. A2-14, one finds that all

of the matrices, [Gu] in Eq. 3-1 are of order h. Therefore, the first

block of equations in Eq. 3-1 has coefficient matrices with terms of

order h (flux terms) and terms of order h2 (leakage terms). Hence,

in the limit of infinitely fine mesh spacing, the order h2 terms can be

neglected and Eq. 3-1 becomes

[F][] = 1 [M][1 . (3-4)

The net leakages of Eq. 3-1 do not enter directly into the nodal diffu-

sion equations in the limit of infinitely fine mesh spacing. Close ex-

amination of the flux coupling matrices of Eq. 3-3 reveals that Eq. 3-4

is actually a finite difference approximation to the two-group diffusion
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equations. The actual form of these difference equations is not that of

the conventional finite difference equations with fluxes evaluated at the

corner points of homogeneous volumes, but rather is that of a less fre-

quently used formulation of finite differences with fluxes evaluated at

the centers of the homogeneous volumes. Nevertheless, an important

consequence of this reduction to the finite difference equations in the

limit of infinitely fine mesh spacing is that the Analytic Nodal Method

is guaranteed to converge to the exact solution of the two-group diffu-

sion equations in this limit (23).

As a result of the elimination of net leakages in Eq. 3-1, the pro-

perties of matrices [F] and [M suffice to determine completely the

characteristics needed to guarantee convergence of the Analytic Nodal

Method. Examination of Eq. 3-3 reveals that the matrices, [Fu] are

1. Real

2. Irreducible

3. Symmetric

4. Diagonally dominant.

From these properties, it can be proved that Eq. 3-4 has the following

properties (23):

1. There exists a unique positive real eigenvalue, Ty,

which is greater in modulus than all other eigenvalues.

2. The eigenvector corresponding to the eigenvalue 'Ti

is unique and positive.

These properties and others derived from them will be used in Section
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3. 3 to demonstrate that the numerical schemes chosen to solve the

Analytic Nodal Diffusion equations can be guaranteed to work in the

limit of infinitely fine niesh spacing.

3.3 ITERATIVE STRATEGY FOR SOLVING THE STATIC
NODAL DIFFUSION EQUATIONS

This section details the iterative strategy used to solve the static

nodal diffusion equations, Eq. 3-1. Frequent use will be made of the

properties of the matrices in Eq. 3-1, for the case of infinitely fine

mesh spacing, despite the fact that these properties cannot be shown

to exist (and perhaps do not exist) in the general case.

3. 3. 1 The General Iterative Scheme

The general scheme for solving Eq. 3-1 is as follows:

1. An initial guess for -y (usually -y= 1.0) is used to

evaluate the components of the mptrix [H].

2. An accelerated fission source (outer) iteration

is employed to determine iteratively the maxi-

mum eigenvalue and corresponding eigenvector

(y and [01 ).

3. After several outer iterations (usually 5-10),

the latest estimate of 7 is used to update the

components of the matrix [H].
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4. The matrix [H] is inverted at each outer iteration

by a modified block (G*I*J*K X G*I*J*K) Gauss-

Seidel (inner) iteration.

5. The matrix [F] is inverted at each inner iteration

by an accelerated block (2 X 2) Gauss-Seidel (flux)

iteration.

3. 3. 2 Eigenvalue Updating

The fact that the submatrices of matrix [H] depend on the eigen-

value of the global static reactor problem gives the outer iterations a

nonlinear character. However, the effects of updating the matrices on

the outer iterations are generally quite negligible, especially when a

reasonable estimate of the eigenvalue is available. Another character-

istic of the outer iterations which helps to mitigate nonlinear effects is

that a very good estimate of the eigenvalue (accurate to about 0. 5%) can

be obtained in relatively few (3-5) outer iterations. In Section 3. 2, it

was shown that in the limit of infinitely fine mesh spacing, the nonline-

arity disappears entirely, since the matrix components of [H] do not

depend on the eigenvalue. Therefore, a general practice of updating

the matrices every 5 to 10 outer iterations seems entirely appropriate.

(In steady-state iterations for problems with feedback, more frequent

updating may be required to account for changes in temperatures,

densities, etc.) To date, no problem has failed to converge because of

the nonlinear nature of the outer iterations.
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3. 3. 3 Outer Iterations

The fission source iteration (23) is applied to Eq. 3-1 to determine

the maximum eigenvalue and corresponding eigenvector. If p is used

as the index of the outer iterations, Eq. 3-1 can be expressed as

[] = [H]'~I[P][101 ; p = 0,1,.9 .. ,* 4,(3-5)
+ ' P+ 1 p

where Tp+1 is an estimate of the global static eigenvalue and the matrix

[H] is given a subscript p to indicate that its components are updated

during the outer iterations. The maximum eigenvalue can be estimated

by the ratio of the vector norms from successive solution vectors,

= [+ 1  (3-6)
'p+'1 1

The fission source iteration is guaranteed to converge if the eigenvalue

with the largest modulus is unique (22). This property exists in the

case of infinitely fine mesh spacing, but cannot be demonstrated in the

general case. Nevertheless, this property is assumed to exist in the

general case, and no problem has failed to converge because of eigen-

values with degenerate maximum moduli.

The rate at which the outer iterations converge is determined by

the ratio of the moduli of the tyo maximum eigenvalues, usually called

the dominance ratio, defined by

1721
d =2 , (3-7)

1Y1
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where yl and Y2 are the eigenvalues with the largest and second largest

moduli, respectively. For a great many problems, the dominance ratio

is very close to unity and convergence is very slow; hence, many

methods have been developed to increase the convergence rate of the

fission source iterations. One of the most direct methods of altering

the convergence rate is "eigenvalue shifting" or Wielandt's fractional

iteration (23). In Wielandt's method, Eq. 3-1 is modified to obtain

[H] - -L [] =(4--) [P] , (3-8)
7s 17 Is

where 7s is arbitrarily selected but subject to certain restrictions dis-

cussed below.

Equation 3-8 is a new eigenvalue problem with much different pro-

perties than.Eq. 3-1. It is easily demonstrated that the eigenvector

associated with the maximum value of (! - 1 is identical to the

eigenvector associated with the maximum value of yin Eq. 3-1, pro-

vided-ys is larger in modulus than -y (23). The dominance ratio of the

new eigenvalue problem is (24)

1./ - 1) (1- 1-
___2^ 71t

d = s = s . (3-9)

1.0 (__4
71 Ys ^f2 ^is

Since 7vs must be chosen such that the modulus of -vs exceeds the modu-

lus of y, which in turn exceeds the modulus of _Y2, the dominance ratio,

ds, is less than unity and less than the unshifted dominance ratio, d.

Naturally, the convergence rate of the outer iterations is maximized by
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choosing the eigenvalue shift, ys, to be equal to the true static eigen-

value 7 1 . Unfortunately, this choice makes the flux iteration matrix

nearly singular, as is pointed out in Section 3. 3. 5. Nevertheless, an

optimum value of ys may exist, and the problem of determining it is

addressed in Section 3.4. Using the eigenvalue shift, the outer itera-

tion is defined by

+ ____ -[H]p- -- [PI tP][W1;
7P+1 Ys P) sp I

p = 0,l,2,..., c (3-10)

where [O]0 is arbitrary (23). The new eigenvalue estimate can be de-

termined using any vector norm. For simplicity, the A1 norm of the

first block of the vector [v] is chosen (23),

1 1 -1 p+1 _____
- -- = II F]I (3-11)

^tp+1 Ys[]

It is recognized that if-ys is fixed throughout the outer iteration
P

process, most other conventional methods of accelerating the outer

iteration convergence can also be applied. For reasons detailed in

Section 3.4, there seems to be several advantages to altering the eigen-

value shift during the outer iterations. Also, the convergence rate of

the outer iterations can be significantly increased by eigenvalue shift-

ing, such that additional acceleration schemes are not required.
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3. 3.4 Inner Iterations

At each outer iteration, the matrix [H]p-9[PI} must be in-

verted. Since the matrix [H]p is in general quite complicated, an iter-

ative scheme is also required to invert it. The method used to perform

the inner iteration is a "modified" block Gauss-Seidel iteration, where

each block is a quare matrix whose order is the number of energy

groups times the number of spatial mesh points. With q as the index

of the inner iteration, this "modified" Gauss-Seidel iteration is defined

by

F] 1- 1
p, q+1 p ysYp -sp<p

- (hk(Gy]p+h j[Gz]p) [LIip h < (G ] +h[Gz]p)[Ly]

-(h j[G ]p+h [G 1])[L I 3-12a)

u p,q+1= [FJ[]p,q+ + m[Gu p v p,q 1 Gp. [L q
hh 

ppw

u = x,y,z

q =0,,1 02..., o . (3-12b)

This iterative scheme would be a true block Gauss-Seidel iteration if

the latest values of the face-averaged net leakages were used.

This particular scheme is chosen for two reasons. First, it elimi-

nates the need to calculate both [G J [L P , q and [Gu ]pvp, q+1, which

saves computational effort. Second, this scheme does not "favor" any
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one direction in the calculation of leakages. The inner iteration, de-

fined by Eqs. 3-12, consists of two distinct steps. First, the new

node-averaged fluxes are determined from the old fission source and

the old net leakages. This step requires the inversion of the matrix

[F]P, - -- [M]). The second step is the determination of the new net

leakages P from the new fluxes and the old leakages. This step is not

iterative, but requires a large number of matrix multiplications, since

the matrices [Guip are block pentadiagonal.

In most cases, there is no reason to converge the fluxes and leak-

ages completely at every inner iteration, since the fission source is

computed from fluxes at the last outer iteration. In problems where the

net leakages are small compared to the average fluxes, it seems reason-

able to perform only one inner iteration per outer iteration and continue

the outer iterations until the fluxes are converged. In some cases, how-

ever, the net leakages can be fairly large compared to the average

fluxes, and it may be more efficient to perform additional inner iter-

ations to converge the net leakages more rapidly than would otherwise

be possible. This problem is discussed in detail in Chapter 4.

3. 3. 5 Flux Iterations

At each inner iteration, the matrix [F)]p- -7 [M]) must be in-

p
verted. In the three-dimensional case, [F] is a block septadiagonal

matrix, each block being 2 X 2 (i. e. , G X G). Since primary consider-

ation in this work is with two-group methods, both groups will be solved

simultaneously. The method used to invert the flux coefficient matrix

3-13



is a variant of thc lock successive overrelaxation method, called the

Cyclic Chebyshev Semi-Iterative (CCSI) method (22). If the matrix

[F] - 7 L[M] is split into a strictly lower block triangular matrix,
isp 

I

a block diagonal matrix, and a strictly upper block triangular matrix

such that

{ [F] -9-Y-.[M]I [L]p +[D]p +[U]p, (3-13)

sp

the CCSI method with iterative index r is defined by

I 1p, q,r+ ( ir+1)Wpq, r + Wr+1{[D]p+[L]p}'. {[S]pq- iU pklp,q,r

(3-14)

where

[S] [M][]p - (h [Gyp+h;[G]p)[Lx]

-(h [Gx]p+h;[Gz i) [LyIp q-hKGp+h[Gyip [Lzp,q

1
Wr+ 1 2 ) r>--1 21.0; r = 0,

with p2 defined below.

Strictly speaking, to guarantee that the CCSI method will converge,

the flux iteration matrix must possess several properties. First, the

flux iteration matrix must be an irreducible, consistently ordered,

weakly cyclic matrix of order 2, which it is. The flux iteration matrix
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must also be convergent, which can be guaranteed if the flux coefficient

matrix is diagonally dominant - as in the case of infinitely fine mesh

spacing. Lastly, it must be assumed that all eigenvalues of the flux

iteration matrix are real (4). This is true for all real symmetric

matrices; hence, real eigenvalues can be guaranteed only for infinitely

fine mesh spacing.

The CCSI method is related to the block successive overrelaxation

(SOR) methods and can be thought of as an SOR method in which the

relaxation parameter is varied from iteration to iteration in such a way

as to increase the average rate of convergence. For SOR methods, the

optimum choice for the relaxation factor is defined to be the relaxation

factor which gives the greatest asymptotic convergence rate and is

given by (22)

2
, b(3-14)

where p is the spectral radius of the Jacobi iteration matrix. The

relaxation factors in the CCSI method are chosen to give the greatest

average convergence rate; hence, the relaxation factors change from

iteration to iteration. Asymptotically, the CCSI relaxation factor must

equal the SOR relaxation factor, and indeed

S= 2 (3-15)

1+1-7

It is apparent from Eq. 3-13 that the spectral radius of the Jacobi

flux iteration matrix must be known in order to actually use the CCSI
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method, Since the flux coefficient matrix is to be inverted by the CCSI

method, it would be useful to be able to obtain P2 by using this same

method. It is easily shown that P2 is equal to the spectral radius of

the Gauss-Seidel iteration matrix (22). Thus, P 2 can be determined

by performing a series of flux iterations with wr equal to unity (i. e. ,

Gauss-Seidel iterations) and estimating the spectral radius, P(G-S), by

11+1 -Ikr

Pri(G-)==- rjj 11 P2 ; r= 0,1,...,oo. (3-16)

In an actual problem, the determination of P2 is treated in the following

manner:

1. At the start of the outer iterations, wor is set to unity.

2. When the eigenvalue is-converged to within 0. 5%, P 2

is estimated by the procedure outlined above.

3. The Gauss-Seidel flux iterations are performed until

successive estimates of P2 differ by less than 0.2%.

4. The latest estimate of P2 is then used in Eq. 3-13 to

determine w r for the duration of the static problem

solution.

It is recognized that better estimates of P2 are possible. However, the

flux coefficient matrix is dependent on the true static eigenvalue which

is not known at the point that P2 is estimated; thus, there seems to be

little value in obtaining the "exact" spectral radius of the "wrong"

matrix.
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In point of fact, the spatial mesh is not swept in the fashion indi-

cated previously, but rather is swept in a three-dimensional checker-

board fashion. That is, one pass is made through the spatial mesh

solving for the average fluxes in every second node. After the mesh is

completely swept, the process is started again, this time solving for

the average fluxes in all of the nodes that were skipped on the first pass

through the mesh. By sweeping the mesh in this fashion, all of the

fluxes in the first sweep are determined from "old" flux values, and

all of the fluxes in the second sweep are determined from "new" flux

values. One virtue of this checkerboard, two-pass sweeping is that no

geometrical orientation is given any preferential treatment (as is the

case in a direct line- or row-sweeping method).

Mathematically, this checkerboard iteration scheme is a permu-

tation transformation (4) of the conventional Gauss-Seidel iteration.

This transformation can be thought of as a reordering of equations and

unknowns. The permutation transformation leaves the properties of the

flux iteration matrix unchanged, and all of the properties required to

guarantee convergence of the CCSI method, in the limit of infinitely fine

mesh spacing, are guaranteed to exist.

3.4 ITERATION OPTIMIZATION

The ite'rative method for solving the static nodal diffusion equations,

as detailed in Section 3. 3, is largely complete. There remain, however,

several items to be further developed before it will be completely speci-

fied. The two main items are the determination of the number of flux
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iterations to be performed at each inner iteration and the selection of the

eigenvalue shift to be used to accelerate the convergence of the outer

iterations.

3.4. 1 Flux Iteration Error Reduction

One quantity which is evaluated in the process of determining the

relaxation parameters for use with the CCSI method in the flux iterations

is the spectral radius of the Jacobi iteration matrix. This spectral

radius also determines the optimum asymptotic relaxation factor,

2

( 24. (3-15)

1 + lP2

It can be shown that asymptotically, the error in the node-averaged flux

vector is reduced by the factor (wb-1) at each flux iteraion (22). Thus,

it is possible to estimate the number of flux iterations that are required

to achieve some desired error reduction.? If the error reduction, e, is

defined to be the ratio of the vector norm of the error in the average

fluxes after n flux iterations to the vector norm of the error in the aver-

age fluxes prior to the first flux iteration, it can be shown that (22)

2(wb )n
eb>2b1(3-17)

1 + (bl)2n

The error reduction can be thought of approximately as the average frac-

tional decrease in the error of the node-averaged fluxes per inner itera-

tion.
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In order to determine a reasonable choice for the error reduction

at each inner iteration, the BIBLIS 2-D checkerboard-loaded PWR

problem (Problem 4. 3) was solved with various error reductions.

Table 3-1 illustrates the effects of the error reduction on the iterative

solution. From this information, it can be seen that the choice of error

reduction does not have a significant effect on the total iteration time

required to converge the problem. The reason for this is quite simple:

Once the fission source and leakages are converged to a certain point,

it takes a certain number of flux iterations to converge the fluxes fully;

it makes little difference whether fewer flux iterations are performed

for more outer iterations or whether more flux iterations are performed

for fewer outer iterations. As a result of these and other test results,

the general practice of choosing the error reduction in the interval . 1

to .4 has been adopted for static nodal diffusion problems.

3.4.2 Eigenvalue Shift Optimization

Trade-offs between two competing phenomena determine the opti-

mum eigenvalue shift. The outer iteration convergence rate is maxi-

mized (the dominance ratio is zero) when the eigenvalue shift is equal

to the true global eigenvalue and minimized when the eigenvalue shift

is equal to infinity. The flux iteration convergence rate is minimized

(the flux iteration matiix is singular in the case of infinitely fine mesh

spacing) when the eigenvalue shift is equal to the true global eigenvalue

and maximized when the eigenvalue shift is equal to infinity. Therefore,

it seems that there is little additional insight to be gained from purely
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Table 3-1

ERROR REDUCTION OPTIMIZATION

2-D BIBLIS (rods in configuration - Problem A4. 3)

23.122 cm spatial mesh,

ys y + .05

1 inner per outer iteration

Matrix updates every five iterations

Flux convergence criteria = 10-5

Error Reduction
e

0.90

0.666

0.400

0.150

0.050

0.025

Total Iteration Time
(sec)

>4.

2.48

1.77

1.77

1.92

2.04

Number of
Outer

Iterations

> 70

52

36

31

30

29

Number of
Flux

Iterations

1

2

3

5

7

8

*
Includes matrix update time.
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theoretical considerations and numerical experiments are needed to

provide additional insight into the problem of choosing the eigenvalue

shift. The effects of the eigenvalue shift on the overall iteration pro-

cess are summarized in Tables 3-2a - 3-2d, for two different reactor

configurations and three different spatial mesh sizes. From this infor-

mation, several general conclusions are drawn:

1. As the eigenvalue shift (Ts) approaches the true eigen-

value (y), the convergence rate of the outer iterations

increases.

2. As yS approaches y, the flux iteration convergence

rate decreases.

3. The spectral radius of the Gauss-Seidel flux iteration

matrix varies significantly with the spatial mesh size.

4. The spectral radius of the unshifted flux iteration

matrix, for problems with assembly-sized meshes,

is very small.

5. The overall iteration is optimized, with respect to

total execution time, when an eigenvalue shift which

exceeds the true eigenvalue by four to five percent

is used.

6. The optimum eigenvalue shift is not significantly

affected by the spatial mesh size, despite the fact

that the spectral radius of the flux iteration matrix

changes significantly.
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Table 3 -2a

EIGENVALUE SHIFT OPTIMIZATION

(Coarse Mesh BIBLIS)

2-D BIBLIS (rods in configuration - Problem A4. 3)

23.122 cm spatial mesh

1 inner per outer iteration
*4

Error reduction =. 15

Flux convergence criteria = 10-5

Eigenvalue
Shift

7s

y+.04

y+ .05

o+ .06

7+ .07

7+ .09

oot

Total *
Iteration

Time
(sec)

1.24

1.16

1.34

1.31

1.52

> 2. 0

Number of
Outer

Iterations

28

29

35

43

48

> 50

Number of
Flux

Iterations

7

5

5

3

3

2

Gauss-Seidel
Spectral
Radius

0.957

0.923

0.885

0.727

0.683

0.08

*
No matrix updating.

**
Based on an alternate estimate of error reduction, not presently
used.

Unaccelerated outer iteration.
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Table 3 -2b

EIGENVALUE SHIFT OPTIMIZATION

(Coarse Mesh IAEA)

2-D IAEA (Problem A4. 2)

20. 0 cm spatial mesh

1 inner per outer iteration
**

Error reduction = . 15

Flux convergence criteria = 10-5

Eigenvalue
Shift
7s

7+ .03

7+ .04

y + .05

y+ .06

y + . 07

0o

Total *
Iteration

Time
(sec)

.75

,74

* 77

.79

.90

> 1.5

Number of
Outer

Iterations

17

21

21

25

27

> 50

Number of
Flux

Iterations

7

5

5

4

4

2

Gauss-Seidel
Spectral
Radius

.950

.898

.883

.804

.761

. 030

No matrix updating.
**

Based on an alternate
used.

estimate of error reduction, not presently
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Table 3-2c

EIGENVALUE SHIFT OPTIMIZATION

(Fine Mesh BIBLIS)

2-D BIBLIS (rods in configuration - Problem A4. 3)

11. 561 cm spatial mesh

1 inner per outer iteration

Error reduction = . 15**

Flux convergence criteria = 10-5

Eigenvalue
Shift

TS

y + .04

y + .05

7+ .06

7+ .07

y + . 10

y + .15

00

Total *
Iteration

Time
(sec)

4.28

3.95

4.89

4.89

6.24

> 8,0

>10.0

Number of
Outer

Iterations

24

28

32

33

50

> 50

>50

Number of
Flux

Iterations

9

7

7

7

5

4

4

Gauss--Seidel
Spectral
Radius

0.969

0. 954

0.950

0.946

0. 878

0. 789

0.300

*
No matrix updating.

Based on an alternate estimate of error reduction, not presently
used.
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Table 3-2d

EIGENVALUE SHIFT OPTIMIZATION

(Very Fine Mesh BIBLIS)

2-D BIBLIS (rods in configuration - Problem A4. 3)

7.707 cm spatial mesh

1 inner per outer iteration
**

Error reduction = . 15

Flux convergence criteria = 10-5

Eigenvalue
Shift

7s

y+ .03

7+ .04

7+.05

y+ .07

7+ .10

.00

Total *
Iteration

Time
(sec)

17.9

13.9

15.8

16.2

> 18.0

> 20.00

Number of
Outer

Iterations

37

30

35

38

> 50

> 50

Number of
Flux

Iterations

13

12

12

10

7

6

Gauss-Seidel
Spectral
Radius

.985

.982

.982

.974

.949

.548

*

No matrix updating

Based on an alternate
used.

estimate of error reduction, not presently
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The reasons for the success of eigenvalue shifting in accelerating

the overall iteration process seem particularly clear in the case of

assembly-sized spatial meshes: The leakage computations at each

inner iteration require so much computational effort (about five times

that of a single flux iteration) that it is desirable to shift more of the

computational burden to the flux iterations (which would only require

one or two iterations if no shift was employed), to balance the compu-

tational effort between flux and leakage calculations. Thus, the eigen-

value shift succeeds in increasing the spectral radius of the flux

iteration matrix and decreasing the dominance ratio of the outer iter-

ation. The effect of the optimum eigenvalue shift on the dominance

ratio is summarized in Table 3-3. For assembly-sized meshes, the

dominance ratio is decreased from approximately 0.99 to 0.80 by the

eigenvalue shift. This corresponds to a factor of 20 increase in the

asymptotic convergence rate of the outer iterations. The computational

burden on the flux iterations is increased by a factor of two to three,

hence, the eigenvalue shift is very effective in accelerating the overall

iteration process.

Application of the eigenvalue shifting method to a wide variety of

problems has led to a general procedure for the implementation of the

eigenvalue shift. At the start of the problem, since the true eigenvalue

is generally unknown, an initial value of 1. 50 is used for -Y. Hence,

there is no possibility of converging to the wrong eigenvector as long as

the true eigenvalue is less than 1. 50. After the global static eigenvalue

is converged to about one percent (generally only 2 to 5 outer iterations),
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Table 3-3

EIGENVALUE SHIFT EFFECT ON DOMINANCE RATIO

Ts, eigenvalue shift = -y + .05

71 72 d ds

2-D BIBLIS

23. 122 cm spatial
mesh (Problem A4,3) 1.01972 1.01009 .991 .831

2-D IAEA
20.0 ,m spatial
mesh (Problem A4.2) 1.02961 1.01736 .988 .794

is chosen to be equal to the estimated eigenvalue plus an arbitrary

constant (generally 0. 04 to 0. 05). Thus, -ys "follows" the eigenvalue

estimate and ultimately is near the anticipated optimum when the true

eigenvalue is determined. This general procedure has been used on a

great many problems without any difficulties.

Following the implementation of eigenvalue shifting (Wielandt's

method) into the Analytic Nodal Method in this thesis work, Shober has

also implemented the method into his "two-step" Analytic Nodal Method

(17). He found that eigenvalue shifting was much more effective in ac-

celerating the outer iteration convergence than the Chebyshev Semi-

Iterative method (not to be confused with CCSI) which he has used in the

past. However, Shober chose to fix ys prior to the start of the outer

iterations by using a value of 1. 1 times the estimated eigenvalue.
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This practice of fixing y at the beginning of a problem seems to

lack the flexibility required when a reliable estimate of the true eigen-

value is not available. Hence, the aforementioned method of altering

the eigenvalue shift during the outer iterations seems to be better

adapted for use in general problems.

3.5 SUMMARY

In this chapter, the properties of the nodal diffusion equations were

examined and the Analytic Nodal Method was shown to reduce to the

finite difference equations in the limit of infinitely fine spatial mesh.

As a consequence, it was shown that the Analytic Nodal Method is guar-

anteed to give the exact solution to the differential diffusion equation in

this limit.

The numerical methods used to solve the nodal diffusion equations

were also detailed in this chapter. However, many of the properties

which were required to guarantee that these numerical techniques will

cause convergence to the solution to the nodal diffusion equations could

be demonstrated only for the case of infinitely fine spatial mesh.

In Chapter 4, applications of the Analytic Nodal Method and the

numerical methods described in the present chapter will be presented.

The effectiveness of the numerical schemes and the implications of the

quadratic transverse leakage approximation will also be discussed.
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Chapter 4

STATIC APPLICATIONS

4.1 INTRODUCTION

In Chapter 2, the static nodal diffusion equations were derived,

and the Analytic Nbdal Method, based on the single assumption that

the transverse leakages could be fit to quadratic polynomials, was

derived. The flux and leakage coupling coefficients were obtained by

solving analytic difference equations. A multi-level iterative scheme

for solving the resulting analytic nodal diffusion equations was detailed

in Chapter 3.

In this chapter, results from application of the Analytic Nodal

Method to several two- and three-dimensional, two-group, static

reactor benchmark problems are presented. The spatial convergence

rate of the Analytic Nodal Method is also examined. Following the

presentation of results from the benchmark problems, a detailed ex-

amination of the transverse leakage shapes is presented to identify

possible deficiencies of the quadratic transverse leakage approxima-

tion. Throughout this chapter, the accuracy and computational effici-

ency of the Analytic Nodal Method are compared to those of conven-

tional finite difference methods and other nodal methods of current

interest.
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4.2 FOREWORD TO STATIC RESULTS

4.2.1 Computer Codes

The methods developed in Chapter 2 and the numerical techniques

detailed in Chapter 3 are.incorporated into a computer code, hereafter

referred to as QUANDRY (quadratic Analytic Nodal Diffusion Theorxy).

This computer code solves two- and three-dimensional, two-group

diffusion theory problems.

QUANDRY is written in the IBM FORTRAN IV language, except

for a few routines that perform the dynamic storage allocation, which

are part of the ANL BPOINTER (27) package. The code was compiled

under the IBM Level-H compiler with full optimization and in single

precision. All computations reported in this research are performed

on an IBM 370/168 computer.

There are actually two distinct versions of QUANDRY presently

in existence. The primary difference between these two versions is

in the treatment of the spatial coupling coefficients. Recall that in

each direction, node-averaged fluxes in three adjacent nodes and face-

averaged net leakages in five adjacent nodes are coupled to obtain net

leakages. Thus, in three-dimensional, two-group problems, 96 coup-

ling coefficients must be computed and stored for each node. Since

one of the objectives of this work is to demonstrate the viability of the

Analytic Nodal Method for large three-dimensional problems, a severe

data handling and storage problem exists. One method of circumvent-

bng this problem is to determine only those coupling coefficients that
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are unique. The reduction in the number of coupling coefficients which

must be treated is substantial in most computational benchmark prob-

lems. For instance, the 3-D IAEA PWR benchmark problem (25) con-

sists of approximately 1500 nodes (with assembly-sized mesh). But

only 58 unique sets of coupling coefficients exist. The version of

QUANDRY which utilizes only unique coupling coefficients has a rou-

tine which searches all three directions of the spatial mesh and deter-

mines the unique combinations of compositions and mesh spacings

which occur in nodal quintuplets. Use of the unique coupling coeffici-

ents practically eliminates the computational effort required to per-

form matrix updates during the outer iterations.

The inherent advantages of using the unique coupling coefficients

are not realized in the analyses of reactors with thermal-hydraulic

feedback, since each node will be characterized by a unique tempera-

ture, moderator density, etc. Hence, a version of QUANDRY which

constructs coupling coefficients for each node was used to perform

most of the analyses in this research. The version with unique coup-

ling coefficients was used mainly to generate fine mesh reference

solutions to problems that would otherwise exceed the available stor-

age capacity of the IBM 370/168.

QUANDRY is captble of handling nonuniform mesh spacing and

irregular geometries (jagged boundaries). An option is also available

to take advantage of diagonal symmetries, such as 2-D octants. The

generalized albedo boundary conditions described in Appendix 2 are

incorporated into QUANDRY, but no attempt has been made as yet to
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utilize the albedos except to model zero flux and zero incoming current

boundary conditions.

4.2.2 Vacuum Node Transverse Leakage 5

One detail of the quadratic transverse leakage expansion remains

to be specified. Since the node-averaged transverse leakages in three

adjacent nodes are required to determine the shape of the transverse

leakage within each node, a problem exists for nodes located on the

reactor surface. Since a surface node does not have the third adjacent

node needed to perform the leakage expansion, a fictitious "vacuum

node" is assumed to be present. The transverse leakage in the vacuum

node is then arbitrarily related to the leakage in the surface node to

complete the leakage expansion.

For problems with water reflectors, the spatial power distribution

is almost totally insensitive to the leakage in the vacuum node, hence,

the vacuum node transverse leakage is assumed to be zero. The only

cases in which the vacuum node leakage is of any importance are prob-

lems without reflectors. In problems with fuel-bearing compositions

on the surface of the reactor, the fluxes and leakages may be quite

large near the surface, and thus, the power distribution may be some-

what sensitive to the shapes of the transverse leakages. For such

problems, the vacuum node transverse leakages are set equal to the

negative of the transverse leakages in the surface node. The rationale

for this is that since the fluxes are generally assumed to be zero on

the surface, so too are the transverse leakages. Hence, this assumption
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provides a means of forcing the transverse leakage expansions to have

a value near zero on the surface. This practice gives good results,

but it should be emphasized that the power distributions remain quite

insensitive to the vacuum node transverse leakages. Since realistic

reactor configurations have reflectors, the assumption that the vacuum

node transverse leakages be identically zero is completely sufficient.

4.2. 3 Convergence Criteria

The convergence criterion on the node-averaged fluxes which is

employed in QUANDRY is a slight variation of the usual point-wise flux

convergence criterion. If the power density in the ith node at the qth

outer iteration is expressed as P , convergence is defined to be

achieved when

maximum over {51I1
allI

where P is the mean reactor power density and e is the outer itera-

tion convergence criterion. This convergence criterion has the char-

acteristic that it places more emphasis or. convergence in regions of

high power density and less emphasis on convergence in regions of low

power density. In most cases, little difference is observed between

this convergence criterion and strict point-wise flux convergence.

Unless stated otherwise, all 2-D problems in this research use a

convergence criterion of 1i-5. In 3-D problems, round-off errors

become significant, since QUANDRY is compiled in single precision
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(32 bit word). Thus, for large 3-D problems, it is not always possible

to obtain convergence to 10-5. Therefore, unless stated otherwise,

all 3-D problems use an outer iteration convergence criterion of 10O.

These tight convergence criteria are used so that solutions can he

compared to those of other codes without the ambiguities caused by

loose convergence criteria. It is worth noting, however, that spatial

power distributions are quite insensitive to the convergence criterion,

for e < 1O-3

4.2.4 Errors in Power Distributions

The static solutions to problems presented in this chapter are

compared to reference solutions which are spatially converged. The

nodal power densities of the reference solutions and the errors in the

nodal solutions are presented in Appendix 5. For purposes of summa-

rizing the results of the approximate solutions, tables present the

maximum and average errors in nodal power densities. With the

power density in the ith node defined as P , and the reference power

density represented as .Pref , the maximum error in nodal power
1

density is defined to be

IP. - P.e
maximum over i - '

emax all i }Pref
and the average error is

IP.-Pref

Vt i Pref
1

4-6



where V. is the volume of the ith node and Vt is the total volume of the

reactor core. All power densities are normalized such that the mean

reactor power density is unity.

4.2.5 Execution Times -

In making comparisons between different computational methods

and different computer codes, many persons express interest in prob-

lem execution times. Direct comparisons between computer codes is

often difficult because execution times vary depending upon the com-

puter in use. In order to establish rough comparisons between com-

puters, the following execution times are considered, in this work, to

be equivalent in computational effort (for heavy floating-point calcula-

tions) to one second on an IBM 310/168:

IBM 370/168 - 1.0

IBM 370/195 - 0.4 (35)

CDC CYBER 175 - 0.57 (35)

CDC 6600 - 1.43 (35)

IBM 360/91 . -'~1.0

It cannot be overemphasized how approximate these comparisons are.

Short of actually performing identical calculations on each machine,

no truly satisfactory method of comparison is available.

In two-dimensional nodal calculations, execution times are so

small that care must be taken to include only the time associated with

solving the actual problem and not performing input/output operations.
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In this publication, the execution times reported are the total CPU

time consumed from the point at which the input data have been read

to the point at which solution editing begins. Execution times which

are quoted in subsequent chapters are all for computations performed

on an IBM 370/168. Unless stated otherwise, all execution times are

for the version of QUANDRY which does not make use of the unique

coupling coefficients. When available, the execution times for the

version with unique coupling coefficients are given in parentheses,

beside the other execution times.

4.3 STATIC 2-D RESULTS

In this section, results from several 2-D benchmark problems

and a more realistic checkerboard-loaded reactor are presented. All

of the problems are constructed with large homogenized regions, such

that very coarse spatial meshes can be used. All of the geometries

and cross sections are fully specified such that modeling ambiguities

do not exist.

4. 3. 1 The 2-D LRA BWR Two-Group Benchmark Problem

The LRA BWR test problem is a highly simplified two- or three-

dimensional, two-group kinetics benchmark problem, described in

Section A4. 1 of Appendix 4, The reactor has a two-zone core contain-

ing 312 fuel elements, each having a width of 15 cm. The core is re-

flected both radially and axially by 30 cm of pure water,. and tne active

core height is 300 cm. Control rods are represented as smeared
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absorbers in four adjacent fuel assemblies. Several control rods are

modeled in their fully-removed positions, and hence, the flux distribu-

tion displays severe local perturbations. Although this problem is

quite unlike a commercial BWR, the severe flux peaking makes this

problem more difficult to solve, in many ways, than a real BWR.

In this section, only the results of the 2-D steady-state problem

are presented. This problem was solved with a uniform 15 cm spatial

mesh and with octal symmetry. Table 4-1 summarizes the results of

the Analytic Nodal Method with quadratic transverse leakages. The

normalized assembly power densities are displayed in Fig. A5-1 of

Appendix 5. The reference solution is a 16 node per assembly calcu-

lation by Shober (17), which has been shown to be spatially converged.

TAPLE 4-1

Summary of Results for the 2-D LRA BWR Static
Benchmark Problem with. Assembly-Size Mesh

# unknowns 396

# outer iterations 41

# flux iterations/innera 3

Eigenvalueb 0.99641

e .a(0) 0.19
max

e (%o) 0.07

Execution time
(sec, IBM 370/168) 2.7 (2.3)

a 1 inner iteration/outer iteration
bReference: 0.99636
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The errors in this problem are so small as to be essentially negligible.

Sims reports that the finite difference code MEKIN requires a *

2. 5 cm spatial mesh to obtain a maximum error in assembly power of

five percent for the 2-D LRA problem (15). The solution time for this

problem, in quarter-core geometry, is about 333 seconds on an IBM

370/168. For the 2-D LRA problem, QUANDRY appears to be able to

obtain superior accuracy with an order of magnitude fewer unknowns

and two orders of magnitude less computational effort than MEKIN.

4. 3.2 The 2-D IAEA PWR Two-Group Benchmark Problem

The IAEA PWR test problem is a highly simplified two- or three-

dimensional, two-group static benchmark problem (25), as described

in Section A4.2 of Appendix 4. The reactor consists of a two-zone

core containing 177 fuel assemblies each having a width of 20 cm. The

core is reflected radially and axially by 20 cm of water, and the active

core height is 340 cm. Each of nine fully-inserted control rods are

represented as smeared absorbers in a single fuel assembly. In the

three-dimensional configuration, four partially inserted rods are also

modeled. The existence of inserted control rods and a water reflector

gives this problem severe local flux perturbations which make the

problem quite challenging.

In this section, only the results of the 2-D IAEA problem are pre-

sented. The 2-D problem was solved with 20 cm and 10 cm spatial

meshes, both solutions employing octal symmetry. Table 4-2 summa-

rizes the QUANDRY results for these two cases. The normalized
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TABLE 4-2

Summary of Results for the 2-D IAEA PWR Benchmark Problem

# unknowns

# outer iterations

# flux iterations/innera

Eigenvalue b

e max

e (0)

Execution time
(sec IBM 370/168)

Mesh Spacing

20 X 20 cm 10 X 10 cm

228 762

23 35

4 6

1.02962 1.02960

0,94 0.32

0.27 0.11

1. 24 (O. 90) 6. 7 (3.2)

a One inner iteration per outer iteration
b Reference: 1.029 59

assembly power densities are displayed in Fig. A5-2 of Appendix 5.

The reference solution is a 3-1/3 cm nodal calculation by Wagner (26),

which is spatially converged. The maximum error in assembly powers

is less than one percent with an assembly-size spatial mesh. Although

these errors are larger than the errors obtained in the 2-D LRA prob-

lem, the errors remain quite small. The assembly with the largest

percentage error in power density is one of the low power assemblies

adjacent to the reflector.

Wagner reports that finite difference methods require a spatial

mesh of less than 1.25 cm to achieve similar accuracy. The finite
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TABLE 4-3

Summary of Results for the 2-D IAEA PWR Benchmark Problem
Obtained by Nodal Codes with 20 cm Mesh

Eigenvalue a

ema (%0)

e(%)

Execution time
(sec IBM 370/168)

(Symmetry)

QUANDRY

1.02962

0.94

0.27

1. 24 (0. 90) b

1
(I core)

"TWO-STEP"
(17)

1.02970

1.6

0.36

1.41

1
(4 core)

IQSBOX NRMT
(26) (15)

1. 02966 1.02951

1.4 1.9

-- 0.5

1. 50 c

1
( w core)

4. 1

( core)

a Reference: 1.02959

bi1
w core execution time 1. 86 (1. 35)

c Actual time 0.86 sec (CDC CYBER 175)

difference code VENTURE requires several minutes of computer time

to solve this problem with a uniform 1.25 cm mesh, (2 5). Therefore,

as in the LRA problem, the coarse mesh nodal method appears to attain

superior accuracy with approximately two orders of magnitude less

computation effort than finite difference methods.

A comparison of results from several nodal methods currently in

the literature is presented in Table 4-3, for the 2-D IAEA problem

with assembly-size mesh. These results indicate that the Analytic

Nodal Method is at least as accurate as the other nodal methods and

very competitive in execution time.
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4.3.3 The 2-D BIBLIS PWR Problem

The BIBLIS reactor problem (28) is a 2-D, two-group PWR with

a "checkerboard" core loading pattern. Fuel assemblies with widths

of approximately 23 cm and nine different compositions are present in

the core which is surrounded by a 23 cm water reflector with a smeared

baffle. Control rods are also present, represented by smeared absor-

bers in single fuel assemblies. There are two configurations of the

BIBLIS problem; a "rods in" configuration, and a "rods out" configu-

ration in which eight control rods are removed from the core. This

problem is particularly interesting because it is a model of an actual

operating reactor with a multi-zone core. Confidentiality considera-

tions prohibit general distribution of the problem specifications.

Summaries of the results for a series of mesh spacings are pre-

sented in Tables 4-4 and 4-5, for the "rods in" and "rods out" configu-

rations, respectively. Normalized assembly power densities are dis-

played in Fig. A5-3 and A5-4 of Appendix 5. The reference solution

for the rods-withdrawn case is a 16 node per assembly calculation by

Shober (17), and for the rods-inserted case is a 16 node per assembly

QUANDRY calculation.

The maximum errors in assembly powers are larger than in

either the LRA or IAEA problems, but are still quite small. Refine-

ment of the spatial mesh produces substantial reduction in errors. In

fact, for the BIBLIS problems, the errors appear to be proportional to

at least the cube of the mesh spacing.
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TABLE 4-4

Summary of Results for tht; 2-D BIBLIS PWR Problem,
Rods-Inserted Configuration

Spatial Mesh

~23 X 23 cm ~11.5 X 11.5 cm ~7. 75 X 7, 75 cm

# unknowns

# outer iterations

# flux iterations/
inner a

Eigenvalue b

ema (7)

Execution time c
(sec IBM 370/168) 1. 77 (1.50) 5.3 (4.6)

aOne inner iteration per outer iteration

b Reference: 1. 01953

C Octal symmetry '

4-14

240

31

810 1872

30 37

75

1.01971

2. 59

0.81

12

1.01955

0.22

0.06

1.01953

0.06

0.02

18.9



TABLE 4-5

Summary of Results for the 2-D BIBLIS PWR Problem,
Rods-Withdrawn Configuration

~23 X 23

# unknowns 240

# outer iterations 33

# flux iterations/inner a 3

E igenvalue b 1002530

eMa (%) 1.91

e (%) 0.56

Execution time C

(sec IBM 370/168) 1.50 (14

a One inner iteration per outer iteration

b Reference :1. 02512

c Octal symmetry

cm

. 20)

Spatial Mesh

11.5 X 11.5 cni

810

34

5

1.02511

0.19

0.04

6.1
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Results for the BIBLIS "rods out" configuration are available for

five different nodal codes currently in the literature, and a summary

of these results is displayed in Table 4-6. These results give addi-

tional information to support the previous statement that the Analytic

Nodal Method with quadratic transverse leakage approximations is very

competitive with other nodal methods, in botn accuracy and execution

time. An interesting result chown in Table 4-6 is that the maximum

and average errors in assembly power densities for both IQSBOX and

NRMT are smaller than for QUANDRY. The transverse leakage ap-

proximations are identical in all three of these codes. QUANDRY

makes no additional assumptions, but both IQSBOX and NRMT make

additional polynomial approximations to the shapes of the fluxes. We

conjecture that there is a fortuitous cancellation of errors in the

IQSBOX and NRMT solutions which accounts for the smaller errors.

4.3.4 Summary of the 2-D Static Results

The Analytic Nodal Method with a quadratic transverse leakage

approximation is capable of producing very accurate solutions to two-

dimensional light water reactor problems with assembly-sized spatial

meshes. The execution times for these 2-D problems are so small as

to be practically negligible. Comparisons of coarse mesh nodal solu-

tions with finite difference solutions show that the nodal methods are

about two orders of magnitude more computationally efficient than finite

difference methods.
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TABLE 4-6

Summary of Results from Five Nodal Codes for the 2-D BIBLIS Problem,
Rods-Withdrawn Configuration

Eigenvalue a

emax

E (%)

QUANDRY

1.02530

1.91

0.56

''TWO-STEP,

(17)

1. 02549

4.0

1.24

IQSBOX
(26)

1.02528

1.25

0.49

NRMT
(15)

1.02520

1.0

0.30

CUBBOX
(29)

1.02508

3. 03

0.65

Execution time
(sec IBM 370/168) 1.50 (1.20)b

(Symmetry) (core)

a Reference: 1. 02512

bt core excuti ime 2. 25 (1.80)
4

A

I-A

-4

1.66

1
( core)

3.9

1
(wcore )



4.4 STATIC 3-D RESULTS

In this section, results from several 3-D benchmark problems

are presented. As in the 2-D problems, the geometries are construc-

ted with large homogenized regions, such that very coarse spatial

meshes can be used.

4.4.1 The 3-D Model LWR Problem

An interesting problem with which to begin the three-dimensional

analyses is the static version of a transient problem by Langenbuch et

al. (30). This problem, hereafter referred to as the LMW (Langenbuch-

Maurer-Werner) test problem, is a highly simplified LWR, described

in Section A4. 5 of Appendix 4. The reactor has a two-zone core con-

taining 77 fuel elements with widths of 20 cm. The core is reflected

both radially and axially by 20 cm of water, and the active core height

is 160 cm. Five control rods are parked in tbe upper axial reflector,

and four control rods are inserted from the upper reflector to the axial

midplane of the core.

The solution to the 3-D LMW test problem with a uniform 20 cm

mesh in both radial and axial directions and utilizing the octal symine-

try is summarized in Table 4-7. The normalized assembly power de-

sities are given in Fig. A5-5. The reference solution is a QUANDRY

calculation with a 10 cm radial mesh and a 20 cm axial mesh except in

the reflectors where 10 cm meshes are used. The maximum error in

nodal power densities occurs in the upper axial reflector and is less

than 1. 0%. The maximum error in assembly power density is less
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TABLE 4-7

Summary of Results for the 3-D LMW LWR Test
Problem with Assembly-Size Mesh

# unknowns 1600

# outer iterations a 17

# flux iterations/inner b 5

Eigenvalue C 0.99974

ema (node1 0) 0.98

ema (assembly, %) 0.28

e (assembly, 7) 0.12

Execution time
(sec IBM 370/168) 11.2 (8.1)

aOuter iteration convergence criterion: 10- 5

b 2 inner iterations per outer iteration

c Reference: 0. 99966

than 0. 3%. The results of this 3-D test problem are very similar to

those obtained for 2-D problems in Section 4. 3.

4.4.2 The 3-D IAEA PWR Benchmark Problem

The 3-D IAEA PWR benchmark problem was introduied in 1971

by Michaelson (31) and has proven to be a very important standard by

which progress in reactor calculational methods have been measured.

Following the introduction of this problem, many solutions were ob-

tained, but very large discrepancies in these early solutions indicated
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TABLE 4-8

Summary of Results for the 3-D IAEA PWR Benchmark Problem

# unknowns

# outer iterations

# flux iterations/inner a

Eigenvalue b

ema (node, %)

emax (assembly, 7)

e (assembly, %6)

Execution time
(sec IBM 370/168)

20 X 20 X 20 cm

5776

29

5

1.02602

1. 6

0. 69

0.24

29.0 (20.0)

Mesh

10 X 10 X 20 (10) cm

21, 336

50

5

1.02899

0.80

0.71

0.13

(150)

a 1 inner iteration per outer iteration

b Reference: 1. 02903

that deficiencies existed in most multidimensional calculational

methods.

The results of QUANDRY solutions to the 3-D IAEA PWR

problem are summarized in Table 4-8 for two different spatial mesh

configurations. The coarse mesh solution employs a 20 cm spatial

mesh in the radial and axial directions. The fine mesh solution uses

a 10 cm radial mesh and 20 cm axial mesh spacing, except in the axial

reflectors where a 10 cm mesh spacing is used. Both calculations

make use of the octal symmetry which exists in this problem. The

4-20



TABLE 4-9

Comparison of 3-D IAEA PWR Benchmark Solutions

QUANDRY IQSBOX
(25)

# spatial mesh points 722 722

emax (node, %) 1.6 1.37

ema (assembly, %) 0.69 -0.90

e (assembly, %) 0.24 0.28

Execution timea
(sec IBM 370/168) 29.0 (20.0) 35.0 a

a Actual time: 50 sec, CDC-6600

b Actual time: 2. 16 X 104 sec, IBM 370/195

VENTURE
(25)

~1.2 X 106

-3.97

-2. 11

1.0

5,4X 4

normalized power densities are given in Fig. A5-6.

The reference case for the 3-D IAEA problem was taken to be a

finite difference solution by Vondy et al., obtained by using VENTURE

(25). Vondy actually performed a series of calculations with refined

mesh spacings and applied a Richardson extrapolation to obtain his

reference solution, assuming that the errors were reduced with the

square of the mesh spacing. The finest mesh VENTURE solution in-

volved a 1-2/3 cm radial mesh and contained approximately 1. 2 million

mesh points.

Table 4-9 presents a comparison between the coarse mesh nodal

solutions by QUANDRY and IQSBOX (26) and the finest mesh VENTURE

solution. It is interesting to note that both of the nodal solutions have

smaller errors than the finest mesh finite difference solution. In fact,
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an examination of the 10 X 10 X 20 (10) cm mesh solutions by both

QUANDRY and IQSBOX reveals that there is much better agreement

in assembly powers between the two nodal solutions than there is be-

tween either of the nodal solutions and the VENTURE solution. A

comparison of the QUANDRY and IQSBOX assembly powers is pre-

sented in Fig. A5-7, with the IQSBOX solution taken to the the refer-

ence. In light of the better agreement in solutions by the two nodal

codes, it seems likely that VENTURE reference solution should not be

considered to be a true reference, if the intent is to isolate errors in

assembly powers of less than one percent.

The execution times quoted for VENTURE are not representative

of an optimized finite difference solution because of the tight converg-

ence criterion, the uniform radial mesh, and the use of obsolete numer-

ical procedures. Nevertheless, the dramatic difference in execution

times between VENTURE and QUANDRY does reflect on the power of

the Analytic Nodal Method.

4.4.3 The 3-D LRA BWR Benchmark Problem

The 3-D LRA BWR benchmark problem was introduced as a full-

core kinetics problem and has proven to be extremely difficult. The

static solutions for both rod-inserted and rod-withdrawr4 configurations

are presented in this section.

4.4.3.1 3-D LRA BWR-Control Rod Fully Inserted

A summary of results from a coarse mesh QUANDRY solution to

the 3-D LRA BWR problem with control rods inserted is presented in
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TABLE 4-10

Summary of Results for the 3-D LRA BWR Benchmark Problem
with Control Rods Inserted

15 X 15 X 25 (15) cm

# unknowns 4224

# outer iterations 35

# flux iterations/innera 5

Eigenvalue 0.99644

emax (node, % -0.38

emax (assembly, J) -0. 24

e (assembly, %) 0.08

Execution time
(sec IBM 370/168) (18.7)

a 1 inner iteration per outer iteration

Mesh

7. 5 X 7. 5 X 25 (15) cm

16, 192

56

5

0.99639

Ref.

Ref.

Ref.

(110.0)

Table 4-10. The coarse mesh solution uses a 15 cm radial mesh spac-

ing and an axial mesh spacing of 25 cm except in the axial reflector

where a 15 cm mesh spacing is used. The reference solution is a fine

mesh QUANDRY calculation with a 7. 5 cm radial mesh and an axial

mesh identical to that of the coarse mesh solution. Both solutions are

for an octant of the reactor core and take advantage of the symmetry

about the diagonals of the x-y planes. The normalized assembly power

densities are displayed in Fig. A5-8 of Appendix 5.

The errors in the coarse mesh solution with assembly-size nodes

are very small and quite similar to the errors obtained in the 2-D LRA
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problem. This is not entirely unexpected since this 3-D LRA problem

is essentially a homogeneous core in the axial direction with added

reflectors. The fine mesh nodal solution cannot be consiered a true

reference, since it has a relatively coarse axial mesh. Nevertheless,

these results demonstrate the accuracy of the Analytic Nodal Method.

4.4.3.2 3-D LRA BWR-Quarter Core, Control Rod Withdrawn

The actual 3-D LRA BWR transient is initiated by the removal

of one control rod associated with four asymmetric peripheral assem-

blies. As a preliminary 3-D transient test, the quarter-core version

of this transient (i. e. , four control rods are withdrawn) is used.

Therefore, examination of the errors in the spatial power distribution

of this alternate problem is of interest. A summary of results from

this problem is presented in Table 4-11. The spatial meshes for both

the coarse and fine mesh (reference) QUANDRY solutions are identical

to those described in Section 4.4. 3. 1. The normalized assembly

powers are given in Fig. A5-9.

The errors in the coarse mesh QUANDRY solution are quite

small, well under 1%, but larger than in the rods-inserted configu-

ration. This is to be expected, since the power distribution is much

more peaked in the rods-withdrawn case. The peak-to-minimum

assembly-averaged power density is approximately 5 when the rod is

inserted and approximately '.3 when the control rod is withdrawn.

From these results, it seems reasonable to conclude that the errors

in assembly-averaged power densities are not significantly increased
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TABLE 4-11

Summary of Results for the Quarter-Core, 3-D LRA BWR
Benchmark Problem with Control Rods Withdrawn

Mesh

15X I

# unknowns

# outer iterations

# flux iterations/inner a

E igenvalue

e ma (node, %)

ema (assembly, %)

e (assembly, o)

Execution time
(sec IBM 370/168)

a 1 inner iteration per outer

15 X 25 (15) cm

4224

35

5

1. 01559

+.50

+.45

0.23

(29. 0)

7. 5 X 7.5 X 25 (15) cm

16, 192

39

8

1.01549

Ref.

Ref.

Ref.

(170.0)

iteration

when modest flux tilts are introduced in the 3-D LRA problem.

4.4. 3. 3 3-D LRA BWR-Full Core, Control Rod Withdrawn

The full core 3-D LRA BWR, with the asymmetric peripheral

control rod fully removed, is a very challenging problem because of

the severe flux tilt which exists across che core. Examination of

spatial errors is difficult in this problem, since no reference solution

exists at this time. The possibility of generating a reference solution

with QUANDRY is precluded because of restrictions on the amount of

computer core that can be obtained on the MIT IBM 370/168. Despite
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TABLE 4-12

Summary of Results for the Full-Core, 3-D LRA BWR Benchmark
Problem with C ntrol Rods Removed

Mesh

30 (15))X 30 (15) X 33.3(30)-cm

# unknowns 8,112

# outer iterations 34

# flux iterations/innera 5

Eigenvalue 1. 01510

ema (assembly, %o) +3.2

e (assembly, 7a) 0.76

Execution time
(sec IBM 370/168) 45.0 (29.0)

a 1 inner iteration per outer iteration

-15 X 15 X 25(30) cm

30,976

61

5

1.01494

Ref.

Ref.

(198.0)

the unfortunate lack of a reference solution, an indication of the mag-

nitude of spatial errors can be obtained by comparing a very coarse

mesh solution to a solution with assembly-size mesh. A summary of

results for the 3-D LRA problem with the control rods fully removed

is presented in Table 4-12. The reference solution uses 15 cm radial

mesh spacing and 25 cm axial mesh spacing except in the axial reflec-

tor where 15 cm mesh spacing is used. The very coarse mesh solution

uses a 30 cm radial mesh in the interior of the core, a 15 cm mesh in

the two outermost fuel assemblies, and 30 cm mesh spacing in the

radial reflectors. The axial mesh spacing is 33-1/3 cm in the core and

30 :m in the axial reflector. Normalized assembly power densities are
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displayed in Fig. A5-10.

The errors in the normalized assembly power densities for the

very coarse mesh solution are less than 3. 5% for all assemblies and

the verage error is 0. 76%. These errors are significantly larger

than those exhibited in the quarter-core version of the 3-D LRA

problem.

There are two significant factors which cause the decrease in

accuracy. The most significant of these is the much coarser spatial

mesh that is used in the full-core version. Secondly, the full-core

3-D LIRA BWR problem displays a much more severe flux tilt than

does the quarter-core version. In fact, the peak-to-minimum assembly-

averaged power densities are approximately 2700 and 28 in the full-

and quarter-core versions of the 3-D LRA problem. In light of the

magnitude of the errors in the very coarse mesh solution, it seems

likely that the errors in the assembly-averaged power densities are

less than one percent for the coarse mesh (reference) solution.

4.4. 3.4 3-D LRA BWR-Control Rod Reactivities

The static solutions to the 3-D LRA problem provide some in-

formation about the accuracy of coarse mesh predictions for control

rod reactivities. Table 4-13 summarizes this information for both

the full- and quarter-core configurations. These results indicate that

both the coarse and very coarse mesh solutions provide very accurate

predictions for control rod reactivities. The errors in the eigenvalues

are somewhat sensitive to the spatial mesh, but these errors tend to be

4-27



TABLE 4-13

Control Rod Reactivities in the 3-D LRA BWR Benchmark Problem

1/4-Core 3-D LRA Full-Core 3-D LRA

Mesh Mesh

Initial eigenvalue

Final eigenvalue

'final - initial

^final

Error in "reactivity"
of control rod

Coarse

0.996437

1.015591

0.01886

Fine

0.996394

1.015492

0.01881

Very coarse

0.996571

1.015056

0.01821.

Coarce

0.996437

1.014940

0.01823

0.27% Ref.

co

0. 11%/0Ref .



the same in both the rod-inserted and rod-withdrawn configurations.

Therefore, control rod reactivities are very accurately predicted by

the coarse mesh nodal method. This does not imply, however, that

control rod reactivities during transients can be predicted to this accu-

racy. The fact that the axial position of a control rod may not corre-

spond to nodal boundaries necessitates additional approximations. Such

problems are addressed in Chapter 6.

4.4.4 General Conclusions from 3-D Results

The accuracy of the Analytic Nodal Method for 3-D problems is

very similar to that of 2-D problems. If reactors can be homogenized

into assembly-sized regions, the Analytic Nodal Method can be expected

to yield assembly-averaged powers accurate to within 2. 5% for

assembly-sized spatial meshes. Static reactor eigenvalues are gener-

ally accurate to . 01%. The computational efficiency ef the Analytic

Nodal Method, as'demonstrated by the code QUANDRY, is much greater

than that of finite difference methods and at least as great as other nodal

methods currently in the literature.

4.5 EXAMINATION OF THE QUADRATIC TRANSVERSE
LEAKAGE APPROXIMATION

The results of the two- and three-dimensional test problems,

presented in the preceding two sections, indicate that the Analytic

Nodal Method with the quadratic transverse leakage approximation is

quite accurate. Since the leakage approximation is the only
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approximation made, all of the resulting errors in power distributions,

eigenvalues, etc. must be due to the inadequacy of this approximation.

In order to gain insight into the deficiencies of the transverse leakage

approximation, it is interesting to examine some additional 2-D prob-

lems.

4.5.1 IAEA Benchmark Problem No. 2b

The IAEA benchmark problem No. 2b (32) is a one-group, two-

dimensional model of a swimming pool reactor and is described in

Section A4. 6 of Appendix 4. This problem is very different from any.

commercial power reactor and is intended to be solved by transport

methods. The reactor modeled consists of a rectangular "core" region

surrounded by a water reflector. The "core" region contains four rec-

tangular quadrants. The first and third quadrants contain fissionable

material, and the second and fourth quadrants contain strong absorbers

but no fissionable material. The resuiting quadrant-averaged fluxes

have ratios of approximately 1: 10: 500: 4. The large differences in

quadrant-averaged fluxes make this problem very difficult to solve.

A summary of QUANDRY results for the diffusion theory approxi-

mation to the IAEA problem is given in Table 4-14. These results in-

dicate that the coarse mesh solutions are very accurate except for the

fluxes in the first quadrant. In fact, the very coarse mesh solution

contains negative fluxes in some regions of the first quadrant. This

implies that the transverse leakage approximation must be erroneous

in some nodes, leading to negative fluxes. In addition, the existence
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TABLE 4-14

Summary of Results for the One-Group IAEA Benchmark Problem No. 2

Spatial Mesh

12 X 12

16 X 16

20 X 20

30X X26

Eigenvalue

0. 99276

0.99236

0.99222

0.99222

-. 0000025

0.000015

0.000031

0.000035

Quadrant-Averaged Fluxes

2 3

0.000342 0.01688

0.000343 0.01687

0.000343 0.01686

0.000343 0.01686

4

0.000144

0.000146

0.000146

0.000146



of negative fluxes also indicates that some of the numerical properties

(i.e. , nonnegative matrices) which exist in the limit of infinitely fine

mesh. spacing, do not exist in this problem with very coarse meshes.

Despite the nonexistence of properties which are required to guarantee

convergence of a solution, convergence difficulties were not encountered

with this problem. The negative fluxes are not overly disturbing, since

the problem was designed to exhibit severe flux distortions quite unlike

those in power reactors. In fact, the problem was designed to test

transport theory codes.

A problem which also displays erroneous leakage shapes and is of

more concern is described in the following section.

4.5.2 The 2-D Zion 1 PWR Problem (with Explicit Core Baffle)

The Zion 1 problem (33) is a two-group, two-dimensional, static

reactor problem in which the core baffle is explicitly modeled, as de-

scribed in Section A4. 7. The Zion 1 core contains a high enrichment

outer zone and an inner zone which is checkboard-loaded with two lower

enrichment assemblies. The entire core is surrounded by a baffle

(about 2. 5 cm thick) and a pure water reflector. The core baffle proves

to be a very important complication in this problem.

An attempt to solve the 2-D Zion 1 problem, in a manner similar

to that used for all the aforementioned problems, failed to converge.

Since this was the first configuration to be attempted in which the spatial

mesh contained adjacent nodes with significantly different mesh spacings,

the quadratic transverse leakage expansion was suspected of causing the
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difficulty. Hence, a flat transverse leakage approximation was

attempted. Very rapid convergence of the problem resulted. It was

also discovered that a finer spatial mesh solution, using the quadratic'

leakage approximation, then converged without difficulty.

The convergence difficulty of the coarse mesh Zion I problem is

believed to be caused by unrealistic transverse leakage shapes in nodes

that are adjacent to nodes which have the same mesh spacing as the

baffle. The ratio of the mesh spacing in adjacent nodes is as great as

7: 1. This disparity in mesh spacings requires essentially that the

transverse leakage expansion fit the transverse leakages on the sur-

faces of the larger nodes. Since the adjacent nodes may have signifi-

cantly different transverse leakages, the leakage expansion may not

resemble the actual transverse leakage shape of the larger node. A

very graphic example of this phenomenon, for a node with a "baffle"

node on each side, is given in Fig. 4-1. The average transverse leak-

ages in the three nodes occur in the ratios 3. 5: -1:42. 1. This example

is admittedly severe; nevertheless, it demonstrates that the particular

quadratic leakage expansion being used is incorrect. The example also

indicates that a different quadratic polynomial could fit the transverse

leakage quite well.

In an attempt to understand further the problems encountered

when a baffle is explicitly represented, an ad hoc modification of the

transverse leakage approximation was investigated. The transverse

leakages in all nodes were assumed to be of the form
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Figure 4-1. Transverse leakage shape for a node located
between two "baffle nodes" (Zion 1, node {9, 6}).

-- Fine mesh calculation
- - - Quadratic fit to coarse mesh
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where the notation is that of Chapter 2. This approximation was chosen

to reduce to the quadratic leakage approximation of Eq. 2-14, in the

limit of uniform mesh spacing and to reduce to the flat leakage approxi-

mation for a node which is located between two infinitely narrow nodes.

A summary of results for the 2-D Zion 1 problem, using "modi-

fied quadratic," flat, and fine mesh quadratic transverse leakage

approximations is presented in Table 4-14. The corresponding normal-

ized power .densities are displayed in Fig. A5-11. The reference solu-

tion is taken to be a 16 node per assembly QUANDRY calculation with

the quadratic transverse leakage approximation of Eq. 2-14. The flat

leakage solution is quite accurate, with a maximum error in assembly

power density of 2. 2%. The quadratic leakage solution with a 2 X 2

mesh per assembly is very accurate, with a maximum error in assem-

bly power of 0. 25%. The convergence difficulty encountered in the

coarse mesh attempt with quadratic transverse leakages, is not exhi-

bited when the "modified quadratic" leakage approximation is used.

The accuracy of the "modified quadratic" approximation, as expected,

is greater than that of the flat leakage approximation, but not as great

as the fine mesh quadratic leakage approximation.
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TABLE 4-15

Summary of Results for the 2-D Zion 1 PWR with Explicit Core Baffle

Spatial Mesh

13 X 13 13 X 13 21 X 21

Leakage App~roximation.

Flat "M odifie d Quadr atic" Quadratic

# unknowns 546

# outer iterations 22

# flux iterations/outer a 6

Eigenvalue 1. 27505

emax (%) 2.22

e( 0) 0.79

Execution time
(sec, IBM 370/168) 3.8

a 1 inner iteration per outer iteration

b Reference: 1. 27489

546

22

6

1.27501

1.96

0059

3.8

1386

40

4

1. 27489

0. 25

0.06

12. 2

Since explicit modeling of the core baffle significantly increases

the number of unknowns in a problem, direct treatment of the baffle is

probably not the approach to be favored in reactor calculations. The

use of albedos to replace both the baffle and reflector is an appealing

alternative to explicit modeling. Efforts to determine the appropriate

albedos, compatible with the Analytical Nodal Method, are in progress

at MIT (34).
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4. 5. 3 Observations Regarding the Transverse Leakages

The inadequacy of the quadratic transverse leakage expansion in

problems with explicit core baffles raises questions as to the accuracy

of the approximation in general. Several very fine mesh solutions to

general problems indicate that the quadratic fit to the transverse leak-

ages is usually quite good. There are, however, some significant ex-

ceptions.

In reactor cores that have a checkerboard loading pattern with

fuel assemblies of several enrichments (such as the BIBLIS and Zion 1

problems), the node-averaged transverse leakages in the interior of the

core tend to be relatively constant in magnitude but oscillate in sign

from node to node. Figure 4-2 shows the actual transverse leakage

shape and the coarse mesh quadratic approximation to it, for a node

in Zion 1. The quadratic fit is a reasonably good fit to the true shape,

but it deviates by a fairly large amount near the surfaces of the node.

Fortunately, the magnitude of the transverse leakage is smaller near

the surface of the node than in the interior of the node. Hence,

although the percentage deviations at the surfaces are large (~50o),

the impact on the flux shape is thought to be relatively modest.

The transverse leakages in the reflector nodes present particu-

larly difficult problems, since the leakages are large in magnitude and

complicated in shape. Figure 4-3 illustrates the thermal transverse

leakage shape and the corresponding quadratic expansion for a reflector

node in the Zion 1 problem. Also plotted is the buckling approximation

(see Eq. 2-8) to the transverse leakage. This figure shows quite clearly
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Figure 4-2.
loaded core
cm nodes.
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Figure 4-3. Typical thermal transverse leakage in the reflector
nodes of Zion 1 (y-directed leakage, node {11,6}).
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that the quadratic expansion is a poor fit to the true shape, having local

errors as large as 30%. For this particular node, the buckling approx-

imation is quite accurate, having a maximum local error of less than

3%. Figure 4-4 displays the transverse leakage approximations to the

thermal transverse leakage in a reflector node of the 2-D IAEA problem.

Hereto the buckling approximation is a much more accurate approxima-

tion (accurate to within 8%) than the quadratic expansion (accurate to

within 50%). The thermal transverse leakage shapes depicted in Figs.

4-3 and 4-4 should not be thought to imply, however, that the buckling

approximation is more accurate than the quadratic polynomial in all

reflector nodes.

In the 2-D BIBLIS problem, the shapes of the thermal transverse

leakages in the reflector nodes are well matched by the buckling approx-

imation. The primary reason for this is that the reflector composition

is that of a smeared baffle-reflector. Hence, the thermal neutron dif-

fusion lengths are quite short and the thermal flux tends to be almost

separable in space.

A QUANDRY calculation, employing the buckling approximation

for the thermal leakage shapes in the reflector nodes and quadratic

leakage approximations elsewhere, produces results very similar to

those described in Section 4. 3. The errors in assembly power densi-

ties near the reflector are reduced slightly (by about 0. 1%) but not sig-

nificantly. The primary reason for the small reduction in errors,

despite the fact that the leakage fit is quite good in the reflector, is

that the thermal neutron absorption rate is much larger than the thermal
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Figure 4-4. Thermal transverse leakage in the
reflector node {8,4} of the 2-D IAEA PWR.
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neutron leakage rate. Thus, errors in the leakage shape do not pro-

duce large changes in the thermal flux. It appears that errors in the

thermal leakage shapes in smeared baffle-reflector nodes do not pro-

duce significant errors in the spatial power distributions.

In the Zion 1 problem, the buckling approximation is very accu-

rate in the reflector nodes which have two sides bordering baffle nodes.

Nevertheless, QUANDRY calculations with assembly-size mesh spac-

ings and using the buckling approximation for the thermal transverse

leakages in the aforementioned reflector nodes produce assembly

powers which are only about 0. 1% more accurate than those assembly

powers predicted with a flat leakage approximation, even though use of

the more accurate leakage approximations changes the average thermal

leakages and thermal fluxes in the reflector nodes by as much as 9. %

and 3. %6, respectively. The presence of the highly-absorbing core

baffle seems to minimize the propogation of the errors in thermal flux

back into the core region.

The 2-D IAEA problem has only two nodes within which the buck-

ling approximation is quite accurate. A QUANDRY calculation which

uses the more accurate transverse leakage approximation in these two

nodes changes the average thermal leakages and thermal fluxes by as

much as 4. o and 2. %, respectively. The corresponding changes in

core power densities are as large as 0. 67%. The relatively lai ge

changes in core power densities which occur as a result of modifying

the leakage approximation in only two of the reflector nodes, indicate

that the 2-D IAEA solution is quite sensitive to errors in the thermal
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leakage shapes in the reflector nodes.

The following generalizations about the transverse leakage ap-

proximation of Eq. 2-14 are based on detailed examination of leakages

in several problems:

1. Errors in the leakage shapes generally produce small

errors in the reactor power densities.

2. Cores with checkerboard loading patterns have transverse

leakages which oscillate in sign from node to node, and

the quadratic leakage expansion is only a moderately good

fit.

3. The thermal transverse leakages in reflector nodes are

not well approximated by the quadratic expansion.

4. Errors in power densities, which are due to inadequacies

in reflector transverse leakages, are most pronounced in

reactors with pure water reflectors and much less pro-

nounced in reactors with explicit or smeared core baffles.

5. The largest errors in the quadratic transverse leakage

shapes occur near nodal boundaries.

6. Most nodes in which the quadratic leakage shapes of

Eq. 2-14 are seriously in error can nevertheless be

fit quite well by some quadratic polynomial.

7. Information about local values of the transverse leakages

within a node would be much more valuable in determining
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the leakage shapes than out-of-node information about

the transverse leakages.

Since there is no immediately obvious candidate for an improved trans-

verse leakage approximation, the leakage expansion of Eq. 2-14 is used

in the remainder of this work.

4.6 SUMMARY

In this chapter, the results of many two- and three-dimensional

static reactor problems were presented. The Analytic Nodal Method

with a quadratic transverse leakage approximation was shown to be a

very accurate and highly efficient method for solving the multidimen-

sional, two-group static diffusion equation, provided that reactors can

be homogenized over large spatial regions (i.e., assemblies).

The Analytic Nodal Method was shown to require significantly

fewer unknowns than finite difference methods to aciieve equivalent

accuracy. The nodal method was also demonstrated to be at least two

orders of magnitude more computationally efficient than finite differ-

ence methods. The Analytic Nodal Method was also shown to be at

least as computationally efficient as other nodal methods which are

currently in the literature.

In the following two chapters, the Analytic Nodal Method will be

extended to the time-dependent case.
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Chapter 5

TRANSIENT APPLICATION OF THE

ANALYTIC NODAL METHOD

5.1 INTRODUCTION

In the first four chapters, the Analytic Nodal Method was derived

for the solution of the two-group, static diffusion equations for multi-

dimensional reactors consisting of homogenized Cartesian nodes. The

only approximation required in the derivation was that the transverse

leakages could be fit by quadratic polynomials. Efficient numerical

solution procedures were developed and a large number of two- and

three-dimensional LWR test problems were solved. In all of the test

cases, the Analytic Nodal Method was shown to have a very high degree

of accuracy while employing assembly-sized spatial meshes. Compar-

ison of solutions with finite difference and finite element methods re-

vealed that the nodal method was at least two orders of magnitude more

computationally efficient than the more conventional methods.

It is desirable to take advantage of the power of the Analytical

Nodal Method to solve transient diffusion problems as well. In this

chapter, the three-dimensional, temorally- and spatially-discretized

Analytic Nodal diffusion equations are derived, and a simple thermal-

hydraulic feedback model is introduced. An algorithm for solving these
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neutronic and thermal-hydraulic equations in tandem is presented.

Solutions to many two- and three-dimensional transients, with and

without thermal-hydraulic feedback, are presented in Chapter 6.

5. 2 FORMULATION OF TRANSIENT NODAL
DIFFUSION EQUATIONS

The time- and space-dependent multigroup neutron diffusion

equations, Eqs. 1-1, can be cast in matrix form as

v (D(r,t)]V[ #(r,t)] - [ET(r,t)][ O(rst)I

D
+ (1-3)[x 1vE (r't)IT [0(r,t)]I+Z d d]Cd(r~t)

d=1

=v]i ' %[ 4(r,t)I , (5-1a)

i T a
9d[vgf(rut)Tk(rt)I dCd (r0t) = dCd('rt) ; d= 1,2,...,D,

(5-1b)

where

[ET(rt)] [st(r t)l - [Egs(r t) ]

The time-dependent nodal balance equations are found by integrating

Eqs. 5-1 over the volume of an arbitrary node (i, j, k) to obtain
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-hi hk([Jzik(t)] - [J. (t)1) -ihk A[j (t)]Iik[ (t) Iy z x P+, j, k , j, k x z yij+1, k iaj,k

-h xhi [J (tz -[J z (t) i-i jkIET .. (t)] [ ij, k(t)]
y is, k+1 1, j ,k iSik

+(1-t)Vijk[xp] [vE 'k(t)]T ijk(t)+

D

d 1l
d vi,j,k1Xd]di .(t)1.93 0

= VjkVI W bi,tj, k(t)] (5-2a)

[vE (t)T* - (t) = d k( ; d=1,2, .. D
(t)]k kisjok(t)l d dis jsk(t= C k

(5-2b)

where

Ju t) n[i j1 ~) v m+1 v
iDk hf dvu ij k ol h vh iiokt)]Ou Vm

fwn+1 dw [4(u,,w, t)];
w n

u = X,yPX

v u

w#u*v

1i+1
dx

X.
1

j+1 dy
yi

f j+ dy
yi

f z k+1dz [4(x,y,x,t)]
zk

f zk+1 dz Cd(X,yOZ0t)
zk

A differential equation from which the spatial coupling of

Eq. 5-2a can be determined is derived by integrating Eqs. 5-1

5-3
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over the two directions transverse to direction u, to obtain for node

( , m,n),

-[Di m n(t)] T[ (uIt)] - n [D1 (t) fm+lfdvWn+1
au S1,m,n hvhw ,mm wn

X 2 [( pwpt)]- m 1 [D M f nt)f w 1 dv J 1+1 dw 2[4(u,v,w,t)]
8v hvhw vm Wn Ow

+ [E T ,m,n(t)] + [W , (t)][v]1 - {(l-)[xp1
+ dd)+X) LXd ft

d=l d.9Mn+xd) ,M.n
( (u,t) = 0

(5-3)

where

[ (u,t)] = 1 fvm+1 dv fn+1 dw [(u,v,w,t)] ,
U m]n hmhnn v wn

and the time derivatives have been replaced by

[0 Woot] =(E ~ (0)][0u (u, t)]
A9,m,n Amln i.

aC (u,t) = W (t)Cd (u,t)
~dAinmn -ndimn., n

where [p n(0) is a diagonal G X G matrix.

Equation 5-3 is the transient counterpart to the static flux-leakage

coupling equation, Eq. 2-7. Using the notation of Chapter 2 for the

transverse leakages, Eq. 5-3 can be written as
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-I[DA m n M)]- [ (Ut)I+ [EfT(t)" + [>GUod 1,m,n j<,mn ,nn

D xAd T
-(1-g)[xp] + E (w d )+x I) d] [ V EI (t)]T OU

d= 1 .d M.n d .9 0M.n >

= - [Sun n(u,t)] ; U = x,y,Z

For a fixed time, t, this equation can be solved analytically (provided

the op 's and wd's are known) in the same manner as in Chapter 2, by

expanding the transverse leakages in quadratic polynomials. Hence,

the transient flux-leakage coupling equation is given by an equation

analogous to Eq. 2-19,

[ (t) = [Fu (t)J[ t_ (t)] + [F (t)M , m t)
IPMPn 2,m9 n m,,n I Sm,mn

+ F+1 t (0)]+ [G1-2 (WU n+ 21+21Mn U.9,m,.n

+ [Gu (t)I[Iu -Im n(t)]+[G(
2,m,n -1, m, n ,mn

[G1+1 (t)I[s (t)]+[G 4+2
U2k,m,n AU+1,m,n um n

u = x,yOz

)][S ( t)]

t)][5u(t)J
Mmn

(t)][ A (t)];

. (5-5)

The matrix elements of Eq. 5-5 are different from those in the static

equation, Eq. 2-19, since these elements depend upon the kinetic dis-

tortion terms.
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Using the notation of Chapter 2, Eq. 5-5 and Eqs. 5-2 can be

combined to obtain the transient Analytic Nodal diffusion equations,

101 [01 [01 [01 d I x(t) I
dt

[0] [0 [0] [0] [ Ly(t)

[0] [0] [o] [0] [Et]

[F(t)] -(hk [G t)] + hiIGz(t)]) -(hk [G (t)] + h [G (t)])-(hi [G (t)] +h [G (0)1[Fz(t)] -[(h[G3 t)]h It] -(Gt

[F(Gy()-[I+[G(t)]
y z

[F (t)] h1 [G )(t))[I

x z

h h
Lx y

[ M(I IV i, j, k[Xdlkd d d (i,0jk

[L(t)] D [0] (5-6)x + (Z-6

[it)] d=1 [0]

[Lz(t)] [01]
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where

[F(t)] T(- t) T) - ht[F (t)] -hhk[F(t)I-h'hJFz(t)] +[M(t)I)
T y z x x z y x y z

[M(t)] ((1-3)Vijk 4 uvsg. (t)]
,jk

[V]f' sdiag{Vi .,0kRf}

Equations 5-6 and 5-2b represent the global system of equations which

must be solved to obtain the time- and space-dependent reactor power

distributions.

5.3 TIME INTEGRATION METHOD

Equations 5-6 represent a system of spatially-discretized, time-

dependent ordinary differential equations. Of the four blocks of Eq. 5-6,

only the first involves a temporal operator. The latter three blocks

are simply expressions for the transverse leakages at time t and do not

involve temporal operators. Hence, any time integration scheme which

approximates the temporal derivatives of Eq. 5-2b and the first block of

Eq. 5-6 can be employed to solve the time-dependent equations. If

solutions to the transient nodal diffusion equations are desired only at

discrete times, a finite difference approximation to the temporal deriva-

tives can be used.

5. 3. 1 Theta Method for Time Integration

Let it be desired to approximate the solutions to the transient

nodal diffusion equations at the times

5-7



t = tO, ti, t2 , ''@ S

where time intervals are defined as

Atn = tn+1 - tn

Equation 5-2b and the first block of Eq. 5-6 can be written in a much

simpler form as

D

[V]~ d [ (t)] = [F(t)][ (t)] - [C(t)] + d[Cd(t)I
d= 1

tr [Cd(t)] = [Md(t)][(t)] - XdId(t)] ; d = 1, 2, . , D

(5-7a)

(5-7b)

where

[z(t)] (hk[ G(t)]+

+(h [ G ()1

[d(t)] colVi k d]d],,sk (t)]

[ d() o ,xd d VEI t),]j,k T

Equations 5-7 can be differenced using the theta method (36) to obtain

the approximations

5-8
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[v 1 1[n+1 _ ln} = of[Fln+1[ ln+1+(1-O)[F]nkbn
n

- 0 f[ c j n+1 -(- n

d=1

(5-8a)

1 n+1 _Zd n=[ n+1-n+1+( ) n n
3Et {[CJ -1[dli = f[Mdl +(10y[Md]~]

-dt [CdI n+1+ (1-8)[Cdi n

d = 1,2,.. .,D, (5-8b)

where two "thetas" have been employed, O for the prompt source (flux)

terms and 6p for the delayed (precursor) terms. Equation 5-8b can be

rearranged to obtain

[dln+ = (1+XdAtnp) -1({1- xdatn(1-ep)}IIdln

+ Atn{Of [Mdln+1[ln+1+ (1- f)[Mdln [$]n)

d = 1,2,...OD . (5-9)

Equation 5-9 can be substituted into Eq. 5-8a, and the resulting

equation can be solved for [jIn+1. Performing the substitution and

some subsequent rearrangement yields
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1 jn+1 D X AtO0

[V]f- [F]n+ _ Z (1+X [Md n+1}e>[ In+1

- OfR.Cfl+1 - (10f vIn

+ At(1 ef) [Vf' + [FIn

D XA tO6

D x
+ (1+ XdAt V )d] (5-10)

d=1 a np

Equations 5-9 and 5-10 do not completely specify the temporal

integration scheme. In order to advance the node-averaged fluxes

from one time step to the next by use of Eq. 5-10, [z] n+1 must be

known. Since [s 1 n+1 depends upon []n+l, it is not possible to solve

directly for [$]n+1 in terms of quantities which are known from time

step n. The overall transient iterative process is much easier to

visualize if Eqs. 5-6, 5-9, and 5-10 are combined to obtain the full

set of temporally- and spatially-discretized Analytic Nodal diffusion

equations:
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n+1 -e 0(hk[G ]n+1+hJ[Gz n+1) -(h [G jn+1+h [GIn+1)-O f(h [G ]n+1+h [GIn+1)
f~ z y y z +I zhk[ln x+[z yGJx +xjGy

A-[G ]n+1

h 1
x

1 n+1

y

1 [ n+1

y

[G jn+l1

is 0 n+1

z[ I

-n+1

[4n+

[L ]fn+1

[Lz n+1

[Q] (]h [G In+h [Gz n)-_(1-_o) h [G.]n+h [GzIn)-(1-19)(h [GI]n+h1[G In)
z0 y[y] z [ x] z [x x

[0]

[0]

(1+ XAtn) d

,0]1

[0j

(0]

[0]

[0]

(0]

[0]

x
[L In

[L z n

3(5-11)

-[ I ][F 1 n+1

[F y n+1

[F z jn+1

CA

+

[o]

[0]

D1

d=l



[Cdn+t = (1+XdAtnp) {XdAtn(1-P)}[Cd]n

+ Atn{0f[Md n+1n+1+(1-of)[Md nIn ,

d =1,2,..,D, (5-9)

where

n+- n+ d=1 d ) [ In

D a te
[Ql. J 1- [vfl+[F]n+ ( d[Md (

At G fd=1 +L~np df

From Eq. 5-11, it is apparent that in order to advance from one time

step to the next, a (4*G*N) X (4*G*N) matrix must (in principle) be

inverted. The details of the iterative inversion process are provided

in Section 5.6, following the description of feedback and control models.

5.4 THERMAL-HYDRAULIC FEEDBACK

Since the ultimate goal of this research is to develop a neutronics

package which is capable of modeling successfully severe LWR accident

scenarios, it is important that the neutronics solution method not be

adversely affected by nonlinear reactor thermal-hydraulic feedback.

The reactor safety analysis code, MEKIN, uses the COBRA thermal-

hydraulic package as its feedback model (37). Our interest, at present,

is not so much in accurate solutions to realistic coupled neutronic,

thermal-hydraulic problems, but rather in accurate neutronic solutions

to problems with feedback effects. The use of a complicated thermal-
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hydraulic model (such as COBRA) to test the transient nodal method

with feedback seems quite unnecessary. Therefore, the much simpler

WIGL (36) lumped heat capacity model is used as the fundamental feed-

back mechanism for testing the neutronics solution methods.

5.4.1 The WIGL Model

The WIGL therrmal-hydraulic model has three primary quantities

of interest in each node: the average fuel temperature, the average

coolant temperature, and the average coolant density. By performing

time-dependent energy balances on the fuel and coolant in node (i, j, k)

and by assuming that no boiling occurs, the following equations can be

derived:

dT
idtk
dt

-cdT

dt

1 (1-r)q!".

c-1
ii, j, 1 1 +

v f AhU w -8
ij, k L A hh0( L)0

- (512TcaTi, j, k iP j, k)I

(5-12a)

( h U(yWr8'UjK +,jAh(kL

Ahh0

r c f
2W. . C b '

+ 1,k (<.Tc + rq!'.Lk
V ij 4jk)k i,,k/ 1,sk

ipa k.2Ib

(5-12b)
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T.= 2T' . - Tb (5-12c)
, j , k isjk-1 jjk-1

where

T ijk average fuel temperature in node (ij,k)

-cTijk = average coolant temperature in node (ij,k)

bT,, inlet (bottom) coolant temperature of node (i, j, k)

t 2 time

f
P 3 density of the fuel

PC density of coolant

C =specific heat of the fuel

CC 5 specific heat of the coolant

r fraction of fission power which is deposited

directly into the coolant

q ''j, kEvolumetric energy generation rate in node (ij,k)

Vijk volume of coolant in node (i, j, k)

fVijk volume of fuel in node (ij,k)

Ah total heat transfer area/total coolant volume

within a node

h 0 heat transfer coefficient at initial flow rate

W 0 total coolant mass flow rate into core at t = 0.0

W total coolant mass flow rate into core
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( -- S energy required to raise the average temperature

OT ' of a unit volume of coolant by one temperature'unit

U = conductivity/conduction lengths of the fuel, gap,

and cladding (i. e. , the inverse of the resistance

t6 heat flow)

r.= coolant mass flow rate through node (ij,k).
i,j,k

For sake of simplicity, the thermal-hydraulic equations are

solved using a fully-implicit temporal differencing scheme, with the

same temporal mesh as the neutronic equations. Following evaluation

of the core-wide fuel and coolant temperatures, the coolant density is

evaluated using the STATE subroutine, taken from THERMIT (38), with

uniforrr pressure assumed throughout the reactor core.

5.4.2 Cross Section Feedback

Feedback from the thermal-hydraulic equations to the neutronic

equations is accomplished by assuming that all macroscopic cross

sections (and inverse diffusion coefficients) are linear functions of the

three thermal-hydraulic variables. That is, the cross sections are

assumed to obey equations of the form

ai j, k ai -jci (T 1 , k

/a (9y Pf* + (a\(PIc \

+ k -f,Jsi k- + 8 c /C i,j,k *(5-13)

where the starred quantities refer to reference conditions. It is
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recognized that actual cross sections can be described accurately by

Eq. 5-13, only over limited ranges of temperatures and densities.

Since our objective is to provide feedback and not to accurately model

the behavior of cross sections, the linear functional form of the cross

sections is assumed to be valid over the entire range of thermal-

hydraulic variables. Therefore, if the partial derivatives of the

macroscopic cross sections are known, the thermal-hydraulic feedback

model can be completely specified.

5.5 TRANSIENT CONTROL MECHANISMS

Since the reactor is assumed to be in a steady-state (critical)

configuration prior to modeling subsequent transient behavior, some

perturbation of the critical configuration must be made in order to

initiate a transient. This perturbation can take any one of several

forms.

Perhaps the simplest mechanism for inducing a transient in a

critical reactor is to alter the positions of the control rods. In the

Analytic Nodal Method, control rod motions are modeled as spatially-

uniform changes in macroscopic cross sections within individual nodes.

This restriction is necessary, since the spatial coupling equations of

Chapter 2 are solved analytically only for the case of uniform material

properties within a node. If true equivalent homogenized parameters

are available, this restriction is inconsequential. However, if one is

approximating the equivalent homogenized parameters, the use of

spatially flat cross sections to model control rods which are partially
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removed from a node may lead to inaccurate solutions.

For the sake of simplicity, the cross sections for a partially-

rodded node can be assumed to be the volume-weighted average of the

fully-rodded and fully-unrodded nodal cross sections. This approxi-

mation will be erroneous, unless the neutron flux is spatially flat with-

in the node. In cases where the flux is not spatially flat, the transient

solution may display a cusp-like behavior which results from over and

under predictions of the differential control rod "worth" as control rods

are removed from each node. Despite the shortcomings of this control

rod model, it is incorporated into the transient neutronics model.

The control rod cusping problem is discussed in some detail in

Chapter 6.

The simple thermal-hydraulic model discussed in Section 5.4

permits two additicnal mechanisms for inducing transients. The reac-

tor coolant inlet temperature can be varied as a function of time (to

simulate such occurrences as the startup of a cold loop). Also, the

coolant flow rate can be altered as a function of time (to model pump

coast downs, etc.). Both of these control mechanisms alter the steady-

state balance between neutronic and thermal-hydraulic conditions in the

core, and hence a transient is induced.

5.6 TRANSIENT SOLUTION TECHNIQUES

The full set of temporally- and spatially-discretized Analytic

Nodal diffusion equations are given by Eqs. 5-9 and 5-11. To advance

the solution from one time step to the next requires that the (4*G*N)
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X (4*G*N) coefficient matrix be inverted. The details of how this in-

version is accomplished are very important to the computational effi-

ciency of the method. Also, many of the elements of the coefficient

matrix vary because of feedback effects. Hence, these matrix elements

must (in principle) be recalculated at each time step, a procedure that

requires considerable computational effort. This section provides the

details of a transient solution technique aimed at minimizing the compu-

tational effort required to solve the transient equations.

5. 6. 1 Matrix Updating

The complicated matrices in Eq. 5. 11 arise from the analytic

solutions to the leakage equation, Eq. 5-4. Numerical experience

indicates that approximately 0. 0016 cpu seconds /node/direction (IBM-

370/168) are required to update these matrices. If these matrices are

updated at each time step, the computational effort expended in the up-

dating process will dominate the total transient solution time. Since

the matrices to be updated directly affect the leakages from a node and

not the interaction rates within the node, it may be unnecessary to re-

compute matrices at each time step. In fact, in problems without feed-

back, the only dependencies of the matrices are on the local wps, wd's,

and the control rod motions. When feedback is present, the leakage

matrices do depend on the feedback, but their impact on the transient

solution is much less than that of the altered interaction rates which

are also caused by the feedback. From these observations, the follow-

ing general procedure has been developed for matrix updating:
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1. The "rows" and "columns" in which a control rod is moved

are updated at every time step to insure proper calculation

of "reactivity" effects.

2. Complete matrix updating is performed every 3 to 10 time

steps, depending on the type of feedback. (If there is no

thermal-hydraulic feedback, the matrices can be updated

very infrequently because they depend only on the wp's and

d'IS, which change quite slowly.)

Specific examples of the matrix updating effects are contained in

Chapter 6.

5.6.2 Frequency Estimations

Since the leakage coupling matrices obtained by solving Eq. *5-4

depend on wp and w d, it is necessary to estimate these quantities.

These frequencies are identical with those required -in frequency trans-

formation methods (39), and the same approximation used there can be

applied to the case at hand. That is, at time step n, the frequencies

are assumed to be given by the expressions

Wn 1 ln -0,1.i,.k

P9 at n-1 n-1

, ,k gisjjk

(5-14)

Cn
n - 1d i, jk
dWjk tn1ln _

., j,, k
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In all but the most rapidly changing transients, the frequencies play a

very minor role. This behavior is very different from that observed

with frequency transform methods. 'However, this is to be expected

since here the frequencies affect only the leakage rates and not the

interaction rates.

5.6. 3 Matrix Inversion

The matrix in Eq. 5-11 which must be inverted at each time step

has a structure identical with that of the matrix inverted at each outer

iteration in the steady-state problem (Eq. 3-12). Hence, the same

strategy is employed to invert the coefficient matrix in the transient

problem, and details are contained in Chapter 3.

In solving the steady-state problem, it was found that performing

one inner iteration per outer iteration was adequate. In the transient

case, it also appears possible to perform only one inner iteration per

time step, provided that reasonable estimates of the leakages at the

advanced time step are available. These estimates of the leakages

are obtained by using the estimated space-dependent frequencies, given

by Eq. 5-14, to extrapolate the leakages. That is, the leakages at time

step n+ 1 are approximated by

FLU..]n+1=[-Lu. .n (Pi, jkI n ;at n ux,y,z. (5-15)

Uijk i,j,kSince the leakages terms in the nodal balance equations are generally

small in magnitude compared to the flux terms, the errors introduced
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when only one inner iteration is performed are generally quite accept-

able. Numerical examples which verify this hypothesis are presented

in Chapter 6.

The flux iterations performed at each inner iteration are identi-

cal with those of the steady-state problem. To facilitate rapid con-

vergence of the node-averaged fluxes at each time step, the fluxes are

extrapolated to the advanced time step in the same manner as the leak-

ages,

[w 1n- Atn

[i[$j.kknn+1=n e e[i, j,k n . (5-16)

In most transient problems, less than five flux iterations are required

to achieve an error reduction of 10 in node-averaged fluxes. A larger

number of flux iterations may be required when extrapolated fluxes are

poor estimates of the actual fluxes. Such erroneous extrapolations can

occur when sudden moveinents of control rods take place or in time

domains near local power extrema. Nevertheless, the extrapolation

procedure significantly reduces the computational effort required to

solve the transient nodal diffusion equations.

The Cyclic Chebyshev Semi-Iterative flux iterations require

knowledge of the spectral radius of the Gauss-Seidel flux iteration

matrix. This spectral radius varies significantly with material pro-

perties and time step size. Hence, for effective use of this acceler-

ation technique, the spectral radius of the Gauss-Seidel flux iteration

matrix must be reestimated during the transient. To facilitate this
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reestimation, the transient problem is split into time domains within

which the time step size remains constant. At the beginning of each

time domain, the spectral radius is estimated by the procedure

described in Section 3. 3.5. For most transient problems, the spectral

radius of the Gauss-Seidel iteration matrix varies over the range of

approximately 0.8 to 0.95.

At each inner iteration, it is desirable to achieve some user-

specified, minimum acceptable convergence without performing an

unnecessarily large number of iterations. For simplicity, convergence

at each inner iteration is defined to be achieved when

Pr

e > z r-1'' (5-16)
n Pn

where

Pr is the power in node n at the rth flux iteration
n

N is the total number of power-producing nodes

e is the user-specified convergence criteria.

The number of flux iterations required to achieve the desired

degree of convergence could have been estimated by using the spectral

radius information as was done in Section 3.4. 1, but this procedure

neglects the advantages of extrapolating the fluxes and leads to an over-

estimate of the required number of flux iterations. Examining the actu-

al error reduction at each inner iteration also minimizes the effects of

off-optimum acceleration parameters, since the iterative process
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continues until the desired degree of convergence is achieved. The

leakage calculation at each inner iteration requires about as much

computational effort as five flux iterations. Hence, a minimum of five

flux iterations are performed at each inner iteration, to maintain a

balance between the two.

5.6.4 Transient Solution Algorithm.

A description of the transient solution algorithm is outlined

below:

1. Choose the times (0, T 1 , T2 , T3 , *.*.*., T1) which divide the

transient problem into domains within which At, O, f, and

e are constants.

2. Assume riu dndn cn [] n, and

[Pc n are known at time t n

3. If t n = T., change At, 6 , , and e to correspond to those

of time domain i+1. Calculate new CCSI optimization para-

meters.

4. Alter cross sections to correspond to control rod positions

at time tn+1@

5. Calculate new matrix elements (full or partial update).

6. Obtain approximations for [-]un+1 n+1 by extrapolating

with Eqs. 5-15 and 5-16.

7. Solve Eq. 5-11 iteratively for []n+1 and [Lu'n+1
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8. Solve Eq. 5-9 for [Cd

9. Calculate new frequencies, [W PIn+1[ d]n+, with Eq. 5-14.

10. Solve thermal-hydraulic equations, Eqs. 5-12, for [Tf]n+1

[T c n+ 1, and [ Pn+1

11. Calculate new cross sections from Eq. 5-13.

12. Repeat steps 3-11 for each time step until the end of the last

time domain.

5.7 SUMMARY

In this chapter, the three-dimensional, temporally- and spatially-

discretized Analytic Nodal diffusion equations were derived by employ-

ing a Theta method time integration scheme. A simple lumped heat

capacity thermal-hydraulic model with cross section feedback was also

introduced. An efficient algorithm for solving the neutronic and

thermal-hydraulic equations in tandem was detailed. This algorithm

made use of many ofthe iterative procedures developed for the solution

of the steady-state problem.

The methods described in this chapter are applied to several two-

and three-dimensional transient problems in Chapter 6. Transients,

both with and without thermal-hydraulic feedback, are examined. The

effects of spatial, temporal, and iterative convergence are investigated,

and conclusions about the accuracy and efficiency of the Analytic Nodal

Method are presented. Comparisons of the Analytic Nodal Method with

conventional finite difference methods and other nodal methods are also

presented.
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Chapter 6

TRANSIENT RESULTS

6.1 INTRODUCTION

In Chapter 5, the spatially- and temporally-discretized Analytic

Nodal diffusion equations were derived. A method for solving these

equations was detailed for the two-group case.

In this chapter, the transient Analytic Nodal Method is applied to

several two- and three-dimensional LWR benchmark problems. A

parametric study of transient variables is presented and "optimum"

choices for the transient variables are determined. The problems of

control rod "cusping" which were described in Chapter 5 are addressed,

and a simple scheme for reducing the cusping errors is introduced.

Results from several problems are presented, including the full-core

LRA BWR transient benchmark problem.

6.2 THE TWIGL TWO-DIMENSIONAL SEED-BLANKET
REACTOR PROBLEMS

This test problem is a two-dimensional'model of a 160 cm square

unreflected seed-blanket reactor. The problem is modeled with two

neutron energy groups, one delayed precursor family, and eighth-core

symmetry. A complete problem description is contained in Appendix

A4. 4. Transient solutions were originally obtained by Hageman and
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Yasinsky (40) for step and ramp positive reactivity insertions in the cor-

ner seed assemblies. This test problem is sufficiently small to allow

systematic examination of spatial, temporal, and numerical converg-

ence, as well as other effects peculiar to the Analytic Nodal Method.

The static TWIGL configuration was solved with two different

spatial meshes, denoted as "coarse" and "fine" meshes. The mesh

structures are defined as follows:

Region Coarse Mesh Fine Mesh

0 4 x,y 4 24 cm 12 cm 8 cm

24 4 x,y 4 56 cm 16 cm 8 cm

56 4 x,y 4 80 cm 12 cm 8 cm

The static results for the two mesh structures are summarized in

Table 6-1, where the maximum and average errors in assembly powers

are identical to those defined in Chapter 4. These results indicate that

the coarse mesh static solution is very accurate and the fine mesh solu-

tion is essentially spatially converged.

The TWIGL transient with ramp reactivity insertion (modeled by

a change in the thermal absorption cross section in the corner seed as-

semblies) provides the basis for a parametric study of transient vari-

ables. The base case for the parametric study is a QUANDRY solution

with the following choice of variables:

Spatial mesh - coarse

Flux theta ( f) .- 1. 0

Number of inner iterations per step - 1
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Transient convergence criterion - 1O 3

Time step size - 5 ms

Number of steps per matrix update - 1

Precursor theta (0 ) - 0.5

TABLE 6-1

Summary of Static Results for the TWIGL Two-Dimensional
Seed-Blanket Test Problem

Mesh

# unknowns

# outer iterations

# flux iterations/innera

Eigenvalue

ema()

e (o)

Execution time
(sec, IBM 370/168)

Coarse

126

20

5

0.91323

0. 11

0.025

0.6

Fine

330

25

10

0.91321

Ref.

Ref.

2.6

a 1 inner iteration per outer iteration.

Prior to examination of the actual transient solution accuracy, it is

enlightening to investigate the sensitivity of the transient nodal solution

to various parameters. In each of the calculations, the initial reactor

power is normalized to unity, and one parameter at a time is altered

from the base case.
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6. 2. 1 TWIGL Sensitivity Study

The total reactor power as a function of time is displayed in

Table 6-2 for flux thetas of 0. 5, 0. 75, and 1. 0. Computing times are

also reported. It is seen that the degree of implicitness alters the

accuracy of the solution by as much as two percent. On the basis of

temporal truncation error, one would expect that the solution with

0 = 0. 5 (i. e. , Crank-Nicolson) to be more accurate than the fully-

implicit solution (22). This, however, is not the case. Also, one

would expect the flux iteration matrix to have a smaller spectral radius

for Of = 0. 5 than for Of = 1. 0 and hence a reduced execution time.

This, also, is not the case.

TABLE 6-2

Total Power Versus Time for the 2-D TWIGL Seed-Blanket
Reactor Problem (Ramp Perturbation):

Sensitivity to Theta (Of)

of

Time(s) 0.5 0.75 1.0 Ref.

0.0 1.0 1.0 1.0 1.0

0.1 1.288 1.307 1.306 1.307

0.2 1.920 1.949 1.948 1.957

0.3 2.049 2.066 2.056 2.074

0.4 2.058 2.082 2.093 2.092

0.5 2.078 2.101 2.110 2.109

Execution time(s) 13.5 11.6 10.8
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The reasons for this peculiar behavior are difficult to pinpoint,

but they are thought to be related to stability problems. For conven-

tional spatial finite difference methods, the Theta method time inte-

gration scheme can be shown to be unconditionally stable for 0. 5 < 0

, 1.0 (4). The proof of stability relies on the fact that the flux itera-

tion matrix is positive definite (22). Recall from Chapter 3 that the

flux iteration matrix in the Analytic Nodal Method may not be positive

definite in the general case. A closer examination of the transient

nodal solution with ef = 0. 5 reveals that the solution consists of small

oscillations superimposed on the actual solution. The oscillations

change sign at each time step, and hence, the extrapolation procedure

is not effective in predicting fluxes and leakages at the advanced time

steps. Consequently, more iterations are required to converge the

fluxes, and the total execution time is longer than that of the fully-

implicit solution which displays no oscillatory behavior.

In light of the stability problems in the TWIGL test case, it

seems prudent to employ the fully-implicit approximation which avoids

possible stability problems. The semi-implicit approximations may

prove useful if one chooses the time step size sufficiently small to in-

sure stability. All transient solutions in the remainder of this chapter

make use of the fully-implicit time integration method.

The effects of performing multiple inner iterations per time step

on the transient nodal solution are shown in Table 6-3. The advantages

of additional inner iterations are quite negligible, and, in fact, the im-

provement in the transient power history is actually due to the increased
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TABLE 6-3

Total Power Versus Time for the 2-D TWIGL Seed-Blanket
Reactor Problem (Ramp Perturbation): Sensitivity to

Number of Inner Iterations Per Step

# Inner Iterations/Step

Time(s) 1 2 3

0.1 1.306 1.306 1.306

0.2 1.948 1.953 1.953

0.3 2.056 2.073 2.071

0.4 2.093 2.091 2.088

0.5 2.110 2.109 2.106

Execution time(s) 10.8 11.4 13.4

numerical convergence obtained when multiple inner iterations are

used. In light of these results (and similar results for more compli-

cated transients), the general practice of performing one inner iter-

ation per time step has been adopted.

The sensitivity of the transient nodal solution to the transient

numerical convergence criterion is shown in Table 6-4 for convergence

-2 -3 45
criteria of 102, 10-3, ,10 and 10-. The power history is seen to

be quite insensitive to the transient convergence criteria. The results

for a convergence criterion of 10-2 are somewhat deceptive, in that a

minimum of five flux iterations have been performed, and convergence

to 10-3 has been achieved at most time steps. From these results, it

would appear that a convergence criterion of 10-3 will give better than

one percent accuracy in total power throughout the transient.

6-6



TABLE 6-4

Total Power Versus Time for 2-D TWIGL Seed-Blanket
Reactor Problem (Ramp Perturbation): Sensitivity

to Transient Convergence Criterion

Convergence Criterion

Time(s) 10-2 10-3 10O4 10-5

0.0 1.0 1.0 1.0 1.0

0.1 1.306 1.306 1.305 1.308

0.2 1.948 1.948 1.954 1.959

0.3 2.056 2.056 2.075 2.075

0.4 2.093 2.093 2.092 2.092

0.5 2.110 2.110 2.109 2.109

Execution time(s) 9.5 10.8 10.8 12. 1

Temporal truncation effects on the nodal solution are displayed

in Table 6-5 for time steps sizes of 10, 5, and 2.5 ms. The 10 ms

solution displays an oscillatory behavior, which results in a signifi-

cantly inaccurate solution. The oscillatory behavior is caused by a

combination of large time step size, loose convergence criterion, and

use of the extrapolation procedure. If any one of these three factors

is eliminated, the oscillations cease. Similar oscillations were en-

countered by Sims (15) with his polynomial nodal method. A simple

solution to this problem is to decrease the convergence criterion when

going to coarser temporal meshes.
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TABLE 6-5

Total Power Versus Time for 2-D TWIGL Seed-Blanket
Reactor Problem (Ramp Perturbation): Sensitivity

to Time Step Size

Time Step Size

Time(s) 10 ms 5 ms 2.5 ms

0.1 1.314 1.306 1.308

0.2 1.905 1.948 1.956

0.3 2.113 2.056 2.075

0.4 2.069 2.093 2.092

0.5 2.119 2.110 2.109

Execution time(s) 5.5 10.8 21.0

Approximately 60% of the computational effort expended in the

base case solution is spent updating the spatial coupling matrices. If

the matrices are not recomputed at each time step, a significant reduc-

tion in computational effort is achieved. Table 6-6 displays the tran-

sient solution when the matrices are updated every 1, 3, 5, and 10 time

steps. Note that there is a steady degradation of the solution with de-

creasing frequency of matrix updates. There is, however, a very sub-

stantial reduction in execution time for any reduction in updating fre-

quency. Additional considerations in matrix updating are addressed in

the following section.

The results of several fine spatial mesh solutions to the TWIGL

problem are summarized in Table 6-7. The only result which appears

unlike the results of the coarse mesh cases is that the solution with a
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TABLE 6-6

Total Power Versus Time for 2-D TWIGL Seed-Blanket
Reactor Problem (Ramp Perturbation): Sensitivity

to Matrix Updating Frequency

# Steps/Update

Time(s) 10 5 3 1

0.1 1.160 1.260 1.284 1.306

0.2 1.660 1.862 1.899 1.948

0.3 2.070 2.059 2.057 2.056

0.4 2.089 2.093 2.093 2.093

0.5 2.106 2.109 2.109 2.110

Execution time(s) 4.1 4.5 5.6 10.8

time step size of 5 ms and a convergence criterion of 10-3 displays an

oscillatory behavior. This can be attributed to the fact that the trans-

verse leakages play a more significant role in the fine mesh solution

than in the coarse mesh case. Thus, to obtain accurate leakages, the

fluxes must be well-converged. Consequently, the case with decreased

convergence criterion does not display the oscillation. The fine mesh

TWIGL configuration has 8 cm node widths. In problems with assembly-

size mesh (15 to 20 cm), this oscillation is not expected to be exhibited

when a transient convergence criterion of 10-3 is employed.
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TABLE 6-7

Total Power Versus Time for 2-D TWIGL Seed-Blanket Reactor Problem
(Ramp Perturbation, Fine Spatial Mesh)

Time(s)

0.0

0w 1

0.2

0.3

0.4

0. 5

Execution time(s)

a Reference

Time Step Size:

Convergence:

# Inners/Step:

5 ms

10-.3

1

U
I-a
0

2.5 ms

1

1.0

1. 304

1.949

2.056

2.090

2. 109

52.0

5 ms

o1-3

2

1.0

1.313

1.942

2.057

2.107

2. 106

30.0

5 ms

10-5

1

1.0

1. 308

1.959

2.077

-2.090

2. 110

1.0

1.314

1.908

2.197

2.025

2. 150

26. 7

2.5 ms

103

2

1.0

1.307

1.955

2.075

2.092

2. 110

64. 5

2. 5 ms

10-5

1

1.0

1.307

1.957

2.074

2.092

2. 109

34. 7



6. 2. 2 Optimized TWIGL Solutions

The information obtained in the sensitivity study permits one to

make reasonable choices for the transient variables and to obtain solu-

tions which do not waste computational effort. "Optimized" solutions

for the TWIGL seed-blanket reactor problem for both step and ramp

perturbations are obtained with the following choice of transient vari-

ables:

Step Ramp

Flux theta 1.0 1.0

Precursor theta 0.5 0.5

Time step size 10 ms 5 ms

Transient convergence criterion 10-3 10- 3

Inner iterations /step 1 1

ft < .25 3 1
Steps/updateit<.25 101

It> >.25 10 5

Mesh Coarse Coarse

Note that the matrix updating frequency is chosen to be less in the step

perturbation case than in the ramp case because the reactor properties

are not changing with time, and the matrices depend only on the spatial

omegas (cop, "Wd).

A comparison of the solutions obtained with QUANDRY, CUBBOX

(30), ani by Shober (_16) (2DTD) is contained in Table 6-8. These

results indicate that the QUANDRY solution is consistently the most

accurate of the solutions. The maximum errors in perturbed region

6-11



TABLE 6-8

Total Power Versus Time for 2-D TWIGL Seed-Blanket
Reactor Problems (Coarse Mesh)

Ramp Perturbation, at =Sms

Code

CUBBOX

1.000

1.321

1.985

2.074

2.092

2. 109

QUANDRY

1.000

1.305

1.954

2.074

2.092

2.109

Step Perturbation, At = 10 ms

Code

2DTD

1.000

2.051

2.068

2.085

2. 102

2. 119

QUANDRY

1.000

2.064

2.076

2.095

2. 112

2. 130

6-12

Time(s)

0.0

0. 1

0.2

0.3

0.4

0. 5

Ref.2DTD

1.000

1.305

1.951

2.064

2.081

2.098

1.000

1.307

1.957

2.074

2.096

2.109

Time(s)

0.0

0. 1

0.2

0.3

0.4

0.5

Ref.

1.000

2.061

2.078

2.095

2. 113

2. 131



power at t = 0. 5 sec are less than 0. 1% and 1.4% in the step perturba-

tion case and 0. 1% and 0. 6% in the ramp perturbation case for QUAND-

RY and 2DTD, respectively. The results obtained with the TWIGL code

are not readily comparable because they consist of pointwise powers

only. Comparison with Sims' solutions is not possible, as he modeled

the TWIGL problem with a zero incoming current boundary condition.

It is possible, however, to obtain comparisons of execution times

for the two TWIGL problems. The TWIGL calculation is for a full-core

model with 8 cm spatial mesh obtained on a CDC 6600 computer which

is approximately 0. 7 times slower than the IBM 370/168 computer. By

dividing the TWIGL execution times (40) by 4 to approximate quarter-

core times and normalizing to the IBM 370/168, a comparison of exe-

cution times can be made. This comparison is displayed in Table 6-9.

The QUANDRY and 2DTD execution times are seen to be roughly com-

parable. Sims' (NRMT) solutions and the TWIGL solutions are seen to

be much longer running than the others. The TWIGL solution, however,

using an 8 cm mesh, should be much less accurate than the nodal solu-

tions. In fact, the initial eigenvalues are 0.91419, 0.91368, and

0.91323, for TWIGL, 2DTD, and QUANDRY, respectively. In light of

the error in the TWIGL eigenvalue, it seems very likely that the errors

in the TWIGL powers are quite large.

The TWIGL seed-blanket reactor problem demonstrates that the

transient Analytic Nodal Method can obtain accurate transient solutions

with coarse spatial and temporal meshes. However, the TWIGL prob-

lem does not exhibit radical changes in spatial flux shapes, and hence,
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Execution

TABLE 6-9

Time Comparison for 2-D TWIGL Seed-Blanket
Reactor Problems (Coarse Mesh)

Problem

Ramp

Ramp

Ramp

Ramp

Step

Step

Step

Step

Code

QUANDRY

2DTD

NRMT

TWIGL a

QUANDRY

2DTD

NRMT

TWIGL a

Time Step

. 005

.005

. 005

.005

. 010

.010

* 010

.010

Execution Time (sec)

10.69 c

9.4

43. 0

96.3 b

5.3

~30. 0

61.00 b

a TWIGL finite difference mesh corresponds to nodal fine mesh.
b Execution times adjusted for quarter-core calculations.
c Actual eighth-core computational time multiplied by 1. 55 to obtain

quarter-core times.

more difficult problems are required to test fully the nodal method.

6.3 THE 3-D LMW OPERATIONAL TRANSIENT

The 3-D LMW (Langenbuch-Maurer-Werner) test problem (30) is

a highly simplified LWR, described in Section A4. 5 of Appendix 4. The

transient is initiated by withdrawing a bank of four partially-. serted

control rods at a rate of 3 cm per second. Subsequently, a bank of five

control rods (initially parked in the upper reflector) is inserted at a

rate of 3 cm per second. The resulting transient is followed for 60

seconds.
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The static solution to the 3-D LMW test problem with a uniform

20 cm spatial mesh in both radial and axial directions was found to have

a maximum error in nodal power of less than 1% (Section 4.4. 1). In

light of the small errors in spatial power distribution, these errors

should have little effect on the transient solutions. The 3-D LMW test

problem has been solved both with and without thermal-hydraulic feed-

back.

6.3.1 The 3-D LMW Test Problem Without Feedback

Three QUANDRY solutions to the LMW test problem are displayed

in Table 6-10. These calculationp employed convergence criterion of

10- 3.matrix updating every fourth time step, and time step sizes of

2.0, 1.0, and 0.5 seconds. If the 0. 5 s time step solution is taken as

a reference, the maximum temporal truncation errors of the other two

solutions appear to be less than 3%. However, if one compares the

"reference" solution to the most accurate CUBBOX (30) solution, the

maximum discrepancy is greater than 5. 0%.

The reason for the apparent discrepancies is that the QUANDRY

solution exhibits considerable control rod cusping effects. Recall from

Chapter 5, that the Analytic Nodal Method requires that all cross sec-

tions be spatially uniform with each node, even if the node contains a

partially-inserted control rod. Hence, the modeling of the cross sec-

tions in a partially-rodded node as the volume-weighted cross sections

of the fully-rodded and -unrodded cross sections leads to errors in con-

trol rod "reactivities." CUBBOX (30), on the other hand, is not
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TABLE 6-10

Power Versus Time for the 3-D LMW Test Problem (QUANDRY)

Time
(S)

0.0

5.0

10.0

20.0

30.0

40.0

50. 0

60.0

a Mean power
step size of

Mean Power Density (a Error) a

At = 2000 ms At = 1000 ms At = 500 ms

150.0 150.0 150.0

163.9 (-1.9) 167.1

193.2 (-1.9) 195.3 (-.8) 196.9

251.7 (+.6) 253.2 (+1.2) 250.3

207.0 (+3.0) 206.9 (+2.9) 201.0

122.3 (+2.8) 121.2 (+1.8) 119.0

74.7 (+.8) 74.3 (+.3) 74.1

56.9 (0.0) 57.5 (+1.1) 56.9

density in w/cc; reference
500 ms.

is the solution with a time

constrained to spatially uniform cross sections and can model more

accurately the partially-inserted control rods.

In order to correct some of the control rod cusping effects in

QUANDRY, an alternate model can be used for nodes with partially-

inserted control rods. To do so, the axial shapes of the fluxes in node

(i, j, k) are approximated by the following quadratic polynomials:

[ s (z, t)] = I[i. . (t)] + I{[ v. . -(+)I - [3. .k(t)]} zk Z
zi,j,kc' , k- ,,z

+ {II$ (t)]-L[k.. (t)l}lp (z,ijk+),,kz)

(6-1)
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where the expansion functions are identical with those utilized in the

quadratic transverse leakage approximation of Section 2. 3. 3. This

expansion possesses the property that the one-dimensional fluxes pre-

serve the average fluxes in each of the three adjacent nodes. The

"homogenized" cross sections, (DE ,j,(t)] , are then determined by

requiring that

h [E; , j., k(t)] i, jk(t)] = f kA [Fi, jak(zIt)I[Oz (z, t)],

(6-2)

where [E1 i,9j k(z,t)l is the true space-dependent cross section. The

"homogenized" cross sections are then used as the spatially uniform

cross sections for the transient calculation.

Results for the 3-D LMW test problem obtained by QUANDRY

with the control rod cusping adjustment are displayed in Table 6-11.

These solutions display a much more uniform temporal convergence

rate than the solutions contained in Table 6-10. The finest temporal

mesh solution is also in much better agreement with the CUBBOX

solution than is the previous solution. Hence, the control rod cusping

adjustment appears to be more successful in predicting control rod

"reactivities" than the volume-weighted cross section procedure.

Comparisons of the temporal convergence of QUABOX (30),

CUBBOX (30), and QUANDRY solutions to the 3-D LMW test problem

are contained in Table 6-12. To eliminate any differences in spatial

approximations, the reference case for each method is considered to

be a finer temporal mesh solution generated by the same method.
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TABLE 6-11

Power Versus Time for the 3-D LMW Test Problem With
Control Rod Cusping Adjustment (QUANDRY)

Mean Power Density (% Error) a

At= 2000 ms At = 1000 ms At = 500 ms At =.250 ms

0.0 150.0

5.0

10.0 204.1 (2.3)

20.0 281.6 (9.6)

30,0 221.0 (7.7)

40.0 120.2 (-.7)

50.0 70.5 (-5. 7)

60.0 52.7 (-8. 2)

a Mean power density in
step size of 250 ms.

150.0

164. 3

198.4

267.0

216.4

121. 5

73. 1

55.9

(-2.3)

(-.6)

(3.9)

(5.5)

(+.5)

(-2.3)

(-2.6)

150.0

167. 5

200.8

260.9

210.2

122.5

75.4

57.8

(-.4)

(0.6)

(1. 5)

(2.4)

(1.3)

(0.8)

(0. 7)

150. 0

168. 1

199.6

257.0

205.2

120.9

74.8

57.4

w/cc; reference is the solution with a time
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TABLE 6-12

Power Versus Time for the 3-D LMW Test Problem: Comparison
of Temporal Convergence of Transient Solutions

With Time Step Size = 500 ms

Mean Power Density (% Error) a
Time

(s) QUABOX CUBBOX QUANDRY

0.0 150.0 150.0 150.0

5.0 167.1 (-0.5) 167.2 (-0.6) 167.5 (-0.4)

10.0 196.6 (-1.2) 198.2 (-1.0) 200.8 (+0.6)

20.0 255.6 (-1.6) 257.8 (-0.7) 260.9 (+1.5)

30.0 217.9 (+0.9) 214.2 (+0.8) 210.2 (+2.4)

40.0 133.3 (+2.9) 129.8 (+2.2) 122.5 (+1.3)

50.0 80.3 (+1.5) 78.8 (+1.5) 75.4 (+0.8)

60.0 61.0 (+0.7) 59.8 (+0.9) 57.8 (+0.7)

a The error is defited to be the difference between solutions with time
step sizes of 500 ms and 250 ms.
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These results indicate that the temporal truncation errors of the three

methods are roughly comparable for this problem.

In order to compare the accuracy of the three nodal methods, it

is necessary to have a reference solution. In light of the fact that even

the 125 ms time step CUBBOX solution displays spatial errors of

several percent and is not temporally converged, no truly satisfactory

reference solution exists. Hence, for purposes of comparison, a

Richardson extrapolation (41) of the CUBBOX solutions is considered

to be a reference, although it is probably not accurate to better than

one percent. Table 6-13 summarizes three nodal solutions to the LMW

problem. The QUABOX and CUBBOX. calculations use a time step size

of 125. ms. The QUANDRY calculation employs a 10 cm axial mesh

(to further eliminate cusping effects) and a time step size of 25 ms.

These results indicate that QUANDRY and CUBBOX solutions have a

maximum error in mean power density of about 1%, while the QUABOX

solution exhibits a maximum error of approximately 3%. The execution

times for QUANDRY, QUABOX, and CUBBOX are available only for the

1.0 second time step case, and they are 56.0, 70.0, and 45.0, respec-

tively.

6.3.2 The 3-D LMW Test Problem with Feedback

The 3-D LMW test problem with thermal-hydraulic feedback pro-

vides a very interesting test for a neutronics model in a coupled neu-

tronic thermal-hydraulic environment. The parameters for the

thermal-hydraulic model are chosen to be fairly representative of an
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TABLE 6-13

Power Versus Time for the 3-D LMW Test Problem: Comparison
of the Most Accurate Solutions for Three Nodal Methods

Mean Power Density (% Error)

Time b
(s) QUABOX a CUBBOXa QUANDRY Ref.

0.0 150.0 150.0 150.0 150.0

5.0 168.7 (-0.4) 168.8 (-0.4) 169.1 (-0.2) 169.4

10.0 200.2 (-0.9) 201.1 (-0.5) 202.0 (0.0) 202.0

20.0 260.5 (0.0) 260.0 (-0.2) 262.2 (+0.6) 260.5

30.0 213.6 (+1.8) 211.3 (+0.7) 210.8 (+0.4) 209.9

40.0 127.5 (+2.9) 125.5 (+1.3) 123.0 (-.7) 123.9

50.0 78.6 (+2.7) 77.1 (+0.8) 75.7 (-1.0) 76.5

60.0 60.3 (+2.9) 58.9 (+0.5) 57.9 (-1.2) 58.6

a Time step size, 125 ms.
b Time step size, 250 ms, fine axial mesh (10 cm).
C Richardson extrapolation of CUBBOX solutions.

operating PWR; they are given in Section A4. 5 of Appendix 5. With

feedback, the LMW problem takes on the characteristics of an oper-

ational transient.

In converging the steady-state solution, QUANDRY requires the

same number of outer iterations (17) as the nonfeedback problem. It

is interesting to note that the zero power (hot standby) eigenvalue is

0. 99974, while the full power (184. 3 Mw) eigenvalue is 0. 98355.

Hence, the feedback accounts for approximately 2. 50 dollars of
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negative reactivity. Despite the large feedback effects, the steady-

state iteration scheme appears to be very well suited to the feedback

problem.

A summary of three QUANDRY solutions, employing time step

sizes of 1000, 500, and 250 ms, is displayed in Table 6-14. A plot of

the total reactor power as a function of time, for the 250 ms case, is

shown in Figure 6-1. These calculations did not make use of the con-

trol rod cusping adjustment discussed in the previous section, and

fairly significant cusping effects are present. The temporal truncation

errors are smaller than in the nonfeedback case, which should be ex-

pected since the magnitude of the power excursion is limited by feed-

back effects. Cusping effects are more pronounced when feedback is

present, and accurate equivalent homogenized parameters for partially-

rodded nodes appear to be more important in these problems. No

serious attempt has yet been made to permit spatially-dependent cross

sections within nodes. Instead, efforts are being devoted to finding

equivalent homogenized parameters (spatially uniform) which properly

predict control rod effects in partially-rodded nodes (42).

Except for the enhancement of cusping effects, no additional diffi-

culties in solving the neutronics equations with feedback have been en-

countered with the transient Analytic Nodal Method.
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TABLE 6-14

Total Reactor Power Versus Time for 3-D LMW Problem
with Thermal-Hydraulic Feedback

Total Reactor Power X 10- 2 (Mw)
Time

(s) At = 1000 ms At = 500 ms At = 250 ms

0.0 1.848 1.848 1.848

2.5 1.899 1.892

5.0 1.945 1.914 1.917

7.5 1.945 1.937

10.0 1.924 1.935 1.943

12.5 1.965 1.957

15.0 1.967 1.951 1.948

17.5 1.932 1.939

20.0 1.953 1.938 1.934

22.5 1.888 1.891

25.0 1.863 1.867 1.867

27.5 1.840 1.841

30.0 1.779 1.780 1.790

32.5 1.755 1.753

35.0 1.723 1.711 1.716

37.5 1.665 1.672

40.0 1.617 1.631 1.632

42.5 1.595 1.600

45.0 1.568 1.566 1.568

47.5 1.534 1.537

50.0 1.581 1.576 1.563

52.5 1.544 1.563

55.0 1.557 1.569 1.563

57.5 1.557 1.561

60.0 1.561 1.561 1.560
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Figure 6-1. Total reactor power versus time for the
3-D LMW problem with thermal-hydraulic feedback
(no cusping adjustment).
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6.4 THE LRA BWR TRANSIENT BENCHMARK PROBLEM

The LRA benchmark problem (25) is a full-core BWR kinetics

problem with two neutron energy groups and two delayed neutron pre-

cursor families. A superprompt critical transient from low power is

induced by the rapid withdrawal of an asymmetric peripheral control

rod. Feedback is modeled by adiabatic heatup and space-dependent

Doppler feedback. The feedback model is specified fully by two rela-

tions:

adiabatic heatup - a [Sf(r.,t)][(rt)J = Trt)

Doppler feedback - Erat) = E a 1(r,0){1+(4 T(r,t) - 40 ,

where T(r,t) is the fuel temperature, and a, 3, and T0 are known

constants. A complete problem description is contained in Section

A4. 1.

This problem has proven to be extremely difficult for two

reasons. First, the severe flux tilts which occur during the transient

require a highly accurate spatial neutronics model. Secondly, the

reactor power during the transient spans approximately 10 orders of

magnitude, thereby complicating the time integration processes.

The full-core LRA BWR problem is approached in several stages.

Initially, the two-dimensional, quarter-core version of the LRA prob-

lem is considered. This problem permits examination of feedback and

temporal truncation effects, without the complications of large radial

and axial flux tilts. Subsequently, the quarter-core version of the 3-D
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LRA problem is examined, in which axial power tilts play an important

role. Finally, results are presented for the full-core LRA BWR prob-

lem.

Two spatial mesh configurations are considered for the nodal cal-

culations. The "very coarse" and "coarse" mesh structures are defined

as follows:

Region

0 < xy < 30 cm

30 < x,y < 60 cm

60 < x,y < 270 cm

270 < x,y < 300 cm

300 < x,y < 330 cm

Very Coarse Mesh

30 cm

15 cm

30 cm

15 cm

30 cm

Coarse Mesh

15 cm

15 cm

15 cm

15 cm

15 cm

These mesh structures apply to both the two-dimensional problems and

the x-y planes in three-dimensional problems.

6.4. 1 The 2-D LRA BWR Transient Problem

The two-dimensional LRA problem is described in Section A4. 1.

Two temporal meshes have been employed to obtain solutions to this

problem. The two temporal meshes are defined as follows:

329 Step

Time Interval Time StepSize

0 4 t 4 0,8 s 25 ms

0.8 4 t%4,1.0 s 10 ms

1.50 4 t 4 1.1 3 s 3 ms

1.0 3 4 t 41. 45 s 1. 5 ms

1.45 4t-42.0 s 15 ms

2.0 4 t 43.0s 25 ms

1000 Step

Time Interval Time Step Size
0 4 t 4 1.0 s 10 ms

1.0 t 4 1. 3 s 1 ms

1. 3 t 4 1. 5 s 0. 5 ms

1. 5 4 t 2.0 s 5 ms

2.0 4 t 3.00s 10 ms
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A summary of results for the very coarse spatial mesh calculation and

both temporal meshes is presented in the last two columns of Table 6-15.

These results indicate that the 1000 step solution overpredicts peak

powers and temperatures by as much as 8%, and the 329 step solution

is even worse. There are two spatial effects which are responsible for

most of the error. First, there is the inaccuracy in the neutronic

model due to large mesh spacing. This effect is quite small and cannot

account for the large errors. The fact that the temperature feedback is

computed with the same spatial mesh as the neutronics is, however,

quite important. Since some of the nodes in the temperature calcula-

tion are as large as 30 cmX 30 cm, the fluxes (and consequently the

fuel temperatures) may display large changes within a node.

In order to examine the effects of the temperature shapes on the

transient solutions, a very simple model for the temperature distribu-

tion within each node is employed. The fluxes in each quarter node are

approximated by the mean of the node-averaged fluxes in the four nodes

which are closest to the quarter node in question. Once the average

fluxes in the four quarter nodes are determined, they are renormalized

such that the average flux in each node is preserved. Average fuel tem-

peratures in each quarter node at a given time step are then advanced

to the next time step by using the quarter node-averaged fluxes. Hence,

the new cross sections in each subnode can be approximated. The node-

averaged cross sections to be used in the neutronics calculation for the

next time step are obtained by flux-weighting the subnode cross sections.

This procedure is admittedly crude; however, it suffices to demonstrate
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TABLE 6-15

Summary of Results for the 2-D LRA Transient: QUANDRY
Calculations with Very Coarse Mesh

QUANDRY

Number of steps 329 329 329 1000

Steps per update 5 2,t>C4 1 1 Ref.

Temperature shape? Yes Yes No No

Time to first peak (s)

Power at first peak
(w/cc)

Power at second peak
(w/cc)

Power at t = 3.0 sec
(w/cc)

Average fuel temper-
ature at t = 3.0 s (*K)

Peak fuel temperature
at t = 3.0 s(*K)

1.424

5897.

1037.

100.0-

1142.

3154.

1.425

5913.

1080.

100. 2

1125.

3094.

1.423

5967.

1117.

93.6

1141.

3342.

1.430

5749.

861.

101.3

1132.

3178.

CPU time (s)
(IBM 370/168) 40. 5 47.2 75. 258.

a Shober's fine temporal and spatial mesh calculation (17).

1.436

5411.

784.

96. 2

1087.

2948.

4154.
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the significance of the temperature shape in the transient calculations.

A summary of results for the very coarse spatial mesh calcula-

tion is presented in the first two columns of Table 6-15. These results

indicate that the errors in the final fuel temperatures are reduced from

14% to 5% for the 329 step solution. This significant increase in accu-

racy indicates that accurate solutions can be achieved with very coarse

neutronic meshes, provided that spatial details of the feedb.ck effects

within each node can be computed. The results displayed in Table 6-15

also indicate that there is no significant loss of accuracy when the

spatial coupling matrices are not computed at each time step.

The results of a more systematic examination of the errors intro-

duced by infrequent updating of spatial coupling matrices are displayed

in Table 6-16, for the coarse mesh 2-D LRA problem with 1000 time

steps. These results clearly indicate that the computational efficiency

of the transient Analytic Nodal Method can be increased by a factor of

two by performing infrequent matrix updates, with less than a one per-

cent degradation in accuracy of the quantities of interest.

The results of several QUANDRY solutions to the coarse mesh

LRA problem with 329 time steps are summarized in Table 6-17.

Several observations can be made from these results. The solution

obtained by employing two inner iterations per time step indicates that

the only quantity which is predicted with noticeably increased accuracy

is the power at the first peak. Since the value of the power at the first

peak has little to do with the overall transient solution, one inner iter-

ation per time step appears adequate. The impact of tightening the
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TABLE 6-16

Summary of Results for 2-D LRA Transient: QUANDRY
Calculations with 1000 Time Steps, Coarse Mesh

QUANDRY

Number of steps 10; t < 1. 4 Ref.a
per update 4; t>1.4 10 5 1

Time to first peak (s) 1.435 1.435 1.435 1.434 1.436

Power at first peak
(w/cc) 5473. 5466. 3496. 5450. 5411.

Power at second peak
(w/cc) 797. 855. 798. 800. 784.

Power at t = 3.0 sec
(w/cc) 97. 5 97.0 97.4 98.0 96.2

Average fuel temper-
ature at t = 3.0 s (*K) 1108. 1126. 1111. 1101. 1087.

Peak fuel temperature
at t = 3.0 s (*K) 3029. 3097. 3037. 3003. 2948.

Maximum error in
nodal power at
t = 3.0 s (%) +0.4 +0.3 +0.4 +0.4 Ref.

CPU time (s)
(IBM 370/168) 307. 327. 357. 5ts5. 4150.

a Shober's fine temporal and spatial mesh calculation (17).
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TABLE 6-17

Summary of Results for 2-D LRA Transient: QUANDRY
Calculations with 329 Time Steps, Coarse Mesh

Time steps per update

Inners per outer

5b

1

Convergence criterion

QUANDRY

5; t <1.4 5; t<1.4
2; t > 1.4 2; t >1.4

1 1

3na-3r pe 4
10 near peak

Time to first peak (s)

Power at first peak
(w/cc)

Power at second peak
(w/cc)

Power at t = 3.0 s
(w/ cc)

Average fuel temper-
ature at t = 3.0 s (*K)

Peak fuel temperature
at t = 3.0 s ("K)

Maximum error in
nodal power shape
at t = 3.0 s (o)

CPU time (s)
(IBM 370/168)

1.427

5699.

792.

94.8

1152.

3188.

+0.4

107.

1.429

5610.

783.

96. 0

1116.

3055.

+0.4

113.

a Shober's fine temporal and spatial mesh

b No temperature shape computed.

1.429

5538.

796.

96. 2

1116.

3057.

+0.4

118.

calculation (17).
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5

2

10

1.426

5447.

803.

96.8

1114.

3047.

+0.4

154.

1.436

5411.

784.

96. 2

1087.

2948.

Ref.

4150.
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convergence criterion near the first power peak is roughly the same as

that of performing an additional inner iteration per time step. The im-

pact of employing 329 rather than 1000 time steps appears to be a de-

gradation of solution accuracy by about 1%, about the same as that of

infrequent matrix recomputation.

A summary of transient results for several nodal methods is

given in Table 6-18. Comparison of solutions indicates that QUANDRY

calculations with very coarse temporal meshes and infrequent matrix

updating are quite accurate and very computationally efficient. Power

and temperature distributions for the 2-D LRA problem appear in

Appendix A6. 1 (coarse mesh, 1000 time steps QUANDRY calculation).

6.4. 2 The 3-D Quarter-Core LRA BWR Transient Problem

The 3-D quarter-core LRA transient exhibits larger radial flux

tilts than the 2-D transient and also displays significant axial shifts in

power distribution. These effects make the 3-D LRA problem very

difficult to solve and provide a very significant test for any transient

neutronics model.

This problem was solved with the very coarse radial mesh and

two different axial meshes. The static eigenvalues for the rod-in and

rod-out configurations are

10 Axial Planes (37. 5 cm) 14 Axial Planes (25 cm)

Rod in 0.99652 0.99648

Rod out 1.01575 ~1. 01579

6-32



TABLE 6-18. Comparison of Nodal Solutions to the 2-D LRA BWR Transient Problem

2 DTD (17)
'Two-Step

Number of spatial
mesh points

Initial eigenvalue

Time to first peak (s)

Power at first peak
(w/cc)

Power at second peak
(w/cc)

Power at t = 3.0 s
(w/cc)

Average fuel temper-
ature at t = 3.0 s (OK)

Peak fuel temperature
at t = 3. Os (*K)

Maximum error in
nodal power shape

at t = 3.0 s (%a)

Number of time steps

CPU time (s)

(Computer)

121

0.99655

1.426

5552.

815.

97. 0

11270

3112.

+1. 3

1000

210.

(IBM
370/168)

CUBBOX
(25)

121

0.99633

1.421

5734.

~830.

~60.

1070.

2925.

-5.

1200

180.

(IBM
360/91)

IQSBOX
(25)

121

0.99631

1.445

5451.

~800.

~100.

1127.

2989.

-1. 2

522

255.

(CYBER
175)

QUANDRY

49

0.99644

1.425

5913.

1080.

100. 2

1125.

3094.

-2.7

329

47. 2

(IBM
370/168)

QUANDRY

121

0.99641

1.429

5538.

796.

96. 2

1116.

3057.

+0.4

329

118.

(IBM
370/168)

QUANDRY

121

0.99641

1.435

5473.

797.

97. 5

1108.

3029.

+0.4

1000

307,

(IBM
370/168)

Ref. a

484

0.99636

1.436

5411.

784.

96.2

1087.

2948.

Ref.

2600

1661.

(IBM
370/195)

a Shober's fine temporal and spatial mesh calculation (17).
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A comparison of control rod worths with the reference solution of

Chapter 4 indicates that the static rod worths are predicted with an

accuracy of +0. 65% and +1. 06% for the 10 and 14 plane configurations,

respectively. A comparison of static power distributions with the

reference case shows that the maximum errors in nodal powers are

less than 1. 6% and 3. 15% for the rod-in and rod-out configurations,

respectively. Since flux tilts are smaller (because of feedback) in the

transient problem than in the static, rod-out configuration, the maxi-

mum errors in power distribution during the transient are expected to

be less than 3. 0%. Table 6-19 summarizes the results of the two

QUANDRY calculations, which employ the following temporal mesh:

Time Interval Time Step Size

0 4 t 4 0.5 s 25 ms

0.5 4 t 4 0.6 s 10 ms

0.6 4 t 4 0.7 s 2.5ms

0.7 4 t 4 0.8 s 1.25 ms

0.8 4 t 4 0.95 s 1.0ms

0.95 4 t 4 1.0 s 2.5ms

1.0 4 t 4 2.0 s 20Oms

2.0<- t 4 3.0 s 25 ms

These calculations make use of the x-y temperature shape model which

was described in the previous section, and the spatial coupling matrices

are recomputed every fifth time step until t = 1. 05 and subsequently,

every other time step. The control rod cusping adjustment is not used

in these calculations.
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TABLE 6-19

Summary of QUANDRY Results for the 3-D Quarter-Core LRA
BWR Problem, Very Coarse Spatial Mesh

Number of Axial Planes 10 14 14

Number of Time Steps 410 410 820

Time to first peak (s) 0.907 0.900 0.903

Power at first peak (w/cc) 5739. 6549. 5781.

Time to first minimum (s) 0.988 0.980 0.989

Power at first minimum (w/cc) 109.0 93.8 114.7

Time to second peak (s) 1.44 1.54

Power at second peak (w/cc) 412. 408.

Power at t = 3.0 s (w/cc) 71.2 69.9

Peak/average assembly power
at t =3.Os 3.64 3.63

Average fuel temperature at t =
- 3.0 s (*K) 1033. 1024. --

Peak assembly fuel temperature
at t = 3.0 s (*K) 2696. 2786. -

Peak nodal fuel temperature
at t = 3.0 s (K) 4148. 4177. -

Execution time (s) (IBM 370/168) 580. 831.

Control rod cusping effects in the 3-D LRA problem are not very

pronounced, as evidenced by the close agreement between the solutions

which used 10 and 14 axial planes. The partial solution with halved

temporal mesh spacing indicates that the temporal truncation effects

are larger than those observed in the two-dimensional problems.
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The temporal truncation errors are fairly significant in the powers at

the first peak and minimum, but evidence from the two-dimensional

transients suggests that these errors do not affect substantially the sub-

sequent powers and temperatures. Unfortunately, no reference solution

exists for this problem. Assembly-averaged power densities, partial

planar power densities, and temperatures at several times of interest

are displayed in Appendix A6. 2 for the 10 plane QUANDRY solution.

6.4. 3 The 3-D Full-Core LRA BWR Transient Problem

The full-core LRA transient problem is very similar to the

quarter-core transient problem, except that radial flux tilts are more

severe. This problem is solved with the very coarse radial mesh and

the same two axial meshes as the quarter-core problem. The static

eigenvalues for the rod-in and rod-out configurations are

10 Axial Planes 14 Axial Planes

Rod in 0.99657 0.99653

Rod out 1.01506 ~1.01510

A comparison of control rod worths with the reference solution of

Chapter 4 indicates that the static rod worths are predicted with an

accuracy of -0. 10% and +0. 33% for the 10 and 14 plane configurations,

respectively. A comparison of static power distributions shows that

the maximum errors in nodal powers are less than 1.6% and 3. 2% for

the rod-in and rod-out configurations. Hence, as in the quarter-core

problem, transient power distributions should have maximum errors
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in power distribution of less than 3. 0%.

The 3-D full-core LRA problem was solved with the same tem-

poral mesh as the quarter-core problem. A summary of results for

this problem is given in Table 6-20. The results are very similar to

those of the quarter-core problem. That is, cusping effects are

small and temporal truncation effects appear to be significant at the

first peak and minimum. The errors in the powers at the peaks and

minimum are larger than those observed in the quarter-core problem.

This is due, in part, to the fact that the peaks occur later in the whole-

core problem and the temporal mesh is too coarse near the first mini-

mum. This poor choice for temporal mesh spacings could be elimi-

nated if an automatic time step selector (which limits the maximum

change in reactor power allowed per time step) is used. Nevertheless,

the final powers and temperatures are predicted quite well, even with

the coarse temporal mesh.

No reference solution is available for this problem, hence, it is

difficult to measure, in any absolute sense, the errors in the QUANDRY

solutions. The assembly-averaged power densities, partial planar

power densities and temperatures at several times of interest are dis-

played in Appendix A6. 3, for the 10 plane, fine temporal mesh

QUANDRY solution. A plot of total reactor power density as a function

of time, is shown in Figure 6-2.

It is interesting to compare the execution times of QUANDRY to

those which would be required to solve the 3-D LRA problem with a

finite difference method. Supposing that a finite difference mesh of
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TABLE 6-20

Summary of QUANDRY Results for the 3-D Whole-Core LRA
BWR Problem, Very Coarse Spatial Mesh

Number of Axial Planes 10 14 10

Number of Time Steps 410 410 820

Time to first peak (s) 0.946 0.949 0.950

Power at first peak (w/cc) 1534. 1600. 1435.

Time to first minimum (s) 1.11 1.11 1.08

Power at first minimum (w/cc) 11.4 11.2 20.7

Time to second peak (s) 1.52 1.54 1.57

Power at second peak (w/cc) 240. 301. 141.

Power at t.= 3. Os (w/cc) 22.1 21.3 22.6

Peak/average assembly power
at t = 3. Os 11.29 11.20 11.33

Average fuel temperature
at t = 3. Os (OK) 508. 508. 503.

Peak assembly fuel temperature
at t = 3.0 s (*K) 2692. 2682. 2630.

Peak nodal fuel temperature
at t = 3. Os (OK) 3979. 4069. 3877.

Execution time (s) (IBM 370 /168) 2150. 3000. 4300.
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Figure 6-2. Total reactor power versus time for
the 3-D LRA BWR (full-core, transient problem.
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4 cm would yield an acceptably accurate spatial solution (evidence

suggests that a mesh spacing of less than 2. 5 cm is required to obtain

errors in nodal powers of less than 5%), the full-core LRA problem

would require approximately 600,000 mesh points. The finite differ-

ence core, MEKIN, requires 0.00078 seconds per time step per mesh

point on an IBM 370/168 (43). Thus, 468 seconds per time step would

be required to solve the full-core LRA problem with MEKIN. This

compares with approximately 5.0 seconds per time step required for

QUANDRY. Also, MEKIN uses an explicit time integration method

which typically requires a much smaller time step size than the fully-

implicit time integration method which is used in th': QUANDRY calcu-

lation. Hence, the computational advantage of the transient Analytic

Nodal Method over MEKIN is probably much larger than the conserva-

tive factor of 100 computed above.

In summary, the Analytic Nodal Method has been demonstrated to

be very accurate for transient applications in which assembly-size

nodes can be used. The temporal integration scheme allows use of

large time steps and requires very little iterative effort at each time

step. The transient Analytic Nodal Method is at least two orders of

magnitude more computationally efficient than finite difference methods

and is very competitive with other state-of-the-art nodal diffusion

methods.
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6. 5 SUMMARY

In this chapter, the transient Analytic Nodal Method has been ap-

plied to several two- and three-dimensional, two-group reactor bench-

mark problems. Results demonstrate that accurate time-dependent

solutions can be obtained with coarse spatial and temporal meshes.

The computing times required to solve the transient problems were

demonstrated to be very small and at least two orders of magnitude

smaller than those required by finite difference methods.

The computational effort involved in solving the Analytic Nodal

diffusion equations at each time step can be split into three separate

tasks which require roughly the same computational effort: iterative

convergence of node-averaged fluxes, noniterative computation of nodal

face-averaged net leakages, and recomputation of spatial coupling

matrices. Results indicate that recomputing the spatial coupling

matrices at every time step would lead to longer transient solution

times (which would be dominated by time spent recomputing matrices).

Hence, the practice of updating matrices every 2 to 10 time steps is

adopted and has been demonstrated to produce only a very small degra-

dation of solution accuracy in problems with and without thermal-

hydraulic feedback. A good estimate of the time required to solve

transient problems with QUANDRY is 10-3 seconds per node per dimen-

sion per time step on an IBM 370/168.
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Chapter 7

SUMMARY

7.1 OVERVIEW OF THE INVESTIGATION

The objective of this research effort was to extend the Analytic

Nodal Method to three dimensions and to develop computationally

efficient numerical methods for solving the time-dependent, multi-

dimensional, two-group Analytic Nodal diffusion equations.

In Chapter 2, the Analytic Nodal diffusion equations, subject to

the single approximation that the transverse leakages could be fit to

quadratic polynomials, were derived for Cartesian geometry with

homogenized nodes. These equations were written in terms of node-

averaged fluxes and face-averaged net leakages. The resulting spatial

coupling was three-node in fluxes and five-node in net leakages, in

each direction.

The properties of the static nodal diffusion equations were ex-

amined in Chapter 3 and the Analytic Nodal diffusion equations were

shown to reduce to the finite difference equations in the limit of infi-

nitely fine spatial mesh. As a consequence, it was shown that the

Analytic Nodal Method is guaranteed to give the exact solution to the

differential diffusion equations in this limit. Iterative solution tech-

niques were developed for the solution of the nodal diffusion equations,
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and it was shown that these numerical techniques are guaranteed to

cause convergence to the exact solution of the diffusion equations in

the limit of infinitely fine spatial mesh.

The results of many two- and three-dimensional static reactor

problems were presented in Chapter 4. The Analytic Nodal Method

was shown to be a very accurate and highly efficient method for solv-

ing the multidimensional, two-group static diffusion equations. It

was found that if LWRs can be homogenized into assembly-sized

regions, the Analytic Nodal Method can be expected to yield assembly-

averaged powers accurate to within approximately two percent and

static reactor eigenvalues accurate to within about 0. 01 percent. The

Analytic Nodal Method was shown to be at least two orders of magni-

tude more computationally efficient than finite difference methods and

at least as computationally efficient as other nodal methods of current

interest.

In Chapter 5, the time-dependent Analytic Nodal diffusion equa-

tions were derived. From these equations, the multidimensional

temporally- and spatially-discretized Analytic Nodal diffusion equations

were derived by employing the Theta method time integration scheme.

An algorithm, which made use of many of the steady-state iterative

procedures, was detailed for solving the transient neutronic and

thermal-hydraulic equations in tandem.

Results from several two- and three-dimensional transient prob-

lems were presented in Chapter 6. These results demonstrated that

accurate transient solutions can be obtained with coarse (i. e. ,
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assembly-size) spatial meshes. Comparisons with several finite dif-

ference methods indicated that the Analytic Nodal Method is approxi-

mately two orders of magnitude more computationally efficient in

tranaient applications.

Thus, the Analytic Nodal Method (as embodied in the computer

code QUANDRY) has been demonstrated to be very accurate and highly

efficient for multidimensional, two-group, static and transient LWR

analysis. Hence, this method is an appealing alternative to the finite

difference methods currently used in design and analysis of LWRs.

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH

During the course of this investigation, several items of potential

interest have been left unresolved or untouched. Many of these items

warrant additional investigation. This section contains a description of

these potential research areas.

7. 2. 1 The Transverse Leakage Approximation

Since the only approximation in the static Analytic Nodal Method

is that the transverse leakage can be fit by a quadratic polynomial,

improvements in this approximation would lead to increased accuracy.

In particular, it would be very fruitful if a more accurate quadratic

polynomial could be found. Examinations of the transverse leakage

shapes have shown that a quadratic polynomial would be more accurate

if it were based on leakage information from within the node. Use of

additional "out-of-node" leakage information appears virtually useless.
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7. 2. 2 Albedor

A generalized albedo boundary condition is incorporated into the

Analytic Nodal Method. No attempt has been made as yet to utilize this

albedo. If one were able to determine accurately the albedos, it would

be much easier to model portions of a reactor (e. g., a few assemblies)

than by use of alternate boundary conditions. Also, replacing the

baffle and reflector by an albedo could lead to significant savings in

terms of required spatial unknowns. Methods for finding these albedos

need to be investigated.

7.2.3 INPUT/OUTPUT Considerations

If the Analytic Nodal Method is to be used to solve large LWR

configurations, serious consideration must be given to I/O problems.

Recall that in three-dimensional problems, there are 96 "coupling

coefficients" per node. If a reactor is analyzed with a 20 cm mesh,

approximately 5000 nodes will be required. Hence, even if a code

is written in IBM single precision, approximately 2M-bytes of core

storage would be required to contain only the coupling coefficients.

Because of these storage requirements, considerable shuffling of data

into and out of the computer core will be required. Therefore, I/O

schemes and perhaps alternate iteration schemes will be required to

handle these problems efficiently.
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7. 2. 4 Alternate Time-Integration Methods

The Theta method time integration scheme has been investigated

in this work. In light of the stability problems encountered with the

semi-implicit approximations, all analysis was performed with the

fully-implicit approximation. It seems unlikely that a much more

computationally efficient temporal finite difference method can be found.

The reason for this is simple: two-thirds of the computational effort

required at each time step is spent computing matrices and solving for

new leakages, which will be requ.red regardless of the temporal finite

difference approximation.

If a more efficient time integration scheme is to be found, it is

necessary that the time-integration scheme be able to take large time

steps between flux shape calculations. Hence, the quasi-static and

related methods seem to be the most likely candidates for improved

transient computational efficiency.

7. 2. 5 The Control Rod Cusping Problem

The control rod cusping problem, discussed in Chapters 5 and 6,

requires additional investigation. The approximation suggested in

Section 6. 3 is a crude fix-up, at best. Two approaches to this problem

seem possible. One approach is to allow cross sections to be space-

dependent. This approach requires significant modification of the

Analytic Nodal Method, since the analytic solution to the flux-leakage

coupling equations becomes very difficult to find. One could represent

the spatial dependence of the cross sections as source terms in the
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one-dimensional flux equations, Eq. 5-4, by expanding the fluxes in

polynomials.

However, representing the space dependence of cross sections

within a node seems overly complicated and unnecessary. If one could

devise rigorous methods for determining spatially constant equivalent

homogenized parameters, the rod cusping problem could be solved with-

out resorting to space-dependent cross sections. This approach appears

to be the most promising.

7. 2. 6 Feedback Models

The thermal-hydraulic feedback model used .in this investigation

was quite simple. Hence, it was not possible to evaluate the effective-

ness of the numerical techniques in certain feedback environments

(e. g. , boiling regimes). In particular, it is not known if the steady-

state iterative process will be convergent when coupled to BWR thermal-

hydraulic models. At present, there is no reason to believe that the

methods are not applicable to BWRs, but numerical experience is more

reassuring than conjecture. The effects of coupling the Analytic Nodal

Method to realistic BWR (and PWR) feedback models should be investi-

gated.
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Appendix 1

DERIVATION OF EXPANSION FUNCTIONS FOR THE
QUADRATIC TRANSVERSE LEAKAGES

The particular form of the approximation to the shape of the trans-

verse leakages is given by Eq. 2-14,

[S. () =[ ] + ([ [ )
u.9, m~nM, u e-l,m nm nu

+l[u )pt+1(u) ; u = x,y,z , (A1-1)
A+1,mn A,m,n A

where lhihmhn is the average net rate at which neutrons
ASY,m,n Uv w

leave node (A,m,n) through the faces transverse to direction u, and

the p's are quadratic expansion functions. The ph- (ical conditions

which are impoeed on the leakage expansion is that it preserve the

average transverse leakage in each of the three adjacent nodes. These

conditions uniquely determine the expansion functions. Mathematically,

the conditions impose the following constraints upon the expansion

functions:

C uA+A'+1 AA1g ig11du Pu (u)=61,e; u=xyz
h uA+ u A .9

u+' = -1,0,1

Al-i



where the Kronecker delta is defined by

2 ' = A"
6 , 

= ; ' *A"

If a spatial variable is defined,

t1= U -U

the expansion functions can be expressed as

A-ip (u)
LI'

1+1p (u)
U 1

=a. +b u

=a + b u
Ihu

+U

+ c .
U/u

(A1-3)

Using the notation of Sims (15), alternate mesh spacings are ;efined

to be

h sh1
hm u

h Sh ,(A 1-4)

h =hp u

and another useful quantity, d can

du, =4( 'hmh + h(.!h 2h +

be defined as

} hmh2

h2 (-!h + hmhp+ h h3) + h(-! h3h2
6 m p 2 m p 6 m p/ 6 m p

(A1-5)

A 1-2

+ h 2 h3)



Application of Eqs. A 1-2 to the expansion functions in Eqs. A1-3 pro-

duces the following values for the expansion coefficients:

d au1 =h4 (1hmhp) +h 3 (1hmh2) +h2 (1hmh3)

d b =h4 (- hh)+h 3 (- h h2) +h 2 - 1 hmh 3 )
u u , 3mp m p 3m p

dujcu =h4 hmhp) + h3(hmh

(A i-6)

d a = h 3 -. !h2 h + h2 (-.1h 3h

d b+ =h4 (-thmhp) +h 2 (1h 3 h
u .9 \ 3 mp 3 m P/

d c+ = h 4 (hmhp)+h 3 (1 h2hp)

Equation A1-6 demonstrates that the desired expansion functions are

uniquely determined by the mesh spacing in the u direction. For the

case of uniform mesh spacing, he expansion coefficients are given by

a r

b J1
u .

- 1

(A1- 7)

a+

bu =0

C+ 1
u 2*

A1-3



Appendix 2

DERIVATION OF SPATIAL COUPLING EQUATIONS

The differential equation which specifies the relationship between

node-averaged fluxes and face-averaged net currents for the quadratic

transverse leakage approximation is given by Eq. 2-17,

d1dt .11u pMSn
(t1 )]+ [Nim n]u (ti)] = uS'm(t)I

I,m,n.Mmn

u = x,y,z

where

U.9 (tm lp )1i = colf([o u.,AM., n [J lM., n (t)]}

(A2-1)

[N 1 ] =
[0]

[ET 1-4[x][vEf TI
LA ,m,n , m,n

11[D 1 ]I

[0]j

t
[S' (t ) =col 10) ,1 [S ] - S )

U.,mn,m,n UI,m,n h.

[Sq t .2

UA $m .n h.9

t u-u ,

and the transverse leakage source term has been split into "flat,"
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"linear," and "quadratic" componer , defined by Eq. 2-18.

The general solution to Eq. A2-1 is determined by finding particu-

lar solutions, [o m (tA)1 , corresponding to each of the three com-
A 

I,m,n

ponents of the transverse leakage source term and superimposing the

particular solutions on the homogeneous solution, [ (t91. The
Am,nn

three particular solutions to Eq. A2-1, on the interval 0 <tA < hu 

subject to the boundary condition [O ,,(t=0)]= 0 are

[A f,(m,n '[N '[N1 ]t A ,m,n

(A2-2a)

, (tA)i= [N it,[I- [N ,m

-[N9n]t
X ( [I] - e [S, m, n ) [ ,n (A 2-2b)

A ,m, n

[q (t ) 1 = [NA mni (t2-[Ii-2[N n1(tA[Ii
A1, m,n

- [N, i([I] -e[NAm,ntA [s
, m, n uAnn

(A2-2c)

The homogeneous solution to Eq..A2-1, on the interval 0 < t < h.,

subject to the boundary condition [D h m (t= 0)] = [ (uAI, is

-[NA ]tA
[0h (t)= e [N m.n ] [c(uA)i . (A2-3)

A,m, n

A2-2



Combining the particular solutions from Eqs. A2-2 and the homogeneous

solution from Eq. A2-3, yields an expression for ['u (k)I:

[u(t9 = e
-[Nm n

I tl
[(u 1 ) + [N. , I0(H - e [ 1 ,m,n]ti

x [s+ 1 4[Nt nf (t.[I]- [N1  n
A,m,n hu

x([I]- e [mN nIA)} [s]n
1 Y, m. n -

+ 2 [NA I1(t2[III- 2[N mn (te[I]

(hU)

- [N ([I] -e[N, m,n'
-[NI m J]tI))}[Sq , 0iU1m9nm

Likewise, the three particular solutions to Eq. A2-1, on the inter-

val 0 < t h < hu 1 subject to the boundary condition [u -i (t_

1-1 1-1,Mn
h )0 are

[N ](t f- A) a

(A2-5a)

[9 (t _1)]-IN 1 m ] t iI
1m n hu . .1

hu -N i - ,nI(t hu ) IN

-[N1m (t -h.1')
X([ e 'm [S-11

-1,im,n

(A 2--5b)

A2-3

(A2-4)

[g~ ~ ~~~( f t ) N]I[l-e



Combining the particular solutions from Eqs. A2-2 and the homogeneous

solution from Eq. A2-3, yields an expression for u (t)}:

[0u (te) [ = e[Nm,n [D (u)]+ [N2 11[I-e[ Amn]e
, m,n

x([l] e[Nmi) u , m,n

+ [ 2 S N mi j[I -L [IN ] m 9[I(h ) *1 S.) [SLJ

+- NiiNl'(IIIII [e]NimN tk))}[[s

[N ] ([I] - e-[N Pnt
Y. ,M., niu

(A 2-4)

Likewise, the three particular solutions to Eq. A2-1, on the inter-

val 0 < t _ < h subject to the boundary condition [uil (t t =

A-1 -1,m,n
h )l= 0, are

S1f(t 
f[N

x [S,]

Is -,m n(t ) 1 N 1,m ] t_9
u lm-n h -A-1,mn

u

-[N] - NA-,m

(A2-5a)

- [N 1Mn

- [N I(t 0 h-1 )
X ([I]--e'M., n f-l u [

"-'1,m,n

(A2-5b)

A2-3

-- p --- jv



[ q (t _) =[N 1 ~ ] t _1 2

u

-h 2e-[N 1,m Pn (t _ -h )
2[N mn

x (t _1 [I]-h 2 1 e

- [NA 1 ' i

X [Stim .
u 1,M., n

(A2-5c)

The homogeneous solution to Eq. A2-1, on the interval 0 < t_ <h1
u

hA-subject to the boundary condition Ou pMAn(tiih U)]=10(uA9)] is

-( )A -1,m~n A-1 u [cx'u) .S= e

p

(A2-6)

Combining the particular solutions from Eqs. A2-5 and the homogeneous

solution from Eq. A2-6 leads to an expression for [om(t
A R-1,,n

[0u
I -1,0 MJn

(tf-1)]=
-[N 2  ](t - l)

e -1,M,n 1-[(u)]

+ [N(t
+ A[N - mn [I] A- 1 mn t-

u [IA m i h [N1 -1, M,n]

00h ie m l ]n 21 u u -[NA 1'm, n1

A2-4



[N] -,m n(t_ -1)

[N-, n -t [I

)x ( [I] -e

+ 1

u -1, m, n

-1

2[N ,m n (t _,[I]-h e-N41 , n (t_-h

-*[N1 1nn(t1 -h- )
A-1,m n A-1 U )) J -1,mn

(A2-7)

Integrating Eq. A2-4 over the interval [0,hu] and dividing by h. gives

the result

) = [N [I - -[N ]h I e u)

hu

+ [N ] h [I]-[N
U. SI uM

+u[ 1IuI~ N 1(i

[N ]h j

x [s
umn 1 2 [NMf

(ha)

h1

- [Nh ,n,n h [I]l-[N inn'([I]

- -[Niin]i<}) [StiniI 
m

S [N( 2 [-[N

h I
1 + [N 1)i

I1 (1hI

- [Nsf[[I1-e I. (A2-8)
-[N1,, 1, m~ u]))[Sq

Uf M.n'

A2-5

1 ,m,n

-[N 1,m~n 1( I



Likewise, integrating Eq. A2-7 over the interval [0,h 1 1 and dividing

by hu~- produces the result

u 
I

u

+h' [N 2 1 , m, n' {hu [II+ [NA1 m, n i
u

[Nh e -1m,n u ) Sf-,m,n I

+ [N. 1  i-i{(u ) [ 1

h .- 1 [N -1,-.mMnn2
u M,

+ h' [N ~ ,mn 1 I - iie[NAH1, m,n'hu )

- [N 1 , m , nf1(h ' [I]+ [N , m , (

e I

0 me (h I.-1)3

3 . IN I- 1,m ni 1 u 3

+ 1h 1 [N A 1 , f), [ - 1u M '3
,m,nlhu

-2[N ,m,n-hu [I+h 1 [N

[N ]h.91
+[N f ([I+e1,mn u .q

.9-1,m, n [u- 1,m, n

(A2-9)

A2-6

.9-1
M., n h u

IS)I

-I h N1- 1,Mnl [ NI] - ,mnh



Using the definitions of the hyperbolic functions and the identity

{sinh [N]1 {[I]- cosh[N]} = -{tanh [N/21},

multiplying Eq. A2-8 by {sinh [N 2 min j}, and adding the result to

Eq. A2-9 multiplied by {sinh [N-1,mni}' yields

hlh 9 mhI-i
-t anh[N R - tanh[N 1 ,n U2 u)

= (sinh[Nim nh) [NS

siih [Ne-,m,n h

-(sinh[NAIMSn]hU) hj

n, n h u I

[N 1 ,mn]hu -1,m, n

X [S A , m n + sin h [N -1 ,.m-n)hh u [I

[ ] -1

+ [N ln (III e[N -1,m,n]hU }[f
A~~ -I - 1. , n

-(sinh[N nh-)
u

a Mhn[I

- [N 2 I n1 ([I]-e
[N2 Mh.n

+ (krlvr, .]h 2 1

u

X([I]-e
[N2  m lhk-l.,M ,n u ) -[N - , n

+ [N ]1 ([I]-e

Iu? ,m, n

h [I1+1<1 [N 1 ],2

I'hu'1[1i

M,n u
) I IsU.9 - 1,1 m ,n

I -

A2-7

-[N ]h >1

(h-2
U)
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3 2

1 h"u -1h_

- -htsinh[N ] I 2[N0 mjn 2

-IN ]h
-gN Ih)(h(Iu-)Nm 1m-n [

9\0Mmn n ,m,

l h
+u 2 (sinh[N, 1 , m,n]h1-1 u
(ht')u

+ h
2

-2[N .- 1,1) 111[I+ + -hu [NA 1 ~

[N ,M1 ]IM 1 -1
_-e[N -1 ~ u )- [N 1 1 'I[(h '[+[N11u' i- 1, mn

(A2-10)X [I - [N - ,m ]hu )1[ - .
.9-1,M -1,m[n

Equation A2-10 can be cast in a simpler form, as

[(u ) = [Bu

- [B

Ufe -1 ,m, n
-[C+

u 1-1, m, n

- [E+
us 1 ,n

Is - m

1s -1 ,m, n

u -1, m, n

1q m,
us .-1, mno

SM.n

[E I

Is fu R .S1

[S f

[Sq
u

I,

where

A2-8

-amU9-1.,m,n
u 9mn

Im[iu n

I

I

(A2-11)
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At

[A~ ,, n' tanhIIN2 Ii)
u e~m~ R,,M1

M,n

A,m,n

2 (sinh[NiMn]h i [Nm h

2 -(sinh[N ]h )

-,m,nU)]

2
"1 (h-

- 1{(sinh[NIe lh') (h2
hu

[N[C m,

[D - inh[Nh

u

(h' r_

2 [ IJ + h [Ne.M.n]
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.9 M , ue mn3
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1 3
1(h3)

3

2hI[N 
] [D,
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If the matrices of Eq. A2-11 are partitioned into four GX G blocks, and

if one notes that [Au in is block anti-diagonal and [Bu l is

block diagonal (see Appendix 3), the top equation of Eq. A2-11 can be

expressed as

[J u=[A u+A [B [ .,}
1 uR-1,m,n umn 12 u,mn 11 I-mn

+[Au +A 1 [B I [I M
u-1,m,n U2a,m,n 12 u-,m,n 11 S m,n

+ [A +A 1- 1[C_ I [S f

U f-l, M,n u 1 , mn 12 u , M~n 12 u 1I, MPn

[A +A - u[C+ f
uA-1,m,n U,m,n 12 ui-1,M,n 12 ui-1,m,n

+ [Au +A 1 [D- S
uf-1,m,n eu,m,n 12 utm,n 12 ,m,n

-[A +A1-1[D+u9-1, m.n u EM,n 12 u1_,mn u

+ [A +Au j-1 [E [Sq
U1-1,m,n uR,m,n 12 ui,m,n 12 uM,n

- [A +A I 1 [E+ Ij[Sq
A1-1,m,n I,m,n 12 u -1.,m,n 12 u -1,m,n

(A2-12)

An analogous expression can be written for [Ju+, and Eq. A2-12

can be subtracted from it to give an expression for the face-averaged

net leakages,

[Lu mn=-[A u m +A u mnI [B uiI 111 eiMn
u (u +-[,Am,n Aum,n 12 -1,mn +11A mn

+ [A + A ]_ + [A + A u~ X

I e-l, m, n I, m,n 12 X.0 +1,J , n RMn 121
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AY,m.,n 11 m'

[A u+A
mn
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u0 Mn
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u f+l, Mn 12 u e,m, n 121 uR.m.n
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I
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A,in, n 12 2An

]"1 [D+ n1 I [S
8+1,m,n 12 ufM,n 12 u ,n

I

]~1 [DJ I [S
u+1,m,n 12 u+1,m,n 12 uf+1,m,n

A 1 +E+ I [sq
uf I mPn 12 uAI-1,m, n 12 u-, mn

+A fI[E I
Umnn 12 A1,m,n 12

ui+1,nn
1 [E+A[n1 %
12 u IIt,n 12 1 u R Mn

1 [E I [Sq
u+1,M,n 12 uf+1,nn 12 u

I.
e+i, m, n
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Since each of the [SP ] vectors contain specified combinations of

face-averaged net leakages, Eq. A2-13 is an expression relating node-

averaged fluxes and face-averaged net leakages. By substituting the

definitions of [SP ] from Eq. 2-18, Eq. A2-13 can be manipulated
AuM,n

to obtain a much more useful expression,

1 = [F71
Am,n

+ [Gt'1
uAm

uIP m

[G1+1 1
Mm n

S 1, ]+ [F
Ilm, n

][i ]+ A-2[G2-2

[ ]
uA-1,m,n

I [u -1, mn

I+[GAuM

[Gm1+2u S t .

A, m P n'I

A -2 ,m,n

][S U

f+2,m, n

where

[Ftu ,M, n

[F
u ,m,n

u* -1,m, n

[u- 
M.,]n

A u ) 1[B u
1A, m, n 12 A-1,m,n 11

+UA f 1
1 Y,, n 12

[A + Af1[Bu E
I mnun +1, Mn12 Y., m, n 11

[FA1 ] -[A+ A P1 [Bu [uiMn+u+1,mn 12 [u+1,m,n 11

GA - 2  C= A + A 1([C+ a
u ,n [A -1 ,m ,n + um ,n 12 U9-1,m,n 12 u -

+ [D+Abm b + [E+ m 1c
u .1-1,, n 12 u _ -l u i-im,n 12 u.l

A2-12

A ,m,n

I

I

I$
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G 1 umn
*1 [A +A m- ([C+ ] (1-2

L u 1 0m .n 12 u R-1., m,n 12 u _-1

+ (-b a
U- 1 12 u-i

+

.- 1 ,m,n

[ (-ca
U-1,m,n 12uP

Upmn 12 CnM,n 12

+A
uf+1,M,n

f [C+ I)
12 uR,m,n 12

-([A U+AU ] 1 [D I
.9-1,m,n 2e,m,n 12 e,m,n 12

[A +A ]-11 [D+ ] ) b
uImn Ut+1,m,n 12 u e,m,n 12 u2

-A u[ +A u 1" 1[E I]
1.-1MR nuI, MY n 12 um,n 12

+[A +A] [E+ + ) c}
u ISMnu .+1,,n 12 uY.,M,n 112 uI

[G ] -[A +A f 1 ([c+ ] a+
Sum-n I 1um,n , uIMn 12 Uf2-1,m,n 12 u.-1

- bu 9-1M.n12 u2I-1 U[E+us -1,mJ, n'
112 CU

+ [A U +A U1([C-
u ,m, n 12

+[DU ] b.
u( +1, mAn 12 tA

-A (u + A

I
+1,m,n 12

+ [E , 1
U+lmn 12

a
U + 1

m+1
)'

1 [C I
1,m, n 12 2,m,n 12

+[AU +A [C+ )
U1 mn u+1,m,n 12 u2E,m,n 12

-a+ -1 )

uIm,n
a

U)

)

1-a. -a)+
U U
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- ([A +A f' [D
-1ItMmn IuMinn 12 Sim,n 12

+[A U2 nn +iA u2 + 1, M, n
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(-c -uU
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I
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Also recallthat

[S ] -[L V]+ -[L ]
I.,m,n h{7 ,m,n]+ wtm,n

U =x,y,Z

v*u

w u0v.

Equation A2-14 is identical to Eq. 2-19 which was simply stated in

Chapter 2. These relationships between node-averaged fluxes and

face-averaged net leakages are true for any group structure, but the

matrices in Eq. A2-11 remain to be determined. The methods em-

ployed to evaluate these matrices are contained in Appendix 3.

The application of boundary conditions on the surfaces of the reac-

tor slightly alters the form of Eq. A2-14. Application of a zero current

boundary condition on the t2 = 0 surface of node (2, mn) implies that the

analogous equation to Eq. A2-13 is obtained without subtracting

JUS , M, n ,that is,

Um.nI uf+1 ,m,n

The effect of this zero current boundary condition on the "coupling

coefficients" of node (A,m,n) in Eq. A2-14 is equivalent to replacing

[Au +Au ]- by the null matrix.
u9-1.,M,n IsM.,n 12

Albedo boundary conditions are also permitted. The particular

form of the albedo is

(t2 =h)] = [a][Ju (t=hl)I (A2-15)USItM .n Iu Y2,m .n u

A2-15



where [a] is a full GX G matrix. To derive the equation analogous to

Eq. A2-14, the albedo is substituted into Eq. A2-9 to obtain, for an

albedo applied on the t2 =hu surface of node (im,n)

+[A[a] [
u., m, n 12 M+,,n

- [B i [m]+[C+s
UAm,n 11 'mn U,m,n 12 umn

+ [D+ s ] + [E+ [S. (A2-16)
uI,m,n 12 UItmn U,m,n 12 uemn

The net effect of the albedo, applied on the t =hu surface of node

(,mn), on the coupling coefficients of node (,m,n) in Eq. A2-14 is

the same as replacing [Au+1,M,n ] by [a] and all other matrices for

node (+1,m,n) by the null matrix.

From the form of the albedo in Eq. A2-15, it is easy to see that

the zero flux boundary condition is applied by setting [a] equal to the

null matrix. An extrapolated flux (logarithmic derivative) approxima-

tion to a zero incoming current boundary condition is achieved by setting

3dFLtr 0 . . . 0

[a] 0

0 3d Etr
- G_

where d is the extrapolation distance and Etr is the macroscopic trans-

port cross section of group g. Equation A2-14 and the matrces of Eq.

A2-11 completely specify the spatial coupling of the node-averaged fluxes

and the face-averaged net leakages in the Analytic Nodal Method.

A2-16



Appendix 3

EVALUATION OF SPATIAL COUPLING MATRICES

Actual application of the Analytic Nodal Method requires evaluation

of the matrices defined in Eq. A2-11. Each of these matrices is a

2G X 2G matrix whose elements depend only on the properties of a

single node. The essential difficulty in evaluating these matrices stems

from the fact that the exponential of [N1m.n1, as defined in Eq. A2-1,

must be evaluated. [N 1 ,mn] is block antidiagonal with its lower block

being partially comprised of the GX G group-to-group scattering matrix.

In the general multigroup case, it is not apparent how to obtain this ex-

ponential. If the matrix [N m could be diagonalized in some fashion,

the exponential of [N1 mnl would, of course, be readily obtainable.

If the number of neutron energy groups is restricted to a small

number, direct evaluation of the matrices becomes feasible. Since this

paper is primarily concerned with light water reactor analysis, in

which two-group diffusion theory is commonly used, the matrices will

be evaluated directly for the two-group case.

The one-dimensional, source-free, two-group, diffusion equation

for a nuclearly homogeneous region (u < u < u1 + 1 ) can be expressed

as

A 3-1



d 2

du
4 VE

2y

2
D 2 AN"Me 2

du _

= [0] (A3-1)

where

D.N group g diffusion coefficient (cm)

E2group 2 macroscopic absorption cross section (cm )

VEf group g macroscopic fission cross section times nu,

g the mean number of neutrons emitted per fission (cm )

E006group 1 macroscopic removal (absorption plus outscatter)

cross section minus - vE (cm)-

E21 macroscopic transfer cross section from group 1 to
group 2 (cm )

-2 -1
* a group g scalar neutron flux (cm sec )

g

o = critical eigenvalue of global static reactor problem,

and it has been assumed that there exists no upscatter and all fission

neutrons are born in group 1 (i. e. ,S E 0, X1 = 1, x2 = 0). If a

particular solution to Eq. A3-1 exists such that

d 2 o2
0 4(u) -B 0 4(U)

du2
(A3-2)

2 0

then B2 must

d 2
d2(u)j

satisfy the equation

2

02(u)

A3-2
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2[0]. (A3-3)

E 21 -D2B2 _ 2 1 (u)

For a nontrivial solution to exist to Eq. A3-3, the determinant of the

coefficient matrix must be identically zero. This implies that B2 must

have very special values. If the two values of B2 which satisfy Eq. A3-2

are designated i2 and -u2, their values are given by

2 1=1-2++\2 v f 2 2 1 1 / 2
( D1D21 /( 2 D1 yDI2

(A3-4)

02 1r1+S2)+ E L) 2 +v f 2212'

M2 has been chosen such that it will always be positive, and K2 can be

either positive or negative. With two "slow-to-fast flux ratios" defined

to be

E21
r = 2

D 2,c +
(A3-5)

21 -

-D 2 M + E2

the general solution to Eq. A3-3 is then given by

F (u)~ ~1 1~~a 1sin iKu+ a2 cos Ku~

(A3-6)

2(u) r S a3 sinhmuu+a 4 cosh mu

A3-3



Likewise, the current

FJ1 (u) am-Dl

L J2 (u) iL-rD 2

With the definitions

F0(u)

02(u)
[ e(u) ] =

J1 (u)

J.12 (u)j

[P )s

1

r

0

0

1

s

0

0

ve.ctor is gi

-sD2:

0

0

-D 2

-rD 2

ven by

a 1 K COS KU-a Ksin KU

. (A3-7)
a cosh tsu + ag u sinh gu

0.

0

-D 2

-sD 2

(A3-8)

0

sinh gu

0

m cosh gu

0

cosh u

0

m sinh mu

sin KU

0

K COS KU

0

COS KU

0

-K sin KU

0

[Q(u)] 2

[R1] =

7a1

a
2

a
3

a4

2
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Equations A3-6 and A3-7 can be expressed as

[o(u)] = [PI[Q(u)][R].

The inverses of [p and [Q ] both

P I=

~ -1 0

-r 1 0

0 0 -5
1

(A3-9)

exist and are given by

0~

0

1

0 0

1 - (A3-10)

[Q(u)]1 =

sin KU

COS KU

0

0

0

0

-sinh mu

Coen MU

1
- COS KU
K

1.
- - sin KU

K

0

0

0

0

- cosh mu

1 sinh pu

. (A3-11)

Hence, the unknown coefficients of the general solution are

[RI = [Q(u)~1'[PI-1 [e(u)] . (A 3-12)

For a homogeneous region which extends from u. to u.1+ 1, [O(u)] can

be expressed in terms of [0(u1 + 1 )] by applying Eq. A3-9 at u=u and

Eq. A3-12 at u=uQ,+ and eliminating [R] to obtain

[(eU )] = [PI[Q(u1)1[Q(u+ 1)1'[P1 1 [z(ue+ 1)] . (A 3-13)

A3-5

and



With the further definitions, h U 2 +1

[Q] can be expressed as

cCOS Kh

0

K sin Kh

0

0

cosh uh

0

- i sinh 4h

- U and [Q] [Q(u)][Q(u 1e)I

-1 sin Kh
K

0

COS Kh

0

0

- inh mh

0

cosh mh

, (A3-14)

and Eq. A3-13 becomes

(A3-15)

In Appendix 2, an expression was derived which also related [(u 1 )] to

[t(u+1)]. This expression, from Eq. A2-6, is

[e,m,n(uP) = e+[N1 hIu m,n(ue+1)I

which (with the node subscripts dropped since each node is treated

separately) becomes

[(u.)l = e [N]h [4(u+1 *. (A3-16)

Comparison of Eqs. A 3-15 and A3-16 indicates that

e[N]h [p
1

(A3-17)

The matrices [P] and [Q] depend only on the nuclear properties

and mesh spacing of each node; hence, the exponential of [N]h is com-

pletely specified by Eq. A3-17. With this expression for e[N]h$

A 3-6

[QI=

kD(u.,)1= [PI[Qllpl-llo(ue+l)l 0



identities for each of the spatial coupling matrices of Eq. A2-11 can be

derived. Making use of the definitions of the hyperbolic functions, one

finds that

(sinh[N]h) 1 = [P1

0

0

-K csc Kh

0 -cscchK

0 1 cschuoh
JA

0

0

0 -u csch gh

0

0

[I] - cosh [N]h[P]

1-COS Kh

0

0

0

0

1-coshuh

0 1

0

0

0

- cos Kh

0

0

0

0

1 - cosh mh

(A3-18b)

The matrices defined in Eq. A2-11 involve only certain blocks of the full

(4 X 4) matrices; hence, only certain blocks need to be evaluated.

Several identities which prove very useful in simplifying the matrices

are

[N1I -h2

1
2 h

r

K h

1 1

Sh

s

iA h_

(A3-19a)

A3-7

0

0

0

(A3-18a)

_i
(P)

1

lpl22



(sinh [N]h)f [N]1 (sinh [N]h) 1 2 = [AN

(sinh[N]h)2 1 [N]1 ([ I] -cosh [NJh) 2 2 = -(tanh [N))21 [ N 1 12

(A3-19c)

The latter twc identities are easily proven from the fact that

f([N])g([N]) = g([N])f([N])

for any functions f and g which can be expressed as series involving

powers of [N].

Evaluation of the matrices in Eq. A2-11 is by no means a trivial

exercise, but once the algebra has been performed, the following simple

expressions are obtained:

[A] 1 2 =:

-ra -Osp

[B]1 1  r [
r. r

IC 12= [Px xh2
12 L-re S 2

D =+ [ 12 [g :
-rg soj

12

6 s -j]

s6 -1Lr 1_- s-r

r 12

[In - e]

A3-8

(A3-19b)

1[p 122 h 2



[E+ 1 2 = -a :]

-rir sIr

[ r[ p
[E~)12 =

-r~r S P

aS tan(ch/2);

- Eitanh(gh/2)
uh

y IKh csc (ch)';

6 =sh csch (th)

e (2-11)
K h

1

1

S 2T(6-1)

I2 > 0

K2 > 0

21 tanh("/ih/2);

l h

73 KIh csch(7N h);

1)

1)

A3-9

where

[PJ h 2

22

(A3-20)

D2 < 0

K2 < 0

2 h

Ir a 1- 2e)
K h23



h 

= 2 2 +2

tsh

ar r+ 2 2 (2a- 1)

T p + (A3-21)

When vEf is identically zero, s is infinite, and 1'Hospitol's rule

must be used to obtain,

[A] 1 2 =

if-(a-a)
_1

0

h

[ B] 111r(y-6)
--
DT 0

if-(e + )1

0

-0f(9+o)

A3-10

[C ] 12 =

=

h2

h2[ D+12



0

[D-112= h 2
(77+06) -

a0

[E+112=r h2

t-(a+r) T

-- 0DD 2

[E-112 r(f ) & h2 (A3-22a)

2D2

and K , p are given by the simple expressions

K 2 _ma - - ]

(A3-22b)

J2 ma E 1 22

S= max[ ,L .2

When K2h2 or m2h2 approach zero, many of the leading terms in

the Taylor's series expansions of a, A, . . . or cancel, and it becomes

'important to use the expansions rathr than Eq. A2-21. The expansions

for small Kh and ph are

A3-11



2 4
a -- +(h)+ (h)+ ...

24 240

( 1 __(K ) 2 + (h) 4 +2 24 240 ''

6 =( 1  +s) 7 (%) 4 +y + 2 4
S-2 4

1+7(gh)2 31(h)
\+ 360 15120 +...

S_1 + 7 (jh) 2 _3 1(gh) 4 +
\6 360 15120

/1 4(ch)2  73(ch)4

4 k + 720 + 120960+

0 -_ 1 + 4(jh)2 _ 734(gh)4

= 24 720 120960 +

G1+ )+ 175&(h) +
8 72 120960 * /

0 _1 +( h) _ 175 (jh)4 +

8 72 120960

(1+36(h)2+ 478 (Kh)4 +
S + 15120 1814400

S+ 36 (gh)- 478(sh)4+
\ 60 15120 1814400

2 4
(1 162((h)2+ 2008 (ih)
\T6 15120 1814400 +

= (_1 162(tsh)2 -2008(h) 4

10 15120 1814400 +

A3-12

(A3-23)



Equations A3-20 - A3-23 completely specify the spatial coupling

matrices. From the definitions of K2 and m2 in Eq. A3-4, it is apparent

that all of the matrices depend on the eigenvalue of the global static

reactor problem.

The matrices required for a one-group model are equal to the (1, 1)

elements of the matrices in Eq. A3-22a, with D= D.

A3-13



Appendix 4

DESCRIPTION OF TEST PROBLEMS

A4. 1 The LRA BWR Kinetics Benchmark Problem

A4. 2 The IAEA PWR Static Benchmark Problem

A4. 3 The BIBLIS PWR Problem

A4. 4 The TWIGL Seed-Blanket Reactor Problem

A4. 5 The LMW LWR Test Problem

A4. 6 The IAEA Benchmark Problem No. 2b (One-Group)

A4. 7 The Zion 1.PWR Problem
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A4.1 THE LRA BWR KINETICS BENCHMARK PROBLEM

Geometry:

Quadrant of Reactor Horizontal Cross Section

16

y (cm)

5c

135.

120.

105.

75.

ax

15.

0.

0. 15.

I9 =0

75. 105. 120.135.

__________________ _______________5

3
4

22 ' R

1 3

2 ~ 2__ _

$ =0
A g

x (cm)
165.

S=0

Dy

A4-2
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Vertical Cross Section, y = 0

z(cm)

S
- Y Y.

360.

330.

-- =0
3x

30.

0.

105. 135.

cg =0

x(cm)

2 1 2 3 S

0. IS.

S

75. 165.
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Material Properties

Composition

1

2

3

4

5

Group, g

1

2

1

2

1

2

1

2

1

2

D
g

(cm)

1.255

0.211

1.268

0. 1902

1.259

0.2091

1.259

0.2091

1.257

0.1592

a
g

(cm

0.008252

0.1003

0.007181

0.07047

0.008002

0.08344

0.008002

0.073324

0.0006034

0.01911

E f
g

(cm )

0.004602

0. 1091

0.004609

0.08675

0.004663

0.1021

0.004663

0.1021

0.0

0. 0

Axial buckling of 10 cm-2 for all compositions in
2-D problem

X 1 1.0 , X2 = 0.0

v =2.43

7
V 1 3.0 X 10 cm/sec

v2 = 3.0 X 105 cm/sec

A4-4

E 2 1

(cm )

0.02533

0.02767

0.02617

0.02617

0.04754



Delayed Neutron Data:

Family, d d xd (s )

1 0.0054 0.0654

2 0.001087 1.35

Adiabatic Feedback Data:

a3
a E(.r,t)][O(r,t)] = F T(r,t) ; a1 = 3.83 X 10 0K cm3

E (r,t) = E a (r,0){1+a 2(T(r,t) -NT)};

3
a2 =2.034 X 103 0Ki

To= 300*K

Energy Conversion Factor:

Power = e f [..rt)1[4(r,t)ldr ;

Vore _'11
e= 3. 204 X 10 Ws/fission

Transient Initial Conditions:

Mean power density at t = 0, 106 W/cc

Fuel temperature at t = 0, 300*K

Perturbation:

3-D: Control rod (R) removed with velocity of 150 cm/s

2-D: Control rod composition (R) is given by

E (0)(1-0.0606184- t); t <2.0 s

2 E (0) (O0.8787631) t > 2.0 sa2 ; >2.O
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A4. 2 THE IAEA PWR BENCHMARK PROBLEM

Geometry:

Quadrant of Reactor Horizontal Cross Section, Axial Midplane

y (cm)

170.

150.
J n=0

g
130.

1104.

90.

70.

50.

2
30a. 3$

=0 
-9

10. 
3y

0. 10. 70. 90. 130. 150. 170.
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Vertical Reactor Cross Section, y = 0

z (cm)

ii

380.

360.

280.

-a =0

20.

0.

4 5S

3*

4

2

5S

3

al. L aD4

0. 10. 70. 90.

*Position of partially-inserted rod:

30.<x<50., 30.<y<50.

130. 150.
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Material Properties:

Composition

2

3

4

5

Axial buckling of
problem.

X= 1.0 , X2 = 0

0.8 x 10,4 cm- 2 for all compositions in 2-D

A4-8

Group, g

2

1

2

1

2

I

2

I

2

D
g

(cm)

1.5

0.4

1.5

0.4

1.5

0.4

2.0

0. 3

2.0

0.3

a
g

(cm~)

0.01

0.08

0.01

0.085

0.01

0.13

0.0

0.01

0.0

0.055

i/Sf
g

(cmi)

0. 0

0. 135

0.0

0. 135

0. 0

0. 135

0.0

0.0

0. 0

0.0

E21

(cm~I

0.02

0.02

0.02

0.04

0. 04



A4.3 THE 2-D BIBLIS PWR PROBLEM

Confidentiality considerations prohibit general distribution of

the BIBLIS problem specifications.

A4-9



A4.4 THE TWIGL TWO-DIMENSIONAL SEED-BLANKET
REACTOR KINETICS PROBLEM

Geometry:

Quadrant of TWIGL Reactor

80.

56.

ax =0

24.

0

* =0
y(cm)
I

0. 24. A
-=0

By 
0

56.

* =0

x(cm)

80.

A4-10

3

2 1

23

-ML



Material Properties:

Composition

1

2

3

Group, g

1

2

1

2

1

2

D E
g ag

(cm) (cm 1 )

1.4

0.4

1.4

0.4

1.3

0.5

0.01

0.15

0.01

0.15

0.008

0.05

x 1.0, x2 =0.0

v =2.43

V= 10 cm/s

v2 = 2 X 10 5 cm/s

Delayed Neutron Data:

Family, d

1

Perturbations: In composition 1,

d 0

0.00075

Step: AE a = -. 0035 cm 1 ;

Ramp: E a M E a (0)11 - 0 11667 t} ;
a2

Ramp: a2 (s(0) (.97666) ;

A4-11

g
(cm~m)

0.007

E21

(cm )

0.01

0.2

0.007 0.01

0. 2

0.003

0.06

0.01

d (s~ )

0.08

t =0

t 4. 2



A4. 5 THE LMW LWR TRANSIENT PROBLEM

Geometry:

Quadrant of Reactor Horizontal Cross Section

110.

90.

70.

=0ax
50.

30.

10.

0.

y(cm)
a

2

2

Rod group 2

1 Rod group

2 F

30.0. 10.

4

3

fl-

2

0.

ay

70. 90.

A4-12

9 =0

+x(cm)

110.

a - A-AL

v



Vertical Cross Section

z(cm)

200.

180.

100.

- =0

60.

20.

*0.

Initial rod positions

-- a

2 4 2 2 4

Rod
group2

2 2

od group 1

4

A4-13

Final rod positions

2 4 22 4

Rod
group 1

2 2

od group 2

z(cm)
4

=0

x

$p =0

3 $'
-x 9=0



Material Properties:

D

Composition Group, g

1 1

2

2 1

2

3 1

2

4 1

2

(cm)

1.423913

0.356306

1.423913

0.356306

1.425611

0.350574

1.634227

0.264002

Ea

(cm )

0.01040206

0.08766217

0.01095206

0.09146217

0.01099263

0.09925634

0.002660573

0.04936351

VE f

(cm )

0.006477691

0.1127328

0.00647769

0.1127328

0.007503284

0.1378004

0.0

0.0

21

(cm )

0.0175555

0.0175555

0.01717768

0.02759693

= 1.01, x2 =000

= 2.5

= 1. 25X 107 cm/s

= 2.5 X 105 cm/s

Delayed Neutron Data:

Family, d

1

2

3

4

5

6

Od

0.000247

0.0013845

0.001222

0.0026455

0.000832

0.000169

A4-14

xi

v

v
1

V
2

xd (sa1)

0.0127

0.0317

0.115

0. 311

1.40

3.87



Energy Conversion Factor:

3.204 X 10- 1 Ws/fission

Perturbation.

Rod group 1 removed at 3.0 cm/s. 0 4 t 4 26.666 s

Rod group 2 inserted at 3.0 cm/s, 7.5 4 t 4 47.5 s

WIGL Thermal Hydraulic Parameters:

16 -1 --
C 2.46 X 10 ergs gm1*K

7 -1 -
Cc =5.43 X 10 ergs gm OK*

p = 10. 3 gm cm-3

6 -1
W = 2.2 X 10 gm s

7 -2 -1~ -1
h = 2.71 X 10 ergs cm s *K

= 2.95 cm

U =2.2 X 106 ergs cm-2 sl1OKi

Vc/(Vc +Vf) = .559

r = 0.0

anCH\ 7 -
1.60 X 10 -ergs cm- K'

8TC

Pressure = 1.53 X 107 pascals

Coolant inlet temperature = 533*K

Initial power = 184.8 Mw (t) (quarter-core)

A4-15



Macroscopic Cross Section Derivatives:

Parameter,

-1D1

-1

2

cl

vS1 2

VE f2

VE f 2

fE1

f2

21

S2i

aE_
opc

+0.41

+2. 7

+2.83 X 1C-3

+1.4 X 1C-2

0.0

+4. 132 X 1C

0.0

+1. 7 X 1C

+2.4 X 102

or:
atc

-8.0 X 10 5

-1. 3 X 10-3

+3.0 X 1C-6

-8.2 X 10-6

0.0

-2. 017 X 10'

0.0

-8. 3 X 10'6

-1.5 X 10' 6

8E
agf

-6.6 X 106

-2. 6 X 10-6

+3. 3 X 10

-3. 8 X 10'

0.0

-2.43 X 10

0. 0

-i~ox-1. 5 x10

+8. 5 X '10 e

p= 7961 g cm 3

fc* = 5330K

Tf = 5330K

A4-16



A4. 6 THE IAEA TWO-DIMENSIONAL BENCHMARK
PROBLEM NO. 2b (ONE-GROUP)

Geometry:

Reactor Cross Section
y(cm)

86. 1

68.

43.

18.

0.

0. 18.

= =0
az-a-__m

48. 78. 96.

Material Properties:

Composition

1

2

3

4

5

D(cm)

0. 6536

0.7042

0.55556

0.55556

0.43478

La (cm ')

0.07

0.28

0.04

0.15

0.01

VE (cm )

0.079

0.0

0.043

0.0

0.0

v = 2.43

A4-17

S

4 3

S 5

1-

S

X (cm)



A4.7 THE ZION 1 PWR PROBLEM

Geometry:

Quadrant of Zion 1 Reactor

y(cm)
I

4

2

4

4

4

2

g =

4

4

13 2 312

2 3 2 3

5

3 3 4

3 2 3 2 3 2 4 4

2 3 2 3 2 3 2 4

3 2 3 2 3 2 4 4

2

-+ +10 .8 04

3 2 2 3 2

2.8575 --
,621.608 18.75 5+

- =0

A4-18

ax

* 

=0

0

l x (cm)

d*

L - L -0 1 0---& -A--

qp



Material Properties:

Composition

1

2

3

4

5

Group, g

1

2

1I

2

1

2

1

2

1

2

D (cm)

1.02130

0.33548

1.4176

0.37335

1.4192

0.37370

1.4265

0.37424

1.4554

0.28994

S (cm')

0.00322

0.14596

0.00855

0.06669

0.00882

0.07606

0.00902

0.08359

0.00047

0.00949

VE f (cm 1 )

0.0

0.0

0.00536

0.10433

0.00601

0.12472

0.00653

0.1412

0.0

0.0

5 2 1 (cm'

0.0

0.01742

0.01694

0.01658

0.02903

X 1 =l.0, X 2 =00

v = 2.43

A4-19



Appendix 5

NORMALIZED STATIC POWER DISTRIBUTIONS

A5.1 2-D LRA BWR

A5.2 2-D IAEA PWR

A5.3 2-D BIBLIS PWR ("Rods In")

A5.4 2-D BIBLIS PWR ("Rods Out")

A5.5 3-D LMW LWR

A5. 6 3-D IAEA PWR (VENTURE Reference)

A5.7 3-D IAEA PWR (IQSBOX Reference)

A5.8 3-1D LRA BWR ("Rods In")

A5.9 3-D LRA BWR (Quarter-Core, "Rods Out")

A5. 10 3-D LRA BWR (Full-Core, "Rods Out")

A5.11 2-D Zion 1 PWR

A5-0



Figure A5-1. Normalized assembly power
densities and errors for the 2-D LRA BWR
(Problem A4. 1). "Rods in" configuration.

Reference

QUANDRY errors (4) 15 X 15 cm
cU'

2. 161

+.14

1.328

+.08

1 4

1.621

+. 12

4 I 4

1.852

+.05

2.051

+.10

1.679

+.06

4. 4 4.R

0. 8643

+012

1. 152

-. 09

1.339

-. 07

1.422

+.07
_ _ _ _i 1 4I+I

0. 5524

+.04

0.6782

-.03

0. 8432

04

1.022 1.221

-. 08

I 1i i t v

0.4240

-. 02

0.4921 0.6181

-. 03

0.7826

-. 05

0.9667

-. 08

1. 173

-. 17

____ I. I. I' -I I 1'

0.3995

+.03

0.4067

-. 07

0.4904

-. 08

0.6705

+.07

0.9398

-. 09

1. 151
-. 17

1.281

0.8465
-.01

0.9716

+. 19

0. 9325

+.02

0.8530

-. 01

0.8268

-. 04

0.8672

+.05

0.6122 0.4402 0.4130 0.5118 0.7902 1.386 1.661 1.481 0.9242

+. 07 -. 09 -. 07 -. * 10 -. 18 - +.* 12 - -. 09



AeJ L

Figure A5-2. Normalized assembly 'power
densities and errors for the 2-D IAEA PWR
(Problem A4. 2).

Reference

QUANDRY errors (%o) 20 X 20 cm
10 X 10 cm

1.4351

-. 43

-. 15

1. 4694

-.23

-.10

1 1929

-.08

-.08

0.4706

-. 21

+.04

0. 5849

+.24

+.32

4 1.

0.6856

+.76

+.10

0.5972

+.94

+.30

i i4 i

0. 9670

+.06

-. 03

0.9064

+.20

+.07

0.8461

+050

+018
T t I 4

1.3451

-.08

-. 08

1. 1792

10

.02

1. 0705

-.05

+.05

0.

+0

+0

9752

07

06

0.6921

+059

+.29
4 4 I 4 1 A.

1.4799

-. 26

-. 13

1.3149

-. 30

-. 07

1.0697

.07

-.07

1.0361

-. 11
-.01

0.9504

+.03

+.05

0.7358

+044

+.14

0.7456 1.3097 1.4537 1.2107 0.6100 0.9351 0.9343 0.7549

+.04 -. 51 -. 53 -. 39 -. 08 +001 +.02 +.20
-. 13 -. 13 -. 12 -. 14 -. 05 -. 02 +.05 +.12

w

IrL

---..



Figure A5-3. Normalized assembly power
densities and errors for the 2-D BIBLIS PWR
(Problem A4. 3). "Rods in" configuration.

Reference

QUANDRY errors (%)
~23 X 23 cm
~11. 5 X 11.5 cm
~7.75 X 7.75 cm

1. 189
+.77
+.08

1. 232
+2.59

+. 16
a -

6. i

1.001
+1.44

______ I. + I- -I

1.364
-. 05

1.126
+.02

0.8844
+.69
+.06
+.01

____a__1 4f4 4

1.471
-. 49

1.360
-. 83
-. 07

1.230
-. 01

0.7798
.35

01

____________ I. f 4 4 4 t

1.574
-. 87
-. 06

1.538
-1.08

-. 07

1.550
-. 60

1.197
-. 77
-. 08
-. 08

0.9206
27
02
01

1.576 1.570 1.704 1.562 1.236 0.9136 0.8367 0.7141
-1.23 -1.02 -7 5 -76 -73 -. 5 0 -. 02 -16

-. 13 060 -.0 -.06 - -.04 -.01 -
-. 06 - -. 06 - .- -

0. 6943
+1.80

+. 17
+.06

0.8242
+2.37

+.22
+.05

0. 5593
+1.22
+.07
+.02

0.4242
+.23
+.02
+. 02

0.3477
+1.93
+.20
+. 06

0.4502
+1. 11
+.07
+.02

0.6258
-. 11

0.7326
-. 17
-. 01

CA



Figure A5-4. Normalized assembly power
densities and erirors for the 2-D BIBLIS PWR
(Problem A4. 3). "Rods out" configuration.

Reference

~23 X 23 cm

~11.5 X 11.5 cm-

1. 117

-. 72

1. 133

-. 89

+.09

1.223

-. 49

+.08

1. 124

+.44

-. 09

1.067

-. 57

+.09 -

1.202

+1.91

-. 08

* .9

0.9942

+.99

-. 07

1.032

-. 19

0.6863

+.79

-. 19

0.8765

+1.54

-. 06

i I I I

1. 161

-. 09

1.039

-. 10

0.9509

+.46

.03

0.7653

+.64

-. 03

4 I I t t

1. 122

-. 36

1..104

-. 64

+.09

1. 120 0.9232
-. 29

+.03

0.9308

+.31
-. 02

1.071
-. 09

,BIL
/

0.5459

+1. 15
-. 02

0. 8240

+. 53
-. 01

0.9694

-. 10

-. 01

1.090 1.101 1.242 1.220 1.088 0.9812 1.094 1.013

-1.02 -. 92 -. 73 -. 66 -. 55 -. 32 -. 18 -. 20

+.09 +.09 +.08 - - +.04 -

QUANDRY errors (%)

C,'

______ *1 1. 4. 1~ 4 t

CL



Figir: A5-5. Normalized assembly power
densities and errors for the 3-D LMW LWR
problem (Problem A4. 5).

Reference

QUANDRY errors (%) 20 X 20 X 20 cm

1. 5894

-.14

1.1228

-.01

0.8597

+.28

0.4345

-. 15

i i.

0.9801

+. 16

0.6274

+.34

4. .3 .3

1. 3959

-. 11

1. 0833

+.01

0. 7083

1.5542 1:6544{ 1.4401 0.9801 0.7268

-. 16 -. 16 - 15 a-.01 -. 01

CA
I

Ln

IrL



Figure A5-6. Normalized assembly power
densities and errors for the 3-D IAEA PWR
(Problem A4. 2). (VENTURE reference.)

Reference

QUANDRY errors
( 1,)

20 X 20 X 20 cm

10 X 10 X 20 (10) cm

0. 597

+933

+029

___ ___ 9

0.476
-. 13

+0 15

0.700

+069

.1 4 4

1. 178
-. 03

+.08

0. 972

+.04

0.923

+. 16

0.611

+.69
-. 09

0.866

+.34

4 I I 9

1.368

-. 13

+.09

1. 311

+.05

1. 181
-. 08

1. 089

09

1.000

-. 14

-. 15

______ 1 4 1. I t I

1.397

-. 33

+.06

1.432

.22
-...5

1.291
-. 25

1.072

-. 13

-. 07

1.055

-. 23

-. 08

0.976

-. 28

-. 25

0. 711

02

-. 40

0.757

33

63

0.729 1.281 1.422 1.193 0.610 0.953 0.959 0.777

+.30 -. 38 -. 41 -. 24 +.12 -. 11 -. 21 -. 62

+.23 +005 +.08 +.07 +.22 -. 09 -. 17 -. 71

Ln

IrL



Figure A5-7. Normalized assembly power
densities and errors for the 3-D IAEA PWR
(Problem A4. 2). (IQSBOX reference.)

Reference

QUANDRY errors
(0)

'IL

20 X 20)X 20 cm

10 X 10 X 20 (10) cm -

0.475

-. 27

+.36

0. 597

+.33

+029

.3 r

0.699

+.83

+.15

4. 9i

1. 179

-. 12

0.972

+.04

0.923

+0 16

0.608

+1. 18

+.40

0.864

+057

+. 24

I I + I t

1.369

-* 20

1.311

+.05

1. 181

-. 29

1.088

+.06

______ I I I I

1.398

-. 40

1.432

-. 22

1.292

-. 33

-.07

1.072

-.13

-.07

1.055

-.23

-.08

0.997

+0 16

+015

0.974

-.07

-.04

0.707

+. 55

+. 16

0.753

+.20

-. 10

0.729 1.283 1.423 1.195 0.610 0.954 0.958 0.773

+.30 -.53 -.48 -.41 +.12 -.21 -.11 -. 10

+.23 -.11 - -.10 +.22 -.20 -.06 -. 19



Figure A5-8. Normalized assembly power
densities and errors for the 3-D LRA BWR
(Problem A4. 1). "Rods in" configuration.

Reference

QUANDRY errors 15 X 15 X 25 (15)cm-

0.5524

+.03

2.1607

+014

1. 3319
- 24

4 i.

1. 6216

+.08

i i __ __ _

1.8515

+.07

2.0505

+.13

1.6796

+.04
I I1 i s

0.8643

+. 13

1.1521

-. 09

1.3394

-. 09

1.4215

+.14

4 i i- I *

0.6782

-. 02

0.8434

-. 04

1.0224

-. 06

1.2211

-. 08

I I I t t 1

0.4240

-. 02

0.4920

+.02

0.6181

+.02

0.7826

-. 04

0.9667

-. 07

1.1726

-. 11

______ 1~ I I I t I

0.3995

+.02

0.4067

-. 09

0.4904

-. 08

0.6703

+.10

0.9397

-. 07

1.1506

-. 11

1.2806

+.05

1 4 tI t t 1 1

0.6118

+.08

0.4403

-. 13

0.4131

-. 10

0.5119

-. 11

0.7901

-. 17

1.3844

+.07

1. 6599

+.14

1. 4807

+.o'

_____________ I _____________ _____________ a. .s a _____________

00

0.8484

-. 24

0.9719

+.16

0.9324

+.03

0. 8528

+.02

0,8266

-. 02

0.8669
-. 01

0.9239

-. 05



Figure A5.9. Normalized assembly power densities and errors
for the 3-D LRA BWR (1/4-core). Rod out" configuration.

_______ r r r T T

0.3589
-. 41

0.3851
-. 33

0.4701
-. 24

0.6425
-. 06

0.8968
+006

1.1358
+.40

1.1805
-. 21

I + f t t I

0.5686
-.36

0.5631
-. 30

0. 6702
-.*34

0.9427
-. 20

1.4256
+014

2.0807
+.10

2.482
+.22

1 2.5842
-. 28

0.6290 0.4984 0.5571 0.8155 1.4146 2.6809 3.6004 4.0389 2.6072
-. 21 -. 34 -. 23 -. 16 -. 19 +.04 +.19 +.42 +.04

0.5222 0.4053 0.4524 0.6795 1.2292 2.4359 3.4237 4.1094 2.8021
-. 25 -. 29 -. 16 -. 11 -. 18 -. 02 +.16 +.39 +.45

Reference 0.2996 0.2911 0.3515 0.5230 0.8620 1.4071 1.9793 2.4908 1.7871
QUANDRY errors(%)- -.44 -.15 -.20 -. 11 +.14 -. 02 - +.10 +.14
15X 15X25(15) cm ------

0.1923 0.2093 0.2645 0.3824 0.5807 0.8522 1.1774 1.5305 1.1188
-. 36 -. 29 -. 17 -. 04 -. 03 +.02 -. 07 -. 23 -. 07

0.1478 0.1630 0.2060 0.2908 0.4252 0.6016 0.8101 1.0397 0.7568
-. 41 -. 32 -. 23 -. 13 -. 13 -. 12 -. 19 -. 29 -. 21

0.1458 0.1465 0.1767 0.2490 0.3762 0.5587 0.7219 0.8448 0.5899
-. 44 -. 27 -. 34 -. 30 -. 12 -. 25 -. 32 -. 27 -. 31

0.1928 0.1517 0.1675 0.2390 0.4008 0.7307 0.9064 0.8378 0.5363
0132 -. 43 -. 42 -. 351-,42 -. 21 -. 16 -. 32 -. 35

CL _ _ -4 _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

cs'
ID

0



Figu'e A5-10. Normalized assembly power densities and errors
for the 3-D LRA BWR (full core). "Rod out" configuration.

0. 0819
+.49

0. 1565
- 50

0. 3479
+.85

0. 7091
-. 86

1. 340
-3.08

2.877
-1.02

4.468
+.33

______ 4 -1 4 4 1 1 .4 1. ______

0. 0886
+. 59

0.0081
+. 79

0. 1392
+1. 53

0.0111
+1. 39

0.00 6 2

1+. 0 I

0. 2229
-1. 19

0.0132
-. 30

0.0089
-.04

0. 5124
+. 19

0.0233
+.76

1. 122
+.62

0.0427
+1. 56

1.918
-3. 20

0.0543
-. 88

4.437
-. 95

0. 0928
+.84

w r w I
0.0153
+1.47

0.0256
+.56

0.0361
-. 50

0.0584
+.72

8. 817
+.89

9. 979
+.66

0.1443010.1271
+1.78 1+.97

0.0736
+1. 01

w
l.a
0

0.0515 0.1009 0.1545 0.1677 0.4098 1.130 1.463 3.873 11.698 15.797 10.473
+.75 +1.47 +1.27 +.02 -. 54 +.38 -. 32 -1.28 +.32 +1.28 +.50

0.0414 0.0657 0.0698 0.0940 0.2118 0.4632 0.8368 2.127 5.082 7.583 5.488
+.33 +.52 -. 41 +.96 +.49 -1.48 +.22 +.82 -. 46 -. 67 -. 84

0.0264 0.0398 0.0386 0.0509 0.1055 0.2222 0.4330 0.998 2.069 2.982 2.156
-. 51 -. 80 +.10 +.21 -. 16 -. 49 -. 28 +.88 -. 65 -2.93 -2.67

0.0196 0.0329 0.0400 0.0338 0.0732 0.1988 0.2538 0.6171 1.625 1.666 1.067
+.48 +1.32 +1.12 -. 49 -1.19 +.61 -. 28 -1.87 +.24 +1.32 +.40

0.0123 0.0188 0.0177 0.0193 0.0382 0.0793 0.1305 0.2918 0.5900 0.7490 0.5110
+1.04 +.34 -. 19 +.09 +.35 -1.07 -. 37 +.38 -. 36 +.74 +1.52

0.0078 0.0116 0.0108 0.0119 0.0214 0.0406 0.0666 0.1314 0.2410 0.3230 0.2274
-. 36 +.24 -. 32 +.71 +.35 -. 66 +.16 +1.11 +.30 -. 71 +.08

0.0059 0.0107 0.0144 0.0118 0.0216 0.0511 0.0520 0.0986 0.2213 0.2002 0.1181
+.06 +1.67 +1.49 -.20 -.61 +1.23 +.24 -. 23 +1.62 +2.01 +.90



Fig. A5-11. Normalized assembly power
densities and errors for the 2-D Zion 1 PWR
(Problem A4. 7).

Reference

QUANDRY errors (%)
(1 X1)
(1 X )
(2 X 2)

Flat leakage

"Modified quadratic" leakage

Quadratic leakage

CA
I-.

1.631
-. 80
-. 62
+.06

1.583
-. 76
-. 57

1.078
+.65
+.46
-. 09

0.6641
+1.91
+1. 61

-. 06

0.3206
+1.62
+1.40

-. 25

9. 4

0.8493
+1. 24
+1.01

-. 06

0.5272
+2. 16
+1. 61

-. 15
_ _ _ _ _i i. 1

1. 243
.24
-.16

1. 217
+.08
+.08

0. 8944
+. 37
+.26
-. 06

0. 7189
+1.08

+.95

___ __ _ I I I

1.446
-. 56
-. 42

1.672
-. 66
-. 48
-. 06

1,478
.48
34

+. 07

1.395
.58
.43

1.

1.

181
34
25

365
52
37

1.081

+.09

1.033
-. 19
-. 19

0.7188
+.49
-. 32
-. 0o't

0.9181
+.36
+. 17
+.04

4 6 1 4 4 1 1

1.777
-. 80
-. 57
+. 06

1.535
-. 79
-,60

1.565
-. 64
-. 45
+. 06

1.253
-. 48
-. 40

1. 164
25
17
09

0.7972
+. 18
-. 05
-. 03

0. 3158
+2. 22
+1.96

-. 19

0.4393
+1. 80
+1. 14

-. 5

0.4901
+.90
+.27
-. 04

0.5053
+.61
+.16
+.02

Ab



Appendix 6

LRA BWR TRANSIENT RESULTS

A6.1 2-D LRA BWR

A6.2 3-D LRA BWR (Quarter-Core)

A6. 3 3-D LRA BWR (Full-Core)

A6-1



Figure A6-1a. 2-D LRA BWR transient problem.

NORMALIZED NODAL POWER DENSITIES AT T
MEAN POWER DENSITY = 0.999999E-06

0.0

9.234E-01 8.668E-01

1.481E+00

1.663E+00

1.386E+00

7.888E-01

5.113E-01

4.127E-01

4.398E-01

6.126E-01

-1

1,.281E+00

1. 149E+00

9.390E-01

6.710E-01

4.900E-01

4.064E-01

3.996E-01

4.398E-01

2

8.264E-01 8.529E-01

1. 171E+00

9.659E-01

7.822E-01

6.179E-01

4.921E-01

4.239E-01

4.,064E-01

4.127E-01

3

Y = 9

Y = 8

Y = 7

Y = 6

Y = 5

Y = 4

Y = 3

Y:= 2

Y = 1

x

9.327E-01 9.734E-01

1.423E+00

1,338E+00

1. 151E+00

8.653E-01

6.780E-01

6.179E-01

6.710E-01

7.888E-01

5

1.680E+00

2.053E+00

1.853E+00

1. 151E+00

8.429E-01

7.822E-01

9.390E-01

1.386E+00

6

8.464E-01 0.0

1.623E+00

2.164E+00

2.053E+00

1.338E+00

1.022E+00

9.659E-01

1.149E+00

1t663E+00

7

1 .329E+00

1.623E+00

1.680E+00

1.423E+00

1.220E+00

1.171E+00

1.281E+00

1.481E+00

8

to

0.0

1.220E+00

1.022E+00

8.429E-01

6.780E-01

5.526E-01

4.921E-01

4.900E-0I

5.113E-01

4

0.0 1

8.464E-01

9.734E-01

9.327E-01

8.529E-01

8.264E-01

8.668E-01

9.234E-01

9



Figure A6-la. 2-D LRA BWR transient problem.

NORMALIZED NODAL POWER DENSITIES AT T
MEAN POWER DENSITY = D.138231E-05

0.400000E+00

Y = 9 8.459E-01 8.024E-01 7.821E-01 8.320E-01

8

7

6

5

4

3

2

1

x

1 355E+00

1.520E+00

1.267E+00

7.213E-01

4.672E-01

3.758E-01

3.983E-0 1

5.528E-01

=-1

1. 185E+00

1.062E+00

8.669E-01

6.199E-01

4.521E-01

3.732E-01

3.646E-01

3.995E-01

2

1. 109E+00

9.149E-01

7.410E-01

5.844E-0 1

4.631E-01

3.955E-01

3.75SE-0 I

3.797E-01

3

1. 193E+00

1.002E+00

8.278E-01

6.624E-01

5.335E-01

4.677E-01

4.596E-0 1

4.764E-01

4

9.381E-01 1.006E+00 8.959E-01

1,439E+00

1.361E+00

1. 172E+00

8.729E-01

6.707E-0 1

5.964E-0 1

6.354E-01

7.407E-01

5

1.749E+00

2.153E+00

i.943E+00

1.193E+00

8.506E-01

7.638E-01

8.940E-01

1.306E+U

6

1.741E+00

2.352E+00

2.231E+00

1.424E+00

1.048E+00

9.515E-O1i

1.099E+00

1.571E+00

7

CA,

0.0

1.430E+00

1.890E+00

1.949E+00

1.554E+00

1.264E+00

1. 161E+00

1.231E+00

1.404E+00

8

0.0

0.0

1. 024E+00

1.163E+00

1.032E+00

8.885E-01

8.216E-01

8.353E-0 1

8 774E ^

9



Figure A6-la.

NORMALIZED NODAL POWER DENSITIES AT T =
MEAN POWER DENSITY = 0.304568E-05

2-D LRA BWR transient problem.

0.799999E+00

Y = 9 7.357E-01 7.108E-01 7.190E-01 8.023E-01 9.456E-01 1.051E+00 9.661E-01 0.0

8

7

6

5

4

3

2

1

1.177E+00

1.317E+00

1. 097E+00

6.252E-01

4.046E-01

3.232E-01

3.392E-01

4.678E-01

1.048E+00

9.368E-01

7.643E-01

5.471E-01

3.981E-01

3.259E-0 1

3.147E-01

3.422E-01

1.020E+00

8.422E-01

6.823E-01

5.366E-01

4.218E-01

3.551E-01

3.324E-01

3.328E-01

1.155E+00

9.752E-01

8.061E-01

6.401E-01

5.062E-01

4.330E-01

4.162E-01

4.268E-01

1.461E+00

1.394E+00

1.202E+00

8.834E-01

6.602E-01

5.658E-01

5.847E-01

6.723E-01

1.846E+00

2.293E+00

2.070E+00

1.253E+00

8.614E-01

7.376E-01

8.299E-01

1.193E+00

1.910E+00

2.617E+00

2.481E+00

1.546E+00

1. 084E+00

9.310E-01

1.029E+00

= I2 3 4 5 6789

0r)

0.0

0.0

I .283E+00

1.436E+00

1. 173E+00

9.395E-01

8.148E-01

7.908E-01

1.695E+00

2.272E+00

2.332E+00

1.738E+00

1.326E+00

1. 146E+00

1. 160E+00

1.442E+00 1.295E+00 8.120E-01

X = 1



Figure A6-1a. 2-D LRA BWR transient problem;

NORMALIZED NODAL POWER DENSITIES AT T = 0.119989E+01
BEAN POWER DENSITY = 0.734631E-03

Y = 9 5.972E-01 5.945E-01 6.369E-01 7.598E-01 9.484E-01 1.101E+00 1.050E+00 0.0 0.0

Y = 8 9.531E-01 8.748E-01 9.048E-01 1.100E+00 1.479E+00 1.958E+00 2.119E+00 1.972E+00 0.0

Y = 7 1.064E+00 7.797E-01 7.489E-01 9.360E-01 1.427E+00 2.458E+00 2.952E+00 2.784E+00 1.641E+00

0Y = 6 8.851E-01 6.359E-01 6.072E-01 7.758E-01 1.233E+00 2.223E+00 2.799E+00 2.848E+00 1.812E+00

CA

Y = 5 5.057E-01 4.561E-01 4.761E-01 6.099E-01 8.933E-01 1.324E+00 1.701E+00 1.979E+00 1.361E+00

Y = 4 3.27DE-01 3.311E-01 3.698E-01 4.708E-01 6.447E-01 8.727E-01 1.129E+00 1.404E+00 1.003E+00

Y = 3 2.587E-01 2.675E-01 3.046E-01 3.886E-01 5.258E-01 7.021E-01 9.024E-01 1.123E+00 8.035E-01

Y = 2 2.669E-01 2.534E-01 2.783E-01 3.614E-01 5.193E-01 7.462E-01 9.352E-01 1.065E+00 7.305E-01

Y =1 3.638E-01 2.718E-01 2.746E-01 3.639E-01 5.841E-01 1.044E+00 1.272E+00 1.151E+00 7.254E-01

X: 1 2 3 4 5 6 7 8 9



Figure A6-1a. 2-D LRA BWR transient problem.

NORMALIZED NODAL POWER DENSITIES AT T =
MEAN POWER DENSITY = 0.720297E+03

0.139978E+01

Y = 9 5.411E-01 5.461E-01 5.999E-01 7.355E-01 9.397E-01

Y:= 8

Y = 7

Y = 6

Y = 5..,

Y = 4

Y = 3

y = 1

x

8.633E-01

9.622E-01

8.011E-01

,I.592E-01

2.975E-01

2.347E-01

2.405E-01

3.259E-01

=-1

8.036E-01

7.160E-01

5.844E-01

4.202E-01

3.052E-01

2.455E-01

2.307E-01

2.458E-01

2
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5.751E-01
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2.523E-01

3

1.069E+00
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5.948E-01

4.550E-01

3.701E-01

3.391E-01

3.385E-01

4

1.473E+00

1.429E+00

1.237E+00

8.922E-01

6.355E-0I
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5

1.112E+00 1.077E+00 0.0
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7.088E-01
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6

2.197E+00

3.088E+00

2.932E+00
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1. 145E+00

8.872E-01

8.922E-01

1. 195E+00

7

2.092E+00

3. 036E+00

3.104E+00

2.089E+00

1.435E+00

1. 109E+00

1.021E+00

1.085E+00

8

CO

CO

0.0

0.0

1.826E+00

2.008E+00

1.449E+00

1.030E+00

7.955E-0 1

7.014E-01

6.852E-0 1

9



Figure A6-1a. 2-D LRA BWR transient problem.

NORMALIZED NODAL POWER DENSITIES AT T =
MEAN POWER DENSITY u 0.798027E+03

0.199964E+01

Y = 9 4.631E-01 4.733E-01 5.321E-01 6.705E-01 8.819E-01 1.079E+00 1.093E+00 0.0

Y = 8

Y = 7

Y = 4

Y = 3

Y = 2
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Figure A6-1a. 2-D LRA BWR transient problem.

NORMALIZED NODAL POWER DENSITIES AT T =
HEAN POWER DENSITY = 0.974213E+02

Y = 9

0.299957E+01
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Figure A6-1b. 2-D LRA BWR transient problem.

NODE AVERAGED FUEL TEMPERATURES AT T r 0.139978E+01
REACTOR AVERAGE FUEL TEMPERATURE = 0.309592E+03

Y = 9 3.052E+02 3.052E+02 3.058E+02 3.071E+02 3.090E+02 3.107E+02 3.103E+02 3.000E+02 3.000E+02

Y = 8 3.083E+02 3.077E+02 3.082E+02 3.103E+02 3.142E+02 3.191E+02 3.211E+02 3.201E+02 3.000E+02

Y = 7 3.093E+02 3.069E+02 3.068E+02 3.088E+02 3.137E+02 3.241E+02 3.297E+02 3.291E+02 3.175E+02

Y = 6 3.077E+02 3.056E+02 3.055E+02 3.073E+02 3.119E+02 3.218E+02 3.281E+02 3.297E+02 3.192E+02
C)

Y = 5 3.044E+02 3.040E+02 3.043E+02 3.057E+02 3.086E+02 3.129E+02 3.169E+02 3.200E+02 3.;39E+02

Y = 4 3.028E+02 3.029E+02 3.033E+02 3.044E+02 3.61Ei42 3.084E+02 3.110E+02 3.138E+02 3.099E+02

Y = 3 3.022E+02 3.023E+02 3.027E+02 3.035E+02 3.049E+02 3.066E+02 3.085E+02 3.106E+02 3.076E+02

Y = 2 3.023E+02 3.022E+02 3.025E+02 3.032E+02 3.047E+02 3.068E+02 3.086E+02 3.098E+02 3.067E+02

Y = 1 3.031E+02 3.023E+02 3.024E+02 3.032E+02 3.052E+02 3.094E+02 3.115E+02 3.104E+02 3.066E+02

X 1 2 3 4 5 6 7 8 9



Figure A6-1b. 2-D LRA BWR transient problem.

NODE AVERAGED FUEL TEMPERATURES AT T = 0.199964E+01
REACTOR AVERAGE FUEL TEMPERATURE = 0.854850E+03

Y = 9 5.983E+02 5.998E+02 6.268E+02 6.979E+02 8.073E+02 9.029E+02 8.918E+02 3.000E+02 3.000E+02
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1.069E+03

9.672E+02

7.829E+02

6.460E+02

5.783E+02

5.704E+02

1.377E+03

1.663E+03
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1.034E+03

7.766E+02
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4.885E+02 6.015E+02 8.385E+02 9.561E+02

4 5 6 7

1.486E+03

2.065E+03

2.104E+03

1.478E+03

1. 097E+03

9.112E+02

8.608E+02

8.955E+02

8

3.000E+02

1.394E+03
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Figure A6-1b. 2-D LRA BWR transient problem.

NODE AVERAGED FUEL TEMPERATURES AT T = 0.299957E+01
REACTOR AVERAGE FUEL TEKPERATURE = 0.111056E+04

Y = 9 7.220E+02 7.253E+02 7.659E+02 8.707E+02 1.032E+03 1.176E+03 1.167E+03 3.ODE+02 3.000E+02

Y = 8 9.713E+02

Y = 7 1.050E+03

Y = 6 9.264E+02

Y = 5 6.609E+02

Y = 4 5.367E+02

Y = 3 4.900E+02

Y = 2 4.980E+02

Y = 1 5.713E+02

X 1

)

9.236E+02

-8.555E+02

7.552E+02

6.297E+02

5.422E+02

4.977E+02

4.883E+02

5.023E+02

2

9.604E+02

8.474E+02

7.464E+02

6.526E+02

5.755E+02

5.274E+02

5.073E+02

5.041E+02

3

1. 126E+.03

1.006E+03

8.886E+02

7.644E+02

6.579E+02

5.931E+02

5.696E+02

5.695E+02

4

1.444E+03

1.412E+03

1.266E+03

9.993E+02

8.000E+02

7.004E+02

6.872E+02

7.306E+0?

5

1.867E+03

2.288E+03

2.107E+03

1.370E+03

9.921E+02

8.402E+02

8.568E+02

1.068E+03

6

2.081E+03

2.835E+03

2.714E+03

1.737E+03

1.219E+03

1.003E+03

1.001E+03

1.236E+03

7

2.072E+03

2.980E+03

3.037E+03

2.055E+03

1.470E+03

1.186E+03

1. 105E+03

1. 151E+03

8

3.OOOE+02

1.985E+03

2.136E+03

1.547E+05

1. 151E+03

9.416E+02

8.571E+02

8.401E+02

9



Figure A6-2a. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2a. 3-D LEA BWR (quarter-core) transient problem.
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Figure A6-2a. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2a. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2a. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2a. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2b. 3-D LRA BWR (quarter-core) transient p> )blem.
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Figure A6-2c. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-2c. 3-D LRA BWR (quarter-core) transient problem.

NODE AVERAGED FULL TEMPERATURES AT T =
REACTOR AVERAGE FUEL TEM'ERATURE =

PLANE #

0.199997E+01
0.897433E+03

4
I = 7 3.000*E02 3.OOOE+02 3.000E+02 3. 000*02 3.OOOE+02 3.000E+02

Y = 6 7.330E+02

Y = 5 9.951E+02

Y = 4 1.006E+03

Y = 3 6.0201E+02

Y = 2 4.956E+02

y = 1 5.702i+02

7.605E+02

9.61 8E+02

8.237E+02

6.135E+02

5. 100E+02

5.061E+02

1.008E+03

1 .375.+03

1 .223E+03

8.562E+02

6. 583E+02

6.585E+02

1.292E+03

2.235E+03

2 .844E+03

1 .464E+03

9.683E+02

1. 194E+03

3.OOOE+02

2. 404E+03

3.649E+03

1.983E+03

l.202E+03

1.206E+03

3.000E+02

3.OOOE+02

2.496E+03

1.5141+03

9.425E+02

8.723 E+02

3.OOOE+02

3.000E+02

3.OOOE+02

3.OOOE+02

3. 000E+02

3.000E+02

= 12 3 467

c."

0.0

X = 1



Figure A6-2c. 3-D LRA BWR (quarter-core) transient problem.
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Figure A6-3a. 3-D LRA BWR (full-core) transient probier.
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Figure A6-3a. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3a.

NORMALIZED ASSEMBLY POWER DENSITIES AT T
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Figure A6-3a. 3-D LRA BWR (full-core) transient problem.
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3-D LRA BWR (full-core) transient problem.

NORMALIZED ASSEMBLY POWER DENSITIES AT T
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Figure A6-3a. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3a.

NORMALIZED ASSEMBLY POWER DENSITIES AT T =
MEAN POWER DENSITY 0.225659E+02

3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.

NORMALIZED NODAL POWER DENSITIES AT T =
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3b. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3c. 3-D LRA BWR (full-core) transient problem.
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Figure A6-3c. 3-D LRA BWR (full-core) transient problem.
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PLANE S 4

11 3.OOE+02

Y 10

9

8

7

6

5

4

3

2

1

x

3.DDE+02

3.288E+02

3.247E+02

3.180E+02

3.158E+02

3.116E+02

3.094E+02

3.085E+02

3.OOOE+02

3. OOOE+02

= 1

3.000E+02 3.365E+02 3.518E+02

3.456E+02 3.645E+02 3.744E+02

3.547E+02 3.744E+02 3.578E+02

3.378E+02 3.349E+02 3.336E+02

3.264E+02 3.226E+02 3.202E+02

3.260E+02 3.283E+02 3.161E+02

3.171E+02 3.143E+02 3.109E+02

3.139E+02 3.118E+02 3.094E+02

3.156E+02 3.196E+02 3.123E+02

3.121E+02 3.158E+02 3.146E+02

3.OOOE+02 3.086E+02 3.099E+02

2 3 4

C)

A

y =

3.887E+02

4.291E+02

4.018E+02

3.544E+02

3.292E+02

3.224E+02

3.142E+02

3.117E+02

3.160E+02

3.192E+02

3.130E+02

5

4.494E+02

5.405E+02

5.430E+02

3.979E+02

3.507E+02

3.524E+02

3.238E+02

3. 181E+02

3.326E+02

3.301E+02

3.183E+02

6

5.262E+02

6.233E+02

5.529E+02

4.468E+02

3.818E+02

3.558E+02

3.338E+02

3.239E+02

3.270E+02

3.315E+02

3.216E+02

7

7.255E+02

9.496E+02

8.585E+02

6.217E+02

4.696E+02

4.205E+02

3.679E+02

3.417E+02

3.431E+02

3.465E+02

3.303E+02

8

9.281E+02

1.530E+03

1.910E+03

1.0 12E+03

6.314E+02

6.160E+02

4.312E+02

3.731E+02

3.928E+02

3.678E+02

3.357E+02

9

3. 000E+02

1.653E+03

2.440E+03

1. 342E+03

7.586E+02

6.216E+02

4.683E+02

3.947E+02

3.807E+02

3.568E+02

3. OOOE+02

10

3. 000E+02

3. OOOE+02

1.703E+03

1. 052E+03

6.300E+02

5.025E+02

4.160E+02

3.662E+02

3.458E+02

3.OOOE+02

3. OOE+02

11



Figure A6-3c. 3-D LRA BWR (full-core) transient problem.
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REACTOR AVERAGE FUEL TEMPERATURE = 0.459973E+03
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Figure A6-3c. 3-D LRA BWR (full-core) transient problem.
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